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Preface


You are about to undertake a journey into the mysterious world of cryptography. I’ve just
        completed mine—writing this book—and it’s been an amazing experience. Although
        I’d been a user of SSL since its beginnings, I developed a deep interest in it around 2004,
        when I started to work on my first book, Apache Security. About five
        years later, in 2009, I was looking for something new to do; I decided to spend more time on
        SSL, and I’ve been focusing on it ever since. The result is this book.
My main reason to go back to SSL was the thought that I could improve things. I saw an
        important technology hampered by a lack of tools and documentation. Cryptography is a
        fascinating subject: it’s a field in which when you know more, you actually know less. Or,
        in other words, the more you know, the more you discover how much you don’t know. I can’t
        count how many times I’ve had the experience of reaching a new level of understanding of a
        complex topic only to have yet another layer of complexity open up to me; that’s what makes
        the subject amazing.
I spent about two years writing this book. At first, I thought I’d be able to spread the
        effort so that I wouldn’t have to dedicate my life to it, but that wouldn’t work. At some
        point, I realized that things are changing so quickly that I constantly need to go back and
        rewrite the “finished” chapters. Towards the end, about six months ago, I started to spend
        every spare moment writing to keep up.
I wrote this book to save you time. I spent the large part of the last five years learning
        everything I could about SSL/TLS and PKI, and I knew that only a few can afford to do the
        same. I thought that if I put the most important parts of what I know into a book others
        might be able to achieve a similar level of understanding in a fraction of the time—and here
        we are.
This book has the word “bulletproof” in the title, but that doesn’t mean that TLS is
        unbreakable. It does mean that if you follow the advice from this book you’ll be able to get
        the most out of TLS and deploy it as securely as anyone else in the world. It’s not always
        going to be easy—especially with web applications—but if you persist, you’ll
        have better security than 99.99% of servers out there. In fact, even with little effort, you
        can actually have better security than 99% of the servers on the Internet.
Broadly speaking, there are two paths you can take to read this book. One is to take it
        easy and start from the beginning. If you have time, this is going to be the more enjoyable
        approach. But if you want answers quickly, jump straight to chapters 8 and 9. They’re going
        to tell you everything you need to know about deploying secure servers while achieving good
        performance. After that, use chapters 1 through 7 as a reference and chapters 10 through 16
        for practical advice as needed.
Scope and Audience



This book exists to document everything you need to know about SSL/TLS and PKI for
            practical, daily work. I aimed for just the right mix of theory, protocol detail,
            vulnerability and weakness information, and deployment advice to help you get your job
            done.
As I was writing the book, I imagined representatives of three diverse groups looking
            over my shoulder and asking me questions:
	System administrators
	Always pressed for time and forced to deal with an ever-increasing number
                        of security issues on their systems, system administrators need reliable
                        advice about TLS so that they can deal with its configuration quickly and
                        efficiently. Turning to the Web for information on this subject is
                        counterproductive, because there’s so much incorrect and obsolete
                        documentation out there.

	Developers
	Although SSL initially promised to provide security transparently for any
                        TCP-based protocol, in reality developers play a significant part in
                        ensuring that applications remain secure. This is particularly true for web
                        applications, which evolved around SSL and TLS and incorporated features
                        that can subvert them. In theory, you “just enable encryption”; in practice,
                        you enable encryption but also pay attention to a dozen or so issues,
                        ranging from small to big, that can break your security. In this book, I
                        made a special effort to document every single one of those issues.

	Managers
	Last but not least, I wrote the book for managers who, even though not
                        necessarily involved with the implementation, still have to understand
                        what’s going on and make decisions. The security space is getting
                        increasingly complicated, so understanding the attacks and threats is often
                        a job in itself. Often, there isn’t any one way to deal with the situation,
                        and the best way often depends on the context.



Overall, you will find very good coverage of HTTP and web applications here but little
            to no mention of other protocols. This is largely because HTTP is unique in the way it
            uses encryption, powered by browsers, which have become the most popular
            application-delivery platform we’ve ever had. With that power come many problems, which
            is why there is so much space dedicated to HTTP.
But don’t let that deceive you; if you take away the HTTP chapters, the remaining
            content (about two-thirds of the book) provides generic advice that can be applied to
            any protocol that uses TLS. The OpenSSL, Java, and Microsoft chapters provide
            protocol-generic information for their respective platforms.
That said, if you’re looking for configuration examples for products other than web
            servers you won’t find them in this book. The main reason is that—unlike with web
            servers, for which the market is largely split among a few major platforms—there
            are a great many products of other types. It was quite a challenge to keep the web
            server advice up-to-date, being faced with nearly constant changes. I wouldn’t be able
            to handle a larger scope. Therefore, my intent is to publish additional configuration
            examples online and hopefully provide the initial spark for a community to form to keep
            the advice up-to-date.

Contents



This book has 16 chapters, which can be grouped into several parts. The parts build on
            one another to provide a complete picture, starting with theory and ending with
            practical advice.
The first part, chapters 1 through 3, is the foundation of the book and discusses
            cryptography, SSL, TLS, and PKI:
	Chapter 1, SSL, TLS, and Cryptography
                    begins with an introduction to SSL and TLS and discusses where these secure
                    protocols fit in the Internet infrastructure. The remainder of the chapter
                    provides an introduction to cryptography and discusses the classic threat model
                    of the active network attacker.

	Chapter 2, Protocol
                    discusses the details of the TLS protocol. I cover TLS 1.2, which is the most
                    recent version. Information about earlier protocol revisions is provided where
                    appropriate. An overview of the protocol evolution from SSL 3 onwards is
                    included at the end for reference.

	Chapter 3, Public-Key Infrastructure
                    is an introduction to Internet PKI, which is the predominant trust model used on
                    the Internet today. The focus is on the standards and organizations as well as
                    governance, ecosystem weaknesses and possible future improvements.



The second part, chapters 4 through 7, details the various problems with trust
            infrastructure, our security protocols, and their implementations in libraries and
            programs:
	Chapter 4, Attacks against PKI
                    deals with attacks on the trust ecosystem. It covers all the major CA
                    compromises, detailing the weaknesses, attacks, and consequences. This chapter
                    gives a thorough historical perspective on the security of the PKI ecosystem,
                    which is important for understanding its evolution.

	Chapter 5, HTTP and Browser Issues
                    is all about the relationship between HTTP and TLS, the problems arising from
                    the organic growth of the Web, and the messy interactions between different
                    pieces of the web ecosystem.

	Chapter 6, Implementation Issues
                    deals with issues arising from design and programming mistakes related to random
                    number generation, certificate validation, and other key TLS and PKI
                    functionality. In addition, it discusses voluntary protocol downgrade and
                    truncation attacks and also covers Heartbleed.

	Chapter 7, Protocol Attacks
                    is the longest chapter in the book. It covers all the major protocol flaws
                    discovered in recent years: insecure renegotiation, BEAST, CRIME, Lucky 13, RC4,
                    TIME and BREACH, and Triple Handshake Attack. A brief discussion of Bullrun and
                    its impact on the security of TLS is also included.



The third part, chapters 8 through 10, provides comprehensive advice about deploying
            TLS in a secure and efficient fashion:
	Chapter 8, Deployment
                    is the map for the entire book and provides step-by-step instructions on how to
                    deploy secure and well-performing TLS servers and web applications.

	Chapter 9, Performance Optimization
                    focuses on the speed of TLS, going into great detail about various performance
                    improvement techniques for those who want to squeeze every bit of speed out of
                    their servers.

	Chapter 10, HSTS, CSP, and Pinning
                    covers some advanced topics that strengthen web applications, such as HTTP
                    Strict Transport Security and Content Security Policy. It also covers pinning,
                    which is an effective way of reducing the large attack surface imposed by our
                    current PKI model.



The fourth and final part consists of chapters 11 through 16, which give practical
            advice about how to use and configure TLS on major deployment platforms and web servers
            and how to use OpenSSL to probe server configuration:
	Chapter 11, OpenSSL
                    describes the most frequently used OpenSSL functionality, with a focus on
                    installation, configuration, and key and certificate management. The last
                    section in this chapter provides instructions on how to construct and manage a
                    private certification authority.

	Chapter 12, Testing with OpenSSL
                    continues with OpenSSL and explains how to use its command-line tools to test
                    server configuration. Even though it’s often much easier to use an automated
                    tool for testing, OpenSSL remains the tool you turn to when you want to be sure
                    about what’s going on.

	Chapter 13, Configuring Apache
                    discusses the TLS configuration of the popular Apache httpd
                    web server. This is the first in a series of chapters that provide practical
                    advice to match the theory from the earlier chapters. Each chapter is dedicated
                    to one major technology segment.

	Chapter 14, Configuring Java and Tomcat
                    covers Java (versions 7 and 8) and the Tomcat web server. In addition to
                    configuration information, this chapter includes advice about securing web
                    applications.

	Chapter 15, Configuring Microsoft Windows and IIS
                    discusses the deployment of TLS on the Microsoft Windows platform and the
                    Internet Information Server. This chapter also gives advice about the use of TLS
                    in web applications running under ASP.NET.

	Chapter 16, Configuring Nginx
                    discusses the Nginx web server, covering the features of the recent stable
                    versions as well as some glimpses into the improvements in the development
                    branch.




SSL versus TLS



It is unfortunate that we have two names for essentially the same protocol. In my
            experience, most people are familiar with the name SSL and use it in the context of
            transport layer encryption. Some people, usually those who spend more time with the
            protocols, use or try to make themselves use the correct name, whichever is right in the
            given context. It’s probably a lost cause. Despite that, I tried to do the same. It was
            a bit cumbersome at times, but I think I managed it by (1) avoiding either name where possible, (2) mentioning both where advice applies to all versions, and (3) using TLS in all other cases. You probably
            won’t notice, and that’s fine.

SSL Labs



SSL Labs (www.ssllabs.com) is a research project I started in 2009 to focus
            on the practical aspects of SSL/TLS and PKI. I joined Qualys in 2010, taking the project
            with me. Initially, my main duties were elsewhere, but, as of 2014, SSL Labs has my full
            attention.
The project largely came out of my realization that the lack of good documentation and
            tools is a large part of why TLS servers are generally badly configured. (Poor default
            settings being the other major reason.) Without visibility—I thought—we
            can’t begin to work to solve the problem. Over the years, SSL Labs expanded into four
            key projects:
	Server test
	The main feature of SSL Labs is the server test, which enables site
                        visitors to check the configuration of any public web server. The test
                        includes dozens of important checks not available elsewhere and gives a
                        comprehensive view of server configuration. The grading system is easy to
                        understand and helps those who are not security experts differentiate
                        between small and big issues. One of the most useful parts of the test is
                        the handshake simulator, which predicts negotiated protocols and cipher
                        suites with about 40 of the most widely used programs and devices. This
                        feature effectively takes the guesswork out of TLS configuration. In my
                        opinion, it’s indispensable.

	Client test
	As a fairly recent addition, the client test is not as well known, but
                        it’s nevertheless very useful. Its primary purpose is to help us understand
                        client capabilities across a large number of devices. The results obtained
                        in the tests are used to power the handshake simulator in the server
                        test.

	Best practices
	SSL/TLS Deployment Best Practices is a concise and
                        reasonably comprehensive guide that gives definitive advice on TLS server
                        configuration. It’s a short document (about 11 pages) that can be absorbed
                        in a small amount of time and used as a server test companion.

	SSL Pulse
	Finally, SSL Pulse is designed to monitor the entire ecosystem and keep us
                        informed about how we’re doing as a whole. It started in 2012 by focusing on
                        a core group of TLS-enabled sites selected from Alexa’s top 1 million web
                        sites. Since then, SSL Pulse has been providing a monthly snapshot of key
                        ecosystem statistics.



There are also several other smaller projects; you can find out more about them on the
            SSL Labs web site.

Online Resources



This book doesn’t have an online companion (although you can think of SSL Labs as
            one), but it does have an online file repository that contains the files referenced in
            the text. The repository is available at github.com/ivanr/bulletproof-tls. In
            time, I hope to expand this repository to include other useful content that will
            complement the book.
To be notified of events and news as they happen, follow
                @ivanristic on Twitter. TLS is all I do these days, and I try to
            highlight everything that’s relevant. There’s hardly any noise. In addition, my Twitter
            account is where I will mention improvements to the book as they happen.
My blog is available at blog.ivanristic.com. This is where I’ll react to
            important ecosystem news and discoveries, announce SSL Labs improvements, and publish my
            research.
If you bought this book in digital form, then you can always log back into your
            account on the Feisty Duck web site and download the most recent release. A purchase
            includes unlimited access to the updates of the same edition. Unless you modified your
            email subscription settings, you’ll get an email about book updates whenever there’s
            something sufficiently interesting, but I generally try to keep the numbers of emails to
            a minimum (and never use the list for any other purpose).

Feedback



I am fortunate that I can update this book whenever I want to. It’s not a coincidence;
            I made it that way. If I make a change today, it will be available to you tomorrow,
            after an automated daily build takes place. It’s a tad more difficult to update paper
            books, but, with print on demand, we’re able to publish a revision every quarter or
            so.
Therefore, unlike with many other books that might never see a new edition, your
            feedback matters. If you find an error, it will be fixed in a few days. The same is true
            for minor improvements, such as language changes or clarifications. If one of the
            platforms changes in some way or there’s a new development, I can cover it. My aim with
            this book is to keep it up-to-date for as long as there’s interest in it.
 Please write to me at ivanr@webkreator.com.

About the Author



In this section, I get to write about myself in third person; this is my “official”
            biography:
Ivan Ristić is a security researcher, engineer, and author, known especially for
                his contributions to the web application firewall field and development of
                ModSecurity, an open source web application firewall, and for his SSL/TLS and PKI
                research, tools, and guides published on the SSL Labs web site.
He is the author of two books, Apache
                    Security and ModSecurity
                        Handbook, which he publishes via Feisty Duck, his own
                platform for continuous writing and publishing. Ivan is an active participant in the
                security community, and you’ll often find him speaking at security conferences such
                as Black Hat, RSA, OWASP AppSec, and others. He’s currently Director of Application
                Security Research at Qualys.


I should probably also mention OpenSSL Cookbook, which is a
            free
            ebook that combines
            chapters
            11 and 12 from this book and SSL/TLS Deployment Best Practices in
            one package.
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1 SSL, TLS, and Cryptography


We live in an increasingly connected world. During the last decade of the 20th century the
        Internet rose to popularity and forever changed how we live our lives. Today we rely on our
        phones and computers to communicate, buy goods, pay bills, travel, work, and so on. Many of
        us, with always-on devices in our pockets, don’t connect to the
        Internet, we are the Internet. There are already more phones than
        people. The number of smart phones is measured in billions and increases at a fast pace. In
        the meantime, plans are under way to connect all sorts of devices to the same network.
        Clearly, we’re just getting started.
All the devices connected to the Internet have one thing in common—they rely on the
        protocols called SSL (Secure Socket Layer) and TLS
            (Transport Layer Security) to protect the information in
        transit.
Transport Layer Security
            
            
            



When the Internet was originally designed, little thought was given to security. As a
            result, the core communication protocols are inherently insecure and rely on the honest
            behavior of all involved parties. That might have worked back in the day, when the
            Internet consisted of a small number of nodes—mostly universities—but falls
            apart completely today when everyone is online.
SSL and TLS are cryptographic protocols designed to provide secure communication over
            insecure infrastructure. What this means is that, if these protocols are properly
            deployed, you can open a communication channel to an arbitrary service on the Internet,
            be reasonably sure that you’re talking to the correct server, and exchange information
            safe in knowing that your data won’t fall into someone else’s hands and that it
            will be received intact. These protocols protect the communication link or
                transport layer, which is where the name TLS comes
            from.
Security is not the only goal of TLS. It actually has four main goals, listed here in
            the order of priority:
	Cryptographic security
	This is the main issue: enable secure communication between any two
                        parties who wish to exchange information.

	Interoperability
	Independent programmers should be able to develop programs and libraries
                        that are able to communicate with one another using common cryptographic
                        parameters.

	Extensibility
	As you will soon see, TLS is effectively a framework for the development
                        and deployment of actual cryptographic protocols. Its important goal is to
                        be independent of the actual cryptographic primitives used, allowing
                        migration from one primitive to another without needing to create new
                        protocols.

	Efficiency
	The final goal is to achieve all of the previous goals at an acceptable
                        performance cost, reducing costly cryptographic operations down to the
                        minimum and providing a session caching scheme to avoid them on subsequent
                        connections.




Networking Layers



At its core, the Internet is built on top of IP and TCP protocols, which are used to
            package data into small packets for transport. As these packets travel thousands of
            miles across the world, they cross many computer systems (called
                hops) in many countries. Because the core protocols don’t
            provide any security by themselves, anyone with access to the communication links can
            gain full access to the data as well as change the traffic without detection.
IP and TCP aren’t the only vulnerable protocols. There’s a range of other protocols
            that are used for routing—helping computers find other
            computers on the network. DNS and BGP are two such protocols. They, too, are insecure
            and can be hijacked in a variety of ways. If that happens, a connection intended for one
            computer might be answered by the attacker instead.
When encryption is deployed, the attacker might be able to gain access to the
            encrypted data, but she wouldn’t be able to decrypt it or modify it. To prevent
            impersonation attacks, SSL and TLS rely on another important technology called PKI
                (public-key infrastructure), which ensures that the traffic
            is sent to the correct recipient.
To understand where SSL and TLS fit, we’re going to take a look at the Open
                Systems Interconnection (OSI) model, which is a conceptional model that
            can be used to discuss network communication. In short, all functionality is mapped into
            seven layers. The bottom layer is the closest to the physical communication link;
            subsequent layers build on top of one another and provide higher levels of abstraction.
            At the top is the application layer, which carries application data.
Note
It’s not always possible to neatly organize real-life protocols into the OSI
                model. For example, SPDY and HTTP/2 could go into the session layer because they
                deal with connection management, but they operate after encryption. Layers from five
                onwards are often fuzzy.

Table 1.1. OSI model layers
	#	OSI Layer	Description	Example protocols
	7	Application	Application data	HTTP, SMTP, IMAP
	6	Presentation	Data representation, conversion, encryption	SSL/TLS
	5	Session	Management of multiple connections	-
	4	Transport	Reliable delivery of packets and streams	TCP, UDP
	3	Network	Routing and delivery of datagrams between network nodes	IP, IPSec
	2	Data link	Reliable local data connection (LAN)	Ethernet
	1	Physical	Direct physical data connection (cables)	CAT5



Arranging communication in this way provides clean separation of concerns; protocols
            don’t need to worry about the functionality implemented by lower layers. Further,
            protocols at different layers can be added and removed; a protocol at a lower layer can
            be used for many protocols from higher levels.
SSL and TLS are a great example of how this principle works in practice. They sit
            above TCP but below higher-level protocols such as HTTP. When encryption is not
            necessary, we can remove TLS from our model, but that doesn’t affect the higher-level
            protocols, which continue to work directly with TCP. When you do want encryption, you
            can use it to encrypt HTTP, but also any other TCP protocol, for example SMTP, IMAP and
            so on.

Protocol
                History



SSL protocol was developed at Netscape, back when Netscape Navigator ruled the Internet.[1] The first version of the protocol never saw the light of day, but the
            next—version 2—was released in November 1994. The first deployment was in
            Netscape Navigator 1.1, which was released in March 1995.
Developed with little to no consultation with security experts outside Netscape, SSL 2
            ended up being a poor protocol with serious weaknesses. This forced Netscape to work on
            SSL 3, which was released in late 1995. Despite sharing the name with earlier protocol
            versions, SSL 3 was a brand new protocol design that established the design we know
            today.
In May 1996, the TLS working group was formed to migrate SSL from Netscape to IETF.[2] The process was painfully slow because of the political fights between
            Microsoft and Netscape, a consequence of the larger fight to dominate the Web. TLS 1.0
            was finally released in January 1999, as RFC 2246.
            Although
            the differences from SSL 3 were not big,
            the
            name was changed to please Microsoft.[3]
The next version, TLS 1.1, wasn’t released until April 2006 and contained essentially
            only security fixes. However, a major change to the protocol was incorporation of
                TLS extensions, which were released a couple of years
            earlier, in June 2003.
TLS 1.2 was released in August 2008. It added support for authenticated encryption and
            generally removed all hard-coded security primitives from the specification, making the
            protocol fully flexible.
The next protocol version, which is currently in development, is shaping to be a major
            revision aimed at simplifying the design, removing many of the weaker and less desirable
            features, and improving performance. You can follow the discussions on the TLS working
            group mailing list.[4]

Cryptography



Cryptography is the science and art of secure communication.
            Although we associate encryption with the modern age, we’ve actually been using
            cryptography for thousands of years. The first mention of a
                scytale, an encryption tool, dates to the seventh century BC.[5] Cryptography as we know it today was largely born in the twentieth century
            and for military use. Now it’s part of our everyday lives.
When cryptography is correctly deployed, it addresses the three core requirements of
            security: keeping secrets (confidentiality), verifying identities
                (authenticity), and ensuring safe transport
                (integrity).
In the rest of this chapter, I will discuss the basic building blocks of cryptography,
            with the goal of showing where additional security comes from. I will also discuss how
            cryptography is commonly attacked. Cryptography is a very diverse field and has a strong
            basis in mathematics, but I will keep my overview at a high level, with the aim of
            giving you a foundation that will enable you to follow the discussion in the rest of the
            text. Elsewhere in the book, where the topic demands, I will discuss some parts of
            cryptography in more detail.
Note
If you want to spend more time learning about cryptography, there’s plenty of good
                literature available. My favorite book on this topic is Understanding
                    Cryptography, written by Christof Paar and Jan Pelzl and published by
                Springer in 2010.

Building Blocks



At the lowest level, cryptography relies on various cryptographic
                    primitives. Each primitive is designed with a particular useful
                functionality in mind. For example, we might use one primitive for encryption and
                another for integrity checking. The primitives alone are not very useful, but we can
                combine them into schemes and
                    protocols to provide robust security.
Who Are Alice and Bob?



Alice and Bob are names commonly
                    used for convenience when discussing cryptography.[6] They make the otherwise often dry subject matter more interesting.
                    Ron Rivest is credited for the first use of these names in the 1977 paper that
                    introduced the RSA cryptosystem.[7] Since then, a number of other names have entered cryptographic
                    literature. In this chapter, I use the name Eve for an
                    attacker with an eavesdropping ability and Mallory for an
                    active attacker who can interfere with network traffic.

Symmetric Encryption



Symmetric encryption (or private-key
                        cryptography) is a method for obfuscation that enables secure
                    transport of data over insecure communication channels. To communicate securely,
                    Alice and Bob first agree on the encryption algorithm and a secret key. Later
                    on, when Alice wants to send some data to Bob, she uses the secret key to
                    encrypt the data. Bob uses the same key to decrypt it. Eve, who has access to
                    the communication channel and can see the encrypted data, doesn’t have the key
                    and thus can’t access the original data. Alice and Bob can continue to
                    communicate securely for as long as they keep the secret key safe.
Figure 1.1. Symmetric encryption
[image: Symmetric encryption]


Note
Three terms are commonly used when discussing encryption:
                            plaintext is the data in its original form,
                            cipher is the algorithm used for encryption, and
                            ciphertext is the data after encryption.

Symmetric encryption goes back thousands of years. For example, to encrypt
                    with a substitution cipher, you replace each letter in
                    the alphabet with some other letter; to decrypt, you reverse the process. In
                    this case, there is no key; the security depends on keeping the method itself
                    secret. That was the case with most early ciphers. Over time, we adopted a
                    different approach, following the observation of a nineteenth-century
                    cryptographer named Auguste Kerckhoffs:[8]
A cryptosystem should be secure even if the attacker knows everything
                        about the system, except the secret key.


Although it might seem strange at first, Kerckhoffs’s
                    principle—as it has come to be known—makes sense if you consider the
                    following:
	For an encryption algorithm to be useful, it must be shared with
                            others. As the number of people with access to the algorithm increases,
                            the likelihood that the algorithm will fall into the enemy’s hands
                            increases too.

	A single algorithm without a key is very inconvenient to use in large
                            groups; everyone can decrypt everyone’s communication.

	It’s very difficult to design good encryption algorithms. The more
                            exposure and scrutiny an algorithm gets, the more secure it can be.
                            Cryptographers recommend a conservative approach when adopting new
                            algorithms; it usually takes years of breaking attempts until a cipher
                            is considered secure.



A good encryption algorithm is one that produces seemingly random ciphertext,
                    which can’t be analyzed by the attacker to reveal any information about
                    plaintext. For example, the substitution cipher is not a good algorithm, because
                    the attacker could determine the frequency of each letter of ciphertext and
                    compare it with the frequency of the letters in the English language. Because
                    some letters appear more often than others, the attacker could use his
                    observations to recover the plaintext. If a cipher is good, the only option for
                    the attacker should be to try all possible decryption keys, otherwise known as
                    an exhaustive key search.
At this point, the security of ciphertext depends entirely on the key. If the
                    key is selected from a large keyspace and breaking the
                    encryption requires iterating through a prohibitively large number of possible
                    keys, then we say that a cipher is computationally secure.
Note
The common way to measure encryption strength is via key length; the
                        assumption is that keys are essentially random, which means that the
                        keyspace is defined by the number of bits in a key. As an example, a 128-bit
                        key (which is considered very secure) is one of 340 billion billion billlion
                        billion possible combinations.

Ciphers can be divided into two groups: stream and block ciphers.
Stream Ciphers



Conceptually, stream ciphers operate in a way that
                        matches how we tend to imagine encryption. You feed one byte of plaintext to
                        the encryption algorithm, and out comes one byte of ciphertext. The reverse
                        happens at the other end. The process is repeated for as long as there is
                        data to process.
At its core, a stream cipher produces an infinite stream of seemingly
                        random data called a keystream. To perform
                        encryption, one byte of keystream is combined with one byte of plaintext
                        using the XOR logical operation. Because XOR is reversible, to decrypt you
                        perform XOR of ciphertext with the same keystream byte. This process is
                        illustrated in Figure 1.2, “RC4 encryption”.
Figure 1.2. RC4 encryption
[image: RC4 encryption]


An encryption process is considered secure if the attacker can’t predict
                        which keystream bytes are at which positions. For this reason, it is vital
                        that stream ciphers are never used with the same key more than once. This is
                        because, in practice, attackers know or can predict plaintext at certain
                        locations (think of HTTP requests being encrypted; things such as request
                        method, protocol version, and header names are the same across many
                        requests). When you know the plaintext and can observe the corresponding
                        ciphertext, you uncover parts of the keystream. You can use that information
                        to uncover the same parts of future ciphertexts if the same key is used. To
                        work around this problem, stream algorithms are used with one-time keys
                        derived from long-term keys.
RC4 is the best-known stream cipher.[9] It became popular due to its speed and simplicity, but it’s no
                        longer considered secure. I discuss its weaknesses at some length in the section called “RC4 Weaknesses”. Other modern and secure stream ciphers are
                        promoted by the ECRYPT Stream Cipher Project.[10]

Block Ciphers



Block ciphers encrypt entire blocks of data at a
                        time; modern block ciphers tend to use a block size of 128 bits (16 bytes).
                        A block cipher is a transformation function: it takes some input and
                        produces seemingly random output from it. For every possible input
                        combination, there is exactly one output, as long as the key stays the same.
                        A key property of block ciphers is that a small variation in input (e.g., a
                        change of one bit anywhere) produces a large variation (e.g., most bits in
                        the output change).
On their own, block ciphers are not very useful because of several
                        limitations. First, you can only use them to encrypt data lengths equal to
                        the size of the encryption block. To use a block cipher in practice, you
                        need a scheme to handle data of arbitrary length. Another problem is that
                        block ciphers are deterministic; they always produce
                        the same output for the same input. This property opens up a number of
                        attacks and needs to be dealt with.
In practice, block ciphers are used via encryption schemes called
                            block cipher modes, which smooth over the
                        limitations and sometimes add authentication to the mix. Block ciphers can
                        also be used as the basis for other cryptographic primitives, such as hash
                        functions, message authentication codes, pseudorandom generators, and even
                        stream ciphers.
The world’s most popular block cipher is AES (short for
                            Advanced Encryption Standard), which is available
                        in strengths of 128, 192, and 256 bits.[11]

Padding



One of the challenges with block ciphers is figuring out how to handle
                        encryption of data lengths smaller than the encryption block size. For
                        example, 128-bit AES requires 16 bytes of input data and produces the same
                        amount as output. This is fine if you have all of your data in 16-byte
                        blocks, but what do you do when you have less than that? One approach is to
                        append some extra data to the end of your plaintext. This extra data is
                        known as padding.
The padding can’t consist of just any random data. It must follow some
                        format that allows the receiver to see the padding for what it is and know
                        exactly how many bytes to discard. In TLS, the last byte of an encryption
                        block contains padding length, which indicates how many bytes of padding
                        (excluding the padding length byte) there are. All padding bytes are set to
                        the same value as the padding length byte. This approach enables the
                        receiver to check that the padding is correct.
Figure 1.3. Example of TLS padding
[image: Example of TLS padding]


To discard the padding after decryption, the receiver examines the last
                        byte in the data block and removes it. After that, he removes the indicated
                        number of bytes while checking that they all have the same value.


Hash Functions



A hash function is an algorithm that converts input of
                    arbitrary length into fixed-size output. The result of a hash function is often
                    called simply a hash. Hash functions are commonly used in
                    programming, but not all hash functions are suitable for use in cryptography.
                        Cryptographic hash functions are hash functions that
                    have several additional properties:
	Preimage resistance
	Given a hash, it’s computationally unfeasible to find or construct
                                a message that produces it.

	Second preimage resistance
	Given a message and its hash, it’s computationally unfeasible to
                                find a different message with the same hash.

	Collision resistance
	It’s computationally unfeasible to find two messages that have the
                                same hash.



Hash functions are most commonly used as a compact way to represent and
                    compare large amounts of data. For example, rather than compare two files
                    directly (which might be difficult, for example, if they are stored in different
                    parts of the world), you can compare their hashes. Hash functions are often
                    called fingerprints, message
                        digests, or simply digests.
The
                    most commonly used hash function today is SHA1, which has output of 160 bits.
                    Because SHA1 is considered weak, upgrading to its stronger variant, SHA256, is
                    recommended. Unlike with ciphers, the strength of a hash function doesn’t equal
                    the hash length. Because of the birthday paradox (a
                    well-known problem in probability theory),[12] the strength of a hash function is at most one half of the hash
                    length.

Message Authentication Codes
                    
                    
                    



A hash function could be used to verify data integrity, but only if the hash
                    of the data is transported separately from the data itself. Otherwise, an
                    attacker could modify both the message and the hash, easily avoiding detection.
                    A message authentication code (MAC) or a
                        keyed-hash is a cryptographic function that extends
                    hashing with authentication. Only those in possession of the hashing
                        key can produce a valid MAC.
MACs are commonly used in combination with encryption. Even though Mallory
                    can’t decrypt ciphertext, she can modify it in transit if there is no MAC;
                        encryption provides confidentiality but not integrity.
                    If Mallory is smart about how she’s modifying ciphertext, she could trick Bob
                    into accepting a forged message as authentic. When a MAC is sent along with
                    ciphertext, Bob (who shares the hashing key with Alice) can be sure that the
                    message has not been tampered with.
Any hash function can be used as the basis for a MAC using a construction
                    known as HMAC (short for hash-based message authentication
                        code).[13] In essence, HMAC works by interleaving the hashing key with the
                    message in a secure way.

Block Cipher Modes



Block cipher modes are cryptographic schemes designed
                    to extend block ciphers to encrypt data of arbitrary length. All block cipher
                    modes support confidentiality, but some combine it with authentication. Some
                    modes transform block ciphers to produce stream ciphers.
There are many output modes, and they are usually referred to by their
                    acronyms: ECB, CBC, CFB, OFB, CTR, GCM, and so forth. (Don’t worry about what
                    the acronyms stand for.) I will cover only ECB and CBC here: ECB as an example
                    of how not to design a block cipher mode and CBC because it’s still the main
                    mode in SSL and TLS. GCM is a relatively new addition to TLS, available starting
                    with version 1.2; it provides confidentiality and integrity, and it’s currently
                    the best mode available.
Electronic Codebook Mode
                        



Electronic Codebook (ECB) mode is the simplest
                        possible block cipher mode. It supports only data lengths that are the exact
                        multiples of the block size; if you have data of different length, then you
                        need to apply padding beforehand. To perform encryption, you split the data
                        into chunks that match the block size and encrypt each block
                        individually.
The simplicity of ECB is its downside. Because block ciphers are
                        deterministic (i.e., they always produce the same result when the input is
                        the same), so is ECB. This has serious consequences: (1) patterns in ciphertext will appear
                        that match patterns in plaintext; (2) the attacker can detect when a message is repeated; and
                            (3) an attacker who can
                        observe ciphertext and submit arbitrary plaintext for encryption (commonly
                        possible with HTTP and in many other situations) can, given enough attempts,
                            guess the plaintext. This is what the BEAST attack
                        against TLS was about; I discuss it in the section called “BEAST” in Chapter 7.

Cipher Block Chaining Mode
                        
                        
                        



Cipher Block Chaining (CBC) mode is the next step
                        up from ECB. To address the deterministic nature of ECB, CBC introduces the
                        concept of the initialization vector (IV), which
                        makes output different every time, even when input is the same.
Figure 1.4. CBC mode encryption
[image: CBC mode encryption]


The process starts by generating a random (and thus unpredictable) IV,
                        which is the same length as the encryption block size. Before encryption,
                        the first block of plaintext is combined with the IV using XOR. This masks
                        the plaintext and ensures that the ciphertext is always different. For the
                        next encryption block, the ciphertext of the previous block is used as the
                        IV, and so forth. As a result, all of the individual encryption operations
                        are part of the same chain, which is where the mode
                        name comes from. Crucially, the IV is transmitted on the wire to the
                        receiving party, who needs it to perform decryption successfully.


Asymmetric Encryption



Symmetric encryption does a great job at handling large amounts of data at
                    great speeds, but it leaves a lot to be desired as soon as the number of parties
                    involved increases:
	Members of the same group must share the same key. The more people
                            join a group, the more exposed the group becomes to the key
                            compromise.

	For better security, you could use a different key for every two
                            people, but this approach doesn’t scale. Although three people need only
                            three keys, ten people would need 45 (9 + 8 + . . . + 1) keys. A
                            thousand people would need 499,550 keys!

	Symmetric encryption can’t be used on unattended systems to secure
                            data. Because the process can be reversed by using the same key, a
                            compromise of such a system leads to the compromise of all data stored
                            in the system.



Asymmetric encryption (also known as
                        public-key cryptography) is a different approach to
                    encryption that uses two keys instead of one. One of the keys is
                        private; the other is public.
                    As the names suggest, one of these keys is intended to be private, and the other
                    is intended to be shared with everyone. There’s a special mathematical
                    relationship between these keys that enables some useful features. If you
                    encrypt data using someone’s public key, only their corresponding private key
                    can decrypt it. On the other hand, if data is encrypted with the private key
                    anyone can use the public key to unlock the message. The latter operation
                    doesn’t provide confidentiality, but it does function as a digital
                    signature.
Figure 1.5. Asymmetric encryption
[image: Asymmetric encryption]


Asymmetric encryption makes secure communication in large groups much easier.
                    Assuming that you can securely share your public key widely (a job for PKI,
                    which I discuss in Chapter 3, Public-Key Infrastructure), anyone can send you a message that
                    only you can read. If they also sign that message using their private key, you
                    know exactly whom it is from.
Despite its interesting properties, public-key cryptography is rather slow and
                    unsuitable for use with large quantities of data. For this reason, it’s usually
                    deployed for authentication and negotiation of shared secrets, which are then
                    used for fast symmetric encryption.
RSA (named from the initials of Ron Rivest, Adi Shamir,
                    and Leonard Adleman) is by far the most popular asymmetric encryption method
                    deployed today.[14] The recommended strength for RSA today is 2,048 bits, which is
                    equivalent to about 112 symmetric bits. I’ll discuss the strength of
                    cryptography in more detail later in this chapter.

Digital Signatures



A digital signature is a cryptographic scheme that
                    makes it possible to verify the authenticity of a digital message or document.
                    The MAC, which I described earlier, is a type of digital signature; it can be
                    used to verify authenticity provided that the secret hashing key is securely
                    exchanged ahead of time. Although this type of verification is very useful, it’s
                    limited because it still relies on a private secret key.
Digital signatures similar to the real-life handwritten ones are possible with
                    the help of public-key cryptography; we can exploit its asymmetric nature to
                    devise an algorithm that allows a message signed by a private key to be verified
                    with the corresponding public key.
The exact approach depends on the selected public-key cryptosystem. For
                    example, RSA can be used for encryption and decryption. If something is
                    encrypted with a private RSA key, only the corresponding public key can decrypt
                    it. We can use this property for digital signing if we combine it with hash
                    functions:
	Calculate a hash of the document you wish to sign; no matter the size
                            of the input document, the output will always be fixed, for example, 256
                            bits for SHA256.

	Encode the resulting hash and some additional metadata. For example,
                            the receiver will need to know the hashing algorithm you used before she
                            can process the signature. 

	Encrypt the encoded hash using the private key; the result will be the
                            signature, which you can append to the document as proof of
                            authenticity.



To verify the signature, the receiver takes the document and calculates the
                    hash independently using the same algorithm. Then, she uses your public key to
                    decrypt the message and recover the hash, confirm that the correct algorithms
                    were used, and compare with the decrypted hash with the one she calculated. The
                    strength of this signature scheme depends on the individual strengths of the
                    encryption, hashing, and encoding components.
Note
Not all digital signature algorithms function in the same way as RSA. In
                        fact, RSA is an exception, because it can be used for both encryption and
                        digital signing. Other popular public key algorithms, such as DSA and ECDSA,
                        can’t be used for encryption and rely on different approaches for
                        signing.


Random Number Generation
                    
                    
                    



In cryptography, all security depends on the quality of random number
                    generation. You’ve already seen in this chapter that security relies on known
                    encryption algorithms and secret keys. Those keys are simply very long random
                    numbers.
The problem with random numbers is that computers tend to be very predictable.
                    They follow instructions to the letter. If you tell them to generate a random
                    number, they probably won’t do a very good job.[15] This is because truly random numbers can be obtained only by
                    observing certain physical processes. In absence of that, computers focus on
                    collecting small amounts of entropy. This usually means
                    monitoring keystrokes and mouse movement and the interaction with various
                    peripheral devices, such as hard disks.
Entropy collected in this way is a type of true random number
                        generator (TRNG), but the approach is not reliable enough to use
                    directly. For example, you might need to generate a 4,096-bit key, but the
                    system might have only a couple of hundreds of bits of entropy available. If
                    there are no reliable external events to collect enough entropy, the system
                    might stall.
For this reason, in practice we rely on pseudorandom number
                        generators (PRNGs), which use small amounts of true random data
                    to get them going. This process is known as seeding. From
                    the seed, PRNGs produce unlimited amounts of pseudorandom data on demand.
                    General-purpose PRNGs are often used in programming, but they are not
                    appropriate for cryptography, even if their output is statistically seemingly
                    random. Cryptographic pseudorandom number generators
                    (CPRNGs) are PRNGs that are also unpredictable. This attribute is crucial for
                    security; an adversary mustn’t be able to reverse-engineer the internal state of
                    a CPRNG by observing its output.


Protocols



Cryptographic primitives such as encryption and hashing algorithms are seldom
                useful by themselves. We combine them into schemes and
                    protocols so that we can satisfy complex security
                requirements. To illustrate how we might do that, let’s consider a simplistic
                cryptographic protocol that allows Alice and Bob to communicate securely. We’ll aim
                for all three main requirements: confidentiality, integrity, and
                authentication.
Let’s assume that our protocol allows exchange of an arbitrary number of messages.
                Because symmetric encryption is very good at encrypting bulk data, we might select
                our favorite algorithm to use for this purpose, say, AES. With AES, Alice and Bob
                can exchange secure messages, and Mallory won’t be able to recover the contents. But
                that’s not quite enough, because Mallory can do other things, for example, modify
                the messages without being detected. To fix this problem, we can calculate a MAC of
                each message using a hashing key known only to Alice and Bob. When we send a
                message, we send along the MAC as well.
Now, Mallory can’t modify the messages any longer. However, she could still drop
                or replay arbitrary messages. To deal with this, we extend our protocol to assign a
                sequence number to each message; crucially, we make the sequences part of the MAC
                calculation. If we see a gap in the sequence numbers, then we know that there’s a
                message missing. If we see a sequence number duplicate, we detect a replay attack.
                For best results, we should also use a special message to mark the end of the
                conversation. Without such a message, Mallory would be able to end (truncate) the
                conversation undetected.
With all of these measures in place, the best Mallory can do is prevent Alice and
                Bob from talking to one another. There’s nothing we can do about that.
So far, so good, but we’re still missing a big piece: how are Alice and Bob going
                to negotiate the two needed keys (one for encryption and the other for integrity
                validation) in the presence of Mallory? We can solve this problem by adding two
                additional steps to the protocol.
First, we use public-key cryptography to authenticate each party at the beginning
                of the conversation. For example, Alice could generate a random number and ask Bob
                to sign it to prove that it’s really him. Bob could ask Alice to do the same.
With authentication out of the way, we can use a key-exchange
                    scheme to negotiate encryption keys securely. For example, Alice
                could generate all the keys and send them to Bob by encrypting them with his public
                key; this is how the RSA key exchange works. Alternatively, we could have also used
                a protocol known as Diffie-Hellman (DH) key exchange for this
                purpose. The latter is slower, but it has better security properties.
In the end, we ended up with a protocol that (1) starts with a handshake phase that includes authentication and
                key exchange, (2) follows with the data
                exchange phase with confidentiality and integrity, and (3) ends with a shutdown sequence. At a high
                level, our protocol is similar to the work done by SSL and TLS.

Attacking Cryptography



Complex systems can usually be attacked in a variety of ways, and cryptography is
                no exception. First, you can attack the cryptographic primitives themselves. If a
                key is small, the adversary can use brute force to recover it. Such attacks usually
                require a lot of processing power as well as time. It’s easier (for the attacker) if
                the used primitive has known vulnerabilities, in which case he can use analytic
                attacks to achieve the goal faster.
Cryptographic primitives are generally very well understood, because they are
                relatively straightforward and do only one thing. Schemes are often easier to attack
                because they introduce additional complexity. In some cases, even cryptographers
                argue about the right way to perform certain operations. But both are relatively
                safe compared to protocols, which tend to introduce far more complexity and have a
                much larger attack surface.
Then, there are attacks against protocol implementation; in
                other words, exploitation of software bugs. For example, most cryptographic
                libraries are written in low-level languages such as C (and even assembly, for
                performance reasons), which make it very easy to introduce catastrophic programming
                errors. Even in the absence of bugs, sometimes great skill is needed to implement
                the primitives, schemes, and protocols in such a way that they can’t be abused. For
                example, naïve implementations of certain algorithms can be exploited in
                    timing attacks, in which the attacker breaks encryption
                by observing how long certain operations take.
It is also common that programmers with little experience in cryptography
                nevertheless attempt to implement—and even design—cryptographic
                protocols and schemes, with predictably insecure results.
For this reason, it is often said that cryptography is bypassed, not attacked.
                What this means is that the primitives are solid, but the rest of the software
                ecosystem isn’t. Further, the keys are an attractive target: why spend months to
                brute-force a key when it might be much easier to break into a server to obtain it?
                Many cryptographic failures can be prevented by following simple rules such as
                these: (1) use well-established protocols
                and never design your own schemes; (2)
                use high-level libraries and never write code that deals with cryptography directly;
                and (3) use well-established primitives
                with sufficiently strong key sizes.

Measuring
                        Strength



We measure the strength of cryptography using the number of operations that need
                to be performed to break a particular primitive, presented as
                    bits of security. Deploying with strong key sizes is the
                easiest thing to get right, and the rules are simple: 128 bits of security
                    (2128 operations) is sufficient for most deployments;
                use 256 bits if you need very long-term security or a big safety margin.
Note
The strength of symmetric cryptographic operations increases exponentially as
                    more bits are added. This means that increasing key size by one bit makes it
                    twice as strong.

In practice, the situation is somewhat more complicated, because not all
                operations are equivalent in terms of security. As a result, different bit values
                are used for symmetric operations, asymmetric operations, elliptic curve
                cryptography, and so on. You can use the information in Table 1.2, “Security levels and equivalent strength in bits, adapted from ECRYPT2
                    (2012)”
                to convert from one size to another.
Table 1.2. Security levels and equivalent strength in bits, adapted from ECRYPT2
                    (2012)
	#	Protection	Symmetric	Asymmetric	DH	Elliptic Curve	Hash
	1	Attacks in real time by individuals	32	-	-	-	-
	2	Very short-term protection against small organizations	64	816	816	128	128
	3	Short-term protection against medium organizations	72	1,008	1,008	144	144
	4	Very short-term protection against agencies	80	1,248	1,248	160	160
	5	Short-term protection (10 years)	96	1,776	1,776	192	192
	6	Medium-term protection (20 years)	112	2,432	2,432	224	224
	7	Long-term protection (30 years)	128	3,248	3,248	256	256
	8	Long-term protection and increased defense from quantum
                                computers	256	15,424	15,424	512	512



The data, which I adapted from a 2012 report on key and algorithm strength,[16] shows rough mappings from bits of one type to bits of another, but it
                also defines strength in relation to attacker capabilities and time. Although we
                tend to discuss whether an asset is secure (assuming now), in
                reality security is a function of time. The strength of encryption changes, because
                as time goes by computers get faster and cheaper. Security is also a function of
                resources. A key of a small size might be impossible for an individual to break, but
                doing so could be within the reach of an agency. For this reason, when discussing
                security it’s more useful to ask questions such as “secure against whom?” and
                “secure for how long?”
Note
The strength of cryptography
                    can’t be measured accurately, which is why you will find many different
                    recommendations. Most of them are very similar, with small differences. In my
                    experience, ENISA (the European Union Agency for Network and
                        Information Security) provides useful high-level documents that
                    offer clear guidance[17] at various levels.[18] To view and compare other recommendations, visit
                        keylength.com.[19]

Although the previous table provides a lot of useful information, you might find
                it difficult to use because the values don’t correspond to commonly used key sizes.
                In practice, you’ll find the following table more useful to convert from one set of
                bits to another:[20]
Table 1.3. Encryption strength mapping for commonly used key sizes
	Symmetric	RSA / DSA / DH	Elliptic curve crypto	Hash
	80	1,024	160	160
	112	2,048	224	224
	128	3,072	256	256
	256	15,360	512	512




Man-in-the-Middle Attack
                



Most attacks against transport-layer security come in the form of a
                    man-in-the-middle (MITM) attack. What this means is that
                in addition to the two parties involved in a conversation there is a malicious
                party. If the attacker is just listening in on the conversation, we’re talking about
                a passive network attack. If the attacker is actively
                modifying the traffic or influencing the conversation in some other way, we’re
                talking about an active network attack.
Figure 1.6. Conceptual SSL/TLS threat model
[image: Conceptual SSL/TLS threat model]


Gaining Access



In many cases, attacks require proximity to the victim or the server or access
                    to the communication infrastructure. Whoever has access to the cables and
                    intermediary communication nodes (e.g., routers) can see the packets as they
                    travel across the wire and interfere with them.
                            Access can be obtained by
                    tapping the cables,[21] in collaboration with telecoms,[22] or by hacking the equipment.[23]
Conceptually, the easiest way to execute a MITM attack is by joining a network
                    and rerouting the victims’ traffic through a malicious node. Wireless networks
                    without authentication, which so many people use these days, are particularly
                    vulnerable, because anyone can join.
Other ways to attack include interfering with the routing infrastructure for
                    domain name resolution, IP address routing, and so on.
	ARP spoofing
	Address Resolution Protocol (ARP) is used
                                on local networks to associate network MAC addresses[24] with IP addresses. An attacker with access to the
                                network can claim any IP address and effectively reroute
                                traffic.

	WPAD hijacking
	Web Proxy Auto-Discovery Protocol (WPAD) is
                                used by browsers to automatically retrieve HTTP proxy configuration.
                                WPAD uses several methods, including DHCP and DNS. To attack WPAD,
                                an attacker starts a proxy on the local network and announces it to
                                the local clients who look for it.

	DNS hijacking
	By hijacking a domain name with the registrar or changing the DNS
                                configuration, an attacker can hijack all traffic intended for that
                                domain name.

	DNS cache poisoning
	DNS cache poisoning is a type of attack
                                that exploits weaknesses in caching DNS servers and enables the
                                attacker to inject invalid domain name information into the cache.
                                After a successful attack, all users of the affected DNS server will
                                be given invalid information.

	BGP route hijacking
	Border Gateway Protocol (BGP) is a routing
                                protocol used by the core internet routers to discover where exactly
                                IP address blocks are located. If an invalid route is accepted by
                                one or more routers, all traffic for a particular IP address block
                                can be redirected elsewhere, that is, to the attacker.




Passive Attacks



Passive attacks are most useful against unencrypted traffic. During 2013, it
                    became apparent that government agencies around the world routinely monitor and
                    store large amounts of internet traffic. For example, it is alleged that GCHQ,
                    the British spy agency, records all UK internet traffic and keeps it for three days.[25] Your email messages, photos, internet chats, and other data could be
                    sitting in a database somewhere, waiting to be cross-referenced and correlated
                    for whatever purpose. If bulk traffic is handled like this, it’s reasonable to
                    expect that specific traffic is stored for much longer and perhaps indefinitely.
                    In response to this and similar discoveries, the IETF declared that “pervasive
                    monitoring is an attack” and should be defended against by using encryption
                    whenever possible.[26]
Even against encrypted traffic, passive attacks can be useful as an element in
                    the overall strategy. For example, you could store captured encrypted traffic
                    until such a time when you can break the encryption. Just because some things
                    are difficult to do today doesn’t mean that they’ll be difficult ten years from
                    now, as computers get more powerful and cheaper and as weaknesses in
                    cryptographic primitives are discovered.
To make things worse, computer systems often contain a critical configuration
                    weakness that allows for retroactive decryption of recorded traffic. The most
                    common key-exchange mechanism in TLS is based on the RSA algorithm; on the
                    systems that use this approach, the RSA key used for the key exchange can also
                    be used to decrypt all previous conversations. Other key-exchange mechanisms
                    don’t suffer from this problem and are said to support forward
                        secrecy. Unfortunately, most stay with the RSA algorithm. For
                    example, Lavabit, the encrypted email service famously used by Edward Snowden,
                    didn’t support forward secrecy. Using a court order, the FBI compelled Lavabit
                    to disclose their encryption key.[27] With the key in their possession, the FBI could decrypt any recorded
                    traffic (if they had any, of course).
Passive attacks work very well, because there is still so much unencrypted
                    traffic and because when collecting in bulk the process can be fully automated.
                    As an illustration, in July 2014 only 58% of email arriving to Gmail was encrypted.[28]

Active Attacks



When someone talks about MITM attacks, they most commonly refer to active
                    network attacks in which Mallory interferes with the traffic in some way.
                    Traditionally, MITM attacks target authentication to trick Alice into thinking
                    she’s talking to Bob. If the attack is successful, Mallory receives messages
                    from Alice and forwards them to Bob. The messages are encrypted when Alice sends
                    them, but that’s not a problem, because she’s sending them to Mallory, who can
                    decrypt them using the keys she negotiated with Alice.
When it comes to TLS, the ideal case for Mallory is when she can present a
                    certificate that Alice will accept as valid. In that case, the attack is
                    seamless and almost impossible to detect.[29] A valid certificate could be obtained by playing the public key
                    infrastructure ecosystem. There have been many such attacks over the years; in
                        Chapter 4, Attacks against PKI I document the ones that are publicly
                    known. A certificate that seems valid could be constructed
                    if there are bugs in the validation code that could be exploited. Historically,
                    this is an area in which bugs are common. I discuss several examples in Chapter 6, Implementation Issues. Finally, if everything else fails,
                    Mallory could present an invalid certificate and hope that Alice overrides the
                    certificate warning. This happened in Syria a couple of years ago.[30]
The rise of browsers as a powerful application-delivery platform created
                    additional attack vectors that can be exploited in active network attacks. In
                    this case, authentication is not attacked, but the victims’ browsers are
                    instrumented by the attacker to submit specially crafted requests that are used
                    to subvert encryption. These attack vectors have been exploited in recent years
                    to attack TLS in novel ways; you can find more information about them in Chapter 7, Protocol Attacks.
Active attacks can be very powerful, but they’re more difficult to scale.
                    Whereas passive attacks only need to make copies of observed packets (which is a
                    simple operation), active attacks require much more processing and effort to
                    track individual connections. As a result, they require much more software and
                    hardware. Rerouting large amounts of traffic is difficult to do without being
                    noticed. Similarly, fraudulent certificates are difficult to use successfully
                    for large-scale attacks because there are so many individuals and organizations
                    who are keeping track of certificates used by various web sites. The approach
                    with the best chance of success is exploitation of implementation bugs that can
                    be used to bypass authentication, but such bugs, devastating as they are, are
                    relatively rare.
For these reasons, active attacks are most likely to be used against
                    individual, high-value targets. Such attacks can’t be automated, which means
                    that they require extra work, cost a lot, and are thus more difficult to
                    justify.
There are some indications that the NSA deployed extensive infrastructure that
                    enables them to attack almost arbitrary computers on the Internet, under the
                    program called QuantumInsert.[31]
 This program, which is a variation on the MITM theme, doesn’t appear to
                    target encryption; instead, it’s used to deliver browser exploits against
                    selected individuals. By placing special packet-injection nodes at important
                    points in the communication infrastructure, the NSA is able to respond to
                    connection requests faster than the real servers and redirect some traffic to
                    the exploitation servers instead.
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2 Protocol


TLS is a cryptographic protocol designed to secure a conversation that consists of an
        arbitrary number of messages between two parties. In this chapter, I discuss the most recent
        protocol version—TLS 1.2—with a brief mention of earlier protocol versions where
        appropriate.
My goal is to give you a high-level overview that will enable you to understand what’s
        going on without being distracted by implementation details. Wherever possible, I use
        message content examples, rather than definitions, which can sometimes be dry. The
        definitions use the syntax that’s essentially the same as in the TLS specification, albeit
        with some minor simplifications. For more information on the syntax and the complete
        protocol reference, start with RFC 5246, which is where TLS 1.2 lives.[32] However, this document doesn’t tell the whole story. There are also many other
        relevant RFCs, which I reference throughout this chapter.
The best way to learn about TLS is to observe real-life traffic. My favorite approach is
        to use the network-capture tool Wireshark, which comes with a TLS protocol parser: point
        your favorite browser at a secure web site, tell Wireshark to monitor the connection (it’s
        best to restrict the capture to just one hostname and port 443), and observe the protocol
        messages.
After you’re reasonably happy with your understanding of TLS (don’t try too hard to learn
        it all; it’s very hard to understand every feature, because there are so many of them),
        you’ll be free to roam the various RFCs and even lurk on the key mailing lists. My two favorite places are the TLS working group document page,[33] where you can find the list of key documents and new proposals, and the TLS
        working group mailing list,[34] where you can follow the discussions about the future direction of TLS.
Record Protocol
            



At a high level, TLS is implemented via the record protocol,
            which is in charge of transporting—and optionally encrypting—all lower-level
            messages exchanged over a connection. Each TLS record starts with
            a short header, which contains information about the record content type (or
            subprotocol), protocol version, and length. Message data follows the header.
Figure 2.1. TLS record
[image: TLS record]


More formally, the TLS record fields are defined as follows:
struct {
    uint8 major;
    uint8 minor;
} ProtocolVersion;

enum {
    change_cipher_spec (20),
    alert (21),
    handshake (22),
    application_data (23)
} ContentType;

struct {
    ContentType type;
    ProtocolVersion version;
    uint16 length; /* Maximum length is 2^14 (16,384) bytes. */
    opaque fragment[TLSPlaintext.length];
} TLSPlaintext;
In addition to the visible fields, each TLS record is also assigned a unique 64-bit
            sequence number, which is not sent over the wire. Each side has its own sequence number
            and keeps track of the number of records sent by the other side. These values are used
            as part of the defense against replay attacks. You’ll see how that works later
            on.
The record protocol is a useful protocol abstraction that takes care of several
            important, high-level aspects of the communication.
	Message transport
	The record protocol transports opaque data buffers submitted to it by
                        other protocol layers. If a buffer is longer than the record length limit
                        (16,384 bytes), the record protocol fragments it into smaller chunks. The
                        opposite is also possible; smaller buffers belonging to the same subprotocol
                        can be combined in a single record.

	Encryption and integrity validation
	Initially, on a brand new connection, messages are transported without any
                        protection. (Technically, the TLS_NULL_WITH_NULL_NULL
                        cipher suite is used.) This is necessary so that the first negotiation can
                        take place. However, once the handshake is complete, the record layer starts
                        to apply encryption and integrity validation according to the negotiated
                        connection parameters.[35]

	Compression
	Transparent compression of data prior to encryption sounds nice in theory,
                        but it was never very common in practice, mainly because everyone was
                        already compressing their outbound traffic at the HTTP level. This feature
                        suffered a fatal blow in 2012, when the CRIME attack exposed it as insecure.[36] It’s now no longer used.

	Extensibility
	The record protocol takes care of data transport and encryption, but
                        delegates all other features to subprotocols. This approach makes TLS
                        extensible, because new subprotocols can be added easily. With encryption
                        handled by the record protocol, all subprotocols are automatically protected
                        using the negotiated connection parameters.



The main TLS specification defines four core subprotocols: handshake
                protocol, change cipher spec protocol,
                application data protocol, and alert
                protocol.

Handshake Protocol
            



The handshake is the most elaborate part of the TLS protocol, during which the sides
            negotiate connection parameters and perform authentication. This phase usually requires
            six to ten messages, depending on which features are used. There can be many variations
            in the exchange, depending on the configuration and supported protocol extensions. In
            practice, we see three common flows: (1) full
            handshake with server authentication, (2)
            abbreviated handshake that resumes an earlier session, and (3) handshake with client and server
            authentication.
Handshake protocol messages start with a header that carries the message type (one
            byte) and length (three bytes). The remainder of the message depends on the message
            type:
struct {
    HandshakeType msg_type;
    uint24 length;
    HandshakeMessage message;
} Handshake;
Full Handshake



Every TLS connection begins with a handshake. If the client hasn’t previously
                established a session with the server, the two sides will execute a full
                    handshake in order to negotiate a TLS
                session. During this handshake, the client and the server will perform
                four main activities:
	Exchange capabilities and agree on desired connection parameters.

	Validate the presented certificate(s) or authenticate using other
                        means.

	Agree on a shared master secret that will be used
                        to protect the session.

	Verify that the handshake messages haven’t been modified by a third
                        party.



Note
In practice, steps 2 and 3 are part of a single step called key
                        exchange (or, more generally, key
                        establishment). I prefer to keep them separate in order to
                    emphasize that the security of the protocol depends on correct authentication,
                    which effectively sits outside TLS. Without authentication, an active network
                    attacker can interject herself into the conversation and pose as the other
                    side.

In this section, I discuss the most commonly seen TLS handshake, one between a
                client that’s not authenticated and a server that is. The subsequent sections handle
                alternative protocol flows: client authentication and session resumption.
Figure 2.2. Full handshake with server authentication
[image: Full handshake with server authentication]


	Client begins a new handshake and submits its capabilities to the
                        server.

	Server selects connection parameters.

	Server sends its certificate chain (only if server authentication is
                        required).

	Depending on the selected key exchange, the server sends additional
                        information required to generate the master secret.

	Server indicates completion of its side of the negotiation.

	Client sends additional information required to generate the master
                        secret.

	Client switches to encryption and informs the server.

	Client sends a MAC of the handshake messages it sent and received.

	Server switches to encryption and informs the client.

	Server sends a MAC of the handshake messages it received and sent.



At this point—assuming there were no errors—the connection is
                established and the parties can begin to send application data. Now let’s look at
                the handshake messages in more detail.
ClientHello



The ClientHello message is always the first message sent in
                    a new handshake. It’s used to communicate client capabilities and preferences to
                    the server. Clients send this message at the beginning of a new connection, when
                    they wish to renegotiate, or in response to a server’s renegotiation request
                    (indicated by a HelloRequest message).
In the following example, you can see what a ClientHello
                    message could look like. I reduced the amount of information presented for the
                    sake of brevity, but all of the key elements are included.
Handshake protocol: ClientHello
    Version: TLS 1.2
    Random
        Client time: May 22, 2030 02:43:46 GMT
        Random bytes: b76b0e61829557eb4c611adfd2d36eb232dc1332fe29802e321ee871
    Session ID: (empty)
    Cipher Suites        
        Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
        Suite: TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
        Suite: TLS_RSA_WITH_AES_128_GCM_SHA256        
        Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
        Suite: TLS_DHE_RSA_WITH_AES_128_CBC_SHA
        Suite: TLS_RSA_WITH_AES_128_CBC_SHA
        Suite: TLS_RSA_WITH_3DES_EDE_CBC_SHA
        Suite: TLS_RSA_WITH_RC4_128_SHA
    Compression methods
        Method: null
    Extensions
        Extension: server_name
            Hostname: www.feistyduck.com
        Extension: renegotiation_info
        Extension: elliptic_curves
            Named curve: secp256r1
            Named curve: secp384r1
        Extension: signature_algorithms
            Algorithm: sha1/rsa
            Algorithm: sha256/rsa
            Algorithm: sha1/ecdsa
            Algorithm: sha256/ecdsa
As you can see, the structure of this message is easy to understand, with most
                    data fields easy to understand from the names alone.
	Protocol version
	Protocol version indicates the best protocol version the client
                                supports.

	Random
	The random field contains 32 bytes of data. Of those, 28 bytes are
                                randomly generated. The remaining four bytes carry additional
                                information influenced by the client’s clock. Client time is not
                                actually relevant for the protocol, and the specification is clear
                                on this (“Clocks are not required to be set correctly by the
                                basic TLS protocol, higher-level or application protocols may define
                                additional requirements.”); the field was included as a defense
                                against weak random number generators, after just such a critical
                                failure was discovered in Netscape Navigator in 1994.[37] Although this field used to contain the actual time,
                                there are fears that client time could be used for large-scale
                                browser fingerprinting.[38] As a result, some browsers add random clock skew to
                                their time (as you can see in the example) or simply send four
                                random bytes instead.
Both client and server contribute random data during the
                                handshake. The randomness makes each handshake unique and plays a
                                key role in authentication by preventing replay attacks and
                                verifying the integrity of the initial data exchange.

	Session ID
	On the first connection, the session ID field is empty, indicating
                                that the client doesn’t wish to resume an existing session. On
                                subsequent connections, the ID field can contain the session’s
                                unique identifier, enabling the server to locate the correct session
                                state in its cache. The session ID typically contains 32 bytes of
                                randomly generated data and isn’t valuable in itself.

	Cipher suites
	The cipher suite block is a list of all cipher suites supported by
                                the client in order of preference.

	Compression
	Clients can submit one or more supported compression methods. The
                                default compression method null indicates no
                                compression.

	Extensions
	The extension block contains an arbitrary number of extensions
                                that carry additional data. I discuss the most commonly seen
                                extensions later in this chapter.




ServerHello



The purpose of the ServerHello message is for the server to
                    communicate the selected connection parameters back to the client. This message
                    is similar in structure to ClientHello but contains only one
                    option per field:
Handshake protocol: ServerHello
    Version: TLS 1.2
    Random
        Server time: Mar 10, 2059 02:35:57 GMT
        Random bytes: 8469b09b480c1978182ce1b59290487609f41132312ca22aacaf5012
    Session ID: 4cae75c91cf5adf55f93c9fb5dd36d19903b1182029af3d527b7a42ef1c32c80
    Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
    Compression method: null
    Extensions
        Extension: server_name
        Extension: renegotiation_info
The server isn’t required to support the same best version supported by the
                    client. If it doesn’t, it offers some other protocol version in the hope that
                    the client will accept it.

Certificate



The Certificate message is typically used to carry the
                    server’s X.509 certificate chain. Certificates are provided one after another,
                    in ASN.1 DER encoding. The main certificate must be sent first, with all of the
                    intermediary certificates following in the correct order. The root can and
                    should be omitted, because it serves no purpose in this context.
The server must ensure that it sends a certificate appropriate for the
                    selected cipher suite. For example, the public key algorithm must match that
                    used in the suite. In addition, some key exchange mechanisms depend upon certain
                    data being embedded in the certificate, and the certificates must be signed with
                    algorithms supported by the client. All of this implies that the server could be
                    configured with multiple certificates (each with a potentially different
                    chain).
This Certificate message is optional, because not all
                    suites use authentication and because there are some authentication methods that
                    don’t require certificates. Furthermore, although the default is to use X.509
                    certificates other forms of identification can be carried in this message; some
                    suites rely on PGP keys.[39]

ServerKeyExchange



The purpose of the ServerKeyExchange message is to carry
                    additional data needed for key exchange. Its contents vary and depend on the
                    negotiated cipher suite. In some cases, the server is not required to send
                    anything, which means that the ServerKeyExchange message is
                    not sent at all.

ServerHelloDone



ServerHelloDone is a signal that the server has sent all
                    intended handshake messages. After this, the server waits for further messages
                    from the client.

ClientKeyExchange



The ClientKeyExchange message carries the client’s
                    contribution to the key exchange. It’s a mandatory message whose contents depend
                    on the negotiated cipher suite.

ChangeCipherSpec
                    
                    



The ChangeCipherSpec message is a signal that the sending
                    side obtained enough information to obtain all connection parameters, generated
                    the appropriate encryption keys, and is switching to encryption. Client and
                    server both send this message when the time is right.
Note
ChangeCipherSpec is not a handshake message. Rather,
                        it’s implemented as the only message in its own subprotocol. One consequence
                        of this decision is that this message is not part of the handshake integrity
                        validation mechanism. This makes TLS more difficult to implement correctly;
                        in June 2014 OpenSSL disclosed that it had been incorrectly handling
                            ChangeCipherSpec messages, leaving it open to active
                        network attacks.[40]
The same problem exists with all other subprotocols. An active network
                        attacker can send unauthenticated alert messages during the first handshake
                        and, by exploiting the buffering mechanism, even subvert genuine alerts sent
                        after encryption commences.[41] To avoid more serious problems, application data protocol and
                        heartbeat messages aren’t allowed before the first handshake is complete;
                        it’s not unusual to see implementations violate these restrictions.


Finished



The Finished message is the signal that the handshake is
                    complete. Its contents are encrypted, which allows both sides to securely
                    exchange the data required to verify the integrity of the entire
                    handshake.
This message carries the verify_data field, which is a hash
                    of all handshake messages as each side saw them mixed in with the newly
                    negotiated master secret. This is done via a pseudorandom
                        function (PRF), which is designed to produce an arbitrary amount
                    of pseudorandom data. I describe the PRF later in this chapter. The
                        Hash function is the same as in the PRF unless the
                    negotiated suite specifies a different algorithm. The calculations are the same
                    in both cases, although each side uses a different label: “client finished” for
                    the client and “server finished” for the server:
verify_data = PRF(master_secret, finished_label, Hash(handshake_messages))
Because the Finished messages are encrypted and their
                    integrity guaranteed by the negotiated MAC algorithm, an active network attacker
                    can’t change the handshake messages and then forge the correct
                        verify_data values.
The attacker could also try to find a set of forged handshake messages that
                    have exactly the same verify_data values as the genuine
                    messages. That’s not an easy attack in itself, but because the hashes are mixed
                    in with the master secret (which the attacker doesn’t know) she can’t even
                    attempt that approach.
In TLS 1.2, the Finished message is 12 bytes (96 bits) long
                    by default, but cipher suites are allowed to use larger sizes. Earlier protocol
                    versions also use a fixed length of 12 bytes, except for SSL 3, which uses 36
                    bytes.


Client Authentication



Although authentication of either side is optional, server authentication is
                almost universally required. If the server selects a suite that isn’t anonymous,
                it’s required to follow up with its certificate chain in the
                    Certificate message.
In contrast, the server requests client authentication by sending a
                    CertificateRequest message that lists acceptable client
                certificates. In response, the client sends the certificate in its own
                    Certificate message (in the same format used by the server
                for its certificates) and then proves possession of the corresponding private key
                with a CertificateVerify message.
Figure 2.3. Full handshake, during which both client and server are
                        authenticated
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Only an authenticated server is allowed to request client authentication. For this
                reason, this option is known as mutual authentication.
CertificateRequest



With the CertificateRequest message, the server requests
                    client authentication and communicates acceptable certificate public key and
                    signature algorithms to the client. Optionally, it can also send its list of
                    acceptable issuing certification authorities, indicated by using their
                    distinguished names:
struct {
    ClientCertificateType certificate_types;
    SignatureAndHashAlgorithm supported_signature_algorithms;
    DistinguishedName certificate_authorities;
} CertificateRequest;

CertificateVerify



The client uses the CertificateVerify message to prove the
                    possession of the private key corresponding to the public key in the previously
                    sent client certificate. This message contains a signature of all the handshake
                    messages exchanged until this point:
struct {
    Signature handshake_messages_signature;
} CertificateVerify;


Session Resumption



The full handshake is an elaborate protocol that requires many handshake messages
                and two network round-trips before the client can start sending application data. In
                addition, the cryptographic operations carried out during the handshake often
                require intensive CPU processing. Authentication, usually in the form of client and
                server certificate validation (and revocation checking), requires even more effort.
                Much of this overhead can be avoided with an abbreviated handshake.
The original session resumption mechanism is based on both
                the client and the server keeping session security parameters for a period of time
                after a fully negotiated connection is terminated. A server that wishes to use
                session resumption assigns it a unique identifier called the session
                    ID. The server then sends the session ID back to the client in the
                    ServerHello message. (You can see this in the example in the
                previous section.)
A client that wishes to resume an earlier session submits the appropriate session
                ID in its ClientHello. If the server is willing to resume that
                session, it returns the same session ID in the ServerHello,
                generates a new set of keys using the previously negotiated master secret, switches
                to encryption, and sends its Finished message. The client, when
                it sees that the session is being resumed, does the same. The result is a short
                handshake that requires only one network round-trip.
Figure 2.4. Abbreviated handshake—used to resume an already established
                        session
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The alternative to server-side session caching and resumption is to use
                    session tickets, introduced by RFC 4507 in 2006 and
                subsequently updated by RFC 5077 in 2008. In this case, all state is kept by the
                client (the mechanism is similar to HTTP cookies), but the message flow is otherwise
                the same.


Key Exchange
            
            



The key exchange is easily the most interesting part of the handshake. In TLS, the
            security of the session depends on a 48-byte shared key called the master
                secret. The goal of key exchange is to generate another value, the
                premaster secret, which is the value from which the master
            secret is constructed.
TLS supports many key exchange algorithms in order to support various certificate
            types, public key algorithms, and key establishment protocols. Some are defined in the
            main TLS protocol specification, but many more are defined elsewhere. You can see the
            most commonly used algorithms in the following table.
Table 2.1. Overview of the most commonly used key exchange algorithms
	Key Exchange	Description
	dh_anon	Diffie-Hellman (DH) key exchange without authentication
	dhe_rsa	Ephemeral DH key exchange with RSA authentication
	ecdh_anon	Ephemeral Elliptic Curve DH (ECDH) key exchange without
                            authentication (RFC 4492)
	ecdhe_rsa	Ephemeral ECDH key exchange with RSA authentication (RFC
                            4492)
	ecdhe_ecdsa	Ephemeral ECDH key exchange with ECDSA authentication (RFC
                            4492)
	krb5	Kerberos key exchange (RFC 2712)
	rsa	RSA key exchange and authentication
	psk	Pre-Shared Key (PSK) key exchange and authentication (RFC
                            4279)
	dhe_psk	DH key exchange with PSK authentication (RFC 4279)
	rsa_psk	PSK key exchange and RSA authentication (RFC 4279)
	srp	Secure Remote Protocol (SRP) key exchange and authentication (RFC
                            5054)



Which key exchange is used depends on the negotiated suite. Once the suite is known,
            both sides know which algorithm to follow. In practice, there are four main key exchange
            algorithms:
	RSA
	RSA is effectively the standard key exchange algorithm. It’s universally
                        supported but suffers from one serious problem: its design allows a passive
                        attacker to decrypt all encrypted data, provided she has access to the
                        server’s private key. Because of this, the RSA key exchange is being slowly
                        replaced with other algorithms, those that support forward
                            secrecy. The RSA key exchange is a key
                            transport algorithm; the client generates the premaster
                        secret and transports it to the server, encrypted with the server’s public
                        key.

