

 [image: Bulletproof SSL/TLS and PKI]

Table of Contents

Preface

Scope and Audience

Contents

SSL versus TLS

SSL Labs

Online Resources

Feedback

About the Author

Acknowledgments

1. SSL, TLS, and Cryptography

Transport Layer Security

Networking Layers

Protocol History

Cryptography

2. Protocol

Record Protocol

Handshake Protocol

Key Exchange

Authentication

Encryption

Renegotiation

Application Data Protocol

Alert Protocol

Connection Closure

Cryptographic Operations

Cipher Suites

Extensions

Protocol Limitations

Differences between Protocol Versions

3. Public-Key Infrastructure

Internet PKI

Standards

Certificates

Certificate Chains

Relying Parties

Certification Authorities

Certificate Lifecycle

Revocation

Weaknesses

Root Key Compromise

Ecosystem Measurements

Improvements

4. Attacks against PKI

VeriSign Microsoft Code-Signing Certificate

Thawte login.live.com

StartCom Breach (2008)

CertStar (Comodo) Mozilla Certificate

RapidSSL Rogue CA Certificate

Comodo Resellers Breaches

StartCom Breach (2011)

DigiNotar

DigiCert Sdn. Bhd.

Flame

TURKTRUST

ANSSI

5. HTTP and Browser Issues

Sidejacking

Cookie Stealing

Cookie Manipulation

SSL Stripping

MITM Certificates

Certificate Warnings

Security Indicators

Mixed Content

Extended Validation Certificates

Certificate Revocation

6. Implementation Issues

Certificate Validation Flaws

Random Number Generation

Heartbleed

Protocol Downgrade Attacks

Truncation Attacks

Deployment Weaknesses

7. Protocol Attacks

Insecure Renegotiation

BEAST

Compression Side Channel Attacks

Padding Oracle Attacks

RC4 Weaknesses

Triple Handshake Attack

Bullrun

8. Deployment

Key

Certificate

Protocol Configuration

Cipher Suite Configuration

Server Configuration and Architecture

Issue Mitigation

Pinning

HTTP

9. Performance Optimization

Latency and Connection Management

TLS Protocol Optimization

Denial of Service Attacks

10. HSTS, CSP, and Pinning

HTTP Strict Transport Security

Content Security Policy

Pinning

11. OpenSSL

Getting Started

Key and Certificate Management

Configuration

Creating a Private Certification Authority

12. Testing with OpenSSL

Connecting to SSL Services

Testing Protocols that Upgrade to SSL

Using Different Handshake Formats

Extracting Remote Certificates

Testing Protocol Support

Testing Cipher Suite Support

Testing Servers that Require SNI

Testing Session Reuse

Checking OCSP Revocation

Testing OCSP Stapling

Checking CRL Revocation

Testing Renegotiation

Testing for the BEAST Vulnerability

Testing for Heartbleed

13. Configuring Apache

Installing Apache with Static OpenSSL

Enabling TLS

Configuring TLS Protocol

Configuring Keys and Certificates

Configuring Multiple Keys

Wildcard and Multisite Certificates

Virtual Secure Hosting

Reserving Default Sites for Error Messages

Forward Secrecy

OCSP Stapling

Configuring Ephemeral DH Key Exchange

TLS Session Management

Client Authentication

Mitigating Protocol Issues

Deploying HTTP Strict Transport Security

Monitoring Session Cache Status

Logging Negotiated TLS Parameters

Advanced Logging with mod_sslhaf

14. Configuring Java and Tomcat

Java Cryptography Components

Tomcat

15. Configuring Microsoft Windows and IIS

Schannel

Microsoft Root Certificate Program

Configuration

Securing ASP.NET Web Applications

Internet Information Server

16. Configuring Nginx

Installing Nginx with Static OpenSSL

Enabling TLS

Configuring TLS Protocol

Configuring Keys and Certificates

Configuring Multiple Keys

Wildcard and Multisite Certificates

Virtual Secure Hosting

Reserving Default Sites for Error Messages

Forward Secrecy

OCSP Stapling

Configuring Ephemeral DH Key Exchange

Configuring Ephemeral ECDH Key Exchange

TLS Session Management

Client Authentication

Mitigating Protocol Issues

Deploying HTTP Strict Transport Security

Tuning TLS Buffers

Logging

17. Summary

Index

Bulletproof SSL and TLS

Ivan Ristić

Copyright © 2014 Feisty Duck Limited. All rights reserved.

Published in August 2014. Updated in October 2014 (build 544).
ISBN: 978-1-907117-04-6

Feisty Duck Limited

www.feistyduck.com

contact@feistyduck.com

Address:

6 Acantha Court

Montpelier Road

London W5 2QP

United Kingdom

Production editor: Jelena
 Girić-Ristić
Copyeditor: Melinda Rankin

All rights reserved. No part of this publication may be
 reproduced, stored in a retrieval system, or transmitted, in any form or by any
 means, without the prior permission in writing of the publisher.
The author and publisher have taken care in preparation of this
 book, but make no expressed or implied warranty of any kind and assume no
 responsibility for errors or omissions. No liability is assumed for incidental or
 consequential damages in connection with or arising out of the use of the
 information or programs contained herein.

Personal copy of Richard Fussenegger <fleshgrinder@gmx.at>

Preface

You are about to undertake a journey into the mysterious world of cryptography. I’ve just
 completed mine—writing this book—and it’s been an amazing experience. Although
 I’d been a user of SSL since its beginnings, I developed a deep interest in it around 2004,
 when I started to work on my first book, Apache Security. About five
 years later, in 2009, I was looking for something new to do; I decided to spend more time on
 SSL, and I’ve been focusing on it ever since. The result is this book.
My main reason to go back to SSL was the thought that I could improve things. I saw an
 important technology hampered by a lack of tools and documentation. Cryptography is a
 fascinating subject: it’s a field in which when you know more, you actually know less. Or,
 in other words, the more you know, the more you discover how much you don’t know. I can’t
 count how many times I’ve had the experience of reaching a new level of understanding of a
 complex topic only to have yet another layer of complexity open up to me; that’s what makes
 the subject amazing.
I spent about two years writing this book. At first, I thought I’d be able to spread the
 effort so that I wouldn’t have to dedicate my life to it, but that wouldn’t work. At some
 point, I realized that things are changing so quickly that I constantly need to go back and
 rewrite the “finished” chapters. Towards the end, about six months ago, I started to spend
 every spare moment writing to keep up.
I wrote this book to save you time. I spent the large part of the last five years learning
 everything I could about SSL/TLS and PKI, and I knew that only a few can afford to do the
 same. I thought that if I put the most important parts of what I know into a book others
 might be able to achieve a similar level of understanding in a fraction of the time—and here
 we are.
This book has the word “bulletproof” in the title, but that doesn’t mean that TLS is
 unbreakable. It does mean that if you follow the advice from this book you’ll be able to get
 the most out of TLS and deploy it as securely as anyone else in the world. It’s not always
 going to be easy—especially with web applications—but if you persist, you’ll
 have better security than 99.99% of servers out there. In fact, even with little effort, you
 can actually have better security than 99% of the servers on the Internet.
Broadly speaking, there are two paths you can take to read this book. One is to take it
 easy and start from the beginning. If you have time, this is going to be the more enjoyable
 approach. But if you want answers quickly, jump straight to chapters 8 and 9. They’re going
 to tell you everything you need to know about deploying secure servers while achieving good
 performance. After that, use chapters 1 through 7 as a reference and chapters 10 through 16
 for practical advice as needed.
Scope and Audience

This book exists to document everything you need to know about SSL/TLS and PKI for
 practical, daily work. I aimed for just the right mix of theory, protocol detail,
 vulnerability and weakness information, and deployment advice to help you get your job
 done.
As I was writing the book, I imagined representatives of three diverse groups looking
 over my shoulder and asking me questions:
	System administrators
	Always pressed for time and forced to deal with an ever-increasing number
 of security issues on their systems, system administrators need reliable
 advice about TLS so that they can deal with its configuration quickly and
 efficiently. Turning to the Web for information on this subject is
 counterproductive, because there’s so much incorrect and obsolete
 documentation out there.

	Developers
	Although SSL initially promised to provide security transparently for any
 TCP-based protocol, in reality developers play a significant part in
 ensuring that applications remain secure. This is particularly true for web
 applications, which evolved around SSL and TLS and incorporated features
 that can subvert them. In theory, you “just enable encryption”; in practice,
 you enable encryption but also pay attention to a dozen or so issues,
 ranging from small to big, that can break your security. In this book, I
 made a special effort to document every single one of those issues.

	Managers
	Last but not least, I wrote the book for managers who, even though not
 necessarily involved with the implementation, still have to understand
 what’s going on and make decisions. The security space is getting
 increasingly complicated, so understanding the attacks and threats is often
 a job in itself. Often, there isn’t any one way to deal with the situation,
 and the best way often depends on the context.

Overall, you will find very good coverage of HTTP and web applications here but little
 to no mention of other protocols. This is largely because HTTP is unique in the way it
 uses encryption, powered by browsers, which have become the most popular
 application-delivery platform we’ve ever had. With that power come many problems, which
 is why there is so much space dedicated to HTTP.
But don’t let that deceive you; if you take away the HTTP chapters, the remaining
 content (about two-thirds of the book) provides generic advice that can be applied to
 any protocol that uses TLS. The OpenSSL, Java, and Microsoft chapters provide
 protocol-generic information for their respective platforms.
That said, if you’re looking for configuration examples for products other than web
 servers you won’t find them in this book. The main reason is that—unlike with web
 servers, for which the market is largely split among a few major platforms—there
 are a great many products of other types. It was quite a challenge to keep the web
 server advice up-to-date, being faced with nearly constant changes. I wouldn’t be able
 to handle a larger scope. Therefore, my intent is to publish additional configuration
 examples online and hopefully provide the initial spark for a community to form to keep
 the advice up-to-date.

Contents

This book has 16 chapters, which can be grouped into several parts. The parts build on
 one another to provide a complete picture, starting with theory and ending with
 practical advice.
The first part, chapters 1 through 3, is the foundation of the book and discusses
 cryptography, SSL, TLS, and PKI:
	Chapter 1, SSL, TLS, and Cryptography
 begins with an introduction to SSL and TLS and discusses where these secure
 protocols fit in the Internet infrastructure. The remainder of the chapter
 provides an introduction to cryptography and discusses the classic threat model
 of the active network attacker.

	Chapter 2, Protocol
 discusses the details of the TLS protocol. I cover TLS 1.2, which is the most
 recent version. Information about earlier protocol revisions is provided where
 appropriate. An overview of the protocol evolution from SSL 3 onwards is
 included at the end for reference.

	Chapter 3, Public-Key Infrastructure
 is an introduction to Internet PKI, which is the predominant trust model used on
 the Internet today. The focus is on the standards and organizations as well as
 governance, ecosystem weaknesses and possible future improvements.

The second part, chapters 4 through 7, details the various problems with trust
 infrastructure, our security protocols, and their implementations in libraries and
 programs:
	Chapter 4, Attacks against PKI
 deals with attacks on the trust ecosystem. It covers all the major CA
 compromises, detailing the weaknesses, attacks, and consequences. This chapter
 gives a thorough historical perspective on the security of the PKI ecosystem,
 which is important for understanding its evolution.

	Chapter 5, HTTP and Browser Issues
 is all about the relationship between HTTP and TLS, the problems arising from
 the organic growth of the Web, and the messy interactions between different
 pieces of the web ecosystem.

	Chapter 6, Implementation Issues
 deals with issues arising from design and programming mistakes related to random
 number generation, certificate validation, and other key TLS and PKI
 functionality. In addition, it discusses voluntary protocol downgrade and
 truncation attacks and also covers Heartbleed.

	Chapter 7, Protocol Attacks
 is the longest chapter in the book. It covers all the major protocol flaws
 discovered in recent years: insecure renegotiation, BEAST, CRIME, Lucky 13, RC4,
 TIME and BREACH, and Triple Handshake Attack. A brief discussion of Bullrun and
 its impact on the security of TLS is also included.

The third part, chapters 8 through 10, provides comprehensive advice about deploying
 TLS in a secure and efficient fashion:
	Chapter 8, Deployment
 is the map for the entire book and provides step-by-step instructions on how to
 deploy secure and well-performing TLS servers and web applications.

	Chapter 9, Performance Optimization
 focuses on the speed of TLS, going into great detail about various performance
 improvement techniques for those who want to squeeze every bit of speed out of
 their servers.

	Chapter 10, HSTS, CSP, and Pinning
 covers some advanced topics that strengthen web applications, such as HTTP
 Strict Transport Security and Content Security Policy. It also covers pinning,
 which is an effective way of reducing the large attack surface imposed by our
 current PKI model.

The fourth and final part consists of chapters 11 through 16, which give practical
 advice about how to use and configure TLS on major deployment platforms and web servers
 and how to use OpenSSL to probe server configuration:
	Chapter 11, OpenSSL
 describes the most frequently used OpenSSL functionality, with a focus on
 installation, configuration, and key and certificate management. The last
 section in this chapter provides instructions on how to construct and manage a
 private certification authority.

	Chapter 12, Testing with OpenSSL
 continues with OpenSSL and explains how to use its command-line tools to test
 server configuration. Even though it’s often much easier to use an automated
 tool for testing, OpenSSL remains the tool you turn to when you want to be sure
 about what’s going on.

	Chapter 13, Configuring Apache
 discusses the TLS configuration of the popular Apache httpd
 web server. This is the first in a series of chapters that provide practical
 advice to match the theory from the earlier chapters. Each chapter is dedicated
 to one major technology segment.

	Chapter 14, Configuring Java and Tomcat
 covers Java (versions 7 and 8) and the Tomcat web server. In addition to
 configuration information, this chapter includes advice about securing web
 applications.

	Chapter 15, Configuring Microsoft Windows and IIS
 discusses the deployment of TLS on the Microsoft Windows platform and the
 Internet Information Server. This chapter also gives advice about the use of TLS
 in web applications running under ASP.NET.

	Chapter 16, Configuring Nginx
 discusses the Nginx web server, covering the features of the recent stable
 versions as well as some glimpses into the improvements in the development
 branch.

SSL versus TLS

It is unfortunate that we have two names for essentially the same protocol. In my
 experience, most people are familiar with the name SSL and use it in the context of
 transport layer encryption. Some people, usually those who spend more time with the
 protocols, use or try to make themselves use the correct name, whichever is right in the
 given context. It’s probably a lost cause. Despite that, I tried to do the same. It was
 a bit cumbersome at times, but I think I managed it by (1) avoiding either name where possible, (2) mentioning both where advice applies to all versions, and (3) using TLS in all other cases. You probably
 won’t notice, and that’s fine.

SSL Labs

SSL Labs (www.ssllabs.com) is a research project I started in 2009 to focus
 on the practical aspects of SSL/TLS and PKI. I joined Qualys in 2010, taking the project
 with me. Initially, my main duties were elsewhere, but, as of 2014, SSL Labs has my full
 attention.
The project largely came out of my realization that the lack of good documentation and
 tools is a large part of why TLS servers are generally badly configured. (Poor default
 settings being the other major reason.) Without visibility—I thought—we
 can’t begin to work to solve the problem. Over the years, SSL Labs expanded into four
 key projects:
	Server test
	The main feature of SSL Labs is the server test, which enables site
 visitors to check the configuration of any public web server. The test
 includes dozens of important checks not available elsewhere and gives a
 comprehensive view of server configuration. The grading system is easy to
 understand and helps those who are not security experts differentiate
 between small and big issues. One of the most useful parts of the test is
 the handshake simulator, which predicts negotiated protocols and cipher
 suites with about 40 of the most widely used programs and devices. This
 feature effectively takes the guesswork out of TLS configuration. In my
 opinion, it’s indispensable.

	Client test
	As a fairly recent addition, the client test is not as well known, but
 it’s nevertheless very useful. Its primary purpose is to help us understand
 client capabilities across a large number of devices. The results obtained
 in the tests are used to power the handshake simulator in the server
 test.

	Best practices
	SSL/TLS Deployment Best Practices is a concise and
 reasonably comprehensive guide that gives definitive advice on TLS server
 configuration. It’s a short document (about 11 pages) that can be absorbed
 in a small amount of time and used as a server test companion.

	SSL Pulse
	Finally, SSL Pulse is designed to monitor the entire ecosystem and keep us
 informed about how we’re doing as a whole. It started in 2012 by focusing on
 a core group of TLS-enabled sites selected from Alexa’s top 1 million web
 sites. Since then, SSL Pulse has been providing a monthly snapshot of key
 ecosystem statistics.

There are also several other smaller projects; you can find out more about them on the
 SSL Labs web site.

Online Resources

This book doesn’t have an online companion (although you can think of SSL Labs as
 one), but it does have an online file repository that contains the files referenced in
 the text. The repository is available at github.com/ivanr/bulletproof-tls. In
 time, I hope to expand this repository to include other useful content that will
 complement the book.
To be notified of events and news as they happen, follow
 @ivanristic on Twitter. TLS is all I do these days, and I try to
 highlight everything that’s relevant. There’s hardly any noise. In addition, my Twitter
 account is where I will mention improvements to the book as they happen.
My blog is available at blog.ivanristic.com. This is where I’ll react to
 important ecosystem news and discoveries, announce SSL Labs improvements, and publish my
 research.
If you bought this book in digital form, then you can always log back into your
 account on the Feisty Duck web site and download the most recent release. A purchase
 includes unlimited access to the updates of the same edition. Unless you modified your
 email subscription settings, you’ll get an email about book updates whenever there’s
 something sufficiently interesting, but I generally try to keep the numbers of emails to
 a minimum (and never use the list for any other purpose).

Feedback

I am fortunate that I can update this book whenever I want to. It’s not a coincidence;
 I made it that way. If I make a change today, it will be available to you tomorrow,
 after an automated daily build takes place. It’s a tad more difficult to update paper
 books, but, with print on demand, we’re able to publish a revision every quarter or
 so.
Therefore, unlike with many other books that might never see a new edition, your
 feedback matters. If you find an error, it will be fixed in a few days. The same is true
 for minor improvements, such as language changes or clarifications. If one of the
 platforms changes in some way or there’s a new development, I can cover it. My aim with
 this book is to keep it up-to-date for as long as there’s interest in it.
 Please write to me at ivanr@webkreator.com.

About the Author

In this section, I get to write about myself in third person; this is my “official”
 biography:
Ivan Ristić is a security researcher, engineer, and author, known especially for
 his contributions to the web application firewall field and development of
 ModSecurity, an open source web application firewall, and for his SSL/TLS and PKI
 research, tools, and guides published on the SSL Labs web site.
He is the author of two books, Apache
 Security and ModSecurity
 Handbook, which he publishes via Feisty Duck, his own
 platform for continuous writing and publishing. Ivan is an active participant in the
 security community, and you’ll often find him speaking at security conferences such
 as Black Hat, RSA, OWASP AppSec, and others. He’s currently Director of Application
 Security Research at Qualys.

I should probably also mention OpenSSL Cookbook, which is a
 free
 ebook that combines
 chapters
 11 and 12 from this book and SSL/TLS Deployment Best Practices in
 one package.

Acknowledgments

Although I wrote all of the words in this book, I am not the sole author. My words
 build on an incredible wealth of information about cryptography and computer security
 scattered among books, standards documents, research papers, conference talks, and blog
 posts—and even tweets. There are hundreds of people whose work made this book what it
 is.
Over the years, I have been fortunate to correspond about computer security with many
 people who have enriched my own knowledge of this subject. Many of them lent me a hand
 by reviewing parts of the manuscript. I am grateful for their help. It’s been
 particularly comforting to have the key parts of the book reviewed by those who either
 designed the standards or broke them and by those who wrote the programs I talk
 about.
Kenny Paterson was tremendously helpful with his thorough review of the protocol
 attacks chapter, which is easily the longest and the most complicated part of the book.
 I suspect he gave me the same treatment his students get, and my writing is much better
 because of it. It took me an entire week to update the chapter in response to Kenny’s
 comments.
Benne de Weger reviewed the chapters about cryptography and the PKI attacks. Nasko
 Oskov reviewed the key chapters about the protocol and Microsoft’s implementation. Rick
 Andrews and his colleagues from Symantec helped with the chapters on PKI attacks and
 browser issues, as did Adam Langley. Marc Stevens wrote to me about PKI attacks and
 especially about chosen-prefix attacks against MD5 and SHA1. Nadhem AlFardan, Thai
 Duong, and Juliano Rizzo reviewed the protocol attacks chapter and were very helpful
 answering my questions about their work. Ilya Grigorik’s review of the performance
 chapter was thorough and his comments very useful. Jakob Schlyter reviewed the chapter
 about advanced topics (HSTS and CSP), with a special focus on DANE. Rich Bowen and Jeff
 Trawick reviewed the Apache chapter; Jeff even fixed some things in Apache related to
 TLS and made me work harder to keep up with the changes. Xuelei Fan and Erik Costlow
 from Oracle reviewed the Java chapter, as did Mark Thomas, William Sargent, and Jim
 Manico. Andrei Popov and Ryan Hurst reviewed the Microsoft chapter. Maxim Dounin was
 always quick to respond to my questions about Nginx and reviewed the chapter on
 it.
Vincent Bernat’s microbenchmarking tool was very useful to write the performance
 chapter.
Also, a big thanks to my readers who responded to the early versions of this book:
 Pascal Cuoq, Joost van Dijk, Daniël van Eeden, Brian Howson, Brian King, Colm
 MacCárthaigh, Pascal Messerli, and Christian
 Sage.
Eric
 Lawrence came to the book at the very end, but that didn’t stop him
 from
 sending
 me

 hundreds of notes and questions. I never thought I would see a review that thorough.
 Eric is every author’s dream
 reviewer,
 and I am incredibly grateful for his attention.
My special thanks goes to my copyeditor, Melinda Rankin, who was always quick to
 respond with her edits and adapted to my DocBook-based workflow. I’d be amiss not to
 mention my employer, Qualys, for supporting my writing and my work on SSL Labs.

1 SSL, TLS, and Cryptography

We live in an increasingly connected world. During the last decade of the 20th century the
 Internet rose to popularity and forever changed how we live our lives. Today we rely on our
 phones and computers to communicate, buy goods, pay bills, travel, work, and so on. Many of
 us, with always-on devices in our pockets, don’t connect to the
 Internet, we are the Internet. There are already more phones than
 people. The number of smart phones is measured in billions and increases at a fast pace. In
 the meantime, plans are under way to connect all sorts of devices to the same network.
 Clearly, we’re just getting started.
All the devices connected to the Internet have one thing in common—they rely on the
 protocols called SSL (Secure Socket Layer) and TLS
 (Transport Layer Security) to protect the information in
 transit.
Transport Layer Security

When the Internet was originally designed, little thought was given to security. As a
 result, the core communication protocols are inherently insecure and rely on the honest
 behavior of all involved parties. That might have worked back in the day, when the
 Internet consisted of a small number of nodes—mostly universities—but falls
 apart completely today when everyone is online.
SSL and TLS are cryptographic protocols designed to provide secure communication over
 insecure infrastructure. What this means is that, if these protocols are properly
 deployed, you can open a communication channel to an arbitrary service on the Internet,
 be reasonably sure that you’re talking to the correct server, and exchange information
 safe in knowing that your data won’t fall into someone else’s hands and that it
 will be received intact. These protocols protect the communication link or
 transport layer, which is where the name TLS comes
 from.
Security is not the only goal of TLS. It actually has four main goals, listed here in
 the order of priority:
	Cryptographic security
	This is the main issue: enable secure communication between any two
 parties who wish to exchange information.

	Interoperability
	Independent programmers should be able to develop programs and libraries
 that are able to communicate with one another using common cryptographic
 parameters.

	Extensibility
	As you will soon see, TLS is effectively a framework for the development
 and deployment of actual cryptographic protocols. Its important goal is to
 be independent of the actual cryptographic primitives used, allowing
 migration from one primitive to another without needing to create new
 protocols.

	Efficiency
	The final goal is to achieve all of the previous goals at an acceptable
 performance cost, reducing costly cryptographic operations down to the
 minimum and providing a session caching scheme to avoid them on subsequent
 connections.

Networking Layers

At its core, the Internet is built on top of IP and TCP protocols, which are used to
 package data into small packets for transport. As these packets travel thousands of
 miles across the world, they cross many computer systems (called
 hops) in many countries. Because the core protocols don’t
 provide any security by themselves, anyone with access to the communication links can
 gain full access to the data as well as change the traffic without detection.
IP and TCP aren’t the only vulnerable protocols. There’s a range of other protocols
 that are used for routing—helping computers find other
 computers on the network. DNS and BGP are two such protocols. They, too, are insecure
 and can be hijacked in a variety of ways. If that happens, a connection intended for one
 computer might be answered by the attacker instead.
When encryption is deployed, the attacker might be able to gain access to the
 encrypted data, but she wouldn’t be able to decrypt it or modify it. To prevent
 impersonation attacks, SSL and TLS rely on another important technology called PKI
 (public-key infrastructure), which ensures that the traffic
 is sent to the correct recipient.
To understand where SSL and TLS fit, we’re going to take a look at the Open
 Systems Interconnection (OSI) model, which is a conceptional model that
 can be used to discuss network communication. In short, all functionality is mapped into
 seven layers. The bottom layer is the closest to the physical communication link;
 subsequent layers build on top of one another and provide higher levels of abstraction.
 At the top is the application layer, which carries application data.
Note
It’s not always possible to neatly organize real-life protocols into the OSI
 model. For example, SPDY and HTTP/2 could go into the session layer because they
 deal with connection management, but they operate after encryption. Layers from five
 onwards are often fuzzy.

Table 1.1. OSI model layers
	#	OSI Layer	Description	Example protocols
	7	Application	Application data	HTTP, SMTP, IMAP
	6	Presentation	Data representation, conversion, encryption	SSL/TLS
	5	Session	Management of multiple connections	-
	4	Transport	Reliable delivery of packets and streams	TCP, UDP
	3	Network	Routing and delivery of datagrams between network nodes	IP, IPSec
	2	Data link	Reliable local data connection (LAN)	Ethernet
	1	Physical	Direct physical data connection (cables)	CAT5

Arranging communication in this way provides clean separation of concerns; protocols
 don’t need to worry about the functionality implemented by lower layers. Further,
 protocols at different layers can be added and removed; a protocol at a lower layer can
 be used for many protocols from higher levels.
SSL and TLS are a great example of how this principle works in practice. They sit
 above TCP but below higher-level protocols such as HTTP. When encryption is not
 necessary, we can remove TLS from our model, but that doesn’t affect the higher-level
 protocols, which continue to work directly with TCP. When you do want encryption, you
 can use it to encrypt HTTP, but also any other TCP protocol, for example SMTP, IMAP and
 so on.

Protocol
 History

SSL protocol was developed at Netscape, back when Netscape Navigator ruled the Internet.[1] The first version of the protocol never saw the light of day, but the
 next—version 2—was released in November 1994. The first deployment was in
 Netscape Navigator 1.1, which was released in March 1995.
Developed with little to no consultation with security experts outside Netscape, SSL 2
 ended up being a poor protocol with serious weaknesses. This forced Netscape to work on
 SSL 3, which was released in late 1995. Despite sharing the name with earlier protocol
 versions, SSL 3 was a brand new protocol design that established the design we know
 today.
In May 1996, the TLS working group was formed to migrate SSL from Netscape to IETF.[2] The process was painfully slow because of the political fights between
 Microsoft and Netscape, a consequence of the larger fight to dominate the Web. TLS 1.0
 was finally released in January 1999, as RFC 2246.
 Although
 the differences from SSL 3 were not big,
 the
 name was changed to please Microsoft.[3]
The next version, TLS 1.1, wasn’t released until April 2006 and contained essentially
 only security fixes. However, a major change to the protocol was incorporation of
 TLS extensions, which were released a couple of years
 earlier, in June 2003.
TLS 1.2 was released in August 2008. It added support for authenticated encryption and
 generally removed all hard-coded security primitives from the specification, making the
 protocol fully flexible.
The next protocol version, which is currently in development, is shaping to be a major
 revision aimed at simplifying the design, removing many of the weaker and less desirable
 features, and improving performance. You can follow the discussions on the TLS working
 group mailing list.[4]

Cryptography

Cryptography is the science and art of secure communication.
 Although we associate encryption with the modern age, we’ve actually been using
 cryptography for thousands of years. The first mention of a
 scytale, an encryption tool, dates to the seventh century BC.[5] Cryptography as we know it today was largely born in the twentieth century
 and for military use. Now it’s part of our everyday lives.
When cryptography is correctly deployed, it addresses the three core requirements of
 security: keeping secrets (confidentiality), verifying identities
 (authenticity), and ensuring safe transport
 (integrity).
In the rest of this chapter, I will discuss the basic building blocks of cryptography,
 with the goal of showing where additional security comes from. I will also discuss how
 cryptography is commonly attacked. Cryptography is a very diverse field and has a strong
 basis in mathematics, but I will keep my overview at a high level, with the aim of
 giving you a foundation that will enable you to follow the discussion in the rest of the
 text. Elsewhere in the book, where the topic demands, I will discuss some parts of
 cryptography in more detail.
Note
If you want to spend more time learning about cryptography, there’s plenty of good
 literature available. My favorite book on this topic is Understanding
 Cryptography, written by Christof Paar and Jan Pelzl and published by
 Springer in 2010.

Building Blocks

At the lowest level, cryptography relies on various cryptographic
 primitives. Each primitive is designed with a particular useful
 functionality in mind. For example, we might use one primitive for encryption and
 another for integrity checking. The primitives alone are not very useful, but we can
 combine them into schemes and
 protocols to provide robust security.
Who Are Alice and Bob?

Alice and Bob are names commonly
 used for convenience when discussing cryptography.[6] They make the otherwise often dry subject matter more interesting.
 Ron Rivest is credited for the first use of these names in the 1977 paper that
 introduced the RSA cryptosystem.[7] Since then, a number of other names have entered cryptographic
 literature. In this chapter, I use the name Eve for an
 attacker with an eavesdropping ability and Mallory for an
 active attacker who can interfere with network traffic.

Symmetric Encryption

Symmetric encryption (or private-key
 cryptography) is a method for obfuscation that enables secure
 transport of data over insecure communication channels. To communicate securely,
 Alice and Bob first agree on the encryption algorithm and a secret key. Later
 on, when Alice wants to send some data to Bob, she uses the secret key to
 encrypt the data. Bob uses the same key to decrypt it. Eve, who has access to
 the communication channel and can see the encrypted data, doesn’t have the key
 and thus can’t access the original data. Alice and Bob can continue to
 communicate securely for as long as they keep the secret key safe.
Figure 1.1. Symmetric encryption
[image: Symmetric encryption]

Note
Three terms are commonly used when discussing encryption:
 plaintext is the data in its original form,
 cipher is the algorithm used for encryption, and
 ciphertext is the data after encryption.

Symmetric encryption goes back thousands of years. For example, to encrypt
 with a substitution cipher, you replace each letter in
 the alphabet with some other letter; to decrypt, you reverse the process. In
 this case, there is no key; the security depends on keeping the method itself
 secret. That was the case with most early ciphers. Over time, we adopted a
 different approach, following the observation of a nineteenth-century
 cryptographer named Auguste Kerckhoffs:[8]
A cryptosystem should be secure even if the attacker knows everything
 about the system, except the secret key.

Although it might seem strange at first, Kerckhoffs’s
 principle—as it has come to be known—makes sense if you consider the
 following:
	For an encryption algorithm to be useful, it must be shared with
 others. As the number of people with access to the algorithm increases,
 the likelihood that the algorithm will fall into the enemy’s hands
 increases too.

	A single algorithm without a key is very inconvenient to use in large
 groups; everyone can decrypt everyone’s communication.

	It’s very difficult to design good encryption algorithms. The more
 exposure and scrutiny an algorithm gets, the more secure it can be.
 Cryptographers recommend a conservative approach when adopting new
 algorithms; it usually takes years of breaking attempts until a cipher
 is considered secure.

A good encryption algorithm is one that produces seemingly random ciphertext,
 which can’t be analyzed by the attacker to reveal any information about
 plaintext. For example, the substitution cipher is not a good algorithm, because
 the attacker could determine the frequency of each letter of ciphertext and
 compare it with the frequency of the letters in the English language. Because
 some letters appear more often than others, the attacker could use his
 observations to recover the plaintext. If a cipher is good, the only option for
 the attacker should be to try all possible decryption keys, otherwise known as
 an exhaustive key search.
At this point, the security of ciphertext depends entirely on the key. If the
 key is selected from a large keyspace and breaking the
 encryption requires iterating through a prohibitively large number of possible
 keys, then we say that a cipher is computationally secure.
Note
The common way to measure encryption strength is via key length; the
 assumption is that keys are essentially random, which means that the
 keyspace is defined by the number of bits in a key. As an example, a 128-bit
 key (which is considered very secure) is one of 340 billion billion billlion
 billion possible combinations.

Ciphers can be divided into two groups: stream and block ciphers.
Stream Ciphers

Conceptually, stream ciphers operate in a way that
 matches how we tend to imagine encryption. You feed one byte of plaintext to
 the encryption algorithm, and out comes one byte of ciphertext. The reverse
 happens at the other end. The process is repeated for as long as there is
 data to process.
At its core, a stream cipher produces an infinite stream of seemingly
 random data called a keystream. To perform
 encryption, one byte of keystream is combined with one byte of plaintext
 using the XOR logical operation. Because XOR is reversible, to decrypt you
 perform XOR of ciphertext with the same keystream byte. This process is
 illustrated in Figure 1.2, “RC4 encryption”.
Figure 1.2. RC4 encryption
[image: RC4 encryption]

An encryption process is considered secure if the attacker can’t predict
 which keystream bytes are at which positions. For this reason, it is vital
 that stream ciphers are never used with the same key more than once. This is
 because, in practice, attackers know or can predict plaintext at certain
 locations (think of HTTP requests being encrypted; things such as request
 method, protocol version, and header names are the same across many
 requests). When you know the plaintext and can observe the corresponding
 ciphertext, you uncover parts of the keystream. You can use that information
 to uncover the same parts of future ciphertexts if the same key is used. To
 work around this problem, stream algorithms are used with one-time keys
 derived from long-term keys.
RC4 is the best-known stream cipher.[9] It became popular due to its speed and simplicity, but it’s no
 longer considered secure. I discuss its weaknesses at some length in the section called “RC4 Weaknesses”. Other modern and secure stream ciphers are
 promoted by the ECRYPT Stream Cipher Project.[10]

Block Ciphers

Block ciphers encrypt entire blocks of data at a
 time; modern block ciphers tend to use a block size of 128 bits (16 bytes).
 A block cipher is a transformation function: it takes some input and
 produces seemingly random output from it. For every possible input
 combination, there is exactly one output, as long as the key stays the same.
 A key property of block ciphers is that a small variation in input (e.g., a
 change of one bit anywhere) produces a large variation (e.g., most bits in
 the output change).
On their own, block ciphers are not very useful because of several
 limitations. First, you can only use them to encrypt data lengths equal to
 the size of the encryption block. To use a block cipher in practice, you
 need a scheme to handle data of arbitrary length. Another problem is that
 block ciphers are deterministic; they always produce
 the same output for the same input. This property opens up a number of
 attacks and needs to be dealt with.
In practice, block ciphers are used via encryption schemes called
 block cipher modes, which smooth over the
 limitations and sometimes add authentication to the mix. Block ciphers can
 also be used as the basis for other cryptographic primitives, such as hash
 functions, message authentication codes, pseudorandom generators, and even
 stream ciphers.
The world’s most popular block cipher is AES (short for
 Advanced Encryption Standard), which is available
 in strengths of 128, 192, and 256 bits.[11]

Padding

One of the challenges with block ciphers is figuring out how to handle
 encryption of data lengths smaller than the encryption block size. For
 example, 128-bit AES requires 16 bytes of input data and produces the same
 amount as output. This is fine if you have all of your data in 16-byte
 blocks, but what do you do when you have less than that? One approach is to
 append some extra data to the end of your plaintext. This extra data is
 known as padding.
The padding can’t consist of just any random data. It must follow some
 format that allows the receiver to see the padding for what it is and know
 exactly how many bytes to discard. In TLS, the last byte of an encryption
 block contains padding length, which indicates how many bytes of padding
 (excluding the padding length byte) there are. All padding bytes are set to
 the same value as the padding length byte. This approach enables the
 receiver to check that the padding is correct.
Figure 1.3. Example of TLS padding
[image: Example of TLS padding]

To discard the padding after decryption, the receiver examines the last
 byte in the data block and removes it. After that, he removes the indicated
 number of bytes while checking that they all have the same value.

Hash Functions

A hash function is an algorithm that converts input of
 arbitrary length into fixed-size output. The result of a hash function is often
 called simply a hash. Hash functions are commonly used in
 programming, but not all hash functions are suitable for use in cryptography.
 Cryptographic hash functions are hash functions that
 have several additional properties:
	Preimage resistance
	Given a hash, it’s computationally unfeasible to find or construct
 a message that produces it.

	Second preimage resistance
	Given a message and its hash, it’s computationally unfeasible to
 find a different message with the same hash.

	Collision resistance
	It’s computationally unfeasible to find two messages that have the
 same hash.

Hash functions are most commonly used as a compact way to represent and
 compare large amounts of data. For example, rather than compare two files
 directly (which might be difficult, for example, if they are stored in different
 parts of the world), you can compare their hashes. Hash functions are often
 called fingerprints, message
 digests, or simply digests.
The
 most commonly used hash function today is SHA1, which has output of 160 bits.
 Because SHA1 is considered weak, upgrading to its stronger variant, SHA256, is
 recommended. Unlike with ciphers, the strength of a hash function doesn’t equal
 the hash length. Because of the birthday paradox (a
 well-known problem in probability theory),[12] the strength of a hash function is at most one half of the hash
 length.

Message Authentication Codes

A hash function could be used to verify data integrity, but only if the hash
 of the data is transported separately from the data itself. Otherwise, an
 attacker could modify both the message and the hash, easily avoiding detection.
 A message authentication code (MAC) or a
 keyed-hash is a cryptographic function that extends
 hashing with authentication. Only those in possession of the hashing
 key can produce a valid MAC.
MACs are commonly used in combination with encryption. Even though Mallory
 can’t decrypt ciphertext, she can modify it in transit if there is no MAC;
 encryption provides confidentiality but not integrity.
 If Mallory is smart about how she’s modifying ciphertext, she could trick Bob
 into accepting a forged message as authentic. When a MAC is sent along with
 ciphertext, Bob (who shares the hashing key with Alice) can be sure that the
 message has not been tampered with.
Any hash function can be used as the basis for a MAC using a construction
 known as HMAC (short for hash-based message authentication
 code).[13] In essence, HMAC works by interleaving the hashing key with the
 message in a secure way.

Block Cipher Modes

Block cipher modes are cryptographic schemes designed
 to extend block ciphers to encrypt data of arbitrary length. All block cipher
 modes support confidentiality, but some combine it with authentication. Some
 modes transform block ciphers to produce stream ciphers.
There are many output modes, and they are usually referred to by their
 acronyms: ECB, CBC, CFB, OFB, CTR, GCM, and so forth. (Don’t worry about what
 the acronyms stand for.) I will cover only ECB and CBC here: ECB as an example
 of how not to design a block cipher mode and CBC because it’s still the main
 mode in SSL and TLS. GCM is a relatively new addition to TLS, available starting
 with version 1.2; it provides confidentiality and integrity, and it’s currently
 the best mode available.
Electronic Codebook Mode

Electronic Codebook (ECB) mode is the simplest
 possible block cipher mode. It supports only data lengths that are the exact
 multiples of the block size; if you have data of different length, then you
 need to apply padding beforehand. To perform encryption, you split the data
 into chunks that match the block size and encrypt each block
 individually.
The simplicity of ECB is its downside. Because block ciphers are
 deterministic (i.e., they always produce the same result when the input is
 the same), so is ECB. This has serious consequences: (1) patterns in ciphertext will appear
 that match patterns in plaintext; (2) the attacker can detect when a message is repeated; and
 (3) an attacker who can
 observe ciphertext and submit arbitrary plaintext for encryption (commonly
 possible with HTTP and in many other situations) can, given enough attempts,
 guess the plaintext. This is what the BEAST attack
 against TLS was about; I discuss it in the section called “BEAST” in Chapter 7.

Cipher Block Chaining Mode

Cipher Block Chaining (CBC) mode is the next step
 up from ECB. To address the deterministic nature of ECB, CBC introduces the
 concept of the initialization vector (IV), which
 makes output different every time, even when input is the same.
Figure 1.4. CBC mode encryption
[image: CBC mode encryption]

The process starts by generating a random (and thus unpredictable) IV,
 which is the same length as the encryption block size. Before encryption,
 the first block of plaintext is combined with the IV using XOR. This masks
 the plaintext and ensures that the ciphertext is always different. For the
 next encryption block, the ciphertext of the previous block is used as the
 IV, and so forth. As a result, all of the individual encryption operations
 are part of the same chain, which is where the mode
 name comes from. Crucially, the IV is transmitted on the wire to the
 receiving party, who needs it to perform decryption successfully.

Asymmetric Encryption

Symmetric encryption does a great job at handling large amounts of data at
 great speeds, but it leaves a lot to be desired as soon as the number of parties
 involved increases:
	Members of the same group must share the same key. The more people
 join a group, the more exposed the group becomes to the key
 compromise.

	For better security, you could use a different key for every two
 people, but this approach doesn’t scale. Although three people need only
 three keys, ten people would need 45 (9 + 8 + . . . + 1) keys. A
 thousand people would need 499,550 keys!

	Symmetric encryption can’t be used on unattended systems to secure
 data. Because the process can be reversed by using the same key, a
 compromise of such a system leads to the compromise of all data stored
 in the system.

Asymmetric encryption (also known as
 public-key cryptography) is a different approach to
 encryption that uses two keys instead of one. One of the keys is
 private; the other is public.
 As the names suggest, one of these keys is intended to be private, and the other
 is intended to be shared with everyone. There’s a special mathematical
 relationship between these keys that enables some useful features. If you
 encrypt data using someone’s public key, only their corresponding private key
 can decrypt it. On the other hand, if data is encrypted with the private key
 anyone can use the public key to unlock the message. The latter operation
 doesn’t provide confidentiality, but it does function as a digital
 signature.
Figure 1.5. Asymmetric encryption
[image: Asymmetric encryption]

Asymmetric encryption makes secure communication in large groups much easier.
 Assuming that you can securely share your public key widely (a job for PKI,
 which I discuss in Chapter 3, Public-Key Infrastructure), anyone can send you a message that
 only you can read. If they also sign that message using their private key, you
 know exactly whom it is from.
Despite its interesting properties, public-key cryptography is rather slow and
 unsuitable for use with large quantities of data. For this reason, it’s usually
 deployed for authentication and negotiation of shared secrets, which are then
 used for fast symmetric encryption.
RSA (named from the initials of Ron Rivest, Adi Shamir,
 and Leonard Adleman) is by far the most popular asymmetric encryption method
 deployed today.[14] The recommended strength for RSA today is 2,048 bits, which is
 equivalent to about 112 symmetric bits. I’ll discuss the strength of
 cryptography in more detail later in this chapter.

Digital Signatures

A digital signature is a cryptographic scheme that
 makes it possible to verify the authenticity of a digital message or document.
 The MAC, which I described earlier, is a type of digital signature; it can be
 used to verify authenticity provided that the secret hashing key is securely
 exchanged ahead of time. Although this type of verification is very useful, it’s
 limited because it still relies on a private secret key.
Digital signatures similar to the real-life handwritten ones are possible with
 the help of public-key cryptography; we can exploit its asymmetric nature to
 devise an algorithm that allows a message signed by a private key to be verified
 with the corresponding public key.
The exact approach depends on the selected public-key cryptosystem. For
 example, RSA can be used for encryption and decryption. If something is
 encrypted with a private RSA key, only the corresponding public key can decrypt
 it. We can use this property for digital signing if we combine it with hash
 functions:
	Calculate a hash of the document you wish to sign; no matter the size
 of the input document, the output will always be fixed, for example, 256
 bits for SHA256.

	Encode the resulting hash and some additional metadata. For example,
 the receiver will need to know the hashing algorithm you used before she
 can process the signature.

	Encrypt the encoded hash using the private key; the result will be the
 signature, which you can append to the document as proof of
 authenticity.

To verify the signature, the receiver takes the document and calculates the
 hash independently using the same algorithm. Then, she uses your public key to
 decrypt the message and recover the hash, confirm that the correct algorithms
 were used, and compare with the decrypted hash with the one she calculated. The
 strength of this signature scheme depends on the individual strengths of the
 encryption, hashing, and encoding components.
Note
Not all digital signature algorithms function in the same way as RSA. In
 fact, RSA is an exception, because it can be used for both encryption and
 digital signing. Other popular public key algorithms, such as DSA and ECDSA,
 can’t be used for encryption and rely on different approaches for
 signing.

Random Number Generation

In cryptography, all security depends on the quality of random number
 generation. You’ve already seen in this chapter that security relies on known
 encryption algorithms and secret keys. Those keys are simply very long random
 numbers.
The problem with random numbers is that computers tend to be very predictable.
 They follow instructions to the letter. If you tell them to generate a random
 number, they probably won’t do a very good job.[15] This is because truly random numbers can be obtained only by
 observing certain physical processes. In absence of that, computers focus on
 collecting small amounts of entropy. This usually means
 monitoring keystrokes and mouse movement and the interaction with various
 peripheral devices, such as hard disks.
Entropy collected in this way is a type of true random number
 generator (TRNG), but the approach is not reliable enough to use
 directly. For example, you might need to generate a 4,096-bit key, but the
 system might have only a couple of hundreds of bits of entropy available. If
 there are no reliable external events to collect enough entropy, the system
 might stall.
For this reason, in practice we rely on pseudorandom number
 generators (PRNGs), which use small amounts of true random data
 to get them going. This process is known as seeding. From
 the seed, PRNGs produce unlimited amounts of pseudorandom data on demand.
 General-purpose PRNGs are often used in programming, but they are not
 appropriate for cryptography, even if their output is statistically seemingly
 random. Cryptographic pseudorandom number generators
 (CPRNGs) are PRNGs that are also unpredictable. This attribute is crucial for
 security; an adversary mustn’t be able to reverse-engineer the internal state of
 a CPRNG by observing its output.

Protocols

Cryptographic primitives such as encryption and hashing algorithms are seldom
 useful by themselves. We combine them into schemes and
 protocols so that we can satisfy complex security
 requirements. To illustrate how we might do that, let’s consider a simplistic
 cryptographic protocol that allows Alice and Bob to communicate securely. We’ll aim
 for all three main requirements: confidentiality, integrity, and
 authentication.
Let’s assume that our protocol allows exchange of an arbitrary number of messages.
 Because symmetric encryption is very good at encrypting bulk data, we might select
 our favorite algorithm to use for this purpose, say, AES. With AES, Alice and Bob
 can exchange secure messages, and Mallory won’t be able to recover the contents. But
 that’s not quite enough, because Mallory can do other things, for example, modify
 the messages without being detected. To fix this problem, we can calculate a MAC of
 each message using a hashing key known only to Alice and Bob. When we send a
 message, we send along the MAC as well.
Now, Mallory can’t modify the messages any longer. However, she could still drop
 or replay arbitrary messages. To deal with this, we extend our protocol to assign a
 sequence number to each message; crucially, we make the sequences part of the MAC
 calculation. If we see a gap in the sequence numbers, then we know that there’s a
 message missing. If we see a sequence number duplicate, we detect a replay attack.
 For best results, we should also use a special message to mark the end of the
 conversation. Without such a message, Mallory would be able to end (truncate) the
 conversation undetected.
With all of these measures in place, the best Mallory can do is prevent Alice and
 Bob from talking to one another. There’s nothing we can do about that.
So far, so good, but we’re still missing a big piece: how are Alice and Bob going
 to negotiate the two needed keys (one for encryption and the other for integrity
 validation) in the presence of Mallory? We can solve this problem by adding two
 additional steps to the protocol.
First, we use public-key cryptography to authenticate each party at the beginning
 of the conversation. For example, Alice could generate a random number and ask Bob
 to sign it to prove that it’s really him. Bob could ask Alice to do the same.
With authentication out of the way, we can use a key-exchange
 scheme to negotiate encryption keys securely. For example, Alice
 could generate all the keys and send them to Bob by encrypting them with his public
 key; this is how the RSA key exchange works. Alternatively, we could have also used
 a protocol known as Diffie-Hellman (DH) key exchange for this
 purpose. The latter is slower, but it has better security properties.
In the end, we ended up with a protocol that (1) starts with a handshake phase that includes authentication and
 key exchange, (2) follows with the data
 exchange phase with confidentiality and integrity, and (3) ends with a shutdown sequence. At a high
 level, our protocol is similar to the work done by SSL and TLS.

Attacking Cryptography

Complex systems can usually be attacked in a variety of ways, and cryptography is
 no exception. First, you can attack the cryptographic primitives themselves. If a
 key is small, the adversary can use brute force to recover it. Such attacks usually
 require a lot of processing power as well as time. It’s easier (for the attacker) if
 the used primitive has known vulnerabilities, in which case he can use analytic
 attacks to achieve the goal faster.
Cryptographic primitives are generally very well understood, because they are
 relatively straightforward and do only one thing. Schemes are often easier to attack
 because they introduce additional complexity. In some cases, even cryptographers
 argue about the right way to perform certain operations. But both are relatively
 safe compared to protocols, which tend to introduce far more complexity and have a
 much larger attack surface.
Then, there are attacks against protocol implementation; in
 other words, exploitation of software bugs. For example, most cryptographic
 libraries are written in low-level languages such as C (and even assembly, for
 performance reasons), which make it very easy to introduce catastrophic programming
 errors. Even in the absence of bugs, sometimes great skill is needed to implement
 the primitives, schemes, and protocols in such a way that they can’t be abused. For
 example, naïve implementations of certain algorithms can be exploited in
 timing attacks, in which the attacker breaks encryption
 by observing how long certain operations take.
It is also common that programmers with little experience in cryptography
 nevertheless attempt to implement—and even design—cryptographic
 protocols and schemes, with predictably insecure results.
For this reason, it is often said that cryptography is bypassed, not attacked.
 What this means is that the primitives are solid, but the rest of the software
 ecosystem isn’t. Further, the keys are an attractive target: why spend months to
 brute-force a key when it might be much easier to break into a server to obtain it?
 Many cryptographic failures can be prevented by following simple rules such as
 these: (1) use well-established protocols
 and never design your own schemes; (2)
 use high-level libraries and never write code that deals with cryptography directly;
 and (3) use well-established primitives
 with sufficiently strong key sizes.

Measuring
 Strength

We measure the strength of cryptography using the number of operations that need
 to be performed to break a particular primitive, presented as
 bits of security. Deploying with strong key sizes is the
 easiest thing to get right, and the rules are simple: 128 bits of security
 (2128 operations) is sufficient for most deployments;
 use 256 bits if you need very long-term security or a big safety margin.
Note
The strength of symmetric cryptographic operations increases exponentially as
 more bits are added. This means that increasing key size by one bit makes it
 twice as strong.

In practice, the situation is somewhat more complicated, because not all
 operations are equivalent in terms of security. As a result, different bit values
 are used for symmetric operations, asymmetric operations, elliptic curve
 cryptography, and so on. You can use the information in Table 1.2, “Security levels and equivalent strength in bits, adapted from ECRYPT2
 (2012)”
 to convert from one size to another.
Table 1.2. Security levels and equivalent strength in bits, adapted from ECRYPT2
 (2012)
	#	Protection	Symmetric	Asymmetric	DH	Elliptic Curve	Hash
	1	Attacks in real time by individuals	32	-	-	-	-
	2	Very short-term protection against small organizations	64	816	816	128	128
	3	Short-term protection against medium organizations	72	1,008	1,008	144	144
	4	Very short-term protection against agencies	80	1,248	1,248	160	160
	5	Short-term protection (10 years)	96	1,776	1,776	192	192
	6	Medium-term protection (20 years)	112	2,432	2,432	224	224
	7	Long-term protection (30 years)	128	3,248	3,248	256	256
	8	Long-term protection and increased defense from quantum
 computers	256	15,424	15,424	512	512

The data, which I adapted from a 2012 report on key and algorithm strength,[16] shows rough mappings from bits of one type to bits of another, but it
 also defines strength in relation to attacker capabilities and time. Although we
 tend to discuss whether an asset is secure (assuming now), in
 reality security is a function of time. The strength of encryption changes, because
 as time goes by computers get faster and cheaper. Security is also a function of
 resources. A key of a small size might be impossible for an individual to break, but
 doing so could be within the reach of an agency. For this reason, when discussing
 security it’s more useful to ask questions such as “secure against whom?” and
 “secure for how long?”
Note
The strength of cryptography
 can’t be measured accurately, which is why you will find many different
 recommendations. Most of them are very similar, with small differences. In my
 experience, ENISA (the European Union Agency for Network and
 Information Security) provides useful high-level documents that
 offer clear guidance[17] at various levels.[18] To view and compare other recommendations, visit
 keylength.com.[19]

Although the previous table provides a lot of useful information, you might find
 it difficult to use because the values don’t correspond to commonly used key sizes.
 In practice, you’ll find the following table more useful to convert from one set of
 bits to another:[20]
Table 1.3. Encryption strength mapping for commonly used key sizes
	Symmetric	RSA / DSA / DH	Elliptic curve crypto	Hash
	80	1,024	160	160
	112	2,048	224	224
	128	3,072	256	256
	256	15,360	512	512

Man-in-the-Middle Attack

Most attacks against transport-layer security come in the form of a
 man-in-the-middle (MITM) attack. What this means is that
 in addition to the two parties involved in a conversation there is a malicious
 party. If the attacker is just listening in on the conversation, we’re talking about
 a passive network attack. If the attacker is actively
 modifying the traffic or influencing the conversation in some other way, we’re
 talking about an active network attack.
Figure 1.6. Conceptual SSL/TLS threat model
[image: Conceptual SSL/TLS threat model]

Gaining Access

In many cases, attacks require proximity to the victim or the server or access
 to the communication infrastructure. Whoever has access to the cables and
 intermediary communication nodes (e.g., routers) can see the packets as they
 travel across the wire and interfere with them.
 Access can be obtained by
 tapping the cables,[21] in collaboration with telecoms,[22] or by hacking the equipment.[23]
Conceptually, the easiest way to execute a MITM attack is by joining a network
 and rerouting the victims’ traffic through a malicious node. Wireless networks
 without authentication, which so many people use these days, are particularly
 vulnerable, because anyone can join.
Other ways to attack include interfering with the routing infrastructure for
 domain name resolution, IP address routing, and so on.
	ARP spoofing
	Address Resolution Protocol (ARP) is used
 on local networks to associate network MAC addresses[24] with IP addresses. An attacker with access to the
 network can claim any IP address and effectively reroute
 traffic.

	WPAD hijacking
	Web Proxy Auto-Discovery Protocol (WPAD) is
 used by browsers to automatically retrieve HTTP proxy configuration.
 WPAD uses several methods, including DHCP and DNS. To attack WPAD,
 an attacker starts a proxy on the local network and announces it to
 the local clients who look for it.

	DNS hijacking
	By hijacking a domain name with the registrar or changing the DNS
 configuration, an attacker can hijack all traffic intended for that
 domain name.

	DNS cache poisoning
	DNS cache poisoning is a type of attack
 that exploits weaknesses in caching DNS servers and enables the
 attacker to inject invalid domain name information into the cache.
 After a successful attack, all users of the affected DNS server will
 be given invalid information.

	BGP route hijacking
	Border Gateway Protocol (BGP) is a routing
 protocol used by the core internet routers to discover where exactly
 IP address blocks are located. If an invalid route is accepted by
 one or more routers, all traffic for a particular IP address block
 can be redirected elsewhere, that is, to the attacker.

Passive Attacks

Passive attacks are most useful against unencrypted traffic. During 2013, it
 became apparent that government agencies around the world routinely monitor and
 store large amounts of internet traffic. For example, it is alleged that GCHQ,
 the British spy agency, records all UK internet traffic and keeps it for three days.[25] Your email messages, photos, internet chats, and other data could be
 sitting in a database somewhere, waiting to be cross-referenced and correlated
 for whatever purpose. If bulk traffic is handled like this, it’s reasonable to
 expect that specific traffic is stored for much longer and perhaps indefinitely.
 In response to this and similar discoveries, the IETF declared that “pervasive
 monitoring is an attack” and should be defended against by using encryption
 whenever possible.[26]
Even against encrypted traffic, passive attacks can be useful as an element in
 the overall strategy. For example, you could store captured encrypted traffic
 until such a time when you can break the encryption. Just because some things
 are difficult to do today doesn’t mean that they’ll be difficult ten years from
 now, as computers get more powerful and cheaper and as weaknesses in
 cryptographic primitives are discovered.
To make things worse, computer systems often contain a critical configuration
 weakness that allows for retroactive decryption of recorded traffic. The most
 common key-exchange mechanism in TLS is based on the RSA algorithm; on the
 systems that use this approach, the RSA key used for the key exchange can also
 be used to decrypt all previous conversations. Other key-exchange mechanisms
 don’t suffer from this problem and are said to support forward
 secrecy. Unfortunately, most stay with the RSA algorithm. For
 example, Lavabit, the encrypted email service famously used by Edward Snowden,
 didn’t support forward secrecy. Using a court order, the FBI compelled Lavabit
 to disclose their encryption key.[27] With the key in their possession, the FBI could decrypt any recorded
 traffic (if they had any, of course).
Passive attacks work very well, because there is still so much unencrypted
 traffic and because when collecting in bulk the process can be fully automated.
 As an illustration, in July 2014 only 58% of email arriving to Gmail was encrypted.[28]

Active Attacks

When someone talks about MITM attacks, they most commonly refer to active
 network attacks in which Mallory interferes with the traffic in some way.
 Traditionally, MITM attacks target authentication to trick Alice into thinking
 she’s talking to Bob. If the attack is successful, Mallory receives messages
 from Alice and forwards them to Bob. The messages are encrypted when Alice sends
 them, but that’s not a problem, because she’s sending them to Mallory, who can
 decrypt them using the keys she negotiated with Alice.
When it comes to TLS, the ideal case for Mallory is when she can present a
 certificate that Alice will accept as valid. In that case, the attack is
 seamless and almost impossible to detect.[29] A valid certificate could be obtained by playing the public key
 infrastructure ecosystem. There have been many such attacks over the years; in
 Chapter 4, Attacks against PKI I document the ones that are publicly
 known. A certificate that seems valid could be constructed
 if there are bugs in the validation code that could be exploited. Historically,
 this is an area in which bugs are common. I discuss several examples in Chapter 6, Implementation Issues. Finally, if everything else fails,
 Mallory could present an invalid certificate and hope that Alice overrides the
 certificate warning. This happened in Syria a couple of years ago.[30]
The rise of browsers as a powerful application-delivery platform created
 additional attack vectors that can be exploited in active network attacks. In
 this case, authentication is not attacked, but the victims’ browsers are
 instrumented by the attacker to submit specially crafted requests that are used
 to subvert encryption. These attack vectors have been exploited in recent years
 to attack TLS in novel ways; you can find more information about them in Chapter 7, Protocol Attacks.
Active attacks can be very powerful, but they’re more difficult to scale.
 Whereas passive attacks only need to make copies of observed packets (which is a
 simple operation), active attacks require much more processing and effort to
 track individual connections. As a result, they require much more software and
 hardware. Rerouting large amounts of traffic is difficult to do without being
 noticed. Similarly, fraudulent certificates are difficult to use successfully
 for large-scale attacks because there are so many individuals and organizations
 who are keeping track of certificates used by various web sites. The approach
 with the best chance of success is exploitation of implementation bugs that can
 be used to bypass authentication, but such bugs, devastating as they are, are
 relatively rare.
For these reasons, active attacks are most likely to be used against
 individual, high-value targets. Such attacks can’t be automated, which means
 that they require extra work, cost a lot, and are thus more difficult to
 justify.
There are some indications that the NSA deployed extensive infrastructure that
 enables them to attack almost arbitrary computers on the Internet, under the
 program called QuantumInsert.[31]
 This program, which is a variation on the MITM theme, doesn’t appear to
 target encryption; instead, it’s used to deliver browser exploits against
 selected individuals. By placing special packet-injection nodes at important
 points in the communication infrastructure, the NSA is able to respond to
 connection requests faster than the real servers and redirect some traffic to
 the exploitation servers instead.

[1] For a much more detailed history of the early years of the SSL protocol, I
 recommend Eric Rescorla’s book SSL and TLS: Designing and
 Building Secure Systems (Addison-Wesley, 2001), pages
 47–51.

[2] TLS Working
 Group (IETF, retrieved 23 June 2014)

[3] Security Standards and Name Changes in the Browser Wars (Tim Dierks,
 23 May 2014)

[4] TLS
 working group mailing list archives (IETF, retrieved 19 July
 2014)

[5] Scytale
 (Wikipedia, retrieved 5 June 2014)

[6] Alice
 and Bob (Wikipedia, retrieved 5 June 2014)

[7] Security’s inseparable couple (Network World, 2005)

[8] la
 cryptographie militaire (Fabien Petitcolas, retrieved 1 June
 2014)

[9] RC4
 (Wikipedia, retrieved 1 June 2014)

[10] eSTREAM: the
 ECRYPT Stream Cipher Project (European Network of
 Excellence in Cryptology II, retrieved 1 June 2014)

[11] Advanced Encryption Standard (Wikipedia, retrieved 1
 June 2014)

[12] Birthday problem (Wikipedia, retrieved 6 June 2014)

[13] RFC 2104: HMAC:
 Keyed-Hashing for Message Authentication (Krawczyk et al.,
 February 1997)

[14] RSA (Wikipedia, retrieved 2 June 2014)

[15] Some newer processors have built-in random number generators that are
 suitable for use in cryptography. There are also specialized external
 devices (e.g., in the form of USB sticks) that can be added to feed
 additional entropy to the operating system.

[16] ECRYPT2 Yearly Report on
 Algorithms and Keysizes (European Network of Excellence for
 Cryptology II, 30 September 2012)

[17] Algorithms, Key Sizes and Parameters Report (ENISA, 29
 October 2013)

[18] Recommended cryptographic measures - Securing personal data
 (ENISA, 4 November 2013)

[19] BlueKrypt: Cryptographic
 Key Length Recommendation (BlueKrypt, retrieved 4 June
 2014)

[20] NIST Special Publication 800-57: Recommendation for Key Management –
 Part 1: General, Revision 3 (NIST, July 2012)

[21] The Creepy, Long-Standing Practice of Undersea Cable Tapping
 (The Atlantic, 16 July 2013)

[22] New Details About NSA’s Collaborative Relationships With
 America’s Biggest Telecom Companies From Snowden Docs
 (Washington Post, 30 August 2013)

[23] Photos of an NSA “upgrade” factory show Cisco router getting
 implant (Ars Technica, 14 May 2014)

[24] In this case, MAC stands for media access
 control. It’s a unique identifier assigned
 to networking cards during manufacture.

[25] GCHQ taps fibre-optic cables for secret access to world’s
 communications (The Guardian, 21 June 2013)

[26] RFC 7258:
 Pervasive Monitoring Is an Attack (S. Farrell and H.
 Tschofenig, May 2014)

[27] Lavabit
 (Wikipedia, retrieved 4 June 2014)

[28] Transparency Report: Email encryption in transit (Google
 Gmail, retrieved 27 July 2014)

[29] Unless you’re very, very paranoid, and keep track of all the
 certificates previously encountered. There are some browser add-ons that
 do this (e.g., Certificate Patrol for Firefox).

[30] A Syrian Man-In-The-Middle Attack against Facebook (The
 Electronic Frontier Foundation, 5 May 2011)

[31] Attacking
 Tor: How the NSA Targets Users’ Online Anonymity (Bruce
 Schneier, 4 October 2013)

2 Protocol

TLS is a cryptographic protocol designed to secure a conversation that consists of an
 arbitrary number of messages between two parties. In this chapter, I discuss the most recent
 protocol version—TLS 1.2—with a brief mention of earlier protocol versions where
 appropriate.
My goal is to give you a high-level overview that will enable you to understand what’s
 going on without being distracted by implementation details. Wherever possible, I use
 message content examples, rather than definitions, which can sometimes be dry. The
 definitions use the syntax that’s essentially the same as in the TLS specification, albeit
 with some minor simplifications. For more information on the syntax and the complete
 protocol reference, start with RFC 5246, which is where TLS 1.2 lives.[32] However, this document doesn’t tell the whole story. There are also many other
 relevant RFCs, which I reference throughout this chapter.
The best way to learn about TLS is to observe real-life traffic. My favorite approach is
 to use the network-capture tool Wireshark, which comes with a TLS protocol parser: point
 your favorite browser at a secure web site, tell Wireshark to monitor the connection (it’s
 best to restrict the capture to just one hostname and port 443), and observe the protocol
 messages.
After you’re reasonably happy with your understanding of TLS (don’t try too hard to learn
 it all; it’s very hard to understand every feature, because there are so many of them),
 you’ll be free to roam the various RFCs and even lurk on the key mailing lists. My two favorite places are the TLS working group document page,[33] where you can find the list of key documents and new proposals, and the TLS
 working group mailing list,[34] where you can follow the discussions about the future direction of TLS.
Record Protocol

At a high level, TLS is implemented via the record protocol,
 which is in charge of transporting—and optionally encrypting—all lower-level
 messages exchanged over a connection. Each TLS record starts with
 a short header, which contains information about the record content type (or
 subprotocol), protocol version, and length. Message data follows the header.
Figure 2.1. TLS record
[image: TLS record]

More formally, the TLS record fields are defined as follows:
struct {
 uint8 major;
 uint8 minor;
} ProtocolVersion;

enum {
 change_cipher_spec (20),
 alert (21),
 handshake (22),
 application_data (23)
} ContentType;

struct {
 ContentType type;
 ProtocolVersion version;
 uint16 length; /* Maximum length is 2^14 (16,384) bytes. */
 opaque fragment[TLSPlaintext.length];
} TLSPlaintext;
In addition to the visible fields, each TLS record is also assigned a unique 64-bit
 sequence number, which is not sent over the wire. Each side has its own sequence number
 and keeps track of the number of records sent by the other side. These values are used
 as part of the defense against replay attacks. You’ll see how that works later
 on.
The record protocol is a useful protocol abstraction that takes care of several
 important, high-level aspects of the communication.
	Message transport
	The record protocol transports opaque data buffers submitted to it by
 other protocol layers. If a buffer is longer than the record length limit
 (16,384 bytes), the record protocol fragments it into smaller chunks. The
 opposite is also possible; smaller buffers belonging to the same subprotocol
 can be combined in a single record.

	Encryption and integrity validation
	Initially, on a brand new connection, messages are transported without any
 protection. (Technically, the TLS_NULL_WITH_NULL_NULL
 cipher suite is used.) This is necessary so that the first negotiation can
 take place. However, once the handshake is complete, the record layer starts
 to apply encryption and integrity validation according to the negotiated
 connection parameters.[35]

	Compression
	Transparent compression of data prior to encryption sounds nice in theory,
 but it was never very common in practice, mainly because everyone was
 already compressing their outbound traffic at the HTTP level. This feature
 suffered a fatal blow in 2012, when the CRIME attack exposed it as insecure.[36] It’s now no longer used.

	Extensibility
	The record protocol takes care of data transport and encryption, but
 delegates all other features to subprotocols. This approach makes TLS
 extensible, because new subprotocols can be added easily. With encryption
 handled by the record protocol, all subprotocols are automatically protected
 using the negotiated connection parameters.

The main TLS specification defines four core subprotocols: handshake
 protocol, change cipher spec protocol,
 application data protocol, and alert
 protocol.

Handshake Protocol

The handshake is the most elaborate part of the TLS protocol, during which the sides
 negotiate connection parameters and perform authentication. This phase usually requires
 six to ten messages, depending on which features are used. There can be many variations
 in the exchange, depending on the configuration and supported protocol extensions. In
 practice, we see three common flows: (1) full
 handshake with server authentication, (2)
 abbreviated handshake that resumes an earlier session, and (3) handshake with client and server
 authentication.
Handshake protocol messages start with a header that carries the message type (one
 byte) and length (three bytes). The remainder of the message depends on the message
 type:
struct {
 HandshakeType msg_type;
 uint24 length;
 HandshakeMessage message;
} Handshake;
Full Handshake

Every TLS connection begins with a handshake. If the client hasn’t previously
 established a session with the server, the two sides will execute a full
 handshake in order to negotiate a TLS
 session. During this handshake, the client and the server will perform
 four main activities:
	Exchange capabilities and agree on desired connection parameters.

	Validate the presented certificate(s) or authenticate using other
 means.

	Agree on a shared master secret that will be used
 to protect the session.

	Verify that the handshake messages haven’t been modified by a third
 party.

Note
In practice, steps 2 and 3 are part of a single step called key
 exchange (or, more generally, key
 establishment). I prefer to keep them separate in order to
 emphasize that the security of the protocol depends on correct authentication,
 which effectively sits outside TLS. Without authentication, an active network
 attacker can interject herself into the conversation and pose as the other
 side.

In this section, I discuss the most commonly seen TLS handshake, one between a
 client that’s not authenticated and a server that is. The subsequent sections handle
 alternative protocol flows: client authentication and session resumption.
Figure 2.2. Full handshake with server authentication
[image: Full handshake with server authentication]

	Client begins a new handshake and submits its capabilities to the
 server.

	Server selects connection parameters.

	Server sends its certificate chain (only if server authentication is
 required).

	Depending on the selected key exchange, the server sends additional
 information required to generate the master secret.

	Server indicates completion of its side of the negotiation.

	Client sends additional information required to generate the master
 secret.

	Client switches to encryption and informs the server.

	Client sends a MAC of the handshake messages it sent and received.

	Server switches to encryption and informs the client.

	Server sends a MAC of the handshake messages it received and sent.

At this point—assuming there were no errors—the connection is
 established and the parties can begin to send application data. Now let’s look at
 the handshake messages in more detail.
ClientHello

The ClientHello message is always the first message sent in
 a new handshake. It’s used to communicate client capabilities and preferences to
 the server. Clients send this message at the beginning of a new connection, when
 they wish to renegotiate, or in response to a server’s renegotiation request
 (indicated by a HelloRequest message).
In the following example, you can see what a ClientHello
 message could look like. I reduced the amount of information presented for the
 sake of brevity, but all of the key elements are included.
Handshake protocol: ClientHello
 Version: TLS 1.2
 Random
 Client time: May 22, 2030 02:43:46 GMT
 Random bytes: b76b0e61829557eb4c611adfd2d36eb232dc1332fe29802e321ee871
 Session ID: (empty)
 Cipher Suites
 Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 Suite: TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
 Suite: TLS_RSA_WITH_AES_128_GCM_SHA256
 Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
 Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA
 Suite: TLS_RSA_WITH_AES_128_CBC_SHA
 Suite: TLS_RSA_WITH_3DES_EDE_CBC_SHA
 Suite: TLS_RSA_WITH_RC4_128_SHA
 Compression methods
 Method: null
 Extensions
 Extension: server_name
 Hostname: www.feistyduck.com
 Extension: renegotiation_info
 Extension: elliptic_curves
 Named curve: secp256r1
 Named curve: secp384r1
 Extension: signature_algorithms
 Algorithm: sha1/rsa
 Algorithm: sha256/rsa
 Algorithm: sha1/ecdsa
 Algorithm: sha256/ecdsa
As you can see, the structure of this message is easy to understand, with most
 data fields easy to understand from the names alone.
	Protocol version
	Protocol version indicates the best protocol version the client
 supports.

	Random
	The random field contains 32 bytes of data. Of those, 28 bytes are
 randomly generated. The remaining four bytes carry additional
 information influenced by the client’s clock. Client time is not
 actually relevant for the protocol, and the specification is clear
 on this (“Clocks are not required to be set correctly by the
 basic TLS protocol, higher-level or application protocols may define
 additional requirements.”); the field was included as a defense
 against weak random number generators, after just such a critical
 failure was discovered in Netscape Navigator in 1994.[37] Although this field used to contain the actual time,
 there are fears that client time could be used for large-scale
 browser fingerprinting.[38] As a result, some browsers add random clock skew to
 their time (as you can see in the example) or simply send four
 random bytes instead.
Both client and server contribute random data during the
 handshake. The randomness makes each handshake unique and plays a
 key role in authentication by preventing replay attacks and
 verifying the integrity of the initial data exchange.

	Session ID
	On the first connection, the session ID field is empty, indicating
 that the client doesn’t wish to resume an existing session. On
 subsequent connections, the ID field can contain the session’s
 unique identifier, enabling the server to locate the correct session
 state in its cache. The session ID typically contains 32 bytes of
 randomly generated data and isn’t valuable in itself.

	Cipher suites
	The cipher suite block is a list of all cipher suites supported by
 the client in order of preference.

	Compression
	Clients can submit one or more supported compression methods. The
 default compression method null indicates no
 compression.

	Extensions
	The extension block contains an arbitrary number of extensions
 that carry additional data. I discuss the most commonly seen
 extensions later in this chapter.

ServerHello

The purpose of the ServerHello message is for the server to
 communicate the selected connection parameters back to the client. This message
 is similar in structure to ClientHello but contains only one
 option per field:
Handshake protocol: ServerHello
 Version: TLS 1.2
 Random
 Server time: Mar 10, 2059 02:35:57 GMT
 Random bytes: 8469b09b480c1978182ce1b59290487609f41132312ca22aacaf5012
 Session ID: 4cae75c91cf5adf55f93c9fb5dd36d19903b1182029af3d527b7a42ef1c32c80
 Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 Compression method: null
 Extensions
 Extension: server_name
 Extension: renegotiation_info
The server isn’t required to support the same best version supported by the
 client. If it doesn’t, it offers some other protocol version in the hope that
 the client will accept it.

Certificate

The Certificate message is typically used to carry the
 server’s X.509 certificate chain. Certificates are provided one after another,
 in ASN.1 DER encoding. The main certificate must be sent first, with all of the
 intermediary certificates following in the correct order. The root can and
 should be omitted, because it serves no purpose in this context.
The server must ensure that it sends a certificate appropriate for the
 selected cipher suite. For example, the public key algorithm must match that
 used in the suite. In addition, some key exchange mechanisms depend upon certain
 data being embedded in the certificate, and the certificates must be signed with
 algorithms supported by the client. All of this implies that the server could be
 configured with multiple certificates (each with a potentially different
 chain).
This Certificate message is optional, because not all
 suites use authentication and because there are some authentication methods that
 don’t require certificates. Furthermore, although the default is to use X.509
 certificates other forms of identification can be carried in this message; some
 suites rely on PGP keys.[39]

ServerKeyExchange

The purpose of the ServerKeyExchange message is to carry
 additional data needed for key exchange. Its contents vary and depend on the
 negotiated cipher suite. In some cases, the server is not required to send
 anything, which means that the ServerKeyExchange message is
 not sent at all.

ServerHelloDone

ServerHelloDone is a signal that the server has sent all
 intended handshake messages. After this, the server waits for further messages
 from the client.

ClientKeyExchange

The ClientKeyExchange message carries the client’s
 contribution to the key exchange. It’s a mandatory message whose contents depend
 on the negotiated cipher suite.

ChangeCipherSpec

The ChangeCipherSpec message is a signal that the sending
 side obtained enough information to obtain all connection parameters, generated
 the appropriate encryption keys, and is switching to encryption. Client and
 server both send this message when the time is right.
Note
ChangeCipherSpec is not a handshake message. Rather,
 it’s implemented as the only message in its own subprotocol. One consequence
 of this decision is that this message is not part of the handshake integrity
 validation mechanism. This makes TLS more difficult to implement correctly;
 in June 2014 OpenSSL disclosed that it had been incorrectly handling
 ChangeCipherSpec messages, leaving it open to active
 network attacks.[40]
The same problem exists with all other subprotocols. An active network
 attacker can send unauthenticated alert messages during the first handshake
 and, by exploiting the buffering mechanism, even subvert genuine alerts sent
 after encryption commences.[41] To avoid more serious problems, application data protocol and
 heartbeat messages aren’t allowed before the first handshake is complete;
 it’s not unusual to see implementations violate these restrictions.

Finished

The Finished message is the signal that the handshake is
 complete. Its contents are encrypted, which allows both sides to securely
 exchange the data required to verify the integrity of the entire
 handshake.
This message carries the verify_data field, which is a hash
 of all handshake messages as each side saw them mixed in with the newly
 negotiated master secret. This is done via a pseudorandom
 function (PRF), which is designed to produce an arbitrary amount
 of pseudorandom data. I describe the PRF later in this chapter. The
 Hash function is the same as in the PRF unless the
 negotiated suite specifies a different algorithm. The calculations are the same
 in both cases, although each side uses a different label: “client finished” for
 the client and “server finished” for the server:
verify_data = PRF(master_secret, finished_label, Hash(handshake_messages))
Because the Finished messages are encrypted and their
 integrity guaranteed by the negotiated MAC algorithm, an active network attacker
 can’t change the handshake messages and then forge the correct
 verify_data values.
The attacker could also try to find a set of forged handshake messages that
 have exactly the same verify_data values as the genuine
 messages. That’s not an easy attack in itself, but because the hashes are mixed
 in with the master secret (which the attacker doesn’t know) she can’t even
 attempt that approach.
In TLS 1.2, the Finished message is 12 bytes (96 bits) long
 by default, but cipher suites are allowed to use larger sizes. Earlier protocol
 versions also use a fixed length of 12 bytes, except for SSL 3, which uses 36
 bytes.

Client Authentication

Although authentication of either side is optional, server authentication is
 almost universally required. If the server selects a suite that isn’t anonymous,
 it’s required to follow up with its certificate chain in the
 Certificate message.
In contrast, the server requests client authentication by sending a
 CertificateRequest message that lists acceptable client
 certificates. In response, the client sends the certificate in its own
 Certificate message (in the same format used by the server
 for its certificates) and then proves possession of the corresponding private key
 with a CertificateVerify message.
Figure 2.3. Full handshake, during which both client and server are
 authenticated
[image: Full handshake, during which both client and server are authenticated]

Only an authenticated server is allowed to request client authentication. For this
 reason, this option is known as mutual authentication.
CertificateRequest

With the CertificateRequest message, the server requests
 client authentication and communicates acceptable certificate public key and
 signature algorithms to the client. Optionally, it can also send its list of
 acceptable issuing certification authorities, indicated by using their
 distinguished names:
struct {
 ClientCertificateType certificate_types;
 SignatureAndHashAlgorithm supported_signature_algorithms;
 DistinguishedName certificate_authorities;
} CertificateRequest;

CertificateVerify

The client uses the CertificateVerify message to prove the
 possession of the private key corresponding to the public key in the previously
 sent client certificate. This message contains a signature of all the handshake
 messages exchanged until this point:
struct {
 Signature handshake_messages_signature;
} CertificateVerify;

Session Resumption

The full handshake is an elaborate protocol that requires many handshake messages
 and two network round-trips before the client can start sending application data. In
 addition, the cryptographic operations carried out during the handshake often
 require intensive CPU processing. Authentication, usually in the form of client and
 server certificate validation (and revocation checking), requires even more effort.
 Much of this overhead can be avoided with an abbreviated handshake.
The original session resumption mechanism is based on both
 the client and the server keeping session security parameters for a period of time
 after a fully negotiated connection is terminated. A server that wishes to use
 session resumption assigns it a unique identifier called the session
 ID. The server then sends the session ID back to the client in the
 ServerHello message. (You can see this in the example in the
 previous section.)
A client that wishes to resume an earlier session submits the appropriate session
 ID in its ClientHello. If the server is willing to resume that
 session, it returns the same session ID in the ServerHello,
 generates a new set of keys using the previously negotiated master secret, switches
 to encryption, and sends its Finished message. The client, when
 it sees that the session is being resumed, does the same. The result is a short
 handshake that requires only one network round-trip.
Figure 2.4. Abbreviated handshake—used to resume an already established
 session
[image: Abbreviated handshake—used to resume an already established session]

The alternative to server-side session caching and resumption is to use
 session tickets, introduced by RFC 4507 in 2006 and
 subsequently updated by RFC 5077 in 2008. In this case, all state is kept by the
 client (the mechanism is similar to HTTP cookies), but the message flow is otherwise
 the same.

Key Exchange

The key exchange is easily the most interesting part of the handshake. In TLS, the
 security of the session depends on a 48-byte shared key called the master
 secret. The goal of key exchange is to generate another value, the
 premaster secret, which is the value from which the master
 secret is constructed.
TLS supports many key exchange algorithms in order to support various certificate
 types, public key algorithms, and key establishment protocols. Some are defined in the
 main TLS protocol specification, but many more are defined elsewhere. You can see the
 most commonly used algorithms in the following table.
Table 2.1. Overview of the most commonly used key exchange algorithms
	Key Exchange	Description
	dh_anon	Diffie-Hellman (DH) key exchange without authentication
	dhe_rsa	Ephemeral DH key exchange with RSA authentication
	ecdh_anon	Ephemeral Elliptic Curve DH (ECDH) key exchange without
 authentication (RFC 4492)
	ecdhe_rsa	Ephemeral ECDH key exchange with RSA authentication (RFC
 4492)
	ecdhe_ecdsa	Ephemeral ECDH key exchange with ECDSA authentication (RFC
 4492)
	krb5	Kerberos key exchange (RFC 2712)
	rsa	RSA key exchange and authentication
	psk	Pre-Shared Key (PSK) key exchange and authentication (RFC
 4279)
	dhe_psk	DH key exchange with PSK authentication (RFC 4279)
	rsa_psk	PSK key exchange and RSA authentication (RFC 4279)
	srp	Secure Remote Protocol (SRP) key exchange and authentication (RFC
 5054)

Which key exchange is used depends on the negotiated suite. Once the suite is known,
 both sides know which algorithm to follow. In practice, there are four main key exchange
 algorithms:
	RSA
	RSA is effectively the standard key exchange algorithm. It’s universally
 supported but suffers from one serious problem: its design allows a passive
 attacker to decrypt all encrypted data, provided she has access to the
 server’s private key. Because of this, the RSA key exchange is being slowly
 replaced with other algorithms, those that support forward
 secrecy. The RSA key exchange is a key
 transport algorithm; the client generates the premaster
 secret and transports it to the server, encrypted with the server’s public
 key.

	DHE_RSA
	Ephemeral Diffie-Hellman (DHE) key exchange is a
 well-established algorithm. It’s liked because it provides forward secrecy
 but disliked because it’s slow. DHE is a key
 agreement algorithm; the negotiating parties both contribute
 to the process and agree on a common key. In TLS, DHE is commonly used with
 RSA authentication.

	ECDHE_RSA and ECDHE_ECDSA
	Ephemeral elliptic curve Diffie-Hellman (ECDHE) key
 exchange is based on elliptic curve cryptography, which is relatively new.
 It’s liked because it’s fast and provides forward
 secrecy. It’s well supported only by modern clients. ECDHE is a key
 agreement algorithm conceptually similar to DHE. In TLS, ECDHE can be used
 with either RSA or ECDSA authentication.

No matter which key exchange is used, the server has the opportunity to speak first by
 sending its ServerKeyExchange message:
struct {
 select (KeyExchangeAlgorithm) {
 case dh_anon:
 ServerDHParams params;
 case dhe_rsa:
 ServerDHParams params;
 Signature params_signature;
 case ecdh_anon:
 ServerECDHParams params;
 case ecdhe_rsa:
 case ecdhe_ecdsa:
 ServerECDHParams params;
 Signature params_signature;
 case rsa:
 case dh_rsa:
 /* no message */
 };
} ServerKeyExchange;
As you can see in the message definition, there are several algorithms for which there
 is nothing for the server to send. This will be the case when all the required
 information is already available elsewhere. Otherwise, the server sends its key exchange
 parameters. Crucially, the server also sends a signature of the parameters, which is
 used for authentication. Using the signature, the client is able to verify that it’s
 talking to the party that holds the private key corresponding to the public key from the
 certificate.
The ClientKeyExchange message is always required; the client uses
 it to sends its key exchange parameters:
struct {
 select (KeyExchangeAlgorithm) {
 case rsa:
 EncryptedPreMasterSecret;
 case dhe_dss:
 case dhe_rsa:
 case dh_dss:
 case dh_rsa:
 case dh_anon:
 ClientDiffieHellmanPublic;
 case ecdhe:
 ClientECDiffieHellmanPublic;
 } exchange_keys;
} ClientKeyExchange;
RSA Key Exchange

The RSA key exchange is quite straightforward; the client generates a premaster
 secret (a 46-byte random number), encrypts it with the server’s public key, and
 sends it in the ClientKeyExchange message. To obtain the
 premaster secret, the server only needs to decrypt the message. TLS uses the
 RSAES-PKCS1-v1_5 encryption scheme, which is defined in RFC 3447.[42]
Note
The RSA key exchange can operate in this way because the RSA algorithm can be
 used for encryption and digital signing. Other popular key types, such as DSA
 (DSS) and ECDSA, can be used only for signing.

The simplicity of the RSA key exchange is also its principal weakness. The
 premaster secret is encrypted with the server’s public key, which usually remains in
 use for several years. Anyone with access to the corresponding private key can
 recover the premaster secret and construct the same master secret, compromising
 session security.
The attack doesn’t have to happen in real time. A powerful adversary could
 establish a long-term operation to record all encrypted traffic and wait patiently
 until she obtains the key. For example, advances in computer power could make it
 possible to brute-force the key. Alternatively, the key could be obtained using
 legal powers, coercion, bribery, or by breaking into a server that uses it. After
 the key compromise, it’s possible to decrypt all previously recorded traffic.
The other common key exchange mechanisms used in TLS don’t suffer from this
 problem and are said to support forward secrecy. When they are used, each connection
 uses an independent master secret. A compromised server key could be used to
 impersonate the server but couldn’t be used to retroactively decrypt any
 traffic.

Diffie-Hellman Key Exchange

The Diffie-Hellman (DH) key exchange is a key agreement
 protocol that allows two parties to establish a shared secret over an insecure
 communication channel.[43]
Note
The shared secret negotiated in this way is safe from passive attacks, but an
 active attacker could hijack the communication channel and pretend to be the
 other party. This is why the DH key exchange is commonly used with
 authentication.

Without going into the details of the algorithm, the trick is to use a
 mathematical function that’s easy to calculate in one direction but very difficult
 to reverse, even when some of the aspects of the exchange are known. The best
 analogy is that of color mixing: if you have two colors, you can easily mix them to
 get a third color, but it’s very difficult to determine the
 exact color shades that contributed to the mix.[44]
The DH key exchange requires six parameters; two (dh_p and
 dh_g) are called domain parameters and
 are selected by the server. During the negotiation, the client and server each
 generate two additional parameters. Each side sends one of its parameters
 (dh_Ys and dh_Yc) to the other end, and,
 with some calculation, they arrive at the shared key.
Ephemeral Diffie-Hellman (DHE) key exchange takes place
 when none of the parameters are reused. In contrast, there are some DH key exchange
 approaches in which some of the parameters are static and embedded in the server and
 client certificates. In this case, the result of the key exchange is always the same
 shared key, which means that there is no forward secrecy.
TLS supports static DH key exchanges, but they’re not used. When a DHE suite is
 negotiated, the server sends all of its parameters in the
 ServerDHParams block:
struct {
 opaque dh_p;
 opaque dh_g;
 opaque dh_Ys;
} ServerDHParams;
The client, in response, sends its public parameter
 (dh_Yc):
struct {
 select (PublicValueEncoding) {
 case implicit:
 /* empty; used when the client's public
 parameter is embedded in its certificate */
 case explicit:
 opaque dh_Yc;
 } dh_public;
} ClientDiffieHellmanPublic;
There are some practical problems with the DH exchange as it’s currently
 used:
	DH parameter security
	The security of the DH key exchange depends on the quality of the
 domain parameters. A server could send weak or insecure parameters and
 compromise the security of the session. This issue was highlighted in
 the Triple Handshake Attack research paper, which
 covered weak DH parameters used as one of the attack vectors.[45]

	DH parameter negotiation
	TLS doesn’t provide facilities for the client to communicate the
 strength of DH parameters it’s willing to use. For example, some clients
 might want to avoid using weak parameters, or alternately, they might
 not be able to support stronger parameters. Because of this, a server
 that chooses a DHE suite can effectively only “hope” that the DH
 parameters will be acceptable to the client.
Historically speaking, DH parameters have been largely ignored and
 their security neglected. Many libraries and servers use weak DH
 parameters by default and often don’t provide a means to configure DH
 parameter strength. For this reason, it’s not uncommon to see servers
 using weak 1,024-bit parameters and insecure 768- and even 512-bit
 parameters. More recently, some platforms have started using strong
 (2,048 bits and higher) parameters.

These problems could be addressed by standardizing a set of domain parameters of
 varying strengths and extending TLS to enable clients to communicate their preferences.[46]

Elliptic Curve Diffie-Hellman Key Exchange

The ephemeral elliptic curve Diffie-Hellman (ECDH) key
 exchange is conceptually similar to DH, but it uses a different mathematical
 foundation at the core. As the name implies, ECDHE is based on elliptic curve (EC)
 cryptography.
An ECDH key exchange takes place over a specific elliptic curve, which is for the
 server to define. The curve takes the role of domain parameters in DH. In theory,
 static ECDH key exchange is supported, but in practice only the ephemeral variant
 (ECDHE) is used.
The server starts the key exchange by submitting its selected elliptic curve and
 public parameter (EC point):
struct {
 ECParameters curve_params;
 ECPoint public;
} ServerECDHParams;
The server can specify an arbitrary (explicit) curve for the key exchange, but
 this facility is not used in TLS. Instead, the server will specify a
 named curve, which is a reference to one of the possible
 predefined parameters:
struct {
 ECCurveType curve_type;
 select (curve_type) {
 case explicit_prime:
 /* omitted for clarity */
 case explicit_char2:
 /* omitted for clarity */
 case named_curve:
 NamedCurve namedcurve;
 };
} ECParameters;
The client then submits its own public parameter. After that, the calculations
 take place to arrive at the premaster secret:
struct {
 select (PublicValueEncoding) {
 case implicit:
 /* empty */
 case explicit:
 ECPoint ecdh_Yc;
 } ecdh_public;
} ClientECDiffieHellmanPublic;
The use of predefined parameters, along with the elliptic_curve
 extension that clients can use to submit supported curves, enables the server to
 select a curve that both sides support. You’ll find more information on the
 available named curves later in the section called “Elliptic Curve Capabilities

 ”.

Authentication

In TLS, authentication is tightly coupled with key exchange in order to avoid
 repetition of costly cryptographic operations. In most cases, the basis for
 authentication will be public key cryptography (most commonly RSA, but sometimes ECDSA)
 supported by certificates. Once the certificate is validated, the client has a known
 public key to work with. After that, it’s down to the particular key exchange method to
 use the public key in some way to authenticate the other side.
During the RSA key exchange, the client generates a random value as the premaster
 secret and sends it encrypted with the server’s public key. The server, which is in
 possession of the corresponding private key, decrypts the message to obtain the
 premaster secret. The authentication is implicit: it is assumed that only the server in
 possession of the corresponding private key can retrieve the premaster secret, construct
 the correct session keys, and produce the correct Finished
 message.
During the DHE and ECDHE exchanges, the server contributes to the key
 exchange with its parameters. The parameters are signed with its private key. The
 client, which is in possession of the corresponding public key (obtained from the
 validated certificate), can verify that the parameters genuinely arrived from the
 intended server.
Note
Server parameters are signed concatenated with client and server random data that
 are unique to the handshake. Thus, although the signature is sent in the clear it’s
 only valid for the current handshake, which means that the attacker can’t reuse
 it.

Encryption

TLS can encrypt data in a variety of ways, using ciphers such 3DES, AES, ARIA,
 CAMELLIA, RC4, and SEED. AES is by far the most popular cipher. Three types of
 encryption are supported: stream, block,
 and authenticated encryption. In TLS, integrity validation is
 part of the encryption process; it’s handled either explicitly at the protocol level or
 implicitly by the negotiated cipher.
Stream Encryption

When a stream cipher is used, encryption consists of two steps. In the first step,
 a MAC of the record sequence number, header, and plaintext is calculated. The
 inclusion of the header in the MAC ensures that the unencrypted data in the header
 can’t be tampered with. The inclusion of the sequence number in the MAC ensures that
 the messages can’t be replayed. In the second step, the plaintext and the MAC are
 encrypted to form ciphertext.
Figure 2.5. Stream encryption
[image: Stream encryption]

Note
A suite that uses integrity validation but no encryption is implemented in the
 same way as encryption using a stream cipher. The plaintext is simply copied to
 the TLS record, but the MAC is calculated as described here.

Block Encryption

When block ciphers are used, encryption is somewhat more involved, because it’s
 necessary to work around the properties of block encryption. The following steps are
 required:
	Calculate a MAC of the sequence number, header, and plaintext.

	Construct padding to ensure that the length of data prior to encryption is
 a multiple of the cipher block size (usually 16 bytes).

	Generate an unpredictable initialization vector
 (IV) of the same length as the cipher block size. The IV is used to ensure
 that the encryption is not deterministic.

	Use the CBC block mode to encrypt plaintext, MAC, and padding.

	Send the IV and ciphertext together.

Figure 2.6. Block encryption
[image: Block encryption]

Note
You’ll find further information on the CBC block mode, padding, and
 initialization vectors in the section called “Building Blocks” in Chapter 1.

This process is known as MAC-then-encrypt, and it
 has been a source of many problems. In TLS 1.1 and newer versions, each record
 includes an explicit IV. TLS 1.0 and older versions use implicit IVs (the encrypted
 block from the previous TLS record is used as the IV for the next), but that
 approach was found to be insecure in 2011.[47]
 The other problem is that the MAC calculation doesn’t include padding, leaving an
 opportunity for an active network attacker to attempt padding oracle
 attacks, which were also successfully demonstrated against TLS.[48] The issue here is that the protocol specifies a block encryption
 approach that’s difficult to implement securely in practice. As far as we know,
 current implementations are not obviously vulnerable at the moment, but this is a
 weak spot that leaves many uneasy.
A proposal for a different arrangement called
 encrypt-then-MAC has recently been submitted for publication.[49] In this alternative approach, plaintext and padding are first encrypted
 and then fed to the MAC algorithm. This ensures that the active network attacker
 can’t manipulate any of the encrypted data.

Authenticated Encryption

Authenticated ciphers combine encryption and integrity validation in one
 algorithm. Their full name is authenticated encryption with associated
 data (AEAD). On the surface, they appear to be a cross between
 stream ciphers and block ciphers. They don’t use padding[50] and initialization vectors, but they do use a special value called
 nonce, which must be unique. TLS supports GCM and CCM
 authenticated ciphers, but only the former are currently used in practice. The
 process is somewhat simpler than with block ciphers:
	Generate a unique 64-bit nonce.

	Encrypt plaintext with the authenticated encryption algorithm; at the same
 time feed it the sequence number and record header for it to take into
 account as additional data for purposes of integrity validation.

	Send the nonce and ciphertext together.

Figure 2.7. Authenticated encryption
[image: Authenticated encryption]

Authenticated encryption is currently favored as the best encryption mode
 available in TLS, because it avoids the issues inherent with the MAC-then-encrypt
 approach.

Renegotiation

Most TLS connections start with a handshake, proceed to exchange application data, and
 shutdown the conversation at the end. When renegotiation is
 requested, a new handshake takes place to agree on new connection security parameters.
 There are several cases in which this feature might be useful:
	Client certificates
	Client certificates are not used often, but some sites use them because
 they provide two-factor authentication. There are two ways to deploy client
 certificates. You can require them for all connections to a site, but this
 approach is not very friendly to those who don’t (yet) have a certificate;
 without a successful connection, you can’t send them any information and
 instructions. Handling error conditions is equally impossible. For this
 reason, many operators prefer to allow connections to the root of the web
 site without a certificate and designate a subsection in which a client
 certificate is required. When a user attempts to navigate to the subsection,
 the server issues a request to renegotiate and then requests a client
 certificate.

	Information hiding
	Such a two-step approach to enabling client certificates has an additional
 advantage: the second handshake is encrypted, which means that a passive
 attacker can’t monitor the negotiation and, crucially, can’t observe the
 client certificates. This addresses a potentially significant privacy issue,
 because client certificates usually contain identifying information. For
 example, the Tor protocol can use renegotiation in this way.[51]

	Change of encryption strength
	Back in the day, when web site encryption was brand new (and very CPU
 intensive) it was common to see sites split their encryption configuration
 into two levels. You would use weaker encryption by default but require
 strong encryption in certain areas.[52] As with client certificates, this feature is implemented via
 renegotiation. When you attempt to cross into the more secure subsection of
 the web site, the server requests stronger security.

In addition, there are two situations in which renegotiation is required by the
 protocol, although neither is likely to occur in practice:
	Server-Gated Crypto
	Back in the 1990s, when the United States did not allow export of strong
 cryptography, a feature called Server-Gated Crypto
 (SGC) was used to enable US vendors to ship strong cryptography worldwide
 but enable it only for selected (mostly financial) US web sites. Browsers
 would use weak cryptography by default, upgrading to strong cryptography
 after encountering a special certificate. This upgrade was entirely client
 controlled, and it was implemented via renegotiation. Only a few selected
 CAs were allowed to issue the special certificates. Cryptography export
 restrictions were relaxed in 2000, making SGC obsolete.

	TLS record counter overflow
	Internally, TLS packages data into records. Each record is assigned a
 unique 64-bit sequence number, which grows over time as records are
 exchanged. Client and server use one sequence number each for the records
 they send. The protocol mandates renegotiation if a sequence number is close
 to overflowing. However, because the counter is a very large number,
 overflows are unlikely in practice.

The protocol allows the client to request renegotiation at any time simply
 by sending a new ClientHello message, exactly as when starting a
 brand-new connection. This is known as client-initiated
 renegotiation.
If the server wishes to renegotiate, it sends a
 HelloRequest protocol message to the client; that’s a signal to the client to stop
 sending application data and initiate a new handshake. This is known as
 server-initiated renegotiation.
Renegotiation, as originally designed, is insecure and can be abused by an active
 network attacker in many ways. The weakness was discovered in 2009[53] and corrected with the introduction of the
 renegotiation_info extension, which I discuss later in this
 chapter.

Application Data Protocol

The application data protocol carries application messages, which are just buffers of
 data as far as TLS is concerned. These messages are packaged, fragmented, and encrypted
 by the record layer, using the current connection security parameters.

Alert Protocol

Alerts are intended to use a simple notification mechanism to
 inform the other side in the communication of exceptional circumstances. They’re
 generally used for error messages, with the exception of
 close_notify, which is used during connection shutdown. Alerts are
 very simple and contain only two fields:
struct {
 AlertLevel level;
 AlertDescription description;
} Alert;
The AlertLevel field carries the alert severity, which can be
 either warning or fatal. The
 AlertDescription is simply an alert code; for better or worse,
 there are no facilities to convey arbitrary information, for example, an actual error
 message.
Fatal messages result in an immediate termination of the current connection and
 invalidation of the session (ongoing connections of the same session may continue, but
 the session can no longer be resumed). The side sending a warning notification doesn’t
 terminate the connection, but the receiving side is free to react to the warning by
 sending a fatal alert of its own.

Connection Closure

Closure alerts are used to shutdown a TLS connection in an
 orderly fashion. Once one side decides that it wants to close the connection, it sends a
 close_notify alert. The other side, upon receiving the alert,
 discards any pending writes and sends a close_notify alert of its
 own. If any messages arrive after the alerts, they are ignored.
This simple shutdown protocol is necessary in order to avoid truncation attacks, in
 which an active network attacker interrupts a conversation midway and blocks all further
 messages. Without the shutdown protocol, the two sides can’t determine if they are under
 attack or if the conversation is genuinely over.
Note
Although the protocol itself is not vulnerable to truncation attacks, there are
 many implementations that are, because violations of the
 connection shutdown protocol are widespread. I discuss this problem at length in
 the section called “Truncation Attacks” in Chapter 6.

Cryptographic Operations

This section contains a brief discussion of several important aspects of the protocol:
 the pseudorandom function, master secret construction, and the generation of connection
 keys.
Pseudorandom Function

In TLS, a pseudorandom function (PRF) is used to generate
 arbitrary amounts of pseudorandom data. The PRF takes a secret, a seed, and a unique
 label. From TLS 1.2 onwards, all cipher suites are required to explicitly specify
 their PRF. All TLS 1.2 suites use a PRF based on HMAC and SHA256; the same PRF is
 used with older suites when they are negotiated with TLS 1.2.
TLS 1.2 defines a PRF based on a data expansion function
 P_hash, which uses HMAC and any hash function:
P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
 HMAC_hash(secret, A(2) + seed) +
 HMAC_hash(secret, A(3) + seed) + ...
The A(i) function is defined as follows:
A(1) = HMAC_hash(secret, seed)
A(2) = HMAC_hash(secret, A(1))
...
A(i) = HMAC_hash(secret, A(i-1))
The PRF is a wrapper around P_hash that combines the label with
 the seed:
PRF(secret, label, seed) = P_hash(secret, label + seed)
The introduction of a seed and a label allows the same secret to be reused in
 different contexts to produce different outputs (because the label and the seed are
 different).

Master Secret

As you saw earlier, the output from the key exchange process is the premaster
 secret. This value is further processed, using the PRF, to produce a 48-byte
 (384-bit) master secret:
master_secret = PRF(pre_master_secret, "master secret",
 ClientHello.random + ServerHello.random)
The processing occurs because the premaster secret might differ in size depending
 on the key exchange method used. Also, because the client and server random fields
 are used as the seed, the master secret is also effectively random[54] and bound to the negotiated handshake.
Note
The binding between the master secret and the handshake has been shown to be
 insufficient because it relies only on the exchanged random values. An attacker
 can observe and replicate these values to create multiple sessions that share
 the same master key. This weakness has been exploited by the Triple Handshake
 Attack mentioned earlier.[45]

Key Generation

The key material needed for a connection is generated in a single PRF invocation
 based on the master secret and seeded with the client and server random
 values:
key_block = PRF(SecurityParameters.master_secret,
 "key expansion",
 SecurityParameters.server_random +
 SecurityParameters.client_random)
The key block, which varies in size depending on the negotiated parameters, is
 divided into up to six keys: two MAC keys, two encryption keys, and two
 initialization vectors (only when needed; stream ciphers don’t use IV). AEAD suites
 don’t use MAC keys. Different keys are used for different operations, which is
 recommended to prevent unforeseen interactions between cryptographic primitives when
 the key is shared. Also, because the client and the server have their own sets of
 keys, a message produced by one can’t be interpreted to have been produced by the
 other. This design decision makes the protocol more robust.
Note
When resuming a session, the same session master key is used during the key
 block generation. However, the PRF is seeded with the client and server random
 values from the current handshake. Because these random
 values are different in every handshake, the keys are also different every
 time.

Cipher Suites

As you have seen, TLS allows for a great deal of flexibility in implementing the
 desired security properties. It’s effectively a framework for creating actual
 cryptographic protocols. Although previous versions hardcoded some cryptographic
 primitives into the protocol, TLS 1.2 is fully configurable. A cipher
 suite is a selection of cryptographic primitives and other parameters
 that define exactly how security will be implemented. A suite is defined roughly by the
 following attributes:
	Authentication method

	Key exchange method

	Encryption algorithm

	Encryption key size

	Cipher mode (when applicable)

	MAC algorithm (when applicable)

	PRF (TLS 1.2 only—depends on the protocol otherwise)

	Hash function used for the Finished message (TLS
 1.2)

	Length of the verify_data structure (TLS 1.2)

Cipher suite names tend to be long and descriptive and pretty consistent: they are
 made from the names of the key exchange method, authentication method, cipher
 definition, and optional MAC or PRF algorithm.[55]
Figure 2.8. Cipher suite name construction
[image: Cipher suite name construction]

Although a suite name is not sufficient to convey all security parameters, the most
 important ones are easy to deduce. The information on the remaining parameters can be
 found in the RFC that carries the suite definition. You can see the security properties
 of a few selected suites in the following table. At the time of writing, there are more
 than 300 official cipher suites, which is too many to list here. For the complete list,
 head to the official TLS page over at IANA.[56]

Table 2.2. Examples of cipher suite names and their security properties
	Cipher Suite Name	Auth	KX	Cipher	MAC	PRF
	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	RSA	ECDHE	AES-128-GCM	-	SHA256
	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	ECDSA	ECDHE	AES-256-GCM	-	SHA384
	TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA	RSA	DHE	3DES-EDE-CBC	SHA1	Protocol
	TLS_RSA_WITH_AES_128_CBC_SHA	RSA	RSA	AES-128-CBC	SHA1	Protocol
	TLS_ECDHE_ECDSA_WITH_AES_128_CCM	ECDSA	ECDHE	AES-128-CCM	-	SHA256

With the introduction of TLS 1.2—which allows for additional custom parameters
 (e.g., PRF)—and authenticated suites, some level of understanding of the
 implementation is required to fully decode cipher suite names:
	Authenticated suites combine authentication and encryption in the cipher,
 which means that integrity validation need not be performed at the TLS level.
 GCM suites use the last segment to indicate the PRF instead of the MAC
 algorithm. CCM suites omit this last segment completely.

	TLS 1.2 is the only protocol that allows suites to define their PRFs. This
 means that for the suites defined before TLS 1.2 the negotiated protocol version
 dictates the PRF. For example, the
 TLS_RSA_WITH_AES_128_CBC_SHA suite uses a PRF based on
 HMAC-SHA256 when negotiated with TLS 1.2 but a PRF based on a HMAC-MD5/HMAC-SHA1
 combination when used with TLS 1.0. On the other hand, SHA384 GCM suites (which
 can be used only with TLS 1.2 and newer) will always use HMAC-SHA384 for the
 PRF.

Note
Cipher suite names use a shorthand notation to indicate the MAC algorithm that
 specifies only the hashing function. This often leads to confusion when the hashing
 functions have weaknesses. For example, although SHA1 is known to be weak to
 chosen-prefix attacks, it’s not weak in the way it’s used in TLS, which is in an
 HMAC construction. There are no significant known attacks against HMAC-SHA1.

Cipher suites don’t have full control over their security parameters. Crucially, they
 only specify the required authentication and key exchange algorithms, but they don’t
 have control over their exact parameters (e.g., key and parameter strength).
Note
Cipher suites can be used only with the specific authentication mechanism they are
 intended for. For example, suites with ECDSA in the name require ECDSA keys. A
 server that has a single RSA key will not show support for any of the ECDSA
 suites.

When it comes to authentication, the strength typically depends on the certificate or,
 more specifically, on the certificate’s key length and the signature algorithm. The
 strength of the RSA key exchange also depends on the certificate. DHE and ECDHE key
 exchanges can be configured with varying strengths, and this is usually done at the
 server level. Some servers expose this configuration to end users, but others don’t. I
 discuss these aspects in more detail in Chapter 8, Deployment and in the
 following technology-specific chapters.

Extensions

TLS extensions are a general-purpose extension mechanism that’s
 used to add functionality to the TLS protocol without changing the protocol itself. They
 first appeared in 2003 as a separate specification (RFC 3456) but have since been added
 to TLS 1.2.
Extensions are added in the form of an extension block that’s placed at the end of
 ClientHello and ServerHello messages:
Extension extensions;
The block consists of a desired number of extensions placed one after another. Each
 extension begins with a two-byte extension type (unique identifier) and is followed by
 the extension data:
struct {
 ExtensionType extension_type;
 opaque extension_data;
} Extension;
It’s up to each extension specification to determine the extension format and the
 desired behavior. In practice, extensions are used to signal support for some new
 functionality (thus changing the protocol) and to carry additional data needed during
 the handshake. Since their introduction, they have become the main vehicle for protocol
 evolution.
In this section, I will discuss the most commonly seen TLS extensions. Because IANA
 keeps track of extension types, the official list of extensions can be obtained from
 their web site.[57]
Table 2.3. A selection of commonly seen TLS extensions
	Type	Name	Description
	0	server_name	Contains the intended secure virtual host for the connection
	5	status_request	Indicates support for OCSP stapling
	13 (0x0d)	signature_algorithms	Contains supported signature algorithm/hash function pairs
	15 (0x0f)	heartbeat	Indicates support for the Heartbeat protocol
	16 (0x10)	application_layer_protocol_​negotiation	Contains supported application-layer protocols that the client is
 willing to negotiate
	18 (0x12)	signed_certificate_timestamp	Used by servers to submit the proof that the certificate had been
 shared with the public; part of Certificate Transparency
	21 (0x15)	padding	Used as a workaround for certain bugs in the F5 load balancers[a]
	35 (0x23)	session_ticket	Indicates support for stateless session resumption
	13172 (0x3374)	next_protocol_negotiation	Indicates support for Next Protocol Negotiation
	65281 (0xff01)	renegotiation_info	Indicates support for secure renegotiation
	[a] A TLS padding extension (Internet-Draft, A. Langley,
 January 2014)

Application Layer Protocol Negotiation

Application-Layer Protocol Negotiation (ALPN) is a protocol
 extension that enables the negotiation of different application-layer protocols over
 a TLS connection.[58] With ALPN, a server on port 443 could offer HTTP 1.1 by default but
 allow the negotiation of other protocols, such as SPDY or HTTP 2.0.
A client that supports ALPN uses the
 application_layer_protocol_negotiation extension to submit a
 list of supported application-layer protocols to the server. A compliant server
 decides on the protocol and uses the same extension to inform the client of its
 decision.
ALPN provides the same primary functionality as its older relative, NPN (discussed
 later on in this section), but they differ in secondary properties. Whereas NPN
 prefers to hide protocol decisions behind encryption, ALPN carries them in
 plaintext, allowing intermediary devices to inspect them and route traffic based on
 the observed information.

Certificate Transparency

Certificate Transparency[59] is a proposal to improve Internet PKI by keeping a record of all public
 server certificates. The basic idea is that the CAs will submit every certificate to
 a public log server, and in return they will receive a proof
 of submission called Signed Certificate Timestamp (SCT),
 which they can they relay to end users. There are several options for the transport
 of the SCT, and one of them is the new TLS extension called
 signed_certificate_timestamp.

Elliptic Curve Capabilities

RFC 4492 specifies two extensions that are used to communicate client EC
 capabilities during the handshake. The elliptic_curves extension
 is used in ClientHello to list supported named curves, allowing
 the server to select one that’s supported by both sides.
struct {
 NamedCurve elliptic_curve_list
} EllipticCurveList;
The main curves are specified in RFC 4492[60] based on the parameters defined by standards bodies, such as NIST:[61]
enum {
 sect163k1 (1), sect163r1 (2), sect163r2 (3),
 sect193r1 (4), sect193r2 (5), sect233k1 (6),
 sect233r1 (7), sect239k1 (8), sect283k1 (9),
 sect283r1 (10), sect409k1 (11), sect409r1 (12),
 sect571k1 (13), sect571r1 (14), secp160k1 (15),
 secp160r1 (16), secp160r2 (17), secp192k1 (18),
 secp192r1 (19), secp224k1 (20), secp224r1 (21),
 secp256k1 (22), secp256r1 (23), secp384r1 (24),
 secp521r1 (25),
 reserved (0xFE00..0xFEFF),
 arbitrary_explicit_prime_curves(0xFF01),
 arbitrary_explicit_char2_curves(0xFF02)
} NamedCurve;
Brainpool curves were defined later, in RFC 7072.[62] At the time of writing, there are efforts to standardize additional
 curves, for example, Curve25519.[63] You can find the relevant document on the TLS working group document
 page.
At this time, there is wide support for only two NIST curves:
 secp256r1 and secp384r1. Arbitrary curves
 are generally not supported at all.[64]
NIST Elliptic Curves

NIST’s elliptic curves are sometimes considered suspicious, because
 there is no explanation of how the parameters were selected.[65] Especially after the Dual EC DRBG backdoor came to light, anything
 that cannot be explained has been seen by some as suspicious. The fear is that
 those named curves have weaknesses that are known to the designers but not to
 the general public. As a result, there are efforts to extend TLS with support
 for other curves.

The second defined extension is ec_point_formats, which is
 intended for use with arbitrary curves to enable compression of curve parameters.
 The theory is that in a constrained environment it’s worth saving the bandwidth
 required to transport curve parameters. However, not only are the potential savings
 small (e.g., about 64 bytes for a 256-bit curve), but also no one uses arbitrary
 curves anyway.

Heartbeat

Heartbeat[66] is a protocol extension that adds support for keep-alive functionality
 (checking that the other party in the conversation is still available) and
 path maximum transmission unit (PMTU)[67] discovery to TLS and DTLS. Although TLS is commonly used over TCP, which
 does have keep-alive functionality already, Heartbeat is targeted at DTLS, which is
 deployed over unreliable protocols, such as UDP.
Note
Some have suggested that zero-length TLS records, which are explicitly allowed
 by the protocol, could be used for the keep-alive functionality. In practice,
 attempts to mitigate the BEAST attack showed that many applications can’t
 tolerate records without any data. In any case, zero-length TLS records wouldn’t
 help with PMTU discovery, which needs payloads of varying sizes.

Initially, support for Hearbeat is advertised by both the client and the server
 via the heartbeat extension. During the negotiation, parties give
 each other permission to send heartbeat requests with the
 HeartbeatMode parameter:
struct {
 HeartbeatMode mode;
} HeartbeatExtension;

enum {
 peer_allowed_to_send (1),
 peer_not_allowed_to_send (2)
} HeartbeatMode;
Heartbeat is implemented as a TLS subprotocol, which means that heartbeat messages
 can be interleaved with application data and even other protocol messages. According
 to the RFC, heartbeat messages are allowed only once the handshake completes, but in
 practice OpenSSL allows them as soon as TLS extensions are exchanged.
It is not clear if Heartbeat is used in practice. However, it’s supported by
 OpenSSL and enabled by default. GnuTLS also implements it. Virtually no one knew
 what Heartbeat was until April 2014, when it was discovered that the OpenSSL
 implementation suffered from a fatal flaw that allowed the extraction of sensitive
 data from the server’s process memory. The attack that exploits this vulnerability,
 called Heartbleed, was arguably the worst thing to happen to
 TLS. You can read more about it in the section called “Heartbleed” in Chapter 6.

Next Protocol Negotiation

When Google set out to design SPDY,[68] a protocol intended to improve on HTTP, it needed a reliable protocol
 negotiation mechanism that would work with strict firewalls and in the presence of
 faulty proxies. Because SPDY was intended to always use TLS anyway, they decided to
 extend TLS with application-layer protocol negotiation. The result was
 Next Protocol Negotiation (NPN).
Note
If you research NPN, you might come across many different specification
 versions. Some of those versions were produced for the TLS working group during
 the standardization discussions. An older version of the specification is used
 in production.[69]

A SPDY-enabled client submits a TLS handshake that incorporates an empty
 next_protocol_negotiation extension, but only if it also
 includes a server_name extension to indicate the desired
 hostname. In return, a compliant server responds with the
 next_protocol_negotiation extension, but one that contains a
 list of the supported application-layer protocols.
The client indicates the desired application-layer protocol by using a new
 handshake message called NextProtocol:
struct {
 opaque selected_protocol;
 opaque padding;
} NextProtocol;
In order to hide the client’s choice from passive attackers, this message is
 submitted encrypted, which means that the client must send it after the
 ChangeCipherSpec message but before
 Finished. This is a deviation from the standard handshake
 message flow. The desired protocol name can be selected from the list provided by
 the server, but the client is also free to submit a protocol that is not advertised.
 The padding is used to hide the true length of the extension so that the adversary
 can’t guess the selected protocol by looking at the size of the encrypted
 message.
NPN was submitted to the TLS working group for standardization[70] but, despite wide support in production (e.g., Chrome, Firefox, and
 OpenSSL), failed to win acceptance. The introduction of a new handshake message,
 which changes the usual handshake flow, was deemed disruptive and more complex than
 necessary. There were also concerns that the inability of intermediary devices to
 see what protocol is being negotiated might be problematic in practice. In the end,
 the group adopted the competing ALPN proposal.[71] Google currently supports both ALPN and NPN, but will switch to
 supporting only ALPN after 2014.[72]

Secure Renegotiation

The renegotiation_info extension improves TLS with verification
 that renegotiation is being carried out between the same two parties that negotiated
 the previous handshake.
Initially (during the first handshake on a connection), this extension is used by
 both parties to inform each other that they support secure renegotiation; for this,
 they simply send the extension without any data. To secure SSL 3, which doesn’t
 support extensions, clients can instead use a special signaling suite,
 TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 (0xff).
On subsequent handshakes, the extension is used to submit proof of knowledge of
 the previous handshake. Clients send the verify_data value from
 their previous Finished message. Servers send two values: first
 the client’s verify_data and then their own. The attacker
 couldn’t have obtained these values, because the Finished message
 is always encrypted.

Server Name Indication

Server Name Indication (SNI), implemented using the
 server_name extension,[73] provides a mechanism for a client to specify the name of the server it
 wishes to connect to. In other words, this extension provides support for
 virtual secure servers, giving servers enough information
 to look for a matching certificate among the available virtual secure hosts. Without
 this mechanism, only one certificate can be deployed per IP address.[74] Because SNI was a late addition to TLS (2006), there are still many
 older products (e.g., Windows XP and some early Android versions) that don’t support
 it. For this reason, virtual secure hosting is still not practical for public sites
 that want to reach a large audience.

Session Tickets

Session tickets introduce a new session resumption
 mechanism that doesn’t require any server-side storage.[75] The idea is that the server can take all of its session data (state),
 encrypt it, and send it back to the client in the form of a
 ticket. On subsequent connections, the client submits the
 ticket back to the server; the server checks the ticket integrity, decrypts the
 contents, and uses the information in it to resume the session. This approach
 potentially makes it easier to scale web server clusters, which would otherwise need
 to synchronize session state among the nodes.
Warning
Session tickets break the TLS security model. They expose session state on the
 wire encrypted with a ticket key. Depending on the implementation, the ticket
 key might be weaker than the cipher used for the connection. For example,
 OpenSSL uses 128-bit AES keys for this purpose. Also, the
 same ticket key is reused across many sessions. This is
 similar to the situation with the RSA key exchange and breaks forward secrecy;
 if the ticket key is compromised it can be used to decrypt full connection data.
 For this reason, if session tickets are used, the ticket keys must be rotated
 frequently.

The client indicates support for this resumption mechanism with an empty
 session_ticket extension. If it wishes to resume an earlier
 session, then it should instead place the ticket in the extension. A compliant
 server that wishes to issue a new ticket includes an empty
 session_ticket extension in its
 ServerHello. It then waits for the client’s
 Finished message, verifies it, and sends back the ticket in
 the NewSessionTicket handshake message. If the server wishes to
 resume an earlier session, then it responds with an abbreviated handshake, as with
 standard resumption.
Note
When a server decides to use session tickets for session resumption, it sends
 back an empty session ID field (in its ServerHello message).
 At this point, the session does not have a unique identifier. However, the
 ticket specification allows the client to select and submit
 a session ID (in its ClientHello) in a subsequent handshake
 that uses the ticket. A server that accepts the ticket must also respond with
 the same session ID. This is why the session ID appears in the TLS web server
 logs even when session tickets are used as the session-resumption
 mechanism.

Signature Algorithms

The signature_algorithms extension, which is defined in TLS
 1.2, enables clients to communicate support for various signature and hash
 algorithms. The TLS specification lists RSA, DSA, and ECDSA signature algorithms and
 MD5, SHA1, SHA224, SHA256, SHA384, and SHA512 hash functions. By using the
 signature_algorithm extension, clients submit the
 signature–hash algorithm pairs they support.
This extension is optional; if it’s not present, the server infers the supported
 signature algorithms from the client’s offered cipher suites (e.g., RSA suites
 indicate support for RSA signatures, ECDSA suites indicate support for ECDSA, and so
 on) and assumes support for SHA1.

OCSP Stapling

The status_request extension[73]
 is used by clients to indicate support for OCSP stapling,
 which is a feature that a server can use to send fresh certificate revocation
 information to the client. (I discuss revocation at length in the section called “Certificate Revocation” in Chapter 5.) A server that
 supports stapling returns an empty status_request extension in
 its ServerHello and provides an OCSP response (in DER format) in
 the CertificateStatus handshake message immediately after the
 Certificate message.
OCSP stapling supports only one OCSP response and can be used to check the
 revocation status of the server certificate only. This limitation is addressed by
 RFC 6961,[76] which adds support for multiple OCSP responses (and uses the
 status_request_v2 extension to indicate support for it).
 However, at this time, this improved version is not well supported in either client
 or server software.

Protocol Limitations

In addition to unintentional weaknesses, which I will discuss at length in subsequent
 chapters, TLS is known to currently have several limitations influenced by its
 positioning in the OSI layer and certain design decisions:
	Encryption protects the contents of a TCP connection, but the metadata of TCP
 and all other lower layers remains in plaintext. Thus, a passive observer can
 determine the IP addresses of the source and the destination. Information
 leakage of this type isn’t the fault of TLS but a limitation inherent in our
 current layered networking model.

	Even at the TLS layer, a lot of the information is exposed as plaintext. The
 first handshake is never encrypted, allowing the passive observer to (1) learn about client capabilities and use
 them for fingerprinting, (2) examine
 the SNI information to determine the intended virtual host, (3) examine the host’s certificate, and,
 when client certificates are used, (4) potentially obtain enough information to identify the user.
 There are workarounds to avoid these issues, but they’re not used by mainstream
 implementations.

	After encryption is activated, some protocol information remains in the clear:
 the observer can see the subprotocol and length of each message. Depending on
 the protocol, the length might reveal useful clues about the underlying
 communication. For example, there have been several studies that have tried to
 infer what resources are being accessed over HTTP based on the indicated request
 and response sizes. Without length hiding, it’s not possible to safely use
 compression before encryption (a common practice today).

The leakage of network-layer metadata can be solved only at those levels. The other
 limitations could be fixed, and, indeed, there are proposals and discussions about
 addressing them. You’ll learn more about these problems later in the book.

Differences between Protocol Versions

This section describes the major differences between various SSL and TLS protocol
 versions. There haven’t been many changes to the core protocol since SSL 3. TLS 1.0 made
 limited changes only to justify a different name, and TLS 1.1 was primarily released to
 fix a few security problems. TLS 1.2 introduced authenticated encryption, cleaned up the
 hashing, and otherwise made the protocol free of any hardcoded primitives.
SSL 3

SSL 3 was released in late 1995. Starting from scratch to address the many
 weaknesses of the previous protocol version, SSL 3 established the design that still
 remains in the latest versions of TLS. If you want to gain a better understanding of
 what SSL 3 changed and why, I recommend the protocol analysis paper by Wagner and Schneier.[77]

TLS 1.0

TLS 1.0 was released in January 1999. It includes the following changes from SSL
 3:
	This is the first version to specify a PRF based on the standard HMAC and
 implemented as a combination (XOR) of HMAC-MD5 and HMAC-SHA.

	Master secret generation now uses the PRF instead of a custom
 construction.