	DHE_RSA
	Ephemeral Diffie-Hellman (DHE) key exchange is a
                        well-established algorithm. It’s liked because it provides forward secrecy
                        but disliked because it’s slow. DHE is a key
                            agreement algorithm; the negotiating parties both contribute
                        to the process and agree on a common key. In TLS, DHE is commonly used with
                        RSA authentication.

	ECDHE_RSA and ECDHE_ECDSA
	Ephemeral elliptic curve Diffie-Hellman (ECDHE) key
                        exchange is based on elliptic curve cryptography, which is relatively new.
                        It’s liked because it’s fast and provides forward
                        secrecy. It’s well supported only by modern clients. ECDHE is a key
                        agreement algorithm conceptually similar to DHE. In TLS, ECDHE can be used
                        with either RSA or ECDSA authentication.



No matter which key exchange is used, the server has the opportunity to speak first by
            sending its ServerKeyExchange message:
struct {
    select (KeyExchangeAlgorithm) {
        case dh_anon:
            ServerDHParams     params;
        case dhe_rsa:
            ServerDHParams     params;
            Signature          params_signature;
        case ecdh_anon:
            ServerECDHParams   params;
        case ecdhe_rsa:
        case ecdhe_ecdsa:
            ServerECDHParams   params;
            Signature          params_signature;
        case rsa:
        case dh_rsa:
            /* no message */
    };
} ServerKeyExchange;
As you can see in the message definition, there are several algorithms for which there
            is nothing for the server to send. This will be the case when all the required
            information is already available elsewhere. Otherwise, the server sends its key exchange
            parameters. Crucially, the server also sends a signature of the parameters, which is
            used for authentication. Using the signature, the client is able to verify that it’s
            talking to the party that holds the private key corresponding to the public key from the
            certificate.
The ClientKeyExchange message is always required; the client uses
            it to sends its key exchange parameters:
struct {
    select (KeyExchangeAlgorithm) {
        case rsa:
            EncryptedPreMasterSecret;
        case dhe_dss:
        case dhe_rsa:
        case dh_dss:
        case dh_rsa:
        case dh_anon:
            ClientDiffieHellmanPublic;
        case ecdhe:
            ClientECDiffieHellmanPublic;
    } exchange_keys;
} ClientKeyExchange;
RSA Key Exchange



The RSA key exchange is quite straightforward; the client generates a premaster
                secret (a 46-byte random number), encrypts it with the server’s public key, and
                sends it in the ClientKeyExchange message. To obtain the
                premaster secret, the server only needs to decrypt the message. TLS uses the
                    RSAES-PKCS1-v1_5 encryption scheme, which is defined in RFC 3447.[42]
Note
The RSA key exchange can operate in this way because the RSA algorithm can be
                    used for encryption and digital signing. Other popular key types, such as DSA
                    (DSS) and ECDSA, can be used only for signing.

The simplicity of the RSA key exchange is also its principal weakness. The
                premaster secret is encrypted with the server’s public key, which usually remains in
                use for several years. Anyone with access to the corresponding private key can
                recover the premaster secret and construct the same master secret, compromising
                session security.
The attack doesn’t have to happen in real time. A powerful adversary could
                establish a long-term operation to record all encrypted traffic and wait patiently
                until she obtains the key. For example, advances in computer power could make it
                possible to brute-force the key. Alternatively, the key could be obtained using
                legal powers, coercion, bribery, or by breaking into a server that uses it. After
                the key compromise, it’s possible to decrypt all previously recorded traffic.
The other common key exchange mechanisms used in TLS don’t suffer from this
                problem and are said to support forward secrecy. When they are used, each connection
                uses an independent master secret. A compromised server key could be used to
                impersonate the server but couldn’t be used to retroactively decrypt any
                traffic.

Diffie-Hellman Key Exchange
                
                
                



The Diffie-Hellman (DH) key exchange is a key agreement
                protocol that allows two parties to establish a shared secret over an insecure
                communication channel.[43]
Note
The shared secret negotiated in this way is safe from passive attacks, but an
                    active attacker could hijack the communication channel and pretend to be the
                    other party. This is why the DH key exchange is commonly used with
                    authentication.

Without going into the details of the algorithm, the trick is to use a
                mathematical function that’s easy to calculate in one direction but very difficult
                to reverse, even when some of the aspects of the exchange are known. The best
                analogy is that of color mixing: if you have two colors, you can easily mix them to
                get a third color, but it’s very difficult to determine the
                    exact color shades that contributed to the mix.[44]
The DH key exchange requires six parameters; two (dh_p and
                    dh_g) are called domain parameters and
                are selected by the server. During the negotiation, the client and server each
                generate two additional parameters. Each side sends one of its parameters
                    (dh_Ys and dh_Yc) to the other end, and,
                with some calculation, they arrive at the shared key.
Ephemeral Diffie-Hellman (DHE) key exchange takes place
                when none of the parameters are reused. In contrast, there are some DH key exchange
                approaches in which some of the parameters are static and embedded in the server and
                client certificates. In this case, the result of the key exchange is always the same
                shared key, which means that there is no forward secrecy.
TLS supports static DH key exchanges, but they’re not used. When a DHE suite is
                negotiated, the server sends all of its parameters in the
                    ServerDHParams block:
struct {
    opaque dh_p;
    opaque dh_g;
    opaque dh_Ys;
} ServerDHParams;
The client, in response, sends its public parameter
                (dh_Yc):
struct {
    select (PublicValueEncoding) {
        case implicit:
            /* empty; used when the client's public
               parameter is embedded in its certificate */
        case explicit:
            opaque dh_Yc;
    } dh_public;
} ClientDiffieHellmanPublic;
There are some practical problems with the DH exchange as it’s currently
                used:
	DH parameter security
	The security of the DH key exchange depends on the quality of the
                            domain parameters. A server could send weak or insecure parameters and
                            compromise the security of the session. This issue was highlighted in
                            the Triple Handshake Attack research paper, which
                            covered weak DH parameters used as one of the attack vectors.[45]

	DH parameter negotiation
	TLS doesn’t provide facilities for the client to communicate the
                            strength of DH parameters it’s willing to use. For example, some clients
                            might want to avoid using weak parameters, or alternately, they might
                            not be able to support stronger parameters. Because of this, a server
                            that chooses a DHE suite can effectively only “hope” that the DH
                            parameters will be acceptable to the client.
Historically speaking, DH parameters have been largely ignored and
                            their security neglected. Many libraries and servers use weak DH
                            parameters by default and often don’t provide a means to configure DH
                            parameter strength. For this reason, it’s not uncommon to see servers
                            using weak 1,024-bit parameters and insecure 768- and even 512-bit
                            parameters. More recently, some platforms have started using strong
                            (2,048 bits and higher) parameters.



These problems could be addressed by standardizing a set of domain parameters of
                varying strengths and extending TLS to enable clients to communicate their preferences.[46]

Elliptic Curve Diffie-Hellman Key Exchange
                
                



The ephemeral elliptic curve Diffie-Hellman (ECDH) key
                exchange is conceptually similar to DH, but it uses a different mathematical
                foundation at the core. As the name implies, ECDHE is based on elliptic curve (EC)
                cryptography.
An ECDH key exchange takes place over a specific elliptic curve, which is for the
                server to define. The curve takes the role of domain parameters in DH. In theory,
                static ECDH key exchange is supported, but in practice only the ephemeral variant
                (ECDHE) is used.
The server starts the key exchange by submitting its selected elliptic curve and
                public parameter (EC point):
struct {
    ECParameters curve_params;
    ECPoint public;
} ServerECDHParams;
The server can specify an arbitrary (explicit) curve for the key exchange, but
                this facility is not used in TLS. Instead, the server will specify a
                    named curve, which is a reference to one of the possible
                predefined parameters:
struct {
    ECCurveType curve_type;
    select (curve_type) {
        case explicit_prime:
            /* omitted for clarity */
        case explicit_char2:
            /* omitted for clarity */
        case named_curve:
            NamedCurve namedcurve;
    };
} ECParameters;
The client then submits its own public parameter. After that, the calculations
                take place to arrive at the premaster secret:
struct {
    select (PublicValueEncoding) {
        case implicit:
            /* empty */
        case explicit:
            ECPoint ecdh_Yc;
    } ecdh_public;
} ClientECDiffieHellmanPublic;
The use of predefined parameters, along with the elliptic_curve
                extension that clients can use to submit supported curves, enables the server to
                select a curve that both sides support. You’ll find more information on the
                available named curves later in the section called “Elliptic Curve Capabilities
                
                
                ”.


Authentication



In TLS, authentication is tightly coupled with key exchange in order to avoid
            repetition of costly cryptographic operations. In most cases, the basis for
            authentication will be public key cryptography (most commonly RSA, but sometimes ECDSA)
            supported by certificates. Once the certificate is validated, the client has a known
            public key to work with. After that, it’s down to the particular key exchange method to
            use the public key in some way to authenticate the other side.
During the RSA key exchange, the client generates a random value as the premaster
            secret and sends it encrypted with the server’s public key. The server, which is in
            possession of the corresponding private key, decrypts the message to obtain the
            premaster secret. The authentication is implicit: it is assumed that only the server in
            possession of the corresponding private key can retrieve the premaster secret, construct
            the correct session keys, and produce the correct Finished
            message.
During the DHE and ECDHE exchanges, the server contributes to the key
            exchange with its parameters. The parameters are signed with its private key. The
            client, which is in possession of the corresponding public key (obtained from the
            validated certificate), can verify that the parameters genuinely arrived from the
            intended server.
Note
Server parameters are signed concatenated with client and server random data that
                are unique to the handshake. Thus, although the signature is sent in the clear it’s
                only valid for the current handshake, which means that the attacker can’t reuse
                it.


Encryption



TLS can encrypt data in a variety of ways, using ciphers such 3DES, AES, ARIA,
            CAMELLIA, RC4, and SEED. AES is by far the most popular cipher. Three types of
            encryption are supported: stream, block,
            and authenticated encryption. In TLS, integrity validation is
            part of the encryption process; it’s handled either explicitly at the protocol level or
            implicitly by the negotiated cipher.
Stream Encryption



When a stream cipher is used, encryption consists of two steps. In the first step,
                a MAC of the record sequence number, header, and plaintext is calculated. The
                inclusion of the header in the MAC ensures that the unencrypted data in the header
                can’t be tampered with. The inclusion of the sequence number in the MAC ensures that
                the messages can’t be replayed. In the second step, the plaintext and the MAC are
                encrypted to form ciphertext.
Figure 2.5. Stream encryption
[image: Stream encryption]


Note
A suite that uses integrity validation but no encryption is implemented in the
                    same way as encryption using a stream cipher. The plaintext is simply copied to
                    the TLS record, but the MAC is calculated as described here.


Block Encryption
                
                



When block ciphers are used, encryption is somewhat more involved, because it’s
                necessary to work around the properties of block encryption. The following steps are
                required:
	Calculate a MAC of the sequence number, header, and plaintext.

	Construct padding to ensure that the length of data prior to encryption is
                        a multiple of the cipher block size (usually 16 bytes).

	Generate an unpredictable initialization vector
                        (IV) of the same length as the cipher block size. The IV is used to ensure
                        that the encryption is not deterministic.

	Use the CBC block mode to encrypt plaintext, MAC, and padding.

	Send the IV and ciphertext together.



Figure 2.6. Block encryption
[image: Block encryption]


Note
You’ll find further information on the CBC block mode, padding, and
                    initialization vectors in the section called “Building Blocks” in Chapter 1.

This process is known as MAC-then-encrypt, and it
                has been a source of many problems. In TLS 1.1 and newer versions, each record
                includes an explicit IV. TLS 1.0 and older versions use implicit IVs (the encrypted
                block from the previous TLS record is used as the IV for the next), but that
                approach was found to be insecure in 2011.[47]
 The other problem is that the MAC calculation doesn’t include padding, leaving an
                opportunity for an active network attacker to attempt padding oracle
                    attacks, which were also successfully demonstrated against TLS.[48] The issue here is that the protocol specifies a block encryption
                approach that’s difficult to implement securely in practice. As far as we know,
                current implementations are not obviously vulnerable at the moment, but this is a
                weak spot that leaves many uneasy.
A proposal for a different arrangement called
                    encrypt-then-MAC has recently been submitted for publication.[49] In this alternative approach, plaintext and padding are first encrypted
                and then fed to the MAC algorithm. This ensures that the active network attacker
                can’t manipulate any of the encrypted data.

Authenticated Encryption
                
                
                
                



Authenticated ciphers combine encryption and integrity validation in one
                algorithm. Their full name is authenticated encryption with associated
                    data (AEAD). On the surface, they appear to be a cross between
                stream ciphers and block ciphers. They don’t use padding[50] and initialization vectors, but they do use a special value called
                    nonce, which must be unique. TLS supports GCM and CCM
                authenticated ciphers, but only the former are currently used in practice. The
                process is somewhat simpler than with block ciphers:
	Generate a unique 64-bit nonce.

	Encrypt plaintext with the authenticated encryption algorithm; at the same
                        time feed it the sequence number and record header for it to take into
                        account as additional data for purposes of integrity validation.

	Send the nonce and ciphertext together.



Figure 2.7. Authenticated encryption
[image: Authenticated encryption]


Authenticated encryption is currently favored as the best encryption mode
                available in TLS, because it avoids the issues inherent with the MAC-then-encrypt
                approach.


Renegotiation



Most TLS connections start with a handshake, proceed to exchange application data, and
            shutdown the conversation at the end. When renegotiation is
            requested, a new handshake takes place to agree on new connection security parameters.
            There are several cases in which this feature might be useful:
	Client certificates
	Client certificates are not used often, but some sites use them because
                        they provide two-factor authentication. There are two ways to deploy client
                        certificates. You can require them for all connections to a site, but this
                        approach is not very friendly to those who don’t (yet) have a certificate;
                        without a successful connection, you can’t send them any information and
                        instructions. Handling error conditions is equally impossible. For this
                        reason, many operators prefer to allow connections to the root of the web
                        site without a certificate and designate a subsection in which a client
                        certificate is required. When a user attempts to navigate to the subsection,
                        the server issues a request to renegotiate and then requests a client
                        certificate.

	Information hiding
	Such a two-step approach to enabling client certificates has an additional
                        advantage: the second handshake is encrypted, which means that a passive
                        attacker can’t monitor the negotiation and, crucially, can’t observe the
                        client certificates. This addresses a potentially significant privacy issue,
                        because client certificates usually contain identifying information. For
                        example, the Tor protocol can use renegotiation in this way.[51]

	Change of encryption strength
	Back in the day, when web site encryption was brand new (and very CPU
                        intensive) it was common to see sites split their encryption configuration
                        into two levels. You would use weaker encryption by default but require
                        strong encryption in certain areas.[52] As with client certificates, this feature is implemented via
                        renegotiation. When you attempt to cross into the more secure subsection of
                        the web site, the server requests stronger security.



In addition, there are two situations in which renegotiation is required by the
            protocol, although neither is likely to occur in practice:
	Server-Gated Crypto
	Back in the 1990s, when the United States did not allow export of strong
                        cryptography, a feature called Server-Gated Crypto
                        (SGC) was used to enable US vendors to ship strong cryptography worldwide
                        but enable it only for selected (mostly financial) US web sites. Browsers
                        would use weak cryptography by default, upgrading to strong cryptography
                        after encountering a special certificate. This upgrade was entirely client
                        controlled, and it was implemented via renegotiation. Only a few selected
                        CAs were allowed to issue the special certificates. Cryptography export
                        restrictions were relaxed in 2000, making SGC obsolete.

	TLS record counter overflow
	Internally, TLS packages data into records. Each record is assigned a
                        unique 64-bit sequence number, which grows over time as records are
                        exchanged. Client and server use one sequence number each for the records
                        they send. The protocol mandates renegotiation if a sequence number is close
                        to overflowing. However, because the counter is a very large number,
                        overflows are unlikely in practice.



The protocol allows the client to request renegotiation at any time simply
            by sending a new ClientHello message, exactly as when starting a
            brand-new connection. This is known as client-initiated
                renegotiation.
If the server wishes to renegotiate, it sends a
                HelloRequest protocol message to the client; that’s a signal to the client to stop
            sending application data and initiate a new handshake. This is known as
                server-initiated renegotiation.
Renegotiation, as originally designed, is insecure and can be abused by an active
            network attacker in many ways. The weakness was discovered in 2009[53] and corrected with the introduction of the
                renegotiation_info extension, which I discuss later in this
            chapter.

Application Data Protocol
            



The application data protocol carries application messages, which are just buffers of
            data as far as TLS is concerned. These messages are packaged, fragmented, and encrypted
            by the record layer, using the current connection security parameters.

Alert Protocol
            



Alerts are intended to use a simple notification mechanism to
            inform the other side in the communication of exceptional circumstances. They’re
            generally used for error messages, with the exception of
            close_notify, which is used during connection shutdown. Alerts are
            very simple and contain only two fields:
struct {
    AlertLevel level;
    AlertDescription description;
} Alert;
The AlertLevel field carries the alert severity, which can be
            either warning or fatal. The
                AlertDescription is simply an alert code; for better or worse,
            there are no facilities to convey arbitrary information, for example, an actual error
            message.
Fatal messages result in an immediate termination of the current connection and
            invalidation of the session (ongoing connections of the same session may continue, but
            the session can no longer be resumed). The side sending a warning notification doesn’t
            terminate the connection, but the receiving side is free to react to the warning by
            sending a fatal alert of its own.

Connection Closure



Closure alerts are used to shutdown a TLS connection in an
            orderly fashion. Once one side decides that it wants to close the connection, it sends a
                close_notify alert. The other side, upon receiving the alert,
            discards any pending writes and sends a close_notify alert of its
            own. If any messages arrive after the alerts, they are ignored.
This simple shutdown protocol is necessary in order to avoid truncation attacks, in
            which an active network attacker interrupts a conversation midway and blocks all further
            messages. Without the shutdown protocol, the two sides can’t determine if they are under
            attack or if the conversation is genuinely over.
Note
Although the protocol itself is not vulnerable to truncation attacks, there are
                many implementations that are, because violations of the
                connection shutdown protocol are widespread. I discuss this problem at length in
                    the section called “Truncation Attacks” in Chapter 6.


Cryptographic Operations



This section contains a brief discussion of several important aspects of the protocol:
            the pseudorandom function, master secret construction, and the generation of connection
            keys.
Pseudorandom Function
                
                



In TLS, a pseudorandom function (PRF) is used to generate
                arbitrary amounts of pseudorandom data. The PRF takes a secret, a seed, and a unique
                label. From TLS 1.2 onwards, all cipher suites are required to explicitly specify
                their PRF. All TLS 1.2 suites use a PRF based on HMAC and SHA256; the same PRF is
                used with older suites when they are negotiated with TLS 1.2.
TLS 1.2 defines a PRF based on a data expansion function
                P_hash, which uses HMAC and any hash function:
P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
                       HMAC_hash(secret, A(2) + seed) +
                       HMAC_hash(secret, A(3) + seed) + ...
The A(i) function is defined as follows:
A(1) = HMAC_hash(secret, seed)
A(2) = HMAC_hash(secret, A(1))
...
A(i) = HMAC_hash(secret, A(i-1))
The PRF is a wrapper around P_hash that combines the label with
                the seed:
PRF(secret, label, seed) = P_hash(secret, label + seed)
The introduction of a seed and a label allows the same secret to be reused in
                different contexts to produce different outputs (because the label and the seed are
                different).

Master Secret



As you saw earlier, the output from the key exchange process is the premaster
                secret. This value is further processed, using the PRF, to produce a 48-byte
                (384-bit) master secret:
master_secret = PRF(pre_master_secret, "master secret",
                    ClientHello.random + ServerHello.random)
The processing occurs because the premaster secret might differ in size depending
                on the key exchange method used. Also, because the client and server random fields
                are used as the seed, the master secret is also effectively random[54] and bound to the negotiated handshake.
Note
The binding between the master secret and the handshake has been shown to be
                    insufficient because it relies only on the exchanged random values. An attacker
                    can observe and replicate these values to create multiple sessions that share
                    the same master key. This weakness has been exploited by the Triple Handshake
                    Attack mentioned earlier.[45]


Key Generation



The key material needed for a connection is generated in a single PRF invocation
                based on the master secret and seeded with the client and server random
                values:
key_block = PRF(SecurityParameters.master_secret,
                "key expansion",
                SecurityParameters.server_random +
                SecurityParameters.client_random)
The key block, which varies in size depending on the negotiated parameters, is
                divided into up to six keys: two MAC keys, two encryption keys, and two
                initialization vectors (only when needed; stream ciphers don’t use IV). AEAD suites
                don’t use MAC keys. Different keys are used for different operations, which is
                recommended to prevent unforeseen interactions between cryptographic primitives when
                the key is shared. Also, because the client and the server have their own sets of
                keys, a message produced by one can’t be interpreted to have been produced by the
                other. This design decision makes the protocol more robust.
Note
When resuming a session, the same session master key is used during the key
                    block generation. However, the PRF is seeded with the client and server random
                    values from the current handshake. Because these random
                    values are different in every handshake, the keys are also different every
                    time.



Cipher Suites



As you have seen, TLS allows for a great deal of flexibility in implementing the
            desired security properties. It’s effectively a framework for creating actual
            cryptographic protocols. Although previous versions hardcoded some cryptographic
            primitives into the protocol, TLS 1.2 is fully configurable. A cipher
                suite is a selection of cryptographic primitives and other parameters
            that define exactly how security will be implemented. A suite is defined roughly by the
            following attributes:
	Authentication method

	Key exchange method

	Encryption algorithm

	Encryption key size

	Cipher mode (when applicable)

	MAC algorithm (when applicable)

	PRF (TLS 1.2 only—depends on the protocol otherwise)

	Hash function used for the Finished message (TLS
                    1.2)

	Length of the verify_data structure (TLS 1.2)



Cipher suite names tend to be long and descriptive and pretty consistent: they are
            made from the names of the key exchange method, authentication method, cipher
            definition, and optional MAC or PRF algorithm.[55]
Figure 2.8. Cipher suite name construction
[image: Cipher suite name construction]


Although a suite name is not sufficient to convey all security parameters, the most
            important ones are easy to deduce. The information on the remaining parameters can be
            found in the RFC that carries the suite definition. You can see the security properties
            of a few selected suites in the following table. At the time of writing, there are more
            than 300 official cipher suites, which is too many to list here. For the complete list,
            head to the official TLS page over at IANA.[56]

            
Table 2.2. Examples of cipher suite names and their security properties
	Cipher Suite Name	Auth	KX	Cipher	MAC	PRF
	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	RSA	ECDHE	AES-128-GCM	-	SHA256
	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	ECDSA	ECDHE	AES-256-GCM	-	SHA384
	TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA	RSA	DHE	3DES-EDE-CBC	SHA1	Protocol
	TLS_RSA_WITH_AES_128_CBC_SHA	RSA	RSA	AES-128-CBC	SHA1	Protocol
	TLS_ECDHE_ECDSA_WITH_AES_128_CCM	ECDSA	ECDHE	AES-128-CCM	-	SHA256




        
With the introduction of TLS 1.2—which allows for additional custom parameters
            (e.g., PRF)—and authenticated suites, some level of understanding of the
            implementation is required to fully decode cipher suite names:
	Authenticated suites combine authentication and encryption in the cipher,
                    which means that integrity validation need not be performed at the TLS level.
                    GCM suites use the last segment to indicate the PRF instead of the MAC
                    algorithm. CCM suites omit this last segment completely.

	TLS 1.2 is the only protocol that allows suites to define their PRFs. This
                    means that for the suites defined before TLS 1.2 the negotiated protocol version
                    dictates the PRF. For example, the
                        TLS_RSA_WITH_AES_128_CBC_SHA suite uses a PRF based on
                    HMAC-SHA256 when negotiated with TLS 1.2 but a PRF based on a HMAC-MD5/HMAC-SHA1
                    combination when used with TLS 1.0. On the other hand, SHA384 GCM suites (which
                    can be used only with TLS 1.2 and newer) will always use HMAC-SHA384 for the
                    PRF.



Note
Cipher suite names use a shorthand notation to indicate the MAC algorithm that
                specifies only the hashing function. This often leads to confusion when the hashing
                functions have weaknesses. For example, although SHA1 is known to be weak to
                chosen-prefix attacks, it’s not weak in the way it’s used in TLS, which is in an
                HMAC construction. There are no significant known attacks against HMAC-SHA1.

Cipher suites don’t have full control over their security parameters. Crucially, they
            only specify the required authentication and key exchange algorithms, but they don’t
            have control over their exact parameters (e.g., key and parameter strength).
Note
Cipher suites can be used only with the specific authentication mechanism they are
                intended for. For example, suites with ECDSA in the name require ECDSA keys. A
                server that has a single RSA key will not show support for any of the ECDSA
                suites.

When it comes to authentication, the strength typically depends on the certificate or,
            more specifically, on the certificate’s key length and the signature algorithm. The
            strength of the RSA key exchange also depends on the certificate. DHE and ECDHE key
            exchanges can be configured with varying strengths, and this is usually done at the
            server level. Some servers expose this configuration to end users, but others don’t. I
            discuss these aspects in more detail in Chapter 8, Deployment and in the
            following technology-specific chapters.

Extensions



TLS extensions are a general-purpose extension mechanism that’s
            used to add functionality to the TLS protocol without changing the protocol itself. They
            first appeared in 2003 as a separate specification (RFC 3456) but have since been added
            to TLS 1.2.
Extensions are added in the form of an extension block that’s placed at the end of
                ClientHello and ServerHello messages:
Extension extensions;
The block consists of a desired number of extensions placed one after another. Each
            extension begins with a two-byte extension type (unique identifier) and is followed by
            the extension data:
struct {
    ExtensionType extension_type;
    opaque extension_data;
} Extension;
It’s up to each extension specification to determine the extension format and the
            desired behavior. In practice, extensions are used to signal support for some new
            functionality (thus changing the protocol) and to carry additional data needed during
            the handshake. Since their introduction, they have become the main vehicle for protocol
            evolution.
In this section, I will discuss the most commonly seen TLS extensions. Because IANA
            keeps track of extension types, the official list of extensions can be obtained from
            their web site.[57]
Table 2.3. A selection of commonly seen TLS extensions
	Type	Name	Description
	0	server_name	Contains the intended secure virtual host for the connection
	5	status_request	Indicates support for OCSP stapling
	13 (0x0d)	signature_algorithms	Contains supported signature algorithm/hash function pairs
	15 (0x0f)	heartbeat	Indicates support for the Heartbeat protocol
	16 (0x10)	application_layer_protocol_​negotiation	Contains supported application-layer protocols that the client is
                            willing to negotiate
	18 (0x12)	signed_certificate_timestamp	Used by servers to submit the proof that the certificate had been
                            shared with the public; part of Certificate Transparency
	21 (0x15)	padding	Used as a workaround for certain bugs in the F5 load balancers[a]
	35 (0x23)	session_ticket	Indicates support for stateless session resumption
	13172 (0x3374)	next_protocol_negotiation	Indicates support for Next Protocol Negotiation
	65281 (0xff01)	renegotiation_info	Indicates support for secure renegotiation
	[a] A TLS padding extension (Internet-Draft, A. Langley,
                                    January 2014)





Application Layer Protocol Negotiation
                
                



Application-Layer Protocol Negotiation (ALPN) is a protocol
                extension that enables the negotiation of different application-layer protocols over
                a TLS connection.[58] With ALPN, a server on port 443 could offer HTTP 1.1 by default but
                allow the negotiation of other protocols, such as SPDY or HTTP 2.0.
A client that supports ALPN uses the
                    application_layer_protocol_negotiation extension to submit a
                list of supported application-layer protocols to the server. A compliant server
                decides on the protocol and uses the same extension to inform the client of its
                decision.
ALPN provides the same primary functionality as its older relative, NPN (discussed
                later on in this section), but they differ in secondary properties. Whereas NPN
                prefers to hide protocol decisions behind encryption, ALPN carries them in
                plaintext, allowing intermediary devices to inspect them and route traffic based on
                the observed information.

Certificate Transparency
                
                



Certificate Transparency[59] is a proposal to improve Internet PKI by keeping a record of all public
                server certificates. The basic idea is that the CAs will submit every certificate to
                a public log server, and in return they will receive a proof
                of submission called Signed Certificate Timestamp (SCT),
                which they can they relay to end users. There are several options for the transport
                of the SCT, and one of them is the new TLS extension called
                    signed_certificate_timestamp.

Elliptic Curve Capabilities
                
                
                



RFC 4492 specifies two extensions that are used to communicate client EC
                capabilities during the handshake. The elliptic_curves extension
                is used in ClientHello to list supported named curves, allowing
                the server to select one that’s supported by both sides.
struct {
    NamedCurve elliptic_curve_list
} EllipticCurveList;
The main curves are specified in RFC 4492[60] based on the parameters defined by standards bodies, such as NIST:[61]
enum {
    sect163k1 (1), sect163r1 (2), sect163r2 (3),
    sect193r1 (4), sect193r2 (5), sect233k1 (6),
    sect233r1 (7), sect239k1 (8), sect283k1 (9),
    sect283r1 (10), sect409k1 (11), sect409r1 (12),
    sect571k1 (13), sect571r1 (14), secp160k1 (15),
    secp160r1 (16), secp160r2 (17), secp192k1 (18),
    secp192r1 (19), secp224k1 (20), secp224r1 (21),
    secp256k1 (22), secp256r1 (23), secp384r1 (24),
    secp521r1 (25),
    reserved (0xFE00..0xFEFF),
    arbitrary_explicit_prime_curves(0xFF01),
    arbitrary_explicit_char2_curves(0xFF02)
} NamedCurve;
Brainpool curves were defined later, in RFC 7072.[62] At the time of writing, there are efforts to standardize additional
                curves, for example, Curve25519.[63] You can find the relevant document on the TLS working group document
                page.
At this time, there is wide support for only two NIST curves:
                    secp256r1 and secp384r1. Arbitrary curves
                are generally not supported at all.[64]
NIST Elliptic Curves
                    



NIST’s elliptic curves are sometimes considered suspicious, because
                    there is no explanation of how the parameters were selected.[65] Especially after the Dual EC DRBG backdoor came to light, anything
                    that cannot be explained has been seen by some as suspicious. The fear is that
                    those named curves have weaknesses that are known to the designers but not to
                    the general public. As a result, there are efforts to extend TLS with support
                    for other curves.

The second defined extension is ec_point_formats, which is
                intended for use with arbitrary curves to enable compression of curve parameters.
                The theory is that in a constrained environment it’s worth saving the bandwidth
                required to transport curve parameters. However, not only are the potential savings
                small (e.g., about 64 bytes for a 256-bit curve), but also no one uses arbitrary
                curves anyway.

Heartbeat
                



Heartbeat[66] is a protocol extension that adds support for keep-alive functionality
                (checking that the other party in the conversation is still available) and
                    path maximum transmission unit (PMTU)[67] discovery to TLS and DTLS. Although TLS is commonly used over TCP, which
                does have keep-alive functionality already, Heartbeat is targeted at DTLS, which is
                deployed over unreliable protocols, such as UDP.
Note
Some have suggested that zero-length TLS records, which are explicitly allowed
                    by the protocol, could be used for the keep-alive functionality. In practice,
                    attempts to mitigate the BEAST attack showed that many applications can’t
                    tolerate records without any data. In any case, zero-length TLS records wouldn’t
                    help with PMTU discovery, which needs payloads of varying sizes.

Initially, support for Hearbeat is advertised by both the client and the server
                via the heartbeat extension. During the negotiation, parties give
                each other permission to send heartbeat requests with the
                    HeartbeatMode parameter:
struct {
    HeartbeatMode mode;
} HeartbeatExtension;

enum {
    peer_allowed_to_send (1),
    peer_not_allowed_to_send (2)
} HeartbeatMode;
Heartbeat is implemented as a TLS subprotocol, which means that heartbeat messages
                can be interleaved with application data and even other protocol messages. According
                to the RFC, heartbeat messages are allowed only once the handshake completes, but in
                practice OpenSSL allows them as soon as TLS extensions are exchanged.
It is not clear if Heartbeat is used in practice. However, it’s supported by
                OpenSSL and enabled by default. GnuTLS also implements it. Virtually no one knew
                what Heartbeat was until April 2014, when it was discovered that the OpenSSL
                implementation suffered from a fatal flaw that allowed the extraction of sensitive
                data from the server’s process memory. The attack that exploits this vulnerability,
                called Heartbleed, was arguably the worst thing to happen to
                TLS. You can read more about it in the section called “Heartbleed” in Chapter 6.

Next Protocol Negotiation
                
                
                



When Google set out to design SPDY,[68] a protocol intended to improve on HTTP, it needed a reliable protocol
                negotiation mechanism that would work with strict firewalls and in the presence of
                faulty proxies. Because SPDY was intended to always use TLS anyway, they decided to
                extend TLS with application-layer protocol negotiation. The result was
                    Next Protocol Negotiation (NPN).
Note
If you research NPN, you might come across many different specification
                    versions. Some of those versions were produced for the TLS working group during
                    the standardization discussions. An older version of the specification is used
                    in production.[69]

A SPDY-enabled client submits a TLS handshake that incorporates an empty
                    next_protocol_negotiation extension, but only if it also
                includes a server_name extension to indicate the desired
                hostname. In return, a compliant server responds with the
                    next_protocol_negotiation extension, but one that contains a
                list of the supported application-layer protocols.
The client indicates the desired application-layer protocol by using a new
                handshake message called NextProtocol:
struct {
  opaque selected_protocol;
  opaque padding;
} NextProtocol;
In order to hide the client’s choice from passive attackers, this message is
                submitted encrypted, which means that the client must send it after the
                    ChangeCipherSpec message but before
                    Finished. This is a deviation from the standard handshake
                message flow. The desired protocol name can be selected from the list provided by
                the server, but the client is also free to submit a protocol that is not advertised.
                The padding is used to hide the true length of the extension so that the adversary
                can’t guess the selected protocol by looking at the size of the encrypted
                message.
NPN was submitted to the TLS working group for standardization[70] but, despite wide support in production (e.g., Chrome, Firefox, and
                OpenSSL), failed to win acceptance. The introduction of a new handshake message,
                which changes the usual handshake flow, was deemed disruptive and more complex than
                necessary. There were also concerns that the inability of intermediary devices to
                see what protocol is being negotiated might be problematic in practice. In the end,
                the group adopted the competing ALPN proposal.[71] Google currently supports both ALPN and NPN, but will switch to
                supporting only ALPN after 2014.[72]

Secure Renegotiation
                
                
                



The renegotiation_info extension improves TLS with verification
                that renegotiation is being carried out between the same two parties that negotiated
                the previous handshake.
Initially (during the first handshake on a connection), this extension is used by
                both parties to inform each other that they support secure renegotiation; for this,
                they simply send the extension without any data. To secure SSL 3, which doesn’t
                support extensions, clients can instead use a special signaling suite,
                    TLS_EMPTY_RENEGOTIATION_INFO_SCSV
                (0xff).
On subsequent handshakes, the extension is used to submit proof of knowledge of
                the previous handshake. Clients send the verify_data value from
                their previous Finished message. Servers send two values: first
                the client’s verify_data and then their own. The attacker
                couldn’t have obtained these values, because the Finished message
                is always encrypted.

Server Name Indication
                
                



Server Name Indication (SNI), implemented using the
                    server_name extension,[73] provides a mechanism for a client to specify the name of the server it
                wishes to connect to. In other words, this extension provides support for
                    virtual secure servers, giving servers enough information
                to look for a matching certificate among the available virtual secure hosts. Without
                this mechanism, only one certificate can be deployed per IP address.[74] Because SNI was a late addition to TLS (2006), there are still many
                older products (e.g., Windows XP and some early Android versions) that don’t support
                it. For this reason, virtual secure hosting is still not practical for public sites
                that want to reach a large audience.

Session Tickets



Session tickets introduce a new session resumption
                mechanism that doesn’t require any server-side storage.[75] The idea is that the server can take all of its session data (state),
                encrypt it, and send it back to the client in the form of a
                    ticket. On subsequent connections, the client submits the
                ticket back to the server; the server checks the ticket integrity, decrypts the
                contents, and uses the information in it to resume the session. This approach
                potentially makes it easier to scale web server clusters, which would otherwise need
                to synchronize session state among the nodes.
Warning
Session tickets break the TLS security model. They expose session state on the
                    wire encrypted with a ticket key. Depending on the implementation, the ticket
                    key might be weaker than the cipher used for the connection. For example,
                    OpenSSL uses 128-bit AES keys for this purpose. Also, the
                        same ticket key is reused across many sessions. This is
                    similar to the situation with the RSA key exchange and breaks forward secrecy;
                    if the ticket key is compromised it can be used to decrypt full connection data.
                    For this reason, if session tickets are used, the ticket keys must be rotated
                    frequently.

The client indicates support for this resumption mechanism with an empty
                    session_ticket extension. If it wishes to resume an earlier
                session, then it should instead place the ticket in the extension. A compliant
                server that wishes to issue a new ticket includes an empty
                    session_ticket extension in its
                    ServerHello. It then waits for the client’s
                    Finished message, verifies it, and sends back the ticket in
                the NewSessionTicket handshake message. If the server wishes to
                resume an earlier session, then it responds with an abbreviated handshake, as with
                standard resumption.
Note
When a server decides to use session tickets for session resumption, it sends
                    back an empty session ID field (in its ServerHello message).
                    At this point, the session does not have a unique identifier. However, the
                    ticket specification allows the client to select and submit
                    a session ID (in its ClientHello) in a subsequent handshake
                    that uses the ticket. A server that accepts the ticket must also respond with
                    the same session ID. This is why the session ID appears in the TLS web server
                    logs even when session tickets are used as the session-resumption
                    mechanism.


Signature Algorithms



The signature_algorithms extension, which is defined in TLS
                1.2, enables clients to communicate support for various signature and hash
                algorithms. The TLS specification lists RSA, DSA, and ECDSA signature algorithms and
                MD5, SHA1, SHA224, SHA256, SHA384, and SHA512 hash functions. By using the
                    signature_algorithm extension, clients submit the
                    signature–hash algorithm pairs they support.
This extension is optional; if it’s not present, the server infers the supported
                signature algorithms from the client’s offered cipher suites (e.g., RSA suites
                indicate support for RSA signatures, ECDSA suites indicate support for ECDSA, and so
                on) and assumes support for SHA1.

OCSP Stapling
                
                



The status_request extension[73]
                is used by clients to indicate support for OCSP stapling,
                which is a feature that a server can use to send fresh certificate revocation
                information to the client. (I discuss revocation at length in the section called “Certificate Revocation” in Chapter 5.) A server that
                supports stapling returns an empty status_request extension in
                its ServerHello and provides an OCSP response (in DER format) in
                the CertificateStatus handshake message immediately after the
                    Certificate message.
OCSP stapling supports only one OCSP response and can be used to check the
                revocation status of the server certificate only. This limitation is addressed by
                RFC 6961,[76] which adds support for multiple OCSP responses (and uses the
                    status_request_v2 extension to indicate support for it).
                However, at this time, this improved version is not well supported in either client
                or server software.


Protocol Limitations



In addition to unintentional weaknesses, which I will discuss at length in subsequent
            chapters, TLS is known to currently have several limitations influenced by its
            positioning in the OSI layer and certain design decisions:
	Encryption protects the contents of a TCP connection, but the metadata of TCP
                    and all other lower layers remains in plaintext. Thus, a passive observer can
                    determine the IP addresses of the source and the destination. Information
                    leakage of this type isn’t the fault of TLS but a limitation inherent in our
                    current layered networking model.

	Even at the TLS layer, a lot of the information is exposed as plaintext. The
                    first handshake is never encrypted, allowing the passive observer to (1) learn about client capabilities and use
                    them for fingerprinting, (2) examine
                    the SNI information to determine the intended virtual host, (3) examine the host’s certificate, and,
                    when client certificates are used, (4) potentially obtain enough information to identify the user.
                    There are workarounds to avoid these issues, but they’re not used by mainstream
                    implementations.

	After encryption is activated, some protocol information remains in the clear:
                    the observer can see the subprotocol and length of each message. Depending on
                    the protocol, the length might reveal useful clues about the underlying
                    communication. For example, there have been several studies that have tried to
                    infer what resources are being accessed over HTTP based on the indicated request
                    and response sizes. Without length hiding, it’s not possible to safely use
                    compression before encryption (a common practice today).



The leakage of network-layer metadata can be solved only at those levels. The other
            limitations could be fixed, and, indeed, there are proposals and discussions about
            addressing them. You’ll learn more about these problems later in the book.

Differences between Protocol Versions



This section describes the major differences between various SSL and TLS protocol
            versions. There haven’t been many changes to the core protocol since SSL 3. TLS 1.0 made
            limited changes only to justify a different name, and TLS 1.1 was primarily released to
            fix a few security problems. TLS 1.2 introduced authenticated encryption, cleaned up the
            hashing, and otherwise made the protocol free of any hardcoded primitives.
SSL 3



SSL 3 was released in late 1995. Starting from scratch to address the many
                weaknesses of the previous protocol version, SSL 3 established the design that still
                remains in the latest versions of TLS. If you want to gain a better understanding of
                what SSL 3 changed and why, I recommend the protocol analysis paper by Wagner and Schneier.[77]

TLS 1.0



TLS 1.0 was released in January 1999. It includes the following changes from SSL
                3:
	This is the first version to specify a PRF based on the standard HMAC and
                        implemented as a combination (XOR) of HMAC-MD5 and HMAC-SHA.

	Master secret generation now uses the PRF instead of a custom
                        construction.

	The verify_data value is now based on the PRF instead
                        of a custom construction.

	Integrity validation (MAC) uses the official HMAC. SSL 3 used an earlier,
                        obsolete HMAC version.

	The format of the padding changed, making it more robust. In October 2014,
                        the so-called POODLE attack exposed SSL 3 padding as insecure.

	FORTEZZA[78] suites were removed.



As a practical matter, the result of the protocol cleanup was that TLS 1.0 was
                given FIPS approval, allowing its use by US government agencies.
If you want to study TLS 1.0 and earlier protocol versions, I recommend Eric
                Rescorla’s book SSL and TLS: Designing and Building Secure
                    Systems, published by Addison-Wesley in 2001. I have found this book
                to be invaluable for understanding the reasoning behind certain decisions as well as
                to follow the evolution of the designs.

TLS 1.1



TLS 1.1 was released in April 2006. It includes the following major changes from
                TLS 1.0:
	CBC encryption now uses explicit IVs that are included in every TLS
                        record. This addresses the predictable IV weakness, which was later
                        exploited in the BEAST attack.

	Implementations are now required to use the
                            bad_record_mac alert in response to padding problems
                        to defend against padding attacks. The decryption_failed
                        alert is deprecated.

	This version includes TLS extensions (RFC 3546) by reference.




TLS 1.2



TLS 1.2 was released in August 2008. It includes the following major changes from
                TLS 1.1:
	Support for authenticated encryption was added.

	Support for HMAC-SHA256 cipher suites was added.

	IDEA and DES cipher suites were removed.

	TLS extensions were incorporated in the main protocol specification,
                        although most actual extensions remain documented elsewhere.

	A new extension, signature_algorithms, can be used by
                        clients to communicate what hash and signature algorithms they are willing
                        to accept.

	The MD5/SHA1 combination used in the PRF was replaced with SHA256 for the
                        TLS 1.2 suites and all earlier suites when negotiated with this protocol
                        version.

	Cipher suites are now allowed to specify their own PRFs.

	The MD5/SHA1 combination used for digital signatures was replaced with a
                        single hash. By default, SHA256 is used, but cipher suites can specify their
                        own. Before, the signature hash algorithm was mandated by the protocol; now
                        the hash function is part of the signature structure, and implementations
                        can choose the best algorithm.

	The length of the verify_data element in the
                            Finished message can now be explicitly specified by
                        cipher suites.
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3 Public-Key Infrastructure


Thanks to public-key cryptography, we are able to communicate safely with people whose
        public keys we have, but there’s a number of other problems that remain unsolved. For
        example, how can we communicate with people we’ve never met? How do we store public keys and
        revoke them? Most importantly, how do we do that at world scale, with millions of servers
        and billions of people and devices? It’s a tall order, but it’s what public-key
            infrastructure (PKI) was created to solve.
Internet PKI



For most people, PKI is about the public-key infrastructure as used on the Internet.
            However, the real meaning of PKI is much wider, because it had originally been developed
            for other uses. Thus, it’s more accurate to talk about Internet
                PKI, the term that was introduced by the PKIX working group that adapted
            PKI for use on the Internet. Another term that’s recently been used is
                    Web PKI, in which
            the focus is on how browsers consume and validate certificates. In this book, I’ll
            generally use the name PKI to refer to Internet PKI, except maybe in a few cases in
            which the distinction is important.
The goal of PKI is to enable secure communication among parties who have never met
            before. The model we use today relies on trusted third parties called
                certification authorities (CAs; sometimes also called
                certificate authorities) to issue certificates that we
            unreservedly trust.
Figure 3.1. Internet PKI certificate lifecycle
[image: Internet PKI certificate lifecycle]


	Subscriber
	The subscriber (or end
                            entity) is the party that wishes to provide secure services,
                        which require a certificate.

	Registration authority
	The registration
                            authority (RA) carries out certain management functions
                        related to certificate issuance. For example, an RA might perform the
                        necessary identity validation before requesting a CA to issue a certificate.
                        In some cases, RAs are also called local
                            registration authorities (LRAs), for example, when a CA
                        wants to establish a branch that is close to its users (such as one in a
                        different country). In practice, many CAs also perform RA duties.

	Certification authority
	The certification authority (CA) is a party we
                        trust to issue certificates that confirm subscriber identities. They are
                        also required to provide up-to-date revocation information online so that
                        relying parties can verify that certificates are still valid.

	Relying party
	The relying party is the certificate consumer.
                        Technically, these are web browsers, other programs, and operating systems
                        that perform certificate validation. They do this by operating
                            root trust stores that contain the ultimately
                        trusted certificates (trust anchors) of some CAs. In
                        a wider sense, relying parties are end users who depend on certificates for
                        secure communication on the Internet.



What Is Trust?



Discussions about PKI usually use words such as identity,
                    authority, and trust. Because they
                rarely mean what we think they mean, these words often cause confusion and create a
                mismatch between our expectations and what exists in real life.
With most certificates, we get only limited assurances that we’re talking to the
                right server. Only EV certificates provide a binding with an offline identity, but
                that doesn’t mean much for security, which depends on too many other factors.
In PKI, trust is used only in a very technical sense of the
                word; it means that a certificate can be validated by a CA we have in the trust
                store. But it doesn’t mean that we trust the subscriber for
                anything. Think about this: millions of people visit Amazon’s web sites every day
                and make purchases, even though the homepage opens without encryption. Why do we do
                that? Ultimately, because they earned our (real) trust.


Standards



Internet PKI has its roots in X.509, an international standard for public-key
            infrastructure that was originally designed to support X.500, a standard for electronic
            directory services. X.500 never took off, but X.509 was adapted for use on the Internet
            by the PKIX working group.[79]
 From the charter:
The PKIX Working Group was established in the fall of 1995 with the goal of
                developing Internet standards to support X.509-based Public Key Infrastructures
                (PKIs). Initially PKIX pursued this goal by profiling X.509 standards developed by
                the CCITT (later the ITU-T). Later, PKIX initiated the development of standards that
                are not profiles of ITU-T work, but rather are independent initiatives designed to
                address X.509-based PKI needs in the Internet. Over time this latter category of
                work has become the major focus of PKIX work, i.e., most PKIX-generated RFCs are no
                longer profiles of ITU-T X.509 documents.


The main document produced by the PKIX working group is RFC 5280, which documents the
            certificate format and trust path building as well as the format of
                Certificate Revocation Lists (CRLs).[80] The PKIX working group concluded in October 2013.
Note
As is usually the case on the Internet, the reality rarely reflects standards.
                This is in part because standards are often vague and don’t fulfill real-life needs.
                It’s impossible to predict how technologies evolve over time, which is why
                implementers often take matters into their hands. In addition, major products and
                libraries often make mistakes and effectively restrict how technologies can be used
                in practice. You will find many such examples in this book.

The CA/Browser Forum (or CAB
            Forum) is a voluntary group of CAs, browser vendors, and other interested
            parties whose goal is to establish and enforce standards for certificate issuance and processing.[81] CA/Browser Forum was initially created to define standards for issuance of
                extended validation (EV) certificates, which first came out
            in 2007.[82] Although initially a rather loose group of CAs, CAB Forum changed their
            focus and restructured in 2012.[83]
            The same year, they released Baseline Requirements for the
                Issuance and Management of Publicly-Trusted Certificates, or
                Baseline Requirements for short.[84]
Although CAB Forum lists only about 40 CAs as members, Baseline Requirements
            effectively apply to all CAs; the document is incorporated into the WebTrust audit
            program for CAs[85] and explicitly required by some root store operators (e.g., Mozilla).
Also relevant is IETF’s Web PKI working group, which was
            formed in September 2012 to describe how PKI really works the Web.[86] This group is expected to document the Web PKI trust model and revocation
            practices and the usage of various fields and extensions in certificates, CRLs, and OCSP
            responses.

Certificates
            



A certificate is a digital document that contains a public key, some information about
            the entity associated with it, and a digital signature from the certificate issuer. In
            other words, it’s a shell that allows us to exchange, store, and use public keys. With
            that, certificates become the basic building block of PKI.
ASN.1, BER, DER, and PEM
                
                
                
                
                
                
                



Abstract Syntax Notation One (ASN.1) is a set of rules that
                support definition, transport, and exchange of complex data structures and objects.
                ASN.1 was designed to support network communication between diverse platforms in a
                way that’s independent of machine architecture and implementation language. ASN.1 is
                a standard originally defined in 1988 in X.208; it was last updated in 2008 in the
                X.680 series of documents.
ASN.1 defines data in an abstract way; separate standards exist to specify how
                data is encoded. Basic Encoding Rules (BER) is the first such
                standard. X.509 relies on Distinguished Encoding Rules (DER),
                which are a subset of BER that allow only one way to encode ASN.1 values. This is
                critical for use in cryptography, especially digital signatures. PEM (short for
                    Privacy-Enhanced Mail, which has no meaning in this
                context) is an ASCII encoding of DER using Base64 encoding. ASN.1 is complicated,
                but, unless you’re a developer dealing with cryptography, you probably won’t have to
                work with it directly.
Most certificates are supplied in PEM format (because it’s easy to email, copy,
                and paste), but you might sometimes encounter DER, too. If you need to convert from
                one format to another, use the OpenSSL x509 command. I’ll talk
                more about that later in the book.
If you’re curious about what ASN.1 looks like, download any certificate and use
                the online ASN.1 decoder to see the ASN.1 structure.[87]

Certificate
                        Fields



A certificate consists of fields and—in version 3—a set of extensions.
                On the surface, the structure is flat and linear, although some fields contain other
                structures.
	Version
	There are three certificate versions: 1, 2, and 3, encoded as values
                            0, 1, and 2. Version 1 supports only basic fields; version 2 adds unique
                            identifiers (two additional fields); and version 3 adds extensions. Most
                            certificates are in v3 format.

	Serial Number
	Initially, serial numbers were specified as positive integers that
                            uniquely identify a certificate issued by a given CA. Additional
                            requirements were added later as a second layer of defense from chosen
                            prefix attacks against certificate signatures (find out more in the next
                            chapter, in the section called “RapidSSL Rogue CA Certificate”); serial numbers
                            are now required to be nonsequential (unpredictable) and contain at
                            least 20 bits of entropy.

	Signature Algorithm
	This field specifies the algorithm used for the certificate signature.
                            It’s placed here, inside the certificate, so that it can be protected by
                            the signature.

	Issuer
	The Issuer field contains the
                                distinguished name (DN) of the certificate
                            issuer. It’s a complex field that can contain many components depending
                            on the represented entity. This, for example, is the DN used for one of
                            VeriSign’s root certificates: /C=US/O=VeriSign,
                                Inc./OU=Class 3 Public Primary Certification Authority; it
                            contains three components, one each for country, organization, and
                            organizational unit.

	Validity
	The certificate validity period is the time interval during which the
                            certificate is valid. It’s represented with two values: the starting
                            date and the ending date.

	Subject
	The subject is
                            the distinguished name of the entity associated with the public key for
                            which the certificate is issued. Self-signed certificates have the same
                            DN in their Subject and Issuer
                            fields. Initially, the common name (CN) component
                            of the DN was used for server hostnames (e.g.,
                                /CN=www.example.com would be used for a
                            certificate valid for www.example.com). Unfortunately, that
                            caused some confusion about how to issue certificates that are valid for
                            multiple hostnames. Today, the Subject field is
                            deprecated in favor of the Subject Alternative
                                Name extension.

	Public key
	This field contains the
                            public key, represented by the Subject Public-Key
                                Info structure (essentially algorithm ID, optional
                            parameters, and then the public key itself). Public-key algorithms are
                            specified in RFC 3279.[88]



Note
Two additional certificate fields were added in version 2: Issuer
                        Unique ID and Subject Unique ID. They were
                    later deprecated in version 3 in favor of the Authority Key
                        Identifier and Subject Key Identifier
                    extensions.


Certificate
                        Extensions



Certificate extensions were introduced in version 3 in order to add flexibility to
                the previously rigid certificate format. Each extension consists of a unique object
                identifier (OID), criticality indicator, and value, which is an ASN.1 structure. An
                extension marked as critical must be understood and successfully processed;
                otherwise the entire certificate must be rejected.
	Subject Alternative Name
	Traditionally, the Subject certificate field
                            (more specifically, only its CN component) is used to create a binding
                            between an identity and a public key. In practice, that approach is not
                            flexible enough; it supports only hostnames and does not specify how
                            multiple identities are handled. The Subject Alternative
                                Name extension replaces the Subject
                            field; it supports bindings to multiple identities specified by a DNS
                            name, IP address, or URI.

	Name Constraints
	The Name Constraints extension can be used to
                            constrain the identities for which a CA can issue certificates. Identity
                            namespaces can be explicitly excluded or permitted. This is a very
                            useful feature that could, for example, allow an organization to obtain
                            a subordinate CA that can issue certificates only for the company-owned
                            domain names. With the namespaces constrained, such a CA certificate
                            poses no danger to the entire ecosystem (i.e., a CA can’t issue
                            certificates for arbitrary sites).
RFC 5280 requires this extension to be marked as critical, but
                            noncritical name constraints are used in practice and explicitly allowed
                            by Baseline Requirements. This is due to the fact that some products do
                            not understand the Name Constraints extension and
                            reject certificates that contain it if it’s marked critical.

	Basic Constraints
	The Basic Constraints extension is used to
                            indicate a CA certificate and, via the path length
                                constraint field, control the depth of the subordinate
                            CA certificate path (i.e., whether the CA certificate can issue further
                            nested CA certificates and how deep). In theory, all CA certificates
                            must include this extension; in practice, some root certificates issued
                            as version 1 certificates are still used despite the fact that they
                            contain no extensions.

	Key Usage
	This extension defines the possible uses of the key contained in the
                            certificate. There is a fixed number of uses, any of which can be set on
                            a particular certificate. For example, a CA certificate could have the
                                Certificate Signer and CRL
                                Signer bits set.

	Extended Key Usage
	For more flexibility in determining or restricting public key usage,
                            this extension allows arbitrary additional purposes to be specified,
                            indicated by their OIDs. For example, end-entity certificates typically
                            carry the id-kp-serverAuth and
                                id-kp-clientAuth OIDs; code signing certificates
                            use the id-kp-codeSigning OID, and so on.
Although RFC 5280 indicates that Extended Key
                                Usage (EKU) should be used only on end-entity
                            certificates, in practice this extension is used on intermediate CA
                            certificates to constrain the usage of the certificates issued from them.[89] Baseline Requirements, in particular, require the use of EKU
                            constraints for an intermediate certificate to be considered technically
                            constrained using name constraints.

	Certificate Policies
	This extension contains a list of one or more policies. A policy
                            consists of an OID and an optional qualifier. When present, the
                            qualifier usually contains the URI at which the full text of the policy
                            can be obtained. Baseline Requirements establish that an end-entity
                            certificate must always include at least one policy to indicate the
                            terms under which the certificate was issued. The extension can be
                            optionally used to indicate certificate validation type.

	CRL Distribution Points
	This extension is used to determine the location of the
                                Certificate Revocation List (CRL)
                            information, usually provided as an LDAP or HTTP URI. According to
                            Baseline Requirements, a certificate must provide either CRL or OCSP
                            revocation information.

	Authority Information
                                Access
	The Authority Information Access extension
                            indicates how to access certain additional information and services
                            provided by the issuing CA. One such piece of information is the
                            location of the OCSP responder, provided as an HTTP URI. Relying parties
                            can use the responder to check for revocation information in real time.
                            In addition, some certificates also include the URI at which the issuing
                            certificate can be found. That information is very useful for
                            reconstruction of an incomplete certificate chain.

	Subject Key Identifier
	This extension contains a unique value that can be used to identify
                            certificates that contain a particular public key. It is recommended
                            that the identifier be constructed from the public key itself (e.g., by
                            hashing). All CA certificates must include this extension and use the
                            same identifier in the Authority Key Identifier
                            extension of all issued certificates.

	Authority Key Identifier
	The content of this extension uniquely identifies the key that signed
                            the certificate. It can be used during certificate path building to
                            identify the parent certificate.



RFC 5280 defines several other extensions that are rarely used; they are
                    Delta CRL Distribution Point, Inhibit
                    anyPolicy, Issuer Alternative Name,
                    Policy Constraints, Policy Mappings,
                    Subject Directory Attributes, and Subject
                    Information Access.


Certificate
                    Chains
            



In the majority of cases, an end-entity certificate alone is insufficient for a
            successful validation. In practice, each server must provide a chain of
                certificates that leads to a trusted root. Certificate chains are used
            for security, technical, and administrative reasons.
Figure 3.2. Certificate structure
[image: Certificate structure]


	Keeping the root safe
	The root CA key is of great importance not only to the organization that
                        owns it but also to the entire ecosystem. First, it has great financial
                        value. Older, widely distributed keys are effectively irreplaceable, because
                        many root stores are not being updated any more. Second, if the key is
                        compromised it can be used to issue fraudulent certificates for any domain
                        name. If compromised, the key would have to be revoked, bringing down all
                        the sites that depend on it.
Although there are still some CAs that issue end-entity certificates
                        directly from their roots, this practice is seen as too dangerous. Baseline
                        Requirements require that the root key is used only by issuing a direct
                        command (i.e., automation is not allowed), implying that the root must be
                        kept offline. Issuing subscriber certificates directly from the root is not
                        allowed, although there is a loophole for legacy systems that are still in
                        use.

	Cross-certification
	Cross-certification is the only way for new CAs to start operating today.
                        Because it’s impossible to distribute young root keys widely and quickly,
                        they must get their root key signed by some other well-established CA. Over
                        time, as old devices fade away, the new CA key will eventually become useful
                        on its own.

	Compartmentalization
	By splitting its operation across many subordinate CA certificates, a CA
                        can spread the risk of exposure. For example, different subordinate CAs
                        could be used for different certificate classes, or for different business
                        units. Unlike roots, subordinate CAs are typically placed online and used in
                        automated systems.

	Delegation
	In some cases, a CA might want to issue a subordinate CA to another
                        organization that is not affiliated with it. For example, a large company
                        might want to issue their own certificates for the domain names they
                        control. (That is often cheaper than running a private CA and ensuring that
                        the root certificate is distributed to all devices.) Sometimes,
                        organizations might want to have full control, in which case the subordinate
                        CA might be technically constrained to certain namespaces. In other cases,
                        the CA remains in control over the certificates issued from the subordinate
                        CA.



A server can provide only one certificate chain, but, in practice, there can be many
            valid trust paths. For example, in the case of cross-certification, one trust path will
            lead to the main CA’s root and another to the alternative root. CAs sometimes
            issue multiple certificates for the same keys. For example, the major signing algorithm
            used today is SHA1, but, for security reasons, everyone is moving to SHA256. The CA can
            reuse the same key but issue a new certificate. If the relying party happens to have
            both such certificates, then they will form two different trust paths.
Path building generally complicates things a lot and leads to various problems.
            Servers are expected to provide complete and valid certificate chains, but that often
            doesn’t happen due to human error and various usability issues (e.g., having to
            configure the server certificate in one place and the rest of the chain in another).
            According to SSL Pulse, there are about 5.9% of servers with incomplete certificate chains.[90]
On the other side, path building and validation is a cause of many security issues in
            client software. This is not surprising, given vague, incomplete, and competing
            standards. Historically, many validation libraries had failed with simple tasks, such as
            validating that the issuing certificate belongs to a CA. The most commonly used
            libraries today are battle tested and secure only because they patched the worst
            problems, not because they were secure from the start. For many examples, refer to the section called “Certificate Validation
                    Flaws” in Chapter 6.

Relying Parties



For relying parties to be able to validate subscriber certificates, they must keep a
            collection of root CA certificates they trust. In most cases, each operating system
            provides a root store in order to bootstrap trust. Virtually all application developers
            reuse the root stores of the underlying operating systems. The only exception to this is
            Mozilla, who maintain their own root store for consistent operation across a number of
            platforms.
	Apple
	Apple operates a root certificate program that is used on the iOS and OS X platforms.[91] To be considered for inclusion, a CA must pass an audit and
                        demonstrate that it provides broad business value to Apple’s
                        customers.

	Chrome
	Chrome relies on the store provided by the operating system and on
                        Mozilla’s store (via their networking library, NSS) when deployed on Linux.
                        However, they have some additional policies that they apply themselves when
                        the underlying facilities are not adequate.[92] For illustration: (1)
                        there’s a blacklist of roots they won’t trust; (2) an explicit lists of CAs who can
                        issue EV certificates; and (3) a
                        special requirement that, starting in February 2015, EV certificates must
                        implement Certificate Transparency.

	Microsoft
	Microsoft operates a root certificate program that is used on the Windows
                        desktop, server, and mobile phone platforms.[93] Broadly, inclusion requires a yearly audit and a demonstration
                        of business value to the Microsoft user base.

	Mozilla
	Mozilla operates a largely transparent root certificate program,[94] which they use for their products. Their root store is often
                        used as the basis for the root stores of various Linux distributions. Heated
                        discussions about policy decisions often take place on the
                            mozilla.dev.tech.crypto list and on Mozilla’s bug
                        tracking system.



All root certificate programs require CAs to undergo independent audits designed for
            certification authorities. For DV and OV certificates, one of the following audits is
            usually requested:
	WebTrust for Certificate Authorities[95]

	ETSI TS 101 456

	ETSI TS 102 042

	ISO 21188:2006



WebTrust operates the only audit program available for issuance of EV
            certificates.

Certification Authorities
            



Certification authorities (CAs) are the most important part of
            the current internet trust model. They can issue a certificate for any domain name,
            which means that anything they say goes. At the surface, it sounds like easy money,
            provided you can get your roots into a wide range of devices. But what exactly do you
            have to do to become a public CA?
	Build out a competent CA organization:
	Establish strong expertise in PKI and CA operations.

	Design a robust, secure, and compartmentalized network to enable
                            business operations yet protect the highly sensitive root and
                            subordinate keys.

	Support the certificate lifecycle workflow.

	Comply with Baseline Requirements.

	Comply with EV SSL Certificate Guidelines.

	Provide a global CRL and OCSP infrastructure.




	Comply with local laws; depending on the jurisdiction, this might mean
                    obtaining a license.

	Pass the audits required by the root programs.

	Place your roots into a wide range of root programs.

	Cross-certify your roots to bootstrap the operations.



For a long time, selling certificates was a relatively easy job for those who got in
            early. These days, there is much less money to be made selling DV certificates, given
            that their price has been driven down by strong competition. Furthermore, if support for
            DNSSEC and DANE becomes widespread it will mark the end of DV certificates. As a result,
            CAs are moving to the smaller but potentially more lucrative market for EV certificates
            and related services.

Certificate
                    Lifecycle
            



The certificate lifecycle begins when a subscriber prepares a Certificate
                Signing Request (CSR) and submits it to the CA of their choice. The main
            purpose of the CSR is to carry the relevant public key as well as demonstrate ownership
            of the corresponding private key (using a signature). CSRs are designed to carry
            additional metadata, but not all of it is used in practice. CAs will often override the
            CSR values and use other sources for the information they embed in certificates.
The CA then follows the validation procedure, using a different steps depending on the
            type of certificate requested:
	Domain validation
	Domain validated (DV) certificates are issued based
                        on proof of control over a domain name. In most cases, that means sending a
                        confirmation email to one of the approved email addresses. If the recipient
                        approves (i.e., follows the link in the email), then the certificate is
                        issued. If confirmation via email is not possible, then any other means of
                        communication (e.g., phone or snail mail) and practical demonstration of
                        control are allowed. A similar procedure is followed when issuing
                        certificates for IP addresses.

	Organization validation
	Organization validated (OV) certificates require
                        identity and authenticity verification. It wasn’t until Baseline
                        Requirements were adopted that the procedures for OV certificates were
                        standardized. As a result, there was (and still is) a lot of inconsistency
                        in how OV certificates were issued and how the relevant information was
                        encoded in the certificate.

	Extended validation
	Extended validation (EV) certificates also require
                        identity and authenticity verification, but with very strict requirements.
                        They were introduced to address the lack of consistency in OV certificates,
                        so it’s no surprise that the validation procedures are extensively
                        documented, leaving little room for inconsistencies.



Issuance of DV certificates is fully automated and can be very quick. The duration
            depends largely on how fast the confirmation email is answered. On the other end of the
            spectrum, it can take days or even weeks to obtain an EV certificate.
Note
When fraudulent certificate requests are submitted, attackers usually go after
                high-profile domain names. For this reason, CAs tend to maintain a list of such
                high-risk names and refuse to issue certificates for them without manual
                confirmation. This practice is required by Baseline Requirements.

After successful validation, the CA issues the certificate. In addition to the
            certificate itself, the CA will provide all of the intermediary certificates required to
            chain to their root. They also usually provide configuration instructions for major
            platforms.
The subscriber can now use the certificate in production, where it will hopefully stay
            until it expires. If the corresponding private key is compromised, the certificate is
            revoked. The procedure in this case is similar to that used for certificate issuance.
            There is often talk about certificate reissuance, but there is no
            such thing, technically speaking. After a certificate is revoked, an entirely new
            certificate is issued to replace it.

Revocation
            



Certificates are revoked when the associated public keys are compromised or no longer
            needed. In both cases, there is a risk of misuse. The revocation protocols and
            procedures are designed to ensure certificate freshness and otherwise communicate
            revocation to relying parties. There are two standards for certificate
            revocation:
	Certificate Revocation
                            List
	A Certificate Revocation List (CRL) is a list of
                        all serial numbers belonging to revoked certificates that have not yet
                        expired. CAs maintain one or more such lists. Every certificate should
                        contain the location of the corresponding CRL in the CRL
                            Distribution Points certificate extension. The main problem
                        with CRLs is that they tend to be large, making real-time lookups
                        slow.

	Online Certificate Status
                        Protocol
	Online Certificate Status Protocol (OCSP) allows
                        relying parties to obtain the revocation status of a single certificate.
                        OCSP servers are known as OCSP responders. The
                        location of the CA’s OCSP responder is encoded in the
                            Authority Information Access certificate extension.
                        OCSP allows for real-time lookups and addresses the main CRL deficiency, but
                        it doesn’t solve all revocation problems: the use of OCSP responders leads
                        to performance and privacy issues and introduces a new point of failure.
                        Some of these issues can be addressed with a technique called
                            OCSP stapling, which allows each server to embed
                        an OCSP response directly into the TLS handshake.




Weaknesses



Observed from a strict security perspective, Internet PKI suffers from many
            weaknesses, some big and some small; I will outline both kinds in this section. However,
            before we move to the problems, we must establish the context. In 1995, when the secure
            Web was just taking off, the Internet was a much different place and much less important
            than it is now. Then, we needed encryption so that we could deploy ecommerce and start
            making money. Today, we have ecommerce, and it’s working well—but we want much more. For
            some groups, encryption is genuinely a matter of life and death.
But what we have today is a system that does what it was originally designed to do:
            provide enough security for ecommerce operations. In a wider sense, the system provides
            us with what I like to call commercial security. It’s a sort of
            security that can be achieved with relatively little money, makes web sites go fast,
            tolerates insecure practices, and does not annoy users too much. The system is
            controlled by CAs, commercial entities in pursuit of profit, and browser vendors, who
            are primarily interested in increasing their market share. Neither group has strong
            security as
            its
            top priority, but they are not necessarily to blame—at least not
            entirely. They won’t give us security until we, the end users, start to demand it from
            them.
CAs, in particular, just can’t win. There are hundreds of CAs who issue millions of
            certificates every year and generally make the world go around. Error rates are very
            small. Certainly, the security is not as good as it could be, but the whole thing works.
            Despite that, there’s a strong resentment from many subscribers because they have to pay
            for certificates. Most don’t want to pay. Those who do pay want to pay as little as
            possible; at the same time, they demand flawless security.
In truth, anyone looking for real security (for whatever meaning of that word) is
            ultimately not going to get it from an ecosystem that’s—for better or
            worse—afraid to break things for security. That said, problems are being fixed, as
            you will see later on. Now onto the flaws.
	Permission of domain owners not required for certificate issuance
	The biggest problem we have is conceptual: any CA can issue a certificate
                        for any domain name without obtaining permission. The key issue here is that
                        there are no technical measures in place to protect us from CA omissions and
                        security lapses. This might not have seemed like a big problem early on,
                        when only a few CAs existed, but it’s a huge issue today now that there are
                        hundreds. It’s been said many times: the security of the entire PKI system
                        today is as good as the weakest link, and we have many potentially weak
                        links. All CAs are required to undergo audits, but the quality of those
                        audits is uncertain. For example, DigiNotar, the Dutch CA whose security was
                        completely compromised in 2011, had been audited.
Then, there is the question of whether CAs themselves can be trusted to do
                        their jobs well and for the public benefit; who are those hundreds of
                        organizations that we allow to issue certificates with little supervision?
                        The fear that they might put their commercial interests above our security
                        needs is sometimes justified. For example, in 2012
                                Trustwave
                        admitted to issuing a subordinate certificate that would be used for traffic
                        inspection, forging certificates for any web site on the fly.[96] Although Trustwave is the only CA to publicly admit to issuing
                        such certificates, there were rumors that such behavior was not
                        uncommon.
Many fear that governments abuse the system to allow themselves to forge
                        certificates for arbitrary domain names. Can we really be sure that some of
                        the CAs are not just fronts for government operations? And, even if they are
                        not, can we be sure that they can’t be compelled to do whatever their
                        governments tell them to? We can’t. The only unknown is the extent to which
                        governments will interfere with the operation of commercial CAs.

	No trust agility
	Another conceptual problem is lack of trust agility. Relying parties
                        operate root stores that contain a number of CA certificates. A CA is thus
                        either trusted or not; there isn’t any middle ground. In theory, a relying
                        party can remove a CA from the store. In practice, that can happen only in
                        cases of gross incompetence or security compromise, or if a CA is small.
                        Once a CA issues a sufficiently large number of certificates, they
                        effectively become too big to fail.
Some slaps on the wrist are still possible. For example, in the past we
                        had relying parties revoke EV privileges from some CAs who showed
                        incompetence. Another idea (never attempted) is to punish a misbehaving CA
                        by revoking trust in future certificates, allowing the existing ones to stay
                        in place.

	Weak domain
                            validation
	DV certificates are issued based on domain name ownership information
                        retrieved via the insecure WHOIS protocol. Furthermore, the interaction is
                        most commonly carried out using email, which in itself can be insecure. It’s
                        easy to obtain a fraudulent DV certificate if a domain name is hijacked or
                        if access to the key mailbox is obtained. It’s also possible to attack the
                        implementation of the validation process at the CA by intercepting network
                        traffic at their end.