	The verify_data value is now based on the PRF instead
 of a custom construction.

	Integrity validation (MAC) uses the official HMAC. SSL 3 used an earlier,
 obsolete HMAC version.

	The format of the padding changed, making it more robust. In October 2014,
 the so-called POODLE attack exposed SSL 3 padding as insecure.

	FORTEZZA[78] suites were removed.

As a practical matter, the result of the protocol cleanup was that TLS 1.0 was
 given FIPS approval, allowing its use by US government agencies.
If you want to study TLS 1.0 and earlier protocol versions, I recommend Eric
 Rescorla’s book SSL and TLS: Designing and Building Secure
 Systems, published by Addison-Wesley in 2001. I have found this book
 to be invaluable for understanding the reasoning behind certain decisions as well as
 to follow the evolution of the designs.

TLS 1.1

TLS 1.1 was released in April 2006. It includes the following major changes from
 TLS 1.0:
	CBC encryption now uses explicit IVs that are included in every TLS
 record. This addresses the predictable IV weakness, which was later
 exploited in the BEAST attack.

	Implementations are now required to use the
 bad_record_mac alert in response to padding problems
 to defend against padding attacks. The decryption_failed
 alert is deprecated.

	This version includes TLS extensions (RFC 3546) by reference.

TLS 1.2

TLS 1.2 was released in August 2008. It includes the following major changes from
 TLS 1.1:
	Support for authenticated encryption was added.

	Support for HMAC-SHA256 cipher suites was added.

	IDEA and DES cipher suites were removed.

	TLS extensions were incorporated in the main protocol specification,
 although most actual extensions remain documented elsewhere.

	A new extension, signature_algorithms, can be used by
 clients to communicate what hash and signature algorithms they are willing
 to accept.

	The MD5/SHA1 combination used in the PRF was replaced with SHA256 for the
 TLS 1.2 suites and all earlier suites when negotiated with this protocol
 version.

	Cipher suites are now allowed to specify their own PRFs.

	The MD5/SHA1 combination used for digital signatures was replaced with a
 single hash. By default, SHA256 is used, but cipher suites can specify their
 own. Before, the signature hash algorithm was mandated by the protocol; now
 the hash function is part of the signature structure, and implementations
 can choose the best algorithm.

	The length of the verify_data element in the
 Finished message can now be explicitly specified by
 cipher suites.

[32] RFC 5246: The Transport
 Layer Security Protocol Version 1.2 (T. Dierks and E. Rescorla, August
 2008)

[33] TLS working group
 documents (IETF, retrieved 19 July 2014)

[34] TLS working
 group mailing list archives (IETF, retrieved 19 July 2014)

[35] In most cases, this means that further traffic is encrypted and
 its integrity validated. But there’s a small number of suites that
 don’t use encryption; they use integrity validation only.

[36] I discuss the CRIME attack and various other compression-related
 weaknesses in the section called “Compression Side Channel Attacks
 ”
 in Chapter 7.

[37] For more information about this problem, refer to the section called “Netscape Navigator (1994)” in Chapter 6.

[38] Deprecating gmt_unix_time in TLS (N. Mathewson
 and B. Laurie, December 2013)

[39] RFC 5081: Using
 OpenPGP Keys for TLS Authentication (N. Mavrogiannopoulos,
 November 2007)

[40] You’ll find more information about this flaw in the section called “Library and Platform Validation Failures” in Chapter 6.

[41] The
 Alert attack (miTLS, February 2012)

[42] RFC 3447: RSA
 Cryptography Specifications Version 2.1 (Jonsson and Kaliski,
 February 2003)

[43] Diffie–Hellman key exchange (Wikipedia, retrieved 18 June
 2014)

[44] Public Key
 Cryptography: Diffie-Hellman Key Exchange (YouTube, retrieved 26
 June 2014)

[45] For more information on the Triple Handshake Attack, head to
 the section called “Triple Handshake Attack” in Chapter 7.

[46] Negotiated Discrete Log Diffie-Hellman Ephemeral Parameters for
 TLS (D. Gillmor, April 2014)

[47] This problem was first revealed in the so-called BEAST attack, which I
 discuss in the section called “BEAST” in Chapter 7.

[48] I discuss padding oracle attacks in the section called “Padding Oracle Attacks” in Chapter 7.

[49] Encrypt-then-MAC for TLS and DTLS (Peter Gutmann, 6 June
 2014)

[50] Actually, they might use padding, but if they do, it’s an implementation
 detail that’s not exposed to the TLS protocol.

[51] Tor Protocol Specification (Dingledine and Mathewson,
 retrieved 30 June 2014)

[52] This thinking is flawed; your encryption is either sufficiently
 secure or it isn’t. If your adversaries can break the weaker
 configuration, they can take full control of the victim’s browser.
 With that, they can trick the victim into revealing all of their
 secrets (e.g., passwords).

[53] For more information, head to the section called “Insecure Renegotiation

 ” in
 Chapter 7.

[54] Although the most commonly used key exchange mechanisms generate a
 different premaster secret every time, there are some mechanisms that rely
 on long-term keys and thus reuse the same premaster secret. Randomization is
 essential to ensure that the keys are not repeated.

[55] TLS suites use the TLS_ prefix, SSL 3 suites use the
 SSL_ prefix, and SSL 2 suites use the
 SSL_CK_ prefix. In all cases, the approach to naming is
 roughly the same. However, not all vendors use the standard suite names. OpenSSL
 and GnuTLS use different names. Microsoft largely uses the standard names but
 sometimes extends them with suffixes that are used to indicate the strength of
 the ECDHE key exchange.

[56] TLS
 Parameters (IANA, retrieved 30 June 2014)

[57] TLS Extensions (IANA, retrieved 30 June 2014)

[58] RFC 7301: TLS
 Application-Layer Protocol Negotiation Extension (Friedl et al.,
 July 2014)

[59] Certificate
 Transparency (Google, retrieved 30 June 2014)

[60] RFC 4492: ECC Cipher
 Suites for TLS (S. Blake-Wilson et al., May 2006)

[61] FIPS 186-3: Digital Signature Standard (NIST, June 2009)

[62] RFC 7072: ECC
 Brainpool Curves for TLS (J. Merkle and M. Lochter, October
 2013)

[63] A state-of-the-art
 Diffie-Hellman function (D. J. Bernstein, retrieved 30 June
 2014)

[64] The generation of good, arbitrary elliptic curves is a complex and
 error-prone task that most developers choose to avoid. In addition, named
 curves can be optimized to run much faster.

[65] SafeCurves: choosing
 safe curves for elliptic-curve cryptography (D. J. Bernstein,
 retrieved 21 May 2014)

[66] RFC 6520: TLS and
 DTLS Heartbeat Extension (R. Seggelmann et al., February
 2012)

[67] Maximum transmission unit (MTU) is the size of the
 largest data unit that can be sent whole. When two sides communicate
 directly, they can exchange their MTUs. However, when communication goes
 over many hops it is sometimes necessary to discover the effective path MTU
 by sending progressively larger packets.

[68] SPDY
 (Wikipedia, retrieved 12 June 2014)

[69] Google Technical Note: TLS Next Protocol Negotiation
 Extension (Adam Langley, May 2012)

[70] Next Protocol Negotiation 03 (Adam Langley, 24 April
 2012)

[71] Some missing context (was: Confirming consensus for ALPN) (Yoav
 Nir, 15 March 2013)

[72] NPN
 and ALPN (Adam Langley, 20 March 2013)

[73] RFC 6066: TLS
 Extensions: Extension Definitions (D. Eastlake 3rd, January
 2011)

[74] Although HTTP has the facility to send host information via the
 Host request header, this is sent at the application
 protocol layer, which can be communicated to the server only after a
 successful TLS handshake.

[75] RFC 5077: TLS
 Session Resumption without Server-Side State (Salowey et al.,
 January 2008)

[76] RFC 6961: TLS
 Multiple Certificate Status Request Extension (Y. Pettersen, June
 2013)

[77] Analysis
 of the SSL 3.0 protocol (David Wagner and Bruce Schneier,
 Proceedings of the Second USENIX Workshop on Electronic Commerce,
 1996)

[78] Fortezza (Wikipedia, retrieved 30 June 2014)

3 Public-Key Infrastructure

Thanks to public-key cryptography, we are able to communicate safely with people whose
 public keys we have, but there’s a number of other problems that remain unsolved. For
 example, how can we communicate with people we’ve never met? How do we store public keys and
 revoke them? Most importantly, how do we do that at world scale, with millions of servers
 and billions of people and devices? It’s a tall order, but it’s what public-key
 infrastructure (PKI) was created to solve.
Internet PKI

For most people, PKI is about the public-key infrastructure as used on the Internet.
 However, the real meaning of PKI is much wider, because it had originally been developed
 for other uses. Thus, it’s more accurate to talk about Internet
 PKI, the term that was introduced by the PKIX working group that adapted
 PKI for use on the Internet. Another term that’s recently been used is
 Web PKI, in which
 the focus is on how browsers consume and validate certificates. In this book, I’ll
 generally use the name PKI to refer to Internet PKI, except maybe in a few cases in
 which the distinction is important.
The goal of PKI is to enable secure communication among parties who have never met
 before. The model we use today relies on trusted third parties called
 certification authorities (CAs; sometimes also called
 certificate authorities) to issue certificates that we
 unreservedly trust.
Figure 3.1. Internet PKI certificate lifecycle
[image: Internet PKI certificate lifecycle]

	Subscriber
	The subscriber (or end
 entity) is the party that wishes to provide secure services,
 which require a certificate.

	Registration authority
	The registration
 authority (RA) carries out certain management functions
 related to certificate issuance. For example, an RA might perform the
 necessary identity validation before requesting a CA to issue a certificate.
 In some cases, RAs are also called local
 registration authorities (LRAs), for example, when a CA
 wants to establish a branch that is close to its users (such as one in a
 different country). In practice, many CAs also perform RA duties.

	Certification authority
	The certification authority (CA) is a party we
 trust to issue certificates that confirm subscriber identities. They are
 also required to provide up-to-date revocation information online so that
 relying parties can verify that certificates are still valid.

	Relying party
	The relying party is the certificate consumer.
 Technically, these are web browsers, other programs, and operating systems
 that perform certificate validation. They do this by operating
 root trust stores that contain the ultimately
 trusted certificates (trust anchors) of some CAs. In
 a wider sense, relying parties are end users who depend on certificates for
 secure communication on the Internet.

What Is Trust?

Discussions about PKI usually use words such as identity,
 authority, and trust. Because they
 rarely mean what we think they mean, these words often cause confusion and create a
 mismatch between our expectations and what exists in real life.
With most certificates, we get only limited assurances that we’re talking to the
 right server. Only EV certificates provide a binding with an offline identity, but
 that doesn’t mean much for security, which depends on too many other factors.
In PKI, trust is used only in a very technical sense of the
 word; it means that a certificate can be validated by a CA we have in the trust
 store. But it doesn’t mean that we trust the subscriber for
 anything. Think about this: millions of people visit Amazon’s web sites every day
 and make purchases, even though the homepage opens without encryption. Why do we do
 that? Ultimately, because they earned our (real) trust.

Standards

Internet PKI has its roots in X.509, an international standard for public-key
 infrastructure that was originally designed to support X.500, a standard for electronic
 directory services. X.500 never took off, but X.509 was adapted for use on the Internet
 by the PKIX working group.[79]
 From the charter:
The PKIX Working Group was established in the fall of 1995 with the goal of
 developing Internet standards to support X.509-based Public Key Infrastructures
 (PKIs). Initially PKIX pursued this goal by profiling X.509 standards developed by
 the CCITT (later the ITU-T). Later, PKIX initiated the development of standards that
 are not profiles of ITU-T work, but rather are independent initiatives designed to
 address X.509-based PKI needs in the Internet. Over time this latter category of
 work has become the major focus of PKIX work, i.e., most PKIX-generated RFCs are no
 longer profiles of ITU-T X.509 documents.

The main document produced by the PKIX working group is RFC 5280, which documents the
 certificate format and trust path building as well as the format of
 Certificate Revocation Lists (CRLs).[80] The PKIX working group concluded in October 2013.
Note
As is usually the case on the Internet, the reality rarely reflects standards.
 This is in part because standards are often vague and don’t fulfill real-life needs.
 It’s impossible to predict how technologies evolve over time, which is why
 implementers often take matters into their hands. In addition, major products and
 libraries often make mistakes and effectively restrict how technologies can be used
 in practice. You will find many such examples in this book.

The CA/Browser Forum (or CAB
 Forum) is a voluntary group of CAs, browser vendors, and other interested
 parties whose goal is to establish and enforce standards for certificate issuance and processing.[81] CA/Browser Forum was initially created to define standards for issuance of
 extended validation (EV) certificates, which first came out
 in 2007.[82] Although initially a rather loose group of CAs, CAB Forum changed their
 focus and restructured in 2012.[83]
 The same year, they released Baseline Requirements for the
 Issuance and Management of Publicly-Trusted Certificates, or
 Baseline Requirements for short.[84]
Although CAB Forum lists only about 40 CAs as members, Baseline Requirements
 effectively apply to all CAs; the document is incorporated into the WebTrust audit
 program for CAs[85] and explicitly required by some root store operators (e.g., Mozilla).
Also relevant is IETF’s Web PKI working group, which was
 formed in September 2012 to describe how PKI really works the Web.[86] This group is expected to document the Web PKI trust model and revocation
 practices and the usage of various fields and extensions in certificates, CRLs, and OCSP
 responses.

Certificates

A certificate is a digital document that contains a public key, some information about
 the entity associated with it, and a digital signature from the certificate issuer. In
 other words, it’s a shell that allows us to exchange, store, and use public keys. With
 that, certificates become the basic building block of PKI.
ASN.1, BER, DER, and PEM

Abstract Syntax Notation One (ASN.1) is a set of rules that
 support definition, transport, and exchange of complex data structures and objects.
 ASN.1 was designed to support network communication between diverse platforms in a
 way that’s independent of machine architecture and implementation language. ASN.1 is
 a standard originally defined in 1988 in X.208; it was last updated in 2008 in the
 X.680 series of documents.
ASN.1 defines data in an abstract way; separate standards exist to specify how
 data is encoded. Basic Encoding Rules (BER) is the first such
 standard. X.509 relies on Distinguished Encoding Rules (DER),
 which are a subset of BER that allow only one way to encode ASN.1 values. This is
 critical for use in cryptography, especially digital signatures. PEM (short for
 Privacy-Enhanced Mail, which has no meaning in this
 context) is an ASCII encoding of DER using Base64 encoding. ASN.1 is complicated,
 but, unless you’re a developer dealing with cryptography, you probably won’t have to
 work with it directly.
Most certificates are supplied in PEM format (because it’s easy to email, copy,
 and paste), but you might sometimes encounter DER, too. If you need to convert from
 one format to another, use the OpenSSL x509 command. I’ll talk
 more about that later in the book.
If you’re curious about what ASN.1 looks like, download any certificate and use
 the online ASN.1 decoder to see the ASN.1 structure.[87]

Certificate
 Fields

A certificate consists of fields and—in version 3—a set of extensions.
 On the surface, the structure is flat and linear, although some fields contain other
 structures.
	Version
	There are three certificate versions: 1, 2, and 3, encoded as values
 0, 1, and 2. Version 1 supports only basic fields; version 2 adds unique
 identifiers (two additional fields); and version 3 adds extensions. Most
 certificates are in v3 format.

	Serial Number
	Initially, serial numbers were specified as positive integers that
 uniquely identify a certificate issued by a given CA. Additional
 requirements were added later as a second layer of defense from chosen
 prefix attacks against certificate signatures (find out more in the next
 chapter, in the section called “RapidSSL Rogue CA Certificate”); serial numbers
 are now required to be nonsequential (unpredictable) and contain at
 least 20 bits of entropy.

	Signature Algorithm
	This field specifies the algorithm used for the certificate signature.
 It’s placed here, inside the certificate, so that it can be protected by
 the signature.

	Issuer
	The Issuer field contains the
 distinguished name (DN) of the certificate
 issuer. It’s a complex field that can contain many components depending
 on the represented entity. This, for example, is the DN used for one of
 VeriSign’s root certificates: /C=US/O=VeriSign,
 Inc./OU=Class 3 Public Primary Certification Authority; it
 contains three components, one each for country, organization, and
 organizational unit.

	Validity
	The certificate validity period is the time interval during which the
 certificate is valid. It’s represented with two values: the starting
 date and the ending date.

	Subject
	The subject is
 the distinguished name of the entity associated with the public key for
 which the certificate is issued. Self-signed certificates have the same
 DN in their Subject and Issuer
 fields. Initially, the common name (CN) component
 of the DN was used for server hostnames (e.g.,
 /CN=www.example.com would be used for a
 certificate valid for www.example.com). Unfortunately, that
 caused some confusion about how to issue certificates that are valid for
 multiple hostnames. Today, the Subject field is
 deprecated in favor of the Subject Alternative
 Name extension.

	Public key
	This field contains the
 public key, represented by the Subject Public-Key
 Info structure (essentially algorithm ID, optional
 parameters, and then the public key itself). Public-key algorithms are
 specified in RFC 3279.[88]

Note
Two additional certificate fields were added in version 2: Issuer
 Unique ID and Subject Unique ID. They were
 later deprecated in version 3 in favor of the Authority Key
 Identifier and Subject Key Identifier
 extensions.

Certificate
 Extensions

Certificate extensions were introduced in version 3 in order to add flexibility to
 the previously rigid certificate format. Each extension consists of a unique object
 identifier (OID), criticality indicator, and value, which is an ASN.1 structure. An
 extension marked as critical must be understood and successfully processed;
 otherwise the entire certificate must be rejected.
	Subject Alternative Name
	Traditionally, the Subject certificate field
 (more specifically, only its CN component) is used to create a binding
 between an identity and a public key. In practice, that approach is not
 flexible enough; it supports only hostnames and does not specify how
 multiple identities are handled. The Subject Alternative
 Name extension replaces the Subject
 field; it supports bindings to multiple identities specified by a DNS
 name, IP address, or URI.

	Name Constraints
	The Name Constraints extension can be used to
 constrain the identities for which a CA can issue certificates. Identity
 namespaces can be explicitly excluded or permitted. This is a very
 useful feature that could, for example, allow an organization to obtain
 a subordinate CA that can issue certificates only for the company-owned
 domain names. With the namespaces constrained, such a CA certificate
 poses no danger to the entire ecosystem (i.e., a CA can’t issue
 certificates for arbitrary sites).
RFC 5280 requires this extension to be marked as critical, but
 noncritical name constraints are used in practice and explicitly allowed
 by Baseline Requirements. This is due to the fact that some products do
 not understand the Name Constraints extension and
 reject certificates that contain it if it’s marked critical.

	Basic Constraints
	The Basic Constraints extension is used to
 indicate a CA certificate and, via the path length
 constraint field, control the depth of the subordinate
 CA certificate path (i.e., whether the CA certificate can issue further
 nested CA certificates and how deep). In theory, all CA certificates
 must include this extension; in practice, some root certificates issued
 as version 1 certificates are still used despite the fact that they
 contain no extensions.

	Key Usage
	This extension defines the possible uses of the key contained in the
 certificate. There is a fixed number of uses, any of which can be set on
 a particular certificate. For example, a CA certificate could have the
 Certificate Signer and CRL
 Signer bits set.

	Extended Key Usage
	For more flexibility in determining or restricting public key usage,
 this extension allows arbitrary additional purposes to be specified,
 indicated by their OIDs. For example, end-entity certificates typically
 carry the id-kp-serverAuth and
 id-kp-clientAuth OIDs; code signing certificates
 use the id-kp-codeSigning OID, and so on.
Although RFC 5280 indicates that Extended Key
 Usage (EKU) should be used only on end-entity
 certificates, in practice this extension is used on intermediate CA
 certificates to constrain the usage of the certificates issued from them.[89] Baseline Requirements, in particular, require the use of EKU
 constraints for an intermediate certificate to be considered technically
 constrained using name constraints.

	Certificate Policies
	This extension contains a list of one or more policies. A policy
 consists of an OID and an optional qualifier. When present, the
 qualifier usually contains the URI at which the full text of the policy
 can be obtained. Baseline Requirements establish that an end-entity
 certificate must always include at least one policy to indicate the
 terms under which the certificate was issued. The extension can be
 optionally used to indicate certificate validation type.

	CRL Distribution Points
	This extension is used to determine the location of the
 Certificate Revocation List (CRL)
 information, usually provided as an LDAP or HTTP URI. According to
 Baseline Requirements, a certificate must provide either CRL or OCSP
 revocation information.

	Authority Information
 Access
	The Authority Information Access extension
 indicates how to access certain additional information and services
 provided by the issuing CA. One such piece of information is the
 location of the OCSP responder, provided as an HTTP URI. Relying parties
 can use the responder to check for revocation information in real time.
 In addition, some certificates also include the URI at which the issuing
 certificate can be found. That information is very useful for
 reconstruction of an incomplete certificate chain.

	Subject Key Identifier
	This extension contains a unique value that can be used to identify
 certificates that contain a particular public key. It is recommended
 that the identifier be constructed from the public key itself (e.g., by
 hashing). All CA certificates must include this extension and use the
 same identifier in the Authority Key Identifier
 extension of all issued certificates.

	Authority Key Identifier
	The content of this extension uniquely identifies the key that signed
 the certificate. It can be used during certificate path building to
 identify the parent certificate.

RFC 5280 defines several other extensions that are rarely used; they are
 Delta CRL Distribution Point, Inhibit
 anyPolicy, Issuer Alternative Name,
 Policy Constraints, Policy Mappings,
 Subject Directory Attributes, and Subject
 Information Access.

Certificate
 Chains

In the majority of cases, an end-entity certificate alone is insufficient for a
 successful validation. In practice, each server must provide a chain of
 certificates that leads to a trusted root. Certificate chains are used
 for security, technical, and administrative reasons.
Figure 3.2. Certificate structure
[image: Certificate structure]

	Keeping the root safe
	The root CA key is of great importance not only to the organization that
 owns it but also to the entire ecosystem. First, it has great financial
 value. Older, widely distributed keys are effectively irreplaceable, because
 many root stores are not being updated any more. Second, if the key is
 compromised it can be used to issue fraudulent certificates for any domain
 name. If compromised, the key would have to be revoked, bringing down all
 the sites that depend on it.
Although there are still some CAs that issue end-entity certificates
 directly from their roots, this practice is seen as too dangerous. Baseline
 Requirements require that the root key is used only by issuing a direct
 command (i.e., automation is not allowed), implying that the root must be
 kept offline. Issuing subscriber certificates directly from the root is not
 allowed, although there is a loophole for legacy systems that are still in
 use.

	Cross-certification
	Cross-certification is the only way for new CAs to start operating today.
 Because it’s impossible to distribute young root keys widely and quickly,
 they must get their root key signed by some other well-established CA. Over
 time, as old devices fade away, the new CA key will eventually become useful
 on its own.

	Compartmentalization
	By splitting its operation across many subordinate CA certificates, a CA
 can spread the risk of exposure. For example, different subordinate CAs
 could be used for different certificate classes, or for different business
 units. Unlike roots, subordinate CAs are typically placed online and used in
 automated systems.

	Delegation
	In some cases, a CA might want to issue a subordinate CA to another
 organization that is not affiliated with it. For example, a large company
 might want to issue their own certificates for the domain names they
 control. (That is often cheaper than running a private CA and ensuring that
 the root certificate is distributed to all devices.) Sometimes,
 organizations might want to have full control, in which case the subordinate
 CA might be technically constrained to certain namespaces. In other cases,
 the CA remains in control over the certificates issued from the subordinate
 CA.

A server can provide only one certificate chain, but, in practice, there can be many
 valid trust paths. For example, in the case of cross-certification, one trust path will
 lead to the main CA’s root and another to the alternative root. CAs sometimes
 issue multiple certificates for the same keys. For example, the major signing algorithm
 used today is SHA1, but, for security reasons, everyone is moving to SHA256. The CA can
 reuse the same key but issue a new certificate. If the relying party happens to have
 both such certificates, then they will form two different trust paths.
Path building generally complicates things a lot and leads to various problems.
 Servers are expected to provide complete and valid certificate chains, but that often
 doesn’t happen due to human error and various usability issues (e.g., having to
 configure the server certificate in one place and the rest of the chain in another).
 According to SSL Pulse, there are about 5.9% of servers with incomplete certificate chains.[90]
On the other side, path building and validation is a cause of many security issues in
 client software. This is not surprising, given vague, incomplete, and competing
 standards. Historically, many validation libraries had failed with simple tasks, such as
 validating that the issuing certificate belongs to a CA. The most commonly used
 libraries today are battle tested and secure only because they patched the worst
 problems, not because they were secure from the start. For many examples, refer to the section called “Certificate Validation
 Flaws” in Chapter 6.

Relying Parties

For relying parties to be able to validate subscriber certificates, they must keep a
 collection of root CA certificates they trust. In most cases, each operating system
 provides a root store in order to bootstrap trust. Virtually all application developers
 reuse the root stores of the underlying operating systems. The only exception to this is
 Mozilla, who maintain their own root store for consistent operation across a number of
 platforms.
	Apple
	Apple operates a root certificate program that is used on the iOS and OS X platforms.[91] To be considered for inclusion, a CA must pass an audit and
 demonstrate that it provides broad business value to Apple’s
 customers.

	Chrome
	Chrome relies on the store provided by the operating system and on
 Mozilla’s store (via their networking library, NSS) when deployed on Linux.
 However, they have some additional policies that they apply themselves when
 the underlying facilities are not adequate.[92] For illustration: (1)
 there’s a blacklist of roots they won’t trust; (2) an explicit lists of CAs who can
 issue EV certificates; and (3) a
 special requirement that, starting in February 2015, EV certificates must
 implement Certificate Transparency.

	Microsoft
	Microsoft operates a root certificate program that is used on the Windows
 desktop, server, and mobile phone platforms.[93] Broadly, inclusion requires a yearly audit and a demonstration
 of business value to the Microsoft user base.

	Mozilla
	Mozilla operates a largely transparent root certificate program,[94] which they use for their products. Their root store is often
 used as the basis for the root stores of various Linux distributions. Heated
 discussions about policy decisions often take place on the
 mozilla.dev.tech.crypto list and on Mozilla’s bug
 tracking system.

All root certificate programs require CAs to undergo independent audits designed for
 certification authorities. For DV and OV certificates, one of the following audits is
 usually requested:
	WebTrust for Certificate Authorities[95]

	ETSI TS 101 456

	ETSI TS 102 042

	ISO 21188:2006

WebTrust operates the only audit program available for issuance of EV
 certificates.

Certification Authorities

Certification authorities (CAs) are the most important part of
 the current internet trust model. They can issue a certificate for any domain name,
 which means that anything they say goes. At the surface, it sounds like easy money,
 provided you can get your roots into a wide range of devices. But what exactly do you
 have to do to become a public CA?
	Build out a competent CA organization:
	Establish strong expertise in PKI and CA operations.

	Design a robust, secure, and compartmentalized network to enable
 business operations yet protect the highly sensitive root and
 subordinate keys.

	Support the certificate lifecycle workflow.

	Comply with Baseline Requirements.

	Comply with EV SSL Certificate Guidelines.

	Provide a global CRL and OCSP infrastructure.

	Comply with local laws; depending on the jurisdiction, this might mean
 obtaining a license.

	Pass the audits required by the root programs.

	Place your roots into a wide range of root programs.

	Cross-certify your roots to bootstrap the operations.

For a long time, selling certificates was a relatively easy job for those who got in
 early. These days, there is much less money to be made selling DV certificates, given
 that their price has been driven down by strong competition. Furthermore, if support for
 DNSSEC and DANE becomes widespread it will mark the end of DV certificates. As a result,
 CAs are moving to the smaller but potentially more lucrative market for EV certificates
 and related services.

Certificate
 Lifecycle

The certificate lifecycle begins when a subscriber prepares a Certificate
 Signing Request (CSR) and submits it to the CA of their choice. The main
 purpose of the CSR is to carry the relevant public key as well as demonstrate ownership
 of the corresponding private key (using a signature). CSRs are designed to carry
 additional metadata, but not all of it is used in practice. CAs will often override the
 CSR values and use other sources for the information they embed in certificates.
The CA then follows the validation procedure, using a different steps depending on the
 type of certificate requested:
	Domain validation
	Domain validated (DV) certificates are issued based
 on proof of control over a domain name. In most cases, that means sending a
 confirmation email to one of the approved email addresses. If the recipient
 approves (i.e., follows the link in the email), then the certificate is
 issued. If confirmation via email is not possible, then any other means of
 communication (e.g., phone or snail mail) and practical demonstration of
 control are allowed. A similar procedure is followed when issuing
 certificates for IP addresses.

	Organization validation
	Organization validated (OV) certificates require
 identity and authenticity verification. It wasn’t until Baseline
 Requirements were adopted that the procedures for OV certificates were
 standardized. As a result, there was (and still is) a lot of inconsistency
 in how OV certificates were issued and how the relevant information was
 encoded in the certificate.

	Extended validation
	Extended validation (EV) certificates also require
 identity and authenticity verification, but with very strict requirements.
 They were introduced to address the lack of consistency in OV certificates,
 so it’s no surprise that the validation procedures are extensively
 documented, leaving little room for inconsistencies.

Issuance of DV certificates is fully automated and can be very quick. The duration
 depends largely on how fast the confirmation email is answered. On the other end of the
 spectrum, it can take days or even weeks to obtain an EV certificate.
Note
When fraudulent certificate requests are submitted, attackers usually go after
 high-profile domain names. For this reason, CAs tend to maintain a list of such
 high-risk names and refuse to issue certificates for them without manual
 confirmation. This practice is required by Baseline Requirements.

After successful validation, the CA issues the certificate. In addition to the
 certificate itself, the CA will provide all of the intermediary certificates required to
 chain to their root. They also usually provide configuration instructions for major
 platforms.
The subscriber can now use the certificate in production, where it will hopefully stay
 until it expires. If the corresponding private key is compromised, the certificate is
 revoked. The procedure in this case is similar to that used for certificate issuance.
 There is often talk about certificate reissuance, but there is no
 such thing, technically speaking. After a certificate is revoked, an entirely new
 certificate is issued to replace it.

Revocation

Certificates are revoked when the associated public keys are compromised or no longer
 needed. In both cases, there is a risk of misuse. The revocation protocols and
 procedures are designed to ensure certificate freshness and otherwise communicate
 revocation to relying parties. There are two standards for certificate
 revocation:
	Certificate Revocation
 List
	A Certificate Revocation List (CRL) is a list of
 all serial numbers belonging to revoked certificates that have not yet
 expired. CAs maintain one or more such lists. Every certificate should
 contain the location of the corresponding CRL in the CRL
 Distribution Points certificate extension. The main problem
 with CRLs is that they tend to be large, making real-time lookups
 slow.

	Online Certificate Status
 Protocol
	Online Certificate Status Protocol (OCSP) allows
 relying parties to obtain the revocation status of a single certificate.
 OCSP servers are known as OCSP responders. The
 location of the CA’s OCSP responder is encoded in the
 Authority Information Access certificate extension.
 OCSP allows for real-time lookups and addresses the main CRL deficiency, but
 it doesn’t solve all revocation problems: the use of OCSP responders leads
 to performance and privacy issues and introduces a new point of failure.
 Some of these issues can be addressed with a technique called
 OCSP stapling, which allows each server to embed
 an OCSP response directly into the TLS handshake.

Weaknesses

Observed from a strict security perspective, Internet PKI suffers from many
 weaknesses, some big and some small; I will outline both kinds in this section. However,
 before we move to the problems, we must establish the context. In 1995, when the secure
 Web was just taking off, the Internet was a much different place and much less important
 than it is now. Then, we needed encryption so that we could deploy ecommerce and start
 making money. Today, we have ecommerce, and it’s working well—but we want much more. For
 some groups, encryption is genuinely a matter of life and death.
But what we have today is a system that does what it was originally designed to do:
 provide enough security for ecommerce operations. In a wider sense, the system provides
 us with what I like to call commercial security. It’s a sort of
 security that can be achieved with relatively little money, makes web sites go fast,
 tolerates insecure practices, and does not annoy users too much. The system is
 controlled by CAs, commercial entities in pursuit of profit, and browser vendors, who
 are primarily interested in increasing their market share. Neither group has strong
 security as
 its
 top priority, but they are not necessarily to blame—at least not
 entirely. They won’t give us security until we, the end users, start to demand it from
 them.
CAs, in particular, just can’t win. There are hundreds of CAs who issue millions of
 certificates every year and generally make the world go around. Error rates are very
 small. Certainly, the security is not as good as it could be, but the whole thing works.
 Despite that, there’s a strong resentment from many subscribers because they have to pay
 for certificates. Most don’t want to pay. Those who do pay want to pay as little as
 possible; at the same time, they demand flawless security.
In truth, anyone looking for real security (for whatever meaning of that word) is
 ultimately not going to get it from an ecosystem that’s—for better or
 worse—afraid to break things for security. That said, problems are being fixed, as
 you will see later on. Now onto the flaws.
	Permission of domain owners not required for certificate issuance
	The biggest problem we have is conceptual: any CA can issue a certificate
 for any domain name without obtaining permission. The key issue here is that
 there are no technical measures in place to protect us from CA omissions and
 security lapses. This might not have seemed like a big problem early on,
 when only a few CAs existed, but it’s a huge issue today now that there are
 hundreds. It’s been said many times: the security of the entire PKI system
 today is as good as the weakest link, and we have many potentially weak
 links. All CAs are required to undergo audits, but the quality of those
 audits is uncertain. For example, DigiNotar, the Dutch CA whose security was
 completely compromised in 2011, had been audited.
Then, there is the question of whether CAs themselves can be trusted to do
 their jobs well and for the public benefit; who are those hundreds of
 organizations that we allow to issue certificates with little supervision?
 The fear that they might put their commercial interests above our security
 needs is sometimes justified. For example, in 2012
 Trustwave
 admitted to issuing a subordinate certificate that would be used for traffic
 inspection, forging certificates for any web site on the fly.[96] Although Trustwave is the only CA to publicly admit to issuing
 such certificates, there were rumors that such behavior was not
 uncommon.
Many fear that governments abuse the system to allow themselves to forge
 certificates for arbitrary domain names. Can we really be sure that some of
 the CAs are not just fronts for government operations? And, even if they are
 not, can we be sure that they can’t be compelled to do whatever their
 governments tell them to? We can’t. The only unknown is the extent to which
 governments will interfere with the operation of commercial CAs.

	No trust agility
	Another conceptual problem is lack of trust agility. Relying parties
 operate root stores that contain a number of CA certificates. A CA is thus
 either trusted or not; there isn’t any middle ground. In theory, a relying
 party can remove a CA from the store. In practice, that can happen only in
 cases of gross incompetence or security compromise, or if a CA is small.
 Once a CA issues a sufficiently large number of certificates, they
 effectively become too big to fail.
Some slaps on the wrist are still possible. For example, in the past we
 had relying parties revoke EV privileges from some CAs who showed
 incompetence. Another idea (never attempted) is to punish a misbehaving CA
 by revoking trust in future certificates, allowing the existing ones to stay
 in place.

	Weak domain
 validation
	DV certificates are issued based on domain name ownership information
 retrieved via the insecure WHOIS protocol. Furthermore, the interaction is
 most commonly carried out using email, which in itself can be insecure. It’s
 easy to obtain a fraudulent DV certificate if a domain name is hijacked or
 if access to the key mailbox is obtained. It’s also possible to attack the
 implementation of the validation process at the CA by intercepting network
 traffic at their end.

	Revocation does not
 work
	It is generally seen that revocation does not work. We saw several CA
 failures in 2011, and, in every case, relying parties had to issue patches
 or use their proprietary blacklisting channels to reliably revoke the
 compromised certificates.
There are two reasons why that was necessary. First, there’s a delay in
 propagating revocation information to each system. Baseline Requirements
 allow CRL and OCSP information to stay valid for up to 10 days (12 months
 for intermediate certificates). This means that it takes at least 10 days
 for the revocation information to fully propagate. The second problem is the
 soft-fail policy implemented in all current
 browsers; they will attempt to obtain revocation information but ignore all
 failures. An active network attacker can easily suppress OCSP requests, for
 example, allowing him to use a fraudulent certificate indefinitely.
Because of this, Chrome developers decided to stop checking for revocation
 except for EV certificates. For important certificates (e.g., intermediate
 CAs), they rely on a proprietary revocation channel (CRLSets) that’s based
 on CRL information. A possible solution to this problem is the adoption of
 so-called must-staple certificates, which can be used
 only in combination with a fresh OCSP response.[97] You’ll find more thorough coverage of this topic in the section called “Certificate Revocation” in Chapter 5.

	Certificate warnings defeat the purpose of
 encryption
	Possibly the biggest failure of Internet PKI (or Web PKI, to be more
 accurate) is a lax approach to certificate validation. Many libraries and
 applications skip validation altogether. Browsers check certificates, but,
 when an invalid certificate is encountered, they present their users with
 warnings that can be bypassed. According to some studies, from 30% to 70% of
 users click through these warnings, which completely defeats the purpose of
 encryption. Recently, a new standard called HTTP Strict Transport
 Security was developed to instruct compliant browsers to
 replace warnings with errors, disallowing bypass.

Root Key
 Compromise

One of the best ways to attack PKI is to go after the root certificates directly. For
 government agencies, one approach might be to simply request the private keys from the
 CAs in their countries. If that’s seen as possibly controversial and dangerous, anyone
 with a modest budget (say, a million dollars or so) could start a brand new CA and get
 their roots embedded in trust stores everywhere. They might or might not feel the need
 to run a proper CA as a cover; there are many roots that have never been seen issuing
 end-entity certificates.
This approach to attacking Internet PKI would have been viable for many years, but at
 some point a couple of years ago people started paying attention to what’s happening in
 the ecosystem. Browser plug-ins for certificate tracking were built; they alert users
 whenever a new certificate is encountered. Google implemented public key pinning in
 Chrome, now a very popular browser. The Electronic Frontier Foundation extended its browser plug-in HTTPS
 Everywhere to monitor root certificate usage.[98]
A far less messy approach (both then and now) would be to break the existing root and
 intermediate certificates. If you have access to the key belonging to an intermediate
 certificate, you can issue arbitrary certificates. For best results (the smallest chance
 of being discovered), fraudulent certificates should be issued from the same CA as the
 genuine ones. Many sites, especially the big ones, operate multiple certificates at the
 same time. If the issuing CA is the same, how are you going to differentiate a
 fraudulent certificate from a genuine one?
In 2003 (more than ten years ago!), Shamir and
 Tromer estimated that a $10 million purpose-built machine could break a 1,024-bit key in
 about a year (plus $20 million for the initial design and development).[99] For state agencies, that’s very cheap, considering the possibilities that
 rogue certificates open. These agencies routinely spend billions of dollars on various
 projects of interest. More recently, in 2013, Tromer reduced the estimate to only $1 million.[100]
 In that light, it’s reasonable to assume that all 1,024-bit keys of relevance are
 already broken by multiple government agencies from countries around the world.
Note
For intermediate certificates, another attack vector is the weak SHA1 signatures.
 At best, SHA1 provides only 80 bits of security against collision attacks and 160
 bits against preimage attacks. Intermediate certificates are easier to target
 because, unlike root certificates, they are not highly visible.

In some cases, it might also be reasonable to expect that end-entity certificates have
 been targeted. For example, Google transitioned away from 1,024-bit certificates only in 2013.[101]
Given the small cost of breaking weak certificates, it’s surprising that we still have
 weak root certificates in use. Mozilla planned to remove such
 certificates by the end of 2013,[102] but they faced delays because of potential breakage. To follow their
 progress, watch bug #881553.[103]

Ecosystem Measurements

Before 2010, little was publicly known about the state of the PKI ecosystem. In 2010,
 the era of active scanning and monitoring of the PKI ecosystem began. At Black Hat USA
 in July that year, I published a survey of about 120 million domain names, with an
 analysis of the observed certificates and the security of the TLS servers.[104]
 Just a couple of days later, at
 DEFCON, the Electronic Frontier Foundation (EFF) announced SSL
 Observatory, a survey of the entire IPv4 address space.[105] Their focus was on certificates, but their most important contribution was
 making all their data available to the public, sparking the imagination of many and
 leading to other scanning efforts. The EFF later announced Distributed SSL
 Observatory,[106] an effort to collect certificate chains observed by their browser add-on
 HTTP Everywhere, but they haven’t published any reports as of yet.
In 2011, Holz et al. published a proper study using a combination of a third-party
 scan of the entire IPv4 space, their own scanning of secure servers in the Alexa top one
 million list, and passive monitoring of traffic on their research network.[107] They, too, published their data sets.
In April 2012, SSL Labs started a
 project called SSL Pulse, which performs monthly scans of about
 150,000 of the most popular secure sites obtained by crawling the Alexa top one million list.[108]
Also in 2012, the International Computer Science Institute (ICSI) announced their
 ICSI Certificate Notary project, which monitors live network
 traffic of 10 partner organizations.[109] Their reports are of particular interest, because they show real-life
 certificates and encryption parameters. They also maintain a visualization of the entire
 PKI ecosystem and the relationships among CAs in their Tree of
 Trust.[110]
The most comprehensive study to come out so far was published in 2013 by Durumeric et
 al., who performed 110 Internet-wide scans over a period of 14 months.[111] To carry out their project, they developed a specialized tool called ZMap,
 which is now open source. All of their data is available online.[112] If raw data is what you’re after, Rapid7 publishes data from their monthly
 certificate scans on the same web site.[113]
None of the surveys uncovered any fatal flaws, but they provided great visibility into
 the PKI ecosystem and highlighted a number of important problems. For example, the
 public was generally unaware that CAs regularly issue certificates for private IP
 addresses (that anyone can use on their internal networks) and domain names that are not
 fully qualified (e.g., localhost, mail, intranet, and
 such). After several years, not only is large-scale scanning the norm, but there are
 also efforts such as Certificate Transparency (discussed in the
 next section) that rely on the availability of all public certificates. In February
 2014, Microsoft announced that they are extending the telemetry collected by Internet
 Explorer 11 to include certificate data.[114] They intend to use the information to quickly detect attacks against the
 users of this browser.
That same month, Delignat-Lavaud et al. published an evaluation of adherence to the
 CAB Forum guidelines over time.[115] The results show very good adherence for EV certificates, which always had
 the benefit of strict requirements, as well as improvements after the introduction of
 Baseline Requirements.
What Do We Know about Internet PKI?

Certification authorities issue millions of certificates every year. According to
 the last available information, there are about four million active certificates.
 There are many more internal and self-signed certificates, but no one can reliably
 measure how many, because they tend to be used on internal networks.
It’s not clear how many CAs there are exactly. There are slightly over 100 common
 roots (across major root stores), but many CAs use more than one root. There are
 more than a thousand subordinate CA certificates, but they are often used for
 administrative reasons; it’s not clear how many organizations there are with the
 power to issue certificates directly. We do know that the top 10 roots control over
 90% of the market. The big company names are Symantec, GoDaddy, Comodo, GlobalSign,
 DigiCert, StartCom, and Entrust.

Improvements

Over the years, we have seen many proposals to improve the state of PKI. Most of them
 came out in 2011, after several CA security compromises made us feel that the Internet
 was falling apart. I am going to discuss the proposals here, but I won’t go into much
 detail, as most are still works in development. The others have made little progress
 since they were announced. The only exceptions are pinning and DANE; these techniques
 are (almost) practical, which is why I discuss them in more detail in Chapter 10, HSTS, CSP, and Pinning.
	Perspectives
	Perspectives[116] was the first project to introduce the concept of independent
 notaries to assist with TLS authentication. Rather than make a decision
 about certification authenticity alone, clients consult trusted
 notaries. Accessing the same server from different vantage
 points can defeat attacks that take place close to the client. Notaries can
 also keep track of a server over a period of time to defeat more advanced
 attacks. Perspectives launched in 2008 and continues to operate.

	Convergence
	Convergence[117] is a conceptual fork of Perspectives with some
 aspects of the implementation improved. To improve privacy, requests to
 notaries are proxied through several servers so that the notary that knows
 the identity of the client does not know the contents of the request. To
 improve performance, site certificates are cached for extended periods of
 time. Convergence had momentum when it launched in 2011, but it hasn’t seen
 any activity since 2013. The most likely problem is that browsers don’t
 offer adequate APIs to support plugins that want to make trust
 decisions.

	Public key pinning
	Public key pinning addresses the biggest weakness
 of the current PKI ecosystem, which is the fact that any CA can issue a
 certificate for any domain name without the owner’s permission. With
 pinning, site owners can select (pin) one or more CAs
 that they trust, effectively carving out their own isolated trust ecosystem,
 which is much smaller than the global one. Public key pinning is currently
 possible via Chrome’s proprietary mechanism. A standard called
 Public Key Pinning for HTTP is in
 development.

	DANE
	DNSSEC is a new set of protocols that extend DNS with integrity checking.
 With this, a domain name can be associated with a set of keys that are used
 to sign the corresponding DNS zone. DANE is a bridge between DNSSEC and TLS
 authentication. Although DANE can be used for pinning, its more interesting
 ability is completely bypassing public CAs; if you trust the DNS, you can
 use it for TLS authentication.

	Sovereign Keys
	The Sovereign Keys proposal[118] extends the existing security infrastructure (either CAs or
 DNSSEC) with additional security guarantees. The main idea is that a domain
 name can be claimed using a sovereign key, which is
 recorded in publicly verifiable logs. Once a name is claimed, its
 certificates can be valid only if they are signed by the sovereign key. On
 the negative side, there seem to be no provisions to recover from the loss
 of a sovereign key, which makes this proposal very risky. Sovereign Keys was
 announced in 2011, but it hasn’t progressed past the idea stage.

	MECAI
	MECAI (which stands for Mutually
 Endorsing CA Infrastructure)[119] is a variation of the notary concept in which the CAs run the
 infrastructure. Servers do all the hard work and obtain freshness vouchers
 to deliver to clients. The fact that most of the process happens behind the
 scenes improves privacy and performance. MECAI was first published in 2011,
 but it hasn’t progressed past the idea stage.

	Certificate Transparency
	Certificate Transparency (CT)[120] is a framework for auditing and monitoring public certificates.
 CAs submit each certificate they issue to a public certificate
 log and obtain a cryptographic proof of submission. Anyone
 can monitor new certificates as they are issued; for example, domain owners
 can watch for certificates issued for their domain names. The idea is that
 once this mechanism is in
 place,
 fraudulent certificates can be quickly detected. The proof, which can be
 delivered to clients in a variety of ways (ideally within the certificate
 itself), can be used to confirm that a certificate had been made public.
 Chrome developers intend to require CT for all certificates, first starting
 with EV certificates in February 2015.[121]

	TACK
	TACK (which stands for Trust Assurances
 for Certificate Keys)[122] is a pinning variant that pins to a server-provided signing key.
 The introduction of a long-term signing key means more work but has the
 benefit of being independent from the CA infrastructure. This proposal is
 different from all others in that it works for any protocol protected by
 TLS, not just HTTP. TACK came out in 2012. The authors provided
 proof-of-concept implementations for some popular platforms, but, as of this
 writing, there is no official support in any client.

Do any of these proposals stand a chance at being implemented? In 2011, when most of
 these proposals came out, there was generally a strong momentum to change things. Since
 then, the momentum has been replaced with the realization that we’re dealing with a very
 difficult problem. It’s easy to design a system that works most of the time, but it’s
 the edge cases where most ideas fail.
The proposals based on notaries face issues with browser APIs just to get off the
 ground. They aim to solve the problem of local attacks but have too many caveats. By
 depending on multiple external systems for trust, they make decision making difficult
 (e.g., what if there is a disagreement among notaries or rogue elements are introduced
 to the system?) and introduce various problems related to performance, availability, and
 running costs. Large web sites often deploy many certificates for the same name,
 especially when observed from different geographic locations. This practice leads to
 false positives; a view from any one notary might not be the only correct one.
The pinning proposals show a lot of promise. With pinning, site owners choose whom to
 trust and remove the huge attack surface inherent in the current system. Google had
 pinning deployed in 2011; it’s how the compromise of the DigiNotar CA came to light.
 Their proprietary pinning mechanism has since detected several other failures. The hope
 is that in the near future pinning will be easily accessible to everyone via a
 standardized mechanism.
DANE is the only proposal that can substantially change how we approach trust, but its
 success depends on having DNSSEC supported by either operating systems or browsers.
 Browser vendors haven’t shown much enthusiasm so far, but the operating system vendors
 might, eventually. For low-risk properties, DANE is a great solution and can completely
 displace DV certificates. On the other hand, for high-risk properties the centralization
 of trust in the DNS is potentially problematic; the key issue is the unavoidable
 influences of various governments. There is little support for DANE at the moment, but
 it’s likely that there will be more over time as DNSSEC continues to be deployed.
Given Google’s leverage, it’s likely that CT will take off, although it might take a
 few years before it’s deployed widely enough to achieve its full effect.
Overall, there are two directions that we appear to be taking in parallel that lead to
 a multitier system with varying levels of security. The first direction is to improve
 the existing system. Mozilla, for example, used its root program as leverage to put
 pressure on CAs to get their affairs in order. In fact, CAs were under a lot of pressure
 from everyone, which resulted in the reorganization of the CA/Browser Forum and Baseline
 Requirements in 2012. Increased monitoring and auditing activities since 2010 helped
 uncover many smaller issues (now largely being addressed) and generally kept the system
 in check. Eventually, CT might achieve full transparency of public trust with a
 repository of all public certificates.
The second direction is all about enabling high-risk web sites to elect into more
 security. After all, perhaps the biggest practical problem with Internet PKI is that we
 expect one system to work for everyone. In reality, there is a large number of
 properties that want easy security (low cost, low effort) and a small number of
 properties that want strong security and are prepared to work for it. New
 technologies—such as pinning, HTTP Strict Transport Security, Content Security
 Policy, and mandatory OCSP stapling—can make that possible.

[79] PKIX Working
 Group (IETF, retrieved 16 July 2014)

[80] RFC 5280: Internet X.509
 Public Key Infrastructure Certificate and CRL Profile (Cooper et al.,
 May 2008)

[81] CA/Browser Forum (retrieved 16
 July 2014)

[82] EV SSL
 Certificate Guidelines (CA/Browser Forum, retrieved 16 July
 2014)

[83] The change of focus came from the realization that there were many burning
 security questions that were not being addressed. During 2011, there were
 several small and big CA failures, and the general feeling was that the PKI
 ecosystem was terribly insecure. Some even questioned the ecosystem’s survival.
 With Baseline Requirements, CAB Forum addressed many of these issues.

[84] Baseline
 Requirements (CA/Browser Forum, retrieved 13 July 2014)

[85] WebTrust Program for Certification Authorities (WebTrust, retrieved
 25 May 2014)

[86] Web PKI
 OPS (IETF, retrieved 25 May 2014)

[87] ASN.1 JavaScript decoder
 (Lapo Luchini, retrieved 24 May 2014)

[88] RFC
 3279: Algorithms and Identifiers for the Internet X.509 PKI
 and CRL Profile (Polk et al., April 2002)

[89] Bug 725451: Support enforcing nested EKU constraints, do so
 by default (Bugzilla@Mozilla, reported 8 February
 2014)

[90] SSL
 Pulse (SSL Labs, retrieved July 2014)

[91] Apple Root Certificate Program (Apple, retrieved 25 May
 2014)

[92] Root Certificate Policy (Chrome Security, retrieved 25
 May 2014)

[93] Introduction to The Microsoft Root Certificate Program
 (Microsoft, retrieved 25 May 2014)

[94] Mozilla CA Certificate Policy (Mozilla, retrieved 25 May
 2014)

[95] Principles and Criteria for Certification Authorities 2.0
 (WebTrust, retrieved 25 May 2014)

[96] Clarifying The Trustwave CA Policy Update (Trustwave, 4
 February 2012)

[97] X.509v3 Extension: OCSP Stapling Required (P.
 Hallam-Baker, October 2012)

[98] HTTPS
 Everywhere (The Electronic Frontier Foundation, retrieved 3 July
 2014)

[99] On the Cost
 of Factoring RSA-1024 (Shamir and Tromer, 2003)

[100] Facebook’s outmoded Web crypto opens door to NSA spying (CNET, 28
 June 2013)

[101] Google certificates upgrade in progress (Google Developers Blog, 30
 July 2013)

[102] Dates for Phasing
 out MD5-based signatures and 1024-bit moduli (MozillaWiki, retrieved
 3 July 2014)

[103] Bug
 #881553: Remove or turn off trust bits for 1024-bit root certs after
 December 31, 2013 (Bugzilla@Mozilla, reported 10 June 2013)

[104] Internet SSL Survey 2010 is here! (Ivan Ristić, 29 July 2010)

[105] The EFF SSL
 Observatory (Electronic Frontier Foundation, retrieved 26 May
 2014)

[106] HTTPS Everywhere & the Decentralized SSL Observatory (Peter
 Eckersley, 29 February 2012)

[107] The SSL Landscape - A
 Thorough Analysis of the X.509 PKI Using Active and Passive
 Measurements (Holz et al., Internet Measurement Conference, November
 2011)

[108] SSL
 Pulse (SSL Labs, retrieved 19 July 2014)

[109] The ICSI Certificate
 Notary (ICSI, retrieved 19 July 2014)

[110] The ICSI SSL
 Notary: CA Certificates (ICSI, retrieved 26 May 2014)

[111] Analysis of the HTTPS Certificate Ecosystem (Durumeric et al.,
 Internet Measurement Conference, October 2013)

[112] University of Michigan ·
 HTTPS Ecosystem Scans (Internet-Wide Scan Data Repository, retrieved
 26 May 2014)

[113] Rapid7 · SSL
 Certificates (Internet-Wide Scan Data Repository, retrieved 26 May
 2014)

[114] A novel method in IE11 for dealing with fraudulent digital
 certificates (Windows PKI Blog, 21 February 2014)

[115] Web PKI:
 Closing the Gap between Guidelines and Practices (Delignat-Lavaud et
 al., NDSS, February 2014)

[116] Perspectives
 Project (retrieved 27 May 2014)

[117] Convergence
 (retrieved 27 May 2014)

[118] The
 Sovereign Keys Project (The EFF, retrieved 27 May
 2014)

[119] Mutually Endorsing CA
 Infrastructure version 2 (Kai Engert, 24 February
 2012)

[120] Certificate Transparency (Google, retrieved 27 May
 2014)

[121] Extended Validation in Chrome (Ben Laurie, 19 March
 2014)

[122] TACK (retrieved 27 May
 2014)

4 Attacks against PKI

There’s an inherent flaw in how Public Key Infrastructure
 (PKI) operates today: any CA is able to issue certificates for any name without having to
 seek approval from the domain name owner. It seems incredible that this system, which has
 been in use for about 20 years now, essentially relies on everyone—hundreds of
 entities and thousands of people—doing the right thing.
There are several attack vectors that could be exploited. In many cases, it’s the
 validation process that’s the target. If you can convince a CA that you are the
 legitimate owner of a domain name, they will issue you a certificate. In other cases, the
 target is the security of the CAs themselves; if a CA is compromised the attacker can
 generate certificates for any web site. And in some cases it has come to light that certain
 CAs issued subordinate certificates that were then used to issue certificates representing
 web sites at large.
This chapter documents the most interesting incidents and attacks against PKI, starting
 with the first widely reported incident from 2001 and ending with the last major one at the
 end of 2013.
VeriSign Microsoft Code-Signing Certificate

In January 2001, VeriSign got tricked into issuing two code-signing certificates to
 someone claiming to represent Microsoft. To pull off something like that, the attacker
 needed to establish a false identity, convince one or more people at VeriSign that the
 request was authentic, and pay the certificate fees of about $400 per certificate. In
 other words, it required deep knowledge of the system, skill, and determination. The
 problem was uncovered several weeks later, during a routine audit. The public found out
 about the incident in late March, after Microsoft put mitigation measures in
 place.
These fraudulent
 certificates were not afforded any special level of trust by the operating
 system,
 and the code signed by them wouldn’t run without warning. Still, they were thought to
 represent a danger to the users of all Windows operating systems. Because they had been
 issued under the name
 “Microsoft
 Corporation,” it was reasonable to believe that most people would approve the
 installation of the code signed by them. In Microsoft’s own words:[123]
Programs signed using these certificates would not be able to run automatically or
 bypass any normal security restrictions. However, the warning dialogue that appears
 before such programs could run would claim that they had been digitally signed by
 Microsoft. Clearly, this would be a significant aid in persuading a user to run the
 program.

Upon discovering the mistake, VeriSign promptly revoked the certificates, but that was
 not enough to protect the users, because the fraudulent certificates had not included
 any revocation information. Because of that, in late March 2001, Microsoft was forced to
 release an emergency software update to explicitly blacklist the offending certificates
 and explain to users how to spot them.[124] This apparently caused a lively debate about the implementation of
 certificate revocation in Microsoft Windows.[125] One of Microsoft’s Knowledge Base articles posted at the time also provided
 instructions for how to remove a trusted certification authority from one’s system.[126]

Thawte login.live.com

In the summer of 2008, security researcher Mike Zusman tricked Thawte’s
 certificate validation process to obtain a certificate for login.live.com,
 which was (and still is) Microsoft’s single sign-on authentication hub, used by
 millions.
Mike exploited two facts: first, that Thawte uses email for domain name authentication
 and second, that Microsoft allows anyone to register @live.com email
 addresses. The most obvious email aliases (e.g., hostmaster or
 webmaster) were either reserved or already registered, but as it
 happened Thawte allowed a particularly wide range of aliases for confirmation purposes.
 One of the email addresses Thawte accepted for authentication was
 sslcertificates@live.com, and that one was available for
 registration. As soon as Mike obtained access to this email address, obtaining a
 certificate was trivial.
Although Mike disclosed the problem in August of 2008,[127] he revealed the name of the exploited CA only later in the year.[128] Exploit details were revealed the following year, in his DEFCON 17
 talk[131].

StartCom Breach (2008)

On December 19, 2008, Mike Zusman managed to bypass StartCom’s domain name
 validation by exploiting a flaw in StartCom’s web site.[129] The flaw in the web application that controlled certificate issuance allowed
 him to obtain validation for any domain name. (StartCom operates a two-step process: in
 the first step you prove that you have control over a domain name, and in the second you
 request a certificate.) Using his discovery, Mike requested and obtained two
 certificates for domain names he had no authorization for.
His attack was detected very quickly, but only because he proceeded to obtain
 authorization and request certificates for paypal.com and
 verisign.com. As it turned out, StartCom had a secondary control
 mechanism in the form of a blacklist of high-profile web sites. This defense-in-depth
 measure flagged Mike’s activity and caused all fraudulently issued certificates to be
 revoked within minutes.
StartCom published a detailed report documenting the attack and events that took place.[130] Mike discussed the events in more detail at his DEFCON 17 talk.[131]

CertStar (Comodo) Mozilla Certificate

Only a couple of days after Mike Zusman’s attack on StartCom, their CTO and COO
 Eddy Nigg discovered a similar problem with another CA.[132] Following a trail left by some email spam that was trying to mislead him
 into “renewing” his certificates with another company,[133] Eddy Nigg came across CertStar, a Comodo partner based in Denmark who would
 happily issue certificates without performing any domain name
 validation. Eddy first obtained a certificate for startcom.org and then for
 mozilla.org. Unsurprisingly, a fraudulent certificate for Mozilla’s
 high-profile domain name made a big splash in the press and prompted a lively discussion
 on the mozilla.dev.tech.crypto mailing list.[134]
After verifying all 111 certificates issued by CertStar, Comodo revoked 11 (on top of
 the two ordered by Eddy Nigg) for which it could not verify authenticity and said that
 there was no reason to suspect that any of them actually were fraudulent.[135]

RapidSSL Rogue CA Certificate

In 2008, a group of researchers led by Alex Sotirov and Marc Stevens carried out a
 spectacular proof-of-concept attack against Internet PKI in which they managed to obtain
 a rogue CA certificate that could be used to sign a certificate for any web site in the world.[136]
To fully appreciate this attack, you need to understand the long history of attacks
 against MD5, shown in the sidebar ahead. You will find that this final blow was the last
 one in a long line of improving attacks, which started at some point after MD5 had been
 broken in 2004. In other words, a result of a persistent and sustained effort.
After releasing their work on colliding certificates for different identities in 2006,
 Marc Stevens and other researchers from his team continued to improve the chosen-prefix
 collision technique in 2007. They were able to freely generate colliding certificates in
 a simulation with their own (private) certification authority in an environment they
 fully controlled. In real life, however, there were several constraints that were
 preventing exploitation.
MD5 and PKI Attacks Timeline

	1991: Ronald Rivest designs MD5 as a
 replacement for MD4.

	1991–1996: MD5 becomes very popular
 and is deployed in a wide range of applications. In the meantime, early
 signs of weaknesses in MD5[137] lead researchers to start recommending that new applications use
 other, more secure hash functions.[138]

	2004: Wang et al. demonstrate a full collision.[139] MD5 is now considered properly broken, but the attacks are not
 yet sophisticated enough to use in practice.

	2005: Lenstra, Wang, and de Weger
 demonstrate a practical collision,[140] showing two different certificates with the same MD5 hash and
 thus the same signature. The two certificates differ in the RSA key space,
 but the remaining information (i.e., the certificate identity) is the
 same.

	2006: Stevens, Lenstra, and de Weger
 present a new technique,[141] initially called target collision but
 later renamed to chosen prefix collision, which
 allows for creation of two certificates that have the same MD5 hash but
 different identities. MD5 is now fully broken, with meaningful attacks
 practical.

	2008: Despite the fact that MD5 has been
 considered weak for more than a decade and the fact that a meaningful attack
 was demonstrated in 2006, some certification authorities are still using it
 to sign new certificates. A group of researchers led by Sotirov and Stevens
 use an MD5 collision to carry out an attack against PKI and obtain a “rogue”
 CA certificate, which they can use to generate a valid certificate for any
 web site.[142]

	2012: A very sophisticated malware
 nicknamed Flame (also known as
 Flamer or Skywiper) is
 discovered infecting networks in the Middle East.[143] The malware, which is thought to be government sponsored, is
 later discovered to have used an MD5 collision against a Microsoft CA
 certificate in order to carry out attacks against the Windows Update
 code-signing mechanism. After analyzing the evidence, Marc Stevens concludes
 that the attack had been carried out using a previously unknown attack variant.[144] No one knows how long Flame had been operating, but it is
 thought that it was active for anywhere from two to five years.

Chosen-Prefix Collision Attack

The goal of the attacker is to create two documents with the same MD5 signature.
 Most digital signature techniques sign hashes of data (instead of the data
 directly). If you can construct two documents that both have the same MD5 hash, then
 a signature for one is also valid for the other. All you now need to do is send one
 of the two documents (the innocent one) to a trust authority for signing and
 subsequently copy over the signature to the second document (the forgery).
When it comes to certificates, there’s another problem: you can’t just send your
 own certificate to a CA to sign. Instead, you send them some information (e.g.,
 domain name and your public key), and they generate the
 certificate. This is a significant constraint, but it can be overcome.
A collision attack can be carried out using two specially constructed collision
 blocks that manipulate the hashing algorithm, with the goal of bringing it to the
 same state for two different inputs. Taking into account both inputs (one in the
 innocent document and the other in the forgery), the collision blocks undo the
 differences as far as the hashing algorithm is concerned. This means two things:
 (1) you must know the prefix of the
 innocent document in advance—this is where the name
 chosen-prefix comes from—and (2) you must be able to put one of the
 collision blocks into it.
In practice, it’s not possible to put the collision blocks right at the end, which
 is why the resulting files must also have identical suffixes. In other words, once
 you get the collision right, you don’t want any differences in the files to make the
 hash different again.

Construction of Colliding Certificates

To use the chosen-prefix technique in real life requires that we carry out the
 attack under constraints imposed by the structure of the document we wish to forge
 and the constraints imposed by the process in which the document is created and
 digitally signed.
In the context of digital signatures, those constraints are as follows:
	Certificates are created by certification authorities, using the
 information submitted in a CSR.

	The overall structure of a certificate is determined by the X.509 v3
 specification. The attacker cannot influence the structure but
 can predict it.

	Some information that ends up in the certificate is copied over from the
 CSR. The attacker fully controls that part. Crucially, a certificate will
 always have a public key that is copied verbatim from the CSR. The key is
 “random” by design, which means that a specially crafted random-looking
 collision block won’t raise any alarms.

	Some further information will be added to the certificate by the
 certification authority. The attacker may be able to influence some parts
 (e.g., the certificate expiration time), but in general, the best they can
 do here is predict what the content will be.

From this information, it’s clear that the collision prefix will include all the
 certificate fields that appear before the public key (which is where the collision
 block will be stored). Because the contents of the collision block depends on the
 prefix, the entire prefix must be known before the collision data can be created and
 subsequently sent to the certification authority. Looking at the certificate fields
 in the prefix, most of them are either known (e.g., the issuer information can be
 obtained from another certificate issued by the same CA) or provided by the attacker
 in the CSR (e.g., common name). However, there are two fields controlled by the CA
 and not known in the advance: the certificate serial number and the expiration date.
 For the time being, we’ll assume that the attacker will be able to predict the
 contents of these two fields; later, we’ll examine how that can be achieved.
We also have to figure out what to do with the part that comes after the public
 key (the suffix). As it turns out, this part consists of several X.509 extensions,
 all of them known in advance. With proper alignment (MD5 operates on blocks of
 data), the suffix is simply the same in both certificates.
Thus, the attack process is as follows:
	Determine what the prefix of the CA-generated certificate will look like
 and determine what some of the CSR fields need to be.

	Construct a desired prefix for the rogue certificate.

	Determine the suffix.

	Construct collision blocks using the data from the previous three
 steps.

	Build a CSR and submit it to the certification authority.

	Build a rogue certificate by combining the rogue prefix, the second
 collision block, the suffix, and the signature taken from the real
 certificate.

Note
The second collision block and the suffix must be part of the forged
 certificate for the attack to work, but they must be hidden in some way so as
 not to create problems when the certificate is used. In the RapidSSL attack, the
 so-called tumor was placed into an unimportant X.509 v3
 comment extension, which is ignored during processing. Someone knowledgeable
 would be able to spot the anomaly, but virtually no one examines certificates at
 this level.

Predicting the Prefix

Now let’s go back to discuss how the researchers managed to predict the contents
 of the two fields (expiration time and serial number) that changed with every
 certificate. As it turns out, it was a combination of luck and “help” from the CA.
 Here’s how it played out:
	RapidSSL’s certificate-issuance process was fully automated, and it
 always took exactly six seconds from the time a CSR was submitted until the
 certificate was generated. This meant that it was possible to reliably
 predict the certificate expiration time down to a second, which was
 sufficient.

	Rather than randomize the serial number (which is considered best
 practice), RapidSSL’s serial number had been a simple counter
 incremented by one for every new certificate. This meant that if you
 obtained two certificates in quick succession you could predict the serial
 number of the second certificate.

There were six CAs issuing MD5-signed certificates at the time, but it was these
 two facts about RapidSSL and lack of any other prevention measures[145] that eventually made everything click. However, a big complication was
 the fact that when using the team’s special computing cluster consisting of 200
 PlayStation 3 consoles they needed about a day to generate one collision. Thus, they
 not only had to choose the exact moment in time during which to submit a CSR but
 also predict the serial number that would be assigned to the certificate.
Figure 4.1. Comparison of the genuine (left) and collided RapidSSL certificates
 (right) [Source: Benne de Weger]
[image: Comparison of the genuine (left) and collided RapidSSL certificates (right) [Source: Benne de Weger]]

Their approach was to carry out the attack on Sunday evenings, during the
 CA’s least busy period. They would obtain the value of the serial number
 counter on a Friday and aim to submit a CSR so that the resulting serial number
 would be higher by 1,000. As the time of the attack approached, they would push the
 counter up by requesting new certificates, aiming to get as close to the 1,000 mark
 as possible. During each weekend, they had enough time to submit three attempts.
 After three unsuccessful weekends, they succeeded on the fourth.

What Happened Next

While planning the attack, the researchers took measures to minimize any potential
 fallout. For example, the rogue certificate had been created with an expiration date
 in the past, which meant that even if the private key behind it was leaked the
 certificate would have been useless. The key parties in charge of browser trust
 stores (e.g., Microsoft, Mozilla, etc.) were contacted prior to the publication of
 the attack, which allowed them to preemptively blacklist the rogue CA certificate.
 RapidSSL had
 also been given an advance warning,[146]
 and that
 made
 them
 speed
 up their migration to SHA1. They upgraded to SHA1 very quickly, within hours of the
 public announcement.[147] Full details of the chosen-prefix collision technique were released only
 later, after the researchers had been satisfied that it was safe to do so.
In the end, the attack cost only the $657 in certificate costs,[148] but the researchers had access to a cluster of 200 PS3 computers.
 Equivalent CPU power on EC2 would have cost about $20,000. When the attack was
 announced, the researchers estimated that with an improved approach they could
 repeat the attack in a day for only $2,000.

Comodo Resellers Breaches

A series of incidents unfolded in 2011, starting with another Comodo breach in March.
 The first attack took place on March 15th, when one of Comodo’s registration
 authorities (RAs) was “thoroughly compromised” (in the words of Robin Alden, then the
 CTO of Comodo), leading to the issuance of nine certificates for seven web sites.[149] The sites in question were:
	addons.mozilla.org

	global trustee

	google.com

	login.live.com

	login.skype.com

	login.yahoo.com

	mail.google.com

Clearly, with exception of the “global trustee” certificate whose purpose is unclear,
 all the certificates were for key internet web sites that hundreds of millions of users
 visit every day. Fortunately, the attack was detected very quickly and all the
 fraudulent certificates revoked within hours. It wasn’t even clear if all of these
 certificates were retrieved by the attacker. Comodo saw only the Yahoo certificate hit
 their OCSP responder (and only twice) and none of the other certificates.[150]
The next day, Comodo started to inform various other relevant parties, and the
 patching process began.[151] Although Comodo didn’t disclose the identity of the compromised RA, it was
 later alleged by the attacker that it was an Italian company, Instant SSL. The attacks
 were disclosed to the public on March 22nd by Comodo, Mozilla, Microsoft, and
 others.
An interesting fact is that some people learned about the attacks several days earlier
 from clues in the Chrome source code (which is publicly available). Jacob Appelbaum
 wrote about his discovery on the Tor blog.[152]
Comodo went on to disclose two further reseller compromises on March 26th, although
 one of them later turned out to be a false report. The other report was genuine but
 didn’t result in any fraudulent certificates being issued. Apparently, the security
 measures introduced after the March 15th incident were effective and prevented the
 attacker from issuing further certificates.[153]
Also on March 26th, the attacker
 himself started to communicate with the public,[154] and that’s when we learned about ComodoHacker (the name he chose for
 himself), which later turned out to be a much bigger story, spanning months of activity,
 many CAs, and many incidents. You can read more about him in the sidebar later in this
 chapter.
In May, Comodo was again in the news because one of their resellers, ComodoBR, was
 found to have an SQL injection vulnerability on their web site.[155] The attacker used the vulnerability to retrieve private customer data
 (including certificate signing requests), but there were no other PKI-related
 consequences.
In the end, this series of incidents exposed how operating a large network of partners
 on a trust basis alone is entirely unfeasible, especially in a complex ecosystem such as
 PKI. Comodo claimed that after the 2008 incident only 9% of their partners were left
 with the ability to fully control certificate issuing, but that was clearly still too
 many. After the first 2011 incident, no resellers were left able to issue certificates
 without further validation from Comodo.
More importantly, these incidents showed how Comodo (and possibly other CAs) had not
 been maintaining a realistic threat model. This was acknowledged by Robin Alden in a
 post on mozilla.dev.security.policy (emphasis mine):
We were dealing with the threat model that the RA could be Underperforming [sic]
 with, or trying to avoid doing, their validation duty (neither of which were the
 case for this RA), but what we had not done was adequately
 consider the new (to us) threat model of the RA being the subject of a targeted
 attack and entirely compromised.

StartCom Breach (2011)

In the summer of 2011, StartCom was again targeted, supposedly by the same person who
 had previously attacked Comodo.[156] Because of the incident, which took place on June 15th, StartCom stopped
 issuing new certificates for about a week. The following message appeared on their web
 site:
Due to an attack on our systems and a security breach that occurred at the 15th of
 June, issuance of digital certificates and related services has been suspended. Our
 services will remain offline until further notice. Subscribers and holders of valid
 certificates are not affected in any form. Visitors to web sites and other parties
 relying on valid certificates are not affected. We apologize for the temporary
 inconvenience and thank you for your understanding.

Apparently, no fraudulent certificates were issued and the attacker—who might
 have gained access to some sensitive data and come very close to the company’s precious
 root key[157]—did not cause any significant long-term damage. The company never
 followed up with an official report about the incident, acknowledging the incident only
 via a post on Eddy Nigg’s blog.[158]

DigiNotar

DigiNotar was a Dutch CA that was in business of issuing certificates to the general
 public as well as handling the PKI aspects of the Dutch e-government program PKIoverheid
 (overheid means government in Dutch). In 2011, DigiNotar became
 the first CA to be completely compromised, with fraudulent certificates used in real,
 and possibly very serious, man-in-the-middle attacks. Needless to say,
 DigiNotar’s root certificates were all revoked and the company went out of
 business, declaring voluntary bankruptcy in September 2011.
Public Discovery

The incident came to light on August 27th, when an Iranian Gmail user reported
 intermittent problems when accessing his email account.[159] According to the testimony, there were daily “downtime” periods of 30 to
 60 minutes, during which access was impossible due to an unusual certificate warning
 message. As it turned out, the downtime described by the user was caused by a
 man-in-the-middle attack that Chrome detected and prevented using its proprietary
 public key pinning mechanism.
In the days that followed, we learned that the reported problem was actually part
 of a very large attack on a scale previously unheard of, affecting an estimated
 300,000 IP addresses. Virtually all of the IP addresses were in Iran. The
 intercepting certificates were all issued by DigiNotar. But how was that
 possible?

Fall of a Certification Authority

Faced with a huge security incident that affected its digital infrastructure, the
 Dutch government immediately took control of DigiNotar and hired an external
 security consultancy, Fox-IT, to investigate. Fox-IT published their initial report[160] one week later, on September 5th. Here is the most relevant part of the
 report:
The most critical servers contain malicious software that can normally be
 detected by anti-virus software. The separation of critical components was not
 functioning or was not in place. We have strong indications that the CA-servers,
 although physically very securely placed in a tempest proof environment, were
 accessible over the network from the management LAN.
The network has been severely breached. All CA servers were members of one
 Windows domain, which made it possible to access them all using one obtained
 user/password combination. The password was not very strong and could easily be
 brute-forced.
The software installed on the public web servers was outdated and not
 patched.
No antivirus protection was present on the investigated servers.
An intrusion prevention system is operational. It is not clear at the moment
 why it didn’t block some of the outside web server attacks. No secure central
 network logging is in place.

The full report was released one year later, in August 2012; at 100 pages, it
 provides the most detailed report of a CA breach ever seen.[161] From the report, we learned that the initial attack occurred on June
 17th, when a public-facing web server running a vulnerable content-management
 application was breached. From there, it took the attacker until July 1st to break
 into the most secure network segment, where the root material was placed. This
 network segment was not connected to the Internet directly, but the attacker was
 able to tunnel into it from less important systems.
The first batch of 128 rogue certificates were issued on July 10th, roughly a week
 from when the attacker first had access to the CA servers themselves. Several other
 batches followed, arriving at a total of at least 531 certificates for 53 unique
 identities. Due to the scale of the breach, the actual number of rogue certificates
 is not known; the logs were tampered with, and many of the certificates later
 discovered in the wild could not be found in the appropriate databases.
As you can see in the following table, the list of names used for the certificates
 consists largely of high-profile web sites, certification authorities, and
 government agencies.
Table 4.1. Common names used in rogue certificates issued by the DigiNotar
 attacker
	..com	*.*.org	*.10million.org (2)
	*.android.com	*.aol.com	*.azadegi.com (2)
	*.balatarin.com (3)	*.comodo.com (3)	*.digicert.com (2)
	*.globalsign.com (7)	*.google.com (26)	*.JanamFadayeRahbar.com
	*.logmein.com	*.microsoft.com (3)	*.mossad.gov.il (2)
	*.mozilla.org	*.RamzShekaneBozorg.com	*.SahebeDonyayeDigital.com
	*.skype.com (22)	*.startssl.com	*.thawte.com (6)
	*.torproject.org (14)	*.walla.co.il (2)	*.windowsupdate.com (3)
	*.wordpress.com (14)	addons.mozilla.org (17)	azadegi.com (16)
	Comodo Root CA (20)	CyberTrust Root CA (20)	DigiCert Root CA (21)
	Equifax Root CA (40)	friends.walla.co.il (8)	GlobalSign Root CA (20)
	login.live.com (17)	login.yahoo.com (19)	my.screenname.aol.com
	secure.logmein.com (17)	Thawte Root CA (45)	twitter.com (18)
	VeriSign Root CA (21)	wordpress.com (12)	www.10million.org (8)
	www.balatarin.com (16)	www.cia.gov (25)	www.cybertrust.com
	www.Equifax.com	www.facebook.com (14)	www.globalsign.com
	www.google.com (12)	www.hamdami.com	www.mossad.gov.il (5)
	www.sis.gov.uk (10)	www.update.microsoft.com (4)	

Some of the certificates were not intended for well-known web sites but were used
 to carry various messages instead. The phrases in the following table were seen in
 various places in the certificates.
Table 4.2. Messages seen embedded in the rogue certificates (it’s not clear if the
 translations are accurate)
	Original message	Translation
	Daneshmande Bi nazir	Peerless scientist
	Hameye Ramzaro Mishkanam	Will break all cyphers
	Janam Fadaye Rahbar	I will sacrifice my life for my leader
	Ramz Shekane Bozorg	Great cryptanalyst
	Sahebe Donyaye	Possessor of the world (God)
	Sare Toro Ham Mishkanam	I will break Tor too
	Sarbaze Gomnam	Unknown soldier

It also transpired that DigiNotar had discovered the intrusion on July 19th and,
 with the help of an outside consultancy (not Fox-IT), cleaned up their systems by
 the end of July. Unfortunately, the damage had already been done. Presumably under
 the impression that the incident had been contained, DigiNotar quietly revoked a
 small number of fraudulent certificates (the ones they knew about),
 and—recklessly—failed to inform anyone.

Man-in-the-Middle Attacks

Given the scale of the compromise, it is doubtful that a prompt disclosure would
 have saved DigiNotar, but it would have definitely stopped the attackers from using
 the rogue certificates. We know this because the rogue certificates were generated
 with embedded OCSP information, and the investigators were able to track the
 certificate deployment by examining the logs of DigiNotar’s OCSP responder.[162]
Initially, after the certificates were generated the logs showed few requests:
 most likely a result of testing by the attacker. The first signs of mass deployment
 were starting to show on August 4th, with continuous increases in volume until
 August 29th, which was the day on which browsers revoked the DigiNotar root
 certification and killed all rogue certificates. We know from attacked users that
 the attack was not constant but occurred in bursts. Perhaps there was a reason for
 such behavior, such as limitations of the attack method (DNS cache poisoning was mentioned as the likely approach[163] used) or simply an inability to cope with a large amount of traffic at
 any one time.
Figure 4.2. DigiNotar OCSP activity in August 2011 [Source: Fox-IT]
[image: DigiNotar OCSP activity in August 2011 [Source: Fox-IT]]

Besides, the attackers were likely only interested in collecting Gmail passwords,
 and—assuming their capacity was limited—once they saw a password from
 one IP address they could move on to intercept another. With a password cache, they
 could abuse the accounts at their leisure (people rarely change their passwords) by
 connecting to Gmail directly.
All in all, there were exactly 654,313 OCSP requests to check the revocation
 status of the rogue Google certificate, submitted from 298,140 unique IP addresses.
 About 95% of those were within Iran, with the remaining IP addresses identified as
 the Tor exit nodes, proxies, and virtual private networks from around the
 world.

ComodoHacker Claims
 Responsibility

ComodoHacker claimed responsibility for the DigiNotar breach, posting from his
 Pastebin account on September 5th.[164] He followed up with three further posts, as well as the
 calc.exe binary signed with one of the certificates, thus
 offering definitive proof that he was involved in the incident. The posts contain
 some details about the attacks, which match the information in the official report
 (which was released to the public only much later).
How I got access to 6 layer network behind internet servers of DigiNotar, how
 I found passwords, how I got SYSTEM privilage [sic] in fully patched and
 up-to-date system, how I bypassed their nCipher NetHSM, their hardware keys,
 their RSA certificate manager, their 6th layer internal “CERT NETWORK” which
 have no ANY connection to internet, how I got full remote desktop connection
 when there was firewalls that blocked all ports except 80 and 443 and doesn’t
 allow Reverse or direct VNC connections, more and more and more...

It’s not clear if ComodoHacker was actually involved with the attacks in Iran,
 however. Although he was happy to claim responsibility for the CA hacks,
 ComodoHacker distanced himself from the MITM attacks. His second DigiNotar post
 contained the following sentence:
I’m single person, do not AGAIN try to make an ARMY out of me in Iran. If
 someone in Iran used certs I have generated, I’m not one who should
 explain.

In a subsequent post, he repeated that statement:
[...] I’m the only hacker, just I have shared some certs with some people in
 Iran, that’s all... Hacker is single, just know it

Who Is ComodoHacker?

ComodoHacker made his public appearance in 2011 and left a mark on the PKI
 with a string of attacks against several certification authorities. The first
 batch of attacks came in March 2011, when several Comodo partners were breached.
 Rogue certificates were issued but also quickly discovered, which prevented
 their exploitation.
StartCom appears to have been attacked in June, and the attacker appears to
 have had some success, but, according to both parties, no fraudulent
 certificates were issued. StartCom stopped issuing certificates but never
 provided any substantial details about the incident.
Then there was the DigiNotar attack, which resulted in a full compromise of
 the DigiNotar certification authority and shook up the entire PKI
 ecosystem.
After being mentioned as a successful target in one of ComodoHacker’s
 messages, GlobalSign felt it prudent to halt certificate issuance for a period
 time and investigate. They subsequently found that their public-facing web
 server, which is not part of the CA infrastructure, had been breached.[165] The only casualty was the private key for the
 www.globalsign.com domain name.
Immediately after the Comodo incidents, the hacker started communicating with
 the public via the ComodoHacker account on Pastebin[166] and left 10 messages in total. After the DigiNotar
 incident, he also had a brief period during which he was posting on Twitter,
 under the name ich sun and handle
 ichsunx2.[167] Although he appeared to have initially enjoyed the
 attention and even gave interviews, his last communication was via Twitter in
 September 2011.

DigiCert Sdn. Bhd.

In November 2011, a Malaysian certification authority, DigiCert Sdn. Bhd., was found
 to be issuing dangerously weak certificates. This company, which is not related to the
 better known and US-based DigiCert, Inc., was operating as an intermediate certification
 authority on a contract with Entrust and, before that, CyberTrust (Verizon). Twenty-two
 certificates were found to be not only weak but lacking in other critical
 aspects:
	Weak 512-bit keys
	A key that is only 512 bits long can be relatively easily refactored using
 only brute force.[168] With the key in hand, a malicious party can impersonate the
 victim web site without triggering certificate warnings.

	Missing usage restrictions
	Certificates are expected to carry usage restrictions in the
 Extended Key Usage (EKU) extension. Even though
 DigiCert Sdn. Bhd. had been contractually restricted to issuing only web
 site certificates, because some of their certificates were missing the usage
 restrictions they could be used for any purpose: for example, code
 signing.

	Missing revocation information
	None of the 22 certificates contained revocation information. This meant
 that after the invalid certificates were discovered there was no way to
 reliably revoke them.

As it turned out, the problem was discovered only after one of the public keys was
 found to have been broken by brute force and used to sign malware.[169] After finding out about the problem, Entrust revoked the intermediate certificate[170] and informed the browser vendors. Within a week, both Entrust and CyberTrust
 revoked their respective intermediate certificates, Mozilla informed the public via a
 post on their blog,[171] and browser vendors released updates to explicitly blacklist the
 intermediate certificates and the known weak server certificates. In the aftermath,
 DigiCert, Inc. was left having to explain the name confusion to their customers.[172]

Flame

In May, security researchers began analyzing a new strand of malware that was making
 rounds chiefly in the Middle East. The malware in question, called
 Flame[143] (also known as
 Flamer or Skywiper), turned out to be the
 most advanced yet: over 20 MB in size, over 20 attack modules (the usual malware stuff,
 such as network sniffing, microphone activation, file retrieval, and so on), and built
 using components such as a lightweight relational database (SQLite) and a scripting
 language (Lua). It was all done in such a way that it remained undetected for a very
 long time (which meant low or undetectable failures; it was clearly not an average
 software development job).
Overall, Flame was discovered on about 1,000 systems in what seemed to be very
 targeted attacks. Iranian CERT issued a press release about Flame in May 2012. [173] Soon thereafter, the creators of the Flame malware issued a suicide command,
 with the intention that all instances would delete themselves. Still, many instances of
 the malware and several instances of the command and control servers were captured and analyzed.[174]
Figure 4.3. Flame activity [Source: Kaspersky Lab]
[image: Flame activity [Source: Kaspersky Lab]]

Flame against Windows
 Update

What happened next stunned everyone. It transpired that one of the functions of
 the Flame malware was an attack against the Windows Update mechanism, which could be
 used to propagate to any Windows installations on the local network. The surprising
 part was the fact that Flame used a cryptographic attack to achieve it.[175] On top of that, the specific cryptographic technique wasn’t previously
 known.
Once on
 a local network, subverting Windows Update turned out to be simple. Internet
 Explorer supports Web Proxy Autodiscovery (WPAD), which is a
 protocol that programs can use to find HTTP proxies on the local network.[176] An adversary with access to the local network can advertise as a proxy
 and gain access to the victim’s HTTP(S) traffic. Flame did exactly this and included
 a simple web server that posed as a Windows Update server to advertise available
 “updates” laced with malicious code.[177]
Windows Update does not appear to use TLS (a simple test on my desktop showed all
 update traffic in plaintext), but Microsoft does use code signing for their updates,
 which means that no one should be able to create binaries that would be accepted as
 originating from Microsoft. The twist in the story was that Flame was somehow able
 to sign all its binaries as Microsoft.

Flame against Windows Terminal
 Services

When Microsoft started talking about the weaknesses attacked by Flame, a story of
 deep incompetence unfolded. In order to operate Terminal Services licensing, upon
 activation each Terminal Server installation would receive a special subordinate CA
 certificate. The sub-CA would then be used to create end-user licenses. Microsoft
 made several critical errors when designing this system:
	The main Terminal Services CA certificate (which was used to issue
 subordinate CAs allocated to individual customers) was issued from the same
 trusted root as the Windows Update CA.

	The parent Terminal Services CA was allowed to be used for licensing
 and—for some unexplained reason—code signing.

	Subordinate CA certificates had no usage restrictions, which meant that
 they inherited the restrictions of the parent certificate.

What this meant was that every single Terminal Server customer was given an
 unrestricted subordinate CA certificate they could use to sign Windows Update
 binaries, with no hacking required.
Fortunately for Microsoft, such certificates could “only” be used against Windows
 XP machines. The subordinate CA certificates contained a proprietary X.509 extension
 called Hydra, and it was marked critical.[178]
The Windows XP code for certificate checking ignores critical extensions, but
 Windows Vista (released worldwide on 30 January 2007) and subsequent Windows
 versions understand critical extensions and handle them properly. This meant that
 the Flame authors had to find a way to obtain a certificate without the Hydra
 extension.

Flame against MD5

The other critical mistake made by Microsoft when designing the Terminal Server
 licensing scheme was using MD5 signatures for the certificates. The other errors
 (discussed in the previous section) were relatively subtle and required a good
 understanding of PKI to detect, but at the time that Microsoft’s system was
 designed,
 MD5 was widely known to be insecure. There had been a very effective demonstration
 of the insecurity of MD5 in 2008, with the generation of the rogue CA certificate in
 the RapidSSL attack. To put it into perspective, Microsoft wouldn’t even allow MD5
 certificates in their own root certificate program at that time, but they were used
 for Terminal Server licensing.
If you’ve read the earlier section describing the RapidSSL attack and the
 generation of a rogue CA certificate, you probably know what happened next: Flame
 used a chosen-prefix collision attack against MD5 in order to generate a rogue CA
 certificate. The attack was conceptually the same as the RapidSSL attack described
 earlier. Here’s what we know:
	Insecure MD5 signatures were used, which opened up the system to
 cryptographic attacks.

	Certificate issuance was automated and the timing controlled by the
 attacker. All fields except certificate validity and certificate serial
 number were known in advance.

	Certificate validity was predictable, requiring second precision.

	Serial numbers were not serial as in the RapidSSL case, but they were
 predictable (number of milliseconds since boot, followed by two fixed bytes,
 followed by a serial certificate number) and required millisecond
 precision.

The millisecond precision required probably made the task much more difficult and
 required a good network connection in order to minimize jitter. Access to a
 high-powered computing cluster would have sped up collision search and improved
 accuracy. We do not know how many attempts were needed (perhaps Microsoft knows, if
 they’re keeping good records of the licensing activity), but the attackers were
 obviously successful in the end.
Marc Stevens, the principal force behind the previously published chosen-prefix
 collision attack technique, analyzed the rogue certificate and determined that:[179]
Flame used a chosen-prefix collision attack. [...] Flame used a birthday
 search followed by 4 near-collision blocks to obtain a collision.
These collision bits were hidden inside the RSA modulus in the original cert
 and inside the issuerUniqueID field in the evil cert. Using my forensic tool I
 was able to retrieve the near-collision blocks of the original cert (that is not
 available and might never be) and the chaining value before the first
 near-collision block. Using this information I was able to reconstruct the 4
 differential paths. These differential paths clearly show that a new variant
 chosen-prefix collision attack was used as well as a new differential path
 construction algorithm that are not in the literature.

Whoever designed Flame and carried out the attacks against Microsoft obviously had
 at their disposal serious hardware, a capable team of developers, and access to
 world-class cryptographers.
Counter Cryptanalysis

Collision attacks against hash functions used for signatures are a real
 danger. Even though MD5 troubles are largely behind us, SHA1, which is still
 very widely used, is also known to be weak. In an ideal world, we would have
 stopped using it by now. In reality, it will stay in use for a couple more
 years, because we have to deal with a massive ecosystem and huge inertia.
In response to this problem, Marc Stevens invented
 counter-cryptanalysis,[180] a system of looking for traces of successful collision attacks in
 certificates, as described in the abstract of the research paper:
We introduce counter-cryptanalysis as a new paradigm for strengthening
 weak cryptographic primitives against cryptanalytic attacks. Redesigning a
 weak primitive to more strongly resist cryptanalytic techniques will
 unavoidably break backwards compatibility. Instead,
 counter-cryptanalysis exploits unavoidable
 anomalies introduced by cryptanalytic attacks to detect and block
 cryptanalytic attacks while maintaining full backwards compatibility.

TURKTRUST

In December 2012, Google uncovered another serious PKI problem thanks to the public
 key pinning mechanism supported by the Chrome browser. Pinning is a mechanism that
 allows user agents to check that only authorized CAs are issuing certificates for
 specific web sites. Chrome ships with a small, hardcoded list of sites, but they are
 some of the most visible sites in the world.[181]
In December 2012, when a Chrome user encountered a certificate that did not match with
 the hardcoded built-in
 list,
 their browser communicated the entire offending certificate chain back to Google. With
 access to the chain, they were able to link the rogue certificate to TURKTRUST, a
 Turkish certification authority.[182]
The invalid subordinate certificates were promptly revoked by all parties. TURKTRUST
 published a detailed report only a couple of days later and continued to provide regular updates.[183] We learned that a mistake had been made in August 2011 at TURKTRUST during a
 transition between two system installations, causing two certificates issued on that day
 to be marked as CA certificates. The mistake remained undetected for about 15 months,
 during which time the certificates were used as humble server certificates.
At some point in December 2012, a firewall with MITM capabilities was installed at
 EGO, one of the two organizations in possession of a misissued subordinate CA
 certificate. A contractor imported the certificate into the firewall, which started to
 perform its MITM function by generating fake web site certificates on demand. In the
 process, a clone of one of Google’s certificates was made and used and subsequently
 detected by Chrome.
It’s not clear if the contractor knew that the certificate in question was a CA
 certificate. If you’re troubleshooting a MITM device and you are not familiar with PKI,
 importing any valid certificate you have sitting around seems like a thing that you
 might try.
The browser root store operators accepted TURKTRUST’s position that the
 incident was the result of an administrative error. There was no evidence of attack
 against the CA; fake certificates were not seen outside EGO’s own network.
 Mozilla asked TURKTRUST to undergo an out-of-order audit, and Google and Opera decided
 to stop recognizing TURKTRUST’s EV certificates.

ANSSI

In December 2013, Google announced that Chrome was revoking trust in a subordinate CA
 certificate issued by ANSSI (Agence nationale de la sécurité des systèmes
 d’information), a French network and information security agency. A few
 days later, the trust in the parent ANSSI certification authority was restricted to
 allow only certificates issued for the domain names corresponding to French territories
 (.fr being the main such top-level domain name).[184]
The reason for the revocation was the discovery that the subordinate CA certificate
 had been used in a transparent interception (man-in-the-middle) device running on the
 agency’s network. As a result, certificates for various domain names were generated,
 some of which belonged to Google. Once again, Chrome’s pinning of Google’s certificate
 detected a misuse of the PKI.
Mozilla[185] and Microsoft[186] also disabled the offending CA certificate. The agency issued a brief
 statement blaming human error for the problem. There’s been no evidence that the
 inappropriate certificate was used anywhere outside the network of the French Treasury.[187]
As is usually the case, a discussion followed on
 mozilla.dev.security.policy.[188]
 In addition to more details of the incident being provided, various other problems
 with how ANSSI used the CA certificate were uncovered. For example, many of their
 certificates did not include any revocation information. Unusual activity was detected
 on their CRLs, with thousands of certificates suddenly appearing on previously empty
 lists. It’s not clear if and how the incident concluded. According to their own
 admission, ANSSI will be unable to comply with Baseline Requirements until at least
 December 2015, which is two years after Mozilla’s deadline.[189]

[123] Erroneous VeriSign-Issued Digital Certificates Pose Spoofing Hazard
 (Microsoft Security Bulletin MS01-017, 22 March 2001)

[124] How to Recognize
 Erroneously Issued VeriSign Code-Signing Certificates (Microsoft,
 retrieved 3 July 2014)

[125] Microsoft, VeriSign, and Certificate Revocation (Gregory L. Guerin,
 20 April 2001)

[126] How to Remove
 a Root Certificate from the Trusted Root Store (Microsoft, retrieved
 3 July 2014)

[127] DNS vuln + SSL cert = FAIL (Intrepidus Group’s blog, 30 July
 2008)

[128] Mike’s
 Thawte tweet (31 December 2008)

[129] Nobody is perfect (Mike Zusman, 1 January 2009)

[130] Full Disclosure
 (Eddy Nigg, 3 January 2009)

[131] Criminal charges are not pursued: Hacking PKI (Mike Zusman, DEFCON 17, 31 July
 2009): slides and video.

[132] (Un)trusted
 Certificates (Eddy Nigg, 23 December 2008)

[133] SSL Certificate for Mozilla.com Issued Without Validation (SSL
 Shopper, 23 December 2008)

[134] Unbelievable! (mozilla.dev.tech.crypto, 22 December 2008)

[135] Re: Unbelievable! (Robin Alden, 25 December 2008)

[136] MD5 considered
 harmful today (Sotirov et al., 30 December 2008)

[137] Collisions for the compression function of MD5 (B. den
 Boer and A. Bosselaers, Advances in Cryptology,
 1993)

[138] Cryptanalysis of MD5 Compress (H. Dobbertin, May
 1996)

[139] Collisions
 for hash functions MD4, MD5, HAVAL-128, and RIPEMD (Wang
 et al., 2004)

[140] Colliding X.509 Certificates based on MD5-collisions
 (Lenstra, Wang, de Weger, 1 March 2005)

[141] Colliding X.509 Certificates for Different Identities
 (Stevens, Lenstra, de Weger, 23 October 2006)

[142] MD5
 considered harmful today (Sotirov et al., 30 December
 2008)

[143] What is
 Flame? (Kaspersky Lab)

[144] CWI cryptanalyst discovers new cryptographic attack variant in
 Flame spy malware (CWI, 7 June 2012)

[145] PKI is obviously a tricky business to be in, which is why in cryptography
 there are all sorts of best practices and defense-in-depth measures designed
 to kick in when everything else fails. A certificate designed to sign other
 certificates incorporates a special X.509 v3 extension called
 Basic Constraints, with the CA
 bit set to true. This extension also has a parameter
 called pathlen, which can be used to restrict the depth
 of subsequent CA certificates. If the pathlen parameter
 in RapidSSL’s CA certificate had been set to zero (which means that
 no further subordinate CA certificates are allowed), the rogue CA
 certificate would have been useless.

[146] Verisign and responsible disclosure (Alexander Sotirov, 6
 January 2009)

[147] This morning’s MD5 attack - resolved (Tim Callan, 30 December
 2008)

[148] Even though they requested a large number of certificates, most of them
 were reissued, which RapidSSL allowed for free.

[149] Comodo Report of Incident (Comodo, 22 March 2011)

[150] Strictly speaking, this is not an entirely reliable indicator of certificate
 use, because an active man-in-the-middle attacker can suppress all OCSP traffic
 from the victim.

[151] Bug
 642395: Deal with bogus certs issued by Comodo partner
 (Bugzilla@Mozilla, reported 17 March 2011)

[152] Detecting Certificate Authority compromises and web browser
 collusion (Jacob Appelbaum, 22 March 2011)

[153] RE: Web Browsers and Comodo Announce A Successful Certificate Authority
 Attack, Perhaps From Iran (Robin Alden, 29 March 2011)

[154] A message from Comodo
 Hacker (ComodoHacker, 26 March 2011)

[155] New hack on Comodo reseller exposes private data (The Register, 24
 May 2011)

[156] Another status update
 message (ComodoHacker, 6 September 2011)

[157] Response to some
 comments (ComodoHacker, 7 September 2011)

[158] Cyber War (Eddy
 Nigg, 9 September 2011)

[159] Is This MITM Attack to Gmail’s SSL ? (alibo, 27 August
 2011)

[160] DigiNotar public report version 1 (Fox-IT, 5 September
 2011)

[161] Black Tulip Update (Dutch government, 13 August 2012)

[162] When a TLS client encounters a certificate that contains OCSP information,
 it contacts the designated OCSP server to determine if the certificate has
 been revoked. This method of tracking is not foolproof, because the MITM
 attacker can suppress all traffic to the OCSP server. Browsers tend to fail
 quietly when they encounter OCSP communication failures.

[163] DNS cache poisoning is an attack against DNS infrastructure in which the
 attacker exploits weaknesses in the DNS protocol as well as some
 implementations. Using clever tricks along with packet flooding, it might be
 possible to trick a caching DNS server into delegating domain name decisions
 from the actual owner to the attacker. If that happens, the attacker
 determines what IP addresses are returned for domain names in the attacking
 space. A successful attack will impact all users connecting to the caching
 DNS server. During the DigiNotar MITM attacks in Iran, some users reported
 that changing their DNS configuration from their ISP’s servers to
 other servers (e.g., Google’s) stopped the attacks.

[164] Striking Back...
 (ComodoHacker, 5 September 2011)

[165] September 2011 Security Incident Report (GlobalSign, 13
 December 2011)

[166] ComodoHacker’s
 Pastebin (retrieved 7 August 2014)

[167] ich sun on
 Twitter (retrieved 7 August 2014)

[168] But not brute force in the sense that all possible numbers are
 tried. It’s more efficient to use one of the integer factorization
 methods, for example, the general number field
 sieve (GNFS).

[169] Bug
 #698753: Entrust SubCA: 512-bit key issuance and other CPS violations;
 malware in the wild (Bugzilla@Mozilla, 1 November 2011)

[170] Entrust
 Bulletin on Certificates Issued with Weak 512-bit RSA Keys by Digicert
 Malaysia (Entrust, retrieved 3 July 2014)

[171] Revoking Trust in DigiCert Sdn. Bhd Intermediate Certificate
 Authority (Mozilla Security Blog, 3 November 2011)

[172]
 DigiCert, Inc. Of No Relation to Recent “Digi” Insecure Certificates
 (DigiCert, Inc., 1 November 2011)

[173] Identification of a New Targeted Cyber-Attack (MAHER, 28 May
 2012)

[174] Flame / Skywiper
 / Flamer reports (CrySyS Lab, 31 May 2012)

[175] Analyzing the MD5 collision in Flame (Alex Sotirov, 11 June
 2012)

[176] Web Proxy Autodiscovery Protocol (Wikipedia, retrieved 3 July
 2014)

[177] Snack Attack: Analyzing Flame’s Replication Pattern (Alexander
 Gostev, 7 June 2012)

[178] In PKI, when an extension is marked
 critical,
 certificate chain validation can be successful only if the client
 (performing the validation) understands the extension. Otherwise, validation
 fails. The idea behind this feature is that a critical extension might
 contain some information of which understanding is required for robust
 validation.

[179] Microsoft Sub-CA used in malware signing (Marc Stevens, 12 June
 2012)

[180] Counter-cryptanalysis (Marc Stevens, CRYPTO 2013)

[181] I discuss public key pinning in the section called “Pinning
 ” in Chapter 10.

[182] Enhancing digital certificate security (Google Online Security Blog,
 3 January 2013)

[183] Public Announcements (TURKTRUST, 7 January 2013)

[184] Further improving digital certificate security (Google Online
 Security Blog, 7 December 2013)

[185] Revoking Trust in one ANSSI Certificate (Mozilla Security blog, 9
 December 2013)

[186] Improperly Issued Digital Certificates Could Allow Spoofing
 (Microsoft Security Advisory 2916652, 9 December 2013)

[187] Revocation of an IGC/A branch (ANSSI, 7 December 2013)

[188] Revoking Trust in one ANSSI Certificate
 (mozilla.dev.security.policy, 9 December 2013)

[189] Announcing Version 2.1 of Mozilla CA Certificate Policy (Mozilla
 Security Blog, 15 February 2013)

5 HTTP and Browser Issues

In this chapter, we focus on the relationship between TLS and HTTP. TLS was designed to
 secure TCP connections, but there is so much more going on in today’s browsers. In many
 cases, the problems that arise come from the browser vendors’ struggle to deal with legacy
 web sites; they’re afraid to “break” the Web.
Sidejacking

Sidejacking is a special case of web application session
 hijacking in which session tokens[190] are retrieved from an unencrypted traffic stream. This type of attack is
 very easy to perform on a wireless or local network. In the case of a web site that does
 not use encryption, all the attacker needs to do is observe the unencrypted traffic and
 extract the session token from it. If a site uses encryption only partially, two types
 of mistakes are possible:
	Session leakage by design
	Some sites use encryption to protect account passwords but revert to
 plaintext as soon as authentication is complete. This approach does result
 in a slight improvement of security, but such sites effectively only end up
 replacing leakage of one type of credentials (passwords) with the leakage of
 another type (session tokens). Session tokens are indeed somewhat less
 valuable because they are valid only for a limited period of time (assuming
 session management is correctly implemented), but they are much easier to
 capture and almost as easy to abuse by a motivated attacker.

	Session leakage by mistake
	Even when you try very hard to use encryption on an entire site, it is
 easy to make a mistake and leave one or more resources to be retrieved over
 plaintext. Even when the main page is protected, a single plaintext resource
 retrieved from the same domain name may cause session leakage.[191] This is known as a mixed content problem,
 and I discuss it in detail later in this chapter.

Figure 5.1. Wireshark network capture showing a session cookie in the clear
[image: Wireshark network capture showing a session cookie in the clear]

Sidejacking works well against any type of session token transport, because the
 attacker has full access to the communication between a user and the target web site.
 Thus, this attack can be used to obtain not only session tokens placed in cookies (the
 most common transport mechanism) but also those placed in URLs (request path or
 parameters). Once a session token is obtained, the attacker can reuse the captured value
 to communicate directly with the web site and assume the identity of the victim.
In the security community, sidejacking became better known in August 2007, when Robert
 Graham and David Maynor discussed it at Black Hat USA and released the accompanying
 Ferret and Hermit tools[192] that automate the attack.
A couple of years later, a Firefox add-on called Firesheep,[193] written by Eric Butler, made a much bigger splash because it made
 sidejacking trivially easy to carry out. Firesheep become very widely known and even
 caused several high-profile web sites to switch to full encryption. Firesheep was
 quickly followed by a detection tool called BlackSheep[194] and a counterattack tool called FireShepard.[195] In addition, a tool called Idiocy[196] was released to automatically post warnings to compromised accounts.
Firesheep is no longer maintained. For a more recent tool of this type, consider CookieCadger,[197] a passive tool for HTTP auditing developed by Matthew Sullivan.

Cookie
 Stealing

Sidejacking, in the form discussed in the previous section, cannot be used against web
 sites that use encryption consistently, with 100% coverage. In such cases, the session
 tokens are always hidden behind a layer of encryption. You may think that such complete
 implementation of TLS also means that sidejacking is not possible, but that’s not the
 case. A common mistake made by programmers is to forget to secure their cookies for use
 with encryption. When this happens, an attacker can use a clever technique called
 cookie stealing to obtain the session tokens after
 all.
By default, cookies work across both insecure and secure transports on ports 80 and
 443. When you deploy TLS on a web site, you are also expected to mark all cookies as
 secure, letting the browsers know how to handle them. If you don’t do this, at the first
 glance it may not appear that a vulnerability exists, because your users are always
 fully protected. But this “works” only because browsers are not submitting any requests
 to plaintext port 80. If an attacker can find a way to get them to do this, the cookies
 will be revealed.
Conceptually, the attack is simple: the attacker is an active man in the
 middle (MITM) observing a victim’s complete
 internet
 traffic.
 The
 attacker cannot attack the encrypted traffic to the
 target web site, but he can wait for the victim to submit an unencrypted HTTP request to
 any other web site. At that point,
 the
 attacker steps in, hijacks the insecure connection, and responds to
 one of the victim’s plaintext HTTP requests by redirecting the browser to the target web
 site on port 80. Because any site can issue a redirection to any other site, the browser
 happily follows.
The end result is a plaintext connection to the target web site, which includes all
 nonsecure cookies in the browser’s possession. Against a typical web application that
 doesn’t mark cookies secure, the attacker now has the victim’s session tokens and can
 proceed to hijack the session.
The attack works even if the target web site is not actually responding on port 80.
 Because the attacker is in the middle, he can impersonate any plaintext server on any
 port.
Another approach that could be used by the attacker is to redirect the victim to the
 same hostname and port 443 (which is always open for a secure site) but force plaintext
 with http://www.example.com:443. Even though this request fails because the
 browser is attempting to speak plaintext HTTP on an encrypted port, the attempted
 request contains all the insecure cookies and thus all the information the attacker
 wants to obtain.
Figure 5.2. Man-in-the-middle attacker stealing unsecured cookies
[image: Man-in-the-middle attacker stealing unsecured cookies]

Mike Perry was the first to bring up this problem in public, shortly after sidejacking
 itself was publicized. But his email to the Bugtraq mailing list[198] went largely unnoticed. He persisted with a talk[199] at DEFCON 16 the following year as well as a proof-of-concept tool called CookieMonster.[200]

Cookie Manipulation

Cookie manipulation attacks are employed in situations in which the attacker can’t
 access the existing cookies because they are properly secured. By exploiting the
 weaknesses in the cookie specification, he is able to inject new cookies and overwrite
 and delete existing application cookies. The main message in this section is that the
 integrity of an application’s cookies can’t always be guaranteed, even when the
 application is fully encrypted.
Understanding HTTP Cookies

HTTP cookies are an extension mechanism designed to enable client-side persistence
 of small amounts of data. For each cookie they wish to create, servers specify a
 name and value pair along with some metadata to describe the scope and lifetime.
 Cookies are created using the Set-Cookie HTTP response
 header:
Set-Cookie: SID=31d4d96e407aad42; Domain=www.example.com; Path=/; Secure; HttpOnly
Set-Cookie: lang=en-US; Expires=Wed, 09 Jun 2021 10:18:14 GMT
User agents store cookies in so-called cookie jars. On
 every HTTP transaction, they look into their jars for applicable cookies and submit
 all of them using the Cookie HTTP request header:
Cookie: SID=31d4d96e407aad42; lang=en-US
From their initial creation, cookies had been very poorly specified and remained
 so for a very long time. As a result, implementations are inconsistent and contain
 loopholes. As you will see in this chapter, many of the loopholes can be exploited
 for attacks. Proper documentation became available only in 2011, in RFC 6265.[201]
From the security point of view, the problem with cookies is twofold: (1) they were poorly designed to begin with,
 allowing behavior that encourages security weaknesses, and (2) they are not in sync with the main security
 mechanism browsers use today, the same-origin policy
 (SOP).
	Loose hostname scoping
	Cookies are designed for sharing among all hostnames of a particular
 domain name as well as across protocols and ports. A cookie destined for
 example.com will work on all subdomains (e.g.,
 www.example.com and secure.example.com).
 Similarly, a hostname such as blog.example.com emits cookies
 only for blog.example.com by default (when the
 Domain parameter is not specified) but can also
 explicitly expand the scope to the parent example.com. As a
 result, a rogue server is able to inject cookies into other sites and
 applications installed on hostnames that are sharing the same domain
 name. I’ll call them related hostnames or
 related sites.
This loose approach to scoping is in contrast with SOP rules, which
 generally define a security context with an exact match of protocol,
 hostname, and port. Deploying a secure web site is much more difficult,
 because cookies can be set from any related hostname, substantially
 increasing the attack surface.

	Servers do not see metadata
	Servers receive only cookie names and values, but not any other
 information. Crucially, they don’t know the
 origin
 of
 the
 cookies.
 If this information were available, servers would be able to reject
 cookies that they themselves didn’t issue.

	Lack of integrity of security cookies
	The fact that cookies work seamlessly across both HTTP and HTTPS
 protocols is a major worry. Although you can use the
 secure attribute to denote a cookie that is
 allowed to be submitted only over an encrypted channel, insecure and
 secure cookies are stored within the same namespace. What’s even worse,
 the security flag is not part of the cookie identity; if the cookie
 name, domain, and path match, then an insecure cookie will overwrite a
 previously set secure one.

In a nutshell, the major flaw of HTTP cookies is that their integrity is not
 guaranteed. In the remainder of this section, I focus on the security implications
 of the cookie design on TLS; for wider coverage of the topic, including coverage of
 various application security issues, I recommend Michal Zalewski’s book
 The Tangled Web, published by No Starch Press in
 2011.

Cookie Manipulation
 Attacks

There are three types of cookie manipulation attacks. Two of them can result in
 the creation of new cookies and so fall under cookie
 injection. The third one allows cookies to be deleted. As is
 customary in application security, the attacks bear somewhat unusual and dramatic
 names.
Various researchers have rediscovered these problems over the years, giving them
 different names. Although I prefer cookie injection, because it accurately describes
 what is going on, other names you might come across are cross-site
 cooking,[202]
 cookie fixation, cookie forcing,[203] and cookie tossing.[204]
Cookie
 Eviction

Cookie eviction is an attack on the browser’s cookie
 store. If for some reason the attacker does not like the cookies that are in the
 browser’s store, he might attempt to exploit the fact that cookie stores limit
 individual cookie size, the number of cookies per domain name, and the combined
 cookie size. By submitting a large number of dummy cookies, the attacker
 eventually causes the browser to purge all the real cookies, leaving only the
 forced ones in the store.
Browser
 cookie jars are restricted in various ways. The overall number of cookies is
 limited,
 and so is the storage space. There is also a per-host limit (usually of several
 dozen), which is imposed in order to prevent a single host from taking over the
 entire jar. Individual cookies are usually limited to around 4,096 bytes. Thus,
 a cookie eviction attack might require the use of multiple domain names to fully
 overflow a cookie jar.

Direct Cookie Injection

When performing direct cookie injection, the attacker is faced with a site
 that uses secure cookies. Because of that, he is not able to read the cookies
 (without breaking encryption), but he can create new cookies or overwrite the
 existing ones. This attack exploits the fact that insecure and secure cookies
 live in the same namespace.[205]
The attack is conceptually similar to the one used for cookie stealing in the
 previous section: the attacker intercepts any plaintext HTTP transaction
 initiated by the victim and uses it to force a plaintext HTTP request to the
 target web site. He then intercepts that request and replies with an HTTP
 response that includes arbitrary cookies. The attack could be as simple
 as:
Set-Cookie: JSESSIONID=06D10C8B946311BEE81037A5493574D2
In practice, for the overwriting to work, the forced cookie’s name, domain,
 and path must match that of the original. The attacker must observe what
 metadata values are used by the target web site and replicate them in the
 attack. For example, the session cookies issued by Tomcat always have the path
 set to the web site root:
Set-Cookie: JSESSIONID=06D10C8B946311BEE81037A5493574D2; Path=/

Cookie Injection From Related Hostnames

When direct cookie injection is not possible (i.e., it’s not possible to
 impersonate the target web site), the attacker might attack the fact that
 cookies are shared among related hostnames. If the attacker can compromise some
 other site on a related hostname, he might be able to inject a cookie from there.[206]
For example, you might be running a strongly secured
 www.example.com but also have a blogging site, installed at
 blog.example.com and hosted by a third-party with lesser focus on
 security. If the attacker can find a cross-site scripting
 (XSS) vulnerability in the blogging application, he will be able to manipulate
 the cookies of the main application. The attack is the same as in the previous
 section: the victim is forced to submit an HTTP request to the vulnerable site,
 where arbitrary cookies can be set.
Note
Of course, any situation in which there are sites run by separate entities
 or departments should be a cause for caution. Not only are the members of
 the other groups a potential weak link, but they can be threats
 themselves.

If the victim does not already hold any cookies from the target web site, the
 attacker is in luck. Whatever cookies he sets will be used by the victim.
 Assuming XSS, attacking is as simple as executing the following code (from a
 page on blog.example.com):
document.cookie = 'JSESSIONID=FORCED_ID; domain=example.com';
Notice how the attacker must use the domain attribute to
 expand the scope of the cookie from the default blog.example.com to
 example.com, which will then be valid for the intended target,
 www.example.com.
Getting the First Cookie

More often than not, the victim will already hold some genuine cookies. If
 the attacker injects another cookie with the same name (as in the previous
 example), the browser will accept both cookies and send them with every
 request to the target web site:
Cookie: JSESSIONID=REAL_ID; JSESSIONID=FORCED_ID
This happens because the browser sees these two values as separate
 cookies; their name, domain, and path attributes do not match exactly. But
 although the attacker has successfully injected a cookie, the attack cannot
 proceed; when there are multiple cookies with the same name, typically only
 the first one is “seen” by web applications.
From here, the attacker can attempt to evict all genuine cookies from the
 store by using a large amount of dummy cookies. That might work, but it’s
 tricky to pull off.
Alternatively, he may try to tweak cookie metadata to push the forced
 cookie into the first position. One such trick is to use the
 path attribute,[207] which exploits the fact that browsers submit more specific
 cookies first:
document.cookie = 'JSESSIONID=SECOND_FORCED_ID; domain=example.com; path=/admin';
Assuming the browser is accessing a URL at or below /admin/, it
 will submit the cookies in the following order:
Cookie: JSESSIONID=SECOND_FORCED_ID; JSESSIONID=REAL_ID; JSESSIONID=FORCED_ID
If there are multiple sections that need to be targeted, the attacker can
 issue multiple cookies, one for each path. But there’s still one situation
 in which forcing a cookie from a related hostname might overwrite the
 original cookie: when the target web site explicitly sets the cookie domain
 to the root hostname (e.g., example.com).

Overwriting Cookies Using Related Hostnames

Overwriting a cookie from a related hostname does not always work because
 most sites set cookies without explicitly specifying the domain. These
 cookies are marked as host-only. When injecting from a
 related domain name, you have to specify a domain, which means that such a
 cookie will never match the original one even if the hostnames are the
 same.
There is another reason overwriting a cookie from a related hostname
 sometimes fails: you are not allowed to issue cookies for a sibling
 hostname. From blog.example.com, you can issue a cookie for
 example.com and www.blog.example.com but not for
 www.example.com.
This brings me to two cases in which overwriting is possible:
	For sites that explicitly “upgrade” the cookie domain to their
 root (e.g., example.com). I tested this case using
 Firefox 28, but most other browsers should follow the same
 behavior.

	For Internet Explorer (tested with version 11), which does not
 make a distinction between explicitly and implicitly set domains.
 However, because the names still have to match, this attack will
 work only against sites that issue cookies from the root (e.g.,
 example.com).

Overwriting Cookies Using Fake Related Hostnames

There is one more case in which the attacker will be able to overwrite the
 original cookie value: the web site is explicitly setting the cookie domain,
 but it does not have to be the root (as in the previous case).
That’s because the MITM attacker can choose which related hostnames he
 attacks. The core of the Internet runs on unauthenticated DNS, which means
 that the attacker can take control of the DNS and make up arbitrary
 hostnames. For example, if he needs to attack www.example.com, he
 can make up a subdomain, say, www.www.example.com. From
 that name, he can then issue a cookie for
 www.example.com.

Impact

Anecdotally, many web sites are designed under the assumption that the attacker
 can’t discover or influence what’s in the cookies. Because that’s not true, things
 can break, but exactly how will depend on the particular application. For
 example:
	XSS
	If developers don’t expect cookies to change, they might use them in
 insecure ways. For example, they might output them to HTML directly, in
 which case a compromise can lead to a XSS vulnerability.

	CSRF defense bypass
	Some web site designs rely on cross-site request
 forgery (CSRF) defenses, which require that a token
 placed in the page parameters matches that in the cookie. Being able to
 force a particular cookie value onto a client defeats this
 approach.

	Application state change
	Developers quite often treat cookies as secure storage resistant to
 tampering. It might happen that there is some part of the application
 that relies on a cookie value for decision making. If the cookie can be
 manipulated, so can the application. For example, there might be a
 cookie named admin set to 1 if the
 user is an administrator. Clearly, users can always manipulate their own
 cookies and thus attack the application, so this is not necessarily a
 TLS issue. However, it can still be an attack vector used by a MITM
 attacker. The proposed mitigation techniques (discussed later in this
 section) defend against all attacks of this type.

	Session fixation
	Session fixation is a reverse session hijacking
 attack. Rather than obtaining the victim’s session ID, the attacker
 connects to the target web site to obtain a session ID of his own and
 tricks the victim into adopting it. This attack is not as powerful as
 session hijacking, but it could have serious consequences depending on
 the features of the target site.

Mitigation

Cookie manipulation attacks can generally be addressed with appropriate mitigation
 steps that focus on preventing the attacker from forging cookies and checking that
 received cookies are genuine:
	Deploy HTTP Strict Transport Security with subdomain coverage
	HTTP Strict Transport Security (HSTS)[208] is a relatively new standard that enforces encryption on the
 hostname for which it is enabled. Optionally, it can enforce encryption
 on all subdomains. With this approach, a MITM attacker cannot inject any
 cookies using DNS trickery without breaking encryption.
HSTS significantly reduces the attack surface, but it is not
 foolproof. First, it’s not supported by all browsers. Second, it does
 not handle cases in which genuine (encrypted) related sites are
 compromised or run by different, untrusted entities. I discuss HSTS at
 length in the section called “HTTP Strict Transport Security” in Chapter 10.

	Validate cookie integrity
	The best defense against cookie injection is integrity validation:
 ensuring that the cookie you received from a client originated from your
 web site. This can be achieved by using a Hash-based Message
 Authentication Code (better known by its acronym, HMAC).[209]
 Cookies that don’t need to be accessed from JavaScript can be
 encrypted for additional protection.
It is critical that the integrity validation scheme is designed in
 such a way that cookies issued to one user are not valid for another.
 Otherwise, the attacker could obtain a valid cookie from a web site
 (using his own account) and inject it into the victim’s account.
Cookie integrity validation and encryption schemes can’t
 help secure session cookies, which are effectively a time-limited
 password-replacement mechanism. Channel ID is an effort to address this
 problem by creating a cryptographic binding between a browser and a site
 at the TLS level.[210]
 This approach, known as channel
 binding, effectively creates a session that could be
 used to replace HTTP sessions. In practice, it’s more likely that the
 existing cookie-based mechanisms would be kept, but tied to the
 provably-secure channel as a defense against session hijacking.

SSL Stripping

SSL stripping (or, more accurately, HTTPS
 stripping) attacks exploit the fact that most users begin their browsing
 session on a plaintext portion of a web site or type addresses without explicitly
 specifying the https:// prefix (browsers try plaintext access first). Because
 the plaintext traffic of these users is fully visible and vulnerable, it can be modified
 at will by an active network attacker.
For example, if a web site normally contains a link to the secure server, the attacker
 can rewrite the content to replace the secure link with a plaintext one. Without a
 secure link to click on, the victim is forever prevented from entering the secure area.
 In the meantime, the attacker is responding to those plaintext links by proxying the
 genuine web site content (possibly obtained over TLS). At this point, the attacker can
 not only observe sensitive information but can also modify the requests and responses at
 will.
Figure 5.3. Man-in-the-middle attack variations
[image: Man-in-the-middle attack variations]

HTTPS stripping attacks rely on the fact that most users can not tell the difference
 between insecure and secure browsing. Faced with a user who can spot the difference, the
 attacker can attempt a tricky alternative and redirect the user to a secure web site
 that’s under the attacker’s full control but the name of which is very similar to that
 of the target web site. Common tricks include very long addresses that contain the
 entire target address within (e.g., https://victim.com.example.com) or
 addresses that differ from the real ones only by one character or that use similar
 Unicode characters.
Behind the scenes, the attacker may or may not actually be using a secure connection
 to the target web site, but that’s little consolation for the attacked user, because the
 attacker can not only observe the supposedly secure content but can also modify it at
 will.

 From the attacker’s point of
 view, the best aspects of HTTPS stripping attacks are the fact that they can be easily
 automated and that easy-to-use tools are widely available. For example, two well-known
 tools are sslstrip[211] and SSLsplit.[212]

MITM Certificates

HTTPS stripping will probably work against most users (assuming incorrectly secured
 sites), but there will be situations when it fails. Some users do notice the difference
 between secure and insecure sites and even actively check for the padlock or (rarely)
 the green glow of EV certificates. Some users also bookmark secure sites, going straight
 to the secure area from their first request.
The man in the middle is still able to redirect all traffic to go through him, but
 exploitation requires much more effort. Here are some possible alternative attack
 methods:
	Exploitation of validation flaws
	The security of TLS depends on the client correctly validating the
 credentials presented to it. If the validation is not implemented correctly,
 it might be possible to use a special invalid certificate or a certificate
 chain that can’t be distinguished from a valid one.

	Rogue certificates
	Rogue certificates are fraudulent CA certificates
 that are accepted by clients as genuine. They are difficult to obtain, but
 they are still a possibility. For example, one such certificate was forged
 in an attack on RapidSSL in 2008. You can read more about it in the section called “RapidSSL Rogue CA Certificate” in Chapter 4. Another possibility is that a powerful
 attacker can brute-force the weak 1,024-bit private keys belonging to some
 CA certificates. In 2014, there are still many such weak certificates
 trusted by major browsers. It is estimated that breaking a 1,024-bit key
 costs only about $1 million, although it might take about a year to execute.[213]
With a rogue certificate in hand, the attacker will be invisible to
 everyone except the most paranoid users. Combined with the fact that the
 MITM can interfere with OCSP revocation checks and that most browsers ignore
 OCSP failures, if the attacker can maintain full control over a victim’s
 Internet connection over an extended period of time it might also be
 effectively impossible to revoke a rogue certificate.

	Self-signed certificates
	If everything else fails, the attacker may try the least sophisticated
 approach, which is to present the victim with a self-signed certificate that
 has most fields copied from the real one. Such a certificate is bound to
 generate a warning, but users are generally known to click through such
 warnings. More about that in the next section.

A very well-known tool for this
 category of MITM attacks is sslsniff.[214]

Certificate Warnings

For proper security, cryptography needs authentication. If you can’t tell that you’re
 talking to the right party, then all bets are off. Someone could be hijacking the
 communication channel to impersonate your intended recipient, and you wouldn’t be able
 to tell. It’s a situation similar to picking up the phone and talking to someone on the
 other end without knowing if they are who they claim they are.
In the context of TLS, we use certificates for authentication. (TLS supports other
 authentication methods, but they are rarely used.) When you connect to a server, you
 have a particular hostname in mind, and the expectation is that the server will present
 a certificate that proves that they have the right to handle traffic for that
 hostname.
If you receive an invalid certificate, the right thing to do is to abandon the
 connection attempt. Unfortunately, browsers don’t do that. Because the Web is full of
 invalid certificates, it’s almost guaranteed that none of the invalid certificates you
 encounter will be a result of an attack. Faced with this problem, browser vendors
 decided a long time ago not to enforce strict TLS connection security, instead pushing
 the problem down to their users in the form of certificate
 warnings.
Which brings me to one of the ugliest truths about TLS: its sole purpose is to protect
 you from man-in-the-middle attacks, but when the attack comes all you will get is a
 certificate warning from your browser. Then it will be down to you
 to determine if you are under attack.
Figure 5.4. Examples of certificate warnings in current browsers
[image: Examples of certificate warnings in current browsers]

Why So Many Invalid Certificates?

There’s plenty of anecdotal evidence about the prevalence of invalid certificates.
 It’s hard to actually find someone who has not been exposed to them. Here are some
 of the root causes:
	Misconfigured virtual hosting
	Today, most web sites run only on port 80 and don’t use encryption. A
 common configuration mistake is to put such plaintext sites on the same
 IP address as some other site that uses encryption on port 443. As a
 result, users who attempt to access the plaintext sites via a
 https prefix end up in the wrong place; the certificate
 they get doesn’t match the intended name.
Part of the problem is that, at the technical level, we don’t have a
 mechanism for web sites to state if they support encryption. In that
 light, the correct way to host plaintext sites is to put them on an IP
 address on which port 443 is closed.
In 2010, I scanned about 119 million domain names, searching for
 secure sites.[215] The lists included all .com, .net, and .org domain names. I
 found 22.65 million (19%) secure sites hosted on roughly two million IP
 addresses. Of the secure sites, only about 720,000 (3.2%) sites had
 certificates whose names matched the intended hostname.
Having a certificate with the right name is a good start, but not
 enough. Roughly 30% of the name-matched certificates in the 2010 survey
 could not be trusted due to other problems.

	Insufficient name coverage
	In a small number of cases, certificates are purchased and deployed,
 but the site operator fails to specify all required hostnames. For
 example, if you’re hosting a site at www.example.com, the
 certificate should include that name but also the plain
 example.com. If you have other domain names pointing to
 your web site, the certificates should include them, too.

	Self-signed certificates and private CAs
	Certificates
 that are self-signed or issued by private CAs are not appropriate for
 use
 with
 a general audience. Such
 certificates can’t be easily and reliably distinguished from
 certificates used in MITM attacks. In my survey, about 48% of the trust
 failures fell into this category.
Why are people using these certificates, then? There are many reasons,
 including: (1) purchasing,
 configuring, and renewing certificates is additional work and requires
 continuous effort; (2) up
 until a few years ago, certificates used to be expensive; and (3) some people believe that
 publicly trusted certificates should be free and refuse to buy them.
 However, the simple truth is that only publicly trusted certificates are
 appropriate for public web sites. We don’t have an alternative at this
 time.

	Certificates used by appliances
	These days, most appliances have web-based administrative user
 interfaces and require secure communication. When these devices are
 manufactured, the hostname and IP address they will use is not known,
 which means that the manufacturers cannot install valid certificates
 onto them. In theory, end users could install valid certificates
 themselves, but many of these appliances are seldom used and are hardly
 worth the effort. In addition, many of the user interfaces do not allow
 user-provided certificates to be used.

	Expired certificates
	The other substantial reason for invalid certificates is expiration.
 In my survey, 57% of the failures fell into this category. In many
 cases, site owners forget to renew their certificates. Or, they give up
 on having valid certificates altogether but don’t take the old ones
 down.

	Misconfiguration
	Another frequent problem is misconfiguration. For a certificate to be
 trusted, each user agent is required to establish a chain of trust from
 the server certificate to a trusted root. Servers are actually required
 to provide the entire chain, minus the trusted root. But according to
 SSL Pulse, about 6% of the servers in their data set has an incomplete chain.[216] In some cases, browsers will be able to work around that,
 but often they won’t.

When it comes to user experiences, one study from 2013 looked at about 3.9 billion
 public TLS connections and found that 1.54% of them resulted in certificate warnings.[217] But that’s only on the public Internet, where sites generally try to
 avoid warnings. In certain environments (e.g., intranets and internal applications),
 you might be expected to click through certificate warnings every single day as
 you’re accessing web applications required for your work.

Effectiveness of Certificate Warnings

The world would be much better without certificate warnings, but the truth is that
 browser vendors are balancing on a fine line between improving security and keeping
 their users happy. In 2008, I made a halfhearted attempt to convince Mozilla to hide
 the ability to add exceptions for invalid certificates in Firefox, in order to make
 it very difficult to bypass certificate warnings. Unsurprisingly, my bug submission
 was rejected.[218] Their response (in the form of a link to an earlier blog post),[219] was that they had tried, but the push-back from their users had been too
 strong. This is a reflection of a wider problem of misaligned priorities; browser
 vendors want increased market share, but increasing security usually has the
 opposite effect. As a result, browser vendors implement as much security as they can
 while trying to keep their most vocal users reasonably happy. Very occasionally,
 users complain about certificate warnings that come from genuine MITM attacks, and
 that reminds everyone what these warnings are for.[220] Perhaps the biggest problem with MITM attacks is that users are not
 aware of them (after all, certificate warnings are a “normal” part of life) and do
 not report them.
Still, the fact remains that the harder you make it for your users to override
 certificate warnings, the better security you provide. Today, major browsers
 generally rely on so-called interstitial or
 interruptive warnings, which take over the entire browser
 content window. The old-style dialog warnings (still used by Safari) are seen as
 ineffective; they look the same as all other dialogs we get from our machines all
 the time. Most browsers allow users to click through the warnings. When only one
 click is required to get around the obstacle, the harsh language is all that stands
 between you and the web site. As it turns out, lots of people decide to go
 on.
Early studies of certificate warning effectiveness reported high click-through
 rates. But they largely relied on controlled environments (research labs), which was
 considered unreliable by some:[221]
Furthermore, our analysis also raised concerns about the limitations of
 laboratory studies for usable security research on human behaviors when
 ecological validity is important. [...] The observed reluctance of security
 concerned people to take part in our study raises concerns about the ability of
 such studies to accurately and reliably draw conclusions about security
 practices and user behavior of the general population.

In the meantime, browser vendors started to use telemetry
 to monitor the usage of their products. That allowed for observation of users’
 behavior in their own environments, providing more accurate results. It turned out
 that Firefox had the best implementation, with only 33% of their users proceeding to
 the sites with invalid certificates. As a comparison, about 70% of Chrome users
 clicked through.[222] A later study reduced the click-through rate of Chrome users to 56% by
 mimicking the design used by Firefox.[223]

Click-Through Warnings versus
 Exceptions

The success of invalid certificate handling by Firefox could also be explained by
 the fact that it’s the only browser that doesn’t use click-through warnings.
 Instead, it makes you go through a multistep process to create a
 certificate exception, after which the certificate is
 considered as good as trusted, even on subsequent visits. It is conceivable that
 each step in the process convinces a number of users to give up and heed the
 warning.
The argument against exceptions is that you are making the use of self-signed
 certificates easier. This is certainly true, but that’s not necessarily a bad thing.
 Self-signed certificates are not inherently unsafe if used by people who know what
 they are. For example, I have an ADSL router in my house that I access over TLS. I
 am definitely not going to get a valid certificate for it, but I don’t need to click
 through a certificate warning every time I access it. Further, exceptions are
 created on a per-certificate basis. This means that if someone attacks
 me,
 a certificate warning will show again. This approach to security is known as
 trust on first use, and is successfully deployed for the
 SSH protocol on millions of servers worldwide. Another name for this approach is
 key continuity management.
Certificate exceptions are useful only for individual use and for small groups of
 technical users who know to create exceptions only when it’s safe to do so. It’s
 crucial that exceptions are created only when the users are not under attack. In my
 example, I know that the certificate on my ADSL router is not going to change by
 itself; seeing a warning would be highly unusual.

Mitigation

If you care about the security of your web site, you are probably going to be very
 worried about your users clicking through a genuine MITM attack. After all, you’re
 going through all the trouble of using valid certificates, configuring your servers,
 and otherwise making sure everything is fine on your end for their
 protection.
Clearly, there’s little you can do about the entire ecosystem, but you can protect
 your sites by supporting HSTS, which is a signal to the supporting browsers to
 adjust their behavior and adopt a stricter security posture when it comes to
 encryption. One of the features of HSTS is the suppression of certificate warnings.
 If there is an issue with the certificate on an HSTS site, all failures are fatal
 and cannot be overridden. With that, you are back in control of your own
 security.

Security Indicators

Security indicators are user interface elements that relay additional information
 about security of the current page. They typically say one of four things:
	“This page uses SSL”

	“We know what legal entity operates this web site”

	“This page uses an invalid certificate”

	“Parts of this page are not encrypted”

With exception of extended certificates, which link legal entities to web sites, the
 other indicators exist largely because web site encryption is optional and because
 browsers have lax treatment of security. In a world in which the Web was 100% encrypted
 and there were no certificate warnings and no mixed content, you’d care only about the
 presence of EV certificates.
Figure 5.5. Examples of security indicators in current browsers
[image: Examples of security indicators in current browsers]

The biggest problem with security indicators is that most users don’t pay attention to
 them and possibly don’t even notice them. We know this from several studies that focused
 on security indicators. One study used eye tracking and determined that many users spend
 little time looking at browser chrome, focusing on the content instead.[224] In the same study, none of the participants noticed the EV indicators; those
 that did paid no attention to them. This confirms results of another study, whose
 authors arrived at the same conclusion.[225]
Perhaps one of the contributing factors to the confusion is the lack of consistency,
 both among different browsers and in different versions of the same browser. User
 interface guidelines exist,[226] but they are not specific enough.
I remember how in the early days of SSL there was a huge push to educate browser users
 about the meaning of the padlock (“If you see a padlock, you’re safe.”). A couple
 of years later, browser vendors started playing with the user interface. In some cases
 (e.g., Firefox), there were changes made with every new release.
At the same time, web sites started to use the padlock on their web pages, further
 diluting the message. Thus we went from having the padlock mean one specific thing
 (encryption is present) to using it as a generic security indicator. In many cases, its
 presence is meaningless. For example, there are many sites that prominently feature a
 padlock but use no encryption.
Today, the only consistency, and only in the broad sense, is the use of green color
 for EV certificates. It’s still respected by all major browsers.
When it comes to mobile platforms, the situation seems to be worse. Due to much
 smaller screen sizes, browser vendors are trying to remove virtually all user interface
 elements, affecting security indicators in particular. With many mobile browsers, even
 security experts have a hard time distinguishing secure sites from insecure ones.[227]
 This has led some researchers to conclude that mobile users are three times more
 vulnerable to phishing attacks.[228] In addition, the security of mobile (nonbrowser) applications in general is
 difficult to assess. Although all applications should use secure protocols for backend
 communication, we don’t know if that’s actually happening, because they provide no
 indications. And, even if they did, who is to say that they’re not just displaying an
 image of a padlock without any security at all?

Mixed Content

The TLS protocol concerns itself with a single connection and focuses only on keeping
 the data secure at the network level. This separation of concerns works well for simpler
 protocols, for example, SMTP. However, some protocols (e.g., FTP and HTTP) have multiple
 connections associated with the same security context (e.g., web browsing session). TLS
 doesn’t provide any guidance for such situations; it’s up to user agent developers to
 provide a secure implementation.
When it comes to HTTPS, you’d struggle to find a page that uses only a single
 connection. On virtually all sites, HTML markup, images, style sheets, JavaScript, and
 other page resources arrive not only over multiple connections but possibly from
 multiple servers and sites spread across the entire Internet. For a page to be properly
 encrypted, it’s necessary that all the content is retrieved over HTTPS. In practice,
 that’s very often not the case, leading to mixed content security
 problems.
Note
This section covers only same-page mixed content, but the same problem exists at
 the web site level. Web sites that mix plaintext and secure pages are prone to
 development errors (e.g., use of insecure cookies or sensitive content available
 without encryption) and SSL stripping attacks.

Root Causes

To understand why mixed content issues are so pervasive, we have to go back to the
 origins of the Web and consider the breakneck pace of its evolution. The focus has
 always been on getting things done and overcoming the limits imposed by costs,
 technology, and security.
	Performance
	In the early days of SSL, its performance on the Web was very poor
 compared to the performance of plaintext HTTP. Today, servers tend to
 have fast processors and plenty of RAM, and yet we’re still concerned
 about the speed of cryptographic operations. Back in the day, the only
 way to obtain good SSL performance was to use specialized hardware
 accelerators, which were terribly expensive.
Because of the performance problems, everyone tried to stay away from
 SSL. There was no concept of providing 100% encryption coverage for web
 sites. You might even argue that such an approach was justifiable and
 that the choice was mostly between some security and no security at
 all.
Today, performance is still a concern, but it’s largely about latency.
 Because of the additional round trips required to establish a secure
 connection, there’s a slight delay when accessing a secure web
 site.

	Mashups
	At some point, the Web really took off, and the concept of
 mashups was born. Web sites no longer
 provided all of the content themselves. Instead, they mixed and matched
 content from various sites and focused on the user experience, hiding
 away content origin. In some cases, the content was freely available. In
 others, mashups operated via commercial deals.
A special case of a mashup is the use of third-party code for web site
 analytics, made extremely popular by Google when it gave its analytics
 service away for free. According to some estimates, Google Analytics is
 used on about 50% of the Web.[229]
Mashups are, generally, a nightmare for security. They’re mostly
 implemented by incorporating some JavaScript code from a third-party web
 site. Unfortunately, although this approach to site building reduces
 costs dramatically, it also gives the third-party web sites almost full
 control over all the sites that rely on them. It also creates a problem
 for web site users: with so many entities involved on the same site, it
 becomes difficult to understand what entities they’re communicating with
 and where their data is stored.
In the context of encryption, the main issue is that in many cases
 third-party content and services are not available via a secure server.
 Sometimes, secure access is available but costs more. As a result,
 people simply resorted to including insecure (plaintext) content from
 their “secure” web sites.
To illustrate this problem, consider that Google’s ad platform,
 AdSense, added support for secure delivery only in September 2013.[230]

	Infrastructure costs
	As competition among web sites grew, it became impossible to deliver a
 web site from a single geographic location and remain competitive.
 Content delivery networks (CDNs) rose in
 popularity to deliver content to visitors at the best possible
 performance. The idea is that by spreading a number of servers across
 the globe, site visitors can always talk to the fastest one.
The problem with CDNs is that they are intended to serve huge amounts
 of (usually static) data files for many customers. Encryption not only
 increases CPU and RAM requirements but also might affect caching and
 adds the burden of certificate and key management.
On top of that, there’s the issue of IP addresses. For plaintext HTTP,
 for which virtual web site hosting is widely supported, IP addresses
 don’t matter. This makes large-scale hosting and distribution easy.
 Virtual hosting of secure web sites is a different matter altogether;
 it’s still not feasible for public web sites. This means that suddenly
 you need to track the mapping of web sites to IP addresses and thus
 servers. You have to split your infrastructure into groups, which leads
 to a much more complicated architecture and increased overhead.
Plus, there’s a worldwide shortage of IPv4 addresses. Some companies
 try to work around this problem by using shared certificates for
 unrelated sites, but that’s still a significant complication.
The bottom line is that secure CDNs are possible, but they cost much
 more.

Because of all this history, browsers generally did little to provide encryption
 integrity at a page level. Mixed content issues were allowed and became deeply
 ingrained in the development culture.

Impact

The impact of mixed content issues depends on the nature of the resource that is
 not being secured. Over the years, two terms emerged: mixed passive
 content (or mixed display) for resources that
 are lower risk, for example, images, and mixed active content
 (or mixed scripting) for higher-risk content, such as HTML
 markup and JavaScript.
Mixed active content is the really dangerous category. A single unprotected
 inclusion of a JavaScript file can be hijacked by an active attacker and used to
 obtain full control over the page and perform arbitrary actions on that web site
 using the victim’s identity. The same can be said for other dangerous resource
 types, such as HTML markup (included via frames), style sheets, Flash and Java
 applications, and so on.
Mixed passive content is not as dangerous, but it still violates the integrity of
 the page. In the least dangerous case, the attacker could mess with the victim by
 sending him messages embedded in images. This could lead to phishing. It’s also
 possible to inject exploits into images, targeting browsers’ image processing code.
 Finally, some browsers are known to use content sniffing and
 might actually process an image as a script; in that case the attacker is also able
 to take control over the page.
In addition, any unencrypted resource delivered from the same hostname as the main
 page will expose the site’s session cookies over the communication link without
 encryption. As I discussed earlier in this chapter, cookies that are not properly
 secured can be retrieved by an active attacker, but with mixed content they can be
 retrieved by a passive attacker, too.

Browser Treatment

Initially, mixed content was allowed by all browsers. The vendors expected web
 site designers and programmers to understand the potential security issues and make
 the right decisions. Over time, this attitude changed and the vendors started to
 become more interested in this problem and to restrict what was allowed.
Today, most browsers tend to implement a compromise between breakage and security:
 mixed passive content is allowed, and mixed active content is not. The only catch is
 that not all browsers agree with what constitutes active content.
	Android browser
	Mixed content is allowed without any restrictions.

	Chrome
	Chrome changed its handling of mixed active content in version 14,[231] but considered the job done only with version 21.[232]
 Chrome (currently in version 36) allows passive mixed content and
 blocks active mixed content but allows insecure XMLHttpRequest
 connections. By version 38, Chrome will block all mixed active content.[233]

	Firefox
	Firefox has a long history of being able to detect and warn about
 mixed content but, due to internal implementation issues, not being able
 to block it. The bug for this issue remained open for about 12 years.[234] With version 23, Firefox finally started to block all mixed
 active content.[235]

	Internet Explorer
	Internet Explorer had mixed content detection since at least Internet
 Explorer 5 (1999). When detecting a combination of encrypted and
 plaintext resources on the same page, IE would prompt the user to decide
 how to handle the problem. Microsoft almost switched to blocking
 insecure content by default (with notification) and even deployed that
 behavior in IE 7 beta,[236] but backed down due to user pressure. They made the change
 later, in IE 9.[237] At that time, they also started allowing passive mixed
 content by default.

	Safari
	Safari currently does not block any mixed content, making it stand out
 compared to other major browsers. In fact, there was recently even a
 regression in how the issue is handled. In Safari 6 on OS X, there was a
 checkbox that allowed users to enable mixed content blocking. In version
 7, which shipped with OS X 10.9, the checkbox is now gone.

The following table shows the details of mixed content handling in major browsers
 today.
Table 5.1. Mixed content handling in major browsers; “yes” means mixed content is
 allowed [July 2014]
	 	Images	CSS	Scripts	XHR	WebSockets	Frames
	Andriod Browser 4.4.x	Yes	Yes	Yes	Yes	Yes	Yes
	Chrome 36	Yes	No	No	Yes	No	No
	Firefox 30	Yes	No	No	No	No	No
	Internet Explorer 11	Yes	No	No	No	No	No
	Safari 7	Yes	Yes	Yes	Yes	Yes	Yes

If you’re curious about the behavior of your favorite browser, SSL Labs provides a
 test for user agents and covers mixed content issues.[238]
Note
Mixed content vulnerabilities can be very deep. In most modern browsers, there
 are many ways in which insecure HTTP requests can originate from secure pages.
 For example, it is likely that browser plugins can make whatever requests they
 want irrespective of the encryption status of the host page. This is especially
 true for plug-ins such as Flash and Java, which are platforms in their own
 right. There’s now a W3C effort to standardize browser handling of mixed
 content, which should help get a consistent behavior across all products.[239]

Prevalence of Mixed Content

Anecdotally, mixed content is very common. At Qualys, we investigated this problem
 in 2011 along with several other application-level issues that result in full
 breakage of encryption in web applications.[240] We analyzed the homepages of about 250,000 secure web sites from the
 Alexa top
 one
 million list and determined that 22.41% of them used insecure
 content. If images are excluded, the number falls to 18.71%.
A more detailed study of 18,526 sites extracted from Alexa’s top 100,000 took
 place in 2013.[241] For each site, up to 200 secure pages were analyzed, for a total of
 481,656 pages. You can see the results in the following table.
Table 5.2. Mixed content in 481,656 secure pages from Alexa’s top 100,000 sites [Source:
 Chen et al., 2013]
	 	# Inclusions	% remote	# Files	# Webpages	% Websites
	Image	406,932	38%	138,959	45,417	30%
	Frame	25,362	90%	15,227	15,419	14%
	CSS	35,957	44%	6,680	15,911	12%
	JavaScript	150,179	72%	29,952	45,059	26%
	Flash	1,721	62%	638	1,474	2%
	Total	620,151	47%	191,456	74,946	43%

Note
Even when all third-party links are encrypted, the fact remains that using
 active content from other web sites essentially gives those sites full control.
 Too many sites today include random widgets without thinking through the
 security implications.[242]

Mitigation

The good news is that despite browsers’ lax attitude to mixed content issues you
 are in full control of this problem. If you implement your sites correctly, you
 won’t be vulnerable. Of course, that’s easier said than done, especially with large
 development teams.
There are two technologies that can help you minimize and, possibly, eliminate
 mixed content issues, even when it comes to incorrectly implemented
 applications:
	HTTP Strict Transport Security
	HSTS is a mechanism that enforces secure resource retrieval, even in
 the face of user mistakes (such as attempting to access your web site on
 port 80) and implementation errors (such as when your developers place
 an insecure link on a secure page). HSTS is one of the best things that
 happened to TLS recently, but it works only on the hostnames you
 control.

	Content security policy
	To block insecure resource retrieval from third-party web sites, use
 Content Security Policy (CSP). This security
 feature allows blocking of insecure resources. It also has many other
 useful features for application security issues.

HSTS and CSP are both declarative measures, which means that they can be added at
 a web server level without having to change applications. In a way, you can think of
 them as safety nets, because they can enforce security even for incorrectly
 implemented web sites.
For example, a very frequent problem on secure web sites comes from the fact that
 many of them implement automatic redirection from port 80 to port 443. That makes
 sense, because if some user does arrive to your plaintext web site you want to send
 him to the right (secure) place. However, because redirection is automatic it is
 often invisible; a plaintext link for an image will be redirected to a secure one,
 and the browser will retrieve it without anyone noticing. Anyone except the
 attacker, maybe. For this reason, consider always redirecting to the same entry
 point on the secure web site. If you do this, any mistakes in referencing resources
 will be detected and corrected in the development phase.
Of course, sites that deploy HSTS cannot be exploited, because browsers
 automatically convert insecure links to secure ones. That said, you can’t rely on
 all browsers supporting HSTS (yet), so it’s best to try to minimize such
 mistakes.

Extended Validation Certificates

Extended validation (EV) certificates are a special class of
 certificates that establish a link between a domain name and the legal entity behind it.
 (Individuals can’t get EV certificates.) In the early days of SSL, all certificates
 required strict verification, similar to how EV certificates are issued today.
 Certificate price wars led to the wide adoption of
 domain-validated (DV) certificates, which rely on cheap email
 validation. That was possible because there were no formal regulations of the
 certificate validation procedures. EV certificates were defined in 2007 by the
 CA/Browser Forum.[243]
EV certificates offer two chief advantages: (1) the identity of the domain owner is known and encoded in the
 certificate and (2) the manual verification
 process makes certificate forgery more difficult. As far as I am aware, there’s never
 been a fraudulent EV certificate.
On the other hand, it’s questionable if those advantages translate into any practical
 benefits, at least when the general user population is concerned. As we’ve seen in
 earlier sections in this chapter, users rarely notice security indicators, even the
 prominent ones used for EV certificates. For this reason, end users are going to miss
 the link to the domain name owner. Further, fraudulent DV certificates can be used to
 attack EV sites. The only way to prevent these attacks is for end users to understand
 what EV certificates mean, remember that a site uses them, notice the absence of the
 appropriate security indicators, and decide not to proceed. This seems unlikely, given
 the percentage of users who proceed to a web site even after shown a scary certificate
 warning.
Still, it’s possible that the treatment of EV certificates will improve in the future.
 For example, user agents might add features to allow site operators to always require EV
 certificates on their web sites, similar to how today you can use HTTP Strict Transport
 Security to always require encryption.
Another problem is that EV certificates are detected and indicated on the page level
 without taking into account what type of certificate is used by the resources (e.g.,
 scripts). Given the high cost of EV certificates, it is not unusual that complex sites
 often rely on DV certificates for the largely invisible subdomains.[244]
 This means that a careful network attacker can use a DV certificate against an EV
 site, potentially without affecting the green security indicators. Zusman and Sotirov
 demonstrated several interesting attack vectors:[245]
	Resources delivered from other domain names
	In many cases, sites will use an EV certificate on the main domain name
 but retrieve resources from many other hostnames, all of which will
 typically use DV certificates. Browser connections for these other names can
 be intercepted with a fraudulent DV certificate, leading to malware
 injection.

	Cookie theft
	Because browsers do not enforce certificate continuity, it’s possible to
 use a DV certificate to intercept a connection for the main domain name,
 steal existing or set new cookies, and redirect back to the real server. The
 attack happens quickly and won’t be noticed by most users.

	Persistent malware injection
	If caching is enforced (the attacker can essentially say that a resource
 is never refreshed), injected malware can persist in the browser file cache
 and stay active for long periods of time, even on subsequent site
 visits.

Certificate Revocation

When it comes to the certificate validity period, there is a tension between wanting
 to reduce administrative burden and needing to provide reasonably fresh information
 during verification. In theory, the idea is that every certificate should be checked for
 revocation before it is trusted. In practice, there are a number of issues that make
 revocation very difficult.
Inadequate Client-Side Support

Arguably the biggest problem with revocation checking is that client-side support
 is inadequate. Making things worse is the fact that revocation is something you
 never need—until you need it badly. As such, it’s always something that can be dealt
 with “later.”
It’s genuinely quite difficult to understand what browsers do, when they do it,
 and how. Because there is no documentation, you have to rely on mining mailing
 lists, bug reports, and source code to understand what is happening. For example,
 there is anecdotal evidence that intermediate certificates are not checked. For a
 long time, it wasn’t clear that CRLs are not used by many browsers. Support for new
 features, such as OCSP stapling, is slow to arrive. The topic is largely a black
 box. Testing can provide some answers, but only at a point in time; there are no
 guarantees that the next version will continue to behave in the same manner.
Outside the browser world, command-line tools still struggle with certificate
 validation, let alone revocation. And because most libraries do not use revocation
 checks by default, developers generally don’t bother either.
The overall conclusion is that revocation does not work as designed, for one
 reason or another.
This became painfully clear during 2011, after several CAs had been compromised.
 In each case, the only way to reliably revoke fraudulent certificates was to use
 blacklisting, but not via CRL or OCSP. Instead, all vendors resorted to issuing
 patch releases, which contained hardcoded information about the fraudulent
 certificates. Chrome and Microsoft built special mechanisms to allow them to push
 new blacklisted certificates to their users without forcing software upgrade. Other
 browsers followed or are planning to follow.

Key Issues with Revocation-Checking Standards

At a high level, there are some design flaws in both CRL and OCSP that limit their
 usefulness. There are three main problems:
	Disconnect between certificates and queries
	CRL and OCSP refer to certificates using their serial numbers, which
 are just arbitrary numbers assigned by CAs. This is unfortunate, because
 it’s impossible to be completely certain that the certificate you have
 is the same one the CA is referring to. This fact could be exploited
 during a CA compromise by creating a forged certificate that reuses a
 serial number of an existing and valid certificate.

	Blacklisting instead of whitelisting
	CRL is, by definition, a blacklist, and cannot be anything else. OCSP
 suffered from coming after CRLs and was probably designed to be easy to
 use on top of the existing CRL infrastructure. In the early days, OCSP
 responders operated largely by feeding from the information available in
 CRLs. That was a missed opportunity to change from blacklisting to
 whitelisting to make it possible to check that a certificate is valid,
 not just that it has not been revoked.
The focus on blacklisting was amplified by the practice of treating
 the “good” OCSP response status as “not revoked,” even when the server
 actually had no knowledge of the serial number in question. As of August
 2013, the CA/Browser Forum forbids this practice.
It sounds like a small difference, but this design flaw came up as a
 real problem during the DigiNotar incident. Because this CA had been
 completely compromised, there was no record of what fraudulent
 certificates had been issued. As a result, they could not be revoked
 individually. Although DigiNotar’s root certificates were
 eventually removed from all browsers, as a short-term measure their OCSP
 responders were configured to return “revoked” for all their
 certificates.

	Privacy
	Both CRL and OCSP suffer from privacy issues: when you communicate
 with a CA to obtain revocation information, you disclose to it some
 information about your browsing habits. The leakage is smaller in the
 case of CRLs as they usually cover a large number of
 certificates.
With OCSP, the privacy issue is real, making many unhappy. If a
 powerful adversary wishes to monitor everyone’s browsing habits, it’s
 much easier to monitor the traffic flowing to a dozen or so major OCSP
 responders than to eavesdrop on the actual traffic of the entire
 world.
To address this problem, site operators should deploy OCSP
 stapling, which is a mechanism that allows them to
 deliver OCSP responses directly to their users along with their
 certificates. With this change, users no longer need to talk to CAs, and
 there is no information leakage.

Certificate Revocation Lists

Initially, Certificate Revocation Lists (CRLs) were the
 only mechanism for revocation checking. The idea was that every CA would make a list
 of revoked certificates available for download at a location specified in all their
 certificates. Clients would consult the appropriate list before trusting a
 certificate. This approach proved difficult to scale, leading to the creation of
 OCSP for real-time checks.
Issues with CRL Size

CRLs might have seemed like a good idea initially, when the number of
 revocations was small. But when the number of revocations exploded, so did the
 size of the CRLs. According to GoDaddy, their revocation information grew from
 158 KB in 2007 to 41 MB in 2013.[246]
According to Netcraft, they track 220 public CRLs worldwide, and many of them
 are quite long.[247] At the top of the list is CAcert (a CA that is not trusted by most
 browsers) with a list that’s about 6 MB. Then there are several other large
 entries, followed by a long tail of CRLs of decreasing size. For illustration,
 you can see the top 10 in the following table.
Table 5.3. Top 10 CRLs by size [Source: Netcraft, 13 March 2014]
	CRL	Size (in KB)
	CAcert	6,219
	TrustCenter (Symantec)	1,583
	Entrust	1,460
	VeriSign 1 (Symantec)	1,346
	VeriSign 2 (Symantec)	744
	Comodo 1	450
	Comodo 2	366
	Thawte (Symantec)	346
	GoDaddy	320
	Comodo 3	314

GoDaddy might not feature on the list with a CRL of 41 MB, but they dominate
 the entire list with many smaller CRLs. Other large CAs
 also use multiple lists. This makes the CRL size problem less visible; if you’re
 an active web user you are likely to need many of the CRLs, which means that you
 will have to download large quantities of data on an ongoing basis. It might not
 be an issue for desktop users, but it’s definitely unacceptable for mobile
 users. Even if bandwidth consumption does not worry you, the CPU power required
 for processing such large files might be prohibitive.
Note
The problem with CRL size could have been solved by using delta
 CRLs, which contain only the differences from a previously
 known full CRL. However, this feature, even though supported on all Windows
 platforms, has found little use in Internet PKI.

Client-Side Support for CRLs

CRLs have never been supported particularly well on the client side. Today, in
 particular, the situation is pretty dire.
	Chrome does not check CRLs by default, but will use them for EV
 certificates if CRLSets (their proprietary mechanism for revocation
 checking) and OCSP do not provide a satisfactory answer.

	Firefox never checked CRLs for non-EV certificates. It had a mechanism
 that allowed users to manually configure CRLs, after which they would be
 downloaded in regular time intervals. But that feature was effectively
 killed with Firefox 24.[248] As of version 28, Firefox does not check CRLs, even for EV certificates.[249]

	Internet Explorer (and all applications relying on Windows APIs) does
 everything correctly and downloads and checks CRL if no better
 revocation information is available.

	Safari will attempt to chase all available revocation possibilities
 these days, ignoring failures. On my OS X 10.9 laptop, both OCSP and CRL
 configuration is set to “Best attempt.” There are many reports on the
 internet (mostly from 2011, around the Comodo and DigiNotar compromises)
 that suggest that these settings were previously at “Off” by
 default.

CRL Freshness

CRL size is not the only problem. Long validity periods pose a significant
 problem and reduce CRL effectiveness. For example, in May 2013 Netcraft reported
 how a revoked intermediary certificate on a popular web site went unnoticed
 (until they reported on it).[250]
 The certificate in question did not have any OCSP information, but the CRL
 was correct. What happened? A part of the explanation could be that no client
 used the CRL to check the intermediate certificates, which reflects the sad
 state of CRL support. However, even assuming that clients use CRLs correctly
 (e.g., Internet Explorer), the fact remains that the CA industry currently
 allows unreasonably long validity periods for intermediate certificates. Here’s
 the relevant quote from Baseline Requirements[251] (emphasis mine):
The CA SHALL update and reissue CRLs at least (i) once every twelve months
 and (ii) within 24 hours after revoking a Subordinate CA Certificate, and
 the value of the nextUpdate field MUST NOT be more
 than twelve months beyond the value of the thisUpdate field;
 [...]

Thus, a CRL for an intermediate certificate is going to be considered fresh
 for 12 months, whereas a critical revocation can be added at any day of the
 year. Allowing such a long period was probably partially motivated by the desire
 to cache the CRLs for as long as possible, because intermediate certificates are
 often used by millions of sites. In addition, CRLs are signed by root keys,
 which are kept offline for safety; frequent issuance of CRLs would impact the
 security. Still, long freshness periods of CRLs negatively impact the
 effectiveness of revocation. This is especially true for intermediate
 certificates, which, if compromised, could be used to impersonate any web site.
 By comparison, CRLs for server certificates must be updated at most every 10
 days.

Online Certificate Status Protocol

Online Certificate Status Protocol (OCSP) came after CRL to
 provide real-time access to certificate revocation information. The idea was that
 without the burden of having to download a large CRL you can afford to use OCSP on
 every visit to a web site.
OCSP Replay Attacks

In cryptography, a well-understood attack against secure communication is the
 replay attack, in which the attacker captures and
 reuses a genuine message, possibly in a different context. OCSP, as originally designed,[252] is not vulnerable to replay attacks; clients are invited to submit a
 one-time token (nonce) with every request, and servers
 are expected to include that same value in their signed response. The attacker
 cannot replay responses because the nonce is different every time.
This secure-by-default approach ended up being difficult to scale and, at some
 point, gave way to a lightweight approach that is less secure but easier to
 support in high-volume environments. The Lightweight OCSP
 Profile[253] introduced a series of recommendations designed to allow for batch
 generation of OCSP responses and their caching. In order to support the caching,
 the replay protection had to go. Without the nonce, an OCSP response is just a
 file that you can generate once, keep for a while, and deliver using a
 CDN.
As a result, clients generally don’t even try to use nonces with OCSP
 requests. If they do (you can try it with the OpenSSL command-line client),
 servers usually ignore them. Thus, the only defense against replay attacks is
 the built-in time limit: attackers can reuse OCSP responses until they expire.
 That window of opportunity will depend on the CA in question and on the type of
 certificate (e.g., responses for EV certificates might have a short life, but
 those for DV certificates might have a much longer one), but it ranges from
 hours to days. Seeing OCSP responses that are valid for a week is not
 unusual.
As is the case with CRLs, Baseline Requirements allow OCSP responses that are
 valid for up to 10 days; up to 12 months for intermediate certificates.

OCSP Response
 Suppression

The OCSP response suppression attack relies on the fact
 that most browsers that use OCSP ignore failures; they submit OCSP requests in
 good faith but carry on when things go wrong. Thus, an active attacker can
 suppress revocation checks by forcing all OCSP requests to fail. The easiest way
 to do this is to drop all connections to OCSP responders. It is also possible to
 impersonate the responders and return HTTP errors. Adam Langley did this once
 and concluded that “revocation doesn’t work.”[254]
Prior to Adam’s experiment, in 2009 Moxie Marlinspike highlighted a flaw in
 the OCSP protocol that allows for suppression without network-level failures. In
 OCSP, successful responses are digitally signed, which means that even an active
 attacker cannot forge them. However, there are several unauthenticated response
 types dealing with failures. If all you need is to make a response fail, you
 simply return one of the unauthenticated error codes.[255]

Client-Side OCSP Support

In many cases, there is no need to attack OCSP revocation because user agents
 ignore it completely. Older platforms and browsers do not use OCSP or do not use
 it by default. For example, Windows XP and OS X before 10.7 fall into this
 category.
More important, however, is the fact that some modern browsers choose not to
 use OCSP. For example, iOS uses OCSP (and, presumably, CRL) only for EV certificates.[256] Chrome largely stopped using OCSP in 2012,[257] replacing all standards-based revocation checks with a lightweight
 proprietary mechanism called CRLSets.[258] CRLSets improve revocation checking performance (all checks are
 local and thus fast) but decrease security because they cover only a subset of
 all revocations, mostly those related to CA certificates. Private CAs are
 especially vulnerable, because there is no way for them to be included in the
 CRLSets. In the most recent versions, OCSP revocation checking is attempted only
 for EV certificates and only if their CRLSets don’t already cover the issuing
 CA.
Even when OCSP is used, virtually all browsers implement
 soft-fail. They attempt OCSP requests and react
 properly to successful OCSP responses but ignore all failures. In practice, this
 provides protection only in a small number of use cases. As you’ve seen in the
 previous section, soft-fail clearly does not work against an active attacker who
 can simply suppress all OCSP traffic.
Typically, the worst that can happen when revocation checking fails is that an
 EV site will lose its security status, leading to all EV indicators being
 stripped from the user interface. I am not sure we can expect anyone to actually
 notice such an event. And, if they do, how should they react to it?

Responder Availability and
 Performance

From the beginning and to this day, OCSP has had a reputation for being
 unreliable. The problems in the early days caused browsers to adopt the
 inadequate soft-fail approach, and OCSP has never recovered. CAs are much better
 these days at making their responders available, but browser vendors still
 refuse to switch to hard-fail and put their reputation on the line.
Note
Thanks to Netcraft, we now have visibility into the performance of OCSP
 responders of various CAs.[259]

There are three separate issues to consider:
	Availability
	OCSP responder availability is the biggest issue. If you’re
 running a secure web site and your CA’s OCSP responder is
 down, your site will suffer. If browsers implemented hard-fail, then
 your site would be down, too.[260]
Even with soft-fail, it’s likely that you will experience severe
 performance issues in the case of the OCSP responder downtime. User
 agents that use OCSP will attempt to check for revocation, and they
 all have a network timeout after which they give up. This timeout is
 typically set at several seconds. As an illustration, Firefox uses
 three seconds by default and 10 seconds when in hard-fail
 mode.
There is also an additional problem with the so-called
 captive
 portals, which arise when users don’t have full
 access to the Internet (and thus to various OCSP responders) but
 still need to validate certificates in some way. In practice, this
 happens most often when you are required to authenticate on a Wi-Fi
 network. Although captive portals could take care to whitelist
 public OCSP responders, most don’t do that.

	Performance
	By its nature, OCSP is slow. It requires user agents to first
 parse a certificate, then obtain the OCSP URL, open a separate TCP
 connection to the OCSP responder, wait for a response, and only then
 proceed to the original web site. A slow OCSP responder will add
 hundreds of milliseconds of latency to the first connection to your
 web site.
OCSP responder performance is possibly the single biggest
 technical differentiator among CAs today. You basically want to
 select a CA that will provide minimal slowdown to your web site. For
 that, a fast and globally distributed OCSP responder network is
 required. Some CAs are using their own infrastructure, while others
 are opting for commercial CDNs, such as Akamai and
 CloudFlare.
Maintaining a robust OCSP responder is not a trivial task.
 VeriSign (now Symantec) is known for operating a highly available
 OCSP responder service. According to their report, during 2012 they
 were serving over 4.5 billion OCSP responses every day.[261] A more recent article mentions as many as 14 billion
 transactions per day in 2014.[262]

	Correctness
	If an OCSP responder is available and fast, that does not mean
 that it is actually responding correctly. Some CAs do not
 synchronize their OCSP responders with changes in their main
 database. For example, some time ago I obtained a certificate from a
 public CA, installed it on my web site, and promptly discovered that
 all OCSP requests were failing.
After contacting the CA, I learned that they allow up to 40
 minutes from the creation of a certificate until they update the
 OCSP responders. My suggestion to postpone certificate issuance
 until their entire infrastructure was ready was dismissed as “too
 complicated.”

At this point, it’s unlikely that OCSP revocation will ever be changed to a
 hard-fail system. CAs had a slow start initially, and when browsers adopted
 soft-fail they had little incentive to improve. Today, the likely scenario is
 that the availability and performance concerns will be addressed by a wider
 adoption of OCSP stapling, which allows servers to
 retrieve OCSP responses from the CAs once and deliver them directly to end users
 along with their certificates.
Note
For a period of several years, I had my Firefox browser configured to
 hard-fail (in about:config, set
 security.ocsp.require to true). In
 all of that time, I had OCSP responder availability issues only with one CA.
 Interestingly, it was the same CA that has the 40-minute delay on their OCSP
 responders.

[190] In web applications, as soon as a user connects to a web site a new
 session is created. Each session is assigned a secret
 token (also known as a session ID), which is used to
 identify ownership. If the attacker finds out the token of an authenticated
 session, she can gain full access to the web site under the identity of the
 victim.

[191] This is because session tokens are typically transported using
 cookies, which are sent on every request to the web site. As you
 will see later in this chapter, cookies can be
 secured, but most sites don’t do so consistently.

[192] SideJacking with Hamster (Robert Graham, 5 August 2007)

[193] Firesheep
 announcement (Eric Butler, 24 October 2010)

[194] BlackSheep
 (Zscaler, retrieved 15 July 2014)

[195] FireShepard (Gunnar Atli Sigurdsson, retrieved 15 July 2014)

[196] Idiocy (Jonty Wareing,
 retrieved 15 July 2014)

[197] CookieCadger (Matthew
 Sullivan, retrieved 15 July 2014)

[198] Active Gmail
 “Sidejacking” - https is NOT ENOUGH (Mike Perry, 5 August
 2007)

[199] HTTPS
 Cookie Stealing (Mike Perry, 4 August 2008)

[200] CookieMonster (Mike Perry, retrieved 15 July 2014)

[201] RFC 6265: HTTP State
 Management Mechanism (A. Barth, April 2011)

[202] Cross-Site Cooking (Michal Zalewski, 29 January 2006)

[203] Cookie forcing (Chris Evans, 24 November 2008)

[204] New Ways I’m Going to Hack Your Web App (Lundeen et al., August
 2011)

[205] Multiple Browser Cookie Injection Vulnerabilities (Paul
 Johnston and Richard Moore, 15 September 2004)

[206] Hacking Github with Webkit (Egor Homakov, 8 March
 2013)

[207] Understanding Cookie Security (Alex kuza55, 22 February
 2008)

[208] RFC
 6797: HTTP Strict Transport Security (Hodges et al.,
 November 2012)

[209] RFC
 2014: HMAC: Keyed-Hashing for Message Authentication
 (Krawczyk et al., February 1997)

[210] TLS Channel IDs (Internet-Draft, D. Balfanz and R.
 Hamilton, expired 31 December 2013)

[211] sslstrip (Moxie Marlinspike, 15 May 2011)

[212] SSLsplit - transparent and
 scalable SSL/TLS interception (Daniel Roethlisberger, 28 January
 2014)

[213] Facebook’s outmoded Web crypto opens door to NSA spying
 (CNET, 28 June 2013)

[214] sslsniff (Moxie Marlinspike, 25 July 2011)

[215] Internet SSL Survey 2010 is here! (Ivan Ristić, 29
 July 2010)

[216] SSL Pulse (SSL Labs, July 2014)

[217] Here’s My Cert, So Trust Me, Maybe? Understanding TLS Errors on the
 Web (Akhawe et al., WWW Conference, 2013)

[218] Bug
 431827: Exceptions for invalid SSL certificates are too easy to
 add (Bugzilla@Mozilla, reported 2 May 2008)

[219] TODO: Break Internet (Johnathan Nightingale, 11 October
 2007)

[220] Bug
 460374: All certificates show not trusted - get error code (MITM
 in-the-wild) (Bugzilla@Mozilla, reported 16 October 2008)

[221] On the Challenges in Usable Security Lab Studies: Lessons Learned from
 Replicating a Study on SSL Warnings (Sotirakopoulos et al.,
 Symposium on Usable Privacy and Security, 2011)

[222] Alice in Warningland: A Large-Scale Field Study of Browser Security
 Warning Effectiveness (Akhawe and Felt; USENIX Security,
 2013)

[223] Experimenting At Scale With Google Chrome’s SSL Warning (Felt at
 al., ACM CHI Conference on Human Factors in Computing Systems, 2014)

[224] Exploring User Reactions to New Browser Cues for Extended Validation
 Certificates (Sobey at al., ESORICS, 2008)

[225] An Evaluation of Extended Validation and Picture-in-Picture Phishing
 Attacks (Jackson et al., Proceedings of Usable Security, 2007)

[226] Web Security Context: User
 Interface Guidelines (W3C Recommendation, 12 August 2010)

[227] Measuring
 SSL Indicators on Mobile Browsers: Extended Life, or End of the Road?
 (Amrutkar et al., Information Security Conference, 2012)

[228] Mobile Users Three Times More Vulnerable to Phishing Attacks (Mickey
 Boodaei, 4 January 2011)

[229] Usage statistics and market share of Google Analytics for
 websites (W3Techs, 15 July 2014)

[230] Use AdSense on your HTTPS sites (Sandor Sas, 16
 September 2013)

[231] Trying to end mixed scripting vulnerabilities
 (Google Online Security blog, 16 June 2011)

[232] Ending mixed scripting vulnerabilities (Google
 Online Security blog, 3 August 2012)

[233] PSA: Tightening Blink’s mixed content behavior (Mike
 West, 30 June 2014)

[234] Bug 62178: Implement mechanism to prevent sending insecure
 requests from a secure context (Bugzilla@Mozilla,
 reported 6 December 2000)

[235] Mixed Content Blocking Enabled in Firefox 23! (Tanvi
 Vyas, 10 April 2013)

[236] SSL, TLS and a Little ActiveX: How IE7 Strikes a Balance
 Between Security and Compatibility (Rob Franco, 18
 October 2006)

[237] Internet Explorer 9 Security Part 4: Protecting Consumers
 from Malicious Mixed Content (Eric Lawrence, 23 June
 2011)

[238] SSL/TLS Capabilities of Your Browser (SSL Labs, retrieved 15
 July 2014)

[239] W3C: Mixed Content (Mike West, retrieved 15 July
 2014)

[240] A study of what really breaks SSL (Michael Small and Ivan
 Ristić, May 2011)

[241] A
 Dangerous Mix: Large-scale analysis of mixed-content websites
 (Chen et al., Information Security Conference, 2013)

[242] You Are What You Include: Large-scale Evaluation of Remote
 JavaScript Inclusions (Nikiforakis et al., Computer and
 Communications Security, 2012)

[243] EV SSL
 Certificate Guidelines (CA/Browser Forum, retrieved 15 July
 2014)

[244] Beware of
 Finer-Grained Origins (Jackson and Barth, Web 2.0 Security and
 Privacy, 2008)

[245] Sub-Prime PKI: Attacking Extended Validation SSL (Zusman and
 Sotirov, Black Hat USA, 2009)

[246] NIST Workshop: Improving Trust in the Online Marketplace
 (Ryan Koski, 10 April 2013)

[247] CRLs tracked by Netcraft (Netcraft, retrieved 15 July
 2014)

[248] No CRL UI as of Firefox 24 (Kathleen Wilson, August
 2013)

[249] As of Firefox 28, Firefox will not fetch CRLs during EV
 certificate validation (Brian Smith, 13 December
 2013)

[250] How certificate revocation (doesn’t) work in practice
 (Netcraft, 13 May 2013)

[251] Baseline Requirements (CA/Browser Forum, retrieved 13 July
 2014)

[252] RFC 2560: X.509
 Internet Public Key Infrastructure Online Certificate Status
 Protocol - OCSP (Myers et al., June 1999)

[253] RFC 5019: The
 Lightweight OCSP Profile for High-Volume Environments (A.
 Deacon and R. Hurst, September 2007)

[254] Revocation doesn’t work (Adam Langley, 18 March 2011)

[255] Defeating OCSP With The Character ’3’ (Moxie Marlinspike, 29
 July 2009)

[256] CRL and OCSP behavior of iOS / Security.Framework? (Stack
 Overflow, answered 2 March 2012)

[257] Revocation checking and Chrome’s CRL (Adam Langley, 05
 February 2012)

[258] CRLSets (Chromium Wiki, retrieved 15 July 2014)

[259] OCSP Uptime (Netcraft, retrieved 15 July 2014)

[260] Certificate revocation and the performance of
 OCSP (Netcraft, 16 April 2013)

[261] 2013 Internet Security Threat Report, Volume 18
 (Symantec, April 2013)

[262] Three years after Diginotar closed, hackers still
 trying to use its digital certificates (CSO, 14
 March 2014)

6 Implementation Issues

The software we write today is inherently insecure, for several reasons. First, the basic
 tools—programming languages and libraries—are not written with security in mind.
 Languages such as C and C++ allow us to write code that is fast but fragile. Often, a single
 coding mistake can crash the entire program. That is simply absurd. Libraries and APIs are
 virtually never designed to minimize errors and maximize security. Documentation and books
 are rife with code and designs that suffer from basic security issues. We don’t have to go
 far to find a representative example: OpenSSL itself, the most widely used SSL/TLS library,
 is notorious for being poorly documented and difficult to use.
The second problem is much deeper and has to do with the economics of writing software. In
 today’s world, emphasis is on getting work “done” by minimizing up-front costs (in both time
 and money), without fully considering the long-term effects of insecure code.
 Security—or, more generally, code quality—is not valued by end users, which is
 why companies tend not to invest in it.
As a result, you will often hear that cryptography is bypassed, not broken. The major
 cryptographic primitives are well understood and, given choice, no one attacks them first.
 But the primitives are seldom useful by themselves; they need to be combined into schemes
 and protocols and then implemented in code. These additional steps then become the main
 point of failure, which is why you will also often hear that only a fool implements their
 own crypto.
The history is full of major cryptographic protocols with critical design flaws, but there
 are even more examples of various implementation problems in well-known projects. The
 situation gets much worse when you start looking at projects developed without the necessary
 expertise in cryptography.
This chapter reviews the major implementation issues, both historical and still relevant
 ones.
Certificate Validation
 Flaws

For a TLS connection to be trusted, every client must perform two basic checks:
 determine that the certificate applies to the intended hostname and determine that the
 certificate is valid and can be trusted. Sounds simple, but the devil is in the details.
 When certificate-checking code is developed, developers will test with the certificate
 chains they find in real life, but those will never be malicious and designed to subvert
 security. As a result, developers often miss some critical checks.
For example, the following is a list of some (but not all!) of the things that need to
 be checked for each certificate chain.
	The end entity (server) certificate is valid for the intended hostname.

	All chain certificates (including the end-entity one) must be checked to see
 that:
	They have not expired.

	Their signatures are valid.

	An intermediate certificate might need to satisfy further requirements:
	Can be used to sign other certificates for the intended purpose (e.g.,
 an intermediate certificate might be allowed to sign web server
 certificates, but cannot be used for code signing).

	Can be used to sign other CA certificates.[263]

	Can be used to sign the hostname in the leaf certificate.

In addition, a robust implementation will check a number of other things, for example,
 that all the keys are strong and that weak signatures (e.g., MD2, MD5, and (soon) SHA1)
 are not used.
Library and Platform Validation Failures

Certificate validation flaws in libraries are not very common, but their impact is
 usually significant, because all code that relies on them inherits the problems.
 Well-known validation flaws include the following:
	Basic Constraints check failure in Microsoft CryptoAPI (2002)[264]
	This is an early example of validation failure in probably the most
 widely used codebase, which affected all Microsoft platforms as well as
 some products running on other operating systems. Because of this flaw,
 any valid server certificate could be used to sign a fraudulent
 certificate that would then be trusted. The fraudulent certificate could
 be then used in active MITM attacks. Konqueror (the default browser of
 the KDE desktop) was also found to suffer from the same problem. Further
 variations of the flaw were later discovered in Microsoft’s code,
 including some that could be used for code signing on the Windows
 platform.
This problem was discovered by Moxie Marlinspike in August 2002.[265] Moxie went on to write sslsniff,[266] a MITM attack tool, for the sole purpose of demonstrating
 that this problem can be exploited. In 2009, Moxie also reported that
 OpenSSL (around version 0.9.6) had been vulnerable to the same problem,
 but no further details are available.

	Chain validation failure in GnuTLS (2008)[267]
	A flaw in the certificate chain validation code allowed invalid chains
 to be recognized as valid by simply appending any trusted root
 certificate to the end of any nontrusted chain. The error was that the
 appended certificate, which caused the entire chain to be trusted, was
 removed prior to checking that all certificates are part of a single
 chain.

	DSA and ECDSA signature validation failures in OpenSSL (2009)[268]
	In 2009, the Google Security Team discovered that, due to insufficient
 error checking in OpenSSL code, DSA and ECDSA signature failures could
 not be detected. The practical impact of this problem was that any MITM
 attacker could present a fraudulent certificate chain that would be seen
 as valid.

	Basic Constraints check failure in iOS (2011)[269]
	Almost a decade later, Apple was discovered to have made the same
 mistake in the chain validation as Microsoft and others before. The iOS
 platforms before 4.2.10 and 4.3.5 were not checking if certificates are
 allowed to act as subordinate CAs, making it possible for any leaf
 certificate to sign any other certificate.

	Connection authentication failure in iOS and OS X (2014)
	On 21 February 2014, Apple released updates for iOS 6.x and 7.x in
 order to fix a bug in TLS connection authentication.[270] Although Apple didn’t provide any details (they never do),
 the description caught everyone’s attention and sparked a large-scale
 hunt for the bug. It turned out that a devastating slip in the
 connection authentication code allowed any DHE and ECDHE connection to
 be silently hijacked by an active MITM.[271] The bug was also found to exist in the latest version of OS
 X (10.9), which had been released in October 2013. Unfortunately, a fix
 was not immediately available; it’s not clear why Apple would choose not
 to synchronize releases for such a significant security issue. Possibly
 because of a strong backlash, the fix (OS X 10.9.2) came only a couple
 of days later, on February 25th.
In the context of TLS authentication, this bug is as bad as they get.
 The weakness is in a transient part of the handshake that is never
 logged. (If you were to attack certificate authentication, for example,
 you would need to provide a fraudulent certificate chain, which might be
 recorded and reported.) If proper care is taken to use it only against
 vulnerable clients (which should be possible, given that the TLS
 handshake exposes enough information to allow for pretty reliable
 fingerprinting), an attack could be reliable, silent, and effective
 without leaving any trace.
All applications running on the vulnerable operating systems were
 exposed to this problem. The only exceptions were cross-platform
 applications (for example, Chrome and Firefox) that rely on their own
 TLS stack.

	Chain validation failures in GnuTLS (2014)
	In early 2014, GnuTLS disclosed two separate vulnerabilities related
 to certificate chain validation.[272] The first bug caused GnuTLS to treat any X.509 certificate
 in version 1 format as an intermediary CA certificate. If someone could
 obtain a valid server certificate in v1 format (not very likely, given
 that this is an obsolete format), they could use it to impersonate any
 server when GnuTLS is used for access. This vulnerability had been
 introduced in GnuTLS 2.11.5.
As for the second vulnerability, shortly after Apple’s TLS
 authentication bug had been
 revealed,
 GnuTLS disclosed a similar bug of their own: a malformed certificate
 could short-circuit the validation process and appear as valid.[273] It is probable that the maintainers, after learning about
 Apple’s bug, decided to review their code in search for similar
 problems. Although GnuTLS isn’t used by major browsers and isn’t as
 popular as OpenSSL on the server side, it still has some major users.
 For example, many of the packages shipped by Debian use it. Thus, this
 vulnerability might have had a significant impact. This vulnerability
 had been present in the code for a very long time, possibly from the
 very first versions of GnuTLS.

	OpenSSL ChangeCipherSpec Injection
 (2014)
	In June 2014, the OpenSSL project disclosed a long-standing
 vulnerability that allowed an active network attacker to inject
 ChangeCipherSpec messages into handshakes between
 two OpenSSL endpoints and force negotiation of a predictable master secret.[274] This problem existed in virtually every version of OpenSSL,
 but—as far as we know—it’s not exploitable unless a
 vulnerable version from the OpenSSL 1.0.1 branch is running on the
 server. The root cause is
 that,
 during a TLS
 handshake,
 the ChangeCipherSpec message is used by each side to
 signal the end of negotiation and a switch to encryption, but this
 message is not authenticated because it’s not part of the handshake
 protocol. If the attacker sends the message early (which OpenSSL should
 have caught), the vulnerable sides construct encryption keys too early
 and with the information the attacker knows.[275]
This vulnerability is quite serious and easy to exploit, but its
 impact is reduced, because OpenSSL is required on both sides of the
 communication, and yet OpenSSL is rarely used on the client side. The
 most prominent platform that uses OpenSSL in this way is Android 4.4
 (KitKat), which was subsequently fixed. According to SSL Pulse,
 immediately after the vulnerability was
 released,
 there were about 14% of servers running the exploitable versions of
 OpenSSL.

In 2014, a group of researchers published the results of comprehensive adversarial
 testing of certificate validation in several libraries.[276] They developed a concept of “mutated” certificates, or
 frankencerts, built from real certificates.[277] Although the widely used libraries and browsers passed the tests, the
 lesser-used libraries, such as PolarSSL, GnuTLS, CyaSSL, and MatrixSSL, were all
 found to have serious flaws.

Application Validation Failures

If major platforms and libraries can have serious validation vulnerabilities, we
 can intuitively expect that other software will fare much worse. After all, for most
 developers security is something that stands in the way between them and shipping
 their project. There’s been ample anecdotal evidence of certificate validation
 failures in end-user code, but the scale of the problem became more clear after a
 research paper on the topic was published in 2012.[278] From the abstract (emphasis mine):
We demonstrate that SSL certificate validation is completely broken in many
 security-critical applications and libraries. Vulnerable software includes
 Amazon’s EC2 Java library and all cloud clients based on it; Amazon’s and
 PayPal’s merchant SDKs responsible for transmitting payment details from
 e-commerce sites to payment gateways; integrated shopping carts such as
 osCommerce, ZenCart, Ubercart, and PrestaShop; AdMob code used by mobile
 websites; Chase mobile banking and several other Android apps and libraries;
 Java Web-services middleware—including Apache Axis, Axis 2, Codehaus XFire, and
 Pusher library for Android—and all applications employing this middleware.
 Any SSL connection from any of these programs is
 insecure against a man-in-the-middle attack.

If this is not cause for alarm, then I don’t know what is. Clearly, there are some
 major components of the Internet infrastructure mentioned in the report. According
 to the team behind the research, the root cause is the badly designed APIs. Not only
 are the libraries often insecure by default (no certificate validation at all), but
 they make it difficult to write code that is secure. Most libraries are simply too
 low level and expect too much from their users. For example, OpenSSL expects
 developers to provide their own code to perform hostname validation.
The report very accurately describes a major problem with our entire development
 stacks, affecting all code and security, not only SSL and TLS. Yes, there are
 libraries that are insecure and difficult to use, but the real problem is that we
 keep on using them. No wonder we keep on repeating the same mistakes.
To be
 fair,
 there are some platforms that behave correctly. Java’s SSL/TLS implementation
 (JSSE), for example, performs all necessary validation by default, much to the
 annoyance of many developers who don’t want to bother to set up a trusted
 development infrastructure. Anecdotal evidence suggests that most developers, in
 development, disable all validation in their code. We can only wonder how often are
 checks re-enabled in production.

Hostname Validation Issues

Speaking of hostname validation—how difficult can it be to verify if a
 certificate is valid for the intended hostname? As it turns out, the verification is
 often incorrectly implemented, as several vulnerabilities show. At Black Hat USA in
 2009, Dan Kaminsky[279] and Moxie Marlinspike[280] independently detailed how to perform MITM attacks entirely silently,
 without any warnings experienced by the victims.
Several flaws were needed to pull the attacks off, but in both cases the key was
 the NUL byte, which is used in C and C++ for string termination. In this context,
 the NUL byte is not part of the data but only indicates that the data is ending.
 This way of representing textual data is handy, because you only need to carry a
 pointer to your data. Then, as you’re processing the text, whenever you see the NUL
 byte, you know that you’ve reached the end.
Figure 6.1. Representation of a C string in memory
[image: Representation of a C string in memory]

Certificate structures, which rely
 on the ASN.1 notation standard, use a different approach, in which all structures
 are stored with their length. Problems arise when these different approaches to
 handling strings meet: certificates are encoded in one way (ASN.1) but processed in
 another (C code).
The attack is this: construct a certificate that has a NUL byte in the hostname,
 and bet that (1) most clients will think
 that that’s where the hostname ends and that (2) the NUL byte will thwart a CA’s validation
 process.
Here’s how Moxie executed the attack:
	Construct a special hostname with a NUL byte in it. Moxie used the
 following: www.paypal.com\0.thoughtcrime.org (the NUL byte is
 indicated with \0, but is normally “invisible”). The
 rules are to:
	Place the hostname you wish to impersonate before the NUL
 byte.

	Put some domain name you control after the NUL byte.

	For CAs, the NUL byte is nothing special.[281] They issue certificates based on the validation of the hostname
 suffix, which maps to some top-level domain name. In the previous attack
 example, the domain name is thoughtcrime.org, which belongs to
 Moxie. He will naturally approve the certificate request.

	The resulting certificate can now be used against vulnerable clients with
 a modified version of sslsniff.

Figure 6.2. The domain name used by Moxie Marlinspike in his proof-of-concept
 attack
[image: The domain name used by Moxie Marlinspike in his proof-of-concept attack]

Microsoft’s CryptoAPI, GnuTLS, and NSS libraries were all found to be vulnerable
 to the NUL byte attack, affecting Firefox, Internet Explorer, and many other user
 agents. And when you add to the mix the PKI feature that allows for wildcards in
 hostnames you may end up with a certificate issued to
 *\0thoughtcrime.org, which worked as a universal interception
 certificate.

Random Number Generation

All cryptography relies on random number generation, making this functionality the
 essential building block of secure communication.[282] For example, you need random numbers whenever you are generating a new key.
 Keep in mind that key generation is not something you do only once in a while (e.g., if
 you’re installing a new server) but something that protocols (e.g., TLS) do behind the
 scenes on every single connection.
With a good random number generator (RNG), for example, a
 256-bit symmetric key will provide 256 bits of security (when used with a strong
 algorithm). But if the RNG is flawed, rather than having a random number from that large
 256-bit space you may end up with one from a much smaller space, say, 32 bits. The
 smaller the effective space, the worse the security. If the effective size of the key is
 too small, even brute-force attacks against it may be possible.
Netscape Navigator (1994)

One of the early examples of random number generation failure was in Netscape
 Navigator, the flagship product of the company that designed SSL itself. This
 browser used a simplistic algorithm for random number generation that relied on the
 time since boot in microseconds and the IDs of the underlying operating system
 process and that of its parent. The problem was revealed in 1995, when two
 researchers reverse engineered the code of the RNG[283] and wrote a program that uncovers the master encryption key.[284]
In the best case for the attacker, having an account on the same Unix machine as
 the victim meant that he could determine the process and parent process IDs. The
 attacker would then determine the time in seconds from observing packets as they
 travel on the network, reducing the problem to guessing the microseconds
 value—which is only about 20 bits of security. To break through that required
 only 25 seconds on the hardware they had at hand.
In the more realistic case of an attacker with no knowledge of process IDs, the
 size of the problem would be reduced to 47 bits—still within reach of brute-force
 attacks, even at that time.

Debian (2006)

In May 2008, Luciano Bello discovered[285] that a catastrophic programming error concerning the RNG used in the
 OpenSSL system libraries had been made by the Debian Project in September 2006 and
 that the bug consequently ended up in the project’s stable release (Debian
 etch) in April 2007. Debian is not only a very popular
 Linux distribution but also a starting point from which many other distributions are
 built (most notably, Ubuntu), which meant that the problem affected a great number
 of servers in the world.
The programming error had been the accidental removal (commenting out) of a single
 line of code, which fed entropy to the random number generator. With that line
 removed, the only entropy left was some auxiliary input from the process ID, which
 meant that there were only 16 (!) bits of entropy for all cryptographic operations.
 With so few bits, all crypto on the affected installations was effectively
 nonexistent.
This was the affected fragment of the code:[286]
/*
 * Don't add uninitialised data.
 MD_Update(&m,buf,j);
*/
 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
 MD_Final(&m,local_md);
 md_c[1]++;
The biggest practical problem was weak OpenSSH keys,[287] but that was largely mitigated by the fact that these keys are stored in
 well-known locations and could be easily checked. The Debian project built a
 blacklist
 of vulnerable keys as well as tools to look for them.
Replacing vulnerable TLS keys was more difficult, because the process could not be
 implemented as part of the automated patching process. Scripts were built to scan
 all files and detect weak keys. Because the problem can be detected from a server’s
 public key, remote-testing tools were made available; for example, I added one to
 the SSL Labs web site. In addition, because most server certificates last only for a
 year or two, CAs were able to apply tests (against public keys, which are embedded
 in certificate signing requests) and refuse to issue certificates for vulnerable
 private keys. Overall, however, there was a great sense of confusion, and many
 people reported that the detection tools were not correctly flagging vulnerable keys
 even though they had been generated on vulnerable systems.
The discovery of the Debian RNG issue highlighted the fact that open source
 projects are often touched—for whatever reason—by those who are not very
 familiar with the code. There is often very little quality assurance even for
 critical system components such as OpenSSL. And yet millions rely on that code
 afterward.
Tension between project developers and packagers is a well-known problem in open
 source circles.[288] Distributions often fork open source projects and change their behavior
 in significant ways but keep the names the same. As a result, there is often
 confusion regarding which versions are affected by problems and who is responsible
 for fixing them. The underlying root cause is friction between developers and
 packagers, which results from different development schedules and different
 priorities and development goals.[289]
Note
Debian is not the only operating system that has suffered problems with random
 number generation. In 2007, three researchers published a paper discussing RNG
 weaknesses in Windows 2000.[290] It was later discovered that Windows XP was also affected. Then, as
 recently as March 2013, the NetBSD project announced that NetBSD 6.0, first
 released in October 2012, had a bug in the kernel RNG that impacted security.[291]

Insufficient Entropy on Embedded
 Devices

In February 2012, a group of researchers published the results of an extensive
 study of the quality of RSA and DSA keys found on the Internet.[292] The results indicated that at least 0.5% of the seen RSA keys (used for
 SSL/TLS) were insecure and could easily be compromised. The results for DSA (used
 for SSH) were worse, with 1.03% of the keys considered insecure.
The large majority of the discovered problems could be attributed to issues with
 random number generation. The study concluded:
Ultimately, the results of our study should serve as a wake-up call that
 secure random number generation continues to be an unsolved problem in important
 areas of practice.

On the positive side, virtually all of the discovered problems were on headless
 and embedded devices, and the study concluded that nearly all keys used on
 nonembedded servers are secure. Just a fraction of the discovered certificates were
 signed by public CAs. The main problems identified were the following:
	Default keys
	Some manufacturers are shipping their products with default encryption
 keys. Clearly, this practice defeats the purpose, because all product
 users end up using the same keys and can compromise one another after
 extracting the private keys (from the hardware or software).
 Furthermore, those keys will inevitably be shared with the world.[293]

	Repeated keys due to low entropy
	Some devices generate keys on first boot, when there is little entropy
 available. Such keys are generally predictable. The paper describes the
 experiment of a simulated headless first boot running Linux, which
 clearly demonstrates the weaknesses of the Linux entropy-gathering code
 in the first seconds after first boot.

	Factorable keys
	Most interestingly, for RSA keys it was discovered that many share one
 of the two primes that make the modulus, a condition that allows the
 keys to be compromised. Given that the primes should be randomly
 generated, the same primes should not occur. According to the research,
 the root cause is a particular pattern in the OpenSSL code that
 generates RSA keys coupled with low-entropy conditions.

The summary of the TLS-related findings can be seen in the following table.
Table 6.1. Summary of vulnerable private keys [Source: factorable.net]
	Number of live hosts	12,828,613	(100.00%)
	
 . . . using repeated keys

 	7,770,232	(60.50%)
	
 . . . using vulnerable repeated keys

 	714,243	(5.57%)
	
 . . . using default certificates or default keys

 	670,391	(5.23%)
	
 . . . using low-entropy repeated keys

 	43,852	(0.34%)
	
 . . . using RSA keys we could factor

 	64,081	(0.50%)
	
 . . . using Debian weak keys

 	4,147	(0.03%)
	
 . . . using 512-bit RSA keys

 	123,038	(0.96%)
	
 . . . identified as a vulnerable device model

 	985,031	(7.68%)
	
 . . . using low-entropy repeated keys

 	314,640	(2.45%)

Clearly, there are failures at every level (e.g., manufacturers could have checked
 for these issues and worked around them), but ultimately the study uncovered what is
 really a usability problem: cryptographic applications rely on the underlying
 operating system to provide them with enough randomness, but that often does not
 happen. And when it does not, there is no way to detect failures directly (e.g.,
 Linux will never block on /dev/urandom reads). Few applications
 use defense-in-depth measures and use statistical tests to verify that their random
 data is indeed random.
This inability to rely on system-provided randomness may force some developers to
 take matters into their own hands and use their own RNGs instead. This approach is
 unlikely to be successful, however, because random number generation is a difficult
 task that’s easy to get wrong.
If you have an embedded device and wish to check the quality of its keys, the
 authors behind this study provide an online tool that can check any server on the Internet.[294]

Heartbleed

Heartbleed,[295] a devastating vulnerability in OpenSSL, was disclosed to the public in April
 2014. The attack exploits the implementation of the Heartbeat
 protocol, a little-used TLS protocol extension (more about it in the section called “Heartbeat
 ” in Chapter 2).
Heartbleed is arguably the worst thing to happen to TLS, which is ironic, given that
 it’s not a cryptographic failure. Rather, it’s a testament to the poor state of software
 development and quality of open source in general.
In the fallout after Heartbleed, everyone’s eyes were on OpenSSL. Although the
 lack of funding for the project and its poor code quality had been known for a very long
 time, it took a massive vulnerability for the community to take action. The results were
 good and bad, depending on your point of view. The Linux Foundation announced a
 three-year project called Core Infrastructure Initiative, which aims to distribute $3.9
 million to underfunded open source projects,[296] OpenSSL published a roadmap to identify and fix the problems with the project,[297] and, in the meantime, the OpenBSD Project forked OpenSSL into a new project
 called LibreSSL and started to make rapid changes with a goal to improve the code quality.[298]
Impact

Because of a missing check for the read length in the code, successful
 exploitation enables the remote attacker to retrieve up to 64 KB of server process
 memory in a single heartbeat request. By submitting multiple requests, the attacker
 can retrieve an unlimited number of memory snapshots. If there is any sensitive data
 in the server memory—and there always is—the attacker can probably
 retrieve it. Because OpenSSL deals with encryption, the most likely extraction
 target is the server’s private key, but there are many other interesting assets:
 session ticket keys, TLS session keys, and passwords come to mind.
Heartbleed affects OpenSSL versions 1.0.1 through 1.0.1f. Versions from the
 earlier branches, 0.9.x and 1.0.0, are not vulnerable. Unsurprisingly, vast numbers
 of servers were impacted. Netcraft estimated that 17% of the servers (or about half
 a million) worldwide were susceptible.[299]
 Remarkably, most of the servers have been patched already. The combination of the
 seriousness of the problem, freely available testing tools, and media attention
 resulted in the fastest patching rate TLS has ever seen. One Internet-wide scan
 suggests that about 1.36% of devices listening on port 443 remain vulnerable one
 month later.[300] At about the same time, the SSL Pulse dataset (popular web sites,
 according to the Alexa list) shows only 0.8% of sites vulnerable.
Immediately after the disclosure, most commentators recommended changing private
 keys as a precaution, but there was no proof that private key extraction was
 possible. It’s likely that everyone was initially too busy testing for the
 vulnerability and patching. Later, when the attention turned back to exploitation,
 retrieving server private keys turned out to be straightforward.[301] In some cases, the keys would fall after many requests—in others, after
 few. More advanced exploitation techniques were subsequently developed.[302]
In the days immediately after the disclosure, exploitation of vulnerable sites was
 rampant. Private keys were not the only target. For example, Mandiant reported
 detecting a successful attack on a VPN server that resulted in a bypass of
 multifactor authentication. The attackers extracted TLS session keys from server memory.[303]
 Social insurance numbers were stolen from the Canadian tax authority and
 passwords extracted from the Mumsnet web site (a popular site for parents in the UK).[304]
Heartbleed was easy to exploit to begin with, but now, with so many tools publicly
 available, anyone can exploit a vulnerable server in minutes. Some tools are quite
 advanced and provide full automation of private key discovery.
Note
If you’d like to learn more about the bug itself and how to test for
 vulnerable servers, head to the section called “Testing for
 Heartbleed” in Chapter 12, Testing with OpenSSL.

Mitigation

Patching is the best way to start to address Heartbleed. If you’re relying on a
 system-provided version of OpenSSL, your vendor will have hopefully provided the
 patches by now. If you’re compiling from source, use the most recent OpenSSL 1.0.1
 version available. In that case, you can also configure OpenSSL to remove support
 for the Heartbeat protocol, using the OPENSSL_NO_HEARTBEATS flag.
 For example:
$./config -DOPENSSL_NO_HEARTBEATS
$ make
After this you’ll probably need to recompile all other software packages that
 depend on your version of OpenSSL.
Many products (e.g., appliances) embed OpenSSL and might be vulnerable. Because
 they had no advanced warning about Heartbleed, none of them were ready with patches
 on the day of the disclosure. Vendors with many products probably struggled to issue
 patches for all of them.
After the vulnerability is fixed, turn your attention to the sensitive data that
 might have leaked from the server. At the very least, you’ll need to replace the
 server private keys, obtain new certificates, and revoke the old certificates.
 According to Netcraft, which is monitoring the status of Heartbleed remediation
 activities worldwide, sites often omit performing one or more of these steps.[305]
After the private keys and certificates are dealt with, focus on what else might
 have been in the server memory. Session ticket keys are the obvious next target.
 Replace them. After that, consider other secrets, for example, user passwords.
 Depending on your risk profile, it might be necessary to advise or ask your users to
 change their passwords, as some web sites have done.
Heartbleed could not be used to gain access to your data stores, at least not
 directly. Indirectly, it could have been possible to obtain some information that is
 as useful. For example, on a database-driven web site, the database password is used
 on every request and thus resides in memory. Replacing all internal passwords is the
 best way to remain safe.
Sites who had forward secrecy deployed before the attack are in the best
 situation: their past communication can’t be decrypted following a compromise of the
 server private key. If you’re in the other group, consider deploying forward secrecy
 now. This is exactly why this feature is so important.
Warning
Although we focus on servers, clients using vulnerable versions of OpenSSL are
 vulnerable too. Heartbeat is a two-way protocol. If a vulnerable client connects
 to a rogue server, the server can extract the client’s process memory.[306]

Protocol Downgrade Attacks

Protocol downgrade attacks occur when an active MITM attempts
 to interfere with the TLS handshake in order to influence connection parameters; the
 idea is that he might want to force an inferior protocol or a weak cipher suite. In SSL
 2, such attacks are easy, because this protocol doesn’t provide handshake integrity.
 Subsequent protocol versions do provide handshake integrity as well as additional
 mechanisms to detect similar attacks.
However, what the protocol designers failed to anticipate is interoperability issues
 related to protocol evolution. Browsers try very hard to communicate successfully with
 every server. Unfortunately, when it comes to TLS, such attempts often result in
 security compromises because browsers will voluntarily downgrade their security
 capabilities, thus sacrificing security for interoperability.
Rollback Protection in SSL 3

In SSL 2, there was no mechanism to ensure the integrity of the handshake, thus
 making that protocol version vulnerable to downgrade attacks. As a result, a MITM
 could always force a handshake to use the least secure parameters available.
 Handshake integrity validation was added in SSL 3, as part of a major protocol
 cleanup.
But in order to provide handshake integrity (as well as other improvements) SSL 3
 had to change the format of the initial handshake request
 (ClientHello). Additionally, it was agreed that the servers
 that understood the new protocol would automatically upgrade to the new format with
 compatible clients. But several problems remained:
	The SSL 3 handshake provides integrity protection, but you can’t use that
 handshake format because most servers understand only SSL 2.

	Even with an SSL 3 server, if there is an active MITM, he can always
 intercept the connection and pretend to be an SSL 2–only server that does
 not understand anything better.

	If you subsequently attempt to use an SSL 2 handshake, there is no
 handshake integrity, and the MITM can interfere with the negotiation.

To address these loopholes, SSL 3 incorporates protocol rollback
 protection[307] that enables SSL 3–aware clients and servers to detect when they are
 under attack. When an SSL 3 client falls back to SSL 2 for compatibility reasons, it
 formats the PKCS#1 block of the RSA key exchange in a special way.[308] In SSL 2, the end of the block must contain at least eight bytes of
 random data; an SSL 3 client instead fills those eight bytes with
 0x03. Thus, if an SSL 3 client is forced down to SSL 2 by a
 MITM attack, the SSL 3 server will notice the special formatting, detect the attack,
 and abort the handshake. A genuine SSL 2 server will not inspect the padding, and
 the handshake will proceed normally.
However, there is one loophole that can break the rollback protection.[309] In SSL 2, the length of the master key mirrors the length of the
 negotiated cipher suite; in the worst case, it’s only 40 bits long. Furthermore,
 it’s the client that selects the cipher suite from those supported by the server,
 generates the master key, and sends it to the server using public key encryption.
 The server decrypts the message using its private RSA key, obtains the master key,
 and proves ownership to the client.
For a MITM, brute-forcing the RSA key might be too much work, but he can attack
 the weak master key. He could pose as a server and offer only one 40-bit suite,
 uncover the master key by brute force, and complete the handshake successfully. This
 attack is easy to carry out given the computational power available today. This
 attack vector is largely obsolete by now, given that few clients continue to support
 SSL 2. Still, the conclusion is that SSL 2 does not provide more than 40 bits of
 security. Attackers who can execute brute-force attacks of that strength in real
 time can consistently break all SSL 2 connections.

Interoperability
 Problems

With the release of the first follow-up version (SSL 3), interoperability problems
 started to appear. In this section, I will enumerate the most common
 problems.
Version Intolerance

The first problem encountered was version intolerance.
 SSL 2 did not consider protocol evolution and didn’t provide instructions for
 how to handle unknown protocol versions. This excerpt from Eric
 Rescorla’s SSL book illustrates the situation:[309]
Unfortunately, the SSLv2 specification wasn’t very clear on how servers
 should handle CLIENT-HELLO messages with version numbers higher than they
 support. This problem was made worse by the fact that Netscape’s SSLREF
 reference implementation simply rejected connections with higher version
 numbers. Thus, it’s not guaranteed that all SSLv2 servers will respond
 correctly to the backward-compatible handshake, although the vast majority
 will.

SSL 3 did not greatly improve in this respect, mentioning client version
 handling only in one sentence of the specification:
server_version: This field will contain the lower of
 that suggested by the client in the client hello and the highest supported
 by the server.

Starting with TLS 1.0, there is more text to handle backward compatibility,
 but only TLS 1.2 provides clear guidance:
A TLS 1.2 client who wishes to negotiate with such older servers will send
 a normal TLS 1.2 ClientHello, containing
 {3,3} (TLS 1.2) in
 ClientHello.client_version. If the server does not
 support this version, it will respond with a ServerHello
 containing an older version number. If the client agrees to use this
 version, the negotiation will proceed as appropriate for the negotiated
 protocol.

As a result of these specification ambiguities, many servers refused
 handshakes if the offered protocol version was not to their liking. The result
 was a serious interoperability issue when browsers began to support TLS 1.2. For
 this reason, Internet Explorer, the first browser to implement TLS 1.2, launched
 with both TLS 1.1 and TLS 1.2 disabled by default.
The Renegotiation Indication Extension specification
 (released in 2010, two years after TLS 1.2) made an attempt to solve the
 problem, in the hope that developers will, while implementing the new
 renegotiation mechanism, also address version and extension intolerance. In
 Section 3.6., it says:
TLS servers implementing this specification MUST ignore any unknown
 extensions offered by the client and they MUST accept version numbers higher
 than their highest version number and negotiate the highest common version.
 These two requirements reiterate preexisting requirements in RFC 5246 and
 are merely stated here in the interest of forward compatibility.

Extension
 Intolerance

Early versions of the protocol (SSL 3 and TLS 1.0) had no explicit mechanism
 for adding new functionality without introducing new protocol revisions. The
 only thing resembling forward compatibility is a provision that allows the
 ClientHello message to include extra data at the end.
 Implementations were instructed to ignore this extra data if they could not
 understand it. This vague extension mechanism was later replaced with
 TLS Extensions,[310] which added a generic extension mechanism to both
 ClientHello and ServerHello messages.
 In TLS 1.2, extensions were merged with the main protocol specification.
Given the vagueness of the early specifications, it’s not surprising that a
 substantial number of SSL 3 and TLS 1.0 servers refuse handshakes with clients
 that specify extra data.

Other Interoperability Problems

There are other interoperability problems, mostly arising due to a combination
 of specification vagueness and sloppy programming:
	Long handshake intolerance
	The size of the ClientHello message is not
 limited, but in the early days clients tended to support only a
 small number of cipher suites, which kept the length low. That
 changed with the OpenSSL 1.0.1 branch, which added support for a
 wide range of cipher suites. That, combined with the use of
 extensions to specify additional information (e.g., desired hostname
 and elliptic curve capabilities), caused the size of
 ClientHello to grow substantially. It then
 transpired that one product—F5’s BIG IP load
 balancer—could not handle handshake messages over 255 bytes
 and under 512 bytes. Because of the popularity of BIG IP (especially
 among some of the largest web sites), this issue had a negative
 impact on the speed of TLS 1.2 adoption.

	Arbitrary extension
 intolerance
	Sometimes servers that understand TLS extensions fail, for no
 apparent reason, to negotiate connections that include extensions
 unknown to them. This usually happens with the Server
 Name Indication and Status
 Request (OCSP stapling) extensions.

	Failure to correctly handle fragmentation
	Historically, there were many issues related to message
 fragmentation. SSL and TLS protocols allow all higher-level messages
 to be fragmented and delivered via several (lower-level) record
 protocol messages. Most implementations handle fragmentation of
 application data messages (which are expected to be long) but fail
 when faced with fragmented messages of other types simply because
 such fragmentation almost never occurs in practice. Similarly, some
 products would fail when faced with zero-size records—which
 derailed initial attempts to mitigate the predictable IV problem in
 TLS 1.0 and earlier protocols. Early attempts to address the same
 problem using the 1/n-1 split (sending two records instead of just
 one, with the first record containing only one byte) were equally
 derailed, because some products could not handle an HTTP request
 split across two TLS messages.

Voluntary Protocol Downgrade

When the interoperability issues started to appear, browsers responded by
 implementing voluntary protocol downgrade. The idea is that
 you first try your best version of TLS, with all options enabled, but if that fails
 you try again with fewer options and lower protocol versions; you continue in this
 manner until (hopefully) a connection is successful. When TLS 1.0 was the best
 supported protocol, voluntary protocol downgrade meant at least two connection
 attempts. Now that browsers support TLS 1.2, three or four attempts are used.
Note
Interoperability issues are not the only problem causing TLS handshakes to
 fail. There is ample anecdotal evidence that proxies, firewalls, and antivirus
 software often intercept and filter connections based on protocol version
 numbers and other handshake attributes.

To understand this behavior, I surveyed various versions of popular desktop
 browsers. I used a custom TCP proxy designed to allow only SSL 3 connections.
 Everything else was rejected with a handshake_failure TLS alert.
 You can see the results in the following table.
Table 6.2. Voluntary protocol downgrade behavior of modern browsers
	Browser	First attempt	Second attempt	Third attempt	Fourth attempt
	
 Chrome 33

 	
 TLS 1.2

 	
 TLS 1.1

 	
 TLS 1.0

 	
 SSL 3

	
 Firefox 27

 	
 TLS 1.2

 	
 TLS 1.1

 	
 TLS 1.0

 	
 SSL 3

	
 IE 6

 	
 SSL 3

 	
 SSL 2

 	 	
	
 IE 7 (Vista)

 	
 TLS 1.0

 	
 SSL 3

 	 	
	
 IE 8 (XP)

 	
 TLS 1.0 (no ext.)

 	
 SSL 3

 	 	
	
 IE 8-10 (Win 7)

 	
 TLS 1.0

 	
 SSL 3

 	 	
	
 IE 11

 	
 TLS 1.2

 	
 TLS 1.0

 	
 SSL 3

 	
	
 Safari 7

 	
 TLS 1.2

 	
 TLS 1.0

 	
 SSL 3

 	

My test results show that you can downgrade all current browsers to SSL 3.[311] And in the case of Internet Explorer 6 you can actually go as low as SSL
 2. Given that SSL 2 is vulnerable to brute-forcing of the master key, Internet
 Explorer 6 can expect a maximum 40 bits of security.
As for SSL 3,
 this version was shown to be unambiguously insecure in October 2014 by the POODLE
 attack. A successful attack can exploit the weaknesses to retrieve small pieces of
 encrypted data (e.g., cookies). Even if you ignore the
 vulnerabilities,
 this old protocol version is significantly inferior to the latest TLS
 1.2:
	No support for the GCM, SHA256 and SHA384 suites.

	No elliptic curve cryptography. When it comes to forward secrecy, very few
 sites support ephemeral Diffie-Hellman (DH) key exchange to use in absence
 of EC. Without EC, those sites lose forward secrecy.

	SSL 3 is vulnerable to the BEAST attack, but modern browsers implement
 countermeasures for it. However, some sites prefer to use RC4 with TLS 1.0
 and earlier protocols. For such sites, the attacker can force the inferior
 RC4.

	Microsoft’s SSL 3 stack does not support AES, which means that IE will
 offer only RC4 and 3DES suites.

From this list, I’d say the biggest problem is the loss of forward secrecy. A
 serious attack could downgrade someone’s connections to force a RSA key exchange and
 then later recover the server’s private key to recover the encrypted
 conversation.
Note
Depending on the exact nature of the communication failure, the fallback
 mechanism can be triggered even with servers that are not intolerant. For
 example, there are reports that Firefox sometimes, over unreliable connections,
 falls back to SSL 3, breaking sites that use virtual secure hosting. (That’s
 because virtual secure hosting relies on TLS extensions, which are not supported
 in SSL 3.)[312]

Rollback Protection in TLS 1.0 and Better

Because SSL 3 and newer protocol versions provide handshake integrity, rollback
 attacks against parties that support only SSL 3 and better do not work.[313]
In case you’re wondering, brute-forcing the master key, which was possible against
 SSL 2, no longer works either, because the master key is now fixed at 384
 bits.
TLS 1.0 (and all subsequent protocol revisions) also continued with the SSL 3
 tradition and included rollback protection in the RSA key exchange, using an
 additional version number sent by the client and protected with the server’s private
 key. From section 7.4.7.1 of the TLS 1.2 specification:
The version number in the PreMasterSecret is the version
 offered by the client in the ClientHello.client_version, not
 the version negotiated for the connection. This feature is designed to prevent
 rollback attacks.

This protection mechanism can be used only if RSA is used for authentication and
 key exchange, but it doesn’t apply to other key-exchange algorithms (even when RSA
 is used for authentication).
In addition, it appears that protocol implementers have struggled to use correct
 version numbers in the right places. Yngve Pettersen, who used to maintained the
 SSL/TLS stack for Opera (while they were using a separate stack), had this to say on
 the topic (emphasis mine):[314]
Second, the RSA-based method for agreeing on the TLS encryption key is defined
 in such a way that the client also sends a copy of the version number it sent to
 the server and against which the server is then to check against the version
 number it received. This would protect the protocol version selection, even if
 the hash function security for a version is broken. Unfortunately, a number of clients and servers have implemented this
 incorrectly, meaning that this method is not effective.

There’s a statement to the same effect in the TLS 1.2 specification:
Unfortunately, some old implementations use the negotiated version instead,
 and therefore checking the version number may lead to failure to interoperate
 with such incorrect client implementations.

The same specification subsequently advises implementers to enforce rollback
 protection only with newer clients:
If ClientHello.client_version is TLS 1.1 or higher, server
 implementations MUST check the version number as described in the note
 below.

But despite having two defense mechanisms rollback attacks are still possible,
 because of the voluntary protocol downgrade behavior discussed earlier.

Attacking Voluntary Protocol Downgrade

The built-in protocol defenses against rollback attacks are effective at
 preventing an attacker from interfering with a single connection. However, when
 voluntary protocol downgrade is taken into account, rollback attacks are still
 possible. This is because the MITM doesn’t actually need to change any handshake
 data. Rather, he can block attempts to negotiate any protocol version greater than
 SSL 3, simply by closing such connections as they are attempted. To defend against
 this type of attack, a different defense is needed.

Modern Rollback Defenses

Voluntary protocol downgrade behavior is a gaping hole in TLS security. Despite
 everyone’s efforts to upgrade the infrastructure to TLS 1.2, an active attacker can
 still downgrade communication to TLS 1.0 or, sometimes, even SSL 3. This subject has
 been discussed on the TLS WG mailing list many times, but consensus has been
 difficult to achieve so far. I have collected a series of links and pointers to
 mailing discussions, which are of interest not only to see how the thoughts about
 this problem evolved but also to observe the complexities involved with the working
 group operation.

 The
 topic was first brought up in 2011,[315] when Eric Rescorla proposed to use special signaling cipher
 suite values (or SCSVs) to enable clients to communicate their best
 supported protocol version even when trying to negotiate a lower version. A server
 that detects version number discrepancy is required to terminate the connection. The
 assumption is that a server that supports this defense also won’t be prone to any of
 the intolerance issues. The SCSV approach was chosen because it had been
 successfully deployed to signal support for secure renegotiation in combination with
 SSL 3 protocol.[316]
In 2012, Adam Langley proposed a system also based on signaling suites and keeping
 the attack detection on the server side.[317]
After the discussion that followed, Yngve Pettersen submitted a alternative proposal,[318] preferring to implement detection in the client.[319] (That would make deployment much easier; rather than upgrading lots of
 servers, which would inevitably take a very long time, only the handful of user
 agents need to be upgraded.) His proposal built on RFC 5746 (Renegotiation
 Indication Extension), which specifically forbids compliant servers to be intolerant
 to future protocol version numbers. According to Yngve’s measurements, only
 0.14% of the servers implementing RFC 5746 showed signs of intolerance. He
 subsequently implemented this rollback protection in Opera 10.50.[320]
Another discussion followed in April 2013.[321] Finally, in September 2013, Bodo Moeller submitted a draft[322] that was subsequently refined[323] and is currently being considered for the working group’s acceptance.[324] Bodo’s proposal is to use a single signaling suite to indicate
 voluntary fallback activity. A server that understands the signal and supports a
 newer protocol version than the one client is attempting to negotiate is required to
 abort the negotiation. Chrome 33 was the first browser to implement this feature.[325]
How can we explain the lack of interest in Yngve’s proposal? Probably
 because no matter how rare, there are still servers that implement secure
 renegotiation but are intolerant to higher protocol version numbers. I think that
 browser vendors simply don’t want to go into a direction that would inevitably
 result in a backlash against them. On the other hand, a SCSV solution would be
 enforced server-side and trigger only on genuine attacks.
The problem with the SCSV solution is that it will take many years to spread
 widely. The few sites that care about their security very much could deploy it
 quickly, but for the rest doing so would be too costly to
 justify. Google
 started using the fallback defense in February 2014, implementing support for it in
 Chrome and their web sites at the same time. OpenSSL 1.0.1j, released in October
 2014, includes server-side support for this new standard. Mozilla pledged to support
 it in Firefox 35, which is expected in early 2015.

Truncation Attacks

In a truncation attack, an attacker is able to prematurely
 terminate a secure conversation, preventing one or more messages from being delivered.
 Normally, a secure protocol is expected to detect such attacks. SSL 2 is vulnerable to
 truncation attacks, but SSL 3 addressed the issue with the addition of the
 close_notify message. Subsequent protocol revisions kept the
 protection. For example, the following text is included in TLS 1.2 (Section
 7.2.1):
Unless some other fatal alert has been transmitted, each party is required to send
 a close_notify alert before closing the write side of the
 connection. The other party MUST respond with a close_notify
 alert of its own and close down the connection immediately, discarding any pending
 writes.

This works because close_notify is authenticated. If any of the
 preceding messages are missing, the integrity verification mechanisms built into TLS
 detect the problem.
Unfortunately, connection closure violations have always been widespread. Many clients
 and servers abruptly close connections and omit the shutdown procedure mandated by the
 standard. Internet Explorer is one such client, but there are many more.
Drowning in bogus warning messages about truncation attacks, well-behaved applications
 started to ignore this problem, effectively opening themselves up to real
 attacks.
Actually, the standards themselves encouraged such behavior by not actually requiring
 reliable connection termination. The following text appears in the SSL 3
 specification:
It is not required for the initiator of the close to wait for the responding
 close_notify alert before closing the read side of the
 connection.

In other words, don’t bother confirming that the other side received all of the sent
 data. TLS, in version 1.1, made things worse by relaxing the rules about session
 resumption. Before, errors of any kind required TLS sessions to be dropped. In practice,
 this meant that the client would have to perform a full (CPU-intensive) handshake on the
 following connection. But TLS 1.1 removed this requirement for incorrectly terminated
 connections. From Section 7.2.1 (emphasis mine):
Note that as of TLS 1.1, failure to properly close a connection no longer requires
 that a session not be resumed. This is a change from TLS 1.0
 to conform with widespread implementation practice.

That’s a shame, because the change removed the only real incentive to get the
 misbehaving user agents to improve. As a result, we are effectively without defense
 against truncation attacks.
Truncation Attack History

Truncation
 attacks against SSL 3 and TLS
 were
 first discussed in 2007,[326] when Berbecaru and Lioy demonstrated
 these
 attacks against a variety of browsers. They focused on truncating responses. For
 example, the browser would show only a partial page or image delivered over TLS
 without any indication that the documents were incomplete.
The topic was revisited in 2013,[327] this time in more detail. In particular, Smyth and Pironti were able to
 show several compelling attacks, ranging from attacks against electronic voting
 systems (Helios) to attacks against web-based email accounts (Microsoft and Google)
 in public computer environments. In all cases, the trick was to prevent the user
 from logging out without him noticing. To do this, they exploited applications that
 told their users that they had logged off before they actually did. By using TLS
 truncation against HTTP requests, the researchers were able to keep the users logged
 in. After that, if the attacker could access the same computer he could assume the
 victim’s application session and thus the user’s identity.
Note
It is particularly interesting that truncation attacks work against HTTP, even
 though HTTP messages tend to include length information. This is another example
 of cutting corners just to make the Web “work.”

Cookie
 Cutting

In 2014, new and more effective techniques to perform truncation attacks came to light.[328] Researchers applied the ideas from earlier attacks on TLS (such as the
 BEAST attack), in which the attacker is able to control TLS record length by
 injecting data of arbitrary length into HTTP requests and responses. If you control
 TLS record length, then you can control the point at which records are split (due to
 size limits and other constraints). Combined with a truncation attack, you can split
 HTTP request or response headers, which has some interesting consequences.
One application of HTTP response header truncation is now known as a
 cookie cutter attack; it can be used to downgrade secure
 cookies into plain, insecure ones. Let’s examine a set of HTTP response headers in
 which secure cookies are used:
HTTP/1.1 302 Moved Temporarily
Date: Fri, 28 Mar 2014 10:49:56 GMT
Server: Apache
Strict-Transport-Security: max-age=31536000; includeSubDomains
Cache-Control: no-cache, must-revalidate
Location: /account/login.html?redirected_from=/admin/
Content-Length: 0
Set-Cookie: JSESSIONID=9A83C2D6CCC2392D4C1A6C12FFFA4072; Path=/; Secure; HttpOnly
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
To make a cookie secure, you append the Secure attribute to the
 header line. But, because this attribute comes after the name and value, if you can
 truncate the HTTP response immediately after the Path attribute
 an insecure cookie will be created.
Clearly, if you truncate the response headers they become incomplete and thus
 invalid; the truncated header line will not be terminated with a newline
 (CRLF), and there won’t be an empty line at the end. However,
 it turns out that some browsers ignore even such obviously malformed HTTP messages
 and process the headers anyway. Most browsers were vulnerable to one type of
 truncation attack or another, as the following table illustrates.
Table 6.3. TLS truncation in browsers [Source: Bhargavan et al.]
	 	In-header truncation	Content-Length ignored	Missing terminating chunk ignored
	Android browser 4.2.2	Yes	Yes	Yes
	Android Chrome 27	Yes	Yes	Yes
	Android Chrome 28	No	No	Yes
	Android Firefox 24	No	Yes	Yes
	Safari Mobile 7.0.2	Yes	Yes	Yes
	Opera Classic 12.1	Yes	Yes	Yes
	Internet Explorer 10	No	Yes	Yes

The attack is quite elaborate, but if automated it seems reasonably practical.
 Here’s how to do it:
	Attack a user that does not yet have an established
 session with the target web site. The web site will not set a
 new cookie if an old one exists. This can be achieved with some social
 engineering or, from an active network attacker perspective, by redirecting
 a plaintext request.

	Find an entry point that allows you to inject
 arbitrary data into the HTTP response. This is key to the
 attack; it allows you to position the truncation location at the TLS record
 boundary. For example, on many web sites when you attempt to access a
 resource that requires authentication, the redirection includes the resource
 address. You can see this in the earlier example, which uses the
 redirected_from parameter for this purpose.
Redirection responses are the ideal entry point because they don’t have
 any content (response body). If you attempt to truncate any other response,
 the absence of content might make the user suspicious.

	Submit padding that splits response headers into two
 TLS records. Normally, the entire HTTP redirection response
 is small and fits in a single TLS record. Your goal is to split this record
 into two. Because TLS records are limited to 16,384 bytes, if you submit a
 very long payload and push the size past this limit, the TLS stack will
 split the response into two records.

	Close the secure connection after the first TLS
 record. This part of the attack is straightforward: observe
 the TLS communication and drop the connection (e.g., by sending an
 RST signal) immediately after the first TLS
 record.

	Extract the insecure cookie. At this
 point, the partial cookie will have been consumed and all that remains is to
 extract it from the user agent. This is a cookie
 stealing attack.

Another target for the cookie cutter attack is
 the Strict-Transport-Security response header. If you truncate
 the header immediately after the first digit of the max-age
 parameter, the HSTS entry will expire after nine seconds at most. Additionally, the
 includeSubDomains parameter, if present, will be neutralized,
 too. With HSTS out of the way, you can proceed with an HTTPS
 stripping attack or manipulate the cookies in some other way, as
 discussed in Chapter 5, HTTP and Browser Issues.
It is expected that the cookie cutter attack will be addressed by implementing
 stricter checks and parsers at the browser level. Some vendors have already
 implemented fixes, but for most the current status is unknown.

Deployment Weaknesses

Sometimes, weakness arise in deployment, when commonly used practices lead to
 exploitable weaknesses. The problems described in this section arise from the secure
 protocols defined in abstract, without clear guidance as to how they should be
 implemented by servers. As a result, subtle problems arise.
Virtual Host Confusion

Certificate sharing is generally not recommended, unless it’s used by closely
 related web sites. At one level, there’s the issue that all sites that share the
 certificate must also share the private key. The sharing weakens security and
 reduces it to the strength of the weakest link. Also, you don’t want multiple
 independent teams to all have access to the same private key.
However, all sites that share a certificate are also bound at the application
 level; if one site is compromised or otherwise exploited in some way, other sites
 that share the same certificate can also be attacked if the circumstances are right.
 The other sites could be running on a different port or IP address and be located
 anywhere on the Internet.
For example, let’s suppose that an attacker gains control of a weak site that uses
 a multidomain certificate. Operating from an active network attack perspective, she
 observes users connecting to other sites
 using
 the same certificate. (I’ll call them secure sites.) She then hijacks a TLS
 connection intended for one such secure site and sends it to the weak site under her
 control. Because the certificate is the same, the victim’s browser won’t detect
 anything unusual and the HTTP request will be processed by the web server. Because
 the attacker controls that web server, she can record the cookies included in the
 hijacked connection and use them to hijack the victim’s application session. She can
 also respond with arbitrary JavaScript code that will be executed in the context of
 the secure site.
There’s a catch: the web server on the weak site must ignore the fact that the
 HTTP Host headers reference a site that isn’t hosted there.
 Depending on the level of control, the attacker might be able to reconfigure the
 server to ensure that’s the case. However, it’s also common that servers ignore
 invalid host information and always respond with a default site.
Robert Hansen was the first to highlight this problem when he successfully
 transferred a XSS vulnerability from mxr.mozilla.org to
 addons.mozilla.org because both used the same certificate.[329] In 2014, Delignat-Lavaud and Bhargavan highlighted this problem in a
 research paper and gave it the name virtual host confusion.[330] They also showed how to exploit the problem in several real-life
 scenarios and even uncovered a long-standing problem that could have been used to
 impersonate some of the most popular web sites in the world.
Note
The same attack can be applied to other protocols. Take SMTP servers, for
 example. Using the same traffic redirection trick, the attacker can break into
 one weak SMTP server and later redirect TLS connections to it. If the
 certificate is shared, email for some other secure sites will be effectively
 delivered to the attacker.

TLS Session Cache Sharing

Another problem highlighted by Delignat-Lavaud and Bhargavan is that TLS session
 cache sharing among unrelated servers and web sites, which is common, can be abused
 to bypass certificate authentication.[329] Once a
 TLS session is established, the client can resume it not only with the original
 server but also with any other server that shares the same session cache, even if it
 isn’t intended to respond to the requested web site and doesn’t have the correct
 certificate.
This weakness effectively creates a bond among all sites that share the cache
 (either via server session caching or session tickets) and allows the attacker who
 compromises one site to escalate access to the other sites. Traffic redirection, the
 same trick as discussed in the previous section, is the primary attack
 technique.
For server-side session caching, the flaw is in server applications that don’t
 check that a session is resumed with the same host with which it was originally
 established. It’s a similar situation with session tickets. However, in the latter
 case there is usually a workaround, because servers allow per-host ticket key
 configuration. It’s best practice to have each host use its own ticket key.

[263] For security reasons, the CA certificate that issues the
 end-entity certificate shouldn’t be allowed to issue subordinate
 CA certificates. All other intermediate certificates in the
 chain must have this privilege.

[264] Certificate Validation Flaw Could Enable Identity
 Spoofing (Microsoft Security Bulletin MS02-050, 4
 September 2002)

[265] Internet Explorer SSL Vulnerability (Moxie
 Marlinspike, 8 August 2002)

[266] sslsniff (Moxie Marlinspike, retrieved 20 February
 2014)

[267] Analysis of vulnerability GNUTLS-SA-2008-3 CVE-2008-4989
 (Martin von Gagern, 10 November 2008)

[268] Incorrect checks for malformed signatures (OpenSSL, 7
 January 2009)

[269] TWSL2011-007: iOS SSL Implementation Does Not Validate
 Certificate Chain (Trustwave SpiderLabs, 25 July
 2011)

[270] About
 the security content of iOS 7.0.6 (Apple, 21 February
 2014)

[271] Apple’s SSL/TLS bug (Adam Langley, 22 February
 2014)

[272] Advisories (GnuTLS, retrieved 17 July 2014)

[273] Dissecting the GnuTLS Bug (Johanna, 5 March
 2014)

[274] OpenSSL Security Advisory CVE-2014-0224 (OpenSSL, 5
 June 2014)

[275] Early ChangeCipherSpec Attack (Adam Langley, 5 June
 2014)

[276] Using Frankencerts for Automated Adversarial Testing of Certificate
 Validation in SSL/TLS Implementations (Brubaker et al., S&P,
 2014)

[277] Frankencert (sumanj, GitHub, retrieved 17 July 2014)

[278] The most dangerous code in the world: validating SSL certificates in
 non-browser software (Georgiev et al., CCS, 2012)

[279] PKI Layer Cake: New Collision Attacks Against the Global X.509
 Infrastructure (Kaminsky et al., Black Hat USA, 2009)

[280] More Tricks For Defeating SSL In Practice (Moxie Marlinspike,
 Black Hat USA, 2009)

[281] Actually, that’s not strictly true. Some CAs were found to
 incorrectly process the NUL byte and mistake it for a string
 terminator. These days, it’s very likely that CAs perform all sorts
 of checks on the submitted hostnames.

[282] True random number generation is not possible unless specialized hardware
 components are used. In practice, we rely on pseudorandom number
 generators (PRNGs). Most PRNGs use a small amount of entropy as
 a seed, after which they can produce a large quantity of pseudorandom numbers.
 In this section, I use RNG and PRNG interchangeably.

[283] Randomness and the Netscape Browser (Ian Goldberg and David
 Wagner, January 1996)

[284] unssl.c (Ian Goldberg and David Wagner, September 1995)

[285] DSA-1571-1: openssl — predictable random number generator
 (Debian, 13 May 2008)

[286] Diff of /openssl/trunk/rand/md_rand.c r140:r141 (Debian OpenSSL
 package, 2 May 2006)

[287] Working
 exploit for Debian generated SSH Keys (Markus Müller, 15 May
 2008)

[288] Vendors Are Bad For
 Security (Ben Laurie, 13 May 2008)

[289] Debian and OpenSSL: The
 Aftermath (Ben Laurie, 14 May 2008)

[290] CryptGenRandom (Wikipedia, retrieved 17 July 2014)

[291] RNG Bug May Result in Weak Cryptographic Keys (NetBSD, 29
 March 2013)

[292] Widespread Weak Keys in
 Network Devices (factorable.net, retrieved 17 July 2014)

[293] LittleBlackBox (Database of private SSL/SSH keys of
 embedded devices, retrieved 17 July 2014)

[294] Check Your
 Key (factorable.net, retrieved 17 July 2014)

[295] Heartbleed
 (Wikipedia, retrieved 19 May 2014)

[296] Tech giants, chastened by Heartbleed, finally agree to fund OpenSSL
 (Jon Brodkin, Ars Technica, 24 April 2014)

[297] OpenSSL Project
 Roadmap (OpenSSL, retrieved 17 July 2014)

[298] LibreSSL (OpenBSD,
 retrieved 17 July 2014)

[299] Half a million widely trusted websites vulnerable to Heartbleed
 bug (Netcraft, 8 April 2014)

[300] 300k servers vulnerable to Heartbleed one month later (Robert
 Graham, 8 May 2014)

[301] The Results of the CloudFlare Challenge (Nick Sullivan, 11 April
 2014)

[302] Searching for The Prime Suspect: How Heartbleed Leaked Private
 Keys (John Graham-Cumming, 28 April 2014)

[303] Attackers Exploit the Heartbleed OpenSSL Vulnerability to Circumvent
 Multi-factor Authentication on VPNs (Christopher Glyer, 18 April
 2014)

[304] Heartbleed hacks hit Mumsnet and Canada’s tax agency (BBC, 14
 April 2014)

[305] Keys left unchanged in many Heartbleed replacement certificates!
 (Netcraft, 9 May 2014)

[306] Pacemaker (Heartbleed client exploit, retrieved 19 May
 2014)

[307] RFC
 6101: The SSL Protocol Version 3.0, Section E.2. (Freier et al.,
 August 2011)

[308] In SSL 2, RSA was the only authentication and key exchange mechanism.
 Thus, rollback protection implemented as a hack of this key exchange was
 sufficient to fully address the issue.

[309] SSL and TLS: Designing and Building Secure Systems,
 page 137 (Eric Rescorla, Addison-Wesley, October 2000)

[310] RFC 3546: TLS
 Extensions (Blake-Wilson et al., June 2003)

[311] Even Opera, which had previously implemented protocol downgrade
 protection, lost that capability when its team abandoned their own engine
 and switched to Chrome’s Blink for version 15.

[312] Bug #450280: PSM sometimes falls back from TLS to SSL3 when holding
 F5 (which causes SNI to be disabled) (Bugzilla@Mozilla, ,
 reported on 12 August 2008)

[313] The protection is provided by the Finished message,
 which is sent at the end of the handshake to verify its integrity. In SSL 3,
 this message is 388 bits long. Curiously, TLS 1.0 reduced the size of this
 message to only 96 bits. In TLS 1.2, the Finished message
 still uses only 96 bits by default, but the specification now allows cipher
 suites to increase its strength. Despite that, all cipher suites continue to
 use only 96 bits.

[314] Standards work update (Yngve Nysæter Pettersen, 2 November
 2012)

[315] One approach to rollback protection (Eric Rescorla, 26 September
 2011)

[316] With modern protocol versions, clients can use TLS extensions to signal
 their capabilities. But because SSL 3 does not support extensions, another
 mechanism was needed. The solution was to use signaling suites, which cannot
 be negotiated but can be used to pass small bits of information from clients
 to servers.

[317] Cipher suite values to indicate TLS capability (Adam Langley, 5
 June 2012)

[318] Fwd: New Version Notification for
 draft-pettersen-tls-version-rollback-removal-00.txt (Yngve
 Pettersen, 3 July 2012)

[319] Managing and removing automatic version rollback in TLS Clients
 (Yngve Pettersen, February 2014)

[320] Starting with version 15, Opera switched to the Blink browser engine
 (Google’s fork of WebKit), abandoning its own engine and the SSL/TLS stack.
 That probably meant also abandoning the rollback implementation as proposed
 by Yngve.

[321] SCSVs and SSLv3 fallback (Trevor Perrin, 4 April 2013)

[322] TLS Fallback SCSV for Preventing Protocol Downgrade Attacks
 (Bodo Moeller and Adam Langley, June 2014)

[323] An SCSV to stop TLS fallback. (Adam Langley, 25 November
 2013)

[324] Call for acceptance of draft-moeller-tls-downgrade-scsv (Eric
 Rescorla, 23 January 2014)

[325] TLS Symmetric Crypto (Adam Langley, 27 February 2014)

[326] On the Robustness of Applications Based on the SSL and TLS Security
 Protocols (Diana Berbecaru and Antonio Lioy, Public
 Key Infrastructure, Lecture Notes in
 Computer Science, volume 4582, pages 248–264; 2007)

[327] Truncating TLS Connections to Violate Beliefs in Web
 Applications (Ben Smyth and Alfredo Pironti, Black Hat USA,
 2013)

[328] Triple Handshakes and
 Cookie Cutters (Bhargavan et al., March 2014)

[329] MitM DNS Rebinding SSL/TLS Wildcards and XSS (Robert Hansen, 22
 August 2010)

[330] Virtual Host Confusion: Weaknesses and Exploits (Antoine
 Delignat-Lavaud and Karthikeyan Bhargavan, 6 August 2014)

7 Protocol Attacks

Over the years, the security of SSL and TLS protocols has been going in and out of the
 focus of researchers. The early beginnings were very shaky. At Netscape, SSL version 1 was
 apparently considered to be so insecure that they scrapped it and released version 2
 instead. That was in late 1994. That version did well enough to kick off the e-commerce
 boom, but it didn’t do very well as far as security is concerned. The next version, SSL 3,
 had to be released in 1996 to address the many security problems.
A long, quiet period followed. In 1999, SSL 3 was standardized as TLS 1.0, with almost no
 changes. TLS 1.1 and TLS 1.2 were released in 2006 and 2008, respectively, but virtually
 everyone stayed with TLS 1.0. At some point around 2008, we started to focus on security
 again. Ever since, there’s been a constant pressure on TLS, scrutinizing every little
 feature and use case.
In this chapter, I document the attacks that broke aspects of TLS in recent years; the
 focus is on the problems that you might encounter in practice. In chronological order, they
 are: insecure renegotiation in 2009, BEAST in 2011, CRIME in 2012, Lucky 13, RC4 biases,
 TIME, and BREACH in 2013 and Triple Handshake in 2014. I conclude the chapter with a brief
 discussion of the possibility that some of the standards and cryptographic algorithms have
 been subverted by government agencies.
Insecure Renegotiation

Insecure renegotiation (also known as TLS
 Authentication Gap) is a protocol issue first discovered by Marsh Ray
 and Steve Dispensa in August 2009. After the discovery, they initiated an industry-wide
 effort to fix the protocol and coordinate public disclosure. Before the process was
 complete, the issue was independently discovered by Martin Rex (in November of the same year).[331] At that point, the information became public, prematurely.[332]
Why Was Renegotiation Insecure?

The renegotiation vulnerability existed because there was no continuity between
 the old and new TLS streams even though both take place over the same TCP
 connection. In other words, the server does not verify that the same party is behind
 both conversations. As far as integrity is concerned, it is entirely possible that
 after each renegotiation a different client is talking to the server.
Application code typically has little interaction with the encryption layer. For
 example, if renegotiation occurs in the middle of an HTTP request, the application
 is not notified. Furthermore, web servers will sometimes buffer data that was
 received prior to renegotiation and forward it to the application together with the
 data received after renegotiation. Connection parameters may also change; for
 example, a different client certificate might be used after renegotiation. The end
 result is that there is a mismatch between what is happening at the TLS layer and
 what applications see.
A man-in-the-middle (MITM) attacker can exploit this
 problem in three steps:
	Intercept a TCP connection request from the victim (client) to the target
 server.

	Open a new TLS connection to the server and send the attack
 payload.

	From then on, continue to operate as a transparent proxy between the
 victim and the server. For the client, the connection has just begun; it
 will submit a new TLS handshake. The server, which has already seen a valid
 TLS connection (and the attack payload), will interpret the client’s
 handshake as renegotiation. Once the renegotiation is complete, the client
 and the server will continue to exchange application data. The attacker’s
 payload and the client’s data will both be seen as part of the same data
 stream by the server, and the attack will have been successful.

Figure 7.1. Man-in-the-middle attack against insecure renegotiation
[image: Man-in-the-middle attack against insecure renegotiation]

This scenario shows the attacker violating the integrity of application data,
 which TLS was designed to protect. The attacker was able to inject arbitrary
 plaintext into the beginning of the connection. The impact of the attack depends on
 the underlying protocol and server implementation and will be discussed in the
 following sections.

Triggering the Weakness

Before he can exploit the insecure renegotiation vulnerability, the attacker needs
 to find a way to trigger renegotiation. Before this vulnerability was discovered,
 most servers were allowing client-initiated renegotiation, which meant that most
 were easy targets. A rare exception was Microsoft IIS, which, starting with version
 6, would not accept client-initiated renegotiation at all.
But even without client-initiated renegotiation, sites using client certificates
 or supporting SGC might be equally easy to exploit. The attacker just needs to
 examine the web site to determine under what conditions renegotiation is required.
 If such a condition is easily triggered, the attacker may use it for the attack.
 Depending on the exact configuration of the server, the resulting attack vector may
 be as useful as client-initiated renegotiation.

Attacks against HTTP

When it comes to insecure renegotiation, attacks against HTTP are the best
 understood. Many variants exist, with their feasibility depending on the design of
 the target web site and on the technical prowess (and the browser used) by the
 victim. Initially, only one attack was discussed, but the security community
 collaborated to come up with other possibilities. Thierry Zoller, in particular,
 spent considerable effort tracking down and documenting the attack vectors as well
 as designing proof-of-concept attacks.[333]
Execution of Arbitrary GET Requests

The easiest attack to carry out is to perform arbitrary GET
 requests using the credentials of the victim. The effective request consisting
 of the attack payload (in bold) and the victim’s request might look something
 like this:
GET /path/to/resource.jsp HTTP/1.0
X-Ignore: GET /index.jsp HTTP/1.0
Cookie: JSESSIONID=B3DF4B07AE33CA7DF207651CDB42136A
We already know that the attacker can prepend arbitrary plaintext to the
 victim’s request. The attacker’s challenge is to use this ability to control the
 attack vector, neutralize the parts of the genuine request that would break the
 attack (that’s the victim’s request line), and use the parts that contain key
 information (e.g., session cookies or HTTP Basic Authentication) to successfully
 authenticate.
The attacker can do that by starting the attack payload with a complete HTTP
 request line—thereby choosing the entry point of the attack—and then
 following with a partial header line; this header, which is
 purposefully left incomplete (no newline at the end), will neutralize the first
 line of the victim’s request. All subsequent request headers submitted by the
 victim will become part of the request.
So what do we get with this? The attacker can choose where the request goes,
 and the victim’s credentials are used. But the attacker cannot actually retrieve
 the credentials, and the HTTP response will go back to the victim. It appears
 that the effect of this attack is similar to that of a cross-site
 request forgery (abbreviated to CSRF or, sometimes, XSRF). Most
 sites that care about security will have already addressed this well-known web
 application security problem. Those sites that did not address CSRF are probably
 easier to attack in other ways.
This was the attack vector that was initially presented and, because of the
 similarity to CSRF, caused many to dismiss the insecure vulnerability as
 unimportant.

Credentials Theft

In the days following the public disclosure, improved attacks started to
 appear. Just a couple of days later, Anil Kurmus improved the attack to retrieve
 encrypted data.[334]
In researching the possible attack vectors, most focused on trying to use the
 credentials included with hijacked requests (i.e., session cookies or Basic
 Authentication credentials). Anil realized that although he was not able to
 retrieve any data directly he was still able to submit it to the web site using
 a different identity, one that was under his control.
 (Reverse session hijacking, if you will.) From there, the challenge was to get
 the data back from the web site somehow.
His proof-of-concept attack was against Twitter. He managed to post the
 victim’s credentials (which were in the headers of the victim’s HTTP request) as
 a tweet of his own. This was the request (the attacker’s payload in
 bold):
POST /statuses/update.xml HTTP/1.0
Authorization: Basic [attacker's credentials]
Content-Type: application/x-www-form-urlencoded
Content-Length: [estimated body length]

status=POST /statuses/update.xml HTTP/1.1
Authorization: Basic [victim's credentials]
In the improved version of the attack, the entire victim’s request is
 submitted in the request body as the contents of the status
 parameter. As a result, Twitter treats it as the text of a tweet and publishes
 it in the attacker’s tweet stream. On other sites, the attacker might post a new
 message on the forum, send an email message to himself, and so forth.
The only challenge here is getting the Content-Length
 header right. The attacker does not know the size of the request in advance,
 which is why he cannot use the correct length. But to succeed with the attack he
 only needs to use a large enough value to cover the part of the victim’s request
 that contains sensitive data. Once the web server hits the limit specified in
 the Content-Length header, it will consider the request
 complete and process it. The rest of the data will be treated as another HTTP
 request on the same connection (and probably ignored, given that it’s unlikely
 that it would be well formed).

User Redirection

If the attacker can find a resource on the target web site that responds with
 a redirection, he might be able to perform one of the following attacks:
	Send the user to a malicious web site
	An open redirection point on the web site could be used to send
 the victim to the destination of the attacker’s choice. This is
 ideal for phishing, because the attacker can build a replica of the
 target web site, possibly using a similar domain name to make the
 deception more effective. It’s very easy to make up a name that
 feels related and “official” (e.g., www.myfeistyduck.com,
 when the real domain name is www.feistyduck.com). To
 finalize the deception, the attacker can get a proper certificate
 for the malicious web site.

	Downgrade connection to plaintext HTTP
	If the attacker can find a redirection on the target web site that
 will send the user to (any) plaintext web site, then the TLS
 connection is effectively downgraded. From there, the attacker can
 use a tool such as sslstrip and establish full
 control over the victim’s browsing.

	Capture credentials via redirected POST
	If the site contains a redirection that uses the 307 status
 code—which requires that the redirection is carried out
 without changing the original request method—it may be
 possible to redirect the entire request (POST
 body included) to the location of the attacker’s choice. All
 browsers support this, although some require user confirmation.[335] This attack is quite dangerous, because it allows the
 attacker to retrieve encrypted data without having to rely on the
 site’s own functionality. In other words, it may not be necessary to
 have an account on the target web site. This is a big deal, because
 the really juicy targets make that step difficult (think banks and
 similar financial institutions).

A good discussion of the use of redirection to exploit insecure renegotiation
 is available in the research paper from Leviathan Security Group.[336]

Cross-Site Scripting

In some rare cases, the attacker might be able to inject HTML and JavaScript
 into the victim’s browser and take full control of it via XSS. This could be
 done using the TRACE HTTP method, which requires servers to
 mirror the request in the response. Under attack, the reflected content would
 contain the attacker’s payload.
This attack will not work against the major browsers, because
 TRACE responses usually use the
 message/http content type. But, according to Thierry
 Zoller[333], there are some less
 used Windows browsers that always handle responses as HTML; those are
 vulnerable. In addition, custom scripts rarely check response content types, and
 they might be vulnerable, too.