	Revocation does not
                            work
	It is generally seen that revocation does not work. We saw several CA
                        failures in 2011, and, in every case, relying parties had to issue patches
                        or use their proprietary blacklisting channels to reliably revoke the
                        compromised certificates.
There are two reasons why that was necessary. First, there’s a delay in
                        propagating revocation information to each system. Baseline Requirements
                        allow CRL and OCSP information to stay valid for up to 10 days (12 months
                        for intermediate certificates). This means that it takes at least 10 days
                        for the revocation information to fully propagate. The second problem is the
                            soft-fail policy implemented in all current
                        browsers; they will attempt to obtain revocation information but ignore all
                        failures. An active network attacker can easily suppress OCSP requests, for
                        example, allowing him to use a fraudulent certificate indefinitely.
Because of this, Chrome developers decided to stop checking for revocation
                        except for EV certificates. For important certificates (e.g., intermediate
                        CAs), they rely on a proprietary revocation channel (CRLSets) that’s based
                        on CRL information. A possible solution to this problem is the adoption of
                        so-called must-staple certificates, which can be used
                        only in combination with a fresh OCSP response.[97] You’ll find more thorough coverage of this topic in the section called “Certificate Revocation” in Chapter 5.

	Certificate warnings defeat the purpose of
                            encryption
	Possibly the biggest failure of Internet PKI (or Web PKI, to be more
                        accurate) is a lax approach to certificate validation. Many libraries and
                        applications skip validation altogether. Browsers check certificates, but,
                        when an invalid certificate is encountered, they present their users with
                        warnings that can be bypassed. According to some studies, from 30% to 70% of
                        users click through these warnings, which completely defeats the purpose of
                        encryption. Recently, a new standard called HTTP Strict Transport
                            Security was developed to instruct compliant browsers to
                        replace warnings with errors, disallowing bypass.




Root Key
                    Compromise



One of the best ways to attack PKI is to go after the root certificates directly. For
            government agencies, one approach might be to simply request the private keys from the
            CAs in their countries. If that’s seen as possibly controversial and dangerous, anyone
            with a modest budget (say, a million dollars or so) could start a brand new CA and get
            their roots embedded in trust stores everywhere. They might or might not feel the need
            to run a proper CA as a cover; there are many roots that have never been seen issuing
            end-entity certificates.
This approach to attacking Internet PKI would have been viable for many years, but at
            some point a couple of years ago people started paying attention to what’s happening in
            the ecosystem. Browser plug-ins for certificate tracking were built; they alert users
            whenever a new certificate is encountered. Google implemented public key pinning in
            Chrome, now a very popular browser. The Electronic Frontier Foundation extended its browser plug-in HTTPS
            Everywhere to monitor root certificate usage.[98]
A far less messy approach (both then and now) would be to break the existing root and
            intermediate certificates. If you have access to the key belonging to an intermediate
            certificate, you can issue arbitrary certificates. For best results (the smallest chance
            of being discovered), fraudulent certificates should be issued from the same CA as the
            genuine ones. Many sites, especially the big ones, operate multiple certificates at the
            same time. If the issuing CA is the same, how are you going to differentiate a
            fraudulent certificate from a genuine one?
In 2003 (more than ten years ago!), Shamir and
            Tromer estimated that a $10 million purpose-built machine could break a 1,024-bit key in
            about a year (plus $20 million for the initial design and development).[99] For state agencies, that’s very cheap, considering the possibilities that
            rogue certificates open. These agencies routinely spend billions of dollars on various
            projects of interest. More recently, in 2013, Tromer reduced the estimate to only $1 million.[100]
 In that light, it’s reasonable to assume that all 1,024-bit keys of relevance are
            already broken by multiple government agencies from countries around the world.
Note
For intermediate certificates, another attack vector is the weak SHA1 signatures.
                At best, SHA1 provides only 80 bits of security against collision attacks and 160
                bits against preimage attacks. Intermediate certificates are easier to target
                because, unlike root certificates, they are not highly visible.

In some cases, it might also be reasonable to expect that end-entity certificates have
            been targeted. For example, Google transitioned away from 1,024-bit certificates only in 2013.[101]
Given the small cost of breaking weak certificates, it’s surprising that we still have
            weak root certificates in use. Mozilla planned to remove such
            certificates by the end of 2013,[102] but they faced delays because of potential breakage. To follow their
            progress, watch bug #881553.[103]

Ecosystem Measurements



Before 2010, little was publicly known about the state of the PKI ecosystem. In 2010,
            the era of active scanning and monitoring of the PKI ecosystem began. At Black Hat USA
            in July that year, I published a survey of about 120 million domain names, with an
            analysis of the observed certificates and the security of the TLS servers.[104]
            Just a couple of days later, at
            DEFCON, the Electronic Frontier Foundation (EFF) announced SSL
                Observatory, a survey of the entire IPv4 address space.[105] Their focus was on certificates, but their most important contribution was
            making all their data available to the public, sparking the imagination of many and
            leading to other scanning efforts. The EFF later announced Distributed SSL
                Observatory,[106] an effort to collect certificate chains observed by their browser add-on
            HTTP Everywhere, but they haven’t published any reports as of yet.
In 2011, Holz et al. published a proper study using a combination of a third-party
            scan of the entire IPv4 space, their own scanning of secure servers in the Alexa top one
            million list, and passive monitoring of traffic on their research network.[107] They, too, published their data sets.
In April 2012, SSL Labs started a
            project called SSL Pulse, which performs monthly scans of about
            150,000 of the most popular secure sites obtained by crawling the Alexa top one million list.[108]
Also in 2012, the International Computer Science Institute (ICSI) announced their
                ICSI Certificate Notary project, which monitors live network
            traffic of 10 partner organizations.[109] Their reports are of particular interest, because they show real-life
            certificates and encryption parameters. They also maintain a visualization of the entire
            PKI ecosystem and the relationships among CAs in their Tree of
                Trust.[110]
The most comprehensive study to come out so far was published in 2013 by Durumeric et
            al., who performed 110 Internet-wide scans over a period of 14 months.[111] To carry out their project, they developed a specialized tool called ZMap,
            which is now open source. All of their data is available online.[112] If raw data is what you’re after, Rapid7 publishes data from their monthly
            certificate scans on the same web site.[113]
None of the surveys uncovered any fatal flaws, but they provided great visibility into
            the PKI ecosystem and highlighted a number of important problems. For example, the
            public was generally unaware that CAs regularly issue certificates for private IP
            addresses (that anyone can use on their internal networks) and domain names that are not
            fully qualified (e.g., localhost, mail, intranet, and
            such). After several years, not only is large-scale scanning the norm, but there are
            also efforts such as Certificate Transparency (discussed in the
            next section) that rely on the availability of all public certificates. In February
            2014, Microsoft announced that they are extending the telemetry collected by Internet
            Explorer 11 to include certificate data.[114] They intend to use the information to quickly detect attacks against the
            users of this browser.
That same month, Delignat-Lavaud et al. published an evaluation of adherence to the
            CAB Forum guidelines over time.[115] The results show very good adherence for EV certificates, which always had
            the benefit of strict requirements, as well as improvements after the introduction of
            Baseline Requirements.
What Do We Know about Internet PKI?



Certification authorities issue millions of certificates every year. According to
                the last available information, there are about four million active certificates.
                There are many more internal and self-signed certificates, but no one can reliably
                measure how many, because they tend to be used on internal networks.
It’s not clear how many CAs there are exactly. There are slightly over 100 common
                roots (across major root stores), but many CAs use more than one root. There are
                more than a thousand subordinate CA certificates, but they are often used for
                administrative reasons; it’s not clear how many organizations there are with the
                power to issue certificates directly. We do know that the top 10 roots control over
                90% of the market. The big company names are Symantec, GoDaddy, Comodo, GlobalSign,
                DigiCert, StartCom, and Entrust.


Improvements



Over the years, we have seen many proposals to improve the state of PKI. Most of them
            came out in 2011, after several CA security compromises made us feel that the Internet
            was falling apart. I am going to discuss the proposals here, but I won’t go into much
            detail, as most are still works in development. The others have made little progress
            since they were announced. The only exceptions are pinning and DANE; these techniques
            are (almost) practical, which is why I discuss them in more detail in Chapter 10, HSTS, CSP, and Pinning.
	Perspectives
	Perspectives[116] was the first project to introduce the concept of independent
                        notaries to assist with TLS authentication. Rather than make a decision
                        about certification authenticity alone, clients consult trusted
                            notaries. Accessing the same server from different vantage
                        points can defeat attacks that take place close to the client. Notaries can
                        also keep track of a server over a period of time to defeat more advanced
                        attacks. Perspectives launched in 2008 and continues to operate.

	Convergence
	Convergence[117] is a conceptual fork of Perspectives with some
                        aspects of the implementation improved. To improve privacy, requests to
                        notaries are proxied through several servers so that the notary that knows
                        the identity of the client does not know the contents of the request. To
                        improve performance, site certificates are cached for extended periods of
                        time. Convergence had momentum when it launched in 2011, but it hasn’t seen
                        any activity since 2013. The most likely problem is that browsers don’t
                        offer adequate APIs to support plugins that want to make trust
                        decisions.

	Public key pinning
	Public key pinning addresses the biggest weakness
                        of the current PKI ecosystem, which is the fact that any CA can issue a
                        certificate for any domain name without the owner’s permission. With
                        pinning, site owners can select (pin) one or more CAs
                        that they trust, effectively carving out their own isolated trust ecosystem,
                        which is much smaller than the global one. Public key pinning is currently
                        possible via Chrome’s proprietary mechanism. A standard called
                            Public Key Pinning for HTTP is in
                        development.

	DANE
	DNSSEC is a new set of protocols that extend DNS with integrity checking.
                        With this, a domain name can be associated with a set of keys that are used
                        to sign the corresponding DNS zone. DANE is a bridge between DNSSEC and TLS
                        authentication. Although DANE can be used for pinning, its more interesting
                        ability is completely bypassing public CAs; if you trust the DNS, you can
                        use it for TLS authentication.

	Sovereign Keys
	The Sovereign Keys proposal[118] extends the existing security infrastructure (either CAs or
                        DNSSEC) with additional security guarantees. The main idea is that a domain
                        name can be claimed using a sovereign key, which is
                        recorded in publicly verifiable logs. Once a name is claimed, its
                        certificates can be valid only if they are signed by the sovereign key. On
                        the negative side, there seem to be no provisions to recover from the loss
                        of a sovereign key, which makes this proposal very risky. Sovereign Keys was
                        announced in 2011, but it hasn’t progressed past the idea stage.

	MECAI
	MECAI (which stands for Mutually
                            Endorsing CA Infrastructure)[119] is a variation of the notary concept in which the CAs run the
                        infrastructure. Servers do all the hard work and obtain freshness vouchers
                        to deliver to clients. The fact that most of the process happens behind the
                        scenes improves privacy and performance. MECAI was first published in 2011,
                        but it hasn’t progressed past the idea stage.

	Certificate Transparency
	Certificate Transparency (CT)[120] is a framework for auditing and monitoring public certificates.
                        CAs submit each certificate they issue to a public certificate
                            log and obtain a cryptographic proof of submission. Anyone
                        can monitor new certificates as they are issued; for example, domain owners
                        can watch for certificates issued for their domain names. The idea is that
                        once this mechanism is in
                        place,
                        fraudulent certificates can be quickly detected. The proof, which can be
                        delivered to clients in a variety of ways (ideally within the certificate
                        itself), can be used to confirm that a certificate had been made public.
                        Chrome developers intend to require CT for all certificates, first starting
                        with EV certificates in February 2015.[121]

	TACK
	TACK (which stands for Trust Assurances
                            for Certificate Keys)[122] is a pinning variant that pins to a server-provided signing key.
                        The introduction of a long-term signing key means more work but has the
                        benefit of being independent from the CA infrastructure. This proposal is
                        different from all others in that it works for any protocol protected by
                        TLS, not just HTTP. TACK came out in 2012. The authors provided
                        proof-of-concept implementations for some popular platforms, but, as of this
                        writing, there is no official support in any client.



Do any of these proposals stand a chance at being implemented? In 2011, when most of
            these proposals came out, there was generally a strong momentum to change things. Since
            then, the momentum has been replaced with the realization that we’re dealing with a very
            difficult problem. It’s easy to design a system that works most of the time, but it’s
            the edge cases where most ideas fail.
The proposals based on notaries face issues with browser APIs just to get off the
            ground. They aim to solve the problem of local attacks but have too many caveats. By
            depending on multiple external systems for trust, they make decision making difficult
            (e.g., what if there is a disagreement among notaries or rogue elements are introduced
            to the system?) and introduce various problems related to performance, availability, and
            running costs. Large web sites often deploy many certificates for the same name,
            especially when observed from different geographic locations. This practice leads to
            false positives; a view from any one notary might not be the only correct one.
The pinning proposals show a lot of promise. With pinning, site owners choose whom to
            trust and remove the huge attack surface inherent in the current system. Google had
            pinning deployed in 2011; it’s how the compromise of the DigiNotar CA came to light.
            Their proprietary pinning mechanism has since detected several other failures. The hope
            is that in the near future pinning will be easily accessible to everyone via a
            standardized mechanism.
DANE is the only proposal that can substantially change how we approach trust, but its
            success depends on having DNSSEC supported by either operating systems or browsers.
            Browser vendors haven’t shown much enthusiasm so far, but the operating system vendors
            might, eventually. For low-risk properties, DANE is a great solution and can completely
            displace DV certificates. On the other hand, for high-risk properties the centralization
            of trust in the DNS is potentially problematic; the key issue is the unavoidable
            influences of various governments. There is little support for DANE at the moment, but
            it’s likely that there will be more over time as DNSSEC continues to be deployed.
Given Google’s leverage, it’s likely that CT will take off, although it might take a
            few years before it’s deployed widely enough to achieve its full effect.
Overall, there are two directions that we appear to be taking in parallel that lead to
            a multitier system with varying levels of security. The first direction is to improve
            the existing system. Mozilla, for example, used its root program as leverage to put
            pressure on CAs to get their affairs in order. In fact, CAs were under a lot of pressure
            from everyone, which resulted in the reorganization of the CA/Browser Forum and Baseline
            Requirements in 2012. Increased monitoring and auditing activities since 2010 helped
            uncover many smaller issues (now largely being addressed) and generally kept the system
            in check. Eventually, CT might achieve full transparency of public trust with a
            repository of all public certificates.
The second direction is all about enabling high-risk web sites to elect into more
            security. After all, perhaps the biggest practical problem with Internet PKI is that we
            expect one system to work for everyone. In reality, there is a large number of
            properties that want easy security (low cost, low effort) and a small number of
            properties that want strong security and are prepared to work for it. New
            technologies—such as pinning, HTTP Strict Transport Security, Content Security
            Policy, and mandatory OCSP stapling—can make that possible.
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4 Attacks against PKI


There’s an inherent flaw in how Public Key Infrastructure
        (PKI) operates today: any CA is able to issue certificates for any name without having to
        seek approval from the domain name owner. It seems incredible that this system, which has
        been in use for about 20 years now, essentially relies on everyone—hundreds of
        entities and thousands of people—doing the right thing.
There are several attack vectors that could be exploited. In many cases, it’s the
        validation process that’s the target. If you can convince a CA that you are the
        legitimate owner of a domain name, they will issue you a certificate. In other cases, the
        target is the security of the CAs themselves; if a CA is compromised the attacker can
        generate certificates for any web site. And in some cases it has come to light that certain
        CAs issued subordinate certificates that were then used to issue certificates representing
        web sites at large.
This chapter documents the most interesting incidents and attacks against PKI, starting
        with the first widely reported incident from 2001 and ending with the last major one at the
        end of 2013.
VeriSign Microsoft Code-Signing Certificate
            



In January 2001, VeriSign got tricked into issuing two code-signing certificates to
            someone claiming to represent Microsoft. To pull off something like that, the attacker
            needed to establish a false identity, convince one or more people at VeriSign that the
            request was authentic, and pay the certificate fees of about $400 per certificate. In
            other words, it required deep knowledge of the system, skill, and determination. The
            problem was uncovered several weeks later, during a routine audit. The public found out
            about the incident in late March, after Microsoft put mitigation measures in
            place.
These fraudulent
            certificates were not afforded any special level of trust by the operating
            system,
            and the code signed by them wouldn’t run without warning. Still, they were thought to
            represent a danger to the users of all Windows operating systems. Because they had been
            issued under the name
            “Microsoft
            Corporation,” it was reasonable to believe that most people would approve the
            installation of the code signed by them. In Microsoft’s own words:[123]
Programs signed using these certificates would not be able to run automatically or
                bypass any normal security restrictions. However, the warning dialogue that appears
                before such programs could run would claim that they had been digitally signed by
                Microsoft. Clearly, this would be a significant aid in persuading a user to run the
                program.


Upon discovering the mistake, VeriSign promptly revoked the certificates, but that was
            not enough to protect the users, because the fraudulent certificates had not included
            any revocation information. Because of that, in late March 2001, Microsoft was forced to
            release an emergency software update to explicitly blacklist the offending certificates
            and explain to users how to spot them.[124] This apparently caused a lively debate about the implementation of
            certificate revocation in Microsoft Windows.[125] One of Microsoft’s Knowledge Base articles posted at the time also provided
            instructions for how to remove a trusted certification authority from one’s system.[126]

Thawte login.live.com



In the summer of 2008, security researcher Mike Zusman tricked Thawte’s
            certificate validation process to obtain a certificate for login.live.com,
            which was (and still is) Microsoft’s single sign-on authentication hub, used by
            millions.
Mike exploited two facts: first, that Thawte uses email for domain name authentication
            and second, that Microsoft allows anyone to register @live.com email
            addresses. The most obvious email aliases (e.g., hostmaster or
                webmaster) were either reserved or already registered, but as it
            happened Thawte allowed a particularly wide range of aliases for confirmation purposes.
            One of the email addresses Thawte accepted for authentication was
                sslcertificates@live.com, and that one was available for
            registration. As soon as Mike obtained access to this email address, obtaining a
            certificate was trivial.
Although Mike disclosed the problem in August of 2008,[127] he revealed the name of the exploited CA only later in the year.[128] Exploit details were revealed the following year, in his DEFCON 17
                talk[131].

StartCom Breach (2008)



On December 19, 2008, Mike Zusman managed to bypass StartCom’s domain name
            validation by exploiting a flaw in StartCom’s web site.[129] The flaw in the web application that controlled certificate issuance allowed
            him to obtain validation for any domain name. (StartCom operates a two-step process: in
            the first step you prove that you have control over a domain name, and in the second you
            request a certificate.) Using his discovery, Mike requested and obtained two
            certificates for domain names he had no authorization for.
His attack was detected very quickly, but only because he proceeded to obtain
            authorization and request certificates for paypal.com and
                verisign.com. As it turned out, StartCom had a secondary control
            mechanism in the form of a blacklist of high-profile web sites. This defense-in-depth
            measure flagged Mike’s activity and caused all fraudulently issued certificates to be
            revoked within minutes.
StartCom published a detailed report documenting the attack and events that took place.[130] Mike discussed the events in more detail at his DEFCON 17 talk.[131]

CertStar (Comodo) Mozilla Certificate



Only a couple of days after Mike Zusman’s attack on StartCom, their CTO and COO
            Eddy Nigg discovered a similar problem with another CA.[132] Following a trail left by some email spam that was trying to mislead him
            into “renewing” his certificates with another company,[133] Eddy Nigg came across CertStar, a Comodo partner based in Denmark who would
            happily issue certificates without performing any domain name
            validation. Eddy first obtained a certificate for startcom.org and then for
                mozilla.org. Unsurprisingly, a fraudulent certificate for Mozilla’s
            high-profile domain name made a big splash in the press and prompted a lively discussion
            on the mozilla.dev.tech.crypto mailing list.[134]
After verifying all 111 certificates issued by CertStar, Comodo revoked 11 (on top of
            the two ordered by Eddy Nigg) for which it could not verify authenticity and said that
            there was no reason to suspect that any of them actually were fraudulent.[135]

RapidSSL Rogue CA Certificate



In 2008, a group of researchers led by Alex Sotirov and Marc Stevens carried out a
            spectacular proof-of-concept attack against Internet PKI in which they managed to obtain
            a rogue CA certificate that could be used to sign a certificate for any web site in the world.[136]
To fully appreciate this attack, you need to understand the long history of attacks
            against MD5, shown in the sidebar ahead. You will find that this final blow was the last
            one in a long line of improving attacks, which started at some point after MD5 had been
            broken in 2004. In other words, a result of a persistent and sustained effort.
After releasing their work on colliding certificates for different identities in 2006,
            Marc Stevens and other researchers from his team continued to improve the chosen-prefix
            collision technique in 2007. They were able to freely generate colliding certificates in
            a simulation with their own (private) certification authority in an environment they
            fully controlled. In real life, however, there were several constraints that were
            preventing exploitation.
MD5 and PKI Attacks Timeline



	1991: Ronald Rivest designs MD5 as a
                        replacement for MD4.

	1991–1996: MD5 becomes very popular
                        and is deployed in a wide range of applications. In the meantime, early
                        signs of weaknesses in MD5[137] lead researchers to start recommending that new applications use
                        other, more secure hash functions.[138]

	2004: Wang et al. demonstrate a full collision.[139] MD5 is now considered properly broken, but the attacks are not
                        yet sophisticated enough to use in practice.

	2005: Lenstra, Wang, and de Weger
                        demonstrate a practical collision,[140] showing two different certificates with the same MD5 hash and
                        thus the same signature. The two certificates differ in the RSA key space,
                        but the remaining information (i.e., the certificate identity) is the
                        same.

	2006: Stevens, Lenstra, and de Weger
                        present a new technique,[141] initially called target collision but
                        later renamed to chosen prefix collision, which
                        allows for creation of two certificates that have the same MD5 hash but
                        different identities. MD5 is now fully broken, with meaningful attacks
                        practical.

	2008: Despite the fact that MD5 has been
                        considered weak for more than a decade and the fact that a meaningful attack
                        was demonstrated in 2006, some certification authorities are still using it
                        to sign new certificates. A group of researchers led by Sotirov and Stevens
                        use an MD5 collision to carry out an attack against PKI and obtain a “rogue”
                        CA certificate, which they can use to generate a valid certificate for any
                        web site.[142]

	2012: A very sophisticated malware
                        nicknamed Flame (also known as
                            Flamer or Skywiper) is
                        discovered infecting networks in the Middle East.[143] The malware, which is thought to be government sponsored, is
                        later discovered to have used an MD5 collision against a Microsoft CA
                        certificate in order to carry out attacks against the Windows Update
                        code-signing mechanism. After analyzing the evidence, Marc Stevens concludes
                        that the attack had been carried out using a previously unknown attack variant.[144] No one knows how long Flame had been operating, but it is
                        thought that it was active for anywhere from two to five years.




Chosen-Prefix Collision Attack



The goal of the attacker is to create two documents with the same MD5 signature.
                Most digital signature techniques sign hashes of data (instead of the data
                directly). If you can construct two documents that both have the same MD5 hash, then
                a signature for one is also valid for the other. All you now need to do is send one
                of the two documents (the innocent one) to a trust authority for signing and
                subsequently copy over the signature to the second document (the forgery).
When it comes to certificates, there’s another problem: you can’t just send your
                own certificate to a CA to sign. Instead, you send them some information (e.g.,
                domain name and your public key), and they generate the
                certificate. This is a significant constraint, but it can be overcome.
A collision attack can be carried out using two specially constructed collision
                blocks that manipulate the hashing algorithm, with the goal of bringing it to the
                same state for two different inputs. Taking into account both inputs (one in the
                innocent document and the other in the forgery), the collision blocks undo the
                differences as far as the hashing algorithm is concerned. This means two things:
                    (1) you must know the prefix of the
                innocent document in advance—this is where the name
                    chosen-prefix comes from—and (2) you must be able to put one of the
                collision blocks into it.
In practice, it’s not possible to put the collision blocks right at the end, which
                is why the resulting files must also have identical suffixes. In other words, once
                you get the collision right, you don’t want any differences in the files to make the
                hash different again.

Construction of Colliding Certificates



To use the chosen-prefix technique in real life requires that we carry out the
                attack under constraints imposed by the structure of the document we wish to forge
                and the constraints imposed by the process in which the document is created and
                digitally signed.
In the context of digital signatures, those constraints are as follows:
	Certificates are created by certification authorities, using the
                        information submitted in a CSR.

	The overall structure of a certificate is determined by the X.509 v3
                        specification. The attacker cannot influence the structure but
                            can predict it.

	Some information that ends up in the certificate is copied over from the
                        CSR. The attacker fully controls that part. Crucially, a certificate will
                        always have a public key that is copied verbatim from the CSR. The key is
                        “random” by design, which means that a specially crafted random-looking
                        collision block won’t raise any alarms.

	Some further information will be added to the certificate by the
                        certification authority. The attacker may be able to influence some parts
                        (e.g., the certificate expiration time), but in general, the best they can
                        do here is predict what the content will be.



From this information, it’s clear that the collision prefix will include all the
                certificate fields that appear before the public key (which is where the collision
                block will be stored). Because the contents of the collision block depends on the
                prefix, the entire prefix must be known before the collision data can be created and
                subsequently sent to the certification authority. Looking at the certificate fields
                in the prefix, most of them are either known (e.g., the issuer information can be
                obtained from another certificate issued by the same CA) or provided by the attacker
                in the CSR (e.g., common name). However, there are two fields controlled by the CA
                and not known in the advance: the certificate serial number and the expiration date.
                For the time being, we’ll assume that the attacker will be able to predict the
                contents of these two fields; later, we’ll examine how that can be achieved.
We also have to figure out what to do with the part that comes after the public
                key (the suffix). As it turns out, this part consists of several X.509 extensions,
                all of them known in advance. With proper alignment (MD5 operates on blocks of
                data), the suffix is simply the same in both certificates.
Thus, the attack process is as follows:
	Determine what the prefix of the CA-generated certificate will look like
                        and determine what some of the CSR fields need to be.

	Construct a desired prefix for the rogue certificate.

	Determine the suffix.

	Construct collision blocks using the data from the previous three
                        steps.

	Build a CSR and submit it to the certification authority.

	Build a rogue certificate by combining the rogue prefix, the second
                        collision block, the suffix, and the signature taken from the real
                        certificate.



Note
The second collision block and the suffix must be part of the forged
                    certificate for the attack to work, but they must be hidden in some way so as
                    not to create problems when the certificate is used. In the RapidSSL attack, the
                    so-called tumor was placed into an unimportant X.509 v3
                    comment extension, which is ignored during processing. Someone knowledgeable
                    would be able to spot the anomaly, but virtually no one examines certificates at
                    this level.


Predicting the Prefix



Now let’s go back to discuss how the researchers managed to predict the contents
                of the two fields (expiration time and serial number) that changed with every
                certificate. As it turns out, it was a combination of luck and “help” from the CA.
                Here’s how it played out:
	RapidSSL’s certificate-issuance process was fully automated, and it
                        always took exactly six seconds from the time a CSR was submitted until the
                        certificate was generated. This meant that it was possible to reliably
                        predict the certificate expiration time down to a second, which was
                        sufficient.

	Rather than randomize the serial number (which is considered best
                        practice), RapidSSL’s serial number had been a simple counter
                        incremented by one for every new certificate. This meant that if you
                        obtained two certificates in quick succession you could predict the serial
                        number of the second certificate.



There were six CAs issuing MD5-signed certificates at the time, but it was these
                two facts about RapidSSL and lack of any other prevention measures[145] that eventually made everything click. However, a big complication was
                the fact that when using the team’s special computing cluster consisting of 200
                PlayStation 3 consoles they needed about a day to generate one collision. Thus, they
                not only had to choose the exact moment in time during which to submit a CSR but
                also predict the serial number that would be assigned to the certificate.
Figure 4.1. Comparison of the genuine (left) and collided RapidSSL certificates
                        (right) [Source: Benne de Weger]
[image: Comparison of the genuine (left) and collided RapidSSL certificates (right) [Source: Benne de Weger]]


Their approach was to carry out the attack on Sunday evenings, during the
                CA’s least busy period. They would obtain the value of the serial number
                counter on a Friday and aim to submit a CSR so that the resulting serial number
                would be higher by 1,000. As the time of the attack approached, they would push the
                counter up by requesting new certificates, aiming to get as close to the 1,000 mark
                as possible. During each weekend, they had enough time to submit three attempts.
                After three unsuccessful weekends, they succeeded on the fourth.

What Happened Next



While planning the attack, the researchers took measures to minimize any potential
                fallout. For example, the rogue certificate had been created with an expiration date
                in the past, which meant that even if the private key behind it was leaked the
                certificate would have been useless. The key parties in charge of browser trust
                stores (e.g., Microsoft, Mozilla, etc.) were contacted prior to the publication of
                the attack, which allowed them to preemptively blacklist the rogue CA certificate.
                RapidSSL had
                also been given an advance warning,[146]
                and that
                made
                them
                speed
                up their migration to SHA1. They upgraded to SHA1 very quickly, within hours of the
                public announcement.[147] Full details of the chosen-prefix collision technique were released only
                later, after the researchers had been satisfied that it was safe to do so.
In the end, the attack cost only the $657 in certificate costs,[148] but the researchers had access to a cluster of 200 PS3 computers.
                Equivalent CPU power on EC2 would have cost about $20,000. When the attack was
                announced, the researchers estimated that with an improved approach they could
                repeat the attack in a day for only $2,000.


Comodo Resellers Breaches



A series of incidents unfolded in 2011, starting with another Comodo breach in March.
            The first attack took place on March 15th, when one of Comodo’s registration
            authorities (RAs) was “thoroughly compromised” (in the words of Robin Alden, then the
            CTO of Comodo), leading to the issuance of nine certificates for seven web sites.[149] The sites in question were:
	addons.mozilla.org

	global trustee

	google.com

	login.live.com

	login.skype.com

	login.yahoo.com

	mail.google.com



Clearly, with exception of the “global trustee” certificate whose purpose is unclear,
            all the certificates were for key internet web sites that hundreds of millions of users
            visit every day. Fortunately, the attack was detected very quickly and all the
            fraudulent certificates revoked within hours. It wasn’t even clear if all of these
            certificates were retrieved by the attacker. Comodo saw only the Yahoo certificate hit
            their OCSP responder (and only twice) and none of the other certificates.[150]
The next day, Comodo started to inform various other relevant parties, and the
            patching process began.[151] Although Comodo didn’t disclose the identity of the compromised RA, it was
            later alleged by the attacker that it was an Italian company, Instant SSL. The attacks
            were disclosed to the public on March 22nd by Comodo, Mozilla, Microsoft, and
            others.
An interesting fact is that some people learned about the attacks several days earlier
            from clues in the Chrome source code (which is publicly available). Jacob Appelbaum
            wrote about his discovery on the Tor blog.[152]
Comodo went on to disclose two further reseller compromises on March 26th, although
            one of them later turned out to be a false report. The other report was genuine but
            didn’t result in any fraudulent certificates being issued. Apparently, the security
            measures introduced after the March 15th incident were effective and prevented the
            attacker from issuing further certificates.[153]
Also on March 26th, the attacker
            himself started to communicate with the public,[154] and that’s when we learned about ComodoHacker (the name he chose for
            himself), which later turned out to be a much bigger story, spanning months of activity,
            many CAs, and many incidents. You can read more about him in the sidebar later in this
            chapter.
In May, Comodo was again in the news because one of their resellers, ComodoBR, was
            found to have an SQL injection vulnerability on their web site.[155] The attacker used the vulnerability to retrieve private customer data
            (including certificate signing requests), but there were no other PKI-related
            consequences.
In the end, this series of incidents exposed how operating a large network of partners
            on a trust basis alone is entirely unfeasible, especially in a complex ecosystem such as
            PKI. Comodo claimed that after the 2008 incident only 9% of their partners were left
            with the ability to fully control certificate issuing, but that was clearly still too
            many. After the first 2011 incident, no resellers were left able to issue certificates
            without further validation from Comodo.
More importantly, these incidents showed how Comodo (and possibly other CAs) had not
            been maintaining a realistic threat model. This was acknowledged by Robin Alden in a
            post on mozilla.dev.security.policy (emphasis mine):
We were dealing with the threat model that the RA could be Underperforming [sic]
                with, or trying to avoid doing, their validation duty (neither of which were the
                case for this RA), but what we had not done was adequately
                    consider the new (to us) threat model of the RA being the subject of a targeted
                    attack and entirely compromised.



StartCom Breach (2011)
            



In the summer of 2011, StartCom was again targeted, supposedly by the same person who
            had previously attacked Comodo.[156] Because of the incident, which took place on June 15th, StartCom stopped
            issuing new certificates for about a week. The following message appeared on their web
            site:
Due to an attack on our systems and a security breach that occurred at the 15th of
                June, issuance of digital certificates and related services has been suspended. Our
                services will remain offline until further notice. Subscribers and holders of valid
                certificates are not affected in any form. Visitors to web sites and other parties
                relying on valid certificates are not affected. We apologize for the temporary
                inconvenience and thank you for your understanding.


Apparently, no fraudulent certificates were issued and the attacker—who might
            have gained access to some sensitive data and come very close to the company’s precious
            root key[157]—did not cause any significant long-term damage. The company never
            followed up with an official report about the incident, acknowledging the incident only
            via a post on Eddy Nigg’s blog.[158]

DigiNotar



DigiNotar was a Dutch CA that was in business of issuing certificates to the general
            public as well as handling the PKI aspects of the Dutch e-government program PKIoverheid
                (overheid means government in Dutch). In 2011, DigiNotar became
            the first CA to be completely compromised, with fraudulent certificates used in real,
            and possibly very serious, man-in-the-middle attacks. Needless to say,
            DigiNotar’s root certificates were all revoked and the company went out of
            business, declaring voluntary bankruptcy in September 2011.
Public Discovery



The incident came to light on August 27th, when an Iranian Gmail user reported
                intermittent problems when accessing his email account.[159] According to the testimony, there were daily “downtime” periods of 30 to
                60 minutes, during which access was impossible due to an unusual certificate warning
                message. As it turned out, the downtime described by the user was caused by a
                man-in-the-middle attack that Chrome detected and prevented using its proprietary
                public key pinning mechanism.
In the days that followed, we learned that the reported problem was actually part
                of a very large attack on a scale previously unheard of, affecting an estimated
                300,000 IP addresses. Virtually all of the IP addresses were in Iran. The
                intercepting certificates were all issued by DigiNotar. But how was that
                possible?

Fall of a Certification Authority



Faced with a huge security incident that affected its digital infrastructure, the
                Dutch government immediately took control of DigiNotar and hired an external
                security consultancy, Fox-IT, to investigate. Fox-IT published their initial report[160] one week later, on September 5th. Here is the most relevant part of the
                report:
The most critical servers contain malicious software that can normally be
                    detected by anti-virus software. The separation of critical components was not
                    functioning or was not in place. We have strong indications that the CA-servers,
                    although physically very securely placed in a tempest proof environment, were
                    accessible over the network from the management LAN.
The network has been severely breached. All CA servers were members of one
                    Windows domain, which made it possible to access them all using one obtained
                    user/password combination. The password was not very strong and could easily be
                    brute-forced.
The software installed on the public web servers was outdated and not
                    patched.
No antivirus protection was present on the investigated servers.
An intrusion prevention system is operational. It is not clear at the moment
                    why it didn’t block some of the outside web server attacks. No secure central
                    network logging is in place.


The full report was released one year later, in August 2012; at 100 pages, it
                provides the most detailed report of a CA breach ever seen.[161] From the report, we learned that the initial attack occurred on June
                17th, when a public-facing web server running a vulnerable content-management
                application was breached. From there, it took the attacker until July 1st to break
                into the most secure network segment, where the root material was placed. This
                network segment was not connected to the Internet directly, but the attacker was
                able to tunnel into it from less important systems.
The first batch of 128 rogue certificates were issued on July 10th, roughly a week
                from when the attacker first had access to the CA servers themselves. Several other
                batches followed, arriving at a total of at least 531 certificates for 53 unique
                identities. Due to the scale of the breach, the actual number of rogue certificates
                is not known; the logs were tampered with, and many of the certificates later
                discovered in the wild could not be found in the appropriate databases.
As you can see in the following table, the list of names used for the certificates
                consists largely of high-profile web sites, certification authorities, and
                government agencies.
Table 4.1. Common names used in rogue certificates issued by the DigiNotar
                    attacker
	*.*.com	*.*.org	*.10million.org (2)
	*.android.com	*.aol.com	*.azadegi.com (2)
	*.balatarin.com (3)	*.comodo.com (3)	*.digicert.com (2)
	*.globalsign.com (7)	*.google.com (26)	*.JanamFadayeRahbar.com
	*.logmein.com	*.microsoft.com (3)	*.mossad.gov.il (2)
	*.mozilla.org	*.RamzShekaneBozorg.com	*.SahebeDonyayeDigital.com
	*.skype.com (22)	*.startssl.com	*.thawte.com (6)
	*.torproject.org (14)	*.walla.co.il (2)	*.windowsupdate.com (3)
	*.wordpress.com (14)	addons.mozilla.org (17)	azadegi.com (16)
	Comodo Root CA (20)	CyberTrust Root CA (20)	DigiCert Root CA (21)
	Equifax Root CA (40)	friends.walla.co.il (8)	GlobalSign Root CA (20)
	login.live.com (17)	login.yahoo.com (19)	my.screenname.aol.com
	secure.logmein.com (17)	Thawte Root CA (45)	twitter.com (18)
	VeriSign Root CA (21)	wordpress.com (12)	www.10million.org (8)
	www.balatarin.com (16)	www.cia.gov (25)	www.cybertrust.com
	www.Equifax.com	www.facebook.com (14)	www.globalsign.com
	www.google.com (12)	www.hamdami.com	www.mossad.gov.il (5)
	www.sis.gov.uk (10)	www.update.microsoft.com (4)	 



Some of the certificates were not intended for well-known web sites but were used
                to carry various messages instead. The phrases in the following table were seen in
                various places in the certificates.
Table 4.2. Messages seen embedded in the rogue certificates (it’s not clear if the
                    translations are accurate)
	Original message	Translation
	Daneshmande Bi nazir	Peerless scientist
	Hameye Ramzaro Mishkanam	Will break all cyphers
	Janam Fadaye Rahbar	I will sacrifice my life for my leader
	Ramz Shekane Bozorg	Great cryptanalyst
	Sahebe Donyaye	Possessor of the world (God)
	Sare Toro Ham Mishkanam	I will break Tor too
	Sarbaze Gomnam	Unknown soldier



It also transpired that DigiNotar had discovered the intrusion on July 19th and,
                with the help of an outside consultancy (not Fox-IT), cleaned up their systems by
                the end of July. Unfortunately, the damage had already been done. Presumably under
                the impression that the incident had been contained, DigiNotar quietly revoked a
                small number of fraudulent certificates (the ones they knew about),
                and—recklessly—failed to inform anyone.

Man-in-the-Middle Attacks



Given the scale of the compromise, it is doubtful that a prompt disclosure would
                have saved DigiNotar, but it would have definitely stopped the attackers from using
                the rogue certificates. We know this because the rogue certificates were generated
                with embedded OCSP information, and the investigators were able to track the
                certificate deployment by examining the logs of DigiNotar’s OCSP responder.[162]
Initially, after the certificates were generated the logs showed few requests:
                most likely a result of testing by the attacker. The first signs of mass deployment
                were starting to show on August 4th, with continuous increases in volume until
                August 29th, which was the day on which browsers revoked the DigiNotar root
                certification and killed all rogue certificates. We know from attacked users that
                the attack was not constant but occurred in bursts. Perhaps there was a reason for
                such behavior, such as limitations of the attack method (DNS cache poisoning was mentioned as the likely approach[163] used) or simply an inability to cope with a large amount of traffic at
                any one time.
Figure 4.2. DigiNotar OCSP activity in August 2011 [Source: Fox-IT]
[image: DigiNotar OCSP activity in August 2011 [Source: Fox-IT]]


Besides, the attackers were likely only interested in collecting Gmail passwords,
                and—assuming their capacity was limited—once they saw a password from
                one IP address they could move on to intercept another. With a password cache, they
                could abuse the accounts at their leisure (people rarely change their passwords) by
                connecting to Gmail directly.
All in all, there were exactly 654,313 OCSP requests to check the revocation
                status of the rogue Google certificate, submitted from 298,140 unique IP addresses.
                About 95% of those were within Iran, with the remaining IP addresses identified as
                the Tor exit nodes, proxies, and virtual private networks from around the
                world.

ComodoHacker Claims
                    Responsibility



ComodoHacker claimed responsibility for the DigiNotar breach, posting from his
                Pastebin account on September 5th.[164] He followed up with three further posts, as well as the
                    calc.exe binary signed with one of the certificates, thus
                offering definitive proof that he was involved in the incident. The posts contain
                some details about the attacks, which match the information in the official report
                (which was released to the public only much later).
How I got access to 6 layer network behind internet servers of DigiNotar, how
                    I found passwords, how I got SYSTEM privilage [sic] in fully patched and
                    up-to-date system, how I bypassed their nCipher NetHSM, their hardware keys,
                    their RSA certificate manager, their 6th layer internal “CERT NETWORK” which
                    have no ANY connection to internet, how I got full remote desktop connection
                    when there was firewalls that blocked all ports except 80 and 443 and doesn’t
                    allow Reverse or direct VNC connections, more and more and more...


It’s not clear if ComodoHacker was actually involved with the attacks in Iran,
                however. Although he was happy to claim responsibility for the CA hacks,
                ComodoHacker distanced himself from the MITM attacks. His second DigiNotar post
                contained the following sentence:
I’m single person, do not AGAIN try to make an ARMY out of me in Iran. If
                    someone in Iran used certs I have generated, I’m not one who should
                    explain.


In a subsequent post, he repeated that statement:
[...] I’m the only hacker, just I have shared some certs with some people in
                    Iran, that’s all... Hacker is single, just know it


Who Is ComodoHacker?



ComodoHacker made his public appearance in 2011 and left a mark on the PKI
                    with a string of attacks against several certification authorities. The first
                    batch of attacks came in March 2011, when several Comodo partners were breached.
                    Rogue certificates were issued but also quickly discovered, which prevented
                    their exploitation.
StartCom appears to have been attacked in June, and the attacker appears to
                    have had some success, but, according to both parties, no fraudulent
                    certificates were issued. StartCom stopped issuing certificates but never
                    provided any substantial details about the incident.
Then there was the DigiNotar attack, which resulted in a full compromise of
                    the DigiNotar certification authority and shook up the entire PKI
                    ecosystem.
After being mentioned as a successful target in one of ComodoHacker’s
                    messages, GlobalSign felt it prudent to halt certificate issuance for a period
                    time and investigate. They subsequently found that their public-facing web
                    server, which is not part of the CA infrastructure, had been breached.[165] The only casualty was the private key for the
                        www.globalsign.com domain name.
Immediately after the Comodo incidents, the hacker started communicating with
                    the public via the ComodoHacker account on Pastebin[166] and left 10 messages in total. After the DigiNotar
                    incident, he also had a brief period during which he was posting on Twitter,
                    under the name ich sun and handle
                        ichsunx2.[167] Although he appeared to have initially enjoyed the
                    attention and even gave interviews, his last communication was via Twitter in
                    September 2011.



DigiCert Sdn. Bhd.



In November 2011, a Malaysian certification authority, DigiCert Sdn. Bhd., was found
            to be issuing dangerously weak certificates. This company, which is not related to the
            better known and US-based DigiCert, Inc., was operating as an intermediate certification
            authority on a contract with Entrust and, before that, CyberTrust (Verizon). Twenty-two
            certificates were found to be not only weak but lacking in other critical
            aspects:
	Weak 512-bit keys
	A key that is only 512 bits long can be relatively easily refactored using
                        only brute force.[168] With the key in hand, a malicious party can impersonate the
                        victim web site without triggering certificate warnings.

	Missing usage restrictions
	Certificates are expected to carry usage restrictions in the
                            Extended Key Usage (EKU) extension. Even though
                        DigiCert Sdn. Bhd. had been contractually restricted to issuing only web
                        site certificates, because some of their certificates were missing the usage
                        restrictions they could be used for any purpose: for example, code
                        signing.

	Missing revocation information
	None of the 22 certificates contained revocation information. This meant
                        that after the invalid certificates were discovered there was no way to
                        reliably revoke them.



As it turned out, the problem was discovered only after one of the public keys was
            found to have been broken by brute force and used to sign malware.[169] After finding out about the problem, Entrust revoked the intermediate certificate[170] and informed the browser vendors. Within a week, both Entrust and CyberTrust
            revoked their respective intermediate certificates, Mozilla informed the public via a
            post on their blog,[171] and browser vendors released updates to explicitly blacklist the
            intermediate certificates and the known weak server certificates. In the aftermath,
            DigiCert, Inc. was left having to explain the name confusion to their customers.[172]

Flame
            



In May, security researchers began analyzing a new strand of malware that was making
            rounds chiefly in the Middle East. The malware in question, called
                Flame[143] (also known as
                Flamer or Skywiper), turned out to be the
            most advanced yet: over 20 MB in size, over 20 attack modules (the usual malware stuff,
            such as network sniffing, microphone activation, file retrieval, and so on), and built
            using components such as a lightweight relational database (SQLite) and a scripting
            language (Lua). It was all done in such a way that it remained undetected for a very
            long time (which meant low or undetectable failures; it was clearly not an average
            software development job).
Overall, Flame was discovered on about 1,000 systems in what seemed to be very
            targeted attacks. Iranian CERT issued a press release about Flame in May 2012. [173] Soon thereafter, the creators of the Flame malware issued a suicide command,
            with the intention that all instances would delete themselves. Still, many instances of
            the malware and several instances of the command and control servers were captured and analyzed.[174]
Figure 4.3. Flame activity [Source: Kaspersky Lab]
[image: Flame activity [Source: Kaspersky Lab]]


Flame against Windows
                        Update



What happened next stunned everyone. It transpired that one of the functions of
                the Flame malware was an attack against the Windows Update mechanism, which could be
                used to propagate to any Windows installations on the local network. The surprising
                part was the fact that Flame used a cryptographic attack to achieve it.[175] On top of that, the specific cryptographic technique wasn’t previously
                known.
Once on
                a local network, subverting Windows Update turned out to be simple. Internet
                Explorer supports Web Proxy Autodiscovery (WPAD), which is a
                protocol that programs can use to find HTTP proxies on the local network.[176] An adversary with access to the local network can advertise as a proxy
                and gain access to the victim’s HTTP(S) traffic. Flame did exactly this and included
                a simple web server that posed as a Windows Update server to advertise available
                “updates” laced with malicious code.[177]
Windows Update does not appear to use TLS (a simple test on my desktop showed all
                update traffic in plaintext), but Microsoft does use code signing for their updates,
                which means that no one should be able to create binaries that would be accepted as
                originating from Microsoft. The twist in the story was that Flame was somehow able
                to sign all its binaries as Microsoft.

Flame against Windows Terminal
                        Services



When Microsoft started talking about the weaknesses attacked by Flame, a story of
                deep incompetence unfolded. In order to operate Terminal Services licensing, upon
                activation each Terminal Server installation would receive a special subordinate CA
                certificate. The sub-CA would then be used to create end-user licenses. Microsoft
                made several critical errors when designing this system:
	The main Terminal Services CA certificate (which was used to issue
                        subordinate CAs allocated to individual customers) was issued from the same
                        trusted root as the Windows Update CA.

	The parent Terminal Services CA was allowed to be used for licensing
                        and—for some unexplained reason—code signing.

	Subordinate CA certificates had no usage restrictions, which meant that
                        they inherited the restrictions of the parent certificate.



What this meant was that every single Terminal Server customer was given an
                unrestricted subordinate CA certificate they could use to sign Windows Update
                binaries, with no hacking required.
Fortunately for Microsoft, such certificates could “only” be used against Windows
                XP machines. The subordinate CA certificates contained a proprietary X.509 extension
                called Hydra, and it was marked critical.[178]
The Windows XP code for certificate checking ignores critical extensions, but
                Windows Vista (released worldwide on 30 January 2007) and subsequent Windows
                versions understand critical extensions and handle them properly. This meant that
                the Flame authors had to find a way to obtain a certificate without the Hydra
                extension.

Flame against MD5



The other critical mistake made by Microsoft when designing the Terminal Server
                licensing scheme was using MD5 signatures for the certificates. The other errors
                (discussed in the previous section) were relatively subtle and required a good
                understanding of PKI to detect, but at the time that Microsoft’s system was
                designed,
                MD5 was widely known to be insecure. There had been a very effective demonstration
                of the insecurity of MD5 in 2008, with the generation of the rogue CA certificate in
                the RapidSSL attack. To put it into perspective, Microsoft wouldn’t even allow MD5
                certificates in their own root certificate program at that time, but they were used
                for Terminal Server licensing.
If you’ve read the earlier section describing the RapidSSL attack and the
                generation of a rogue CA certificate, you probably know what happened next: Flame
                used a chosen-prefix collision attack against MD5 in order to generate a rogue CA
                certificate. The attack was conceptually the same as the RapidSSL attack described
                earlier. Here’s what we know:
	Insecure MD5 signatures were used, which opened up the system to
                        cryptographic attacks.

	Certificate issuance was automated and the timing controlled by the
                        attacker. All fields except certificate validity and certificate serial
                        number were known in advance.

	Certificate validity was predictable, requiring second precision.

	Serial numbers were not serial as in the RapidSSL case, but they were
                        predictable (number of milliseconds since boot, followed by two fixed bytes,
                        followed by a serial certificate number) and required millisecond
                        precision.



The millisecond precision required probably made the task much more difficult and
                required a good network connection in order to minimize jitter. Access to a
                high-powered computing cluster would have sped up collision search and improved
                accuracy. We do not know how many attempts were needed (perhaps Microsoft knows, if
                they’re keeping good records of the licensing activity), but the attackers were
                obviously successful in the end.
Marc Stevens, the principal force behind the previously published chosen-prefix
                collision attack technique, analyzed the rogue certificate and determined that:[179]
Flame used a chosen-prefix collision attack. [...] Flame used a birthday
                    search followed by 4 near-collision blocks to obtain a collision.
These collision bits were hidden inside the RSA modulus in the original cert
                    and inside the issuerUniqueID field in the evil cert. Using my forensic tool I
                    was able to retrieve the near-collision blocks of the original cert (that is not
                    available and might never be) and the chaining value before the first
                    near-collision block. Using this information I was able to reconstruct the 4
                    differential paths. These differential paths clearly show that a new variant
                    chosen-prefix collision attack was used as well as a new differential path
                    construction algorithm that are not in the literature.


Whoever designed Flame and carried out the attacks against Microsoft obviously had
                at their disposal serious hardware, a capable team of developers, and access to
                world-class cryptographers.
Counter Cryptanalysis



Collision attacks against hash functions used for signatures are a real
                    danger. Even though MD5 troubles are largely behind us, SHA1, which is still
                    very widely used, is also known to be weak. In an ideal world, we would have
                    stopped using it by now. In reality, it will stay in use for a couple more
                    years, because we have to deal with a massive ecosystem and huge inertia.
In response to this problem, Marc Stevens invented
                        counter-cryptanalysis,[180] a system of looking for traces of successful collision attacks in
                    certificates, as described in the abstract of the research paper:
We introduce counter-cryptanalysis as a new paradigm for strengthening
                        weak cryptographic primitives against cryptanalytic attacks. Redesigning a
                        weak primitive to more strongly resist cryptanalytic techniques will
                        unavoidably break backwards compatibility. Instead,
                            counter-cryptanalysis exploits unavoidable
                        anomalies introduced by cryptanalytic attacks to detect and block
                        cryptanalytic attacks while maintaining full backwards compatibility.





TURKTRUST
            



In December 2012, Google uncovered another serious PKI problem thanks to the public
            key pinning mechanism supported by the Chrome browser. Pinning is a mechanism that
            allows user agents to check that only authorized CAs are issuing certificates for
            specific web sites. Chrome ships with a small, hardcoded list of sites, but they are
            some of the most visible sites in the world.[181]
In December 2012, when a Chrome user encountered a certificate that did not match with
            the hardcoded built-in
            list,
            their browser communicated the entire offending certificate chain back to Google. With
            access to the chain, they were able to link the rogue certificate to TURKTRUST, a
            Turkish certification authority.[182]
The invalid subordinate certificates were promptly revoked by all parties. TURKTRUST
            published a detailed report only a couple of days later and continued to provide regular updates.[183] We learned that a mistake had been made in August 2011 at TURKTRUST during a
            transition between two system installations, causing two certificates issued on that day
            to be marked as CA certificates. The mistake remained undetected for about 15 months,
            during which time the certificates were used as humble server certificates.
At some point in December 2012, a firewall with MITM capabilities was installed at
            EGO, one of the two organizations in possession of a misissued subordinate CA
            certificate. A contractor imported the certificate into the firewall, which started to
            perform its MITM function by generating fake web site certificates on demand. In the
            process, a clone of one of Google’s certificates was made and used and subsequently
            detected by Chrome.
It’s not clear if the contractor knew that the certificate in question was a CA
            certificate. If you’re troubleshooting a MITM device and you are not familiar with PKI,
            importing any valid certificate you have sitting around seems like a thing that you
            might try.
The browser root store operators accepted TURKTRUST’s position that the
            incident was the result of an administrative error. There was no evidence of attack
            against the CA; fake certificates were not seen outside EGO’s own network.
            Mozilla asked TURKTRUST to undergo an out-of-order audit, and Google and Opera decided
            to stop recognizing TURKTRUST’s EV certificates.

ANSSI
            



In December 2013, Google announced that Chrome was revoking trust in a subordinate CA
            certificate issued by ANSSI (Agence nationale de la sécurité des systèmes
                d’information), a French network and information security agency. A few
            days later, the trust in the parent ANSSI certification authority was restricted to
            allow only certificates issued for the domain names corresponding to French territories
            (.fr being the main such top-level domain name).[184]
The reason for the revocation was the discovery that the subordinate CA certificate
            had been used in a transparent interception (man-in-the-middle) device running on the
            agency’s network. As a result, certificates for various domain names were generated,
            some of which belonged to Google. Once again, Chrome’s pinning of Google’s certificate
            detected a misuse of the PKI.
Mozilla[185] and Microsoft[186] also disabled the offending CA certificate. The agency issued a brief
            statement blaming human error for the problem. There’s been no evidence that the
            inappropriate certificate was used anywhere outside the network of the French Treasury.[187]
As is usually the case, a discussion followed on
                mozilla.dev.security.policy.[188]
 In addition to more details of the incident being provided, various other problems
            with how ANSSI used the CA certificate were uncovered. For example, many of their
            certificates did not include any revocation information. Unusual activity was detected
            on their CRLs, with thousands of certificates suddenly appearing on previously empty
            lists. It’s not clear if and how the incident concluded. According to their own
            admission, ANSSI will be unable to comply with Baseline Requirements until at least
            December 2015, which is two years after Mozilla’s deadline.[189]
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5 HTTP and Browser Issues


In this chapter, we focus on the relationship between TLS and HTTP. TLS was designed to
        secure TCP connections, but there is so much more going on in today’s browsers. In many
        cases, the problems that arise come from the browser vendors’ struggle to deal with legacy
        web sites; they’re afraid to “break” the Web.
Sidejacking
            
            
            
            
            
            



Sidejacking is a special case of web application session
            hijacking in which session tokens[190] are retrieved from an unencrypted traffic stream. This type of attack is
            very easy to perform on a wireless or local network. In the case of a web site that does
            not use encryption, all the attacker needs to do is observe the unencrypted traffic and
            extract the session token from it. If a site uses encryption only partially, two types
            of mistakes are possible:
	Session leakage by design
	Some sites use encryption to protect account passwords but revert to
                        plaintext as soon as authentication is complete. This approach does result
                        in a slight improvement of security, but such sites effectively only end up
                        replacing leakage of one type of credentials (passwords) with the leakage of
                        another type (session tokens). Session tokens are indeed somewhat less
                        valuable because they are valid only for a limited period of time (assuming
                        session management is correctly implemented), but they are much easier to
                        capture and almost as easy to abuse by a motivated attacker.

	Session leakage by mistake
	Even when you try very hard to use encryption on an entire site, it is
                        easy to make a mistake and leave one or more resources to be retrieved over
                        plaintext. Even when the main page is protected, a single plaintext resource
                        retrieved from the same domain name may cause session leakage.[191] This is known as a mixed content problem,
                        and I discuss it in detail later in this chapter.



Figure 5.1. Wireshark network capture showing a session cookie in the clear
[image: Wireshark network capture showing a session cookie in the clear]


Sidejacking works well against any type of session token transport, because the
            attacker has full access to the communication between a user and the target web site.
            Thus, this attack can be used to obtain not only session tokens placed in cookies (the
            most common transport mechanism) but also those placed in URLs (request path or
            parameters). Once a session token is obtained, the attacker can reuse the captured value
            to communicate directly with the web site and assume the identity of the victim.
In the security community, sidejacking became better known in August 2007, when Robert
            Graham and David Maynor discussed it at Black Hat USA and released the accompanying
            Ferret and Hermit tools[192] that automate the attack.
A couple of years later, a Firefox add-on called Firesheep,[193] written by Eric Butler, made a much bigger splash because it made
            sidejacking trivially easy to carry out. Firesheep become very widely known and even
            caused several high-profile web sites to switch to full encryption. Firesheep was
            quickly followed by a detection tool called BlackSheep[194] and a counterattack tool called FireShepard.[195] In addition, a tool called Idiocy[196] was released to automatically post warnings to compromised accounts. 
Firesheep is no longer maintained. For a more recent tool of this type, consider CookieCadger,[197] a passive tool for HTTP auditing developed by Matthew Sullivan.

Cookie
                Stealing



Sidejacking, in the form discussed in the previous section, cannot be used against web
            sites that use encryption consistently, with 100% coverage. In such cases, the session
            tokens are always hidden behind a layer of encryption. You may think that such complete
            implementation of TLS also means that sidejacking is not possible, but that’s not the
            case. A common mistake made by programmers is to forget to secure their cookies for use
            with encryption. When this happens, an attacker can use a clever technique called
                cookie stealing to obtain the session tokens after
            all.
By default, cookies work across both insecure and secure transports on ports 80 and
            443. When you deploy TLS on a web site, you are also expected to mark all cookies as
            secure, letting the browsers know how to handle them. If you don’t do this, at the first
            glance it may not appear that a vulnerability exists, because your users are always
            fully protected. But this “works” only because browsers are not submitting any requests
            to plaintext port 80. If an attacker can find a way to get them to do this, the cookies
            will be revealed.
Conceptually, the attack is simple: the attacker is an active man in the
                middle (MITM) observing a victim’s complete
            internet
            traffic.
            The
            attacker cannot attack the encrypted traffic to the
            target web site, but he can wait for the victim to submit an unencrypted HTTP request to
                any other web site. At that point,
            the
            attacker steps in, hijacks the insecure connection, and responds to
            one of the victim’s plaintext HTTP requests by redirecting the browser to the target web
            site on port 80. Because any site can issue a redirection to any other site, the browser
            happily follows.
The end result is a plaintext connection to the target web site, which includes all
            nonsecure cookies in the browser’s possession. Against a typical web application that
            doesn’t mark cookies secure, the attacker now has the victim’s session tokens and can
            proceed to hijack the session.
The attack works even if the target web site is not actually responding on port 80.
            Because the attacker is in the middle, he can impersonate any plaintext server on any
            port.
Another approach that could be used by the attacker is to redirect the victim to the
            same hostname and port 443 (which is always open for a secure site) but force plaintext
            with http://www.example.com:443. Even though this request fails because the
            browser is attempting to speak plaintext HTTP on an encrypted port, the attempted
            request contains all the insecure cookies and thus all the information the attacker
            wants to obtain.
Figure 5.2. Man-in-the-middle attacker stealing unsecured cookies
[image: Man-in-the-middle attacker stealing unsecured cookies]


Mike Perry was the first to bring up this problem in public, shortly after sidejacking
            itself was publicized. But his email to the Bugtraq mailing list[198] went largely unnoticed. He persisted with a talk[199] at DEFCON 16 the following year as well as a proof-of-concept tool called CookieMonster.[200]

Cookie Manipulation



Cookie manipulation attacks are employed in situations in which the attacker can’t
            access the existing cookies because they are properly secured. By exploiting the
            weaknesses in the cookie specification, he is able to inject new cookies and overwrite
            and delete existing application cookies. The main message in this section is that the
            integrity of an application’s cookies can’t always be guaranteed, even when the
            application is fully encrypted.
Understanding HTTP Cookies
                



HTTP cookies are an extension mechanism designed to enable client-side persistence
                of small amounts of data. For each cookie they wish to create, servers specify a
                name and value pair along with some metadata to describe the scope and lifetime.
                Cookies are created using the Set-Cookie HTTP response
                header:
Set-Cookie: SID=31d4d96e407aad42; Domain=www.example.com; Path=/; Secure; HttpOnly
Set-Cookie: lang=en-US; Expires=Wed, 09 Jun 2021 10:18:14 GMT
User agents store cookies in so-called cookie jars. On
                every HTTP transaction, they look into their jars for applicable cookies and submit
                all of them using the Cookie HTTP request header:
Cookie: SID=31d4d96e407aad42; lang=en-US
From their initial creation, cookies had been very poorly specified and remained
                so for a very long time. As a result, implementations are inconsistent and contain
                loopholes. As you will see in this chapter, many of the loopholes can be exploited
                for attacks. Proper documentation became available only in 2011, in RFC 6265.[201]
From the security point of view, the problem with cookies is twofold: (1) they were poorly designed to begin with,
                allowing behavior that encourages security weaknesses, and (2) they are not in sync with the main security
                mechanism browsers use today, the same-origin policy
                (SOP).
	Loose hostname scoping
	Cookies are designed for sharing among all hostnames of a particular
                            domain name as well as across protocols and ports. A cookie destined for
                                example.com will work on all subdomains (e.g.,
                                www.example.com and secure.example.com).
                            Similarly, a hostname such as blog.example.com emits cookies
                            only for blog.example.com by default (when the
                                Domain parameter is not specified) but can also
                            explicitly expand the scope to the parent example.com. As a
                            result, a rogue server is able to inject cookies into other sites and
                            applications installed on hostnames that are sharing the same domain
                            name. I’ll call them related hostnames or
                                related sites.
This loose approach to scoping is in contrast with SOP rules, which
                            generally define a security context with an exact match of protocol,
                            hostname, and port. Deploying a secure web site is much more difficult,
                            because cookies can be set from any related hostname, substantially
                            increasing the attack surface.

	Servers do not see metadata
	Servers receive only cookie names and values, but not any other
                            information. Crucially, they don’t know the
                            origin
                            of
                            the
                            cookies.
                            If this information were available, servers would be able to reject
                            cookies that they themselves didn’t issue.

	Lack of integrity of security cookies
	The fact that cookies work seamlessly across both HTTP and HTTPS
                            protocols is a major worry. Although you can use the
                                secure attribute to denote a cookie that is
                            allowed to be submitted only over an encrypted channel, insecure and
                            secure cookies are stored within the same namespace. What’s even worse,
                            the security flag is not part of the cookie identity; if the cookie
                            name, domain, and path match, then an insecure cookie will overwrite a
                            previously set secure one.



In a nutshell, the major flaw of HTTP cookies is that their integrity is not
                guaranteed. In the remainder of this section, I focus on the security implications
                of the cookie design on TLS; for wider coverage of the topic, including coverage of
                various application security issues, I recommend Michal Zalewski’s book
                    The Tangled Web, published by No Starch Press in
                2011.

Cookie Manipulation
                        Attacks
                
                
                



There are three types of cookie manipulation attacks. Two of them can result in
                the creation of new cookies and so fall under cookie
                    injection. The third one allows cookies to be deleted. As is
                customary in application security, the attacks bear somewhat unusual and dramatic
                names.
Various researchers have rediscovered these problems over the years, giving them
                different names. Although I prefer cookie injection, because it accurately describes
                what is going on, other names you might come across are cross-site
                    cooking,[202]
                cookie fixation, cookie forcing,[203] and cookie tossing.[204]
Cookie
                            Eviction



Cookie eviction is an attack on the browser’s cookie
                    store. If for some reason the attacker does not like the cookies that are in the
                    browser’s store, he might attempt to exploit the fact that cookie stores limit
                    individual cookie size, the number of cookies per domain name, and the combined
                    cookie size. By submitting a large number of dummy cookies, the attacker
                    eventually causes the browser to purge all the real cookies, leaving only the
                    forced ones in the store.
Browser
                    cookie jars are restricted in various ways. The overall number of cookies is
                    limited,
                    and so is the storage space. There is also a per-host limit (usually of several
                    dozen), which is imposed in order to prevent a single host from taking over the
                    entire jar. Individual cookies are usually limited to around 4,096 bytes. Thus,
                    a cookie eviction attack might require the use of multiple domain names to fully
                    overflow a cookie jar.

Direct Cookie Injection



When performing direct cookie injection, the attacker is faced with a site
                    that uses secure cookies. Because of that, he is not able to read the cookies
                    (without breaking encryption), but he can create new cookies or overwrite the
                    existing ones. This attack exploits the fact that insecure and secure cookies
                    live in the same namespace.[205]
The attack is conceptually similar to the one used for cookie stealing in the
                    previous section: the attacker intercepts any plaintext HTTP transaction
                    initiated by the victim and uses it to force a plaintext HTTP request to the
                    target web site. He then intercepts that request and replies with an HTTP
                    response that includes arbitrary cookies. The attack could be as simple
                    as:
Set-Cookie: JSESSIONID=06D10C8B946311BEE81037A5493574D2
In practice, for the overwriting to work, the forced cookie’s name, domain,
                    and path must match that of the original. The attacker must observe what
                    metadata values are used by the target web site and replicate them in the
                    attack. For example, the session cookies issued by Tomcat always have the path
                    set to the web site root:
Set-Cookie: JSESSIONID=06D10C8B946311BEE81037A5493574D2; Path=/

Cookie Injection From Related Hostnames



When direct cookie injection is not possible (i.e., it’s not possible to
                    impersonate the target web site), the attacker might attack the fact that
                    cookies are shared among related hostnames. If the attacker can compromise some
                    other site on a related hostname, he might be able to inject a cookie from there.[206]
For example, you might be running a strongly secured
                        www.example.com but also have a blogging site, installed at
                        blog.example.com and hosted by a third-party with lesser focus on
                    security. If the attacker can find a cross-site scripting
                    (XSS) vulnerability in the blogging application, he will be able to manipulate
                    the cookies of the main application. The attack is the same as in the previous
                    section: the victim is forced to submit an HTTP request to the vulnerable site,
                    where arbitrary cookies can be set.
Note
Of course, any situation in which there are sites run by separate entities
                        or departments should be a cause for caution. Not only are the members of
                        the other groups a potential weak link, but they can be threats
                        themselves.

If the victim does not already hold any cookies from the target web site, the
                    attacker is in luck. Whatever cookies he sets will be used by the victim.
                    Assuming XSS, attacking is as simple as executing the following code (from a
                    page on blog.example.com):
document.cookie = 'JSESSIONID=FORCED_ID; domain=example.com';
Notice how the attacker must use the domain attribute to
                    expand the scope of the cookie from the default blog.example.com to
                        example.com, which will then be valid for the intended target,
                        www.example.com.
Getting the First Cookie



More often than not, the victim will already hold some genuine cookies. If
                        the attacker injects another cookie with the same name (as in the previous
                        example), the browser will accept both cookies and send them with every
                        request to the target web site:
Cookie: JSESSIONID=REAL_ID; JSESSIONID=FORCED_ID
This happens because the browser sees these two values as separate
                        cookies; their name, domain, and path attributes do not match exactly. But
                        although the attacker has successfully injected a cookie, the attack cannot
                        proceed; when there are multiple cookies with the same name, typically only
                        the first one is “seen” by web applications.
From here, the attacker can attempt to evict all genuine cookies from the
                        store by using a large amount of dummy cookies. That might work, but it’s
                        tricky to pull off.
Alternatively, he may try to tweak cookie metadata to push the forced
                        cookie into the first position. One such trick is to use the
                            path attribute,[207] which exploits the fact that browsers submit more specific
                        cookies first:
document.cookie = 'JSESSIONID=SECOND_FORCED_ID; domain=example.com; path=/admin';
Assuming the browser is accessing a URL at or below /admin/, it
                        will submit the cookies in the following order:
Cookie: JSESSIONID=SECOND_FORCED_ID; JSESSIONID=REAL_ID; JSESSIONID=FORCED_ID
If there are multiple sections that need to be targeted, the attacker can
                        issue multiple cookies, one for each path. But there’s still one situation
                        in which forcing a cookie from a related hostname might overwrite the
                        original cookie: when the target web site explicitly sets the cookie domain
                        to the root hostname (e.g., example.com).

Overwriting Cookies Using Related Hostnames



Overwriting a cookie from a related hostname does not always work because
                        most sites set cookies without explicitly specifying the domain. These
                        cookies are marked as host-only. When injecting from a
                        related domain name, you have to specify a domain, which means that such a
                        cookie will never match the original one even if the hostnames are the
                        same.
There is another reason overwriting a cookie from a related hostname
                        sometimes fails: you are not allowed to issue cookies for a sibling
                        hostname. From blog.example.com, you can issue a cookie for
                            example.com and www.blog.example.com but not for
                            www.example.com.
This brings me to two cases in which overwriting is possible:
	For sites that explicitly “upgrade” the cookie domain to their
                                root (e.g., example.com). I tested this case using
                                Firefox 28, but most other browsers should follow the same
                                behavior.

	For Internet Explorer (tested with version 11), which does not
                                make a distinction between explicitly and implicitly set domains.
                                However, because the names still have to match, this attack will
                                work only against sites that issue cookies from the root (e.g.,
                                    example.com).




Overwriting Cookies Using Fake Related Hostnames



There is one more case in which the attacker will be able to overwrite the
                        original cookie value: the web site is explicitly setting the cookie domain,
                        but it does not have to be the root (as in the previous case).
That’s because the MITM attacker can choose which related hostnames he
                        attacks. The core of the Internet runs on unauthenticated DNS, which means
                        that the attacker can take control of the DNS and make up arbitrary
                        hostnames. For example, if he needs to attack www.example.com, he
                        can make up a subdomain, say, www.www.example.com. From
                            that name, he can then issue a cookie for
                            www.example.com.



Impact



Anecdotally, many web sites are designed under the assumption that the attacker
                can’t discover or influence what’s in the cookies. Because that’s not true, things
                can break, but exactly how will depend on the particular application. For
                example:
	XSS
	If developers don’t expect cookies to change, they might use them in
                            insecure ways. For example, they might output them to HTML directly, in
                            which case a compromise can lead to a XSS vulnerability.

	CSRF defense bypass
	Some web site designs rely on cross-site request
                                forgery (CSRF) defenses, which require that a token
                            placed in the page parameters matches that in the cookie. Being able to
                            force a particular cookie value onto a client defeats this
                            approach.

	Application state change
	Developers quite often treat cookies as secure storage resistant to
                            tampering. It might happen that there is some part of the application
                            that relies on a cookie value for decision making. If the cookie can be
                            manipulated, so can the application. For example, there might be a
                            cookie named admin set to 1 if the
                            user is an administrator. Clearly, users can always manipulate their own
                            cookies and thus attack the application, so this is not necessarily a
                            TLS issue. However, it can still be an attack vector used by a MITM
                            attacker. The proposed mitigation techniques (discussed later in this
                            section) defend against all attacks of this type.

	Session fixation
	Session fixation is a reverse session hijacking
                            attack. Rather than obtaining the victim’s session ID, the attacker
                            connects to the target web site to obtain a session ID of his own and
                            tricks the victim into adopting it. This attack is not as powerful as
                            session hijacking, but it could have serious consequences depending on
                            the features of the target site.




Mitigation



Cookie manipulation attacks can generally be addressed with appropriate mitigation
                steps that focus on preventing the attacker from forging cookies and checking that
                received cookies are genuine:
	Deploy HTTP Strict Transport Security with subdomain coverage
	HTTP Strict Transport Security (HSTS)[208] is a relatively new standard that enforces encryption on the
                            hostname for which it is enabled. Optionally, it can enforce encryption
                            on all subdomains. With this approach, a MITM attacker cannot inject any
                            cookies using DNS trickery without breaking encryption.
HSTS significantly reduces the attack surface, but it is not
                            foolproof. First, it’s not supported by all browsers. Second, it does
                            not handle cases in which genuine (encrypted) related sites are
                            compromised or run by different, untrusted entities. I discuss HSTS at
                            length in the section called “HTTP Strict Transport Security” in Chapter 10.

	Validate cookie integrity
	The best defense against cookie injection is integrity validation:
                            ensuring that the cookie you received from a client originated from your
                            web site. This can be achieved by using a Hash-based Message
                                Authentication Code (better known by its acronym, HMAC).[209]
 Cookies that don’t need to be accessed from JavaScript can be
                            encrypted for additional protection.
It is critical that the integrity validation scheme is designed in
                            such a way that cookies issued to one user are not valid for another.
                            Otherwise, the attacker could obtain a valid cookie from a web site
                            (using his own account) and inject it into the victim’s account.
Cookie integrity validation and encryption schemes can’t
                            help secure session cookies, which are effectively a time-limited
                            password-replacement mechanism. Channel ID is an effort to address this
                            problem by creating a cryptographic binding between a browser and a site
                            at the TLS level.[210]
                            This approach, known as channel
                                binding, effectively creates a session that could be
                            used to replace HTTP sessions. In practice, it’s more likely that the
                            existing cookie-based mechanisms would be kept, but tied to the
                            provably-secure channel as a defense against session hijacking.





SSL Stripping
            



SSL stripping (or, more accurately, HTTPS
                stripping) attacks exploit the fact that most users begin their browsing
            session on a plaintext portion of a web site or type addresses without explicitly
            specifying the https:// prefix (browsers try plaintext access first). Because
            the plaintext traffic of these users is fully visible and vulnerable, it can be modified
            at will by an active network attacker.
For example, if a web site normally contains a link to the secure server, the attacker
            can rewrite the content to replace the secure link with a plaintext one. Without a
            secure link to click on, the victim is forever prevented from entering the secure area.
            In the meantime, the attacker is responding to those plaintext links by proxying the
            genuine web site content (possibly obtained over TLS). At this point, the attacker can
            not only observe sensitive information but can also modify the requests and responses at
            will.
Figure 5.3. Man-in-the-middle attack variations
[image: Man-in-the-middle attack variations]


HTTPS stripping attacks rely on the fact that most users can not tell the difference
            between insecure and secure browsing. Faced with a user who can spot the difference, the
            attacker can attempt a tricky alternative and redirect the user to a secure web site
            that’s under the attacker’s full control but the name of which is very similar to that
            of the target web site. Common tricks include very long addresses that contain the
            entire target address within (e.g., https://victim.com.example.com) or
            addresses that differ from the real ones only by one character or that use similar
            Unicode characters. 
Behind the scenes, the attacker may or may not actually be using a secure connection
            to the target web site, but that’s little consolation for the attacked user, because the
            attacker can not only observe the supposedly secure content but can also modify it at
            will.

            From the attacker’s point of
            view, the best aspects of HTTPS stripping attacks are the fact that they can be easily
            automated and that easy-to-use tools are widely available. For example, two well-known
            tools are sslstrip[211] and SSLsplit.[212]

MITM Certificates



HTTPS stripping will probably work against most users (assuming incorrectly secured
            sites), but there will be situations when it fails. Some users do notice the difference
            between secure and insecure sites and even actively check for the padlock or (rarely)
            the green glow of EV certificates. Some users also bookmark secure sites, going straight
            to the secure area from their first request.
The man in the middle is still able to redirect all traffic to go through him, but
            exploitation requires much more effort. Here are some possible alternative attack
            methods:
	Exploitation of validation flaws
	The security of TLS depends on the client correctly validating the
                        credentials presented to it. If the validation is not implemented correctly,
                        it might be possible to use a special invalid certificate or a certificate
                        chain that can’t be distinguished from a valid one.

	Rogue certificates
	Rogue certificates are fraudulent CA certificates
                        that are accepted by clients as genuine. They are difficult to obtain, but
                        they are still a possibility. For example, one such certificate was forged
                        in an attack on RapidSSL in 2008. You can read more about it in the section called “RapidSSL Rogue CA Certificate” in Chapter 4. Another possibility is that a powerful
                        attacker can brute-force the weak 1,024-bit private keys belonging to some
                        CA certificates. In 2014, there are still many such weak certificates
                        trusted by major browsers. It is estimated that breaking a 1,024-bit key
                        costs only about $1 million, although it might take about a year to execute.[213]
With a rogue certificate in hand, the attacker will be invisible to
                        everyone except the most paranoid users. Combined with the fact that the
                        MITM can interfere with OCSP revocation checks and that most browsers ignore
                        OCSP failures, if the attacker can maintain full control over a victim’s
                        Internet connection over an extended period of time it might also be
                        effectively impossible to revoke a rogue certificate.

	Self-signed certificates
	If everything else fails, the attacker may try the least sophisticated
                        approach, which is to present the victim with a self-signed certificate that
                        has most fields copied from the real one. Such a certificate is bound to
                        generate a warning, but users are generally known to click through such
                        warnings. More about that in the next section.



A very well-known tool for this
            category of MITM attacks is sslsniff.[214]

Certificate Warnings



For proper security, cryptography needs authentication. If you can’t tell that you’re
            talking to the right party, then all bets are off. Someone could be hijacking the
            communication channel to impersonate your intended recipient, and you wouldn’t be able
            to tell. It’s a situation similar to picking up the phone and talking to someone on the
            other end without knowing if they are who they claim they are.
In the context of TLS, we use certificates for authentication. (TLS supports other
            authentication methods, but they are rarely used.) When you connect to a server, you
            have a particular hostname in mind, and the expectation is that the server will present
            a certificate that proves that they have the right to handle traffic for that
            hostname.
If you receive an invalid certificate, the right thing to do is to abandon the
            connection attempt. Unfortunately, browsers don’t do that. Because the Web is full of
            invalid certificates, it’s almost guaranteed that none of the invalid certificates you
            encounter will be a result of an attack. Faced with this problem, browser vendors
            decided a long time ago not to enforce strict TLS connection security, instead pushing
            the problem down to their users in the form of certificate
                warnings.
Which brings me to one of the ugliest truths about TLS: its sole purpose is to protect
            you from man-in-the-middle attacks, but when the attack comes all you will get is a
            certificate warning from your browser. Then it will be down to you
            to determine if you are under attack.
Figure 5.4. Examples of certificate warnings in current browsers
[image: Examples of certificate warnings in current browsers]


Why So Many Invalid Certificates?



There’s plenty of anecdotal evidence about the prevalence of invalid certificates.
                It’s hard to actually find someone who has not been exposed to them. Here are some
                of the root causes:
	Misconfigured virtual hosting
	Today, most web sites run only on port 80 and don’t use encryption. A
                            common configuration mistake is to put such plaintext sites on the same
                            IP address as some other site that uses encryption on port 443. As a
                            result, users who attempt to access the plaintext sites via a
                                https prefix end up in the wrong place; the certificate
                            they get doesn’t match the intended name.
Part of the problem is that, at the technical level, we don’t have a
                            mechanism for web sites to state if they support encryption. In that
                            light, the correct way to host plaintext sites is to put them on an IP
                            address on which port 443 is closed.
In 2010, I scanned about 119 million domain names, searching for
                            secure sites.[215] The lists included all .com, .net, and .org domain names. I
                            found 22.65 million (19%) secure sites hosted on roughly two million IP
                            addresses. Of the secure sites, only about 720,000 (3.2%) sites had
                            certificates whose names matched the intended hostname.
Having a certificate with the right name is a good start, but not
                            enough. Roughly 30% of the name-matched certificates in the 2010 survey
                            could not be trusted due to other problems.

	Insufficient name coverage
	In a small number of cases, certificates are purchased and deployed,
                            but the site operator fails to specify all required hostnames. For
                            example, if you’re hosting a site at www.example.com, the
                            certificate should include that name but also the plain
                                example.com. If you have other domain names pointing to
                            your web site, the certificates should include them, too.

	Self-signed certificates and private CAs
	Certificates
                            that are self-signed or issued by private CAs are not appropriate for
                            use
                            with
                            a general audience. Such
                            certificates can’t be easily and reliably distinguished from
                            certificates used in MITM attacks. In my survey, about 48% of the trust
                            failures fell into this category.
Why are people using these certificates, then? There are many reasons,
                            including: (1) purchasing,
                            configuring, and renewing certificates is additional work and requires
                            continuous effort; (2) up
                            until a few years ago, certificates used to be expensive; and (3) some people believe that
                            publicly trusted certificates should be free and refuse to buy them.
                            However, the simple truth is that only publicly trusted certificates are
                            appropriate for public web sites. We don’t have an alternative at this
                            time.

	Certificates used by appliances
	These days, most appliances have web-based administrative user
                            interfaces and require secure communication. When these devices are
                            manufactured, the hostname and IP address they will use is not known,
                            which means that the manufacturers cannot install valid certificates
                            onto them. In theory, end users could install valid certificates
                            themselves, but many of these appliances are seldom used and are hardly
                            worth the effort. In addition, many of the user interfaces do not allow
                            user-provided certificates to be used.

	Expired certificates
	The other substantial reason for invalid certificates is expiration.
                            In my survey, 57% of the failures fell into this category. In many
                            cases, site owners forget to renew their certificates. Or, they give up
                            on having valid certificates altogether but don’t take the old ones
                            down.

	Misconfiguration
	Another frequent problem is misconfiguration. For a certificate to be
                            trusted, each user agent is required to establish a chain of trust from
                            the server certificate to a trusted root. Servers are actually required
                            to provide the entire chain, minus the trusted root. But according to
                            SSL Pulse, about 6% of the servers in their data set has an incomplete chain.[216] In some cases, browsers will be able to work around that,
                            but often they won’t.



When it comes to user experiences, one study from 2013 looked at about 3.9 billion
                public TLS connections and found that 1.54% of them resulted in certificate warnings.[217] But that’s only on the public Internet, where sites generally try to
                avoid warnings. In certain environments (e.g., intranets and internal applications),
                you might be expected to click through certificate warnings every single day as
                you’re accessing web applications required for your work.

Effectiveness of Certificate Warnings



The world would be much better without certificate warnings, but the truth is that
                browser vendors are balancing on a fine line between improving security and keeping
                their users happy. In 2008, I made a halfhearted attempt to convince Mozilla to hide
                the ability to add exceptions for invalid certificates in Firefox, in order to make
                it very difficult to bypass certificate warnings. Unsurprisingly, my bug submission
                was rejected.[218] Their response (in the form of a link to an earlier blog post),[219] was that they had tried, but the push-back from their users had been too
                strong. This is a reflection of a wider problem of misaligned priorities; browser
                vendors want increased market share, but increasing security usually has the
                opposite effect. As a result, browser vendors implement as much security as they can
                while trying to keep their most vocal users reasonably happy. Very occasionally,
                users complain about certificate warnings that come from genuine MITM attacks, and
                that reminds everyone what these warnings are for.[220] Perhaps the biggest problem with MITM attacks is that users are not
                aware of them (after all, certificate warnings are a “normal” part of life) and do
                not report them.
Still, the fact remains that the harder you make it for your users to override
                certificate warnings, the better security you provide. Today, major browsers
                generally rely on so-called interstitial or
                    interruptive warnings, which take over the entire browser
                content window. The old-style dialog warnings (still used by Safari) are seen as
                ineffective; they look the same as all other dialogs we get from our machines all
                the time. Most browsers allow users to click through the warnings. When only one
                click is required to get around the obstacle, the harsh language is all that stands
                between you and the web site. As it turns out, lots of people decide to go
                on.
Early studies of certificate warning effectiveness reported high click-through
                rates. But they largely relied on controlled environments (research labs), which was
                considered unreliable by some:[221]
Furthermore, our analysis also raised concerns about the limitations of
                    laboratory studies for usable security research on human behaviors when
                    ecological validity is important. [...] The observed reluctance of security
                    concerned people to take part in our study raises concerns about the ability of
                    such studies to accurately and reliably draw conclusions about security
                    practices and user behavior of the general population.


In the meantime, browser vendors started to use telemetry
                to monitor the usage of their products. That allowed for observation of users’
                behavior in their own environments, providing more accurate results. It turned out
                that Firefox had the best implementation, with only 33% of their users proceeding to
                the sites with invalid certificates. As a comparison, about 70% of Chrome users
                clicked through.[222] A later study reduced the click-through rate of Chrome users to 56% by
                mimicking the design used by Firefox.[223]

Click-Through Warnings versus
                        Exceptions
                
                



The success of invalid certificate handling by Firefox could also be explained by
                the fact that it’s the only browser that doesn’t use click-through warnings.
                Instead, it makes you go through a multistep process to create a
                    certificate exception, after which the certificate is
                considered as good as trusted, even on subsequent visits. It is conceivable that
                each step in the process convinces a number of users to give up and heed the
                warning.
The argument against exceptions is that you are making the use of self-signed
                certificates easier. This is certainly true, but that’s not necessarily a bad thing.
                Self-signed certificates are not inherently unsafe if used by people who know what
                they are. For example, I have an ADSL router in my house that I access over TLS. I
                am definitely not going to get a valid certificate for it, but I don’t need to click
                through a certificate warning every time I access it. Further, exceptions are
                created on a per-certificate basis. This means that if someone attacks
                me,
                a certificate warning will show again. This approach to security is known as
                    trust on first use, and is successfully deployed for the
                SSH protocol on millions of servers worldwide. Another name for this approach is
                    key continuity management.
Certificate exceptions are useful only for individual use and for small groups of
                technical users who know to create exceptions only when it’s safe to do so. It’s
                crucial that exceptions are created only when the users are not under attack. In my
                example, I know that the certificate on my ADSL router is not going to change by
                itself; seeing a warning would be highly unusual.

Mitigation



If you care about the security of your web site, you are probably going to be very
                worried about your users clicking through a genuine MITM attack. After all, you’re
                going through all the trouble of using valid certificates, configuring your servers,
                and otherwise making sure everything is fine on your end for their
                protection.
Clearly, there’s little you can do about the entire ecosystem, but you can protect
                your sites by supporting HSTS, which is a signal to the supporting browsers to
                adjust their behavior and adopt a stricter security posture when it comes to
                encryption. One of the features of HSTS is the suppression of certificate warnings.
                If there is an issue with the certificate on an HSTS site, all failures are fatal
                and cannot be overridden. With that, you are back in control of your own
                    security.


Security Indicators



Security indicators are user interface elements that relay additional information
            about security of the current page. They typically say one of four things:
	“This page uses SSL”

	“We know what legal entity operates this web site”

	“This page uses an invalid certificate”

	“Parts of this page are not encrypted”



With exception of extended certificates, which link legal entities to web sites, the
            other indicators exist largely because web site encryption is optional and because
            browsers have lax treatment of security. In a world in which the Web was 100% encrypted
            and there were no certificate warnings and no mixed content, you’d care only about the
            presence of EV certificates.
Figure 5.5. Examples of security indicators in current browsers
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The biggest problem with security indicators is that most users don’t pay attention to
            them and possibly don’t even notice them. We know this from several studies that focused
            on security indicators. One study used eye tracking and determined that many users spend
            little time looking at browser chrome, focusing on the content instead.[224] In the same study, none of the participants noticed the EV indicators; those
            that did paid no attention to them. This confirms results of another study, whose
            authors arrived at the same conclusion.[225]
Perhaps one of the contributing factors to the confusion is the lack of consistency,
            both among different browsers and in different versions of the same browser. User
            interface guidelines exist,[226] but they are not specific enough.
I remember how in the early days of SSL there was a huge push to educate browser users
            about the meaning of the padlock (“If you see a padlock, you’re safe.”). A couple
            of years later, browser vendors started playing with the user interface. In some cases
            (e.g., Firefox), there were changes made with every new release.
At the same time, web sites started to use the padlock on their web pages, further
            diluting the message. Thus we went from having the padlock mean one specific thing
            (encryption is present) to using it as a generic security indicator. In many cases, its
            presence is meaningless. For example, there are many sites that prominently feature a
            padlock but use no encryption.
Today, the only consistency, and only in the broad sense, is the use of green color
            for EV certificates. It’s still respected by all major browsers.
When it comes to mobile platforms, the situation seems to be worse. Due to much
            smaller screen sizes, browser vendors are trying to remove virtually all user interface
            elements, affecting security indicators in particular. With many mobile browsers, even
            security experts have a hard time distinguishing secure sites from insecure ones.[227]
 This has led some researchers to conclude that mobile users are three times more
            vulnerable to phishing attacks.[228] In addition, the security of mobile (nonbrowser) applications in general is
            difficult to assess. Although all applications should use secure protocols for backend
            communication, we don’t know if that’s actually happening, because they provide no
            indications. And, even if they did, who is to say that they’re not just displaying an
            image of a padlock without any security at all?

Mixed Content



The TLS protocol concerns itself with a single connection and focuses only on keeping
            the data secure at the network level. This separation of concerns works well for simpler
            protocols, for example, SMTP. However, some protocols (e.g., FTP and HTTP) have multiple
            connections associated with the same security context (e.g., web browsing session). TLS
            doesn’t provide any guidance for such situations; it’s up to user agent developers to
            provide a secure implementation.
When it comes to HTTPS, you’d struggle to find a page that uses only a single
            connection. On virtually all sites, HTML markup, images, style sheets, JavaScript, and
            other page resources arrive not only over multiple connections but possibly from
            multiple servers and sites spread across the entire Internet. For a page to be properly
            encrypted, it’s necessary that all the content is retrieved over HTTPS. In practice,
            that’s very often not the case, leading to mixed content security
            problems.
Note
This section covers only same-page mixed content, but the same problem exists at
                the web site level. Web sites that mix plaintext and secure pages are prone to
                development errors (e.g., use of insecure cookies or sensitive content available
                without encryption) and SSL stripping attacks.

Root Causes



To understand why mixed content issues are so pervasive, we have to go back to the
                origins of the Web and consider the breakneck pace of its evolution. The focus has
                always been on getting things done and overcoming the limits imposed by costs,
                technology, and security.
	Performance
	In the early days of SSL, its performance on the Web was very poor
                            compared to the performance of plaintext HTTP. Today, servers tend to
                            have fast processors and plenty of RAM, and yet we’re still concerned
                            about the speed of cryptographic operations. Back in the day, the only
                            way to obtain good SSL performance was to use specialized hardware
                            accelerators, which were terribly expensive.
Because of the performance problems, everyone tried to stay away from
                            SSL. There was no concept of providing 100% encryption coverage for web
                            sites. You might even argue that such an approach was justifiable and
                            that the choice was mostly between some security and no security at
                            all.
Today, performance is still a concern, but it’s largely about latency.
                            Because of the additional round trips required to establish a secure
                            connection, there’s a slight delay when accessing a secure web
                            site.

	Mashups
	At some point, the Web really took off, and the concept of
                                mashups was born. Web sites no longer
                            provided all of the content themselves. Instead, they mixed and matched
                            content from various sites and focused on the user experience, hiding
                            away content origin. In some cases, the content was freely available. In
                            others, mashups operated via commercial deals.
A special case of a mashup is the use of third-party code for web site
                            analytics, made extremely popular by Google when it gave its analytics
                            service away for free. According to some estimates, Google Analytics is
                            used on about 50% of the Web.[229]
Mashups are, generally, a nightmare for security. They’re mostly
                            implemented by incorporating some JavaScript code from a third-party web
                            site. Unfortunately, although this approach to site building reduces
                            costs dramatically, it also gives the third-party web sites almost full
                            control over all the sites that rely on them. It also creates a problem
                            for web site users: with so many entities involved on the same site, it
                            becomes difficult to understand what entities they’re communicating with
                            and where their data is stored.
In the context of encryption, the main issue is that in many cases
                            third-party content and services are not available via a secure server.
                            Sometimes, secure access is available but costs more. As a result,
                            people simply resorted to including insecure (plaintext) content from
                            their “secure” web sites.
To illustrate this problem, consider that Google’s ad platform,
                            AdSense, added support for secure delivery only in September 2013.[230]

	Infrastructure costs
	As competition among web sites grew, it became impossible to deliver a
                            web site from a single geographic location and remain competitive.
                                Content delivery networks (CDNs) rose in
                            popularity to deliver content to visitors at the best possible
                            performance. The idea is that by spreading a number of servers across
                            the globe, site visitors can always talk to the fastest one.
The problem with CDNs is that they are intended to serve huge amounts
                            of (usually static) data files for many customers. Encryption not only
                            increases CPU and RAM requirements but also might affect caching and
                            adds the burden of certificate and key management.
On top of that, there’s the issue of IP addresses. For plaintext HTTP,
                            for which virtual web site hosting is widely supported, IP addresses
                            don’t matter. This makes large-scale hosting and distribution easy.
                            Virtual hosting of secure web sites is a different matter altogether;
                            it’s still not feasible for public web sites. This means that suddenly
                            you need to track the mapping of web sites to IP addresses and thus
                            servers. You have to split your infrastructure into groups, which leads
                            to a much more complicated architecture and increased overhead.
Plus, there’s a worldwide shortage of IPv4 addresses. Some companies
                            try to work around this problem by using shared certificates for
                            unrelated sites, but that’s still a significant complication.
The bottom line is that secure CDNs are possible, but they cost much
                            more.



Because of all this history, browsers generally did little to provide encryption
                integrity at a page level. Mixed content issues were allowed and became deeply
                ingrained in the development culture.

Impact



The impact of mixed content issues depends on the nature of the resource that is
                not being secured. Over the years, two terms emerged: mixed passive
                    content (or mixed display) for resources that
                are lower risk, for example, images, and mixed active content
                (or mixed scripting) for higher-risk content, such as HTML
                markup and JavaScript.
Mixed active content is the really dangerous category. A single unprotected
                inclusion of a JavaScript file can be hijacked by an active attacker and used to
                obtain full control over the page and perform arbitrary actions on that web site
                using the victim’s identity. The same can be said for other dangerous resource
                types, such as HTML markup (included via frames), style sheets, Flash and Java
                applications, and so on.
Mixed passive content is not as dangerous, but it still violates the integrity of
                the page. In the least dangerous case, the attacker could mess with the victim by
                sending him messages embedded in images. This could lead to phishing. It’s also
                possible to inject exploits into images, targeting browsers’ image processing code.
                Finally, some browsers are known to use content sniffing and
                might actually process an image as a script; in that case the attacker is also able
                to take control over the page.
In addition, any unencrypted resource delivered from the same hostname as the main
                page will expose the site’s session cookies over the communication link without
                encryption. As I discussed earlier in this chapter, cookies that are not properly
                secured can be retrieved by an active attacker, but with mixed content they can be
                retrieved by a passive attacker, too.

Browser Treatment



Initially, mixed content was allowed by all browsers. The vendors expected web
                site designers and programmers to understand the potential security issues and make
                the right decisions. Over time, this attitude changed and the vendors started to
                become more interested in this problem and to restrict what was allowed.
Today, most browsers tend to implement a compromise between breakage and security:
                mixed passive content is allowed, and mixed active content is not. The only catch is
                that not all browsers agree with what constitutes active content.
	Android browser
	Mixed content is allowed without any restrictions.

	Chrome
	Chrome changed its handling of mixed active content in version 14,[231] but considered the job done only with version 21.[232]
 Chrome (currently in version 36) allows passive mixed content and
                            blocks active mixed content but allows insecure XMLHttpRequest
                            connections. By version 38, Chrome will block all mixed active content.[233]

	Firefox
	Firefox has a long history of being able to detect and warn about
                            mixed content but, due to internal implementation issues, not being able
                            to block it. The bug for this issue remained open for about 12 years.[234] With version 23, Firefox finally started to block all mixed
                            active content.[235]

	Internet Explorer
	Internet Explorer had mixed content detection since at least Internet
                            Explorer 5 (1999). When detecting a combination of encrypted and
                            plaintext resources on the same page, IE would prompt the user to decide
                            how to handle the problem. Microsoft almost switched to blocking
                            insecure content by default (with notification) and even deployed that
                            behavior in IE 7 beta,[236] but backed down due to user pressure. They made the change
                            later, in IE 9.[237] At that time, they also started allowing passive mixed
                            content by default.

	Safari
	Safari currently does not block any mixed content, making it stand out
                            compared to other major browsers. In fact, there was recently even a
                            regression in how the issue is handled. In Safari 6 on OS X, there was a
                            checkbox that allowed users to enable mixed content blocking. In version
                            7, which shipped with OS X 10.9, the checkbox is now gone.



The following table shows the details of mixed content handling in major browsers
                today.
Table 5.1. Mixed content handling in major browsers; “yes” means mixed content is
                    allowed [July 2014]
	 	Images	CSS	Scripts	XHR	WebSockets	Frames
	Andriod Browser 4.4.x	Yes	Yes	Yes	Yes	Yes	Yes
	Chrome 36	Yes	No	No	Yes	No	No
	Firefox 30	Yes	No	No	No	No	No
	Internet Explorer 11	Yes	No	No	No	No	No
	Safari 7	Yes	Yes	Yes	Yes	Yes	Yes



If you’re curious about the behavior of your favorite browser, SSL Labs provides a
                test for user agents and covers mixed content issues.[238]
Note
Mixed content vulnerabilities can be very deep. In most modern browsers, there
                    are many ways in which insecure HTTP requests can originate from secure pages.
                    For example, it is likely that browser plugins can make whatever requests they
                    want irrespective of the encryption status of the host page. This is especially
                    true for plug-ins such as Flash and Java, which are platforms in their own
                    right. There’s now a W3C effort to standardize browser handling of mixed
                    content, which should help get a consistent behavior across all products.[239]


Prevalence of Mixed Content



Anecdotally, mixed content is very common. At Qualys, we investigated this problem
                in 2011 along with several other application-level issues that result in full
                breakage of encryption in web applications.[240] We analyzed the homepages of about 250,000 secure web sites from the
                Alexa top
                one
                million list and determined that 22.41% of them used insecure
                content. If images are excluded, the number falls to 18.71%.
A more detailed study of 18,526 sites extracted from Alexa’s top 100,000 took
                place in 2013.[241] For each site, up to 200 secure pages were analyzed, for a total of
                481,656 pages. You can see the results in the following table.
Table 5.2. Mixed content in 481,656 secure pages from Alexa’s top 100,000 sites [Source:
                    Chen et al., 2013]
	 	# Inclusions	% remote	# Files	# Webpages	% Websites
	Image	406,932	38%	138,959	45,417	30%
	Frame	25,362	90%	15,227	15,419	14%
	CSS	35,957	44%	6,680	15,911	12%
	JavaScript	150,179	72%	29,952	45,059	26%
	Flash	1,721	62%	638	1,474	2%
	Total	620,151	47%	191,456	74,946	43%



Note
Even when all third-party links are encrypted, the fact remains that using
                    active content from other web sites essentially gives those sites full control.
                    Too many sites today include random widgets without thinking through the
                    security implications.[242]


Mitigation



The good news is that despite browsers’ lax attitude to mixed content issues you
                are in full control of this problem. If you implement your sites correctly, you
                won’t be vulnerable. Of course, that’s easier said than done, especially with large
                development teams.
There are two technologies that can help you minimize and, possibly, eliminate
                mixed content issues, even when it comes to incorrectly implemented
                applications:
	HTTP Strict Transport Security
	HSTS is a mechanism that enforces secure resource retrieval, even in
                            the face of user mistakes (such as attempting to access your web site on
                            port 80) and implementation errors (such as when your developers place
                            an insecure link on a secure page). HSTS is one of the best things that
                            happened to TLS recently, but it works only on the hostnames you
                            control.

	Content security policy
	To block insecure resource retrieval from third-party web sites, use
                                Content Security Policy (CSP). This security
                            feature allows blocking of insecure resources. It also has many other
                            useful features for application security issues.



HSTS and CSP are both declarative measures, which means that they can be added at
                a web server level without having to change applications. In a way, you can think of
                them as safety nets, because they can enforce security even for incorrectly
                implemented web sites.
For example, a very frequent problem on secure web sites comes from the fact that
                many of them implement automatic redirection from port 80 to port 443. That makes
                sense, because if some user does arrive to your plaintext web site you want to send
                him to the right (secure) place. However, because redirection is automatic it is
                often invisible; a plaintext link for an image will be redirected to a secure one,
                and the browser will retrieve it without anyone noticing. Anyone except the
                attacker, maybe. For this reason, consider always redirecting to the same entry
                point on the secure web site. If you do this, any mistakes in referencing resources
                will be detected and corrected in the development phase.
Of course, sites that deploy HSTS cannot be exploited, because browsers
                automatically convert insecure links to secure ones. That said, you can’t rely on
                all browsers supporting HSTS (yet), so it’s best to try to minimize such
                mistakes.


Extended Validation Certificates



Extended validation (EV) certificates are a special class of
            certificates that establish a link between a domain name and the legal entity behind it.
            (Individuals can’t get EV certificates.) In the early days of SSL, all certificates
            required strict verification, similar to how EV certificates are issued today.
            Certificate price wars led to the wide adoption of
                domain-validated (DV) certificates, which rely on cheap email
            validation. That was possible because there were no formal regulations of the
            certificate validation procedures. EV certificates were defined in 2007 by the
            CA/Browser Forum.[243]
EV certificates offer two chief advantages: (1) the identity of the domain owner is known and encoded in the
            certificate and (2) the manual verification
            process makes certificate forgery more difficult. As far as I am aware, there’s never
            been a fraudulent EV certificate.
On the other hand, it’s questionable if those advantages translate into any practical
            benefits, at least when the general user population is concerned. As we’ve seen in
            earlier sections in this chapter, users rarely notice security indicators, even the
            prominent ones used for EV certificates. For this reason, end users are going to miss
            the link to the domain name owner. Further, fraudulent DV certificates can be used to
            attack EV sites. The only way to prevent these attacks is for end users to understand
            what EV certificates mean, remember that a site uses them, notice the absence of the
            appropriate security indicators, and decide not to proceed. This seems unlikely, given
            the percentage of users who proceed to a web site even after shown a scary certificate
            warning.
Still, it’s possible that the treatment of EV certificates will improve in the future.
            For example, user agents might add features to allow site operators to always require EV
            certificates on their web sites, similar to how today you can use HTTP Strict Transport
            Security to always require encryption.
Another problem is that EV certificates are detected and indicated on the page level
            without taking into account what type of certificate is used by the resources (e.g.,
            scripts). Given the high cost of EV certificates, it is not unusual that complex sites
            often rely on DV certificates for the largely invisible subdomains.[244]
 This means that a careful network attacker can use a DV certificate against an EV
            site, potentially without affecting the green security indicators. Zusman and Sotirov
            demonstrated several interesting attack vectors:[245]
	Resources delivered from other domain names
	In many cases, sites will use an EV certificate on the main domain name
                        but retrieve resources from many other hostnames, all of which will
                        typically use DV certificates. Browser connections for these other names can
                        be intercepted with a fraudulent DV certificate, leading to malware
                        injection.

	Cookie theft
	Because browsers do not enforce certificate continuity, it’s possible to
                        use a DV certificate to intercept a connection for the main domain name,
                        steal existing or set new cookies, and redirect back to the real server. The
                        attack happens quickly and won’t be noticed by most users.

	Persistent malware injection
	If caching is enforced (the attacker can essentially say that a resource
                        is never refreshed), injected malware can persist in the browser file cache
                        and stay active for long periods of time, even on subsequent site
                        visits.




Certificate Revocation



When it comes to the certificate validity period, there is a tension between wanting
            to reduce administrative burden and needing to provide reasonably fresh information
            during verification. In theory, the idea is that every certificate should be checked for
            revocation before it is trusted. In practice, there are a number of issues that make
            revocation very difficult.
Inadequate Client-Side Support



Arguably the biggest problem with revocation checking is that client-side support
                is inadequate. Making things worse is the fact that revocation is something you
                never need—until you need it badly. As such, it’s always something that can be dealt
                with “later.”
It’s genuinely quite difficult to understand what browsers do, when they do it,
                and how. Because there is no documentation, you have to rely on mining mailing
                lists, bug reports, and source code to understand what is happening. For example,
                there is anecdotal evidence that intermediate certificates are not checked. For a
                long time, it wasn’t clear that CRLs are not used by many browsers. Support for new
                features, such as OCSP stapling, is slow to arrive. The topic is largely a black
                box. Testing can provide some answers, but only at a point in time; there are no
                guarantees that the next version will continue to behave in the same manner.
Outside the browser world, command-line tools still struggle with certificate
                validation, let alone revocation. And because most libraries do not use revocation
                checks by default, developers generally don’t bother either.
The overall conclusion is that revocation does not work as designed, for one
                reason or another.
This became painfully clear during 2011, after several CAs had been compromised.
                In each case, the only way to reliably revoke fraudulent certificates was to use
                blacklisting, but not via CRL or OCSP. Instead, all vendors resorted to issuing
                patch releases, which contained hardcoded information about the fraudulent
                certificates. Chrome and Microsoft built special mechanisms to allow them to push
                new blacklisted certificates to their users without forcing software upgrade. Other
                browsers followed or are planning to follow.

Key Issues with Revocation-Checking Standards



At a high level, there are some design flaws in both CRL and OCSP that limit their
                usefulness. There are three main problems:
	Disconnect between certificates and queries
	CRL and OCSP refer to certificates using their serial numbers, which
                            are just arbitrary numbers assigned by CAs. This is unfortunate, because
                            it’s impossible to be completely certain that the certificate you have
                            is the same one the CA is referring to. This fact could be exploited
                            during a CA compromise by creating a forged certificate that reuses a
                            serial number of an existing and valid certificate.

	Blacklisting instead of whitelisting
	CRL is, by definition, a blacklist, and cannot be anything else. OCSP
                            suffered from coming after CRLs and was probably designed to be easy to
                            use on top of the existing CRL infrastructure. In the early days, OCSP
                            responders operated largely by feeding from the information available in
                            CRLs. That was a missed opportunity to change from blacklisting to
                            whitelisting to make it possible to check that a certificate is valid,
                            not just that it has not been revoked.
The focus on blacklisting was amplified by the practice of treating
                            the “good” OCSP response status as “not revoked,” even when the server
                            actually had no knowledge of the serial number in question. As of August
                            2013, the CA/Browser Forum forbids this practice.
It sounds like a small difference, but this design flaw came up as a
                            real problem during the DigiNotar incident. Because this CA had been
                            completely compromised, there was no record of what fraudulent
                            certificates had been issued. As a result, they could not be revoked
                            individually. Although DigiNotar’s root certificates were
                            eventually removed from all browsers, as a short-term measure their OCSP
                            responders were configured to return “revoked” for all their
                            certificates.

	Privacy
	Both CRL and OCSP suffer from privacy issues: when you communicate
                            with a CA to obtain revocation information, you disclose to it some
                            information about your browsing habits. The leakage is smaller in the
                            case of CRLs as they usually cover a large number of
                            certificates.
With OCSP, the privacy issue is real, making many unhappy. If a
                            powerful adversary wishes to monitor everyone’s browsing habits, it’s
                            much easier to monitor the traffic flowing to a dozen or so major OCSP
                            responders than to eavesdrop on the actual traffic of the entire
                            world.
To address this problem, site operators should deploy OCSP
                                stapling, which is a mechanism that allows them to
                            deliver OCSP responses directly to their users along with their
                            certificates. With this change, users no longer need to talk to CAs, and
                            there is no information leakage.




Certificate Revocation Lists



Initially, Certificate Revocation Lists (CRLs) were the
                only mechanism for revocation checking. The idea was that every CA would make a list
                of revoked certificates available for download at a location specified in all their
                certificates. Clients would consult the appropriate list before trusting a
                certificate. This approach proved difficult to scale, leading to the creation of
                OCSP for real-time checks.
Issues with CRL Size



CRLs might have seemed like a good idea initially, when the number of
                    revocations was small. But when the number of revocations exploded, so did the
                    size of the CRLs. According to GoDaddy, their revocation information grew from
                    158 KB in 2007 to 41 MB in 2013.[246]
According to Netcraft, they track 220 public CRLs worldwide, and many of them
                    are quite long.[247] At the top of the list is CAcert (a CA that is not trusted by most
                    browsers) with a list that’s about 6 MB. Then there are several other large
                    entries, followed by a long tail of CRLs of decreasing size. For illustration,
                    you can see the top 10 in the following table.
Table 5.3. Top 10 CRLs by size [Source: Netcraft, 13 March 2014]
	CRL	Size (in KB)
	CAcert	6,219
	TrustCenter (Symantec)	1,583
	Entrust	1,460
	VeriSign 1 (Symantec)	1,346
	VeriSign 2 (Symantec)	744
	Comodo 1	450
	Comodo 2	366
	Thawte (Symantec)	346
	GoDaddy	320
	Comodo 3	314



GoDaddy might not feature on the list with a CRL of 41 MB, but they dominate
                    the entire list with many smaller CRLs. Other large CAs
                    also use multiple lists. This makes the CRL size problem less visible; if you’re
                    an active web user you are likely to need many of the CRLs, which means that you
                    will have to download large quantities of data on an ongoing basis. It might not
                    be an issue for desktop users, but it’s definitely unacceptable for mobile
                    users. Even if bandwidth consumption does not worry you, the CPU power required
                    for processing such large files might be prohibitive.
Note
The problem with CRL size could have been solved by using delta
                            CRLs, which contain only the differences from a previously
                        known full CRL. However, this feature, even though supported on all Windows
                        platforms, has found little use in Internet PKI.


Client-Side Support for CRLs



CRLs have never been supported particularly well on the client side. Today, in
                    particular, the situation is pretty dire.
	Chrome does not check CRLs by default, but will use them for EV
                            certificates if CRLSets (their proprietary mechanism for revocation
                            checking) and OCSP do not provide a satisfactory answer.

	Firefox never checked CRLs for non-EV certificates. It had a mechanism
                            that allowed users to manually configure CRLs, after which they would be
                            downloaded in regular time intervals. But that feature was effectively
                            killed with Firefox 24.[248] As of version 28, Firefox does not check CRLs, even for EV certificates.[249]

	Internet Explorer (and all applications relying on Windows APIs) does
                            everything correctly and downloads and checks CRL if no better
                            revocation information is available.

	Safari will attempt to chase all available revocation possibilities
                            these days, ignoring failures. On my OS X 10.9 laptop, both OCSP and CRL
                            configuration is set to “Best attempt.” There are many reports on the
                            internet (mostly from 2011, around the Comodo and DigiNotar compromises)
                            that suggest that these settings were previously at “Off” by
                            default.




CRL Freshness



CRL size is not the only problem. Long validity periods pose a significant
                    problem and reduce CRL effectiveness. For example, in May 2013 Netcraft reported
                    how a revoked intermediary certificate on a popular web site went unnoticed
                    (until they reported on it).[250]
 The certificate in question did not have any OCSP information, but the CRL
                    was correct. What happened? A part of the explanation could be that no client
                    used the CRL to check the intermediate certificates, which reflects the sad
                    state of CRL support. However, even assuming that clients use CRLs correctly
                    (e.g., Internet Explorer), the fact remains that the CA industry currently
                    allows unreasonably long validity periods for intermediate certificates. Here’s
                    the relevant quote from Baseline Requirements[251] (emphasis mine):
The CA SHALL update and reissue CRLs at least (i) once every twelve months
                        and (ii) within 24 hours after revoking a Subordinate CA Certificate, and
                            the value of the nextUpdate field MUST NOT be more
                            than twelve months beyond the value of the thisUpdate field;
                        [...]


Thus, a CRL for an intermediate certificate is going to be considered fresh
                    for 12 months, whereas a critical revocation can be added at any day of the
                    year. Allowing such a long period was probably partially motivated by the desire
                    to cache the CRLs for as long as possible, because intermediate certificates are
                    often used by millions of sites. In addition, CRLs are signed by root keys,
                    which are kept offline for safety; frequent issuance of CRLs would impact the
                    security. Still, long freshness periods of CRLs negatively impact the
                    effectiveness of revocation. This is especially true for intermediate
                    certificates, which, if compromised, could be used to impersonate any web site.
                    By comparison, CRLs for server certificates must be updated at most every 10
                    days.


Online Certificate Status Protocol



Online Certificate Status Protocol (OCSP) came after CRL to
                provide real-time access to certificate revocation information. The idea was that
                without the burden of having to download a large CRL you can afford to use OCSP on
                every visit to a web site.
OCSP Replay Attacks



In cryptography, a well-understood attack against secure communication is the
                        replay attack, in which the attacker captures and
                    reuses a genuine message, possibly in a different context. OCSP, as originally designed,[252] is not vulnerable to replay attacks; clients are invited to submit a
                    one-time token (nonce) with every request, and servers
                    are expected to include that same value in their signed response. The attacker
                    cannot replay responses because the nonce is different every time.
This secure-by-default approach ended up being difficult to scale and, at some
                    point, gave way to a lightweight approach that is less secure but easier to
                    support in high-volume environments. The Lightweight OCSP
                        Profile[253] introduced a series of recommendations designed to allow for batch
                    generation of OCSP responses and their caching. In order to support the caching,
                    the replay protection had to go. Without the nonce, an OCSP response is just a
                    file that you can generate once, keep for a while, and deliver using a
                    CDN.
As a result, clients generally don’t even try to use nonces with OCSP
                    requests. If they do (you can try it with the OpenSSL command-line client),
                    servers usually ignore them. Thus, the only defense against replay attacks is
                    the built-in time limit: attackers can reuse OCSP responses until they expire.
                    That window of opportunity will depend on the CA in question and on the type of
                    certificate (e.g., responses for EV certificates might have a short life, but
                    those for DV certificates might have a much longer one), but it ranges from
                    hours to days. Seeing OCSP responses that are valid for a week is not
                    unusual.
As is the case with CRLs, Baseline Requirements allow OCSP responses that are
                    valid for up to 10 days; up to 12 months for intermediate certificates.

OCSP Response
                            Suppression



The OCSP response suppression attack relies on the fact
                    that most browsers that use OCSP ignore failures; they submit OCSP requests in
                    good faith but carry on when things go wrong. Thus, an active attacker can
                    suppress revocation checks by forcing all OCSP requests to fail. The easiest way
                    to do this is to drop all connections to OCSP responders. It is also possible to
                    impersonate the responders and return HTTP errors. Adam Langley did this once
                    and concluded that “revocation doesn’t work.”[254]
Prior to Adam’s experiment, in 2009 Moxie Marlinspike highlighted a flaw in
                    the OCSP protocol that allows for suppression without network-level failures. In
                    OCSP, successful responses are digitally signed, which means that even an active
                    attacker cannot forge them. However, there are several unauthenticated response
                    types dealing with failures. If all you need is to make a response fail, you
                    simply return one of the unauthenticated error codes.[255]

Client-Side OCSP Support



In many cases, there is no need to attack OCSP revocation because user agents
                    ignore it completely. Older platforms and browsers do not use OCSP or do not use
                    it by default. For example, Windows XP and OS X before 10.7 fall into this
                    category.
More important, however, is the fact that some modern browsers choose not to
                    use OCSP. For example, iOS uses OCSP (and, presumably, CRL) only for EV certificates.[256] Chrome largely stopped using OCSP in 2012,[257] replacing all standards-based revocation checks with a lightweight
                    proprietary mechanism called CRLSets.[258] CRLSets improve revocation checking performance (all checks are
                    local and thus fast) but decrease security because they cover only a subset of
                    all revocations, mostly those related to CA certificates. Private CAs are
                    especially vulnerable, because there is no way for them to be included in the
                    CRLSets. In the most recent versions, OCSP revocation checking is attempted only
                    for EV certificates and only if their CRLSets don’t already cover the issuing
                    CA.
Even when OCSP is used, virtually all browsers implement
                        soft-fail. They attempt OCSP requests and react
                    properly to successful OCSP responses but ignore all failures. In practice, this
                    provides protection only in a small number of use cases. As you’ve seen in the
                    previous section, soft-fail clearly does not work against an active attacker who
                    can simply suppress all OCSP traffic.
Typically, the worst that can happen when revocation checking fails is that an
                    EV site will lose its security status, leading to all EV indicators being
                    stripped from the user interface. I am not sure we can expect anyone to actually
                    notice such an event. And, if they do, how should they react to it?

Responder Availability and
                            Performance



From the beginning and to this day, OCSP has had a reputation for being
                    unreliable. The problems in the early days caused browsers to adopt the
                    inadequate soft-fail approach, and OCSP has never recovered. CAs are much better
                    these days at making their responders available, but browser vendors still
                    refuse to switch to hard-fail and put their reputation on the line.
Note
Thanks to Netcraft, we now have visibility into the performance of OCSP
                        responders of various CAs.[259]

There are three separate issues to consider:
	Availability
	OCSP responder availability is the biggest issue. If you’re
                                running a secure web site and your CA’s OCSP responder is
                                down, your site will suffer. If browsers implemented hard-fail, then
                                your site would be down, too.[260]
Even with soft-fail, it’s likely that you will experience severe
                                performance issues in the case of the OCSP responder downtime. User
                                agents that use OCSP will attempt to check for revocation, and they
                                all have a network timeout after which they give up. This timeout is
                                typically set at several seconds. As an illustration, Firefox uses
                                three seconds by default and 10 seconds when in hard-fail
                                mode.
There is also an additional problem with the so-called
                                        captive
                                    portals, which arise when users don’t have full
                                access to the Internet (and thus to various OCSP responders) but
                                still need to validate certificates in some way. In practice, this
                                happens most often when you are required to authenticate on a Wi-Fi
                                network. Although captive portals could take care to whitelist
                                public OCSP responders, most don’t do that.

	Performance
	By its nature, OCSP is slow. It requires user agents to first
                                parse a certificate, then obtain the OCSP URL, open a separate TCP
                                connection to the OCSP responder, wait for a response, and only then
                                proceed to the original web site. A slow OCSP responder will add
                                hundreds of milliseconds of latency to the first connection to your
                                web site.
OCSP responder performance is possibly the single biggest
                                technical differentiator among CAs today. You basically want to
                                select a CA that will provide minimal slowdown to your web site. For
                                that, a fast and globally distributed OCSP responder network is
                                required. Some CAs are using their own infrastructure, while others
                                are opting for commercial CDNs, such as Akamai and
                                CloudFlare.
Maintaining a robust OCSP responder is not a trivial task.
                                VeriSign (now Symantec) is known for operating a highly available
                                OCSP responder service. According to their report, during 2012 they
                                were serving over 4.5 billion OCSP responses every day.[261] A more recent article mentions as many as 14 billion
                                transactions per day in 2014.[262]

	Correctness
	If an OCSP responder is available and fast, that does not mean
                                that it is actually responding correctly. Some CAs do not
                                synchronize their OCSP responders with changes in their main
                                database. For example, some time ago I obtained a certificate from a
                                public CA, installed it on my web site, and promptly discovered that
                                all OCSP requests were failing.
After contacting the CA, I learned that they allow up to 40
                                minutes from the creation of a certificate until they update the
                                OCSP responders. My suggestion to postpone certificate issuance
                                until their entire infrastructure was ready was dismissed as “too
                                complicated.”



At this point, it’s unlikely that OCSP revocation will ever be changed to a
                    hard-fail system. CAs had a slow start initially, and when browsers adopted
                    soft-fail they had little incentive to improve. Today, the likely scenario is
                    that the availability and performance concerns will be addressed by a wider
                    adoption of OCSP stapling, which allows servers to
                    retrieve OCSP responses from the CAs once and deliver them directly to end users
                    along with their certificates.
Note
For a period of several years, I had my Firefox browser configured to
                        hard-fail (in about:config, set
                            security.ocsp.require to true). In
                        all of that time, I had OCSP responder availability issues only with one CA.
                        Interestingly, it was the same CA that has the 40-minute delay on their OCSP
                        responders.
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6 Implementation Issues


The software we write today is inherently insecure, for several reasons. First, the basic
        tools—programming languages and libraries—are not written with security in mind.
        Languages such as C and C++ allow us to write code that is fast but fragile. Often, a single
        coding mistake can crash the entire program. That is simply absurd. Libraries and APIs are
        virtually never designed to minimize errors and maximize security. Documentation and books
        are rife with code and designs that suffer from basic security issues. We don’t have to go
        far to find a representative example: OpenSSL itself, the most widely used SSL/TLS library,
        is notorious for being poorly documented and difficult to use.
The second problem is much deeper and has to do with the economics of writing software. In
        today’s world, emphasis is on getting work “done” by minimizing up-front costs (in both time
        and money), without fully considering the long-term effects of insecure code.
        Security—or, more generally, code quality—is not valued by end users, which is
        why companies tend not to invest in it.
As a result, you will often hear that cryptography is bypassed, not broken. The major
        cryptographic primitives are well understood and, given choice, no one attacks them first.
        But the primitives are seldom useful by themselves; they need to be combined into schemes
        and protocols and then implemented in code. These additional steps then become the main
        point of failure, which is why you will also often hear that only a fool implements their
        own crypto.
The history is full of major cryptographic protocols with critical design flaws, but there
        are even more examples of various implementation problems in well-known projects. The
        situation gets much worse when you start looking at projects developed without the necessary
        expertise in cryptography.
This chapter reviews the major implementation issues, both historical and still relevant
        ones.
Certificate Validation
                    Flaws



For a TLS connection to be trusted, every client must perform two basic checks:
            determine that the certificate applies to the intended hostname and determine that the
            certificate is valid and can be trusted. Sounds simple, but the devil is in the details.
            When certificate-checking code is developed, developers will test with the certificate
            chains they find in real life, but those will never be malicious and designed to subvert
            security. As a result, developers often miss some critical checks.
For example, the following is a list of some (but not all!) of the things that need to
            be checked for each certificate chain.
	The end entity (server) certificate is valid for the intended hostname.

	All chain certificates (including the end-entity one) must be checked to see
                    that:
	They have not expired.

	Their signatures are valid.




	An intermediate certificate might need to satisfy further requirements:
	Can be used to sign other certificates for the intended purpose (e.g.,
                            an intermediate certificate might be allowed to sign web server
                            certificates, but cannot be used for code signing).

	Can be used to sign other CA certificates.[263]

	Can be used to sign the hostname in the leaf certificate.






In addition, a robust implementation will check a number of other things, for example,
            that all the keys are strong and that weak signatures (e.g., MD2, MD5, and (soon) SHA1)
            are not used.
Library and Platform Validation Failures



Certificate validation flaws in libraries are not very common, but their impact is
                usually significant, because all code that relies on them inherits the problems.
                Well-known validation flaws include the following:
	Basic Constraints check failure in Microsoft CryptoAPI (2002)[264]
	This is an early example of validation failure in probably the most
                            widely used codebase, which affected all Microsoft platforms as well as
                            some products running on other operating systems. Because of this flaw,
                            any valid server certificate could be used to sign a fraudulent
                            certificate that would then be trusted. The fraudulent certificate could
                            be then used in active MITM attacks. Konqueror (the default browser of
                            the KDE desktop) was also found to suffer from the same problem. Further
                            variations of the flaw were later discovered in Microsoft’s code,
                            including some that could be used for code signing on the Windows
                            platform.
This problem was discovered by Moxie Marlinspike in August 2002.[265] Moxie went on to write sslsniff,[266] a MITM attack tool, for the sole purpose of demonstrating
                            that this problem can be exploited. In 2009, Moxie also reported that
                            OpenSSL (around version 0.9.6) had been vulnerable to the same problem,
                            but no further details are available.

	Chain validation failure in GnuTLS (2008)[267]
	A flaw in the certificate chain validation code allowed invalid chains
                            to be recognized as valid by simply appending any trusted root
                            certificate to the end of any nontrusted chain. The error was that the
                            appended certificate, which caused the entire chain to be trusted, was
                            removed prior to checking that all certificates are part of a single
                            chain.

	DSA and ECDSA signature validation failures in OpenSSL (2009)[268]
	In 2009, the Google Security Team discovered that, due to insufficient
                            error checking in OpenSSL code, DSA and ECDSA signature failures could
                            not be detected. The practical impact of this problem was that any MITM
                            attacker could present a fraudulent certificate chain that would be seen
                            as valid.

	Basic Constraints check failure in iOS (2011)[269]
	Almost a decade later, Apple was discovered to have made the same
                            mistake in the chain validation as Microsoft and others before. The iOS
                            platforms before 4.2.10 and 4.3.5 were not checking if certificates are
                            allowed to act as subordinate CAs, making it possible for any leaf
                            certificate to sign any other certificate.

	Connection authentication failure in iOS and OS X (2014)
	On 21 February 2014, Apple released updates for iOS 6.x and 7.x in
                            order to fix a bug in TLS connection authentication.[270] Although Apple didn’t provide any details (they never do),
                            the description caught everyone’s attention and sparked a large-scale
                            hunt for the bug. It turned out that a devastating slip in the
                            connection authentication code allowed any DHE and ECDHE connection to
                            be silently hijacked by an active MITM.[271] The bug was also found to exist in the latest version of OS
                            X (10.9), which had been released in October 2013. Unfortunately, a fix
                            was not immediately available; it’s not clear why Apple would choose not
                            to synchronize releases for such a significant security issue. Possibly
                            because of a strong backlash, the fix (OS X 10.9.2) came only a couple
                            of days later, on February 25th.
In the context of TLS authentication, this bug is as bad as they get.
                            The weakness is in a transient part of the handshake that is never
                            logged. (If you were to attack certificate authentication, for example,
                            you would need to provide a fraudulent certificate chain, which might be
                            recorded and reported.) If proper care is taken to use it only against
                            vulnerable clients (which should be possible, given that the TLS
                            handshake exposes enough information to allow for pretty reliable
                            fingerprinting), an attack could be reliable, silent, and effective
                            without leaving any trace.
All applications running on the vulnerable operating systems were
                            exposed to this problem. The only exceptions were cross-platform
                            applications (for example, Chrome and Firefox) that rely on their own
                            TLS stack.

	Chain validation failures in GnuTLS (2014)
	In early 2014, GnuTLS disclosed two separate vulnerabilities related
                            to certificate chain validation.[272] The first bug caused GnuTLS to treat any X.509 certificate
                            in version 1 format as an intermediary CA certificate. If someone could
                            obtain a valid server certificate in v1 format (not very likely, given
                            that this is an obsolete format), they could use it to impersonate any
                            server when GnuTLS is used for access. This vulnerability had been
                            introduced in GnuTLS 2.11.5.
As for the second vulnerability, shortly after Apple’s TLS
                            authentication bug had been
                            revealed,
                            GnuTLS disclosed a similar bug of their own: a malformed certificate
                            could short-circuit the validation process and appear as valid.[273] It is probable that the maintainers, after learning about
                            Apple’s bug, decided to review their code in search for similar
                            problems. Although GnuTLS isn’t used by major browsers and isn’t as
                            popular as OpenSSL on the server side, it still has some major users.
                            For example, many of the packages shipped by Debian use it. Thus, this
                            vulnerability might have had a significant impact. This vulnerability
                            had been present in the code for a very long time, possibly from the
                            very first versions of GnuTLS.

	OpenSSL ChangeCipherSpec Injection
                                (2014)
	In June 2014, the OpenSSL project disclosed a long-standing
                            vulnerability that allowed an active network attacker to inject
                                ChangeCipherSpec messages into handshakes between
                            two OpenSSL endpoints and force negotiation of a predictable master secret.[274] This problem existed in virtually every version of OpenSSL,
                            but—as far as we know—it’s not exploitable unless a
                            vulnerable version from the OpenSSL 1.0.1 branch is running on the
                            server. The root cause is
                            that,
                            during a TLS
                            handshake,
                            the ChangeCipherSpec message is used by each side to
                            signal the end of negotiation and a switch to encryption, but this
                            message is not authenticated because it’s not part of the handshake
                            protocol. If the attacker sends the message early (which OpenSSL should
                            have caught), the vulnerable sides construct encryption keys too early
                            and with the information the attacker knows.[275]
This vulnerability is quite serious and easy to exploit, but its
                            impact is reduced, because OpenSSL is required on both sides of the
                            communication, and yet OpenSSL is rarely used on the client side. The
                            most prominent platform that uses OpenSSL in this way is Android 4.4
                            (KitKat), which was subsequently fixed. According to SSL Pulse,
                            immediately after the vulnerability was
                            released,
                            there were about 14% of servers running the exploitable versions of
                            OpenSSL.



In 2014, a group of researchers published the results of comprehensive adversarial
                testing of certificate validation in several libraries.[276] They developed a concept of “mutated” certificates, or
                    frankencerts, built from real certificates.[277] Although the widely used libraries and browsers passed the tests, the
                lesser-used libraries, such as PolarSSL, GnuTLS, CyaSSL, and MatrixSSL, were all
                found to have serious flaws.

Application Validation Failures



If major platforms and libraries can have serious validation vulnerabilities, we
                can intuitively expect that other software will fare much worse. After all, for most
                developers security is something that stands in the way between them and shipping
                their project. There’s been ample anecdotal evidence of certificate validation
                failures in end-user code, but the scale of the problem became more clear after a
                research paper on the topic was published in 2012.[278] From the abstract (emphasis mine):
We demonstrate that SSL certificate validation is completely broken in many
                    security-critical applications and libraries. Vulnerable software includes
                    Amazon’s EC2 Java library and all cloud clients based on it; Amazon’s and
                    PayPal’s merchant SDKs responsible for transmitting payment details from
                    e-commerce sites to payment gateways; integrated shopping carts such as
                    osCommerce, ZenCart, Ubercart, and PrestaShop; AdMob code used by mobile
                    websites; Chase mobile banking and several other Android apps and libraries;
                    Java Web-services middleware—including Apache Axis, Axis 2, Codehaus XFire, and
                    Pusher library for Android—and all applications employing this middleware.
                        Any SSL connection from any of these programs is
                        insecure against a man-in-the-middle attack.


If this is not cause for alarm, then I don’t know what is. Clearly, there are some
                major components of the Internet infrastructure mentioned in the report. According
                to the team behind the research, the root cause is the badly designed APIs. Not only
                are the libraries often insecure by default (no certificate validation at all), but
                they make it difficult to write code that is secure. Most libraries are simply too
                low level and expect too much from their users. For example, OpenSSL expects
                developers to provide their own code to perform hostname validation.
The report very accurately describes a major problem with our entire development
                stacks, affecting all code and security, not only SSL and TLS. Yes, there are
                libraries that are insecure and difficult to use, but the real problem is that we
                keep on using them. No wonder we keep on repeating the same mistakes.
To be
                fair,
                there are some platforms that behave correctly. Java’s SSL/TLS implementation
                (JSSE), for example, performs all necessary validation by default, much to the
                annoyance of many developers who don’t want to bother to set up a trusted
                development infrastructure. Anecdotal evidence suggests that most developers, in
                development, disable all validation in their code. We can only wonder how often are
                checks re-enabled in production.

Hostname Validation Issues



Speaking of hostname validation—how difficult can it be to verify if a
                certificate is valid for the intended hostname? As it turns out, the verification is
                often incorrectly implemented, as several vulnerabilities show. At Black Hat USA in
                2009, Dan Kaminsky[279] and Moxie Marlinspike[280] independently detailed how to perform MITM attacks entirely silently,
                without any warnings experienced by the victims.
Several flaws were needed to pull the attacks off, but in both cases the key was
                the NUL byte, which is used in C and C++ for string termination. In this context,
                the NUL byte is not part of the data but only indicates that the data is ending.
                This way of representing textual data is handy, because you only need to carry a
                pointer to your data. Then, as you’re processing the text, whenever you see the NUL
                byte, you know that you’ve reached the end.
Figure 6.1. Representation of a C string in memory
[image: Representation of a C string in memory]


Certificate structures, which rely
                on the ASN.1 notation standard, use a different approach, in which all structures
                are stored with their length. Problems arise when these different approaches to
                handling strings meet: certificates are encoded in one way (ASN.1) but processed in
                another (C code).
The attack is this: construct a certificate that has a NUL byte in the hostname,
                and bet that (1) most clients will think
                that that’s where the hostname ends and that (2) the NUL byte will thwart a CA’s validation
                process.
Here’s how Moxie executed the attack:
	Construct a special hostname with a NUL byte in it. Moxie used the
                        following: www.paypal.com\0.thoughtcrime.org (the NUL byte is
                        indicated with \0, but is normally “invisible”). The
                        rules are to:
	Place the hostname you wish to impersonate before the NUL
                                byte.

	Put some domain name you control after the NUL byte.




	For CAs, the NUL byte is nothing special.[281] They issue certificates based on the validation of the hostname
                        suffix, which maps to some top-level domain name. In the previous attack
                        example, the domain name is thoughtcrime.org, which belongs to
                        Moxie. He will naturally approve the certificate request.

	The resulting certificate can now be used against vulnerable clients with
                        a modified version of sslsniff.



Figure 6.2. The domain name used by Moxie Marlinspike in his proof-of-concept
                        attack
[image: The domain name used by Moxie Marlinspike in his proof-of-concept attack]


Microsoft’s CryptoAPI, GnuTLS, and NSS libraries were all found to be vulnerable
                to the NUL byte attack, affecting Firefox, Internet Explorer, and many other user
                agents. And when you add to the mix the PKI feature that allows for wildcards in
                hostnames you may end up with a certificate issued to
                *\0thoughtcrime.org, which worked as a universal interception
                certificate.


Random Number Generation



All cryptography relies on random number generation, making this functionality the
            essential building block of secure communication.[282] For example, you need random numbers whenever you are generating a new key.
            Keep in mind that key generation is not something you do only once in a while (e.g., if
            you’re installing a new server) but something that protocols (e.g., TLS) do behind the
            scenes on every single connection.
With a good random number generator (RNG), for example, a
            256-bit symmetric key will provide 256 bits of security (when used with a strong
            algorithm). But if the RNG is flawed, rather than having a random number from that large
            256-bit space you may end up with one from a much smaller space, say, 32 bits. The
            smaller the effective space, the worse the security. If the effective size of the key is
            too small, even brute-force attacks against it may be possible.
Netscape Navigator (1994)



One of the early examples of random number generation failure was in Netscape
                Navigator, the flagship product of the company that designed SSL itself. This
                browser used a simplistic algorithm for random number generation that relied on the
                time since boot in microseconds and the IDs of the underlying operating system
                process and that of its parent. The problem was revealed in 1995, when two
                researchers reverse engineered the code of the RNG[283] and wrote a program that uncovers the master encryption key.[284]
In the best case for the attacker, having an account on the same Unix machine as
                the victim meant that he could determine the process and parent process IDs. The
                attacker would then determine the time in seconds from observing packets as they
                travel on the network, reducing the problem to guessing the microseconds
                value—which is only about 20 bits of security. To break through that required
                only 25 seconds on the hardware they had at hand.
In the more realistic case of an attacker with no knowledge of process IDs, the
                size of the problem would be reduced to 47 bits—still within reach of brute-force
                attacks, even at that time.

Debian (2006)



In May 2008, Luciano Bello discovered[285] that a catastrophic programming error concerning the RNG used in the
                OpenSSL system libraries had been made by the Debian Project in September 2006 and
                that the bug consequently ended up in the project’s stable release (Debian
                    etch) in April 2007. Debian is not only a very popular
                Linux distribution but also a starting point from which many other distributions are
                built (most notably, Ubuntu), which meant that the problem affected a great number
                of servers in the world.
The programming error had been the accidental removal (commenting out) of a single
                line of code, which fed entropy to the random number generator. With that line
                removed, the only entropy left was some auxiliary input from the process ID, which
                meant that there were only 16 (!) bits of entropy for all cryptographic operations.
                With so few bits, all crypto on the affected installations was effectively
                nonexistent.
This was the affected fragment of the code:[286]
/*
 * Don't add uninitialised data.
        MD_Update(&m,buf,j);
*/
        MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
        MD_Final(&m,local_md);
        md_c[1]++;
The biggest practical problem was weak OpenSSH keys,[287] but that was largely mitigated by the fact that these keys are stored in
                well-known locations and could be easily checked. The Debian project built a
                blacklist
                of vulnerable keys as well as tools to look for them.
Replacing vulnerable TLS keys was more difficult, because the process could not be
                implemented as part of the automated patching process. Scripts were built to scan
                all files and detect weak keys. Because the problem can be detected from a server’s
                public key, remote-testing tools were made available; for example, I added one to
                the SSL Labs web site. In addition, because most server certificates last only for a
                year or two, CAs were able to apply tests (against public keys, which are embedded
                in certificate signing requests) and refuse to issue certificates for vulnerable
                private keys. Overall, however, there was a great sense of confusion, and many
                people reported that the detection tools were not correctly flagging vulnerable keys
                even though they had been generated on vulnerable systems.
The discovery of the Debian RNG issue highlighted the fact that open source
                projects are often touched—for whatever reason—by those who are not very
                familiar with the code. There is often very little quality assurance even for
                critical system components such as OpenSSL. And yet millions rely on that code
                afterward.
Tension between project developers and packagers is a well-known problem in open
                source circles.[288] Distributions often fork open source projects and change their behavior
                in significant ways but keep the names the same. As a result, there is often
                confusion regarding which versions are affected by problems and who is responsible
                for fixing them. The underlying root cause is friction between developers and
                packagers, which results from different development schedules and different
                priorities and development goals.[289]
Note
Debian is not the only operating system that has suffered problems with random
                    number generation. In 2007, three researchers published a paper discussing RNG
                    weaknesses in Windows 2000.[290] It was later discovered that Windows XP was also affected. Then, as
                    recently as March 2013, the NetBSD project announced that NetBSD 6.0, first
                    released in October 2012, had a bug in the kernel RNG that impacted security.[291]


Insufficient Entropy on Embedded
                    Devices



In February 2012, a group of researchers published the results of an extensive
                study of the quality of RSA and DSA keys found on the Internet.[292] The results indicated that at least 0.5% of the seen RSA keys (used for
                SSL/TLS) were insecure and could easily be compromised. The results for DSA (used
                for SSH) were worse, with 1.03% of the keys considered insecure.
The large majority of the discovered problems could be attributed to issues with
                random number generation. The study concluded:
Ultimately, the results of our study should serve as a wake-up call that
                    secure random number generation continues to be an unsolved problem in important
                    areas of practice.


On the positive side, virtually all of the discovered problems were on headless
                and embedded devices, and the study concluded that nearly all keys used on
                nonembedded servers are secure. Just a fraction of the discovered certificates were
                signed by public CAs. The main problems identified were the following:
	Default keys
	Some manufacturers are shipping their products with default encryption
                            keys. Clearly, this practice defeats the purpose, because all product
                            users end up using the same keys and can compromise one another after
                            extracting the private keys (from the hardware or software).
                            Furthermore, those keys will inevitably be shared with the world.[293]

	Repeated keys due to low entropy
	Some devices generate keys on first boot, when there is little entropy
                            available. Such keys are generally predictable. The paper describes the
                            experiment of a simulated headless first boot running Linux, which
                            clearly demonstrates the weaknesses of the Linux entropy-gathering code
                            in the first seconds after first boot.

	Factorable keys
	Most interestingly, for RSA keys it was discovered that many share one
                            of the two primes that make the modulus, a condition that allows the
                            keys to be compromised. Given that the primes should be randomly
                            generated, the same primes should not occur. According to the research,
                            the root cause is a particular pattern in the OpenSSL code that
                            generates RSA keys coupled with low-entropy conditions.



The summary of the TLS-related findings can be seen in the following table.
Table 6.1. Summary of vulnerable private keys [Source: factorable.net]
	Number of live hosts	12,828,613	(100.00%)
	
                                    . . . using repeated keys


                            	7,770,232	(60.50%)
	
                                            . . . using vulnerable repeated keys


                            	714,243	(5.57%)
	
                                                    . . . using default certificates or default keys


                            	670,391	(5.23%)
	
                                                    . . . using low-entropy repeated keys


                            	43,852	(0.34%)
	
                                    . . . using RSA keys we could factor


                            	64,081	(0.50%)
	
                                    . . . using Debian weak keys


                            	4,147	(0.03%)
	
                                    . . . using 512-bit RSA keys


                            	123,038	(0.96%)
	
                                    . . . identified as a vulnerable device model


                            	985,031	(7.68%)
	
                                    . . . using low-entropy repeated keys


                            	314,640	(2.45%)



Clearly, there are failures at every level (e.g., manufacturers could have checked
                for these issues and worked around them), but ultimately the study uncovered what is
                really a usability problem: cryptographic applications rely on the underlying
                operating system to provide them with enough randomness, but that often does not
                happen. And when it does not, there is no way to detect failures directly (e.g.,
                Linux will never block on /dev/urandom reads). Few applications
                use defense-in-depth measures and use statistical tests to verify that their random
                data is indeed random.
This inability to rely on system-provided randomness may force some developers to
                take matters into their own hands and use their own RNGs instead. This approach is
                unlikely to be successful, however, because random number generation is a difficult
                task that’s easy to get wrong.
If you have an embedded device and wish to check the quality of its keys, the
                authors behind this study provide an online tool that can check any server on the Internet.[294]


Heartbleed



Heartbleed,[295] a devastating vulnerability in OpenSSL, was disclosed to the public in April
            2014. The attack exploits the implementation of the Heartbeat
            protocol, a little-used TLS protocol extension (more about it in the section called “Heartbeat
                ” in Chapter 2).
Heartbleed is arguably the worst thing to happen to TLS, which is ironic, given that
            it’s not a cryptographic failure. Rather, it’s a testament to the poor state of software
            development and quality of open source in general.
In the fallout after Heartbleed, everyone’s eyes were on OpenSSL. Although the
            lack of funding for the project and its poor code quality had been known for a very long
            time, it took a massive vulnerability for the community to take action. The results were
            good and bad, depending on your point of view. The Linux Foundation announced a
            three-year project called Core Infrastructure Initiative, which aims to distribute $3.9
            million to underfunded open source projects,[296] OpenSSL published a roadmap to identify and fix the problems with the project,[297] and, in the meantime, the OpenBSD Project forked OpenSSL into a new project
            called LibreSSL and started to make rapid changes with a goal to improve the code quality.[298]
Impact



Because of a missing check for the read length in the code, successful
                exploitation enables the remote attacker to retrieve up to 64 KB of server process
                memory in a single heartbeat request. By submitting multiple requests, the attacker
                can retrieve an unlimited number of memory snapshots. If there is any sensitive data
                in the server memory—and there always is—the attacker can probably
                retrieve it. Because OpenSSL deals with encryption, the most likely extraction
                target is the server’s private key, but there are many other interesting assets:
                session ticket keys, TLS session keys, and passwords come to mind.
Heartbleed affects OpenSSL versions 1.0.1 through 1.0.1f. Versions from the
                earlier branches, 0.9.x and 1.0.0, are not vulnerable. Unsurprisingly, vast numbers
                of servers were impacted. Netcraft estimated that 17% of the servers (or about half
                a million) worldwide were susceptible.[299]
 Remarkably, most of the servers have been patched already. The combination of the
                seriousness of the problem, freely available testing tools, and media attention
                resulted in the fastest patching rate TLS has ever seen. One Internet-wide scan
                suggests that about 1.36% of devices listening on port 443 remain vulnerable one
                month later.[300] At about the same time, the SSL Pulse dataset (popular web sites,
                according to the Alexa list) shows only 0.8% of sites vulnerable.
Immediately after the disclosure, most commentators recommended changing private
                keys as a precaution, but there was no proof that private key extraction was
                possible. It’s likely that everyone was initially too busy testing for the
                vulnerability and patching. Later, when the attention turned back to exploitation,
                retrieving server private keys turned out to be straightforward.[301] In some cases, the keys would fall after many requests—in others, after
                few. More advanced exploitation techniques were subsequently developed.[302]
In the days immediately after the disclosure, exploitation of vulnerable sites was
                rampant. Private keys were not the only target. For example, Mandiant reported
                detecting a successful attack on a VPN server that resulted in a bypass of
                multifactor authentication. The attackers extracted TLS session keys from server memory.[303]
 Social insurance numbers were stolen from the Canadian tax authority and
                passwords extracted from the Mumsnet web site (a popular site for parents in the UK).[304]
Heartbleed was easy to exploit to begin with, but now, with so many tools publicly
                available, anyone can exploit a vulnerable server in minutes. Some tools are quite
                advanced and provide full automation of private key discovery.
Note
If you’d like to learn more about the bug itself and how to test for
                    vulnerable servers, head to the section called “Testing for
                    Heartbleed” in Chapter 12, Testing with OpenSSL.