Attacks against Other Protocols

Although HTTP received most of the attention, we should assume that all protocols
 (that rely on TLS) are vulnerable to insecure renegotiation unless the opposite can
 be proven. Any protocol that does not reset state between renegotiations will be
 vulnerable.
	SMTP
	Wietse Venema, a member of the Postfix project, published an analysis
 of the insecure renegotiation impact on SMTP and the Postfix mail server.[337] According to the report, SMTP is vulnerable, but the
 exploitation might tricky, because, unlike HTTP, one SMTP transaction
 consists of many commands and responses. He concluded that Postfix was
 not vulnerable—but only by luck, because of certain implementation
 decisions. The report suggested several client- and server-side
 improvements to defend against this problem.
Insecure renegotiation did not pose a significant threat to SMTP
 because, unfortunately, most SMTP servers do not use valid certificates
 and (possibly as a result) most SMTP clients do not actually validate
 certificates. In other words, man-in-the-middle attacks against SMTP are
 already easy to execute; no further tricks are required.

	FTPS
	Alun Jones, author of the WFTPD Server, published an analysis of the
 impact of the insecure renegotiation vulnerability on FTPS.[338] The main conclusion is that due to the way file transfer is
 implemented in some FTP
 servers,
 a MITM attacker could use the renegotiation issue to tell the server to
 disable encryption of the command channel. As a result, the integrity of
 the transferred files could be compromised.

Insecure Renegotiation Issues Introduced by Architecture

System design and architecture decisions can sometimes introduce insecure
 renegotiation where it otherwise doesn’t exist. Take SSL
 offloading, for example. This practice is often used to add
 encryption to services that otherwise do not support it or to improve the
 performance of a system by moving TLS handling away from the main service point. If
 insecure renegotiation is supported at the point of TLS termination, the system as a
 whole will be vulnerable even if the actual web servers are not.

Impact

Insecure renegotiation is a serious vulnerability because it completely breaks the
 security guarantees promised by TLS. Not only is communication integrity
 compromised, but the attacker might also be able to retrieve the communicated data
 itself. There’s a variety of attacks that can take place, ranging from CSRF to theft
 of credentials to sophisticated phishing. Because a good technical background and
 per-site research is required, this is a type of attack that requires a motivated
 attacker, likely against higher-value targets.
The ideal case for the attacker is one in which there are automated systems
 involved, because automated systems rarely scrutinize failures, have poor logging
 facilities, and retry requests indefinitely until they are successful. This scenario
 thus creates a large attack surface that is much easier to exploit than attacking
 end users (browsers) directly.
The attack against insecure renegotiation is well understood, and the tools needed
 to carry it out are widely available. The proof of concept for the Twitter attack
 can be found on the Internet, and only a slight modification to any of the widely
 available MITM tools would be needed to extend them to exploit the vulnerability.
The compromise of integrity has another side effect, which stems from the fact
 that the attacker can submit arbitrary requests under the identity of the victim.
 Even if the attacker is not able to retrieve any data or trick the victim, he can
 always forge his attack payloads to make it seem as if the victim was attacking the
 server. Because of inadequate logging facilities at most web sites, this type of
 attack (executed under the identity of the victim) would be extremely difficult to
 dispute, and yet it could have devastating consequences for the victim. For this
 reason alone, end users should configure their browsers to accept communication only
 with servers that support secure renegotiation.[339]

Mitigation

There are several ways in which insecure renegotiation can be addressed, but some
 are better than others.
	Upgrade to support secure renegotiation
	In early 2010, the Renegotiation Indication
 extension was released to address the problem with renegotiation at the
 protocol level.[340] Today, several years later, you should expect that all
 products can be upgraded to support secure renegotiation. If you’re
 dealing with products that cannot be upgraded, it’s probably an
 opportunity to consider if they’re still worth using.

	Disable renegotiation
	In the first several months after the discovery, disabling
 renegotiation was the only mitigation option.
This approach is inferior to supporting secure renegotiation. First,
 some deployments actually need renegotiation (typically when deploying
 client certificate authentication). Second, not supporting secure
 renegotiation promotes renegotiation uncertainty on the Web, effectively
 preventing users from protecting themselves.

Disabling SSL Renegotiation Is a Crutch, Not a Fix

We should all make an effort to upgrade our systems to support secure
 renegotiation. If, in 2009 or 2010, you patched your systems to disable
 renegotiation, you might feel that you are safe and that no further action is
 required. From a very narrow perspective, you’d be right. However, not
 supporting secure renegotiation is actually holding the entire world back,
 because it’s preventing browser vendors from adopting strict renegotiation
 policies.
Unlike servers, which either ask for renegotiation or receive unsolicited
 renegotiation requests, when under
 attack,
 browsers can’t tell that renegotiation is taking place. After all, they are not
 the ones renegotiating.
The only way for browsers to protect themselves is to refuse to connect to
 servers that do not support secure renegotiation. And therein lies the problem:
 there are still many such servers on the Web, and the browser vendors don’t want
 to be the ones breaking web sites. A server that disables renegotiation might be
 safe to talk to, but it’s prolonging the transition period by increasing the
 overall number of servers that are not verifiably secure.

Discovery and Remediation Timeline

The insecure renegotiation issue gave us a rare opportunity to examine and assess
 our collective ability to fix a vulnerable protocol. Clearly, in an ecosystem as
 complex as
 TLS,
 fixing any problem will require extensive collaboration and take years; but how many
 years, exactly? The following chart will give us a good idea.
Figure 7.2. Insecure renegotiation remediation timeline
[image: Insecure renegotiation remediation timeline]

Roughly, what the timeline shows is that we need:
	About six months to fix the protocol.

	A further 12 months for libraries and operating systems to be fixed and
 patches issued.

	A further 24 months for the majority to apply the patches (or recycle
 those old systems).

According to the measurements done by Opera, 50% of the servers they tracked had
 been patched to support secure renegotiation within one year of the official RFC release.[341]
 The same data set, in February 2014, reported 83.3% patched servers.[342] The conclusion is that we need about four years to address flaws of this
 type.
As I am writing this, in July 2014, 88.4% of the servers in the SSL Pulse data set
 support secure renegotiation.[343] About 6.1% support insecure renegotiation, and 6.8% don’t support
 renegotiation at all. The numbers add up to more than 100%, because there’s about
 1.3% of servers that accept both secure and insecure renegotiation.

BEAST

In the summer of 2011, Duong and Rizzo announced a new attack technique that
 could be used against TLS 1.0 and earlier protocols to extract small pieces of encrypted data.[344] Their work built on previously known weakness in the predictable
 initialization vector (IV) construction as used in TLS 1.0.
 The weakness, which was thought to be impractical to exploit, had been fixed in TLS 1.1,
 but at the time of discovery there was effectively no browser support for newer TLS
 versions.
In many ways, the so-called BEAST attack was a wake-up call for the ecosystem. First,
 it emphasized (again) that attacks only get better. As you will learn later in this
 section, this was a weakness that had been known for almost a decade and dismissed, but
 all it took was two motivated researchers to make it practical. Duong and Rizzo showed
 that we must not ignore small problems, because they eventually grow big.
Second, the disclosure and the surrounding fuss made it painfully clear how little
 attention browser vendors paid to the TLS protocol. They, along with most of the
 software industry, became too focused on exploitability. They didn’t take into account
 that protocol issues, and other problems that require interoperability of large numbers
 of clients and servers, take years to address. They are much different from buffer
 overflows and similar flaws, which can be fixed relatively quickly.
Thai gave a candid account of how BEAST came together in his blog post,[345] and you can almost feel his frustration when he realizes that he is losing
 the attention of browser vendors because, even though he can demonstrate the attack in a
 simulation, he is unable to demonstrate it in a practical environment. But they
 persisted, managed to build a working proof of concept, demonstrated it, and finally got
 the attention they deserved.
How the Attack Works

The BEAST attack is an exploit targeted at the Cipher Block
 Chaining (CBC) encryption as implemented in TLS 1.0 and earlier
 protocol versions. As mentioned earlier, the issue is that IVs are predictable,
 which allows the attacker to effectively reduce the CBC mode to
 Electronic Code Book (ECB) mode, which is inherently
 insecure.
ECB Oracle

ECB is the simplest mode of operation: you split input data into blocks and
 encrypt each block individually. There are several security issues with this
 approach, but the one we’re interested in here is that ECB does not hide the
 deterministic nature of block cipher encryption. What this means is that every
 time you encrypt the same piece of data the output is also the same. This is a
 very useful property for the attacker; if he is able to submit arbitrary data
 for encryption, he can use that to recover earlier encrypted data by guessing.
 It goes like this:
	Observe a block of encrypted data that contains some secret. The size
 of the block will depend on the encryption algorithm, for example, 16
 bytes for AES-128.

	Submit 16 bytes of plaintext for encryption. Because of how block
 ciphers work (one bit of difference anywhere in input affects all output
 bytes), the attacker is only able to guess the entire block at
 once.

	Observe the encrypted block and compare it to the ciphertext observed
 in step 1. If they are the same, the guess is correct. If the guess is
 incorrect, go back to step 2.

Because the attacker can only guess the entire block at a time, this is not a
 great attack. To guess 16 bytes, the attacker would need to make
 2128 guesses, or 2127
 on average. But, as we shall see later, there are ways in which the attack can
 be improved.

CBC with Predictable IV

The key difference between CBC and ECB is that CBC uses an IV to mask each
 message before encryption. The goal is to hide patterns in ciphertext. With
 proper masking in place, the ciphertext is always different even if the input is
 the same. As a result, CBC is not vulnerable to plaintext guessing in the way
 ECB is.
For the IV to be effective, it must be unpredictable for each message. One way
 to achieve this is to generate one block of random data for every block that we
 wish to encrypt. But that wouldn’t be very practical, because it would double
 the size of output. In practice, CBC in SSL 3 and TLS 1.0 uses only one block of
 random data at the beginning. From there on, the encrypted version of the
 current block is used as the IV for the next block, hence the word
 chaining in the name.
The chaining approach is safe, but only if the attacker is not able to observe
 encrypted data and influence what will be encrypted in the immediately following
 block. Otherwise, simply by seeing one encrypted block he will know the IV used
 for the next. Unfortunately, TLS 1.0 and earlier treat the entire
 connection as a single message and use a random IV only
 for the first TLS record. All subsequent records use the last encryption block
 as their IV. Because the attacker can see all the encrypted data, he knows the
 IVs for all records from the second one onwards. TLS 1.1 and 1.2 use per-record
 IVs and thus don’t have the same weakness.
The TLS 1.0 approach fails catastrophically when faced with an active attacker
 who can submit arbitrary plaintext for encryption, observe the corresponding
 ciphertexts, and adapt the attacks based on the observations. In other words,
 the protocol is vulnerable to a blockwise chosen-plaintext
 attack. When the IV is predictable, CBC effectively downgrades to ECB.
Figure 7.3, “BEAST attack against CBC with predictable IV” illustrates the attack against CBC with
 predictable IV showing three encryption blocks: two blocks sent by the browser
 and one block sent (via the browser) by the attacker. For simplicity, I made it
 so that each message consumes exactly one encryption block; I also removed
 padding, which TLS would normally use.
The attacker’s goal is to reveal the contents of the second block. He can’t
 target the first block, because its IV value is never seen on the network. But
 after seeing the first block he knows the IV of the second
 (IV2), and after seeing the second block he knows the
 IV of the third block (IV3). He also knows the encrypted
 version of the second block (C2).
After seeing the first two blocks, the attacker takes over and instruments the
 victim’s browser to submit plaintext for encryption. For every guess, he can
 observe the encrypted version on the wire. Because he knows all the IVs, he can
 craft his guesses in such a way that the effects of IV are eliminated. When a
 guess is successful, the encrypted version of the guess
 (C3) will be the same as the encrypted version of the
 secret (C2).
Figure 7.3. BEAST attack against CBC with predictable IV
[image: BEAST attack against CBC with predictable IV]

To understand how the IVs can be effectively eliminated, we have to look at
 some of the
 math
 involved. Let’s examine the
 encryption of M2, which contains some secret, and
 M3, which is controlled by the attacker:
C2 = E(M2 ⊕
 IV2) = E(M2 ⊕
 C1)
C3 = E(M3 ⊕
 IV3) = E(M3 ⊕
 C2)
Messages are first XORed with their IV, then encrypted. Because different IVs
 are used each time, even if M2 is the same as
 M3 the corresponding encryptions,
 C2 and C3, will be different.
 However, because we know both IVs (C1 and
 C2), we can craft M3 in such a
 way as to neutralize the masking. Assuming Mg is the
 guess we wish to make:
M3 = Mg ⊕
 C1 ⊕ C2
The encryption of M3 will thus be:
C3 = E(M3 ⊕
 C2) = E(Mg ⊕
 C1 ⊕ C2 ⊕
 C2) = E(Mg ⊕
 C1)
And if our guess is correct (Mg =
 M2), then the encryption of our block will be the
 same as the encryption of the second block:
C3 = E(Mg ⊕
 C1) = E(M2 ⊕
 C1) = C2

Practical Attack

We now understand the weakness of predictable IVs, but exploiting it is still
 difficult due to the fact that we have to guess the entire block (typically 16
 bytes) at a time. However, when applied to HTTP, there are some optimizations we
 can make.
	HTTP messages often contain small fragments of sensitive data, for
 example, passwords and session tokens. Sometimes guessing only 16 bytes
 is all we need.

	The sensitive data typically uses a restricted character set; for
 example, session tokens are often encoded as hexadecimal digits, which
 can have only 16 different values.

	The structure of HTTP messages is very predictable, which means that
 our sensitive data will often be mixed with some other content we know.
 For example, the string Cookie: will always be placed
 before the name of the first cookie in a HTTP request.

When all these factors are taken into account, the required number of guesses
 can be much lower, although still not low enough for practical use.
BEAST became possible when Duong and Rizzo realized that modern browsers can
 be almost fully instrumented by a
 skillful
 attacker, giving him an unprecedented level of control. Crucially, the attacker
 needs to be able to (1) influence the
 position of the secret in the request and (2) have full control over what is being encrypted and when it
 is sent.
The first condition is not difficult to fulfill; for example, to push a cookie
 value around you only need to add extra characters to the request URI. The
 second condition is problematic; that level of control is not available from
 JavaScript. However, Duong and Rizzo determined that they could use Java
 applets. They also needed to exploit a separate bug in order to get Java to send
 traffic to arbitrary web sites.[346] They needed to do this to make BEAST universal and able to attack
 any web site. Exploitation of this additional problem in Java is not always
 necessary. Web sites that allow user-uploaded content can be tricked into
 accepting Java applets. They then run in the context of the target web site and
 can send traffic to it.[347]
There is another condition, mentioned earlier, and that is to be able to
 observe encrypted network traffic, which is necessary in order to determine the
 next IV values. Further, the IVs need to be communicated to the code running in
 the browsers.
In practice, BEAST is an active network attack. Although social engineering
 could be used to send the victim to the web site that contains the rogue
 JavaScript code, it’s much simpler to inject the code into any plaintext web
 site visited by the victim at the time of attack.
If you can manage all of that, then implementing BEAST is easy. By changing
 the position of the secret within the HTTP request, you can align it with
 encryption blocks in such a way that a single block contains 15 bytes of known
 plaintext and only one byte of the secret. Guessing that one byte is much
 easier; you need 28 (256) guesses in the worst case,
 and 27 (128) guesses on average. Assuming low-entropy
 data (e.g., hexadecimal digits), you can get as low as eight (average) guesses
 per character. When time is of the essence, you can also submit multiple guesses
 in parallel.
JavaScript Malware

JavaScript Malware is a generic term used for
 malicious code running in a victim’s browser. Most malware is designed to
 attack the browser itself, impersonate the user, or attack other web sites,
 often without being noticed. BEAST was the first exploit to use JavaScript
 malware to break cryptography, but many others followed. You’ll find their
 details later in the chapter.
The use of JavaScript malware is a good example of the changing threat
 model. When SSL was first designed in 1994, browsers were only simple tools
 designed for HTML rendering. Today, they are powerful application-delivery
 platforms.

Client-Side Mitigation

BEAST is a client-side vulnerability and requires that countermeasures are
 deployed at the user-agent level. In 2004, when the problem was originally discovered, OpenSSL tried to
 address it by injecting an empty (no data) TLS record before each real TLS record.
 With this change, even though the attacker can predict the next IV, that value is
 used for the zero-length TLS record that has no value. The application data follows
 in the next record, but it uses an IV that the attacker does not know in
 advance (at the time the attack payload is constructed), which means
 that there is no opportunity to execute an attack.
Unfortunately, this approach did not work, because some TLS clients (most notably,
 Internet Explorer) were found to react badly to zero-sized TLS records. Given that
 at the time there was no practical attack to worry about, OpenSSL dropped the
 mitigation technique. As far as we know, no other library tried to address the
 issue.
In 2011, browsers mitigated BEAST by using a variation of the empty fragment
 technique. The so-called 1/n-1 split, proposed by Xuelei Fan,[348] still sends two records instead of one but places one byte of
 application data in the first record and everything else in the second. This
 approach achieves an effectively random IV for the bulk of the data: whatever is in
 the second record is safe. One byte of the data is still exposed to the predictable
 IV, but because it sits in an encryption block with at least seven (more likely 15)
 other bytes that are effectively random and different for every record (the MAC) the
 attacker cannot guess that byte easily.
The 1/n-1 split fared much better than the original approach, but the adoption
 still did not go smoothly. Chrome enabled the countermeasures first but had to
 revert the change because too many (big) sites broke.[349] The Chrome developers persisted, and soon other browser vendors joined,
 making the change inevitable.
The cost of the 1/n-1 split is an additional 37 bytes that need to be sent with
 every burst of client application data.[350]
You can see the status of BEAST mitigations in the major platforms in the
 following table.
Table 7.1. BEAST mitigation status of major libraries, platforms, and browsers
	Product	Version (Date)	Comments
	Apple	OS X v10.9 Mavericks (22 October 2013) and v10.8.5 Mountain Lion
 (25 February 2014)	The 1/n-1 split shipped in Mountain Lion (OS X v10.8), but it was
 disabled by default. The mitigation is supposed to be configurable,
 but there’s a bug that prevents the defaults from being changed.[a]
	Chrome	v16 (16 December 2011)	Initially enabled in v15, but backed off due to too many big
 sites not working.
	Firefox	v10 (31 January 2012)	Almost made it to Firefox v9, but Mozilla changed their minds at
 the last moment to give the incompatible sites more time to upgrade.[b]
	Microsoft	MS12-006[c] (10 January 2012)	The mitigation is enabled in Internet Explorer, but disabled by
 default for all other Schannel (Microsoft’s TLS library) users.
 Microsoft recommended deployment of TLS 1.1 as a way of addressing
 BEAST for nonbrowser scenarios. The knowledge base article 2643584
 discusses the various settings in detail.[d]
	NSS	v3.13[e] (14 October 2011)	Enabled by default for all programs.
	OpenSSL	Not mitigated yet	The issue is tracked under bug #2635.
	Opera	v11.60[f] (6 December 2011)	The comment “Fixed a low severity issue, as reported by Thai
 Duong and Juliano Rizzo; details will be disclosed at a later date”
 was in the release notes of v11.51 but was subsequently
 removed.
	Oracle	JDK 6u28 and 7u1 (18 October 2011)[g]	
	[a] Apple enabled BEAST mitigations in OS X 10.9
 Mavericks (Ivan Ristić, 31 October 2013)

[b] Bug #702111: Servers intolerant to 1/n-1 record
 splitting. “The connection was reset”
 (Bugzilla@Mozilla, 13 November 2011)

[c] Microsoft Security Bulletin MS12-006 (10 January
 2012)

[d] Microsoft Knowledge Base Article 2643584 (10
 January 2012)

[e] NSS 3.13 Release Notes (14 October 2011)

[f] Opera 11.60 for Windows changelog (6 December
 2012)

[g] Oracle Java SE Critical Patch Update Advisory - October
 2011 (Oracle’s web site)

Many client-side tools (e.g., libraries and command-line applications) continue to
 lack the 1/n-1 split and are thus technically vulnerable, but they are not likely to
 be exploitable. Without the ability to inject arbitrary plaintext into the
 communication, there is nothing the attacker can do to exploit the weakness.

Server-Side Mitigation

Even though BEAST has been addressed client-side, we don’t control the upgrade
 cycle of the millions of browsers that are out there. Things have gotten a lot
 better with the rise of Chrome and its automated updates. Firefox now uses the same
 approach, and it’s possible that Microsoft will, too. Still, a potentially large
 number of users with vulnerable browsers remain.
Up until 2013, the recommended approach for BEAST mitigation server-side was to
 ensure RC4 suites are used by default. With CBC suites out of the picture, there is
 nothing for BEAST to exploit. But in early 2013 we learned about two new attacks,
 one against RC4 and another against the CBC construction in TLS. (Both are discussed
 in detail later in this chapter.) The RC4 weaknesses broke the only server-side
 mitigation strategy available to us.
We are now forced to choose between having some of our users vulnerable to either
 the BEAST attack or the RC4 weaknesses. With neither attack particularly practical,
 the choice is somewhat difficult. In this situation, it is helpful to think not only
 about the impact of these attacks today but also the future trends. BEAST can be
 executed successfully if you can find a victim–site combination
 that satisfies the requirements. Making it work at scale is impossible. The
 technique might be useful for targeted attacks, provided the victim is using
 unpatched software and has Java enabled. But overall the chances of successful
 attacks are small. More importantly, the likelihood is going to continue to decrease
 over time.

History

The insecurity of predictable IVs has been known since at least 1995, when Phil
 Rogaway published a critique of cryptographic constructions in the IPsec standard drafts.[351] He said that:
[...] it is essential that the IV be unpredictable by the adversary.

Clearly, this problem had not been widely understood, because predictable IVs made
 it into SSL 3 (1996) and later TLS 1.0 (1999).
In 2002, the problem was rediscovered in the SSH protocol[352] and was also found to apply to TLS.[353] Some countermeasures (which I will discuss later in this section) were
 added to OpenSSL in May 2002 but were effectively turned off in July, because of
 interoperability issues; they broke Internet Explorer.[354]
Apparently no one thought this attack was worth pursuing further, and thus no one
 tried to find a mitigation technique that worked. It was a missed opportunity to
 address the problem almost a decade before the practical attack came to light.
 Still, two papers were published that year: one to discuss how to fix the SSH protocol[355] and the other to discuss blockwise-adaptive attacks against several
 encryption approaches, including CBC.[356]
In 2004, Gregory Bard showed how predictable IVs in TLS can be exploited to reveal
 fragments of sensitive information.[357] He spelled out the problem inherent in the CBC encryption as implemented
 in SSL 3.0 and TLS 1.0:
We show that this introduces a vulnerability in SSL which (potentially)
 enables easy recovery of low-entropy strings such as passwords or PINs that have
 been encrypted. Moreover, we argue that the open nature of web browsers provides
 a feasible “point of entry” for this attack via a corrupted plug-in [...]

Bard didn’t find a way to exploit the weakness, but later published another paper,
 this one describing a blockwise-adaptive chosen-plaintext
 attack on SSL, showing how the position of sensitive data within
 block boundaries significantly impacts the number of guesses required to recover it.[358]
The protocol weakness was finally resolved in TLS 1.1 (2006) by using a random IV
 for each TLS record. However, fixing the protocol didn’t really achieve anything,
 because few browsers bothered to implement it. Only after BEAST made a big splash in
 2011 did browser vendors start to think about supporting newer protocols.
In 2011, most libraries and browser vendors implemented the 1/n-1 split mitigation
 technique. After all the time spent researching the problem, the fix was almost
 trivial; for NSS, it took only about 30 lines of code.[359]
Apple waited until late 2013 to implement BEAST mitigations in their TLS stack
 (and thus Safari). As for protocol support, it wasn’t until late 2013 that major
 browsers started to support TLS 1.2 by default.

Impact

If a BEAST attack is successful, the attacker will obtain the victim’s session
 token, which will give him access to the entire web application session. He will be
 able to perform arbitrary actions on the web site, using the identity of the victim.
 Under the right conditions, BEAST is easy to execute; however, getting everything
 aligned (especially today) is difficult.
Because the vulnerability exploited by the BEAST attack is in the protocols, at
 the time of the announcement virtually all SSL and TLS clients were vulnerable.
 BEAST is a client-only vulnerability. TLS operates two data streams, one sent from
 the client to the server and the other sent from the server to the client. The BEAST
 attack targets the client data stream and requires the attacker to be able to
 control exactly what is sent to the target web server. The interactivity is key;
 without it, the attack cannot succeed. Thus, even though the server data stream
 suffers from the same problem of predictable IVs it is impossible to exploit it in
 practice because the attacker cannot have sufficient control of the server-sent
 data.
In addition to the interactivity requirement, two further server-controlled
 conditions are required:
	CBC suites have priority
	Because only CBC suites are vulnerable, those servers that prefer RC4
 suites over CBC (or don’t support CBC at all) are not vulnerable to the
 BEAST attack. Even if both sides support CBC suites, the attacker cannot
 influence the suite selection.

	TLS compression is disabled
	TLS has the ability to compress content prior to encryption.
 Compression does not protect against the BEAST attack, but it does make
 it more difficult. Normally, the bytes sent by the attacker are
 encrypted and sent over the wire. With compression enabled, the bytes
 are first compressed, which means that the attacker no longer knows what
 exactly is encrypted. To make the attack work, the attacker would also
 have to guess the compressed bytes, which may be very difficult. For
 this reason, the original BEAST exploit implemented by Duong and Rizzo
 could not attack compressed TLS connections. In my estimates,
 compression was enabled on about half of all web servers at the time
 BEAST was announced. However, client-side support for compression was
 very weak then and is nonexistent today.

Going back to the interactivity, native browser capabilities were not sufficient
 to carry out the attack, which is why the authors resorted to using third-party
 plug-ins. The final exploit was implemented in Java and used a previously unknown
 weakness in the Java plug-in. This meant that the presence of Java was yet another
 requirement for a successful attack.
To sum up:
	The attacker must be able to execute a MITM attack from a location close
 to the victim. For example, any Wi-Fi network or a LAN would probably do.
 Strong cryptography and programming skills are required to implement the
 exploit.

	The victim must have the Java plug-in installed. Java was in those days
 virtually universally available (now not as much), so there wouldn’t have
 been a shortage of candidates.

	In addition to being authenticated to the target web site, the victim must
 also be browsing some other site controlled by the attacker. This could be
 achieved with social engineering, for example. Alternatively, the attacker
 can hijack any other plaintext HTTP web site. Because the majority of web
 sites are still not encrypted, this constraint was also easy to
 satisfy.

	The server must use CBC suites by default and have compression disabled.
 Anecdotally, a large number of servers fit these criteria.

To conclude, at the time it was announced, the BEAST attack was relatively easy to
 carry out by a determined attacker despite the long list of constraints.
Today the situation is different, mostly because all modern browsers (as well as
 Java, which was used for the exploit) have implemented BEAST countermeasures.
 Furthermore, there has been a clampdown on the insecurity of in-browser Java, making
 it much more difficult to run applets. That’s assuming your user base has been
 updating their software; some users running older software might still be
 vulnerable.
The ecosystem is slowly moving towards supporting TLS 1.2 throughout, although
 it’s going to be some time before that happens. Still, the pool of users and servers
 susceptible to the BEAST attack is continuously getting smaller, and the risk is
 fairly low by now.

Compression Side Channel Attacks

Compression side channel attacks are a special case of
 message length side channel attacks. Let’s assume that you
 can observe someone’s encrypted communication while they are using their online banking
 application. To obtain the current balance of a savings account, the application might
 invoke a particular API call. Just seeing the size of that one response might be
 sufficient to approximate the value: the balance of a particularly wealthy victim will
 have many digits, making the response longer.
It turns out that when you add compression to the mix, and the attacker is able to
 submit his own data for compression, a compression oracle is
 created. In this section, I discuss a series of compression-related attacks on TLS,
 including CRIME, TIME, and BREACH.
How the Compression Oracle Works

Compression is very interesting in this context because it changes the size of
 data, and the differences depend on the nature of the data itself. If all you can do
 is observe compression ratios, your attacks might not amount to much; there is only
 so much you can deduce from knowing if something compresses well. At best, you might
 be able to distinguish one type of traffic from another. For example, text usually
 compresses very well, but images not so much.
This attack gets far more interesting if you are able to submit your own data for
 compression and mix it with some other secret data (that you don’t know but want to
 recover) while observing the results. In this case, your data influences the
 compression process; by varying your data you discover things about what else is
 compressed at the same time.
To understand why this attack is so powerful, we need to look at how compression
 works. In essence, all lossless compression algorithms work by eliminating
 redundancy. If a series of characters is repeated two or more times in input, the
 output will contain only one copy of such data along with instructions for where to
 place copies. For example, consider how a very popular LZ77 algorithm would compress
 a piece of text (see the following figure).
Figure 7.4. Compression reduces data size by identifying and removing
 redundancies.
[image: Compression reduces data size by identifying and removing redundancies.]

An oracle is said to exist if you can have your arbitrary
 data (guesses) compressed in the same context as some secret. By observing the size
 of the compressed output, you are able to tell if your guesses are correct. How? If
 you guess correctly, compression kicks in and reduces the size of the output, and
 you know that you are right. If you submit random content, there’s no compression,
 and the size increases.
Figure 7.5. Illustration of a compression oracle: one correct and one incorrect
 guess
[image: Illustration of a compression oracle: one correct and one incorrect guess]

As you shall see in the following sections, there are many obstacles to deal with
 in order to make the attack practical, but conceptually it really is that
 simple.
Is Information Leakage a Flaw in the TLS protocol?

It might seem that information leakage is a flaw in the SSL and TLS protocols,
 but it’s actually a documented limitation. Here’s the relevant part of TLS 1.2
 (Section 6):
Any protocol designed for use over TLS must be carefully designed to deal
 with all possible attacks against it. As a practical matter, this means that
 the protocol designer must be aware of what security properties TLS does and
 does not provide and cannot safely rely on the latter.
Note in particular that type and length of a record are not protected by
 encryption. If this information is itself sensitive, application designers
 may wish to take steps (padding, cover traffic) to minimize information
 leakage.

Some might say that the real flaw is the fact that browsers allow adversaries
 unprecedented level of control of their victims’ browsers—and that might be
 true. Adaptive plaintext attacks are a big deal in cryptography, but here we
 have TLS, designed with one set of capabilities in mind and used in scenarios
 that were outside the scope of the original design.
All browser-based attacks against encryption rely on the fact that the
 attacker can submit requests in the context of a genuine user
 session, which results in attacker-supplied data transported in
 the same request as the victim’s confidential data. Few will argue that this is
 natural. If we accept that a random web page should be allowed to submit
 requests to arbitrary web sites, we should at least ensure that they do so from
 their own separate environment (i.e., a sandbox).
Sadly, the Web has evolved in such a way that everything is entangled, which
 means that enforcing strict separation in this way would break far too many web
 sites. In time, the solution will probably come in the form of elective
 separation, which will allow a site to declare its own security space.
As for length hiding, even if such a feature is ever implemented, there is
 always the question of its effectiveness. It most certainly won’t work in all
 situations. Some highly secure systems address this problem by always
 communicating at a constant rate, using the full bandwidth provided by the
 underlying channel. However, that approach is prohibitively expensive for most
 deployments.

History of Attacks

Compression as a side channel mechanism was first introduced by John Kelsey. In
 his 2002 paper,[360] he presented a series of attack scenarios, each varying in
 effectiveness. Among them was the extraction of fragments of sensitive data, the
 attack that was later going to be improved in the browser context. The world was a
 much different place in 2002, and the best attack was difficult to utilize in real
 life. Hence, the author concluded that:
The string-extraction attacks are not likely to be practical against many
 systems, since they require such a specialized kind of partial chosen-plaintext
 access.

Compression side channel attacks were again in the news a couple of years later,
 although not against TLS. In 2007, a team of researchers first developed algorithms
 to identify the spoken language of an encrypted internet call[361] and later managed to identify spoken English phrases with an average
 accuracy of 50%, rising to 90% for some phrases.[362]
In the following years, browsers continued to evolve, making adaptive
 chosen-plaintext attacks not only possible but also practical against virtually
 everyone. In 2011, the BEAST attack showed how the attacker can take control of a
 victim’s browser in order to execute a blended attack against encryption.
In August 2011, privacy issues stemming from compression side channel attacks were
 discussed on the SPDY[363] development mailing list.[364] In particular, this quote from Adam Langley describes how a compression
 side channel attack might work against browsers:
The attacker is running script in evil.com. Concurrently, the same client has
 a compressed connection open to victim.com and is logged in, with a secret
 cookie. evil.com can induce requests to victim.com by, say, adding tags
 with a src pointing to victim.com. [...] The attacker can watch the wire and
 measure the size of the requests that are sent. By altering the URL, the
 attacker could attempt to minimise the request size: i.e. when the URL matches
 the cookie.
I’ve just tried this with an HTTP request for fun and it’s pretty easy to get
 the first 5 characters in a base64 encoded cookie. [...] That’s a practical
 attack and would make a great paper if someone has the time.

CRIME

A practical compression side channel exploit came in 2012, under the name CRIME,
 developed by Duong and Rizzo, the authors behind BEAST. CRIME exploits the TLS
 compression side channel by using JavaScript malware to extract client cookies in an
 active MITM attack. It was officially presented at the Ekoparty conference in
 September 2012.[365] Unofficially, early press briefings[366] leaked enough information to enable experts to correctly guess what the
 attack was about.[367]
A proof of concept, the collaboration of several speculators, was published.[368] With the cat out of the bag, further information and a video
 demonstration were revealed days before the conference.[369] The CRIME authors never released their code, but they claimed that their
 exploit was able to uncover one cookie character using only six requests.
The mechanics of the CRIME attack are the same as for BEAST: the attacker must
 instrument the victim’s browser to submit many requests to the target server, while
 observing network packets as they travel on the wire. Each request is a guess,
 exactly as discussed in the earlier compression oracle section. Unlike BEAST, CRIME
 requires less control over request content and timing, making exploitation much
 easier and using only native browser functionality.
TIME

After CRIME, we didn’t have to wait long for the attacks to improve. In March
 2013, Tal Be’ery presented TIME at Black Hat Europe 2013.[370] A significant constraint on CRIME is the fact that the attacker must
 have access to the local network in order to observe the network packets.
 Although TIME still uses compression as its principal weapon, the improved
 attack extends the JavaScript component to use I/O timing differences to measure
 the size of compressed records. The approach is straightforward, with
 tags used to initiate requests from the victim’s
 browser and onLoad and onReadyStateChange
 event handlers to take measurements. The entire attack takes place in the
 browser itself.
With this change, the attack can now be executed against anyone on the
 Internet, provided you can get them to run your JavaScript malware. In practice,
 this will require some form of social engineering.
One problem still remains, though. CRIME works by observing one-byte
 differences in compressed output; is it really possible to use timing to detect
 differences that small? As it turns out, it’s possible, by playing tricks at the
 network layer.
In TCP, great care is taken not to overwhelm the other party by sending too
 much data. The problem is this: there’s usually a significant distance between
 two sides engaged in a conversation. For example, it takes about 45 ms for a
 packet to travel between London and New York. If you send only one packet at a
 time and wait for a confirmation, you can send only one packet of data every 90
 ms. To speed up the communication, TCP allows both sides to send many packets at
 once. However, to ensure that the other party is not overwhelmed, they have to
 stay within a prescribed limit, or the congestion window.
 The congestion window starts small and grows over time, an approach otherwise
 known as slow start.
Initial congestion window sizes vary. Older TCP stacks will use smaller
 windows of 5 to 6 KB, but there was recently a push to increase this to about 15
 KB. The attack works equally well for all sizes. In the following example, I
 assume the client uses an initial congestion window of 5 KB (three
 packets).
Figure 7.6. Using the TCP initial congestion window size as a timing
 oracle
[image: Using the TCP initial congestion window size as a timing oracle]

At the beginning of a connection, if the data you want to send fits into the
 congestion window, then you can send it all at once. But if you have too much
 data you will first have to send as much as you can, then wait for the server to
 confirm receipt, then send what you have remaining. That wait will add one
 round-trip time (RTT) to the operation. For the
 London–New York connection, that comes to about 90 ms of extra time. To use this
 behavior as a timing oracle, you increase the size of the data until you
 completely fill the initial congestion window. If you add just one more byte,
 the request will take one RTT longer, which is a delay you can measure from
 JavaScript. At this point you can start playing with compression; if you
 manipulate the data so that compression reduces the size by one byte, the
 request will take one RTT less. From here, exploitation continues as discussed
 in earlier sections.
Attacks against HTTP requests are easier because you have direct control over
 what is sent. They allow you to extract secrets that browsers have, for example,
 session cookies. If you want to extract secrets transported in HTTP responses,
 things get more complicated:
	Response compression takes place on the server, which means that you
 need to observe the server’s initial congestion window, not the client’s
 (as with HTTP requests).

	You must be able to inject your data into the page that contains the
 secret you wish to contain. In practice, this means that the application
 must mirror some data you send to it.

	When timing responses, you must take into account that both the
 client’s and the server’s windows are likely to overflow, making it more
 difficult to know what caused a delay.

On the other hand, unlike TLS compression, HTTP-level response compression is
 very common. Compression side channel attacks work equally well against
 both.
As far as we know, TIME has not progressed beyond a proof of concept. In
 practice, there might be many obstacles to overcome in order to make the attack
 work in real life. For example, the authors mention that due to network jitter
 they need to repeat the same request several times to reliably detect
 boundaries. Furthermore, the congestion window size grows over the time of the
 connection, which means that you need to take your measurements with a fresh
 connection every time. However, most servers use persistent connections for
 performance reasons, and you don’t have control over this from JavaScript. As a
 result, the attack might need to operate slowly, using one connection, then
 waiting for the browser to close it, then trying again. Overall, it might take
 quite a while for successful extraction of, say, a 16-character secret.

BREACH

Another compression side channel attack focused on HTTP responses, called
 BREACH, followed in August 2013.[371] The authors focused on demonstrating that CRIME works equally well
 on HTTP response compression. They used the same attack position—that of
 an active man in the middle—and developed a working exploit. Their main
 contribution is in the analysis and the practical demonstration. For example,
 they used their exploit to attack Outlook Web Access (OWA), showing that they
 can retrieve CSRF tokens with 95% reliability and often in under 30 seconds.[372]
The BREACH authors put together a web site to publicize their work,[373] and the proof-of-concept source code is available at GitHub.[374]

Attack Details

BREACH is conceptually identical to CRIME, requiring that the attacker has
 access to the victim’s network traffic and ability to run JavaScript code in the
 victim’s browser. The attack surface is different. HTTP response compression
 applies only to response bodies, which means that no secrets can be extracted
 from the response headers. However, response bodies often have interesting
 sensitive data. The authors focused on extracting CSRF tokens (their example is
 shown ahead), which would allow them to impersonate the victim in the attacked
 web application.
To bootstrap the attack, an injection point into the response body is needed.
 In OWA, the id parameter is reflected in output. Thus, if the
 attacker submits the following request with the attack payload:
GET /owa/?ae=Item&t=IPM.Note&a=New&id=INJECTED-VALUE
The response body will contain the injected value:
https://malbot.net:443/owa/forms/
basic/BasicEditMessage.aspx?ae=Item&t=IPM.Note&
amp;a=New&id=INJECTED-VALUE
This is sufficient to begin to extract any secret placed elsewhere in the
 body, for example, a CSRF token:
<td nowrap id="tdErrLgf"><a href="logoff.owa?
canary=d634cda866f14c73ac135ae858c0d894">Log
Off</td>
To establish the baseline, the attacker submits canary= as
 the first payload. Because of the duplication, the compressed response body will
 be smaller, which can be detected on the network. From here, the attack
 continues as in CRIME.
Although the attack seems simple at first, in practice there are further
 issues that need to be dealt with:
	Huffman encoding
	Most of the Internet runs on DEFLATE compression, which is
 actually a combination of two algorithms: LZ77 and Huffman encoding.
 The former is what we use for the attacks, but the latter actually
 makes us work harder. Huffman encoding is a variable-length encoding
 that exploits the fact that, usually, some characters appear more
 often than others. Normally, we always use one byte to represent one
 character. To save space, we can represent more frequent characters
 with shorter symbols (fewer bits than in a byte) and less frequent
 characters with longer symbols (more bits than in a byte).
Huffman encoding can skew the resulting lengths of both successful
 and unsuccessful guesses. To deal with this problem, it’s necessary
 to double the number of requests, using two for each guess.

	Block ciphers
	The conceptual attack works great against encryption, but expects
 streaming ciphers, for which the size of data is directly reflected
 in ciphertext. When block ciphers are used, ciphertext grows only
 one block at a time, for example, 16 bytes for 128-bit AES. In such
 a case, further padding is needed to bring ciphertext to the edge of
 growing by another block. For this, several requests might be
 needed. Once you determine the size of the padding, you can make as
 many guesses as there are padding bytes. For every new guess, you
 remove one byte of the padding.

	Response content diversity
	For the attacks that work against HTTP responses (TIME and
 BREACH), the “diverse” nature of markup formatting, coding
 practices, and encodings tends to make the attacks more difficult.
 For example, the attacks require a known prefix to bootstrap the
 attack, but the secret values are sometimes prefixed with characters
 that cannot be injected (e.g., quotes). Or, there might be
 variations in response size (in absence of attacks), which make
 guessing more difficult.

The CRIME authors used an interesting technique variation when attacking TLS
 compression. TLS record sizes are limited to 16 KB (16,384 bytes), which also
 means that this is the largest block on which compression can operate. This is
 interesting because the attacker is able to fully control the first 16 KB. It
 goes something like this:
	For a GET request, the first 5 bytes are always
 going to be the same: the request method (GET)
 followed by a space and the first character in the URL
 (/). If you then add 16,379 bytes of random data
 to the URL, you fill the entire TLS record. You can submit this request
 and observe its compressed size.

	You can now start reducing the amount of random data in the URL, one
 byte at a time, allowing bytes from the request back in the block. Some
 of the bytes will be predictable (e.g., HTTP/1.1, the
 protocol information that always follows the URL), but at some point you
 will encounter the first unknown byte.

	Now you have a block of 16,383 bytes you know and one byte you don’t.
 You submit that as a request. Then, without making further requests, you
 build a list of candidates for the unknown byte, simulate the first 16
 KB as a request and compress it using the same compression method, and
 compare the compressed size to that of the size of the actual request.
 In the ideal case, there will be only one match, and it will disclose
 the unknown byte.

This technique is quite neat, because it requires a smaller number of
 requests. On the other hand, the compression library used by the attacker needs
 to produce the same output for the same input. In practice, different
 compression settings and different library versions might introduce
 variations.

Impact against TLS Compression and SPDY

In this section, I discuss the various prerequisites necessary for a
 successful exploitation of a compression side channel attack against either TLS
 compression or SPDY. In both cases, CRIME attacks header compression, which
 makes session cookies the best target.
	Active MITM attack
	CRIME requires access to the victim’s network traffic. It’s a
 local attack, which can be performed with little effort against
 someone on the same LAN or Wi-Fi network. The attack can be either
 passive or active, but the latter gives the attacker more
 flexibility.

	Client-side control
	The attacker must also be able to assert enough control over the
 victim’s browser to submit arbitrary requests to the target web
 site. You could do this with JavaScript malware, but it can be done
 much more simply with a series of tags
 with specially crafted source URLs.
This could be achieved with social engineering or, more likely, by
 injecting HTML markup into any plaintext web site that the victim is
 interacting with at the time of attack.

	Vulnerable protocols
	As the authors of CRIME themselves said, compression is
 everywhere. They detailed attacks against TLS compression and the
 SPDY protocol. At the time of the announcement, I was able to use
 the SSL Pulse statistics and some of the other metrics obtained via
 the SSL Labs web site to estimate support for compression on both
 the client and server sides. For TLS compression, about 42% of the
 servers in the SSL Pulse data set supported it. Only about 2% of the
 servers supported SPDY, but those were some of the biggest sites
 (e.g., Google, Twitter, etc.).
That said, two sides are required to enable compression, and this
 is where the situation got better. Because TLS compression was never
 a high priority for browser vendors,[375] Chrome was the only browser that supported compression
 then. Firefox had compression implemented, but to my knowledge the
 code never went into a production release. Because both browser
 vendors had advance knowledge of the problem, they made sure that
 compression was disabled ahead of time. My measurements (from
 observing the visits to the SSL Labs web site) showed only 7%
 client-side support for compression.
In response to CRIME, most vendors patched their products and
 libraries to disable TLS compression altogether.

	Preparation
	This is not an attack that can be blindly executed against just
 any web site. For example, to start the attack it’s necessary to use
 a known prefix as a starting point. Because these things differ from
 site to site, some amount of research is necessary, but it’s not a
 lot of effort for the attack against TLS compression.

	Outcome
	In the best case, the attacker is able to obtain the password used
 for HTTP Basic Authentication. In practice, this authentication
 method is not often used, making session cookies the next best
 thing. A successful attack results in the attacker obtaining full
 control over the victim’s session and everything that comes with
 it.

Impact against HTTP Response Compression

Against HTTP compression, the impact of compression side channels is very
 different: (1) the attack surface is
 much larger and there is little chance that it will be reduced and (2) successful exploitation requires the
 attacker to do much more work upfront and their reward is smaller.
The prerequisites for attacks against HTTP compressions are the same as in the
 previous case; the attacker must be able to take control over the network
 communication and have limited control over the victim’s browser. But there are
 differences when it comes to other factors:
	Attack surface
	HTTP compression is also vulnerable to compression side attacks.
 (The CRIME authors did not spend much time on it, but others have
 since worked in this area.) Unlike TLS compression, HTTP compression
 exposes a huge attack surface and cannot be simply turned off. Many
 sites depend on it so heavily that they might not be able to operate
 (cost efficiently) without it.
There is also an additional requirement that the attacker is able
 to inject arbitrary text into the HTTP response body at the desired
 attack point. In practice, this is
 usually
 possible
 to
 do.

	Preparation
	On the other side, much more work is needed to exploit HTTP
 compression. In fact, you could say that an intimate understanding
 of the target web site is required. Session cookies are generally
 not available in HTTP response bodies, which means that the
 attackers must look for some other secret information. And that
 information might be much more difficult to find.

	Outcome
	The exact outcome will depend on the nature of the secret
 information. Any secret information can be extracted, provided the
 attacker knows it’s there. For most applications, the most
 interesting target will be the CSRF protection tokens. If one such
 token is uncovered, the attacker might be able to carry out an
 arbitrary command on the target web site under the identity of the
 victim. There are some sites that use their session tokens for CSRF
 protection. In such cases, the outcome will be session
 hijacking.

Mitigation of Attacks against TLS and SPDY

TLS compression is dead, and CRIME killed it. Before the disclosure a good chunk
 of the user base—all Chrome users—supported compression; it’s difficult
 to say what Chrome’s market share was in September 2012, but let’s say it was about 30%.[376] Thanks to its autoupdate feature, however, once Chrome disabled
 compression the support quickly disappeared.
OpenSSL had support for compression, so it’s possible to find old installations
 and user agents that still support it, but they are not likely to be attacked
 because they are not browsers (i.e., malware injection is not likely).
Still, it is prudent to disable compression on the server side. In most cases,
 just patching your servers should work. At the time of writing (July 2014), about
 10% of the servers from the SSL Pulse data set still support compression. Given that
 Microsoft’s TLS stack never supported compression and that Nginx disabled it a long
 time ago, most of those are probably older versions of Apache.
It’s unlikely that compression will be making a comeback at the TLS layer. As I
 mentioned before, people didn’t really use it much. (And if they did it was probably
 because it was enabled by default.) Even without compression as an oracle, the fact
 that data length is revealed in TLS is not a positive feature. There are currently
 efforts to implement a length-hiding extension.[377]
As for SPDY, header compression had been disabled in both Chrome and Firefox. Now
 that the problem is known, we can assume that the future versions of this protocol
 will not be vulnerable.

Mitigation of Attacks against HTTP Compression

Addressing the compression side channel inherent in HTTP compression is a much
 more difficult problem, even if the attack is not exactly easy to execute. The
 difficulty is twofold: (1) you probably
 can’t afford to disable compression and (2) mitigation requires application changes, which are
 cost-prohibitive. Still, there are some hacks that just might work well enough.
 Here’s a quick overview of the possibilities:
	Request rate control
	Both the authors of TIME and BREACH have commented on sometimes
 getting caught due to the excessive number of requests they had to
 submit. (The BREACH authors cited thousands of requests against OWA.)
 Enforcing a reasonable rate of requests for user sessions could detect
 similar attacks or, in the worst case, slow down the attacker
 significantly. This mitigation could be implemented at a web server,
 load-balancer, or web application firewall (WAF) layer, which means that
 it does not need to be very costly.

	Length hiding
	One possible defense measure is to hide the real response length. For
 example, we could deploy a response body filter to analyze HTML markup
 and inject random padding. Whitespace is largely ignored in HTML, yet
 variations in response size would make the attackers’ job more
 difficult. According to the BREACH authors, random padding can be
 defeated using statistical analysis at the cost of a significant
 increase in the number of requests.
The best aspect of this approach is that it can be applied at the web
 server level, with no changes to deployed applications. For example,
 Paul Querna proposed to use variations in chunked HTTP encoding at a web
 server level for length hiding.[378] This approach does not change the markup at all, yet it
 changes the size of the packets on the wire.

	Token masking
	Threats against CRSF tokens can be mitigated by the use of
 masking, ensuring that the characters that
 appear in HTML markup are never the same. Here’s how: (1) for every byte in the token,
 generate one random byte; (2)
 XOR the token byte with the random byte; and (3) include all the random bytes in
 the output. This process is reversible; by repeating the XOR operations
 on the server, you recover the original token value. This measure is
 ideally suited for implementation at framework level.

	Partial compression disabling
	When I first thought about attacks against HTTP response bodies, my
 thoughts were to focus on the fact that the Referer
 header will never contain the name of the target web site. (If the
 attacker can do that, then she already has enough access to the site via
 XSS.) Initially, I proposed to drop cookies on such requests. Without
 the cookies, there is no user session, and no attack surface. Someone
 from the community had a better idea: for requests with the incorrect
 referrer information, simply disable response compression.[379] There would be a small performance penalty but only for the
 small number of users who don’t supply any referrer information. More
 importantly, there wouldn’t be any breakage, unlike with the cookie
 approach.

Padding Oracle Attacks

In February 2013, AlFardan and Paterson released a paper detailing a variety of
 attacks that can be used to recover small portions of plaintext provided that a CBC
 suite is used.[380] Their work is commonly known as the Lucky 13 attack. As with BEAST and
 CRIME, in the web
 context small portions of plaintext
 virtually
 always
 mean
 browser cookies. Outside HTTP, any protocol that uses password authentication is
 probably vulnerable.
The root cause of the problem is in the fact that the padding, which is used in the
 CBC mode, is not protected by the integrity validation mechanisms of TLS. This allows
 the attacker to modify the padding in transit and observe how the server behaves. If the
 attacker is able to detect the server reacting to the modified padding, information
 leaks out and leads to plaintext discovery.
This is one of the best attacks against TLS we saw in recent years. Using JavaScript
 malware injected into a victim’s browser, the attack needs about 8,192 HTTP requests to
 discover one byte of plaintext (e.g., from a cookie or password).
What Is a Padding Oracle?

There is a special class of attack that can be mounted against the receiving party
 if the padding can be manipulated. This might be possible if the encryption scheme
 does not authenticate ciphertext; for example, TLS doesn’t in CBC mode. The attacker
 can’t manipulate the padding directly, because it’s encrypted. But she can make
 arbitrary changes to the ciphertext, where she thinks the padding might be. An
 oracle is said to exist if the attacker is able to tell
 which manipulations result in a correct padding after decryption and which do
 not.
But how do you get from there to plaintext recovery? At the end of the day,
 encryption is all about hiding (masking) plaintext using some secret seemingly
 random data. If the attacker can reveal the mask, she can effectively reverse the
 encryption process and reveal the plaintext, too.
Going back to the padding oracle, every time the attacker submits a guess that
 results in correct padding after decryption she discovers one byte of the mask that
 is used for decryption. She can now use that byte to decrypt one byte of plaintext.
 From here, she can continue to recover the next byte, and so on, until the entire
 plaintext is revealed.
The key to successful padding oracle exploitation is to (1) submit a lot of guesses and (2) find a way to determine if a guess was
 successful. Some badly designed protocols might fail to hide padding errors. More
 likely, the attacker will need to deduce the outcome by observing server behavior.
 For example, timing oracles observe the response latency, watching for differences
 when padding is correct and when it is not.
If you care to learn about the details behind padding oracle attacks, you can head
 to one of the tutorials available online[381] or review an online simulation that shows the process in detail.[382]
Padding oracle issues are best avoided by verifying the integrity of data before
 any of it is processed. Such checks prevent ciphertext manipulation and preempt all
 padding oracle attacks.

Attacks against TLS

The padding oracle attack (against TLS and other protocols)
 was first identified by Serge Vaudenay in 2001 (formally published in 2002).[383] TLS 1.0 uses the decryption_failed alert for padding
 errors and bad_record_mac for MAC failures. This design, although
 insecure, was not practically exploitable because alerts are encrypted and the
 network attacker can’t differentiate between the two.
In 2003, Canvel et al.[384] improved the attack to use a timing padding oracle and demonstrated a
 successful attack against OpenSSL. They exploited the fact that OpenSSL skipped the
 MAC calculation and responded slightly faster when the padding was incorrect. The
 researcher’s proof-of-concept attack was against an IMAP server; situated close to
 the target, they could obtain the IMAP password in about one hour.
Padding oracles are exploited by repeatedly making guesses about which
 combinations of bytes might decrypt to valid padding. The attacker starts with some
 intercepted ciphertext, modifies it, and submits it to the server. Most guesses will
 naturally be incorrect. In TLS, every failed guess terminates the entire TLS
 session, which means that the same encrypted block cannot be modified and attempted
 again. For her next guess, the attacker needs to intercept another valid encrypted
 block. That is why Canvel et al. attacked IMAP; automated services that
 automatically retry after failure are the ideal case for this attack.
In order to improve the security of CBC, OpenSSL (and other TLS implementations)
 modified its code to minimize the information leakage.[385] TLS 1.1 deprecated the decryption_failed alert and
 added the following warning (emphasis mine):
Canvel et al. [CBCTIME] have demonstrated a timing attack on CBC padding based
 on the time required to compute the MAC. In order to defend against this attack,
 implementations MUST ensure that record processing time is essentially the same
 whether or not the padding is correct. In general, the best way to do this is to
 compute the MAC even if the padding is incorrect, and only then reject the
 packet. For instance, if the pad appears to be incorrect, the implementation
 might assume a zero-length pad and then compute the MAC. This leaves a small timing channel, since MAC performance depends to some
 extent on the size of the data fragment, but it is not believed to be large
 enough to be exploitable, due to the large block size of existing MACs and
 the small size of the timing signal.

In February 2013, AlFardan and Paterson demonstrated that the remaining
 side channel is, in fact, exploitable, using new techniques to realize
 Vaudenay’s padding oracle. They named their new attack Lucky 13 and showed
 that CBC—as implemented in TLS and DTLS—is too fragile and that it
 should have been abandoned a long time ago. They also showed that small problems,
 left unattended, can escalate again if and when the technologies evolve in
 unpredictable ways.

Impact

For the padding oracle to be exploited, the adversary must be able to mount an
 active attack, which means that he must be able to intercept and modify encrypted
 traffic. Additionally, because the timing differences are subtle the attacker must
 be very close to the target server in order to detect them. The researchers
 performed their experiments when the attacker and the server were both on the same
 local network. Remote attacks do not appear to be feasible for TLS, although they
 are for DTLS, when used with timing amplification techniques developed by AlFardan
 and Paterson in 2012.[386]
	Attacks against automated systems
	The classic full plaintext recovery padding oracle attack is carried
 out against automated systems, which are likely to communicate with the
 server often and have built-in resiliency mechanisms that makes them try
 again on failed connections. Because the attack is spanning many
 connections, it works only with protocols that always place sensitive
 data (e.g., passwords) in the same location. IMAP is a good candidate.
 This attack requires roughly 8.4 million connections to recover 16 bytes
 of data. Because each incorrect guess results in a TLS error and because
 TLS is designed to destroy sessions in such situations, every new
 connection is forced to use a full handshake with the server. As an
 effect, this attack is slow. Still, it’s not far from being feasible
 under certain circumstances if the attacker has months of time available
 and is able to influence the automated process to open connections at a
 faster rate.

	Attacks when some of the plaintext is known
	A partial plaintext recovery attack, which can be performed if one
 byte at one of the last two positions in a block is known, allows each
 of the remaining bytes to be recovered with roughly 65,536
 attempts.

	Attacks against browsers using JavaScript malware
	AlFardan and Paterson’s best attack uses JavaScript malware
 against the victim’s browser, targeting HTTP cookies. Because the
 malware can influence the position of the cookie in a request, it is
 possible to arrange the encryption blocks in such a way that only one
 byte of the cookie is unknown. Because of the limited character range
 used by cookies, the researchers estimate that only 8,192 requests are
 needed to uncover one byte of plaintext. The best aspect of this attack
 is the fact that the malware is submitting all the requests and that,
 even though they all fail, all the connection failures are invisible to
 the victim. Furthermore, no special plug-ins or cross-origin privileges
 are required.

Mitigation

AlFardan and Paterson identified problems in a number of implementations, reported
 the problems to the developers, and coordinated the disclosure so that all libraries
 were already fixed at the time of announcement. Thus, patching your libraries should
 be sufficient for the mitigation, at least in the first instance.
Given the fragility of the CBC implementation in TLS, it’s best to avoid CBC
 suites whenever possible. But this is easier said than done; in many cases there are
 no safe alternatives. Streaming ciphers do not use padding, and so they are not
 vulnerable to this problem, but the only streaming cipher in TLS is RC4; it suffers
 from other problems (described in the next section) and should not be used. Other
 streaming ciphers will be added to TLS, but that will take time.[387] This leaves us only with authenticated GCM suites, which require TLS
 1.2. As of
 September 2014, there is a TLS protocol extension that changes CBC suites to
 authenticate
 ciphertext
 instead of plaintext,[388]
 but we have to wait to see if it will be supported widely enough to be
 useful.

RC4 Weaknesses

RC4, designed by Ron Rivest in 1987, is one of the oldest ciphers still in use and,
 despite all its many flaws, still one of the most popular. Its popularity comes from the
 fact that it’s been around for a very long time but also because it’s simple to
 implement and runs very fast in software and hardware.
Today, we know that RC4 is broken, but attacks have not yet sufficiently improved to
 become practical. For this reason, and also for the fact that there are environments in
 which alternatives are even less desirable, RC4 is still being used. (Of course, a much
 bigger reason is inertia and the fact that most people don’t know that they need to
 abandon RC4.)
If possible, it’s best to avoid RC4 completely. For example, the TLS 1.2 environment
 offers safe alternatives, which means that RC4 should not be used. In practice, however,
 you might have good reasons to keep it around, as I will discuss in this section.
Key Scheduling Weaknesses

For a very long time, the biggest known problem with RC4 was the weakness in the
 key scheduling algorithm, published in a paper by Fluhrer, Mantin, and Shamir in 2001.[389] The authors discovered that there are large classes of keys that have a
 weakness where a small part of the key determines a large number of initial outputs.
 In practice, this means that if even a part of a key is reused over a period of time
 the attacker could (1) uncover parts of
 the keystream (e.g., from known plaintext at certain locations) and then (2) uncover unknown plaintext bytes at those
 positions in all other streams. This discovery was used to break the WEP protocol.[390] The initial attack implemented against WEP required 10 million message
 for the key recovery. The technique was later improved to require only under 100,000
 messages.
TLS is not vulnerable to this problem, because every connection uses a
 substantially different key. Thus, RC4 remained in wide use, because the known
 issues didn’t apply to the way it was used in TLS.[391] Despite its known flaws, RC4 remained the most popular cipher used with
 TLS. My 2010 large-scale survey of SSL usage found that RC4 was the preferred cipher[392] and supported by about 98% of surveyed servers.[393] People who understood the key scheduling weakness disliked RC4 because
 it was easy to misuse and, as a result, recommended against it for new systems.[394]
When the BEAST attack was announced in 2011, it instantly made all block cipher
 suites unsafe. (Even though BEAST works only against TLS 1.0 and earlier protocol
 versions, support for TLS 1.1 or better was nonexistent at the time.) Because
 RC4—a streaming cipher—is not vulnerable to BEAST, it suddenly became
 the only secure algorithm to use in TLS. In March 2013, when new devastating flaws
 in RC4 were announced, the ICSI Certificate Notary project showed RC4 usage at about
 50% of all traffic. At the time of writing, in July 2014, the RC4 market share is
 about 26%.[395]

Early Single-Byte Biases

Encryption biases were another reason cryptographers were
 worried about RC4. As early as 2001, it was known that some values appear in the
 keystream more often than others.[396] In particular, the second keystream byte was known to be biased toward
 zero with a probability of 1/128 (twice as much as the expected 1/256).
To understand how biases can lead to the compromise of plaintext, we need to go
 back to how RC4 works. This cipher operates in a streaming fashion; after the
 initial setup phase, it produces an endless stream of data. This data, which was
 supposed to be effectively random looking from the outside, is then mixed with the
 plaintext, using a XOR operation against one byte at a time. The XOR operation, when
 used with a sufficiently random data stream, changes plaintext into something that’s
 effectively gibberish for everyone except those who know the RC4 key.
When we say that a bias exists, that means that some values appear more often than
 others. The worst case is the already mentioned bias toward zero. Why? Because a
 value XORed with a zero remains unchanged. Thus, because we know that the second
 byte of every RC4 data stream leans toward zero we also know that the second byte of
 encrypted output will lean to be the same as the original text!
To exploit this problem you need to obtain the same text encrypted with many
 different encryption keys. Against TLS, this means attacking many connections.[397] Then you look at all the bytes at position 2; the value that appears
 most often is most likely to be the same as in plaintext. Some amount of guessing is
 involved, but, the more different encryptions you obtain, the higher the chances
 that you will guess correctly.
Figure 7.7. The bias in the second byte of the RC4 keystream [Source: AlFardan et
 al., 2013]
[image: The bias in the second byte of the RC4 keystream [Source: AlFardan et al., 2013]]

What can be achieved using these individual biases varies and depends on protocol
 design. The first requirement is that useful data actually exists at the given
 location. For example, in TLS the first 36 bytes are most commonly used by the
 Finished protocol message that changes with every connection
 and has no long-term value.[398] For TLS, the second-byte bias is not going to be useful.
The second requirement is to get the same application data in the same location
 every time across a great number of connections. For some protocols, this is not a
 problem. In HTTP, for example, cookies and passwords are in the same place on every
 request.

Biases across the First 256 Bytes

In March 2013, AlFardan et al. published a paper describing newly discovered
 weaknesses in RC4 and two strong attacks against its use in TLS.[399]
One of the attacks was based on the fact that RC4 biases were not limited to a few
 bytes here and there. By producing and analyzing keystreams of
 244 different RC4 keys, the researchers uncovered
 multiple biases at every one of the first 256 positions. They further improved the
 recovery algorithms to deal with multiple biases at individual positions (e.g., a
 certain byte is more likely to have values 10 and 23, with all other values equally
 likely). The resulting attack requires 232 data samples
 to recover all 256 bytes with a success rate close to 100%. With optimization that
 can be applied when the attacked data uses a reduced character set (e.g., passwords
 and HTTP cookies), the number of data samples can be reduced to about
 228. This is a far cry from the
 2128 bits of security promised by RC4.
Note
How is it possible that the full scope of the bias issues remained
 undiscovered for so long after so many early warning signs? One theory I heard
 was that most cryptographers thought that RC4 had already been demonstrated to
 be insecure and that no further work was needed. In fact, many cryptographers
 were very surprised to learn how popular it was. It’s likely that the lack of a
 strong attack against RC4 as used in TLS contributed to its continued
 use.

Despite the seriousness of the attack, it remains largely theoretical due to many
 constraints:
	Number of connections
	In the best case, this attack requires 228
 samples of encrypted plaintext. Put another way, that’s 268,435,456
 connections. Clearly, obtaining all those samples is going to take a lot
 of time and potentially utilize a lot of network traffic. Under
 controlled conditions, with two sides designed to produce as many RC4
 connections as possible, and with session resumption enabled, the
 authors cite an experiment of about 16 hours using over 500 connections
 per second for a total of 225
 connections.
In a scenario closer to real life, a purely passive attack would take
 much longer. For example, assuming one connection per second (86,400
 connections per day), it would take over eight years to obtain all the
 required samples.
The connection rate might be increased by controlling a victim’s
 browser (using injected JavaScript), forcing it to submit many
 connections at the same time. This is the same approach taken by the
 BEAST exploit. In this case, additional effort is needed to defeat
 persistent connections (keep-alives) and prevent multiple requests over
 the same connection (the attack can use only the first 256 bytes of each
 connection). To do this, the MITM could reset every connection at the
 TCP level after the first response is observed. Because TLS is designed
 to throw away sessions that encounter errors, in this scenario every
 connection would require a full handshake. That would make the attack
 much slower.[400]

	Positioning
	This is a man-in-the-middle attack. Per the previous discussion, a
 pure passive attack is very unlikely to produce results within a
 reasonable amount of time. An active attack would require a combination
 of JavaScript malware and MITM ability.

	Scope
	This attack works only against the first 256 bytes of plaintext.
 Because such a large number of samples is required, it’s unlikely that
 the same meaningful secret data will be present throughout. This
 restricts the attack to protocols that use password authentication or,
 for HTTP, cookies. As it turns out, the HTTP use case is not very likely
 because all major browsers place cookies past the 220-byte boundary. (If
 you recall, the first 36 bytes are of little interest because they are
 always used by the TLS protocol.) HTTP Basic Authentication is
 vulnerable in Chrome, which places the password at around the 100-byte
 mark. All other browsers place passwords out of the reach of this
 attack.

Double-Byte Biases

In addition to having single-byte biases, RC4 was known to also have biases
 involving consecutive bytes. These do not exist at only one position in the
 encrypted stream but show up continuously in the output at regular intervals.[401]
In their second attack, AlFardan et al. showed how to use the double-byte biases
 for plaintext recovery. The double-byte attack has an advantage in that it does not
 require samples to be obtained using different RC4 keys. This makes the attack much
 more efficient, because multiple samples can be obtained over the same connection.
 On the other hand, because it’s still the case that the same plaintext needs to be
 encrypted over and over, the attacker must have near-complete control over the
 traffic. Passive attacks are not possible.
The double-byte bias attack can recover 16 bytes of plaintext from 13 x
 230 samples of encrypted plaintext. To collect one
 sample, a POST request of exactly 512 bytes is used. Assuming a
 response of similar size, the attack would consume about 3.25 TB of traffic in both
 directions. Under controlled conditions, that many samples would take about 2,000
 hours (or 83 days) to collect at a speed of six million samples per hour.
Although much more practical than the first attack, this version is equally
 unlikely to be useful in practice.

Mitigation: RC4 versus BEAST and Lucky 13

The attacks against RC4 are serious and allow for plaintext recovery in controlled
 environments, but they are still not very practical for use against real systems.
 But given that the safety margin of RC4 has become very
 small,
 the best approach is to stop using it as soon as possible.
The problem is that this might not be the best decision given that there are
 situations in which a secure alternative is not available. There are two aspects to
 consider:
	Interoperability
	RC4 has long been one of the most popular ciphers, “guaranteed” to
 always be there. As a result, there are some clients that do not support
 anything else. However, chances are that there is only a very small
 number of them. If you have a truly diverse client base and you think
 that RC4-only clients might cause substantial breakage, consider keeping
 RC4 around—but at the bottom of your list of prioritized suites. Because
 most clients will negotiate something else, you will have reduced your
 attack surface while minimizing disruption.

	Security
	If you disable RC4, then you might need to worry about using CBC
 suites in combination with TLS 1.0 or earlier protocol versions. In this
 case, the BEAST attack might apply. For one thing, your servers might
 still be at TLS 1.0. (If they are, you should stop worrying about RC4
 and upgrade your infrastructure to TLS 1.2 as soon as possible.) If your
 servers are up to date, your user base might consist of clients that are
 not. Some of them might genuinely be vulnerable to the BEAST
 attack.
There is little real data from which to decide which of the two
 attacks (BEAST and RC4) is more likely. Both attacks are difficult to
 carry out. The RC4 attack is possible with any protocol version but
 requires a willing browser and a large amount of time and network
 traffic. BEAST, on the other hand, is difficult to exploit but can be
 done quickly when everything is just right. The biggest thing going
 against BEAST is that the major platforms have been patched, and the
 number of vulnerable users is falling all the time. The real question is
 this: are there any better attacks against these flaws that might
 currently be unknown to us? Many are asking this
 question—especially for RC4, which has always been excluded from
 the FIPS-approved algorithms. Could it be that the weaknesses have
 always been known to the NSA? What other problems do they know
 about?
Lucky 13 is also a concern. Even though the immediate dangers have
 been addressed with patches, the CBC construction in TLS is inherently
 unsafe. On the positive side, TLS 1.2 clients and servers tend to
 support authenticated GCM suites, which use neither RC4 nor CBC. They
 are currently the best way to avoid all known TLS cipher suite
 weaknesses.

We can’t make decisions based on speculation and paranoia. Besides, there might
 not be any one correct decision anyway. Mitigating BEAST might be appropriate in
 some cases; removing RC4 might be best in others. In situations such as this, it’s
 always helpful to see what others are doing; at the time of writing, Google still
 allows RC4 but uses it only with clients that do not support modern protocols (TLS
 1.0 and earlier versions).
On the other hand, Microsoft boldly deprecated RC4 in Windows 8.1 and, in some
 cases, even Windows 7. Schannel will still use RC4 in client mode, but only if no
 other cipher suite is available on the server. Some would say that such a fallback
 is necessary, because there are still servers out there that support only RC4 cipher
 suites. There is also an Internet-Draft in progress that prohibits RC4 usage.[402]

Triple Handshake Attack

In 2009, when the TLS renegotiation mechanism had been found to be insecure, the
 protocols were fixed by creating a new method for secure
 renegotiation. (If you haven’t already, read about insecure renegotiation
 earlier in this chapter, in the section called “Insecure Renegotiation

 ”.) But that effort
 hadn’t been quite successful. In 2014, a group of researchers showed their
 Triple Handshake Attack, which combines two separate TLS
 weaknesses to break renegotiation one more time.[403]
The Attack

To understand how the attack works, you first need to know how renegotiation is
 secured. When renegotiation takes place, the server expects the client to supply its
 previous verify_data value (from the encrypted
 Finished message in the previous handshake). Because only the
 client can know that value, the server can be sure that it’s the same client.
It might seem impossible for the attacker to know the correct value, given that it
 is always transmitted encrypted. And yet it was possible to uncover the “secret”
 value and break renegotiation; the attack works in three steps and exploits two
 weaknesses in TLS.
Step 1: Unknown Key-Share Weakness

The first exploited weakness is in the RSA key exchange. The generation of the
 master secret, which is the cornerstone of TLS session security, is chiefly
 driven by the client:
	Client generates a premaster key and a random value and sends them to
 the server

	Server generates its own random value and sends it to the
 client

	Client and server calculate the master secret from these three
 values

Both random values are transported in the clear, but to prevent just anyone
 from performing MITM attacks on
 TLS,
 the premaster secret is protected; the client encrypts it with the server’s
 public key, which means that the attacker can’t get to it. Unless she has access
 to the server’s private key, that is; therein lies the first twist.
The triple handshake attack relies on a malicious server.
 In this variant, you somehow convince the victim to visit a seemingly innocent
 web site under your control. (The usual approach is to use social engineering.)
 On that web site, you have your own valid certificate.
This is where the fun begins. The client generates a premaster key and a
 random value and sends them to the malicious server.[404] The premaster secret is encrypted, but the malicious server is the
 intended recipient and has no trouble decrypting it. Before the handshake with
 the client is complete, the malicious server opens a separate connection to the
 target server and mirrors the premaster key and the
 client’s random value. The malicious server then takes the target server’s
 random value and forwards it to the client. When this exchange is complete,
 there are two separate TLS connections and three parties involved in the
 communication, but they all share the same connection parameters and thus also
 the same master key.
Figure 7.8. Triple handshake: unknown key-share
[image: Triple handshake: unknown key-share]

This weakness is called an unknown key-share,[405] and you can probably guess that it is not desirable. However, on its
 own it does not seem exploitable. The malicious server cannot really achieve
 anything sinister at this point. It has the same master key and can thus see all
 the communication, but it could do that anyway and without involving the other
 server. If the attacker attempted to do anything at this point, she would be
 performing a phishing attack; it’s a real problem, but not one TLS can
 solve.
Note
The RSA key exchange is almost universally supported, but there
 is also an attack variant that works against the ephemeral Diffie-Hellman
 (DHE) key exchange. The researchers discovered that the mainstream TLS
 implementations accept insecure DH parameters that are not prime numbers. In
 the TLS protocol, it is the server that chooses DH parameters. Thus, a
 malicious server can choose them in such a way that the DHE key exchange can
 be easily broken. The ECDHE key exchange, an elliptic curve variant of DHE,
 cannot be broken because no TLS implementation supports arbitrary DH
 parameters (as is the case with DHE). Instead, ECDHE relies on
 named curves, which are known good sets of
 parameters.

Step 2: Full Synchronization

The attacker can’t attack renegotiation just yet because each connection has a
 different client verify_data value. Why? Because the server
 certificates differ: the first connection sees that attacking hostname’s
 certificate, whereas the second connection sees the certificate of the target
 web server.
There’s nothing the attacker can do for that first connection, but in the next
 step she can take advantage of the session resumption mechanism and its
 abbreviated handshake. When a session is resumed, there is no authentication;
 the assumption is that the knowledge of the master key is sufficient to
 authenticate the two parties.
But, when the session resumes, the only elements that were different in the
 first connection (the certificates) are not required any more. Thus, when the
 handshake completes, the Finished messages on both
 connections will be the same!
Figure 7.9. Triple handshake attack: full TLS connection synchronization
[image: Triple handshake attack: full TLS connection synchronization]

Step 3: Impersonation

The attacker can now proceed to trigger renegotiation in order to force the
 use of the victim’s client certificate, leading to impersonation. She is in full
 control of both connections and can send arbitrary application data either way.
 On the target web server, she navigates to a resource that requires
 authentication. In response, the target server requests renegotiation and a
 client certificate during the subsequent handshake. Because the security
 parameters are now identical on both connections, the attacker can just mirror
 the protocol messages, leaving the victim and the target server to negotiate new
 connection parameters. Except that this time the client will authenticate with a
 client certificate. At that point, the attack is successful.
Figure 7.10. Triple handshake: impersonation
[image: Triple handshake: impersonation]

After renegotiation, the malicious server loses traffic visibility, although
 it still stays in the middle and continues to mirror encrypted data until either
 side terminates the connection.

Impact

The triple handshake attack demonstrates how a supposedly secure TLS connection
 can be compromised. Application data sent to the target server before renegotiation
 comes from the attacker, the data sent after renegotiation comes from the
 authenticated user, and yet for the server there is no difference. The exploitation
 opportunities are similar to those of the original insecure renegotiation
 vulnerability (described at the beginning of this chapter in the section called “Insecure Renegotiation

 ”). The easiest exploit is to execute a
 request on the target web server under the identity of the victim. Think money
 transfers, for example.
However, this attack vector is not very easy to use. First, the attacker has to
 find suitable entry points in the application and design specific payloads for each.
 Second, after renegotiation she loses traffic visibility and thus can’t see the
 results of the attack or perform further attacks on the same connection. She can
 perform another attack, but doing so at the TLS level is going to be frustrating and
 slow.
There is another, potentially more dangerous, attack vector. Because the attacker
 can send arbitrary data to either connection before renegotiation, she has full
 control over the victim’s browser. The victim is on her web
 site, after all. This allows the attacker to inject JavaScript
 malware into the browser. After renegotiation and authentication, the malware can
 submit unlimited background HTTP requests to the target server—all under the
 identity of the victim—and freely observe the responses.
Normally, browsers do not allow one web site to submit arbitrary requests to other
 sites. In this case, all communication is carried out in the context of the
 attacker’s site. Behind the scenes they are routed to the target web site, but, as
 far as the browser is concerned, it’s all one web site.
This second attack vector is effectively a form of phishing, with the triple
 handshake component required in order to subvert client certificate authentication.
 It’s a much more powerful form of attack, limited only by the programming skills of
 the attacker and her ability to keep the victim on the web site for as long as
 possible.

Prerequisites

The triple handshake attack is quite complex and works only under some very
 specific circumstances. Two aspects need to align before the weaknesses can be
 exploited.
The first is that it can be used only against sites that use client certificates.
 Take away that and there can be no impersonation. The second aspect is more
 intriguing. The attack is a form of phishing; the victims must be willing to use
 their client certificates on a site where they are not normally used. I would love
 to say that this is unlikely to happen, but the opposite is probably true.
When it comes to getting the victim to the rogue web server, it’s always possible
 to use social engineering or email, like all other phishing attacks. Given the
 attacker’s position (MITM), he can also redirect any plaintext HTTP request to the
 site. However, that might create suspicions from the user, who will unexpectedly
 arrive at an unknown web site.
Given that few sites use client certificates, the applicability of the triple
 handshake attack is not massive, unlike with the original insecure renegotiation
 problem. On the other hand, the sites that use client certificates are usually the
 more sensitive ones. This attack was never going to be used by petty
 criminals.

Mitigation

The core vulnerabilities exploited by the triple handshake attack are in the
 protocol, and that makes TLS the best place to address the issue. Work is currently
 under way to tweak the protocol so that there is a stronger binding between a
 handshake and the master secret,[406] as well as a stronger binding on session resumption.[407]
In the short term, browser vendors reacted by tweaking their software to abort
 connections when they see a different certificate after renegotiation. Similarly,
 degenerate DH public keys are no longer accepted. Of course, these mitigations are
 generally available only in the more recent browser versions; older Internet
 Explorer versions should be safe too, because Microsoft patches the system-wide
 libraries, not just their browser.
Despite the browser improvements, there are several remaining attack vectors that
 are exploitable under specific circumstances (when certificates are not used): SASL,
 PEAP, and Channel ID. These can’t be addressed in any other way except with protocol
 changes.
If possible, I recommend that you undertake some server-side measures to further
 minimize the risk. The most recent browsers might not be exploitable, but there’s
 always a long tail of users running old software, which could be attacked. Consider
 the following measures:
	Require client certificates for all access
	If a client certificate is required for all TLS connections to a site,
 then the attacker will need a certificate of her own to carry out the
 first part of the attack. Depending on how easy it is to obtain a client
 certificate, this fact alone might be sufficient to reduce the risk of
 the attack.

	Disable renegotiation
	A strong constraint on the attack is the fact that it requires
 renegotiation. However, renegotiation is often used only in combination
 with client certificates. For example, a site might allow anyone access
 to the homepage but use renegotiation to request a client certificate in
 a subdirectory. If this arrangement is changed so that renegotiation
 never takes place, there can be no attack.

	Enable only ECDHE suites
	ECDHE suites are not vulnerable to this attack. Given that all modern
 browsers support ECDHE suites, if the user base is small and does not
 use very old browsers (chiefly Android 2.x and IE on Windows XP)
 disabling the vulnerable key exchange methods (DHE and RSA) might be
 another good defense method. But this approach won’t work with a diverse
 user base.

Bullrun

Bullrun (or BULLRUN) is the codename for
 a classified program run by the United States National Security
 Agency (NSA). Its purpose is to break encrypted communication by any
 means possible. Probably the most successful approach taken is, simply, computer
 hacking. If you can obtain a server’s private key by hacking into it, there is no reason
 to attack encryption. More interesting for us, however, is that one of the means is
 weakening of products and security standards. This is a statement from a budget proposal
 from a leaked confidential document:[408]
Influence policies, standards and specification for commercial public key
 technologies.

According to The New York Times, the NSA has about $250 million a year to spend on
 these activities. British GCHQ apparently has its own program for similar activities,
 codenamed Edgehill.[409]
TLS, one of the major security protocols, is an obvious target of this program. The
 public disclosure of Bullrun has caused many to view standards development in a
 completely different light. How can we trust the standards if we don’t trust the people
 who design them?
Dual Elliptic Curve Deterministic Random Bit Generator

Dual Elliptic Curve Deterministic Random Bit Generator
 (Dual EC DRBG) is a pseudorandom number generator (PRNG)
 algorithm standardized by the International Organization for
 Standardization (ISO) in ISO 18031 in 2005 and the United States
 National Institute of Standards and Technology (NIST) in 2006.[410]
In 2007, two researchers discussed a possible backdoor in this algorithm,[411] but their discovery received little attention.
 When the Bullrun program came to light in September 2013, Dual EC DRBG was
 implicated as an NSA backdoor. In the same month, NIST issued a bulletin denouncing
 their own algorithm:[412]
NIST strongly recommends that, pending the resolution of the security concerns
 and the re-issuance of SP 800-90A, the Dual_EC_DRBG, as specified in the January
 2012 version of SP 800-90A, no longer be used.

In 2013, Reuters wrote about a $10 million payment from the NSA to RSA Security,
 Inc., leading to the RSA adopting Dual EC DRBG as the default PRNG in their TLS
 implementation, BSAFE.[413] Many other TLS implementations offered Dual EC DRBG as an option (most
 likely because it was required for the FIPS 140-2 validation), but as far as we know
 none used it by default. The implementation in OpenSSL was found to be faulty and
 thus unusable.[414]
How does this affect TLS, you may ask? In cryptography, all security depends on
 the quality of the data produced by the PRNG in use. Historically, we’ve seen many
 implementations fail at this point, as discussed in the section called “Random Number Generation” in Chapter 6. If you can break
 someone’s PRNG, chances are you can break everything else. The TLS protocol requires
 client and server to send 28 bytes of random data each as part of the handshake;
 this data is used to generate the master secret, which is used to protect the entire
 TLS session. If you can backdoor the PRNG implementation, those 28 bytes might be
 enough to reveal the internal state of the generator and thus help substantially
 with breaking the TLS session.
In 2014, researchers demonstrated that Dual EC DRBG could, indeed, be backdoored,[415] although they couldn’t offer proof that a backdoor existed. At the same
 time, they discovered that a nonstandard TLS extension, written at the request of
 the NSA, had been implemented in BSAFE to expose more data from the PRNG on a TLS connection.[416]
With more random data exposed to the attacker, it becomes up to 65,000 times
 easier to break TLS connections.

[331] MITM attack on delayed TLS-client auth through renegotiation (Martin
 Rex, 4 November 2009)

[332] Renegotiating TLS (Marsh Ray and Steve Dispensa, 4 November
 2009)

[333] TLS/SSLv3 renegotiation
 vulnerability explained (Thierry Zoller, 23 December 2011)

[334] TLS renegotiation vulnerability: definitely not a full blown MITM,
 yet more than just a simple CSRF (Anil Kurmus, 11 November
 2009)

[335] The last time I tested this feature, in July 2013, the
 latest versions of Chrome, Internet Explorer, and Safari
 were happy to redirect the request to an entirely different
 web site without any warning. Firefox and Opera asked for
 confirmation, but the prompts used by both could be
 improved. For example, Firefox provided no information about
 where the new request would be going. Opera provided the
 most information (the current address as well as the
 intended destination) along with options to cancel, proceed
 with the POST method, or convert to a
 GET method. Still, all that would
 probably be too confusing for the average user.

[336] Generalization of the TLS Renegotiation Flaw Using HTTP 300
 Redirection to Effect Cryptographic Downgrade Attacks (Frank
 Heidt and Mikhail Davidov, December 2009)

[337] Redirecting
 and modifying SMTP mail with TLS session renegotiation
 attacks (Wietse Venema, 8 November 2009)

[338] My take on the SSL MITM Attacks – part 3 – the FTPS
 attacks (Alun Jones, Tales from the Crypto, 18
 November 2009)

[339] For example, in Firefox, on the about:config page,
 change the security.ssl.require_safe_negotiation setting
 to true.

[340] RFC
 5746: TLS Renegotiation Indication Extension
 (Rescorla et al., February 2010)

[341] Secure browsing like it’s 1995 (Audun Mathias Øygard, 17 March
 2011)

[342] Re: Call for acceptance of draft-moeller-tls-downgrade-scsv
 (Yngve N. Pettersen, 9 February 2014)

[343] SSL
 Pulse (SSL Labs, retrieved 15 July 2014)

[344] Here come the ⊕ Ninjas (Duong and Rizzo, incomplete version, 21 June
 2011)

[345] BEAST (Thai Duong, 5 September 2011)

[346] Without permission, Java applets can only communicate with their
 parent web site. This restriction is known as the same-origin
 policy (SOP). Duong and Rizzo discovered a way to bypass
 that restriction. It’s not entirely clear if the Java SOP bypass
 remains: when I reviewed the updated Java release in 2013, it was
 possible to exploit it with additional effort.

[347] The pitfalls of allowing file uploads on your website
 (Mathias Karlsson and Frans Rosén, 20 May 2014)

[348] Bug #665814, comment #59: Rizzo/Duong chosen plaintext attack (BEAST)
 on SSL/TLS 1.0 (Xuelei Fan, 20 July 2011)

[349] BEAST followup (Adam Langley, 15 January 2012)

[350] Some user agents (e.g., Java and OS X) do not use BEAST countermeasures
 for the first burst; they deploy it only from the second burst onwards. This
 saves on bandwidth but provides less security. Application data is probably
 still safe, because to make a guess you need to see something encrypted
 first. However, before any application data is sent, TLS uses encryption for
 its own needs. In most cases, this will be the Finished
 message, which is not very interesting because it changes on every
 connection. However, as TLS is evolving, other bits and pieces are being
 encrypted in the first message. In theory, a future change might make TLS
 vulnerable again. In practice, because BEAST was fixed in TLS 1.1 it’s very
 unlikely that TLS 1.0 servers will support these new features.
 In TLS 1.1, the cost is equal to the size of the encryption block, which
 is typically 16 bytes.

[351] Problems with Proposed IP Cryptography (Phil Rogaway, 3 April
 1995)

[352] An Attack Against
 SSH2 Protocol (Wei Dai, 6 February 2002)

[353] Re: an attack against SSH2 protocol (Bodo Moeller, 8 February
 2002)

[354] But even if the countermeasures stayed enabled they wouldn’t have
 addressed the BEAST attack. TLS is a duplex protocol, with two separate
 streams of data, one sent by the client and the other sent by the server,
 each using separate IVs. An empty fragment mitigation technique implemented
 on the server wouldn’t have fixed the same vulnerability in the client
 stream, which is where BEAST attacked. TLS stacks used by browsers (e.g, NSS
 and Schannel) had no countermeasures for predictable IVs.

[355] Breaking and
 Provably Repairing the SSH Authenticated Encryption Scheme: A Case Study
 of the Encode-then-Encrypt-and-MAC Paradigm (Bellare, Kohno, and
 Namprempre, Ninth ACM Conference on Computer and Communication Security, 18
 November 2002)

[356] Blockwise-Adaptive Attackers: Revisiting the (In)Security of Some
 Provably Secure Encryption Modes: CBC, GEM, IACBC (Joux,
 Martinet, and Valette, pages 17–30, CRYPTO 2002)

[357] Vulnerability of SSL to
 Chosen-Plaintext Attack (Gregory V. Bard, ESORICS, 2004)

[358] A Challenging but
 Feasible Blockwise-Adaptive Chosen-Plaintext Attack on SSL
 (Gregory Bard, SECRYPT, 2006)

[359] cbcrandomiv.patch (NSS 1/n-1 patch in
 Chromium, 18 August 2011)

[360] Compression and Information Leakage of Plaintext (John Kelsey,
 FSE, 2002)

[361] Language
 identification of encrypted VoIP traffic: Alejandra y Roberto or Alice
 and Bob? (Wright et al., USENIX Security, 2007)

[362] Uncovering Spoken Phrases in Encrypted Voice over IP
 Conversations (Wright et al., ACM Transactions on Information and
 System Security, Vol. 13, No. 4, Article 35, December 2010)

[363] SPDY is a relatively new protocol designed by Google to speed up web
 browsing.

[364] Compression contexts and privacy considerations (Adam Langley,
 11 August 2011)

[365] The CRIME attack (Duong and Rizzo, Ekoparty Security Conference
 9° edición, 2012)

[366] New Attack Uses SSL/TLS Information Leak to Hijack HTTPS
 Sessions (Threatpost, 5 September 2012)

[367] CRIME - How to beat the BEAST successor? (Thomas Pornin, 8
 September 2012)

[368] It’s not a crime
 to build a CRIME (Krzysztof Kotowicz, 11 September 2012)

[369] Crack in Internet’s foundation of trust allows HTTPS session
 hijacking (Ars Technica, 13 September 2012)

[370] A Perfect CRIME? TIME Will Tell (Tal Be’ery and Amichai
 Shulman, March 2013)

[371] BREACH: Reviving the CRIME Attack (Gluck et al., August
 2013)

[372] The authors presented BREACH at Black Hat USA 2013, in a session
 titled “SSL, Gone in 30 seconds.”

[373] BREACH web site
 (retrieved 16 July 2014)

[374] BREACH
 repository (Neal Harris, retrieved 16 July 2014)

[375] Sites that care about performance will already compress
 HTTP responses, which is where the bulk of the bandwidth is.
 Trying to compress already compressed traffic increases CPU
 and RAM consumption but yields little improvement. It might
 be possible to move compression entirely to the TLS layer,
 but then it would try to compress images, which are not
 likely to compress well.

[376] Usage share of web browsers (Wikipedia, retrieved 20 February
 2014)

[377] Length Hiding Padding for the Transport Layer Security Protocol
 (Pironti et al., September 2013)

[378] breach attack (Paul Querna, 6 August 2013)

[379] BREACH mitigation (manu, 14 October 2013)

[380] Lucky Thirteen:
 Breaking the TLS and DTLS Record Protocols (AlFardan and Paterson, 4
 February 2013)

[381] Automated Padding Oracle Attacks with PadBuster (Brian
 Holyfield, 14 September 2010)

[382] Padding oracle
 attack simulation (Erlend Oftedal, retrieved 28 February
 2014)

[383] Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC,
 WTLS... (Serge Vaudenay, pages 534–546, EUROCRYPT
 2002)

[384] Password Interception in a SSL/TLS Channel (Canvel et al.,
 CRYPTO 2003)

[385] Security of
 CBC Ciphersuites in SSL/TLS: Problems and Countermeasures
 (Moeller et al., last updated on 20 May 2004)

[386] Plaintext-Recovery Attacks Against Datagram TLS (AlFardan and
 Paterson, NDSS, February 2012)

[387] ChaCha20 and Poly1305 based Cipher Suites for TLS (Langley and
 Chang, November 2013)

[388] RFC
 7366: Encrypt-then-MAC for TLS and DTLS (Peter
 Gutmann,
 September
 2014)

[389] Weaknesses in the Key Scheduling Algorithm of RC4 (Fluhrer,
 Mantin, and Shamir, 2001)

[390] WEP didn’t quite reuse its keys but derived new keys from a master key
 using concatenation, a method that resulted in the session keys that are
 similar to the master key. TLS, for example, uses hashing, which means that
 connection keys cannot be traced back to the master key.

[391] RSA Security Response to Weaknesses in Key Scheduling Algorithm of
 RC4 (RSA Laboratories Technical Note, 1 September 2001)

[392] Anecdotally, only about a half of TLS servers on the Internet enforce
 suite preference. The other half uses the first supported suite from the
 list submitted by browsers.

[393] Internet SSL Survey 2010 is here! (Ivan Ristić, 29 July
 2010)

[394] What’s the deal with RC4? (Matthew Green, 15 December
 2011)

[395] The ICSI Certificate Notary (International Computer Science
 Institute, retrieved 16 July 2014)

[396] A Practical Attack on Broadcast RC4 (Mantin and Shamir,
 2011)

[397] In cryptography, this is known as a multisession
 attack. The name might be confusing in the context of TLS, because a
 TLS session is a set of cryptographic parameters
 that are used across multiple connections via the session reuse mechanism.
 Even with session reuse, TLS generates new encryption keys for every
 connection.

[398] Some protocol extensions add additional messages that are also encrypted.
 For example, this is the case with the Next Protocol
 Negotiation (NPN) extension, which is used to negotiate
 SPDY. Unlike the Finished message, whose contents are
 effectively random, those other messages could be attacked using the RC4
 biases.

[399] On the Security of RC4
 in TLS and WPA (AlFardan et al., 13 March 2013)

[400] In theory. In practice, applications tend to be very tolerant
 of connections that are not properly shutdown, a fact that can
 be exploited for truncation attacks. You can find out more about
 this topic in the section called “Truncation Attacks” in Chapter 6.

[401] Statistical Analysis of the Alleged RC4 Keystream Generator
 (Fluhrer and McGrew, 2001)

[402] Prohibiting RC4 Cipher Suites (Andrei Popov, 11 April
 2014)

[403] Triple Handshakes Considered
 Harmful: Breaking and Fixing Authentication over TLS (Bhargavan et
 al., March 2014)

[404] Because the malicious server is in the middle, it can always force the
 use of a suite that relies on the RSA key exchange for as long as there
 is one such suite supported by both sides that are being attacked. In
 TLS, servers choose suites. When opening a handshake to the target
 server, the malicious server offers only suites that use the RSA key
 exchange.

[405] Unknown key-share attacks on the station-to-station (STS)
 protocol (S. Blake-Wilson and A. Menezes, pages
 154–170, in Public Key
 Cryptography, 1999)

[406] TLS Session Hash and Extended Master Secret Extension (Bhargavan
 et al., April 2014)

[407] TLS Resumption Indication Extension (Bhargavan et al., April
 2014)

[408] Secret Documents Reveal N.S.A. Campaign Against Encryption (The New
 York Times, 5 September 2013)

[409] Revealed: how US and UK spy agencies defeat internet privacy and
 security (The Guardian, 6 September 2013)

[410] Dual_EC_DRBG (Wikipedia, retrieved 3 April 2014)

[411] On the
 Possibility of a Back Door in the NIST SP800-90 Dual Ec Prng
 (Shumow and Ferguson, August 2007)

[412] SUPPLEMENTAL ITL BULLETIN FOR SEPTEMBER 2013 (NIST, September
 2013)

[413] Exclusive: Secret contract tied NSA and security industry
 pioneer (Reuters, 20 December 2013)

[414] Flaw in Dual EC DRBG (no, not that one) (Steve Marquess, 19 December
 2013)

[415] On the Practical Exploitability of
 Dual EC in TLS Implementations (Checkoway et al., 2014)

[416] Extended Random (projectbullrun.org, retrieved 16 July
 2014)

8 Deployment

After several chapters of theory and background information, this chapter is where it all
 comes together; it gives you advice—everything you should know, at a high
 level—for deploying TLS servers securely. In many ways, this chapter is the map for
 the entire book. As you read through each section, refer to earlier chapters for more
 information on a particular topic. After you’re satisfied that you have all the information
 you need, refer to the later chapters for practical configuration advice for your platform
 of choice.
This chapter is best read along with the next one about performance. Although the advice
 here takes performance into consideration, the next chapter provides a much greater level of
 detail, as well as further advice that could be used by those sites that want to be as fast
 as possible.
Key

Private keys are the cornerstone of TLS security. With appropriately selected key
 algorithm and size, TLS will provide strong authentication over a period of many years.
 But, despite our focus on the numbers (“the bigger the better”), the weakest link
 is key management, or the job of keeping the private keys private.
Key
 Algorithm

There are three key algorithms supported for use in TLS today, but only one of
 them—RSA—is practical. DSA has been long abandoned, and ECDSA is the
 algorithm that we will be deploying more widely in the following years.
	DSA
	DSA is easy to rule out: due to the fact that DSA keys are limited to
 1,024 bits (Internet Explorer does not support anything stronger),
 they’re impossible to deploy securely. On top of that, no one uses DSA
 keys for TLS anyway; going against everyone could potentially expose you
 to unforeseen interoperability issues.

	RSA
	The easy choice is to use RSA keys because they are universally
 supported and currently used by virtually all TLS deployments. But, at
 2,048 bits, which is the current minimum, RSA keys offer less security
 and worse performance than ECDSA keys. There is also the issue that RSA
 keys don’t scale well with size increase. If you decide that 2,048-bit
 RSA keys are not sufficiently strong, moving to, say, 3,072-bit RSA keys
 would result in a substantial performance degradation.

	ECDSA
	ECDSA is the algorithm of the future. A 256-bit ECDSA key provides 128
 bits of security versus only 112 bits of a 2,048-bit RSA key. At these
 sizes, in addition to providing better security, ECDSA is also 2x
 faster. Compared at equivalent security, against a 3,072-bit RSA key,
 ECDSA is over 6x faster.
Because elliptic curve (EC) cryptography is a relatively recent
 addition to the TLS ecosystem, ECDSA is at a disadvantage because not
 all user agents support this algorithm. Modern browsers support it, but
 older user agents don’t. You can work around this by deploying RSA and
 ECDSA keys simultaneously, except that not all server platforms support
 this option. Additionally, it’s more work to maintain two sets of keys
 and certificates. For this reason, ECDSA keys are today best used if you
 want to squeeze the best possible performance out of your TLS servers.
 In the future, as we require more security, ECDSA will become more
 relevant.

Key
 Size

When it comes to key size, most deployments will be satisfied with 2,048-bit RSA
 keys or 256-bit ECDSA keys. They provide security of 112 and 128 bits, respectively.
 That said, most deployments can afford to stay at the lower end of key sizes because
 even the weaker keys are sufficient for their needs.
If you require long-term protection, you should use keys that provide at least 128
 bits of security. At that level, 256-bit ECDSA keys fit the bill and perform well.
 With RSA, you’d have to use 3,072-bit keys, which are much slower. If the
 performance degradation is not acceptable, dual-key deployment might be a good
 compromise: use stronger ECDSA keys with modern browsers (and hopefully the majority
 of your user base) and weaker RSA keys with everyone else. Otherwise, accept the
 performance penalty.
Warning
If you are currently using keys that provide less than 112 bits of security
 (e.g. 1,024-bit RSA keys or weaker), replace them as a matter of urgency. They
 are insecure. This is especially true for 512- and 768-bit RSA keys, which can
 be broken with access to modest resources. It is estimated that breaking
 1,024-bit RSA keys costs only $1m.

Consider the following when selecting key sizes: (1) is your choice secure today, (2) will it be secure when the key is retired, and (3) how long do you want your secrets to stay
 private after you retire the keys.

Key
 Management

While we spend most time obsessing about key size, issues surrounding key
 management are more likely to have a real impact on your security. There is ample
 evidence to suggest that the most successful attacks bypass encryption rather than
 break it. If someone can break into your server and steal the private key, or
 otherwise compel you to disclose the key, why would they bother with brute-force
 attacks against cryptography?
	Keep your private keys private
	Treat your private keys as an important asset, restricting access to
 the smallest possible group of employees while still keeping the
 arrangements practical. Some CAs offer to generate private keys for you,
 but they should know better. The hint is in the name—private keys
 should stay private, without exception.

	Think about random number generation
	The security of encryption keys depends on the quality of the random
 number generator (RNG) of the computer on which the keys are generated.
 Keys are often created on servers right after installation and
 rebooting, but, at that point, the server might not have sufficient
 entropy to generate a strong key. It’s better to generate all your keys
 in one (off-line) location, where you can ensure that a strong RNG is in
 place.

	Password-protect the keys
	Your keys should have a passphrase on them from the moment they are
 created. This helps reduce the attack surface if your backup system is
 compromised. It also helps prevent leakage of the key material when
 copying keys from one computer to another (directly or using USB
 sticks); it’s getting increasingly difficult to safely delete data from
 modern file systems.

	Don’t share keys among unrelated servers
	Sharing keys is dangerous; if one system is broken into, its
 compromised key could be used to attack other systems that use the same
 key, even if they use different certificates. Different keys allow you
 to establish strong internal access controls, giving access to the keys
 only to those who need them.

	Change keys frequently
	Treat private keys as a liability. Keep track of when the keys were
 created to ensure they don’t remain in use for too long. You must change
 them after a security incident and when a key member of your staff
 leaves, and should change them when obtaining a new certificate. When
 you generate a new key, you wipe the slate clean. This is especially
 true for systems that do not use or support forward secrecy. In this
 case, your key can be used to decrypt all previous communication, if
 your adversary has it recorded. By deleting the key safely, you ensure
 that it can’t be used against you. Your default should be to change keys
 yearly. Systems with valuable assets that do not use forward secrecy
 (which is not advisable) should have their keys changed more often, for
 example quarterly.

	Store keys safely
	Keep a copy of your keys in a safe location. Losing a server key is
 usually not a big deal because you can always generate a new one, but
 it’s a different story altogether with keys used for intermediate and
 private CAs, and keys that are used for pinning.
Generating and keeping private keys in tamper-resistant hardware is
 the safest approach you can take, if you can afford it. Such devices are
 known as Hardware Storage Modules, or HSMs. If
 you use one of those, private keys never leave the HSM and, in fact,
 can’t be extracted from the device. These days, HSMs are even available
 as a service.[417] If you care about your security enough to think about an
 HSM, the idea of using one in the cloud might seem unusual. That said,
 given what we know about high-tech spying,[418] even when deploying in-house it might still be challenging
 to find a manufacturer whom you trust not to have created a backdoor
 into the device. After all, you don’t want to spend a lot of money on a
 device and only later find out that the keys can be extracted from
 it.

Certificate

In this section I discuss the topics surrounding certificate selection. There’s a
 variety of decisions to make, including which type of certificate to use, which
 hostnames to include in each certificate, and which CA to obtain the certificates from.
Certificate Type

There are three types of certificates: domain validated
 (DV), organization validated (OV), and extended
 validation (EV). The issuance of DV certificates is automated, which
 is why they are cheap. They should be your default choice. OV certificates require
 validation of the organization behind the domain name and contain identifying
 information. Despite that, browsers don’t actually treat OV certificates differently
 nor do they show all the available information.
EV certificates differ from DV and OV certificates in several ways: (1) validation procedures are standardized by
 the CAB Forum; (2) identifying
 information is displayed in browser chrome and highlighted in green; and (3) they are more likely checked for
 revocation. The security benefits are slight, but they provide better assurance to
 some better-educated users. This might be valuable, depending on the nature of the
 business.

Certificate Hostnames

The main purpose of a certificate is to establish trust for the appropriate
 hostnames, allowing users smooth secure access. On the Web, users are often confused
 by needless certificate name mismatch warnings. This problem usually arises from the
 use of certificates that are valid for only one of the two name variants (e.g.,
 valid for www.example.com, but not for example.com).
To avoid such issues, follow this simple rule: if there is a DNS entry pointing to
 your TLS server, ensure that the certificate covers it. We can’t control what others
 are typing in their browser URL bars, or how they link to our sites. The only way to
 be sure is to have certificates with appropriate name coverage. In my experience,
 some CAs automatically issue certificates that cover both variants, but there are
 CAs who don’t.
Note
Another frequent problem comes from placing plaintext-only web sites on an IP
 address that is already used to host some other secure web site. Someone who
 uses the https:// prefix with the name of your plaintext site
 will not only get a certificate warning due to the name mismatch but will
 subsequently arrive at the unrelated secure site hosted on the same server. This
 problem is best avoided by closing port 443 on the IP addresses used for
 plaintext-only web sites.

Certificate
 Sharing

There are two ways in which a certificate can be shared. First, you can get one
 that lists all desired hostnames (e.g., www.example.com,
 example.com and blog.example.com). Alternatively, you can
 get a wildcard certificate that’s valid for any number of direct subdomains (e.g.,
 by getting a certificate for the names *.example.com and
 example.com).
Certificate sharing has the advantage of reducing maintenance costs and allowing
 you to use one IP address for many secure web sites. It’s widely used by content
 delivery networks, who operate servers on behalf of others.
In principle, there is nothing wrong with this practice, but only if it doesn’t
 reduce your security. However, that’s usually the case. Speaking strictly about
 encryption, to share a certificate you also have to share the underlying private
 key. This means that certificate sharing is not appropriate for sites operated by
 multiple teams or unrelated web sites. If one of the sites is attacked, the
 compromised private key can be used to attack other sites from the group. Further,
 after a compromise, all servers from the group will have to be reconfigured to use
 the new key material.
More importantly, certificate sharing creates a bond at the application level; a
 vulnerability in one site can be exploited to attack all other sites from the same
 certificate. For this reason, this practice is best avoided. The same problem occurs
 if TLS session information is shared among unrelated servers. You’ll find a more
 thorough discussion of this problem in the section called “Virtual Host Confusion” in
 Chapter 6.

Signature Algorithm

To prove that a certificate is valid, the issuing CA attaches a signature to it.
 Digital signatures typically depend on the security of two components: one is the
 strength of the CA’s private key; the other, the strength of the hashing
 function. Although the private keys used for certificate issuance tend to be
 sufficiently strong, the most commonly used hashing function—SHA1—is
 weak. Although it had been designed to provide 80 bits of security, it’s currently
 thought to be only 61 bits strong.
After the debacle with MD5 certificate signatures, which were spectacularly fully
 broken in 2009, this time the industry is moving away from SHA1 in a timely fashion.
 In 2013, Microsoft decreed that they will not accept SHA1 certificates after 2016 at
 the latest.[419] That prompted CAs to start migrating to using SHA256 as their default
 hashing function for signatures. In September 2014, Google announced that they would
 start warning about SHA1 certificates in late 2014, significantly reducing the time
 available for SHA1 deprecation. Initially, the warnings will appear only on
 certificates that expire after 2016, but they would subsequently move to warn about
 SHA1 even on certificates that expire during 2016.[420]
For your new certificates, ensure that you use SHA256 or better. Because this is
 not something you can request via a CSR, you’ll need to check with your CA in
 advance. When you do, also check that the CA’s entire certificate chain is free of
 SHA1. (Signatures on root certificates do not count.) Your existing SHA1
 certificates can remain in use, but only if they expire before 2016; otherwise, you
 should start making plans to replace them as soon as possible.
Note
Whenever new cryptographic primitives are deployed, we have to deal with older
 clients that do not support them. In the case of SHA256, the biggest problems
 seem to be with Windows XP users who have not yet upgraded to SP3[421] and with Android devices before version 2.3.[422]
Before you upgrade your signature algorithm, it’s prudent to examine the web
 server logs to determine if those older clients make a significant portion of
 your traffic. If they do, consider postponing the changes until the last
 possible moment to avoid losing some of the users. There is also another option:
 some web servers support configurations with more than one certificate per site.
 If yours does, you could have the best of both worlds by deploying a SHA1
 certificate for older clients and a SHA2 certificate for everyone else. For the
 Apache web server, I discuss this deployment approach in the section called “Configuring Multiple Keys” in Chapter 13.

Certificate Chain

Although we tend to talk about valid server certificates, in reality we configure
 TLS servers with certificate chains. A chain is an ordered list
 of certificates that lead to a trusted root. A common problem is to see servers
 whose chains are incomplete and thus invalid. According to SSL Pulse, there were
 5.9% such servers in July 2014.[423]
Some user agents know how to reconstruct an incomplete chain. Two approaches are
 common: (1) all intermediate CA
 certificates are cached and (2) user
 agents retrieve the missing certificates by following the parent certificate
 information that’s usually embedded in every certificate. Neither of these
 approaches is reliable. The latter is also slow because the users have to wait until
 the missing certificates are retrieved from the CAs’ web sites.
It’s also common to see certificates delivered in incorrect order, which is
 technically invalid. In practice, almost all user agents know how to reorder
 certificates to fix the chain. For best results, ensure that your certificate chains
 are valid and that the order is correct.
Although intermediate certificates are usually valid for longer, they expire, too.
 If you’re installing a new certificate, it’s recommended to replace all
 certificates, even if you’re staying with the same CA. This practice will help you
 avoid problems with expired intermediate certificates.
For best performance, your chains should contain the right number of certificates;
 no more and no less. Extra certificates (e.g., the root, which is never needed) slow
 down the TLS handshake. However, there can be a question of
 which chain is correct. Multiple trust paths sometimes
 exist for historical reasons. For example, a new CA can get their root into modern
 browsers, but, to support older clients, they have their root key cross-signed by
 another (better-established) CA. In this case you don’t want to “optimize” your
 chain to be the shortest possible. The shorter chain would work only in newer
 browsers, but fail in older devices.

Revocation

A certificate can and should include two types of revocation information: CRL and
 OCSP. It’s possible that a certificate does not include some of the required
 information, but it’s rare. Nevertheless, you should still check (e.g., by using the
 SSL Labs test or the OpenSSL command-line tools).
It’s more important that your CA provides a reliable and fast OCSP responder
 service. After all, every time your users connect to your web site, they’ll be
 connecting to the CA’s site as well. For best results and reliability, deploy
 OCSP stapling, which allows you to deliver OCSP responses directly from your own
 server, avoiding potential performance, availability, and privacy issues.

Choosing the Right Certificate Authority

For a small site that needs only a simple DV certificate, virtually any CA will
 suffice. You can do what I do—just buy the cheapest certificate you can find.
 After all, any public CA can issue a certificate for your web site without asking
 you; what’s the point of paying more? But, if you need a certificate for something
 important, take your time and select carefully to ensure the CA meets your needs.
 With some advanced techniques such as pinning, by selecting a CA you are making a
 long-term commitment.
	Service
	At the end of the day, it’s all about the service. The certificate
 business is getting more complicated by the day. If you don’t have
 experts on your staff, perhaps you should work with a CA on which you
 can rely. Costs matter, but so do the management interfaces and the
 quality of the support.

	Reach
	If you have a large and diverse user base, you need a CA with widely
 trusted roots. The older CAs—who have had a lot of time to embed
 their roots in various trust stores—have a clear advantage here,
 but a young CA with a root cross-signed by a better-established CA could
 do just fine. It’s best to check: (1) make a list of platforms that are important for you;
 (2) ask the candidate CAs
 to document their trust store placement; (3) ensure that the support is available where you need
 it. Finally, test some of those key platforms against a test certificate
 and see for yourself. Remember that it is not only important what
 platforms are supported today, but when exactly the support had been
 added. There are plenty of devices that do not update their trust
 stores.

	Quick adoption of new technologies
	Some CAs are only interested in selling certificates; others shape and
 lead the industry. You should generally work with the CAs who are
 leading in adoption of new technologies and migration away from the weak
 old ones. Today, look for a CA who issues SHA256 certificates by
 default, provides good OCSP responder service, and has a plan to support
 pinning and Certificate Transparency.

	Security
	Clearly, a CA’s ability to run their business securely is an
 important criterion. But how do you judge security? All CAs go through
 audits and are thus nominally equally secure, but we know from the past
 that they are not equal. The best approach is to look for evidence of
 good security posture.

Self-Signed Certificates and Private
 CAs

Although this section assumes that you’ll be getting a certificate from a
 publicly trusted CA, you can just as well decide to use a self-signed
 certificate. You could also create your own private CA and use it to issue
 certificates for all your servers. All three approaches have their place.
For public web sites, the only safe approach is to use certificates from a
 public CA.
Self-signed certificates are the least useful option. Firefox makes it easier
 to use them safely; you create an exception on the first visit, after which the
 self-signed certificate is treated as valid on subsequent connections. Other
 browsers make you click-through a certificate warning every time.[424] Unless you’re actually checking the certificate fingerprint every
 time, it is not possible to make that self-signed certificate safe. Even with
 Firefox, it might be difficult to use self-signed certificates safely. Ask
 yourself this: what will the members of your group do if they encounter a
 certificate warning on a site where they previously accepted a self-signed
 certificate? Would they check with you to confirm that the certificate had been
 changed, or would they click through?
In virtually all cases, a much better approach is to use a private CA. It
 requires a little more work upfront, but once the infrastructure is in place and
 the root key is safely distributed to all users, such deployments are as secure
 as the rest of the PKI ecosystem.

Protocol Configuration

When it comes to protocol configuration, your choices are likely to be influenced by a
 combination of security and interoperability requirements. In the ideal world, just on
 security alone, you would allow only TLS 1.2 and disable all other protocol versions.
 But such approach can work only for small groups and tightly-controlled
 environments—although modern browsers support TLS 1.2, many other products and
 tools don’t.
A web site intended for public use needs to support TLS 1.0, TLS 1.1, and TLS 1.2. SSL
 2 and SSL 3 are
 both
 obsolete and insecure. SSL 3
 stayed in use for a
 very long time but it had been dealt a fatal blow by the so-called POODLE attack,[425] which was released in October
 2014.
 Virtually all clients support at least TLS
 1.0, but there’s a
 potential problem with Internet Explorer 6 users; this browser version supports only SSL
 3 by
 default.
 However, in the aftermath of the POODLE attack large companies and CDNs are disabling
 SSL 3, which will likely lead to IE 6 users upgrading to better browsers. (It’s also
 possible to enable TLS 1.0 in IE 6 manually, but getting a modern browser is a much
 better solution for this
 problem.)
Note
Older protocol versions are of concern because most browsers can be forced to
 downgrade to the oldest (and worst) protocol they support. By doing this, an active
 network attacker can disable advanced protocol features and indirectly influence
 cipher suite selection. I discuss this in the next section.

Cipher Suite Configuration

In this section I discuss several aspects that influence cipher suite configuration:
 encryption strength, long-term security, performance and interoperability.
Server cipher suite preference

Enforcing server cipher suite preference is vital to achieving best security with
 a variety of clients. Cipher suite selection takes place during the TLS handshake;
 because TLS enforces handshake integrity, there is no danger that an active network
 attacker can force some connections to use a weaker suite by attacking the protocol
 directly.
That doesn’t mean that you should offer insecure suites, however. The same active
 network attacker could force a browser (but generally not other types of clients,
 for example command-line utilities) to voluntarily downgrade the protocol version.
 In most cases that means downgrading
 all the way down
 to SSL
 3 (assuming the
 server supports it, of course), which implies no authenticated
 encryption
 suites, no EC cryptography, and sometimes not even AES.

Cipher
 Strength

Use strong ciphers that provide 128 bits of security. Although AES and CAMELLIA
 both fit this description, AES has a strong advantage because it can be used with
 authenticated (GCM) suites that are supported by modern user agents. Authenticated
 suites are the best TLS can offer; using them you avoid the inherently unsafe
 (although not necessarily practically exploitable) CBC suites. For example, the NSA
 Suite B cryptography standard, which defines security policies for national security
 applications, recommends using only GCM suites with TLS.[426]

Forward Secrecy

Do not use the RSA key exchange, which does not provide forward secrecy. Instead,
 look for the string ECDHE or DHE in the cipher
 suite name. Don’t be confused by the fact that RSA can be used for key exchange and
 authentication; there is nothing wrong with the latter. For as long as you continue
 to use RSA keys, the string RSA will remain in the suite name.
 For performance reasons (more about that in the next chapter), prefer ECDHE suites
 over DHE.
With forward secrecy, every connection to your site is individually protected,
 using a different key. Without forward secrecy, the security of all
 connections effectively depends on the server’s private key. If that
 key is ever broken or stolen, all previous communication can be decrypted. This is a
 huge liability that can be trivially fixed by adjusting configuration. In fact, this
 is so important that future TLS versions are expected to support only suites that
 provide forward secrecy.
For ECDHE, the secp256r1 curve will provide 128 bits of
 security for the key exchange. There is little choice at the moment when it comes to
 named curve selection. However, new curves are being added, along with mechanisms
 (e.g., in OpenSSL) to choose the best curve supported by the client. Once those
 become available, you should prefer the newer curves with clients that support
 them.
For DHE, most servers continue to use DH
 parameters of 1,024 bits, which provide about 80 bits of security. In general, given
 that with forward security each connection has its own key, 80 bits might be
 sufficient for sites that don’t have security as a priority. Everyone else should
 generally use DH parameters that match the strength of the server private key. For
 most sites, that will be 2,048 bits. That said, if you prioritize ECDHE, which most
 modern clients support, the DHE key exchange will be used only with older
 clients.
When configuring DHE strength, you have the
 option to generate your own parameters of desired strength, but you can also use the
 standardized groups recommended by RFC 3526.[427]

Performance

The good news is that GCM suites are also the fastest, which means that you don’t
 have to choose between security and speed. Although AES and CAMELLIA are of similar
 speeds when implemented in software, AES again has an advantage because modern
 processors accelerate it with a special instruction set; it ends being much faster
 in practice. In addition, hardware-accelerated AES is thought to be more resistant
 to cache timing attacks.
Avoid CBC suites that use SHA256 and SHA384 for integrity validation. They are
 much slower with no clear security benefits over SHA1. But don’t be confused with
 the fact that GCM suites also have SHA256 and SHA384 in their names; authenticated
 suites work differently and aren’t slow. Also, don’t worry about SHA1 in this
 context; this hashing function is safe when used with HMAC, which is what the suites
 are doing.
For the ECDHE key exchange, use the secp256r1 curve, which
 provides 128 bits of security and best performance. Always prefer ECDHE over DHE;
 the latter is slower even at the commonly-used and not very secure 1,024 bits. It’s
 much slower at 2,048 bits.

Interoperability

The key to interoperability is supporting a wide selection of suites. TLS clients
 come in all shapes and sizes and you don’t want to needlessly refuse access to some
 of them. If you follow the recommendations here and enforce server cipher suite
 preference, you are going to negotiate your preferred suites with most clients. The
 remaining, less-wanted, suites will be used only by old clients that don’t support
 anything better. Here are some examples:
	Some very old clients might support only 3DES and RC4.[428] The latter is insecure and shouldn’t be used, but 3DES, which
 provides 112 bits of security, is still acceptable for legacy
 applications.

	By default, Java clients do not support 256-bit suites.

	Java, before version 8, could not support DHE parameters over 1,024 bits.
 This should not be a problem for Java 7, because it supports ECDHE suites:
 by giving higher priority to ECDHE you can ensure that DHE is never
 attempted. If you need to support Java 6 clients, you must choose between no
 forward secrecy (using the RSA key exchange) and forward secrecy with DH
 parameters of 1,024 bits. The latter is preferable.

	For the ECDHE key exchange, only two named curves are widely supported:
 secp256r1 and secp384r1. If you
 use some other curves you might end up not negotiating any ECDHE suites with
 some clients (e.g., Internet Explorer).

Server Configuration and Architecture

The only way to achieve strong overall security is to ensure that each individual
 system component is secure. Best practices such as disabling unnecessary services,
 regular patching, and strict access controls all apply. There is plenty of good
 literature on this subject. Complex architectures introduce their own challenges.
 Special care is needed—ideally during the design phase—to ensure that
 scaling up doesn’t introduce new weaknesses.
Shared Environments

Shared environments don’t go well with security. Shared hosting, in particular,
 shouldn’t be used by any business that operates encryption. There are many attack
 vectors via the filesystem or direct memory access that could result in private key
 compromise. Shared virtual servers might be similarly unacceptable, depending on
 your security requirements. Encryption is particularly tricky to get right when
 resources are shared among unrelated parties. Attacks sometimes depend on having
 very fast access to the target server (e.g., Lucky 13). In some cases (e.g., cache
 timing attacks), the prerequisite is access to the same CPU as the target server,
 which is possible in virtual environments.
Infrastructure sharing is always a compromise between costs and convenience on one
 side and security on the other. I don’t think you’ll find it surprising that the
 best security requires exclusive hardware, strong physical security, and competent
 engineering and operational practices.

Virtual Secure Hosting

Today, the widely accepted practice still is to use one IP address per secure
 server. The main reason for this is that virtual secure hosting (placing many
 unrelated secure servers on the same IP address) depends on a feature called
 Server Name Indication (SNI), which was added to TLS only
 in 2006. Because that was a rather late addition, many older products (e.g., early
 Android versions, older embedded devices, and Internet Explorer on Windows XP) don’t
 support it. Sites that target a wide audience should therefore continue to use a
 separate IP address for each site.
That said, relying on SNI availability is on the verge of being practical. Sites
 that have a modern user base can already do it. I expect that, over the next several
 years, we’ll see a rise in SNI-only sites. Support for Windows XP ended in 2014, and
 that’s expected to encourage its users to migrate to more recent operating
 systems.

Session Caching

Session caching is a performance optimization measure; client and server negotiate
 a master secret during their first connection and establish a session. Subsequent
 connections use the same master secret to reduce CPU costs and network latency. The
 performance improvement comes at the expense of reduced security: all connections
 that are part of the same session can be broken if the shared master secret is
 broken. However, because sessions typically last only for a limited time, the
 tradeoff is acceptable to most deployments.
I wouldn’t advise disabling session caching, as that would seriously
 degrade server performance. For anything but the most secure sites, caching a
 session for up to a day is acceptable. For best security, reduce the session cache
 timeout to a shorter value, for example, one hour.
When session tickets are used, the security of all connections depends on the same
 ticket key. This is an area in which current server software doesn’t provide
 adequate default configuration. Most applications based on OpenSSL use implicit
 ticket keys that are created on server startup and never rotated. This could lead to
 the same key used for weeks and months, effectively disabling forward secrecy. Thus,
 if you’re using session tickets, deploy with manually configured ticket keys and
 regularly rotate them (e.g., daily). Twitter, for example, uses fresh keys every 12
 hours and deletes old keys after 36 hours.[429]

Complex Architectures

Usually, the most secure TLS deployment is that of a standalone server, which
 comes with well-defined security boundaries. Complex architectures, which involve
 many components and services spread among many servers, often introduce new
 weaknesses and attack points:
	Distributed session caching
	When a site is served by a cluster of servers, ensuring good
 performance through session caching is more difficult. There are
 typically two ways to address this problem: (1) use sticky load balancing,
 which ensures that the same client is always sent to the same cluster node,[430] or (2) share the
 TLS session cache among all the nodes in the cluster.
Session cache sharing has a security impact, because the attack
 surface is larger with the sessions stored on multiple machines. In
 addition, plaintext communication protocols are often used for backend
 session synchronization. This means that an attacker who infiltrates the
 backend network can easily record all master secrets.

	Session cache sharing
	Session cache sharing among unrelated applications increases the
 attack surface further; it creates a bond among the applications that
 can be exploited at the application level, in the same way that
 certificate sharing, discussed earlier, can. Your default approach
 should be to avoid session cache sharing unless it’s necessary. This
 might not always be easy, as not all servers allow for strict cache
 separation. If using tickets, ensure that each server uses a different
 ticket key.

	SSL offloading and reverse proxies
	SSL offloading is a practice of terminating encryption at a separate
 architecture layer. This practice is dangerous, because, most often, the
 traffic from the proxy to the application is not encrypted. Although you
 might perceive that the internal network is secure, in practice this
 design decision creates a serious long-term attack vector that can be
 exploited by an attacker who infiltrates the network.

	Network traffic inspection
	The design of the RSA key exchange allows for network-level traffic
 inspection via private key sharing. It’s typically done by intrusion
 detection and network monitoring tools that can passively decrypt
 encryption. In some environments, the ability to inspect all network
 traffic might be a high priority. However, this practice defeats forward
 secrecy, which potentially creates a much bigger long-term liability,
 because now the security of all traffic depends on the shared private
 key.