Mitigation



Patching is the best way to start to address Heartbleed. If you’re relying on a
                system-provided version of OpenSSL, your vendor will have hopefully provided the
                patches by now. If you’re compiling from source, use the most recent OpenSSL 1.0.1
                version available. In that case, you can also configure OpenSSL to remove support
                for the Heartbeat protocol, using the OPENSSL_NO_HEARTBEATS flag.
                For example:
$ ./config -DOPENSSL_NO_HEARTBEATS
$ make
After this you’ll probably need to recompile all other software packages that
                depend on your version of OpenSSL.
Many products (e.g., appliances) embed OpenSSL and might be vulnerable. Because
                they had no advanced warning about Heartbleed, none of them were ready with patches
                on the day of the disclosure. Vendors with many products probably struggled to issue
                patches for all of them.
After the vulnerability is fixed, turn your attention to the sensitive data that
                might have leaked from the server. At the very least, you’ll need to replace the
                server private keys, obtain new certificates, and revoke the old certificates.
                According to Netcraft, which is monitoring the status of Heartbleed remediation
                activities worldwide, sites often omit performing one or more of these steps.[305]
After the private keys and certificates are dealt with, focus on what else might
                have been in the server memory. Session ticket keys are the obvious next target.
                Replace them. After that, consider other secrets, for example, user passwords.
                Depending on your risk profile, it might be necessary to advise or ask your users to
                change their passwords, as some web sites have done.
Heartbleed could not be used to gain access to your data stores, at least not
                directly. Indirectly, it could have been possible to obtain some information that is
                as useful. For example, on a database-driven web site, the database password is used
                on every request and thus resides in memory. Replacing all internal passwords is the
                best way to remain safe.
Sites who had forward secrecy deployed before the attack are in the best
                situation: their past communication can’t be decrypted following a compromise of the
                server private key. If you’re in the other group, consider deploying forward secrecy
                now. This is exactly why this feature is so important.
Warning
Although we focus on servers, clients using vulnerable versions of OpenSSL are
                    vulnerable too. Heartbeat is a two-way protocol. If a vulnerable client connects
                    to a rogue server, the server can extract the client’s process memory.[306]



Protocol Downgrade Attacks



Protocol downgrade attacks occur when an active MITM attempts
            to interfere with the TLS handshake in order to influence connection parameters; the
            idea is that he might want to force an inferior protocol or a weak cipher suite. In SSL
            2, such attacks are easy, because this protocol doesn’t provide handshake integrity.
            Subsequent protocol versions do provide handshake integrity as well as additional
            mechanisms to detect similar attacks.
However, what the protocol designers failed to anticipate is interoperability issues
            related to protocol evolution. Browsers try very hard to communicate successfully with
            every server. Unfortunately, when it comes to TLS, such attempts often result in
            security compromises because browsers will voluntarily downgrade their security
            capabilities, thus sacrificing security for interoperability.
Rollback Protection in SSL 3



In SSL 2, there was no mechanism to ensure the integrity of the handshake, thus
                making that protocol version vulnerable to downgrade attacks. As a result, a MITM
                could always force a handshake to use the least secure parameters available.
                Handshake integrity validation was added in SSL 3, as part of a major protocol
                cleanup.
But in order to provide handshake integrity (as well as other improvements) SSL 3
                had to change the format of the initial handshake request
                    (ClientHello). Additionally, it was agreed that the servers
                that understood the new protocol would automatically upgrade to the new format with
                compatible clients. But several problems remained:
	The SSL 3 handshake provides integrity protection, but you can’t use that
                        handshake format because most servers understand only SSL 2.

	Even with an SSL 3 server, if there is an active MITM, he can always
                        intercept the connection and pretend to be an SSL 2–only server that does
                        not understand anything better. 

	If you subsequently attempt to use an SSL 2 handshake, there is no
                        handshake integrity, and the MITM can interfere with the negotiation.



To address these loopholes, SSL 3 incorporates protocol rollback
                    protection[307] that enables SSL 3–aware clients and servers to detect when they are
                under attack. When an SSL 3 client falls back to SSL 2 for compatibility reasons, it
                formats the PKCS#1 block of the RSA key exchange in a special way.[308] In SSL 2, the end of the block must contain at least eight bytes of
                random data; an SSL 3 client instead fills those eight bytes with
                    0x03. Thus, if an SSL 3 client is forced down to SSL 2 by a
                MITM attack, the SSL 3 server will notice the special formatting, detect the attack,
                and abort the handshake. A genuine SSL 2 server will not inspect the padding, and
                the handshake will proceed normally.
However, there is one loophole that can break the rollback protection.[309] In SSL 2, the length of the master key mirrors the length of the
                negotiated cipher suite; in the worst case, it’s only 40 bits long. Furthermore,
                it’s the client that selects the cipher suite from those supported by the server,
                generates the master key, and sends it to the server using public key encryption.
                The server decrypts the message using its private RSA key, obtains the master key,
                and proves ownership to the client.
For a MITM, brute-forcing the RSA key might be too much work, but he can attack
                the weak master key. He could pose as a server and offer only one 40-bit suite,
                uncover the master key by brute force, and complete the handshake successfully. This
                attack is easy to carry out given the computational power available today. This
                attack vector is largely obsolete by now, given that few clients continue to support
                SSL 2. Still, the conclusion is that SSL 2 does not provide more than 40 bits of
                security. Attackers who can execute brute-force attacks of that strength in real
                time can consistently break all SSL 2 connections.

Interoperability
                    Problems



With the release of the first follow-up version (SSL 3), interoperability problems
                started to appear. In this section, I will enumerate the most common
                problems.
Version Intolerance



The first problem encountered was version intolerance.
                    SSL 2 did not consider protocol evolution and didn’t provide instructions for
                    how to handle unknown protocol versions. This excerpt from Eric
                    Rescorla’s SSL book illustrates the situation:[309]
Unfortunately, the SSLv2 specification wasn’t very clear on how servers
                        should handle CLIENT-HELLO messages with version numbers higher than they
                        support. This problem was made worse by the fact that Netscape’s SSLREF
                        reference implementation simply rejected connections with higher version
                        numbers. Thus, it’s not guaranteed that all SSLv2 servers will respond
                        correctly to the backward-compatible handshake, although the vast majority
                        will.


SSL 3 did not greatly improve in this respect, mentioning client version
                    handling only in one sentence of the specification:
server_version: This field will contain the lower of
                        that suggested by the client in the client hello and the highest supported
                        by the server.


Starting with TLS 1.0, there is more text to handle backward compatibility,
                    but only TLS 1.2 provides clear guidance:
A TLS 1.2 client who wishes to negotiate with such older servers will send
                        a normal TLS 1.2 ClientHello, containing
                            {3,3} (TLS 1.2) in
                            ClientHello.client_version. If the server does not
                        support this version, it will respond with a ServerHello
                        containing an older version number. If the client agrees to use this
                        version, the negotiation will proceed as appropriate for the negotiated
                        protocol.


As a result of these specification ambiguities, many servers refused
                    handshakes if the offered protocol version was not to their liking. The result
                    was a serious interoperability issue when browsers began to support TLS 1.2. For
                    this reason, Internet Explorer, the first browser to implement TLS 1.2, launched
                    with both TLS 1.1 and TLS 1.2 disabled by default.
The Renegotiation Indication Extension specification
                    (released in 2010, two years after TLS 1.2) made an attempt to solve the
                    problem, in the hope that developers will, while implementing the new
                    renegotiation mechanism, also address version and extension intolerance. In
                    Section 3.6., it says:
TLS servers implementing this specification MUST ignore any unknown
                        extensions offered by the client and they MUST accept version numbers higher
                        than their highest version number and negotiate the highest common version.
                        These two requirements reiterate preexisting requirements in RFC 5246 and
                        are merely stated here in the interest of forward compatibility.



Extension
                            Intolerance



Early versions of the protocol (SSL 3 and TLS 1.0) had no explicit mechanism
                    for adding new functionality without introducing new protocol revisions. The
                    only thing resembling forward compatibility is a provision that allows the
                        ClientHello message to include extra data at the end.
                    Implementations were instructed to ignore this extra data if they could not
                    understand it. This vague extension mechanism was later replaced with
                        TLS Extensions,[310] which added a generic extension mechanism to both
                        ClientHello and ServerHello messages.
                    In TLS 1.2, extensions were merged with the main protocol specification.
Given the vagueness of the early specifications, it’s not surprising that a
                    substantial number of SSL 3 and TLS 1.0 servers refuse handshakes with clients
                    that specify extra data.

Other Interoperability Problems



There are other interoperability problems, mostly arising due to a combination
                    of specification vagueness and sloppy programming:
	Long handshake intolerance
	The size of the ClientHello message is not
                                limited, but in the early days clients tended to support only a
                                small number of cipher suites, which kept the length low. That
                                changed with the OpenSSL 1.0.1 branch, which added support for a
                                wide range of cipher suites. That, combined with the use of
                                extensions to specify additional information (e.g., desired hostname
                                and elliptic curve capabilities), caused the size of
                                    ClientHello to grow substantially. It then
                                transpired that one product—F5’s BIG IP load
                                balancer—could not handle handshake messages over 255 bytes
                                and under 512 bytes. Because of the popularity of BIG IP (especially
                                among some of the largest web sites), this issue had a negative
                                impact on the speed of TLS 1.2 adoption.

	Arbitrary extension
                                    intolerance
	Sometimes servers that understand TLS extensions fail, for no
                                apparent reason, to negotiate connections that include extensions
                                unknown to them. This usually happens with the Server
                                    Name Indication and Status
                                    Request (OCSP stapling) extensions.

	Failure to correctly handle fragmentation
	Historically, there were many issues related to message
                                fragmentation. SSL and TLS protocols allow all higher-level messages
                                to be fragmented and delivered via several (lower-level) record
                                protocol messages. Most implementations handle fragmentation of
                                application data messages (which are expected to be long) but fail
                                when faced with fragmented messages of other types simply because
                                such fragmentation almost never occurs in practice. Similarly, some
                                products would fail when faced with zero-size records—which
                                derailed initial attempts to mitigate the predictable IV problem in
                                TLS 1.0 and earlier protocols. Early attempts to address the same
                                problem using the 1/n-1 split (sending two records instead of just
                                one, with the first record containing only one byte) were equally
                                derailed, because some products could not handle an HTTP request
                                split across two TLS messages.





Voluntary Protocol Downgrade



When the interoperability issues started to appear, browsers responded by
                implementing voluntary protocol downgrade. The idea is that
                you first try your best version of TLS, with all options enabled, but if that fails
                you try again with fewer options and lower protocol versions; you continue in this
                manner until (hopefully) a connection is successful. When TLS 1.0 was the best
                supported protocol, voluntary protocol downgrade meant at least two connection
                attempts. Now that browsers support TLS 1.2, three or four attempts are used.
Note
Interoperability issues are not the only problem causing TLS handshakes to
                    fail. There is ample anecdotal evidence that proxies, firewalls, and antivirus
                    software often intercept and filter connections based on protocol version
                    numbers and other handshake attributes.

To understand this behavior, I surveyed various versions of popular desktop
                browsers. I used a custom TCP proxy designed to allow only SSL 3 connections.
                Everything else was rejected with a handshake_failure TLS alert.
                You can see the results in the following table.
Table 6.2. Voluntary protocol downgrade behavior of modern browsers
	Browser	First attempt	Second attempt	Third attempt	Fourth attempt
	
                                Chrome 33

                            	
                                TLS 1.2

                            	
                                TLS 1.1

                            	
                                TLS 1.0

                            	
                                SSL 3

                            
	
                                Firefox 27

                            	
                                TLS 1.2

                            	
                                TLS 1.1

                            	
                                TLS 1.0

                            	
                                SSL 3

                            
	
                                IE 6

                            	
                                SSL 3

                            	
                                SSL 2

                            	 	 
	
                                IE 7 (Vista)

                            	
                                TLS 1.0

                            	
                                SSL 3

                            	 	 
	
                                IE 8 (XP)

                            	
                                TLS 1.0 (no ext.)

                            	
                                SSL 3

                            	 	 
	
                                IE 8-10 (Win 7)

                            	
                                TLS 1.0

                            	
                                SSL 3

                            	 	 
	
                                IE 11

                            	
                                TLS 1.2

                            	
                                TLS 1.0

                            	
                                SSL 3

                            	 
	
                                Safari 7

                            	
                                TLS 1.2

                            	
                                TLS 1.0

                            	
                                SSL 3

                            	 



My test results show that you can downgrade all current browsers to SSL 3.[311] And in the case of Internet Explorer 6 you can actually go as low as SSL
                2. Given that SSL 2 is vulnerable to brute-forcing of the master key, Internet
                Explorer 6 can expect a maximum 40 bits of security.
As for SSL 3,
                this version was shown to be unambiguously insecure in October 2014 by the POODLE
                attack. A successful attack can exploit the weaknesses to retrieve small pieces of
                encrypted data (e.g., cookies). Even if you ignore the
                vulnerabilities,
                this old protocol version is significantly inferior to the latest TLS
                1.2:
	No support for the GCM, SHA256 and SHA384 suites.

	No elliptic curve cryptography. When it comes to forward secrecy, very few
                        sites support ephemeral Diffie-Hellman (DH) key exchange to use in absence
                        of EC. Without EC, those sites lose forward secrecy.

	SSL 3 is vulnerable to the BEAST attack, but modern browsers implement
                        countermeasures for it. However, some sites prefer to use RC4 with TLS 1.0
                        and earlier protocols. For such sites, the attacker can force the inferior
                        RC4.

	Microsoft’s SSL 3 stack does not support AES, which means that IE will
                        offer only RC4 and 3DES suites.



From this list, I’d say the biggest problem is the loss of forward secrecy. A
                serious attack could downgrade someone’s connections to force a RSA key exchange and
                then later recover the server’s private key to recover the encrypted
                conversation.
Note
Depending on the exact nature of the communication failure, the fallback
                    mechanism can be triggered even with servers that are not intolerant. For
                    example, there are reports that Firefox sometimes, over unreliable connections,
                    falls back to SSL 3, breaking sites that use virtual secure hosting. (That’s
                    because virtual secure hosting relies on TLS extensions, which are not supported
                    in SSL 3.)[312]


Rollback Protection in TLS 1.0 and Better



Because SSL 3 and newer protocol versions provide handshake integrity, rollback
                attacks against parties that support only SSL 3 and better do not work.[313]
In case you’re wondering, brute-forcing the master key, which was possible against
                SSL 2, no longer works either, because the master key is now fixed at 384
                bits.
TLS 1.0 (and all subsequent protocol revisions) also continued with the SSL 3
                tradition and included rollback protection in the RSA key exchange, using an
                additional version number sent by the client and protected with the server’s private
                key. From section 7.4.7.1 of the TLS 1.2 specification:
The version number in the PreMasterSecret is the version
                    offered by the client in the ClientHello.client_version, not
                    the version negotiated for the connection. This feature is designed to prevent
                    rollback attacks.


This protection mechanism can be used only if RSA is used for authentication and
                key exchange, but it doesn’t apply to other key-exchange algorithms (even when RSA
                is used for authentication).
In addition, it appears that protocol implementers have struggled to use correct
                version numbers in the right places. Yngve Pettersen, who used to maintained the
                SSL/TLS stack for Opera (while they were using a separate stack), had this to say on
                the topic (emphasis mine):[314]
Second, the RSA-based method for agreeing on the TLS encryption key is defined
                    in such a way that the client also sends a copy of the version number it sent to
                    the server and against which the server is then to check against the version
                    number it received. This would protect the protocol version selection, even if
                    the hash function security for a version is broken. Unfortunately, a number of clients and servers have implemented this
                        incorrectly, meaning that this method is not effective.


There’s a statement to the same effect in the TLS 1.2 specification:
Unfortunately, some old implementations use the negotiated version instead,
                    and therefore checking the version number may lead to failure to interoperate
                    with such incorrect client implementations.


The same specification subsequently advises implementers to enforce rollback
                protection only with newer clients:
If ClientHello.client_version is TLS 1.1 or higher, server
                    implementations MUST check the version number as described in the note
                    below.


But despite having two defense mechanisms rollback attacks are still possible,
                because of the voluntary protocol downgrade behavior discussed earlier.

Attacking Voluntary Protocol Downgrade



The built-in protocol defenses against rollback attacks are effective at
                preventing an attacker from interfering with a single connection. However, when
                voluntary protocol downgrade is taken into account, rollback attacks are still
                possible. This is because the MITM doesn’t actually need to change any handshake
                data. Rather, he can block attempts to negotiate any protocol version greater than
                SSL 3, simply by closing such connections as they are attempted. To defend against
                this type of attack, a different defense is needed.

Modern Rollback Defenses



Voluntary protocol downgrade behavior is a gaping hole in TLS security. Despite
                everyone’s efforts to upgrade the infrastructure to TLS 1.2, an active attacker can
                still downgrade communication to TLS 1.0 or, sometimes, even SSL 3. This subject has
                been discussed on the TLS WG mailing list many times, but consensus has been
                difficult to achieve so far. I have collected a series of links and pointers to
                mailing discussions, which are of interest not only to see how the thoughts about
                this problem evolved but also to observe the complexities involved with the working
                group operation.

                The
                topic was first brought up in 2011,[315] when Eric Rescorla proposed to use special signaling cipher
                    suite values (or SCSVs) to enable clients to communicate their best
                supported protocol version even when trying to negotiate a lower version. A server
                that detects version number discrepancy is required to terminate the connection. The
                assumption is that a server that supports this defense also won’t be prone to any of
                the intolerance issues. The SCSV approach was chosen because it had been
                successfully deployed to signal support for secure renegotiation in combination with
                SSL 3 protocol.[316]
In 2012, Adam Langley proposed a system also based on signaling suites and keeping
                the attack detection on the server side.[317]
After the discussion that followed, Yngve Pettersen submitted a alternative proposal,[318] preferring to implement detection in the client.[319] (That would make deployment much easier; rather than upgrading lots of
                servers, which would inevitably take a very long time, only the handful of user
                agents need to be upgraded.) His proposal built on RFC 5746 (Renegotiation
                Indication Extension), which specifically forbids compliant servers to be intolerant
                to future protocol version numbers. According to Yngve’s measurements, only
                0.14% of the servers implementing RFC 5746 showed signs of intolerance. He
                subsequently implemented this rollback protection in Opera 10.50.[320]
Another discussion followed in April 2013.[321] Finally, in September 2013, Bodo Moeller submitted a draft[322] that was subsequently refined[323] and is currently being considered for the working group’s acceptance.[324] Bodo’s proposal is to use a single signaling suite to indicate
                voluntary fallback activity. A server that understands the signal and supports a
                newer protocol version than the one client is attempting to negotiate is required to
                abort the negotiation. Chrome 33 was the first browser to implement this feature.[325]
How can we explain the lack of interest in Yngve’s proposal? Probably
                because no matter how rare, there are still servers that implement secure
                renegotiation but are intolerant to higher protocol version numbers. I think that
                browser vendors simply don’t want to go into a direction that would inevitably
                result in a backlash against them. On the other hand, a SCSV solution would be
                enforced server-side and trigger only on genuine attacks.
The problem with the SCSV solution is that it will take many years to spread
                widely. The few sites that care about their security very much could deploy it
                quickly, but for the rest doing so would be too costly to
                justify. Google
                started using the fallback defense in February 2014, implementing support for it in
                Chrome and their web sites at the same time. OpenSSL 1.0.1j, released in October
                2014, includes server-side support for this new standard. Mozilla pledged to support
                it in Firefox 35, which is expected in early 2015.


Truncation Attacks



In a truncation attack, an attacker is able to prematurely
            terminate a secure conversation, preventing one or more messages from being delivered.
            Normally, a secure protocol is expected to detect such attacks. SSL 2 is vulnerable to
            truncation attacks, but SSL 3 addressed the issue with the addition of the
                close_notify message. Subsequent protocol revisions kept the
            protection. For example, the following text is included in TLS 1.2 (Section
            7.2.1):
Unless some other fatal alert has been transmitted, each party is required to send
                a close_notify alert before closing the write side of the
                connection. The other party MUST respond with a close_notify
                alert of its own and close down the connection immediately, discarding any pending
                writes.


This works because close_notify is authenticated. If any of the
            preceding messages are missing, the integrity verification mechanisms built into TLS
            detect the problem.
Unfortunately, connection closure violations have always been widespread. Many clients
            and servers abruptly close connections and omit the shutdown procedure mandated by the
            standard. Internet Explorer is one such client, but there are many more.
Drowning in bogus warning messages about truncation attacks, well-behaved applications
            started to ignore this problem, effectively opening themselves up to real
            attacks.
Actually, the standards themselves encouraged such behavior by not actually requiring
            reliable connection termination. The following text appears in the SSL 3
            specification:
It is not required for the initiator of the close to wait for the responding
                    close_notify alert before closing the read side of the
                connection.


In other words, don’t bother confirming that the other side received all of the sent
            data. TLS, in version 1.1, made things worse by relaxing the rules about session
            resumption. Before, errors of any kind required TLS sessions to be dropped. In practice,
            this meant that the client would have to perform a full (CPU-intensive) handshake on the
            following connection. But TLS 1.1 removed this requirement for incorrectly terminated
            connections. From Section 7.2.1 (emphasis mine):
Note that as of TLS 1.1, failure to properly close a connection no longer requires
                that a session not be resumed. This is a change from TLS 1.0
                    to conform with widespread implementation practice.


That’s a shame, because the change removed the only real incentive to get the
            misbehaving user agents to improve. As a result, we are effectively without defense
            against truncation attacks.
Truncation Attack History



Truncation
                attacks against SSL 3 and TLS
                were
                first discussed in 2007,[326] when Berbecaru and Lioy demonstrated
                these
                attacks against a variety of browsers. They focused on truncating responses. For
                example, the browser would show only a partial page or image delivered over TLS
                without any indication that the documents were incomplete.
The topic was revisited in 2013,[327] this time in more detail. In particular, Smyth and Pironti were able to
                show several compelling attacks, ranging from attacks against electronic voting
                systems (Helios) to attacks against web-based email accounts (Microsoft and Google)
                in public computer environments. In all cases, the trick was to prevent the user
                from logging out without him noticing. To do this, they exploited applications that
                told their users that they had logged off before they actually did. By using TLS
                truncation against HTTP requests, the researchers were able to keep the users logged
                in. After that, if the attacker could access the same computer he could assume the
                victim’s application session and thus the user’s identity.
Note
It is particularly interesting that truncation attacks work against HTTP, even
                    though HTTP messages tend to include length information. This is another example
                    of cutting corners just to make the Web “work.”


Cookie
                    Cutting



In 2014, new and more effective techniques to perform truncation attacks came to light.[328] Researchers applied the ideas from earlier attacks on TLS (such as the
                BEAST attack), in which the attacker is able to control TLS record length by
                injecting data of arbitrary length into HTTP requests and responses. If you control
                TLS record length, then you can control the point at which records are split (due to
                size limits and other constraints). Combined with a truncation attack, you can split
                HTTP request or response headers, which has some interesting consequences.
One application of HTTP response header truncation is now known as a
                    cookie cutter attack; it can be used to downgrade secure
                cookies into plain, insecure ones. Let’s examine a set of HTTP response headers in
                which secure cookies are used:
HTTP/1.1 302 Moved Temporarily
Date: Fri, 28 Mar 2014 10:49:56 GMT
Server: Apache
Strict-Transport-Security: max-age=31536000; includeSubDomains
Cache-Control: no-cache, must-revalidate
Location: /account/login.html?redirected_from=/admin/
Content-Length: 0
Set-Cookie: JSESSIONID=9A83C2D6CCC2392D4C1A6C12FFFA4072; Path=/; Secure; HttpOnly
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
To make a cookie secure, you append the Secure attribute to the
                header line. But, because this attribute comes after the name and value, if you can
                truncate the HTTP response immediately after the Path attribute
                an insecure cookie will be created.
Clearly, if you truncate the response headers they become incomplete and thus
                invalid; the truncated header line will not be terminated with a newline
                    (CRLF), and there won’t be an empty line at the end. However,
                it turns out that some browsers ignore even such obviously malformed HTTP messages
                and process the headers anyway. Most browsers were vulnerable to one type of
                truncation attack or another, as the following table illustrates.
Table 6.3. TLS truncation in browsers [Source: Bhargavan et al.]
	 	In-header truncation	Content-Length ignored	Missing terminating chunk ignored
	Android browser 4.2.2	Yes	Yes	Yes
	Android Chrome 27	Yes	Yes	Yes
	Android Chrome 28	No	No	Yes
	Android Firefox 24	No	Yes	Yes
	Safari Mobile 7.0.2	Yes	Yes	Yes
	Opera Classic 12.1	Yes	Yes	Yes
	Internet Explorer 10	No	Yes	Yes



The attack is quite elaborate, but if automated it seems reasonably practical.
                Here’s how to do it:
	Attack a user that does not yet have an established
                            session with the target web site. The web site will not set a
                        new cookie if an old one exists. This can be achieved with some social
                        engineering or, from an active network attacker perspective, by redirecting
                        a plaintext request.

	Find an entry point that allows you to inject
                            arbitrary data into the HTTP response. This is key to the
                        attack; it allows you to position the truncation location at the TLS record
                        boundary. For example, on many web sites when you attempt to access a
                        resource that requires authentication, the redirection includes the resource
                        address. You can see this in the earlier example, which uses the
                            redirected_from parameter for this purpose.
Redirection responses are the ideal entry point because they don’t have
                        any content (response body). If you attempt to truncate any other response,
                        the absence of content might make the user suspicious.

	Submit padding that splits response headers into two
                            TLS records. Normally, the entire HTTP redirection response
                        is small and fits in a single TLS record. Your goal is to split this record
                        into two. Because TLS records are limited to 16,384 bytes, if you submit a
                        very long payload and push the size past this limit, the TLS stack will
                        split the response into two records.

	Close the secure connection after the first TLS
                            record. This part of the attack is straightforward: observe
                        the TLS communication and drop the connection (e.g., by sending an
                            RST signal) immediately after the first TLS
                        record.

	Extract the insecure cookie. At this
                        point, the partial cookie will have been consumed and all that remains is to
                        extract it from the user agent. This is a cookie
                            stealing attack.



Another target for the cookie cutter attack is
                the Strict-Transport-Security response header. If you truncate
                the header immediately after the first digit of the max-age
                parameter, the HSTS entry will expire after nine seconds at most. Additionally, the
                    includeSubDomains parameter, if present, will be neutralized,
                too. With HSTS out of the way, you can proceed with an HTTPS
                    stripping attack or manipulate the cookies in some other way, as
                discussed in Chapter 5, HTTP and Browser Issues.
It is expected that the cookie cutter attack will be addressed by implementing
                stricter checks and parsers at the browser level. Some vendors have already
                implemented fixes, but for most the current status is unknown.


Deployment Weaknesses



Sometimes, weakness arise in deployment, when commonly used practices lead to
            exploitable weaknesses. The problems described in this section arise from the secure
            protocols defined in abstract, without clear guidance as to how they should be
            implemented by servers. As a result, subtle problems arise.
Virtual Host Confusion



Certificate sharing is generally not recommended, unless it’s used by closely
                related web sites. At one level, there’s the issue that all sites that share the
                certificate must also share the private key. The sharing weakens security and
                reduces it to the strength of the weakest link. Also, you don’t want multiple
                independent teams to all have access to the same private key.
However, all sites that share a certificate are also bound at the application
                level; if one site is compromised or otherwise exploited in some way, other sites
                that share the same certificate can also be attacked if the circumstances are right.
                The other sites could be running on a different port or IP address and be located
                anywhere on the Internet.
For example, let’s suppose that an attacker gains control of a weak site that uses
                a multidomain certificate. Operating from an active network attack perspective, she
                observes users connecting to other sites
                using
                the same certificate. (I’ll call them secure sites.) She then hijacks a TLS
                connection intended for one such secure site and sends it to the weak site under her
                control. Because the certificate is the same, the victim’s browser won’t detect
                anything unusual and the HTTP request will be processed by the web server. Because
                the attacker controls that web server, she can record the cookies included in the
                hijacked connection and use them to hijack the victim’s application session. She can
                also respond with arbitrary JavaScript code that will be executed in the context of
                the secure site.
There’s a catch: the web server on the weak site must ignore the fact that the
                HTTP Host headers reference a site that isn’t hosted there.
                Depending on the level of control, the attacker might be able to reconfigure the
                server to ensure that’s the case. However, it’s also common that servers ignore
                invalid host information and always respond with a default site.
Robert Hansen was the first to highlight this problem when he successfully
                transferred a XSS vulnerability from mxr.mozilla.org to
                    addons.mozilla.org because both used the same certificate.[329] In 2014, Delignat-Lavaud and Bhargavan highlighted this problem in a
                research paper and gave it the name virtual host confusion.[330] They also showed how to exploit the problem in several real-life
                scenarios and even uncovered a long-standing problem that could have been used to
                impersonate some of the most popular web sites in the world.
Note
The same attack can be applied to other protocols. Take SMTP servers, for
                    example. Using the same traffic redirection trick, the attacker can break into
                    one weak SMTP server and later redirect TLS connections to it. If the
                    certificate is shared, email for some other secure sites will be effectively
                    delivered to the attacker.


TLS Session Cache Sharing



Another problem highlighted by Delignat-Lavaud and Bhargavan is that TLS session
                cache sharing among unrelated servers and web sites, which is common, can be abused
                to bypass certificate authentication.[329] Once a
                TLS session is established, the client can resume it not only with the original
                server but also with any other server that shares the same session cache, even if it
                isn’t intended to respond to the requested web site and doesn’t have the correct
                certificate.
This weakness effectively creates a bond among all sites that share the cache
                (either via server session caching or session tickets) and allows the attacker who
                compromises one site to escalate access to the other sites. Traffic redirection, the
                same trick as discussed in the previous section, is the primary attack
                technique.
For server-side session caching, the flaw is in server applications that don’t
                check that a session is resumed with the same host with which it was originally
                established. It’s a similar situation with session tickets. However, in the latter
                case there is usually a workaround, because servers allow per-host ticket key
                configuration. It’s best practice to have each host use its own ticket key.
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7 Protocol Attacks


Over the years, the security of SSL and TLS protocols has been going in and out of the
        focus of researchers. The early beginnings were very shaky. At Netscape, SSL version 1 was
        apparently considered to be so insecure that they scrapped it and released version 2
        instead. That was in late 1994. That version did well enough to kick off the e-commerce
        boom, but it didn’t do very well as far as security is concerned. The next version, SSL 3,
        had to be released in 1996 to address the many security problems.
A long, quiet period followed. In 1999, SSL 3 was standardized as TLS 1.0, with almost no
        changes. TLS 1.1 and TLS 1.2 were released in 2006 and 2008, respectively, but virtually
        everyone stayed with TLS 1.0. At some point around 2008, we started to focus on security
        again. Ever since, there’s been a constant pressure on TLS, scrutinizing every little
        feature and use case.
In this chapter, I document the attacks that broke aspects of TLS in recent years; the
        focus is on the problems that you might encounter in practice. In chronological order, they
        are: insecure renegotiation in 2009, BEAST in 2011, CRIME in 2012, Lucky 13, RC4 biases,
        TIME, and BREACH in 2013 and Triple Handshake in 2014. I conclude the chapter with a brief
        discussion of the possibility that some of the standards and cryptographic algorithms have
        been subverted by government agencies.
Insecure Renegotiation
            
            



Insecure renegotiation (also known as TLS
                Authentication Gap) is a protocol issue first discovered by Marsh Ray
            and Steve Dispensa in August 2009. After the discovery, they initiated an industry-wide
            effort to fix the protocol and coordinate public disclosure. Before the process was
            complete, the issue was independently discovered by Martin Rex (in November of the same year).[331] At that point, the information became public, prematurely.[332]
Why Was Renegotiation Insecure?



The renegotiation vulnerability existed because there was no continuity between
                the old and new TLS streams even though both take place over the same TCP
                connection. In other words, the server does not verify that the same party is behind
                both conversations. As far as integrity is concerned, it is entirely possible that
                after each renegotiation a different client is talking to the server.
Application code typically has little interaction with the encryption layer. For
                example, if renegotiation occurs in the middle of an HTTP request, the application
                is not notified. Furthermore, web servers will sometimes buffer data that was
                received prior to renegotiation and forward it to the application together with the
                data received after renegotiation. Connection parameters may also change; for
                example, a different client certificate might be used after renegotiation. The end
                result is that there is a mismatch between what is happening at the TLS layer and
                what applications see.
A man-in-the-middle (MITM) attacker can exploit this
                problem in three steps:
	Intercept a TCP connection request from the victim (client) to the target
                        server.

	Open a new TLS connection to the server and send the attack
                        payload.

	From then on, continue to operate as a transparent proxy between the
                        victim and the server. For the client, the connection has just begun; it
                        will submit a new TLS handshake. The server, which has already seen a valid
                        TLS connection (and the attack payload), will interpret the client’s
                        handshake as renegotiation. Once the renegotiation is complete, the client
                        and the server will continue to exchange application data. The attacker’s
                        payload and the client’s data will both be seen as part of the same data
                        stream by the server, and the attack will have been successful.



Figure 7.1. Man-in-the-middle attack against insecure renegotiation
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This scenario shows the attacker violating the integrity of application data,
                which TLS was designed to protect. The attacker was able to inject arbitrary
                plaintext into the beginning of the connection. The impact of the attack depends on
                the underlying protocol and server implementation and will be discussed in the
                following sections.

Triggering the Weakness



Before he can exploit the insecure renegotiation vulnerability, the attacker needs
                to find a way to trigger renegotiation. Before this vulnerability was discovered,
                most servers were allowing client-initiated renegotiation, which meant that most
                were easy targets. A rare exception was Microsoft IIS, which, starting with version
                6, would not accept client-initiated renegotiation at all.
But even without client-initiated renegotiation, sites using client certificates
                or supporting SGC might be equally easy to exploit. The attacker just needs to
                examine the web site to determine under what conditions renegotiation is required.
                If such a condition is easily triggered, the attacker may use it for the attack.
                Depending on the exact configuration of the server, the resulting attack vector may
                be as useful as client-initiated renegotiation.

Attacks against HTTP



When it comes to insecure renegotiation, attacks against HTTP are the best
                understood. Many variants exist, with their feasibility depending on the design of
                the target web site and on the technical prowess (and the browser used) by the
                victim. Initially, only one attack was discussed, but the security community
                collaborated to come up with other possibilities. Thierry Zoller, in particular,
                spent considerable effort tracking down and documenting the attack vectors as well
                as designing proof-of-concept attacks.[333]
Execution of Arbitrary GET Requests



The easiest attack to carry out is to perform arbitrary GET
                    requests using the credentials of the victim. The effective request consisting
                    of the attack payload (in bold) and the victim’s request might look something
                    like this:
GET /path/to/resource.jsp HTTP/1.0
X-Ignore: GET /index.jsp HTTP/1.0
Cookie: JSESSIONID=B3DF4B07AE33CA7DF207651CDB42136A
We already know that the attacker can prepend arbitrary plaintext to the
                    victim’s request. The attacker’s challenge is to use this ability to control the
                    attack vector, neutralize the parts of the genuine request that would break the
                    attack (that’s the victim’s request line), and use the parts that contain key
                    information (e.g., session cookies or HTTP Basic Authentication) to successfully
                    authenticate.
The attacker can do that by starting the attack payload with a complete HTTP
                    request line—thereby choosing the entry point of the attack—and then
                    following with a partial header line; this header, which is
                    purposefully left incomplete (no newline at the end), will neutralize the first
                    line of the victim’s request. All subsequent request headers submitted by the
                    victim will become part of the request.
So what do we get with this? The attacker can choose where the request goes,
                    and the victim’s credentials are used. But the attacker cannot actually retrieve
                    the credentials, and the HTTP response will go back to the victim. It appears
                    that the effect of this attack is similar to that of a cross-site
                        request forgery (abbreviated to CSRF or, sometimes, XSRF). Most
                    sites that care about security will have already addressed this well-known web
                    application security problem. Those sites that did not address CSRF are probably
                    easier to attack in other ways.
This was the attack vector that was initially presented and, because of the
                    similarity to CSRF, caused many to dismiss the insecure vulnerability as
                    unimportant.

Credentials Theft



In the days following the public disclosure, improved attacks started to
                    appear. Just a couple of days later, Anil Kurmus improved the attack to retrieve
                    encrypted data.[334]
In researching the possible attack vectors, most focused on trying to use the
                    credentials included with hijacked requests (i.e., session cookies or Basic
                    Authentication credentials). Anil realized that although he was not able to
                    retrieve any data directly he was still able to submit it to the web site using
                    a different identity, one that was under his control.
                    (Reverse session hijacking, if you will.) From there, the challenge was to get
                    the data back from the web site somehow.
His proof-of-concept attack was against Twitter. He managed to post the
                    victim’s credentials (which were in the headers of the victim’s HTTP request) as
                    a tweet of his own. This was the request (the attacker’s payload in
                    bold):
POST /statuses/update.xml HTTP/1.0
Authorization: Basic [attacker's credentials]
Content-Type: application/x-www-form-urlencoded
Content-Length: [estimated body length]

status=POST /statuses/update.xml HTTP/1.1
Authorization: Basic [victim's credentials]
In the improved version of the attack, the entire victim’s request is
                    submitted in the request body as the contents of the status
                    parameter. As a result, Twitter treats it as the text of a tweet and publishes
                    it in the attacker’s tweet stream. On other sites, the attacker might post a new
                    message on the forum, send an email message to himself, and so forth.
The only challenge here is getting the Content-Length
                    header right. The attacker does not know the size of the request in advance,
                    which is why he cannot use the correct length. But to succeed with the attack he
                    only needs to use a large enough value to cover the part of the victim’s request
                    that contains sensitive data. Once the web server hits the limit specified in
                    the Content-Length header, it will consider the request
                    complete and process it. The rest of the data will be treated as another HTTP
                    request on the same connection (and probably ignored, given that it’s unlikely
                    that it would be well formed).

User Redirection



If the attacker can find a resource on the target web site that responds with
                    a redirection, he might be able to perform one of the following attacks:
	Send the user to a malicious web site
	An open redirection point on the web site could be used to send
                                the victim to the destination of the attacker’s choice. This is
                                ideal for phishing, because the attacker can build a replica of the
                                target web site, possibly using a similar domain name to make the
                                deception more effective. It’s very easy to make up a name that
                                feels related and “official” (e.g., www.myfeistyduck.com,
                                when the real domain name is www.feistyduck.com). To
                                finalize the deception, the attacker can get a proper certificate
                                for the malicious web site.

	Downgrade connection to plaintext HTTP
	If the attacker can find a redirection on the target web site that
                                will send the user to (any) plaintext web site, then the TLS
                                connection is effectively downgraded. From there, the attacker can
                                use a tool such as sslstrip and establish full
                                control over the victim’s browsing.

	Capture credentials via redirected POST
	If the site contains a redirection that uses the 307 status
                                code—which requires that the redirection is carried out
                                without changing the original request method—it may be
                                possible to redirect the entire request (POST
                                body included) to the location of the attacker’s choice. All
                                browsers support this, although some require user confirmation.[335] This attack is quite dangerous, because it allows the
                                attacker to retrieve encrypted data without having to rely on the
                                site’s own functionality. In other words, it may not be necessary to
                                have an account on the target web site. This is a big deal, because
                                the really juicy targets make that step difficult (think banks and
                                similar financial institutions).



A good discussion of the use of redirection to exploit insecure renegotiation
                    is available in the research paper from Leviathan Security Group.[336]

Cross-Site Scripting



In some rare cases, the attacker might be able to inject HTML and JavaScript
                    into the victim’s browser and take full control of it via XSS. This could be
                    done using the TRACE HTTP method, which requires servers to
                    mirror the request in the response. Under attack, the reflected content would
                    contain the attacker’s payload.
This attack will not work against the major browsers, because
                        TRACE responses usually use the
                        message/http content type. But, according to Thierry
                        Zoller[333], there are some less
                    used Windows browsers that always handle responses as HTML; those are
                    vulnerable. In addition, custom scripts rarely check response content types, and
                    they might be vulnerable, too.


Attacks against Other Protocols



Although HTTP received most of the attention, we should assume that all protocols
                (that rely on TLS) are vulnerable to insecure renegotiation unless the opposite can
                be proven. Any protocol that does not reset state between renegotiations will be
                vulnerable.
	SMTP
	Wietse Venema, a member of the Postfix project, published an analysis
                            of the insecure renegotiation impact on SMTP and the Postfix mail server.[337] According to the report, SMTP is vulnerable, but the
                            exploitation might tricky, because, unlike HTTP, one SMTP transaction
                            consists of many commands and responses. He concluded that Postfix was
                            not vulnerable—but only by luck, because of certain implementation
                            decisions. The report suggested several client- and server-side
                            improvements to defend against this problem.
Insecure renegotiation did not pose a significant threat to SMTP
                            because, unfortunately, most SMTP servers do not use valid certificates
                            and (possibly as a result) most SMTP clients do not actually validate
                            certificates. In other words, man-in-the-middle attacks against SMTP are
                            already easy to execute; no further tricks are required.

	FTPS
	Alun Jones, author of the WFTPD Server, published an analysis of the
                            impact of the insecure renegotiation vulnerability on FTPS.[338] The main conclusion is that due to the way file transfer is
                            implemented in some FTP
                            servers,
                            a MITM attacker could use the renegotiation issue to tell the server to
                            disable encryption of the command channel. As a result, the integrity of
                            the transferred files could be compromised.




Insecure Renegotiation Issues Introduced by Architecture



System design and architecture decisions can sometimes introduce insecure
                renegotiation where it otherwise doesn’t exist. Take SSL
                    offloading, for example. This practice is often used to add
                encryption to services that otherwise do not support it or to improve the
                performance of a system by moving TLS handling away from the main service point. If
                insecure renegotiation is supported at the point of TLS termination, the system as a
                whole will be vulnerable even if the actual web servers are not.

Impact



Insecure renegotiation is a serious vulnerability because it completely breaks the
                security guarantees promised by TLS. Not only is communication integrity
                compromised, but the attacker might also be able to retrieve the communicated data
                itself. There’s a variety of attacks that can take place, ranging from CSRF to theft
                of credentials to sophisticated phishing. Because a good technical background and
                per-site research is required, this is a type of attack that requires a motivated
                attacker, likely against higher-value targets.
The ideal case for the attacker is one in which there are automated systems
                involved, because automated systems rarely scrutinize failures, have poor logging
                facilities, and retry requests indefinitely until they are successful. This scenario
                thus creates a large attack surface that is much easier to exploit than attacking
                end users (browsers) directly.
The attack against insecure renegotiation is well understood, and the tools needed
                to carry it out are widely available. The proof of concept for the Twitter attack
                can be found on the Internet, and only a slight modification to any of the widely
                available MITM tools would be needed to extend them to exploit the vulnerability. 
The compromise of integrity has another side effect, which stems from the fact
                that the attacker can submit arbitrary requests under the identity of the victim.
                Even if the attacker is not able to retrieve any data or trick the victim, he can
                always forge his attack payloads to make it seem as if the victim was attacking the
                server. Because of inadequate logging facilities at most web sites, this type of
                attack (executed under the identity of the victim) would be extremely difficult to
                dispute, and yet it could have devastating consequences for the victim. For this
                reason alone, end users should configure their browsers to accept communication only
                with servers that support secure renegotiation.[339]

Mitigation



There are several ways in which insecure renegotiation can be addressed, but some
                are better than others. 
	Upgrade to support secure renegotiation
	In early 2010, the Renegotiation Indication
                            extension was released to address the problem with renegotiation at the
                            protocol level.[340] Today, several years later, you should expect that all
                            products can be upgraded to support secure renegotiation. If you’re
                            dealing with products that cannot be upgraded, it’s probably an
                            opportunity to consider if they’re still worth using.

	Disable renegotiation
	In the first several months after the discovery, disabling
                            renegotiation was the only mitigation option. 
This approach is inferior to supporting secure renegotiation. First,
                            some deployments actually need renegotiation (typically when deploying
                            client certificate authentication). Second, not supporting secure
                            renegotiation promotes renegotiation uncertainty on the Web, effectively
                            preventing users from protecting themselves.



Disabling SSL Renegotiation Is a Crutch, Not a Fix



We should all make an effort to upgrade our systems to support secure
                    renegotiation. If, in 2009 or 2010, you patched your systems to disable
                    renegotiation, you might feel that you are safe and that no further action is
                    required. From a very narrow perspective, you’d be right. However, not
                    supporting secure renegotiation is actually holding the entire world back,
                    because it’s preventing browser vendors from adopting strict renegotiation
                    policies.
Unlike servers, which either ask for renegotiation or receive unsolicited
                    renegotiation requests, when under
                    attack,
                    browsers can’t tell that renegotiation is taking place. After all, they are not
                    the ones renegotiating.
The only way for browsers to protect themselves is to refuse to connect to
                    servers that do not support secure renegotiation. And therein lies the problem:
                    there are still many such servers on the Web, and the browser vendors don’t want
                    to be the ones breaking web sites. A server that disables renegotiation might be
                    safe to talk to, but it’s prolonging the transition period by increasing the
                    overall number of servers that are not verifiably secure.


Discovery and Remediation Timeline



The insecure renegotiation issue gave us a rare opportunity to examine and assess
                our collective ability to fix a vulnerable protocol. Clearly, in an ecosystem as
                complex as
                TLS,
                fixing any problem will require extensive collaboration and take years; but how many
                years, exactly? The following chart will give us a good idea.
Figure 7.2. Insecure renegotiation remediation timeline
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Roughly, what the timeline shows is that we need:
	About six months to fix the protocol.

	A further 12 months for libraries and operating systems to be fixed and
                        patches issued.

	A further 24 months for the majority to apply the patches (or recycle
                        those old systems).



According to the measurements done by Opera, 50% of the servers they tracked had
                been patched to support secure renegotiation within one year of the official RFC release.[341]
 The same data set, in February 2014, reported 83.3% patched servers.[342] The conclusion is that we need about four years to address flaws of this
                type.
As I am writing this, in July 2014, 88.4% of the servers in the SSL Pulse data set
                support secure renegotiation.[343] About 6.1% support insecure renegotiation, and 6.8% don’t support
                renegotiation at all. The numbers add up to more than 100%, because there’s about
                1.3% of servers that accept both secure and insecure renegotiation.


BEAST



In the summer of 2011, Duong and Rizzo announced a new attack technique that
            could be used against TLS 1.0 and earlier protocols to extract small pieces of encrypted data.[344] Their work built on previously known weakness in the predictable
                initialization vector (IV) construction as used in TLS 1.0.
            The weakness, which was thought to be impractical to exploit, had been fixed in TLS 1.1,
            but at the time of discovery there was effectively no browser support for newer TLS
            versions.
In many ways, the so-called BEAST attack was a wake-up call for the ecosystem. First,
            it emphasized (again) that attacks only get better. As you will learn later in this
            section, this was a weakness that had been known for almost a decade and dismissed, but
            all it took was two motivated researchers to make it practical. Duong and Rizzo showed
            that we must not ignore small problems, because they eventually grow big.
Second, the disclosure and the surrounding fuss made it painfully clear how little
            attention browser vendors paid to the TLS protocol. They, along with most of the
            software industry, became too focused on exploitability. They didn’t take into account
            that protocol issues, and other problems that require interoperability of large numbers
            of clients and servers, take years to address. They are much different from buffer
            overflows and similar flaws, which can be fixed relatively quickly.
Thai gave a candid account of how BEAST came together in his blog post,[345] and you can almost feel his frustration when he realizes that he is losing
            the attention of browser vendors because, even though he can demonstrate the attack in a
            simulation, he is unable to demonstrate it in a practical environment. But they
            persisted, managed to build a working proof of concept, demonstrated it, and finally got
            the attention they deserved.
How the Attack Works



The BEAST attack is an exploit targeted at the Cipher Block
                    Chaining (CBC) encryption as implemented in TLS 1.0 and earlier
                protocol versions. As mentioned earlier, the issue is that IVs are predictable,
                which allows the attacker to effectively reduce the CBC mode to
                    Electronic Code Book (ECB) mode, which is inherently
                insecure.
ECB Oracle



ECB is the simplest mode of operation: you split input data into blocks and
                    encrypt each block individually. There are several security issues with this
                    approach, but the one we’re interested in here is that ECB does not hide the
                    deterministic nature of block cipher encryption. What this means is that every
                    time you encrypt the same piece of data the output is also the same. This is a
                    very useful property for the attacker; if he is able to submit arbitrary data
                    for encryption, he can use that to recover earlier encrypted data by guessing.
                    It goes like this:
	Observe a block of encrypted data that contains some secret. The size
                            of the block will depend on the encryption algorithm, for example, 16
                            bytes for AES-128.

	Submit 16 bytes of plaintext for encryption. Because of how block
                            ciphers work (one bit of difference anywhere in input affects all output
                            bytes), the attacker is only able to guess the entire block at
                            once.

	Observe the encrypted block and compare it to the ciphertext observed
                            in step 1. If they are the same, the guess is correct. If the guess is
                            incorrect, go back to step 2.



Because the attacker can only guess the entire block at a time, this is not a
                    great attack. To guess 16 bytes, the attacker would need to make
                        2128 guesses, or 2127
                    on average. But, as we shall see later, there are ways in which the attack can
                    be improved.

CBC with Predictable IV



The key difference between CBC and ECB is that CBC uses an IV to mask each
                    message before encryption. The goal is to hide patterns in ciphertext. With
                    proper masking in place, the ciphertext is always different even if the input is
                    the same. As a result, CBC is not vulnerable to plaintext guessing in the way
                    ECB is.
For the IV to be effective, it must be unpredictable for each message. One way
                    to achieve this is to generate one block of random data for every block that we
                    wish to encrypt. But that wouldn’t be very practical, because it would double
                    the size of output. In practice, CBC in SSL 3 and TLS 1.0 uses only one block of
                    random data at the beginning. From there on, the encrypted version of the
                    current block is used as the IV for the next block, hence the word
                        chaining in the name.
The chaining approach is safe, but only if the attacker is not able to observe
                    encrypted data and influence what will be encrypted in the immediately following
                    block. Otherwise, simply by seeing one encrypted block he will know the IV used
                    for the next. Unfortunately, TLS 1.0 and earlier treat the entire
                        connection as a single message and use a random IV only
                    for the first TLS record. All subsequent records use the last encryption block
                    as their IV. Because the attacker can see all the encrypted data, he knows the
                    IVs for all records from the second one onwards. TLS 1.1 and 1.2 use per-record
                    IVs and thus don’t have the same weakness.
The TLS 1.0 approach fails catastrophically when faced with an active attacker
                    who can submit arbitrary plaintext for encryption, observe the corresponding
                    ciphertexts, and adapt the attacks based on the observations. In other words,
                    the protocol is vulnerable to a blockwise chosen-plaintext
                    attack. When the IV is predictable, CBC effectively downgrades to ECB.
Figure 7.3, “BEAST attack against CBC with predictable IV” illustrates the attack against CBC with
                    predictable IV showing three encryption blocks: two blocks sent by the browser
                    and one block sent (via the browser) by the attacker. For simplicity, I made it
                    so that each message consumes exactly one encryption block; I also removed
                    padding, which TLS would normally use.
The attacker’s goal is to reveal the contents of the second block. He can’t
                    target the first block, because its IV value is never seen on the network. But
                    after seeing the first block he knows the IV of the second
                        (IV2), and after seeing the second block he knows the
                    IV of the third block (IV3). He also knows the encrypted
                    version of the second block (C2).
After seeing the first two blocks, the attacker takes over and instruments the
                    victim’s browser to submit plaintext for encryption. For every guess, he can
                    observe the encrypted version on the wire. Because he knows all the IVs, he can
                    craft his guesses in such a way that the effects of IV are eliminated. When a
                    guess is successful, the encrypted version of the guess
                        (C3) will be the same as the encrypted version of the
                    secret (C2).
Figure 7.3. BEAST attack against CBC with predictable IV
[image: BEAST attack against CBC with predictable IV]


To understand how the IVs can be effectively eliminated, we have to look at
                    some of the
                    math
                    involved. Let’s examine the
                    encryption of M2, which contains some secret, and
                        M3, which is controlled by the attacker:
C2 = E(M2 ⊕
                        IV2) = E(M2 ⊕
                        C1)
C3 = E(M3 ⊕
                        IV3) = E(M3 ⊕
                        C2)
Messages are first XORed with their IV, then encrypted. Because different IVs
                    are used each time, even if M2 is the same as
                        M3 the corresponding encryptions,
                        C2 and C3, will be different.
                    However, because we know both IVs (C1 and
                        C2), we can craft M3 in such a
                    way as to neutralize the masking. Assuming Mg is the
                    guess we wish to make:
M3 = Mg ⊕
                        C1 ⊕ C2
The encryption of M3 will thus be:
C3 = E(M3 ⊕
                        C2) = E(Mg ⊕
                        C1 ⊕ C2 ⊕
                        C2) = E(Mg ⊕
                        C1)
And if our guess is correct (Mg =
                        M2), then the encryption of our block will be the
                    same as the encryption of the second block:
C3 = E(Mg ⊕
                        C1) = E(M2 ⊕
                        C1) = C2

Practical Attack



We now understand the weakness of predictable IVs, but exploiting it is still
                    difficult due to the fact that we have to guess the entire block (typically 16
                    bytes) at a time. However, when applied to HTTP, there are some optimizations we
                    can make.
	HTTP messages often contain small fragments of sensitive data, for
                            example, passwords and session tokens. Sometimes guessing only 16 bytes
                            is all we need.

	The sensitive data typically uses a restricted character set; for
                            example, session tokens are often encoded as hexadecimal digits, which
                            can have only 16 different values.

	The structure of HTTP messages is very predictable, which means that
                            our sensitive data will often be mixed with some other content we know.
                            For example, the string Cookie: will always be placed
                            before the name of the first cookie in a HTTP request.



When all these factors are taken into account, the required number of guesses
                    can be much lower, although still not low enough for practical use.
BEAST became possible when Duong and Rizzo realized that modern browsers can
                    be almost fully instrumented by a
                    skillful
                    attacker, giving him an unprecedented level of control. Crucially, the attacker
                    needs to be able to (1) influence the
                    position of the secret in the request and (2) have full control over what is being encrypted and when it
                    is sent.
The first condition is not difficult to fulfill; for example, to push a cookie
                    value around you only need to add extra characters to the request URI. The
                    second condition is problematic; that level of control is not available from
                    JavaScript. However, Duong and Rizzo determined that they could use Java
                    applets. They also needed to exploit a separate bug in order to get Java to send
                    traffic to arbitrary web sites.[346] They needed to do this to make BEAST universal and able to attack
                    any web site. Exploitation of this additional problem in Java is not always
                    necessary. Web sites that allow user-uploaded content can be tricked into
                    accepting Java applets. They then run in the context of the target web site and
                    can send traffic to it.[347]
There is another condition, mentioned earlier, and that is to be able to
                    observe encrypted network traffic, which is necessary in order to determine the
                    next IV values. Further, the IVs need to be communicated to the code running in
                    the browsers.
In practice, BEAST is an active network attack. Although social engineering
                    could be used to send the victim to the web site that contains the rogue
                    JavaScript code, it’s much simpler to inject the code into any plaintext web
                    site visited by the victim at the time of attack.
If you can manage all of that, then implementing BEAST is easy. By changing
                    the position of the secret within the HTTP request, you can align it with
                    encryption blocks in such a way that a single block contains 15 bytes of known
                    plaintext and only one byte of the secret. Guessing that one byte is much
                    easier; you need 28 (256) guesses in the worst case,
                    and 27 (128) guesses on average. Assuming low-entropy
                    data (e.g., hexadecimal digits), you can get as low as eight (average) guesses
                    per character. When time is of the essence, you can also submit multiple guesses
                    in parallel.
JavaScript Malware



JavaScript Malware is a generic term used for
                        malicious code running in a victim’s browser. Most malware is designed to
                        attack the browser itself, impersonate the user, or attack other web sites,
                        often without being noticed. BEAST was the first exploit to use JavaScript
                        malware to break cryptography, but many others followed. You’ll find their
                        details later in the chapter.
The use of JavaScript malware is a good example of the changing threat
                        model. When SSL was first designed in 1994, browsers were only simple tools
                        designed for HTML rendering. Today, they are powerful application-delivery
                        platforms.



Client-Side Mitigation



BEAST is a client-side vulnerability and requires that countermeasures are
                deployed at the user-agent level. In 2004, when the problem was originally discovered, OpenSSL tried to
                address it by injecting an empty (no data) TLS record before each real TLS record.
                With this change, even though the attacker can predict the next IV, that value is
                used for the zero-length TLS record that has no value. The application data follows
                in the next record, but it uses an IV that the attacker does not know in
                    advance (at the time the attack payload is constructed), which means
                that there is no opportunity to execute an attack.
Unfortunately, this approach did not work, because some TLS clients (most notably,
                Internet Explorer) were found to react badly to zero-sized TLS records. Given that
                at the time there was no practical attack to worry about, OpenSSL dropped the
                mitigation technique. As far as we know, no other library tried to address the
                issue.
In 2011, browsers mitigated BEAST by using a variation of the empty fragment
                technique. The so-called 1/n-1 split, proposed by Xuelei Fan,[348] still sends two records instead of one but places one byte of
                application data in the first record and everything else in the second. This
                approach achieves an effectively random IV for the bulk of the data: whatever is in
                the second record is safe. One byte of the data is still exposed to the predictable
                IV, but because it sits in an encryption block with at least seven (more likely 15)
                other bytes that are effectively random and different for every record (the MAC) the
                attacker cannot guess that byte easily.
The 1/n-1 split fared much better than the original approach, but the adoption
                still did not go smoothly. Chrome enabled the countermeasures first but had to
                revert the change because too many (big) sites broke.[349] The Chrome developers persisted, and soon other browser vendors joined,
                making the change inevitable.
The cost of the 1/n-1 split is an additional 37 bytes that need to be sent with
                every burst of client application data.[350]
You can see the status of BEAST mitigations in the major platforms in the
                following table.
Table 7.1. BEAST mitigation status of major libraries, platforms, and browsers
	Product	Version (Date)	Comments
	Apple	OS X v10.9 Mavericks (22 October 2013) and v10.8.5 Mountain Lion
                                (25 February 2014)	The 1/n-1 split shipped in Mountain Lion (OS X v10.8), but it was
                                disabled by default. The mitigation is supposed to be configurable,
                                but there’s a bug that prevents the defaults from being changed.[a]
	Chrome	v16 (16 December 2011)	Initially enabled in v15, but backed off due to too many big
                                sites not working.
	Firefox	v10 (31 January 2012)	Almost made it to Firefox v9, but Mozilla changed their minds at
                                the last moment to give the incompatible sites more time to upgrade.[b]
	Microsoft	MS12-006[c] (10 January 2012)	The mitigation is enabled in Internet Explorer, but disabled by
                                default for all other Schannel (Microsoft’s TLS library) users.
                                Microsoft recommended deployment of TLS 1.1 as a way of addressing
                                BEAST for nonbrowser scenarios. The knowledge base article 2643584
                                discusses the various settings in detail.[d]
	NSS	v3.13[e] (14 October 2011)	Enabled by default for all programs.
	OpenSSL	Not mitigated yet	The issue is tracked under bug #2635.
	Opera	v11.60[f] (6 December 2011)	The comment “Fixed a low severity issue, as reported by Thai
                                Duong and Juliano Rizzo; details will be disclosed at a later date”
                                was in the release notes of v11.51 but was subsequently
                                removed.
	Oracle	JDK 6u28 and 7u1 (18 October 2011)[g]	 
	[a] Apple enabled BEAST mitigations in OS X 10.9
                                            Mavericks (Ivan Ristić, 31 October 2013)

[b] Bug #702111: Servers intolerant to 1/n-1 record
                                            splitting. “The connection was reset”
                                        (Bugzilla@Mozilla, 13 November 2011)

[c] Microsoft Security Bulletin MS12-006 (10 January
                                        2012)

[d] Microsoft Knowledge Base Article 2643584 (10
                                        January 2012)

[e] NSS 3.13 Release Notes (14 October 2011)

[f] Opera 11.60 for Windows changelog (6 December
                                        2012)

[g] Oracle Java SE Critical Patch Update Advisory - October
                                            2011 (Oracle’s web site)





Many client-side tools (e.g., libraries and command-line applications) continue to
                lack the 1/n-1 split and are thus technically vulnerable, but they are not likely to
                be exploitable. Without the ability to inject arbitrary plaintext into the
                communication, there is nothing the attacker can do to exploit the weakness.

Server-Side Mitigation



Even though BEAST has been addressed client-side, we don’t control the upgrade
                cycle of the millions of browsers that are out there. Things have gotten a lot
                better with the rise of Chrome and its automated updates. Firefox now uses the same
                approach, and it’s possible that Microsoft will, too. Still, a potentially large
                number of users with vulnerable browsers remain.
Up until 2013, the recommended approach for BEAST mitigation server-side was to
                ensure RC4 suites are used by default. With CBC suites out of the picture, there is
                nothing for BEAST to exploit. But in early 2013 we learned about two new attacks,
                one against RC4 and another against the CBC construction in TLS. (Both are discussed
                in detail later in this chapter.) The RC4 weaknesses broke the only server-side
                mitigation strategy available to us.
We are now forced to choose between having some of our users vulnerable to either
                the BEAST attack or the RC4 weaknesses. With neither attack particularly practical,
                the choice is somewhat difficult. In this situation, it is helpful to think not only
                about the impact of these attacks today but also the future trends. BEAST can be
                executed successfully if you can find a victim–site combination
                that satisfies the requirements. Making it work at scale is impossible. The
                technique might be useful for targeted attacks, provided the victim is using
                unpatched software and has Java enabled. But overall the chances of successful
                attacks are small. More importantly, the likelihood is going to continue to decrease
                over time.

History



The insecurity of predictable IVs has been known since at least 1995, when Phil
                Rogaway published a critique of cryptographic constructions in the IPsec standard drafts.[351] He said that:
[...] it is essential that the IV be unpredictable by the adversary.


Clearly, this problem had not been widely understood, because predictable IVs made
                it into SSL 3 (1996) and later TLS 1.0 (1999).
In 2002, the problem was rediscovered in the SSH protocol[352] and was also found to apply to TLS.[353] Some countermeasures (which I will discuss later in this section) were
                added to OpenSSL in May 2002 but were effectively turned off in July, because of
                interoperability issues; they broke Internet Explorer.[354]
Apparently no one thought this attack was worth pursuing further, and thus no one
                tried to find a mitigation technique that worked. It was a missed opportunity to
                address the problem almost a decade before the practical attack came to light.
                Still, two papers were published that year: one to discuss how to fix the SSH protocol[355] and the other to discuss blockwise-adaptive attacks against several
                encryption approaches, including CBC.[356]
In 2004, Gregory Bard showed how predictable IVs in TLS can be exploited to reveal
                fragments of sensitive information.[357] He spelled out the problem inherent in the CBC encryption as implemented
                in SSL 3.0 and TLS 1.0:
We show that this introduces a vulnerability in SSL which (potentially)
                    enables easy recovery of low-entropy strings such as passwords or PINs that have
                    been encrypted. Moreover, we argue that the open nature of web browsers provides
                    a feasible “point of entry” for this attack via a corrupted plug-in [...]


Bard didn’t find a way to exploit the weakness, but later published another paper,
                this one describing a blockwise-adaptive chosen-plaintext
                    attack on SSL, showing how the position of sensitive data within
                block boundaries significantly impacts the number of guesses required to recover it.[358]
The protocol weakness was finally resolved in TLS 1.1 (2006) by using a random IV
                for each TLS record. However, fixing the protocol didn’t really achieve anything,
                because few browsers bothered to implement it. Only after BEAST made a big splash in
                2011 did browser vendors start to think about supporting newer protocols.
In 2011, most libraries and browser vendors implemented the 1/n-1 split mitigation
                technique. After all the time spent researching the problem, the fix was almost
                trivial; for NSS, it took only about 30 lines of code.[359]
Apple waited until late 2013 to implement BEAST mitigations in their TLS stack
                (and thus Safari). As for protocol support, it wasn’t until late 2013 that major
                browsers started to support TLS 1.2 by default.

Impact



If a BEAST attack is successful, the attacker will obtain the victim’s session
                token, which will give him access to the entire web application session. He will be
                able to perform arbitrary actions on the web site, using the identity of the victim.
                Under the right conditions, BEAST is easy to execute; however, getting everything
                aligned (especially today) is difficult.
Because the vulnerability exploited by the BEAST attack is in the protocols, at
                the time of the announcement virtually all SSL and TLS clients were vulnerable.
                BEAST is a client-only vulnerability. TLS operates two data streams, one sent from
                the client to the server and the other sent from the server to the client. The BEAST
                attack targets the client data stream and requires the attacker to be able to
                control exactly what is sent to the target web server. The interactivity is key;
                without it, the attack cannot succeed. Thus, even though the server data stream
                suffers from the same problem of predictable IVs it is impossible to exploit it in
                practice because the attacker cannot have sufficient control of the server-sent
                data.
In addition to the interactivity requirement, two further server-controlled
                conditions are required:
	CBC suites have priority
	Because only CBC suites are vulnerable, those servers that prefer RC4
                            suites over CBC (or don’t support CBC at all) are not vulnerable to the
                            BEAST attack. Even if both sides support CBC suites, the attacker cannot
                            influence the suite selection.

	TLS compression is disabled
	TLS has the ability to compress content prior to encryption.
                            Compression does not protect against the BEAST attack, but it does make
                            it more difficult. Normally, the bytes sent by the attacker are
                            encrypted and sent over the wire. With compression enabled, the bytes
                            are first compressed, which means that the attacker no longer knows what
                            exactly is encrypted. To make the attack work, the attacker would also
                            have to guess the compressed bytes, which may be very difficult. For
                            this reason, the original BEAST exploit implemented by Duong and Rizzo
                            could not attack compressed TLS connections. In my estimates,
                            compression was enabled on about half of all web servers at the time
                            BEAST was announced. However, client-side support for compression was
                            very weak then and is nonexistent today.



Going back to the interactivity, native browser capabilities were not sufficient
                to carry out the attack, which is why the authors resorted to using third-party
                plug-ins. The final exploit was implemented in Java and used a previously unknown
                weakness in the Java plug-in. This meant that the presence of Java was yet another
                requirement for a successful attack.
To sum up:
	The attacker must be able to execute a MITM attack from a location close
                        to the victim. For example, any Wi-Fi network or a LAN would probably do.
                        Strong cryptography and programming skills are required to implement the
                        exploit.

	The victim must have the Java plug-in installed. Java was in those days
                        virtually universally available (now not as much), so there wouldn’t have
                        been a shortage of candidates.

	In addition to being authenticated to the target web site, the victim must
                        also be browsing some other site controlled by the attacker. This could be
                        achieved with social engineering, for example. Alternatively, the attacker
                        can hijack any other plaintext HTTP web site. Because the majority of web
                        sites are still not encrypted, this constraint was also easy to
                        satisfy.

	The server must use CBC suites by default and have compression disabled.
                        Anecdotally, a large number of servers fit these criteria.



To conclude, at the time it was announced, the BEAST attack was relatively easy to
                carry out by a determined attacker despite the long list of constraints.
Today the situation is different, mostly because all modern browsers (as well as
                Java, which was used for the exploit) have implemented BEAST countermeasures.
                Furthermore, there has been a clampdown on the insecurity of in-browser Java, making
                it much more difficult to run applets. That’s assuming your user base has been
                updating their software; some users running older software might still be
                vulnerable.
The ecosystem is slowly moving towards supporting TLS 1.2 throughout, although
                it’s going to be some time before that happens. Still, the pool of users and servers
                susceptible to the BEAST attack is continuously getting smaller, and the risk is
                fairly low by now.


Compression Side Channel Attacks
            



Compression side channel attacks are a special case of
                message length side channel attacks. Let’s assume that you
            can observe someone’s encrypted communication while they are using their online banking
            application. To obtain the current balance of a savings account, the application might
            invoke a particular API call. Just seeing the size of that one response might be
            sufficient to approximate the value: the balance of a particularly wealthy victim will
            have many digits, making the response longer.
It turns out that when you add compression to the mix, and the attacker is able to
            submit his own data for compression, a compression oracle is
            created. In this section, I discuss a series of compression-related attacks on TLS,
            including CRIME, TIME, and BREACH.
How the Compression Oracle Works



Compression is very interesting in this context because it changes the size of
                data, and the differences depend on the nature of the data itself. If all you can do
                is observe compression ratios, your attacks might not amount to much; there is only
                so much you can deduce from knowing if something compresses well. At best, you might
                be able to distinguish one type of traffic from another. For example, text usually
                compresses very well, but images not so much.
This attack gets far more interesting if you are able to submit your own data for
                compression and mix it with some other secret data (that you don’t know but want to
                recover) while observing the results. In this case, your data influences the
                compression process; by varying your data you discover things about what else is
                compressed at the same time.
To understand why this attack is so powerful, we need to look at how compression
                works. In essence, all lossless compression algorithms work by eliminating
                redundancy. If a series of characters is repeated two or more times in input, the
                output will contain only one copy of such data along with instructions for where to
                place copies. For example, consider how a very popular LZ77 algorithm would compress
                a piece of text (see the following figure).
Figure 7.4. Compression reduces data size by identifying and removing
                        redundancies.
[image: Compression reduces data size by identifying and removing redundancies.]


An oracle is said to exist if you can have your arbitrary
                data (guesses) compressed in the same context as some secret. By observing the size
                of the compressed output, you are able to tell if your guesses are correct. How? If
                you guess correctly, compression kicks in and reduces the size of the output, and
                you know that you are right. If you submit random content, there’s no compression,
                and the size increases.
Figure 7.5. Illustration of a compression oracle: one correct and one incorrect
                        guess
[image: Illustration of a compression oracle: one correct and one incorrect guess]


As you shall see in the following sections, there are many obstacles to deal with
                in order to make the attack practical, but conceptually it really is that
                simple.
Is Information Leakage a Flaw in the TLS protocol?



It might seem that information leakage is a flaw in the SSL and TLS protocols,
                    but it’s actually a documented limitation. Here’s the relevant part of TLS 1.2
                    (Section 6):
Any protocol designed for use over TLS must be carefully designed to deal
                        with all possible attacks against it. As a practical matter, this means that
                        the protocol designer must be aware of what security properties TLS does and
                        does not provide and cannot safely rely on the latter.
Note in particular that type and length of a record are not protected by
                        encryption. If this information is itself sensitive, application designers
                        may wish to take steps (padding, cover traffic) to minimize information
                        leakage.


Some might say that the real flaw is the fact that browsers allow adversaries
                    unprecedented level of control of their victims’ browsers—and that might be
                    true. Adaptive plaintext attacks are a big deal in cryptography, but here we
                    have TLS, designed with one set of capabilities in mind and used in scenarios
                    that were outside the scope of the original design.
All browser-based attacks against encryption rely on the fact that the
                    attacker can submit requests in the context of a genuine user
                        session, which results in attacker-supplied data transported in
                    the same request as the victim’s confidential data. Few will argue that this is
                    natural. If we accept that a random web page should be allowed to submit
                    requests to arbitrary web sites, we should at least ensure that they do so from
                    their own separate environment (i.e., a sandbox).
Sadly, the Web has evolved in such a way that everything is entangled, which
                    means that enforcing strict separation in this way would break far too many web
                    sites. In time, the solution will probably come in the form of elective
                    separation, which will allow a site to declare its own security space.
As for length hiding, even if such a feature is ever implemented, there is
                    always the question of its effectiveness. It most certainly won’t work in all
                    situations. Some highly secure systems address this problem by always
                    communicating at a constant rate, using the full bandwidth provided by the
                    underlying channel. However, that approach is prohibitively expensive for most
                    deployments.


History of Attacks



Compression as a side channel mechanism was first introduced by John Kelsey. In
                his 2002 paper,[360] he presented a series of attack scenarios, each varying in
                effectiveness. Among them was the extraction of fragments of sensitive data, the
                attack that was later going to be improved in the browser context. The world was a
                much different place in 2002, and the best attack was difficult to utilize in real
                life. Hence, the author concluded that:
The string-extraction attacks are not likely to be practical against many
                    systems, since they require such a specialized kind of partial chosen-plaintext
                    access.


Compression side channel attacks were again in the news a couple of years later,
                although not against TLS. In 2007, a team of researchers first developed algorithms
                to identify the spoken language of an encrypted internet call[361] and later managed to identify spoken English phrases with an average
                accuracy of 50%, rising to 90% for some phrases.[362]
In the following years, browsers continued to evolve, making adaptive
                chosen-plaintext attacks not only possible but also practical against virtually
                everyone. In 2011, the BEAST attack showed how the attacker can take control of a
                victim’s browser in order to execute a blended attack against encryption.
In August 2011, privacy issues stemming from compression side channel attacks were
                discussed on the SPDY[363] development mailing list.[364] In particular, this quote from Adam Langley describes how a compression
                side channel attack might work against browsers:
The attacker is running script in evil.com. Concurrently, the same client has
                    a compressed connection open to victim.com and is logged in, with a secret
                    cookie. evil.com can induce requests to victim.com by, say, adding <img> tags
                    with a src pointing to victim.com. [...] The attacker can watch the wire and
                    measure the size of the requests that are sent. By altering the URL, the
                    attacker could attempt to minimise the request size: i.e. when the URL matches
                    the cookie.
I’ve just tried this with an HTTP request for fun and it’s pretty easy to get
                    the first 5 characters in a base64 encoded cookie. [...] That’s a practical
                    attack and would make a great paper if someone has the time.