	Outsourced infrastructure
	Take special care when outsourcing critical components of your
 infrastructure to someone else. Cloud-based deployments are increasingly
 popular, but vendors often don’t provide enough information about how
 their services are implemented. This could lead to unpleasant surprises.
 In 2014, a group of researchers analyzed the HTTPS implementations of
 content delivery networks and discovered that some failed to perform
 certificate validation.[431]
The best approach is to keep encryption under your complete control.
 For example, if using Amazon’s Elastic Load Balancer to ensure high
 availability, configure it at the TCP level and terminate TLS at your
 nodes.

Issue Mitigation

In recent years we saw a number of protocol attacks and other security issues that
 affect TLS. Some of those are easy to address, typically by patching. Others require a
 careful consideration of the involved risks so that an appropriate configuration can be
 deployed.
Renegotiation

Insecure renegotiation is an old flaw from 2009 but a large number of systems
 still suffer from it. Patching should be sufficient to fix this problem. If you’re
 not using client certificates, disabling client-initiated renegotiation will make
 your systems safe. For the safety of others, you should support the new standard for
 secure renegotiation.
Servers that still support insecure renegotiation can be attacked with outcomes
 such as cross-site request forgery (user impersonation), information leakage, and
 cross-site scripting. Exploitation is easy, with tools readily available.

BEAST (HTTP)

BEAST is a 2011 attack against CBC suites in TLS 1.0 and earlier protocol
 versions, which rely on predictable initialization vectors for block ciphers. This
 attack is a client-side issue that can be used only against browsers, but not
 against non-interactive tools. All modern browsers deploy mitigation measures, but
 users with older browsers (and older versions of Java, which are needed for the
 exploit to work) might still be vulnerable. Although newer protocols (TLS 1.1
 onwards) are not vulnerable to BEAST, they are not supported by those older
 vulnerable browsers. BEAST is relatively easy to execute and can be used to retrieve
 fragments of sensitive information (e.g., session cookies).

CRIME (HTTP)

CRIME is a 2012 attack that exploits information leakage inherent in compression
 as used in TLS and earlier versions of the SPDY protocol. Like BEAST, CRIME can be
 used against browsers, but not against non-interactive tools. Also like BEAST, CRIME
 targets fragments of sensitive information stored in request headers (e.g., session
 cookies and passwords). Although a large number of servers still support TLS
 compression, there is little client-side support and the attack surface is small.
 Still, TLS compression should be disabled, typically by patching.

Lucky 13

Lucky 13 is a 2013 attack against CBC suites. It uses statistical analysis and
 other optimization techniques to exploit very small timing differences that occur
 during block cipher operation. A successful attack requires close proximity to the
 target web server. Lucky 13 typically targets fragments of sensitive information,
 for example passwords.
As far as we know, the attacks have been addressed by implementing constant-time
 decryption in popular TLS libraries; ensuring you’re running the patched versions
 everywhere is necessary to be safe against this attack. Despite that, CBC suites
 remain inherently vulnerable (i.e., difficult to implement correctly) and the
 problem might return again in the future. For complete safety, deploy authenticated
 encryption using GCM suites, which are available in TLS 1.2.

RC4

In 2013, RC4 was found to exhibit many weaknesses that can be used to recover
 sensitive information, but only if the same information occurs in the same place
 across a great number of connections. RC4 has been exploited under controlled
 conditions, but the attacks are not practical yet. There have been rumors that
 better attacks are available, but no evidence so far. For this reason, you should
 avoid using RC4 unless you really need it. In some
 environments, RC4 could be the lesser evil when compared to BEAST and Lucky 13
 attacks.
There are several attacks against RC4. One of the attacks can retrieve the first
 256 bytes on an encrypted connection. The second attack can retrieve fragments of
 sensitive information from anywhere in the data stream.
RC4 versus BEAST and Lucky 13

BEAST and Lucky 13 can be addressed by avoiding to use CBC suites and using a
 streaming cipher instead. Unfortunately, RC4, the only streaming cipher
 available in TLS, is also known to contain weaknesses. So what to do?
BEAST requires a lot of effort to exploit. Still, the attack is practical, if
 only against users with old and vulnerable software. BEAST is thus of limited
 use and, because of the high effort required, suitable only for targeted
 attacks. RC4 weaknesses have so far been exploited only in controlled
 environments. However, there is an expectation that attacks against RC4 will get
 better, whereas the number of users vulnerable to BEAST is going to continue to
 decline.
For most sites, the best approach is to ensure that they are running a TLS
 stack not vulnerable to Lucky 13 (in other words, patch) and focus on the
 future: use TLS 1.2 with GCM suites, don’t use RC4 and don’t worry about
 BEAST.
High profile sites with large and potentially vulnerable user bases might
 consider using RC4 as a way to mitigate the attacks against CBC. They should
 still use TLS 1.2 and GCM suites with modern browsers, but rely on RC4 with TLS
 1.0 and older protocols.

TIME and BREACH (HTTP)

TIME and BREACH are 2013 attacks that extend CRIME to attack HTTP compression.
 Unlike TLS compression, which was never widely deployed, HTTP compression is very
 useful and popular, and can’t be disabled without (usually significant) performance
 penalties. TIME was largely a conceptual attack, without any tools published. BREACH
 authors released the source code for their proof-of-concept, which means that this
 attack is easier to carry out. Both attacks require a lot of work to execute, which
 suggests that they are more suitable for use against specific targets, but not at
 scale. BREACH can be used to retrieve small fragments of sensitive data that appear
 anywhere in an HTML page, if compression is used.
Addressing BREACH requires more effort because its attack surface is at the
 application layer. There are two practical mitigation techniques that you should
 consider:
	Masking of sensitive tokens
	For sensitive tokens such as those used for CSRF defense and session
 management, the best defense is to use masking. BREACH requires that the
 sensitive string appears in an HTML page across many requests. An
 effective mitigation technique is to mask the original value so that it
 appears different every time, provided the process can be reversed. This
 approach requires extensive changes to application source code and might
 not be suitable for legacy applications. However, it’s ideal for
 implementation in frameworks and libraries.

	Disable compression when referrer information is incorrect or
 unavailable
	Disabling compression prevents the attack, but that’s too costly.
 However, an attack always comes from elsewhere and not from your own web
 site. This means that you can examine the referrer information and
 disable compression only when the attack is possible—when you see
 a request arriving from some other web site. In practice, you also have
 to disable compression when the referrer information is not available,
 which can happen for privacy reasons or if the attacker uses tricks to
 hide it. This mitigation technique is easy to deploy at web server level
 and requires no changes to the source code. There’s only a very small
 performance penalty involved because compression will be disabled only
 on requests that arrive from other sites.

Triple Handshake Attack

Triple Handshake Attack is a high-effort attack revealed in 2014. It can be used
 only against environments that use client certificates for authentication. This
 attack has similar consequences to insecure renegotiation, with some variations that
 make exploitation easier. In the short-term, the best mitigation is to use the
 latest versions of modern browsers, which have incorporated counter-measures. The
 TLS protocol is currently being extended to address the underlying core
 issue.

Heartbleed

Heartbleed is a vulnerability in OpenSSL, a widely deployed cryptographic library.
 It was discovered in April 2014. Although not a cryptographic issue in itself,
 Heartbleed can be devastating for the vulnerable server. Since the vulnerability was
 announced, a number of advanced exploitation techniques have been developed. Attack
 tools are readily available and can be used to retrieve server private keys very
 quickly.
Addressing this problem requires several steps: (1) first, patch the affected systems so that the vulnerability is
 addressed; (2) generate new private keys,
 obtain new certificates, and revoke the old certificates; (3) if using session tickets, change the ticket
 keys; (4) consider if other sensitive
 data might have existed in server memory and determine if further actions are
 necessary (e.g., user passwords were commonly found present; some web sites advised
 their users to change their passwords).
Warning
It’s common to see servers patched for Heartbleed and with new certificates
 installed, but still using unchanged private keys. Such servers are still
 vulnerable because the private keys compromised before the patching can still be
 used by the attacker.

Pinning

Public trust depends on hundreds of CAs who issue certificates to prove server
 legitimacy. Although this approach works well for average web sites that are unlikely to
 be attacked via certificate forgery, high-profile sites are left exposed because any CA
 can issue a certificate for any domain name. This problem can be fixed using a technique
 called public key pinning, which allows you to specify exactly
 which CAs are allowed to issue certificates for your domain names.
Pinning greatly reduces the attack surface for certificate forgery attacks but comes
 at a cost: it requires an effort to design a pinning strategy and operational maturity
 to carry it out. At this time, pinning is possible only via the proprietary mechanism
 embedded in Chrome. Several standards are currently in various stages of development:
 DANE (based on DNSSEC), Public Key Pinning for HTTP, and TACK.

HTTP

Although SSL and TLS were designed so that they can secure any connection-oriented
 protocol, the immediate need was to protect HTTP. To this day, web site encryption
 remains the most common TLS use case. Over the years, the Web evolved from a simple
 document distribution system into a complex application delivery platform. This
 complexity creates additional attack vectors and requires more effort to secure.
Making Full Use of Encryption

In HTTP, encryption is optional. As a result, many sites fail to use it even
 though it is genuinely necessary. In some cases by design, in others by omission.
 Many don’t use encryption because it requires additional effort and expertise. Some
 justify lack of encryption citing performance reasons and costs. Browsers make the
 situation difficult by allowing secure and insecure resources to be mixed within the
 same HTML page.
The truth is that if you have anything of value online, you need encryption. And
 you need full encryption across the entire site because partial encryption is
 practically impossible to use securely. There are issues with cookie scope and user
 transitions between insecure and secure areas that can’t be implemented securely.
 Mixed content issues—when insecure resources are requested from an otherwise
 secure page—can be used to achieve a complete security compromise.
For all these reasons, the best approach is to enforce encryption on the entire
 domain name, across all the applications you might have installed on the
 subdomains.

Cookie Security

HTTP cookies that have not been declared as secure (a frequent programming error)
 can be retrieved by an active network attacker even in the extreme case when the web
 site in question does not operate in plaintext at all. During the quality assurance
 (QA) phase, pay special attention to how cookies are created.
Further, due to the lax cookie specification, it is very easy for attackers to
 inject cookies into unsuspecting applications. This can be typically achieved from
 other applications that operate from a related subdomain (e.g., from
 blog.example.com into www.example.com), or even from a
 nonexistent subdomain in an active network attack. A skilled attacker could use
 cookie injection for privilege escalation. For best security, deploy a cookie
 encryption or an integrity validation scheme. The former is better, but the latter
 can be used in the cases when cookie read access is needed from JavaScript.

Backend Certificate and Hostname Validation

Many applications use HTTP 0ver TLS for backend communication; this practice is
 very common in native, web, and mobile applications alike. Unfortunately, they
 suffer from a common failure where they don’t validate certificates correctly,
 leaving them wide open to active network attacks. Your QA processes should include
 tests that check for failures in this area.
In most cases, all that’s needed is to enable certificate checking in the
 underlying TLS library. In others, developers rely on low-level APIs that implement
 some generic certificate checks, but not the protocol-specific functionality, such
 as hostname checking. As a rule of thumb, low-level APIs should be avoided if there
 are higher-level alternatives available.
For best security, you should consider using public key pinning in your
 applications. Unlike with browsers, where you must wait on pinning to be
 standardized, in your own applications you have full control over the code. Pinning
 is easy to implement and significantly reduces the attack surface.

HTTP Strict Transport
 Security

HTTP Strict Transport Security (HSTS) is a standard that
 allows web sites to request strict handling of encryption. Web sites signal their
 policies via an HTTP response header for enforcement in compliant browsers. Once
 HSTS is deployed, compliant browsers will switch to always using TLS when
 communicating with the web site. This addresses a number of issues that are
 otherwise difficult to enforce: (1) users
 who have plaintext bookmarks and follow plaintext links; (2) insecure cookies; (3) HTTPS stripping attacks; (4) mixed-content issues within the same
 site.
In addition, and perhaps more importantly, HSTS fixes handling of invalid
 certificates. Without HSTS, when browsers encounter invalid certificates they allow
 their users to proceed to the site. Most users can’t differentiate between attacks
 and configuration issues and decide to proceed, which makes them susceptible to
 active network attacks. With HSTS, certificate validation failures are final and
 can’t be bypassed. That brings TLS back to how it should have been implemented in
 the first place.
For best results, HSTS should be activated for the entire namespace of a
 particular domain name (e.g. for example.com and all subdomains).

Content Security Policy

Content Security Policy (CSP) is a mechanism that allows
 web sites to control how resources embedded in HTML pages are retrieved and over
 what protocols. As with HSTS, web sites signal their policies via an HTTP response
 header for enforcement in compliant browsers. Although CSP was originally primarily
 designed as a way of combating XSS, it has an important application to web site
 encryption: it can be used to prevent third-party mixed content by rejecting
 plaintext links that might be present in the page.

Protocol Downgrade Protection

Although TLS has protocol downgrade protections built-in, browsers make them
 ineffective by voluntarily downgrading on negotiation failures. This is arguably the
 biggest practical protocol flaw we have at the moment.
After months of discussion, Google adopted a proposal around using a special
 fallback signaling suite to inform servers of potential
 downgrade attacks. It’s currently implemented in Chrome.
 Firefox is
 expected to implement it version 35.[432]
 To be fully effective, the mechanism must also be supported
 server-side. When the feature is eventually incorporated into libraries
 (OpenSSL
 supports it starting with version 1.0.1j) it will work
 transparently. In the meantime, it is also possible to implement it externally,
 for example
 via a protocol-parsing intrusion detection system.

[417] AWS
 CloudHSM (Amazon Web Services, retrieved 16 May
 2014)

[418] Photos of an NSA “upgrade” factory show Cisco router
 getting implant (Ars Technica, 14 May 2014)

[419] SHA1 Deprecation Policy (Windows PKI blog, 12 November
 2013)

[420] Gradually sunsetting SHA-1 (Google Online Security blog, 5
 September 2014)

[421] SHA-256 certificates are coming (Adam Langley, 14 May
 2014)

[422] SHA-256 Compatibility (GlobalSign, retrieved 26 September
 2014)

[423] SSL
 Pulse (SSL Labs, retrieved 17 July 2014)

[424] That said, it’s usually possible to bypass the browser user interface
 and import the self-signed certificate directly into the underlying
 trusted certificate store. With this, you achieve the same effect as
 with Firefox exceptions, except that more work is required and there’s
 more room for mistakes.

[425] This POODLE bites: exploiting the SSL 3.0 fallback (Google Online
 Security Blog, 14 October 2014)

[426] RFC 6460: Suite B
 Profile for TLS (M. Salter and R. Housley, January 2012)

[427] RFC 3526: More MODP
 Diffie-Hellman groups for IKE (T. Kivinen and M. Kojo, May
 2003)

[428] The Web is World-Wide, or who still needs RC4? (John
 Graham-Cumming, 19 May 2014)

[429] Forward Secrecy at Twitter (Jacob Hoffman-Andrews, 22 November
 2013)

[430] This is usually done based on the source IP address. Some load
 balancers can also observe server-assigned session IDs and route
 based on their repeated use by clients.

[431] When HTTPS Meets CDN: A Case of Authentication in Delegated
 Service (Liang et al., IEEE Symposium on Security and
 Privacy, 2014)

[432] The POODLE Attack and the End of SSL 3.0 (Mozilla Security Blog,
 14 October 2014)

9 Performance Optimization

People sometimes care about security, but they always care about
 speed; no one ever wanted their web site to be slower. Some of the motivation for increasing
 performance comes from our fascination with being fast. For example, there is a lot of
 anecdotal evidence that programmers are obsessed with performance, often needlessly and at
 expense of code quality. On the other hand, it is well documented that speed improvements
 increase revenue. In 2006, Google said that adding 0.5 seconds to their search results
 caused a 20% drop in traffic.[433] And Amazon said that an increase of 100 ms in latency costs them 1% in revenue.[434]
There is no doubt that TLS has a reputation for being slow. Most of it comes from the
 early days, when CPUs were much slower and only a few big sites could afford encryption. Not
 so today; computing power is no longer a bottleneck for TLS. In 2010, after Google enabled
 encryption on their email service by default, they famously stated that SSL/TLS is not
 computationally expensive any more:[435]
On our production frontend machines, SSL/TLS accounts for less than 1% of the CPU
 load, less than 10KB of memory per connection and less than 2% of network overhead. Many
 people believe that SSL takes a lot of CPU time and we hope the above numbers (public
 for the first time) will help to dispel that.

This chapter is all about getting as close as possible to Google’s performance numbers. A
 large part of the discussion is about latency reduction. Most of the techniques apply to any
 protocol (even when encryption is not used) but are especially important for TLS because of
 its increased connection setup costs. The rest is about using the least amount of CPU power
 possible to achieve desired security and making sure that user agents need to do as little
 work as possible to validate your certificates.
Note
In this chapter I focus on the performance profile of TLS, but there are many other
 potential gains elsewhere in the application stack. For a wider look at the topic of
 performance of web applications, I recommend Ilya Grigorik’s book High
 Performance Browser Networking, published by O’Reilly in 2013. This book
 is freely available online.[436]

Latency and Connection
 Management

The speed of network communication is shaped by two main factors: bandwidth and latency.[437] Bandwidth is a measure of how much data you can send in a unit of time.
 Latency describes the delay from when a message is sent until it is received on the
 other end. Of the two, bandwidth is the less interesting factor because you can
 generally always buy more of it. Latency can’t be avoided because it’s imposed on us by
 the speed limits at which data travels over network connections.
Latency is a big limiting factor whenever an interactive exchange of messages is
 required. In a typical request-response protocol, it takes some time for the request to
 reach its destination, and for the response to travel back. This measure, known as one
 round-trip, is how we measure latency.
For example, every TCP connection begins a setup phase called the three-way
 handshake: (1) client sends a
 SYN message to request a new connection; (2) server accepts with SYN ACK;
 (3) client confirms with
 ACK and starts sending data. It takes 1.5 round-trips for this
 handshake to complete. In practice, with client-speaks-first
 protocols such as HTTP and TLS, the actual latency is one round-trip, because the client
 can start sending data immediately after the ACK signal.
Latency has a particularly large impact on TLS, because it has its own elaborate
 handshake that adds two further round-trips to connection setup.
Figure 9.1. TCP and TLS handshake latencies
[image: TCP and TLS handshake latencies]

TCP Optimization

Although a complete discussion of TCP optimization is out of the scope of this
 book, there are two tweaks that are so important and easy to use that everyone
 should know about them. Both are related to the congestion
 control mechanism built into TCP. At the beginning of a new
 connection, you don’t know how fast the other side can go. If there is ample
 bandwidth, you can send data at the fastest possible rate, but what if you’re
 dealing with a slow mobile connection? If you send too much data, you will overwhelm
 the link, leading to the connection breakdown. For this reason, a speed
 limit—known as a congestion window—is built into
 every TCP connection. This window is initially small, but grows over time with
 evidence of good performance. This mechanism is known as slow
 start.
This brings us to the ugly truth: all TCP connections start slow and increase
 speed over time until they reach their full potential. This is bad news for HTTP
 connections, which are often short-lived; they almost always operate under
 suboptimal conditions.
The situation is even worse for TLS connections, which consume the precious
 initial connection bytes (when the congestion window is small) with TLS handshake
 messages. If the congestion window is big enough, then there will be no additional
 delay from slow start. If, however, it happens that there is a long handshake
 message that can’t fit into the congestion window, the sender will have to split it
 into two chunks, send one chunk, wait for an acknowledgment (one round-trip),
 increase the congestion window, and only then send the reminder. Later in this
 chapter, I will discuss several cases in which this situation can happen.
Initial Congestion Window Tuning

The starting speed limit is known as the initial congestion
 window (initcwnd). If you are deploying on a
 modern platform, the limit will probably be already set at a high value. RFC
 6928, which came out in April 2013,[438] recommended setting initcwnd to 10 network
 segments (about 15 KB) by default. The previous recommendation was to use two to
 four network segments as a starting point.
On older Linux platforms, you can change the initcwnd size
 for all your routes with:
ip route | while read p; do ip route change $p initcwnd 10; done

Preventing Slow Start When Idle

Another problem is that slow start can kick in on a connection that has not
 seen any traffic for some time, reducing its speed. And very quickly, too. The
 period of inactivity can be very small, for example, one second. This means
 that, by default, virtually every long-running connection (e.g., a HTTP
 connection that uses keep-alives) will be downgraded from fast to slow! For best
 results, this feature is best disabled.
On Linux, you can disable slow start due to inactivity with:
sysctl -w net.ipv4.tcp_slow_start_after_idle=0
The setting can be made permanent by adding it to your
 /etc/sysctl.conf configuration.

Connection Persistence

Most of the TLS performance impact is concentrated in the handshake, which takes
 place at the beginning of every connection. One important optimization technique is
 to reduce the number of connections used by keeping each connection open for as long
 as possible. With this, you minimize the TLS overhead and also improve the TCP
 performance. As we’ve seen in the previous section, the longer the TCP connection
 stays open, the faster it goes.
In HTTP, most transactions tend to be very brief, translating to short-lived
 connections. Although the standard originally didn’t provide a way for a connection
 to stay open for a long time, keep-alives were added to
 HTTP/1.0 as an experimental feature and became enabled by default in HTTP/1.1.
Keeping many connections open for long periods of time can be challenging, because
 many web servers are not designed to handle this situation well. For example, Apache
 was initially designed to dedicate an entire worker (process
 or thread, depending on configuration) to each connection. The problem with this
 approach is that slow clients can use up all the available workers and block the web
 server. Also, it’s very easy for an attacker to open a large number of connections
 and send data very slowly, if at all.[439]
More recently, the trend has been to use event-driven web servers, which handle
 all communication by using a fixed thread pool (or even a single execution thread),
 thus minimizing per-connection costs and reducing the chances of attack. Nginx is an
 example of a web server that was built from the start to operate in this way. Apache
 also started to use the event-driven model by default on platforms that support
 it.
The disadvantage of long-lived connections is that, after the last HTTP connection
 is complete, the server waits for a certain time (the keep-alive
 timeout) before closing the connection. Although any one connection
 won’t consume too many resources, keeping connections open reduces the overall
 scalability of the server. The best case for keep-alives is with a client that sends
 a large number of requests in a burst. The worst case is when the client sends only
 one request and leaves the connection open but never submits another request.
Warning
When
 deploying with long keep-alive timeouts, it’s critical to limit the maximum
 number of concurrent connections so that the server is not overloaded. Tune the
 server by testing its operation at the edge of capacity. If TLS is handled by
 OpenSSL, make sure that the server is setting the
 SSL_MODE_RELEASE_BUFFERS flag correctly.[440]

It’s difficult to recommend any one keep-alive timeout value, because different
 sites have different usage patterns. That said, 60 seconds is probably a good
 starting point. A better value can be selected on per-site basis by monitoring the
 user agent behavior.[441]
There is a limit to the maximum keep-alive timeout you can use, because user
 agents have their maximums, no matter what servers say. In my tests, Internet
 Explorer 11 on Windows 7 closed the connection after 30 seconds, Safari 7 after 60,
 and Chrome 35 after 300 seconds. Firefox 30 defaults to using 115 seconds for the
 keep-alive timeout (the network.http.keep-alive.timeout parameter
 in about:config) unless the server requests a different value.
 With servers that do, Firefox is happy to stay connected until the server closes the
 connection.

SPDY, HTTP 2.0, and Beyond

There is only so much we can achieve by tuning TCP and HTTP connection persistence
 alone. To go further, in 2009 Google started to experiment with a new protocol
 called SPDY.[442] The idea was to introduce a new protocol layer between TCP and HTTP to
 speed things up. Positioned in the middle, SPDY could improve HTTP connection
 management without actually making any changes to HTTP itself.
With SPDY, multiple HTTP requests and responses are multiplexed, which means that
 a browser only ever needs one connection per server. To achieve similar performance
 with HTTP alone, browsers have to use multiple connections in parallel. A single
 long-lived connection allows for much better TCP utilization and reduced server
 load.
SPDY was a great success, showing performance improvements in a variety of
 situations. Perhaps most importantly, SPDY experiments led to an industry-wide
 effort to design HTTP 2.0[443] around the same concepts, waking up HTTP from deep sleep: the previous
 version, HTTP 1.1, was released in 1999.
Whereas HTTP 2.0 is still being developed, SPDY is practical to deploy. Client
 support is pretty good among modern browsers: Chrome and Firefox have supported it
 for a long time, Internet Explorer added support in 2013 (although only in version
 11 running on Windows 8.1), and Apple announced that it will support SPDY in OS X
 Yosemite. On the server side, popular web serving platforms as Apache and Nginx
 either support or can be extended to support SPDY.
We should expect that SPDY and HTTP 2.0 will squeeze more performance out of TCP,
 but what next? One option is to try to improve the performance of TCP further. For
 example, TCP Fast Open is an optimization technique that
 removes one round-trip from the TCP handshake.[444] Alternatively, we can look at bypassing TCP altogether. Another
 experiment led by Google, called QUIC (Quick UDP Internet
 Connections),[445] is a new reliable connection protocol built on top of UDP that aims to
 improve both performance (with better connection management, congestion control, and
 packet loss handling) and security (by using encryption by default).

Content Delivery Networks

If you maintain a web site that targets a global audience, you need to use a
 content delivery network (CDN) to achieve world-class
 performance. In a sentence, CDNs are geographically distributed servers that add
 value largely by offering edge caching and traffic optimization (often also called
 WAN optimization).
Most times, when you need to scale a web site, throwing money at the problem
 helps. If your database is dying under heavy load, you can buy a bigger server. If
 your site can’t run on a single server, you can deploy a cluster. However, no amount
 of money can eliminate network latency. The further away your users are from your
 servers, the slower your web site will be.
In such situations, connection setup is a big limiting factor. TCP connections
 start with a three-way handshake, which requires a round-trip to complete. Then
 there’s the TLS handshake, which requires two additional round trips, bringing the
 total to three for HTTPS.[446] That’s about 90 ms for a nearby user who’s about 30 ms away, but may be
 much more for someone who is on the other side of the world.
CDNs typically operate large numbers of geographically distributed servers, with
 the idea being to have servers as close to end users as possible. With that
 proximity, they typically reduce latency in two ways—edge caching and connection
 management.
	Edge caching
	Because CDNs place servers close to users, they can deliver your files
 to users as if your servers were right there. Some CDNs enable you to
 push your files to them; this approach offers the best control and
 performance, but it’s more difficult to manage. Some other CDNs operate
 as reverse proxies (they retrieve files over HTTP when they need them
 and cache them locally for a period of time); they are not as optimized
 but are instead almost trivial to deploy.

	Connection management
	Caching is the best-case scenario for CDN deployment, but it’s not
 suitable for all sites. If your content is dynamic and user specific,
 your servers will need to do the actual work. But a good CDN should be
 able to help, even without any caching, via connection management. This
 seems counterintuitive at first. How can traffic go faster through a CDN
 than it can if it goes directly to the origin server? The answer is that
 a CDN can eliminate most of the connection setup cost by reusing
 connections over long periods of time.
During connection setup, most of the time is spent waiting. You send a
 packet and wait for a response. When the other end is very far away, you
 wait for a long time. But when the other end is near, you get a quick
 response. To minimize the waiting, CDNs can route traffic through their
 own infrastructure, exiting at a point closest to the destination. With
 full control over their own servers, CDNs can keep the internal
 connections open for a long time. If they use TCP, that means that there
 is no connection setup and that connections run at their maximum speed.
 But they can also use proprietary protocols and connection multiplexing
 for even better performance.
When a CDN is used, the user connects to the closest CDN node, which
 is only a short distance away. Because the distance is small, the TLS
 handshake will be fast—for example, 30 ms for a distance of 10 ms (one
 way). In the ideal case for a new TLS connection, the CDN can reuse
 existing connections that it keeps open, going from that node all the
 way to the final destination. That means that no further work is
 necessary; after the initial fast TLS handshake with the CDN, the user’s
 connection with the server is effectively open and application data can
 begin to flow.
Of course, not all CDNs operate sophisticated internal networks that
 operate in this way; it’s necessary to research the implementation
 details when deciding which CDN to use. Or, even better, test the actual
 performance.

Figure 9.2. TLS connection setup time comparison between direct traffic and a CDN
 with already open origin connections
[image: TLS connection setup time comparison between direct traffic and a CDN with already open origin connections]

Note
Not all CDNs are equal, especially when it comes to following best practices
 for TLS performance outlined in this chapter. Before you decide which CDN to
 use, make sure to check if they can serve TLS at the fastest possible speed.
 Ilya Grigorik maintains a handy chart on his web site dedicated to TLS
 performance. [447]

TLS Protocol Optimization

With connection management out of the way, I’ll now focus on the performance
 characteristics of TLS. The aim here is to understand how each aspect of TLS impacts
 performance, equipping you with the knowledge to tune the protocol for both security and
 speed.
Key Exchange

After latency, the next biggest cost of using TLS comes from having to perform
 CPU-intensive cryptographic operations in order to securely agree on connection
 security parameters. This part of the communication is known as key
 exchange. Its cost is largely determined by the choice of server
 private key algorithm, key size, and the key exchange algorithm.
	Key size
	To achieve security, cryptography relies on processes that are
 relatively fast with access to relevant keys but hugely expensive and
 time consuming otherwise. The effort required to break an encryption key
 depends on its size; the bigger the key, the better the protection.
 However, a bigger key also means longer encryption and decryption times.
 For best results, select a key size that provides the appropriate level
 of security but not anything over that.

	Key algorithm
	There are two private key algorithms that you can use today: RSA and ECDSA.[448] RSA is still the dominating algorithm, largely because it
 was the only choice for a very long time. But RSA is starting to be too
 slow now that 2,048 bits is the minimum strength and many are
 considering deploying 3,072 bits of security in the near future. ECDSA
 is much faster and thus increasingly appealing. At a modest size of 256
 bits, ECDSA provides security equivalent to 3,072-bit RSA and better
 performance.

	Key exchange
	In theory, you can choose from three key exchange algorithms: RSA,
 DHE, and ECDHE. But you don’t want to use RSA because it does not
 provide forward secrecy. Of the remaining two, DHE is too slow; that
 leaves you with ECDHE.
The performance of the DHE and ECDHE key exchanges depends on the
 strength of the configured negotiation parameters. For DHE, commonly
 seen parameter strengths are 1,024 and 2,048 bits, which provide 80 and
 112 bits of security, respectively. As for ECDHE, the security and
 performance are influenced by the choice of named curve. The de facto
 standard secp256r1 curve provides 128 bits of
 security. The only other practical choice is
 secp384r1, but this curve is about 30% slower
 server-side and doesn’t provide a meaningful increase in
 security.

In practice, you can’t freely combine key and key exchange algorithms. Instead,
 you can use the combinations specified by the protocol. There are four
 possibilities: RSA, DHE_RSA,
 ECDHE_RSA, and ECDHE_ECDSA. To understand
 the performance differences among these suites, I ran a test of all four choices
 using 2,048-bit RSA keys and 256-bit ECDSA keys. These key sizes are what you would
 expect to use for an average web site. The DHE key exchange was represented with two
 DH parameter strengths—1,024 and 2,048 bits. The ECDHE key exchange used the
 secp256r1 curve.
For the test, I used a dedicated Amazon EC2 m3.large instance, which has two Intel
 Xeon E5-2670 2.5 GHz processors. The test was run using a modification[449] of Vincent Bernat’s tool for OpenSSL microbenchmarking.[450] I tested OpenSSL 1.0.1f that comes with Ubuntu 14.04 LTS. The tool runs
 on two threads (one for the client and another for the server), performs 1,000 TLS
 handshakes sequentially, and measures CPU consumption of each thread at the end. You
 can see the results in the following graph.
Figure 9.3. Performance comparison of TLS key exchange algorithms (lower is
 better)
[image: Performance comparison of TLS key exchange algorithms (lower is better)]

What can we conclude from the test results?
	The servers using RSA today could enable forward secrecy
 and improve their handshake performance by a factor
 of two by moving to the ECDHE key exchange and ECDSA keys.

	Enabling forward secrecy (using the ECDHE key exchange) while keeping RSA
 for authentication degrades the handshake performance slightly, but it’s
 unlikely that there would be a measurable impact overall.

	The DHE key exchange is slower even with weak 1,024-bit parameters, but
 it’s much slower when used with stronger 2,048-bit parameters. If you care
 about performance, DHE should be used only as a last resort. Because most
 modern clients support ECDHE, you can configure DHE suites with lower
 priority so that only old clients use them. Twitter reported that 75% of
 their clients use ECDHE,[451] which means that up to 25% might end up using the slower
 DHE.
Compared to ECDHE, the DHE key exchange also increases the size of the
 server side of the handshake by 320 to 450 bytes, depending on the strength
 of the parameters. This is because the ECDHE key exchange uses standardized
 parameters that are referenced by name, but the DHE key exchange requires
 the server to select the negotiation parameters and send them to the client
 every time.[452]

	Clients need to do more work when ECDHE and ECDSA are deployed, but that’s
 not a problem, because they submit at most a few connections at any one
 time. Servers, on the other hand, have to handle hundreds and thousands of
 connections in parallel.

Note
The test results presented here should be used only as a guideline. They
 measure the performance of a particular version of OpenSSL that’s used for both
 sides of the connection. In practice, TLS performance will vary across
 libraries, devices, and CPUs.

For a more detailed look at the key exchange performance, I recommend a study by
 Huang et al., who looked at the performance of forward secrecy deployments.[453] Another good source of information is Symantec’s 2013 whitepaper
 that discusses the performance of EC cryptography.[454]
False Start

In 2010, Google proposed a modification to the TLS protocol with an aim to
 reduce the latency of the full handshake from two round-trips to only one round-trip.[455] Normally, a full TLS handshake requires two round-trips, consisting
 of four bursts of protocol messages (two for each client and server), and TLS
 allows sending of (encrypted) application data only after the handshake is fully
 complete. False Start proposes a tweak to the timing of
 protocol messages; rather than wait for the entire handshake to be complete, we
 can start sending application data earlier, assuming that
 the handshake will be successful.
With this change, it’s possible to achieve much better performance. Google
 cited a 30% reduction in handshake latency, which is a really big deal.[456] The downside of this change is that if
 attacked,
 the client will have sent some encrypted application data to the attacker, which
 normally doesn’t happen. Furthermore, because the integrity of the handshake is
 validated only after it is fully completed, the parameters used for the
 encryption could have been influenced by the attacker.
To counter this attack vector, Google proposed to only ever use False Start
 with strong cryptography: sufficiently strong private keys, key exchanges that
 support forward secrecy, and 128-bit cipher suites.
Despite the performance improvements, Google declared False Start a failure in
 2012—there were too many incompatible servers on the Internet.[457] But they didn’t turn it off altogether; Chrome continued to use
 False Start with servers that implement the NPN extension (used to negotiate the
 SPDY protocol), which were deemed safe. Other browsers followed and adopted
 similar behaviors. Firefox supports False Start since version 28[458] and has the same requirements as Chrome. Apple added support in OS X
 10.9, requiring strong cipher suites and Forward Security but not NPN.[459] Internet Explorer, starting with version 10, implements False Start
 as per the original proposal, but also uses a blacklist to disable this feature
 on sites that are known not to support it.[460]
False Start is a great incentive to support forward secrecy. Not only will
 your security be significantly better, but the performance will improve
 too.

Certificates

During a full TLS handshake, the server presents its certificate chain for
 inspection by the client. The size of the certificate chain and its correctness can
 have an impact on handshake performance.
	Use as few certificates as possible
	Each certificate in the chain adds to the size of the handshake. Too
 many certificates in the chain may cause overflow of the initial
 congestion window, as discussed earlier. In the early days of SSL, there
 were CAs that issued server certificates directly from their roots, but
 this practice is dangerous (the roots should be kept offline) and is
 being deprecated. Today, having two certificates in the chain is the
 best you can have: one certificate for the server and the other for the
 issuing CA.
Size is not the only factor; each certificate in the chain must be
 validated by checking that the signature matches the public key in the
 issuing certificate. Depending on the user agent, the revocation status
 of each certificate might need to be checked, too.
Although I wouldn’t recommend to choose your CA based on the size of
 its trust chain, you should check ahead of time that its chain is not
 too long.

	Include only necessary certificates
	It’s a frequent error to include unnecessary certificates in the
 chain. Each such certificate typically adds 1–2 KB to the overall size
 of the handshake.
Often, the root certificate is included, even though it serves no
 purpose there. User agents will either trust the root certificate (and
 thus already have a copy) or they won’t. Having the root in the chain
 makes no difference. This is a common problem because even some CAs
 include their root certificates in the installation instructions.
In other cases, unnecessary certificates in the chain are a result of
 configuration error. It’s not uncommon to see servers including
 intermediate certificates left over from a previous configuration. In
 some rare cases, servers send their entire collection of trusted
 certificates—hundreds of them.

	Provide a complete chain
	For a TLS connection to be trusted, the server must provide a complete
 chain with certificates that lead a trusted root. Another common error
 is to provide an incomplete certificate chain. Although some user agents
 are able to obtain the missing certificates, doing that might involve
 looking for them over HTTP, which is an activity that might take many
 seconds. For best results, ensure that the chain is valid.

	Use EC certificate chains
	Because ECDSA keys use fewer bits, ECDSA certificates take less space.
 Huang et al. (2014) observed that a 256-bit ECDSA certificate chain is
 about 1 KB shorter than a 2,048-bit RSA chain.

	Be careful about using too many hostnames on the same certificate
	Recently, it has become common practice to share one certificate among
 dozens and, in some cases, even hundreds of sites. This is done to allow
 many sites to share the same IP address, thus supporting clients that do
 not support virtual secure sites (via the Server Name
 Extension, or SNI). Each hostname added to the
 certificate increases its size. A few hostnames are not going to have
 any detectable effect, but hundreds might.
There’s a trick you can use if you want to keep handshake size down to
 a minimum but still have to host multiple sites on the same IP address:
 (1) get a separate
 certificate for each hostname you wish to run and configure your web
 server to serve these certificates to the clients that support SNI;
 (2) get one fallback
 certificate that contains all the hostnames you have on the same IP
 address and configure your web server to serve it to the clients that do
 not support SNI. If you do this, your SNI clients (the majority) will
 get small certificates for the sites they wish to access, and everyone
 else (a small number of legacy clients) will get the single long
 certificate.

Warning
When client authentication is required, it’s possible to configure your server
 to advertise which issuing CAs are acceptable for the client certificate. Each
 such CA is identified with its distinguished name. When there are too many CAs
 in the configuration, the size of the list can run into many kilobytes, which
 impedes performance. Because advertising acceptable CAs is optional, you can
 avoid it for performance reasons.

Revocation Checking

Even though certificate revocation is in a state of flux and user agent behavior
 varies widely, the server operator’s job is clear—deliver revocation
 information at the fastest speed possible. In practice, this translates to the
 following rules.
	Use certificates with OCSP information
	OCSP is designed for real-time lookups, which allow user agents to
 request revocation information only for the web site they are visiting.
 As a result, lookups are short and quick (one HTTP request). CRL, by
 comparison, is a list of many revoked certificates. Some browsers
 download CRLs when OCSP information is not available, in which case the
 communication with your web site might be suspended until the download
 is complete. Delays of tens of seconds are not unusual, especially over
 slow internet connections (think mobile devices).

	Use CAs with fast and reliable OCSP responders
	OCSP responder performance varies among CAs. This fact remained hidden
 for a long time, which is unusual given the potential for high
 performance degradation by slow and faulty OCSP responders. Before you
 commit to a CA, check their OCSP responder history. Refer to the section called “Responder Availability and
 Performance” in Chapter 5 for
 more information. As a rule of thumb, the best performance is going to
 be with
 CAs
 use
 CDNs to distribute revocation information.
Another criteria for CA selection is how quickly they update their
 OCSP responders. To avoid site errors, you want your certificates to be
 known to the responder as soon as they are issued. Inexplicably, some
 CAs have long delays for new certificates, during which OCSP responders
 return errors.

	Deploy OCSP
 stapling
	OCSP stapling is a protocol feature that allows
 revocation information (the entire OCSP response) to be included in the
 TLS handshake. With OCSP stapling enabled, user agents are given all the
 information they need to perform revocation checking, resulting in much
 better performance. At about 450 bytes, OCSP stapling increases the size
 of the handshake and slows it down a bit, but the savings come from user
 agents not having to look for revocation information on a separate
 connection to the CAs’ OCSP responders.
OCSP responses vary in size, depending on the issuing CA’s
 deployment practices. Short OCSP responses will be signed by the same
 certificate that issued the end-entity certificate (the one that is
 being checked for revocation). Because the user agent will already have
 the issuing certificate, the OCSP response can contain only the
 revocation status and a signature.
Some CAs prefer to use a different certificate to sign their OCSP
 responses. Because user agents don’t know about that other certificate
 in advance, the CAs must include it with every OCSP response. This
 practice adds slightly over 1 KB to the size of the OCSP
 response.

Note
When browsers skip on revocation checking, they achieve better performance but
 security suffers. EV certificates are always checked for revocation and thus
 provide better security. DV certificates, which are not always checked, may have
 a slight performance edge. This problem can be solved with the use of OCSP
 stapling, in which case the performance will be the same for both certificate
 types.

Session Resumption

TLS understands two types of handshakes: full and abbreviated. In theory, the full
 handshake is performed only once, after which the client establishes a
 TLS session with the server. On subsequent connections,
 the two can use the faster abbreviated handshake and resume the previously
 negotiated session. The abbreviated handshake is faster because it doesn’t require
 any costly cryptographic operations and uses one less round-trip. A good resumption
 rate reduces server load and improves latency for end users.
TLS session resumption is jointly controlled by both parties involved in the
 communication. On your side, you should aim to configure session caching so that
 individual sessions remain valid for about a day. After that, it will be up to
 clients to decide when to resume and when to start afresh. My personal experience
 and anecdotal evidence from others suggests that you can expect a 50% resumption
 rate on a properly configured server.[435]

Transport
 Overhead

In TLS, the minimal transport unit is a TLS record, which can contain up to 16,384
 bytes of data. Without encryption, TLS records don’t do much and have only a small
 overhead; each record starts with five bytes of metadata: content type (one byte),
 protocol version (two bytes), and data length (two bytes).
Figure 9.4. TLS record overhead for streaming, block, and authenticated cipher
 suites
[image: TLS record overhead for streaming, block, and authenticated cipher suites]

Encryption and data-integrity algorithms introduce additional overhead, which
 varies depending on the negotiated cipher suite. Streaming ciphers incur little
 overhead, because they produce one byte of output for every byte of input; overhead
 comes only from integrity validation.
Block ciphers incur more overhead, because each TLS record needs to include an
 explicit IV equal to the cipher block size as well as padding to force the length of
 plaintext to be a multiple of the block size. The length of the padding varies
 depending on the length of data, but it’s going to be one half of the block size on
 average. Most secure ciphers currently in use are designed with a 16-byte block
 size.
Ciphers that provide integrated authentication (AEAD suites) are somewhere in the
 middle: they don’t use padding, but they include an eight-byte nonce with every
 record.
The following table presents overhead calculations for the most commonly used
 suites.
Table 9.1. Transport overhead for each of the widely available ciphers
	Cipher	TLS Record	IV/Nonce	Padding (average/worst)	HMAC/Tag	Total (average)
	AES-128-CBC-SHA	5	16	8 / 16	20	49
	AES-128-CBC-SHA256	5	16	8 / 16	32	61
	AES-128-GCM-SHA256	5	8	-	16	29
	AES-256-CBC-SHA	5	16	8 / 16	20	49
	AES-256-CBC-SHA256	5	16	8 / 16	32	61
	AES-256-GCM-SHA384	5	8	-	16	29
	CAMELLIA-128-CBC	5	16	8 / 16	20	49
	3DES-EDE-CBC-SHA	5	8	4 / 8	20	37
	RC4-128-SHA	5	-	-	20	25
	SEED-CBC-SHA	5	16	8 / 16	20	49

As you can see, the overhead varies a lot among cipher suites. In the worst case,
 suites that use AES and SHA256 add 61 bytes of overhead on average. In the best
 case, authenticated suites are quite slim at 29 bytes. This amount of overhead is
 not huge, especially when compared with the overhead of the next layer down; the
 overhead of TCP/IP is 52 bytes per packet for IPv4 and 72 bytes per packet for IPv6.
 Given that IP packets tend to be around 1,500 bytes but TLS records go as far as
 16,384 bytes, it’s likely that TCP will incur much more overhead than TLS.
Either way, it’s vital not to send small amounts of data if you can avoid it.
 Unless real-time delivery of short messages is required, some buffering of
 application data is necessary to ensure low network overhead. For example, when
 constructing an HTML page dynamically it’s generally better to use a small output
 buffer of, say, 4 KB so that tiny writes are combined and sent in larger batches.
 I’ve seen some misconfigured applications in which every single data write (of only
 a few bytes) produced a TCP packet, causing a huge network overhead. This type of
 problem will be more common when working with sockets directly rather than in web
 applications.
If you’re not sure what your application is doing (which is not uncommon, given
 how many abstraction layers we have in our software these days), capture the traffic
 at the network layer to observe the TCP packet and TLS record sizes.

Symmetric Encryption

When it comes to CPU consumption, the worst is over once a TLS handshake
 completes. Still, cryptographic operations used for symmetric encryption have a
 noticeable CPU cost, which depends on the choice of cipher, cipher mode, and
 integrity validation functions.
To determine performance characteristics of various ciphers suites, I conducted
 further tests using the same environment that I used earlier in this chapter. I made
 sure to select a processor that supports the AES-NI instruction set, which provides
 hardware acceleration for the AES cipher.[461] I expect most performance-sensitive web sites to operate on similar
 hardware. Each test run consisted of two threads—one for the client and the other
 for the server—sending about 1 GB of data to the other side, 16 KB at time. I tested
 all practical and secure cipher suites available today as well as some legacy suites
 for comparison.
Figure 9.5. Performance comparison of various cipher suites, relative to
 AES-128-CBC-SHA (lower is better)
[image: Performance comparison of various cipher suites, relative to AES-128-CBC-SHA (lower is better)]

I decided on AES-128-CBC as the reference suite, because it’s
 one of the most commonly used suites among the still-secure ones. The results tell
 us an interesting story:
	AES is a clear performance winner. Even without hardware acceleration, AES
 is fast—faster than all other ciphers except for RC4. With hardware
 acceleration, we see that AES-128-CBC is 2.77 times
 faster than CAMELLIA-128-CBC. Compared to the fastest AES
 result, AES-128-GCM-SHA256,
 CAMELLIA-128-CBC is four times slower.

	AES used with SHA256, as specified in TLS 1.2, is significantly slower.
 This is because SHA256 is much slower than SHA.

	AES-128 in authenticated (GCM) mode is 1.4 times faster than the reference
 AES suite. It’s even faster than RC4-128-SHA, which was
 the previous speed champion. This is very encouraging, given that this suite
 is also one of the strongest currently available.

	The legacy 3DES and SEED suites are many times slower and should be
 avoided. The same goes for RC4, which, although pretty fast, is
 insecure.

Although we tend to spend most of our time benchmarking servers, it’s worth
 keeping an eye on client-side performance. Newer desktops and laptops might support
 hardware-accelerated AES, but there are large numbers of underpowered mobile devices
 that don’t. For this reason, Google is currently experimenting with a new
 authenticated cipher suite called ChaCha20-Poly1305.[462] Although roughly half the speed of accelerated AES, the performance of
 this new suite is about three times better on mobile devices, with potential for
 further improvements. Google is already heavily using the new suite; the rest of us
 will have to wait for the standardization process to complete.[463]

TLS Record Buffering Latency

If you recall from an earlier discussion, TLS records are the smallest unit of
 data TLS can send and receive. Because there is mismatch between the size of TLS
 records and the size of the underlying TCP packets, a full-sized TLS record of 16 KB
 needs to be chopped up into many smaller TCP packets, typically each under 1.5
 KB.
Figure 9.6. Example fragmentation of 32 KB of application data for transport using
 TLS and TCP
[image: Example fragmentation of 32 KB of application data for transport using TLS and TCP]

But there’s a catch: even though some pieces of an entire record will arrive
 sooner and some later, no processing can be done until all of them are available.
 This is because a TLS record is also the smallest unit of data that can be decrypted
 and integrity-validated. This buffering effect can sometimes result in an increase
 in latency.
	Packet loss and delay
	Although TCP can recover from lost and delayed packets, it does so at
 a cost of one round-trip. Each additional round-trip means a delay for
 the entire TLS record, not just the lost packet.

	Initial congestion window
	Another way to trigger an additional round-trip delay is by sending
 large chunks of data early in a connection, overflowing the initial
 congestion window. Once the congestion window is full, the sender will
 need to wait for an acknowledgment (one round-trip) before it can grow
 the congestion window and send more data.

If your web server supports TLS record tuning, you should consider changing the
 default value—which is probably large, most likely 16 KB—to something
 more reasonable. Finding the best size requires some experimentation, because it
 depends on the deployed cipher suites and their transport overhead, as discussed in
 an earlier section.
If you don’t want to spend much time on this task, consider using about 4 KB as a
 reasonable default. If you want to set the TLS record size to match the size of TCP
 packets exactly, start at about 1,400 bytes and tweak the exact size by observing
 the packets on the wire. For example, assuming that the IP Maximum
 Transfer Unit (MTU) is 1,500 bytes:
 1,500 bytes MTU
 - 40 bytes IPv6 header
 - 32 bytes TCP header
 - 49 bytes TLS record

 = 1,378 bytes
There are several problems with using a static TLS record size, no matter what
 value is selected. First, MTU values vary. Although most clients inherit the
 Ethernet limit of 1,500 bytes, there are protocols that support larger sizes. For
 example, so-called jumbo frames allow for up to 9,000 bytes.
 Second, it’s easy to miscalculate and specify an incorrect size. For example, the
 calculation is slightly different if you’re using IPv4 (20 bytes in the header,
 rather than 40) or if your cipher suite configuration changes.
Another problem is that by reducing the size of the TLS record you increase the
 transport overhead. To transmit 16 KB of data using a large TLS record, you might
 incur an overhead of about 50 bytes (0.3%). But if you have to split that same
 record into, say, 10 records, the overhead will be 500 bytes (3%).
It’s probably best to leave TLS record size tuning to web servers, for two
 reasons: (1) they can discover the MTU at
 the beginning of each connection and (2)
 they can vary the record size over the connection lifetime, using small values early
 on when the congestion window is small and switching to larger values as more data
 is transferred. HAProxy does exactly that.[464]

Interoperability

Interoperability issues can sometimes have a substantial negative performance
 impact, yet they can remain hidden unless you know exactly where to look. For
 example, if your server is intolerant to some of the newer protocol features (e.g.,
 TLS 1.2), browsers might need to make several connection attempts to negotiate an
 encrypted connection.[465] However, unless you experience this problem yourself and notice the
 performance degradation, it’s unlikely that you will know about it; servers can’t
 detect it and browsers don’t alert you about it.
The best way to ensure good TLS performance is to run an up-to-date TLS stack with
 support for the most recent protocol versions and extensions.

Hardware Acceleration

In the early days of SSL, public cryptography was too slow for the then available
 hardware. As a result, the only way to achieve decent performance was by using
 hardware acceleration. Over time, as the speed of general-purpose CPUs increased,
 acceleration devices started to lose their market.[466]
Companies running the world’s largest web sites are happy handling encryption in
 software. For example, Facebook had this to say on hardware acceleration:[467]
We have found that modern software-based TLS implementations running on
 commodity CPUs are fast enough to handle heavy HTTPS traffic load without
 needing to resort to dedicated cryptographic hardware. We serve all of our HTTPS
 traffic using software running on commodity hardware.

Today, hardware cryptographic devices are purchased more for their ability to
 store private keys safely (this type of product is known as Hardware
 Security Module, or HSM) and less for their ability to accelerate
 public key cryptography. However, using an HSM could create a bottleneck in your
 architecture, because such devices are more difficult to scale.
Hardware acceleration could be the right thing to do depending on your
 circumstances. For example, if you have an existing system that is operating at the
 edge of capacity, installing an acceleration card might be the preferred option over
 other hardware and architectural changes.

Denial of Service Attacks

Denial of Service (DoS) attacks—for fun or for profit—are common on the
 Internet. Attacking is easy and cheap. Defending, on the other hand, is costly and time
 consuming. Any small web site can be quickly overwhelmed by pretty much anyone who wants
 to try. As for bigger sites, if they stay up, it’s only because they spent a lot of
 money on defense and the attacker hasn’t tried hard enough.
The principal way of executing serious DoS attacks is using botnets, which are large
 networks of compromised computers. Servers are valued as botnet nodes because they tend
 to have access to ample bandwidth. Home computers are valued because there are so many
 of them; what they lack in power, they make up in numbers.
If someone is willing to use a botnet to attack you, chances are that your TLS
 configuration is not going to make a difference. With or without TLS, determined
 attackers can continuously increase the size of the botnet until they succeed, at little
 cost to them. That said, there’s currently an interesting experimental proposal to
 extend TLS to require proof of client work before spending server resources.[468] However, ultimately, defending against DoS attacks is usually done at the
 network level.
	Connection throttling
	This is an “entry-level” DoS defense measure, which you can deploy for an
 entire network using specialized devices or even on individual servers in
 kernel configuration.[469] With this approach, you should be able to defend against the
 simpler attacks—for example, those executed from a few IP addresses.
 Connection throttling is not going to be of much help with attackers that
 flood your internet connection with traffic from many individual
 hosts.

	Overprovisioning
	The more resources you have, the more difficult it will be for your
 attackers to succeed. Overprovisioning is expensive, but buying more servers
 and having a very large internet connection could be a viable approach if
 you’re under frequent attacks.

	Third-party mitigation
	When all else fails, you can deal with the situation by employing one of
 the companies who specialize in mitigation of distributed DoS attacks. Their
 primary advantage is that they have ample resources at their disposal as
 well as the know-how.

All of this does not mean that you should give up on tuning TLS to minimize your
 exposure to DoS attacks. On the contrary, there are certain aspects of TLS that make DoS
 attacks easier; they require your attention.
Key Exchange and Encryption CPU Costs

With plaintext protocols (e.g., HTTP), servers frequently spend most of their time
 sending files to their clients. This operation is so common that applications can
 ask the kernel to send a particular file to a socket without bothering with the
 details. With TLS, the same application has to read a file, encrypt it, and transmit
 it. That’s always going to be slower.
But it’s going to be slower for clients, too, because they have to perform those
 same operations, just in a different order. Where it gets messy is the handshake,
 which requires several CPU-intensive cryptographic operations. Clients and servers
 spend different amounts of time during a handshake, with a different performance
 profile for each key-exchange algorithm. If clients have to perform less work than
 servers, then we have a situation that can be used for DoS attacks.
This is exactly the case with RSA, which is used in a particular way (with short
 public exponents) that makes operations with public keys (which clients perform)
 faster than operations with private keys (which servers perform). In practice, with
 an average 2,048-bit RSA key, servers end up doing about four times more work. As a
 result, a client with a modest CPU can overpower a strong server by performing many
 handshakes in parallel.
To confirm this, I ran a test with two identical computers, one running a web
 server with a 2,048-bit RSA key and the other attacking it. I was able to trivially
 overwhelm the CPU on the server by using the popular ab
 benchmarking tool against it. In the meantime, the client was running comfortably at
 slightly over 10% CPU consumption.
RSA is still the dominant authentication and key-exchange algorithm, but there’s
 good news: it’s on the way out. Its biggest problem is that it does not support
 forward secrecy. In the short term, people are turning to
 ECDHE_RSA, which keeps RSA for authentication but uses ECDHE
 for the key exchange. With ECDHE_RSA, clients still perform less
 work, but it’s not as bad: only 2.5 times less. Further in the future is
 ECDHE_ECDSA, which turns things around—clients perform
 about 1.5 times more work!
Note
To benefit from these alternative algorithms, you’d have to remove support for
 the RSA key exchange from your configuration. Otherwise, the attacker could
 force the slowest suites during the attacks.

Encryption has its costs, too. You saw earlier in this chapter that the SEED
 cipher is 4x times slower and 3DES is 11x times slower than the most commonly used
 AES-128. Many servers keep 3DES in their configuration for older clients such as
 Internet Explorer 6. Although it’s unlikely that the choice of cipher suite plays a
 major role in a TLS DoS attack, it certainly can make things worse.

Client-Initiated
 Renegotiation

Renegotiation is a protocol feature that allows either side
 to request a new handshake to negotiate potentially different connection parameters.
 This feature is rarely needed; allowing clients to request renegotiation, in
 particular, has no practical purpose at present, but it does make DoS mitigation
 more difficult.
In a “standard” TLS computational DoS attack, there’s one handshake per
 connection. If you have connection throttling in place, you know that one connection
 to your TLS server costs you some amount in CPU processing power. If
 client-initiated renegotiation is allowed, attackers can perform many handshakes on
 the same connection, bypassing the detection mechanisms.[470] This technique also reduces the number of concurrent connections needed
 and thus improves overall attack latency.
In October 2011, a German hacker group, “The Hacker’s Choice,” released a tool
 called thc-ssl-dos, which uses renegotiation to amplify
 computational DoS attacks against TLS.[471]
Not all servers support client-initiated renegotiation. IIS stopped supporting it
 with IIS 6, Nginx never supported it, and Apache stopped supporting it in 2.2.15.
 But there is still a number of vendors who are reluctant to remove this feature.
 Some vendors who are keeping client-initiated renegotiation are looking to limit the
 number of renegotiations that take place on the same connection. Ideally, you
 shouldn’t allow client-initiated renegotiation at all.

Optimized TLS Denial of Service Attacks

Renegotiation makes TLS computational DoS attacks more difficult to detect, but
 tools that use it are not fundamentally different; they’re still essentially sending
 a large number of virtual clients to a web site. In both cases, the handshake CPU
 processing asymmetry is what makes the attack possible. As it turns out, it is
 possible to improve the approach so that no cryptographic operations are needed on
 the client.
When the thc-ssl-dos tool was announced, it received a fair
 amount of media interest. Eric Rescorla, one of the TLS protocol designers, followed
 up with an analysis of the use of renegotiation as a DoS amplification technique.[472] His conclusion was that there is an easier way to execute computational
 TLS DoS. In his approach, clients use hardcoded handshake messages that require no
 cryptographic operations. In addition, they avoid parsing or otherwise validating
 any of the messages received from the server. Because the messages are structurally
 correct, they appear valid to the server until the very end of the handshake. By
 that point, it’s too late, because all the expensive work had been done.
Using Eric’s blueprint, Michal Trojnara subsequently wrote a proof-of-concept tool
 called sslsqueeze.[473]
When I tested sslsqueeze, I found that it performed much better
 than ab. I installed it on a single-CPU server running a 2.80 GHz
 Intel Xeon E5-2680, and the target was an eight-CPU server in the same data center.
 The tool consumed all CPU resources on the target server after only a few seconds in
 operation.

[433] Marissa Mayer at Web 2.0 (Greg Linden, 9 November 2006)

[434] Make Data Useful (Greg Linden, 28 November 2006)

[435] Overclocking SSL (Adam Langley, 25 Jun 2010)

[436] High
 Performance Browser Networking (Ilya Grigorik, retrieved 17 July
 2014)

[437] What is Network Latency and Why Does It Matter? (O3b Networks,
 retrieved 11 May 2014)

[438] RFC 6928:
 Increasing TCP’s Initial Window (Chu et al., April
 2013)

[439] Slowloris HTTP
 DoS (RSnake et al., 17 June 2009)

[440] SSL_CTX_set_mode(3) (OpenSSL, retrieved 6 July 2014)

[441] This can be done by recording the keep-alive status of each connection to
 the web server access log. The Apache and Nginx chapters both show how that
 can be done.

[442] SPDY (The Chromium
 Projects, retrieved 27 June 2014)

[443] HTTP 2.0
 (Wikipedia, retrieved 27 June 2014)

[444] TCP Fast
 Open (Wikipedia, retrieved 27 June 2014)

[445] QUIC
 (Wikipedia, retrieved 27 June 2014)

[446] The same latency applies to any client-speaks-first protocol. Latency for
 a server-speaks-first protocol is 2.5 round-trips,
 because the server can send application data immediately after its
 Finished message.

[447] CDN & PaaS
 performance (Is TLS Fast Yet?, retrieved 27 June 2014)

[448] Although the protocol includes many DSA (DSS) suites, there
 isn’t wide support for using DSA keys at 2,048 and higher
 strengths. The maximum is 1,024 bits, which is insecure.

[449] ivanr / ssl-dos
 (GitHub, retrieved 27 June 2014)

[450] SSL/TLS & Perfect Forward Secrecy (Vincent Bernat, 28
 November 2011)

[451] Forward Secrecy at Twitter (Jacob Hoffman-Andrews, 22
 November 2013)

[452] I discuss the structure of the key exchange messages in the section called “Key Exchange

 ” in Chapter 2.

[453] An
 Experimental Study of TLS Forward Secrecy Deployments (Huang et
 al., 2014)

[454] Elliptic Curve Cryptography (ECC) Certificates Performance
 Analysis (Kumar et al., 12 June 2013)

[455] Transport Layer Security (TLS) False Start (Langley et al.,
 June 2010)

[456] SSL FalseStart Performance Results (Mike Belshe, The
 Chromium Blog, 18 May 2011)

[457] False Start’s Failure (Adam Langley, 11 Apr 2012)

[458] Re-enable TLS False Start (Bugzilla@Mozilla, bug
 #942729)

[459] sslTransport.c (Apple Secure Transport source code,
 retrieved 5 May 2014)

[460] Networking Improvements in IE10 and Windows 8 (Eric
 Lawrence, IEInternals, 1 August 2012)

[461] If you’re purchasing hardware, examine the CPU specifications to determine
 AES-NI support. In a cloud environment, you should be able to do the same by
 examining the vendor’s documentation. On a server running Linux, look for
 the “aes” flag in /proc/cpuinfo.

[462] TLS Symmetric Crypto (Adam Langley, 27 Feb 2014)

[463] ChaCha20 and Poly1305 based Cipher Suites for TLS (Langley and
 Wang, November 2013)

[464] OPTIM: ssl: implement dynamic record size adjustment (Willy
 Tarreau, 2 February 2014)

[465] Multiple connection attempts are part of the voluntary protocol downgrade
 mechanism employed by modern browsers. I discuss it at length in the section called “Voluntary Protocol Downgrade” in Chapter 6.

[466] High
 Scalability for SSL and Apache (Cox and Thorpe, July 2000)

[467] HTTP2 Expression of Interest (Doug Beaver, on the HTTP Working
 Group mailing list, 15 July 2012)

[468] Using Client Puzzles to Protect TLS Servers From Denial of Service
 Attacks (Y. Nir, 29 April 2014)

[469] SSL computational DoS mitigation (Vincent Bernat, 1
 November 2011)

[470] It’s still possible to detect the attacks, but that would typically
 require deep traffic inspection, ideally by parsing the protocol messages.
 This ability is not as common as straightforward connection counting.

[471] THC SSL DOS (The Hacker’s Choice, 24 October 2011)

[472] SSL/TLS and Computational DoS (Eric Rescorla, 25 October
 2011)

[473] Index of
 ftp://ftp.stunnel.org/sslsqueeze/ (Michal Trojnara, 16 November
 2011)

10 HSTS, CSP, and Pinning

This chapter discusses several technologies that can substantially improve the security of
 the SSL/TLS and PKI ecosystem. They fall into two groups. In the first group, we have
 HTTP Strict Transport Security (HSTS) and Content
 Security Policy (CSP), which are HTTP-specific and widely supported by
 browsers. They are not only practical today but also fundamental for the security of your
 web sites. I cover them in detail sufficient for deployment.
The second group of technologies implements pinning, which is a
 technique that makes TLS authentication more secure. Outside of native applications (where
 pinning is fully practical), pinning is still early in its lifecycle; there is currently no
 good support in browsers. Thus, this chapter presents the possible future directions, but
 we’re yet to see which will gain wide adoption and become standards.
HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS), released in November
 2012 as RFC 6797,[474] is a proposed standard that describes a strict approach to the handling of
 web site encryption. It is designed to mitigate several critical weaknesses in how TLS
 is implemented in today’s browsers.
	No way of knowing if a site supports TLS
	HTTP does not specify a way for user agents to determine if web sites
 implement TLS.[475] Because of this, when a URL without a scheme is entered into the
 address bar, browsers have to choose between HTTP and HTTPS protocols. At
 the moment, they default to plaintext communication, which is vulnerable to
 interception.

	Tolerance of certificate problems
	Since the very beginning of the Web, browsers have been sidestepping the
 problem of TLS connection authenticity. Rather than abandon connections to
 sites with invalid certificates, browsers display warnings and allow their
 users to click through. Studies have shown that many users ignore the
 warnings and expose themselves to active attacks.

	Mixed content issues
	A frequent mistake when developing secure web sites is to use plaintext
 resources from an otherwise secure HTML page. All browsers allow such
 resources to a certain degree, and in many cases these plaintext connections
 can be used to compromise the entire user session. Another common problem is
 mixing plaintext and encrypted pages on the same domain name. This is very
 difficult to implement correctly and most commonly leads to
 vulnerabilities.

	Cookie security issues
	Another common implementation mistake is to forget to secure application
 cookies. Even when a web site is available only under TLS, an active network
 attacker can tease the cookies out from the victim’s browser.

Note
For a complete discussion of all the problems listed here and different ways to
 attack them, head to Chapter 5, HTTP and Browser Issues.

When HSTS is deployed on a web site, it addresses all of these issues by using two
 mechanisms: (1) plaintext URLs are
 transparently rewritten to use encryption and (2) all certificate errors are treated as fatal (users are not allowed
 to click through). In this way, HSTS significantly reduces the attack surface and makes
 the job of secure web site deployment much easier. It is quite possibly the best thing
 to happen to TLS recently.
HSTS has its origins in the work of Jackson and Barth, who, in 2008, designed ForceHTTPS,[476] a cookie-based mechanism to allow “sophisticated users to transparently
 retrofit security onto some insecure sites that support HTTPS.” Along with their paper,
 they provided a proof of concept in the form of a Firefox extension.
Configuring HSTS

Web sites that wish to support HSTS do so by emitting the
 Strict-Transport-Security header on all of their
 encrypted HTTP responses, like so:
Strict-Transport-Security: max-age=31536000; includeSubDomains
Assuming that the TLS connection is error free, a compliant browser will activate
 HSTS for the duration of the retention period specified in the
 max-age parameter. The includeSubDomains
 parameter specifies that HSTS should be enabled on the host that emitted the header
 and also on all its subdomains.
Warning
Before deploying HSTS with includeSubDomains enabled,
 determine if forcing browsers to use encryption on the entire domain name space
 might have negative consequences on other sites that share the name. At the very
 least, ensure that all your sites do support encryption and have valid
 certificates.

The specification requires user agents to ignore the HSTS header if it is seen on
 a plaintext connection or on a connection with certificate errors (this includes
 self-signed certificates). This behavior is intended to prevent Denial of
 Service (DoS) attacks against plaintext-only sites, which would
 otherwise be trivial to execute by an active network attacker. In addition, using
 HSTS on IP addresses is not permitted.
It is possible to revoke HSTS; to do so, set the max-age
 parameter to zero:
Strict-Transport-Security: max-age=0
However, the revocation happens only when a browser (one that previously enabled
 HSTS for the site) visits the site again and updates its configuration. Thus, the
 success of revocation (and policy adjustment, for that matter) will depend on the
 frequency of user visits.
In the best case, HSTS should be configured at the location that is closest to the
 user. For example, if you have many web servers and a reverse proxy (or web
 application firewall) in front of them, it makes sense to configure HSTS there, in a
 single location. Otherwise, configure your HSTS policies at the web-server level. If
 your web server does not explicitly support HSTS, it most likely has a mechanism
 that allows adding of arbitrary response headers. The latter approach can work
 equally well, but do read the fine print. In some cases, adding headers to error
 responses (e.g., 404 pages) either is impossible or requires special
 configuration.
If all else fails, you can also add HSTS at the application level. However, be
 aware that your application might not see all web site requests. For example, web
 servers typically deliver static resources directly and also handle some
 redirections themselves.

Ensuring Hostname Coverage

By default, HSTS is enabled only on the hostname that emits the
 Strict-Transport-Security response header. Sites that are
 deployed across more than one hostname (e.g., store.example.com and
 accounts.example.com) should therefore take care to activate HSTS on
 all of them. Otherwise, it might happen that some users, who visit some hosts but
 not the ones with the HSTS instructions, are left unprotected.
Some applications use so-called domain cookies, which are
 set on the root domain name (e.g., example.com) and can be used by any
 subdomain. This technique is typically used with sites that are spread across
 multiple hostnames but require unified authentication and session management. In
 this case, it is even more important to enable HSTS on all deployed hostnames,
 including the root domain name. You don’t want to leave a loophole that might be
 exploited for attacks.
Even sites that use only one hostname need to consider this problem, because it is
 very likely that their users will sometimes access the site without the prefix
 (e.g., example.com) and sometimes with (e.g.,
 www.example.com). Because we don’t control inbound links, we have to take
 extra care when configuring HSTS and enable it on all hostnames.
Warning
A common mistake is to forget to configure HSTS on redirections. For example,
 some of your users might arrive at your root domain name (e.g.,
 example.com) first. If you don’t have HSTS configured there,
 users who arrive that way might still be vulnerable to SSL stripping attacks,
 despite HSTS on the main domain name. For best results, enumerate all paths that
 lead to your web site, and add HSTS to all of them.

Cookie Security

Because HSTS enforces encryption on all connections to a particular web site, you
 might think that even insecure cookies remain safe against an active network
 attacker. Unfortunately, the cookie specification is very permissive and creates
 opportunities for additional attack vectors, such as:
	Attacks via made-up hostnames
	Cookies are typically set for a particular hostname and all its
 subdomains. At the same time, an active network attacker can manipulate
 the DNS at will and create arbitrary hostnames under the same domain
 name as the target web site. Thus, if you set a cookie for
 www.example.com, the attacker can steal it by forcing and
 intercepting access to madeup.www.example.com. If the cookie
 is insecure, plaintext access will do. If the cookie is secure, the
 attacker can present a self-signed certificate and hope that the user
 will click through.

	Cookie injection
	The cookie specification doesn’t use a separate namespace for secure
 cookies. What this means is that a cookie set from a plaintext
 connection can overwrite an existing secure cookie. In practice, this
 means that an active network attacker can inject arbitrary cookies into
 an otherwise secure application.
In the case of domain cookies, the attacker can inject a cookie from
 an existing sibling hostname (e.g.,
 blog.example.com). Otherwise, an active network
 attacker can make up an arbitrary hostname and inject from it.

These problems can largely be addressed with the use of the
 includeSubDomains parameter, which activates HSTS on the
 delivering hostname and all its subdomains. When domain cookies are used, the only
 secure approach is to activate HSTS on the root domain name and thus on the entire
 domain namespace. I discuss cookie security issues at length in the section called “Cookie Manipulation” in Chapter 5.

Attack Vectors

HSTS greatly improves our ability to secure web sites, but there are several edge
 cases that you need to be aware of. Consider the following situations.
	First access
	Because HSTS is activated via a HTTP response header, it does not
 provide security on the first access. However, once activated the
 protection will remain enabled until the retention period expires. The
 lack of security on the first access is mitigated by browsers embedding
 (or preloading) a list of sites that are known to
 support HSTS. This is possible only because the number of sites that
 support HSTS is still very small.

	Short retention duration
	HSTS works best when deployed with a long retention period (e.g., at
 least six months). That way, users are protected for the duration of
 their first session but also on their subsequent visits to the web site.
 If the retention period is short and the users don’t visit again before
 it expires, their next access will not be protected.

	Clock attacks
	Users whose computers are configured to automatically update their
 clocks using Network Time Protocol (NTP) could be
 attacked by an active network attacker who can subvert the NTP messages.
 Setting the computer’s clock to a time in the future will cause a site’s
 HSTS policy to lapse, allowing the victim’s next visit to be insecure.
 The danger of this attack vector depends on the NTP access frequency.
 This will typically be once or twice a day.

	Response header injection
	Response header injection is a web application vulnerability that
 enables the attacker to inject arbitrary response headers into the
 victim’s traffic. If such a vulnerability is present in an application,
 an attacker can inject a forged
 Strict-Transport-Security header that disables
 HSTS. Against an application that does not use HSTS, this attack could
 be used to enable it and potentially execute a DoS attack.
When this attack is delivered against an application that already uses
 HSTS, the outbound response headers will include two copies of the
 Strict-Transport-Security header. The attacker’s
 header will be used if it ends up being first in the response.

	TLS truncation
	Although the TLS protocol is not vulnerable to truncation attacks,
 most browsers’ implementations are. A skilled active network attacker
 can use a special technique to intercept a TLS connection and truncate
 it after the first digit of the max-age parameter. If
 successful, such an attack can reduce the HSTS duration to, at most,
 nine seconds. This is a so-called cookie cutter
 attack, which I discuss in the section called “Cookie
 Cutting” in Chapter 6.

	Mixed content issues
	The HSTS designers chose not to fully address mixed content issues,
 most likely because it’s a hard problem and because browser vendors tend
 to have different ideas about dealing with it. As a result, HSTS
 includes only non-normative advice against allowing mixed content in
 Section 12.4 (“Disallow Mixed Security Context Loads”).
Still, HSTS provides a partial solution because plaintext requests for
 the same hostname (where HSTS is active) are not allowed. To address
 third-party mixed content, deploy Content Security
 Policy (CSP), which can be used to allow only HTTPS
 requests from a given page.

	Hostname and port sharing
	HSTS is activated on an entire hostname and across all ports. This
 approach does not work very well in shared hosting situations in which
 multiple parties are able to control a site’s response headers. In such
 situations, care should be taken to screen all responses to ensure that
 the correct HSTS header is sent (or that no HSTS header is sent at
 all).

Robust Deployment Checklist

Even though HSTS is relatively simple, deploying it can be quite complicated if
 the environment in which you’re operating is complex enough. For all but the
 simplest environments, I recommend deploying HSTS in two major steps: start with a
 test run that does everything right in terms of configuration but uses a very short
 duration value. Later, increase the duration to the desired long-term value.
Follow these steps for the test run:
	Ensure that the Strict-Transport-Security header is
 emitted on all encrypted responses across all hostnames (e.g.,
 accounts.example.com and www.example.com) and with
 includeSubDomains specified.

	Enable HSTS on the root domain name (e.g., example.com), also
 with includeSubDomains specified.

	Determine all paths that lead to your site, and double-check that all
 redirections emit HSTS policies.

	Initially, start with a temporary short-term policy retention duration.
 This will allow you to relatively easily recover from forgetting that you
 have an important plaintext-only site in production.

	Redirect all HTTP traffic to HTTPS. This will ensure that your users
 always receive the HSTS instructions on their first visits.

	Modify your sites so that each hostname submits at least one request to
 the root domain name. This will ensure that HSTS is fully enabled on the
 entire domain namespace, even if your users do not visit the root domain
 name directly.

	For extra points, if you have a reverse proxy in front of your web
 site(s), configure your HSTS policy centrally at the proxy level. To prevent
 header injection vulnerabilities from being used to bypass HSTS, delete any
 HSTS response headers set by the backend web servers.

After a period of time, when you establish that your deployment is correct in all
 aspects, increase the policy retention duration. You can do this incrementally, or
 by immediately switching to a long-term value. Take the following steps:
	Increase the policy retention duration to a long-term value, for example,
 12 months. This will not only give you the best protection but also ensure
 that you are put on preload lists that have minimum duration
 requirements.

	Notify preload list maintainers.[477]

What if You Can’t Activate HSTS on the Entire Domain Name?

For best results, HSTS should be enabled on the main domain name and all its
 subdomains. Unfortunately, this might not always be possible. Especially if
 you’re working with a large existing infrastructure, it might be some time until
 you are able to migrate all the services to HTTPS.
Even in this situation, you could still use
 includeSubDomains only on the main application hostname
 (e.g., www.example.com, but not on example.com). This will
 provide sufficient security, except in a case in which domain cookies are used.
 However, you need to do this carefully. Because HSTS policies do not include the
 names of the hostnames to which they apply, it’s possible to inadvertently
 activate HSTS from the wrong place.
When deploying HSTS without any subdomain coverage, the risks described in
 the section called “Cookie Security” apply. Such risks can be mitigated
 by deploying a cryptographic security mechanism to guarantee cookie
 confidentiality and integrity.

Browser Support

There is currently decent support for HSTS in desktop browsers thanks to early
 adoption by Chrome and Firefox, in 2010 and 2011, respectively. Of other major
 browsers, Safari added support in the OS X 10.9 release in late 2013. Internet
 Explorer does not currently implement HSTS, but the word from the development team
 is that they are working on it.[478]
Table 10.1. Browser support for HTTP Strict Transport Security
	Browser	HSTS Support	Since	Preloading
	Chrome	Yes	v4.0.249.78;[a] January 2010	Yes
	Firefox	Yes	v4;[b] March 2011	Yes (from v17)
	Internet Explorer	No (in development)	-	-
	Opera	Yes	v12 (Presto/2.10.239);[c] June 2012	Yes (from v15)
	Safari	Yes	v7 (OS X 10.9 Mavericks); October 2013	Yes
	[a] Stable Channel Update (Chrome Releases blog, 25
 January 2010)

[b] Firefox 4 release notes (Mozilla, 22 March
 2011)

[c] Web specifications support in Opera Presto 2.10
 (Opera, retrieved 19 April 2014)

Most browsers ship preloaded with a list of sites that are known to support HSTS.
 However, it seems that at this point in time the lists are largely compiled
 manually. Some vendors (e.g., Mozilla) are talking about scanning the Web to
 generate a comprehensive list of sites that support HSTS, but the details are
 scarce.
	Chrome
	Chrome maintains a preload list for HSTS and public key pinning.[479] At the time of writing, the list contains about 500 sites.
 The list is updated manually.

	Firefox
	Mozilla seeded their HSTS list from Chrome in November 2012.[480] It’s possible and likely that they have been synchronizing
 the list since. Mozilla’s list is smaller than Google’s, because they
 require a minimum max-age of 18 weeks in order to
 include a site.

	Opera
	Starting with version 15, the Opera browser uses the same engine as
 Chrome and thus inherits its HSTS preload list.

	Safari
	Safari on OS X preloads a number of HSTS-enabled hostnames. At the
 time of writing, I counted 179 entries on my computer
 (~/Library/Cookies/HSTS.plist). Apple never
 announced support for HSTS, and thus we know little about their plans
 for the list’s maintenance.

Privacy Implications

The nature of HSTS dictates that browsers use a persistent store to keep track of
 the HSTS sites they visit. When a user encounters an HSTS site for the first time,
 an entry is added to the browser’s HSTS database. This fact makes it possible to
 test if someone has visited a particular site before—just ask them to follow a
 plaintext link to the site. If they visit the link, they had never been to that site
 before. However, if they had visited that site before, HSTS will kick in, rewrite
 the link, and visit the HTTPS variant instead.
In essence, a HSTS policy can be used to store one bit of information in a
 browser. One bit does not sound like much, but, when used with a wildcard
 certificate, an adversary could create as many different hostnames as they needed,
 each with a separate HSTS policy, and each carrying one bit of information.[481]

Content Security Policy

Content Security Policy (CSP) is a declarative security
 mechanism that allows web site operators to control the behavior of compliant user
 agents (typically browsers). By controlling what features are enabled and where content
 is downloaded from, web sites can reduce their attack surface.
The main goal of CSP is defense against cross-site
 scripting (XSS) attacks. For example, CSP can be used to completely
 disable inline JavaScript and control where external code is loaded from. It can also
 disable dynamic code evaluation. With all of those attack vectors disabled, attacking
 with XSS becomes much more difficult.
CSP had been developed at Mozilla, who experimented with the concept over several
 years, first calling it content restrictions[482] and later Content Security Policy.[483] CSP 1.0 became a W3C Candidate Recommendation in November 2012;[484] work is currently in progress on CSP 1.1.[485]
A web site that wishes to enable CSP sets the desired policy by using the
 Content-Security-Policy response header.[486] To give you an idea of what policies look like, consider this example
 adapted from the specification:
Content-Security-Policy: default-src 'self'; img-src *;
 object-src *.cdn.example.com;
 script-src scripts.example.com
This policy allows resources to be loaded only from its own origin by default, but
 allows images to be loaded from any URI, plugin content only from the specified CDN
 addresses, and external scripts only from scripts.example.com.
Unlike with HSTS, CSP policies are not persistent; they’re used only on the pages that
 reference them and are then promptly forgotten. Thus, CSP is much less risky to use. If
 an error is made, the policy can be updated with immediate effect. There is also no
 danger of persistent denial of service attacks stemming from injected response
 headers.
Preventing Mixed Content Issues

Mixed content issues arise when a secure web page relies on resources (e.g.,
 images and scripts) that are retrieved over plaintext connections. Browsers improved
 their handling of this problem in recent years, but their approach is generally
 still too lax. For example, all browsers allow so-called passive mixed
 content, typically images. Not unexpectedly, there are also
 differences in the handling among browsers. Safari, for example, does not currently
 impose any restrictions, not even on scripts. You’ll find a detailed discussion of
 mixed content issues in the section called “Mixed Content” in Chapter 5.
Because CSP allows us to control where content comes from, we can use it to
 instruct compliant browsers to use only secure protocols. That’s
 wss for the WebSocket protocol and https
 for everything else.
Thus, to address only mixed content issues without attempting to improve anything
 else, consider the following CSP policy as a starting point:
Content-Security-Policy: default-src https: 'unsafe-inline' 'unsafe-eval';
 connect-src https: wss:
The policy includes three main elements:
	The default-src directive establishes that the page can
 load content from anywhere (any host and any port), provided it’s done
 securely (https).

	The 'unsafe-inline' and
 'unsafe-eval' expressions re-enable inline JavaScript
 and dynamic code evaluation, which are disabled by default by CSP. Ideally,
 you wouldn’t want to have these expressions in a policy, but without them
 most existing applications break.

	The connect-src directive controls content locations
 used by server push notifications,[487] WebSocket protocol,[488] and XMLHttpRequest.[489]

Once you establish that this initial policy is working for you, consider
 tightening JavaScript execution (by removing the 'unsafe-inline'
 and 'unsafe-eval' expressions) and replacing generic source
 restrictions with more specific hosts (e.g.,
 https://cdn.example.com instead of
 https:).

Policy Testing

A nice thing about CSP is that it is able to enforce one policy while testing
 others in parallel. This means that you are even able to deploy testing policies in
 production, which tend to be much more complex than development environments.
The Content-Security-Policy-Report-Only response header is used
 to create a testing-only policy:
Content-Security-Policy-Report-Only: default-src 'self'
If a report-only policy fails, nothing is blocked, but reporting can be configured
 so that the failure can be communicated back to the originating web site.

Reporting

Another nice feature of CSP is that it supports reporting, which can be used to
 track policy violations. With this feature, development is much easier. It is also
 very comforting to know that the policy deployed in production is not breaking
 anything.
To enable reporting, use the report-uri directive:
Content-Security-Policy: default-src 'self';
 report-uri http://example.org/csp-report.cgi
With that, CSP policy violations will be submitted to the specified URI, using the
 POST request method and the report data in the request body.
 For example:
{
 "csp-report": {
 "document-uri": "http://example.org/page.html",
 "referrer": "http://evil.example.com/haxor.html",
 "blocked-uri": "http://evil.example.com/image.png",
 "violated-directive": "default-src 'self'",
 "original-policy": "default-src 'self'; report-uri http://example.org/csp-report.cgi"
 }
}

Browser Support

CSP is well supported in current browsers. Chrome and Firefox have been
 experimenting with it for years, and it’s recently started to arrive in other
 mainstream browsers. The only major desktop browser not to support CSP is Internet
 Explorer; their team lists this feature as In Development.[490]
Table 10.2. Browser support for Content Security Policy
	Browser	CSP Support	Since
	Android Browser	Yes	4.4.x (October 2013).[a]
	Chrome	Yes	v25 (February 2013).[b] Experimental support since June 2011.[c]
	Firefox	Yes	v23 (August 2013).[d] Experimental support since June 2009, in Firefox v4.[e]
	Internet Explorer	No (in development)	-
	Opera	Yes	v15 (July 2013).
	Safari	Yes	v7 (iOS 7 on September 2013 and OS X 10.9 on October 2013).
 Experimental support since v6 in Mountain Lion.[f]
	[a] Content Security Policy (Can I use, retrieved 29
 June 2014)

[b] Chrome 25 Beta: Content Security Policy and Shadow
 DOM (The Chromium Blog, 14 January 2013)

[c] New Chromium security features, June 2011 (The
 Chromium Blog, 14 June 2011)

[d] Content Security Policy 1.0 lands in Firefox
 Aurora (Mozilla Hacks, 29 May 2013)

[e] Shutting Down XSS with Content Security Policy
 (Brandon Sterne, Mozilla Security Blog, 19 June 2009)

[f] Safari 6 gets Content-Security-Policy right
 (rachelbythebay, 29 July 2012)

Pinning

Pinning is a security technique that can be used to associate a
 service with one or more cryptographic identities such as certificates and public keys.
 Depending on where and how it is used, pinning can achieve three main security
 improvements:
	Attack surface reduction
	The dominant TLS authentication model in use today relies on public CAs.
 Their job is to issue certificates to domain name owners but not to other
 random people. In turn, user agents trust all CA-issued certificates
 unconditionally. This model suffers from an enormous flaw: a domain owner’s
 authorization is not required for certificate issuance. As a consequence,
 any CA can issue a certificate for any domain name. Given that there are
 hundreds of CAs and possibly thousands of entities who influence certificate
 issuance in one way or another, the attack surface is huge.
With pinning, owners can specify (pin) the CAs that are allowed to issue
 certificates for their domain names. They can look at the market, decide
 which one or two CAs are best for them, and configure the pins accordingly.
 After that, they no longer care that there are hundreds of public CAs
 because they are no longer a risk.

	Key continuity
	Key continuity is a variation on the previous use
 case, but it can be used without relying on public CAs. Let’s assume that
 you somehow know that a particular key is valid for some web site. With
 that, whenever you visit the site you can compare their current key with
 your “correct” key; if the keys match, you know that you are not under
 attack.
Key continuity is commonly used with the SSH protocol. Keys are associated
 with servers when they are seen for the first time and checked on subsequent
 visits. This is also known as trust on first use
 (TOFU).
Firefox uses key continuity when it allows you to create an exception for
 a certificate it can’t verify; the exception is valid only for that
 particular certificate. If you are later attacked with a different (MITM)
 certificate, Firefox will show a certificate warning again.

	Authentication
	Pinning can even be used for authentication, provided there is a reliable
 (secure) channel to communicate the required cryptographic identities to end
 users. For example, if we ever deployed a secure DNS that cannot be
 subverted by active network attacks, then we could use it to store the
 fingerprints of web site certificates. Those fingerprints could then be
 checked on every site visit.

What to Pin?

Pinning can be used with several cryptographic elements; the usual candidates are
 certificates and public keys. For example, a possible approach is to have a copy of
 the certificate you expect to see for a particular site so that you can compare it
 with the certificate you actually get. There is little reason to keep the entire
 certificate; you can achieve the same effect by using its hash (e.g., SHA256), which
 is much shorter and easier to handle.
In practice, public key pinning is more practical, because certificates are
 sometimes reissued without changing the public key. It is also common to see several
 certificates for the same public key. Thus, if you pin the public key the pin will
 work across all certificates associated with it.
Protocols that do not rely on certificates could pin public keys directly, but for
 TLS the best element to pin is the SubjectPublicKeyInfo (SPKI)
 field of X.509 certificates.[491] This field contains the public key itself as well as additional metadata
 that’s necessary for accurate identification:
SubjectPublicKeyInfo ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 subjectPublicKey BIT STRING }
If you want to examine the contents of the SPKI field for a given certificate, use
 this command:
$ openssl x509 -in server.crt -noout -text
[...]
Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:b8:0e:05:25:f8:81:e9:e7:ba:21:40:5f:d7:d4:
 09:5c:8c:d4:e9:44:e7:c0:04:5b:7f:6e:16:8a:01:
 37:2b:b9:ed:b6:09:cd:1f:55:d5:b8:ee:79:13:ae:
 e7:1d:6a:ec:01:7c:02:5a:10:af:f9:68:28:ff:d5:
 61:b0:37:f8:a6:b2:87:42:90:3c:70:19:40:67:49:
 99:1d:3c:44:3e:16:4e:9a:06:e4:06:66:36:2f:23:
 39:16:91:cf:92:56:57:1d:30:db:71:5a:68:a2:c3:
 d5:07:23:e4:90:8e:9e:fb:97:ad:89:d5:31:3f:c6:
 32:d0:04:17:5c:80:9b:0c:6d:9b:2a:b2:f9:39:ac:
 85:75:84:82:64:23:9a:7d:c4:96:57:1e:7b:bf:27:
 2e:48:2d:9e:74:90:32:c1:d8:91:54:12:af:5a:bb:
 01:20:15:0e:ff:7b:57:83:9d:c2:fe:59:ce:ea:22:
 6b:77:75:27:01:25:17:e1:41:31:4c:7f:a8:eb:0e:
 8c:b9:18:b2:9a:cc:74:5e:36:1f:8f:a1:f4:71:a9:
 ff:72:e6:a0:91:f0:90:b2:5a:06:57:79:b6:1e:97:
 98:6b:5c:3a:a9:6a:be:84:bc:86:75:cb:81:6d:28:
 68:c0:e5:d5:3e:c5:f0:7d:85:27:ae:ce:7a:b7:41:
 ce:f9
 Exponent: 65537 (0x10001)
To generate a SPKI hash, first extract the field from the certificate into its own
 file:
$ openssl x509 -in server.crt -noout -pubkey | \
 openssl asn1parse -inform PEM -noout -out server.spki
You can then, for example, calculate a SHA256 hash of it and encode it using
 Base64 encoding:
$ openssl dgst -sha256 -binary server.spki | base64
zB8EXAKscl3P+4a5lFszGaEniLrNswOQ1ZGwD+TzADg=

Where to Pin?

When it comes to deciding where to pin, the answer is not as clear. The obvious
 choice is to pin the server’s public key, but there are several downsides to this
 approach. One is that servers are naturally very exposed to attacks. If the server’s
 private key is compromised and replaced, the old pin will no longer be valid. Even
 in the absence of an attack, server keys should be frequently rotated in order to
 minimize the amount of data protected with the same key. Finally, complex
 deployments often rely on multiple keys and certificates for the same site;
 maintaining pins for all of them would be difficult and time consuming.
For this reason, we can consider pinning elsewhere in the certificate chain. These
 days, most certificate chains start with the end-entity certificate, have one
 intermediate CA certificate, and finish with a root. If you pin to either of the
 latter two, you should be able to change the server identity, get a new certificate
 from the same CA, and continue to use the same pins.
This sounds ideal, but there are some complications. First, CAs usually have
 multiple roots. They also have multiple intermediate CAs, which they use for
 different classes of certificates, to minimize risk, change signature algorithms,
 and so on. Your next certificate from the same CA might not use exactly the same
 intermediate and root certificates.
In addition, CAs also rely on cross-certification with other, more established,
 roots from other CAs in order to support older clients. What this means is that
 there might be multiple valid trust paths for a given certificate. In practice, a
 user agent can decide to use a different trust path from the one you have in mind.
 If that happens, and if your pin is attached to an excluded trust path, the
 validation will fail.
With all of this in mind, the best candidate for pinning is the first intermediate
 CA certificate. Because its signature is on the end-entity certificate, the issuing
 CA’s public key must always be in the chain. This approach ensures that a
 user agent won’t bypass the pin, but it’s still possible that the CA will issue a
 future certificate from a different intermediate CA. There is no clear solution to
 this, but there are steps you can take to mitigate the risks:
	Ask your CAs to support pinning and commit to practices that will ensure
 that your pins remain valid with future certificates.

	Always have a backup pin and a spare certificate from a different
 CA.

Note
The most reliable way to use pinning is with your own intermediary CA. This
 setup ensures that the pinned public key is always in the chain. It also gives
 you a degree of root agility; if you’re not happy with your CA, you can get a
 different intermediate certificate (using the same private key) from someone
 else. Finally, because you’re always pinning to the same public key, the pins
 can be shared among all your sites.

Should You Use Pinning?

Pinning is a powerful technique for attack surface reduction, but it does not come
 for free. To deploy pinning, you need a good understanding of the tradeoffs and a
 mature organization that can deal with the operational challenges. The obvious
 problem is that pinning ensures that TLS connections are established only to the
 pinned identities. What happens if you lose those identities, for whatever
 reason?
The fear of the self-inflicted denial of service attack is possibly the reason
 that pinning has been slow to take off. Browser vendors understand this, and it’s
 also evident from the pinning proposals. Unlike HSTS, where long policy-retention
 periods (e.g., one year) are common, pinning periods are usually measured in days. A
 maximum of 30 days is common. However, no matter how short the pinning period is,
 mistakes will always happen. I am curious to see if browser vendors will eventually
 implement a mechanism for pin breaking to use for emergencies.
In the remainder of this section, I describe several ways to deploy pinning, but
 only one of them (Chrome pinning) can be used straight away. The only exception is
 pinning for native applications, in which you control both sides of the
 communication. In this case, pinning is fully under your control and, with careful
 planning, can be very effective.
So, given that pinning for web sites is still an immature technology, there is
 generally no need to rush. If you’re running a high-profile web site, consider using
 Chrome pinning now. Otherwise, you should first evaluate if pinning is for you.
 Evaluate your environment, try to prepare a deployment plan, and assess the
 challenges and costs. Then decide.

Pinning in Native
 Applications

The most straightforward use of pinning is in native applications, in which you
 control both sides of the communication. This will be the case with desktop and
 mobile applications. In an increasingly connected world, most modern applications
 have a backend that they talk to, and many use HTTPS for that communication.
Private Backends

There are two approaches you can take. The first applies when the backend is
 used only by your applications. In this case, you can generate your own root key
 and use it to issue your own certificates. By distributing the root’s public key
 with your applications, you will be able to reliably verify certificate
 signatures.
On many platforms, this type of pinning is easy to do. For example, Java ships
 with a number of trust roots that are used by default. Whenever you open an
 HTTPS connection to a site, those trust roots are used to verify the
 authenticity of the connection. But, because you don’t want to trust all those
 roots, you can create your own trust store, and then
 place only your own root in it. If whenever you open an HTTPS connection to
 your site you specify your own trust store, then you
 have pinning in action.
If you don’t want to maintain your own root key, you can use SPKI pinning, as
 described earlier. If you’re after some code, Moxie Marlinspike described both
 of these approaches in his article.[492]
 Starting with version 4.2, Android has limited support for public key pinning.[493]

Public Backends

In some cases, applications have backends that are also accessed by third
 parties (i.e., the public). Then, obtaining certificates from a public CA is the
 way to go. That way, others will be able to connect to the service and verify
 its authenticity. You won’t be able to deploy pinning to secure their access, at
 least not until one of the pinning proposals becomes widely supported.
If you still want to protect access from your own applications, you can follow
 the advice from the previous section and pin to the public key. A possibly more
 secure approach is to create another private backend, in which case you can also
 use your own root key for the certificates.

Chrome Public Key Pinning

Google started to experiment with public key pinning with Chrome 12,[494] when they shipped a user interface that allows for custom HSTS and
 pinning configuration.[495] Then, in Chrome 13, they added (preloaded) pins for most of their own
 web sites.[496]
Behind the scenes, the same mechanism is used for both HSTS preloading and
 pinning; the required information is hardcoded in the browser itself. Because Chrome
 is based on the open-source Chromium browser, the source file containing this
 information is available for us to view.[497]
There’s only one policy file, and it contains a single JSON structure with two
 further lists: (1) web sites that support
 HSTS or pinning and (2)
 pinsets to define acceptable public keys for them.
Each web site entry carries information about its HSTS configuration and the
 desired pinset:
{ "name": "encrypted.google.com",
 "include_subdomains": true,
 "mode": "force-https",
 "pins": "google"
}
A pinset is a collection of allowed SPKI hashes; it uses the names of certificates
 that are not in the file but are shipped with the browser:
{ "name": "google",
 "static_spki_hashes": [
 "GoogleBackup2048",
 "GoogleG2"
]
}
With the pinset approach, Chrome creates a whitelist of public keys that can be
 used in certificate chains for the pinned sites. The format also allows for public
 key blacklisting (via the bad_static_spki_hashes parameter), but
 no site appears to be using it at the moment. There is also a provision to disable
 pinning when SNI is not available, which is necessary for some sites that provide
 correct certificate chains only when SNI is enabled.[498]
As you can see, this all seems very straightforward. Because the Chrome developers
 have graciously allowed others to include their pinning information in their
 browsers, some high-profile sites and projects (e.g., Twitter and Tor) are also
 protected with pinning. Hundreds of sites have their HSTS information
 preloaded.
Warning
To allow users to MITM their own traffic, pinning is not enforced on manually
 added root certificates. On the one hand, this allows for local debugging (e.g.,
 using local developer proxies) and content inspection by antivirus products; on
 the other, it also allows for transparent corporate traffic interception. It has
 been reported that some malware authors install custom certificates to perform
 MITM attacks; such certificates would also bypass pin validation.[499]

Chrome includes a reporting mechanism that is used to report pin validation
 failures to Google. (Anecdotally, for privacy reasons, the reporting is enabled only
 for Google’s own properties.) We know this because Chrome’s pinning detected several
 PKI incidents: DigiNotar, TURKTRUST, and ANSSI. You can read about them in Chapter 4, Attacks against PKI.
Note
Firefox 32, released in September 2014, added support for hardcoded public key
 pinning, which is similar to the mechanism already used in Chrome.[500]

Microsoft Enhanced Mitigation Experience
 Toolkit

Microsoft does not currently support site-controlled pinning in Internet Explorer,
 but it provides an add-on called Enhanced Mitigation Experience
 Toolkit (EMET),[501] which can be used by end users to protect themselves individually.
 Although EMET is largely focused on buffer overflow and similar attacks, one of its
 features is certificate pinning. EMET 5, currently in beta, ships with pinning rules
 for several key Microsoft sites, Facebook, Twitter, and Yahoo. Users can add their
 own pins if they wish.[502]

Public Key Pinning Extension for
 HTTP

Public Key Pinning Extension for HTTP (HPKP)[503] is a standard for public key pinning for HTTP user agents that’s been in
 development since 2011. The work was initiated by Google, which, even though it had
 implemented pinning in Chrome, understood that manually maintaining a list of pinned
 sites can’t scale. At the time of writing, HPKP is very near to completion. Although
 there are few firm statements from browser vendors regarding their support, Chrome
 and Firefox are expected to implement HPKP once it’s complete.
Because there are many similarities between HPKP and HSTS, if you haven’t already
 read the section on HSTS (earlier in this chapter), I propose that you do now.
 Here’s a quick overview of the common features:
	HPKP is set at the HTTP level, using the
 Public-Key-Pins (PKP) response header.

	Policy retention period is set with the max-age
 parameter, which specifies duration in seconds.

	Pinning can be extended to subdomains if the
 includeSubDomains parameter is used.

	The PKP header can be used only over a secure encryption without any
 errors; if multiple headers are seen, only the first one is
 processed.

	When a new PKP header is received, the information in it overwrites
 previously stored pins and metadata.

Pins are created by specifying the hashing algorithm and an SPKI fingerprint
 computed using that algorithm. For example:
Public-Key-Pins: max-age=2592000;
 pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
 pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ="
The only hashing algorithm supported at the moment is SHA256; the
 sha256 identifier is used when configuring the pins. The
 fingerprints are encoded using Base64 encoding.
To enable pinning, you must specify the policy retention period and provide at
 least two pins. One of the pins must be present in the chain used for the connection
 over which the pins were received. The other pin must not be
 present. Because pinning is a potentially dangerous operation (it’s easy to make a
 mistake and perform a self-inflicted denial of service attack), the second pin is
 required as a backup. The recommended practice is to have a backup certificate from
 a different CA and to keep it offline. Further, it is recommended that the backup
 certificate is occasionally tested. You really don’t want to need it and only then
 find that it is not working.
Reporting

Unlike HSTS, but similarly to CSP, HPKP specifies a mechanism for user agents
 to report pin-validation failures. This feature is activated using the
 report-uri parameter, which should contain the endpoint
 to which the report will be submitted.
Public-Key-Pins: max-age=2592000;
 pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
 pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
 report-uri="http://example.com/pkp-report"
The report is submitted using a POST HTTP request, which
 includes a JSON structure in the request body. For example:
 {
 "date-time": "2014-04-06T13:00:50Z",
 "hostname": "www.example.com",
 "port": 443,
 "effective-expiration-date": "2014-05-01T12:40:50Z"
 "include-subdomains": false,
 "served-certificate-chain": [
 "-----BEGIN CERTIFICATE-----\n
 MIIEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT\n
 ...
 HFa9llF7b1cq26KqltyMdMKVvvBulRP/F/A8rLIQjcxz++iPAsbw+zOzlTvjwsto\n
 WHPbqCRiOwY1nQ2pM714A5AuTHhdUDqB1O6gyHA43LL5Z/qHQF1hwFGPa4NrzQU6\n
 yuGnBXj8ytqU0CwIPX4WecigUCAkVDNx\n
 -----END CERTIFICATE-----",
 ...
],
 "validated-certificate-chain": [
 "-----BEGIN CERTIFICATE-----\n
 MIIEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT\n
 ...
 HFa9llF7b1cq26KqltyMdMKVvvBulRP/F/A8rLIQjcxz++iPAsbw+zOzlTvjwsto\n
 WHPbqCRiOwY1nQ2pM714A5AuTHhdUDqB1O6gyHA43LL5Z/qHQF1hwFGPa4NrzQU6\n
 yuGnBXj8ytqU0CwIPX4WecigUCAkVDNx\n
 -----END CERTIFICATE-----",
 ...
],
 "known-pins": [
 'pin-sha256="d6qzRu9zOECb90Uez27xWltNsj0e1Md7GkYYkVoZWmM="',
 "pin-sha256=\"E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=\""
]
 }

Deployment without Enforcement

Reports are especially useful when HPKP is deployed without enforcement. This
 can be achieved using the Public-Key-Pins-Report-Only
 response header. This approach allows organizations to deploy pinning without
 fear of failure, ensure that it is configured correctly, and only later move to
 enforcement. Depending on their risk profile, some organizations might choose to
 never enable enforcement; knowing that you are being attacked is often as useful
 as avoiding the attack.

DNS-Based Authentication of Named Entities (DANE)

DNS-Based Authentication of Named Entities (DANE),[504] is a proposed standard designed to provide associations between domain
 names and one or more cryptographic identities. The idea is that domain name owners,
 who already have control over their DNS configuration, can use the DNS as a separate
 channel to distribute information needed for robust TLS authentication. DANE is
 straightforward and relatively easy to deploy, but does not provide any security by
 itself. Instead, it relies on the availability of Domain Name System
 Security Extensions (DNSSEC).[505]
DNSSEC is an attempt to extend the current DNS implementation, which does not
 provide any security, with a new architecture that supports authentication using
 digital signatures. With authentication, we should be able to cryptographically
 verify that the DNS information we obtain is correct. DNSSEC is quite controversial.
 It’s been in development for more than a decade, and its deployment has been slow.
 Experts’ opinions differ widely as to whether DNSSEC is an improvement over the
 current DNS system or alternative improvements should be sought.
At the time of writing, about 70% of all top level domain names are signed.[506] However, enabling the DNSSEC backend is the easier part; getting wide
 end-user system support is going to take some more time. Fedora, a major Linux
 distribution, is the first operating system to consider enabling DNSSEC by default,
 in version 21 planned for Q4 2014.[507]
DANE Use Cases

In our current model for TLS authentication, we rely on a two-step approach:
 (1) first we have a group of
 certification authorities that we trust to issue certificates only to genuine
 domain name owners, then, whenever a site is accessed, (2) user agents (e.g., browsers) check that
 the certificates are correct for the intended names. This split model is
 required because authentication of distant parties (e.g., people who have never
 met) is very tricky to get right, especially at scale. The system is designed to
 work on the assumption that the information provided by DNS is not reliable
 (i.e., can be subverted by an active network attacker).
With DNSSEC, we get a communication channel that ensures that the information
 we receive comes from domain name owners; this means that we don’t necessarily
 need third parties (CAs) to vouch for them any more. This opens up several
 interesting use cases:
	Secure deployment of self-signed certificates
	Today, self-signed certificates are considered insecure because
 there is no way for average users to differentiate them from
 self-signed MITM certificates. In other words, all self-signed
 certificates look the same. But, we can use a secure DNS to pin the
 certificate, thus allowing our user agent to know that they are
 using the right one. MITM certificates are easily detected.

	Secure deployment of private roots
	If you can securely pin the server certificate, then you can just
 as well pin any other certificate in the chain. That means that you
 can create your own root certificate and make users agents trust
 it—but only for the sites you own. This is a variation of the
 previous use case and largely of interest to those who have many
 sites. Rather than pin individual certificates (of which there are
 many, and they need to be frequently rotated), you create one root
 and pin it only once on all sites.

	Certificate and public key pinning
	DANE is not necessarily about displacing the current trust
 architecture. You can as easily pin CA-issued certificates and
 public CA roots. By doing this, you will be reducing the attack
 surface and effectively deciding which CAs are allowed to issue
 certificates for your properties.

Implementation

DANE introduces a new DNS entry type, called TLSA Resource
 Record (TLSA RR, or just TLSA), which is used to carry
 certificate associations. TLSA consists of four fields: (1)
 Certificate Usage to specify which part of a certificate
 chain should be pinned and how the validation should be performed; (2) a Selector to
 specify what element is used for pinning; (3) a Matching Type to choose between an
 exact match or hashing; and (4)
 Certificate Association Data, which carries the actual
 raw data used for matching. Different combinations of these four fields are used
 to deploy different pinning types.
Certificate Usage

The Certificate Usage field can have four different
 values. In the original RFC, the values are simply digits from 0 to 3. A
 subsequent RFC added acronyms to make it easier to remember the correct values.[508]
	CA constraint (0; PKIX-TA)
	Creates a pin for a CA, whose matching certificate must be
 found anywhere in the chain. PKIX validation is performed as
 usual,
 and
 the root must come from a trusted CA.

	Service certificate constraint (1;
 PKIX-EE)
	Creates an end-entity pin, whose certificate must be presented
 at the first position in the chain. PKIX validation is performed
 as
 usual,
 and
 the root must come from a trusted CA.

	Trust anchor assertion (2; DANE-TA)
	Creates a trust anchor pin for a CA certificate (root or
 intermediate) that must be present in the trust chain. PKIX
 validation is performed as usual, but user agents must trust the
 pinned CA certificate. This option allows for certificates that
 are not issued by public CAs.

	Domain-issued certificate (3; DANE-EE)
	Creates an end-entity pin, whose certificate must be presented
 at the first position in the chain. There is no PKIX validation,
 and the pinned certificate is assumed to be trusted.

Selector

The Selector field specifies how the association is
 presented. This allows us to create an association with a certificate (0;
 Cert) or with the
 SubjectPublicKeyInfo field (1;
 SPKI).

Matching Type

The Matching Type field specifies if the matching is
 by direct comparison (0; Full) or via hashing (1 and 2,
 or SHA2-256 and SHA2-512,
 respectively). Support for SHA256 is required; support for SHA512 is
 recommended.

Certificate Association Data

The Certificate Association Data field contains the
 raw data that is used for the association. Its contents are determined by
 the values of the other three fields in the TLSA record. The certificate,
 which is always the starting point of an association, is assumed to be in
 DER format.

Deployment

Leaving DNSSEC configuration and signing aside (only because it is
 out
 of scope
 for
 this book), DANE is pretty easy to
 deploy. All you need to do is add a new TLSA record under the correct name. The
 name is not just the domain name you wish to secure; it’s a combination of three
 segments separated by dots:
	The first segment is the port on which the service is running,
 prefixed with an underscore. For example, _443 for
 HTTPS and _25 for SMTP.

	The second segment is the protocol, also prefixed with an underscore.
 Three protocols are supported: UDP, TCP, and SCTP. For HTTPS, the
 segment will be _tcp.

	The third segment is the fully qualified domain name for which you
 wish to create an association. For example,
 www.example.com.

In the following example, an association is created between a domain name and
 the public key of a CA (Certificate Usage is
 0),
 identified by the SubjectPublicKeyInfo field (Selector is 1)
 via its hex-encoded SHA256 hash (Matching Type is 1):
_443._tcp.www.example.com. IN TLSA (
 0 1 1 d2abde240d7cd3ee6b4b28c54df034b9
 7983a1d16e8a410e4561cb106618e971)
DANE is activated by adding one or more TLSA records to the desired domain
 name. If at least one association is present, user agents are required to
 establish a match; otherwise they must abort the TLS handshake. If there are no
 associations, then the user agent can process the TLS connection as it would
 normally.
Because multiple associations (TLSA records) can be configured for a domain
 name, it’s possible to have one or more backup associations. It’s also possible
 to rotate associations without any downtime. Unlike HPKP, DANE does not specify
 a memory effect, but there is one built into DNS itself: the time to
 live (TTL) value, which is the duration for which a record can
 be cached. Still, the lack of explicit memory effect is DANE’s strength;
 mistakes are easy to correct by reconfiguring DNS. When deploying, especially
 initially, it’s best to use the shortest TTL possible.
A potential disadvantage is the fact that the DANE RFC does not mandate any
 user interaction when a matching association can’t be found. For example, HPKP
 advises that the user is given the means to manually break the pins in case of
 failure. This is a double-edged sword: stubborn users might end up overriding
 the security mechanisms in the case of a genuine attack. On the other hand, with
 DANE, there is no recourse when configuration mistakes happen. Another problem
 is that DANE does not support reporting, making it difficult to find out about
 association matching failures as they occur.

Application Support

At the time of writing, DANE is not supported by major browsers. Adding
 support is difficult, because DANE builds on DNSSEC; until operating systems
 start
 using
 DNSSEC, browsers would
 need to implement DNSSEC resolution themselves. Chrome
 experimented with DANE back in 2011 (in Chrome 14), but eventually removed
 support, citing lack of use.[509] Because of this, DANE is currently of interest only to enthusiasts
 and those who wish to learn where public TLS authentication might be heading.
Despite lack of support, you can play with DANE today thanks to the DNSSEC
 TLSA Validator add-on, which is available for all major browsers.[510] Their releases are not always up-to-date with the latest browser
 versions. When I tried it, the Firefox version wouldn’t work with my
 installation. If you do successfully install the add-on, VeriSign operates a
 demonstration site that you can test with.[511]
Outside of browsers, applications are slowly adding support for DNSSEC. For
 example, Postfix did with version 2.11, which shipped in January 2014.[512]

Trust Assertions for Certificate Keys (TACK)

Trust Assertions for Certificate Keys (TACK)[513] is a proposal for public key pinning that aims to be independent of both
 public CAs and the DNS. The idea is that site operators create and establish their
 own signing keys (known as TACK Signing Keys, or TSKs), to
 provide support for independence. Once a user agent recognizes a TSK for a
 particular site, that key can be used to revoke old server keys, issue new ones, and
 so on. In other words, a TSK is similar to a private CA. Although a per-site TSK is
 recommended, related sites could rely on the same signing key.
TACK is the most ambitious of all pinning proposals, and that also makes it the
 most complex. A compliant user agent expresses support for TACK by submitting en
 empty tack extension in its ClientHello. In
 response, a compliant server uses the same extension to send one or more
 tacks, which are pins of the server’s public key signed
 with the site’s TSK. Pins are noted on the first sighting, but are activated only
 when seen for the second time. There is no fixed policy retention duration. Instead,
 on every visit a user agent works out a new policy retention time by subtracting the
 timestamp of the first pin sighting from the current timestamp. There is also a
 maximum limit of 30 days.
TACK is interesting because it can be used with any protocol (unlike, say, HPKP,
 which works only for HTTP). On the other hand, the use of a separate signing key
 introduces more complexity. In addition, it requires changes to the TLS protocol. At
 this time, it isn’t clear whether browser vendors are planning to provide support
 for it.

Certification Authority
 Authorization

Certification Authority Authorization (CAA)[514] proposes a way for domain name owners to authorize CAs to issue
 certificates for their domain names. It is intended as a defense-in-depth measure
 against attacks on the validation process during certificate issuance; with CAA, CAs
 can satisfy themselves that they are communicating with the real domain name
 owner.
CAA relies on DNS for policy distribution; it recommends DNSSEC but doesn’t
 require it. It extends DNS by adding the CAA Resource Record
 (CAA RR), which is used to create authorization entries.
CAA supports several property tags, which are instructions
 to CAs. For example, the issue tag can be used to allow a CA
 (identified by its domain name) to issue a certificate for a particular domain
 name:
certs.example.com CAA 0 issue "ca.example.net"
The same tag can be used to forbid certificate issuance:
nocerts.example.com CAA 0 issue ";"
Other tags include issuewild, which concerns itself with
 wildcard certificates, and iodef, which defines a communication
 channel (e.g., email address) for CAs to report invalid certificate issuance
 requests back to site owners.
True success of CAA requires wide adoption by CAs. Attackers can always target the
 noncompliant CAs and get fraudulent certificates from them. Of course, from the
 perspective of a compliant CA, this is not necessarily a failure; anything that
 reduces the likelihood of attacks will be seen as positive. However, if there aren’t
 enough CAs supporting this feature, site owners are unlikely to make the effort to
 configure authorizations for their properties.
Like DANE, CAA works best with DNSSEC. Without it, CAs must take special care not
 to expose themselves to DNS spoofing attacks.

[474] RFC 6797: HTTP Strict
 Transport Security (HSTS) (Hodges and Jackson, November 2012)

[475] This could be implemented using DNS SRV records, which are
 designed to point to the exact hostname and port that provide a
 particular service. SRV records are specified in RFC 2782, which was
 published in February 2000.

[476] ForceHTTPS: Protecting High-Security Web Sites from Network Attacks
 (Jackson and Barth, 2008)

[477] Chrome HSTS
 preload request form (Adam Langley, retrieved 6 October
 2014)

[478] HTTP Strict Transport Security (IE Platform Status, retrieved 29
 June 2014)

[479] HTTP Strict
 Transport Security (The Chromium Projects, retrieved
 29 June 2014)

[480] Preloading HSTS (Mozilla Security Blog, 1 November
 2012)

[481] The Double-Edged Sword of HSTS Persistence and Privacy
 (Leviathan Security Group, 4 April 2012)

[482] Content
 Restrictions (Gervase Markham, last update 20 March 2007)

[483] Content Security Policy (Mozilla’s CSP Archive, last updated in
 2011)

[484] Content Security Policy
 1.0 (W3C Candidate Recommendation, 15 November 2012)

[485] Content Security Policy
 1.1 (W3C Working Draft, retrieved 23 April 2014)

[486] You might see other header names mentioned in blog posts, for example,
 X-Content-Security-Policy and
 X-Webkit-CSP. Those headers were used in the early days
 of CSP, when the functionality was largely experimental. The only header name
 relevant today is the official one.

[487] Server-Sent Events (W3C Editor’s Draft, published 14 May
 2014)

[488] RFC 6455:
 The WebSocket Protocol (Fette and Melnikov, December
 2011)

[489] XMLHttpRequest Level 1 (W3C Working Draft, published 30
 January 2014)

[490] Content
 Security Policy (IE Platform Status, retrieved 29 June
 2014)

[491] More information on the structure of X.509 certificates is available in
 the section called “Certificates
 ” in Chapter 3.

[492] Your app shouldn’t suffer SSL’s problems (Moxie
 Marlinspike, 5 December 2011)

[493] Certificate pinning in Android 4.2 (Nikolay Elenkov, 12
 December 2012)

[494] New Chromium security features, June 2011 (The Chromium Blog, 14
 June 2011)

[495] The present versions of Chrome still include this user interface; it can
 be accessed via chrome://net-internals/#hsts.

[496] Public key pinning (Adam Langley, 4 May 2011)

[497] transport_security_state_static.json (Chromium
 source code, retrieved 29 June 2014)

[498] Chrome supports SNI, which is why this feature might seem illogical at
 first. However, there are still situations in which Chrome is ready to fall
 back all the way from TLS 1.2 to SSL 3, which doesn’t support extensions
 (which means that Chrome can’t send the SNI information).

[499] New Man-in-the-Middle attacks leveraging rogue DNS (Don
 Jackson, PhishLabs, 26 March 2014)

[500] Public key pinning released in Firefox (Mozilla Security
 blog, 2 September
 2014)

[501] Enhanced Mitigation Experience Toolkit 4.1 (Microsoft, 12
 February 2013)

[502] Announcing EMET 5.0 Technical Preview (Microsoft Security
 Research and Defense Blog, 25 February 2014)

[503] Public Key Pinning Extension for HTTP (Internet-Draft, Evans et
 al., 5 October 2014)

[504] RFC 6698: The
 DNS-Based Authentication of Named Entities (DANE) Transport Layer
 Security (TLS) Protocol: TLSA (Hoffman and Schlyter, August
 2012)

[505] Domain Name System Security Extensions (Wikipedia, retrieved 29
 June 2014)

[506] TLD
 DNSSEC Report (ICANN Research, retrieved 29 June 2014)

[507] Fedora 21 To Have DNSSEC Validation Enabled By Default (Dan
 York, 2 May 2014)

[508] RFC 7218:
 Adding Acronyms to Simplify Conversations about DANE
 (Gudmundsson, April 2014)

[509] DNSSEC authenticated HTTPS in Chrome (Adam Langley, 16 Jun
 2011)

[510] DNSSEC/TLSA
 Validator add-on for Web Browsers (CZ.NIC, retrieved 29 June
 2014)

[511] Verisign Labs DANE
 Demonstration (VeriSign, retrieved 29 June 2014)

[512] DANE TLS authentication (Postfix TLS Support, retrieved 29
 June 2014)

[513] Trust Assertions for Certificate Keys (Marlinspike and Perrin,
 January 2013)

[514] RFC 6944: DNS
 Certification Authority Authorization (CAA) Resource Record
 (Hallam-Baker, January 2013)

11 OpenSSL

OpenSSL is an open source project that consists of a cryptographic library and an SSL/TLS
 toolkit. From the project’s web site:
The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade,
 full-featured, and Open Source toolkit implementing the Secure Sockets Layer (SSL) and
 Transport Layer Security (TLS) protocols as well as a full-strength general purpose
 cryptography library. The project is managed by a worldwide community of volunteers that
 use the Internet to communicate, plan, and develop the OpenSSL toolkit and its related
 documentation.

OpenSSL is a de facto standard in this space and comes with a long history. The code
 initially began its life in 1995 under the name SSLeay,[515] when it was developed by Eric A. Young and Tim J. Hudson. The OpenSSL project
 was born in the last days of 1998, when Eric and Tim stopped their work on SSLeay to work on
 a commercial SSL/TLS toolkit called BSAFE SSL-C at RSA Australia.
Today, OpenSSL is ubiquitous on the server side and in many client tools. The command-line
 tools are also the most common choice for key and certificate management as well as testing.
 Interestingly, browsers have historically used other libraries, but that might change soon,
 given that the Google Chrome team is planning a transition to OpenSSL on all platforms.[516] The command-line tools provided by OpenSSL are most commonly used to manage keys
 and certificates.
OpenSSL is dual-licensed under OpenSSL and SSLeay licenses. Both are BSD-like, with an
 advertising clause. The license has been a source of contention for a very long time,
 because neither of the licenses is considered compatible with the GPL family of licenses.
 For that reason, you will often find that GPL-licensed programs favor GnuTLS.
Getting Started

If you’re using one of the Unix platforms, getting started with OpenSSL is easy;
 you’re virtually guaranteed to already have it on your system. The only problem that you
 might face is that you might not have the latest version. In this section, I assume that
 you’re using a Unix platform, because that’s the natural environment for OpenSSL.
Windows users tend to download binaries, which might complicate the situation
 slightly. In the simplest case, if you need OpenSSL only for its command-line utilities,
 the main OpenSSL web site links to Shining Light Productions[517] for the Windows binaries. In all other situations, you need to ensure that
 you’re not mixing binaries compiled under different versions of OpenSSL. Otherwise, you
 might experience crashes that are difficult to troubleshoot. The best approach is to use
 a single bundle of programs that includes everything that you need. For example, if you
 want to run Apache on Windows, you can get your binaries from the Apache Lounge.[518]
Determine OpenSSL Version and Configuration

Before you do any work, you should know which OpenSSL version you’ll be
 using. For example, here’s what I get for version information with openssl
 version on Ubuntu 12.04 LTS, which is the system that I’ll be using
 for the examples in this chapter:
$ openssl version
OpenSSL 1.0.1 14 Mar 2012
At the time of this writing, a transition from OpenSSL 0.9.x to OpenSSL 1.0.x is
 in progress. The version 1.0.1 is especially significant because it is the first
 version to support TLS 1.1 and 1.2. The support for newer protocols is part of a
 global trend, so it’s likely that we’re going to experience a period during which
 interoperability issues are not uncommon.
Note
Various operating systems often modify the OpenSSL code, usually to fix known
 issues. However, the name of the project and the version number generally stay
 the same, and there is no indication that the code is actually a fork of the
 original project that will behave differently. For example, the version of
 OpenSSL used in Ubuntu 12.04 LTS[519] is based on OpenSSL 1.0.1c. At the time of this writing, the full
 name of the package is openssl 1.0.1-4ubuntu5.16, and it
 contains patches for the many issues that came to light over time.

To get complete version information, use the -a switch:
$ openssl version -a
OpenSSL 1.0.1 14 Mar 2012
built on: Fri Jun 20 18:54:15 UTC 2014
platform: debian-amd64
options: bn(64,64) rc4(8x,int) des(idx,cisc,16,int) blowfish(idx)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -g -O2 -fstack-protector --param=ssp-buffer-size=4 -Wformat -Wformat-security -Werror=format-security -D_FORTIFY_SOURCE=2 -Wl,-Bsymbolic-functions -Wl,-z,relro -Wa,--noexecstack -Wall -DOPENSSL_NO_TLS1_2_CLIENT -DOPENSSL_MAX_TLS1_2_CIPHER_LENGTH=50 -DMD32_REG_T=int -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM -DGHASH_ASM
OPENSSLDIR: "/usr/lib/ssl"
The last line in the output (/usr/lib/ssl) is especially
 interesting because it will tell you where OpenSSL will look for its configuration
 and certificates. On my system, that location is essentially an alias for
 /etc/ssl, where Ubuntu keeps TLS-related files:
lrwxrwxrwx 1 root root 14 Apr 19 09:28 certs -> /etc/ssl/certs
drwxr-xr-x 2 root root 4096 May 28 06:04 misc
lrwxrwxrwx 1 root root 20 May 22 17:07 openssl.cnf -> /etc/ssl/openssl.cnf
lrwxrwxrwx 1 root root 16 Apr 19 09:28 private -> /etc/ssl/private
The misc/ folder contains a few supplementary scripts, the
 most interesting of which are the scripts that allow you to implement a private
 certification authority (CA).