CRIME



A practical compression side channel exploit came in 2012, under the name CRIME,
                developed by Duong and Rizzo, the authors behind BEAST. CRIME exploits the TLS
                compression side channel by using JavaScript malware to extract client cookies in an
                active MITM attack. It was officially presented at the Ekoparty conference in
                September 2012.[365] Unofficially, early press briefings[366] leaked enough information to enable experts to correctly guess what the
                attack was about.[367]
A proof of concept, the collaboration of several speculators, was published.[368] With the cat out of the bag, further information and a video
                demonstration were revealed days before the conference.[369] The CRIME authors never released their code, but they claimed that their
                exploit was able to uncover one cookie character using only six requests.
The mechanics of the CRIME attack are the same as for BEAST: the attacker must
                instrument the victim’s browser to submit many requests to the target server, while
                observing network packets as they travel on the wire. Each request is a guess,
                exactly as discussed in the earlier compression oracle section. Unlike BEAST, CRIME
                requires less control over request content and timing, making exploitation much
                easier and using only native browser functionality.
TIME



After CRIME, we didn’t have to wait long for the attacks to improve. In March
                    2013, Tal Be’ery presented TIME at Black Hat Europe 2013.[370] A significant constraint on CRIME is the fact that the attacker must
                    have access to the local network in order to observe the network packets.
                    Although TIME still uses compression as its principal weapon, the improved
                    attack extends the JavaScript component to use I/O timing differences to measure
                    the size of compressed records. The approach is straightforward, with
                        <img> tags used to initiate requests from the victim’s
                    browser and onLoad and onReadyStateChange
                    event handlers to take measurements. The entire attack takes place in the
                    browser itself.
With this change, the attack can now be executed against anyone on the
                    Internet, provided you can get them to run your JavaScript malware. In practice,
                    this will require some form of social engineering.
One problem still remains, though. CRIME works by observing one-byte
                    differences in compressed output; is it really possible to use timing to detect
                    differences that small? As it turns out, it’s possible, by playing tricks at the
                    network layer.
In TCP, great care is taken not to overwhelm the other party by sending too
                    much data. The problem is this: there’s usually a significant distance between
                    two sides engaged in a conversation. For example, it takes about 45 ms for a
                    packet to travel between London and New York. If you send only one packet at a
                    time and wait for a confirmation, you can send only one packet of data every 90
                    ms. To speed up the communication, TCP allows both sides to send many packets at
                    once. However, to ensure that the other party is not overwhelmed, they have to
                    stay within a prescribed limit, or the congestion window.
                    The congestion window starts small and grows over time, an approach otherwise
                    known as slow start.
Initial congestion window sizes vary. Older TCP stacks will use smaller
                    windows of 5 to 6 KB, but there was recently a push to increase this to about 15
                    KB. The attack works equally well for all sizes. In the following example, I
                    assume the client uses an initial congestion window of 5 KB (three
                    packets).
Figure 7.6. Using the TCP initial congestion window size as a timing
                            oracle
[image: Using the TCP initial congestion window size as a timing oracle]


At the beginning of a connection, if the data you want to send fits into the
                    congestion window, then you can send it all at once. But if you have too much
                    data you will first have to send as much as you can, then wait for the server to
                    confirm receipt, then send what you have remaining. That wait will add one
                        round-trip time (RTT) to the operation. For the
                    London–New York connection, that comes to about 90 ms of extra time. To use this
                    behavior as a timing oracle, you increase the size of the data until you
                    completely fill the initial congestion window. If you add just one more byte,
                    the request will take one RTT longer, which is a delay you can measure from
                    JavaScript. At this point you can start playing with compression; if you
                    manipulate the data so that compression reduces the size by one byte, the
                    request will take one RTT less. From here, exploitation continues as discussed
                    in earlier sections.
Attacks against HTTP requests are easier because you have direct control over
                    what is sent. They allow you to extract secrets that browsers have, for example,
                    session cookies. If you want to extract secrets transported in HTTP responses,
                    things get more complicated:
	Response compression takes place on the server, which means that you
                            need to observe the server’s initial congestion window, not the client’s
                            (as with HTTP requests).

	You must be able to inject your data into the page that contains the
                            secret you wish to contain. In practice, this means that the application
                            must mirror some data you send to it.

	When timing responses, you must take into account that both the
                            client’s and the server’s windows are likely to overflow, making it more
                            difficult to know what caused a delay.



On the other hand, unlike TLS compression, HTTP-level response compression is
                    very common. Compression side channel attacks work equally well against
                    both.
As far as we know, TIME has not progressed beyond a proof of concept. In
                    practice, there might be many obstacles to overcome in order to make the attack
                    work in real life. For example, the authors mention that due to network jitter
                    they need to repeat the same request several times to reliably detect
                    boundaries. Furthermore, the congestion window size grows over the time of the
                    connection, which means that you need to take your measurements with a fresh
                    connection every time. However, most servers use persistent connections for
                    performance reasons, and you don’t have control over this from JavaScript. As a
                    result, the attack might need to operate slowly, using one connection, then
                    waiting for the browser to close it, then trying again. Overall, it might take
                    quite a while for successful extraction of, say, a 16-character secret.

BREACH



Another compression side channel attack focused on HTTP responses, called
                    BREACH, followed in August 2013.[371] The authors focused on demonstrating that CRIME works equally well
                    on HTTP response compression. They used the same attack position—that of
                    an active man in the middle—and developed a working exploit. Their main
                    contribution is in the analysis and the practical demonstration. For example,
                    they used their exploit to attack Outlook Web Access (OWA), showing that they
                    can retrieve CSRF tokens with 95% reliability and often in under 30 seconds.[372]
The BREACH authors put together a web site to publicize their work,[373] and the proof-of-concept source code is available at GitHub.[374]

Attack Details



BREACH is conceptually identical to CRIME, requiring that the attacker has
                    access to the victim’s network traffic and ability to run JavaScript code in the
                    victim’s browser. The attack surface is different. HTTP response compression
                    applies only to response bodies, which means that no secrets can be extracted
                    from the response headers. However, response bodies often have interesting
                    sensitive data. The authors focused on extracting CSRF tokens (their example is
                    shown ahead), which would allow them to impersonate the victim in the attacked
                    web application.
To bootstrap the attack, an injection point into the response body is needed.
                    In OWA, the id parameter is reflected in output. Thus, if the
                    attacker submits the following request with the attack payload:
GET /owa/?ae=Item&t=IPM.Note&a=New&id=INJECTED-VALUE
The response body will contain the injected value:
<span id=requestUrl>https://malbot.net:443/owa/forms/
basic/BasicEditMessage.aspx?ae=Item&amp;t=IPM.Note&
amp;a=New&amp;id=INJECTED-VALUE</span>
This is sufficient to begin to extract any secret placed elsewhere in the
                    body, for example, a CSRF token:
<td nowrap id="tdErrLgf"><a href="logoff.owa?
canary=d634cda866f14c73ac135ae858c0d894">Log
Off</a></td>
To establish the baseline, the attacker submits canary= as
                    the first payload. Because of the duplication, the compressed response body will
                    be smaller, which can be detected on the network. From here, the attack
                    continues as in CRIME.
Although the attack seems simple at first, in practice there are further
                    issues that need to be dealt with:
	Huffman encoding
	Most of the Internet runs on DEFLATE compression, which is
                                actually a combination of two algorithms: LZ77 and Huffman encoding.
                                The former is what we use for the attacks, but the latter actually
                                makes us work harder. Huffman encoding is a variable-length encoding
                                that exploits the fact that, usually, some characters appear more
                                often than others. Normally, we always use one byte to represent one
                                character. To save space, we can represent more frequent characters
                                with shorter symbols (fewer bits than in a byte) and less frequent
                                characters with longer symbols (more bits than in a byte).
Huffman encoding can skew the resulting lengths of both successful
                                and unsuccessful guesses. To deal with this problem, it’s necessary
                                to double the number of requests, using two for each guess.

	Block ciphers
	The conceptual attack works great against encryption, but expects
                                streaming ciphers, for which the size of data is directly reflected
                                in ciphertext. When block ciphers are used, ciphertext grows only
                                one block at a time, for example, 16 bytes for 128-bit AES. In such
                                a case, further padding is needed to bring ciphertext to the edge of
                                growing by another block. For this, several requests might be
                                needed. Once you determine the size of the padding, you can make as
                                many guesses as there are padding bytes. For every new guess, you
                                remove one byte of the padding.

	Response content diversity
	For the attacks that work against HTTP responses (TIME and
                                BREACH), the “diverse” nature of markup formatting, coding
                                practices, and encodings tends to make the attacks more difficult.
                                For example, the attacks require a known prefix to bootstrap the
                                attack, but the secret values are sometimes prefixed with characters
                                that cannot be injected (e.g., quotes). Or, there might be
                                variations in response size (in absence of attacks), which make
                                guessing more difficult.



The CRIME authors used an interesting technique variation when attacking TLS
                    compression. TLS record sizes are limited to 16 KB (16,384 bytes), which also
                    means that this is the largest block on which compression can operate. This is
                    interesting because the attacker is able to fully control the first 16 KB. It
                    goes something like this:
	For a GET request, the first 5 bytes are always
                            going to be the same: the request method (GET)
                            followed by a space and the first character in the URL
                                (/). If you then add 16,379 bytes of random data
                            to the URL, you fill the entire TLS record. You can submit this request
                            and observe its compressed size.

	You can now start reducing the amount of random data in the URL, one
                            byte at a time, allowing bytes from the request back in the block. Some
                            of the bytes will be predictable (e.g., HTTP/1.1, the
                            protocol information that always follows the URL), but at some point you
                            will encounter the first unknown byte.

	Now you have a block of 16,383 bytes you know and one byte you don’t.
                            You submit that as a request. Then, without making further requests, you
                            build a list of candidates for the unknown byte, simulate the first 16
                            KB as a request and compress it using the same compression method, and
                            compare the compressed size to that of the size of the actual request.
                            In the ideal case, there will be only one match, and it will disclose
                            the unknown byte.



This technique is quite neat, because it requires a smaller number of
                    requests. On the other hand, the compression library used by the attacker needs
                    to produce the same output for the same input. In practice, different
                    compression settings and different library versions might introduce
                    variations.

Impact against TLS Compression and SPDY



In this section, I discuss the various prerequisites necessary for a
                    successful exploitation of a compression side channel attack against either TLS
                    compression or SPDY. In both cases, CRIME attacks header compression, which
                    makes session cookies the best target.
	Active MITM attack
	CRIME requires access to the victim’s network traffic. It’s a
                                local attack, which can be performed with little effort against
                                someone on the same LAN or Wi-Fi network. The attack can be either
                                passive or active, but the latter gives the attacker more
                                flexibility.

	Client-side control
	The attacker must also be able to assert enough control over the
                                victim’s browser to submit arbitrary requests to the target web
                                site. You could do this with JavaScript malware, but it can be done
                                much more simply with a series of <img> tags
                                with specially crafted source URLs.
This could be achieved with social engineering or, more likely, by
                                injecting HTML markup into any plaintext web site that the victim is
                                interacting with at the time of attack.

	Vulnerable protocols
	As the authors of CRIME themselves said, compression is
                                everywhere. They detailed attacks against TLS compression and the
                                SPDY protocol. At the time of the announcement, I was able to use
                                the SSL Pulse statistics and some of the other metrics obtained via
                                the SSL Labs web site to estimate support for compression on both
                                the client and server sides. For TLS compression, about 42% of the
                                servers in the SSL Pulse data set supported it. Only about 2% of the
                                servers supported SPDY, but those were some of the biggest sites
                                (e.g., Google, Twitter, etc.).
That said, two sides are required to enable compression, and this
                                is where the situation got better. Because TLS compression was never
                                a high priority for browser vendors,[375] Chrome was the only browser that supported compression
                                then. Firefox had compression implemented, but to my knowledge the
                                code never went into a production release. Because both browser
                                vendors had advance knowledge of the problem, they made sure that
                                compression was disabled ahead of time. My measurements (from
                                observing the visits to the SSL Labs web site) showed only 7%
                                client-side support for compression.
In response to CRIME, most vendors patched their products and
                                libraries to disable TLS compression altogether.

	Preparation
	This is not an attack that can be blindly executed against just
                                any web site. For example, to start the attack it’s necessary to use
                                a known prefix as a starting point. Because these things differ from
                                site to site, some amount of research is necessary, but it’s not a
                                lot of effort for the attack against TLS compression.

	Outcome
	In the best case, the attacker is able to obtain the password used
                                for HTTP Basic Authentication. In practice, this authentication
                                method is not often used, making session cookies the next best
                                thing. A successful attack results in the attacker obtaining full
                                control over the victim’s session and everything that comes with
                                it.




Impact against HTTP Response Compression



Against HTTP compression, the impact of compression side channels is very
                    different: (1) the attack surface is
                    much larger and there is little chance that it will be reduced and (2) successful exploitation requires the
                    attacker to do much more work upfront and their reward is smaller.
The prerequisites for attacks against HTTP compressions are the same as in the
                    previous case; the attacker must be able to take control over the network
                    communication and have limited control over the victim’s browser. But there are
                    differences when it comes to other factors:
	Attack surface
	HTTP compression is also vulnerable to compression side attacks.
                                (The CRIME authors did not spend much time on it, but others have
                                since worked in this area.) Unlike TLS compression, HTTP compression
                                exposes a huge attack surface and cannot be simply turned off. Many
                                sites depend on it so heavily that they might not be able to operate
                                (cost efficiently) without it.
There is also an additional requirement that the attacker is able
                                to inject arbitrary text into the HTTP response body at the desired
                                attack point. In practice, this is
                                usually
                                possible
                                to
                                do.

	Preparation
	On the other side, much more work is needed to exploit HTTP
                                compression. In fact, you could say that an intimate understanding
                                of the target web site is required. Session cookies are generally
                                not available in HTTP response bodies, which means that the
                                attackers must look for some other secret information. And that
                                information might be much more difficult to find.

	Outcome
	The exact outcome will depend on the nature of the secret
                                information. Any secret information can be extracted, provided the
                                attacker knows it’s there. For most applications, the most
                                interesting target will be the CSRF protection tokens. If one such
                                token is uncovered, the attacker might be able to carry out an
                                arbitrary command on the target web site under the identity of the
                                victim. There are some sites that use their session tokens for CSRF
                                protection. In such cases, the outcome will be session
                                hijacking.





Mitigation of Attacks against TLS and SPDY



TLS compression is dead, and CRIME killed it. Before the disclosure a good chunk
                of the user base—all Chrome users—supported compression; it’s difficult
                to say what Chrome’s market share was in September 2012, but let’s say it was about 30%.[376] Thanks to its autoupdate feature, however, once Chrome disabled
                compression the support quickly disappeared.
OpenSSL had support for compression, so it’s possible to find old installations
                and user agents that still support it, but they are not likely to be attacked
                because they are not browsers (i.e., malware injection is not likely).
Still, it is prudent to disable compression on the server side. In most cases,
                just patching your servers should work. At the time of writing (July 2014), about
                10% of the servers from the SSL Pulse data set still support compression. Given that
                Microsoft’s TLS stack never supported compression and that Nginx disabled it a long
                time ago, most of those are probably older versions of Apache.
It’s unlikely that compression will be making a comeback at the TLS layer. As I
                mentioned before, people didn’t really use it much. (And if they did it was probably
                because it was enabled by default.) Even without compression as an oracle, the fact
                that data length is revealed in TLS is not a positive feature. There are currently
                efforts to implement a length-hiding extension.[377]
As for SPDY, header compression had been disabled in both Chrome and Firefox. Now
                that the problem is known, we can assume that the future versions of this protocol
                will not be vulnerable.

Mitigation of Attacks against HTTP Compression



Addressing the compression side channel inherent in HTTP compression is a much
                more difficult problem, even if the attack is not exactly easy to execute. The
                difficulty is twofold: (1) you probably
                can’t afford to disable compression and (2) mitigation requires application changes, which are
                cost-prohibitive. Still, there are some hacks that just might work well enough.
                Here’s a quick overview of the possibilities:
	Request rate control
	Both the authors of TIME and BREACH have commented on sometimes
                            getting caught due to the excessive number of requests they had to
                            submit. (The BREACH authors cited thousands of requests against OWA.)
                            Enforcing a reasonable rate of requests for user sessions could detect
                            similar attacks or, in the worst case, slow down the attacker
                            significantly. This mitigation could be implemented at a web server,
                            load-balancer, or web application firewall (WAF) layer, which means that
                            it does not need to be very costly.

	Length hiding
	One possible defense measure is to hide the real response length. For
                            example, we could deploy a response body filter to analyze HTML markup
                            and inject random padding. Whitespace is largely ignored in HTML, yet
                            variations in response size would make the attackers’ job more
                            difficult. According to the BREACH authors, random padding can be
                            defeated using statistical analysis at the cost of a significant
                            increase in the number of requests.
The best aspect of this approach is that it can be applied at the web
                            server level, with no changes to deployed applications. For example,
                            Paul Querna proposed to use variations in chunked HTTP encoding at a web
                            server level for length hiding.[378] This approach does not change the markup at all, yet it
                            changes the size of the packets on the wire.

	Token masking
	Threats against CRSF tokens can be mitigated by the use of
                                masking, ensuring that the characters that
                            appear in HTML markup are never the same. Here’s how: (1) for every byte in the token,
                            generate one random byte; (2)
                            XOR the token byte with the random byte; and (3) include all the random bytes in
                            the output. This process is reversible; by repeating the XOR operations
                            on the server, you recover the original token value. This measure is
                            ideally suited for implementation at framework level.

	Partial compression disabling
	When I first thought about attacks against HTTP response bodies, my
                            thoughts were to focus on the fact that the Referer
                            header will never contain the name of the target web site. (If the
                            attacker can do that, then she already has enough access to the site via
                            XSS.) Initially, I proposed to drop cookies on such requests. Without
                            the cookies, there is no user session, and no attack surface. Someone
                            from the community had a better idea: for requests with the incorrect
                            referrer information, simply disable response compression.[379] There would be a small performance penalty but only for the
                            small number of users who don’t supply any referrer information. More
                            importantly, there wouldn’t be any breakage, unlike with the cookie
                            approach.





Padding Oracle Attacks



In February 2013, AlFardan and Paterson released a paper detailing a variety of
            attacks that can be used to recover small portions of plaintext provided that a CBC
            suite is used.[380] Their work is commonly known as the Lucky 13 attack. As with BEAST and
            CRIME, in the web
            context small portions of plaintext
            virtually
            always
            mean
            browser cookies. Outside HTTP, any protocol that uses password authentication is
            probably vulnerable.
The root cause of the problem is in the fact that the padding, which is used in the
            CBC mode, is not protected by the integrity validation mechanisms of TLS. This allows
            the attacker to modify the padding in transit and observe how the server behaves. If the
            attacker is able to detect the server reacting to the modified padding, information
            leaks out and leads to plaintext discovery.
This is one of the best attacks against TLS we saw in recent years. Using JavaScript
            malware injected into a victim’s browser, the attack needs about 8,192 HTTP requests to
            discover one byte of plaintext (e.g., from a cookie or password).
What Is a Padding Oracle?



There is a special class of attack that can be mounted against the receiving party
                if the padding can be manipulated. This might be possible if the encryption scheme
                does not authenticate ciphertext; for example, TLS doesn’t in CBC mode. The attacker
                can’t manipulate the padding directly, because it’s encrypted. But she can make
                arbitrary changes to the ciphertext, where she thinks the padding might be. An
                    oracle is said to exist if the attacker is able to tell
                which manipulations result in a correct padding after decryption and which do
                not.
But how do you get from there to plaintext recovery? At the end of the day,
                encryption is all about hiding (masking) plaintext using some secret seemingly
                random data. If the attacker can reveal the mask, she can effectively reverse the
                encryption process and reveal the plaintext, too.
Going back to the padding oracle, every time the attacker submits a guess that
                results in correct padding after decryption she discovers one byte of the mask that
                is used for decryption. She can now use that byte to decrypt one byte of plaintext.
                From here, she can continue to recover the next byte, and so on, until the entire
                plaintext is revealed.
The key to successful padding oracle exploitation is to (1) submit a lot of guesses and (2) find a way to determine if a guess was
                successful. Some badly designed protocols might fail to hide padding errors. More
                likely, the attacker will need to deduce the outcome by observing server behavior.
                For example, timing oracles observe the response latency, watching for differences
                when padding is correct and when it is not.
If you care to learn about the details behind padding oracle attacks, you can head
                to one of the tutorials available online[381] or review an online simulation that shows the process in detail.[382]
Padding oracle issues are best avoided by verifying the integrity of data before
                any of it is processed. Such checks prevent ciphertext manipulation and preempt all
                padding oracle attacks.

Attacks against TLS



The padding oracle attack (against TLS and other protocols)
                was first identified by Serge Vaudenay in 2001 (formally published in 2002).[383] TLS 1.0 uses the decryption_failed alert for padding
                errors and bad_record_mac for MAC failures. This design, although
                insecure, was not practically exploitable because alerts are encrypted and the
                network attacker can’t differentiate between the two.
In 2003, Canvel et al.[384] improved the attack to use a timing padding oracle and demonstrated a
                successful attack against OpenSSL. They exploited the fact that OpenSSL skipped the
                MAC calculation and responded slightly faster when the padding was incorrect. The
                researcher’s proof-of-concept attack was against an IMAP server; situated close to
                the target, they could obtain the IMAP password in about one hour.
Padding oracles are exploited by repeatedly making guesses about which
                combinations of bytes might decrypt to valid padding. The attacker starts with some
                intercepted ciphertext, modifies it, and submits it to the server. Most guesses will
                naturally be incorrect. In TLS, every failed guess terminates the entire TLS
                session, which means that the same encrypted block cannot be modified and attempted
                again. For her next guess, the attacker needs to intercept another valid encrypted
                block. That is why Canvel et al. attacked IMAP; automated services that
                automatically retry after failure are the ideal case for this attack. 
In order to improve the security of CBC, OpenSSL (and other TLS implementations)
                modified its code to minimize the information leakage.[385] TLS 1.1 deprecated the decryption_failed alert and
                added the following warning (emphasis mine):
Canvel et al. [CBCTIME] have demonstrated a timing attack on CBC padding based
                    on the time required to compute the MAC. In order to defend against this attack,
                    implementations MUST ensure that record processing time is essentially the same
                    whether or not the padding is correct. In general, the best way to do this is to
                    compute the MAC even if the padding is incorrect, and only then reject the
                    packet. For instance, if the pad appears to be incorrect, the implementation
                    might assume a zero-length pad and then compute the MAC. This leaves a small timing channel, since MAC performance depends to some
                        extent on the size of the data fragment, but it is not believed to be large
                        enough to be exploitable, due to the large block size of existing MACs and
                        the small size of the timing signal.


In February 2013, AlFardan and Paterson demonstrated that the remaining
                side channel is, in fact, exploitable, using new techniques to realize
                Vaudenay’s padding oracle. They named their new attack Lucky 13 and showed
                that CBC—as implemented in TLS and DTLS—is too fragile and that it
                should have been abandoned a long time ago. They also showed that small problems,
                left unattended, can escalate again if and when the technologies evolve in
                unpredictable ways.

Impact



For the padding oracle to be exploited, the adversary must be able to mount an
                active attack, which means that he must be able to intercept and modify encrypted
                traffic. Additionally, because the timing differences are subtle the attacker must
                be very close to the target server in order to detect them. The researchers
                performed their experiments when the attacker and the server were both on the same
                local network. Remote attacks do not appear to be feasible for TLS, although they
                are for DTLS, when used with timing amplification techniques developed by AlFardan
                and Paterson in 2012.[386]
	Attacks against automated systems
	The classic full plaintext recovery padding oracle attack is carried
                            out against automated systems, which are likely to communicate with the
                            server often and have built-in resiliency mechanisms that makes them try
                            again on failed connections. Because the attack is spanning many
                            connections, it works only with protocols that always place sensitive
                            data (e.g., passwords) in the same location. IMAP is a good candidate.
                            This attack requires roughly 8.4 million connections to recover 16 bytes
                            of data. Because each incorrect guess results in a TLS error and because
                            TLS is designed to destroy sessions in such situations, every new
                            connection is forced to use a full handshake with the server. As an
                            effect, this attack is slow. Still, it’s not far from being feasible
                            under certain circumstances if the attacker has months of time available
                            and is able to influence the automated process to open connections at a
                            faster rate.

	Attacks when some of the plaintext is known
	A partial plaintext recovery attack, which can be performed if one
                            byte at one of the last two positions in a block is known, allows each
                            of the remaining bytes to be recovered with roughly 65,536
                            attempts.

	Attacks against browsers using JavaScript malware
	AlFardan and Paterson’s best attack uses JavaScript malware
                            against the victim’s browser, targeting HTTP cookies. Because the
                            malware can influence the position of the cookie in a request, it is
                            possible to arrange the encryption blocks in such a way that only one
                            byte of the cookie is unknown. Because of the limited character range
                            used by cookies, the researchers estimate that only 8,192 requests are
                            needed to uncover one byte of plaintext. The best aspect of this attack
                            is the fact that the malware is submitting all the requests and that,
                            even though they all fail, all the connection failures are invisible to
                            the victim. Furthermore, no special plug-ins or cross-origin privileges
                            are required.




Mitigation



AlFardan and Paterson identified problems in a number of implementations, reported
                the problems to the developers, and coordinated the disclosure so that all libraries
                were already fixed at the time of announcement. Thus, patching your libraries should
                be sufficient for the mitigation, at least in the first instance.
Given the fragility of the CBC implementation in TLS, it’s best to avoid CBC
                suites whenever possible. But this is easier said than done; in many cases there are
                no safe alternatives. Streaming ciphers do not use padding, and so they are not
                vulnerable to this problem, but the only streaming cipher in TLS is RC4; it suffers
                from other problems (described in the next section) and should not be used. Other
                streaming ciphers will be added to TLS, but that will take time.[387] This leaves us only with authenticated GCM suites, which require TLS
                1.2. As of
                September 2014, there is a TLS protocol extension that changes CBC suites to
                authenticate
                ciphertext
                instead of plaintext,[388]
                but we have to wait to see if it will be supported widely enough to be
                useful.


RC4 Weaknesses



RC4, designed by Ron Rivest in 1987, is one of the oldest ciphers still in use and,
            despite all its many flaws, still one of the most popular. Its popularity comes from the
            fact that it’s been around for a very long time but also because it’s simple to
            implement and runs very fast in software and hardware.
Today, we know that RC4 is broken, but attacks have not yet sufficiently improved to
            become practical. For this reason, and also for the fact that there are environments in
            which alternatives are even less desirable, RC4 is still being used. (Of course, a much
            bigger reason is inertia and the fact that most people don’t know that they need to
            abandon RC4.)
If possible, it’s best to avoid RC4 completely. For example, the TLS 1.2 environment
            offers safe alternatives, which means that RC4 should not be used. In practice, however,
            you might have good reasons to keep it around, as I will discuss in this section.
Key Scheduling Weaknesses



For a very long time, the biggest known problem with RC4 was the weakness in the
                key scheduling algorithm, published in a paper by Fluhrer, Mantin, and Shamir in 2001.[389] The authors discovered that there are large classes of keys that have a
                weakness where a small part of the key determines a large number of initial outputs.
                In practice, this means that if even a part of a key is reused over a period of time
                the attacker could (1) uncover parts of
                the keystream (e.g., from known plaintext at certain locations) and then (2) uncover unknown plaintext bytes at those
                positions in all other streams. This discovery was used to break the WEP protocol.[390] The initial attack implemented against WEP required 10 million message
                for the key recovery. The technique was later improved to require only under 100,000
                messages.
TLS is not vulnerable to this problem, because every connection uses a
                substantially different key. Thus, RC4 remained in wide use, because the known
                issues didn’t apply to the way it was used in TLS.[391] Despite its known flaws, RC4 remained the most popular cipher used with
                TLS. My 2010 large-scale survey of SSL usage found that RC4 was the preferred cipher[392] and supported by about 98% of surveyed servers.[393] People who understood the key scheduling weakness disliked RC4 because
                it was easy to misuse and, as a result, recommended against it for new systems.[394]
When the BEAST attack was announced in 2011, it instantly made all block cipher
                suites unsafe. (Even though BEAST works only against TLS 1.0 and earlier protocol
                versions, support for TLS 1.1 or better was nonexistent at the time.) Because
                RC4—a streaming cipher—is not vulnerable to BEAST, it suddenly became
                the only secure algorithm to use in TLS. In March 2013, when new devastating flaws
                in RC4 were announced, the ICSI Certificate Notary project showed RC4 usage at about
                50% of all traffic. At the time of writing, in July 2014, the RC4 market share is
                about 26%.[395]

Early Single-Byte Biases



Encryption biases were another reason cryptographers were
                worried about RC4. As early as 2001, it was known that some values appear in the
                keystream more often than others.[396] In particular, the second keystream byte was known to be biased toward
                zero with a probability of 1/128 (twice as much as the expected 1/256). 
To understand how biases can lead to the compromise of plaintext, we need to go
                back to how RC4 works. This cipher operates in a streaming fashion; after the
                initial setup phase, it produces an endless stream of data. This data, which was
                supposed to be effectively random looking from the outside, is then mixed with the
                plaintext, using a XOR operation against one byte at a time. The XOR operation, when
                used with a sufficiently random data stream, changes plaintext into something that’s
                effectively gibberish for everyone except those who know the RC4 key.
When we say that a bias exists, that means that some values appear more often than
                others. The worst case is the already mentioned bias toward zero. Why? Because a
                value XORed with a zero remains unchanged. Thus, because we know that the second
                byte of every RC4 data stream leans toward zero we also know that the second byte of
                encrypted output will lean to be the same as the original text!
To exploit this problem you need to obtain the same text encrypted with many
                different encryption keys. Against TLS, this means attacking many connections.[397] Then you look at all the bytes at position 2; the value that appears
                most often is most likely to be the same as in plaintext. Some amount of guessing is
                involved, but, the more different encryptions you obtain, the higher the chances
                that you will guess correctly.
Figure 7.7. The bias in the second byte of the RC4 keystream [Source: AlFardan et
                        al., 2013]
[image: The bias in the second byte of the RC4 keystream [Source: AlFardan et al., 2013]]


What can be achieved using these individual biases varies and depends on protocol
                design. The first requirement is that useful data actually exists at the given
                location. For example, in TLS the first 36 bytes are most commonly used by the
                    Finished protocol message that changes with every connection
                and has no long-term value.[398] For TLS, the second-byte bias is not going to be useful.
The second requirement is to get the same application data in the same location
                every time across a great number of connections. For some protocols, this is not a
                problem. In HTTP, for example, cookies and passwords are in the same place on every
                request.

Biases across the First 256 Bytes



In March 2013, AlFardan et al. published a paper describing newly discovered
                weaknesses in RC4 and two strong attacks against its use in TLS.[399]
One of the attacks was based on the fact that RC4 biases were not limited to a few
                bytes here and there. By producing and analyzing keystreams of
                    244 different RC4 keys, the researchers uncovered
                multiple biases at every one of the first 256 positions. They further improved the
                recovery algorithms to deal with multiple biases at individual positions (e.g., a
                certain byte is more likely to have values 10 and 23, with all other values equally
                likely). The resulting attack requires 232 data samples
                to recover all 256 bytes with a success rate close to 100%. With optimization that
                can be applied when the attacked data uses a reduced character set (e.g., passwords
                and HTTP cookies), the number of data samples can be reduced to about
                    228. This is a far cry from the
                    2128 bits of security promised by RC4.
Note
How is it possible that the full scope of the bias issues remained
                    undiscovered for so long after so many early warning signs? One theory I heard
                    was that most cryptographers thought that RC4 had already been demonstrated to
                    be insecure and that no further work was needed. In fact, many cryptographers
                    were very surprised to learn how popular it was. It’s likely that the lack of a
                    strong attack against RC4 as used in TLS contributed to its continued
                    use.

Despite the seriousness of the attack, it remains largely theoretical due to many
                constraints:
	Number of connections
	In the best case, this attack requires 228
                            samples of encrypted plaintext. Put another way, that’s 268,435,456
                            connections. Clearly, obtaining all those samples is going to take a lot
                            of time and potentially utilize a lot of network traffic. Under
                            controlled conditions, with two sides designed to produce as many RC4
                            connections as possible, and with session resumption enabled, the
                            authors cite an experiment of about 16 hours using over 500 connections
                            per second for a total of 225
                            connections.
In a scenario closer to real life, a purely passive attack would take
                            much longer. For example, assuming one connection per second (86,400
                            connections per day), it would take over eight years to obtain all the
                            required samples.
The connection rate might be increased by controlling a victim’s
                            browser (using injected JavaScript), forcing it to submit many
                            connections at the same time. This is the same approach taken by the
                            BEAST exploit. In this case, additional effort is needed to defeat
                            persistent connections (keep-alives) and prevent multiple requests over
                            the same connection (the attack can use only the first 256 bytes of each
                            connection). To do this, the MITM could reset every connection at the
                            TCP level after the first response is observed. Because TLS is designed
                            to throw away sessions that encounter errors, in this scenario every
                            connection would require a full handshake. That would make the attack
                            much slower.[400]

	Positioning
	This is a man-in-the-middle attack. Per the previous discussion, a
                            pure passive attack is very unlikely to produce results within a
                            reasonable amount of time. An active attack would require a combination
                            of JavaScript malware and MITM ability.

	Scope
	This attack works only against the first 256 bytes of plaintext.
                            Because such a large number of samples is required, it’s unlikely that
                            the same meaningful secret data will be present throughout. This
                            restricts the attack to protocols that use password authentication or,
                            for HTTP, cookies. As it turns out, the HTTP use case is not very likely
                            because all major browsers place cookies past the 220-byte boundary. (If
                            you recall, the first 36 bytes are of little interest because they are
                            always used by the TLS protocol.) HTTP Basic Authentication is
                            vulnerable in Chrome, which places the password at around the 100-byte
                            mark. All other browsers place passwords out of the reach of this
                            attack.




Double-Byte Biases



In addition to having single-byte biases, RC4 was known to also have biases
                involving consecutive bytes. These do not exist at only one position in the
                encrypted stream but show up continuously in the output at regular intervals.[401]
In their second attack, AlFardan et al. showed how to use the double-byte biases
                for plaintext recovery. The double-byte attack has an advantage in that it does not
                require samples to be obtained using different RC4 keys. This makes the attack much
                more efficient, because multiple samples can be obtained over the same connection.
                On the other hand, because it’s still the case that the same plaintext needs to be
                encrypted over and over, the attacker must have near-complete control over the
                traffic. Passive attacks are not possible.
The double-byte bias attack can recover 16 bytes of plaintext from 13 x
                    230 samples of encrypted plaintext. To collect one
                sample, a POST request of exactly 512 bytes is used. Assuming a
                response of similar size, the attack would consume about 3.25 TB of traffic in both
                directions. Under controlled conditions, that many samples would take about 2,000
                hours (or 83 days) to collect at a speed of six million samples per hour.
Although much more practical than the first attack, this version is equally
                unlikely to be useful in practice.

Mitigation: RC4 versus BEAST and Lucky 13
                
                



The attacks against RC4 are serious and allow for plaintext recovery in controlled
                environments, but they are still not very practical for use against real systems.
                But given that the safety margin of RC4 has become very
                small,
                the best approach is to stop using it as soon as possible.
The problem is that this might not be the best decision given that there are
                situations in which a secure alternative is not available. There are two aspects to
                consider:
	Interoperability
	RC4 has long been one of the most popular ciphers, “guaranteed” to
                            always be there. As a result, there are some clients that do not support
                            anything else. However, chances are that there is only a very small
                            number of them. If you have a truly diverse client base and you think
                            that RC4-only clients might cause substantial breakage, consider keeping
                            RC4 around—but at the bottom of your list of prioritized suites. Because
                            most clients will negotiate something else, you will have reduced your
                            attack surface while minimizing disruption.

	Security
	If you disable RC4, then you might need to worry about using CBC
                            suites in combination with TLS 1.0 or earlier protocol versions. In this
                            case, the BEAST attack might apply. For one thing, your servers might
                            still be at TLS 1.0. (If they are, you should stop worrying about RC4
                            and upgrade your infrastructure to TLS 1.2 as soon as possible.) If your
                            servers are up to date, your user base might consist of clients that are
                            not. Some of them might genuinely be vulnerable to the BEAST
                            attack.
There is little real data from which to decide which of the two
                            attacks (BEAST and RC4) is more likely. Both attacks are difficult to
                            carry out. The RC4 attack is possible with any protocol version but
                            requires a willing browser and a large amount of time and network
                            traffic. BEAST, on the other hand, is difficult to exploit but can be
                            done quickly when everything is just right. The biggest thing going
                            against BEAST is that the major platforms have been patched, and the
                            number of vulnerable users is falling all the time. The real question is
                            this: are there any better attacks against these flaws that might
                            currently be unknown to us? Many are asking this
                            question—especially for RC4, which has always been excluded from
                            the FIPS-approved algorithms. Could it be that the weaknesses have
                            always been known to the NSA? What other problems do they know
                            about?
Lucky 13 is also a concern. Even though the immediate dangers have
                            been addressed with patches, the CBC construction in TLS is inherently
                            unsafe. On the positive side, TLS 1.2 clients and servers tend to
                            support authenticated GCM suites, which use neither RC4 nor CBC. They
                            are currently the best way to avoid all known TLS cipher suite
                            weaknesses.



We can’t make decisions based on speculation and paranoia. Besides, there might
                not be any one correct decision anyway. Mitigating BEAST might be appropriate in
                some cases; removing RC4 might be best in others. In situations such as this, it’s
                always helpful to see what others are doing; at the time of writing, Google still
                allows RC4 but uses it only with clients that do not support modern protocols (TLS
                1.0 and earlier versions).
On the other hand, Microsoft boldly deprecated RC4 in Windows 8.1 and, in some
                cases, even Windows 7. Schannel will still use RC4 in client mode, but only if no
                other cipher suite is available on the server. Some would say that such a fallback
                is necessary, because there are still servers out there that support only RC4 cipher
                suites. There is also an Internet-Draft in progress that prohibits RC4 usage.[402]


Triple Handshake Attack



In 2009, when the TLS renegotiation mechanism had been found to be insecure, the
            protocols were fixed by creating a new method for secure
                renegotiation. (If you haven’t already, read about insecure renegotiation
            earlier in this chapter, in the section called “Insecure Renegotiation
            
            ”.) But that effort
            hadn’t been quite successful. In 2014, a group of researchers showed their
                Triple Handshake Attack, which combines two separate TLS
            weaknesses to break renegotiation one more time.[403]
The Attack



To understand how the attack works, you first need to know how renegotiation is
                secured. When renegotiation takes place, the server expects the client to supply its
                previous verify_data value (from the encrypted
                    Finished message in the previous handshake). Because only the
                client can know that value, the server can be sure that it’s the same client.
It might seem impossible for the attacker to know the correct value, given that it
                is always transmitted encrypted. And yet it was possible to uncover the “secret”
                value and break renegotiation; the attack works in three steps and exploits two
                weaknesses in TLS.
Step 1: Unknown Key-Share Weakness



The first exploited weakness is in the RSA key exchange. The generation of the
                    master secret, which is the cornerstone of TLS session security, is chiefly
                    driven by the client:
	Client generates a premaster key and a random value and sends them to
                            the server

	Server generates its own random value and sends it to the
                            client

	Client and server calculate the master secret from these three
                            values



Both random values are transported in the clear, but to prevent just anyone
                    from performing MITM attacks on
                    TLS,
                    the premaster secret is protected; the client encrypts it with the server’s
                    public key, which means that the attacker can’t get to it. Unless she has access
                    to the server’s private key, that is; therein lies the first twist.
The triple handshake attack relies on a malicious server.
                    In this variant, you somehow convince the victim to visit a seemingly innocent
                    web site under your control. (The usual approach is to use social engineering.)
                    On that web site, you have your own valid certificate.
This is where the fun begins. The client generates a premaster key and a
                    random value and sends them to the malicious server.[404] The premaster secret is encrypted, but the malicious server is the
                    intended recipient and has no trouble decrypting it. Before the handshake with
                    the client is complete, the malicious server opens a separate connection to the
                    target server and mirrors the premaster key and the
                    client’s random value. The malicious server then takes the target server’s
                    random value and forwards it to the client. When this exchange is complete,
                    there are two separate TLS connections and three parties involved in the
                    communication, but they all share the same connection parameters and thus also
                    the same master key.
Figure 7.8. Triple handshake: unknown key-share
[image: Triple handshake: unknown key-share]


This weakness is called an unknown key-share,[405] and you can probably guess that it is not desirable. However, on its
                    own it does not seem exploitable. The malicious server cannot really achieve
                    anything sinister at this point. It has the same master key and can thus see all
                    the communication, but it could do that anyway and without involving the other
                    server. If the attacker attempted to do anything at this point, she would be
                    performing a phishing attack; it’s a real problem, but not one TLS can
                    solve.
Note
The RSA key exchange is almost universally supported, but there
                        is also an attack variant that works against the ephemeral Diffie-Hellman
                        (DHE) key exchange. The researchers discovered that the mainstream TLS
                        implementations accept insecure DH parameters that are not prime numbers. In
                        the TLS protocol, it is the server that chooses DH parameters. Thus, a
                        malicious server can choose them in such a way that the DHE key exchange can
                        be easily broken. The ECDHE key exchange, an elliptic curve variant of DHE,
                        cannot be broken because no TLS implementation supports arbitrary DH
                        parameters (as is the case with DHE). Instead, ECDHE relies on
                            named curves, which are known good sets of
                        parameters.


Step 2: Full Synchronization



The attacker can’t attack renegotiation just yet because each connection has a
                    different client verify_data value. Why? Because the server
                    certificates differ: the first connection sees that attacking hostname’s
                    certificate, whereas the second connection sees the certificate of the target
                    web server.
There’s nothing the attacker can do for that first connection, but in the next
                    step she can take advantage of the session resumption mechanism and its
                    abbreviated handshake. When a session is resumed, there is no authentication;
                    the assumption is that the knowledge of the master key is sufficient to
                    authenticate the two parties.
But, when the session resumes, the only elements that were different in the
                    first connection (the certificates) are not required any more. Thus, when the
                    handshake completes, the Finished messages on both
                    connections will be the same!
Figure 7.9. Triple handshake attack: full TLS connection synchronization
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Step 3: Impersonation



The attacker can now proceed to trigger renegotiation in order to force the
                    use of the victim’s client certificate, leading to impersonation. She is in full
                    control of both connections and can send arbitrary application data either way.
                    On the target web server, she navigates to a resource that requires
                    authentication. In response, the target server requests renegotiation and a
                    client certificate during the subsequent handshake. Because the security
                    parameters are now identical on both connections, the attacker can just mirror
                    the protocol messages, leaving the victim and the target server to negotiate new
                    connection parameters. Except that this time the client will authenticate with a
                    client certificate. At that point, the attack is successful.
Figure 7.10. Triple handshake: impersonation
[image: Triple handshake: impersonation]


After renegotiation, the malicious server loses traffic visibility, although
                    it still stays in the middle and continues to mirror encrypted data until either
                    side terminates the connection.


Impact



The triple handshake attack demonstrates how a supposedly secure TLS connection
                can be compromised. Application data sent to the target server before renegotiation
                comes from the attacker, the data sent after renegotiation comes from the
                authenticated user, and yet for the server there is no difference. The exploitation
                opportunities are similar to those of the original insecure renegotiation
                vulnerability (described at the beginning of this chapter in the section called “Insecure Renegotiation
            
            ”). The easiest exploit is to execute a
                request on the target web server under the identity of the victim. Think money
                transfers, for example.
However, this attack vector is not very easy to use. First, the attacker has to
                find suitable entry points in the application and design specific payloads for each.
                Second, after renegotiation she loses traffic visibility and thus can’t see the
                results of the attack or perform further attacks on the same connection. She can
                perform another attack, but doing so at the TLS level is going to be frustrating and
                slow.
There is another, potentially more dangerous, attack vector. Because the attacker
                can send arbitrary data to either connection before renegotiation, she has full
                control over the victim’s browser. The victim is on her web
                    site, after all. This allows the attacker to inject JavaScript
                malware into the browser. After renegotiation and authentication, the malware can
                submit unlimited background HTTP requests to the target server—all under the
                identity of the victim—and freely observe the responses.
Normally, browsers do not allow one web site to submit arbitrary requests to other
                sites. In this case, all communication is carried out in the context of the
                attacker’s site. Behind the scenes they are routed to the target web site, but, as
                far as the browser is concerned, it’s all one web site.
This second attack vector is effectively a form of phishing, with the triple
                handshake component required in order to subvert client certificate authentication.
                It’s a much more powerful form of attack, limited only by the programming skills of
                the attacker and her ability to keep the victim on the web site for as long as
                possible.

Prerequisites



The triple handshake attack is quite complex and works only under some very
                specific circumstances. Two aspects need to align before the weaknesses can be
                exploited.
The first is that it can be used only against sites that use client certificates.
                Take away that and there can be no impersonation. The second aspect is more
                intriguing. The attack is a form of phishing; the victims must be willing to use
                their client certificates on a site where they are not normally used. I would love
                to say that this is unlikely to happen, but the opposite is probably true.
When it comes to getting the victim to the rogue web server, it’s always possible
                to use social engineering or email, like all other phishing attacks. Given the
                attacker’s position (MITM), he can also redirect any plaintext HTTP request to the
                site. However, that might create suspicions from the user, who will unexpectedly
                arrive at an unknown web site.
Given that few sites use client certificates, the applicability of the triple
                handshake attack is not massive, unlike with the original insecure renegotiation
                problem. On the other hand, the sites that use client certificates are usually the
                more sensitive ones. This attack was never going to be used by petty
                criminals.

Mitigation



The core vulnerabilities exploited by the triple handshake attack are in the
                protocol, and that makes TLS the best place to address the issue. Work is currently
                under way to tweak the protocol so that there is a stronger binding between a
                handshake and the master secret,[406] as well as a stronger binding on session resumption.[407]
In the short term, browser vendors reacted by tweaking their software to abort
                connections when they see a different certificate after renegotiation. Similarly,
                degenerate DH public keys are no longer accepted. Of course, these mitigations are
                generally available only in the more recent browser versions; older Internet
                Explorer versions should be safe too, because Microsoft patches the system-wide
                libraries, not just their browser.
Despite the browser improvements, there are several remaining attack vectors that
                are exploitable under specific circumstances (when certificates are not used): SASL,
                PEAP, and Channel ID. These can’t be addressed in any other way except with protocol
                changes.
If possible, I recommend that you undertake some server-side measures to further
                minimize the risk. The most recent browsers might not be exploitable, but there’s
                always a long tail of users running old software, which could be attacked. Consider
                the following measures:
	Require client certificates for all access
	If a client certificate is required for all TLS connections to a site,
                            then the attacker will need a certificate of her own to carry out the
                            first part of the attack. Depending on how easy it is to obtain a client
                            certificate, this fact alone might be sufficient to reduce the risk of
                            the attack.

	Disable renegotiation
	A strong constraint on the attack is the fact that it requires
                            renegotiation. However, renegotiation is often used only in combination
                            with client certificates. For example, a site might allow anyone access
                            to the homepage but use renegotiation to request a client certificate in
                            a subdirectory. If this arrangement is changed so that renegotiation
                            never takes place, there can be no attack.

	Enable only ECDHE suites
	ECDHE suites are not vulnerable to this attack. Given that all modern
                            browsers support ECDHE suites, if the user base is small and does not
                            use very old browsers (chiefly Android 2.x and IE on Windows XP)
                            disabling the vulnerable key exchange methods (DHE and RSA) might be
                            another good defense method. But this approach won’t work with a diverse
                            user base.





Bullrun
            
            
            



Bullrun (or BULLRUN) is the codename for
            a classified program run by the United States National Security
                Agency (NSA). Its purpose is to break encrypted communication by any
            means possible. Probably the most successful approach taken is, simply, computer
            hacking. If you can obtain a server’s private key by hacking into it, there is no reason
            to attack encryption. More interesting for us, however, is that one of the means is
            weakening of products and security standards. This is a statement from a budget proposal
            from a leaked confidential document:[408]
Influence policies, standards and specification for commercial public key
                technologies.


According to The New York Times, the NSA has about $250 million a year to spend on
            these activities. British GCHQ apparently has its own program for similar activities,
            codenamed Edgehill.[409]
TLS, one of the major security protocols, is an obvious target of this program. The
            public disclosure of Bullrun has caused many to view standards development in a
            completely different light. How can we trust the standards if we don’t trust the people
            who design them?
Dual Elliptic Curve Deterministic Random Bit Generator
                



Dual Elliptic Curve Deterministic Random Bit Generator
                (Dual EC DRBG) is a pseudorandom number generator (PRNG)
                algorithm standardized by the International Organization for
                    Standardization (ISO) in ISO 18031 in 2005 and the United States
                    National Institute of Standards and Technology (NIST) in 2006.[410]
In 2007, two researchers discussed a possible backdoor in this algorithm,[411] but their discovery received little attention.
 When the Bullrun program came to light in September 2013, Dual EC DRBG was
                implicated as an NSA backdoor. In the same month, NIST issued a bulletin denouncing
                their own algorithm:[412]
NIST strongly recommends that, pending the resolution of the security concerns
                    and the re-issuance of SP 800-90A, the Dual_EC_DRBG, as specified in the January
                    2012 version of SP 800-90A, no longer be used.


In 2013, Reuters wrote about a $10 million payment from the NSA to RSA Security,
                Inc., leading to the RSA adopting Dual EC DRBG as the default PRNG in their TLS
                implementation, BSAFE.[413] Many other TLS implementations offered Dual EC DRBG as an option (most
                likely because it was required for the FIPS 140-2 validation), but as far as we know
                none used it by default. The implementation in OpenSSL was found to be faulty and
                thus unusable.[414]
How does this affect TLS, you may ask? In cryptography, all security depends on
                the quality of the data produced by the PRNG in use. Historically, we’ve seen many
                implementations fail at this point, as discussed in the section called “Random Number Generation” in Chapter 6. If you can break
                someone’s PRNG, chances are you can break everything else. The TLS protocol requires
                client and server to send 28 bytes of random data each as part of the handshake;
                this data is used to generate the master secret, which is used to protect the entire
                TLS session. If you can backdoor the PRNG implementation, those 28 bytes might be
                enough to reveal the internal state of the generator and thus help substantially
                with breaking the TLS session.
In 2014, researchers demonstrated that Dual EC DRBG could, indeed, be backdoored,[415] although they couldn’t offer proof that a backdoor existed. At the same
                time, they discovered that a nonstandard TLS extension, written at the request of
                the NSA, had been implemented in BSAFE to expose more data from the PRNG on a TLS connection.[416]
With more random data exposed to the attacker, it becomes up to 65,000 times
                easier to break TLS connections.
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8 Deployment


After several chapters of theory and background information, this chapter is where it all
        comes together; it gives you advice—everything you should know, at a high
        level—for deploying TLS servers securely. In many ways, this chapter is the map for
        the entire book. As you read through each section, refer to earlier chapters for more
        information on a particular topic. After you’re satisfied that you have all the information
        you need, refer to the later chapters for practical configuration advice for your platform
        of choice.
This chapter is best read along with the next one about performance. Although the advice
        here takes performance into consideration, the next chapter provides a much greater level of
        detail, as well as further advice that could be used by those sites that want to be as fast
        as possible.
Key



Private keys are the cornerstone of TLS security. With appropriately selected key
            algorithm and size, TLS will provide strong authentication over a period of many years.
            But, despite our focus on the numbers (“the bigger the better”), the weakest link
            is key management, or the job of keeping the private keys private.
Key
                    Algorithm



There are three key algorithms supported for use in TLS today, but only one of
                them—RSA—is practical. DSA has been long abandoned, and ECDSA is the
                algorithm that we will be deploying more widely in the following years.
	DSA
	DSA is easy to rule out: due to the fact that DSA keys are limited to
                            1,024 bits (Internet Explorer does not support anything stronger),
                            they’re impossible to deploy securely. On top of that, no one uses DSA
                            keys for TLS anyway; going against everyone could potentially expose you
                            to unforeseen interoperability issues.

	RSA
	The easy choice is to use RSA keys because they are universally
                            supported and currently used by virtually all TLS deployments. But, at
                            2,048 bits, which is the current minimum, RSA keys offer less security
                            and worse performance than ECDSA keys. There is also the issue that RSA
                            keys don’t scale well with size increase. If you decide that 2,048-bit
                            RSA keys are not sufficiently strong, moving to, say, 3,072-bit RSA keys
                            would result in a substantial performance degradation.

	ECDSA
	ECDSA is the algorithm of the future. A 256-bit ECDSA key provides 128
                            bits of security versus only 112 bits of a 2,048-bit RSA key. At these
                            sizes, in addition to providing better security, ECDSA is also 2x
                            faster. Compared at equivalent security, against a 3,072-bit RSA key,
                            ECDSA is over 6x faster.
Because elliptic curve (EC) cryptography is a relatively recent
                            addition to the TLS ecosystem, ECDSA is at a disadvantage because not
                            all user agents support this algorithm. Modern browsers support it, but
                            older user agents don’t. You can work around this by deploying RSA and
                            ECDSA keys simultaneously, except that not all server platforms support
                            this option. Additionally, it’s more work to maintain two sets of keys
                            and certificates. For this reason, ECDSA keys are today best used if you
                            want to squeeze the best possible performance out of your TLS servers.
                            In the future, as we require more security, ECDSA will become more
                            relevant.




Key
                Size



When it comes to key size, most deployments will be satisfied with 2,048-bit RSA
                keys or 256-bit ECDSA keys. They provide security of 112 and 128 bits, respectively.
                That said, most deployments can afford to stay at the lower end of key sizes because
                even the weaker keys are sufficient for their needs.
If you require long-term protection, you should use keys that provide at least 128
                bits of security. At that level, 256-bit ECDSA keys fit the bill and perform well.
                With RSA, you’d have to use 3,072-bit keys, which are much slower. If the
                performance degradation is not acceptable, dual-key deployment might be a good
                compromise: use stronger ECDSA keys with modern browsers (and hopefully the majority
                of your user base) and weaker RSA keys with everyone else. Otherwise, accept the
                performance penalty.
Warning
If you are currently using keys that provide less than 112 bits of security
                    (e.g. 1,024-bit RSA keys or weaker), replace them as a matter of urgency. They
                    are insecure. This is especially true for 512- and 768-bit RSA keys, which can
                    be broken with access to modest resources. It is estimated that breaking
                    1,024-bit RSA keys costs only $1m.

Consider the following when selecting key sizes: (1) is your choice secure today, (2) will it be secure when the key is retired, and (3) how long do you want your secrets to stay
                private after you retire the keys.

Key
                    Management



While we spend most time obsessing about key size, issues surrounding key
                management are more likely to have a real impact on your security. There is ample
                evidence to suggest that the most successful attacks bypass encryption rather than
                break it. If someone can break into your server and steal the private key, or
                otherwise compel you to disclose the key, why would they bother with brute-force
                attacks against cryptography?
	Keep your private keys private
	Treat your private keys as an important asset, restricting access to
                            the smallest possible group of employees while still keeping the
                            arrangements practical. Some CAs offer to generate private keys for you,
                            but they should know better. The hint is in the name—private keys
                            should stay private, without exception.

	Think about random number generation
	The security of encryption keys depends on the quality of the random
                            number generator (RNG) of the computer on which the keys are generated.
                            Keys are often created on servers right after installation and
                            rebooting, but, at that point, the server might not have sufficient
                            entropy to generate a strong key. It’s better to generate all your keys
                            in one (off-line) location, where you can ensure that a strong RNG is in
                            place.

	Password-protect the keys
	Your keys should have a passphrase on them from the moment they are
                            created. This helps reduce the attack surface if your backup system is
                            compromised. It also helps prevent leakage of the key material when
                            copying keys from one computer to another (directly or using USB
                            sticks); it’s getting increasingly difficult to safely delete data from
                            modern file systems.

	Don’t share keys among unrelated servers
	Sharing keys is dangerous; if one system is broken into, its
                            compromised key could be used to attack other systems that use the same
                            key, even if they use different certificates. Different keys allow you
                            to establish strong internal access controls, giving access to the keys
                            only to those who need them.

	Change keys frequently
	Treat private keys as a liability. Keep track of when the keys were
                            created to ensure they don’t remain in use for too long. You must change
                            them after a security incident and when a key member of your staff
                            leaves, and should change them when obtaining a new certificate. When
                            you generate a new key, you wipe the slate clean. This is especially
                            true for systems that do not use or support forward secrecy. In this
                            case, your key can be used to decrypt all previous communication, if
                            your adversary has it recorded. By deleting the key safely, you ensure
                            that it can’t be used against you. Your default should be to change keys
                            yearly. Systems with valuable assets that do not use forward secrecy
                            (which is not advisable) should have their keys changed more often, for
                            example quarterly.

	Store keys safely
	Keep a copy of your keys in a safe location. Losing a server key is
                            usually not a big deal because you can always generate a new one, but
                            it’s a different story altogether with keys used for intermediate and
                            private CAs, and keys that are used for pinning.
Generating and keeping private keys in tamper-resistant hardware is
                            the safest approach you can take, if you can afford it. Such devices are
                            known as Hardware Storage Modules, or HSMs. If
                            you use one of those, private keys never leave the HSM and, in fact,
                            can’t be extracted from the device. These days, HSMs are even available
                            as a service.[417] If you care about your security enough to think about an
                            HSM, the idea of using one in the cloud might seem unusual. That said,
                            given what we know about high-tech spying,[418] even when deploying in-house it might still be challenging
                            to find a manufacturer whom you trust not to have created a backdoor
                            into the device. After all, you don’t want to spend a lot of money on a
                            device and only later find out that the keys can be extracted from
                            it.





Certificate



In this section I discuss the topics surrounding certificate selection. There’s a
            variety of decisions to make, including which type of certificate to use, which
            hostnames to include in each certificate, and which CA to obtain the certificates from. 
Certificate Type



There are three types of certificates: domain validated
                (DV), organization validated (OV), and extended
                    validation (EV). The issuance of DV certificates is automated, which
                is why they are cheap. They should be your default choice. OV certificates require
                validation of the organization behind the domain name and contain identifying
                information. Despite that, browsers don’t actually treat OV certificates differently
                nor do they show all the available information.
EV certificates differ from DV and OV certificates in several ways: (1) validation procedures are standardized by
                the CAB Forum; (2) identifying
                information is displayed in browser chrome and highlighted in green; and (3) they are more likely checked for
                revocation. The security benefits are slight, but they provide better assurance to
                some better-educated users. This might be valuable, depending on the nature of the
                business.

Certificate Hostnames



The main purpose of a certificate is to establish trust for the appropriate
                hostnames, allowing users smooth secure access. On the Web, users are often confused
                by needless certificate name mismatch warnings. This problem usually arises from the
                use of certificates that are valid for only one of the two name variants (e.g.,
                valid for www.example.com, but not for example.com).
To avoid such issues, follow this simple rule: if there is a DNS entry pointing to
                your TLS server, ensure that the certificate covers it. We can’t control what others
                are typing in their browser URL bars, or how they link to our sites. The only way to
                be sure is to have certificates with appropriate name coverage. In my experience,
                some CAs automatically issue certificates that cover both variants, but there are
                CAs who don’t.
Note
Another frequent problem comes from placing plaintext-only web sites on an IP
                    address that is already used to host some other secure web site. Someone who
                    uses the https:// prefix with the name of your plaintext site
                    will not only get a certificate warning due to the name mismatch but will
                    subsequently arrive at the unrelated secure site hosted on the same server. This
                    problem is best avoided by closing port 443 on the IP addresses used for
                    plaintext-only web sites.


Certificate
                        Sharing
                



There are two ways in which a certificate can be shared. First, you can get one
                that lists all desired hostnames (e.g., www.example.com,
                    example.com and blog.example.com). Alternatively, you can
                get a wildcard certificate that’s valid for any number of direct subdomains (e.g.,
                by getting a certificate for the names *.example.com and
                    example.com).
Certificate sharing has the advantage of reducing maintenance costs and allowing
                you to use one IP address for many secure web sites. It’s widely used by content
                delivery networks, who operate servers on behalf of others.
In principle, there is nothing wrong with this practice, but only if it doesn’t
                reduce your security. However, that’s usually the case. Speaking strictly about
                encryption, to share a certificate you also have to share the underlying private
                key. This means that certificate sharing is not appropriate for sites operated by
                multiple teams or unrelated web sites. If one of the sites is attacked, the
                compromised private key can be used to attack other sites from the group. Further,
                after a compromise, all servers from the group will have to be reconfigured to use
                the new key material.
More importantly, certificate sharing creates a bond at the application level; a
                vulnerability in one site can be exploited to attack all other sites from the same
                certificate. For this reason, this practice is best avoided. The same problem occurs
                if TLS session information is shared among unrelated servers. You’ll find a more
                thorough discussion of this problem in the section called “Virtual Host Confusion” in
                    Chapter 6.

Signature Algorithm
                



To prove that a certificate is valid, the issuing CA attaches a signature to it.
                Digital signatures typically depend on the security of two components: one is the
                strength of the CA’s private key; the other, the strength of the hashing
                function. Although the private keys used for certificate issuance tend to be
                sufficiently strong, the most commonly used hashing function—SHA1—is
                weak. Although it had been designed to provide 80 bits of security, it’s currently
                thought to be only 61 bits strong.
After the debacle with MD5 certificate signatures, which were spectacularly fully
                broken in 2009, this time the industry is moving away from SHA1 in a timely fashion.
                In 2013, Microsoft decreed that they will not accept SHA1 certificates after 2016 at
                the latest.[419] That prompted CAs to start migrating to using SHA256 as their default
                hashing function for signatures. In September 2014, Google announced that they would
                start warning about SHA1 certificates in late 2014, significantly reducing the time
                available for SHA1 deprecation. Initially, the warnings will appear only on
                certificates that expire after 2016, but they would subsequently move to warn about
                SHA1 even on certificates that expire during 2016.[420]
For your new certificates, ensure that you use SHA256 or better. Because this is
                not something you can request via a CSR, you’ll need to check with your CA in
                advance. When you do, also check that the CA’s entire certificate chain is free of
                SHA1. (Signatures on root certificates do not count.) Your existing SHA1
                certificates can remain in use, but only if they expire before 2016; otherwise, you
                should start making plans to replace them as soon as possible.
Note
Whenever new cryptographic primitives are deployed, we have to deal with older
                    clients that do not support them. In the case of SHA256, the biggest problems
                    seem to be with Windows XP users who have not yet upgraded to SP3[421] and with Android devices before version 2.3.[422]
Before you upgrade your signature algorithm, it’s prudent to examine the web
                    server logs to determine if those older clients make a significant portion of
                    your traffic. If they do, consider postponing the changes until the last
                    possible moment to avoid losing some of the users. There is also another option:
                    some web servers support configurations with more than one certificate per site.
                    If yours does, you could have the best of both worlds by deploying a SHA1
                    certificate for older clients and a SHA2 certificate for everyone else. For the
                    Apache web server, I discuss this deployment approach in the section called “Configuring Multiple Keys” in Chapter 13.


Certificate Chain



Although we tend to talk about valid server certificates, in reality we configure
                TLS servers with certificate chains. A chain is an ordered list
                of certificates that lead to a trusted root. A common problem is to see servers
                whose chains are incomplete and thus invalid. According to SSL Pulse, there were
                5.9% such servers in July 2014.[423]
Some user agents know how to reconstruct an incomplete chain. Two approaches are
                common: (1) all intermediate CA
                certificates are cached and (2) user
                agents retrieve the missing certificates by following the parent certificate
                information that’s usually embedded in every certificate. Neither of these
                approaches is reliable. The latter is also slow because the users have to wait until
                the missing certificates are retrieved from the CAs’ web sites.
It’s also common to see certificates delivered in incorrect order, which is
                technically invalid. In practice, almost all user agents know how to reorder
                certificates to fix the chain. For best results, ensure that your certificate chains
                are valid and that the order is correct.
Although intermediate certificates are usually valid for longer, they expire, too.
                If you’re installing a new certificate, it’s recommended to replace all
                certificates, even if you’re staying with the same CA. This practice will help you
                avoid problems with expired intermediate certificates.
For best performance, your chains should contain the right number of certificates;
                no more and no less. Extra certificates (e.g., the root, which is never needed) slow
                down the TLS handshake. However, there can be a question of
                    which chain is correct. Multiple trust paths sometimes
                exist for historical reasons. For example, a new CA can get their root into modern
                browsers, but, to support older clients, they have their root key cross-signed by
                another (better-established) CA. In this case you don’t want to “optimize” your
                chain to be the shortest possible. The shorter chain would work only in newer
                browsers, but fail in older devices.

Revocation



A certificate can and should include two types of revocation information: CRL and
                OCSP. It’s possible that a certificate does not include some of the required
                information, but it’s rare. Nevertheless, you should still check (e.g., by using the
                SSL Labs test or the OpenSSL command-line tools).
It’s more important that your CA provides a reliable and fast OCSP responder
                service. After all, every time your users connect to your web site, they’ll be
                connecting to the CA’s site as well. For best results and reliability, deploy
                OCSP stapling, which allows you to deliver OCSP responses directly from your own
                server, avoiding potential performance, availability, and privacy issues.

Choosing the Right Certificate Authority



For a small site that needs only a simple DV certificate, virtually any CA will
                suffice. You can do what I do—just buy the cheapest certificate you can find.
                After all, any public CA can issue a certificate for your web site without asking
                you; what’s the point of paying more? But, if you need a certificate for something
                important, take your time and select carefully to ensure the CA meets your needs.
                With some advanced techniques such as pinning, by selecting a CA you are making a
                long-term commitment.
	Service
	At the end of the day, it’s all about the service. The certificate
                            business is getting more complicated by the day. If you don’t have
                            experts on your staff, perhaps you should work with a CA on which you
                            can rely. Costs matter, but so do the management interfaces and the
                            quality of the support.

	Reach
	If you have a large and diverse user base, you need a CA with widely
                            trusted roots. The older CAs—who have had a lot of time to embed
                            their roots in various trust stores—have a clear advantage here,
                            but a young CA with a root cross-signed by a better-established CA could
                            do just fine. It’s best to check: (1) make a list of platforms that are important for you;
                                (2) ask the candidate CAs
                            to document their trust store placement; (3) ensure that the support is available where you need
                            it. Finally, test some of those key platforms against a test certificate
                            and see for yourself. Remember that it is not only important what
                            platforms are supported today, but when exactly the support had been
                            added. There are plenty of devices that do not update their trust
                            stores.

	Quick adoption of new technologies
	Some CAs are only interested in selling certificates; others shape and
                            lead the industry. You should generally work with the CAs who are
                            leading in adoption of new technologies and migration away from the weak
                            old ones. Today, look for a CA who issues SHA256 certificates by
                            default, provides good OCSP responder service, and has a plan to support
                            pinning and Certificate Transparency.

	Security
	Clearly, a CA’s ability to run their business securely is an
                            important criterion. But how do you judge security? All CAs go through
                            audits and are thus nominally equally secure, but we know from the past
                            that they are not equal. The best approach is to look for evidence of
                            good security posture.



Self-Signed Certificates and Private
                            CAs



Although this section assumes that you’ll be getting a certificate from a
                    publicly trusted CA, you can just as well decide to use a self-signed
                    certificate. You could also create your own private CA and use it to issue
                    certificates for all your servers. All three approaches have their place.
For public web sites, the only safe approach is to use certificates from a
                    public CA.
Self-signed certificates are the least useful option. Firefox makes it easier
                    to use them safely; you create an exception on the first visit, after which the
                    self-signed certificate is treated as valid on subsequent connections. Other
                    browsers make you click-through a certificate warning every time.[424] Unless you’re actually checking the certificate fingerprint every
                    time, it is not possible to make that self-signed certificate safe. Even with
                    Firefox, it might be difficult to use self-signed certificates safely. Ask
                    yourself this: what will the members of your group do if they encounter a
                    certificate warning on a site where they previously accepted a self-signed
                    certificate? Would they check with you to confirm that the certificate had been
                    changed, or would they click through?
In virtually all cases, a much better approach is to use a private CA. It
                    requires a little more work upfront, but once the infrastructure is in place and
                    the root key is safely distributed to all users, such deployments are as secure
                    as the rest of the PKI ecosystem.



Protocol Configuration



When it comes to protocol configuration, your choices are likely to be influenced by a
            combination of security and interoperability requirements. In the ideal world, just on
            security alone, you would allow only TLS 1.2 and disable all other protocol versions.
            But such approach can work only for small groups and tightly-controlled
            environments—although modern browsers support TLS 1.2, many other products and
            tools don’t.
A web site intended for public use needs to support TLS 1.0, TLS 1.1, and TLS 1.2. SSL
            2 and SSL 3 are
            both
            obsolete and insecure. SSL 3
            stayed in use for a
            very long time but it had been dealt a fatal blow by the so-called POODLE attack,[425] which was released in October
            2014.
            Virtually all clients support at least TLS
            1.0, but there’s a
            potential problem with Internet Explorer 6 users; this browser version supports only SSL
            3 by
            default.
            However, in the aftermath of the POODLE attack large companies and CDNs are disabling
            SSL 3, which will likely lead to IE 6 users upgrading to better browsers. (It’s also
            possible to enable TLS 1.0 in IE 6 manually, but getting a modern browser is a much
            better solution for this
            problem.)
Note
Older protocol versions are of concern because most browsers can be forced to
                downgrade to the oldest (and worst) protocol they support. By doing this, an active
                network attacker can disable advanced protocol features and indirectly influence
                cipher suite selection. I discuss this in the next section.


Cipher Suite Configuration



In this section I discuss several aspects that influence cipher suite configuration:
            encryption strength, long-term security, performance and interoperability.
Server cipher suite preference



Enforcing server cipher suite preference is vital to achieving best security with
                a variety of clients. Cipher suite selection takes place during the TLS handshake;
                because TLS enforces handshake integrity, there is no danger that an active network
                attacker can force some connections to use a weaker suite by attacking the protocol
                directly. 
That doesn’t mean that you should offer insecure suites, however. The same active
                network attacker could force a browser (but generally not other types of clients,
                for example command-line utilities) to voluntarily downgrade the protocol version.
                In most cases that means downgrading
                all the way down
                to SSL
                3 (assuming the
                server supports it, of course), which implies no authenticated
                encryption
                suites, no EC cryptography, and sometimes not even AES.

Cipher
                        Strength



Use strong ciphers that provide 128 bits of security. Although AES and CAMELLIA
                both fit this description, AES has a strong advantage because it can be used with
                authenticated (GCM) suites that are supported by modern user agents. Authenticated
                suites are the best TLS can offer; using them you avoid the inherently unsafe
                (although not necessarily practically exploitable) CBC suites. For example, the NSA
                Suite B cryptography standard, which defines security policies for national security
                applications, recommends using only GCM suites with TLS.[426]

Forward Secrecy



Do not use the RSA key exchange, which does not provide forward secrecy. Instead,
                look for the string ECDHE or DHE in the cipher
                suite name. Don’t be confused by the fact that RSA can be used for key exchange and
                authentication; there is nothing wrong with the latter. For as long as you continue
                to use RSA keys, the string RSA will remain in the suite name.
                For performance reasons (more about that in the next chapter), prefer ECDHE suites
                over DHE.
With forward secrecy, every connection to your site is individually protected,
                using a different key. Without forward secrecy, the security of all
                    connections effectively depends on the server’s private key. If that
                key is ever broken or stolen, all previous communication can be decrypted. This is a
                huge liability that can be trivially fixed by adjusting configuration. In fact, this
                is so important that future TLS versions are expected to support only suites that
                provide forward secrecy.
For ECDHE, the secp256r1 curve will provide 128 bits of
                security for the key exchange. There is little choice at the moment when it comes to
                named curve selection. However, new curves are being added, along with mechanisms
                (e.g., in OpenSSL) to choose the best curve supported by the client. Once those
                become available, you should prefer the newer curves with clients that support
                them.
For DHE, most servers continue to use DH
                parameters of 1,024 bits, which provide about 80 bits of security. In general, given
                that with forward security each connection has its own key, 80 bits might be
                sufficient for sites that don’t have security as a priority. Everyone else should
                generally use DH parameters that match the strength of the server private key. For
                most sites, that will be 2,048 bits. That said, if you prioritize ECDHE, which most
                modern clients support, the DHE key exchange will be used only with older
                clients.
When configuring DHE strength, you have the
                option to generate your own parameters of desired strength, but you can also use the
                standardized groups recommended by RFC 3526.[427]

Performance



The good news is that GCM suites are also the fastest, which means that you don’t
                have to choose between security and speed. Although AES and CAMELLIA are of similar
                speeds when implemented in software, AES again has an advantage because modern
                processors accelerate it with a special instruction set; it ends being much faster
                in practice. In addition, hardware-accelerated AES is thought to be more resistant
                to cache timing attacks.
Avoid CBC suites that use SHA256 and SHA384 for integrity validation. They are
                much slower with no clear security benefits over SHA1. But don’t be confused with
                the fact that GCM suites also have SHA256 and SHA384 in their names; authenticated
                suites work differently and aren’t slow. Also, don’t worry about SHA1 in this
                context; this hashing function is safe when used with HMAC, which is what the suites
                are doing.
For the ECDHE key exchange, use the secp256r1 curve, which
                provides 128 bits of security and best performance. Always prefer ECDHE over DHE;
                the latter is slower even at the commonly-used and not very secure 1,024 bits. It’s
                much slower at 2,048 bits.

Interoperability
                
                



The key to interoperability is supporting a wide selection of suites. TLS clients
                come in all shapes and sizes and you don’t want to needlessly refuse access to some
                of them. If you follow the recommendations here and enforce server cipher suite
                preference, you are going to negotiate your preferred suites with most clients. The
                remaining, less-wanted, suites will be used only by old clients that don’t support
                anything better. Here are some examples:
	Some very old clients might support only 3DES and RC4.[428] The latter is insecure and shouldn’t be used, but 3DES, which
                        provides 112 bits of security, is still acceptable for legacy
                        applications.

	By default, Java clients do not support 256-bit suites.

	Java, before version 8, could not support DHE parameters over 1,024 bits.
                        This should not be a problem for Java 7, because it supports ECDHE suites:
                        by giving higher priority to ECDHE you can ensure that DHE is never
                        attempted. If you need to support Java 6 clients, you must choose between no
                        forward secrecy (using the RSA key exchange) and forward secrecy with DH
                        parameters of 1,024 bits. The latter is preferable.

	For the ECDHE key exchange, only two named curves are widely supported:
                            secp256r1 and secp384r1. If you
                        use some other curves you might end up not negotiating any ECDHE suites with
                        some clients (e.g., Internet Explorer).





Server Configuration and Architecture



The only way to achieve strong overall security is to ensure that each individual
            system component is secure. Best practices such as disabling unnecessary services,
            regular patching, and strict access controls all apply. There is plenty of good
            literature on this subject. Complex architectures introduce their own challenges.
            Special care is needed—ideally during the design phase—to ensure that
            scaling up doesn’t introduce new weaknesses.
Shared Environments



Shared environments don’t go well with security. Shared hosting, in particular,
                shouldn’t be used by any business that operates encryption. There are many attack
                vectors via the filesystem or direct memory access that could result in private key
                compromise. Shared virtual servers might be similarly unacceptable, depending on
                your security requirements. Encryption is particularly tricky to get right when
                resources are shared among unrelated parties. Attacks sometimes depend on having
                very fast access to the target server (e.g., Lucky 13). In some cases (e.g., cache
                timing attacks), the prerequisite is access to the same CPU as the target server,
                which is possible in virtual environments.
Infrastructure sharing is always a compromise between costs and convenience on one
                side and security on the other. I don’t think you’ll find it surprising that the
                best security requires exclusive hardware, strong physical security, and competent
                engineering and operational practices.

Virtual Secure Hosting
                



Today, the widely accepted practice still is to use one IP address per secure
                server. The main reason for this is that virtual secure hosting (placing many
                unrelated secure servers on the same IP address) depends on a feature called
                    Server Name Indication (SNI), which was added to TLS only
                in 2006. Because that was a rather late addition, many older products (e.g., early
                Android versions, older embedded devices, and Internet Explorer on Windows XP) don’t
                support it. Sites that target a wide audience should therefore continue to use a
                separate IP address for each site.
That said, relying on SNI availability is on the verge of being practical. Sites
                that have a modern user base can already do it. I expect that, over the next several
                years, we’ll see a rise in SNI-only sites. Support for Windows XP ended in 2014, and
                that’s expected to encourage its users to migrate to more recent operating
                systems.

Session Caching



Session caching is a performance optimization measure; client and server negotiate
                a master secret during their first connection and establish a session. Subsequent
                connections use the same master secret to reduce CPU costs and network latency. The
                performance improvement comes at the expense of reduced security: all connections
                that are part of the same session can be broken if the shared master secret is
                broken. However, because sessions typically last only for a limited time, the
                tradeoff is acceptable to most deployments.
I wouldn’t advise disabling session caching, as that would seriously
                degrade server performance. For anything but the most secure sites, caching a
                session for up to a day is acceptable. For best security, reduce the session cache
                timeout to a shorter value, for example, one hour.
When session tickets are used, the security of all connections depends on the same
                ticket key. This is an area in which current server software doesn’t provide
                adequate default configuration. Most applications based on OpenSSL use implicit
                ticket keys that are created on server startup and never rotated. This could lead to
                the same key used for weeks and months, effectively disabling forward secrecy. Thus,
                if you’re using session tickets, deploy with manually configured ticket keys and
                regularly rotate them (e.g., daily). Twitter, for example, uses fresh keys every 12
                hours and deletes old keys after 36 hours.[429]

Complex Architectures



Usually, the most secure TLS deployment is that of a standalone server, which
                comes with well-defined security boundaries. Complex architectures, which involve
                many components and services spread among many servers, often introduce new
                weaknesses and attack points:
	Distributed session caching
	When a site is served by a cluster of servers, ensuring good
                            performance through session caching is more difficult. There are
                            typically two ways to address this problem: (1) use sticky load balancing,
                            which ensures that the same client is always sent to the same cluster node,[430] or (2) share the
                            TLS session cache among all the nodes in the cluster.
Session cache sharing has a security impact, because the attack
                            surface is larger with the sessions stored on multiple machines. In
                            addition, plaintext communication protocols are often used for backend
                            session synchronization. This means that an attacker who infiltrates the
                            backend network can easily record all master secrets.

	Session cache sharing
	Session cache sharing among unrelated applications increases the
                            attack surface further; it creates a bond among the applications that
                            can be exploited at the application level, in the same way that
                            certificate sharing, discussed earlier, can. Your default approach
                            should be to avoid session cache sharing unless it’s necessary. This
                            might not always be easy, as not all servers allow for strict cache
                            separation. If using tickets, ensure that each server uses a different
                            ticket key.

	SSL offloading and reverse proxies
	SSL offloading is a practice of terminating encryption at a separate
                            architecture layer. This practice is dangerous, because, most often, the
                            traffic from the proxy to the application is not encrypted. Although you
                            might perceive that the internal network is secure, in practice this
                            design decision creates a serious long-term attack vector that can be
                            exploited by an attacker who infiltrates the network.

	Network traffic inspection
	The design of the RSA key exchange allows for network-level traffic
                            inspection via private key sharing. It’s typically done by intrusion
                            detection and network monitoring tools that can passively decrypt
                            encryption. In some environments, the ability to inspect all network
                            traffic might be a high priority. However, this practice defeats forward
                            secrecy, which potentially creates a much bigger long-term liability,
                            because now the security of all traffic depends on the shared private
                            key.

	Outsourced infrastructure
	Take special care when outsourcing critical components of your
                            infrastructure to someone else. Cloud-based deployments are increasingly
                            popular, but vendors often don’t provide enough information about how
                            their services are implemented. This could lead to unpleasant surprises.
                            In 2014, a group of researchers analyzed the HTTPS implementations of
                            content delivery networks and discovered that some failed to perform
                            certificate validation.[431]
The best approach is to keep encryption under your complete control.
                            For example, if using Amazon’s Elastic Load Balancer to ensure high
                            availability, configure it at the TCP level and terminate TLS at your
                            nodes.





Issue Mitigation



In recent years we saw a number of protocol attacks and other security issues that
            affect TLS. Some of those are easy to address, typically by patching. Others require a
            careful consideration of the involved risks so that an appropriate configuration can be
            deployed.
Renegotiation



Insecure renegotiation is an old flaw from 2009 but a large number of systems
                still suffer from it. Patching should be sufficient to fix this problem. If you’re
                not using client certificates, disabling client-initiated renegotiation will make
                your systems safe. For the safety of others, you should support the new standard for
                secure renegotiation.
Servers that still support insecure renegotiation can be attacked with outcomes
                such as cross-site request forgery (user impersonation), information leakage, and
                cross-site scripting. Exploitation is easy, with tools readily available.

BEAST (HTTP)



BEAST is a 2011 attack against CBC suites in TLS 1.0 and earlier protocol
                versions, which rely on predictable initialization vectors for block ciphers. This
                attack is a client-side issue that can be used only against browsers, but not
                against non-interactive tools. All modern browsers deploy mitigation measures, but
                users with older browsers (and older versions of Java, which are needed for the
                exploit to work) might still be vulnerable. Although newer protocols (TLS 1.1
                onwards) are not vulnerable to BEAST, they are not supported by those older
                vulnerable browsers. BEAST is relatively easy to execute and can be used to retrieve
                fragments of sensitive information (e.g., session cookies).

CRIME (HTTP)



CRIME is a 2012 attack that exploits information leakage inherent in compression
                as used in TLS and earlier versions of the SPDY protocol. Like BEAST, CRIME can be
                used against browsers, but not against non-interactive tools. Also like BEAST, CRIME
                targets fragments of sensitive information stored in request headers (e.g., session
                cookies and passwords). Although a large number of servers still support TLS
                compression, there is little client-side support and the attack surface is small.
                Still, TLS compression should be disabled, typically by patching.

Lucky 13



Lucky 13 is a 2013 attack against CBC suites. It uses statistical analysis and
                other optimization techniques to exploit very small timing differences that occur
                during block cipher operation. A successful attack requires close proximity to the
                target web server. Lucky 13 typically targets fragments of sensitive information,
                for example passwords.
As far as we know, the attacks have been addressed by implementing constant-time
                decryption in popular TLS libraries; ensuring you’re running the patched versions
                everywhere is necessary to be safe against this attack. Despite that, CBC suites
                remain inherently vulnerable (i.e., difficult to implement correctly) and the
                problem might return again in the future. For complete safety, deploy authenticated
                encryption using GCM suites, which are available in TLS 1.2.

RC4



In 2013, RC4 was found to exhibit many weaknesses that can be used to recover
                sensitive information, but only if the same information occurs in the same place
                across a great number of connections. RC4 has been exploited under controlled
                conditions, but the attacks are not practical yet. There have been rumors that
                better attacks are available, but no evidence so far. For this reason, you should
                avoid using RC4 unless you really need it. In some
                environments, RC4 could be the lesser evil when compared to BEAST and Lucky 13
                attacks.
There are several attacks against RC4. One of the attacks can retrieve the first
                256 bytes on an encrypted connection. The second attack can retrieve fragments of
                sensitive information from anywhere in the data stream.
RC4 versus BEAST and Lucky 13



BEAST and Lucky 13 can be addressed by avoiding to use CBC suites and using a
                    streaming cipher instead. Unfortunately, RC4, the only streaming cipher
                    available in TLS, is also known to contain weaknesses. So what to do?
BEAST requires a lot of effort to exploit. Still, the attack is practical, if
                    only against users with old and vulnerable software. BEAST is thus of limited
                    use and, because of the high effort required, suitable only for targeted
                    attacks. RC4 weaknesses have so far been exploited only in controlled
                    environments. However, there is an expectation that attacks against RC4 will get
                    better, whereas the number of users vulnerable to BEAST is going to continue to
                    decline.
For most sites, the best approach is to ensure that they are running a TLS
                    stack not vulnerable to Lucky 13 (in other words, patch) and focus on the
                    future: use TLS 1.2 with GCM suites, don’t use RC4 and don’t worry about
                    BEAST.
High profile sites with large and potentially vulnerable user bases might
                    consider using RC4 as a way to mitigate the attacks against CBC. They should
                    still use TLS 1.2 and GCM suites with modern browsers, but rely on RC4 with TLS
                    1.0 and older protocols.


TIME and BREACH (HTTP)
                



TIME and BREACH are 2013 attacks that extend CRIME to attack HTTP compression.
                Unlike TLS compression, which was never widely deployed, HTTP compression is very
                useful and popular, and can’t be disabled without (usually significant) performance
                penalties. TIME was largely a conceptual attack, without any tools published. BREACH
                authors released the source code for their proof-of-concept, which means that this
                attack is easier to carry out. Both attacks require a lot of work to execute, which
                suggests that they are more suitable for use against specific targets, but not at
                scale. BREACH can be used to retrieve small fragments of sensitive data that appear
                anywhere in an HTML page, if compression is used.
Addressing BREACH requires more effort because its attack surface is at the
                application layer. There are two practical mitigation techniques that you should
                consider:
	Masking of sensitive tokens
	For sensitive tokens such as those used for CSRF defense and session
                            management, the best defense is to use masking. BREACH requires that the
                            sensitive string appears in an HTML page across many requests. An
                            effective mitigation technique is to mask the original value so that it
                            appears different every time, provided the process can be reversed. This
                            approach requires extensive changes to application source code and might
                            not be suitable for legacy applications. However, it’s ideal for
                            implementation in frameworks and libraries.

	Disable compression when referrer information is incorrect or
                        unavailable
	Disabling compression prevents the attack, but that’s too costly.
                            However, an attack always comes from elsewhere and not from your own web
                            site. This means that you can examine the referrer information and
                            disable compression only when the attack is possible—when you see
                            a request arriving from some other web site. In practice, you also have
                            to disable compression when the referrer information is not available,
                            which can happen for privacy reasons or if the attacker uses tricks to
                            hide it. This mitigation technique is easy to deploy at web server level
                            and requires no changes to the source code. There’s only a very small
                            performance penalty involved because compression will be disabled only
                            on requests that arrive from other sites.




Triple Handshake Attack



Triple Handshake Attack is a high-effort attack revealed in 2014. It can be used
                only against environments that use client certificates for authentication. This
                attack has similar consequences to insecure renegotiation, with some variations that
                make exploitation easier. In the short-term, the best mitigation is to use the
                latest versions of modern browsers, which have incorporated counter-measures. The
                TLS protocol is currently being extended to address the underlying core
                issue.

Heartbleed



Heartbleed is a vulnerability in OpenSSL, a widely deployed cryptographic library.
                It was discovered in April 2014. Although not a cryptographic issue in itself,
                Heartbleed can be devastating for the vulnerable server. Since the vulnerability was
                announced, a number of advanced exploitation techniques have been developed. Attack
                tools are readily available and can be used to retrieve server private keys very
                quickly.
Addressing this problem requires several steps: (1) first, patch the affected systems so that the vulnerability is
                addressed; (2) generate new private keys,
                obtain new certificates, and revoke the old certificates; (3) if using session tickets, change the ticket
                keys; (4) consider if other sensitive
                data might have existed in server memory and determine if further actions are
                necessary (e.g., user passwords were commonly found present; some web sites advised
                their users to change their passwords).
Warning
It’s common to see servers patched for Heartbleed and with new certificates
                    installed, but still using unchanged private keys. Such servers are still
                    vulnerable because the private keys compromised before the patching can still be
                    used by the attacker.



Pinning



Public trust depends on hundreds of CAs who issue certificates to prove server
            legitimacy. Although this approach works well for average web sites that are unlikely to
            be attacked via certificate forgery, high-profile sites are left exposed because any CA
            can issue a certificate for any domain name. This problem can be fixed using a technique
            called public key pinning, which allows you to specify exactly
            which CAs are allowed to issue certificates for your domain names.
Pinning greatly reduces the attack surface for certificate forgery attacks but comes
            at a cost: it requires an effort to design a pinning strategy and operational maturity
            to carry it out. At this time, pinning is possible only via the proprietary mechanism
            embedded in Chrome. Several standards are currently in various stages of development:
            DANE (based on DNSSEC), Public Key Pinning for HTTP, and TACK. 

HTTP



Although SSL and TLS were designed so that they can secure any connection-oriented
            protocol, the immediate need was to protect HTTP. To this day, web site encryption
            remains the most common TLS use case. Over the years, the Web evolved from a simple
            document distribution system into a complex application delivery platform. This
            complexity creates additional attack vectors and requires more effort to secure.
Making Full Use of Encryption



In HTTP, encryption is optional. As a result, many sites fail to use it even
                though it is genuinely necessary. In some cases by design, in others by omission.
                Many don’t use encryption because it requires additional effort and expertise. Some
                justify lack of encryption citing performance reasons and costs. Browsers make the
                situation difficult by allowing secure and insecure resources to be mixed within the
                same HTML page.
The truth is that if you have anything of value online, you need encryption. And
                you need full encryption across the entire site because partial encryption is
                practically impossible to use securely. There are issues with cookie scope and user
                transitions between insecure and secure areas that can’t be implemented securely.
                Mixed content issues—when insecure resources are requested from an otherwise
                secure page—can be used to achieve a complete security compromise.
For all these reasons, the best approach is to enforce encryption on the entire
                domain name, across all the applications you might have installed on the
                subdomains.

Cookie Security



HTTP cookies that have not been declared as secure (a frequent programming error)
                can be retrieved by an active network attacker even in the extreme case when the web
                site in question does not operate in plaintext at all. During the quality assurance
                (QA) phase, pay special attention to how cookies are created.
Further, due to the lax cookie specification, it is very easy for attackers to
                inject cookies into unsuspecting applications. This can be typically achieved from
                other applications that operate from a related subdomain (e.g., from
                    blog.example.com into www.example.com), or even from a
                nonexistent subdomain in an active network attack. A skilled attacker could use
                cookie injection for privilege escalation. For best security, deploy a cookie
                encryption or an integrity validation scheme. The former is better, but the latter
                can be used in the cases when cookie read access is needed from JavaScript.

Backend Certificate and Hostname Validation



Many applications use HTTP 0ver TLS for backend communication; this practice is
                very common in native, web, and mobile applications alike. Unfortunately, they
                suffer from a common failure where they don’t validate certificates correctly,
                leaving them wide open to active network attacks. Your QA processes should include
                tests that check for failures in this area.
In most cases, all that’s needed is to enable certificate checking in the
                underlying TLS library. In others, developers rely on low-level APIs that implement
                some generic certificate checks, but not the protocol-specific functionality, such
                as hostname checking. As a rule of thumb, low-level APIs should be avoided if there
                are higher-level alternatives available.
For best security, you should consider using public key pinning in your
                applications. Unlike with browsers, where you must wait on pinning to be
                standardized, in your own applications you have full control over the code. Pinning
                is easy to implement and significantly reduces the attack surface.

HTTP Strict Transport
                Security



HTTP Strict Transport Security (HSTS) is a standard that
                allows web sites to request strict handling of encryption. Web sites signal their
                policies via an HTTP response header for enforcement in compliant browsers. Once
                HSTS is deployed, compliant browsers will switch to always using TLS when
                communicating with the web site. This addresses a number of issues that are
                otherwise difficult to enforce: (1) users
                who have plaintext bookmarks and follow plaintext links; (2) insecure cookies; (3) HTTPS stripping attacks; (4) mixed-content issues within the same
                site.
In addition, and perhaps more importantly, HSTS fixes handling of invalid
                certificates. Without HSTS, when browsers encounter invalid certificates they allow
                their users to proceed to the site. Most users can’t differentiate between attacks
                and configuration issues and decide to proceed, which makes them susceptible to
                active network attacks. With HSTS, certificate validation failures are final and
                can’t be bypassed. That brings TLS back to how it should have been implemented in
                the first place.
For best results, HSTS should be activated for the entire namespace of a
                particular domain name (e.g. for example.com and all subdomains).

Content Security Policy



Content Security Policy (CSP) is a mechanism that allows
                web sites to control how resources embedded in HTML pages are retrieved and over
                what protocols. As with HSTS, web sites signal their policies via an HTTP response
                header for enforcement in compliant browsers. Although CSP was originally primarily
                designed as a way of combating XSS, it has an important application to web site
                encryption: it can be used to prevent third-party mixed content by rejecting
                plaintext links that might be present in the page.

Protocol Downgrade Protection



Although TLS has protocol downgrade protections built-in, browsers make them
                ineffective by voluntarily downgrading on negotiation failures. This is arguably the
                biggest practical protocol flaw we have at the moment.
After months of discussion, Google adopted a proposal around using a special
                    fallback signaling suite to inform servers of potential
                downgrade attacks. It’s currently implemented in Chrome.
                Firefox is
                expected to implement it version 35.[432]
                To be fully effective, the mechanism must also be supported
                server-side. When the feature is eventually incorporated into libraries
                (OpenSSL
                supports it starting with version 1.0.1j) it will work
                transparently. In the meantime, it is also possible to implement it externally,
                for example
                via a protocol-parsing intrusion detection system.
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9 Performance Optimization


People sometimes care about security, but they always care about
        speed; no one ever wanted their web site to be slower. Some of the motivation for increasing
        performance comes from our fascination with being fast. For example, there is a lot of
        anecdotal evidence that programmers are obsessed with performance, often needlessly and at
        expense of code quality. On the other hand, it is well documented that speed improvements
        increase revenue. In 2006, Google said that adding 0.5 seconds to their search results
        caused a 20% drop in traffic.[433] And Amazon said that an increase of 100 ms in latency costs them 1% in revenue.[434]
There is no doubt that TLS has a reputation for being slow. Most of it comes from the
        early days, when CPUs were much slower and only a few big sites could afford encryption. Not
        so today; computing power is no longer a bottleneck for TLS. In 2010, after Google enabled
        encryption on their email service by default, they famously stated that SSL/TLS is not
        computationally expensive any more:[435]
On our production frontend machines, SSL/TLS accounts for less than 1% of the CPU
            load, less than 10KB of memory per connection and less than 2% of network overhead. Many
            people believe that SSL takes a lot of CPU time and we hope the above numbers (public
            for the first time) will help to dispel that.


This chapter is all about getting as close as possible to Google’s performance numbers. A
        large part of the discussion is about latency reduction. Most of the techniques apply to any
        protocol (even when encryption is not used) but are especially important for TLS because of
        its increased connection setup costs. The rest is about using the least amount of CPU power
        possible to achieve desired security and making sure that user agents need to do as little
        work as possible to validate your certificates.
Note
In this chapter I focus on the performance profile of TLS, but there are many other
            potential gains elsewhere in the application stack. For a wider look at the topic of
            performance of web applications, I recommend Ilya Grigorik’s book High
                Performance Browser Networking, published by O’Reilly in 2013. This book
            is freely available online.[436]

Latency and Connection
                    Management



The speed of network communication is shaped by two main factors: bandwidth and latency.[437] Bandwidth is a measure of how much data you can send in a unit of time.
            Latency describes the delay from when a message is sent until it is received on the
            other end. Of the two, bandwidth is the less interesting factor because you can
            generally always buy more of it. Latency can’t be avoided because it’s imposed on us by
            the speed limits at which data travels over network connections.
Latency is a big limiting factor whenever an interactive exchange of messages is
            required. In a typical request-response protocol, it takes some time for the request to
            reach its destination, and for the response to travel back. This measure, known as one
                round-trip, is how we measure latency.
For example, every TCP connection begins a setup phase called the three-way
                handshake: (1) client sends a
                SYN message to request a new connection; (2) server accepts with SYN ACK;
                (3) client confirms with
                ACK and starts sending data. It takes 1.5 round-trips for this
            handshake to complete. In practice, with client-speaks-first
            protocols such as HTTP and TLS, the actual latency is one round-trip, because the client
            can start sending data immediately after the ACK signal.
Latency has a particularly large impact on TLS, because it has its own elaborate
            handshake that adds two further round-trips to connection setup.
Figure 9.1. TCP and TLS handshake latencies
[image: TCP and TLS handshake latencies]


TCP Optimization



Although a complete discussion of TCP optimization is out of the scope of this
                book, there are two tweaks that are so important and easy to use that everyone
                should know about them. Both are related to the congestion
                    control mechanism built into TCP. At the beginning of a new
                connection, you don’t know how fast the other side can go. If there is ample
                bandwidth, you can send data at the fastest possible rate, but what if you’re
                dealing with a slow mobile connection? If you send too much data, you will overwhelm
                the link, leading to the connection breakdown. For this reason, a speed
                limit—known as a congestion window—is built into
                every TCP connection. This window is initially small, but grows over time with
                evidence of good performance. This mechanism is known as slow
                    start.
This brings us to the ugly truth: all TCP connections start slow and increase
                speed over time until they reach their full potential. This is bad news for HTTP
                connections, which are often short-lived; they almost always operate under
                suboptimal conditions.
The situation is even worse for TLS connections, which consume the precious
                initial connection bytes (when the congestion window is small) with TLS handshake
                messages. If the congestion window is big enough, then there will be no additional
                delay from slow start. If, however, it happens that there is a long handshake
                message that can’t fit into the congestion window, the sender will have to split it
                into two chunks, send one chunk, wait for an acknowledgment (one round-trip),
                increase the congestion window, and only then send the reminder. Later in this
                chapter, I will discuss several cases in which this situation can happen.
Initial Congestion Window Tuning
                    



The starting speed limit is known as the initial congestion
                        window (initcwnd). If you are deploying on a
                    modern platform, the limit will probably be already set at a high value. RFC
                    6928, which came out in April 2013,[438] recommended setting initcwnd to 10 network
                    segments (about 15 KB) by default. The previous recommendation was to use two to
                    four network segments as a starting point.
On older Linux platforms, you can change the initcwnd size
                    for all your routes with:
# ip route | while read p; do ip route change $p initcwnd 10; done

Preventing Slow Start When Idle



Another problem is that slow start can kick in on a connection that has not
                    seen any traffic for some time, reducing its speed. And very quickly, too. The
                    period of inactivity can be very small, for example, one second. This means
                    that, by default, virtually every long-running connection (e.g., a HTTP
                    connection that uses keep-alives) will be downgraded from fast to slow! For best
                    results, this feature is best disabled.
On Linux, you can disable slow start due to inactivity with:
# sysctl -w net.ipv4.tcp_slow_start_after_idle=0
The setting can be made permanent by adding it to your
                        /etc/sysctl.conf configuration.


Connection Persistence



Most of the TLS performance impact is concentrated in the handshake, which takes
                place at the beginning of every connection. One important optimization technique is
                to reduce the number of connections used by keeping each connection open for as long
                as possible. With this, you minimize the TLS overhead and also improve the TCP
                performance. As we’ve seen in the previous section, the longer the TCP connection
                stays open, the faster it goes.
In HTTP, most transactions tend to be very brief, translating to short-lived
                connections. Although the standard originally didn’t provide a way for a connection
                to stay open for a long time, keep-alives were added to
                HTTP/1.0 as an experimental feature and became enabled by default in HTTP/1.1. 
Keeping many connections open for long periods of time can be challenging, because
                many web servers are not designed to handle this situation well. For example, Apache
                was initially designed to dedicate an entire worker (process
                or thread, depending on configuration) to each connection. The problem with this
                approach is that slow clients can use up all the available workers and block the web
                server. Also, it’s very easy for an attacker to open a large number of connections
                and send data very slowly, if at all.[439]
More recently, the trend has been to use event-driven web servers, which handle
                all communication by using a fixed thread pool (or even a single execution thread),
                thus minimizing per-connection costs and reducing the chances of attack. Nginx is an
                example of a web server that was built from the start to operate in this way. Apache
                also started to use the event-driven model by default on platforms that support
                it.
The disadvantage of long-lived connections is that, after the last HTTP connection
                is complete, the server waits for a certain time (the keep-alive
                    timeout) before closing the connection. Although any one connection
                won’t consume too many resources, keeping connections open reduces the overall
                scalability of the server. The best case for keep-alives is with a client that sends
                a large number of requests in a burst. The worst case is when the client sends only
                one request and leaves the connection open but never submits another request.
Warning
When
                    deploying with long keep-alive timeouts, it’s critical to limit the maximum
                    number of concurrent connections so that the server is not overloaded. Tune the
                    server by testing its operation at the edge of capacity. If TLS is handled by
                    OpenSSL, make sure that the server is setting the
                        SSL_MODE_RELEASE_BUFFERS flag correctly.[440]

It’s difficult to recommend any one keep-alive timeout value, because different
                sites have different usage patterns. That said, 60 seconds is probably a good
                starting point. A better value can be selected on per-site basis by monitoring the
                user agent behavior.[441]
There is a limit to the maximum keep-alive timeout you can use, because user
                agents have their maximums, no matter what servers say. In my tests, Internet
                Explorer 11 on Windows 7 closed the connection after 30 seconds, Safari 7 after 60,
                and Chrome 35 after 300 seconds. Firefox 30 defaults to using 115 seconds for the
                keep-alive timeout (the network.http.keep-alive.timeout parameter
                in about:config) unless the server requests a different value.
                With servers that do, Firefox is happy to stay connected until the server closes the
                connection.

SPDY, HTTP 2.0, and Beyond
                
                



There is only so much we can achieve by tuning TCP and HTTP connection persistence
                alone. To go further, in 2009 Google started to experiment with a new protocol
                called SPDY.[442] The idea was to introduce a new protocol layer between TCP and HTTP to
                speed things up. Positioned in the middle, SPDY could improve HTTP connection
                management without actually making any changes to HTTP itself.
With SPDY, multiple HTTP requests and responses are multiplexed, which means that
                a browser only ever needs one connection per server. To achieve similar performance
                with HTTP alone, browsers have to use multiple connections in parallel. A single
                long-lived connection allows for much better TCP utilization and reduced server
                load.
SPDY was a great success, showing performance improvements in a variety of
                situations. Perhaps most importantly, SPDY experiments led to an industry-wide
                effort to design HTTP 2.0[443] around the same concepts, waking up HTTP from deep sleep: the previous
                version, HTTP 1.1, was released in 1999.
Whereas HTTP 2.0 is still being developed, SPDY is practical to deploy. Client
                support is pretty good among modern browsers: Chrome and Firefox have supported it
                for a long time, Internet Explorer added support in 2013 (although only in version
                11 running on Windows 8.1), and Apple announced that it will support SPDY in OS X
                Yosemite. On the server side, popular web serving platforms as Apache and Nginx
                either support or can be extended to support SPDY.
We should expect that SPDY and HTTP 2.0 will squeeze more performance out of TCP,
                but what next? One option is to try to improve the performance of TCP further. For
                example, TCP Fast Open is an optimization technique that
                removes one round-trip from the TCP handshake.[444] Alternatively, we can look at bypassing TCP altogether. Another
                experiment led by Google, called QUIC (Quick UDP Internet
                    Connections),[445] is a new reliable connection protocol built on top of UDP that aims to
                improve both performance (with better connection management, congestion control, and
                packet loss handling) and security (by using encryption by default).

Content Delivery Networks



If you maintain a web site that targets a global audience, you need to use a
                    content delivery network (CDN) to achieve world-class
                performance. In a sentence, CDNs are geographically distributed servers that add
                value largely by offering edge caching and traffic optimization (often also called
                    WAN optimization).
Most times, when you need to scale a web site, throwing money at the problem
                helps. If your database is dying under heavy load, you can buy a bigger server. If
                your site can’t run on a single server, you can deploy a cluster. However, no amount
                of money can eliminate network latency. The further away your users are from your
                servers, the slower your web site will be.
In such situations, connection setup is a big limiting factor. TCP connections
                start with a three-way handshake, which requires a round-trip to complete. Then
                there’s the TLS handshake, which requires two additional round trips, bringing the
                total to three for HTTPS.[446] That’s about 90 ms for a nearby user who’s about 30 ms away, but may be
                much more for someone who is on the other side of the world.
CDNs typically operate large numbers of geographically distributed servers, with
                the idea being to have servers as close to end users as possible. With that
                proximity, they typically reduce latency in two ways—edge caching and connection
                management.
	Edge caching
	Because CDNs place servers close to users, they can deliver your files
                            to users as if your servers were right there. Some CDNs enable you to
                            push your files to them; this approach offers the best control and
                            performance, but it’s more difficult to manage. Some other CDNs operate
                            as reverse proxies (they retrieve files over HTTP when they need them
                            and cache them locally for a period of time); they are not as optimized
                            but are instead almost trivial to deploy.

	Connection management
	Caching is the best-case scenario for CDN deployment, but it’s not
                            suitable for all sites. If your content is dynamic and user specific,
                            your servers will need to do the actual work. But a good CDN should be
                            able to help, even without any caching, via connection management. This
                            seems counterintuitive at first. How can traffic go faster through a CDN
                            than it can if it goes directly to the origin server? The answer is that
                            a CDN can eliminate most of the connection setup cost by reusing
                            connections over long periods of time.
During connection setup, most of the time is spent waiting. You send a
                            packet and wait for a response. When the other end is very far away, you
                            wait for a long time. But when the other end is near, you get a quick
                            response. To minimize the waiting, CDNs can route traffic through their
                            own infrastructure, exiting at a point closest to the destination. With
                            full control over their own servers, CDNs can keep the internal
                            connections open for a long time. If they use TCP, that means that there
                            is no connection setup and that connections run at their maximum speed.
                            But they can also use proprietary protocols and connection multiplexing
                            for even better performance.
When a CDN is used, the user connects to the closest CDN node, which
                            is only a short distance away. Because the distance is small, the TLS
                            handshake will be fast—for example, 30 ms for a distance of 10 ms (one
                            way). In the ideal case for a new TLS connection, the CDN can reuse
                            existing connections that it keeps open, going from that node all the
                            way to the final destination. That means that no further work is
                            necessary; after the initial fast TLS handshake with the CDN, the user’s
                            connection with the server is effectively open and application data can
                            begin to flow.
Of course, not all CDNs operate sophisticated internal networks that
                            operate in this way; it’s necessary to research the implementation
                            details when deciding which CDN to use. Or, even better, test the actual
                            performance.



Figure 9.2. TLS connection setup time comparison between direct traffic and a CDN
                        with already open origin connections
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Note
Not all CDNs are equal, especially when it comes to following best practices
                    for TLS performance outlined in this chapter. Before you decide which CDN to
                    use, make sure to check if they can serve TLS at the fastest possible speed.
                    Ilya Grigorik maintains a handy chart on his web site dedicated to TLS
                    performance. [447]



TLS Protocol Optimization



With connection management out of the way, I’ll now focus on the performance
            characteristics of TLS. The aim here is to understand how each aspect of TLS impacts
            performance, equipping you with the knowledge to tune the protocol for both security and
            speed.
Key Exchange



After latency, the next biggest cost of using TLS comes from having to perform
                CPU-intensive cryptographic operations in order to securely agree on connection
                security parameters. This part of the communication is known as key
                    exchange. Its cost is largely determined by the choice of server
                private key algorithm, key size, and the key exchange algorithm.
	Key size
	To achieve security, cryptography relies on processes that are
                            relatively fast with access to relevant keys but hugely expensive and
                            time consuming otherwise. The effort required to break an encryption key
                            depends on its size; the bigger the key, the better the protection.
                            However, a bigger key also means longer encryption and decryption times.
                            For best results, select a key size that provides the appropriate level
                            of security but not anything over that.

	Key algorithm
	There are two private key algorithms that you can use today: RSA and ECDSA.[448] RSA is still the dominating algorithm, largely because it
                            was the only choice for a very long time. But RSA is starting to be too
                            slow now that 2,048 bits is the minimum strength and many are
                            considering deploying 3,072 bits of security in the near future. ECDSA
                            is much faster and thus increasingly appealing. At a modest size of 256
                            bits, ECDSA provides security equivalent to 3,072-bit RSA and better
                            performance.

	Key exchange
	In theory, you can choose from three key exchange algorithms: RSA,
                            DHE, and ECDHE. But you don’t want to use RSA because it does not
                            provide forward secrecy. Of the remaining two, DHE is too slow; that
                            leaves you with ECDHE.
The performance of the DHE and ECDHE key exchanges depends on the
                            strength of the configured negotiation parameters. For DHE, commonly
                            seen parameter strengths are 1,024 and 2,048 bits, which provide 80 and
                            112 bits of security, respectively. As for ECDHE, the security and
                            performance are influenced by the choice of named curve. The de facto
                            standard secp256r1 curve provides 128 bits of
                            security. The only other practical choice is
                                secp384r1, but this curve is about 30% slower
                            server-side and doesn’t provide a meaningful increase in
                            security.



In practice, you can’t freely combine key and key exchange algorithms. Instead,
                you can use the combinations specified by the protocol. There are four
                possibilities: RSA, DHE_RSA,
                    ECDHE_RSA, and ECDHE_ECDSA. To understand
                the performance differences among these suites, I ran a test of all four choices
                using 2,048-bit RSA keys and 256-bit ECDSA keys. These key sizes are what you would
                expect to use for an average web site. The DHE key exchange was represented with two
                DH parameter strengths—1,024 and 2,048 bits. The ECDHE key exchange used the
                    secp256r1 curve.
For the test, I used a dedicated Amazon EC2 m3.large instance, which has two Intel
                Xeon E5-2670 2.5 GHz processors. The test was run using a modification[449] of Vincent Bernat’s tool for OpenSSL microbenchmarking.[450] I tested OpenSSL 1.0.1f that comes with Ubuntu 14.04 LTS. The tool runs
                on two threads (one for the client and another for the server), performs 1,000 TLS
                handshakes sequentially, and measures CPU consumption of each thread at the end. You
                can see the results in the following graph.
Figure 9.3. Performance comparison of TLS key exchange algorithms (lower is
                        better)
[image: Performance comparison of TLS key exchange algorithms (lower is better)]


What can we conclude from the test results?
	The servers using RSA today could enable forward secrecy
                            and improve their handshake performance by a factor
                        of two by moving to the ECDHE key exchange and ECDSA keys. 

	Enabling forward secrecy (using the ECDHE key exchange) while keeping RSA
                        for authentication degrades the handshake performance slightly, but it’s
                        unlikely that there would be a measurable impact overall. 

	The DHE key exchange is slower even with weak 1,024-bit parameters, but
                        it’s much slower when used with stronger 2,048-bit parameters. If you care
                        about performance, DHE should be used only as a last resort. Because most
                        modern clients support ECDHE, you can configure DHE suites with lower
                        priority so that only old clients use them. Twitter reported that 75% of
                        their clients use ECDHE,[451] which means that up to 25% might end up using the slower
                        DHE.
Compared to ECDHE, the DHE key exchange also increases the size of the
                        server side of the handshake by 320 to 450 bytes, depending on the strength
                        of the parameters. This is because the ECDHE key exchange uses standardized
                        parameters that are referenced by name, but the DHE key exchange requires
                        the server to select the negotiation parameters and send them to the client
                        every time.[452]

	Clients need to do more work when ECDHE and ECDSA are deployed, but that’s
                        not a problem, because they submit at most a few connections at any one
                        time. Servers, on the other hand, have to handle hundreds and thousands of
                        connections in parallel.



Note
The test results presented here should be used only as a guideline. They
                    measure the performance of a particular version of OpenSSL that’s used for both
                    sides of the connection. In practice, TLS performance will vary across
                    libraries, devices, and CPUs.

For a more detailed look at the key exchange performance, I recommend a study by
                Huang et al., who looked at the performance of forward secrecy deployments.[453] Another good source of information is Symantec’s 2013 whitepaper
                that discusses the performance of EC cryptography.[454]
False Start



In 2010, Google proposed a modification to the TLS protocol with an aim to
                    reduce the latency of the full handshake from two round-trips to only one round-trip.[455] Normally, a full TLS handshake requires two round-trips, consisting
                    of four bursts of protocol messages (two for each client and server), and TLS
                    allows sending of (encrypted) application data only after the handshake is fully
                    complete. False Start proposes a tweak to the timing of
                    protocol messages; rather than wait for the entire handshake to be complete, we
                    can start sending application data earlier, assuming that
                    the handshake will be successful.
With this change, it’s possible to achieve much better performance. Google
                    cited a 30% reduction in handshake latency, which is a really big deal.[456] The downside of this change is that if
                    attacked,
                    the client will have sent some encrypted application data to the attacker, which
                    normally doesn’t happen. Furthermore, because the integrity of the handshake is
                    validated only after it is fully completed, the parameters used for the
                    encryption could have been influenced by the attacker.
To counter this attack vector, Google proposed to only ever use False Start
                    with strong cryptography: sufficiently strong private keys, key exchanges that
                    support forward secrecy, and 128-bit cipher suites.
Despite the performance improvements, Google declared False Start a failure in
                    2012—there were too many incompatible servers on the Internet.[457] But they didn’t turn it off altogether; Chrome continued to use
                    False Start with servers that implement the NPN extension (used to negotiate the
                    SPDY protocol), which were deemed safe. Other browsers followed and adopted
                    similar behaviors. Firefox supports False Start since version 28[458] and has the same requirements as Chrome. Apple added support in OS X
                    10.9, requiring strong cipher suites and Forward Security but not NPN.[459] Internet Explorer, starting with version 10, implements False Start
                    as per the original proposal, but also uses a blacklist to disable this feature
                    on sites that are known not to support it.[460]
False Start is a great incentive to support forward secrecy. Not only will
                    your security be significantly better, but the performance will improve
                    too.


Certificates



During a full TLS handshake, the server presents its certificate chain for
                inspection by the client. The size of the certificate chain and its correctness can
                have an impact on handshake performance.
	Use as few certificates as possible
	Each certificate in the chain adds to the size of the handshake. Too
                            many certificates in the chain may cause overflow of the initial
                            congestion window, as discussed earlier. In the early days of SSL, there
                            were CAs that issued server certificates directly from their roots, but
                            this practice is dangerous (the roots should be kept offline) and is
                            being deprecated. Today, having two certificates in the chain is the
                            best you can have: one certificate for the server and the other for the
                            issuing CA.
Size is not the only factor; each certificate in the chain must be
                            validated by checking that the signature matches the public key in the
                            issuing certificate. Depending on the user agent, the revocation status
                            of each certificate might need to be checked, too.
Although I wouldn’t recommend to choose your CA based on the size of
                            its trust chain, you should check ahead of time that its chain is not
                            too long.

	Include only necessary certificates
	It’s a frequent error to include unnecessary certificates in the
                            chain. Each such certificate typically adds 1–2 KB to the overall size
                            of the handshake.
Often, the root certificate is included, even though it serves no
                            purpose there. User agents will either trust the root certificate (and
                            thus already have a copy) or they won’t. Having the root in the chain
                            makes no difference. This is a common problem because even some CAs
                            include their root certificates in the installation instructions.
In other cases, unnecessary certificates in the chain are a result of
                            configuration error. It’s not uncommon to see servers including
                            intermediate certificates left over from a previous configuration. In
                            some rare cases, servers send their entire collection of trusted
                            certificates—hundreds of them.

	Provide a complete chain
	For a TLS connection to be trusted, the server must provide a complete
                            chain with certificates that lead a trusted root. Another common error
                            is to provide an incomplete certificate chain. Although some user agents
                            are able to obtain the missing certificates, doing that might involve
                            looking for them over HTTP, which is an activity that might take many
                            seconds. For best results, ensure that the chain is valid.

	Use EC certificate chains
	Because ECDSA keys use fewer bits, ECDSA certificates take less space.
                            Huang et al. (2014) observed that a 256-bit ECDSA certificate chain is
                            about 1 KB shorter than a 2,048-bit RSA chain.

	Be careful about using too many hostnames on the same certificate
	Recently, it has become common practice to share one certificate among
                            dozens and, in some cases, even hundreds of sites. This is done to allow
                            many sites to share the same IP address, thus supporting clients that do
                            not support virtual secure sites (via the Server Name
                                Extension, or SNI). Each hostname added to the
                            certificate increases its size. A few hostnames are not going to have
                            any detectable effect, but hundreds might.
There’s a trick you can use if you want to keep handshake size down to
                            a minimum but still have to host multiple sites on the same IP address:
                                (1) get a separate
                            certificate for each hostname you wish to run and configure your web
                            server to serve these certificates to the clients that support SNI;
                                (2) get one fallback
                            certificate that contains all the hostnames you have on the same IP
                            address and configure your web server to serve it to the clients that do
                            not support SNI. If you do this, your SNI clients (the majority) will
                            get small certificates for the sites they wish to access, and everyone
                            else (a small number of legacy clients) will get the single long
                            certificate.



Warning
When client authentication is required, it’s possible to configure your server
                    to advertise which issuing CAs are acceptable for the client certificate. Each
                    such CA is identified with its distinguished name. When there are too many CAs
                    in the configuration, the size of the list can run into many kilobytes, which
                    impedes performance. Because advertising acceptable CAs is optional, you can
                    avoid it for performance reasons.


Revocation Checking



Even though certificate revocation is in a state of flux and user agent behavior
                varies widely, the server operator’s job is clear—deliver revocation
                information at the fastest speed possible. In practice, this translates to the
                following rules.
	Use certificates with OCSP information
	OCSP is designed for real-time lookups, which allow user agents to
                            request revocation information only for the web site they are visiting.
                            As a result, lookups are short and quick (one HTTP request). CRL, by
                            comparison, is a list of many revoked certificates. Some browsers
                            download CRLs when OCSP information is not available, in which case the
                            communication with your web site might be suspended until the download
                            is complete. Delays of tens of seconds are not unusual, especially over
                            slow internet connections (think mobile devices).

	Use CAs with fast and reliable OCSP responders
	OCSP responder performance varies among CAs. This fact remained hidden
                            for a long time, which is unusual given the potential for high
                            performance degradation by slow and faulty OCSP responders. Before you
                            commit to a CA, check their OCSP responder history. Refer to the section called “Responder Availability and
                            Performance” in Chapter 5 for
                            more information. As a rule of thumb, the best performance is going to
                            be with
                            CAs
                            use
                            CDNs to distribute revocation information.
Another criteria for CA selection is how quickly they update their
                            OCSP responders. To avoid site errors, you want your certificates to be
                            known to the responder as soon as they are issued. Inexplicably, some
                            CAs have long delays for new certificates, during which OCSP responders
                            return errors. 

	Deploy OCSP
                                stapling
	OCSP stapling is a protocol feature that allows
                            revocation information (the entire OCSP response) to be included in the
                            TLS handshake. With OCSP stapling enabled, user agents are given all the
                            information they need to perform revocation checking, resulting in much
                            better performance. At about 450 bytes, OCSP stapling increases the size
                            of the handshake and slows it down a bit, but the savings come from user
                            agents not having to look for revocation information on a separate
                            connection to the CAs’ OCSP responders.
OCSP responses vary in size, depending on the issuing CA’s
                            deployment practices. Short OCSP responses will be signed by the same
                            certificate that issued the end-entity certificate (the one that is
                            being checked for revocation). Because the user agent will already have
                            the issuing certificate, the OCSP response can contain only the
                            revocation status and a signature.
Some CAs prefer to use a different certificate to sign their OCSP
                            responses. Because user agents don’t know about that other certificate
                            in advance, the CAs must include it with every OCSP response. This
                            practice adds slightly over 1 KB to the size of the OCSP
                            response.



Note
When browsers skip on revocation checking, they achieve better performance but
                    security suffers. EV certificates are always checked for revocation and thus
                    provide better security. DV certificates, which are not always checked, may have
                    a slight performance edge. This problem can be solved with the use of OCSP
                    stapling, in which case the performance will be the same for both certificate
                    types.


Session Resumption



TLS understands two types of handshakes: full and abbreviated. In theory, the full
                handshake is performed only once, after which the client establishes a
                    TLS session with the server. On subsequent connections,
                the two can use the faster abbreviated handshake and resume the previously
                negotiated session. The abbreviated handshake is faster because it doesn’t require
                any costly cryptographic operations and uses one less round-trip. A good resumption
                rate reduces server load and improves latency for end users.
TLS session resumption is jointly controlled by both parties involved in the
                communication. On your side, you should aim to configure session caching so that
                individual sessions remain valid for about a day. After that, it will be up to
                clients to decide when to resume and when to start afresh. My personal experience
                and anecdotal evidence from others suggests that you can expect a 50% resumption
                rate on a properly configured server.[435]

Transport
                        Overhead
                



In TLS, the minimal transport unit is a TLS record, which can contain up to 16,384
                bytes of data. Without encryption, TLS records don’t do much and have only a small
                overhead; each record starts with five bytes of metadata: content type (one byte),
                protocol version (two bytes), and data length (two bytes).
Figure 9.4. TLS record overhead for streaming, block, and authenticated cipher
                        suites
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Encryption and data-integrity algorithms introduce additional overhead, which
                varies depending on the negotiated cipher suite. Streaming ciphers incur little
                overhead, because they produce one byte of output for every byte of input; overhead
                comes only from integrity validation.
Block ciphers incur more overhead, because each TLS record needs to include an
                explicit IV equal to the cipher block size as well as padding to force the length of
                plaintext to be a multiple of the block size. The length of the padding varies
                depending on the length of data, but it’s going to be one half of the block size on
                average. Most secure ciphers currently in use are designed with a 16-byte block
                size.
Ciphers that provide integrated authentication (AEAD suites) are somewhere in the
                middle: they don’t use padding, but they include an eight-byte nonce with every
                record.
The following table presents overhead calculations for the most commonly used
                suites.
Table 9.1. Transport overhead for each of the widely available ciphers
	Cipher	TLS Record	IV/Nonce	Padding (average/worst)	HMAC/Tag	Total (average)
	AES-128-CBC-SHA	5	16	8 / 16	20	49
	AES-128-CBC-SHA256	5	16	8 / 16	32	61
	AES-128-GCM-SHA256	5	8	-	16	29
	AES-256-CBC-SHA	5	16	8 / 16	20	49
	AES-256-CBC-SHA256	5	16	8 / 16	32	61
	AES-256-GCM-SHA384	5	8	-	16	29
	CAMELLIA-128-CBC	5	16	8 / 16	20	49
	3DES-EDE-CBC-SHA	5	8	4 / 8	20	37
	RC4-128-SHA	5	-	-	20	25
	SEED-CBC-SHA	5	16	8 / 16	20	49



As you can see, the overhead varies a lot among cipher suites. In the worst case,
                suites that use AES and SHA256 add 61 bytes of overhead on average. In the best
                case, authenticated suites are quite slim at 29 bytes. This amount of overhead is
                not huge, especially when compared with the overhead of the next layer down; the
                overhead of TCP/IP is 52 bytes per packet for IPv4 and 72 bytes per packet for IPv6.
                Given that IP packets tend to be around 1,500 bytes but TLS records go as far as
                16,384 bytes, it’s likely that TCP will incur much more overhead than TLS.
Either way, it’s vital not to send small amounts of data if you can avoid it.
                Unless real-time delivery of short messages is required, some buffering of
                application data is necessary to ensure low network overhead. For example, when
                constructing an HTML page dynamically it’s generally better to use a small output
                buffer of, say, 4 KB so that tiny writes are combined and sent in larger batches.
                I’ve seen some misconfigured applications in which every single data write (of only
                a few bytes) produced a TCP packet, causing a huge network overhead. This type of
                problem will be more common when working with sockets directly rather than in web
                applications.
If you’re not sure what your application is doing (which is not uncommon, given
                how many abstraction layers we have in our software these days), capture the traffic
                at the network layer to observe the TCP packet and TLS record sizes.

Symmetric Encryption
                



When it comes to CPU consumption, the worst is over once a TLS handshake
                completes. Still, cryptographic operations used for symmetric encryption have a
                noticeable CPU cost, which depends on the choice of cipher, cipher mode, and
                integrity validation functions.
To determine performance characteristics of various ciphers suites, I conducted
                further tests using the same environment that I used earlier in this chapter. I made
                sure to select a processor that supports the AES-NI instruction set, which provides
                hardware acceleration for the AES cipher.[461] I expect most performance-sensitive web sites to operate on similar
                hardware. Each test run consisted of two threads—one for the client and the other
                for the server—sending about 1 GB of data to the other side, 16 KB at time. I tested
                all practical and secure cipher suites available today as well as some legacy suites
                for comparison.
Figure 9.5. Performance comparison of various cipher suites, relative to
                            AES-128-CBC-SHA (lower is better)
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I decided on AES-128-CBC as the reference suite, because it’s
                one of the most commonly used suites among the still-secure ones. The results tell
                us an interesting story:
	AES is a clear performance winner. Even without hardware acceleration, AES
                        is fast—faster than all other ciphers except for RC4. With hardware
                        acceleration, we see that AES-128-CBC is 2.77 times
                        faster than CAMELLIA-128-CBC. Compared to the fastest AES
                        result, AES-128-GCM-SHA256,
                            CAMELLIA-128-CBC is four times slower.

	AES used with SHA256, as specified in TLS 1.2, is significantly slower.
                        This is because SHA256 is much slower than SHA.

	AES-128 in authenticated (GCM) mode is 1.4 times faster than the reference
                        AES suite. It’s even faster than RC4-128-SHA, which was
                        the previous speed champion. This is very encouraging, given that this suite
                        is also one of the strongest currently available.

	The legacy 3DES and SEED suites are many times slower and should be
                        avoided. The same goes for RC4, which, although pretty fast, is
                        insecure.



Although we tend to spend most of our time benchmarking servers, it’s worth
                keeping an eye on client-side performance. Newer desktops and laptops might support
                hardware-accelerated AES, but there are large numbers of underpowered mobile devices
                that don’t. For this reason, Google is currently experimenting with a new
                authenticated cipher suite called ChaCha20-Poly1305.[462] Although roughly half the speed of accelerated AES, the performance of
                this new suite is about three times better on mobile devices, with potential for
                further improvements. Google is already heavily using the new suite; the rest of us
                will have to wait for the standardization process to complete.[463]

TLS Record Buffering Latency
                



If you recall from an earlier discussion, TLS records are the smallest unit of
                data TLS can send and receive. Because there is mismatch between the size of TLS
                records and the size of the underlying TCP packets, a full-sized TLS record of 16 KB
                needs to be chopped up into many smaller TCP packets, typically each under 1.5
                KB.
Figure 9.6. Example fragmentation of 32 KB of application data for transport using
                        TLS and TCP
[image: Example fragmentation of 32 KB of application data for transport using TLS and TCP]


But there’s a catch: even though some pieces of an entire record will arrive
                sooner and some later, no processing can be done until all of them are available.
                This is because a TLS record is also the smallest unit of data that can be decrypted
                and integrity-validated. This buffering effect can sometimes result in an increase
                in latency.
	Packet loss and delay
	Although TCP can recover from lost and delayed packets, it does so at
                            a cost of one round-trip. Each additional round-trip means a delay for
                            the entire TLS record, not just the lost packet.

	Initial congestion window
	Another way to trigger an additional round-trip delay is by sending
                            large chunks of data early in a connection, overflowing the initial
                            congestion window. Once the congestion window is full, the sender will
                            need to wait for an acknowledgment (one round-trip) before it can grow
                            the congestion window and send more data.



If your web server supports TLS record tuning, you should consider changing the
                default value—which is probably large, most likely 16 KB—to something
                more reasonable. Finding the best size requires some experimentation, because it
                depends on the deployed cipher suites and their transport overhead, as discussed in
                an earlier section.
If you don’t want to spend much time on this task, consider using about 4 KB as a
                reasonable default. If you want to set the TLS record size to match the size of TCP
                packets exactly, start at about 1,400 bytes and tweak the exact size by observing
                the packets on the wire. For example, assuming that the IP Maximum
                    Transfer Unit (MTU) is 1,500 bytes:
    1,500 bytes MTU
  -    40 bytes IPv6 header
  -    32 bytes TCP header
  -    49 bytes TLS record
  -------------------------
  = 1,378 bytes
There are several problems with using a static TLS record size, no matter what
                value is selected. First, MTU values vary. Although most clients inherit the
                Ethernet limit of 1,500 bytes, there are protocols that support larger sizes. For
                example, so-called jumbo frames allow for up to 9,000 bytes.
                Second, it’s easy to miscalculate and specify an incorrect size. For example, the
                calculation is slightly different if you’re using IPv4 (20 bytes in the header,
                rather than 40) or if your cipher suite configuration changes.
Another problem is that by reducing the size of the TLS record you increase the
                transport overhead. To transmit 16 KB of data using a large TLS record, you might
                incur an overhead of about 50 bytes (0.3%). But if you have to split that same
                record into, say, 10 records, the overhead will be 500 bytes (3%).
It’s probably best to leave TLS record size tuning to web servers, for two
                reasons: (1) they can discover the MTU at
                the beginning of each connection and (2)
                they can vary the record size over the connection lifetime, using small values early
                on when the congestion window is small and switching to larger values as more data
                is transferred. HAProxy does exactly that.[464]

Interoperability



Interoperability issues can sometimes have a substantial negative performance
                impact, yet they can remain hidden unless you know exactly where to look. For
                example, if your server is intolerant to some of the newer protocol features (e.g.,
                TLS 1.2), browsers might need to make several connection attempts to negotiate an
                encrypted connection.[465] However, unless you experience this problem yourself and notice the
                performance degradation, it’s unlikely that you will know about it; servers can’t
                detect it and browsers don’t alert you about it.
The best way to ensure good TLS performance is to run an up-to-date TLS stack with
                support for the most recent protocol versions and extensions.

Hardware Acceleration
                
                



In the early days of SSL, public cryptography was too slow for the then available
                hardware. As a result, the only way to achieve decent performance was by using
                hardware acceleration. Over time, as the speed of general-purpose CPUs increased,
                acceleration devices started to lose their market.[466]
Companies running the world’s largest web sites are happy handling encryption in
                software. For example, Facebook had this to say on hardware acceleration:[467]
We have found that modern software-based TLS implementations running on
                    commodity CPUs are fast enough to handle heavy HTTPS traffic load without
                    needing to resort to dedicated cryptographic hardware. We serve all of our HTTPS
                    traffic using software running on commodity hardware.


Today, hardware cryptographic devices are purchased more for their ability to
                store private keys safely (this type of product is known as Hardware
                    Security Module, or HSM) and less for their ability to accelerate
                public key cryptography. However, using an HSM could create a bottleneck in your
                architecture, because such devices are more difficult to scale.
Hardware acceleration could be the right thing to do depending on your
                circumstances. For example, if you have an existing system that is operating at the
                edge of capacity, installing an acceleration card might be the preferred option over
                other hardware and architectural changes.


Denial of Service Attacks



Denial of Service (DoS) attacks—for fun or for profit—are common on the
            Internet. Attacking is easy and cheap. Defending, on the other hand, is costly and time
            consuming. Any small web site can be quickly overwhelmed by pretty much anyone who wants
            to try. As for bigger sites, if they stay up, it’s only because they spent a lot of
            money on defense and the attacker hasn’t tried hard enough.
The principal way of executing serious DoS attacks is using botnets, which are large
            networks of compromised computers. Servers are valued as botnet nodes because they tend
            to have access to ample bandwidth. Home computers are valued because there are so many
            of them; what they lack in power, they make up in numbers.
If someone is willing to use a botnet to attack you, chances are that your TLS
            configuration is not going to make a difference. With or without TLS, determined
            attackers can continuously increase the size of the botnet until they succeed, at little
            cost to them. That said, there’s currently an interesting experimental proposal to
            extend TLS to require proof of client work before spending server resources.[468] However, ultimately, defending against DoS attacks is usually done at the
            network level.
	Connection throttling
	This is an “entry-level” DoS defense measure, which you can deploy for an
                        entire network using specialized devices or even on individual servers in
                        kernel configuration.[469] With this approach, you should be able to defend against the
                        simpler attacks—for example, those executed from a few IP addresses.
                        Connection throttling is not going to be of much help with attackers that
                        flood your internet connection with traffic from many individual
                        hosts.

	Overprovisioning
	The more resources you have, the more difficult it will be for your
                        attackers to succeed. Overprovisioning is expensive, but buying more servers
                        and having a very large internet connection could be a viable approach if
                        you’re under frequent attacks.

	Third-party mitigation
	When all else fails, you can deal with the situation by employing one of
                        the companies who specialize in mitigation of distributed DoS attacks. Their
                        primary advantage is that they have ample resources at their disposal as
                        well as the know-how.



All of this does not mean that you should give up on tuning TLS to minimize your
            exposure to DoS attacks. On the contrary, there are certain aspects of TLS that make DoS
            attacks easier; they require your attention.
Key Exchange and Encryption CPU Costs



With plaintext protocols (e.g., HTTP), servers frequently spend most of their time
                sending files to their clients. This operation is so common that applications can
                ask the kernel to send a particular file to a socket without bothering with the
                details. With TLS, the same application has to read a file, encrypt it, and transmit
                it. That’s always going to be slower.
But it’s going to be slower for clients, too, because they have to perform those
                same operations, just in a different order. Where it gets messy is the handshake,
                which requires several CPU-intensive cryptographic operations. Clients and servers
                spend different amounts of time during a handshake, with a different performance
                profile for each key-exchange algorithm. If clients have to perform less work than
                servers, then we have a situation that can be used for DoS attacks.
This is exactly the case with RSA, which is used in a particular way (with short
                public exponents) that makes operations with public keys (which clients perform)
                faster than operations with private keys (which servers perform). In practice, with
                an average 2,048-bit RSA key, servers end up doing about four times more work. As a
                result, a client with a modest CPU can overpower a strong server by performing many
                handshakes in parallel.
To confirm this, I ran a test with two identical computers, one running a web
                server with a 2,048-bit RSA key and the other attacking it. I was able to trivially
                overwhelm the CPU on the server by using the popular ab
                benchmarking tool against it. In the meantime, the client was running comfortably at
                slightly over 10% CPU consumption.
RSA is still the dominant authentication and key-exchange algorithm, but there’s
                good news: it’s on the way out. Its biggest problem is that it does not support
                forward secrecy. In the short term, people are turning to
                    ECDHE_RSA, which keeps RSA for authentication but uses ECDHE
                for the key exchange. With ECDHE_RSA, clients still perform less
                work, but it’s not as bad: only 2.5 times less. Further in the future is
                    ECDHE_ECDSA, which turns things around—clients perform
                about 1.5 times more work!
Note
To benefit from these alternative algorithms, you’d have to remove support for
                    the RSA key exchange from your configuration. Otherwise, the attacker could
                    force the slowest suites during the attacks.

Encryption has its costs, too. You saw earlier in this chapter that the SEED
                cipher is 4x times slower and 3DES is 11x times slower than the most commonly used
                AES-128. Many servers keep 3DES in their configuration for older clients such as
                Internet Explorer 6. Although it’s unlikely that the choice of cipher suite plays a
                major role in a TLS DoS attack, it certainly can make things worse.

Client-Initiated
                        Renegotiation



Renegotiation is a protocol feature that allows either side
                to request a new handshake to negotiate potentially different connection parameters.
                This feature is rarely needed; allowing clients to request renegotiation, in
                particular, has no practical purpose at present, but it does make DoS mitigation
                more difficult.
In a “standard” TLS computational DoS attack, there’s one handshake per
                connection. If you have connection throttling in place, you know that one connection
                to your TLS server costs you some amount in CPU processing power. If
                client-initiated renegotiation is allowed, attackers can perform many handshakes on
                the same connection, bypassing the detection mechanisms.[470] This technique also reduces the number of concurrent connections needed
                and thus improves overall attack latency.
In October 2011, a German hacker group, “The Hacker’s Choice,” released a tool
                called thc-ssl-dos, which uses renegotiation to amplify
                computational DoS attacks against TLS.[471]
Not all servers support client-initiated renegotiation. IIS stopped supporting it
                with IIS 6, Nginx never supported it, and Apache stopped supporting it in 2.2.15.
                But there is still a number of vendors who are reluctant to remove this feature.
                Some vendors who are keeping client-initiated renegotiation are looking to limit the
                number of renegotiations that take place on the same connection. Ideally, you
                shouldn’t allow client-initiated renegotiation at all.

Optimized TLS Denial of Service Attacks



Renegotiation makes TLS computational DoS attacks more difficult to detect, but
                tools that use it are not fundamentally different; they’re still essentially sending
                a large number of virtual clients to a web site. In both cases, the handshake CPU
                processing asymmetry is what makes the attack possible. As it turns out, it is
                possible to improve the approach so that no cryptographic operations are needed on
                the client.
When the thc-ssl-dos tool was announced, it received a fair
                amount of media interest. Eric Rescorla, one of the TLS protocol designers, followed
                up with an analysis of the use of renegotiation as a DoS amplification technique.[472] His conclusion was that there is an easier way to execute computational
                TLS DoS. In his approach, clients use hardcoded handshake messages that require no
                cryptographic operations. In addition, they avoid parsing or otherwise validating
                any of the messages received from the server. Because the messages are structurally
                correct, they appear valid to the server until the very end of the handshake. By
                that point, it’s too late, because all the expensive work had been done.
Using Eric’s blueprint, Michal Trojnara subsequently wrote a proof-of-concept tool
                called sslsqueeze.[473]
When I tested sslsqueeze, I found that it performed much better
                than ab. I installed it on a single-CPU server running a 2.80 GHz
                Intel Xeon E5-2680, and the target was an eight-CPU server in the same data center.
                The tool consumed all CPU resources on the target server after only a few seconds in
                operation.
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10 HSTS, CSP, and Pinning


This chapter discusses several technologies that can substantially improve the security of
        the SSL/TLS and PKI ecosystem. They fall into two groups. In the first group, we have
            HTTP Strict Transport Security (HSTS) and Content
            Security Policy (CSP), which are HTTP-specific and widely supported by
        browsers. They are not only practical today but also fundamental for the security of your
        web sites. I cover them in detail sufficient for deployment.
The second group of technologies implements pinning, which is a
        technique that makes TLS authentication more secure. Outside of native applications (where
        pinning is fully practical), pinning is still early in its lifecycle; there is currently no
        good support in browsers. Thus, this chapter presents the possible future directions, but
        we’re yet to see which will gain wide adoption and become standards.
HTTP Strict Transport Security



HTTP Strict Transport Security (HSTS), released in November
            2012 as RFC 6797,[474] is a proposed standard that describes a strict approach to the handling of
            web site encryption. It is designed to mitigate several critical weaknesses in how TLS
            is implemented in today’s browsers.
	No way of knowing if a site supports TLS
	HTTP does not specify a way for user agents to determine if web sites
                        implement TLS.[475] Because of this, when a URL without a scheme is entered into the
                        address bar, browsers have to choose between HTTP and HTTPS protocols. At
                        the moment, they default to plaintext communication, which is vulnerable to
                        interception.

	Tolerance of certificate problems
	Since the very beginning of the Web, browsers have been sidestepping the
                        problem of TLS connection authenticity. Rather than abandon connections to
                        sites with invalid certificates, browsers display warnings and allow their
                        users to click through. Studies have shown that many users ignore the
                        warnings and expose themselves to active attacks.

	Mixed content issues
	A frequent mistake when developing secure web sites is to use plaintext
                        resources from an otherwise secure HTML page. All browsers allow such
                        resources to a certain degree, and in many cases these plaintext connections
                        can be used to compromise the entire user session. Another common problem is
                        mixing plaintext and encrypted pages on the same domain name. This is very
                        difficult to implement correctly and most commonly leads to
                        vulnerabilities.

	Cookie security issues
	Another common implementation mistake is to forget to secure application
                        cookies. Even when a web site is available only under TLS, an active network
                        attacker can tease the cookies out from the victim’s browser.



Note
For a complete discussion of all the problems listed here and different ways to
                attack them, head to Chapter 5, HTTP and Browser Issues.

When HSTS is deployed on a web site, it addresses all of these issues by using two
            mechanisms: (1) plaintext URLs are
            transparently rewritten to use encryption and (2) all certificate errors are treated as fatal (users are not allowed
            to click through). In this way, HSTS significantly reduces the attack surface and makes
            the job of secure web site deployment much easier. It is quite possibly the best thing
            to happen to TLS recently.
HSTS has its origins in the work of Jackson and Barth, who, in 2008, designed ForceHTTPS,[476] a cookie-based mechanism to allow “sophisticated users to transparently
            retrofit security onto some insecure sites that support HTTPS.” Along with their paper,
            they provided a proof of concept in the form of a Firefox extension.
Configuring HSTS



Web sites that wish to support HSTS do so by emitting the
                    Strict-Transport-Security header on all of their
                    encrypted HTTP responses, like so:
Strict-Transport-Security: max-age=31536000; includeSubDomains
Assuming that the TLS connection is error free, a compliant browser will activate
                HSTS for the duration of the retention period specified in the
                    max-age parameter. The includeSubDomains
                parameter specifies that HSTS should be enabled on the host that emitted the header
                and also on all its subdomains.
Warning
Before deploying HSTS with includeSubDomains enabled,
                    determine if forcing browsers to use encryption on the entire domain name space
                    might have negative consequences on other sites that share the name. At the very
                    least, ensure that all your sites do support encryption and have valid
                    certificates.

The specification requires user agents to ignore the HSTS header if it is seen on
                a plaintext connection or on a connection with certificate errors (this includes
                self-signed certificates). This behavior is intended to prevent Denial of
                    Service (DoS) attacks against plaintext-only sites, which would
                otherwise be trivial to execute by an active network attacker. In addition, using
                HSTS on IP addresses is not permitted.
It is possible to revoke HSTS; to do so, set the max-age
                parameter to zero:
Strict-Transport-Security: max-age=0
However, the revocation happens only when a browser (one that previously enabled
                HSTS for the site) visits the site again and updates its configuration. Thus, the
                success of revocation (and policy adjustment, for that matter) will depend on the
                frequency of user visits.
In the best case, HSTS should be configured at the location that is closest to the
                user. For example, if you have many web servers and a reverse proxy (or web
                application firewall) in front of them, it makes sense to configure HSTS there, in a
                single location. Otherwise, configure your HSTS policies at the web-server level. If
                your web server does not explicitly support HSTS, it most likely has a mechanism
                that allows adding of arbitrary response headers. The latter approach can work
                equally well, but do read the fine print. In some cases, adding headers to error
                responses (e.g., 404 pages) either is impossible or requires special
                configuration.
If all else fails, you can also add HSTS at the application level. However, be
                aware that your application might not see all web site requests. For example, web
                servers typically deliver static resources directly and also handle some
                redirections themselves.

Ensuring Hostname Coverage



By default, HSTS is enabled only on the hostname that emits the
                    Strict-Transport-Security response header. Sites that are
                deployed across more than one hostname (e.g., store.example.com and
                    accounts.example.com) should therefore take care to activate HSTS on
                all of them. Otherwise, it might happen that some users, who visit some hosts but
                not the ones with the HSTS instructions, are left unprotected.
Some applications use so-called domain cookies, which are
                set on the root domain name (e.g., example.com) and can be used by any
                subdomain. This technique is typically used with sites that are spread across
                multiple hostnames but require unified authentication and session management. In
                this case, it is even more important to enable HSTS on all deployed hostnames,
                including the root domain name. You don’t want to leave a loophole that might be
                exploited for attacks.
Even sites that use only one hostname need to consider this problem, because it is
                very likely that their users will sometimes access the site without the prefix
                (e.g., example.com) and sometimes with (e.g.,
                www.example.com). Because we don’t control inbound links, we have to take
                extra care when configuring HSTS and enable it on all hostnames.
Warning
A common mistake is to forget to configure HSTS on redirections. For example,
                    some of your users might arrive at your root domain name (e.g.,
                        example.com) first. If you don’t have HSTS configured there,
                    users who arrive that way might still be vulnerable to SSL stripping attacks,
                    despite HSTS on the main domain name. For best results, enumerate all paths that
                    lead to your web site, and add HSTS to all of them.


Cookie Security



Because HSTS enforces encryption on all connections to a particular web site, you
                might think that even insecure cookies remain safe against an active network
                attacker. Unfortunately, the cookie specification is very permissive and creates
                opportunities for additional attack vectors, such as: 
	Attacks via made-up hostnames
	Cookies are typically set for a particular hostname and all its
                            subdomains. At the same time, an active network attacker can manipulate
                            the DNS at will and create arbitrary hostnames under the same domain
                            name as the target web site. Thus, if you set a cookie for
                                www.example.com, the attacker can steal it by forcing and
                            intercepting access to madeup.www.example.com. If the cookie
                            is insecure, plaintext access will do. If the cookie is secure, the
                            attacker can present a self-signed certificate and hope that the user
                            will click through.