Building OpenSSL

In most cases, you will be using the operating system–supplied version of OpenSSL,
 but sometimes there are good reasons to upgrade. For example, your current server
 platform may still be using OpenSSL 0.9.x, and you might want to support newer
 protocol versions (available only in OpenSSL 1.0.1). Further, the newer versions may
 not have all the features you need. For example, on Ubuntu 12.04 LTS, there’s no
 support for SSL 2 in the s_client command. Although not
 supporting this version of SSL by default is the right decision, you’ll need this
 feature if you’re routinely testing other servers for SSL 2 support.
You can start by downloading the most recent version of OpenSSL (in my case,
 1.0.1h):
$ wget http://www.openssl.org/source/openssl-1.0.1h.tar.gz
The next step is to configure OpenSSL before compilation. In most cases, you’ll be
 leaving the system-provided version alone and installing OpenSSL in a different
 location. For example:
$./config \
--prefix=/opt/openssl \
--openssldir=/opt/openssl \
enable-ec_nistp_64_gcc_128
The enable-ec_nistp_64_gcc_128 parameter activates optimized
 versions of certain frequently used elliptic curves. This optimization depends on a
 compiler feature that can’t be automatically detected, which is why it’s disabled by
 default.
You can then follow with:
$ make depend
$ make
$ sudo make install
You’ll get the following in /opt/openssl:
drwxr-xr-x 2 root root 4096 Jun 3 08:49 bin
drwxr-xr-x 2 root root 4096 Jun 3 08:49 certs
drwxr-xr-x 3 root root 4096 Jun 3 08:49 include
drwxr-xr-x 4 root root 4096 Jun 3 08:49 lib
drwxr-xr-x 6 root root 4096 Jun 3 08:48 man
drwxr-xr-x 2 root root 4096 Jun 3 08:49 misc
-rw-r--r-- 1 root root 10835 Jun 3 08:49 openssl.cnf
drwxr-xr-x 2 root root 4096 Jun 3 08:49 private
The private/ folder is empty, but that’s normal; you do not
 yet have any private keys. On the other hand, you’ll probably be surprised to learn
 that the certs/ folder is empty too. OpenSSL does not include
 any root certificates; maintaining a trust store is considered outside the scope of
 the project. Luckily, your operating system probably already comes with a trust
 store that you can use. You can also build your own with little effort, as you’ll
 see in the next section.
Note
When compiling software, it’s important to be familiar with the default
 configuration of your compiler. System-provided packages are usually compiled
 using all the available hardening options, but if you compile some software
 yourself there is no guarantee that the same options will be used.[520]

Examine Available Commands

OpenSSL is a cryptographic toolkit that consists of many different utilities. I
 counted 46 in my version. If it were ever appropriate to use the phrase
 Swiss Army knife of cryptography, this is it. Even though
 you’ll use only a handful of the utilities, you should familiarize yourself with
 everything that’s available, because you never know what you might need in the
 future.
There isn’t a specific help keyword, but help text is displayed whenever you type
 something OpenSSL does not recognize:
$ openssl help
openssl:Error: 'help' is an invalid command.

Standard commands
asn1parse ca ciphers cms
crl crl2pkcs7 dgst dh
dhparam dsa dsaparam ec
ecparam enc engine errstr
gendh gendsa genpkey genrsa
nseq ocsp passwd pkcs12
pkcs7 pkcs8 pkey pkeyparam
pkeyutl prime rand req
rsa rsautl s_client s_server
s_time sess_id smime speed
spkac srp ts verify
version x509
The first part of the help output lists all available utilities. To get more
 information about a particular utility, use the man command
 followed by the name of the utility. For example, man ciphers
 will give you detailed information on how cipher suites are configured.
Help output doesn’t actually end there, but the rest is somewhat less interesting.
 In the second part, you get the list of message digest commands:
Message Digest commands (see the `dgst' command for more details)
md4 md5 rmd160 sha
sha1
And then, in the third part, you’ll see the list of all cipher commands:
Cipher commands (see the `enc' command for more details)
aes-128-cbc aes-128-ecb aes-192-cbc aes-192-ecb
aes-256-cbc aes-256-ecb base64 bf
bf-cbc bf-cfb bf-ecb bf-ofb
camellia-128-cbc camellia-128-ecb camellia-192-cbc camellia-192-ecb
camellia-256-cbc camellia-256-ecb cast cast-cbc
cast5-cbc cast5-cfb cast5-ecb cast5-ofb
des des-cbc des-cfb des-ecb
des-ede des-ede-cbc des-ede-cfb des-ede-ofb
des-ede3 des-ede3-cbc des-ede3-cfb des-ede3-ofb
des-ofb des3 desx rc2
rc2-40-cbc rc2-64-cbc rc2-cbc rc2-cfb
rc2-ecb rc2-ofb rc4 rc4-40
seed seed-cbc seed-cfb seed-ecb
seed-ofb zlib

Building a Trust Store

OpenSSL does not come with any trusted root certificates (also known as a
 trust store), so if you’re installing from scratch you’ll
 have to find them somewhere else. One possibility is to use the trust store built
 into your operating system. This choice is usually fine, but default trust stores
 may not always be up to date. A better choice—but one that involves more work—is to
 turn to Mozilla, which is putting a lot of effort into maintaining a robust trust
 store. For example, this is what I did for my assessment tool on SSL Labs.
Because it’s open source, Mozilla keeps the trust store in the source code
 repository:
https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt
Unfortunately, their certificate collection is in a proprietary format, which is
 not of much use to others as is. If you don’t mind getting the collection via a
 third party, the Curl project provides a regularly-updated conversion in
 Privacy-Enhanced Mail (PEM) format, which you can use
 directly:
http://curl.haxx.se/docs/caextract.html
But you don’t have to write a conversion script if you’d rather download directly
 from Mozilla. Conversion scripts are available in Perl or Go. I describe both in the
 following sections.
Note
If you do end up working on your own conversion script, note that Mozilla’s
 root certificate file actually contains two types of certificates: those that
 are trusted and are part of the store and also those that are explicitly
 distrusted. They use this mechanism to ban compromised intermediate CA
 certificates (e.g., DigiNotar’s old certificates). Both conversion tools
 described here are smart enough to exclude distrusted certificates during the
 conversion process.

Conversion Using Perl

The Curl project makes available a Perl script written by Guenter Knauf that
 can be used to convert Mozilla’s trust store:
https://raw.github.com/bagder/curl/master/lib/mk-ca-bundle.pl
After you download and run the script, it will fetch the certificate data from
 Mozilla and convert it to the PEM format:
$./mk-ca-bundle.pl
Downloading 'certdata.txt' ...
Processing 'certdata.txt' ...
Done (156 CA certs processed, 19 untrusted skipped).
If you keep previously downloaded certificate data around, the script will use
 it to determine what changed and process only the updates.

Conversion Using Go

If you prefer the Go programming language, consider Adam Langley’s conversion
 tool, which you can get from GitHub:
https://github.com/agl/extract-nss-root-certs
To kick off a conversion process, first download the tool itself:
$ wget https://raw.github.com/agl/extract-nss-root-certs/master/convert_mozilla_certdata.go
Then download Mozilla’s certificate data:
$ wget https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt --output-document certdata.txt
Finally, convert the file with the following command:
$ go run convert_mozilla_certdata.go > ca-certificates
2012/06/04 09:52:29 Failed to parse certificate starting on line 23068: negative serial number
In my case, there was one invalid certificate that the Go X.509 library
 couldn’t handle, but otherwise the conversion worked as expected.

Key and Certificate Management

Most users turn to OpenSSL because they wish to configure and run a web server that
 supports SSL. That process consists of three steps: (1) generate a strong private key, (2) create a Certificate Signing Request (CSR)
 and send it to a CA, and (3) install the
 CA-provided certificate in your web server. These steps (and a few others) are covered
 in this section.
Key Generation

The first step in preparing for the use of public encryption is to generate a
 private key. Before you begin, you must make several decisions:
	Key algorithm
	OpenSSL supports RSA, DSA, and ECDSA keys, but not all types are
 practical for use in all scenarios. For example, for web server keys
 everyone uses RSA, because DSA keys are effectively limited to 1,024
 bits (Internet Explorer doesn’t support anything stronger) and ECDSA
 keys are yet to be widely supported by CAs. For SSH, DSA and RSA are
 widely used, whereas ECDSA might not be supported by all clients.

	Key size
	The default key sizes might not be secure, which is why you should
 always explicitly configure key size. For example, the default for RSA
 keys is only 512 bits, which is simply insecure. If you used a 512-bit
 key on your server today, an intruder could take your certificate and
 use brute force to recover your private key, after which he or she could
 impersonate your web site. Today, 2,048-bit RSA keys are considered
 secure, and that’s what you should use. Aim also to use 2,048 bits for
 DSA keys and at least 256 bits for ECDSA.

	Passphrase
	Using a passphrase with a key is optional, but strongly recommended.
 Protected keys can be safely stored, transported, and backed up. On the
 other hand, such keys are inconvenient, because they can’t be used
 without their passphrases. For example, you might be asked to enter the
 passphrase every time you wish to restart your web server. For most,
 this is either too inconvenient or has unacceptable availability
 implications. In addition, using protected keys in production does not
 actually increase the security much, if at all. This is because, once
 activated, private keys are kept unprotected in program memory; an
 attacker who can get to the server can get the keys from there with just
 a little more effort. Thus, passphrases should be viewed only as a
 mechanism for protecting private keys when they are not installed on
 production systems. In other words, it’s all right to keep passphrases
 on production systems, next to the keys. If you need better security in
 production, you should invest in a hardware solution.[521]

To generate an RSA key, use the genrsa command:
$ openssl genrsa -aes128 -out fd.key 2048
Generating RSA private key, 2048 bit long modulus
....+++
...+++
e is 65537 (0x10001)
Enter pass phrase for fd.key: ****************
Verifying - Enter pass phrase for fd.key: ****************
Here, I specified that the key be protected with AES-128. You can also use AES-192
 or AES-256 (switches -aes192 and -aes256,
 respectively), but it’s best to stay away from the other algorithms (DES, 3DES, and
 SEED).
Warning
The
 e value that you see in the output refers to the public
 exponent, which is set to 65,537 by default. This is what’s known as a
 short public exponent, and it significantly improves
 the performance of RSA verification. Using the -3 switch, you
 can choose 3 as your public exponent and make verification even faster. However,
 there are some unpleasant historical weaknesses associated with the use of 3 as
 a public exponent, which is why generally everyone recommends that you stick
 with 65,537. The latter choice provides a safety margin that’s been proven
 effective in the past.

Private keys are stored in the so-called PEM format, which is ASCII:
$ cat fd.key
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,01EC21976A463CE36E9DB59FF6AF689A

vERmFJzsLeAEDqWdXX4rNwogJp+y95uTnw+bOjWRw1+O1qgGqxQXPtH3LWDUz1Ym
mkpxmIwlSidVSUuUrrUzIL+V21EJ1W9iQ71SJoPOyzX7dYX5GCAwQm9Tsb40FhV/
[21 lines removed...]
4phGTprEnEwrffRnYrt7khQwrJhNsw6TTtthMhx/UCJdpQdaLW/TuylaJMWL1JRW
i321s5me5ej6Pr4fGccNOe7lZK+563d7v5znAx+Wo1C+F7YgF+g8LOQ8emC+6AVV
-----END RSA PRIVATE KEY-----
A private key isn’t just a blob of random data, even though that’s what it looks
 like at a glance. You can see a key’s structure using the following
 rsa command:
$ openssl rsa -text -in fd.key
Enter pass phrase for fd.key: ****************
Private-Key: (2048 bit)
modulus:
 00:9e:57:1c:c1:0f:45:47:22:58:1c:cf:2c:14:db:
 [...]
publicExponent: 65537 (0x10001)
privateExponent:
 1a:12:ee:41:3c:6a:84:14:3b:be:42:bf:57:8f:dc:
 [...]
prime1:
 00:c9:7e:82:e4:74:69:20:ab:80:15:99:7d:5e:49:
 [...]
prime2:
 00:c9:2c:30:95:3e:cc:a4:07:88:33:32:a5:b1:d7:
 [...]
exponent1:
 68:f4:5e:07:d3:df:42:a6:32:84:8d:bb:f0:d6:36:
 [...]
exponent2:
 5e:b8:00:b3:f4:9a:93:cc:bc:13:27:10:9e:f8:7e:
 [...]
coefficient:
 34:28:cf:72:e5:3f:52:b2:dd:44:56:84:ac:19:00:
 [...]
writing RSA key
-----BEGIN RSA PRIVATE KEY-----
[...]
-----END RSA PRIVATE KEY-----
If you need to generate the corresponding public key, you can do that with the
 following rsa command:
$ openssl rsa -in fd.key -pubout -out fd-public.key
Enter pass phrase for fd.key: ****************
The public key is much shorter than the private key:
$ cat fd-public.key
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnlccwQ9FRyJYHM8sFNsY
PUHJHJzhJdwcS7kBptutf/L6OvoEAzCVHi/m0qAA4QM5BziZgnvv+FNnE3sgE5pz
iovEHJ3C959mNQmpvnedXwfcOIlbrNqdISJiP0js6mDCzYjSO1NCQoy3UpYwvwj7
0ryR1F+abARehlts/Xs/PtX3VamrljiJN6JNgFICy3ZvEhLZEKxR7oob7TnyZDrj
IHxBbqPNzeiqLCFLFPGgJPa0cH8DdovBTesvu7wr/ecsf8CYyUCdEwGkZh9DKtdU
HFa9H8tWW2mX6uwYeHCnf2HTw0E8vjtOb8oYQxlQxtL7dpFyMgrpPOoOVkZZW/P0
NQIDAQAB
-----END PUBLIC KEY-----
It’s good practice to verify that the output contains what you’re expecting. For
 example, if you forget to include the -pubout switch on the
 command line, the output will contain your private key instead of the public
 key.
DSA key generation is a two-step process: DSA parameters are created in the first
 step and the key in the second. Rather than execute the steps one at a time, I tend
 to use the following two commands as one:
$ openssl dsaparam -genkey 2048 | openssl dsa -out dsa.key -aes128
Generating DSA parameters, 2048 bit long prime
This could take some time
[...]
read DSA key
writing DSA key
Enter PEM pass phrase: ****************
Verifying - Enter PEM pass phrase: ****************
This approach allows me to generate a password-protected key without leaving any
 temporary files (DSA parameters) and/or temporary keys on disk.
The process is similar for ECDSA keys, except that it isn’t possible to create
 keys of arbitrary sizes. Instead, for each key you select a named
 curve, which controls key size, but it controls other EC parameters
 as well. The following example creates a 256-bit ECDSA key using the
 secp256r1 named curve:
$ openssl ecparam -genkey -name secp256r1 | openssl ec -out ec.key -aes128
using curve name prime256v1 instead of secp256r1
read EC key
writing EC key
Enter PEM pass phrase: ****************
Verifying - Enter PEM pass phrase: ****************
OpenSSL supports many named curves (you can get a full list with the
 -list_curves switch), but, for web server keys, you’re
 limited to only two curves that are supported by all major browsers:
 secp256r1 (OpenSSL uses the name
 prime256v1) and secp384r1.

Creating Certificate Signing Requests

Once you have a private key, you can proceed to create a Certificate
 Signing Request (CSR). This is a formal request asking a CA to sign a
 certificate, and it contains the public key of the entity requesting the certificate
 and some information about the entity. This data will all be part of the
 certificate.
CSR creation is usually an interactive process that takes the private server key
 as input. Read the instructions given by the openssl tool
 carefully; if you want a field to be empty, you must enter a single dot
 (.) on the line, rather than just hit Return. If you do the
 latter, OpenSSL will populate the corresponding CSR field with the default value.
 (This behavior doesn’t make any sense when used with the default OpenSSL
 configuration, which is what virtually everyone does. It does
 make sense once you realize you can actually change the defaults, either by
 modifying the OpenSSL configuration or by providing your own configuration
 files.)
$ openssl req -new -key fd.key -out fd.csr
Enter pass phrase for fd.key: ****************
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:GB
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:London
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Feisty Duck Ltd
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:www.feistyduck.com
Email Address []:webmaster@feistyduck.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Note
According to Section 5.4.1 of RFC 2985,[522]
 challenge password is an optional field that was intended
 for use during certificate revocation as a way of identifying the original
 entity that had requested the certificate. If entered, the password will be
 included verbatim in the CSR and communicated to the CA. It’s
 rare
 to find a CA that relies on this
 field;
 all
 instructions I’ve seen recommend leaving it alone. Having a challenge password
 does not increase the security of the CSR in any way. Further, this field should
 not be confused with the key passphrase, which is a separate feature.

After a CSR is generated, use it to sign your own certificate and/or send it to a
 public CA and ask him or her to sign the certificate. Both approaches are described
 in the following sections. But before you do that, it’s a good idea to double-check
 that the CSR is correct. Here’s how:
$ openssl req -text -in fd.csr -noout
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=GB, L=London, O=Feisty Duck Ltd, CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:b7:fc:ca:1c:a6:c8:56:bb:a3:26:d1:df:e4:e3:
 [16 more lines...]
 d1:57
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: sha1WithRSAEncryption
 a7:43:56:b2:cf:ed:c7:24:3e:36:0f:6b:88:e9:49:03:a6:91:
 [13 more lines...]
 47:8b:e3:28

Creating CSRs from Existing Certificates

You can save yourself some typing if you’re renewing a certificate and don’t want
 to make any changes to the information presented in it. With the following command,
 you can create a brand-new CSR from an existing certificate:
$ openssl x509 -x509toreq -in fd.crt -out fd.csr -signkey fd.key
Note
Unless you’re using some form of public key pinning and wish to continue using
 the existing key, it’s best practice to generate a new key every time you apply
 for a new certificate. Key generation is quick and inexpensive and reduces your
 exposure.

Unattended CSR Generation

CSR generation doesn’t have to be interactive. Using a custom OpenSSL
 configuration file, you can both automate the process (as explained in this section)
 and do certain things that are not possible interactively (as discussed in
 subsequent sections).
For example, let’s say that we want to automate the generation of a CSR for
 www.feistyduck.com. We would start by creating a file
 fd.cnf with the following contents:
[req]
prompt = no
distinguished_name = dn
req_extensions = ext

[dn]
CN = www.feistyduck.com
emailAddress = webmaster@feistyduck.com
O = Feisty Duck Ltd
L = London
C = GB

[ext]
subjectAltName = DNS:www.feistyduck.com,DNS:feistyduck.com
Now you can create the CSR directly from the command line:
$ openssl req -new -config fd.cnf -key fd.key -out fd.csr
Enter pass phrase for fd.key: ****************
You’ll be asked for the passphrase only if you used one during key
 generation.

Signing Your Own Certificates

If you’re installing a TLS server for your own use, you probably don’t want to go
 to a CA to get a publicly trusted certificate. It’s much easier to sign your own.
 The fastest way to do this is to generate a self-signed certificate. If you’re a
 Firefox user, on your first visit to the web site you can create a certificate
 exception, after which the site will be as secure as if it were protected with a
 publicly trusted certificate.
If you already have a CSR, create a certificate using the following
 command:
$ openssl x509 -req -days 365 -in fd.csr -signkey fd.key -out fd.crt
Signature ok
subject=/CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com/O=Feisty Duck Ltd/L=London/C=GB
Getting Private key
Enter pass phrase for fd.key: ****************
You don’t actually have to create a CSR in a separate step. The following command
 creates a self-signed certificate starting with a key alone:
$ openssl req -new -x509 -days 365 -key fd.key -out fd.crt
If you don’t wish to be asked any questions, use the -subj
 switch to provide the certificate subject information on the command line:
$ openssl req -new -x509 -days 365 -key fd.key -out fd.crt \
 -subj "/C=GB/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com"

Creating Certificates Valid for Multiple Hostnames

By default, certificates produced by OpenSSL have only one common name and are
 valid for only one hostname. Because of this, even if you have related web sites,
 you are forced to use a separate certificate for each site. In this situation, using
 a single multidomain certificate makes much more sense.
 Further, even when you’re running a single web site, you need to ensure that the
 certificate is valid for all possible paths that end users can take to reach it. In
 practice, this means using at least two names, one with the www
 prefix and one without (e.g., www.feistyduck.com and
 feistyduck.com).
There are two mechanisms for supporting multiple hostnames in a certificate. The
 first is to list all desired hostnames using an X.509 extension called
 Subject Alternative Name (SAN). The second is to use
 wildcards. You can also use a combination of the two approaches when it’s more
 convenient. In practice, for most sites, you can specify a bare domain name and a
 wildcard to cover all the subdomains (e.g., feistyduck.com and
 *.feistyduck.com).
Warning
When a certificate contains alternative names, all common names are ignored.
 Newer certificates produced by CAs may not even include any common names. For
 that reason, include all desired hostnames on the alternative names list.

First, place the extension information in a separate text file. I’m going to call
 it fd.ext. In the file, specify the name of the extension
 (subjectAltName) and list the desired hostnames, as in the
 following example:
subjectAltName = DNS:*.feistyduck.com, DNS:feistyduck.com
Then, when using the x509 command to issue a certificate, refer
 to the file using the -extfile switch:
$ openssl x509 -req -days 365 \
-in fd.csr -signkey fd.key -out fd.crt \
-extfile fd.ext
The rest of the process is no different from before. But when you examine the
 generated certificate afterward, you’ll find that it contains the SAN
 extension:
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:*.feistyduck.com, DNS:feistyduck.com

Examining Certificates

Certificates might look a lot like random data at first glance, but they contain a
 great deal of information; you just need to know how to unpack it. The
 x509 command does just that, so use it to look at the
 self-signed certificates you generated.
In the following example, I use the -text switch to print
 certificate contents and -noout to reduce clutter by not printing
 the encoded certificate itself (which is the default behavior):
$ openssl x509 -text -in fd.crt -noout
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 13073330765974645413 (0xb56dcd10f11aaaa5)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com, O=Feisty Duck Ltd, L=London, C=GB
 Validity
 Not Before: Jun 4 17:57:34 2012 GMT
 Not After : Jun 4 17:57:34 2013 GMT
 Subject: CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com, O=Feisty Duck Ltd, L=London, C=GB
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:b7:fc:ca:1c:a6:c8:56:bb:a3:26:d1:df:e4:e3:
 [16 more lines...]
 d1:57
 Exponent: 65537 (0x10001)
 Signature Algorithm: sha1WithRSAEncryption
 49:70:70:41:6a:03:0f:88:1a:14:69:24:03:6a:49:10:83:20:
 [13 more lines...]
 74:a1:11:86
Self-signed certificates usually contain only the most basic certificate data, as
 seen in the previous example. By comparison, certificates issued by public CAs are
 much more interesting, as they contain a number of additional fields (via the X.509
 extension mechanism). Let’s go over them quickly.
The Basic Constraints extension is used to mark
 certificates as belonging to a CA, giving them the ability to sign other
 certificates. Non-CA certificates will either have this extension omitted or will
 have the value of CA set to FALSE. This extension is critical,
 which means that all software-consuming certificates must understand its
 meaning.
X509v3 Basic Constraints: critical
 CA:FALSE
The Key Usage (KU) and Extended Key
 Usage (EKU) extensions restrict what a certificate can be used for.
 If these extensions are present, then only the listed uses are allowed. If the
 extensions are not present, there are no use restrictions. What you see in this
 example is typical for a web server certificate, which, for example, does not allow
 for code signing:
X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
The CRL Distribution Points extension lists the addresses
 where the CA’s Certificate Revocation List (CRL)
 information can be found. This information is important in cases in which
 certificates need to be revoked. CRLs are CA-signed lists of revoked certificates,
 published at regular time intervals (e.g., seven days).
X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl.starfieldtech.com/sfs3-20.crl
Note
You might have noticed that the CRL location doesn’t use a secure server, and
 you might be wondering if the link is thus insecure. It is not. Because each CRL
 is signed by the CA that issued it, browsers are able to verify its integrity.
 In fact, if CRLs were distributed over TLS, browsers might face a
 chicken-and-egg problem in which they want to verify the revocation status of
 the certificate used by the server delivering the CRL itself!

The Certificate Policies extension is used to indicate the
 policy under which the certificate was issued. For example, this is where
 extended validation (EV) indicators can be found (as in
 the example that follows). The indicators are in the form of unique object
 identifiers (OIDs), and they are unique to the issuing CA. In addition, this
 extension often contains one or more Certificate Policy
 Statement (CPS) points, which are usually web pages or PDF
 documents.
X509v3 Certificate Policies:
 Policy: 2.16.840.1.114414.1.7.23.3
 CPS: http://certificates.starfieldtech.com/repository/
The Authority Information Access (AIA) extension usually
 contains two important pieces of information. First, it lists the address of the
 CA’s Online Certificate Status Protocol (OCSP)
 responder, which can be used to check for certificate revocation in real time. The
 extension may also contain a link to where the issuer’s certificate (the next
 certificate in the chain) can be found. These days, server certificates are rarely
 signed directly by trusted root certificates, which means that users must include
 one or more intermediate certificates in their configuration. Mistakes are easy to
 make and will invalidate the certificates. Some clients (e.g., Internet Explorer)
 will use the information provided in this extension to fix an incomplete certificate
 chain, but many clients won’t.
Authority Information Access:
 OCSP - URI:http://ocsp.starfieldtech.com/
 CA Issuers - URI:http://certificates.starfieldtech.com/repository/sf_intermediate.crt
The Subject Key Identifier and Authority Key
 Identifier extensions establish unique subject and authority key
 identifiers, respectively. The value specified in the Authority Key Identifier
 extension of a certificate must match the value specified in the Subject Key
 Identifier extension in the issuing certificate. This information is very useful
 during the certification path-building process, in which a client is trying to find
 all possible paths from a leaf (server) certificate to a trusted root. Certification
 authorities will often use one private key with more than one certificate, and this
 field allows software to reliably identify which certificate can be matched to which
 key. In the real world, many certificate chains supplied by servers are invalid, but
 that fact often goes unnoticed because browsers are able to find alternative trust
 paths.
X509v3 Subject Key Identifier:
 4A:AB:1C:C3:D3:4E:F7:5B:2B:59:71:AA:20:63:D6:C9:40:FB:14:F1
X509v3 Authority Key Identifier:
 keyid:49:4B:52:27:D1:1B:BC:F2:A1:21:6A:62:7B:51:42:7A:8A:D7:D5:56
Finally, the Subject Alternative Name extension is used to
 list all the hostnames for which the certificate is valid. This extension is
 optional; if it isn’t present, clients fall back to using the information provided
 in the Common Name (CN), which is part of the
 Subject field.
X509v3 Subject Alternative Name:
 DNS:www.feistyduck.com, DNS:feistyduck.com

Key and Certificate
 Conversion

Private keys and certificates can be stored in a variety of formats, which means
 that you’ll often need to convert them from one format to another. The most common
 formats are:
	Binary (DER) certificate
	Contains an X.509 certificate in its raw form, using DER ASN.1
 encoding.

	ASCII (PEM) certificate(s)
	Contains a base64-encoded DER certificate, with -----BEGIN
 CERTIFICATE----- used as the header and -----END
 CERTIFICATE----- as the footer. Usually seen with only one
 certificate per file, although some programs allow more than one
 certificate depending on the context. For example, the Apache web server
 requires the server certificate to be alone in one file, with all
 intermediate certificates together in another.

	Binary (DER) key
	Contains a private key in its raw form, using DER ASN.1 encoding.
 OpenSSL creates keys in its own traditional (SSLeay) format. There’s
 also an alternative format called PKCS#8 (defined in RFC 5208), but it’s
 not widely used. OpenSSL can convert to and from PKCS#8 format using the
 pkcs8 command.

	ASCII (PEM) key
	Contains a base64-encoded DER certificate with additional metadata
 (e.g., the algorithm used for password protection).

	PKCS#7 certificate(s)
	A complex format designed for the transport of signed or encrypted
 data, defined in RFC 2315. It’s usually seen with
 .p7b and .p7c extensions and
 can include the entire certificate chain as needed. This format is
 supported by Java’s keytool utility.

	PKCS#12 (PFX) key and certificate(s)
	A complex format that can store and protect a server key along with an
 entire certificate chain. It’s commonly seen with
 .p12 and .pfx extensions. This
 format is commonly used in Microsoft products, but is also used for
 client certificates. These days, the PFX name is used as a synonym for
 PKCS#12, even though PFX referred to a different format a long time ago
 (an early version of PKCS#12). It’s unlikely that you’ll encounter the
 old version anywhere.

PEM and DER Conversion

Certificate conversion between PEM and DER formats is performed with the
 x509 tool. To convert a certificate from PEM to DER
 format:
$ openssl x509 -inform PEM -in fd.pem -outform DER -out fd.der
To convert a certificate from DER to PEM format:
$ openssl x509 -inform DER -in fd.der -outform PEM -out fd.pem
The syntax is identical if you need to convert private keys between DER and
 PEM formats, but different commands are used: rsa for RSA
 keys, and dsa for DSA keys.

PKCS#12 (PFX) Conversion

One command is all that’s needed to convert the key and certificates in PEM
 format to PKCS#12:
$ openssl pkcs12 -export \
 -name "My Certificate" \
 -out fd.p12 \
 -inkey fd.key \
 -in fd.crt \
 -certfile fd-chain.crt
Enter Export Password: ****************
Verifying - Enter Export Password: ****************
The reverse conversion isn’t as straightforward. You can use a single command,
 but in that case you’ll get the entire contents in a single file:
$ openssl pkcs12 -in fd.p12 -out fd.pem -nodes
Now, you must open the file fd.pem in your favorite
 editor and manually split it into individual key, certificate, and intermediate
 certificate files. While you’re doing that, you’ll notice additional content
 provided before each component. For example:
Bag Attributes
 localKeyID: E3 11 E4 F1 2C ED 11 66 41 1B B8 83 35 D2 DD 07 FC DE 28 76
subject=/1.3.6.1.4.1.311.60.2.1.3=GB/2.5.4.15=Private Organization/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com
issuer=/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
BhMCVVMxEDAOBgNVBAgTB0FyaXpvbmExEzARBgNVBAcTClNjb3R0c2RhbGUxJTAj
[...]
This additional metadata is very handy to quickly identify the certificates.
 Obviously, you should ensure that the main certificate file contains the leaf
 server certificate and not something else. Further, you should also ensure that
 the intermediate certificates are provided in the correct order, with the
 issuing certificate following the signed one. If you see a self-signed root
 certificate, feel free to delete it or store it elsewhere; it shouldn’t go into
 the chain.
Warning
The final conversion output shouldn’t contain anything apart from the
 encoded key and certificates. Although some tools are smart enough to ignore
 what isn’t needed, other tools are not. Leaving extra data in PEM files
 might result in problems that are difficult to troubleshoot.

It’s possible to get OpenSSL to split the components for you, but doing so
 requires multiple invocations of the pkcs12 command
 (including typing the bundle password each time):
$ openssl pkcs12 -in fd.p12 -nocerts -out fd.key -nodes
$ openssl pkcs12 -in fd.p12 -nokeys -clcerts -out fd.crt
$ openssl pkcs12 -in fd.p12 -nokeys -cacerts -out fd-chain.crt
This approach won’t save you much work. You must still examine each file to
 ensure that it contains the correct contents and to remove the metadata.

PKCS#7 Conversion

To convert from PEM to PKCS#7, use the crl2pkcs7
 command:
$ openssl crl2pkcs7 -nocrl -out fd.p7b -certfile fd.crt -certfile fd-chain.crt
To convert from PKCS#7 to PEM, use the pkcs7 command with
 the -print_certs switch:
openssl pkcs7 -in fd.p7b -print_certs -out fd.pem
Similar to the conversion from PKCS#12, you must now edit the
 fd.pem file to clean it up and split it into the desired
 components.

Configuration

In this section, I discuss two topics relevant for TLS deployment. The first is cipher
 suite configuration, in which you specify which of the many suites available in TLS you
 wish to use for communication. This topic is important because virtually every program
 that uses OpenSSL reuses its suite configuration mechanism. That means that once you
 learn how to configure cipher suites for one program, you can reuse the same knowledge
 elsewhere. The second topic is the performance measurement of raw crypto
 operations.
Cipher Suite Selection

A common task in TLS server configuration is selecting which cipher suites are
 going to be supported. Programs that rely on OpenSSL usually adopt the same approach
 to suite configuration as OpenSSL does, simply passing through the configuration
 options. For example, in Apache httpd, the cipher suite
 configuration may look like this:
SSLHonorCipherOrder On
SSLCipherSuite "HIGH:!aNULL:@STRENGTH"
The first line controls cipher suite prioritization (and configures
 httpd to actively select suites). The second line controls
 which suites will be supported.
Coming up with a good suite configuration can be pretty time consuming, and there
 are a lot of details to consider. The best approach is to use the OpenSSL
 ciphers command to determine which suites are enabled with a
 particular configuration string.
Obtaining the List of Supported Suites

Before you do anything else, you should determine which suites are supported
 by your OpenSSL installation. To do this, invoke the ciphers
 command with the switch -v and the parameter
 ALL:COMPLEMENTOFALL (clearly, ALL does
 not actually mean “all”):
$ openssl ciphers -v 'ALL:COMPLEMENTOFALL'
ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384
ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384
ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1
[106 more lines...]
Tip
If you’re using OpenSSL 1.0.0 or later, you can also use the uppercase
 -V switch to request extra-verbose output. In this
 mode, the output will also contain suite IDs, which are always handy to
 have. For example, OpenSSL does not always use the RFC names for the suites;
 in such cases, you must use the IDs to cross-check.

In my case, there were 111 suites in the output. Each line contains
 information on one suite and the following information:
	Suite name

	Required minimum protocol version

	Key exchange algorithm

	Authentication algorithm

	Cipher algorithm and strength

	MAC (integrity) algorithm

	Export suite indicator

If you change the ciphers parameter to something other than
 ALL:COMPLEMENTOFALL, OpenSSL will list only the suites
 that match that configuration. For example, you can ask it to list only cipher
 suites that are based on RC4, as follows:
$ openssl ciphers -v 'RC4'
ECDHE-RSA-RC4-SHA SSLv3 Kx=ECDH Au=RSA Enc=RC4(128) Mac=SHA1
ECDHE-ECDSA-RC4-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=RC4(128) Mac=SHA1
AECDH-RC4-SHA SSLv3 Kx=ECDH Au=None Enc=RC4(128) Mac=SHA1
ADH-RC4-MD5 SSLv3 Kx=DH Au=None Enc=RC4(128) Mac=MD5
ECDH-RSA-RC4-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=RC4(128) Mac=SHA1
ECDH-ECDSA-RC4-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=RC4(128) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5
PSK-RC4-SHA SSLv3 Kx=PSK Au=PSK Enc=RC4(128) Mac=SHA1
EXP-ADH-RC4-MD5 SSLv3 Kx=DH(512) Au=None Enc=RC4(40) Mac=MD5 export
EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export
The output will contain all suites that match your requirements, even if
 they’re insecure. Clearly, you should choose your configuration strings
 carefully in order to activate only what’s secure. Further, the order in which
 suites appear in the output matters. When you configure your TLS server to
 actively select the cipher suite that will be used for a connection (which is
 the best practice and should always be done), the suites listed first are given
 priority.

Keywords

Cipher suite keywords are the basic building blocks of
 cipher suite configuration. Each suite name (e.g., RC4-SHA)
 is a keyword that selects exactly one suite. All other keywords select groups of
 suites according to some criteria. Keyword names are case-sensitive. Normally, I
 might direct you to the OpenSSL documentation for a comprehensive list of
 keywords, but it turns out that the ciphers documentation is not up to date;
 it’s missing some more recent additions. For that reason, I’ll try to document
 all the keywords in this section.
Group keywords are shortcuts that select frequently used cipher suites. For
 example, HIGH will select only very strong cipher
 suites.
Table 11.1. Group keywords
	Keyword	Meaning
	DEFAULT	The default cipher list. This is determined at compile time
 and, as of OpenSSL 1.0.0, is normally
 ALL:!aNULL:!eNULL. This must be the first
 cipher string specified.
	COMPLEMENTOFDEFAULT	The ciphers included in ALL, but not
 enabled by default. Currently, this is ADH.
 Note that this rule does not cover eNULL,
 which is not included by ALL (use
 COMPLEMENTOFALL if necessary).
	ALL	All cipher suites except the eNULL
 ciphers, which must be explicitly enabled.
	COMPLEMENTOFALL	The cipher suites not enabled by ALL,
 currently eNULL.
	HIGH	“High”-encryption cipher suites. This currently means those
 with key lengths larger than 128 bits, and some cipher suites
 with 128-bit keys.
	MEDIUM	“Medium”-encryption cipher suites, currently some of those
 using 128-bit encryption.
	LOW	“Low”-encryption cipher suites, currently those using 64- or
 56-bit encryption algorithms, but excluding export cipher
 suites. Insecure.
	EXP, EXPORT	Export encryption algorithms. Including 40- and 56-bit
 algorithms. Insecure.
	EXPORT40	40-bit export encryption algorithms. Insecure.
	EXPORT56	56-bit export encryption algorithms. Insecure.
	TLSv1, SSLv3, SSLv2	TLS 1.0, SSL 3, or SSL 2 cipher suites, respectively.

Digest keywords select suites that use a particular digest algorithm. For
 example, MD5 selects all suites that rely on MD5 for
 integrity validation.
Table 11.2. Digest algorithm keywords
	Keyword	Meaning
	MD5	Cipher suites using MD5. Obsolete and
 insecure.
	SHA, SHA1	Cipher suites using SHA1 and SHA2 (v1.0.0+).
	SHA256 (v1.0.0+)	Cipher suites using SHA256.
	SHA384 (v1.0.0+)	Cipher suites using SHA384.

Note
TLS 1.2 introduced support for authenticated encryption, which bundles
 encryption with integrity checks. When the so-called AEAD (Authenticated
 Encryption with Associated Data) suites are used, the protocol doesn’t need
 to provide additional integrity verification. For this reason, you won’t be
 able to use the digest algorithm keywords to select AEAD suites, even though
 their names include SHA256 and SHA384
 suffixes.

Authentication keywords select suites based on the authentication method they
 use. Today, virtually all public certificates use RSA for authentication. Over
 time, we will probably see a very slow rise in the use of Elliptic Curve (ECDSA)
 certificates.
Table 11.3. Authentication keywords
	Keyword	Meaning
	aDH	Cipher suites effectively using DH authentication, i.e., the
 certificates carry DH keys. Not
 implemented.
	aDSS, DSS	Cipher suites using DSS authentication, i.e., the
 certificates carry DSS keys.
	aECDH (v1.0.0+)	Cipher suites that use ECDH authentication.
	aECDSA (v1.0.0+)	Cipher suites that use ECDSA authentication.
	aNULL	Cipher suites offering no authentication. This is currently
 the anonymous DH algorithms. Insecure.
	aRSA	Cipher suites using RSA authentication, i.e., the
 certificates carry RSA keys.
	PSK	Cipher suites using PSK (Pre-Shared Key)
 authentication.
	SRP	Cipher suites using SRP (Secure Remote Password)
 authentication.

Key exchange keywords select suites based on the key exchange algorithm. When
 it comes to ephemeral Diffie-Hellman suites, OpenSSL is inconsistent in naming
 the suites and the keywords. In the suite names, ephemeral suites tend to have
 an E at the end of the key exchange algorithm (e.g.,
 ECDHE-RSA-RC4-SHA and
 DHE-RSA-AES256-SHA), but in the keywords the
 E is at the beginning (e.g., EECDH and
 EDH). To make things worse, some older suites do have
 E at the beginning of the key exchange algorithm (e.g.,
 EDH-RSA-DES-CBC-SHA).
Table 11.4. Key exchange keywords
	Keyword	Meaning
	ADH	Anonymous DH cipher suites. Insecure.
	AECDH (v1.0.0+)	Anonymous ECDH cipher suites. Insecure.

	DH	Cipher suites using DH (includes ephemeral and anonymous
 DH).
	ECDH (v1.0.0+)	Cipher suites using ECDH (includes ephemeral and anonymous
 ECDH).
	EDH (v1.0.0+)	Cipher suites using ephemeral DH key agreement.
	EECDH (v1.0.0+)	Cipher suites using ephemeral ECDH.
	kECDH (v1.0.0+)	Cipher suites using ECDH key agreement.
	kEDH	Cipher suites using ephemeral DH key agreements (includes
 anonymous DH).
	kEECDH (v1.0.0+)	Cipher suites using ephemeral ECDH key agreement (includes
 anonymous ECDH).
	kRSA, RSA	Cipher suites using RSA key exchange.

Cipher keywords select suites based on the cipher they use.
Table 11.5. Cipher keywords
	Keyword	Meaning
	3DES	Cipher suites using triple DES.
	AES	Cipher suites using AES.
	AESGCM (v1.0.0+)	Cipher suites using AES GCM.
	CAMELLIA	Cipher suites using Camellia.
	DES	Cipher suites using single DES. Obsolete and insecure.
	eNULL, NULL	Cipher suites that don’t use encryption. Insecure.
	IDEA	Cipher suites using IDEA.
	RC2	Cipher suites using RC2. Obsolete and
 insecure.
	RC4	Cipher suites using RC4. Insecure.
	SEED	Cipher suites using SEED.

What remains is a number of suites that do not fit into any other category.
 The bulk of them are related to the GOST standards, which are relevant for the
 countries that are part of the Commonwealth of Independent States, formed after
 the breakup of the Soviet Union.
Table 11.6. Miscellaneous keywords
	Keyword	Meaning
	@STRENGTH	Sorts the current cipher suite list in order of encryption
 algorithm key length.
	aGOST	Cipher suites using GOST R 34.10 (either 2001 or 94) for
 authentication. Requires a GOST-capable engine.
	aGOST01	Cipher suites using GOST R 34.10-2001 authentication.
	aGOST94	Cipher suites using GOST R 34.10-94 authentication. Obsolete. Use GOST R 34.10-2001
 instead.
	kGOST	Cipher suites using VKO 34.10 key exchange, specified in RFC
 4357.
	GOST94	Cipher suites using HMAC based on GOST R 34.11-94.
	GOST89MAC	Cipher suites using GOST 28147-89 MAC instead of
 HMAC.

Combining Keywords

In most cases, you’ll use keywords by themselves, but it’s also possible to
 combine them to select only suites that meet several requirements, by connecting
 two or more keywords with the + character. In the following
 example, we select suites that use RC4 and SHA:
$ openssl ciphers -v 'RC4+SHA'
ECDHE-RSA-RC4-SHA SSLv3 Kx=ECDH Au=RSA Enc=RC4(128) Mac=SHA1
ECDHE-ECDSA-RC4-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=RC4(128) Mac=SHA1
AECDH-RC4-SHA SSLv3 Kx=ECDH Au=None Enc=RC4(128) Mac=SHA1
ECDH-RSA-RC4-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=RC4(128) Mac=SHA1
ECDH-ECDSA-RC4-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=RC4(128) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
PSK-RC4-SHA SSLv3 Kx=PSK Au=PSK Enc=RC4(128) Mac=SHA1

Building Cipher Suite Lists

The key concept in building a cipher suite configuration is that of the
 current suite list. The list always starts empty,
 without any suites, but every keyword that you add to the configuration string
 will change the list in some way. By default, new suites are appended to the
 list. For example, to choose all suites that use RC4 and AES ciphers:
$ openssl ciphers -v 'RC4:AES'
The colon character is commonly used to separate keywords, but spaces and
 commas are equally acceptable. The following command produces the same output as
 the previous example:
$ openssl ciphers -v 'RC4 AES'

Keyword Modifiers

Keyword modifiers are characters you can place at the beginning of each
 keyword in order to change the default action (adding to the list) to something
 else. The following actions are supported:
	Append
	Add suites to the end of the list. If any of the suites are
 already on the list, they will remain in their present position.
 This is the default action, which is invoked when there is no
 modifier in front of the keyword.

	Delete (-)
	Remove all matching suites from the list, potentially allowing
 some other keyword to reintroduce them later.

	Permanently delete (!)
	Remove all matching suites from the list and prevent them from
 being added later by another keyword. This modifier is useful to
 specify all the suites you never want to use, making further
 selection easier and preventing mistakes.

	Move to the end (+)
	Move all matching suites to the end of the list. Works only on
 existing suites; never adds new suites to the list. This modifier is
 useful if you want to keep some weaker suites enabled but prefer the
 stronger ones. For example, the string RC4:+MD5
 enables all RC4 suites, but pushes the MD5-based ones to the
 end.

Sorting

The @STRENGTH keyword is unlike other keywords (I
 assume that’s why it has the @ in the name): It will not
 introduce or remove any suites, but it will sort them in order of descending
 cipher strength. Automatic sorting is an interesting idea, but it makes
 sense only in a perfect world in which cipher suites can actually be
 compared by cipher strength.
Take, for example, the following cipher suite configuration:
$ openssl ciphers -v 'DES-CBC-SHA:DES-CBC3-SHA:RC4-SHA:AES256-SHA:@STRENGTH'
AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1
DES-CBC3-SHA SSLv3 Kx=RSA Au=RSA Enc=3DES(168) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
DES-CBC-SHA SSLv3 Kx=RSA Au=RSA Enc=DES(56) Mac=SHA1
In theory, the output is sorted in order of strength. In practice, you’ll
 often want better control of the suite order:
	For example, AES256-SHA (a CBC suite) is
 vulnerable to the BEAST attack when used with TLS 1.0 and earlier
 protocols. If you want to mitigate the BEAST attack server-side,
 you’ll prefer to prioritize the RC4-SHA suite,
 which isn’t vulnerable to this problem.

	3DES is only nominally rated at 168 bits; a so-called
 meet-in-the-middle attack reduces its
 strength to 112 bits,[523] and further issues make the strength as low as 108 bits.[524] This fact makes DES-CBC3-SHA inferior
 to 128-bit cipher suites. Strictly speaking, treating 3DES as a
 168-bit cipher is a bug in OpenSSL that might be fixed in a future
 release.

Handling Errors

There are two types of errors you might experience while working on your
 configuration. The first is a result of a typo or an attempt to use a keyword
 that does not exist:
$ openssl ciphers -v '@HIGH'
Error in cipher list
140460843755168:error:140E6118:SSL routines:SSL_CIPHER_PROCESS_RULESTR:invalid command:ssl_ciph.c:1317:
The output is cryptic, but it does contain an error message.
Another possibility is that you end up with an empty list of cipher suites, in
 which case you might see something similar to the following:
$ openssl ciphers -v 'SHA512'
Error in cipher list
140202299557536:error:1410D0B9:SSL routines:SSL_CTX_set_cipher_list:no cipher match:ssl_lib.c:1312:

Putting It All Together

To demonstrate how various cipher suite configuration features come together,
 I will present one complete real-life use case. Please bear in mind that what
 follows is just an example. Because there are usually many aspects to consider
 when deciding on the configuration, there isn’t such a thing as a single perfect
 configuration.
For that reason, before you can start to work on your configuration, you
 should have a clear idea of what you wish to achieve. In my case, I wish to have
 a reasonably secure and efficient configuration, which I define to mean the
 following:
	Use only strong ciphers of 128 effective bits and up (this excludes
 3DES).

	Use only suites that provide strong authentication (this excludes
 anonymous and export suites).

	Do not use any suites that rely on weak primitives (e.g., MD5).

	Implement robust support for forward secrecy, no matter what keys and
 protocols are used. With this requirement comes a slight performance
 penalty, because I won’t be able to use the fast RSA key exchange. I’ll
 minimize the penalty by prioritizing ECDHE, which is substantially
 faster than DHE.

	Prefer ECDSA over RSA. This requirement makes sense only in dual-key
 deployments, in which we want to use the faster ECDSA operations
 wherever possible, but fall back to RSA when talking to clients that do
 not yet support ECDSA.

	With TLS 1.2 clients, prefer AES GCM suites, which provide the best
 security TLS can offer.

	Because RC4 was recently found to be weaker than previously thought,[525] we want to push it to the end of the list. That’s almost as
 good as disabling it. Although BEAST might still be a problem in some
 situations, I’ll assume that it’s been mitigated client-side.

Usually the best approach is to start by permanently eliminating all the
 components and suites that you don’t wish to use; this reduces clutter and
 ensures that the undesired suites aren’t introduced back into the configuration
 by mistake.
The weak suites can be identified with the following cipher strings:
	aNULL; no authentication

	eNULL; no encryption

	LOW; low-strength suites

	3DES; effective strength of 108 bits

	MD5; suites that use MD5

	EXP; obsolete export suites

To reduce the number of suites displayed, I’m going to eliminate all DSA, PSK,
 SRP, and ECDH suites, because they’re used only very rarely. I am also removing
 the IDEA and SEED ciphers, which are obsolete but might still be supported by
 OpenSSL. In my configuration, I won’t use CAMELLIA either, because it’s slower
 and not as well supported as AES (e.g., no GCM or ECDHE variants in
 practice).
!aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
Now we can focus on what we want to achieve. Because forward secrecy is our
 priority, we can start with the kEECDH and
 kEDH keywords:
kEECDH kEDH !aNULL !eNULL !LOW !3DES !MD5 !EXP !kEDH !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
If you test this configuration, you’ll find that RSA suites are listed first,
 but I said I wanted ECDSA first:
ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384
ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384
ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1
ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1
ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD
[...]
In order to fix this, I’ll put ECDSA suites first, by placing
 kEECDH+ECDSA at the beginning of the
 configuration:
kEECDH+ECDSA kEECDH kEDH !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
The next problem is that older suites (SSL 3) are mixed with newer suites (TLS
 1.2). In order to maximize security, I want all TLS 1.2 clients to always
 negotiate TLS 1.2 suites. To push older suites to the end of the list, I’ll use
 the +SHA keyword (TLS 1.2 suites are all using either SHA256
 or SHA384, so they won’t match):
kEECDH+ECDSA kEECDH kEDH +SHA !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
At this point, I’m mostly done. I only need to add the remaining secure suites
 to the end of the list; the HIGH keyword will achieve this.
 In addition, I’m also going to make sure RC4 suites are last, using
 +RC4 (to push existing RC4 suites to the end of the list)
 and RC4 (to add to the list any remaining RC4 suites that are
 not already on it):
kEECDH+ECDSA kEECDH kEDH HIGH +SHA +RC4 RC4 !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
Let’s examine the entire final output, which consists of 28 suites. In the
 first group are the TLS 1.2 suites:
ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA384
ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD
ECDHE-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA256
ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA384
ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AESGCM(128) Mac=AEAD
ECDHE-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA256
DHE-RSA-AES256-GCM-SHA384 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(256) Mac=AEAD
DHE-RSA-AES256-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(256) Mac=SHA256
DHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AESGCM(128) Mac=AEAD
DHE-RSA-AES128-SHA256 TLSv1.2 Kx=DH Au=RSA Enc=AES(128) Mac=SHA256
AES256-GCM-SHA384 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(256) Mac=AEAD
AES256-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA256
AES128-GCM-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AESGCM(128) Mac=AEAD
AES128-SHA256 TLSv1.2 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA256
ECDHE suites are first, followed by DHE suites, followed by all other TLS 1.2
 suites. Within each group, ECDSA and GCM have priority.
In the second group are the suites that are going to be used by TLS 1.0
 clients, using similar priorities as in the first group:
ECDHE-ECDSA-AES256-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(256) Mac=SHA1
ECDHE-ECDSA-AES128-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(128) Mac=SHA1
ECDHE-RSA-AES256-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(256) Mac=SHA1
ECDHE-RSA-AES128-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(128) Mac=SHA1
DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1
DHE-RSA-AES128-SHA SSLv3 Kx=DH Au=RSA Enc=AES(128) Mac=SHA1
DHE-RSA-SEED-SHA SSLv3 Kx=DH Au=RSA Enc=SEED(128) Mac=SHA1
AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1
AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1
Finally, the RC4 suites are at the end:
ECDHE-ECDSA-RC4-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=RC4(128) Mac=SHA1
ECDHE-RSA-RC4-SHA SSLv3 Kx=ECDH Au=RSA Enc=RC4(128) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1

Recommended Configuration

The configuration in the previous section was designed to use as an example of
 cipher suite configuration using OpenSSL suite keywords, but it’s not the best
 setup you could have. In fact, there isn’t any one configuration that will
 satisfy everyone. In this section, I’ll give you several configurations to
 choose from based on your preferences and risk assessment.
The design principles for all configurations here are essentially the same as
 those from the previous section, but I am going to make two changes to achieve
 better performance. First, I am going to put 128-bit suites on top of the list.
 Although 256-bit suites provide some increase in security, for most sites the
 increase is not meaningful and yet still comes with the performance penalty.
 Second, I am going to prefer HMAC-SHA over HMAC-SHA256 and HMAC-SHA384 suites.
 The latter two are much slower but also don’t provide a meaningful increase in
 security.
In addition, I am going to change my approach from configuring suites using
 keywords to using suite names directly. I think that keywords, conceptually, are
 not a bad idea: you specify your security requirements and the library does the
 rest, without you having to know a lot about the suites that are going to be
 used. Unfortunately, this approach no longer works well in practice, as we’ve
 become quite picky about what suites we wish to have enabled and in what
 order.
Using suite names in a configuration is also easier: you just list the suites
 you want to use. And, when you’re looking at someone’s configuration, you now
 know exactly what suites are used without having to run the settings through
 OpenSSL.
The following is my default starting configuration, designed to offer strong
 security as well as good performance:
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES256-SHA384
DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES128-SHA
DHE-RSA-AES256-SHA
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-SHA256
EDH-RSA-DES-CBC3-SHA
This configuration uses only suites that support forward secrecy and provide
 strong encryption. Most modern browsers and other clients will be able to
 connect, but some very old clients might not. As an example, older Internet
 Explorer versions running on Windows XP will fail.
If you really need to provide support for a very old range of
 clients—and only then—consider adding the following suites to the
 end of the list:
AES128-SHA
AES256-SHA
DES-CBC3-SHA
ECDHE-RSA-RC4-SHA
RC4-SHA
Most of these legacy suites use the RSA key exchange, which means that they
 don’t provide forward secrecy. The AES cipher is preferred, but 3DES and (the
 insecure) RC4 are also supported for maximum compatibility with as many clients
 as possible. If the use of RC4 can’t be avoided, the preference is to use the
 ECDHE suite that provides forward secrecy.

Performance

As you’re probably aware, computation speed is a significant limiting factor for
 any cryptographic operation. OpenSSL comes with a built-in benchmarking tool that
 you can use to get an idea about a system’s capabilities and limits. You can invoke
 the benchmark using the speed command.
If you invoke speed without any parameters, OpenSSL produces a
 lot of output, little of which will be of interest. A better approach is to test
 only those algorithms that are directly relevant to you. For example, for usage in a
 secure web server, you might care about RC4, AES, RSA, ECDH, and SHA
 algorithms:
$ openssl speed rc4 aes rsa ecdh sha
There are three relevant parts to the output. The first part consists of the
 OpenSSL version number and compile-time configuration. This information is useful if
 you’re testing several different versions of OpenSSL with varying compile-time
 options:
OpenSSL 0.9.8k 25 Mar 2009
built on: Wed May 23 00:02:00 UTC 2012
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) blowfish(ptr2)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -O3 -Wa,--noexecstack -g -Wall -DMD32_REG_T=int -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM
available timing options: TIMES TIMEB HZ=100 [sysconf value]
timing function used: times
The 'numbers' are in 1000s of bytes per second processed.
The second part contains symmetric cryptography benchmarks (i.e., hash functions
 and private cryptography):
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
sha1 29275.44k 85281.86k 192290.28k 280526.68k 327553.12k
rc4 160087.81k 172435.03k 174264.75k 176521.50k 176700.62k
aes-128 cbc 90345.06k 140108.84k 170027.92k 179704.12k 182388.44k
aes-192 cbc 104770.95k 134601.12k 148900.05k 152662.30k 153941.11k
aes-256 cbc 95868.62k 116430.41k 124498.19k 127007.85k 127430.81k
sha256 23354.37k 54220.61k 99784.35k 126494.48k 138266.71k
sha512 16022.98k 64657.88k 113304.06k 178301.77k 214539.99k
Finally, the third part contains the asymmetric (public) cryptography
 benchmarks:
 sign verify sign/s verify/s
rsa 512 bits 0.000120s 0.000011s 8324.9 90730.0
rsa 1024 bits 0.000569s 0.000031s 1757.0 31897.1
rsa 2048 bits 0.003606s 0.000102s 277.3 9762.0
rsa 4096 bits 0.024072s 0.000376s 41.5 2657.4
 op op/s
 160 bit ecdh (secp160r1) 0.0003s 2890.2
 192 bit ecdh (nistp192) 0.0006s 1702.9
 224 bit ecdh (nistp224) 0.0006s 1743.5
 256 bit ecdh (nistp256) 0.0007s 1513.3
 384 bit ecdh (nistp384) 0.0015s 689.6
 521 bit ecdh (nistp521) 0.0029s 340.3
 163 bit ecdh (nistk163) 0.0009s 1126.2
 233 bit ecdh (nistk233) 0.0012s 818.5
 283 bit ecdh (nistk283) 0.0028s 360.2
 409 bit ecdh (nistk409) 0.0060s 166.3
 571 bit ecdh (nistk571) 0.0130s 76.8
 163 bit ecdh (nistb163) 0.0009s 1061.3
 233 bit ecdh (nistb233) 0.0013s 755.2
 283 bit ecdh (nistb283) 0.0030s 329.4
 409 bit ecdh (nistb409) 0.0067s 149.7
 571 bit ecdh (nistb571) 0.0146s 68.4
What’s this output useful for? You should be able to compare how compile-time
 options affect speed or how different versions of OpenSSL compare on the same
 platform. For example, the previous results are from a real-life server that’s using
 the OpenSSL 0.9.8k (patched by the distribution vendor). I’m considering moving to
 OpenSSL 1.0.1h because I wish to support TLS 1.1 and TLS 1.2; will there be any
 performance impact? I’ve downloaded and compiled OpenSSL 1.0.1h for a test. Let’s
 see:
$./openssl-1.0.1h speed rsa
[...]
OpenSSL 1.0.1h 5 Jun 2014
built on: Thu Jul 3 18:30:06 BST 2014
options:bn(64,64) rc4(8x,int) des(idx,cisc,16,int) aes(partial) idea(int) blowfish(idx)
compiler: gcc -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -Wa,--noexecstack -m64 -DL_ENDIAN -DTERMIO -O3 -Wall -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM -DGHASH_ASM
 sign verify sign/s verify/s
rsa 512 bits 0.000102s 0.000008s 9818.0 133081.7
rsa 1024 bits 0.000326s 0.000020s 3067.2 50086.9
rsa 2048 bits 0.002209s 0.000068s 452.8 14693.6
rsa 4096 bits 0.015748s 0.000255s 63.5 3919.4
Apparently, OpenSSL 1.0.1h is almost twice as fast on this server for my use case
 (2,048-bit RSA key): The performance went from 277 signatures/s to 450 signatures/s.
 This means that I’ll get better performance if I upgrade. Always good news!
Using the benchmark results to estimate deployment performance is not
 straightforward because of the great number of factors that influence performance in
 real life. Further, many of those factors lie outside TLS (e.g., HTTP keep alive
 settings, caching, etc.). At best, you can use these numbers only for a rough
 estimate.
But before you can do that, you need to consider something else. By default, the
 speed command will use only a single process. Most servers
 have multiple cores, so to find out how many TLS operations are supported by the
 entire server, you must instruct speed to use several instances
 in parallel. You can achieve this with the -multi switch. My
 server has four cores, so that’s what I’m going to use:
$ openssl speed -multi 4 rsa
[...]
OpenSSL 0.9.8k 25 Mar 2009
built on: Wed May 23 00:02:00 UTC 2012
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) blowfish(ptr2)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -O3 -Wa,--noexecstack -g -Wall -DMD32_REG_T=int -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM
available timing options: TIMES TIMEB HZ=100 [sysconf value]
timing function used:
 sign verify sign/s verify/s
rsa 512 bits 0.000030s 0.000003s 33264.5 363636.4
rsa 1024 bits 0.000143s 0.000008s 6977.9 125000.0
rsa 2048 bits 0.000917s 0.000027s 1090.7 37068.1
rsa 4096 bits 0.006123s 0.000094s 163.3 10652.6
As expected, the performance is almost four times better than before. I’m again
 looking at how many RSA signatures can be executed per second, because this is the
 most CPU-intensive cryptographic operation performed on a server and is thus always
 the first bottleneck. The result of 1,090 signatures/second tells us that this
 server can handle about 1,000 brand-new TLS connections per second. In my case,
 that’s sufficient—with a very healthy safety margin. Because I also have session
 resumption enabled on the server, I know that I can support many more than 1,000 TLS
 connections per second. I wish I had enough traffic on that server to worry about
 the performance of TLS.
Another reason why you shouldn’t believe the output of the
 speed command too much is because it doesn’t use the fastest
 available cipher implementations by default. In some ways, the default output is a
 lie. For example, on servers that support the AES-NI instruction set to accelerate
 AES computations, this feature won’t be used by default when testing:
$ openssl speed aes-128-cbc
[...]
The 'numbers' are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
aes-128 cbc 67546.70k 74183.00k 69278.82k 155942.87k 156486.38k
To activate hardware acceleration, you have to use the -evp
 switch on the command line:
$ openssl speed -evp aes-128-cbc
[..]
The 'numbers' are in 1000s of bytes per second processed.
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
aes-128-cbc 188523.36k 223595.37k 229763.58k 203658.58k 206452.14k

Creating a Private Certification Authority

If you want to set up your own CA, everything you need is already included in OpenSSL.
 The user interface is purely command line–based and thus not very user friendly, but
 that’s possibly for the better. Going through the process is very educational, because
 it forces you to think about every aspect, even the smallest details.
The educational aspect of setting a private CA is the main reason why I would
 recommend doing it, but there are others. An OpenSSL-based CA, crude as it might be, can
 well serve the needs of an individual or a small group. For example, it’s much better to
 use a private CA in a development environment than to use self-signed certificates
 everywhere. Similarly, client certificates—which provide two-factor
 authentication—can significantly increase the security of your sensitive web
 applications.
The biggest challenge in running a private CA is not setting everything up but keeping
 it secure. For example, the root key must be kept offline because all security depends
 on it. On the other hand, CRLs and OCSP responder certificates must be refreshed on a
 regular basis, which requires bringing the root online.
Note
Before you begin to properly read this section, I recommend first going through
 Chapter 3, Public-Key Infrastructure, which will give you a good background in certificate
 structure and the operation of certification authorities.

Features and Limitations

In the rest of this section, we’re going to create a private CA that’s similar in
 structure to public CAs. There’s going to be one root CA from which other
 subordinate CAs can be created. We’ll provide revocation information via CRLs and
 OCSP responders. To keep the root CA offline, OCSP responders are going to have
 their own identities. This isn’t the simplest private CA you could have, but it’s
 one that can be secured properly. As a bonus, the subordinate CA will be
 technically constrained, which means that it will be
 allowed to issue certificates only for the allowed hostnames.
After the setup is complete, the root certificate will have to be securely
 distributed to all intended clients. Once the root is in place, you can begin
 issuing client and server certificates. The main limitation of this setup is that
 the OCSP responder is chiefly designed for testing and can be used only for lighter
 loads.

Creating a Root CA

Creating a new CA involves several steps: configuration, creation of a directory
 structure and initialization of the key files, and finally generation of the root
 key and certificate. This section describes the process as well as the common CA
 operations.
Root CA Configuration

Before we can actually create a CA, we need to prepare a configuration file
 that will tell OpenSSL exactly how we want things set up. Configuration files
 aren’t needed most of the time, during normal usage, but they are essential when
 it comes to complex operations, such as root CA creation. OpenSSL configuration
 files are powerful; before you proceed I suggest that you familiarize yourself
 with their capabilities (man config on the command
 line).
The first part of the configuration file contains some basic CA information,
 such as the name and the base URL, and the components of the CA’s distinguished
 name. Because the syntax is flexible, information needs to be provided only
 once:
[default]
name = root-ca
domain_suffix = example.com
aia_url = http://$name.$domain_suffix/$name.crt
crl_url = http://$name.$domain_suffix/$name.crl
ocsp_url = http://ocsp.$name.$domain_suffix:9080
default_ca = ca_default
name_opt = utf8,esc_ctrl,multiline,lname,align

[ca_dn]
countryName = "GB"
organizationName = "Example"
commonName = "Root CA"
The second part directly controls the CA’s operation. For full information on
 each setting, consult the documentation for the ca command
 (man ca on the command line). Most of the settings are
 self-explanatory; we mostly tell OpenSSL where we want to keep our files.
 Because this root CA is going to be used only for the issuance of subordinate
 CAs, I chose to have the certificates valid for 10 years. For the signature
 algorithm, the secure SHA256 is used by default.
The default policy (policy_c_o_match) is configured so that
 all certificates issued from this CA have the countryName and
 organizationName fields that match that of the CA. This
 wouldn’t be normally done by a public CA, but it’s appropriate for a private
 CA:
[ca_default]
home = .
database = $home/db/index
serial = $home/db/serial
crlnumber = $home/db/crlnumber
certificate = $home/$name.crt
private_key = $home/private/$name.key
RANDFILE = $home/private/random
new_certs_dir = $home/certs
unique_subject = no
copy_extensions = none
default_days = 3650
default_crl_days = 365
default_md = sha256
policy = policy_c_o_match

[policy_c_o_match]
countryName = match
stateOrProvinceName = optional
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional
The third part contains the configuration for the req
 command, which is going to be used only once, during the creation of the
 self-signed root certificate. The most important parts are in the extensions:
 the basicConstraint extension indicates that the certificate
 is a CA, and the keyUsage contains the appropriate settings
 for this scenario:
[req]
default_bits = 4096
encrypt_key = yes
default_md = sha256
utf8 = yes
string_mask = utf8only
prompt = no
distinguished_name = ca_dn
req_extensions = ca_ext

[ca_ext]
basicConstraints = critical,CA:true
keyUsage = critical,keyCertSign,cRLSign
subjectKeyIdentifier = hash
The fourth part of the configuration file contains information that will be
 used during the construction of certificates issued by the root CA. All
 certificates will be CAs, as indicated by the
 basicConstraints extension, but we set
 pathlen to zero, which means that further subordinate CAs
 are not allowed.
All subordinate CAs
 are going to be constrained, which means that the certificates they issue will
 be valid only for a subset of domain names and restricted uses. First, the
 extendedKeyUsage extension specifies only
 clientAuth and serverAuth, which is
 TLS client and server authentication. Second, the
 nameConstraints extension limits the allowed hostnames
 only to example.com and example.org domain names. In
 theory, this setup enables you to give control over the subordinate CAs to
 someone else but still be safe in knowing that they can’t issue certificates for
 arbitrary hostnames. If you wanted, you could restrict each subordinate CA to a
 small domain namespace. The requirement to exclude the two IP address ranges
 comes from CA/Browser Forum’s Baseline Requirements, which have a definition for
 technically constrained subordinate CAs.[526]
In practice, name constraints are not entirely practical, because some major
 platforms don’t currently recognize the nameConstraints
 extension. If you mark this extension as critical, such platforms will reject
 your certificates. You won’t have such problems if you don’t mark it as critical
 (as in the example), but then some other platforms won’t enforce it.
[sub_ca_ext]
authorityInfoAccess = @issuer_info
authorityKeyIdentifier = keyid:always
basicConstraints = critical,CA:true,pathlen:0
crlDistributionPoints = @crl_info
extendedKeyUsage = clientAuth,serverAuth
keyUsage = critical,keyCertSign,cRLSign
nameConstraints = @name_constraints
subjectKeyIdentifier = hash

[crl_info]
URI.0 = $crl_url

[issuer_info]
caIssuers;URI.0 = $aia_url
OCSP;URI.0 = $ocsp_url

[name_constraints]
permitted;DNS.0=example.com
permitted;DNS.1=example.org
excluded;IP.0=0.0.0.0/0.0.0.0
excluded;IP.1=0:0:0:0:0:0:0:0/0:0:0:0:0:0:0:0
The fifth and final part of the configuration specifies the extensions to be
 used with the certificate for OCSP response signing. In order to be able to run
 an OCSP responder, we generate a special certificate and delegate the OCSP
 signing capability to it. This certificate is not a CA, which you can see from
 the extensions:
[ocsp_ext]
authorityKeyIdentifier = keyid:always
basicConstraints = critical,CA:false
extendedKeyUsage = OCSPSigning
keyUsage = critical,digitalSignature
subjectKeyIdentifier = hash

Root CA Directory Structure

The next step is to create the directory structure specified in the previous
 section and initialize some of the files that will be used during the CA
 operation:
$ mkdir root-ca
$ cd root-ca
$ mkdir certs db private
$ chmod 700 private
$ touch db/index
$ echo 1001 > db/serial
$ echo 1001 > db/crlnumber
The following subdirectories are used:
	certs/
	Certificate storage; new certificates will be placed here as they
 are issued.

	db/
	This directory is used for the certificate database (index) and
 the files that hold the next certificate and CRL serial numbers.
 OpenSSL will create some additional files as needed.

	private/
	This directory will store the private keys, one for the CA and the
 other for the OCSP responder. It’s important that no other user has
 access to it. (In fact, if you’re going to be serious about the CA,
 the machine on which the root material is stored should have only a
 minimal number of user accounts.)

Root CA Generation

We take two steps to create the root CA. First, we generate the key and the
 CSR. All the necessary information will be picked up from the configuration file
 when we use the -﻿config switch:
$ openssl req -new \
 -config root-ca.conf \
 -out root-ca.csr \
 -keyout private/root-ca.key
In the second step, we create a self-signed certificate. The
 -extensions switch points to the
 ca_ext section in the configuration file, which activates
 the extensions that are appropriate for a root CA:
$ openssl ca -selfsign \
 -config root-ca.conf \
 -in root-ca.csr \
 -out root-ca.crt \
 -extensions ca_ext

Structure of the Database File

The database in db/index is a plaintext file that contains
 certificate information, one certificate per line. Immediately after the root CA
 creation, it should contain only one line:
V 240706115345Z 1001 unknown /C=GB/O=Example/CN=Root CA
Each line contains six values separated by tabs:
	Status flag (V for valid, R for
 revoked, E for expired)

	Expiration date (in YYMMDDHHMMSSZ format)

	Revocation date or empty if not revoked

	Serial number (hexadecimal)

	File location or unknown if not known

	Distinguished name

Root CA Operations

To generate a CRL from the new CA, use the -gencrl switch
 of the ca command:
$ openssl ca -gencrl \
 -config root-ca.conf \
 -out root-ca.crl
To issue a certificate, invoke the ca command with the
 desired parameters. It’s important that the -extensions switch points to the
 correct section in the configuration file (e.g., you don’t want to create
 another root CA).
$ openssl ca \
 -config root-ca.conf \
 -in sub-ca.csr \
 -out sub-ca.crt \
 -extensions sub_ca_ext
To revoke a certificate, use the -revoke switch of the
 ca command; you’ll need to have a copy of the certificate
 you wish to revoke. Because all certificates are stored in the
 certs/ directory, you only need to know the serial
 number. If you have a distinguished name, you can look for the serial number in
 the database.
Choose the correct reason for the value in the -crl_reason
 switch. The value can be one of the following: unspecified,
 keyCompromise, CACompromise,
 affiliationChanged, superseded,
 cessationOfOperation, certificateHold,
 and removeFromCRL.
$ openssl ca \
 -config root-ca.conf \
 -revoke certs/1002.pem \
 -crl_reason keyCompromise

Create a Certificate for OCSP Signing

First, we create a key and CSR for the OCSP responder. These two operations
 are done as for any non-CA certificate, which is why we don’t specify a
 configuration file:
$ openssl req -new \
 -newkey rsa:2048 \
 -subj "/C=GB/O=Example/CN=OCSP Root Responder" \
 -keyout private/root-ocsp.key \
 -out root-ocsp.csr
Second, use the root CA to issue a certificate. The value of the
 -extensions switch specifies ocsp_ext,
 which ensures that extensions appropriate for OCSP signing are set. I reduced
 the lifetime of the new certificate to 365 days (from the default of 3,650).
 Because these OCSP certificates don’t contain revocation information, they can’t
 be revoked. For that reason, you want to keep the lifetime as short as possible.
 A good choice is 30 days, provided you are prepared to generate a fresh
 certificate that often:
$ openssl ca \
 -config root-ca.conf \
 -in root-ocsp.csr \
 -out root-ocsp.crt \
 -extensions ocsp_ext \
 -days 30
Now you have everything ready to start the OCSP responder. For testing, you
 can do it from the same machine on which the root CA resides. However, for
 production you must move the OCSP responder key and certificate
 elsewhere:
$ openssl ocsp \
 -port 9080
 -index db/index \
 -rsigner root-ocsp.crt \
 -rkey private/root-ocsp.key \
 -CA root-ca.crt \
 -text
You can test the operation of the OCSP responder using the following command
 line:
$ openssl ocsp \
 -issuer root-ca.crt \
 -CAfile root-ca.crt \
 -cert root-ocsp.crt \
 -url http://127.0.0.1:9080

In the output, verify OK means that the signatures were
 correctly verified, and good means that the certificate
 hasn’t been revoked.
Response verify OK
root-ocsp.crt: good
 This Update: Jul 9 18:45:34 2014 GMT

Creating a Subordinate CA

The process of subordinate CA generation largely mirrors the root CA process. In
 this section, I will only highlight the differences where appropriate. For
 everything else, refer to the previous section.
Subordinate CA Configuration

To generate a configuration file for the subordinate CA, start with the file
 we used for the root CA and make the changes listed here. We’ll change the name
 to sub-ca and use a different distinguished name. We’ll put
 the OCSP responder on a different port, but only because the
 ocsp command doesn’t understand virtual hosts. If you
 used a proper web server for the OCSP responder, you could avoid using special
 ports altogether. The default lifetime of new certificates will be 365 days, and
 we’ll generate a fresh CRL once every 30 days.
The change of copy_extensions to copy
 means that extensions from the CSR will be copied into the certificate, but only
 if they are not already set in our configuration. With this change, whoever is
 preparing the CSR can put the required alternative names in it, and the
 information from there will be picked up and placed in the certificate. This
 feature is somewhat dangerous (you’re allowing someone else to have limited
 direct control over what goes into a certificate), but I think it’s fine for
 smaller environments:
[default]
name = sub-ca
crl_url = http://$name.$domain_suffix:9081/$name.crl

[ca_dn]
countryName = "GB"
organizationName = "Example"
commonName = "Sub CA"

[ca_default]
default_days = 365
default_crl_days = 30
copy_extensions = copy
At the end of the configuration file, we’ll add two new profiles, one each for
 client and server certificates. The only difference is in the
 keyUsage and extendedKeyUsage
 extensions. Note that we specify the basicConstraints
 extension but set it to false. We’re doing this because we’re
 copying extensions from the CSR. If we left this extension out, we might end up
 using one specified in the CSR:
[server_ext]
authorityInfoAccess = @issuer_info
authorityKeyIdentifier = keyid:always
basicConstraints = critical,CA:false
crlDistributionPoints = @crl_info
extendedKeyUsage = clientAuth,serverAuth
keyUsage = critical,digitalSignature,keyEncipherment
subjectKeyIdentifier = hash

[client_ext]
authorityInfoAccess = @issuer_info
authorityKeyIdentifier = keyid:always
basicConstraints = critical,CA:false
crlDistributionPoints = @crl_info
extendedKeyUsage = clientAuth
keyUsage = critical,digitalSignature
subjectKeyIdentifier = hash
After you’re happy with the configuration file, create a directory structure
 following the same process as for the root CA. Just use a different directory
 name, for example, sub-ca.

Subordinate CA Generation

As before, we take two steps to create the subordinate CA. First, we generate
 the key and the CSR. All the necessary information will be picked up from the
 configuration file when we use the -config switch.
$ openssl req -new \
 -config sub-ca.conf \
 -out sub-ca.csr \
 -keyout private/sub-ca.key
In the second step, we get the root CA to issue a certificate. The
 -extensions switch points to the
 sub_ext section in the configuration file, which
 activates the extensions that are appropriate for the subordinate CA.
$ openssl ca \
 -config root-ca.conf \
 -in sub-ca.csr \
 -out sub-ca.crt \
 -extensions sub_ca_ext

Subordinate CA Operations

To issue a server certificate, process a CSR while specifying
 server_ext in the -extensions
 switch:
$ openssl ca \
 -config sub-ca.conf \
 -in server.csr \
 -out server.crt \
 -extensions server_ext
To issue a client certificate, process a CSR while specifying
 client_ext in the -extensions
 switch:
$ openssl ca \
 -config sub-ca.conf \
 -in client.csr \
 -out client.crt \
 -extensions client_ext
Note
When a new certificate is requested, all its information will be presented
 to you for verification before the operation is completed. You should always
 ensure that everything is in order, but especially if you’re working with a
 CSR that someone else prepared. Pay special attention to the certificate
 distinguished name and the basicConstraints and
 subjectAlternativeName extensions.

CRL generation and certificate revocation are the same as for the root CA. The
 only thing different about the OCSP responder is the port; the subordinate CA
 should use 9081 instead. It’s recommended that the responder
 uses its own certificate, which avoids keeping the subordinate CA on a public
 server.

[515] The letters “eay” in the name SSLeay are Eric A. Young’s initials.

[516] Chrome: From NSS to OpenSSL (Chrome design document, retrieved 10 July
 2014)

[517] Win32
 OpenSSL (Shining Light Productions, retrieved 3 July 2014)

[518] Apache 2.4 VC11
 Binaries and Modules Win32 and Win64 (Apache Lounge, retrieved 3 July
 2014)

[519] “openssl” source package in Precise (Ubuntu, retrieved 3
 July 2014)

[520] compiler hardening in Ubuntu and Debian (Kees Cook, 3
 February 2014)

[521] A small number of organizations will have very strict security
 requirements that require the private keys to be protected at
 any cost. For them, the solution is to invest in a
 Hardware Security Module (HSM), which
 is a type of product specifically designed to make key
 extraction impossible, even with physical access to the server.
 To make this work, HSMs not only generate and store keys, but
 also perform all necessary operations (e.g., signature
 generation). HSMs are typically very expensive.

[522] RFC 2985: PKCS
 #9: Selected Object Classes and Attribute Types Version 2.0
 (M. Nystrom and B. Kaliski, November 2000)

[523] Cryptography/Meet In The Middle Attack
 (Wikibooks, retrieved 31 March 2014)

[524] Attacking Triple Encryption (Stefan Lucks,
 1998)

[525] On the
 Security of RC4 in TLS and WPA (AlFardan et al., 13
 March 2013)

[526] Baseline Requirements (CA/Browser Forum, retrieved 9 July
 2014)

12 Testing with OpenSSL

Due to the large number of protocol features and implementation quirks, it’s sometimes
 difficult to determine the exact configuration and features of secure servers. Although many
 tools exist for this purpose, it’s often difficult to know exactly how they’re implemented,
 and that sometimes makes it difficult to fully trust their results. Even though I spent
 years testing secure servers and have access to good tools, when I really want to understand
 what is going on, I resort to using OpenSSL and Wireshark. I am not saying that you should
 use OpenSSL for everyday testing; on the contrary, you should find an automated tool that
 you trust. But, when you really need to be certain of something, the only way is to get your
 hands dirty with OpenSSL.
Connecting to SSL Services

OpenSSL comes with a client tool that you can use to connect to a secure server. The
 tool is similar to telnet or nc, in the sense that
 it handles the SSL/TLS layer but allows you to fully control the layer that comes
 next.
To connect to a server, you need to supply a hostname and a port. For example:
$ openssl s_client -connect www.feistyduck.com:443
Once you type the command, you’re going to see a lot of diagnostic output (more about
 that in a moment) followed by an opportunity to type whatever you want. Because we’re
 talking to an HTTP server, the most sensible thing to do is to submit an HTTP request.
 In the following example, I use a HEAD request because it instructs
 the server not to send the response body:
HEAD / HTTP/1.0

HTTP/1.1 301 Moved Permanently
Date: Mon, 04 Jun 2012 18:47:41 GMT
Server: Apache/2.2.14 (Ubuntu)
Location: https://www.feistyduck.com/
Vary: Accept-Encoding
Connection: close
Content-Type: text/html; charset=iso-8859-1

closed
Now we know that the TLS communication layer is working: we got through to the HTTP
 server, submitted a request, and received a response back. Let’s go back to the
 diagnostic output. The first couple of lines will show the information about the server
 certificate:
CONNECTED(00000003)
depth=3 L = ValiCert Validation Network, O = "ValiCert, Inc.", OU = ValiCert Class 2 Policy Validation Authority, CN = http://www.valicert.com/, emailAddress = info@valicert.com
verify error:num=19:self signed certificate in certificate chain
verify return:0
On my system (and possibly on yours), s_client doesn’t pick up the
 default trusted certificates; it complains that there is a self-signed certificate in
 the certificate chain. In most cases, you won’t care about certificate validation; but
 if you do, you will need to point s_client to the trusted
 certificates, like this:
$ openssl s_client -connect www.feistyduck.com:443 -CAfile /etc/ssl/certs/ca-certificates.crt
CONNECTED(00000003)
depth=3 L = ValiCert Validation Network, O = "ValiCert, Inc.", OU = ValiCert Class 2 > Policy Validation Authority, CN = http://www.valicert.com/, emailAddress = info@valicert.com
verify return:1
depth=2 C = US, O = "Starfield Technologies, Inc.", OU = Starfield Class 2 Certification Authority
verify return:1
depth=1 C = US, ST = Arizona, L = Scottsdale, O = "Starfield Technologies, Inc.", OU = http://certificates.starfieldtech.com/repository, CN = Starfield Secure Certification Authority, serialNumber = 10688435
verify return:1
depth=0 1.3.6.1.4.1.311.60.2.1.3 = GB, businessCategory = Private Organization, serialNumber = 06694169, C = GB, ST = London, L = London, O = Feisty Duck Ltd, CN = www.feistyduck.com
verify return:1
Instead of s_client complaining, you now see it verifying each of
 the certificates from the chain. For the verification to work, you must have access to a
 good selection of CA certificates. The path I used in the example
 (/etc/ssl/certs/ca-certificates.crt) is valid on Ubuntu 12.04
 LTS but might not be valid on your system. If you don’t want to use the system-provided
 CA certificates for this purpose, you can rely on those provided by Mozilla, as
 discussed in the section called “Building a Trust Store” in Chapter 11 .
The next section in the output lists all the certificates presented by the server in
 the order in which they were delivered:
Certificate chain
 0 s:/1.3.6.1.4.1.311.60.2.1.3=GB/businessCategory=Private Organization/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com
 i:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
 1 s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
 i:/C=US/O=Starfield Technologies, Inc./OU=Starfield Class 2 Certification Authority
 2 s:/C=US/O=Starfield Technologies, Inc./OU=Starfield Class 2 Certification Authority
 i:/L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com
 3 s:/L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com
 i:/L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com
For each certificate, the first line shows the subject and the second line shows the
 issuer information.
This part is very useful when you need to see exactly what certificates are sent;
 browser certificate viewers typically display reconstructed certificate chains that can
 be almost completely different from the presented ones. To determine if the chain is
 nominally correct, you might wish to verify that the subjects and issuers match. You
 start with the leaf (web server) certificate at the top, and then you go down the list,
 matching the issuer of the current certificate to the subject of the next. The last
 issuer you see can point to some root certificate that is not in the chain, or—if the
 self-signed root is included—it can point to itself.
The next item in the output is the server certificate; it’s a lot of text, but I’m
 going to remove most of it for brevity:
Server certificate
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
[30 lines removed...]
os5LW3PhHz8y9YFep2SV4c7+NrlZISHOZVzN
-----END CERTIFICATE-----
subject=/1.3.6.1.4.1.311.60.2.1.3=GB/businessCategory=Private Organization/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com
issuer=/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
Note
Whenever you see a long string of numbers instead of a name in a subject, it means
 that OpenSSL does not know the object identifier (OID) in
 question. OIDs are globally unique and unambiguous identifiers that are used to
 refer to “things.” For example, in the previous output, the OID
 1.3.6.1.4.1.311.60.2.1.3 should have been replaced with
 jurisdictionOfIncorporationCountryName, which is used in
 extended validation (EV) certificates.

If you want to have a better look at the certificate, you’ll first need to copy it
 from the output and store it in a separate file. I’ll discuss that in the next
 section.
The following is a lot of information about the TLS connection, most of which is
 self-explanatory:

No client certificate CA names sent

SSL handshake has read 3043 bytes and written 375 bytes

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:
 Protocol : TLSv1.1
 Cipher : ECDHE-RSA-AES256-SHA
 Session-ID: 032554E059DB27BF8CD87EBC53E9FF29376265F0BBFDBBFB7773D2277E5559F5
 Session-ID-ctx:
 Master-Key: 1A55823368DB6EFC397DEE2DC3382B5BB416A061C19CEE162362158E90F1FB0846EEFDB2CCF564A18764F1A98F79A768
 Key-Arg : None
 PSK identity: None
 PSK identity hint: None
 SRP username: None
 TLS session ticket lifetime hint: 300 (seconds)
 TLS session ticket:
 0000 - 77 c3 47 09 c4 45 e4 65-90 25 8b fd 77 4c 12 da w.G..E.e.%..wL..
 0010 - 38 f0 43 09 08 a1 ec f0-8d 86 f8 b1 f0 7e 4b a9 8.C..........~K.
 0020 - fe 9f 14 8e 66 d7 5a dc-0f d0 0c 25 fc 99 b8 aa f.Z....%....
 0030 - 8f 93 56 5a ac cd f8 66-ac 94 00 8b d1 02 63 91 ..VZ...f......c.
 0040 - 05 47 af 98 11 81 65 d9-48 5b 44 bb 41 d8 24 e8 .G....e.H[D.A.$.
 0050 - 2e 08 2d bb 25 59 f0 8f-bf aa 5c b6 fa 9c 12 a6 ..-.%Y....\.....
 0060 - a1 66 3f 84 2c f6 0f 06-51 c0 64 24 7a 9a 48 96 .f?.,...Q.d$z.H.
 0070 - a7 f6 a9 6e 94 f2 71 10-ff 00 4d 7a 97 e3 f5 8b ...n..q...Mz....
 0080 - 2d 1a 19 9c 1a 8d e0 9c-e5 55 cd be d7 24 2e 24 -........U...$.$
 0090 - fc 59 54 b0 f8 f1 0a 5f-03 08 52 0d 90 99 c4 78 .YT...._..R....x
 00a0 - d2 93 61 d8 eb 76 15 27-03 5e a4 db 0c 05 bb 51 ..a..v.'.^.....Q
 00b0 - 6c 65 76 9b 4e 6b 6c 19-69 33 2a bd 02 1f 71 14 lev.Nkl.i3*...q.

 Start Time: 1390553737
 Timeout : 300 (sec)
 Verify return code: 0 (ok)

The most important information here is the protocol version (TLS 1.1) and cipher suite
 used (ECDHE-RSA-AES256-SHA). You can also determine that the server
 has issued to you a session ID and a TLS session ticket (a way of resuming sessions
 without having the server maintain state) and that secure renegotiation is supported.
 Once you understand what all of this output contains, you will rarely look at it.
Warning
Operating system distributions often ship tools that are different from the stock
 versions. We have another example of that here: The previous command negotiated TLS
 1.1, even though the server supports TLS 1.2. Why? As it turns out, some OpenSSL
 versions shipped with Ubuntu 12.04 LTS disable TLS 1.2 for client connections in
 order to avoid certain interoperability issues. To avoid problems like these, I
 recommend that you always test with a version of OpenSSL that you configured and
 compiled.

Testing Protocols that Upgrade to SSL

When used with HTTP, TLS wraps the entire plain-text communication channel to form
 HTTPS. Some other protocols start off as plaintext, but then they upgrade to encryption.
 If you want to test such a protocol, you’ll have to tell OpenSSL which protocol it is so
 that it can upgrade on your behalf. Provide the protocol information using the
 -starttls switch. For example:
$ openssl s_client -connect gmail-smtp-in.l.google.com:25 -starttls smtp
At the time of writing, the supported protocols are smtp,
 pop3, imap, ftp, and
 xmpp.

Using Different Handshake Formats

Sometimes, when you are trying to test a server using
 OpenSSL,
 your attempts to communicate with the server may fail even though you know the server
 supports TLS (e.g., you can see that TLS is working when you attempt to use a browser).
 One possible reason this might occur is that the server does not support the older SSL 2
 handshake.
Because OpenSSL attempts to negotiate all protocols it understands and because SSL 2
 can be negotiated only using the old SSL 2 handshake, it uses this handshake as the
 default. Even though it is associated with a very old and insecure protocol version, the
 old handshake format is not technically insecure. It supports upgrades, which means that
 a better protocol can be negotiated. However, this handshake format does not support
 many connection negotiation features that were designed after SSL 2.
Therefore, if something is not working and you’re not sure what it is exactly, you can
 try to force OpenSSL to use the newer handshake format. You can do that by disabling SSL
 2:
$ openssl s_client -connect www.feistyduck.com:443 -no_ssl2
Another way to achieve the same effect is to specify the desired server name on the
 command line:
$ openssl s_client -connect www.feistyduck.com:443 -servername www.feistyduck.com
In order to specify the server name, OpenSSL needs to use a feature of the newer
 handshake format (the feature is called Server Name Indication
 [SNI]), and that will force it to abandon the old format.

Extracting Remote Certificates

When you connect to a remote secure server using s_client, it will
 dump the server’s PEM-encoded certificate to standard output. If you need the
 certificate for any reason, you can copy it from the scroll-back buffer. If you know in
 advance you only want to retrieve the certificate, you can use this command line as a
 shortcut:
$ echo | openssl s_client -connect www.feistyduck.com:443 2>&1 | sed --quiet '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > www.feistyduck.com.crt
The purpose of the echo command at the beginning is to separate
 your shell from s_client. If you don’t do that,
 s_client will wait for your input until the server times out
 (which may potentially take a very long time).
By default, s_client will print only the leaf certificate; if you
 want to print the entire chain, give it the -showcerts switch. With
 that switch enabled, the previous command line will place all the certificates in the
 same file.

Testing Protocol Support

By default, s_client will try to use the best protocol to talk to
 the remote server and report the negotiated version in output.
 Protocol : TLSv1.1
If you need to test support for specific protocol versions, you have two options. You
 can explicitly choose one protocol to test by supplying one of the
 -ssl2, -ssl3, -tls1,
 -tls1_1, or -tls1_2 switches. Alternatively,
 you can choose which protocols you don’t want to test by using one or many of the
 following: -no_ssl2, -no_ssl3,
 -no_tls1, -no_tls1_1, or
 -no_tls1_2.
Note
Not all versions of OpenSSL support all protocol versions. For example, the older
 versions of OpenSSL will not support TLS 1.1 and TLS 1.2, and the newer versions
 might not support older protocols, such as SSL 2.

For example, here’s the output you might get when testing a server that doesn’t
 support a certain protocol version:
$ openssl s_client -connect www.example.com:443 -tls1_2
CONNECTED(00000003)
140455015261856:error:1408F10B:SSL routines:SSL3_GET_RECORD:wrong version number:s3_pkt.c:340:

no peer certificate available

No client certificate CA names sent

SSL handshake has read 5 bytes and written 7 bytes

New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
 Protocol : TLSv1.2
 Cipher : 0000
 Session-ID:
 Session-ID-ctx:
 Master-Key:
 Key-Arg : None
 PSK identity: None
 PSK identity hint: None
 SRP username: None
 Start Time: 1339231204
 Timeout : 7200 (sec)
 Verify return code: 0 (ok)

Testing Cipher Suite Support

A little trick is required if you wish to use OpenSSL to determine if a remote server
 supports a particular cipher suite. The cipher configuration string is designed to
 select which suites you wish to use, but if you specify only one suite and successfully
 handshake with a server, then you know that the server supports the suite. If the
 handshake fails, you know the support is not there.
As an example, to test if a server supports RC4-SHA, type:
$ openssl s_client -connect www.feistyduck.com:443 -cipher RC4-SHA
If you want to determine all suites supported by a particular server, start by
 invoking openssl ciphers ALL to obtain a list of all suites supported
 by your version of OpenSSL. Then submit them to the server one by one to test them
 individually. I am not suggesting that you do this manually; this is a situation in
 which a little automation goes a long way. In fact, this is a situation in which looking
 around for a good tool might be appropriate.
There is a disadvantage to testing this way, however. You can only test the suites
 that OpenSSL supports. This used to be a much bigger problem; before version 1.0,
 OpenSSL supported a much smaller number of suites (e.g., 32 on my server with version
 0.9.8k). With a version from the 1.0.1 branch, you can test over 100 suites and probably
 most of the relevant ones.
No single SSL/TLS library supports all cipher suites, and that makes comprehensive
 testing difficult. For SSL Labs, I resorted to using partial handshakes for this
 purpose, with a custom client that pretends to support arbitrary suites. It actually
 can’t negotiate even a single suite, but just proposing to negotiate is enough for
 servers to tell you if they support a suite or not. Not only can you test all the suites
 this way, but you can also do it very efficiently.

Testing Servers that Require SNI

Initially, SSL and TLS were designed to support only one web site per IP endpoint
 (address and port combination). SNI is a TLS extension that enables use of more than one
 certificate on the same IP endpoint. TLS clients use the extension to send the desired
 name, and TLS servers use it to select the correct certificate to respond with. In a
 nutshell, SNI makes virtual secure hosting possible.
Because SNI is not yet very widely used by servers, in most cases you won’t need to
 specify it on the s_client command line. But when you encounter an
 SNI-enabled system, one of three things can happen:
	Most often, you will get the same certificate you would get as if SNI
 information had not been supplied.

	The server might respond with the certificate for some site other than the one
 you wish to test.

	Very rarely, the server might abort the handshake and refuse the
 connection.

You can enable SNI in s_client with the
 -servername switch:
$ openssl s_client -connect www.feistyduck.com:443 -servername www.feistyduck.com
You can determine if a site requires SNI by testing with and without the SNI switch
 and checking if the certificates are the same. If they are not, SNI is required.
Sometimes, if the requested server name is not available, the server says so with a
 TLS warning. Even though this warning is not fatal as far as the server is concerned,
 the client might decide to close the connection. For example, with an older OpenSSL
 version (i.e., before 1.0.0), you will get the following error message:
$ /opt/openssl-0.9.8k/bin/openssl s_client -connect www.feistyduck.com:443 -servername xyz.com
CONNECTED(00000003)
1255:error:14077458:SSL routines:SSL23_GET_SERVER_HELLO:reason(1112):s23_clnt.c:596:

Testing Session Reuse

When coupled with the -reconnect switch, the
 s_client command can be used to test session reuse. In this mode,
 s_client will connect to the target server six times; it will
 create a new session on the first connection, then try to reuse the same session in the
 subsequent five connections:
$ echo | openssl s_client -connect www.feistyduck.com:443 -reconnect
The previous command will produce a sea of output, most of which you won’t care about.
 The key parts are the information about new and reused sessions. There should be only
 one new session at the beginning, indicated by the following line:
New, TLSv1/SSLv3, Cipher is RC4-SHA
This is followed by five session reuses, indicated by lines like this:
Reused, TLSv1/SSLv3, Cipher is RC4-SHA
Most of the time, you don’t want to look at all that output and want an answer
 quickly. You can get it using the following command line:
$ echo | openssl s_client -connect www.feistyduck.com:443 -reconnect -no_ssl2 2> /dev/null | grep 'New\|Reuse'
New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Here’s what the command does:
	The -reconnect switch activates the session reuse
 mode.

	The -no_ssl2 switch indicates that we do not wish to
 attempt an SSL 2 connection, which changes the handshake of the first connection
 to that of SSL 3 and better. The older, SSL 2 handshake format handshake doesn’t
 support TLS extensions and interferes with the session-reuse mechanism on
 servers that support session tickets.

	The 2> /dev/null part hides stderr
 output, which you don’t care about.

	Finally, the piped grep command filters out the rest of the
 fluff and lets through only the lines that you care about.

Note
If you don’t want to include session tickets in the test—for example, because not
 all clients support this feature yet—you can disable it with the
 -no_ticket switch.

Checking OCSP Revocation

If an OCSP responder is malfunctioning, sometimes it’s difficult to understand exactly
 why. Checking certificate revocation status from the command line is possible, but it’s
 not quite straightforward. You need to perform the following steps:
	Obtain the certificate that you wish to check for revocation.

	Obtain the issuing certificate.

	Determine the URL of the OCSP responder.

	Submit an OCSP request and observe the response.

For the first two steps, connect to the server with the -showcerts
 switch specified:
$ openssl s_client -connect www.feistyduck.com:443 -showcerts
The first certificate in the output will be the one belonging to the server. If the
 certificate chain is properly configured, the second certificate will be that of the
 issuer. To confirm, check that the issuer of the first certificate and the subject of
 the second match:

Certificate chain
 0 s:/1.3.6.1.4.1.311.60.2.1.3=GB/businessCategory=Private Organization/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com
 i:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
[30 lines of text removed]
os5LW3PhHz8y9YFep2SV4c7+NrlZISHOZVzN
-----END CERTIFICATE-----
 1 s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
 i:/C=US/O=Starfield Technologies, Inc./OU=Starfield Class 2 Certification Authority
-----BEGIN CERTIFICATE-----
MIIFBzCCA++gAwIBAgICAgEwDQYJKoZIhvcNAQEFBQAwaDELMAkGA1UEBhMCVVMx
[...]
If the second certificate isn’t the right one, check the rest of the chain; some
 servers don’t serve the chain in the correct order. If you can’t find the issuer
 certificate in the chain, you’ll have to find it somewhere else. One way to do that is
 to look for the Authority Information Access extension in the leaf
 certificate:
$ openssl x509 -in fd.crt -noout -text
[...]
 Authority Information Access:
 OCSP - URI:http://ocsp.starfieldtech.com/
 CA Issuers - URI:http://certificates.starfieldtech.com/repository/sf_intermediate.crt
[...]
If the CA Issuers information is present, it should contain the
 URL of the issuer certificate. If the issuer certificate information isn’t available,
 you can try to open the site in a browser, let it reconstruct the chain, and download
 the issuing certificate from its certificate viewer. If all that fails, you can look for
 the certificate in your trust store or visit the CA’s web site.
If you already have the certificates and just need to know the address of the OCSP
 responder, use the -ocsp_uri switch with the x509
 command as a shortcut:
$ openssl x509 -in fd.crt -noout -ocsp_uri
http://ocsp.starfieldtech.com/
Now you can submit the OCSP request:
$ openssl ocsp -issuer issuer.crt -cert fd.crt -url http://ocsp.starfieldtech.com/ -CAfile issuer.crt
WARNING: no nonce in response
Response verify OK
fd.crt: good
 This Update: Feb 18 17:59:10 2013 GMT
 Next Update: Feb 18 23:59:10 2013 GMT
You want to look for two things in the response. First, check that the response itself
 is valid (Response verify OK in the previous example), and second,
 check what the response said. When you see good as the status, that
 means that the certificate hasn’t been revoked. The status will be
 revoked for revoked certificates.
Note
The warning message about the missing nonce is telling you that OpenSSL wanted to
 use a nonce as a protection against replay attacks, but the server in question did
 not reply with one. This generally happens because CAs want to improve the
 performance of their OCSP responders. When they disable the nonce protection (the
 standard allows it), OCSP responses can be produced (usually in batch), cached, and
 reused for a period of time.

You may encounter OCSP responders that do not respond successfully to the previous
 command line. The following suggestions may help in such situations.
	Do not request a nonce
	Some servers cannot handle nonce requests and respond with errors. OpenSSL
 will request a nonce by default. To disable nonces, use the
 -no_nonce command-line switch.

	Supply a Host request header
	Although most OCSP servers respond to HTTP requests that don’t specify the
 correct hostname in the Host header, some don’t. If you
 encounter an error message that includes an HTTP error code (e.g., 404), try
 adding the hostname to your OCSP request. You can do this if you are using
 OpenSSL 1.0.0 or later by using the undocumented -header
 switch.

With the previous two points in mind, the final command to use is the
 following:
$ openssl ocsp -issuer issuer.crt -cert fd.crt -url http://ocsp.starfieldtech.com/ -CAfile issuer.crt -no_nonce -header Host ocsp.starfieldtech.com

Testing OCSP
 Stapling

OCSP stapling is an optional feature that allows a server certificate to be
 accompanied by an OCSP response that proves its validity. Because the OCSP response is
 delivered over an already existing connection, the client does not have to fetch it
 separately.
OCSP stapling is used only if requested by a client, which submits the
 status_request extension in the handshake request. A server that
 supports OCSP stapling will respond by including an OCSP response as part of the
 handshake.
When using the s_client tool, OCSP stapling is requested with the
 -status switch:
$ echo | openssl s_client -connect www.feistyduck.com:443 -status
The OCSP-related information will be displayed at the very beginning of the connection
 output. For example, with a server that does not support stapling you will see this line
 near the top of the output:
CONNECTED(00000003)
OCSP response: no response sent
With a server that does support stapling, you will see the entire OCSP response in the
 output:
OCSP Response Data:
 OCSP Response Status: successful (0x0)
 Response Type: Basic OCSP Response
 Version: 1 (0x0)
 Responder Id: C = US, O = "GeoTrust, Inc.", CN = RapidSSL OCSP-TGV Responder
 Produced At: Jan 22 17:48:55 2014 GMT
 Responses:
 Certificate ID:
 Hash Algorithm: sha1
 Issuer Name Hash: 834F7C75EAC6542FED58B2BD2B15802865301E0E
 Issuer Key Hash: 6B693D6A18424ADD8F026539FD35248678911630
 Serial Number: 0FE760
 Cert Status: good
 This Update: Jan 22 17:48:55 2014 GMT
 Next Update: Jan 29 17:48:55 2014 GMT
[...]
The certificate status good means that the certificate has not been
 revoked.

Checking CRL Revocation

Checking certificate verification with a Certificate Revocation
 List (CRL) is even more involved than doing the same via OCSP. The
 process is as follows:
	Obtain the certificate you wish to check for revocation.

	Obtain the issuing certificate.

	Download and verify the CRL.

	Look for the certificate serial number in the CRL.

The first steps overlap with OCSP checking; to complete them follow the instructions
 in the section called “Checking OCSP Revocation”.
The location of the CRL is encoded in the server certificate; you can extract it with
 the following command:
$ openssl x509 -in fd.crt -noout -text | grep crl
 URI:http://rapidssl-crl.geotrust.com/crls/rapidssl.crl
Then fetch the CRL from the CA:
$ wget http://rapidssl-crl.geotrust.com/crls/rapidssl.crl
Verify that the CRL is valid (i.e., signed by the issuer certificate):
$ openssl crl -in rapidssl.crl -inform DER -CAfile issuer.crt -noout
verify OK
Now, determine the serial number of the certificate you wish to check:
$ openssl x509 -in fd.crt -noout -serial
serial=0FE760
At this point, you can convert the CRL into a human-readable format and inspect it
 manually:
$ openssl crl -in rapidssl.crl -inform DER -text -noout
Certificate Revocation List (CRL):
 Version 2 (0x1)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: /C=US/O=GeoTrust, Inc./CN=RapidSSL CA
 Last Update: Jan 25 11:03:00 2014 GMT
 Next Update: Feb 4 11:03:00 2014 GMT
 CRL extensions:
 X509v3 Authority Key Identifier:
 keyid:6B:69:3D:6A:18:42:4A:DD:8F:02:65:39:FD:35:24:86:78:91:16:30

 X509v3 CRL Number:
 92103
Revoked Certificates:
 Serial Number: 0F38D7
 Revocation Date: Nov 26 20:07:51 2013 GMT
 Serial Number: 6F29
 Revocation Date: Aug 15 20:48:57 2011 GMT
[...]
 Serial Number: 0C184E
 Revocation Date: Jun 13 23:00:12 2013 GMT
 Signature Algorithm: sha1WithRSAEncryption
 95:df:e5:59:bc:95:e8:2f:bb:0a:4f:20:ad:ca:8f:78:16:54:
 35:32:55:b0:c9:be:5b:89:da:ba:ae:67:19:6e:07:23:4d:5f:
 16:18:5c:f3:91:15:da:9e:68:b0:81:da:68:26:a0:33:9d:34:
 2d:5c:84:4b:70:fa:76:27:3a:fc:15:27:e8:4b:3a:6e:2e:1c:
 2c:71:58:15:8e:c2:7a:ac:9f:04:c0:f6:3c:f5:ee:e5:77:10:
 e7:88:83:00:44:c4:75:c4:2b:d3:09:55:b9:46:bf:fd:09:22:
 de:ab:07:64:3b:82:c0:4c:2e:10:9b:ab:dd:d2:cb:0c:a9:b0:
 51:7b:46:98:15:83:97:e5:ed:3d:ea:b9:65:d4:10:05:10:66:
 09:5c:c9:d3:88:c6:fb:28:0e:92:1e:35:b0:e0:25:35:65:b9:
 98:92:c7:fd:e2:c7:cc:e3:b5:48:08:27:1c:e5:fc:7f:31:8f:
 0a:be:b2:62:dd:45:3b:fb:4f:25:62:66:45:34:eb:63:44:43:
 cb:3b:40:77:b3:7f:6c:83:5c:99:4b:93:d9:39:62:48:5d:8c:
 63:e2:a8:26:64:5d:08:e5:c3:08:e2:09:b0:d1:44:7b:92:96:
 aa:45:9f:ed:36:f8:62:60:66:42:1c:ea:e9:9a:06:25:c4:85:
 fc:77:f2:71
The CRL starts with some metadata, which is followed by a list of revoked
 certificates, and it ends with a signature (which we verified in the previous step). If
 the serial number of the server certificate is on the list, that means it had been
 revoked.
If you don’t want to look for the serial number visually (some CRLs can be quite
 long), grep for it, but be careful that your formatting is correct (e.g., if necessary,
 remove the 0x prefix, omit any leading zeros, and convert all letters
 to uppercase). For example:
$ openssl crl -in rapidssl.crl -inform DER -text -noout | grep FE760

Testing
 Renegotiation

The s_client tool has a couple of features that can assist you with
 manual testing of renegotiation. First of all, when you connect, the tool will report if
 the remote server supports secure renegotiation. This is because a server that supports
 secure renegotiation indicates its support for it via a special TLS extension that is
 exchanged during the handshake phase. When support is available, the output may look
 like this (emphasis mine):
New, TLSv1/SSLv3, Cipher is AES256-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:
 [...]
If secure renegotiation is not supported, the output will be slightly
 different:
Secure Renegotiation IS NOT supported
Even if the server indicates support for secure renegotiation, you may wish to test
 whether it also allows clients to initiate renegotiation. Client-initiated
 renegotiation is a protocol feature that is not needed in practice
 (because the server can always initiate renegotiation when it is needed) and makes the
 server more susceptible to denial of service attacks.
To initiate renegotiation, you type an R character on a line by
 itself. For example, assuming we’re talking to an HTTP server, you can type the first
 line of a request, initiate renegotiation, and then finish the request. Here’s what that
 looks like when talking to a web server that supports client-initiated
 renegotiation:
HEAD / HTTP/1.0
R
RENEGOTIATING
depth=3 C = US, O = "VeriSign, Inc.", OU = Class 3 Public Primary Certification Authority
verify return:1
depth=2 C = US, O = "VeriSign, Inc.", OU = VeriSign Trust Network, OU = "(c) 2006 VeriSign, Inc. - For authorized use only", CN = VeriSign Class 3 Public Primary Certification Authority - G5
verify return:1
depth=1 C = US, O = "VeriSign, Inc.", OU = VeriSign Trust Network, OU = Terms of use at https://www.verisign.com/rpa (c)06, CN = VeriSign Class 3 Extended Validation SSL CA
verify return:1
depth=0 1.3.6.1.4.1.311.60.2.1.3 = US, 1.3.6.1.4.1.311.60.2.1.2 = California, businessCategory = Private Organization, serialNumber = C2759208, C = US, ST = California, L = Mountain View, O = Mozilla Corporation, OU = Terms of use at www.verisign.com/rpa (c)05, OU = Terms of use at www.verisign.com/rpa (c)05, CN = addons.mozilla.org
verify return:1
Host: addons.mozilla.org

HTTP/1.1 301 MOVED PERMANENTLY
Content-Type: text/html; charset=utf-8
Date: Tue, 05 Jun 2012 16:42:51 GMT
Location: https://addons.mozilla.org/en-US/firefox/
Keep-Alive: timeout=5, max=998
Transfer-Encoding: chunked
Connection: close

read:errno=0
When renegotiation is taking place, the server will send its certificates to the
 client again. You can see the verification of the certificate chain in the output. The
 next line after that continues with the Host request header. Seeing
 the web server’s response is the proof that renegotiation is supported. Because of the
 various ways the renegotiation issue was addressed in various versions of SSL/TLS
 libraries, servers that do not support renegotiation may break the connection or may
 keep it open but refuse to continue to talk over it (which usually results in a
 timeout).
A server that does not support renegotiation will flatly refuse the second handshake
 on the connection:
HEAD / HTTP/1.0
R
RENEGOTIATING
140003560109728:error:1409E0E5:SSL routines:SSL3_WRITE_BYTES:ssl handshake failure:s3_pkt.c:592:
At
 this time, the default behavior for OpenSSL is to connect to servers
 that don’t support secure renegotiation; it will also accept both secure and insecure
 renegotiation,
 opting
 for
 whatever the server is able to do. If renegotiation is successful with a server that
 doesn’t support secure renegotiation, you will know that the server supports
 insecure,
 client-initiated
 renegotiation.
Note
The most reliable way to test for insecure renegotiation is to use the method
 described in this section, but with a version of OpenSSL that was released before
 the discovery of insecure renegotiation (e.g., 0.9.8k). I mention this because there
 is a small number of servers that support both secure and insecure renegotiation.
 This vulnerability is difficult to detect with modern versions of OpenSSL, which
 prefer the secure option.

Testing for the BEAST Vulnerability

The BEAST attack exploits a weakness that exists in all versions of SSL, and TLS
 protocols before TLS 1.1. The weakness affects all CBC suites and both client and server
 data streams; however, the BEAST attack works only against the client side. Most modern
 browsers use the so-called 1/n-1 split as a workaround to prevent exploitation, but some
 servers continue to deploy mitigations on their end, especially if they have a user base
 that relies on older (and unpatched) browsers.
The ideal mitigation approach is to rely only on TLS 1.1 and better, but these newer
 protocols are not yet sufficiently widely supported. The situation is complicated by the
 fact that RC4 itself is now considered insecure. If you think BEAST is more dangerous
 than RC4 weaknesses, you might deploy TLS 1.2 for use with up-to-date clients, but force
 RC4 with everyone else.
	Strict mitigation
	Do not support any CBC suites when protocols TLS 1.0 and earlier are used,
 leaving only RC4 suites enabled. Clients that don’t support RC4 won’t be
 able to negotiate a secure connection. This mode excludes some potential web
 site users, but it’s required by some PCI assessors.

	RC4 prioritization
	Because only a very small number of clients do not support RC4, the second
 approach is to leave CBC suites enabled, but enforce RC4 with all clients
 that support it. This approach provides protection to all but a very small
 number of visitors.

How you are going to test depends on what behavior you expect of the server. With both
 approaches, we want to ensure that only insecure protocols are used by using the
 -no_ssl2, -no_tls_1_1, and
 -no_tls_1_2 switches.
To test for strict mitigation, attempt to connect while disabling all RC4 suites on
 your end:
$ echo | openssl s_client -connect www.feistyduck.com:443 \
-cipher 'ALL:!RC4' -no_ssl2 -no_tls1_1 -no_tls1_2
If the connection is successful (which is possible only if a vulnerable CBC suite is
 used), you know that strict mitigation is not in place.
To test for RC4 prioritization, attempt to connect with all RC4 suites moved to the
 end of the cipher suite list:
$ echo | openssl s_client -connect www.feistyduck.com:443 \
-cipher 'ALL:+RC4' -no_ssl2 -no_tls1_1 -no_tls1_2
A server that prioritizes RC4 will choose one of RC4 suites for the connection,
 ignoring all the CBC suites that were also offered. If you see anything else, you know
 that the server does not have any BEAST mitigations in place.

Testing for
 Heartbleed

You can test for Heartbleed manually or by using one of the available tools. (There
 are many tools, because Heartbleed is very easy to exploit.) But, as usual with such
 tools, there is a question of their accuracy. There is evidence that some tools fail to
 detect vulnerable servers.[527] Given the seriousness of Heartbleed, it’s best to either test manually or by
 using a tool that gives you full visibility of the process. I am going to describe an
 approach you can use with only a modified version of OpenSSL.
Some parts of the test don’t require modifications to OpenSSL, assuming you have a
 version that supports the Heartbeat protocol (version 1.0.1 and newer). For example, to
 determine if the remote server supports the Heartbeat protocol, use the
 -tlsextdebug switch to display server extensions when
 connecting:
$ openssl s_client -connect www.feistyduck.com:443 -tlsextdebug
CONNECTED(00000003)
TLS server extension "renegotiation info" (id=65281), len=1
0001 - <SPACES/NULS>
TLS server extension "EC point formats" (id=11), len=4
0000 - 03 00 01 02
TLS server extension "session ticket" (id=35), len=0
TLS server extension "heartbeat" (id=15), len=1
0000 - 01
[...]
A server that does not return the heartbeat extension is not vulnerable to Heartbleed.
 To test if a server responds to heartbeat requests, use the -msg
 switch to request that protocol messages are shown, then connect to the server, type
 B and press return:
$ openssl s_client -connect www.feistyduck.com:443 -tlsextdebug -msg
[...]

B
HEARTBEATING
>>> TLS 1.2 [length 0025], HeartbeatRequest
 01 00 12 00 00 3c 83 1a 9f 1a 5c 84 aa 86 9e 20
 c7 a2 ac d7 6f f0 c9 63 9b d5 85 bf 9a 47 61 27
 d5 22 4c 70 75
<<< TLS 1.2 [length 0025], HeartbeatResponse
 02 00 12 00 00 3c 83 1a 9f 1a 5c 84 aa 86 9e 20
 c7 a2 ac d7 6f 52 4c ee b3 d8 a1 75 9a 6b bd 74
 f8 60 32 99 1c
read R BLOCK
This output shows a complete heartbeat request and response pair. The second and third
 bytes in both heartbeat messages specify payload length. We submitted a payload of 18
 bytes (12 hexadecimal) and the server responded with a payload of the same size. In both
 cases there were also additional 16 bytes of padding. The first two bytes in the payload
 make the sequence number, which OpenSSL uses to match responses to requests. The
 remaining payload bytes and the padding are just random data.
To detect a vulnerable server, you’ll have to prepare a special version of OpenSSL
 that sends incorrect payload length. Vulnerable servers take the declared payload length
 and respond with that many bytes irrespective of the length of the actual payload
 provided.
At this point, you have to decide if you want to build an invasive test (which
 exploits the server by retrieving some data from the process) or a noninvasive test.
 This will depend on your circumstances. If you have permission for your testing
 activities, use the invasive test. With it, you’ll be able to see exactly what is
 returned, and there won’t be room for errors. For example, some versions of GnuTLS
 support Heartbeat and will respond to requests with incorrect payload length, but they
 will not actually return server data. A noninvasive test can’t reliably diagnose that
 situation.
The following patch against OpenSSL 1.0.1h creates a noninvasive version of the
 test:
--- t1_lib.c.original 2014-07-04 17:29:35.092000000 +0100
+++ t1_lib.c 2014-07-04 17:31:44.528000000 +0100
@@ -2583,6 +2583,7 @@
 #endif

 #ifndef OPENSSL_NO_HEARTBEATS
+#define PAYLOAD_EXTRA 16
 int
 tls1_process_heartbeat(SSL *s)
 {
@@ -2646,7 +2647,7 @@
 * sequence number */
 n2s(pl, seq);

- if (payload == 18 && seq == s->tlsext_hb_seq)
+ if ((payload == (18 + PAYLOAD_EXTRA)) && seq == s->tlsext_hb_seq)
 {
 s->tlsext_hb_seq++;
 s->tlsext_hb_pending = 0;
@@ -2705,7 +2706,7 @@
 /* Message Type */
 *p++ = TLS1_HB_REQUEST;
 /* Payload length (18 bytes here) */
- s2n(payload, p);
+ s2n(payload + PAYLOAD_EXTRA, p);
 /* Sequence number */
 s2n(s->tlsext_hb_seq, p);
 /* 16 random bytes */
To build a noninvasive test, increase payload length by up to 16 bytes, or the length
 of the padding. When a vulnerable server responds to such a request, it will return the
 padding but nothing else. To build an invasive test, increase the payload length by,
 say, 32 bytes. A vulnerable server will respond with a payload of 50 bytes (18 bytes
 sent by OpenSSL by default, plus your 32 bytes) and send 16 bytes of padding. By
 increasing the declared length of the payload in this way, a vulnerable server will
 return up to 64 KB of data. A server not vulnerable to Heartbleed will not
 respond.
To produce your own Heartbleed testing tool, unpack a fresh copy of OpenSSL source
 code, edit ssl/t1_lib.c to make the change as in the patch, compile
 as usual, but don’t install. The resulting openssl binary will be
 placed in the apps/ subdirectory. Because it is statically compiled,
 you can rename it to something like openssl-heartbleed and move it to
 its permanent location.
Here’s an example of the output you’d get with a vulnerable server that returns 16
 bytes of server data (in bold):
B
HEARTBEATING
>>> TLS 1.2 [length 0025], HeartbeatRequest
 01 00 32 00 00 7c e8 f5 62 35 03 bb 00 34 19 4d
 57 7e f1 e5 90 6e 71 a9 26 85 96 1c c4 2b eb d5
 93 e2 d7 bb 5f
<<< TLS 1.2 [length 0045], HeartbeatResponse
 02 00 32 00 00 7c e8 f5 62 35 03 bb 00 34 19 4d
 57 7e f1 e5 90 6e 71 a9 26 85 96 1c c4 2b eb d5
 93 e2 d7 bb 5f 6f 81 0f aa dc e0 47 62 3f 7e dc
 60 95 c6 ba df c9 f6 9d 2b c8 66 f8 a5 45 64 0b
 d2 f5 3d a9 ad
read R BLOCK
If you want to see more data retrieved in a single response, increase the payload
 length, recompile, and test again. Alternatively, to retrieve another batch of the same
 size, enter the B command again.

[527] Bugs in Heartbleed detection scripts (Shannon Simpson and Adrian
 Hayter, 14 April 2014)

13 Configuring Apache

Apache httpd is a popular web server that has powered large parts of the Web since its
 early beginnings. Apache is a mature product and has superb TLS support in the 2.4.x branch,
 especially in the most recent releases (significant improvements were made in version
 2.4.7). If you’re compiling Apache from source code, you can take advantage of all the
 available features.
In practice, most people have access to some version from the 2.2.x branch, because that’s
 what the previous generations of the popular server distributions (e.g., Debian, Ubuntu, Red
 Hat Enterprise Linux, etc.) used to ship. The current generations either ship or will ship
 Apache 2.4.x, which means that this newer version will slowly start to gain in
 popularity.
The following table shows the major differences between the 2.2.x and 2.4.x
 branches.
Table 13.1. Apache httpd TLS features across the most recent stable branches
	 	Apache 2.2.x	Apache 2.4.x
	Strong default DH parameters	Barely; fixed at 1,024 bits	2,048 bits and stronger (2.4.7+)
	Configurable DH and ECDH parameters	-	Yes (2.4.7+)
	Elliptic curve support	Yes (2.2.26)[a]	Yes
	OCSP stapling	-	Yes
	Distributed TLS session caching	-	Yes
	Configurable session ticket keys	-	Yes
	Disable session tickets	-	-
	[a] Earlier versions can support ECDHE key exchange with a third-party
 utility called TLS Interposer (described
 later in this chapter).

Note
Most operating system distributions ship with software packages that carry the same
 (or similar) version numbers but differ in functionality from the stock releases made by
 the developers. The changes are most often only security fixes, but they could be
 features, too. You should review the package documentation and the source code (packages
 typically contain the original source code and the patches) to understand if the
 differences are important.

The biggest practical problem with the 2.2.x branch is lack of support for
 elliptic curve (EC) cryptography. Although Apache added EC
 support in 2.2.26 (released in November 2013), most distributions ship versions based on
 some earlier release. Without EC crypto, you cannot deploy the ECDHE key exchange, which
 means that you can’t have fast and robust support for forward secrecy. Some distributions
 backport important features; check yours for this possibility.
The lack of other features is tolerable. OCSP stapling is nice to have (it improves site
 performance) but not critical for most people. If it’s something you find important, you’ll
 probably want to install Apache 2.4.x from source code.
In addition to the big
 and obvious differences, the 2.4.x branch contains a large number of small improvements that
 are not obvious at first but might be significant because they add up. As one example,
 Apache 2.4.x probably consumes much less memory because it uses the reduced memory
 consumption mode in OpenSSL (the SSL_MODE_RELEASE_BUFFERS option). This
 OpenSSL feature was not enabled in the latest 2.2.x version when I checked.
This chapter is designed to cover the most important and interesting aspects of Apache’s
 TLS configuration, but it’s not a reference guide. For the finer details, please refer to
 the official documentation.
Installing Apache with Static OpenSSL

Back in 2004, when I was working on my first book, Apache
 Security, it was quite common to install Apache from source code, and I
 spent a lot of time documenting the process. As the technology stabilized, most people
 stopped bothering with the source code and relied on the binaries provided by the
 operating system.
Today, we’re back to the beginning; to use the best TLS features many of us have to
 roll up our sleeves and do everything the old-fashioned way. For example, I have a
 couple of servers running Ubuntu 10.04 LTS; the OpenSSL version installed does not
 support TLS 1.2, and its Apache 2.2.x does not support the ECDHE suites.
If you’re running one of the older distributions, the easiest way to run Apache with a
 recent version of OpenSSL is to compile the crypto code statically and install
 everything into a separate location. That way, you achieve the goal, but you don’t mess
 with the rest of the operating system.
First, get the most recent stable version of OpenSSL and install it at a location in
 which it will not interfere with your system version. Follow the instructions in the section called “Building OpenSSL” in Chapter 11 .
Then, get the latest versions of Apache and the APR and APR-Util libraries. Unpack all
 three packages into the same source tree, with the latter two in the location in which
 Apache expects them:
$ tar zxvf httpd-2.4.10.tar.gz
$ cd httpd-2.4.10/srclib/
$ tar zxvf ../../apr-1.5.1.tar.gz
$ ln -s apr-1.5.1/ apr
$ tar zxvf ../../apr-util-1.5.3.tar.gz
$ ln -s apr-util-1.5.3/ apr-util
You are now ready to configure and install Apache. The mod_ssl
 module will be compiled statically; all other modules will be compiled
 dynamically.
$./configure \
 --prefix=/opt/httpd \
 --with-included-apr \
 --enable-ssl \
 --with-ssl=/opt/openssl-1.0.1h \
 --enable-ssl-staticlib-deps \
 --enable-mods-static=ssl
$ make
$ sudo make install
From here, you can proceed to tweak the configuration. All modules will be compiled by
 default, but only some of them will be enabled in the configuration.

Enabling TLS

If you are deploying a web site on the default HTTPS port (443), Apache will
 automatically enable the TLS protocol on the IP address in question. The only time you
 will need to explicitly enable TLS is when you’re using a nonstandard port. For
 example:
TLS is enabled by default on port 443
Listen 192.168.0.1:443

But explicit configuration is required on all other ports
Listen 192.168.0.1:8443 https
You might also find many configurations that do not configure the protocol using the
 Listen directive; they instead enable TLS in the site
 configuration using the SSLEngine directive:
<VirtualHost 192.168.0.1:443>
 # Site hostname.
 ServerName site1.example.com

 # Enable front-end TLS in this virtual host.
 SSLEngine on

 # Other configuration directives.
 ...
</VirtualHost>
This approach is popular with those who started with Apache 2.0.x, because the
 Listen directive in those versions had no support for protocol
 configuration.
Note
Apache implements a web server and a proxy server. Consequently, there are
 configuration directives that control TLS operation in both of these roles. Most
 proxy directives begin with SSLProxy; you should ignore them when
 you’re configuring the web server side of things.

Configuring TLS Protocol

To configure frontend TLS in Apache, you need three directives. The first is
 SSLProtocol, which specifies which protocols should be
 enabled:
Enable all protocols except SSL 2 and
SSL 3, which are obsolete and insecure.
SSLProtocol all -SSLv2 -SSLv3
The common approach is to enable all available protocols with all,
 then disable the ones you do not wish to deploy. The second directive is
 SSLHonorCipherOrder, which instructs Apache to select its
 preferred suite during TLS handshake (instead of choosing the first supported suite
 offered by the client):
The server selects the cipher suite, not the clients.
SSLHonorCipherOrder on
Finally, SSLCipherSuite takes an OpenSSL suite-configuration string
 and configures which suites are going to be enabled and in which order:
This cipher suite configuration uses only suites that provide
forward security, in the order that provides the best performance.
SSLCipherSuite "ECDHE-ECDSA-AES128-GCM-SHA256 \
ECDHE-ECDSA-AES256-GCM-SHA384 \
ECDHE-ECDSA-AES128-SHA \
ECDHE-ECDSA-AES256-SHA \
ECDHE-ECDSA-AES128-SHA256 \
ECDHE-ECDSA-AES256-SHA384 \
ECDHE-RSA-AES128-GCM-SHA256 \
ECDHE-RSA-AES256-GCM-SHA384 \
ECDHE-RSA-AES128-SHA \
ECDHE-RSA-AES256-SHA \
ECDHE-RSA-AES128-SHA256 \
ECDHE-RSA-AES256-SHA384 \
DHE-RSA-AES128-GCM-SHA256 \
DHE-RSA-AES256-GCM-SHA384 \
DHE-RSA-AES128-SHA \
DHE-RSA-AES256-SHA \
DHE-RSA-AES128-SHA256 \
DHE-RSA-AES256-SHA256 \
EDH-RSA-DES-CBC3-SHA"
Note
The cipher suite configuration from this example is secure, but, depending on your
 preferences and risk profile, you might prefer something slightly different. You’ll
 find a thorough discussion of TLS server configuration in Chapter 8, Deployment and examples for OpenSSL in the section called “Recommended Configuration” in Chapter 11.

The previous example was primarily designed for newer Apache versions, which have
 elliptic crypto support, but will fall back gracefully on older installations.
Tip
TLS protocol configuration is best placed in the main server scope, where it
 applies to all sites hosted on the server. Tune it on a per-site basis only if
 necessary.

Configuring Keys and Certificates

In addition to configuring the TLS protocol, a secure web site also requires a private
 key and a certificate chain. For this, you typically require three directives, as in the
 following example:
Configure the server private key.
SSLCertificateKeyFile conf/server.key

Configure the server certificate.
SSLCertificateFile conf/server.crt

Configure intermediate chain certificates supplied
by the CA. This directive is not needed when the server
certificate is self-signed.
SSLCertificateChainFile conf/chain.pem
Note
Starting with version 2.4.8, the SSLCertificateChainFile
 directive is deprecated. Instead, you are requested to provide all certificates in
 the file pointed to by the SSLCertificateFile directive. This
 change was probably driven by the fact that more sites want to use multikey
 deployments (e.g., RSA and ECDSA at the same time) and that each key might require a
 different certificate chain.

Not configuring the entire certificate chain correctly is a frequent mistake that
 causes certificate warnings for connecting clients. To avoid this problem, always follow
 the instructions provided by your CA. When renewing a certificate, make sure you use the
 new intermediate certificates provided; the old ones might no longer be
 appropriate.
Note
The example in this section assumes that your private key is not protected with a
 passphrase. I recommend that keys are created and backed up with a passphrase but
 deployed without a passphrase on the server. If you want to use protected keys, you
 will have to use the SSLPassPhaseDialog directive to interface
 Apache with an external program that will provide the passphrase every time it is
 needed.

Configuring Multiple Keys

It’s not widely known that Apache allows secure sites to use more than one type of TLS
 key. This facility, which had originally been designed to allow sites to deploy RSA and
 DSA keys in parallel, is virtually unused because DSA faded into obscurity for web
 server keys.
These days, there is a lot of discussion about deploying ECDSA keys in order to
 improve handshake performance. In parallel, there is a desire to migrate certificate
 signatures to SHA2, because the currently widely used SHA1 is nearing the end of its
 useful life. The problem is that older clients might not support ECDSA keys and SHA2
 signatures. One solution is to deploy with two sets of keys and certificates: RSA and
 SHA1 for older clients and ECDSA and SHA2 for newer clients.
Deploying a site with multiple keys is straightforward: simply specify multiple keys
 and certificates, one set after another. For example:
RSA key.
SSLCertificateKeyFile conf/server-rsa.key
SSLCertificateFile conf/server-rsa.crt

DSA key.
SSLCertificateKeyFile conf/server-dsa.key
SSLCertificateFile conf/server-dsa.crt

ECDSA key.
SSLCertificateKeyFile conf/server-ecdsa.key
SSLCertificateFile conf/server-ecdsa.crt

Intermediate certificates; must work
with all three server certificates.
SSLCertificateChainFile conf/chain.pem
The only catch is that the SSLCertificateChainFile directive can be
 used only once per server, which means that the intermediate certificates must be
 identical for all three certificates. There are early indications that the CAs who are
 starting to offer ECDSA keys are set up this way.
It’s possible to use different certificate hierarchies, but then you must avoid
 SSLCertificateChainFile altogether. Instead, concatenate all the
 necessary intermediate certificates (for all the keys) into a single file, and point to
 it using the SSLCACertificateFile directive. There might be a slight
 performance penalty with this approach because, on every new connection, OpenSSL now
 needs to examine the available CA certificates in order to construct the certificate
 chain.
Note
To ensure that all deployed keys are actually used, make sure you also enable the
 corresponding cipher suites in the configuration. ECDSA suites have the word “ECDSA”
 in the name; DSA suites have the word “DSS” in the name; all other authenticated
 suites are designed to work with RSA keys.

Wildcard and Multisite Certificates

If you have two or more sites that share a certificate, it is possible to deploy them
 on the same IP address, despite the fact that virtual secure hosting is not yet feasible
 for public web sites. No special configuration is required; simply associate all such
 sites with the same IP address and ensure that they are all using the same certificate.[528]
This works because TLS termination and HTTP host selection are two separate steps.
 When terminating TLS, in the absence of SNI information (see the next section for more
 information) Apache serves the certificate of the default site for that IP address,
 which is the site that appears first in the configuration. In the second step, Apache
 looks at the Host request header provided and serves the correct site
 at the HTTP level. If the requested hostname is not configured on the IP address, the
 default web site will be served.
With this type of deployment, you might get a warning similar to this one:
[Mon Dec 30 11:26:04.058505 2013] [ssl:warn] [pid 31136:tid 140679275079488] AH02292: Init: Name-based SSL virtual hosts only work for clients with TLS server name indication support (RFC 4366)
This is because Apache notices that you have multiple secure sites on the same
 endpoint but does not check to see that the default certificate is valid for all sites.
 From version 2.4.10 onwards, the warning doesn’t show.

Virtual Secure Hosting

Unlike the setup discussed in the previous section, true virtual secure hosting takes
 place when a number of unrelated web sites, each with its own certificate,
 share one IP
 address. Because this feature is not supported by SSL and the early versions of TLS,
 there are still many clients that do not have it. For this reason, it is not yet
 feasible to use virtual secure hosting for public web sites aimed at a wide audience,
 but it could possibly be used for sites with a modern user base.
Apache supports virtual secure hosting and uses it automatically when needed. The only
 question is: what happens if you do rely on virtual secure hosting but receive a client
 that does not support it? Normally, in situations like that Apache serves the
 certificate belonging to the default site associated with the requested IP address.
 Because that certificate is unlikely to match the desired hostname, the user ends up
 with a certificate warning. However, if they are able to bypass the warning, they will
 get through to the site they wanted to see.[529]
You can’t avoid certificate warnings in situations like this, but it’s best practice
 not to serve any content from sites that rely on virtual secure hosting to clients that
 don’t understand SNI. This is what the SSLStrictSNIVHostCheck
 directive does, and there are two ways to use it.
The first way is to enforce strict virtual secure hosting on the entire IP address. To
 do that, you place the directive in the default virtual host. For example:
Apache 2.2.x requires the following directive to support
name-based virtual hosting. Apache 2.4.x and better do not.
NameVirtualHost 192.168.0.1:443

<VirtualHost 192.168.0.1:443>
 ServerName does-not-exist.example.com

 # Do not serve any content to the clients that
 # do not support virtual secure hosting (via SNI).
 SSLStrictSNIVHostCheck On

 ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
 ServerName site1.example.com
 ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
 ServerName site2.example.com
 ...
</VirtualHost>
Alternatively, you can enforce strict virtual secure hosting only for some sites, with
 relaxed configuration for others. In the following example,
 site1.example.com will not be served to clients that do not
 support SNI, but other sites will be:
<VirtualHost 192.168.0.1:443>
 ServerName default.example.com
 ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
 ServerName site1.example.com

 # Do not serve this site to clients that
 # do not support virtual secure hosting (via SNI).
 SSLStrictSNIVHostCheck On

 ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
 ServerName site2.example.com
 ...
</VirtualHost>
Whenever an error occurs due to a strict SNI check, Apache will force the request to
 fail with status 403 and no indication of the root cause. If the information provided in
 the Host header is correct, the ErrorDocument
 directive of the matching host will be consulted. If it specifies a redirection or a
 message, that message will be sent back to the client. If
 ErrorDocument specifies a file or a script, its processing will
 fail.
If you want to deliver a custom error message for this case, it’s possible to do so by
 disabling the built-in strict SNI checking and implementing a custom check instead. The
 SSL_TLS_SNI Apache variable contains the client-provided SNI
 information; if this variable is empty, that means that the client doesn’t support SNI.
 The following mod_rewrite configuration (placed in a virtual host
 section) worked for me:
RewriteEngine On
RewriteCond %{SSL:SSL_TLS_SNI} =""
RewriteRule ^ /errors/no-sni.html
Note
The behavior described here is implemented in versions up until 2.4.9. From 2.4.10
 onwards, Apache behaves differently: (1)
 the stock 403 response page includes the reason for the rejection and (2) the ErrorDocument
 directive can invoke a script. These changes make it possible to configure a script
 to handle 403 errors, detect the mention of SNI in the error note (the
 REDIRECT_ERROR_NOTES variable), and provide different
 messages depending on the exact context.

Reserving Default Sites for Error Messages

It is never a good idea to deliver actual web site content in response to an
 incorrectly specified request. For example, you don’t want a search engine to index a
 web site under arbitrary hostnames. Whatever content you deliver will be seen by the
 client as belonging to the site that it requested; a mismatch can sometimes be used to
 exploit a vulnerability from one site as if it existed on another. To avoid this, I
 suggest that you reserve default sites on each IP address and port combination for the
 delivery of error messages.
Here’s an example configuration you could use:
We're using this default web site to explain
host mismatch and SNI issues to our users.
<VirtualHost 192.168.0.1:443>
 # The hostname used here should never match.
 ServerName does-not-exist.example.com
 DocumentRoot /var/www/does-not-exist

 # Require SNI support for all sites on this IP address and port.
 SSLStrictSNIVHostCheck on

 # Force all requests to this site to fail with a 404 status code.
 RewriteEngine On
 RewriteRule ^ - [L,R=404]

 # Error message for the clients that request
 # a hostname that is not configured on this server.
 ErrorDocument 404 "<h1>No such site</h1><p>The site you requested does not exist.</p>"

 # Other configuration directives as desired.
 # Enable TLS as usual and use a self-signed certificate.
 ...
</VirtualHost>

Forward Secrecy

If you are deploying Apache from the 2.4.x branch and compiling everything from source
 code, you have at your disposal DHE and ECDHE suites, which allow you to support robust
 forward secrecy. Otherwise, when relying on the system-provided packages, they sometimes
 don’t support EC cryptography, for several reasons:
	EC cryptography is not supported by older Apache 2.2.x versions
	Many Apache 2.2.x versions found in popular distributions do not support
 EC cryptography, even when coupled with an OpenSSL version that does. This
 is largely because when OpenSSL decided to add support for EC, it left it
 disabled by default. If you are in this situation but don’t want to install
 Apache from source code, there’s a workaround that might be sufficient,
 which I explain later in this section.

	Older OpenSSL version
	If the underlying OpenSSL installation does not support newer features
 (such as EC crypto), then it does not matter if Apache does. Older versions
 of OpenSSL are still prevalent on older installations, and even some newer
 operating system releases use them. For example, OS X Mavericks, released in
 November 2013, ships with OpenSSL 0.9.8y (that’s the most recent version
 from the old 0.9.x branch).
A good OpenSSL version to use today is the most recent one from the 1.0.1
 branch or newer. Luckily, Apache can be built with a statically compiled
 OpenSSL version, which means that you can upgrade just the web server
 without messing with a core operating system package.

	OpenSSL version without EC support
	For a long time, operating systems built by Red Hat used to ship without
 any support for EC cryptography, because their lawyers wanted to play it
 safe when it came to certain EC patents. This made it very difficult for
 anyone using Fedora and Red Hat Enterprise Linux distributions (and the open
 source derivatives, such as CentOS) to deploy forward secrecy well.[530] The only way to do it well was to recompile the key system
 packages.
This changed in October 2013, when Fedora 18 and later versions were
 updated with OpenSSL versions that have EC crypto enabled.[531]
Starting with version 6.5, which shipped in November 2013, all Red Hat
 Enterprise Linux versions support EC cryptography.[532]

Enabling ECDHE Suites in Apache 2.2.x without Patching

TLS Interposer[533] is a Linux tool that can be used to improve how programs use OpenSSL
 without having to recompile them or change them in any other way. It works by
 intercepting calls to certain OpenSSL functions and overriding their
 behaviors.
By default, TLS Interposer will:
	Disable SSL 2 and SSL 3 protocols

	Enable support for ECDHE cipher suites

	Enforce its own cipher suite configuration, which is strong by
 default

A great use case for TLS Interposer is enabling ECDHE cipher suites on Apache
 2.2.x. This tool can’t add all EC features to Apache, but the addition of ECDHE
 suites enables you to support robust forward secrecy, which is the most common
 requirement.

OCSP Stapling

Online Certificate Status Protocol (OCSP) is the protocol
 that’s used to obtain certificate revocation information on demand. Most certificates
 include OCSP information, which allows TLS clients to talk directly to the issuing CA to
 confirm that the certificate has not been revoked. OCSP stapling allows the web server
 to obtain a fresh OCSP response from the CA, cache it locally, and submit it to the
 client along with the certificate. In this case, the client does not need to contact the
 CA; this improves performance and results in better privacy. Apache supports OCSP
 stapling starting with the 2.4.x branch.
Configuring OCSP Stapling

Although Apache has many directives for OCSP stapling, most of them are needed
 only for fine-tuning. You need only two directives to enable stapling
 initially:
Configure a cache of 128 KB for OCSP responses. Tune the
cache size based on the number of certificates in use on
the server.
SSLStaplingCache shmcb:/opt/httpd/logs/stapling_cache(128000)

Enable OCSP stapling by default for all sites on this server.
SSLUseStapling on
In this example, I configured a server-wide cache for OCSP responses and then
 enabled stapling by default for all sites. You can also use the
 SSLUseStapling directive elsewhere to enable or disable
 stapling for individual sites.
By default, successful OCSP responses will be cached for 3,600 seconds, but you
 can change this timeout using the SSLStaplingStandardCacheTimeout
 directive.
Note
OCSP requests are submitted over HTTP, which means that your web server needs
 to be allowed to make outbound requests to various OCSP responders across the
 Internet. If you’re operating an outbound firewall, ensure that there are
 exceptions to allow this traffic.

Configuring OCSP stapling can fail if your site does not have a properly
 configured certificate chain. In order for Apache to verify OCSP responses (which it
 always does), it needs the CA certificate that issued the server certificate.
 Without it, stapling won’t be possible and Apache will complain about the
 problem:
[Thu Jan 23 16:26:58.547877 2014] [ssl:error] [pid 1333:tid 140576489142080] AH02217: ssl_stapling_init_cert: Can't retrieve issuer certificate!
[Thu Jan 23 16:26:58.547900 2014] [ssl:error] [pid 1333:tid 140576489142080] AH02235: Unable to configure server certificate for stapling
If for some reason you are not using SSLCertificateChainFile to
 configure the chain, you can provide the required CA certificate in the
 SSLCACertificateFile configuration. In fact, the best
 practice is to always have the root certificate there.
To use OpenSSL to see if OCSP stapling is configured correctly, follow the
 instructions from the section called “Testing OCSP
 Stapling” in Chapter 12.

Handling Errors

Apache caches both successful and failed OCSP responses. In theory, there is no
 harm in this, because your clients are expected to obtain the same result by talking
 to the CA directly. In practice, it depends. For example, because even failed
 responses are cached (600 seconds by default; change the value with
 SSLStaplingErrorCacheTimeout), a one-off problem might end up
 being propagated to all your users.
Given that there is a lot of anecdotal evidence that OCSP responders can be flaky,
 I think you should exercise caution and not return responder errors:
SSLStaplingReturnResponderErrors off
If you do choose to propagate the errors, remember that Apache by default
 generates fake OCSP tryLater responses in the cases in which the
 real OCSP responder is unresponsive. I think it’s safer to disable this
 functionality, too:
SSLStaplingFakeTryLater off
As an example of when this might be an issue, consider someone reconfiguring the
 outbound firewall around your web server and inadvertently preventing Apache from
 reaching the OCSP responders. If you disable fake responses, your clients will still
 be able to communicate with the responders directly.

Using a Custom OCSP Responder

Normally, OCSP requests are submitted to the OCSP responder listed in the
 certificate. But there are two cases in which you might want to hardcode OCSP
 responder information:
	Some certificates might not actually contain any OCSP information, even
 though the issuing CA operates a responder. In this case, you can provide
 the OCSP responder address manually.

	In heavily locked-down environments, direct outbound traffic from the web
 server might be forbidden. In this case, if you want to use OCSP stapling,
 you’ll need to configure an HTTP proxy for OCSP requests.

You can override the certificate OCSP information globally or on a per-site basis,
 using the SSLStaplingForceURL directive:
SSLStaplingForceURL http://ocsp.example.com

Configuring Ephemeral DH Key Exchange

Traditionally, Apache has left OpenSSL to configure the default strength of the
 Diffie-Hellman (DH) key exchange. That worked for a long
 time, but the OpenSSL default strength of 1,024 bits is no longer considered adequate.
 Compare this strength to the current best practice that all server keys have at least
 2,048 bits.
For a very long time, the only way to increase the strength of DH key exchange had
 been to change the source code, using a patch that was available only for the 2.4.x branch.[534] But this is no more. Starting with version 2.4.7, Apache will automatically
 tune the strength of the DH key exchange to match the strength of the corresponding
 private key.
Note
Given that 1,024-bit DH parameters are considered weak but not entirely insecure,
 most sites will probably be just fine even if they are stuck with an earlier version
 of Apache. Further, if your server supports ECDHE suites for forward secrecy (which
 you can achieve even with older Apache versions), the DH key exchange will be used
 only with older clients.

TLS Session Management

Apache supports both mechanisms for session management: server-side state caching and
 session tickets. Apache 2.2.x has sufficient features for standalone deployments, but
 Apache 2.4.x adds features necessary for distributed operation.
Standalone Session Cache

For individual web servers, there is only one practical option for TLS session
 caching: shared memory. It’s also possible to cache the sessions in DBM files, but
 this approach is known to be unreliable under heavy load (per Apache
 documentation).
For caching using shared memory, you need to have the
 mod_socache_shmcb module enabled first. After that, specify
 the following two directives in the server scope:
Specify session cache type, path, and size (1 MB).
SSLSessionCache shmcb:/path/to/logs/ssl_scache(1024000)

Specify maximum session cache duration of one day.
SSLSessionCacheTimeout 86400
By default, the timeout is set to five minutes, which is very conservative. There
 is little reason for new sessions to be renegotiated that often; I chose 24 hours
 instead. The default cache size is 512 KB, but I increased that to 1 MB. Both values
 would probably work for smaller web sites. Popular web sites will need to understand
 their usage patterns and set the cache size to the appropriate value. In my tests
 with Apache 2.4.x, you should expect to store roughly 4,000 sessions using a cache
 of 1 MB.
Note
Restarting Apache (even using the graceful option that keeps the master
 process around) clears the session cache. Thus, each restart comes with a small
 CPU penalty for the server and latency penalty for the users. In general, it’s
 not something you should be worried about unless you’re restarting
 very frequently.

Depending on the Apache version, for TLS session caching you might also need to
 configure the mutex that is used to synchronize access to the cache. Apache 2.4.x
 uses a mutex by default, but the configuration can be tweaked using the
 Mutex directive. Inexplicably, stock Apache 2.2.x does not
 use a mutex by default, which means that its cache can get easily corrupted under
 heavy load.
To configure a mutex on Apache 2.2.x, use the SSLMutex
 directive:
Configure the mutex for TLS session cache access synchronization.
SSLMutex file:/var/run/apache2/ssl_mutex
On Unix platforms, reliable automated mutex selection has traditionally been
 difficult, because it is generally not possible to select any one mutex type that
 performs and works well across all systems. For this reason, you’ll find that
 programs tend to use file-based mutexes by default; they are the most reliable but
 not the fastest.
Note
Apache uses the same TLS session cache for the entire server, but sharing the
 session cache among unrelated applications can be dangerous. Session resumption
 uses an abbreviated TLS handshake that skips certificate validation. A network
 attacker who can redirect traffic from one port to another can potentially
 bypass certificate validation and force request processing by an incorrect
 application. This attack could, for example, lead to information leakage.

Standalone Session Tickets

By default, the session ticket implementation is provided by OpenSSL. For
 standalone servers, this approach “just works,” although there are some aspects that
 you should be aware of:
	Session tickets are protected using 128-bit AES encryption. A throwaway
 key is generated when the web server is initially started. It’s possible
 that multiple keys will be used, depending on the configuration.

	The key size is fixed, but 128 bits is sufficiently strong for most use
 cases.

	When the server is restarted, new ticket keys are generated. This means
 that all connections that arrive after the restart will need to negotiate
 new TLS sessions.

	The same AES key is used for as long the server remains active. To
 minimize the impact of session tickets on forward secrecy, you should ensure
 that you regularly restart the web server. Daily is best.

Distributed Session Caching

If you operate more than one server for the same web site but you’re not
 terminating TLS centrally (e.g., on a load balancer) and not using sticky sessions
 (clients are always sent to the same node), you will need distributed TLS session
 caching—a mechanism to exchange session information among the cluster
 nodes.
Apache 2.4.x supports distributed TLS session caching out of the box, using the
 popular network caching program memcached. To use it, deploy an
 instance of memcached for the cache, and then connect all your
 web servers to it.
First, ensure you have the mod_socache_memcache module
 installed and activated:
LoadModule socache_memcache_module modules/mod_socache_memcache.so
Then, configure the TLS session caching, like so:
Use memcached for the TLS session cache.
SSLSessionCache memcache:memcache.example.com:11211

Specify maximum session cache duration of one hour.
SSLSessionCacheTimeout 3600
As for the memcached size, consider these important points:
	As with a standalone server, allocate enough RAM to ensure that the
 session data is cached for the entire duration of the session (the
 -m parameter).

	Lock the cache memory (the -k option) to improve
 performance and prevent the sensitive TLS session data from being written to
 swap.

	Ensure that the maximum number of connections allowed is sufficient to
 cover the maximum number of concurrent connections supported by the entire
 cluster (the -c option).

You can use the following configuration file as a starting point for
 customization:
Run as daemon.
-d

Run as user memcache.
-u memcache

Run on port 11211.
-p 11211

Log to this log file.
logfile /var/log/memcached.log

Allocate a 10 MB cache.
-m 10

Allow up to 10240 connections.
-c 10240

Lock all memory to improve performance and (more importantly)
to prevent sensitive TLS session data from being written to swap.
-k
At a glance, running a distributed TLS session cache appears to be
 straightforward. In practice, it depends on the details, and there are many
 additional issues that you need to consider, including the following.
	Availability
	Web server nodes no longer keep any TLS session information locally,
 instead relying on the configured memcache to provide the data. This
 means that the memcache is now a point of failure for your cluster. How
 are you going to handle the memcache misbehaving?

	Performance
	With TLS session data now hosted remotely, memcache lookups on resumed
 TLS connections will add to the latency. If the network is fast and
 reliable, that cost will be fixed and probably small. The only reliable
 way to tell is to measure the cost, by comparing the performance of a
 single server against that of the entire cluster. Just make sure you
 disable session tickets in the client; otherwise you’ll be potentially
 measuring the wrong resumption mechanism.

	Security
	Communication with the memcache is not encrypted, which means that the
 sensitive TLS session data will be exposed as it travels over your
 internal network. This is not ideal, because a compromise of any server
 on the same network also results with the compromise of all your TLS
 sessions. This issue can be solved by communicating with the memcache
 over a special encrypted network segment.

Note
Because TLS session cache sharing can result in security weaknesses, it’s best
 practice to never share a cache among unrelated applications. This is
 particularly true for distributed caching, for which it’s more likely that
 servers powering multiple applications will use the same cache. For best
 security, run separate memcache sections, one for each application.

Distributed Session Tickets

If you are deploying a web server cluster in which each node is expected to
 terminate TLS, then session tickets introduce an additional management challenge. In
 order to decrypt session data reliably, all the cluster nodes must share the same
 key; this means that you can no longer rely on the per-server keys generated by
 OpenSSL.
Apache 2.2.x does not support configurable ticket keys, which means that your only
 option is to disable session tickets, as explained in the previous section. Apache
 2.4.x supports manually configured session ticket keys via the
 SSLSessionTicketKeyFile directive. With it, you can manually
 generate a ticket key file and push it to all your cluster nodes, using the same
 mechanism you use to manage other configuration data.
A session ticket key file consists of 48 bytes of cryptographically random data.
 The data is used for three 16-byte (128-bit) fragments, one each for key name, HMAC
 secret, and AES key.
Using OpenSSL, you can generate a ticket key file like this:
$ openssl rand -out ticket.key 48
After that, you only need to tell Apache where the key file is:
SSLSessionTicketKeyFile /path/to/ticket.key
Warning
The session ticket key file must be protected in the same way as all other
 private keys. Although it is not necessary to back it up, you must ensure that
 only the root user can access the file. Also, always use a
 different session ticket key for different applications. That will ensure that a
 session from one site can’t be resumed on another.

As with standalone servers, to minimize the impact of session tickets on forward
 secrecy you have to rotate the session ticket key regularly—for example, once a
 day.

Disabling Session Tickets

Apache doesn’t currently have an option to disable session tickets, which is a
 problem if you want to deploy a cluster of Apache web servers but don’t want to
 configure distributed ticket sharing. The only solution available right now is to
 patch the Apache source code.
To disable session tickets in Apache 2.2.x (tested against v2.2.27), apply the
 following patch:
--- ./modules/ssl/ssl_engine_init.c.orig	2014-07-16 10:53:06.000000000 +0100
+++ ./modules/ssl/ssl_engine_init.c	2014-07-16 10:53:44.000000000 +0100
@@ -615,6 +615,11 @@
 */
 SSL_CTX_set_options(ctx, SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION);
 #endif
+
+#ifdef SSL_OP_NO_TICKET
+ /* Disable session tickets. */
+ SSL_CTX_set_options(ctx, SSL_OP_NO_TICKET);
+#endif
 }
To disable session tickets in Apache 2.4.x (tested against v2.4.10), apply the
 following patch:
--- ./modules/ssl/ssl_engine_init.c.orig 2014-07-14 05:29:22.000000000 -0700
+++ ./modules/ssl/ssl_engine_init.c 2014-07-21 08:07:17.584482127 -0700
@@ -583,6 +583,11 @@
 SSL_CTX_set_mode(ctx, SSL_MODE_RELEASE_BUFFERS);
 #endif

+#ifdef SSL_OP_NO_TICKET
+ /* Disable session tickets. */
+ SSL_CTX_set_options(ctx, SSL_OP_NO_TICKET);
+#endif
+
 return APR_SUCCESS;
 }

Client Authentication

As far as the configuration is concerned, using client authentication is
 straightforward: you enable it, provide all the necessary CA certificates to form a full
 chain for validation, and provide revocation information:
Require client authentication.
SSLVerifyClient require

Specify the maximum depth of the certification path,
from the client certificate to a trusted root.
SSLVerifyDepth 2

Allowed CAs that issue client certificates. The
distinguished names of these certificates will be sent
to each user to assist with client certificate selection.
SSLCACertificateFile conf/trusted-certificates.pem
The traditional way to check client certificates for revocation is to use a local CRL
 list. This option provides the best performance, because all operations are done
 locally. A script is usually configured to run periodically to retrieve fresh CRLs and
 reload the web server:
Enable client certificate revocation checking.
SSLCARevocationCheck chain

The list of revoked certificates. A reload is required
every time this list is changed.
SSLCARevocationFile conf/revoked-certificates.crl
Starting with Apache 2.4.x, you can also use OCSP revocation checking. This option
 provides real-time revocation information at the cost of reduced performance:
Use OCSP to check client certificates for revocation.
SSLOCSPEnable On
If client authentication is required but the client doesn’t provide one,
 mod_ssl will reject the TLS handshake with a fatal alert. For end
 users, this means that they get a cryptic error message. It’s possible to handle this
 situation more gracefully by using different values for the
 SSLVerifyClient directive:
	optional
	Requests a client certificate during TLS handshake, but doesn’t require
 it. The status of the validation is stored in the
 SSL_CLIENT_VERIFY variable: NONE
 for no certificate, SUCCESS for a valid certificate, and
 FAILED: followed by an error message for a
 certificate that failed validation. This feature is useful if you want to
 provide a custom response to those users who fail client certificate
 validation.

	optional_no_ca
	Requests a client certificate during TLS handshake, but doesn’t attempt
 validation. Instead, it’s expected that an external service will validate
 the certificate (which is available in the SSL_CLIENT_ family of
 variables).

Note
Using optional client authentication can be problematic, because some browsers
 don’t prompt the user or otherwise select a client certificate if this option is
 configured. There are also issues with some other browsers that won’t proceed to the
 site if they can’t provide a certificate. Before you seriously consider optional
 client authentication for deployment, test with the browsers you have in your
 environment.

For performance reasons, mod_ssl doesn’t export its variables by
 default. If you need them, enable the export by configuring the required variables using
 the SSLOptions directive:
Export standard mod_ssl variables as well
as certificate data to the environment.
SSLOptions +StdEnvVars +ExportCertData

Mitigating Protocol Issues

Apache developers have generally been quick to address TLS protocol–related issues. In
 practice, because most deployments are based on Apache versions included with various
 operating systems, it’s up to the vendors to keep their packages secure.
Insecure Renegotiation

Insecure renegotiation is a protocol flaw discovered in 2009 and largely mitigated
 during 2010. Before this issue was discovered, Apache 2.2.x used to support
 client-initiated renegotiation. Version 2.2.15, released in March 2010, not only
 disabled client-initiated renegotiation but also provided support for secure
 renegotiation (RFC 5746). Apache 2.4.x was first released in early 2012, which means
 that it was never vulnerable.
Warning
Disabling client-initiated renegotiation does not fully address this
 vulnerability if server-initiated renegotiation is used and if you are accepting
 clients that do not support RFC 5746. This is because the attacker can connect
 to the server, submit a request that initiates server-initiated renegotiation,
 then exploit the victim (client). For best security, inspect the
 SSL_SECURE_RENEG variable to confirm that the client
 supports secure renegotiation.

BEAST

Technically, the predictable IV vulnerability in TLS 1.0 and earlier
 protocols—better known as the BEAST attack—affects both client and
 server sides of the communication. In practice, only browsers are vulnerable,
 because exploitation requires that the attacker is able to control what data is sent
 (and subsequently encrypted). For this reason, BEAST cannot be addressed with a
 server-side patch.

CRIME

The 2012 CRIME attack exploits compression at the TLS protocol level. The issue
 has not been fixed in the protocol, which is why everyone resorted to disabling
 compression. Unrelated to the CRIME attack, Apache added the
 SSLCompression directive to versions 2.2.24 (February 2013)
 and 2.4.3 (August 2012), but compression stayed enabled by default.[535] Compression was disabled by default in versions 2.2.26 (November 2013)
 and 2.4.4 (February 2013).
When it comes to distribution-specific Apache versions, chances are that most
 vendors have provided security patches by now. For example, Debian fixed their
 version of Apache in November 2012[536]and Ubuntu in July 2013.[537] On Red Hat and derived distributions, for a period of time it was
 necessary to disable compression by manipulating environment variables,[538] but Red Hat eventually disabled compression by default in March 2013.[539]
If your version of Apache supports TLS compression, it’s best to explicitly
 disable it with:
SSLCompression off
Warning
Disabling compression depends on the functionality that is available in
 OpenSSL 1.0.0 and later (the SSL_OP_NO_COMPRESSION
 configuration option). Older OpenSSL versions might not actually be able to
 disable compression.

Deploying HTTP Strict Transport Security

Because HTTP Strict Transport Security (HSTS) is activated via
 a response header, configuring it on a site is generally easy. However, there are
 certain traps you can fall into, which is why I recommend that you read the section called “HTTP Strict Transport Security” in Chapter 10
 before you make any decisions.
HSTS is enabled using the Header directive. It’s best to use the
 always condition to ensure that the response header is set on all
 responses, including errors:
Enable HTTP Strict Transport Security.
Header always set Strict-Transport-Security "max-age=31536000; includeSubDomains"
According to the RFC, the HSTS policy can be set only on HTTP responses delivered over
 an encrypted channel. The same site on port 80 doesn’t need any HSTS configuration, but,
 for best results, it does need a redirection to port 443. This will ensure that all site
 visitors reach HTTPS as soon as possible:
<VirtualHost *:80>
 ServerName www.example.com
 ServerAlias example.com
 ...
 # Redirect all visitors to the encrypted portion of the site.
 RedirectPermanent / https://www.example.com/
</VirtualHost>

Monitoring Session Cache Status

It’s a little known fact that Apache exposes the status of the TLS session cache via
 the mod_status module. To enable this feature, first request that
 additional status information is recorded (in the main configuration context):
Request tracking of extended status information. This directive
is only necessary with Apache 2.2.x. Apache 2.4.x should automatically
enable it when mod_status is loaded.
ExtendedStatus On
Then configure mod_status output in the desired location:
<Location /status>
 SetHandler server-status

 # Restrict access to the following IP addresses. We don't
 # want the world to see our sensitive status information.
 Require ip 192.168.0.1
</Location>
Warning
The output of mod_status contains sensitive data, which is why
 you must always restrict access to it. The best way is via HTTP Basic
 Authentication, but then you’ll have yet another password to remember. Network range
 restrictions, as in my example, are almost as useful.

When you open the status page, at the bottom you will see output similar to this
 (emphasis mine):
cache type: SHMCB, shared memory: 512000 bytes, current entries: 781
subcaches: 32, indexes per subcache: 88
time left on oldest entries' objects: avg: 486 seconds, (range: 0...2505)
index usage: 27%, cache usage: 33%
total entries stored since starting: 12623
total entries replaced since starting: 0
total entries expired since starting: 11688
total (pre-expiry) entries scrolled out of the cache: 148
total retrieves since starting: 6579 hit, 3353 miss
total removes since starting: 0 hit, 0 miss

Logging Negotiated TLS Parameters

Default web server logging mechanisms care only about HTTP requests and errors; they
 won’t tell you much about your TLS usage. There are two main reasons why you might want
 to keep an eye on your TLS operations:
	Performance
	Incorrectly configured TLS session resumption can incur a substantial
 performance penalty, which is why you will want to keep an eye on the
 session resumption hit ratio. Having a log file for this purpose is useful
 to ensure that your server does resume TLS sessions and also to assist you
 with the tuning of the cache. Only Apache 2.4.x allows you to do this, via
 the SSL_SESSION_RESUMED environment variable.

	Protocol and cipher suite usage
	Knowing which protocol versions and cipher suites are actually used by
 your user base is important when it’s time to disable the weak versions. For
 example, SSL 2 remained widely supported over many years because people were
 afraid to turn it off. We are now facing similar problems with the SSL 3
 protocol and the RC4 and 3DES ciphers.

Assuming that you’re using Apache 2.4.x, use the following directives to monitor TLS
 connections:
Make TLS variables available to the logging module.
SSLOptions +StdEnvVars

Record per-request TLS information to a separate log file.
CustomLog /path/to/ssl.log "%t %h %k %X %{SSL_PROTOCOL}e\
 %{SSL_CIPHER}e %{SSL_SESSION_ID}e %{SSL_SESSION_RESUMED}e"
Please note the following:
	The session ID will be logged only when a session is resumed, not during the
 initial request.

	The value of the SSL_SESSION_RESUMED variable will be
 Initial for new sessions and Resumed
 for resumed sessions.

	The %k variable keeps track of how many requests there have
 been on the same connection. If you see a zero in a log entry, you’ll know it’s
 the first request. That’s the one that counts.

	The %X variable records connection status at the end of the
 request. A dash means that the connection will be closed, whereas a plus sign
 means that the connection will stay open.

There’s a slight mismatch between Apache’s logging facilities and our need to track
 TLS processing in detail. TLS connection parameters are generally decided once at the
 beginning of a connection and don’t change unless renegotiation occurs. Apache’s
 CustomLog directive handles requests, which means that you will
 get multiple nearly identical log entries for long connections with many HTTP
 transactions. The %k variable is useful to keep track of this. On one
 hand, this will make the log grow more quickly. On the other, logging every transaction
 will help you determine the frequency of connection reuse, which is the most efficient
 mode of operation (for both HTTP and TLS).
Note
There is currently no way to log connections with successful TLS handshakes but
 without any requests. Similarly, it is not possible to log TLS handshake
 failures.

Advanced Logging with
 mod_sslhaf

Apache’s logging facilities allow you to determine which TLS parameters were used on a
 connection, but they don’t give you any information beyond that. For example, you don’t
 know the highest protocol version and cipher suites that were offered by each client.
 With that information, you could, for example, determine your users’ capabilities and
 arrive at the optimal TLS configuration without having to go through a potentially
 painful process of trial and error.
To answer these and similar questions, I built an Apache module called
 mod_sslhaf. This module does not hook into Apache; instead, it
 passively observes and parses all TLS connections to extract client capabilities. It can
 be used to provide the following interesting information:
	Highest protocol version supported

	List of offered cipher suites

	List of used TLS extensions—in particular:
	Availability of the SNI extension

	Support for session tickets

	Support for OCSP stapling

In addition to the above, mod_sslhaf can also log the entire raw
 ClientHello, which is very useful if you want to perform custom
 handshake analysis. There is also a special variable called
 SSLHAF_LOG, which is set only on the first request on a
 connection. This variable is designed to work with Apache’s conditional logging feature,
 and it allows you to record only one log entry per connection (which saves a lot of disk
 space).
Installing mod_sslhaf is straightforward. There are no formal
 releases, so you’ll have to use git to clone the source code repository:
$ git clone https://github.com/ssllabs/sslhaf.git
Because the module is small (only about 1,000 lines of code), the documentation is
 included with the source code itself, in the file mod_sslhaf.c. To
 compile the module, execute:
$ apxs -cia mod_sslhaf.c
The command line switches c, i, and
 a stand for compile,
 install, and activate. Depending on your
 configuration file, activation can sometimes fail. In that case, activate the module
 manually by adding the following line to your configuration (use the path that is
 correct on your system, of course):
LoadModule sslhaf_module /path/to/modules/mod_sslhaf.so
The following configuration uses all mod_sslhaf features and
 records the most important data points, but only once per connection:
Make TLS variables available to the logging module.
SSLOptions +StdEnvVars

Record per-request TLS information to a separate log file.
CustomLog /path/to/ssl.log "%t %h %k %X %{SSL_PROTOCOL}e\
 %{SSL_CIPHER}e %{SSL_SESSION_ID}e %{SSL_SESSION_RESUMED}e |\
 %{SSLHAF_HANDSHAKE}e %{SSLHAF_PROTOCOL}e %{SSLHAF_SUITES}e\
 %{SSLHAF_EXTENSIONS_LEN}e %{SSLHAF_EXTENSIONS}e \"%{User-Agent}i\""\
 env=SSLHAF_LOG
The first half of this log format is identical to the format used in the previous
 section; the additional mod_sslhaf information is provided after the
 pipe character.
Tip
Most people will never consider analyzing raw ClientHello
 records, which is why I have not included them in the log format. After all, they do
 take a lot of space and impact logging performance. If you do want to track this
 data, the variable that holds it is called SSLHAF_RAW.

[528] Technically, the restrictions are per IP address and port combination (a
 TCP/IP endpoint). You could, for example, host one secure site on
 192.168.0.1:443 and another on
 192.168.0.1.:8443. In practice, public sites can be
 hosted only on port 443, so the restrictions are effectively per IP
 address.

[529] Assuming, of course, that the requested hostname is configured on the server;
 if it isn’t, they will get the default web site again.

[530] ECDHE is important, because the only alternative, DHE suites,
 can’t be used to achieve forward secrecy with Internet Explorer. On
 top of that, DHE is much slower than the RSA and ECDHE key
 exchanges, which is why most sites don’t want to use it.

[531] Bug #319901: missing ec and ecparam commands in openssl
 package (Red Hat Bugzilla, closed 22 October 2013)

[532] Red Hat Enterprise Linux 6.5 Release Notes (Red Hat, 21
 November 2013)

[533] TLS
 Interposer (Marcel Waldvogel, retrieved 12 July 2014)

[534] Increasing DHE strength on Apache 2.4.x (Ivan Ristić, 15 August
 2013)

[535] Bug #53219: mod_ssl should allow to disable ssl compression (ASF
 Bugzilla, closed 3 March 2013)

[536] DSA-2579-1 apache 2 — Multiple issues (Debian, 30 November
 2012)

[537] USN-1898-1:
 OpenSSL vulnerability (Ubuntu Security Notice, 3 July
 2013)

[538] Bug #857051: SSL/TLS CRIME attack against HTTPS, comment #5 (Red
 Hat Bugzilla, closed 19 April 2013)

[539] RHSA-2013:0587-1 (Red Hat, 4 March 2013)

14 Configuring Java and Tomcat

This chapter focuses on the TLS capabilities of the Java platform, covering the evolution
 of features across many releases, but focusing mostly on Java 7 and Java 8. I start the
 chapter with a discussion of the cryptographic features available in the platform itself,
 and then move on to cover both client and server deployments and configurations. Finally, I
 discuss Tomcat, one of the most popular Java web servers.
Java Cryptography Components

In Java, there are several components that work together to provide a complete
 implementation of the SSL and TLS protocols and the surrounding functionality. They
 are:
	Java Cryptography Architecture (JCA)
	JCA provides a unified architecture for everything related to
 cryptography. Conceptually, JCA consists of only a set of abstract APIs and
 no actual code. The key aspect of JCA is that it allows an arbitrary number
 of providers, which compete to provide the specified
 functionality.

	Java Certification Path API
	The Java Certification Path API (or
 CertPath, as it is commonly referred to
 throughout the Java reference documentation) deals with everything related
 to certificates and certification paths. For SSL/TLS specifically, CertPath
 provides APIs that deal with X.509 certification paths, as specified by the
 PKIX standards. Most SSL and TLS deployments rely on PKIX to establish
 trust.

	Java Secure Socket Extension (JSSE)
	JSSE is the component that deals with the SSL and TLS protocols, building
 on the cryptographic algorithms and other APIs provided by JCA packages.
 JSSE is implemented as a set of APIs with support for interchangeable
 implementations.

	JCA Providers
	Java comes with a number of providers that implement various cryptographic
 algorithms and makes it easy to install new providers as desired. The
 default configuration will satisfy the needs of most installations.
 Sometimes, when you wish to enable specific functionality or improve
 performance, you might decide to explicitly configure which providers are
 used and how.

	Keytool
	Java does not keep keys and certificates as individual files; rather it
 bundles them all in a single storage facility called a
 keystore. In order to manipulate the contents of
 a keystore, you will need to use keytool, which is
 included with every Java Development Kit
 (JDK).

	Java Root Certificate Store
	A TLS library is not very useful on the public Internet without a
 collection of trusted certificates, which are known as
 roots or root certificates. A
 collection of root certificates is also called a
 truststore. JVM vendors typically maintain their
 own truststores and ship them with their products.[540]

In this section, I aim to provide you all of the SSL/TLS-related information you will
 need. However, if you want to go deeper, it is recommended that you visit the Java 7[541] and Java 8[542] reference documentation.
Strong and Unlimited
 Encryption

Java cryptography operates in one of two modes of strength. In both cases, the
 code base is exactly the same, but some limits are imposed by the configuration. By
 default, each installation operates in strong mode, which is
 somewhat restricted to comply with the US export restrictions for cryptography. In
 this mode, for example, the AES cipher is limited to 128 bits. The other mode is
 called unlimited strength and does not have any artificial
 restrictions. The default mode is strong enough for most use cases, but the use of
 unlimited-strength encryption is recommended to reduce potential interoperability
 issues in edge cases. (I will discuss these issues further later in this
 chapter.)
If you do want to enable the unlimited mode (e.g., it’s very useful if you want to
 write an SSL assessment tool, in which case you want to have access to as many
 cipher suites as possible), you’ll need to download special policy files from
 Oracle’s web site[543] and put them in the correct location on the disk, per the installation
 instructions.
Note
On some systems, there will be more than one Java installation available. Make
 sure you patch the correct one or all of them. Even when there is only one
 version installed, the JDK and JRE usually go into separate directories and
 might need to be patched separately.[544]

Provider Configuration

Java ships with many providers; some are generic, and some are platform specific.
 Oracle’s SSL/TLS implementation (SunJSSE) is a good example of a generic provider,
 because the same code is used on all platforms. On the other end of the spectrum,
 the SunMSCAPI provider is a special component that interfaces with cryptographic
 features of Windows operating systems.
You will generally not need to deal with provider configuration except in a few
 cases, such as when you desire specific functionality or if you are looking to
 improve performance. In the following cases, for example:
	Performance tuning
	Java-provided crypto is not inherently slower,[545] but in practice Java might not be the fastest platform.
 There is certainly some evidence that shows that crypto performance can
 be improved using OpenSSL and NSS. As an illustration, an Intel use case
 claims up to 38% performance improvement when Java is coupled with NSS libraries.[546]

	FIPS
 mode
	Java supports FIPS, but only if coupled with an external
 FIPS-certified provider. One such provider is Mozilla’s NSS.

The ability to exchange one provider for another is also very useful if you come
 across bugs or implementation limitations. In theory, you should be able to overcome
 those by using another provider. Of course, in practice you might replace one set of
 bugs and limitations with another.

Features Overview

Java’s SSL/TLS implementation has traditionally been conservative and late to
 implement key protocol features. In that sense, Java’s library has been quite
 similar to others (except Microsoft’s). For example, client-side support for virtual
 secure hosting was added in Java 7, but for server-side support we had to wait until
 Java 8. Similarly, although TLS 1.2 support was added in Java 7, it was enabled by
 default only in Java 8.
Table 14.1. Evolution of SSL/TLS protocol features in JSSE
	 	Java 5 (May 2004–October
 2009)	Java 6 (December 2006–February 2013)	Java 7 (July 2011–)	Java 8 (March 2014–)
	Elliptic Curve crypto	No[a]	Yes[b]	Yes[c]	Yes
	Client-side SNI	-	-	Yes	Yes
	Server-side SNI	-	-	-	Yes
	TLS 1.1 and 1.2	-	-	Yes[d]	Yes
	AEAD GCM suites	-	-	-	Yes
	SHA256 and SHA384 suites	-	-	Yes	Yes
	DH over 1,024 bits (client)	-	-	-	Yes
	DH over 768 bits (server)	-	-	-	Yes[e]
	Secure renegotiation	u26+	u22+	Yes	Yes
	BEAST mitigation (1/n-1 split)	-	u29+	u1+	Yes
	OCSP stapling	-	-	-	-
	Server cipher suite preference	-	-	-	Yes
	Disable client-initiated renegotiation	-	-	-	Yes
	Hardware-accelerated AES	-	-	-	Partial[f]
	Default client handshake format	v2	v2	v3	v3
	[a] In Java 5, JCA provided only EC APIs, but no
 implementation.

[b] In Java 6, JSSE added support for EC suites, but the JDK
 itself didn’t implement any EC algorithms. The only platform
 that supported EC suites by default was Solaris, which had
 native EC functionality and integrated with Java using
 PKCS#11.

[c] Official Java 7 implements EC algorithms via the SunEC
 provider. However, this component is not included in
 OpenJDK. To add EC support, look for third-party libraries
 such as BouncyCastle, or integrate with a native
 implementation using PKCS#11.

[d] Disabled by default in client mode. Enabled by default in
 server mode.

[e] Only 1,024 bits by default, but can be increased to 2,048
 bits.

[f] JEP
 164: Leverage CPU Instructions for AES
 Cryptography (OpenJDK web site)

Protocol Vulnerabilities

The most recent versions of Java do not suffer from any of the known SSL/TLS
 vulnerabilities. Although there are frequent Java releases with security fixes, most
 vulnerabilities affect only client software. For this reason, server-side
 installations are often left unpatched for long periods of time. However,
 occasionally a server-side bug is fixed, and sometimes the issue is in the
 cryptographic libraries. For example, the patch release in April 2014 fixed a
 serious problem in JSSE.[547]
 Another reason to upgrade server installations is to refresh the truststores.
 This might be relevant for web applications that communicate with external
 systems.
	Insecure renegotiation
	Oracle initially addressed insecure renegotiation on 30 March 2010
 with an interim patch that disabled renegotiation.[548] Secure renegotiation was implemented on 12 October 2010 in
 Java 5u26 and Java 6u22. Java 7 and later supported secure renegotiation
 from the first release.
Like most other client-side software, Java clients will connect to
 servers that do not implement secure renegotiation. This is dangerous,
 because clients have no way of detecting attacks against insecure
 renegotiation even if they themselves do support
 secure renegotiation. The alternative is to allow clients to connect
 only to servers that support secure renegotiation, but in that case you
 will have to accept that connections with insecure servers will fail.[549]

	BEAST
	To address the BEAST attack, Java implements the 1/n-1 split starting
 with Java 6u29 and Java 7u1.

	CRIME
	The CRIME attack exploits information leakage inherent in compression.
 Java never supported compression at the TLS level, which means that no
 Java client was ever vulnerable to CRIME. Java web applications might
 still be vulnerable to the CRIME variants TIME and BREACH, which attack
 HTTP response body compression.

Interoperability
 Issues

With Java in server mode, you are not very likely to experience interoperability
 issues; Java supports a variety of protocols and suites, which means that you will
 be able to communicate with virtually any client.
It’s a different situation in client mode,
 where
 there are several potential problems that you need to be aware of:
	Missing root certificates
	The root certificate store shipped with the JRE enables Java clients
 to communicate with previously unseen web sites. Over time, old roots
 are retired and new ones are added. If a web site is relying on a root
 certificate that is not in your store, connections to the site will
 fail. If you’re not updating your JRE regularly, then the root store
 might become stale, causing connectivity failures. Old root stores might
 also contain roots that shouldn’t be trusted any more. In some cases, it
 may be that the official root store does not contain a root you wish to
 trust. If that happens, you will need to manually add such roots.

	Servers with only 256-bit suites enabled
	A very small number of sites are configured only with 256-bit cipher
 suites. If your JRE hasn’t been upgraded to the unlimited mode (it’s
 capable only of 128-bit AES), you might not be able to communicate with
 such sites.

	DH parameters over 1,024 bits
	All versions prior to Java 8 are limited to supporting client-side
 Diffie-Hellman (DH) parameters of only up to 1,024 bits. Although few
 servers use anything stronger at the moment, 1,024-bit DH parameters are
 considered weak, and there is a trend to deploy stronger
 parameters.

	RSA keys under 1,024 bits
	Starting with 7u40, Java refuses to connect to servers that use
 insecure RSA keys that offer less than 1,024 bits of security. It is
 possible to bypass this restriction by changing the
 jdk.​certpath.​disabledAlgorithms
 property, but that’s generally not a good idea.

	MD2 root certificates
	Also from 7u40, Java versions will not accept certificates with MD2
 signatures. A small number of servers contain such certificates in their
 chains, and they will cause TLS connections to fail. Although it is
 possible to override the rejection of MD2, you should consider it only
 as a last resort.

Stricter Algorithm Restrictions

Java’s default algorithm restrictions for certification path building could be
 improved for better security, disabling all insecure algorithms and key sizes.
 Consider the following setting for the
 jdk.certpath.disabledAlgorithms security property:
 MD2, MD5, RSA keySize < 2048, DSA keySize < 2048, EC keySize < 256
These restrictions don’t necessarily affect the root certificates in your
 truststores. For best results, you should also inspect all the root certificates
 and remove the weak ones (use the above criteria).

Tuning via Properties

Java exposes a number of system and security properties that can be used to change
 the default cryptography settings. In this section, I am including a selection of
 the most useful settings. You can find the full list in the JSSE documentation.[550]
Table 14.2. Most useful system and security properties for SSL/TLS and PKI tuning
	Purpose	Property name	Description
	Default client protocols for
 HttpsUrlConnection	https.​protocols	Provide a comma-separated list of desired protocols. For example:
 TLSv1,TLSv1.1,TLSv1.2. Starting with Java 8,
 you can use jdk.tls.client.protocols to affect
 all SunJSSE clients.
	Default client cipher suites for
 HttpsUrlConnection	https.​cipherSuites	Comma-separated list of desired cipher suites to be used by
 HttpsUrlConnection.
	Use Server Name Indication (SNI)	jsse.​enableSNIExtension	Enabled by default in Java 7 and later. Should not be disabled
 unless you encounter incompatible servers.
	Allow insecure renegotiation	sun.security.ssl.​allowUnsafeRenegotiation
 	Disabled by default and should stay that way.
	Allow insecure renegotiation clients	sun.security.ssl.​allowLegacyHelloMessages
 	Enabled by default in order to allow not-yet-patched TLS clients.
 Ideally, it should be disabled, but that may cause interoperability
 problems.
	Disabled suite algorithms	jdk.tls.​disabledAlgorithms	A handy setting to use to disable certain algorithms without
 changing application source code. Security
 property.
	Disabled certificate algorithms	jdk.certpath.​disabledAlgorithms	Algorithm restrictions for certification path processing.
 Contains MD2, RSA keySize < 1024 in 7u40 and
 newer. The documentation for this parameter is in the
 java.security file. Security property.
	Reconstruct incomplete certificate chains	com.sun.​security.enableAIAcaIssuers	If enabled, Java clients will follow AIA information when
 available and attempt to reconstruct incomplete certificate chains.
 Disabled by default.
	Enable revocation checking	com.sun.net.​ssl.​checkRevocation	Disabled by default. If enabled, requires that either CRL or OCSP
 revocation methods are enabled.
	Enable OCSP revocation checking	ocsp.enable	When enabled, Java clients will check certificates for revocation
 via OCSP. Disabled by default. Security
 property.
	Enable CRL revocation checking	com.sun.​security.enableCRLDP	When enabled, Java clients will check certificates for revocation
 via CRL. Disabled by default. If OCSP checking is enabled, it will
 be attempted first.

In Java 8, several new properties are available:
Table 14.3. New configuration system properties available in Java 8
	Purpose	Property name	Description
	Disable client-initiated renegotiation	jdk.tls.​rejectClientInitiatedRenegotiation	Set to true to disable client-initiated
 renegotiation. Not documented at the time of writing.
	Configure server Diffie-Hellman strength	jdk.tls.ephemeralDHKeySize	Leave undefined for 1,024 bits. Set to legacy
 for the weak Java 7 behavior, matched to match
 key size, and a number from 1,024 to 2,048 for a fixed
 value.
	Default SunJSSE client protocols	jdk.tls.client.protocols	Similar to https.protocols, but affects all
 SunJSSE clients, not just
 HttpsUrlConnection.

System and security properties are similar, but they are configured differently.
 You can set a system property in one of two ways. First is via
 the -D switch on the JVM command line. For example:
$ java -Dhttps.protocols=TLSv1 myMainClass
Alternatively, at runtime you can use the System.setProperty()
 method:
System.setProperty("https.protocols", "TLSv1");
Security properties, on the other hand, are chiefly
 configured by editing the $JAVA_HOME/lib/security/java.security
 file. If you want to override the settings from the command line, you can, but under
 two conditions:
	The security.overridePropertiesFile setting in the main
 configuration file must be set to true (the
 default).

	You can’t specify individual properties on the command line; instead, you
 have to create a property file with all of your property overrides in
 it.

If these two conditions are met, you can override the default security properties,
 like so:
$ java -Djava.security.properties=/path/to/my/java.security-overrides
There is also an undocumented feature that allows you to specify an entirely
 different security configuration (not just override the defaults) by using two
 equals signs:
$ java -Djava.security.properties==/path/to/my/java.security
At runtime, you can set a security property using the
 Security.setProperty() method. For example, to improve the
 default policy on algorithm strength you could do this:
Security.setProperty("jdk.certpath.​disabledAlgorithms",
 "MD2, MD5, RSA keySize < 2048, DSA keySize < 2048, EC keySize < 256");
Warning
Setting properties at runtime might not always be reliable. Some classes might
 look up the property values only once at startup, which might lead them to miss
 the changed properties. For best results, configure properties in the
 configuration files or by using command-line switches.

Common Error Messages

When something unexpected happens, JSSE will throw an exception, but the language
 used in the error messages tends to be very technical and often does not provide
 enough clues to help resolve the problem. This section contains a collection of
 commonly observed JSSE error messages and options to deal with them.
Certificate Chain Issues

Sometimes, a Java client attempting to connect to a server might not be able
 to validate the certificate. When that happens, the following exceptions are
 thrown:
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
As for the root cause behind the problem, it can be one of the following
 issues:
	Unknown certification authority
	The server’s certificate is signed by a CA unknown to your Java
 client. This might happen if your keystore configuration is too old
 and does not contain the new CA or if the server is using a custom
 CA (which will never be recognized by the public). If you are
 certain that the CA is genuine, you can solve this problem by adding
 the missing certificate to your truststore. Other than that,
 trusting arbitrary root certificates is not recommended; once added,
 a root certificate can impersonate any web site in the world.

	Incomplete chain
	Although we spend most of our time discussing server certificates,
 in reality servers need to configure chains of certificates. If a
 server’s chain is incomplete, clients won’t be able to find a path
 to a trusted root. The solution is to reconfigure the server with
 the correct certificate chain.
Sometimes, incomplete chains can be reconstructed with the help of
 the Authority Information Access (AIA)
 extension, which contains a URL which you can use to download the
 next certificate in the chain. Java does not follow AIA information
 by default. To enable this feature, set the
 com.sun.security.enableAIAcaIssuers property
 to true.

	Self-signed certificate
	Many servers run with only self-signed certificates. If they are
 delivering services intended for public consumption, that’s
 unacceptable. If not, it might be all right, and you should be able
 to deal with the problem by creating an exception and trusting that
 certificate.

Warning
Contrary to many “solutions” you can find on the Internet, you should
 never attempt to solve the self-signed certificate problem by disabling
 validation in your code. If you do that, your programs will fail miserably
 when under a man-in-the-middle (MITM) attack.
 Basically, anyone would be able to present any certificate to your code and
 impersonate the server you’re connecting to.

Server Hostname Mismatch

When connecting to a remote web server over TLS, the expectation is that the
 hostname from the URL will match one of the hostnames specified in the
 certificate. If that’s not the case, the following exception will occur:
javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException: No name matching beta.feistyduck.com found
The solution simply is to install a correct certificate, which includes the
 missing hostname.

Client Diffie-Hellman Limitations

All versions prior to Java 8 support Diffie-Hellman (DH) parameters of only up
 to 1,024 bits. When a Java client running on one of those platforms encounters a
 server that wishes to use a suite with DH parameters over 1,024 bits (almost
 always 2,048 bits), you will see the following exceptions:
javax.net.ssl.SSLException: java.lang.RuntimeException: Could not generate DH keypair
...
Caused by: java.lang.RuntimeException: Could not generate DH keypair
...
Caused by: java.security.InvalidAlgorithmParameterException: Prime size must be multiple of 64, and can only range from 512 to 1024 (inclusive)
If you have control over the server in question, it is easy to make this
 problem go away, by doing one of the following:
	Enable and prioritize ECDHE suites on the server. Java 6 and 7 clients
 support these, and will happily use them. (But do note that with Java 6
 you must switch to using the v3 handshake in order to utilize the ECDHE
 suites at the client level.)

	If the server does not support ECDHE suites, you can prioritize RSA
 suites on the server, but you will lose forward secrecy with your Java
 clients.

	As a last resort, you can downgrade DH parameters to 1,024 bits. This,
 of course, also downgrades the security of all DH suites.

If you’d rather make changes to the client configuration, you can try
 replacing Oracle’s JCE component (where the limitation lives) with that
 developed by the Bouncy Castle project.[551] I’ve had mixed results with this approach. Sometimes it works, but
 the addition of a provider might produce other exceptions that can’t be easily
 explained.

Server Name Indication Intolerance

A small number of servers are intolerant to the Server Name
 Indication (SNI) extension, which is used by default by clients
 starting with Java 7. More commonly, servers that do support SNI send a TLS
 warning when the SNI information couldn’t be matched to any virtual host on the
 server. Although TLS warnings are not fatal and can be ignored, Java clients
 react to them by aborting the connection. You will know you have this problem if
 you upgrade your JVM and start seeing the following exception:
javax.net.ssl.SSLProtocolException: handshake alert: unrecognized_name

Strict Secure Renegotiation Failures

When the JVM is in the strict secure renegotiation mode, the requirement for
 every TLS handshake will be that both sides implement secure renegotiation. If
 that’s not the case, you will get the following exception:
javax.net.ssl.SSLHandshakeException: Failed to negotiate the use of secure renegotiation
You will not get this exception unless you’ve explicitly enabled the strict
 secure renegotiation mode by setting
 sun.security.ssl.allowLegacyHelloMessages to
 false. If you experience this problem in a Java client,
 the best way to deal with it is to upgrade the server. If that’s not possible,
 your only other option is to revert back to the default (and unsafe)
 mode.

Protocol Negotiation Failure

SSL 3 is an older, obsolete protocol version that shouldn’t be used. Virtually
 all servers on the Internet support at least TLS 1.0 and you’re not likely to
 experience interoperability issues, but you might encounter an odd SSL 3-only
 server. If you disable SSL 3, you might encounter the following exception with
 such servers:
javax.net.ssl.SSLHandshakeException: Server chose SSLv3, but that protocol version is not enabled or not supported by the client.
To resolve this problem, you either need to get the server to upgrade or
 downgrade the client.
On the other end of the spectrum, if you don’t enable newer protocols, you
 might encounter a server that does not support TLS 1.0 and earlier. This, too,
 is rare, but if you come across it, the message will be:
javax.net.ssl.SSLException: Received fatal alert: protocol_version

Handshake Format Incompatibility

Java 6 and older versions use the SSL 2 handshake format by default, but not
 all servers do. If you come across a server that does not, you will see the
 following message:
javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake
You can fix this problem by reconfiguring the client to use the SSL 3
 handshake format, as described in the section called “Using Strong Protocols on the Client Side”.

Securing Java Web
 Applications

In this section, I discuss several topics related to secure use of encryption in
 either Java clients or web applications. These topics aren’t very complicated, but
 the correct information is often difficult to find in the sea of documents available
 on the Web. Please note that I don’t discuss here anything outside encryption. For
 example, cookie security and session management security are complex topics and
 there is a lot to be said, but complete coverage of these topics is outside the scope
 of
 this book.
Enforcing Encryption

You can write a web application that wants to be secure (i.e., deployed under
 TLS), but you can’t actually enforce that. Due to an operator mistake or
 configuration error, your application might be available under plain-text
 HTTP.
My advice is to always check programmatically if the application is accessed
 securely by invoking the isSecure() method on the
 HttpServletRequest instance supplied by the Servlet
 container. For existing applications in which you don’t have control over the
 source code, checks can be added in a servlet filter.
Note
This programmatic check will catch the obvious configuration errors, but
 it is not foolproof. Some systems terminate TLS at earlier architectural
 layers (e.g., load balancers and proxies) but use web server configuration
 settings to convince applications that encryption is in place.

Securing Web Application Cookies

The following code snippet creates a cookie with both
 httpOnly and secure flags set and adds
 it to the response (via the HttpServletResponse instance
 supplied by the Servlet container):
Cookie cookie = new Cookie(cookieName, cookieValue);
cookie.setMaxAge(cookieLifeInDays * 24 * 3600);
cookie.setHttpOnly(true);
cookie.setSecure(true);
response.addCookie(cookie);
Clearly, if you have an existing application that does not use cookies
 properly, you will need to examine the source code to find where the cookies are
 created, and make them all secure. If you don’t want to make changes to the
 source code (or don’t have access to it), try writing a servlet filter[552] that intercepts cookies as they are being created and forcefully
 makes them secure.

Securing Web Session Cookies

Java applications almost universally rely on the underlying servlet containers
 to manage sessions for them. In practice, this means that configuration changes
 need to be made in order to secure session cookies.
This is easy to do for applications that rely on the Servlet 3 specification
 or newer,[553] which introduced configuration settings for securing session
 cookies. To do this, add the following snippet to the application’s
 web.xml file:[554]
<session-config>
 <cookie-config>
 <secure>true</secure>
 <http-only>true</http-only>
 </cookie-config>
<session-config>
For applications using earlier Servlet specification versions, the exact
 behavior depends on the container. Some products automatically create secure
 cookies when encryption is used.

Deploying HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a new
 technology that enables strict handling of encryption by web applications that
 don’t wish to receive any plaintext traffic. I cover HSTS in detail in Chapter 10, HSTS, CSP, and Pinning. To deploy it, you need to set a single
 response header in your application. Only one method invocation is needed for
 this:
response.setHeader("Strict-Transport-Security", "max-age=31536000; includeSubDomains");
However, configuring security policies is generally better done at the web
 server level. Java applications can also use servlet filters. Rather than
 writing your own, consider using one of the available open source projects, for
 example, HeadLines.[555]

Using Strong Protocols on the Client Side

For client applications, Java’s default protocol configuration has
 traditionally been focused on interoperability at the cost of security. Java 6,
 for example, uses the old SSL 2 handshake format, which is necessary only if you
 are actually willing to use SSL 2, but Java never supported this version of the
 protocol. Java 7 doesn’t use the SSL 2 handshake format, but still doesn’t use
 TLS 1.1 and 1.2 for clients by default, despite supporting these newer protocol
 versions. (They are enabled by default for servers.) Java 8 enables TLS 1.1 and
 1.2 for clients and servers alike.
If all you need is HttpsURLConnection, then the simplest
 way to change the default behavior is via the https.protocols
 system property I discussed earlier, in the section called “Tuning via Properties”. This will change the default protocol configuration for this class. Starting
 with Java 8, the jdk.tls.client.protocols system property
 does the same, but for all code that relies on SunJSSE.
If you’re an application developer and don’t control the environment in which
 your application runs, changing system properties is not appropriate; it’s
 better to programmatically ensure your application uses the desired protocols.
 This task is straightforward if you’re handling synchronous sockets directly;
 you can use SSLSocket.setSSLParameters() to deploy your own
 configuration.
But for many common tasks, sockets are too low level, which is why you’ll
 often find yourself using the higher-level HttpsURLConnection
 class. Unfortunately, to change the protocols used by this class is more
 difficult; you will need to create a custom SSLSocketFactory
 and make sure it is always used.
Below is my custom factory, which enables all supported protocols (it’s future
 compatible because protocol versions are not hardcoded) but disables the SSL 2
 handshake format and the SSL 3 protocol:
import java.io.IOException;
import java.net.InetAddress;
import java.net.Socket;
import java.net.UnknownHostException;
import java.util.ArrayList;
import java.util.List;

import javax.net.ssl.SSLSocket;
import javax.net.ssl.SSLSocketFactory;

public class MySSLSocketFactory extends SSLSocketFactory {

 private String enabledProtocols[] = null;

 private String enabledCipherSuites[];

 private SSLSocketFactory sslSocketFactory;

 public MySSLSocketFactory() {
 sslSocketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();
 enabledCipherSuites = sslSocketFactory.getDefaultCipherSuites();
 }

 private Socket reconfigureSocket(Socket socket) {
 SSLSocket sslSocket = (SSLSocket) socket;

 if (enabledProtocols != null) {
 sslSocket.setEnabledProtocols(enabledProtocols);
 } else {
 List<String> myProtocols = new ArrayList<String>();

 for (String p : sslSocket.getSupportedProtocols()) {
 if (p.equalsIgnoreCase("SSLv2Hello")
 || (p.equalsIgnoreCase("SSLv3"))) {
 continue;
 }

 myProtocols.add(p);
 }

 sslSocket.setEnabledProtocols(myProtocols
 .toArray(new String[myProtocols.size()]));
 }

 sslSocket.setEnabledCipherSuites(enabledCipherSuites);

 return socket;
 }

 public void setEnabledProtocols(String[] newEnabledProtocols) {
 enabledProtocols = newEnabledProtocols;
 }

 public void setEnabledCipherSuites(String[] newEnabledCipherSuites) {
 enabledCipherSuites = newEnabledCipherSuites;
 }

 @Override
 public Socket createSocket(Socket s, String host, int port,
 boolean autoClose) throws IOException {
 return reconfigureSocket(sslSocketFactory.createSocket(s, host, port,
 autoClose));
 }

 @Override
 public String[] getDefaultCipherSuites() {
 return enabledCipherSuites;
 }

 @Override
 public String[] getSupportedCipherSuites() {
 return sslSocketFactory.getSupportedCipherSuites();
 }

 @Override
 public Socket createSocket(String host, int port) throws IOException,
 UnknownHostException {
 return reconfigureSocket(sslSocketFactory.createSocket(host, port));
 }

 @Override
 public Socket createSocket(InetAddress host, int port) throws IOException {
 return reconfigureSocket(sslSocketFactory.createSocket(host, port));
 }

 @Override
 public Socket createSocket(String host, int port, InetAddress localHost,
 int localPort) throws IOException, UnknownHostException {
 return reconfigureSocket(sslSocketFactory.createSocket(host, port,
 localHost, localPort));
 }

 @Override
 public Socket createSocket(InetAddress address, int port,
 InetAddress localAddress, int localPort) throws IOException {
 return reconfigureSocket(sslSocketFactory.createSocket(address, port,
 localAddress, localPort));
 }
}
Then, whenever you create an instance of
 HttpsUrlConnection, assign it a custom factory:
URL u = new URL("https://www.feistyduck.com");
HttpsURLConnection uc = (HttpsURLConnection) u.openConnection();
uc.setSSLSocketFactory(new MySSLSocketFactory());

Revocation Checking

By default, Java will not perform any revocation checks on the certificates it
 encounters. This is potentially insecure. You should enable both CRL and OCSP
 revocation checking for maximum security by setting
 com.sun.net.ssl.checkRevocation,
 ocsp.enable, and
 com.sun.security.enableCRLDP to
 true.
In addition, you should also consider allowing Java to attempt to reconstruct
 incomplete certificate chains, via the
 com.sun.security.enableAIAcaIssuers property.
 Incomplete certificate chains can’t be validated, which means that communication
 with such servers will fail.

Common Keystore Operations

In this section, I cover the most common tasks related to key and certificate
 management. The keytool utility will help you with many of these
 tasks, but you might need to resort to using OpenSSL for some, particularly for key
 and certificate import.
Note
If you don’t enjoy spending time on the command line, consider using a tool
 called KeyStore Explorer,[556] which provides a friendly user interface for common
 keytool operations.

Keystore Layout

Although it might not be obvious at first, Java will allow you to use any
 number of keystores. For client-side activity, you most likely won’t need to do
 much, because the system-provided root keystore will be sufficient. You might
 need to update this keystore from time to time, but you’re unlikely to use more
 than one.
It’s different for server operation. Here, not only are multiple keystores
 possible, they are actively recommended. Unless you have a very good reason to
 do otherwise, you should always use one keystore per web site. The advantages of
 this approach are that (1) you can
 secure web site keys individually, using different passphrases, and (2) migration of sites from one server to
 another is easy.
Within a keystore, each certificate chain is required to have a unique alias.
 If you adopt my recommendation about server keystore usage, you will not need to
 think about these aliases much, because there will always be only one
 certificate chain in the entire keystore. In the rest of this chapter, I will
 assume this is the case, and I will always use the alias “server.”

Creating a Key and a Self-Signed Certificate

To create a private key with a self-signed certificate, use the
 -genkeypair command:[557]
$ keytool -genkeypair \
 -keystore feistyduck.jks \
 -alias server \
 -keyalg RSA \
 -keysize 3072 \
 -validity 365 \
 -ext SAN="DNS:www.feistyduck.com,DNS:feistyduck.com"
Enter keystore password: ****************
Re-enter new password: ****************
In this example, I use a keytool feature that allows
 creation of certificates valid for multiple hostnames (the
 -ext switch). This feature is not available in Java 6 and
 earlier versions.
Warning
The keytool utility is able to accept the keystore
 password on the command line via the -storepass switch.
 However, I prefer not to use it, because if you do the password is recorded
 in your command-line history and might be seen on the process list.

After you provide the password, you will be asked for the information that
 will go into the certificate. The first question is misleading; you shouldn’t
 respond with your name, but with the desired hostname (e.g.,
 www.feistyduck.com):
What is your first and last name?
 [Unknown]: www.feistyduck.com
What is the name of your organizational unit?
 [Unknown]: Engineering
What is the name of your organization?
 [Unknown]: Feisty Duck Limited
What is the name of your City or Locality?
 [Unknown]: London
What is the name of your State or Province?
 [Unknown]: England
What is the two-letter country code for this unit?
 [Unknown]: GB
Is CN=www.feistyduck.com, OU=Engineering, O=Feisty Duck Limited, L=London, ST=England, C=GB correct?
 [no]: yes

Enter key password for <server>
 (RETURN if same as keystore password):
You can now check the resulting keystore to see what your key and certificate
 look like:
$ keytool -keystore feistyduck.jks -list -v
Enter keystore password: ****************
[...]
Alias name: server
Creation date: 01-Jul-2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=www.feistyduck.com, OU=Engineering, O=Feisty Duck Limited, L=London, ST=England, C=GB
Issuer: CN=www.feistyduck.com, OU=Engineering, O=Feisty Duck Limited, L=London, ST=England, C=GB
Serial number: 4f3326e0
Valid from: Tue Jul 01 17:10:31 BST 2014 until: Wed Jul 01 17:10:31 BST 2015
Certificate fingerprints:
 MD5: 55:63:0B:F5:F5:45:67:62:2D:85:FE:5C:D2:8E:1E:27
 SHA1: A4:AD:C6:1E:F6:1F:73:B0:BD:C6:2F:83:F5:B1:67:82:61:94:89:CE
 SHA256: FD:0A:BE:5B:9F:93:9D:BA:DF:FD:54:8B:37:0A:A4:7C:92:1F:03:25:8C:01:ED:92:9B:BE:AA:19:68:27:B9:4D
 Signature algorithm name: SHA256withRSA
 Version: 3

Extensions:

#1: ObjectId: 2.5.29.17 Criticality=false
SubjectAlternativeName [
 DNSName: www.feistyduck.com
 DNSName: feistyduck.com
]

#2: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 02 14 B4 49 F6 15 F0 77 FE 9A C8 86 2A 02 10 95 ...I...w....*...
0010: 9A 46 FD EB .F..
]
]

Creating a Certificate Signing Request

After you create a key and a self-signed certificate, creating a
 Certificate Signing Request (CSR) requires little
 effort:
$ keytool -certreq \
 -keystore feistyduck.jks \
 -alias server \
 -file fd.csr
Enter keystore password: ****************
Now you can submit the file fd.csr to your CA to obtain a
 certificate.

Importing Certificates

When you receive the server certificate back from your CA, you will need to
 import it into the keystore along with all other certificates that are necessary
 to construct the entire chain.
First, import the root certificate:
$ keytool -import \
 -keystore feistyduck.jks \
 -trustcacerts \
 -alias root \
 -file root.crt
Then, using the same command (but with a different alias each time), import
 the intermediate certificates:
$ keytool -import \
 -keystore feistyduck.jks \
 -trustcacerts \
 -alias intermediate1 \
 -file intermediate1.crt
Finally, import the server certificate:
$ keytool -import \
 -keystore feistyduck.jks \
 -alias server \
 -file fd.crt
Note
The great thing about keytool is that it checks that
 the imported certificate matches the key and that the certificate chain is
 valid. According to my research, about 6% of all servers have incorrect
 certificate chains. This behavior of keytool ensures that
 such mistakes do not happen.

Converting Existing Certificates

If you are migrating an existing server from, say, Apache, you will need to
 merge several key and certificate files into a single keystore. The
 keytool utility can’t do this, but it’s easy using
 OpenSSL.
The following command will take existing keys and certificates and convert
 them into a new keystore in pkcs12 format:
$ openssl pkcs12 -export \
 -out feistyduck.p12 \
 -inkey fd.key \
 -in fd.crt \
 -certfile fd-intermediates.crt \
 -name server
Enter Export Password: ****************
Verifying - Enter Export Password: ****************
If you have more than one intermediate certificate, put them all into a single
 file (fd-intermediates.crt in the previous example).
You can use this new keystore directly, but because it’s not in Java’s native
 format you might need to specify the type in the configuration. For example, in
 Tomcat you do that with the keystoreType parameter set to
 pkcs12.
Alternatively, if you like everything neat and tidy, you can use
 keytool to convert the keystore into the native (JKS)
 format:
$ keytool -importkeystore \
 -srckeystore feistyduck.p12 \
 -srcstoretype pkcs12 \
 -destkeystore feistyduck.jks
Enter destination keystore password: ****************
Re-enter new password: ****************
Enter source keystore password: ****************
Entry for alias server successfully imported.
Import command completed: 1 entries successfully imported, 0 entries failed or cancelled

Importing Client Root Certificates

From time to time, you might encounter a situation in which your Java clients
 can’t connect to a server even though the certificate was issued by a public CA.
 In such cases, you will need to add the missing root certificate to your
 keystore.
The first step is to obtain the missing root certificate. This is generally
 easy, because these days every browser has a certificate viewer. Simply navigate
 to the web site in question, choose the certificate viewer option, and export
 the root certificate to a file. There is no need to export the intermediate
 certificates.
Then issue the following command:
$ keytool -import \
 -keystore /path/to/keystore.jks \
 -trustcacerts \
 -file /path/to/root.crt \
 -alias UNIQUE_ROOT_ALIAS
Note
If you’re creating a custom keystore for explicit use by an application,
 you can choose an arbitrary password for it. The password is of little
 importance if you’re only keeping root certificates in the keystore. If you
 intend to replace Java’s default keystore, however, use “changeit” for the
 password, to match the one used by default.

I recommend that you maintain your master keystore in a separate location and
 distribute it as needed. To change the default Java keystore, simply copy yours
 to the correct location; in most cases that’s
 $JAVA_HOME/jre/lib/security/cacerts.

Tomcat

If you are looking to run a web server on the Java platform, chances are you will rely
 on Tomcat or one of the many products derived from it. Using TLS with Tomcat can be
 confusing, because there are several ways to do it:
	No TLS at Tomcat level
	Historically, quite a few Tomcat deployments are placed behind Apache
 reverse proxies. Apache is not only popular but also robust, and it has a
 wide range of modules that support every feature imaginable; it makes sense
 to have it as a separate architecture layer to handle all HTTP-related
 functionality, leaving Tomcat to focus on Java-specific bits. This approach
 is so popular that Apache comes standard with a special proxy module,
 mod_proxy_ajp, which interfaces directly with
 Tomcat by using a custom protocol called AJP.
In this mode, everything related to TLS is configured at the Apache level.
 This approach will appeal to those who already have experience using Apache
 but also to those who wish to avoid Java’s and Tomcat’s TLS
 limitations.

	Using JSSE
	If you do want to terminate TLS at the Tomcat level, the default choice is
 to use JSSE. This approach is straightforward, because every Java
 installation supports it out of the box without any tuning. Easy as it is,
 this choice also means accepting all the limitations of JSSE. However, many
 improvements in Java 8 mean that JSSE is now a viable platform for strong
 secure servers.

	Using APR and OpenSSL
	In order to make Tomcat perform better, its developers have come up with a
 special native library called Tomcat Native.[558] This library wraps two other mature native libraries: APR (the
 core of the Apache web server) and OpenSSL. If Tomcat Native is discovered
 by Tomcat at startup, it’s automatically picked up. There is some anecdotal
 evidence that the performance with Tomcat Native will be better, but because
 this library also takes over socket handling and other I/O operations it’s
 difficult to say which performance improvements are from better I/O and
 which come from OpenSSL. At startup, Tomcat itself will tell you that using
 Tomcat Native improves performance.
A major downside of Tomcat Native is that it complicates deployment; it’s
 another component that needs to be installed and maintained. Tomcat Native
 binds to the specific JDK, which means that you might need to recompile it
 whenever you change Java versions.
For Windows, binaries are provided. Some platforms—for example,
 Ubuntu—include Tomcat Native as an optional package (on Ubuntu the name is
 libtcnative-1), but that version might be too old for
 use with recent Tomcat versions. Furthermore, newer Tomcat Native versions
 include important improvements.
When you do decide to use OpenSSL, Java’s cryptography features and
 performance no longer matter; it only matters what versions of Tomcat Native
 and OpenSSL you’re using and what features they support.

To make things more confusing, Tomcat with JSSE supports two connectors (server
 components that handle incoming connections): the older BIO (blocking) and the newer NIO (nonblocking).[559] If you want to use OpenSSL, there is only one connector that supports a mix
 of blocking and nonblocking operations.
The following table, copied from Tomcat documentation, shows a comparison of the
 different options.
Table 14.4. Comparison of performance features of various Tomcat connectors
	 	Java BIO	Java NIO	Java NIO2	Tomcat Native
	Class name	Http11Protocol	Http11NioProtocol	Http11Nio2Protocol	Http11AprProtocol
	Tomcat version	3.x onwards	6.x onwards	8.x onwards	5.5.x onwards
	Supports polling	No	Yes	Yes	Yes
	Polling size	N/A	maxConnections	maxConnections	maxConnections
	Read HTTP request	Blocking	Nonblocking	Nonblocking	Blocking
	Read HTTP body	Blocking	Sim-blocking[a]	Blocking	Blocking
	Write HTTP response	Blocking	Sim-blocking	Blocking	Blocking
	Wait for next request	Blocking	Nonblocking	Nonblocking	Nonblocking
	SSL implementation	Java (JSSE)	Java (JSSE)	Java (JSSE)	OpenSSL
	SSL handshake	Blocking	Nonblocking	Nonblocking	Blocking
	Max connections	maxConnections	maxConnections	maxConnections	maxConnections
	[a] Although the connector is nonblocking, traditionally the
 Servlet specification requires blocking I/O for request and
 response bodies. Thus, the nonblocking connector is simulating
 blocking I/O. The Servlet 3.1 specification (which is supported
 in Tomcat 8) introduces nonblocking I/O.

This complicated choice is perhaps why many decide to put a reverse proxy in front of
 Tomcat, thus avoiding a difficult decision. The main problem is that there are no clear
 guidelines to help us determine which approach might be best and when. However,
 performance is only one aspect of the decision. When it comes to TLS, the actual
 features are perhaps more important. The following table summarizes the differences
 between using JSSE with Java 7 and Java 8, Tomcat Native, and terminating TLS in an
 Apache reverse proxy before Tomcat.
Table 14.5. Comparison of TLS features of the available options for TLS termination
	 	Tomcat (Java 7)	Tomcat (Java 8)	Tomcat Native	Apache 2.4.x
	Strong DH parameters	No (768 bits)	Borderline (1,024 bits)	Borderline (1,024 bits)	Yes (2.4.7)
	Configure stronger DH parameters	-	Yes	-	Yes (2.4.7)
	Elliptic Curve support	Yes	Yes	Yes (1.1.30)	Yes
	Configure EC parameters	-	-	-	Yes (2.4.7)
	Cipher suite preference	-	Not yet[a]	Yes	Yes
	Virtual secure hosting	-	Not yet[a]	-	Yes
	Disable client-initiated renegotiation	-	Yes	Yes	Yes
	TLS session caching control	Yes	Yes	-	Yes
	TLS session cache clustering	-	-	-	Yes
	Session ticket support	-	-	Yes	Yes
	Disable session tickets	-	-	-	No
	Explicit session ticket configuration	-	-	-	Yes
	OCSP stapling	-	-	-	Yes
	Multikey support[b]	-	-	-	Yes
	[a] Although supported by JSSE in Java 8, this feature requires
 explicit support in the Tomcat code. It’s not available at the
 time of writing.

[b] The underlying JSSE engine supports multikey operation
 starting with Java 7, but this feature is not used by
 Tomcat.

Some of the features listed in the previous table are of an advanced nature and will
 affect only demanding users. But some are quite basic and significantly limit JSSE in
 Java 7 and earlier releases:
	Insecure DHE suites
	In Java 8, server ephemeral Diffie-Hellman (DH) suites use 1,024 bits of
 security by default, which is a good choice for interoperability but not a
 great one for security. The strength can be increased to 2,048 bits by using
 the jdk.tls.ephemeralDHKeySize system property.
In Java 7 and earlier, server ephemeral DH is limited to 768 bits. For
 this reason, you should not use any ephemeral DH suites with JSSE unless you
 upgrade to Java 8.

	Cipher suite preference
	In versions before Java 8, JSSE does not allow servers to control cipher
 suite order. This means that the first supported suite from the list offered
 by the client will be used. In practice, this limits your ability to enforce
 secure configuration. For example, it’s not possible to have RC4 in your
 configuration but use it only with clients that don’t support anything
 better. Similarly, it’s not possible to prefer suites that provide forward
 secrecy over the ones that don’t.
Starting with Java 8, server preference is supported by JSSE, but each
 server application will probably need to be updated to support this feature.
 Tomcat doesn’t support it yet, but a patch is available to enable it.[560]

	Disable client-initiated renegotiation
	Client-initiated renegotiation is a protocol feature that is not used for
 anything useful, but what it does do is create an opportunity for an
 attacker to execute a DoS attack by forcing the server to continuously
 renegotiate, consuming significant CPU resources. The weakness here is
 principally that multiple handshakes are taking place on the same TCP
 connection. Because most DoS detection techniques operate by observing
 connection rates, this type of attack is difficult to mitigate.
Starting with Java 8, it is possible to disable client-initiated
 renegotiation by using the undocumented
 jdk.tls.​rejectClientInitiatedRenegotiation
 system property.

In the light of these problems, until Java web servers are updated to support server
 cipher suite preference, I recommend using either Tomcat Native (version 1.1.30 or
 newer) or an Apache httpd reverse proxy for TLS termination.
Note
The TLS implementation (JSSE) included with Java 8 has been significantly
 improved, addressing all the major shortcomings from Java 7. If you’re running TLS
 servers using Java, you should upgrade to version 8 as soon as the new runtime
 stabilizes and the new features are supported by server software.

Configuring TLS Handling

To configure TLS,[561] you need to set a number of attributes on the
 Connector element of the Tomcat configuration. The
 protocol attribute determines which of the three supported
 connectors will be used. The default value (”HTTP/1.1”) will have Tomcat first
 attempt to use the APR connector. If the APR connector is not available, Tomcat 7
 and earlier will fall back to the BIO connector, whereas Tomcat 8 will use the NIO
 connector.
You shouldn’t rely on this auto-configuration behavior in production; instead,
 explicitly configure the desired connector by entering its name into the
 protocol attribute, as described in the following
 sections.
To use JSSE with a blocking connector (BIO):
<Connector
 protocol = "org.apache.coyote.http11.Http11Protocol"
 port = "443"
 ...
/>
To use JSSE with a nonblocking connector (NIO):
<Connector
 protocol = "org.apache.coyote.http11.Http11NioProtocol"
 port = "443"
 ...
/>
By default, Tomcat will look for Tomcat Native and enable it. This is implemented
 in the AprLifecycleListener class, whose parameters are described
 in a later section. If you don’t want to use Tomcat Native, you can simply disable
 the class. Or if you only want to disable the OpenSSL bits, set the
 SSLEngine parameter to off:
<Listener
 className = "org.apache.catalina.core.AprLifecycleListener"
 SSLEngine = "off"

If, on the other hand, you leave Tomcat Native in and wish to use OpenSSL, specify
 the Http11AprProtocol class in the protocol
 attribute:
<Connector
 protocol = "org.apache.coyote.http11.Http11AprProtocol"
 port = "443"
 ...
/>
External TLS Termination

Some TLS configuration is necessary even if you are not terminating TLS at the
 Tomcat level. In this situation, the deployment is secure, but Tomcat is not
 aware of it, and the applications running on it won’t be aware, either. This
 might lead to subtle problems and security issues. For example, session cookies
 might not be marked as secure, exposing sessions to the possibility of
 hijacking.
If you are deploying Tomcat behind Apache using mod_jk or
 mod_proxy_ajp, both of which implement the AJP
 communication protocol, there is actually nothing for you to do. This protocol
 will transparently communicate the TLS information from Apache to Tomcat.
In all other cases, you will have to invest more effort into configuration and
 information exchange. For example, to tell Tomcat that TLS is handled
 externally, configure the scheme and
 secure fields only:
<Connector
 scheme = "https"
 secure = "true"
 ...
>
For the information exchange, you can use Tomcat’s SSL Valve,[562] which can extract information from request headers (placed there by
 the proxy terminating TLS) and use it to populate the relevant Tomcat
 structures.
If none of these solutions work for your case, it’s easy to write a custom
 extension to do the same work as the AJP protocol, transparently setting the
 secure flag, the correct remote port, protocol scheme, and so on.[563]

JSSE Configuration

The following configuration snippet enables TLS on port 443 and explicitly
 configures all parameters except client certificate authentication (which is only
 very rarely used):
<Connector
 protocol = "org.apache.coyote.http11.Http11Protocol"
 port = "443"

 SSLEnabled = "true"
 scheme = "https"
 secure = "true"

 clientAuth = "false"

 sslProtocol = "TLS"
 sslEnabledProtocols = "TLSv1, TLSv1.1, TLSv1.2"
 ciphers = "... omitted for clarity; see below"

 keystoreFile = "${catalina.home}/conf/feistyduck.jks"
 keystorePass = "YOUR_PASSWORD"
 keyAlias = "server"

 sessionTimeout = "86400"
 sessionCacheSize = "10000"
/>
Most of the parameters are self-explanatory, but please note the following:
	You should never need to change the SSLEnabled,
 scheme, secure, and
 sslProtocol parameters.

	Use the sslEnabledProtocols parameter to control
 protocol selection. (Ignore sslProtocol, which interfaces
 with an internal detail of JSSE and does not let you do anything useful.) My
 example does not enable SSLv2Hello and
 SSLv3, which I think is reasonable given that these
 are needed only for very old clients, such as Internet Explorer 6 on Windows
 XP.

	I recommend that you always include the keystore along with the web server
 configuration. The ${catalina.home} variable is handy to
 avoid using absolute paths.

	The keyAlias parameter selects the correct key and
 certificate chain from the desired keystore.

	By default, Tomcat does not limit the number of cached TLS sessions, which
 could open you up to a DoS attack. The best approach is to set a fixed
 amount of RAM for the TLS session cache and configure this parameter
 accordingly.

Omitted from the configuration example are the cipher suites. I recommend the
 following default configuration:
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
I’ve made the following assumptions and choices:
	You are using Java 7, which means that you have access to EC
 suites.

	You are not using a DSA key (which is effectively limited to 1,024 bits
 and thus weak).

	You don’t want to use insecure DHE suites that are limited to insecure
 768-bit DH parameters.

	I’ve included suites that work with both ECDSA and RSA keys, which means
 that the same configuration will work no matter what keys you have.

This configuration uses only suites that support forward secrecy and provide
 strong encryption. Most modern browsers and other clients will be able to connect,
 but some very old clients might not. As an example, older Internet Explorer versions
 running on Windows XP will fail.
If you really need to provide support for a very old range of clients—and only
 then—consider adding the following suites to the end of the list:
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_SHA
Note
The complete list of supported cipher suites is available as part of the
 SunJSSE provider documentation.[564]

Forward Secrecy

My recommended suite configuration allows for only spotty forward secrecy
 support. There are two reasons for that, and both stem from the limitations
 imposed by JSSE.
	JSSE does not allow explicit selection of cipher suite order. At the
 moment, most clients prefer ECDHE suites (that provide forward secrecy),
 but some don’t. One such client is Internet Explorer, which, until very
 recently, preferred vanilla RSA suites over ECDHE.

	ECDHE suites are the preferred way to enable forward secrecy, because
 they’re fast. Unfortunately, older clients do not support them, and
 enabling DHE suites is necessary for robust forward secrecy
 configuration. In JSSE, all DHE suites are limited to 768 bits, which is
 insecure; for this reason you can’t have any DHE suites in the
 configuration, which means no forward secrecy with older clients.

Configuration with Java 8

If you are deploying with Java 8, some of the new features will be available
 to you automatically:
	Stronger (1,024-bit) DH parameters will be used by default, and you
 can configure the JVM to increase the strength to 2,048 bits to make it
 more secure.

	You can configure the JVM to reject client-initiated
 renegotiation.

	Deployments that rely on default cipher suite configuration will
 automatically start offering the new GCM cipher suites.

For everything else, we will have to wait a little while longer until the
 remaining new JSSE features are utilized by web servers. The two most important
 features are:
	Respecting server-side cipher suite order.

	Support for virtual secure hosting.

The recommended cipher suite configuration for Java 8 deployments is as
 follows:
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
The list of recommended suites is now longer, not only because of the new GCM
 suites but also because I added back the DHE suites, which are secure when used
 with Java 8.
If you really need to provide support for a very old range of clients—and only
 then (see the discussion in the previous section)—consider adding the following
 suites to the end of the list:
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_SHA

APR and OpenSSL Configuration

To use the APR and OpenSSL combination to handle TLS, use the following
 configuration snippet:
<Connector
 protocol = "org.apache.coyote.http11.Http11AprProtocol"
 port = "443"

 SSLEnabled = "true"
 scheme = "https"
 secure = "true"

 SSLVerifyClient = "none"

 SSLProtocol = "All"
 SSLCipherSuite = "... omitted for clarity; see below"
 SSLHonorCipherOrder = "true"

 SSLCertificateFile = "${catalina.home}/conf/fd.crt"
 SSLCertificateKeyFile = "${catalina.home}/conf/fd.key"
 SSLCertificateChainFile = "${catalina.home}/conf/fd-intermediates.crt"
 SSLPassword = "KEY_PASSWORD"

 SSLDisableCompression = "true"
/>
Compared to the JSSE equivalent, there are many similarities but also some
 differences:
	Protocol selection is broken. In the version I tested (7.0.40), Tomcat
 doesn’t know that TLS 1.1 and TLS 1.2 exist, which means that the only
 practically useful value for the SSLProtocol parameter is
 All, which enables all protocols from SSL 3 onwards.
 All my attempts to disable SSL 3 failed. When Tomcat is updated, the
 configuration string TLSv1+TLSv1.1+TLSv1.2 should do the
 trick.

	Unlike with JSSE, it is not possible to control SSL 2 handshake format
 compatibility; this format is always supported.

	You can enforce cipher suite order using
 SSLHonorCipherOrder.

	There is no keystore; keys and certificates are stored as files.

	There is a configuration parameter to disable compression, which is
 necessary because, unlike JSSE, OpenSSL does support compression. (But you
 want it disabled nevertheless, because otherwise you’d be exposing yourself
 to the CRIME attack.)

	There appears to be no way to control TLS session caching, which is
 potentially worrying.

For the recommended cipher suite configuration, please refer to the section called “Recommended Configuration” in Chapter 11, OpenSSL.
 However, do note that ECDSA keys are not supported by Tomcat Native at this
 time.
Global OpenSSL Configuration

Some OpenSSL features are configured globally and controlled from the
 AprLifecycleListener configuration. For example:
<Listener
 className = "org.apache.catalina.core.AprLifecycleListener"
 SSLEngine = "on"
 SSLRandomSeed = "builtin"
 FIPSMode = "off"
/>
There are two situations in which you will want to make some changes:
	If your OpenSSL installation supports multiple engines (e.g., hardware
 acceleration), you can put the desired engine name in the
 SSLEngine parameter.

	If your OpenSSL installation is FIPS compliant and you wish to enable
 FIPS mode, set the FIPSMode parameter to
 on.

[540] Including Certificate Authority Root Certificates in
 Java (Oracle, retrieved 1 July 2014)

[541] Java SE 7 Security Documentation (Oracle, retrieved 2 July
 2014)

[542] Java SE 8 Security Documentation (Oracle, retrieved 2 July
 2014)

[543] JCE Unlimited Strength Jurisdiction Policy Files for Java 7 and Java 8 (Oracle, retrieved 2 July 2014)

[544] Patch-in-Place and Static JRE Installation (Java Platform
 Standard Edition 7 Documentation; retrieved 2 July 2014)

[545] Best performance is usually achieved using assembly and
 optimization by hand. There is a lot of native and assembly code
 included with the Java platform, and some of it is used for
 cryptographic operations. For example, Java 8 added assembly
 code to accelerate some AES operations on Intel and AMD
 processors.

[546] Improved AES Crypto performance on Java with NSS using
 Intel® AES-NI Instructions (Intel whitepaper; 6 April
 2012)

[547] Easter Hack: Even More Critical Bugs in SSL/TLS Implementations
 (Chris Meyer, 16 April 2014)

[548] Transport Layer Security (TLS) Renegotiation Issue
 Readme (Oracle, retrieved 2 July 2014)

[549] According to the SSL Pulse results from July 2014, about 11.6%
 of the monitored servers do not support secure
 renegotiation.

[550] Customizable Items in JSSE (JSSE 8 Reference Guide, retrieved 2
 July 2014)

[551] Provider Installation (Bouncy Castle, retrieved 2 July
 2014)

[552] The Essentials of Filters (Oracle, retrieved 2 July
 2014)

[553] JSR-000315 Java™ Servlet 3.0 (Java Community Process,
 December 2009)

[554] It is possible to achieve the same effect programmatically by
 configuring the SessionCookieConfig instance obtained
 from the current ServletContext, which is best done
 just after the context has been created from a
 ServletContextListener.

[555] HeadLines (SourceClear, retrieved 1 July 2014)

[556] KeyStore
 Explorer (retrieved 1 July 2014)

[557] Before Java 7, this command was called
 -genkey.

[558] Tomcat
 Native (Apache Software Foundation, retrieved 1 July
 2014)

[559] The blocking/nonblocking monikers are used to explain how TCP connections are
 handled. A blocking connector will dedicate a separate thread to each TCP
 client. A nonblocking connector might handle all TCP clients using only one or a
 small number of threads. Blocking connectors tend to perform better with fast
 clients, whereas nonblocking connectors better handle a large number of slower
 clients. Tomcat 7.x uses the BIO connector by default, whereas Tomcat 8.x uses
 NIO.

[560] Bug #55988: Add parameter useCipherSuitesOrder to JSSE (BIO and
 NIO) connectors (ASF Bugzilla, retrieved 26 June
 2014)

[561] SSL Support (Apache Tomcat 8 Documentation, retrieved 2 July
 2014)

[562] SSL Valve (Tomcat 8 documentation, retrieved 26 June
 2014)

[563] Tomcat and SSL Accelerators (Paul Lindner’s blog, 9 April
 2009)

[564] JDK 8: The SunJSSE Provider (Oracle, retrieved 17 July
 2014)

15 Configuring Microsoft Windows and IIS

Microsoft is one of the key players in the SSL/TLS and PKI ecosystem. Their client
 operating systems are everywhere, on the desktop and on mobile devices. Their server and
 cloud platforms power a large number of critical systems. Their development environments are
 a popular choice for building web sites.
In the light of Microsoft’s very long history and the longevity of their platforms, it’s
 not surprising that the biggest issues I encountered were complexity and lack of good
 documentation. The complexity comes from the fact that the software codebase is very old,
 with features added over a long period of time. Documentation often does not exist. When it
 does, finding it is not always easy; you will often run into older, now inaccurate articles
 online. That said, their cryptographic libraries provide good support for the important
 features, with only a few peculiarities here and there.
Schannel

Microsoft Secure Channel[565] (or Schannel, as it’s better known) is a
 cryptographic component that implements a set of protocols designed to enable secure
 communication. Schannel is the official SSL/TLS library on all Windows platforms, which
 means that most Windows programs rely on it, especially those developed by
 Microsoft.
Features Overview

Schannel has generally always offered good coverage of SSL and TLS protocol
 features. Microsoft was the first to support TLS 1.2 when it introduced Windows 7 in
 2009. For comparison, OpenSSL added support for TLS 1.2 in 2012; most other major
 desktop browsers started supporting it only in 2013. But even though TLS 1.2 had
 been implemented, it was left disabled by default. Ironically, Microsoft was
 subsequently late in enabling TLS 1.2 by default and did so only with Internet
 Explorer 11 in November 2013.
The biggest problem with Microsoft’s SSL/TLS implementation is the fact that
 Windows XP does not support virtual secure hosting (via the Server Name
 Indication extension, or SNI). We can’t blame Microsoft for not
 supporting SNI at the initial launch of Windows XP in 2001, because SNI did not
 exist until 2003. But, for one reason or another, Microsoft decided not to add SNI
 support in the following three service packs even though it was clear that this
 operating system was going to be supported for a very long time. Because Windows XP
 is still used by a substantial number of users, the lack of SNI makes it very
 complicated and costly to deploy web site encryption at scale. That said, the
 support for Windows XP Service Pack 3 ended in April 2014; there’s hope that users
 will now start to migrate to other operating systems.
Note
This section describes the capabilities of Schannel, Microsoft’s SSL/TLS
 library. Because Windows incorporates multiple layers of cryptographic
 functionality, it can sometimes be difficult to pinpoint where exactly
 limitations are coming from. Schannel inherits all limitations of the underlying
 lower-level libraries and then adds some of its own. For example, even though
 Windows 8 is documented to support DSA keys of up to 3,072 bits,[566] Internet Explorer still refuses to connect to servers that use keys
 over 1,024 bits. The limitation is probably in Schannel.

Table 15.1. Evolution of SSL/TLS protocol features in Schannel
	 	Windows XP, Server 2003 / IIS 6	Windows Vista, Server 2008 / IIS 7	Windows 7, Server 2008 R2 / IIS 7.5	Windows 8, Server 2012 / IIS 8	Windows 8.1, Server 2012 R2 / IIS 8
	Elliptic curve cryptography	-	Yes	Yes	Yes	Yes
	Client-side SNI	-	Yes	Yes	Yes	Yes
	Server-side SNI	-	-	-	Yes	Yes
	TLS 1.0	Optional	Yes	Yes	Yes	Yes
	TLS 1.1, TLS 1.2[a]	-	-	Yes (IE 11)[b]	Yes (IE 11)[b]	Yes
	AES suites	-[c]	Yes	Yes	Yes	Yes
	AES GCM suites	-	-	Yes[d]	Yes[d]	Yes[e]
	DH parameters > 1,024 bits	-	-	Yes (IE 11)	Yes (IE 11)	Yes[f]
	Ephemeral DH with RSA	-	-	-	-	-
	DSA keys > 1,024 bits	-	-	-	-	-
	Session tickets	-	-	-	Yes (client)	Yes
	Secure renegotiation	MS10-049	MS10-049	MS10-049	Yes	Yes
	ALPN	-	-	-	-	Yes (client)
	BEAST mitigation	MS12-006	MS12-006	MS12-006	Yes	Yes
	OCSP stapling	-	-	Yes	Yes	Yes
	Default client handshake format[g]	v2	v3	v3	v3	v3
	[a] This row describes the default settings of Internet
 Explorer. Other applications might have different defaults
 depending on whether they explicitly configure SSL and
 exactly which underlying library they’re using.

[b] Windows 7 added support for TLS 1.1 and 1.2, but kept them
 disabled by default until Internet Explorer 11.

[c] Windows Server 2003 can be updated with KB 948963
 (released in 2008) to add support for some AES cipher
 suites.

[d] Only in combination with ECDSA keys, which are still a
 novelty.

[e] As of April 2014, four additional GCM suites are
 supported; they can be used with RSA keys.

[f] Starting with Windows 8, DH parameters up to 4,096 bits
 are supported.

[g] There are two client handshake formats: the old one used
 by SSL 2 and the new one introduced with SSL 3. Not all
 servers support the old format, meaning the connections from
 very old clients will fail.

Protocol Vulnerabilities

Despite their very large user base (even small changes can have a large impact
 with such a large pool of users and require extensive testing), Microsoft has a very
 good record of addressing protocol issues as they arise.
	Insecure renegotiation
	Like most other vendors, Microsoft initially addressed insecure
 renegotiation with a workaround that disables renegotiation; the patch
 was released as KB 977377 on 9 February 2010.[567] Secure renegotiation (RFC 5746) was implemented later, in
 MS10-049, which was released for all platforms on 10 August 2010.[568]

	BEAST
	The BEAST vulnerability was fixed across all platforms in MS12-006,
 which was released on 10 January 2012. The fix implements the 1/n-1
 split when protocols TLS 1.0 and earlier are used.

	CRIME
	Microsoft never supported TLS compression in their SSL/TLS stack,
 which meant that it was never vulnerable to the CRIME attack.

Interoperability
 Issues

Schannel does not suffer from many practical interoperability issues. Those
 aspects that you will need to be aware of are mainly related to the deprecation of
 weak and obsolete cryptographic primitives.
	DSA
	Schannel does not support DSA keys stronger than 1,024 bits and never
 did. Given the size of the Microsoft’s user base, this makes DSA
 practically dead. The strength of DSA keys is roughly equivalent to the
 strength of RSA keys, which means that 1,024 bits is too weak according
 to current standards. In practice, this is not an issue, because there
 are virtually no servers with DSA keys on the public Internet (and there
 never were).

	DH parameters over 1,024 bits
	Before version 11, Internet Explorer did not support DH parameters
 stronger than 1,024 bits. But this is a problem only in theory, because
 the only practical way to use such parameters is with a DHE and RSA
 suite combination (DHE_RSA), which IE also didn’t
 support until April 2014.

	RSA keys under 1,024 bits
	RSA keys and certificates weaker than 1,024 bits were initially
 deprecated with an optional update on 14 August 2012, which then became
 mandatory on 9 October 2012.[569] This update applies to certificates issued by both public
 and private CAs.

	MD5
	On 13 August 2013, Microsoft deprecated MD5 signatures in the
 Microsoft Root Certificate Program with the release of KB 2862973.[570] The update applies to Windows Vista, Server 2008 and other
 older platforms but not to the newer Windows 8.1, RT 8.1, and Server
 2012 R2, which rejected MD5 signatures from the start.
Because this update affects only the certificates issued under the
 root certificate program, MD5 certificates issued by private CAs are not
 impacted. Deprecating all MD5 certificates can be done manually, after
 installing KB 2862966.[571]

	RC4
	Microsoft was the first vendor to deprecate RC4. Starting with Windows
 8.1, this cipher is not enabled by default. On 13 November 2013,
 Microsoft released KB 2868725 for Windows 8 and earlier platforms,[572] making it possible for applications to disable RC4 by
 requesting strong crypto and for users to completely disable RC4 by
 making registry tweaks.
Internet Explorer 11 is hyped as the first browser to not offer RC4 by default,[573] but although that’s true on Windows 8.1, on my Windows 7
 desktop (after the KB 2869725 update) RC4 is still present.
Removing support for RC4 leads to potential interoperability issues
 for those upgrading to IE 11 and Windows 8.1. According to Microsoft’s
 research, about 3.9% of the SSL sites they sampled supported only RC4 in
 November 2013. SSL Pulse measurements indicate 1.8% in July 2014. When
 connecting to such sites, IE 11 will fail on the first attempt. It will
 then voluntarily downgrade the connection twice, first to TLS 1.0 (still
 without RC4 and failing again) and then to SSL 3, this time with RC4
 added. Thus, for a site that offers only RC4 cipher suites, one of the
 following two situations can occur: (1) if the site supports SSL 3, IE 11 will use this
 protocol version after some delay while it determines how to
 successfully connect; (2) if
 the site doesn’t support SSL 3, IE 11 won’t be able to connect at
 all.
Microsoft should not be blamed for this problem. Being the first to
 disable a major cipher with such a large user base is a bold move. On
 the positive side, the introduction of a small penalty when connecting
 to RC4-only sites creates a small incentive for site operators to
 improve their configuration.

	SHA1
	On November 12th, 2013, Microsoft announced their plans to deprecate
 SHA1 signatures by the end of 2016.[574] At the same time, they started to require that new roots
 accepted to their Root Certificate Program must use SHA2 and RSA keys of
 at least 4,096 bits. Microsoft was famously bitten when the Flame
 malware attacked MD5 used past its due date. This time, they are not
 taking any chances.

Apart from the potential issues listed here, the main interoperability worry you
 will have related to Schannel is supporting very old clients—for example,
 Internet Explorer 6—running on old operating systems such as Windows XP before
 Service Pack 3.

Microsoft Root Certificate Program

The Microsoft Root Certificate Program[575] maintains a collection of certificates trusted in Windows operating systems.
 Windows Vista and newer platforms ship only with a small number of trusted certificates
 that are required by the operating system. All other root certificates are securely
 retrieved from Microsoft the first time they are encountered (e.g., while browsing the
 Web). Because of this on-the-fly update mechanism, Microsoft users are guaranteed to
 always have the latest trusted certificates.
Windows XP doesn’t support the same update mechanism; updating the trusted roots
 requires a system update, usually via a manual download from the Microsoft Update Catalog.[576]
Managing System Trust Stores

If you are running a modern Windows version, you should very rarely need to
 manually configure the trust stores; the auto-update processes will take care of
 everything for you. The list of trusted certificates is updated once a week, new
 roots are downloaded on demand, and blacklisted certificates are downloaded daily.[577]
Note
Windows operates multiple certificate repositories. There is the main one
 associated with the computer, but there are also separate stores for each
 service and user account. As a rule of thumb, it’s best to work with the
 computer certificate repository.

To view and change the system trust stores, use Microsoft Management Console
 (MMC), as explained later in this chapter in the section called “Creating a Custom IIS Management Console”. The main trust
 store is called Trusted Root Certification Authorities; it
 contains the roots from the Microsoft Root Program. By default, this store contains
 only a small number of certificates, but the number grows with usage. For example,
 after several years of usage my Windows desktop trusts 49 root certificates.
If you’re administering a Windows domain, you can manage the entire domain’s trust
 stores via Group Policy Management.[578]

Importing a Trusted Certificate

Adding a new trusted CA is easy. Once you obtain the correct certificate, you need
 to follow the Certificate Import wizard. To start the process,
 simply double-click the certificate (the extension should be
 .cer) and then press the Import
 Certificate button.
Warning
The decision to trust a new CA should be made only after carefully considering
 the potential security impact. Once you trust a CA, you trust that it will issue
 only genuine certificates and that their security practices are strong.
 Remember, any CA can issue a certificate for any web site in the world.[579]

Blacklisting Trusted Certificates

Because of the auto-update system, if you wish to revoke trust in a particular CA
 it is not sufficient to delete their certificates from the Trusted Root
 Certification Authorities store. If you do, your system will simply
 download the missing certificates the next time they are needed.
To ensure that a certificate is permanently blacklisted, place it into the
 Untrusted Certificates store. The next time you visit a web
 site that depends on the root certificate in question, Internet Explorer (and other
 programs that depend on the Windows trust stores) will refuse to connect.

Disabling the Auto-Update of Root Certificates

If you don’t like the auto-update mechanism for root certificates, you can disable
 it by following these steps:[580]
	Open the Local Group Policy Editor by running
 gpedit.msc.

	In the left pane, navigate to Computer Configuration >
 Administrative Templates > System > Internet Communication Management >
 Internet Communication settings.

	In the right pane, find and double-click on Turn off Automatic
 Root Certificates Update.

	To disable automatic updates, change the setting to
 Enabled.

From this moment on, you will need to manually maintain your root
 certificates.

Configuration

Interestingly for an operating system that is inherently GUI-oriented, Windows doesn’t
 have tools for SSL/TLS protocol, suite, and cryptographic algorithm configuration. The
 Internet Information Server (IIS) comes with a basic user interface for key and
 certificate manipulation, but other configuration changes are made by changing the
 registry directly.
Note
The instructions in this section apply to the operating system and programs that
 use system libraries. Programs that use their own SSL/TLS and PKI libraries won’t be
 affected unless they make an effort to respect Schannel configuration. For example,
 Firefox uses its own libraries and root certificates. Chrome also relies on its own
 libraries, but it uses system root certificates.

Schannel Configuration

Schannel configuration can be tuned to decide what protocols and cipher suites
 should be used. For protocols, there are separate controls for client and server
 applications. For everything else, there is one set of registry keys that apply to
 all application types.
All Schannel configuration options are nested under the following root key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\Schannel
Protocol Configuration

Protocols are configured using a number of registry keys nested under the
 Protocols subkey. Each protocol gets its own key, and
 there are two further subkeys to allow for separate configuration for client and
 server applications. Starting with Windows Server 2008 R2 and Windows 7, all
 major protocols are supported, starting with SSL 2.0 and ending with TLS 1.2.
 This is what the entire structure looks like:[581]
Protocols\SSL 2.0
Protocols\SSL 2.0\Client
Protocols\SSL 2.0\Server
Protocols\SSL 3.0
Protocols\SSL 3.0\Client
Protocols\SSL 3.0\Server
Protocols\TLS 1.0
Protocols\TLS 1.0\Client
Protocols\TLS 1.0\Server
Protocols\TLS 1.1
Protocols\TLS 1.1\Client
Protocols\TLS 1.1\Server
Protocols\TLS 1.2
Protocols\TLS 1.2\Client
Protocols\TLS 1.2\Server
Each leaf key can contain one or both of the following
 DWORD entries:
	DisabledByDefault
	This setting is for applications that do not explicitly configure
 enabled protocols but use system defaults. If the entry is not
 present or if the value is 0, the protocol is
 enabled by default. If the value is 1, the
 protocol is disabled by default. Normally, Windows will disable SSL
 2 and leave all other protocols enabled.

	Enabled
	This entry allows you to disable certain protocol versions for all
 applications, even those that explicitly enable them. To disable a
 protocol, set the Enabled entry to
 0. If the entry is not configured or if its
 value is anything except zero (the documentation recommends
 0xffffffff), the protocol will be
 enabled.

After you make a change to the protocol configuration, you will need to
 restart any active programs for the changes to take effect.

Cipher Suite Algorithm Selection

Two configuration methods are available for cipher suite configuration.
 Cryptographic algorithms that make up suites can be configured individually.
 Then, if a particular algorithm is
 disabled,
 all the suites that use it will also be disabled. This mechanism ensures that
 weak algorithms are not used anywhere, even if configuration elsewhere suggests
 to do so.
The following subkeys are available, one per algorithm:[582]
Ciphers\AES 128
Ciphers\AES 256
Ciphers\DES 56
Ciphers\NULL
Ciphers\RC4 40/128
Ciphers\RC4 56/128
Ciphers\RC4 64/128
Ciphers\RC4 128/128
Ciphers\Triple DES 168
Hashes\MD5
Hashes\SHA
Hashes\SHA256
Hashes\SHA384
KeyExchangeAlgorithms\Diffie-Hellman
KeyExchangeAlgorithms\ECDH
KeyExchangeAlgorithms\PKCS
Note
The PKCS key refers to the use of RSA for key exchange
 only. The use of RSA for authentication is not affected (e.g.,
 TLS_RSA_* suites will be disabled, but
 TLS_ECDHE_RSA_* will not).

To disable an algorithm, create a DWORD entry called
 Enabled under the correct key and set its value to
 0. To reenable the algorithm, delete the entry or set its
 value to 0xffffffff. Changes sometimes take effect
 immediately, but you should always restart your programs to reliably change the
 settings.
Note
The restrictions on hashes apply only to cipher suites, not to certificate
 signatures. To disable, for example, MD5 for certificate signatures, follow
 the instructions later in this chapter.

Cipher Suite Configuration

Disabling individual algorithms is useful, but in most cases what you really want
 to do is specify exactly which suites are enabled and in which order. Schannel on
 Vista and newer systems allows suites to be configured in this way, with the changes
 affecting client and server applications equally.
Cipher suite configuration is the only Schannel setting that can be configured via
 a graphical user interface:
	First, start the Local Group Policy Editor by running
 gpedit.msc.[583]

	In the left pane, navigate to Computer Configuration >
 Administrative Templates > Network > SSL Configuration
 Settings.

	Then, in the right pane double-click on SSL Cipher Suite
 Order and edit away.

Warning
When editing cipher suite configuration via the policy editor, pay close
 attention to the size of the resulting suite string. The editor will accept only
 up to 1,023 bytes and will silently cut off any extra data you put in.

The list of cipher suites supported by Schannel can be found on Microsoft’s web site.[584] I recommend the following cipher suite configuration, designed for
 security and speed:
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256_P256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384_P384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA_P256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA_P256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256_P256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384_P384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA_P256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA_P256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256_P256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
I made the following assumptions:
	Use only suites that provide forward secrecy.

	Provide support for RSA and ECDSA server keys in the configuration. At the
 moment, RSA keys are dominant by far, which means that ECDSA suites will
 remain unused in most cases. But if you do decide to switch, you won’t have
 to change your suite configuration.

	The last two suites were added only to Windows 8.1 and Server 2012 R2 in
 April 2014.[585] It’s not clear if these suites will be used in practice because
 the clients that might support them already support the faster ECDHE
 suites.

This configuration uses only suites that support forward secrecy and provide
 strong encryption. Most modern browsers and other clients will be able to connect,
 but some very old clients might not. As an example, older Internet Explorer versions
 running on Windows XP will fail.
If you really need to provide support for a very old range of clients—and
 only then—consider adding the following suites to the end of the list:
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_RC4_128_SHA
Note
If you look carefully at the suite names, you will notice that Microsoft uses
 extended cipher suite name syntax, constructed by combining the official name
 (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) with a
 P256 or P384 suffix. These suffixes
 refer to the elliptic curves that can be used for the ECDHE key exchange, the
 NIST curves secp256r1 and secp384r1,
 respectively. Although the underlying suite is the same no matter which suffix
 is used, this naming approach enables you to have control over exactly which
 elliptic curve is preferred.

If you want to configure suites by manipulating the registry directly, the key
 that controls cipher suite configuration is:[586]
HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Cryptography\↩
Configuration\SSL\00010002
If the key is empty, create a new entry: Functions of type
 MULTI_SZ (a list of strings). The value must contain the list
 of cipher suites enabled by default in the order of preference. Changing this entry
 is easy using the registry editor. When editing from a command line or via a
 registry file, put all suites on a single line separated with commas. Do not use any
 spaces. When you’re done, a reboot is required for the changes to take
 effect.

Key and Signature Restrictions

Microsoft relatively recently added the ability to restrict the usage of weak
 cryptographic algorithms during certificate chain validation. This capability is
 available by default on Windows 8.1 and Windows Server 2012 R2 as well as on other
 Microsoft platforms that have KB 2862966 applied.[571]
The policy framework is quite extensive and supports a wide range of useful
 functionality:
	Disable weak cryptographic algorithms

	For key algorithms, enforce minimum key length

	Apply policy depending on certificate type (e.g., different policies for
 server authentication and code signing)

	Specify policy that applies to all certificates or only to public
 CAs

	Apply policy only to certificates issued after a certain date (e.g., keep
 legacy certificates in use, but do not allow any new certificates with weak
 algorithms)

	Log policy violations

	Log violations but do not enforce the policy otherwise

	Create per-certificate exceptions

The recommended approach is to start with a logging-only policy that enables you
 to monitor the violations but avoids potential disruption due to the mismatch
 between what is ideally desired and what is used in real life. After policy tuning
 and further monitoring, it will be possible to safely enable enforcement. Once a
 policy is tested on a single workstation, it can be pushed to other users via Group
 Policy Objects.
At the time of writing, it is possible to restrict the usage of the MD5 and SHA1
 signatures and DSA, ECDSA, and RSA keys. Restrictions are created by manipulating
 the registry keys under the following root key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\OID\EncodingType 0\↩
CertDllCreateCertificateChainEngine\Config
Because the policies can be elaborate, a special approach to key name construction
 is used to express the logic in a way that can be stored in the registry. Each key
 name must be in the following format:
Weak<CryptoAlg><ConfigType><ValueType>
To construct a key name, replace each option name with one of the possible values,
 as documented in the following table.
Table 15.2. Option values used for registry key name construction
	Option	Value	Description
	CryptoAlg	Md5	Specifies the name of the algorithm to which the
 policy applies.
	Sha1
	Dsa
	Ecdsa
	Rsa
	ConfigType	ThirdParty	Applies only to the roots in the Microsoft root program (public
 CAs).
	All	Applies to all certificate roots (public and private CAs).
 Because ThirdParty is a subset of
 All, the following also applies:

 	Most flags set on All will also be
 set on ThirdParty; logging flags will
 not be affected.

	The earliest AfterTime will
 apply.

	The largest MinBitLength will
 apply.

	ValueType	Flags	List of flags that are used to select which certificate types are
 restricted and how; see ahead for more information
 (REG_DWORD).
	MinBitLength	Specifies the minimum public key length in bits; applies only to
 key algorithms (REG_DWORD).
	AfterTime	Apply policy only to signatures generated after a certain time;
 does not apply to certificate chains used for timestamping
 (REG_BINARY with an 8-byte
 FILETIME).
	Sha256Allow	List of explicitly allowed weak certificates, specified using
 their hex-encoded SHA256 thumbprints (REG_SZ or
 REG_MULTI_SZ).

The purpose of key flags is twofold. First, they are used to enable a rule and
 control if it is enforced (see following table).
Table 15.3. Flags that control rule activation and enforcement
	Flag	Description
	CERT_CHAIN_ENABLE_WEAK_SETTINGS_FLAG
 (0x80000000)	This flag is required in order for a policy to be activated. If
 the flag is disabled, then all other settings (for the same
 combination of CryptoAlg and
 ConfigType) will be ignored.
	CERT_CHAIN_ENABLE_WEAK_LOGGING_FLAG
 (0x00000004)	Enables logging of certificate chains that violate
 policy.
	CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG
 (0x00000008)	Policy violations are recorded, but weak certificate chains are
 not rejected. This setting is very useful to test policies before
 hard activation.

Additionally, multiple flags are used to control which certificate types the rule
 applies to, as documented in the following table.
Table 15.4. Flags that select certificate types on which rules operate
	Flag	Description
	CERT_CHAIN_DISABLE_ALL_EKU_WEAK_FLAG
 (0x00010000)	Applies policy to all certificates.
	CERT_CHAIN_DISABLE_SERVER_AUTH_WEAK_FLAG
 (0x00100000)	Applies policy to certificates used for server
 authentication.
	CERT_CHAIN_DISABLE_CODE_SIGNING_WEAK_FLAG
 (0x00400000)	Applies policy to certificates used for code signing.
	CERT_CHAIN_DISABLE_MOTW_CODE_SIGNING_WEAK_FLAG
 (0x00800000)	Applies policy to certificates used for code signing, provided
 they originated from the Web.
	CERT_CHAIN_DISABLE_TIMESTAMP_WEAK_FLAG
 (0x04000000)	Applies policy to certificates used for timestamping.
	CERT_CHAIN_DISABLE_MOTW_TIMESTAMP_WEAK_FLAG
 (0x08000000)	Applies policy to certificates used for timestamping, provided
 they originated from the Web.

Note
To specify a weak signature, enable
 CERT_CHAIN_ENABLE_WEAK_SETTINGS_FLAG on the appropriate
 registry key (e.g., WeakMd5AllFlags for MD5). To specify a
 weak key algorithm,
 enable
 the
 appropriate
 flag
 and
 configure
 the minimum key length (e.g., set WeakRsaAllMinBitLength to
 1,024 if you want to blacklist all RSA keys weaker than 1,024 bits).

Using CertUtil to Manipulate Cryptographic Policy

Manipulating the registry directly can sometimes be tricky, and it definitely
 is in this case because policies can get quite complex. Another way to work with
 policies is by using the CertUtil tool, which allows you to
 display, create and change, and delete policy registry keys. This tool also
 allows individual manipulation of flags, times, and string lists:
$ CertUtil -setreg -?
Usage:
 CertUtil [Options] -setreg [{ca|restore|policy|exit|template|enroll|chain|PolicyServers}\[ProgId\]]RegistryValueName Value
 Set registry value
 ca -- Use CA's registry key
 restore -- Use CA's restore registry key
 policy -- Use policy module's registry key
 exit -- Use first exit module's registry key
 template -- Use template registry key (use -user for user templates)
 enroll -- Use enrollment registry key (use -user for user context)
 chain -- Use chain configuration registry key
 PolicyServers -- Use Policy Servers registry key
 ProgId -- Use policy or exit module's ProgId (registry subkey name)

 RegistryValueName -- registry value name (use "Name*" to prefix match)
 Value -- new numeric, string or date registry value or filename.
 If a numeric value starts with "+" or "-", the bits specified
 in the new value are set or cleared in the existing registry value.

 If a string value starts with "+" or "-", and the existing value
 is a REG_MULTI_SZ value, the string is added to or removed from
 the existing registry value.
 To force creation of a REG_MULTI_SZ value, add a "\n" to the end
 of the string value.

 If the value starts with "@", the rest of the value is the name
 of the file containing the hexadecimal text representation
 of a binary value.
 If it does not refer to a valid file, it is instead parsed as
 [Date][+|-][dd:hh] -- an optional date plus or minus optional
 days and hours.
 If both are specified, use a plus sign (+) or minus sign (-) separator.
 Use "now+dd:hh" for a date relative to the current time.

 Use "chain\ChainCacheResyncFiletime @now" to effectively flush cached CRLs.

Options:
 -f -- Force overwrite
 -user -- Use HKEY_CURRENT_USER keys or certificate store
 -GroupPolicy -- Use Group Policy certificate store
 -gmt -- Display times as GMT
 -seconds -- Display times with seconds and milliseconds
 -v -- Verbose operation
 -privatekey -- Display password and private key data
 -config Machine\CAName -- CA and Machine name string

CertUtil -? -- Display a verb list (command list)
CertUtil -setreg -? -- Display help text for the "setreg" verb
CertUtil -v -? -- Display all help text for all verbs
Warning
Changes to cryptographic policy take effect immediately if you’re changing
 the registry directly or using the CertUtil tool. As
 always, it is recommended that you make a backup of your registry before you
 begin.

Recording Weak Certificate Chains

Weak certificate chains can be recorded for later analysis. To activate this
 feature, first configure the WeakSignatureLogDir key with the
 desired storage location:
$ CertUtil -setreg chain\WeakSignatureLogDir C:\Log\WeakCertificateChains
Then, when creating individual policies ensure that
 CERT_CHAIN_ENABLE_WEAK_LOGGING_FLAG is set.
 Alternatively, to record certificate chains without enforcing policy set
 CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG instead.

Complete Policy Example

To illustrate, I will put together a simple policy that enforces restrictions,
 with logging, on any certificate chain containing:
	MD5 signatures

	RSA keys below 1,024 bits

	DSA keys below 1,024 bits

	ECDSA keys below 160 bits

The initial policy will assume logging without enforcement:
$ CertUtil -setreg chain\WeakSignatureLogDir C:\Log\WeakCertificateChains
$ CertUtil -setreg chain\WeakMd5AllFlags 0x80010008
$ CertUtil -setreg chain\WeakRsaAllFlags 0x80010008
$ CertUtil -setreg chain\WeakRsaAllMinBitLength 1024
$ CertUtil -setreg chain\WeakDsaAllFlags 0x80010008
$ CertUtil -setreg chain\WeakDsaAllMinBitLength 1024
$ CertUtil -setreg chain\WeakEcdsaAllFlags 0x80010008
$ CertUtil -setreg chain\WeakEcdsaAllMinBitLength 160
The 0x80010008 value is made of the following three
 flags:
CERT_CHAIN_ENABLE_WEAK_SETTINGS_FLAG (0x80000000)
CERT_CHAIN_DISABLE_ALL_EKU_WEAK_FLAG (0x000010000)
CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG (0x000000008)
The equivalent registry file is:
Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\OID\EncodingType 0\↩
CertDllCreateCertificateChainEngine\Config]
"WeakSignatureLogDir"="C:\\Log\\WeakCertificateChains"
"WeakMd5AllFlags"=dword:80010008
"WeakRsaAllFlags"=dword:80010008
"WeakRsaAllMinBitLength"=dword:00000400
"WeakDsaAllFlags"=dword:80010008
"WeakDsaAllMinBitLength"=dword:00000400
"WeakEcdsaAllFlags"=dword:80010008
"WeakEcdsaAllMinBitLength"=dword:000000a0
To change from logging only to enforcement, you can re-set the configuration
 later on, changing 0x80010008 to
 0x80010004 (replacing
 CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG with
 CERT_CHAIN_ENABLE_WEAK_LOGGING_FLAG). Alternatively, you
 can change individual flags as you see fit:
$ CertUtil -setreq chain\WeakMd5Flags -0x00000008
$ CertUtil -setreq chain\WeakMd5Flags +0x00000004

Configuring Renegotiation

There are two or three aspects of renegotiation that you might want to configure
 on your Windows systems. The most important one is adding support for secure
 renegotiation, which is something you will want to do for all your servers and
 workstations alike. On all platforms before Windows 8, patching with MS10-049 is
 required.
However, adding support for secure renegotiation doesn’t fully resolve the root
 issue. For compatibility reasons, most servers are configured to accept clients that
 do not support secure renegotiation; MS10-049 calls it Compatible
 Renegotiation. In this mode, when either a client or the server
 requests renegotiation Schannel will not refuse it, even if it can’t be performed
 securely.
If you don’t need server-initiated renegotiation, the issue is easy to fix. Before
 the secure renegotiation feature, Microsoft released a workaround in KB 977377 that
 added the ability to disable renegotiation. When you fully disable renegotiation in
 a server, even clients that do not support secure renegotiation can’t be exploited.
 To do this, set the following key to any nonzero value:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\↩
SecurityProviders\SCHANNEL\DisableRenegoOnServer
Note
Early versions of IIS had allowed client-initiated renegotiation, but all
 versions from IIS 6 onwards don’t. Strictly speaking, this means that if your
 server never initiates renegotiation (e.g., if you are not requiring client
 certificates), then it won’t be possible to exploit insecure renegotiation.
 Still, I recommend that you take the extra step and explicitly disable
 renegotiation; other programs might be vulnerable. For example, Microsoft’s
 Forefront Threat Management Gateway (TMG) is known to allow client-initiated
 renegotiation.

If, on the other hand, you do need server-initiated renegotiation, your only
 choice is to switch to Strict Renegotiation. In this mode,
 your servers will accept secure connections only from clients that implement secure
 renegotiation. This too adds security, but at the expense of rejecting unpatched
 browsers.
To enable the strict mode, set the value of the following key to zero:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\↩
SecurityProviders\SCHANNEL\AllowInsecureRenegoClients
In my tests, changes take effect immediately without even requiring a program
 restart.
The final decision to make is whether to allow your clients (e.g., browsers) to
 connect to servers that do not support secure renegotiation. This is the default,
 but it can be dangerous because such servers can be attacked, and yet clients have
 no way of detecting the attacks. The tradeoff is the same as for the servers: after
 enabling strict mode you won’t be able to connect to a sizable portion of the Web.
 According to the SSL Pulse results from July 2014, about 11.6% of the monitored
 servers do not support secure renegotiation.
If you decide to change your clients to the strict mode, change the value of the
 following key to zero:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\↩
SecurityProviders\SCHANNEL\AllowInsecureRenegoServers
Note
The workaround from KB 977377 also makes it possible to completely disable
 renegotiation in clients, but doing so doesn’t improve their security. Insecure
 renegotiation is exploited by tricking servers to accept renegotiation, not
 clients.

Configuring Session Caching

SSL and TLS use session caching to avoid repeating slow cryptographic operations
 on every connection. Schannel maintains a server-wide memory store of session
 information. Different default settings are used on different platforms, which is
 why explicitly configuring the values on all servers is the best approach.[587]
All session caching parameters reside in the main Schannel registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\Schannel
	To configure the server session retention period, set the
 ServerCacheTime entry to the desired duration in
 milliseconds.

	You are unlikely to ever need to change the retention period for client
 applications, but if you do, then use the ClientCacheTime
 entry. The value is also in milliseconds.

	To change the maximum number of stored sessions, create or change the
 MaximumCacheSize value. If you use a zero, session
 caching will be disabled.

As a rule of thumb, you should allocate as much RAM as you can for the session
 cache. Under ideal conditions, you want each session to stay in the cache until it
 expires (and not be evicted due to RAM shortage). Each session consumes 2 to 4 KB of
 RAM. Thus, to arrive at the maximum number of stored sessions you can support,
 divide the amount of RAM reserved for this purpose by 4 KB.
However, the problem with this approach is that Schannel’s session caching
 is implemented in a way that allows it to grow over the
 specified memory limit. This is because new sessions are created as needed, but old
 sessions are deleted only periodically (at intervals that match
 ServerCacheTime), even when the cache is at maximum capacity.
 With normal traffic, even with spikes, such behavior is unlikely to be a problem;
 however, it does create a new DoS attack vector. For example, an attacker could
 start creating a very high number of SSL sessions per second. They will all remain
 in memory (each consuming about 4 KB) until the cache is pruned.
Normally, I would recommend that you set the session retention period to 24 hours.
 In light of Schannel’s session cache behavior, it’s prudent to reduce this
 value to something much lower: for example, one hour. Consider allocating more
 memory to the cache to serve as a buffer.
Note
Starting with Windows 8.1, Schannel supports server session
 tickets, which are a stateless session resumption mechanism.
 However, at the time of writing, this feature is not yet documented. Some hints
 are available in the PowerShell documentation.[588]

Monitoring Session Caching

Schannel exposes several performance counters that you can use to monitor the
 session cache as well as the session resumption success rate. On older platforms,
 the resumption rate will be influenced only by the server-side session cache.
 Presumably, session tickets will contribute to the success rate on systems that
 support this feature.
The performance counters (see the following table) are in the Security
 System-Wide Statistics category; you can view them by using the
 Performance Monitor tool (run perfmon on the command
 line).
Table 15.5. Schannel performance counters
	Performance counter	Description
	Active Schannel Session Cache
Entries	This counter tracks the number of Secure Sockets Layer (SSL)
 entries that are currently stored in the secure channel (Schannel)
 session cache and that are currently in use. The Schannel session
 cache stores information about successfully established sessions,
 such as SSL session IDs. Clients can use this information to
 reconnect to a server without performing a full SSL
 handshake.
	Schannel Session Cache Entries	This counter tracks the number of SSL entries that are currently
 stored in the Schannel session cache. The Schannel session cache
 stores information about successfully established sessions, such as
 SSL session IDs. Clients can use this information to reconnect to a
 server without performing a full SSL handshake.
	SSL Client-Side Full Handshakes	This counter tracks the number of SSL full client-side handshakes
 that are being processed per second. During a handshake, signals are
 exchanged to acknowledge that communication can occur between
 computers or other devices.
	SSL Client-Side Reconnect
Handshakes	This counter tracks the number of SSL client-side reconnect
 handshakes that are being processed per second. Reconnect handshakes
 allow session keys from previous SSL sessions to be used to resume a
 client/server connection, and they require less memory to process
 than full handshakes.
	SSL Server-Side Full Handshakes	This counter tracks the number of SSL full server-side handshakes
 that are being processed per second. During a handshake, signals are
 exchanged to acknowledge that communication can occur between
 computers or other devices.
	SSL Server-Side Reconnect
Handshakes	This counter tracks the number of SSL server-side reconnect
 handshakes that are being processed per second. Reconnect handshakes
 allow session keys from previous SSL sessions to be used to resume a
 client/server connection, and they require less memory to process
 than full handshakes.

FIPS 140-2

The Federal Information Processing Standards (FIPS) is a
 group of standards developed by the United States National Institute of
 Standards and Technology (NIST) for use in nonmilitary government
 systems. There’s a variety of standards, and not all are focused on security. Among
 the security ones, FIPS 140-2 is of special interest to us because it defines the
 guidelines for the use of cryptography. For simplicity, I will refer to FIPS 140-2
 simply as FIPS.
Any system designed for US government use must comply with FIPS. In general,
 ensuring compliance is quite complicated. First, you must ensure that the systems
 are running only validated cryptographic components. Then, for every deployed
 application you must also ensure that its use of cryptography complies with the
 standard.
Microsoft makes this process easier because it maintains compliance for the core
 libraries and components. Most difficulties lie in ensuring compliance of
 third-party applications and software developed in house.
On all Windows platforms, FIPS is effectively implemented in five layers:
	Low-level libraries
	Microsoft actively maintains FIPS 140 certifications for their two
 core cryptographic libraries: Cryptographic API
 (CAPI) and Cryptographic API: Next Generation
 (CNG). These libraries are not necessarily FIPS aware; they provide
 support for approved and unapproved algorithms alike. It is the
 responsibility of upper layers to comply with standards when
 needed.

	FIPS registry indicator
	There is a single registry key that is used to indicate that a
 particular system is required to comply with FIPS. All deployed
 applications must ultimately adjust their behavior to comply with this
 setting.

	Higher-level libraries
	Some higher-level cryptographic libraries are FIPS aware. They read
 the FIPS registry key and adjust their behavior accordingly. In
 particular, Schannel and Microsoft .NET Framework will comply with the
 FIPS setting.

	Operating system components
	Key operating system components are declared to rely on and respect
 FIPS. This makes FIPS deployments much easier. For example, the
 Remote Desktop Protocol (RDP), filesystem
 encryption (EFS, BitLocker), and IPSec are on the compliant list.

	Applications
	Applications are the actual consumers of cryptographic algorithms and
 have the ultimate responsibility to comply with FIPS. Applications that
 work with low-level libraries (CAPI and CNG) have the tedious job of
 ensuring that those components are used in a compliant fashion. On the
 other hand, applications that rely exclusively on higher-level libraries
 are compliant by default.

Configuring FIPS

The easiest way to enable FIPS is by making changes using the Local Security
 Policy management console:
	From the command prompt or the Run menu, invoke
 secpol.msc.

	In the left pane, navigate to Local Policies > Security
 Options.

	In the right pane, find and double-click the System
 cryptography: Use FIPS compliant algorithms for encryption, hashing,
 and signing entry.

	A property window will appear; choose Enabled or
 Disabled, and press Apply
 (see the following figure).

Note
You should reboot after making any changes that might affect the FIPS
 status.

Figure 15.1. Configuring FIPS using the Local Security Policy management
 console
[image: Configuring FIPS using the Local Security Policy management console]

If you prefer to work with the registry directly, you need to set the value of
 the FIPS registry key to 1 for enabled or
 0 for disabled. The location of the key differs depending
 on the operating system. On Windows Vista and later platforms, the key is
 at:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\Enabled
On Windows XP and Windows Server 2003, the key is at:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy

Third-Party Utilities

You might know all the Schannel registry keys, but that does not mean that you
 want to work directly with the registry every time. Nartac Software’s IIS
 Crypto (shown in the following figure) is an IIS configuration
 utility that allows you to configure enabled cipher suites and their order. It comes
 with predefined templates and also has a handy link to the SSL Labs web site that
 allows you to test your new configuration.
Figure 15.2. Nartac Software’s IIS Crypto configuration tool
[image: Nartac Software’s IIS Crypto configuration tool]

Securing ASP.NET Web Applications

In this section, I discuss several topics related to the secure deployment of ASP.NET
 web applications. These topics cover several ways in which applications can subvert
 encryption, for example, by allowing plaintext access or using insecure cookies.
Enforcing SSL Usage

To prevent misconfiguration, applications that expect to be run under TLS should
 actively check for its presence on every request. The check can be made in the code,
 like so:
if (Request.Url.Scheme.Equals("https") == false) {
 // Error, access without SSL.
}
However, it is generally not advisable for each execution unit (script) to check
 for SSL individually. A better approach is to write the code once and invoke it
 whenever necessary. ASP.NET supports authorization filters, which is a way of
 executing a common chunk of code on every request. This filter is the ideal location
 for your TLS checks.

Securing Cookies

Every cookie you use in your application should be separately secured. All you
 need to do is set the Secure property to true.
 If the cookie is not intended to be accessed from JavaScript, also set the
 HttpOnly property to true:
// Create a new cookie and initialize it.
HttpCookie cookie = new HttpCookie();
cookie.Name = "CookieName";
cookie.Value = "CookieValue";
cookie.Expires = DateTime.Now.AddMinutes(10d);

// Secure the cookie.
cookie.HttpOnly = true;
cookie.Secure = true;

// Add the cookie to the response.
Response.Cookies.Add(cookie);

Securing Session Cookies and Forms Authentication

In the ASP.NET configuration file, the <httpCookies> element[589] controls how the session cookies are secured. For example, to configure
 the session cookies to use the httpOnly flag (prevents access to
 the session cookie value from JavaScript) and the secure flag
 (ensures the cookies are sent only over SSL), do the following:
<configuration>
 <!-- other configuration options -->

 <system.web>
 <httpCookies
 domain = "www.example.com"
 httpOnlyCookies = "true"
 requireSSL = "true"
 lockItem = "true"
 />
 </system.web>
</configuration>
The purpose of the lockItem attribute is to prevent other parts
 of the configuration from overriding the values configured here. Despite that, there
 is still a catch. If your configuration also contains the
 <forms> element (in other words, you are using forms
 authentication), you will need to ensure that the requireSSL
 attribute on <forms> is also set to
 true:
<forms
 requireSSL = "true"
 cookieless = "UseCookies"
 <!-- Your other attributes here. -->
/>
You will notice that I also configured the cookieless attribute
 to UseCookies. Forms authentication supports two modes of session
 token transport: the main approach is to use cookies, but there is also the
 URI-based method, which embeds session tokens in the page links. The URI-based
 method is interesting because it allows your application to work even for those
 users that do not support cookies. However, it comes with a significant security
 problem: because browsers embed URIs in the Referer request
 header as they follow links to external
 sites,
 the session tokens may be exposed in other sites’ logs. If an attacker can trick one
 of your users into following a link to a web site under the attacker’s control, he
 will be able to hijack that user’s session.

Deploying HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a recent standard
 that allows web applications to request that browsers use only encrypted access for
 them. This fact alone makes HSTS work as a defense-in-depth measure, even in the
 face of application design errors (e.g., insecure session cookies). In addition, the
 handling of invalid certificates is improved so that end users can no longer
 override warning messages. Deploying HSTS is easy, but before you do it make sure to
 fully understand its advantages and disadvantages.
The following code example enables HSTS with a long-term maximum age of about one
 year (specified in seconds), active on the main hostname as well as all
 subdomains:
Response.AppendHeader(
 "Strict-Transport-Security",
 "max-age=31536000; includeSubDomains"
);
Alternatively, you could configure the header in configuration, using the
 following snippet:
<configuration>
 <!-- other configuration options -->

 <system.webServer>
 <httpProtocol>
 <customHeaders>
 <add name="Strict-Transport-Security"
 value="max-age=31536000; includeSubDomains" />
 </customHeaders>
 </httpProtocol>
 </system.webServer>
</configuration>
The IIS Manager GUI also supports custom response headers. However, using any of
 these methods can be tricky, because the HSTS specification doesn’t allow for
 sending the Strict-Transport-Security header on plaintext
 responses. The easiest and cleanest approach is to use a third-party module that
 will take care of all the details for you.[590]

Internet Information Server

Internet Information Server (IIS) is the main web server used on Windows operating
 systems. It comes in several flavors (e.g., desktop and server versions), but the
 underlying code is usually the same in all cases. And of course, all flavors ultimately
 rely on Schannel for their SSL/TLS needs.
Because Schannel is a reasonably well-rounded TLS library, IIS also provides decent
 features in this area. The biggest practical problem comes from the fact that IIS
 exposes no user interfaces to configure TLS but relies on the underlying Schannel
 configuration. Schannel, in turn, can be configured only by working with the registry
 directly, which can be difficult.
In the rest of this section, I will highlight some of the issues with running secure
 sites on the Internet Information Server.
	Forward secrecy
	With IIS, you will be unable to provide robust support for forward
 secrecy, because Schannel doesn’t support ephemeral Diffie-Hellman (DHE) key
 exchange in combination with RSA keys. The majority of clients support the
 faster ECDHE key exchange, but, according to Twitter, about 25% don’t.[591]
In April 2014, Microsoft released an update that added two new
 DHE_RSA suites (used with 1,024-bit DH parameters) to
 Windows 8.1 and Server 2012 R2. However, these suites won’t provide better
 support for forward secrecy, because they use GCM authenticated encryption
 that’s not supported by older clients.

	GCM suites
	At the time of writing, authenticated GCM suites are the only suites
 thought to be completely secure. Even though the issues in other suites are
 largely mitigated, if you’re keen to have the best possible security, GCM
 suites should be your priority. Schannel does support GCM suites, but
 largely in combination with ECDSA keys. At this point, virtually all sites
 use RSA keys, and only the adventurous experiment with ECDSA.

	OCSP stapling
	Starting with Windows 2008, IIS enables OCSP stapling by default. Because
 most other web servers require manual configuration, 96% of all stapled
 responses are currently served by IIS.[592] The only catch is that your IIS server needs to be able to
 communicate with the CAs that issued the certificates in order to obtain
 OCSP responses and cache them locally. If you have a very restrictive
 outbound traffic policy (firewall), such traffic might be blocked. To deal
 with this, you can either relax your firewall policy or use a forward proxy
 for the OCSP traffic.[593]

	Lack of per-site configuration
	IIS allows for only partial SSL/TLS configuration on per-site basis, which
 means that for things such as protocol support and cipher suite order you
 will be forced to find one configuration that suits all your sites. It
 shouldn’t be a problem in practice, but it might prove to be constraining if
 you’re hosting sites with special needs (e.g., FIPS).

Managing Keys and Certificates

IIS Manager comes with a GUI that supports basic key and certificate operations.
 It’s sometimes unintuitive, but it gets the job done. My instructions and examples
 here will be for Windows Server 2012 and IIS 8, but the workflow with the earlier
 (IIS 7 and 7.5) and later (IIS 8.5) versions should be the same.
Note
The language used in the IIS user interface is not accurate. Most labels and
 action names refer to certificates, whereas you will almost
 always be managing keys and certificates at the same time.
 For simplicity, in this section I will use the IIS terminology.

Creating a Custom IIS Management Console

Before you start to do any actual certificate work, I recommend that you
 create a custom Microsoft Management Console (MMC).
	On the Run menu, type mmc to
 create an empty console.

	From the File menu, select Add/Remove
 Snap-in. A new window will appear; the left pane will
 contain the list of available snap-ins.

	Add the Certificates snap-in. On the first
 screen, select Computer account; on the second,
 select Local computer.

	Add the Internet Information Server
 snap-in.

	Again from the File menu, select
 Save to save this console for later. If you
 save it to the desktop, your custom console will be only a double-click
 away when you need it.

Now you have a custom console that gives you access to the web site
 certificates as well as to IIS Manager.

IIS Certificate Management

To start managing IIS certificates, open the IIS Management Console and click
 on the server name. A new pane will open with many configuration options; one
 will be Server Certificates.
Figure 15.3. Server certificates in the IIS Management Console
[image: Server certificates in the IIS Management Console]

Creating a Self-Signed Certificate

Creating self-signed certificates is trivial: simply select the
 Create Self-Signed Certificate... action from the right
 pane and provide a friendly name for it. You also have the ability to choose
 where the new certificate will go, to the Personal store or
 to the Web Hosting one. It’s not clear what the difference
 is between the two, but I tend to choose the latter.

Importing a Certificate

If you already have a certificate, you can import it using the
 Import action. The only supported format is PKCS#12, or
 PFX. If you are transitioning from a web server that uses different formats, you
 can use OpenSSL to convert the keys and certificates, as explained in the section called “Key and Certificate
 Conversion

 ” in Chapter 11.
Warning
When you’re importing the certificate, it’s best to disable the
 Allow this certificate to be exported option. Doing
 that makes it more difficult to extract the key from the server. Of course,
 if you disable, make sure to have a backup of the key elsewhere.

Requesting Certificates from a Public CA

To obtain a certificate signed by a public CA, you first need to create a
 Certificate Signing Request (CSR). To do this, use
 the Create Certificate Request action, which activates a
 wizard that consists of three steps:
	On the first page, enter your information. Ensure that the information
 about your organization is accurate. You should use your web site’s
 primary domain name for the Common name
 field.

	On the second page, choose key type and strength. For the type, the
 default (Microsoft RSA SChannel Cryptographic
 Provider) is the only practical choice at the moment and
 needs no changing. For the strength, select 2,048 bits. (In my case, the
 default was 1,024, but that’s weak and bordering on insecure.)

	On the third page, specify the location of the CSR file.

Now that you have the CSR, you need to submit it to your selected CA. In most
 cases, you will need to open up the CSR file in a text editor and copy the
 contents into the form on the CA’s web site. Once the CA verifies your
 right to hold a certificate in the requested domain name (a short and automated
 process for domain-validated certificates but a long one when extended
 validation is used), your certificate will be issued.
Warning
When you generate a CSR, you also create a private key that is stored on
 that computer and nowhere else. Because your certificate is not useful
 without the matching key, you should ensure that both are safely kept in
 backup. It’s best to create your keys and CSRs on the server on which they
 will be used, and export them for backup using the
 Export action.

Completing Certificate Signing Requests

More often than not, your CA will send you several certificates in response to
 your CSR. The main one will be your site’s certificate, but you will often need
 one or more intermediate certificates and, in some cases, even the root. If you
 get the certificates as a single file, importing will be easier. If you have
 them as separate files, you will need them to import them one by one, usually
 like this:
	If the CA’s root certificate is not already in your main trust
 store (called Trusted Root Certification
 Authorities), import it.

	Import all the intermediary certificates to the Intermediate
 Certification Authorities store.

At this point, you can finally use the Complete Certificate
 Request action to import the site certificate and match it to the
 private key that’s stored on your computer. If you’ve correctly configured the
 CA’s root and intermediate certificates, this step will complete without
 a warning. Otherwise, IIS will complain that it is unable to construct a
 complete trusted certificate chain.
Note
Completing CSRs sometimes fails with Failed to Remove
 Certificate or Access Denied error
 messages. When this happened to me, I discovered that the process actually
 completed successfully and that I was able to use my certificates despite
 the error messages.

Configuring SSL Sites

Assuming you already have a certificate, to enable TLS on a web site you need
 to add SSL bindings to it. This translates to configuring
 the following:
	Protocol; always https

	IP address and port

	Hostname

	The correct setting for the Require Server Name
 Indication option (more about this in a minute)

	The desired SSL certificate

There are three ways in which you can configure secure web sites:
	One SSL site per IP address and port combination
	Traditionally, secure sites require a unique IP address and port
 combination. Because specifying ports is not practical for public
 services, this really means a unique IP address. This approach is
 straightforward for small hosting operations, but it requires that
 you procure a sufficient number of IP addresses.

	Certificate sharing
	Even though virtual secure hosting is not yet practical, it is
 possible to host more than one site on the same IP address, but only
 if you don’t mind all of them using the same certificate. You can do
 this by obtaining a certificate that lists all the site names or by
 obtaining a wildcard certificate that supports an unlimited number
 of subdomains. (Or both, for that matter.) This option is fully
 supported in IIS 8; when configuring SSL bindings for a site, select
 the desired IP address and certificate and enter the correct
 hostname. You can repeat the process on as many web sites as you
 want. The SNI option should remain disabled.
Before version 8, the IIS user interface allowed only one secure
 site to be configured on the same IP address and port combination.
 However, it is still possible to achieve the same effect by making
 configuration changes directly from the command line and by using an
 asterisk as the first character in the certificate’s friendly name.[594]

	Virtual secure hosting
	Because the support for virtual secure hosting was not available
 in TLS from the start, some older platforms still don’t support it.
 And because one such older platform—Windows XP—remains
 quite popular, we must still continue to bind secure sites to IP
 addresses. Virtual secure hosting is supported by IIS starting with
 version 8; you enable it by checking the Require Server
 Name Indication option. However, if you
 have
 any
 users who
 still
 rely
 on
 Internet Explorer on Windows
 XP, they
 won’t
 be able to connect to your web site securely. If you are sure that
 you have no such users, SNI is safe to deploy today.

Advanced Options

The instructions in this section are generally adequate for small deployments,
 such as when you have servers that are serving only a few sites, but they get
 increasingly difficult when you have to deal with complex architectures. If you
 fall into this category, there are some advanced options that you might want to
 consider:
	Centralized SSL certificates for web server clusters
	Starting with IIS 8.0, web server cluster management is much
 easier because it is possible to store keys and certificates in a
 single location on a file share.[595]

	Active Directory integration with a public CA
	Public CAs have recently developed products that simulate a
 private CA but fulfill requests using their own (public)
 infrastructure. With this approach, many tasks (e.g., certificate
 renewal) are simplified and automated. The advantage of this
 approach is that you control certificate issuance via Active
 Directory policies, but your certificates ultimately chain to a
 public CA.

[565] Secure Channel (Microsoft Windows Dev Center)

[566] BCryptGenerateKeyPair function (Cryptography API: Next
 Generation documentation, retrieved 4 February 2014)

[567] Vulnerability in TLS/SSL could allow spoofing
 (Microsoft Security Advisory 977377, 9 February 2010)

[568] Vulnerabilities in SChannel could allow remote code
 execution (Microsoft Security Bulletin MS10-049, 10
 August 2010)

[569] Update For Minimum Certificate Key Length (KB
 2661254, 14 August 2012)

[570] Update for Deprecation of MD5 Hashing Algorithm for
 Microsoft Root Certificate Program (KB 2862973, 13
 August 2013)

[571] An
 update is available that improves management of weak
 certificate cryptographic algorithms in Windows (KB
 2862966, 13 August 2013)

[572] Update for Disabling RC4 (KB 2868725, 13 November
 2013)

[573] IE11 Automatically Makes Over 40% of the Web More Secure
 While Making Sure Sites Continue to Work (IEBlog, 12
 November 2013)

[574] SHA1 Deprecation Policy (Windows PKI blog, 12
 November 2013)

[575] Introduction to The Microsoft Root Certificate Program (Microsoft
 TechNet Wiki, retrieved 3 July 2014)

[576] How to get a Root
 Certificate update for Windows (Microsoft, retrieved 2 July
 2014)

[577] Announcing the automated updater of untrustworthy certificates and
 keys (Windows PKI blog, 11 June 2012)

[578] Manage Trusted Root Certificates (Windows Server 2012
 documentation, retrieved 3 July 2014)

[579] There is a feature called Name Constraints,
 that allows CAs to be restricted to issue certificates for only certain
 name hierarchies, but this feature is not widely used.

[580] Certificate Support and Resulting Internet Communication in Windows
 Vista (Microsoft TechNet, retrieved 3 July 2014)

[581] For brevity, I omitted several subkeys from the list. They are:
 Multi-Protocol Unified Hello, PCT
 1.0, and DTLS 1.0. They refer to
 obsolete or rarely used protocols.

[582] Older Windows versions also supported RC2 40/128,
 RC2 56/128, and RC2
 128/128.

[583] Not all Windows operating systems ship with this tool. For
 example, Windows 7 Professional has it, but Windows 7 Home Premium
 doesn’t. If you don’t have it, you’ll have to resort to editing the
 registry directly, which I discuss later in this section.

[584] Cipher Suites in Schannel (Microsoft, retrieved 17 July
 2014)

[585] KB 2929781: Update adds new TLS cipher suites and changes
 cipher suite priorities in Windows 8.1 and Windows Server 2012
 R2 (Microsoft, 8 April 2014)

[586] It seems that there are multiple keys that influence cipher suite
 configuration. Some sources recommend using
 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Cryptography\Configuration\Local\SSL\00010002
 for this purpose, but this key appears to have lesser priority and will not
 be used if other keys exist. It is generally best to avoid changing the
 registry directly, if you can.

[587] How to configure
 Secure Sockets Layer server and Client cache elements (Microsoft
 Support web site, 7 July 2008)

[588] Transport Layer Security Cmdlets in Windows PowerShell
 (Microsoft TechNet, 17 October 2013)

[589] httpCookies Element (.NET Framework 4 documentation, retrieved 3
 July 2014)

[590] HTTP Strict Transport
 Security IIS Module (CodePlex, retrieved 2 July 2014)

[591] Forward Secrecy at Twitter (Twitter’s Engineering Blog,
 22 November 2013)

[592] Microsoft Achieves World Domination (in OCSP Stapling)
 (Netcraft’s blog, 19 July 2013)

[593] OCSP Stapling
 in IIS (Ryan Hurst’s blog, 12 June 2012)

[594] SSL Host Headers in IIS 7 (SSL Shopper, 26
 February 2009)

[595] IIS 8.0 Centralized SSL Certificate Support: SSL
 Scalability and Manageability (IIS.Net, 29
 February 2012)

16 Configuring Nginx

Nginx is a web server and reverse proxy that’s become very popular because of its
 efficiency and frugal use of system resources. Nginx generally has good TLS support in the
 current stable branch (1.6.x), which means that you shouldn’t experience any problems in
 this area. Because Nginx is a relatively young project, features are added at a fast pace.
 If you’re an advanced user, I recommend that you keep an eye on the improvements in the
 development branch.
Table 16.1. Nginx TLS features across recent stable and development versions
	Feature	1.4.x	1.6.x	1.7.x (development)
	Strong default DH parameters	Barely; 1,024 bits	Barely; 1,024 bits	Barely; 1,024 bits
	Configurable DH and ECDH parameters	Yes	Yes	Yes
	Elliptic curve (EC) support	Yes	Yes	Yes
	OCSP stapling	Yes	Yes	Yes
	Distributed TLS session caching	-	-	-
	Configurable session ticket keys	-	Yes	Yes
	Disable session ticket keys	-	Yes	Yes
	Backend certificate validation	-	-	Yes

The stable version provides everything you need to deploy a well-configured standalone TLS
 server. The strength of ephemeral DH parameters (1,024 bits) is perhaps weaker than it
 should be, but that can be addressed in the configuration. One thing to watch is that this
 version doesn’t perform backend certificate validation when Nginx operates as a reverse
 proxy. This might not be a problem when the backend is local (e.g., on the same network),
 but it’s definitely insecure with backend servers that are reached over public
 networks.
This chapter is designed to cover the most important and interesting aspects of
 Nginx’s TLS configuration, but it’s not a reference guide. For other information,
 please refer to the official documentation.
Installing Nginx with Static OpenSSL

Unless told differently, Nginx will detect and use system OpenSSL libraries during
 installation, linking to them dynamically. Sometimes you don’t want to use the system
 libraries, however. For example, they could be an older version and missing some
 essential features.
It’s possible to compile Nginx statically against any compatible OpenSSL version. To
 do this, when configuring Nginx for compilation, use the
 --with-openssl parameter to point to the OpenSSL source
 code:
$./configure \
--prefix=/opt/nginx \
--with-openssl=../openssl-1.0.1h \
--with-openssl-opt="enable-ec_nistp_64_gcc_128" \
--with-http_ssl_module
Unlike some other programs, which compile against an OpenSSL installation, Nginx wants
 access to the source code so that it can configure and compile OpenSSL itself. This
 creates a level of indirection, because you don’t configure OpenSSL yourself. If you do
 need to pass a configuration parameter to OpenSSL, use the
 --with-openssl-opt Nginx parameter (as in my example, in which I
 activated EC optimizations that are disabled by default).

Enabling TLS

To enable TLS, you need to tell Nginx that you want to use a different protocol on the
 desired port. You do this with the ssl parameter to the
 listen directive:
server {
 listen 192.168.0.1:443 ssl;
 server_name www.example.com;
 ...
}
Another parameter that you might want to use here is spdy, which
 enables the SPDY protocol.[596] To enable TLS and SPDY at the same time, do something like this:
server {
 listen 192.168.0.1:443 ssl spdy;
 server_name www.example.com;
 ...
}

Configuring TLS Protocol

Once you enable TLS, you need to tweak the protocol configuration. I don’t believe in
 using default settings; they change over time and you end up not knowing exactly what
 your servers are doing. For protocol configuration, there are three directives that you
 should use. The first is ssl_protocols, which specifies which
 protocols should be enabled:
Enable all protocols except SSL 2 and
SSL 3, which are obsolete and insecure.
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
The second is ssl_prefer_server_ciphers, which tells Nginx that we
 want the server to select the best cipher suite during TLS handshake instead of letting
 clients do it:
Have the server decide what suites to use.
ssl_prefer_server_ciphers on;
Finally, ssl_ciphers controls which suites are going to be enabled
 and in which order; it takes an OpenSSL suite-configuration string. For example:
This cipher suite configuration uses only suites that provide
forward security, in the order that provides the best performance.
ssl_ciphers "ECDHE-ECDSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES128-SHA ECDHE-ECDSA-AES256-SHA ECDHE-ECDSA-AES128-SHA256 ECDHE-ECDSA-AES256-SHA384 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-AES128-SHA ECDHE-RSA-AES256-SHA ECDHE-RSA-AES128-SHA256 ECDHE-RSA-AES256-SHA384 DHE-RSA-AES128-GCM-SHA256 DHE-RSA-AES256-GCM-SHA384 DHE-RSA-AES128-SHA DHE-RSA-AES256-SHA DHE-RSA-AES128-SHA256 DHE-RSA-AES256-SHA256 EDH-RSA-DES-CBC3-SHA";
Note
The cipher suite configuration from this example is secure, but depending on your
 preferences and risk profile you might prefer something slightly different. You’ll
 find a thorough discussion of TLS server configuration in Chapter 8, Deployment and examples for OpenSSL in the section called “Recommended Configuration” in Chapter 11.

Configuring Keys and Certificates

The final step in configuring a secure server is to specify the desired private key
 and certificates, for which you need two directives:
Server private key.
ssl_certificate_key server.key;

Certificates; server certificate first, followed by all
required intermediate certificates, but excluding the root.
ssl_certificate server.crt;
Nginx uses one directive for certificate configuration. If you have the server
 certificate and the intermediate certificates as separate files, you’ll need to make a
 single file out of them. Just make sure you put the server certificate first; otherwise
 you will get a configuration error. Of course, you also need to ensure that all
 intermediate certificates are correctly ordered; not doing so might lead to subtle
 interoperability issues that are difficult to troubleshoot.[597]
Note
Although Nginx supports password-protected private keys, the only input mechanism
 it supports is interactive, on server startup. For this reason, the only practical
 approach in production is to configure a private key without a passphrase, which is
 not ideal. However, version 1.7.3 (in the development branch at the time of writing)
 added a new directive, ssl_password_file, which can be used to
 supply the password for encrypted keys.

Configuring Multiple Keys

Nginx does not currently allow sites to have more than one private key. There had been
 some work done on this feature in November 2013, so we might see it in a future release.[598]

Wildcard and Multisite Certificates

If you have two or more sites that share a certificate, it is possible to deploy them
 on the same IP address despite the fact that virtual secure hosting is not yet feasible
 for public web sites. No special configuration is required; just associate all such
 sites with the same IP address and ensure that they are all using the same certificate.[599]
This works because TLS termination and HTTP host selection are two separate processing
 steps. When terminating TLS, Nginx serves the certificate of the default server (the
 server that appears first in the configuration) for that IP address. When processing
 HTTP, Nginx examines the Host request header and looks for the
 correct site based on the server_name configuration. If the requested
 hostname cannot be found, the default web site is used.
The best approach when reusing certificates is to place them in the
 http scope so that the configuration is inherited by the servers
 that follow:
Configure one key and certificates for all subsequent servers.
ssl_certificate server.crt;
ssl_certificate_key server.key;

site1.example.com
server {
 listen 443 ssl;
 server_name site1.example.com;
 ...
}

site2.example.com
server {
 listen 443 ssl;
 server_name site2.example.org;
 ...
}
This approach simplifies maintenance and keeps only one copy of the certificate and
 key information in memory.

Virtual Secure Hosting

Unlike the setup discussed in the previous section, true virtual secure hosting takes
 place when multiple unrelated web sites, each with its own certificate, share one IP
 address. Because this feature was not in the SSL and TLS protocols at the beginning,
 there are still many older clients that do not support it. For this reason, it is not
 yet feasible to use virtual secure hosting for public web sites that are targeted at a
 wide general audience, but it could possibly be used for sites whose users have access
 to modern browsers.
Nginx supports virtual secure hosting and uses it automatically when needed. The only
 question is: what happens if you do deploy with virtual secure
 hosting but then encounter a client that does not support this feature? Normally, Nginx
 will serve the certificate belonging to the default site associated with the requested
 IP address. Because that certificate is unlikely to match the desired hostname, the user
 will receive a certificate warning. However, if they are able to bypass the warning,
 they will get through to the site they wanted to see.[600]

Reserving Default Sites for Error Messages

It is never a good idea to deliver web site content in response to an incorrectly
 specified request. For example, you don’t want a search engine to index a web site under
 an incorrect hostname. More importantly, lax checking of hostnames can lead to security
 issues from one site being transferred to other sites. To avoid this, I suggest that you
 always deploy default sites to deliver error messages and nothing else.
Here’s an example configuration you could use:
This default web site will be used to deliver error
messages to those clients that request a hostname
we don't have a site for.
server {
 listen 443 ssl default_server;

 # There is no need to specify server_name, because we
 # never actually want it to match. We want this site
 # to be delivered when the correct site cannot be found.
 # server_name "";

 root /path/to/site/root;

 location / {
 return 404;
 }

 location /404.html {
 internal;
 }

 error_page 404 /404.html;
}
With this configuration, users who request a hostname that isn’t configured on your
 server will see the contents of 404.html. In most cases, they will
 need to click through a certificate warning first, although it’s possible that a server
 has a valid certificate for a name but doesn’t have a virtual host for it. This is a
 potential issue with wildcard certificates, for example.
At the time of writing, Nginx doesn’t support strict SNI checking that could detect a
 user that doesn’t support SNI and refuse to serve the host specified at the HTTP level,
 even if the hostname is correct. Because all non-SNI users have to click through
 certificate warnings when accessing SNI-only sites, this feature would be very useful to
 inform such users why they’re experiencing problems.[601]

Forward Secrecy

You won’t have any trouble configuring robust forward secrecy with Nginx, given that
 it has had full support for the necessary key exchanges (DHE and ECDHE) since version
 1.1.0, which was released in August 2011. The only thing to watch for is the support for
 EC cryptography in OpenSSL; not all versions have it, for two reasons:
	Older OpenSSL version
	If the underlying OpenSSL installation does not support newer features
 (such as EC crypto), then it does not matter that Nginx does. Older versions
 of OpenSSL are still prevalent on older installations, and even some newer
 operating system releases use them. For example, OS X Mavericks, released in
 November 2013, ships with OpenSSL 0.9.8y (that’s the most recent version
 from the old 0.9.x branch). For EC
 cryptography,
 you need version 1.0.1 or newer.

	OpenSSL version without EC support
	For a long time, operating systems built by Red Hat used to ship without
 support for EC cryptography, because their lawyers wanted to play it safe
 when it came to certain EC patents. This made it very difficult for anyone
 using Fedora and Red Hat Enterprise Linux distributions (and the
 derivatives) to deploy forward secrecy. The only way to do it well had been
 to recompile OpenSSL and all the packages that depend on it.
This changed in October 2013, when Fedora 18 and later versions were
 updated with OpenSSL packages that do have EC crypto enabled.[602] In November 2013, Red Hat Enterprise Linux 6.5 shipped with EC
 crypto enabled.[603]

OCSP Stapling

Nginx supports OCSP stapling starting with the 1.4.x branch. At this time, Nginx
 treats this feature as an optimization, and this approach is reflected in the
 implementation. For example, Nginx does not prefetch OCSP responses on startup. Instead,
 it waits for the first connection and only then initiates its own OCSP request. As a
 result, the first connection is never going to have an OCSP response stapled. Further,
 OCSP responses are not shared among all worker processes, which means that each worker
 needs to obtain an OCSP response before the entire server is fully primed.
In practice, because obtaining OCSP responses from the responders takes some time it
 is reasonable to assume that there will be a period immediately after server startup
 during which OCSP stapling will not be fully operational. The busier your server, the
 shorter this period will be.
The delay will not create problems in practice, because OCSP stapling is not
 mandatory; browsers will use a stapled response when one is provided, but will obtain
 their own otherwise. If you really want OCSP responses to be used on every connection,
 it is possible to provide them to Nginx manually. I discuss this feature later in this
 section.
Warning
Due to a bug,[604] Nginx might sometimes send expired OCSP responses. It appears that the
 OCSP response refresh process is triggered only by the internal response timeout
 (one hour), but not by the cached response’s expiration time (set by the CA). Thus,
 if the server ever receives an OCSP response that expires in less than one hour,
 there will potentially be a period during which invalid responses will be
 served.

Configuring OCSP Stapling

To use OCSP stapling, you just need to tell Nginx that you want to use it:
Enable OCSP stapling.
ssl_stapling on;

Configure a DNS resolver so that Nginx can convert
domain names into IP addresses.
resolver 127.0.0.1;
Note
OCSP requests are submitted over HTTP, which means that your web server needs
 to be able to make outbound requests to various OCSP responders across the
 Internet. If you’re operating an outbound firewall, ensure that there are
 exceptions to allow this type of traffic.

I recommend that you also enable OCSP response verification, which is disabled by
 default. This requires a bit more work to configure trusted certificates, but you
 can then be sure that only valid responses are served to your users:
Verify responses before consdering them for stapling.
ssl_stapling_verify on;

OCSP response validation requires that the complete
certificate chain is available. Provide here all intermediate
certificates including the root, which is normally not
included when configuring server certificates.
ssl_trusted_certificate trusted-for-ocsp.pem;
Notably absent from the OCSP stapling configuration are directives for cache
 configuration and various timeouts. The cache does not need to be configured because
 OCSP responses are not shared among workers; every worker has its own memory cache
 that grows as needed. As for timeouts, Nginx relies on hardcoded values: valid
 responses are cached for one hour, and errors are cached for five minutes.
 Networking timeouts are set to 60 seconds.[605]

Using a Custom OCSP Responder

Normally, OCSP requests are submitted to the OCSP responder hardcoded in each
 certificate. However, there are two cases in which you might want to use a different
 responder:
	In a heavily locked-down environment, direct outbound traffic from the web
 server might not be allowed at all. In this case, if you want to support
 OCSP stapling, you will need to configure a forward proxy for OCSP requests.

	Some certificates might not actually contain OCSP responder information
 even though the issuing CA operates one. In this case, you can provide the
 OCSP responder URI manually.

You can override the OCSP responder information globally or on per-site basis,
 using the ssl_stapling_responder directive:
Use a forward proxy for OCSP requests originating from this server.
ssl_stapling_responder http://ocsp.example.com;

Manual Configuration of OCSP Responses

If you want reliable and consistent OCSP stapling for all secure connections,
 you’ll have to manually handle OCSP response fetching and refreshing, leaving Nginx
 only to pass on the responses to clients.
For the Nginx part of the setup, use the ssl_stapling_file
 directive to specify a file that contains an OCSP response in DER
 format:
Tell Nginx that it should not try to fetch
OCSP responses; we will handle that ourselves.
ssl_stapling_file ocsp-response_www.example.com.der;
The simplest way to obtain an OCSP response is to use the OpenSSL command-line
 tools. Before you begin, you will need both the server certificate and the issuing
 CA’s certificate. The issuing certificate should be among your intermediate
 certificates. It is also possible that the issuing certificate is a root (but that’s
 getting increasingly rare these days), in which case you should obtain it directly
 from the CA.
Your next task will be to find the address of the OCSP responder. You can do this
 by examining the Authority Information Access (AIA) extension
 in the server certificate. For example:
$ openssl x509 -in server.crt -noout -ocsp_uri
http://rapidssl-ocsp.geotrust.com
With the URL and the two certificates, you can submit an OCSP request to the
 responder:
$ openssl ocsp -issuer issuer.crt -cert server.crt -url http://rapidssl-ocsp.geotrust.com -noverify -respout ocsp-response_www.example.com.der
server.crt: good
	This Update: Jan 10 08:15:33 2014 GMT
	Next Update: Jan 17 08:15:33 2014 GMT
Note
Obtaining OCSP responses manually works without problems most of the time, but
 it can sometimes get messy because of edge cases. You will find more information
 about the possible issues in the section called “Checking OCSP Revocation” in
 Chapter 12.

You should now have a valid OCSP response in the designated file. Although this
 approach is good enough for a proof of concept, for deployment in production you
 will need to handle error cases and run continuously in order to keep all OCSP
 responses fresh. Reload Nginx whenever one of the files changes.

Configuring Ephemeral DH Key Exchange

When it comes to the strength of the Diffie-Hellman (DH) key
 exchange, Nginx normally delegates all the work to OpenSSL. That will give you 1,024
 bits of security, which is on the weak side, but not yet critically weak.
Fortunately, it’s easy to tune the strength of the DH key exchange. Just use the
 ssl_dhparam directive and provide the name of the file containing
 stronger parameters:
Use stronger DH parameters rather than the default 1024 bits.
ssl_dhparam dh-2048.pem;
Use the following OpenSSL command to generate the parameter file:
$ openssl dhparam -out dh-2048.pem 2048
Increasing DH parameter strength might negatively reflect on interoperability with
 some clients. For example, Java 6 and Java 7 don’t support DH parameters stronger than
 1,024 bits. Anything over that means that they might not be able to connect. In
 practice, Java 7 clients should be able to connect if you ensure that you always offer
 ECDHE suites first. For Java 6 clients, there is no workaround.
Tip
From the security point of view, you should choose the strength of DH parameters
 to match the strength of the private key used by the server. In practice, most sites
 use 2,048-bit private keys, which means that a 2,048-bit DH key exchange is going to
 be adequate for virtually everyone. Using stronger DH parameters is not recommended,
 as they significantly slow down the TLS handshake.

Configuring Ephemeral ECDH Key Exchange

The default strength of the ephemeral ECDHE key exchange is 256 EC bits, using the
 secp256r1 curve (OpenSSL prefers to call it
 prime256v1). That is sufficiently strong (equivalent to a
 3,072-bit RSA key), and you probably won’t need to change it. If you do want to change
 it, use the ssl_ecdh_curve directive:
Use a stronger curve to give us 192 bits of
security (equivalent to a 7680-bit RSA key).
ssl_ecdh_curve secp384r1;
At this time, there is little choice when it comes to curve selection. Even though
 OpenSSL and some other platforms might support a number of curves (for OpenSSL, you can
 obtain the complete list with openssl ecparam -list_curves), only
 secp256r1 and secp384r1 are widely supported
 by browsers at this time. You should know that secp256r1 is currently
 optimized to run fast in OpenSSL, whereas secp384r1 isn’t.

TLS Session Management

Nginx provides good support for TLS session resumption on standalone servers,
 supporting both server-side state caching and session tickets. But although there is
 support for distributed session tickets, distributed server session caching isn’t
 supported.
Standalone Session Cache

For standalone server deployments (which typically operate multiple workers), you
 should configure a shared memory cache so that TLS session information is shared
 among all the processes. The default for Nginx is to operate without a TLS session
 cache, which results in less than optimal performance.
To configure a cache, you need to allocate a certain amount of RAM to it and
 specify the maximum duration of a single session:
Configure a shared memory cache of 1 MB.
ssl_session_cache shared:ssl_session_cache:1M;

Expire individual sessions after 24 hours.
ssl_session_timeout 1440m;
It’s difficult to recommend one default configuration that will work for everyone,
 but the values I used in this example will satisfy most sites. The 1 MB of RAM
 should accommodate about 4,000 sessions.
The default session timeout is only five minutes, which is too short. I used 24
 hours instead. There is generally little reason to limit the session timeout,
 because you want to ensure that your cache runs at maximum capacity. If it runs out
 of space, the oldest session will be evicted to make room for a new one. That said,
 values over 24 hours are not recommended for security reasons.
Nginx provides a lot of flexibility for the cache configuration. For example, it’s
 possible to have a hierarchy of caches within the same site. It’s also possible to
 have many sites use the same cache. For best security, each site should be
 configured with its own session cache. Session cache sharing is safe only among
 sites that are logically part of the same application and share the
 certificate.

Standalone Session Tickets

By default, session tickets are handled by OpenSSL, and no Nginx configuration is
 necessary. For standalone servers, this approach tends to “just work,” although
 there are some aspects of it that you should be aware of:
	Session tickets are protected using 128-bit AES encryption. A throwaway
 key is generated when the web server is initially started. Depending on the
 server configuration, multiple ticket keys might be in use.

	The key size is fixed, but 128 bits is sufficiently strong for most use
 cases.

	A new private key is generated every time the server is restarted. This
 means that all connections that arrive after the restart will have to
 negotiate new TLS sessions. There will be a performance penalty, but it’s
 unlikely to be noticeable.

	If you leave the server running without restarts for extended periods of
 time, all tickets will be protected with the same AES key. This is not recommended,[606] which is why you should ensure that your servers are regularly
 restarted: for example, daily.

When it comes to session ticket security, for best results allocate a different
 ticket key to each site.

Distributed Session Cache

Distributed session caching is currently not supported. In 2011, a patch for Nginx
 0.8.x was released to add this functionality,[607] but there are no patches for modern versions. Furthermore, according to
 one of the Nginx developers,[608] the patch operates in blocking mode, which breaks the event-based model
 on which Nginx is built. In practice, this means that a lookup in the network cache
 can suspend all processing of an entire Nginx process (affecting all ongoing
 requests), which translates to a serious performance penalty.
Because Nginx does not support distributed session caching, your cluster design
 options are limited; you cannot deploy a cluster in which new connections are freely
 distributed among the nodes. Instead, you have to design a sticky mode in which
 clients are always forwarded to the same node.[609] Then, on that node you can operate a standalone, shared memory cache.

Distributed Session Tickets

Starting with version 1.5.7, Nginx supports manually configured session ticket
 keys. With this feature, you can implement your own rotation scheme on a single
 server or, more interestingly, share the same ticket in a web server cluster.
The relevant directive is ssl_session_ticket_key, which you use
 to specify the ticket key:
Explicit configuration of the session ticket key.
ssl_session_ticket_key ticket.key;
A session ticket key file consists of 48 bytes of cryptographically random data.
 The data is used for three 16-byte (128-bit) fragments, one each for key name, HMAC
 secret, and AES key. This isn’t the same format as used by OpenSSL, which means that
 the keys probably can’t be shared with other web servers.[610]
Use the following OpenSSL command to generate a new key file:
$ openssl rand -out ticket.key 48
In practice, you will need at least two keys in your configuration: your main key
 to generate new tickets and the previous key, kept around to use for decryption
 only:
Specify the active session ticket key, which will
be used for both encryption and decryption.
ssl_session_ticket_key current-ticket.key;

Keep the previous key around so that we can
resume the sessions protected by it.
ssl_session_ticket_key previous-ticket.key;
With the two-key setup, no tickets will be dropped because of key rotation.
Rotating session ticket keys in a cluster can be difficult to do reliably, because
 it requires that a new key is introduced simultaneously to all nodes. If one node
 uses a new key before others, other nodes will not be able to decrypt its tickets,
 forcing a full handshake. But this is probably not going to be an issue, unless
 you’re reloading your keys very frequently. Furthermore, many
 clusters are designed to send the same client to the same node, which means that
 this scenario is unlikely to happen.
Still, if you want to implement session ticket keys rotation absolutely right and
 don’t mind reconfiguring the cluster two times, here’s what you can do:
	Generate a new session ticket key.

	Introduce the new key to the configuration as a decryption-only key and
 reconfigure the cluster. With this step, you’ve prepared all your nodes for
 decryption.

	Change the configuration once more, promoting the key from the previous
 step to be your active key. Move the previously active key to be your
 decryption key. Then reconfigure the cluster again. Because all nodes have
 the new active key in the previous configuration, session resumption will
 work irrespective of any timing issues.

Disabling Session Tickets

Starting with version 1.5.9, Nginx allows session tickets to be disabled. This
 could be useful if you’re running a cluster of servers but don’t want to set up a
 distributed ticket key:
Disable session tickets.
ssl_session_tickets off;
If you’re running an earlier Nginx version, a patch for this feature can be
 obtained from the development list archives.[611]

Client Authentication

Using client authentication requires enabling it in configuration, providing all the
 CA certificates needed to form a complete certification path, and pointing Nginx to a
 certificate revocation list. Here’s a complete example:
Require client authentication.
ssl_verify_client on;

Specify the maximum depth of the certification path,
from the client certificate to a trusted root.
ssl_verify_depth 2;

Allowed CAs that issue client certificates. The
distinguished names of these certificates will be sent
to each user to assist with client certificate selection.
ssl_client_certificate sub-ca.crt;

Additional CA certificates that are needed to
build a complete certification path.
ssl_trusted_certificate root-ca.crt;

The list of revoked certificates. A reload is required
every time this list is changed.
ssl_crl revoked-certificates.crl
With these changes, Nginx will accept only requests accompanied by a valid client
 certificate. If a certificate is not provided or if the validation fails, it will send
 with a 400 response instead.
In addition to enabling strict client authentication, there are also two further
 settings for ssl_verify_client that are useful in some
 situations:
	optional
	Requests a client certificate during TLS handshake but doesn’t require it.
 The status of the validation is stored in the
 $ssl_client_verify variable: NONE
 for no certificate, FAILED for a certificate that failed
 validation, and SUCCESS for a valid certificate. This
 feature is useful if you want to provide a custom response to those users
 who fail client certificate validation.

	optional_no_ca
	Requests a client certificate during TLS handshake but doesn’t attempt
 validation. Instead, it’s expected that an external service will validate
 the certificate (which is available in the
 $ssl_client_cert variable).

Note
Using optional client authentication can be problematic, because some browsers
 don’t prompt the user or otherwise select a client certificate if this option is
 configured. There are also issues with some browsers that won’t proceed to the site
 if they can’t provide a certificate. Before you seriously consider optional client
 authentication for deployment, test with the browsers you have in your
 environment.

Mitigating Protocol Issues

Nginx users have little to worry about when it comes to SSL and TLS protocol issues.
 They have been as quickly addressed as they have arisen, in one case even before the
 public announcement.
Insecure Renegotiation

Insecure renegotiation is a protocol flaw discovered in November 2009 and largely
 mitigated during 2010. Nginx addressed this issue in version 0.8.23, which was
 released within a week of discovery. Since then, client-initiated renegotiation is
 not accepted.
Additionally, Nginx does not use server-initiated renegotiation. This feature is
 typically used when the same site operates multiple security contexts. For example,
 you might allow anyone to visit the home page of your web site but require client
 certificates at a deeper level. Nginx supports client certificates, but only at the
 server level (no subfolder configuration), which means that renegotiation is
 unnecessary. Technically, Nginx supports
 and
 advertises
 secure renegotiation when compiled against a capable version of
 OpenSSL, but refuses to renegotiate when asked.

BEAST

Technically, the predictable IV vulnerability in TLS 1.0 and earlier protocols
 affects both client and server sides of the communication. In practice, only
 browsers are vulnerable (the so-called BEAST attack), because exploitation requires
 that the attacker is able to control what data is sent (and subsequently encrypted)
 by the victim. For this reason, there is nothing for server code to do about
 it.

CRIME

The 2012 CRIME attack exploits information leakage that occurs when compression is
 used at the TLS protocol level.[612] No work has been done to address this issue and keep compression in the
 protocol. Instead, the advice is to disable compression altogether. For performance
 reasons, Nginx developers started to disable compression in 2011, but the initial
 changes (in versions 1.0.9 and 1.1.6) covered only OpenSSL 1.0.0 and better. Nginx
 disabled compression with all OpenSSL versions during 2012, in versions 1.2.2 and 1.3.2.[613]

Deploying HTTP Strict Transport Security

Because HTTP Strict Transport Security (HSTS) is activated via
 a response header, configuring it on a site is generally easy. However, there are
 certain traps you can fall into, which is why I recommend that you read the section called “HTTP Strict Transport Security” in Chapter 10
 before you make any decisions.
Once HSTS is deployed on a web site, your users will arrive on port 443 on their
 subsequent visits. But you still have to ensure that those who arrive on port 80 get
 redirected to the right place. For that redirection, and because the HSTS response
 header is not allowed on plaintext sites,[614] you should have two different servers in the configuration. For
 example:
server {
 listen 192.168.0.1:80;
 server_name www.example.com;

 return 301 https://www.example.com$request_uri;

 ...
}

server {
 listen 192.168.0.1:443 ssl;
 server_name www.example.com;

 add_header Strict-Transport-Security "max-age=31536000; includeSubDomains";

 ...
}
There are two Nginx add_header behaviors that you need to watch
 for. First, headers are added only to responses with non-error-status codes (e.g., from
 the 2xx and 3xx range). This shouldn’t be a problem for HSTS, because most of your
 responses should be in the correct range. Second, the configuration directive
 inheritance behavior is sometimes surprising: if a child configuration block specifies
 add_header, then no directives of this type are inherited from
 the parent block. In other words, if you need to add a header in a child block, make
 sure to explicitly copy all add_header directives from the parent
 block.

Tuning TLS Buffers

Starting with version 1.5.9, Nginx allows you to configure the size of the TLS buffer
 using the ssl_buffer_size directive. The default value for the buffer
 is 16 KB, but that might not be optimal if you want to deliver the first content byte as
 fast as possible. Using a value of 1,400 bytes is reported to substantially reduce the latency.[615]
Reduce the size of the TLS buffer, which will result
in substantially reduced time to first byte.
ssl_buffer_size 1400;
You should be aware, however, that reducing the size of TLS records might reduce the
 connection throughput, especially if you’re transmitting large amounts of data.[616]

Logging

Default web server logging mechanisms care only about errors and what content is being
 accessed and thus don’t tell you much about your TLS usage. There are two main reasons
 why you might want to keep an eye on your TLS operations:
	Performance
	Incorrectly configured TLS session resumption can incur a substantial
 performance penalty, which is why you will want to keep an eye on the
 session-resumption hit ratio. Having a log file for this purpose is useful
 to ensure that your server does resume TLS sessions and also to assist you
 with the tuning of the cache.
Starting with version 1.5.10, Nginx supports the
 $ssl_session_reused variable, which allows you to
 track session reuse directly. If you are using an earlier version, you’ll
 have to rely on log postprocessing to count the number of times the same
 session ID appears in the logs. From that, you can get a decent idea about
 the performance of your TLS session cache.

	Protocol and cipher suite usage
	Knowing what protocol versions and cipher suites are actually used by your
 user base is important, for two reasons: (1) you want to be sure that your assumptions about your
 configuration are correct and (2)
 you need to know if some older features are still required. For example, SSL
 2 remained widely supported over many years because people were afraid to
 turn it off. We are now facing similar problems with the SSL 3 protocol and
 the RC4 and 3DES ciphers.

It is best to use a separate log file for TLS connection information. In Nginx, this
 means using two directives, one to define a new log format and another to generate the
 log files:
Create a new log format for TLS-specific logging. The variable
$ssl_session_reused is available only from v1.5.10 onwards.
log_format ssl "$time_local $server_name $remote_addr $connection $connection_requests $ssl_protocol $ssl_cipher $ssl_session_id $ssl_session_reused";

Log TLS connection information.
access_log /path/to/ssl.log ssl;
Warning
Due to a bug in Nginx versions before versions 1.4.5 and 1.5.9, the
 $ssl_session_id variable did not contain TLS session IDs. If
 you want to deploy this type of TLS logging, you’ll need to upgrade to a newer
 release.

This type of log will create one entry for every HTTP transaction processed. In a
 sense, it’s wasteful because the TLS parameters are determined only once, at the
 beginning of a connection (Nginx does not allow renegotiation, which would potentially
 change the parameters). On the other hand, connection reuse is the most efficient mode
 of operation, so tracking its usage is important. For this reason, I added
 $connection and $connection_requests variables
 to the log format.
Note
There is currently no way to log connections with successful TLS handshakes but
 without any requests. Similarly, it is not possible to log TLS handshake
 failures.

[596] SPDY is not compiled-in by default. You have to use the
 --with-http_spdy_module configuration parameter to enable
 it.

[597] The ssl_certificate directive also allows the server
 private key to be included in the same file. However, storing private and public
 data in the same file is dangerous because it could lead to accidental
 disclosures of the keys.

[598] [PATCH] RSA+DSA+ECC bundles (Rob Stradling, 17 October 2013)

[599] Technically, the restrictions are per IP address and port combination (a
 TCP/IP endpoint). You could, for example, host one secure site on
 192.168.0.1:443 and another on
 192.168.0.1:8443. In practice, public sites can be hosted
 only on port 443, so the restrictions are effectively per IP address.

[600] Assuming, of course, that the requested hostname exists as a virtual site at
 the HTTP level. If it doesn’t, they will get the default web site.

[601] Version 1.7.0, currently still in development, introduced a new variable
 called $ssl_server_name, which contains the SNI hostname when
 one is provided. This variable is empty for a client that doesn’t support SNI.
 You can detect this situation in the virtual host configuration and respond with
 a different error message. The only catch is that you have to include the check
 in the configuration section of each virtual host.

[602] Bug #319901: missing ec and ecparam commands in openssl
 package (Red Hat Bugzilla, closed 22 October 2013)

[603] Red Hat Enterprise Linux 6.5 Release Notes (Red Hat, 21
 November 2013)

[604] ocsp stapling
 may send expired response (Nginx bug #425, retrieved 10 July
 2014)

[605] OCSP stapling patches (Maxim Dounin, 5 September 2012)

[606] With session tickets, the AES key is used to encrypt all session
 data (which includes the master secret, which can be used to decrypt
 all communication), after which that information is sent over the
 network to the client. This approach makes the AES key a new attack
 point. It also defeats forward secrecy, if the AES key is
 compromised.

[607] SSL Session Caching (in nginx) (Matt Palmer, 28 June
 2011)

[608] Re: Distributed SSL session cache (Maxim Dounin, 16 September
 2013)

[609] This is typically done by a load balancer, which remembers the origin of
 each session ID and directs subsequent visits belonging to the same ID to
 the same web server node.

[610] NGINX SSL Session Ticket Key (ZNV, 25 February 2014)

[611] [PATCH] SSL: ssl_session_tickets directive (Dirkjan Bussink, 10
 January 2014)

[612] TLS is not the only affected protocol; information leakage depends on how
 compression is implemented and might exist at other networking layers. For
 example, HTTP response compression using the gzip algorithm is also
 vulnerable.

[613] crime tls attack (Igor Sysoev, 26 September 2012)

[614] If this were allowed, a man-in-the-middle attacker could inject HSTS
 information into plaintext-only sites and perform a DoS attack.

[615] Optimizing NGINX TLS Time To First Byte (TTTFB) (Ilya Grigorik, 16
 December 2013)

[616] Optimizing NGINX TLS Time To First Byte (TTTFB) (Discussion on the
 Nginx development list, 16 December 2013)

17 Summary

Congratulations on making it all the way through this book! I hope you’ve had as much fun
 reading it as I did writing it. But with so many pages dedicated to the security of TLS,
 where are we now? Is TLS secure? Or is it irreparably broken and doomed?
As with many other questions, the answer is that it depends on what you expect. It’s easy
 to poke holes in TLS by comparing it with an imaginary alternative that doesn’t exist; and
 it’s true, TLS has had many holes, which we’ve been repairing over the years. However, the
 success of a security protocol is measured not only in pure technical and security terms but
 also by its practical success and usefulness in real life. So, although it’s certainly not
 perfect, TLS has been a great success for the billions of people who use it every day. If
 anything, the biggest problems in the TLS ecosystem come from the fact that we’re not using
 enough encryption and that, when we do, we haven’t quite made up our minds if we really want
 proper security. (Think about certificate warnings.) The weaknesses in TLS are not our
 biggest problem.
Therefore, we’re discussing the security of TLS because it’s been so successful.
 Otherwise, we would have long ago replaced it with something better. However, chances are
 that even if we replaced TLS with something else, years of steady use would have led us to
 the same situation we have now. I’ve come to realize that you can’t have perfect security at
 world scale. The world, with its diversity, moves slowly and prefers avoiding breakage to
 enhanced security. And you know what? That’s fine. It’s the cost of participating in a
 global computer network.
The good news is that TLS is improving at a good pace. At some point a couple of years
 ago, we started to pay more attention to security, especially encryption. This process
 accelerated during 2013, when we discovered the harsh reality of widespread mass
 surveillance. The TLS working group is busy working on the next protocol version; it’s not
 going to be fundamentally different, because it doesn’t have to be—but it will take our
 security to the next level. I’ll write about it in a future edition of this book.

Index

Symbols

0/n split, Client-Side Mitigation

1/n-1 split, Client-Side Mitigation

3DES, Interoperability

A

Abstract Syntax Notation
 One (see ASN.1)

Active network
 attack (see MITM)

Advanced Encryption
 Standard, Block Ciphers

AEAD (see Authenticated encryption)

AES, Symmetric Encryption
 (see Advanced
 Encryption Standard)

AIA (see Authority Information
 Access)

Alert protocol, Alert Protocol

Alice and
 Bob, Building Blocks

ALPN, Application Layer Protocol Negotiation

 , Next Protocol Negotiation

ANSSI, ANSSI

Apache
 httpd, Configuring Apache, Advanced Logging with
 mod_sslhaf

Apple, Library and Platform Validation Failures

application_layer_protocol_negotiation extension, Application Layer Protocol Negotiation

Application data protocol, Application Data Protocol

Application Layer Protocol Negotiation (see ALPN)

ARP
 spoofing, Gaining Access

ASN.1, Certificates
 , Hostname Validation Issues

ASP.NET, Securing ASP.NET Web Applications

Asymmetric
 encryption, Asymmetric Encryption

Authenticated encryption, Authenticated Encryption

Authority Information Access, Root CA Configuration

Authority Information
 Access certificate extension, Certificate
 Extensions, Revocation

Authority Key Identifier
 certificate extension, Certificate
 Extensions

B

Baseline Requirements, Standards

Basic
 Constraints, Certificate
 Extensions, Predicting the Prefix, Library and Platform Validation Failures, Root CA Configuration

Certificate
 extension, Certificate
 Extensions

Basic Encoding Rules (see BER)

BEAST, BEAST, Impact, BEAST (HTTP)

Testing, Testing for the BEAST Vulnerability

Versus Lucky 13 and RC4, Mitigation: RC4 versus BEAST and Lucky 13

BER, Certificates

BGP route
 hijacking, Gaining Access

Bit (see Cryptography
 strength)

BlackSheep tool, Sidejacking

Black Tulip, Fall of a Certification Authority

Block
 ciphers, Block Ciphers

In TLS, Block Encryption

Modes
 of operation, Block Cipher Modes

Brainpool elliptic curves, Elliptic Curve Capabilities

BREACH, BREACH, TIME and BREACH (HTTP)

Bullrun, Bullrun

C

CA (see Certification authority)

CA/Browser Forum, Standards

CAA (see Certification Authority Authorization)

Captive
 portals, Responder Availability and
 Performance

CBC, Cipher Block Chaining Mode

(see also Block ciphers)

In TLS, Block Encryption

Padding attacks, Attacks against TLS

Predictable IV, CBC with Predictable IV

CCM, Authenticated Encryption

Certificate, Certificates
 , Certificate
 Chains

Chains, Certificate
 Chains

Conversion, Key and Certificate
 Conversion

Exceptions, Click-Through Warnings versus
 Exceptions

Extensions, Certificate
 Extensions

Fields, Certificate
 Fields

Intermediary certificates, Certificate
 Chains

Lifecycle, Certificate
 Lifecycle

Multiple
 hostnames, Certificate Hostnames

Optimization, Certificates

Revocation, Revocation
 , Weaknesses, Certificate Revocation, Responder Availability and
 Performance

Self-signed, Choosing the Right Certificate Authority

Sharing, Certificate
 Sharing

Signature
 algorithms, Signature Algorithm

Validation, Certificate
 Lifecycle
 , Weaknesses

Validation failure, Application Validation Failures, Hostname Validation Issues

Validation
 flaws, Certificate Validation
 Flaws

Warnings, Weaknesses, Certificate Warnings, Mitigation

Wildcards, Certificate
 Sharing

Certificate Policies certificate
 extension, Certificate
 Extensions

Certificate protocol message, Certificate

CertificateRequest protocol message, CertificateRequest

Certificate
 Revocation List (see CRL)

Certificate
 Signing Request, Certificate
 Lifecycle

Creating on
 Windows, Requesting Certificates from a Public CA

Creating with keytool, Creating a Certificate Signing Request

Creating with OpenSSL, Creating Certificate Signing Requests

Certificate Transparency, Certificate Transparency

 , Improvements

CertificateVerify protocol message, CertificateVerify

Certification
 authority, Internet PKI, Certification Authorities

Creating a private
 CA, Creating a Private Certification Authority

Private versus public, Choosing the Right Certificate Authority

Selection
 criteria, Choosing the Right Certificate Authority

Certification Authority Authorization, Certification Authority
 Authorization

CertStar, CertStar (Comodo) Mozilla Certificate

Change cipher spec protocol, ChangeCipherSpec

ChangeCipherSpec protocol message, ChangeCipherSpec

Channel binding, Mitigation

Channel ID, Mitigation

Chosen-prefix collision
 attack, Chosen-Prefix Collision Attack

Chrome pinning, Public Discovery, TURKTRUST
 , ANSSI
 , Chrome Public Key Pinning

Cipher Block Chaining
 Mode (see CBC)

Cipher
 strength, Cipher
 Strength

Cipher suite

Configuration, Cipher Suite Configuration

Preference, Server cipher suite preference

Cipher suites, Cipher Suites

Configuring
 OpenSSL, Cipher Suite Selection

Performance, Symmetric Encryption
 , Performance

Recommended configuration for Java
 7, JSSE Configuration

Recommended configuration for Java
 8, Configuration with Java 8

Recommended configuration for
 OpenSSL, Recommended Configuration

Recommended configuration for
 Schannel, Cipher Suite Configuration

Transport
 overhead, Transport
 Overhead

Client authentication, Client Authentication, Client Authentication, Client Authentication

ClientHello protocol message, ClientHello

Client-initiated renegotiation (see Renegotiation)

ClientKeyExchange protocol message, ClientKeyExchange

Common name, Certificate
 Fields

Comodo, CertStar (Comodo) Mozilla Certificate, Comodo Resellers Breaches

ComodoHacker, Comodo Resellers Breaches, StartCom Breach (2011)
 , ComodoHacker Claims
 Responsibility

Compression oracle, How the Compression Oracle Works

Compression side channel attacks, Compression Side Channel Attacks

Computational security, Symmetric Encryption

Connection persistence, Connection Persistence

Content delivery networks, Root Causes, Complex Architectures, Content Delivery Networks

Content restrictions, Content Security Policy

Content Security Policy (see CSP)

Content sniffing, Impact

Cookie

Cutting, Cookie
 Cutting

Eviction, Cookie
 Eviction

Forcing, Cookie Manipulation
 Attacks

Injection, Cookie Manipulation
 Attacks

Integrity, Mitigation

Manipulation
 attacks, Cookie Manipulation, Mitigation

Stealing, Cookie
 Stealing

Tossing, Cookie Manipulation
 Attacks

CookieCadger tool, Sidejacking

Cookies, Understanding HTTP Cookies

Counter
 Cryptanalysis, Flame against MD5

CRIME, CRIME, CRIME (HTTP)

CRL, Revocation
 , Certificate Revocation Lists

Testing
 revocation, Checking CRL Revocation

CRL Distribution Points
 certificate extension, Certificate
 Extensions

Cross-certification, Certificate
 Chains

Cross-Site Cooking, Cookie Manipulation
 Attacks

CryptoAPI, Library and Platform Validation Failures

Cryptography, Cryptography, Active Attacks

Attacks, Attacking Cryptography, Root Key
 Compromise

Strength, Measuring
 Strength

CSP, Content Security Policy, Content Security Policy
 , Browser Support

CT (see Certificate Transparency)

Curve25519 elliptic curve, Elliptic Curve Capabilities

D

DANE, Improvements, DNS-Based Authentication of Named Entities (DANE)

Debian RNG flaw, Debian (2006)

Denial of Service
 attacks, Denial of Service Attacks

DER, Certificates
 , Key and Certificate
 Conversion

DHE (see Diffie-Hellman key exchange)

Diffie-Hellman
 key
 exchange, Diffie-Hellman Key Exchange

Degenerate parameters, Step 1: Unknown Key-Share Weakness

Parameters, Diffie-Hellman Key Exchange

Recommended
 strength, Forward Secrecy

Standardized
 parameters, Forward Secrecy

Strength, Measuring
 Strength

DigiCert Sdn.
 Bhd., DigiCert Sdn. Bhd.

DigiNotar, DigiNotar

Digital
 signature, Digital Signatures

During TLS handshake, Authentication

Distinguished Encoding Rules (see DER)

Distinguished name, Certificate
 Fields

DNS cache
 poisoning, Gaining Access, Man-in-the-Middle Attacks

DNS
 hijacking, Gaining Access

DNSSEC (see DANE)

Domain
 validation, Certificate
 Lifecycle

DSA, Authentication, Signature Algorithms, Library and Platform Validation Failures, Insufficient Entropy on Embedded
 Devices, Key
 Algorithm

Key
 strength, Measuring
 Strength

DSS (see DSA)

Dual EC DRBG, Dual Elliptic Curve Deterministic Random Bit Generator

DV (see Domain
 validation)

E

ec_point_formats extension, Elliptic Curve Capabilities

ECB (see Electronic Codebook
 Mode)

ECDH (see Elliptic Curve Diffie-Hellman Key Exchange)

ECDSA, Key Exchange

 , Authentication, Signature Algorithms, Library and Platform Validation Failures, Insufficient Entropy on Embedded
 Devices, Key
 Algorithm

Key
 strength, Measuring
 Strength

ECRYPT, Stream Ciphers

Edgehill, Bullrun

EDH (see Diffie-Hellman key exchange)

EFF (see Electronic Frontier Foundation)

Electronic Codebook
 Mode, Electronic Codebook Mode

Electronic Frontier Foundation, Root Key
 Compromise, Ecosystem Measurements

elliptic_curves extension, Elliptic Curve Capabilities

Elliptic
 curve

Key exchange in TLS, Elliptic Curve Diffie-Hellman Key Exchange

Named curves in TLS, Elliptic Curve Capabilities

Named curves supported by
 browsers, Interoperability

On older platforms, Forward Secrecy

Strength, Measuring
 Strength

Elliptic Curve Diffie-Hellman Key Exchange, Elliptic Curve Diffie-Hellman Key Exchange

Embedded
 devices, Insufficient Entropy on Embedded
 Devices

EMET (see Enhanced Mitigation Experience
 Toolkit)

Encrypt-then-MAC, Block Encryption

End-entity, Internet PKI

Enhanced Mitigation Experience Toolkit, Microsoft Enhanced Mitigation Experience
 Toolkit

ENISA, Measuring
 Strength

Entropy, Insufficient Entropy on Embedded
 Devices

eSTREAM, Stream Ciphers

EV (see Extended
 validation)

Exhaustive key search, Symmetric Encryption

Extended Key Usage certificate
 extension, Certificate
 Extensions

Extended random (see Dual EC DRBG)

Extended
 validation, Certificate
 Lifecycle

Extended validation
 certificates

Security, Extended Validation Certificates

F

False Start, Key Exchange

Ferret and Hermit tools, Sidejacking

Finished protocol message, Finished

FIPS

Java, Provider Configuration

Microsoft
 Windows, FIPS 140-2

Firesheep tool, Sidejacking

Flame, Flame

Forward secrecy, Key Exchange

 , Diffie-Hellman Key Exchange

 , Elliptic Curve Diffie-Hellman Key Exchange

 , Forward Secrecy, Session Caching

G

GCHQ, Bullrun

GCM, Authenticated Encryption

 , Cipher
 Strength, Symmetric Encryption

GlobalSign, ComodoHacker Claims
 Responsibility

GnuTLS, Library and Platform Validation Failures

H

Handshake formats, Using Different Handshake Formats

Handshake protocol, Handshake Protocol

Hardware Security
 Module (see HSM)

Hash-based Message Authentication
 Code (see HMAC)

Hash
 functions, Hash Functions

Heartbeat, Testing for
 Heartbleed

heartbeat extension, Heartbeat

Heartbeat protocol, Heartbeat

Heartbleed, Heartbleed, Mitigation, Heartbleed

Testing, Testing for
 Heartbleed

HelloRequest protocol message, Renegotiation

HMAC, Message Authentication Codes

 , Pseudorandom Function

HPKP, Public Key Pinning Extension for
 HTTP

HSM, Key
 Management, Hardware Acceleration

HSTS, Mitigation, HTTP Strict Transport
 Security, HTTP Strict Transport Security, Privacy Implications

Cookie
 cutting, Cookie
 Cutting

HTTP 2.0, SPDY, HTTP 2.0, and Beyond

HTTP compression, Impact against HTTP Response Compression

HTTP Cookies (see Cookies)

httpd (see Apache httpd)

HTTPS Everywhere, Root Key
 Compromise

HTTPS stripping, SSL Stripping

HTTP Strict Transport
 Security (see HSTS)

I

Idiocy tool, Sidejacking

IIS, Internet Information Server
 , Advanced Options

Information hiding, Renegotiation

initcwnd (see Initial congestion
 window)

Initial congestion
 window, Initial Congestion Window Tuning

Initialization
 vector, Cipher Block Chaining Mode

 , Block Encryption

Insecure Renegotiation, Insecure Renegotiation

 , Discovery and Remediation Timeline

Instant SSL (company), Comodo Resellers Breaches

Internet
 Explorer

Pinning, Microsoft Enhanced Mitigation Experience
 Toolkit

TLS
 capabilities, Features Overview

Internet Information
 Server (see IIS)

Internet
 PKI (see PKI)

Interoperability, Interoperability
 Problems, Interoperability

Java, Interoperability
 Issues

Schannel, Interoperability
 Issues

IV (see Initialization
 vector)

J

Java, Configuring Java and Tomcat, Global OpenSSL Configuration

Common
 problems, Common Error Messages

Encryption
 strength, Strong and Unlimited
 Encryption

Interoperability, Interoperability
 Issues

Keystore operations, Common Keystore Operations

Securing web
 applications, Securing Java Web
 Applications

JavaScript malware, Practical Attack

Java Secure Socket
 Extension, Java Cryptography Components

JSSE (see Java
 Secure Socket Extension)

K

Kerckhoffs’s principle, Symmetric Encryption

Key

Algorithms, Key
 Algorithm

Conversion, Key and Certificate
 Conversion

Management, Key
 Management

Password protection, Key
 Management

Size, Key
 Size

Key
 continuity (see Pinning)

Key continuity management, Click-Through Warnings versus
 Exceptions

Key exchange, Key Exchange

Performance, Key Exchange

Keytool, Common Keystore Operations

Key Usage certificate
 extension, Certificate
 Extensions

L

Length hiding, How the Compression Oracle Works

LibreSSL, Heartbleed

Local registration
 authority, Internet PKI

Long handshake
 intolerance, Other Interoperability Problems

LRA (see Local
 registration authority)

Lucky 13, Attacks against TLS, Lucky 13

Versus RC4 and BEAST, Mitigation: RC4 versus BEAST and Lucky 13

M

MAC, Message Authentication Codes

MAC-then-encrypt, Block Encryption

Man-in-the-middle
 attack, Man-in-the-Middle Attack

Man-in-the-Middle
 attack, Man-in-the-Middle Attacks, MITM Certificates

Mashups, Root Causes

Master secret, Key Exchange

 , Master Secret

MD5

Flame
 attack, Flame against MD5

History
 of weaknesses, RapidSSL Rogue CA Certificate

MECAI, Improvements

Message Authentication
 Code (see MAC)

Microsoft, Configuring Microsoft Windows and IIS, Advanced Options

Code-signing certificate incident, VeriSign Microsoft Code-Signing Certificate

Root Certificate
 Program, Relying Parties, Microsoft Root Certificate Program

Securing web
 applications, Securing ASP.NET Web Applications

Terminal
 Services, Flame against Windows Terminal
 Services

Windows
 Update, Flame against Windows
 Update

MITM (see Man-in-the-middle
 attack)

Mixed content, Mixed Content, Mitigation

Preventing with
 CSP, Preventing Mixed Content Issues

Preventing with
 HSTS, Attack Vectors

mod_sslhaf, Advanced Logging with
 mod_sslhaf

N

Name
 constraints, Certificate
 Extensions, Root CA Configuration

Name
 Constraints certificate extension, Certificate
 Extensions

Netscape Navigator RNG
 flaw, Netscape Navigator (1994)

next_protocol_negotiation extension, Next Protocol Negotiation

Next Protocol Negotiation, Next Protocol Negotiation

Nginx, Configuring Nginx, Logging

NIST, Measuring
 Strength

NIST elliptic curves, Elliptic Curve Capabilities

NPN (see Next Protocol Negotiation)

NSA, Gaining Access, Bullrun

O

OCSP, Revocation
 , Online Certificate Status Protocol

Performance, Revocation Checking

Replay
 attacks, OCSP Replay Attacks

Responder
 availability, Responder Availability and
 Performance

Responders, Revocation

Response
 suppression, OCSP Response
 Suppression

Stapling, OCSP Stapling

Performance, Revocation Checking

Testing, Testing OCSP
 Stapling

Testing
 revocation, Checking OCSP Revocation

Online
 Certificate Status
 Protocol (see OCSP)

OpenSSL, Library and Platform Validation Failures, OpenSSL, Creating a Private Certification Authority

ChangeCipherSpec
 vulnerability, Library and Platform Validation Failures

Heartbleed, Heartbleed

with
 Tomcat, Tomcat

Optimization (see Performance
 Optimization)

Organization
 validation, Certificate
 Lifecycle

OSI model, Networking Layers

OV (see Organization
 validation)

P

Padding, Padding

Padding oracle attacks, Padding Oracle Attacks, Mitigation

Passive
 network attack (see MITM)

PEM, Certificates
 , Key and Certificate
 Conversion

Performance Optimization, Performance Optimization, Optimized TLS Denial of Service Attacks

Perspectives, Improvements

PFX, Key and Certificate
 Conversion

Pinning, Improvements, Pinning, Pinning
 , Certification Authority
 Authorization

Chrome, Chrome Public Key Pinning

DANE, DNS-Based Authentication of Named Entities (DANE)

HTTP, Public Key Pinning Extension for
 HTTP

Internet
 Explorer, Microsoft Enhanced Mitigation Experience
 Toolkit

Native
 applications, Pinning in Native
 Applications

TACK, Trust Assertions for Certificate Keys (TACK)

PKCS#12, Key and Certificate
 Conversion

PKCS#7, Key and Certificate
 Conversion

PKI, Public-Key Infrastructure, Improvements

Attacks, Attacks against PKI, ANSSI

Weak
 root keys, Root Key
 Compromise

Improvements, Improvements

Weaknesses, Weaknesses

PKIX, Internet PKI, Standards

Premaster secret, Key Exchange

PRF (see Pseudorandom function)

Privacy-Enhanced
 Mail (see PEM)

PRNG (see RNG)

Protocol downgrade
 attacks, Protocol Downgrade Attacks

Protocol version
 intolerance, Version Intolerance

Pseudorandom function, Pseudorandom Function

Pseudorandom number
 generation (see RNG)

Public-key
 cryptography (see Asymmetric
 encryption)

Public-key infrastructure (see PKI)

Public key pinning (see Pinning)

Public Key Pinning Extension for
 HTTP (see HPKP)

Q

QuantumInsert, Active Attacks

QUIC, SPDY, HTTP 2.0, and Beyond

R

RA (see Registration
 authority)

Random number generation (see RNG)

Flaws, Random Number Generation

RapidSSL, RapidSSL Rogue CA Certificate

RC4, Stream Ciphers, RC4

Versus BEAST and Lucky 13, Mitigation: RC4 versus BEAST and Lucky 13

Weaknesses, RC4 Weaknesses, Mitigation: RC4 versus BEAST and Lucky 13

Record protocol, Record Protocol

Registration
 authority, Internet PKI

Relying
 party, Internet PKI, Relying Parties

Renegotiation, Renegotiation, Renegotiation

Denial of
 Service attacks, Client-Initiated
 Renegotiation

Insecure renegotiation, Insecure Renegotiation

 , Discovery and Remediation Timeline

Secure renegotiation, Secure Renegotiation

Testing, Testing
 Renegotiation

renegotiation_info extension, Secure Renegotiation

Revocation (see Certificate
 revocation)

RNG, Random Number Generation

Rogue CA certificate, RapidSSL Rogue CA Certificate

Rollback
 protection

In SSL 3, Rollback Protection in SSL 3

In TLS 1.0 and
 better, Rollback Protection in TLS 1.0 and Better

Modern
 defenses, Modern Rollback Defenses

Root
 store, Relying Parties (see Trust store)

RSA, Asymmetric Encryption, Authentication, Signature Algorithms, Key
 Algorithm

Key
 factoring, Root Key
 Compromise

Key
 strength, Measuring
 Strength

RSA key exchange, RSA Key Exchange

S

SafeCurves, Elliptic Curve Capabilities

SAN (see Subject
 Alternative Name)

Schannel, Schannel, Interoperability
 Issues

SCSV (see Signaling suite value)

secp256r1, Elliptic Curve Capabilities

secp384r1, Elliptic Curve Capabilities

Secure renegotiation, Secure Renegotiation

Secure Socket Layer (see TLS)

server_name extension, Server Name Indication

Server-Gated Crypto, Renegotiation

ServerHelloDone protocol message, ServerHelloDone

ServerHello protocol message, ServerHello

Server-initiated renegotiation (see Renegotiation)

ServerKeyExchange protocol message, ServerKeyExchange

Server Name Indication, Server Name Indication

Testing, Testing Servers that Require SNI

Session
 caching (see Session
 resumption)

Session leakage, Sidejacking

Session resumption, Session Resumption

Cache and ticket
 sharing, TLS Session Cache Sharing

Performance, Session Resumption

Security, Session Caching

Testing, Testing Session Reuse

Session tickets, Session Resumption, Session Tickets, TLS Session Cache Sharing, Session Caching

SGC (see Server-Gated Crypto)

SHA1, Hash Functions

Deprecation, Signature Algorithm

SHA256, Hash Functions

Short public exponent, Key Generation

Sidejacking, Sidejacking

Signaling suite value, Modern Rollback Defenses

signature_algorithms extension, Signature Algorithms

signed_certificate_timestamp extension, Certificate Transparency

Skywiper (see Flame)

Slow start, TIME, Preventing Slow Start When Idle

SNI (see Server Name Indication)

Sovereign Keys, Improvements

SPDY, Application Layer Protocol Negotiation

 , Next Protocol Negotiation

 , SPDY, HTTP 2.0, and Beyond

Attacks against compression, Impact against TLS Compression and SPDY

SPKI, Certificate
 Fields, What to Pin?

SSL (see TLS)

SSL_MODE_RELEASE_BUFFERS, Connection Persistence, Configuring Apache

SSL 3, SSL 3

SSL Labs, SSL Labs

SSL Observatory, Ecosystem Measurements

SSL Pulse, Ecosystem Measurements

sslsniff tool, MITM Certificates

SSLsplit tool, SSL Stripping

SSL stripping, SSL Stripping

sslstrip tool, SSL Stripping

StartCom, StartCom Breach (2008), CertStar (Comodo) Mozilla Certificate, StartCom Breach (2011)

status_request_v2 extension, OCSP Stapling

status_request extension, OCSP Stapling

Stream
 ciphers, Stream Ciphers

Strict
 Transport Security (see HSTS)

Subject Alternative
 Name, Certificate
 Extensions

Subject Key Identifier
 certificate extension, Certificate
 Extensions

Subscriber, Internet PKI

Symmetric
 encryption, Symmetric Encryption

Performance, Symmetric Encryption

T

TACK, Improvements, Trust Assertions for Certificate Keys (TACK)

TCP
 handshake latency, Latency and Connection
 Management

Thawte, Thawte login.live.com

TIME, TIME, TIME and BREACH (HTTP)

TLS, Transport Layer Security

Alert protocol, Alert Protocol

Application data protocol, Application Data Protocol

Attacks, Protocol Attacks, Dual Elliptic Curve Deterministic Random Bit Generator

Authenticated encryption, Authenticated Encryption

Authentication, Authentication

Block encryption, Block Encryption

Change cipher spec protocol, ChangeCipherSpec

Compression, Record Protocol

Attacks, Compression Side Channel Attacks
 , Mitigation of Attacks against HTTP Compression

Connection closure, Connection Closure

Connection keys, Key Generation

Differences between versions, Differences between Protocol Versions

Encryption, Encryption

Extensions, Extensions

Intolerance, Extension
 Intolerance, Other Interoperability Problems

Handshake, Full Handshake

Latency, Latency and Connection
 Management

Long
 handshake intolerance, Other Interoperability Problems

Handshake protocol, Handshake Protocol

Hardware
 acceleration, Hardware Acceleration

History, Protocol
 History

Limitations, Protocol Limitations

Protocol attacks, Protocol Attacks, Dual Elliptic Curve Deterministic Random Bit Generator

Protocol goals, Transport Layer Security

Protocol specification, Protocol

Random fields, ClientHello

Record, Record Protocol

Buffering, TLS Record Buffering Latency

Overhead, Transport
 Overhead

Size
 tuning, TLS Record Buffering Latency

Session, Full Handshake

Session ID, ClientHello

Stream encryption, Stream Encryption

Working group, Protocol

TLS_EMPTY_RENEGOTIATION_INFO_SCSV, Secure Renegotiation

TLS 1.0, TLS 1.0, BEAST

TLS 1.1, TLS 1.1

TLS 1.2, Protocol, TLS 1.2

TLS Authentication Gap (see Insecure renegotiation)

Tomcat, Tomcat, Global OpenSSL Configuration

Transport Layer Security (see TLS)

Triple Handshake Attack, Triple Handshake Attack, Mitigation, Triple Handshake Attack

Truncation
 attacks, Truncation Attacks

Trust, Internet PKI

Trust
 anchor, Internet PKI

Trust Assertions for Certificate
 Keys (see TACK)

Trust on first use, Click-Through Warnings versus
 Exceptions

Trust
 store, Relying Parties, Building a Trust Store

Trustwave, Weaknesses

TURKTRUST, TURKTRUST

U

Unknown Key-Share, Step 1: Unknown Key-Share Weakness

V

VeriSign, VeriSign Microsoft Code-Signing Certificate

Virtual host
 confusion, Virtual Host Confusion

Virtual secure
 hosting, Virtual Secure Hosting

(see also Server Name
 Indication)

Voluntary Protocol
 Downgrade, Voluntary Protocol Downgrade

W

WAN optimization, Content Delivery Networks

Web
 PKI (see PKI)

Web Proxy Auto-Discovery
 Protocol, Gaining Access, Flame against Windows
 Update

WebTrust, Relying Parties

WEP, Key Scheduling Weaknesses

Windows (see Microsoft)

WPAD (see Web
 Proxy Auto-Discovery)

X

X.509 (see Certificate)

OEBPS/figs/crypto-threat-model.png
Attacks against users Attacks against servers

DNS server hijacking and
cache poisoning attacks

DNS hijacking at registry
and other routing attacks

Local MITM attacks
(e.g., over Wi-Fi network)

Exposed communication link: 14 hops, several thousand miles and several countries

OEBPS/figs/triple-handshake-attack2.png
Connection 2, resumed

Client Attacker Server
ClentHelo
... ServerHello
.. ChangeCipherSpec

Connections are now fuly synchronized;
client_verify_data and server_verify_data are the same

OEBPS/figs/crypto-asymmetric-encryption.png
Original
document

Alice’s public key

AT

Encrypt

BOB

Encrypted
document

Alice’s private key

AT

Decrypt

ALICE

Original
document

OEBPS/figs/tls-client-certificate.png
Client Server

@ cientreo —
44— ServerHello
44— Certificate*
44— ServerKeyExchange*
44— (ertificateRequest
44— ServerHelloDone

0 Certificate ——8™———X X XX X

o ClientkeyExchangg —m—————— 0 — —

o Certificateveriy ————+--+------+-—+—p

@ [ChangeCipherSpec] —mM8M8M ———Pp

@ rnishet —————————————»
44— [ChangeCipherSpec] @
4 Finished

®@0000

* Optional message
[1 ChangeCipherSpec protocol message

OEBPS/figs/13-windows-lsp-fips.png
5 Local Security Policy. L N = =
Fie Acion View Help
3B XE=HE
B securty Stings ey g | Securty Seting -
> £ Account Policies Network security: Do not store LAN Mansger hash value on next password change Ensbled
i) ;;“:H?T Network securty: Force logoff when logon hours expire Disabled
> olicy . on
Network security: LAN Manager authenticstion
[User Rights Assignment e e o cteD 1 System cyptography: Use IS compliantal for encr.. (11|
B o e secutty LOAP clent signingreqire
e Advanced e Ntrc st M scsson ety o Lo ooy o [5
o I Network securty: Minimurn session security for
= Ll Ma Fol Network security: Restrict NTLM: Add remote- ‘System cryptography: Use FIPS compiiant algorithms for
» (51 Public Key Policies iy: Restri encrypton, hashing, and sigring
» 5 Software Restriction Polices Network security: Restrict NTLM: Add serverex
1 Application ControlPolicies Network security: Restrict NTLM: AuditIncomis
» 8 1P Securty Poicies on Local Compute| 5 Network security: Restrict NTLM: Audit NTLM at
] Advanced Audit Policy Configuration| (1| Network securit: Restrict NTLM: Incoming NTL
Network security: Restrict NTLWE NTLM authenti
Network security: Restrict NTLM: Outgoing NTI
Recovery console: Allow sutomatic administrati
Recovery consoles Allow floppy copy and access
£ Shutdown: Allow system to be shut down wit
£ Shutdowns Clearvirtusl memory pagefile
System crypography: Force strong key protecti
51 System crypography: Use FIPS compliant sigor
System objects: Require case insensitity for nor
System objects: Strengthen default permissions M
System settings: Optionsl subsystems
) System setings Use Certficate Rules on Wi
User Account Control Adrmin Approval Mode f
User Account Control: Allow UlAccess spplicati
User Account Control Behaviorof the elevation
User Account Control: Behaviorof the elevation
User Account Control Dtect spplicston install = — o
User Account Control: Only elevate executables
User Account Control: Only elevate UlAccess ap
User Account Control: Run il administrators in Adrmin Approval Mode Ensbled
User Account Control: Switch tothe secure desktop when prompting fo elevation Ensbled
« + || 1 ser Account Contro:Virtualize file and registry write filures to per-user locations Ensbled B

OEBPS/figs/13-iis-certificates.png
@ File Acion View Fovorkes Window Help -

L=

5 Consae oot oo
b (57 Certificates (Local Computer)

R T -
% 'WIN-A54461D6M72 Home

@ -Hlz e Manage Server
S StortPage 2 Restort
- 6o - Eshowal
4 65 UIN-ASA451DGMT2 (Wil ¥ Go - showal | > Sert
e B & em
»-&l Stes Pagesand Providers Session State SMTP E-mail View Appheeae
Contels View Stes
s A Change NET Framework
Version
Get New Web Plaform
L H® cComponents
@ rep
Oniine Help

OEBPS/figs/tls-short-handshake.png
Client Server

@ cientheo, ————»
4¢——— Serverhello e
44— [ChangeCipherSpec] o
————————— inished @)

0 [ChangeCipherSpec] —mM8M8M8 ™ ————

QO riiser —M —»

* Optional message
[1 ChangeCipherSpec protocol message

OEBPS/figs/triple-handshake-attack.png
Connection 1: New TLS session

Client Attacker Server

Attacker reuses client’s
random data and
premaster secret

ClientHello

ClientHello

ServerHello

ServerCertificate
ServerCertificate

ServerHelloDone

ClientKeyExchange

ClientKeyExchange

ClientFinished

ChangeCipherSpec

ServerFinished

ServerFinished

Both TLS connections now share the master key and session ID

OEBPS/figs/c-string-moxie-paypal.png
tlefxfifnfe] - Jolr]e]

OEBPS/figs/tcp-initcnwd-oracle.png
Client sends the first part of
the request, up to the size of
the initial congestion window

Client waits for
acknowledgement

Client sends the
reminder of the request

Client

Server

OEBPS/figs/performance-key-exchange-comparison.png
ECDSA 256, ECDHE 256

RSA 2048, ECDHE 256

RSA 2048, DHE 2048

RSA 2048, DHE 1024

RSA 3072

RSA 2048

0 2 4 6 8 10 12 CPUtime

(seconds)
- Server

OEBPS/figs/wireshark-session-cookie-in-the-clear.png
*Local Area Connection 2 i - |E |
Fle Edt View Go Copture Anslyze Statistics Telephony Tools Intemals Help

CoaE I BERERXES AesdTF L e @@mx =5

Fitter: ~| Expression... Clear Apply Save
No. Time Source Destination Length _Info.
30.00134000192.168.0.103 192.168.0.5 66 55285 > http-alt [ACK] Seq=1 Ack=1 Win=131760 Len=0 TSval=1202579871 T:
A PR G 373 GET / WTTP/1.1

B ey

il] D

Frame 5: 338 bytes on wire (2704 bits), 338 bytes captured (2704 bits) on interface 0 =
Ethernet II, Src: Tp-LinkT_04:d3:20 (f8:1a:67:04:d3:20), Dst: Apple_93:23:a6 (60:03:08:93:23:26)

Internet Protocol version 4, src: 192.168.0.5 (192.168.0.5), Dst: 192.168.0.103 (192.168.0.103)

Transmission Control Protocol, src Port: http-alt (8080), DSt Port: 55285 (55285), Seq: 1, Ack: 308, Len: 272

© Hypertext Tramsfer protocol
HTTP/1.1 302 Moved Temporarily\e\n

Cache-control: no-cache, must-revalidate\r\n
content-Length: O\r\n
pate: Fri, 21 Mar 2014 17:33:46 GMT\r\n
Ar\n
[HTTP response 1/1]
[Time since request: 0.011501000 seconds] -

0000 60 03 08 93 23 a6 8 1a 67 04 d3 20 08 00 45 00
0010 01 44 6b ae 40 00 80 06 OC 49 O a8 00 05 CO a8
0020 00 67 1f 90 d7 f5 b2 b3 79 20 f6 60 8 97 80 18
0030 01 04 8 19 00 00 01 01 08 0a 01 3d 5 2e 4d Ob
0040 34 1f 48 54 54 50 2f 31 2e 31 20 33 30 32 20 4d 4.rTTP/L 117302 M
0050 6f 76 65 64 20 54 65 6d 70 6f 72 61 72 69 6¢ 79 oved Tem porarily
0060 0d Oa 53 65 72 76 65 72 3a 20 41 70 61 63 68 65 ..Server : Apache
0070 2d 43 6f 79 6f 74 65 2f 31 2e 31 0d 0a 53 65 74 -Coyote/ 1.1..set
0080 2d 43 6f 6f 6b 69 65 3a 20 4a 53 45 53 53 40 4f —Cookie: JSESSTO
0000 e 49 44 3d 32 33 36 32 32 46 44 37 36 32 45 33 NID=2362 2FD762E3
0020 42 43 41 45 34 35 31 36 45 31 36 34 35 32 37 44 BCAE4516 E164527D
00b0 41 44 30 34 3b 20 50 61 74 68 3d 2f 3b 20 48 74 ADO4; Pa
00c0 74 70 4F Ge 6c 79 0d 0a 43 61 63 68 65 2d 63 6f tponly.
00d0 e 74 72 6f 6C 3a 20 6e 6f 2d 63 61 63 68 65 2c ntrol: n o-cache,
00e0 20 6d 75 73 74 2d 72 65 76 61 6C 69 64 61 74 65 must-re validate

00f0 0d Oa 4c 6f 63 61 74 60 6f 6e 3a 20 68 74 74 70 _..Locati on: htto 2

© 7 Fie “CaUsers\VANRI-1\AppDate) LocaNTempircshark,pcapng AAAFEACI-4DE2-478D-9. | Packet. | Profi: Defaut

OEBPS/figs/ssl-certificate-warnings.png
Chrome 33 Firefox 28

on s o sampecom ~slc)

A This is probably not the site you are looking for!

‘You attempted to reach www.example.com, but nstead you actualy reached a server idenifying tsell as This Connection is Untrusted
‘gp1.wac.edgecastcdn.net. This may be caused by a misconfiguration on the server or by something more You have asked Firefox to connect securely to wwwiexample.com, but we carit onfirm

that your connection is secure.
‘serious. An attacker on your network could be tying to get you to visit a fake (and potentially harmtul) version

Normally, when you try to connect securely,sies will present trusted identification (o prove:
‘of www.example.com. that you are going to the right place. However, this site’s identity can't be verified..

‘You should not proceed, especially fyou have never seen this waring befor fo this sie. What Should | Do?
fyou usualy com is i o i mean i
(rrocssaanar) 1Fyou usually connect t tis it without problems,thiseror could mean that someone s

rying to impersonate the site, and you shouldn't continue.

N Get me out of here!
Help me understand
+ Technical Details
* 1Understand the Risks

Internet Explorer 11 Safari 7

bogle or enter an address

Safari can't verify the identity of the website “www.example.com”.

The certifcat for this website is nvalid. You might be connecting to.a
websie tha s pretending to be “www.example.com”, which could put your
‘confidentia information at isk. Would you like to connect o the website
anyway?

@ There is a problem with this website’s security certificate.

The security certificate presented by this website was issued for a different website's address.

Security certificate problems may indicate an attempt to fool you or intercept any data you send to the | Show Certificate | Cancel | | Continue
server.

We recommend that you close this webpage and do not continue to this website.
9 Click here to close this webpage.

@ Continue to this website (not recommended).

© More information

OEBPS/figs/06-flame-kaspersky.png
5‘%‘

O ©o00es
189

OEBPS/figs/mitm.png
Browser Attacker Server

https://victim.example.com ,
---------------- Attacker impersonates

server using a fraudulent

certificate

http://plaintext.example.com
""""""""" Attacker intercepts request and

issues a request of its own

Attacker retrieves
page from server

Attacker responds
with modified page

OEBPS/figs/c-string-hello-world.png
Hlefufrfo] Jwlofsfrfd]t vl

OEBPS/figs/rc4.png
wr —— [er] —— [0] 0] wrumm
nn Plaintext
i3]0 o] s

OEBPS/figs/crypto-cbc.png
Ml M2 M3
Message block 2 Message block 3

c/,

Ciphertext block 1 C|phertext block 2 Clphertext block 3

OEBPS/figs/compression-cookie-guesses.png
GET /JSESSIONID=X HTTP/1.1 GET /JSESSIONID=B HTTP/1.1
Host: www.example.com Host: www.example.com

Cookie: JSESSIONID=B3DF4B07AE33CA Cookie: JSESSIONID=B3DF4B07AE33CA

Incorrect guess: Correct guess:
73 bytes compressed 72 bytes compressed

OEBPS/figs/tls-record.png
L |
TLS Record

OEBPS/figs/renego-timeline.png
Initial discovery (Marsh Ray)

Martin Rex’s independent discovery and public disclosure

Official RFC Microsoft

OpenSSL

Dehian
GnuTLS

2014

Mozilla

Ubuntu
RedHat

Opera

RFC draft

Preliminary solution

OEBPS/figs/tls-suite-structure.png
Authenhcatmn Algorlthm Strength Mode

TLS_ ECDHE RSA WITH AES 128 GCM SHA256

Key exchange Cipher MAC or PRF

OEBPS/cover.jpg
BULLETPROOF
SSL AND TLS

Understanding and Deploying SSL/TLS and
PKI to Secure Servers and Web Applications

lvan Risti¢

OEBPS/figs/tls-full-handshake.png
Client Server

@ cienttero. — ———————»
4¢——— Serverhello
44— Certificate*
44— ServerKeyExchange*
4—— ServerHelloDone

0 ClientkeyExchangg ——0o——or—rvo--——>p

o [ChangeCipherSpec] —mMmM8mM ———p

@ rishet —————————————»
44— [ChangeCipherSpec] o
—————————————— inished @)

* Optional message
[1 ChangeCipherSpec protocol message

OEBPS/figs/triple-handshake-attack3.png
Connection 2: Resumed TLS session, continued

Client Attacker Server
AppData, AppData,
Attacker injects Attacker submits HTTP request
JavaScript code that will be processed under

the identity of the victim, then
triggers renegotiation
ClientHello

ServerHello

ServerCertificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

ClientCertificate

.................................. »

C_Iie_nt_Ke_yE_xc_hgnge __________________________

CertificateVerif

....... y---------- -----------------»

C_ha_ngegigh_er_Sp_ec __________________________

C_Iie_nt_Fi[lighgd ____________________________
ChangeCipherSpec

ServerFinished

OEBPS/figs/pki-cert-chain.png
CA: Yes CA: Yes
Path length: Path length:
unlimited

End-entity certificate Intermediate Root CA certificate
CA certificate (self-signed)

Embedded in browser

Provided by the server)
or operating system

OEBPS/figs/performance-tls-record-transport.png
Application payload (32 KB)

TLS record (16 KB) TLS record (16 KB)

TCP packets

OEBPS/figs/cookie-stealing.png
Browser Attacker Server

User establishes a secure | NttpS://victim.example.com
connection with a web site
User visits any

and receives a cookie
other HTTP site | Nttp://plaintext.example.com Attacker intercepts

request and issues a

redirection
HTTP/1.1 302 Found

Location: http://viftim.example.com:443/

http://victim.example.com:443/

Browser automatically
follows the redirection
and reveals the cookie

HTTP/1.1 400 Bad Request

OEBPS/figs/performance-cipher-suite-comparison.png
3DES-EDE-CBC-SHA 12.47 (+1,147%)

SEED-CBC-SHA 5.08 (+408%)

CAMELLIA-128-CBC (+177%)

AES-256-CBC-SHA256 2.13 (+113%)

AES-128-CBC-SHA256 2.03 (+103%)

RC4-128-SHA .30 (+30%)

AES-256-CBC-SHA 1.08 (+8%)

AES-128-CBC-SHA 1.00
AES-256-GCM-SHA384 | 0.73 (-27%)

AES-128-GCM-SHA256 (-30%)

0o 1 2 4 6 8 10 12

14 Performance
relative to
AES-128-CBC-SHA

OEBPS/figs/compression-example.png
If you can’t forgive yourself,

how| can| you] forgive [someone else?

OEBPS/figs/13-iiscrypto.png
& 5score -4 s S -

Protocols Enabled Cphers Enabled Hashes Enabled Key Exchanges Enabled
"Mt Protocol Unfied Hello NULL WD Dffie-Helman
PCT10 DES 56/56 SHA PKCS
ssL20 RC240/128
ssL30 RC256/128
Ts10 RC2126/128
TS RC440/128
Ts12 RC456/128

RC464/128
RC4 126/128
Tiple DES 168/168
AES 126/128
AES 256/256
SSL Cipher Sute Order Templates

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P521

‘TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P384 |
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P256.
‘TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA_P521
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA_P384
“TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA_P256.
TLS_ECDHE_RSA_WITH_AES_126_CBC_SHAZ56_P521
‘TLS_ECDHE_RSA_WITH_AES_126_CBC_SHA_P521
‘TLS_ECDHE_RSA_WITH_AES_126_CBC_SHA256_P384.
TLS_ECDHE_RSA_WITH_AES_126_CBC_SHA256_P256.
‘TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA P84

‘TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA_P256
‘TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384_P¢

“TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384_P: ~

Ciick one of the bstons below to use a presettemplate. Clck the Apply

butonto save your changes.

[(Best Practices | [

EPS 1402] [Defouts |

@ Quawys st LaBs
Ut

NARTAC

SOFTWARE Copyright ©2011:2013 Natiac Software inc.

OEBPS/figs/rc4-byte2-bias.png
Probability

0.00395

0.00390625

0.003878 : : : :
0 16 32 48 64 80 96 112 128 144

160 176 192 208 224 240 255

Byte value [0...255]

OEBPS/figs/crypto-symmetric-encryption.png
Original
document

Secret key

AT

Encrypt

BOB

Encrypted
document

Secret key

AT

Decrypt

ALICE

Original
document

OEBPS/figs/tls-authenticated-encryption.png
Sequence Number Plaintext

Encrypt

Authenticate

OEBPS/figs/performance-wan-optimization.png
Direct TLS connection setup
3x 130 ms =390 ms

CDN TLS connection setup
(with a connection pool)

User 10 ms
3x10 ms =30 ms

5,458 km / 3,391 miles London

New York 45 ms

Server Round-trip time (RTT): 130 ms

OEBPS/figs/renego-mitm.png
Client Attacker Server

TLS handshake request
Suspended
TLS handshake request
————————————>
TLS handshake complete
4 ..
HTTP request (attack payload)
Pass-through client’s original
Resumed TI__S_h_an_ds_hgkt_a r_eq_ut_‘,s’g >
N D TLS handshake complete
GET /attacked.jsp HTTP/1.0
Dummy:| GET /index.jsp HTTP/1.0
Cookie: cookie=Token
HTTP request

OEBPS/figs/tls-block-encryption.png
Sequence Number Plaintext

Authenticate

Plaintext

Encrypt

Padding

OEBPS/figs/performance-tls-handshake-latency.png
Client Server

SYN Oms
45ms SYN ACK TCP handshake
90 ms
ACK
ClientHello 0 ™
ServerHello
135 ms Certificate
ServerHelloDone
ClientKeyExchange
ChangeCipherSpec 180 ms TLS handshake
Finished 180 ms
ChangeCipherSpec
22575 Einihed

Application data 270 ms

315ms Application data Application
90 ms

OEBPS/figs/padding-example.png
Paddlng length

Imllll
]
Padding

OEBPS/figs/06-md5-collision.png
header

signature algorithm “MD5 with RSA”

issuer

country “us”

organization
“Equifax Secure Inc.”

common name
“Equifax Secure Global
eBusiness CA-1"

validity “from 3 Nov. 2008 7:52:02

to 4 Nov. 2009 7:52:02"

subject

country “us”

organization
“i.broke.the.internet.and
.all.i.got.was.this.t-
shirt.phreedom.org”

organizational uni

w s
organizational unit

“See www.rapidssl.com/
resources/cps (c)08”

organizational unit
“Domain Control Validated
- RapidSSL(R)”

common name
“i.broke.the.internet.and
.all.i.got.was.this.t-

shirt.phreedom.org”

public key

extensions

public key algorithm “rsa”

" B2D3
OAD53COF36576EA9
17000000

A3C5450B36BB01D1
3E87874411DC60E0
93C59FD046C460B6
1AC95B3C9637COED

2F29BD83229E8E08
628A11F789F6DFB6
B49138CE2EF5B6BE
4215C9C130E269D5

6264F039E1E7BC68
A3A70AF80320A170
8683DDF70FD8071D
50B1280E63692A0C

0692F14F45BED930
637F4E4C9A934836

header

2581AA28E878B1lES
5F06410E6BB4CB07
5SBFD6B1C7B9CESA9

53AAC3088F6FF84F
DF9255F9B8731B5
3562CDBIAF1CA86B
67EFBBFEC08BICS5!

FAAC1370A2587F62
67597316FB63168A
4CR49449E4655:

457DA526BBB961EC

D850519E1DE0D3D1
611791364¥027031
118313048508

826¥BF47330F6CA2

36A32B8CD677AE35
DY9SF @

key usage “...”

subject key identifier ...”

crl distribution points “...”

authority key identifier “...”

extended key usage “.."

basic constraints "CA = FALSE”

signature algorithm “MD5 with RSA”

A721028DD10EA280
EF9047D484421526
B6DFAB577591DAES
3F8AD950FAED586C
763BF5000E8E45CE
B48F62DOFEB7C526
D195F5DA08BE6846
94F1AA5378A245AE

signature
7725FD4360158FEC
1116ena2301029A9
2BB390451C306356
CO065AC6657DELCC6
TF4C90EC2BC6CDB3
7244EDF6985BAECB
B175C8EC1D8F1E7A
54EAD19E74C87667

"

(identical)

header

signature algorithm "MD5 with RSA”

country “us”

organization

“Equifax Secure Inc.” g
c

common hame @

“Equifax Secure Global

eBusiness CA-1"

validity “frem 31 Jul. 2004 0:00:00

to 2 Sep. 2004 0:00:00"”

common name

“MD5 Collisions Inc.

(http://www.phreedom.org/

md5) ”

welgns

public key algorithm “Rsa”

modulus (1024 bits)

BAA659C92C28D62A
EEOE196859D1B303
15E00E4BF58464F8
1FDBC43852708197
32AC1EAD44D2B3FA
TCE15AF5C8376B9A
73159168F488AFF9
4B134C9975D044E6

”

BOFS8ED9F46A4A437
9951D6169A5E376B
A3DB416F35D59B15
SE8FAOB5F77E39F0
48C3CE919BECF49C
83DEE7CA20973142
2828C5E90F73B017
7TE086C1lAF24F1B41

Aey ongnd

key usage *.."

basic constraints “"CA = TRUE”

subject key identifier “...”

authority key identifier »...”

header

tumor (Netscape comment)

o 33000000

A3C5450B

3E87874411DC60E0
93C59FD046C460B6
1AC95B3C9637COED

2F29] 08
628A11F789F6DFB6
B49138CE2EF5B6BE
4215C9C130E269D5

62 68
A3A70AF80320A170
8683DDF70FD8071D
50B1280E63692A0C

0692F14F45BED930
637F4E4C9A934836
81BD3081BA300E06
04030204F0301D06

CDA683FAA56037F7
878955E7303B0603
30A02EA02C862A68
6C2E67656F747275

726C732F676C6F62
6C301F0603551D23
A07472506B44B7C9
686C301D0603551D

0601050507030106
02300C0603551D13

275E39E089610F4E

53AAC3088F6FF84F
DF9 873185
3562CDBIAFICABEY
67EFBBFEC08BICS

FAAC1370A2587F62

6FB63168A
4CA49449E465110A
457DA526BBB961EC

D850519E1D60D3D1

1364F027031
11B3130. CEOAE
826F8F4733DF6CA2

36A32B8CD677AE35
D99F0203010001A3
03551D0F0101FF04
03551D0E04160414

96371729DE4178F1
551D1F0434303230
7474703A2F2F6372
73742E636F6D2F63

616C6361312E6372
041830168014BEA8
23D8FBASFFB3576B
250416301406082B

082B060105050703
0101FF04023000 "

suoIsus)xa

signature algorithm “MD5 with RSA"

signature

"
A721028DD10EA280
EF9047D484421526
B6DFAB577591DAES
3FBAD950FAED586C
763BF5000E8EA5CE
B48F62D0FEB7C526
D195F5DA0SBE6846
94F1AA5378A245AE

"

7725FD4360158FEC
111CCDC23C1029A9
2BB390451C306356
CO65AC6657DELCC6
TF4C90EC2BC6CDB3
7244EDF6985BAECB
B175C8ECLDSF1E7A
54EAD19E74C87667

OEBPS/figs/performance-tls-record-overhead.png
Encrypted

[|

Encrypted

Encrypted

[|

Streaming
cipher

Block cipher
(TLS 1.1)

AEAD cipher
(TLS 1.2)

OEBPS/figs/tls-stream-encryption.png
Sequence Number Plaintext

Authenticate

Plaintext

Encrypt

Ciphertext

OEBPS/figs/06-black-tulip.png

OEBPS/figs/pki-cert-lifecycle.png
Request certificate CSR

issuance (CSR)
—
Validate subscriber’s Issue

identity certificate

Publish
CRL Server OCSP Responder

certificate

Web Server

Verify
signature

CERT
Relying Party

Request
certificate

Check for
revocation

OEBPS/figs/ssl-indicators.png
Valid certificate Invalid certificate

" _ [Feisty Duck: Fine compute X - P " _ || Example Domain X - -
c ‘ https://www.feistyduck.com i?‘ ¢« - C ‘ X https://www.example.com i?‘

® O O Feisty Duck: Fine computer security and open... Example Domain

==

=) M htps:/vww seist... © ~ @ €

Example Domain

€ https & www.example.com

Mixed content

. [2] Qualys SSL Labs - Project: ‘ N
& C [https://www.ssllabs.com/... {J iﬁ?‘

Only secure content is displayed.
Whet's Hee gigk?

® O © Network Security, Vuln...liance | Qualys, Inc.

OEBPS/figs/beast-cbc.png
Genuine content; the second block contains
the secret data targeted by the attacker

M1 MZ

Attacker-submitted

Ciphertext block 1 Ciphertext block 2 Ciphertext block 3