	Cookie injection
	The cookie specification doesn’t use a separate namespace for secure
                            cookies. What this means is that a cookie set from a plaintext
                            connection can overwrite an existing secure cookie. In practice, this
                            means that an active network attacker can inject arbitrary cookies into
                            an otherwise secure application.
In the case of domain cookies, the attacker can inject a cookie from
                            an existing sibling hostname (e.g.,
                            blog.example.com). Otherwise, an active network
                            attacker can make up an arbitrary hostname and inject from it. 



These problems can largely be addressed with the use of the
                    includeSubDomains parameter, which activates HSTS on the
                delivering hostname and all its subdomains. When domain cookies are used, the only
                secure approach is to activate HSTS on the root domain name and thus on the entire
                domain namespace. I discuss cookie security issues at length in the section called “Cookie Manipulation” in Chapter 5.

Attack Vectors



HSTS greatly improves our ability to secure web sites, but there are several edge
                cases that you need to be aware of. Consider the following situations.
	First access
	Because HSTS is activated via a HTTP response header, it does not
                            provide security on the first access. However, once activated the
                            protection will remain enabled until the retention period expires. The
                            lack of security on the first access is mitigated by browsers embedding
                            (or preloading) a list of sites that are known to
                            support HSTS. This is possible only because the number of sites that
                            support HSTS is still very small.

	Short retention duration
	HSTS works best when deployed with a long retention period (e.g., at
                            least six months). That way, users are protected for the duration of
                            their first session but also on their subsequent visits to the web site.
                            If the retention period is short and the users don’t visit again before
                            it expires, their next access will not be protected.

	Clock attacks
	Users whose computers are configured to automatically update their
                            clocks using Network Time Protocol (NTP) could be
                            attacked by an active network attacker who can subvert the NTP messages.
                            Setting the computer’s clock to a time in the future will cause a site’s
                            HSTS policy to lapse, allowing the victim’s next visit to be insecure.
                            The danger of this attack vector depends on the NTP access frequency.
                            This will typically be once or twice a day. 

	Response header injection
	Response header injection is a web application vulnerability that
                            enables the attacker to inject arbitrary response headers into the
                            victim’s traffic. If such a vulnerability is present in an application,
                            an attacker can inject a forged
                                Strict-Transport-Security header that disables
                            HSTS. Against an application that does not use HSTS, this attack could
                            be used to enable it and potentially execute a DoS attack.
When this attack is delivered against an application that already uses
                            HSTS, the outbound response headers will include two copies of the
                                Strict-Transport-Security header. The attacker’s
                            header will be used if it ends up being first in the response.

	TLS truncation
	Although the TLS protocol is not vulnerable to truncation attacks,
                            most browsers’ implementations are. A skilled active network attacker
                            can use a special technique to intercept a TLS connection and truncate
                            it after the first digit of the max-age parameter. If
                            successful, such an attack can reduce the HSTS duration to, at most,
                            nine seconds. This is a so-called cookie cutter
                                attack, which I discuss in the section called “Cookie
                    Cutting” in Chapter 6.

	Mixed content issues
	The HSTS designers chose not to fully address mixed content issues,
                            most likely because it’s a hard problem and because browser vendors tend
                            to have different ideas about dealing with it. As a result, HSTS
                            includes only non-normative advice against allowing mixed content in
                            Section 12.4 (“Disallow Mixed Security Context Loads”).
Still, HSTS provides a partial solution because plaintext requests for
                            the same hostname (where HSTS is active) are not allowed. To address
                            third-party mixed content, deploy Content Security
                                Policy (CSP), which can be used to allow only HTTPS
                            requests from a given page.

	Hostname and port sharing
	HSTS is activated on an entire hostname and across all ports. This
                            approach does not work very well in shared hosting situations in which
                            multiple parties are able to control a site’s response headers. In such
                            situations, care should be taken to screen all responses to ensure that
                            the correct HSTS header is sent (or that no HSTS header is sent at
                            all).




Robust Deployment Checklist



Even though HSTS is relatively simple, deploying it can be quite complicated if
                the environment in which you’re operating is complex enough. For all but the
                simplest environments, I recommend deploying HSTS in two major steps: start with a
                test run that does everything right in terms of configuration but uses a very short
                duration value. Later, increase the duration to the desired long-term value.
Follow these steps for the test run:
	Ensure that the Strict-Transport-Security header is
                        emitted on all encrypted responses across all hostnames (e.g.,
                            accounts.example.com and www.example.com) and with
                            includeSubDomains specified.

	Enable HSTS on the root domain name (e.g., example.com), also
                        with includeSubDomains specified.

	Determine all paths that lead to your site, and double-check that all
                        redirections emit HSTS policies.

	Initially, start with a temporary short-term policy retention duration.
                        This will allow you to relatively easily recover from forgetting that you
                        have an important plaintext-only site in production.

	Redirect all HTTP traffic to HTTPS. This will ensure that your users
                        always receive the HSTS instructions on their first visits.

	Modify your sites so that each hostname submits at least one request to
                        the root domain name. This will ensure that HSTS is fully enabled on the
                        entire domain namespace, even if your users do not visit the root domain
                        name directly.

	For extra points, if you have a reverse proxy in front of your web
                        site(s), configure your HSTS policy centrally at the proxy level. To prevent
                        header injection vulnerabilities from being used to bypass HSTS, delete any
                        HSTS response headers set by the backend web servers.



After a period of time, when you establish that your deployment is correct in all
                aspects, increase the policy retention duration. You can do this incrementally, or
                by immediately switching to a long-term value. Take the following steps:
	Increase the policy retention duration to a long-term value, for example,
                        12 months. This will not only give you the best protection but also ensure
                        that you are put on preload lists that have minimum duration
                        requirements.

	Notify preload list maintainers.[477]



What if You Can’t Activate HSTS on the Entire Domain Name?



For best results, HSTS should be enabled on the main domain name and all its
                    subdomains. Unfortunately, this might not always be possible. Especially if
                    you’re working with a large existing infrastructure, it might be some time until
                    you are able to migrate all the services to HTTPS.
Even in this situation, you could still use
                        includeSubDomains only on the main application hostname
                    (e.g., www.example.com, but not on example.com). This will
                    provide sufficient security, except in a case in which domain cookies are used.
                    However, you need to do this carefully. Because HSTS policies do not include the
                    names of the hostnames to which they apply, it’s possible to inadvertently
                    activate HSTS from the wrong place.
When deploying HSTS without any subdomain coverage, the risks described in
                        the section called “Cookie Security” apply. Such risks can be mitigated
                    by deploying a cryptographic security mechanism to guarantee cookie
                    confidentiality and integrity.


Browser Support



There is currently decent support for HSTS in desktop browsers thanks to early
                adoption by Chrome and Firefox, in 2010 and 2011, respectively. Of other major
                browsers, Safari added support in the OS X 10.9 release in late 2013. Internet
                Explorer does not currently implement HSTS, but the word from the development team
                is that they are working on it.[478]
Table 10.1. Browser support for HTTP Strict Transport Security
	Browser	HSTS Support	Since	Preloading
	Chrome	Yes	v4.0.249.78;[a] January 2010	Yes
	Firefox	Yes	v4;[b] March 2011	Yes (from v17)
	Internet Explorer	No (in development)	-	-
	Opera	Yes	v12 (Presto/2.10.239);[c] June 2012	Yes (from v15)
	Safari	Yes	v7 (OS X 10.9 Mavericks); October 2013	Yes
	[a] Stable Channel Update (Chrome Releases blog, 25
                                        January 2010)

[b] Firefox 4 release notes (Mozilla, 22 March
                                        2011)

[c] Web specifications support in Opera Presto 2.10
                                        (Opera, retrieved 19 April 2014)





Most browsers ship preloaded with a list of sites that are known to support HSTS.
                However, it seems that at this point in time the lists are largely compiled
                manually. Some vendors (e.g., Mozilla) are talking about scanning the Web to
                generate a comprehensive list of sites that support HSTS, but the details are
                scarce.
	Chrome
	Chrome maintains a preload list for HSTS and public key pinning.[479] At the time of writing, the list contains about 500 sites.
                            The list is updated manually.

	Firefox
	Mozilla seeded their HSTS list from Chrome in November 2012.[480] It’s possible and likely that they have been synchronizing
                            the list since. Mozilla’s list is smaller than Google’s, because they
                            require a minimum max-age of 18 weeks in order to
                            include a site.

	Opera
	Starting with version 15, the Opera browser uses the same engine as
                            Chrome and thus inherits its HSTS preload list. 

	Safari
	Safari on OS X preloads a number of HSTS-enabled hostnames. At the
                            time of writing, I counted 179 entries on my computer
                                (~/Library/Cookies/HSTS.plist). Apple never
                            announced support for HSTS, and thus we know little about their plans
                            for the list’s maintenance.




Privacy Implications



The nature of HSTS dictates that browsers use a persistent store to keep track of
                the HSTS sites they visit. When a user encounters an HSTS site for the first time,
                an entry is added to the browser’s HSTS database. This fact makes it possible to
                test if someone has visited a particular site before—just ask them to follow a
                plaintext link to the site. If they visit the link, they had never been to that site
                before. However, if they had visited that site before, HSTS will kick in, rewrite
                the link, and visit the HTTPS variant instead.
In essence, a HSTS policy can be used to store one bit of information in a
                browser. One bit does not sound like much, but, when used with a wildcard
                certificate, an adversary could create as many different hostnames as they needed,
                each with a separate HSTS policy, and each carrying one bit of information.[481]


Content Security Policy
            



Content Security Policy (CSP) is a declarative security
            mechanism that allows web site operators to control the behavior of compliant user
            agents (typically browsers). By controlling what features are enabled and where content
            is downloaded from, web sites can reduce their attack surface.
The main goal of CSP is defense against cross-site
                scripting (XSS) attacks. For example, CSP can be used to completely
            disable inline JavaScript and control where external code is loaded from. It can also
            disable dynamic code evaluation. With all of those attack vectors disabled, attacking
            with XSS becomes much more difficult.
CSP had been developed at Mozilla, who experimented with the concept over several
            years, first calling it content restrictions[482] and later Content Security Policy.[483] CSP 1.0 became a W3C Candidate Recommendation in November 2012;[484] work is currently in progress on CSP 1.1.[485]
A web site that wishes to enable CSP sets the desired policy by using the
                Content-Security-Policy response header.[486] To give you an idea of what policies look like, consider this example
            adapted from the specification:
Content-Security-Policy: default-src 'self'; img-src *;
                         object-src *.cdn.example.com;
                         script-src scripts.example.com
This policy allows resources to be loaded only from its own origin by default, but
            allows images to be loaded from any URI, plugin content only from the specified CDN
            addresses, and external scripts only from scripts.example.com.
Unlike with HSTS, CSP policies are not persistent; they’re used only on the pages that
            reference them and are then promptly forgotten. Thus, CSP is much less risky to use. If
            an error is made, the policy can be updated with immediate effect. There is also no
            danger of persistent denial of service attacks stemming from injected response
            headers.
Preventing Mixed Content Issues



Mixed content issues arise when a secure web page relies on resources (e.g.,
                images and scripts) that are retrieved over plaintext connections. Browsers improved
                their handling of this problem in recent years, but their approach is generally
                still too lax. For example, all browsers allow so-called passive mixed
                    content, typically images. Not unexpectedly, there are also
                differences in the handling among browsers. Safari, for example, does not currently
                impose any restrictions, not even on scripts. You’ll find a detailed discussion of
                mixed content issues in the section called “Mixed Content” in Chapter 5.
Because CSP allows us to control where content comes from, we can use it to
                instruct compliant browsers to use only secure protocols. That’s
                    wss for the WebSocket protocol and https
                for everything else.
Thus, to address only mixed content issues without attempting to improve anything
                else, consider the following CSP policy as a starting point:
Content-Security-Policy: default-src https: 'unsafe-inline' 'unsafe-eval';
                         connect-src https: wss:
The policy includes three main elements:
	The default-src directive establishes that the page can
                        load content from anywhere (any host and any port), provided it’s done
                        securely (https).

	The 'unsafe-inline' and
                            'unsafe-eval' expressions re-enable inline JavaScript
                        and dynamic code evaluation, which are disabled by default by CSP. Ideally,
                        you wouldn’t want to have these expressions in a policy, but without them
                        most existing applications break.

	The connect-src directive controls content locations
                        used by server push notifications,[487] WebSocket protocol,[488] and XMLHttpRequest.[489]



Once you establish that this initial policy is working for you, consider
                tightening JavaScript execution (by removing the 'unsafe-inline'
                and 'unsafe-eval' expressions) and replacing generic source
                restrictions with more specific hosts (e.g.,
                    https://cdn.example.com instead of
                https:).

Policy Testing



A nice thing about CSP is that it is able to enforce one policy while testing
                others in parallel. This means that you are even able to deploy testing policies in
                production, which tend to be much more complex than development environments.
The Content-Security-Policy-Report-Only response header is used
                to create a testing-only policy:
Content-Security-Policy-Report-Only: default-src 'self'
If a report-only policy fails, nothing is blocked, but reporting can be configured
                so that the failure can be communicated back to the originating web site.

Reporting



Another nice feature of CSP is that it supports reporting, which can be used to
                track policy violations. With this feature, development is much easier. It is also
                very comforting to know that the policy deployed in production is not breaking
                anything.
To enable reporting, use the report-uri directive:
Content-Security-Policy: default-src 'self';
                         report-uri http://example.org/csp-report.cgi
With that, CSP policy violations will be submitted to the specified URI, using the
                    POST request method and the report data in the request body.
                For example:
{
  "csp-report": {
    "document-uri": "http://example.org/page.html",
    "referrer": "http://evil.example.com/haxor.html",
    "blocked-uri": "http://evil.example.com/image.png",
    "violated-directive": "default-src 'self'",
    "original-policy": "default-src 'self'; report-uri http://example.org/csp-report.cgi"
  }
}

Browser Support



CSP is well supported in current browsers. Chrome and Firefox have been
                experimenting with it for years, and it’s recently started to arrive in other
                mainstream browsers. The only major desktop browser not to support CSP is Internet
                Explorer; their team lists this feature as In Development.[490]
Table 10.2. Browser support for Content Security Policy
	Browser	CSP Support	Since
	Android Browser	Yes	4.4.x (October 2013).[a]
	Chrome	Yes	v25 (February 2013).[b] Experimental support since June 2011.[c]
	Firefox	Yes	v23 (August 2013).[d] Experimental support since June 2009, in Firefox v4.[e]
	Internet Explorer	No (in development)	-
	Opera	Yes	v15 (July 2013).
	Safari	Yes	v7 (iOS 7 on September 2013 and OS X 10.9 on October 2013).
                                Experimental support since v6 in Mountain Lion.[f]
	[a] Content Security Policy (Can I use, retrieved 29
                                        June 2014)

[b] Chrome 25 Beta: Content Security Policy and Shadow
                                            DOM (The Chromium Blog, 14 January 2013)

[c] New Chromium security features, June 2011 (The
                                        Chromium Blog, 14 June 2011)

[d] Content Security Policy 1.0 lands in Firefox
                                            Aurora (Mozilla Hacks, 29 May 2013)

[e] Shutting Down XSS with Content Security Policy
                                        (Brandon Sterne, Mozilla Security Blog, 19 June 2009)

[f] Safari 6 gets Content-Security-Policy right
                                        (rachelbythebay, 29 July 2012)







Pinning
            



Pinning is a security technique that can be used to associate a
            service with one or more cryptographic identities such as certificates and public keys.
            Depending on where and how it is used, pinning can achieve three main security
            improvements:
	Attack surface reduction
	The dominant TLS authentication model in use today relies on public CAs.
                        Their job is to issue certificates to domain name owners but not to other
                        random people. In turn, user agents trust all CA-issued certificates
                        unconditionally. This model suffers from an enormous flaw: a domain owner’s
                        authorization is not required for certificate issuance. As a consequence,
                        any CA can issue a certificate for any domain name. Given that there are
                        hundreds of CAs and possibly thousands of entities who influence certificate
                        issuance in one way or another, the attack surface is huge.
With pinning, owners can specify (pin) the CAs that are allowed to issue
                        certificates for their domain names. They can look at the market, decide
                        which one or two CAs are best for them, and configure the pins accordingly.
                        After that, they no longer care that there are hundreds of public CAs
                        because they are no longer a risk.

	Key continuity
	Key continuity is a variation on the previous use
                        case, but it can be used without relying on public CAs. Let’s assume that
                        you somehow know that a particular key is valid for some web site. With
                        that, whenever you visit the site you can compare their current key with
                        your “correct” key; if the keys match, you know that you are not under
                        attack.
Key continuity is commonly used with the SSH protocol. Keys are associated
                        with servers when they are seen for the first time and checked on subsequent
                        visits. This is also known as trust on first use
                        (TOFU).
Firefox uses key continuity when it allows you to create an exception for
                        a certificate it can’t verify; the exception is valid only for that
                        particular certificate. If you are later attacked with a different (MITM)
                        certificate, Firefox will show a certificate warning again.

	Authentication
	Pinning can even be used for authentication, provided there is a reliable
                        (secure) channel to communicate the required cryptographic identities to end
                        users. For example, if we ever deployed a secure DNS that cannot be
                        subverted by active network attacks, then we could use it to store the
                        fingerprints of web site certificates. Those fingerprints could then be
                        checked on every site visit.



What to Pin?



Pinning can be used with several cryptographic elements; the usual candidates are
                certificates and public keys. For example, a possible approach is to have a copy of
                the certificate you expect to see for a particular site so that you can compare it
                with the certificate you actually get. There is little reason to keep the entire
                certificate; you can achieve the same effect by using its hash (e.g., SHA256), which
                is much shorter and easier to handle.
In practice, public key pinning is more practical, because certificates are
                sometimes reissued without changing the public key. It is also common to see several
                certificates for the same public key. Thus, if you pin the public key the pin will
                work across all certificates associated with it.
Protocols that do not rely on certificates could pin public keys directly, but for
                TLS the best element to pin is the SubjectPublicKeyInfo (SPKI)
                field of X.509 certificates.[491] This field contains the public key itself as well as additional metadata
                that’s necessary for accurate identification:
SubjectPublicKeyInfo  ::=  SEQUENCE  {
     algorithm            AlgorithmIdentifier,
     subjectPublicKey     BIT STRING  }
If you want to examine the contents of the SPKI field for a given certificate, use
                this command:
$ openssl x509 -in server.crt -noout -text
[...]
Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:
                    00:b8:0e:05:25:f8:81:e9:e7:ba:21:40:5f:d7:d4:
                    09:5c:8c:d4:e9:44:e7:c0:04:5b:7f:6e:16:8a:01:
                    37:2b:b9:ed:b6:09:cd:1f:55:d5:b8:ee:79:13:ae:
                    e7:1d:6a:ec:01:7c:02:5a:10:af:f9:68:28:ff:d5:
                    61:b0:37:f8:a6:b2:87:42:90:3c:70:19:40:67:49:
                    99:1d:3c:44:3e:16:4e:9a:06:e4:06:66:36:2f:23:
                    39:16:91:cf:92:56:57:1d:30:db:71:5a:68:a2:c3:
                    d5:07:23:e4:90:8e:9e:fb:97:ad:89:d5:31:3f:c6:
                    32:d0:04:17:5c:80:9b:0c:6d:9b:2a:b2:f9:39:ac:
                    85:75:84:82:64:23:9a:7d:c4:96:57:1e:7b:bf:27:
                    2e:48:2d:9e:74:90:32:c1:d8:91:54:12:af:5a:bb:
                    01:20:15:0e:ff:7b:57:83:9d:c2:fe:59:ce:ea:22:
                    6b:77:75:27:01:25:17:e1:41:31:4c:7f:a8:eb:0e:
                    8c:b9:18:b2:9a:cc:74:5e:36:1f:8f:a1:f4:71:a9:
                    ff:72:e6:a0:91:f0:90:b2:5a:06:57:79:b6:1e:97:
                    98:6b:5c:3a:a9:6a:be:84:bc:86:75:cb:81:6d:28:
                    68:c0:e5:d5:3e:c5:f0:7d:85:27:ae:ce:7a:b7:41:
                    ce:f9
                Exponent: 65537 (0x10001)
To generate a SPKI hash, first extract the field from the certificate into its own
                file:
$ openssl x509 -in server.crt -noout -pubkey | \
  openssl asn1parse -inform PEM -noout -out server.spki 
You can then, for example, calculate a SHA256 hash of it and encode it using
                Base64 encoding:
$ openssl dgst -sha256 -binary server.spki | base64
zB8EXAKscl3P+4a5lFszGaEniLrNswOQ1ZGwD+TzADg=

Where to Pin?



When it comes to deciding where to pin, the answer is not as clear. The obvious
                choice is to pin the server’s public key, but there are several downsides to this
                approach. One is that servers are naturally very exposed to attacks. If the server’s
                private key is compromised and replaced, the old pin will no longer be valid. Even
                in the absence of an attack, server keys should be frequently rotated in order to
                minimize the amount of data protected with the same key. Finally, complex
                deployments often rely on multiple keys and certificates for the same site;
                maintaining pins for all of them would be difficult and time consuming.
For this reason, we can consider pinning elsewhere in the certificate chain. These
                days, most certificate chains start with the end-entity certificate, have one
                intermediate CA certificate, and finish with a root. If you pin to either of the
                latter two, you should be able to change the server identity, get a new certificate
                from the same CA, and continue to use the same pins.
This sounds ideal, but there are some complications. First, CAs usually have
                multiple roots. They also have multiple intermediate CAs, which they use for
                different classes of certificates, to minimize risk, change signature algorithms,
                and so on. Your next certificate from the same CA might not use exactly the same
                intermediate and root certificates.
In addition, CAs also rely on cross-certification with other, more established,
                roots from other CAs in order to support older clients. What this means is that
                there might be multiple valid trust paths for a given certificate. In practice, a
                user agent can decide to use a different trust path from the one you have in mind.
                If that happens, and if your pin is attached to an excluded trust path, the
                validation will fail.
With all of this in mind, the best candidate for pinning is the first intermediate
                CA certificate. Because its signature is on the end-entity certificate, the issuing
                CA’s public key must always be in the chain. This approach ensures that a
                user agent won’t bypass the pin, but it’s still possible that the CA will issue a
                future certificate from a different intermediate CA. There is no clear solution to
                this, but there are steps you can take to mitigate the risks:
	Ask your CAs to support pinning and commit to practices that will ensure
                        that your pins remain valid with future certificates.

	Always have a backup pin and a spare certificate from a different
                        CA.



Note
The most reliable way to use pinning is with your own intermediary CA. This
                    setup ensures that the pinned public key is always in the chain. It also gives
                    you a degree of root agility; if you’re not happy with your CA, you can get a
                    different intermediate certificate (using the same private key) from someone
                    else. Finally, because you’re always pinning to the same public key, the pins
                    can be shared among all your sites.


Should You Use Pinning?



Pinning is a powerful technique for attack surface reduction, but it does not come
                for free. To deploy pinning, you need a good understanding of the tradeoffs and a
                mature organization that can deal with the operational challenges. The obvious
                problem is that pinning ensures that TLS connections are established only to the
                pinned identities. What happens if you lose those identities, for whatever
                reason?
The fear of the self-inflicted denial of service attack is possibly the reason
                that pinning has been slow to take off. Browser vendors understand this, and it’s
                also evident from the pinning proposals. Unlike HSTS, where long policy-retention
                periods (e.g., one year) are common, pinning periods are usually measured in days. A
                maximum of 30 days is common. However, no matter how short the pinning period is,
                mistakes will always happen. I am curious to see if browser vendors will eventually
                implement a mechanism for pin breaking to use for emergencies.
In the remainder of this section, I describe several ways to deploy pinning, but
                only one of them (Chrome pinning) can be used straight away. The only exception is
                pinning for native applications, in which you control both sides of the
                communication. In this case, pinning is fully under your control and, with careful
                planning, can be very effective.
So, given that pinning for web sites is still an immature technology, there is
                generally no need to rush. If you’re running a high-profile web site, consider using
                Chrome pinning now. Otherwise, you should first evaluate if pinning is for you.
                Evaluate your environment, try to prepare a deployment plan, and assess the
                challenges and costs. Then decide.

Pinning in Native
                        Applications



The most straightforward use of pinning is in native applications, in which you
                control both sides of the communication. This will be the case with desktop and
                mobile applications. In an increasingly connected world, most modern applications
                have a backend that they talk to, and many use HTTPS for that communication.
Private Backends



There are two approaches you can take. The first applies when the backend is
                    used only by your applications. In this case, you can generate your own root key
                    and use it to issue your own certificates. By distributing the root’s public key
                    with your applications, you will be able to reliably verify certificate
                    signatures.
On many platforms, this type of pinning is easy to do. For example, Java ships
                    with a number of trust roots that are used by default. Whenever you open an
                    HTTPS connection to a site, those trust roots are used to verify the
                    authenticity of the connection. But, because you don’t want to trust all those
                    roots, you can create your own trust store, and then
                    place only your own root in it. If whenever you open an HTTPS connection to
                        your site you specify your own trust store, then you
                    have pinning in action.
If you don’t want to maintain your own root key, you can use SPKI pinning, as
                    described earlier. If you’re after some code, Moxie Marlinspike described both
                    of these approaches in his article.[492]
 Starting with version 4.2, Android has limited support for public key pinning.[493]

Public Backends



In some cases, applications have backends that are also accessed by third
                    parties (i.e., the public). Then, obtaining certificates from a public CA is the
                    way to go. That way, others will be able to connect to the service and verify
                    its authenticity. You won’t be able to deploy pinning to secure their access, at
                    least not until one of the pinning proposals becomes widely supported.
If you still want to protect access from your own applications, you can follow
                    the advice from the previous section and pin to the public key. A possibly more
                    secure approach is to create another private backend, in which case you can also
                    use your own root key for the certificates.


Chrome Public Key Pinning
                



Google started to experiment with public key pinning with Chrome 12,[494] when they shipped a user interface that allows for custom HSTS and
                pinning configuration.[495] Then, in Chrome 13, they added (preloaded) pins for most of their own
                web sites.[496]
Behind the scenes, the same mechanism is used for both HSTS preloading and
                pinning; the required information is hardcoded in the browser itself. Because Chrome
                is based on the open-source Chromium browser, the source file containing this
                information is available for us to view.[497]
There’s only one policy file, and it contains a single JSON structure with two
                further lists: (1) web sites that support
                HSTS or pinning and (2)
                pinsets to define acceptable public keys for them.
Each web site entry carries information about its HSTS configuration and the
                desired pinset:
{ "name": "encrypted.google.com",
  "include_subdomains": true,
  "mode": "force-https",
  "pins": "google"
}
A pinset is a collection of allowed SPKI hashes; it uses the names of certificates
                that are not in the file but are shipped with the browser:
{ "name": "google",
  "static_spki_hashes": [
      "GoogleBackup2048",
      "GoogleG2"
  ]
}
With the pinset approach, Chrome creates a whitelist of public keys that can be
                used in certificate chains for the pinned sites. The format also allows for public
                key blacklisting (via the bad_static_spki_hashes parameter), but
                no site appears to be using it at the moment. There is also a provision to disable
                pinning when SNI is not available, which is necessary for some sites that provide
                correct certificate chains only when SNI is enabled.[498]
As you can see, this all seems very straightforward. Because the Chrome developers
                have graciously allowed others to include their pinning information in their
                browsers, some high-profile sites and projects (e.g., Twitter and Tor) are also
                protected with pinning. Hundreds of sites have their HSTS information
                preloaded.
Warning
To allow users to MITM their own traffic, pinning is not enforced on manually
                    added root certificates. On the one hand, this allows for local debugging (e.g.,
                    using local developer proxies) and content inspection by antivirus products; on
                    the other, it also allows for transparent corporate traffic interception. It has
                    been reported that some malware authors install custom certificates to perform
                    MITM attacks; such certificates would also bypass pin validation.[499]

Chrome includes a reporting mechanism that is used to report pin validation
                failures to Google. (Anecdotally, for privacy reasons, the reporting is enabled only
                for Google’s own properties.) We know this because Chrome’s pinning detected several
                PKI incidents: DigiNotar, TURKTRUST, and ANSSI. You can read about them in Chapter 4, Attacks against PKI.
Note
Firefox 32, released in September 2014, added support for hardcoded public key
                    pinning, which is similar to the mechanism already used in Chrome.[500]


Microsoft Enhanced Mitigation Experience
                        Toolkit
                
                
                



Microsoft does not currently support site-controlled pinning in Internet Explorer,
                but it provides an add-on called Enhanced Mitigation Experience
                    Toolkit (EMET),[501] which can be used by end users to protect themselves individually.
                Although EMET is largely focused on buffer overflow and similar attacks, one of its
                features is certificate pinning. EMET 5, currently in beta, ships with pinning rules
                for several key Microsoft sites, Facebook, Twitter, and Yahoo. Users can add their
                own pins if they wish.[502]

Public Key Pinning Extension for
                    HTTP
                
                



Public Key Pinning Extension for HTTP (HPKP)[503] is a standard for public key pinning for HTTP user agents that’s been in
                development since 2011. The work was initiated by Google, which, even though it had
                implemented pinning in Chrome, understood that manually maintaining a list of pinned
                sites can’t scale. At the time of writing, HPKP is very near to completion. Although
                there are few firm statements from browser vendors regarding their support, Chrome
                and Firefox are expected to implement HPKP once it’s complete.
Because there are many similarities between HPKP and HSTS, if you haven’t already
                read the section on HSTS (earlier in this chapter), I propose that you do now.
                Here’s a quick overview of the common features:
	HPKP is set at the HTTP level, using the
                            Public-Key-Pins (PKP) response header.

	Policy retention period is set with the max-age
                        parameter, which specifies duration in seconds.

	Pinning can be extended to subdomains if the
                            includeSubDomains parameter is used.

	The PKP header can be used only over a secure encryption without any
                        errors; if multiple headers are seen, only the first one is
                        processed.

	When a new PKP header is received, the information in it overwrites
                        previously stored pins and metadata.



Pins are created by specifying the hashing algorithm and an SPKI fingerprint
                computed using that algorithm. For example:
Public-Key-Pins: max-age=2592000;
       pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
       pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ="
The only hashing algorithm supported at the moment is SHA256; the
                    sha256 identifier is used when configuring the pins. The
                fingerprints are encoded using Base64 encoding.
To enable pinning, you must specify the policy retention period and provide at
                least two pins. One of the pins must be present in the chain used for the connection
                over which the pins were received. The other pin must not be
                present. Because pinning is a potentially dangerous operation (it’s easy to make a
                mistake and perform a self-inflicted denial of service attack), the second pin is
                required as a backup. The recommended practice is to have a backup certificate from
                a different CA and to keep it offline. Further, it is recommended that the backup
                certificate is occasionally tested. You really don’t want to need it and only then
                find that it is not working.
Reporting



Unlike HSTS, but similarly to CSP, HPKP specifies a mechanism for user agents
                    to report pin-validation failures. This feature is activated using the
                        report-uri parameter, which should contain the endpoint
                    to which the report will be submitted.
Public-Key-Pins: max-age=2592000;
       pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=";
       pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
       report-uri="http://example.com/pkp-report"
The report is submitted using a POST HTTP request, which
                    includes a JSON structure in the request body. For example:
  {
    "date-time": "2014-04-06T13:00:50Z",
    "hostname": "www.example.com",
    "port": 443,
    "effective-expiration-date": "2014-05-01T12:40:50Z"
    "include-subdomains": false,
    "served-certificate-chain": [
      "-----BEGIN CERTIFICATE-----\n
      MIIEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT\n
      ...
      HFa9llF7b1cq26KqltyMdMKVvvBulRP/F/A8rLIQjcxz++iPAsbw+zOzlTvjwsto\n
      WHPbqCRiOwY1nQ2pM714A5AuTHhdUDqB1O6gyHA43LL5Z/qHQF1hwFGPa4NrzQU6\n
      yuGnBXj8ytqU0CwIPX4WecigUCAkVDNx\n
      -----END CERTIFICATE-----",
      ...
    ],
    "validated-certificate-chain": [
      "-----BEGIN CERTIFICATE-----\n
      MIIEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT\n
      ...
      HFa9llF7b1cq26KqltyMdMKVvvBulRP/F/A8rLIQjcxz++iPAsbw+zOzlTvjwsto\n
      WHPbqCRiOwY1nQ2pM714A5AuTHhdUDqB1O6gyHA43LL5Z/qHQF1hwFGPa4NrzQU6\n
      yuGnBXj8ytqU0CwIPX4WecigUCAkVDNx\n
      -----END CERTIFICATE-----",
      ...
    ],
    "known-pins": [
      'pin-sha256="d6qzRu9zOECb90Uez27xWltNsj0e1Md7GkYYkVoZWmM="',
      "pin-sha256=\"E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g=\""
    ]
  }

Deployment without Enforcement



Reports are especially useful when HPKP is deployed without enforcement. This
                    can be achieved using the Public-Key-Pins-Report-Only
                    response header. This approach allows organizations to deploy pinning without
                    fear of failure, ensure that it is configured correctly, and only later move to
                    enforcement. Depending on their risk profile, some organizations might choose to
                    never enable enforcement; knowing that you are being attacked is often as useful
                    as avoiding the attack.


DNS-Based Authentication of Named Entities (DANE)
                
                



DNS-Based Authentication of Named Entities (DANE),[504] is a proposed standard designed to provide associations between domain
                names and one or more cryptographic identities. The idea is that domain name owners,
                who already have control over their DNS configuration, can use the DNS as a separate
                channel to distribute information needed for robust TLS authentication. DANE is
                straightforward and relatively easy to deploy, but does not provide any security by
                itself. Instead, it relies on the availability of Domain Name System
                    Security Extensions (DNSSEC).[505]
DNSSEC is an attempt to extend the current DNS implementation, which does not
                provide any security, with a new architecture that supports authentication using
                digital signatures. With authentication, we should be able to cryptographically
                verify that the DNS information we obtain is correct. DNSSEC is quite controversial.
                It’s been in development for more than a decade, and its deployment has been slow.
                Experts’ opinions differ widely as to whether DNSSEC is an improvement over the
                current DNS system or alternative improvements should be sought.
At the time of writing, about 70% of all top level domain names are signed.[506] However, enabling the DNSSEC backend is the easier part; getting wide
                end-user system support is going to take some more time. Fedora, a major Linux
                distribution, is the first operating system to consider enabling DNSSEC by default,
                in version 21 planned for Q4 2014.[507]
DANE Use Cases



In our current model for TLS authentication, we rely on a two-step approach:
                        (1) first we have a group of
                    certification authorities that we trust to issue certificates only to genuine
                    domain name owners, then, whenever a site is accessed, (2) user agents (e.g., browsers) check that
                    the certificates are correct for the intended names. This split model is
                    required because authentication of distant parties (e.g., people who have never
                    met) is very tricky to get right, especially at scale. The system is designed to
                    work on the assumption that the information provided by DNS is not reliable
                    (i.e., can be subverted by an active network attacker).
With DNSSEC, we get a communication channel that ensures that the information
                    we receive comes from domain name owners; this means that we don’t necessarily
                    need third parties (CAs) to vouch for them any more. This opens up several
                    interesting use cases:
	Secure deployment of self-signed certificates
	Today, self-signed certificates are considered insecure because
                                there is no way for average users to differentiate them from
                                self-signed MITM certificates. In other words, all self-signed
                                certificates look the same. But, we can use a secure DNS to pin the
                                certificate, thus allowing our user agent to know that they are
                                using the right one. MITM certificates are easily detected.

	Secure deployment of private roots
	If you can securely pin the server certificate, then you can just
                                as well pin any other certificate in the chain. That means that you
                                can create your own root certificate and make users agents trust
                                it—but only for the sites you own. This is a variation of the
                                previous use case and largely of interest to those who have many
                                sites. Rather than pin individual certificates (of which there are
                                many, and they need to be frequently rotated), you create one root
                                and pin it only once on all sites.

	Certificate and public key pinning
	DANE is not necessarily about displacing the current trust
                                architecture. You can as easily pin CA-issued certificates and
                                public CA roots. By doing this, you will be reducing the attack
                                surface and effectively deciding which CAs are allowed to issue
                                certificates for your properties.




Implementation



DANE introduces a new DNS entry type, called TLSA Resource
                        Record (TLSA RR, or just TLSA), which is used to carry
                    certificate associations. TLSA consists of four fields: (1)
                    Certificate Usage to specify which part of a certificate
                    chain should be pinned and how the validation should be performed; (2) a Selector to
                    specify what element is used for pinning; (3) a Matching Type to choose between an
                    exact match or hashing; and (4)
                    Certificate Association Data, which carries the actual
                    raw data used for matching. Different combinations of these four fields are used
                    to deploy different pinning types.
Certificate Usage



The Certificate Usage field can have four different
                        values. In the original RFC, the values are simply digits from 0 to 3. A
                        subsequent RFC added acronyms to make it easier to remember the correct values.[508]
	CA constraint (0; PKIX-TA)
	Creates a pin for a CA, whose matching certificate must be
                                    found anywhere in the chain. PKIX validation is performed as
                                    usual,
                                    and
                                    the root must come from a trusted CA.

	Service certificate constraint (1;
                                PKIX-EE)
	Creates an end-entity pin, whose certificate must be presented
                                    at the first position in the chain. PKIX validation is performed
                                    as
                                    usual,
                                    and
                                    the root must come from a trusted CA.

	Trust anchor assertion (2; DANE-TA)
	Creates a trust anchor pin for a CA certificate (root or
                                    intermediate) that must be present in the trust chain. PKIX
                                    validation is performed as usual, but user agents must trust the
                                    pinned CA certificate. This option allows for certificates that
                                    are not issued by public CAs.

	Domain-issued certificate (3; DANE-EE)
	Creates an end-entity pin, whose certificate must be presented
                                    at the first position in the chain. There is no PKIX validation,
                                    and the pinned certificate is assumed to be trusted.




Selector



The Selector field specifies how the association is
                        presented. This allows us to create an association with a certificate (0;
                            Cert) or with the
                            SubjectPublicKeyInfo field (1;
                            SPKI).

Matching Type



The Matching Type field specifies if the matching is
                        by direct comparison (0; Full) or via hashing (1 and 2,
                        or SHA2-256 and SHA2-512,
                        respectively). Support for SHA256 is required; support for SHA512 is
                        recommended.

Certificate Association Data



The Certificate Association Data field contains the
                        raw data that is used for the association. Its contents are determined by
                        the values of the other three fields in the TLSA record. The certificate,
                        which is always the starting point of an association, is assumed to be in
                        DER format.


Deployment



Leaving DNSSEC configuration and signing aside (only because it is
                    out
                    of scope
                    for
                    this book), DANE is pretty easy to
                    deploy. All you need to do is add a new TLSA record under the correct name. The
                    name is not just the domain name you wish to secure; it’s a combination of three
                    segments separated by dots:
	The first segment is the port on which the service is running,
                            prefixed with an underscore. For example, _443 for
                            HTTPS and _25 for SMTP.

	The second segment is the protocol, also prefixed with an underscore.
                            Three protocols are supported: UDP, TCP, and SCTP. For HTTPS, the
                            segment will be _tcp.

	The third segment is the fully qualified domain name for which you
                            wish to create an association. For example,
                                www.example.com.



In the following example, an association is created between a domain name and
                    the public key of a CA (Certificate Usage is
                    0),
                    identified by the SubjectPublicKeyInfo field (Selector is 1)
                    via its hex-encoded SHA256 hash (Matching Type is 1):
_443._tcp.www.example.com. IN TLSA (
      0 1 1 d2abde240d7cd3ee6b4b28c54df034b9
            7983a1d16e8a410e4561cb106618e971 )
DANE is activated by adding one or more TLSA records to the desired domain
                    name. If at least one association is present, user agents are required to
                    establish a match; otherwise they must abort the TLS handshake. If there are no
                    associations, then the user agent can process the TLS connection as it would
                    normally.
Because multiple associations (TLSA records) can be configured for a domain
                    name, it’s possible to have one or more backup associations. It’s also possible
                    to rotate associations without any downtime. Unlike HPKP, DANE does not specify
                    a memory effect, but there is one built into DNS itself: the time to
                        live (TTL) value, which is the duration for which a record can
                    be cached. Still, the lack of explicit memory effect is DANE’s strength;
                    mistakes are easy to correct by reconfiguring DNS. When deploying, especially
                    initially, it’s best to use the shortest TTL possible.
A potential disadvantage is the fact that the DANE RFC does not mandate any
                    user interaction when a matching association can’t be found. For example, HPKP
                    advises that the user is given the means to manually break the pins in case of
                    failure. This is a double-edged sword: stubborn users might end up overriding
                    the security mechanisms in the case of a genuine attack. On the other hand, with
                    DANE, there is no recourse when configuration mistakes happen. Another problem
                    is that DANE does not support reporting, making it difficult to find out about
                    association matching failures as they occur.

Application Support



At the time of writing, DANE is not supported by major browsers. Adding
                    support is difficult, because DANE builds on DNSSEC; until operating systems
                    start
                    using
                    DNSSEC, browsers would
                    need to implement DNSSEC resolution themselves. Chrome
                    experimented with DANE back in 2011 (in Chrome 14), but eventually removed
                    support, citing lack of use.[509] Because of this, DANE is currently of interest only to enthusiasts
                    and those who wish to learn where public TLS authentication might be heading. 
Despite lack of support, you can play with DANE today thanks to the DNSSEC
                    TLSA Validator add-on, which is available for all major browsers.[510] Their releases are not always up-to-date with the latest browser
                    versions. When I tried it, the Firefox version wouldn’t work with my
                    installation. If you do successfully install the add-on, VeriSign operates a
                    demonstration site that you can test with.[511]
Outside of browsers, applications are slowly adding support for DNSSEC. For
                    example, Postfix did with version 2.11, which shipped in January 2014.[512]


Trust Assertions for Certificate Keys (TACK)
                
                



Trust Assertions for Certificate Keys (TACK)[513] is a proposal for public key pinning that aims to be independent of both
                public CAs and the DNS. The idea is that site operators create and establish their
                own signing keys (known as TACK Signing Keys, or TSKs), to
                provide support for independence. Once a user agent recognizes a TSK for a
                particular site, that key can be used to revoke old server keys, issue new ones, and
                so on. In other words, a TSK is similar to a private CA. Although a per-site TSK is
                recommended, related sites could rely on the same signing key.
TACK is the most ambitious of all pinning proposals, and that also makes it the
                most complex. A compliant user agent expresses support for TACK by submitting en
                empty tack extension in its ClientHello. In
                response, a compliant server uses the same extension to send one or more
                    tacks, which are pins of the server’s public key signed
                with the site’s TSK. Pins are noted on the first sighting, but are activated only
                when seen for the second time. There is no fixed policy retention duration. Instead,
                on every visit a user agent works out a new policy retention time by subtracting the
                timestamp of the first pin sighting from the current timestamp. There is also a
                maximum limit of 30 days.
TACK is interesting because it can be used with any protocol (unlike, say, HPKP,
                which works only for HTTP). On the other hand, the use of a separate signing key
                introduces more complexity. In addition, it requires changes to the TLS protocol. At
                this time, it isn’t clear whether browser vendors are planning to provide support
                for it.

Certification Authority
                Authorization
                



Certification Authority Authorization (CAA)[514] proposes a way for domain name owners to authorize CAs to issue
                certificates for their domain names. It is intended as a defense-in-depth measure
                against attacks on the validation process during certificate issuance; with CAA, CAs
                can satisfy themselves that they are communicating with the real domain name
                owner.
CAA relies on DNS for policy distribution; it recommends DNSSEC but doesn’t
                require it. It extends DNS by adding the CAA Resource Record
                (CAA RR), which is used to create authorization entries.
CAA supports several property tags, which are instructions
                to CAs. For example, the issue tag can be used to allow a CA
                (identified by its domain name) to issue a certificate for a particular domain
                name:
certs.example.com       CAA 0 issue "ca.example.net"
The same tag can be used to forbid certificate issuance:
nocerts.example.com     CAA 0 issue ";"
Other tags include issuewild, which concerns itself with
                wildcard certificates, and iodef, which defines a communication
                channel (e.g., email address) for CAs to report invalid certificate issuance
                requests back to site owners.
True success of CAA requires wide adoption by CAs. Attackers can always target the
                noncompliant CAs and get fraudulent certificates from them. Of course, from the
                perspective of a compliant CA, this is not necessarily a failure; anything that
                reduces the likelihood of attacks will be seen as positive. However, if there aren’t
                enough CAs supporting this feature, site owners are unlikely to make the effort to
                configure authorizations for their properties.
Like DANE, CAA works best with DNSSEC. Without it, CAs must take special care not
                to expose themselves to DNS spoofing attacks. 
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11 OpenSSL


OpenSSL is an open source project that consists of a cryptographic library and an SSL/TLS
        toolkit. From the project’s web site:
The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade,
            full-featured, and Open Source toolkit implementing the Secure Sockets Layer (SSL) and
            Transport Layer Security (TLS) protocols as well as a full-strength general purpose
            cryptography library. The project is managed by a worldwide community of volunteers that
            use the Internet to communicate, plan, and develop the OpenSSL toolkit and its related
            documentation.


OpenSSL is a de facto standard in this space and comes with a long history. The code
        initially began its life in 1995 under the name SSLeay,[515] when it was developed by Eric A. Young and Tim J. Hudson. The OpenSSL project
        was born in the last days of 1998, when Eric and Tim stopped their work on SSLeay to work on
        a commercial SSL/TLS toolkit called BSAFE SSL-C at RSA Australia.
Today, OpenSSL is ubiquitous on the server side and in many client tools. The command-line
        tools are also the most common choice for key and certificate management as well as testing.
        Interestingly, browsers have historically used other libraries, but that might change soon,
        given that the Google Chrome team is planning a transition to OpenSSL on all platforms.[516] The command-line tools provided by OpenSSL are most commonly used to manage keys
        and certificates.
OpenSSL is dual-licensed under OpenSSL and SSLeay licenses. Both are BSD-like, with an
        advertising clause. The license has been a source of contention for a very long time,
        because neither of the licenses is considered compatible with the GPL family of licenses.
        For that reason, you will often find that GPL-licensed programs favor GnuTLS.
Getting Started



If you’re using one of the Unix platforms, getting started with OpenSSL is easy;
            you’re virtually guaranteed to already have it on your system. The only problem that you
            might face is that you might not have the latest version. In this section, I assume that
            you’re using a Unix platform, because that’s the natural environment for OpenSSL.
Windows users tend to download binaries, which might complicate the situation
            slightly. In the simplest case, if you need OpenSSL only for its command-line utilities,
            the main OpenSSL web site links to Shining Light Productions[517] for the Windows binaries. In all other situations, you need to ensure that
            you’re not mixing binaries compiled under different versions of OpenSSL. Otherwise, you
            might experience crashes that are difficult to troubleshoot. The best approach is to use
            a single bundle of programs that includes everything that you need. For example, if you
            want to run Apache on Windows, you can get your binaries from the Apache Lounge.[518]
Determine OpenSSL Version and Configuration



Before you do any work, you should know which OpenSSL version you’ll be
                using. For example, here’s what I get for version information with openssl
                    version on Ubuntu 12.04 LTS, which is the system that I’ll be using
                for the examples in this chapter:
$ openssl version
OpenSSL 1.0.1 14 Mar 2012
At the time of this writing, a transition from OpenSSL 0.9.x to OpenSSL 1.0.x is
                in progress. The version 1.0.1 is especially significant because it is the first
                version to support TLS 1.1 and 1.2. The support for newer protocols is part of a
                global trend, so it’s likely that we’re going to experience a period during which
                interoperability issues are not uncommon.
Note
Various operating systems often modify the OpenSSL code, usually to fix known
                    issues. However, the name of the project and the version number generally stay
                    the same, and there is no indication that the code is actually a fork of the
                    original project that will behave differently. For example, the version of
                    OpenSSL used in Ubuntu 12.04 LTS[519] is based on OpenSSL 1.0.1c. At the time of this writing, the full
                    name of the package is openssl 1.0.1-4ubuntu5.16, and it
                    contains patches for the many issues that came to light over time.

To get complete version information, use the -a switch:
$ openssl version -a
OpenSSL 1.0.1 14 Mar 2012
built on: Fri Jun 20 18:54:15 UTC 2014
platform: debian-amd64
options:  bn(64,64) rc4(8x,int) des(idx,cisc,16,int) blowfish(idx)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -g -O2 -fstack-protector --param=ssp-buffer-size=4 -Wformat -Wformat-security -Werror=format-security -D_FORTIFY_SOURCE=2 -Wl,-Bsymbolic-functions -Wl,-z,relro -Wa,--noexecstack -Wall -DOPENSSL_NO_TLS1_2_CLIENT -DOPENSSL_MAX_TLS1_2_CIPHER_LENGTH=50 -DMD32_REG_T=int -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM -DGHASH_ASM
OPENSSLDIR: "/usr/lib/ssl"
The last line in the output (/usr/lib/ssl) is especially
                interesting because it will tell you where OpenSSL will look for its configuration
                and certificates. On my system, that location is essentially an alias for
                    /etc/ssl, where Ubuntu keeps TLS-related files:
lrwxrwxrwx  1 root root   14 Apr 19 09:28 certs -> /etc/ssl/certs
drwxr-xr-x  2 root root 4096 May 28 06:04 misc
lrwxrwxrwx  1 root root   20 May 22 17:07 openssl.cnf -> /etc/ssl/openssl.cnf
lrwxrwxrwx  1 root root   16 Apr 19 09:28 private -> /etc/ssl/private
The misc/ folder contains a few supplementary scripts, the
                most interesting of which are the scripts that allow you to implement a private
                    certification authority (CA).

Building OpenSSL



In most cases, you will be using the operating system–supplied version of OpenSSL,
                but sometimes there are good reasons to upgrade. For example, your current server
                platform may still be using OpenSSL 0.9.x, and you might want to support newer
                protocol versions (available only in OpenSSL 1.0.1). Further, the newer versions may
                not have all the features you need. For example, on Ubuntu 12.04 LTS, there’s no
                support for SSL 2 in the s_client command. Although not
                supporting this version of SSL by default is the right decision, you’ll need this
                feature if you’re routinely testing other servers for SSL 2 support.
You can start by downloading the most recent version of OpenSSL (in my case,
                1.0.1h):
$ wget http://www.openssl.org/source/openssl-1.0.1h.tar.gz
The next step is to configure OpenSSL before compilation. In most cases, you’ll be
                leaving the system-provided version alone and installing OpenSSL in a different
                location. For example:
$ ./config \
--prefix=/opt/openssl \
--openssldir=/opt/openssl \
enable-ec_nistp_64_gcc_128
The enable-ec_nistp_64_gcc_128 parameter activates optimized
                versions of certain frequently used elliptic curves. This optimization depends on a
                compiler feature that can’t be automatically detected, which is why it’s disabled by
                default.
You can then follow with:
$ make depend
$ make
$ sudo make install
You’ll get the following in /opt/openssl:
drwxr-xr-x 2 root root  4096 Jun  3 08:49 bin
drwxr-xr-x 2 root root  4096 Jun  3 08:49 certs
drwxr-xr-x 3 root root  4096 Jun  3 08:49 include
drwxr-xr-x 4 root root  4096 Jun  3 08:49 lib
drwxr-xr-x 6 root root  4096 Jun  3 08:48 man
drwxr-xr-x 2 root root  4096 Jun  3 08:49 misc
-rw-r--r-- 1 root root 10835 Jun  3 08:49 openssl.cnf
drwxr-xr-x 2 root root  4096 Jun  3 08:49 private
The private/ folder is empty, but that’s normal; you do not
                yet have any private keys. On the other hand, you’ll probably be surprised to learn
                that the certs/ folder is empty too. OpenSSL does not include
                any root certificates; maintaining a trust store is considered outside the scope of
                the project. Luckily, your operating system probably already comes with a trust
                store that you can use. You can also build your own with little effort, as you’ll
                see in the next section.
Note
When compiling software, it’s important to be familiar with the default
                    configuration of your compiler. System-provided packages are usually compiled
                    using all the available hardening options, but if you compile some software
                    yourself there is no guarantee that the same options will be used.[520]


Examine Available Commands



OpenSSL is a cryptographic toolkit that consists of many different utilities. I
                counted 46 in my version. If it were ever appropriate to use the phrase
                    Swiss Army knife of cryptography, this is it. Even though
                you’ll use only a handful of the utilities, you should familiarize yourself with
                everything that’s available, because you never know what you might need in the
                future.
There isn’t a specific help keyword, but help text is displayed whenever you type
                something OpenSSL does not recognize:
$ openssl help
openssl:Error: 'help' is an invalid command.

Standard commands
asn1parse         ca                ciphers           cms
crl               crl2pkcs7         dgst              dh
dhparam           dsa               dsaparam          ec
ecparam           enc               engine            errstr
gendh             gendsa            genpkey           genrsa
nseq              ocsp              passwd            pkcs12
pkcs7             pkcs8             pkey              pkeyparam
pkeyutl           prime             rand              req
rsa               rsautl            s_client          s_server
s_time            sess_id           smime             speed
spkac             srp               ts                verify
version           x509
The first part of the help output lists all available utilities. To get more
                information about a particular utility, use the man command
                followed by the name of the utility. For example, man ciphers
                will give you detailed information on how cipher suites are configured.
Help output doesn’t actually end there, but the rest is somewhat less interesting.
                In the second part, you get the list of message digest commands:
Message Digest commands (see the `dgst' command for more details)
md4               md5               rmd160            sha
sha1
And then, in the third part, you’ll see the list of all cipher commands:
Cipher commands (see the `enc' command for more details)
aes-128-cbc       aes-128-ecb       aes-192-cbc       aes-192-ecb
aes-256-cbc       aes-256-ecb       base64            bf
bf-cbc            bf-cfb            bf-ecb            bf-ofb
camellia-128-cbc  camellia-128-ecb  camellia-192-cbc  camellia-192-ecb
camellia-256-cbc  camellia-256-ecb  cast              cast-cbc
cast5-cbc         cast5-cfb         cast5-ecb         cast5-ofb
des               des-cbc           des-cfb           des-ecb
des-ede           des-ede-cbc       des-ede-cfb       des-ede-ofb
des-ede3          des-ede3-cbc      des-ede3-cfb      des-ede3-ofb
des-ofb           des3              desx              rc2
rc2-40-cbc        rc2-64-cbc        rc2-cbc           rc2-cfb
rc2-ecb           rc2-ofb           rc4               rc4-40
seed              seed-cbc          seed-cfb          seed-ecb
seed-ofb          zlib

Building a Trust Store



OpenSSL does not come with any trusted root certificates (also known as a
                    trust store), so if you’re installing from scratch you’ll
                have to find them somewhere else. One possibility is to use the trust store built
                into your operating system. This choice is usually fine, but default trust stores
                may not always be up to date. A better choice—but one that involves more work—is to
                turn to Mozilla, which is putting a lot of effort into maintaining a robust trust
                store. For example, this is what I did for my assessment tool on SSL Labs.
Because it’s open source, Mozilla keeps the trust store in the source code
                repository:
https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt
Unfortunately, their certificate collection is in a proprietary format, which is
                not of much use to others as is. If you don’t mind getting the collection via a
                third party, the Curl project provides a regularly-updated conversion in
                    Privacy-Enhanced Mail (PEM) format, which you can use
                directly:
http://curl.haxx.se/docs/caextract.html
But you don’t have to write a conversion script if you’d rather download directly
                from Mozilla. Conversion scripts are available in Perl or Go. I describe both in the
                following sections.
Note
If you do end up working on your own conversion script, note that Mozilla’s
                    root certificate file actually contains two types of certificates: those that
                    are trusted and are part of the store and also those that are explicitly
                    distrusted. They use this mechanism to ban compromised intermediate CA
                    certificates (e.g., DigiNotar’s old certificates). Both conversion tools
                    described here are smart enough to exclude distrusted certificates during the
                    conversion process.

Conversion Using Perl



The Curl project makes available a Perl script written by Guenter Knauf that
                    can be used to convert Mozilla’s trust store:
https://raw.github.com/bagder/curl/master/lib/mk-ca-bundle.pl
After you download and run the script, it will fetch the certificate data from
                    Mozilla and convert it to the PEM format:
$ ./mk-ca-bundle.pl
Downloading 'certdata.txt' ...
Processing  'certdata.txt' ...
Done (156 CA certs processed, 19 untrusted skipped).
If you keep previously downloaded certificate data around, the script will use
                    it to determine what changed and process only the updates.

Conversion Using Go



If you prefer the Go programming language, consider Adam Langley’s conversion
                    tool, which you can get from GitHub:
https://github.com/agl/extract-nss-root-certs
To kick off a conversion process, first download the tool itself:
$ wget https://raw.github.com/agl/extract-nss-root-certs/master/convert_mozilla_certdata.go
Then download Mozilla’s certificate data:
$ wget https://hg.mozilla.org/mozilla-central/raw-file/tip/security/nss/lib/ckfw/builtins/certdata.txt --output-document certdata.txt
Finally, convert the file with the following command:
$ go run convert_mozilla_certdata.go > ca-certificates
2012/06/04 09:52:29 Failed to parse certificate starting on line 23068: negative serial number 
In my case, there was one invalid certificate that the Go X.509 library
                    couldn’t handle, but otherwise the conversion worked as expected.



Key and Certificate Management



Most users turn to OpenSSL because they wish to configure and run a web server that
            supports SSL. That process consists of three steps: (1) generate a strong private key, (2) create a Certificate Signing Request (CSR)
            and send it to a CA, and (3) install the
            CA-provided certificate in your web server. These steps (and a few others) are covered
            in this section.
Key Generation



The first step in preparing for the use of public encryption is to generate a
                private key. Before you begin, you must make several decisions:
	Key algorithm
	OpenSSL supports RSA, DSA, and ECDSA keys, but not all types are
                            practical for use in all scenarios. For example, for web server keys
                            everyone uses RSA, because DSA keys are effectively limited to 1,024
                            bits (Internet Explorer doesn’t support anything stronger) and ECDSA
                            keys are yet to be widely supported by CAs. For SSH, DSA and RSA are
                            widely used, whereas ECDSA might not be supported by all clients.

	Key size
	The default key sizes might not be secure, which is why you should
                            always explicitly configure key size. For example, the default for RSA
                            keys is only 512 bits, which is simply insecure. If you used a 512-bit
                            key on your server today, an intruder could take your certificate and
                            use brute force to recover your private key, after which he or she could
                            impersonate your web site. Today, 2,048-bit RSA keys are considered
                            secure, and that’s what you should use. Aim also to use 2,048 bits for
                            DSA keys and at least 256 bits for ECDSA.

	Passphrase
	Using a passphrase with a key is optional, but strongly recommended.
                            Protected keys can be safely stored, transported, and backed up. On the
                            other hand, such keys are inconvenient, because they can’t be used
                            without their passphrases. For example, you might be asked to enter the
                            passphrase every time you wish to restart your web server. For most,
                            this is either too inconvenient or has unacceptable availability
                            implications. In addition, using protected keys in production does not
                            actually increase the security much, if at all. This is because, once
                            activated, private keys are kept unprotected in program memory; an
                            attacker who can get to the server can get the keys from there with just
                            a little more effort. Thus, passphrases should be viewed only as a
                            mechanism for protecting private keys when they are not installed on
                            production systems. In other words, it’s all right to keep passphrases
                            on production systems, next to the keys. If you need better security in
                            production, you should invest in a hardware solution.[521]



To generate an RSA key, use the genrsa command:
$ openssl genrsa -aes128 -out fd.key 2048
Generating RSA private key, 2048 bit long modulus
....+++
...................................................................................+++
e is 65537 (0x10001)
Enter pass phrase for fd.key: ****************
Verifying - Enter pass phrase for fd.key: ****************
Here, I specified that the key be protected with AES-128. You can also use AES-192
                or AES-256 (switches -aes192 and -aes256,
                respectively), but it’s best to stay away from the other algorithms (DES, 3DES, and
                SEED).
Warning
The
                        e value that you see in the output refers to the public
                    exponent, which is set to 65,537 by default. This is what’s known as a
                        short public exponent, and it significantly improves
                    the performance of RSA verification. Using the -3 switch, you
                    can choose 3 as your public exponent and make verification even faster. However,
                    there are some unpleasant historical weaknesses associated with the use of 3 as
                    a public exponent, which is why generally everyone recommends that you stick
                    with 65,537. The latter choice provides a safety margin that’s been proven
                    effective in the past.

Private keys are stored in the so-called PEM format, which is ASCII:
$ cat fd.key
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,01EC21976A463CE36E9DB59FF6AF689A

vERmFJzsLeAEDqWdXX4rNwogJp+y95uTnw+bOjWRw1+O1qgGqxQXPtH3LWDUz1Ym
mkpxmIwlSidVSUuUrrUzIL+V21EJ1W9iQ71SJoPOyzX7dYX5GCAwQm9Tsb40FhV/
[21 lines removed...]
4phGTprEnEwrffRnYrt7khQwrJhNsw6TTtthMhx/UCJdpQdaLW/TuylaJMWL1JRW
i321s5me5ej6Pr4fGccNOe7lZK+563d7v5znAx+Wo1C+F7YgF+g8LOQ8emC+6AVV
-----END RSA PRIVATE KEY-----
A private key isn’t just a blob of random data, even though that’s what it looks
                like at a glance. You can see a key’s structure using the following
                    rsa command:
$ openssl rsa -text -in fd.key
Enter pass phrase for fd.key: ****************
Private-Key: (2048 bit)
modulus:
    00:9e:57:1c:c1:0f:45:47:22:58:1c:cf:2c:14:db:
    [...]
publicExponent: 65537 (0x10001)
privateExponent:
    1a:12:ee:41:3c:6a:84:14:3b:be:42:bf:57:8f:dc:
    [...]
prime1:
    00:c9:7e:82:e4:74:69:20:ab:80:15:99:7d:5e:49:
    [...]
prime2:
    00:c9:2c:30:95:3e:cc:a4:07:88:33:32:a5:b1:d7:
    [...]
exponent1:
    68:f4:5e:07:d3:df:42:a6:32:84:8d:bb:f0:d6:36:
    [...]
exponent2:
    5e:b8:00:b3:f4:9a:93:cc:bc:13:27:10:9e:f8:7e:
    [...]
coefficient:
    34:28:cf:72:e5:3f:52:b2:dd:44:56:84:ac:19:00:
    [...]
writing RSA key
-----BEGIN RSA PRIVATE KEY-----
[...]
-----END RSA PRIVATE KEY-----
If you need to generate the corresponding public key, you can do that with the
                following rsa command:
$ openssl rsa -in fd.key -pubout -out fd-public.key
Enter pass phrase for fd.key: ****************
The public key is much shorter than the private key:
$ cat fd-public.key
-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnlccwQ9FRyJYHM8sFNsY
PUHJHJzhJdwcS7kBptutf/L6OvoEAzCVHi/m0qAA4QM5BziZgnvv+FNnE3sgE5pz
iovEHJ3C959mNQmpvnedXwfcOIlbrNqdISJiP0js6mDCzYjSO1NCQoy3UpYwvwj7
0ryR1F+abARehlts/Xs/PtX3VamrljiJN6JNgFICy3ZvEhLZEKxR7oob7TnyZDrj
IHxBbqPNzeiqLCFLFPGgJPa0cH8DdovBTesvu7wr/ecsf8CYyUCdEwGkZh9DKtdU
HFa9H8tWW2mX6uwYeHCnf2HTw0E8vjtOb8oYQxlQxtL7dpFyMgrpPOoOVkZZW/P0
NQIDAQAB
-----END PUBLIC KEY-----
It’s good practice to verify that the output contains what you’re expecting. For
                example, if you forget to include the -pubout switch on the
                command line, the output will contain your private key instead of the public
                key.
DSA key generation is a two-step process: DSA parameters are created in the first
                step and the key in the second. Rather than execute the steps one at a time, I tend
                to use the following two commands as one:
$ openssl dsaparam -genkey 2048 | openssl dsa -out dsa.key -aes128
Generating DSA parameters, 2048 bit long prime
This could take some time
[...]
read DSA key
writing DSA key
Enter PEM pass phrase: ****************
Verifying - Enter PEM pass phrase: ****************
This approach allows me to generate a password-protected key without leaving any
                temporary files (DSA parameters) and/or temporary keys on disk.
The process is similar for ECDSA keys, except that it isn’t possible to create
                keys of arbitrary sizes. Instead, for each key you select a named
                    curve, which controls key size, but it controls other EC parameters
                as well. The following example creates a 256-bit ECDSA key using the
                    secp256r1 named curve:
$ openssl ecparam -genkey -name secp256r1 | openssl ec -out ec.key -aes128
using curve name prime256v1 instead of secp256r1
read EC key
writing EC key
Enter PEM pass phrase: ****************
Verifying - Enter PEM pass phrase: ****************
OpenSSL supports many named curves (you can get a full list with the
                    -list_curves switch), but, for web server keys, you’re
                limited to only two curves that are supported by all major browsers:
                    secp256r1 (OpenSSL uses the name
                    prime256v1) and secp384r1.

Creating Certificate Signing Requests



Once you have a private key, you can proceed to create a Certificate
                    Signing Request (CSR). This is a formal request asking a CA to sign a
                certificate, and it contains the public key of the entity requesting the certificate
                and some information about the entity. This data will all be part of the
                certificate.
CSR creation is usually an interactive process that takes the private server key
                as input. Read the instructions given by the openssl tool
                carefully; if you want a field to be empty, you must enter a single dot
                    (.) on the line, rather than just hit Return. If you do the
                latter, OpenSSL will populate the corresponding CSR field with the default value.
                (This behavior doesn’t make any sense when used with the default OpenSSL
                configuration, which is what virtually everyone does. It does
                make sense once you realize you can actually change the defaults, either by
                modifying the OpenSSL configuration or by providing your own configuration
                files.)
$ openssl req -new -key fd.key -out fd.csr
Enter pass phrase for fd.key: ****************
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:GB
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:London
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Feisty Duck Ltd
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:www.feistyduck.com
Email Address []:webmaster@feistyduck.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Note
According to Section 5.4.1 of RFC 2985,[522]
                    challenge password is an optional field that was intended
                    for use during certificate revocation as a way of identifying the original
                    entity that had requested the certificate. If entered, the password will be
                    included verbatim in the CSR and communicated to the CA. It’s
                    rare
                    to find a CA that relies on this
                    field;
                    all
                    instructions I’ve seen recommend leaving it alone. Having a challenge password
                    does not increase the security of the CSR in any way. Further, this field should
                    not be confused with the key passphrase, which is a separate feature.

After a CSR is generated, use it to sign your own certificate and/or send it to a
                public CA and ask him or her to sign the certificate. Both approaches are described
                in the following sections. But before you do that, it’s a good idea to double-check
                that the CSR is correct. Here’s how:
$ openssl req -text -in fd.csr -noout
Certificate Request:
    Data:
        Version: 0 (0x0)
        Subject: C=GB, L=London, O=Feisty Duck Ltd, CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:
                    00:b7:fc:ca:1c:a6:c8:56:bb:a3:26:d1:df:e4:e3:
                    [16 more lines...]
                    d1:57
                Exponent: 65537 (0x10001)
        Attributes:
            a0:00
    Signature Algorithm: sha1WithRSAEncryption
         a7:43:56:b2:cf:ed:c7:24:3e:36:0f:6b:88:e9:49:03:a6:91:
         [13 more lines...]
         47:8b:e3:28

Creating CSRs from Existing Certificates



You can save yourself some typing if you’re renewing a certificate and don’t want
                to make any changes to the information presented in it. With the following command,
                you can create a brand-new CSR from an existing certificate:
$ openssl x509 -x509toreq -in fd.crt -out fd.csr -signkey fd.key
Note
Unless you’re using some form of public key pinning and wish to continue using
                    the existing key, it’s best practice to generate a new key every time you apply
                    for a new certificate. Key generation is quick and inexpensive and reduces your
                    exposure.


Unattended CSR Generation



CSR generation doesn’t have to be interactive. Using a custom OpenSSL
                configuration file, you can both automate the process (as explained in this section)
                and do certain things that are not possible interactively (as discussed in
                subsequent sections).
For example, let’s say that we want to automate the generation of a CSR for
                    www.feistyduck.com. We would start by creating a file
                    fd.cnf with the following contents:
[req]
prompt = no
distinguished_name = dn
req_extensions = ext

[dn]
CN = www.feistyduck.com
emailAddress = webmaster@feistyduck.com
O = Feisty Duck Ltd
L = London
C = GB

[ext]
subjectAltName = DNS:www.feistyduck.com,DNS:feistyduck.com
Now you can create the CSR directly from the command line:
$ openssl req -new -config fd.cnf -key fd.key -out fd.csr
Enter pass phrase for fd.key: ****************
You’ll be asked for the passphrase only if you used one during key
                generation.

Signing Your Own Certificates



If you’re installing a TLS server for your own use, you probably don’t want to go
                to a CA to get a publicly trusted certificate. It’s much easier to sign your own.
                The fastest way to do this is to generate a self-signed certificate. If you’re a
                Firefox user, on your first visit to the web site you can create a certificate
                exception, after which the site will be as secure as if it were protected with a
                publicly trusted certificate.
If you already have a CSR, create a certificate using the following
                command:
$ openssl x509 -req -days 365 -in fd.csr -signkey fd.key -out fd.crt
Signature ok
subject=/CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com/O=Feisty Duck Ltd/L=London/C=GB
Getting Private key
Enter pass phrase for fd.key: ****************
You don’t actually have to create a CSR in a separate step. The following command
                creates a self-signed certificate starting with a key alone:
$ openssl req -new -x509 -days 365 -key fd.key -out fd.crt
If you don’t wish to be asked any questions, use the -subj
                switch to provide the certificate subject information on the command line:
$ openssl req -new -x509 -days 365 -key fd.key -out fd.crt \
 -subj "/C=GB/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com"

Creating Certificates Valid for Multiple Hostnames



By default, certificates produced by OpenSSL have only one common name and are
                valid for only one hostname. Because of this, even if you have related web sites,
                you are forced to use a separate certificate for each site. In this situation, using
                a single multidomain certificate makes much more sense.
                Further, even when you’re running a single web site, you need to ensure that the
                certificate is valid for all possible paths that end users can take to reach it. In
                practice, this means using at least two names, one with the www
                prefix and one without (e.g., www.feistyduck.com and
                    feistyduck.com).
There are two mechanisms for supporting multiple hostnames in a certificate. The
                first is to list all desired hostnames using an X.509 extension called
                    Subject Alternative Name (SAN). The second is to use
                wildcards. You can also use a combination of the two approaches when it’s more
                convenient. In practice, for most sites, you can specify a bare domain name and a
                wildcard to cover all the subdomains (e.g., feistyduck.com and
                    *.feistyduck.com).
Warning
When a certificate contains alternative names, all common names are ignored.
                    Newer certificates produced by CAs may not even include any common names. For
                    that reason, include all desired hostnames on the alternative names list.

First, place the extension information in a separate text file. I’m going to call
                it fd.ext. In the file, specify the name of the extension
                    (subjectAltName) and list the desired hostnames, as in the
                following example:
subjectAltName = DNS:*.feistyduck.com, DNS:feistyduck.com
Then, when using the x509 command to issue a certificate, refer
                to the file using the -extfile switch:
$ openssl x509 -req -days 365 \
-in fd.csr -signkey fd.key -out fd.crt \
-extfile fd.ext
The rest of the process is no different from before. But when you examine the
                generated certificate afterward, you’ll find that it contains the SAN
                extension:
 X509v3 extensions:
            X509v3 Subject Alternative Name:
                DNS:*.feistyduck.com, DNS:feistyduck.com

Examining Certificates



Certificates might look a lot like random data at first glance, but they contain a
                great deal of information; you just need to know how to unpack it. The
                    x509 command does just that, so use it to look at the
                self-signed certificates you generated.
In the following example, I use the -text switch to print
                certificate contents and -noout to reduce clutter by not printing
                the encoded certificate itself (which is the default behavior):
$ openssl x509 -text -in fd.crt -noout
Certificate:
    Data:
        Version: 1 (0x0)
        Serial Number: 13073330765974645413 (0xb56dcd10f11aaaa5)
    Signature Algorithm: sha1WithRSAEncryption
        Issuer: CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com, O=Feisty Duck Ltd, L=London, C=GB
        Validity
            Not Before: Jun  4 17:57:34 2012 GMT
            Not After : Jun  4 17:57:34 2013 GMT
        Subject: CN=www.feistyduck.com/emailAddress=webmaster@feistyduck.com, O=Feisty Duck Ltd, L=London, C=GB
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:
                    00:b7:fc:ca:1c:a6:c8:56:bb:a3:26:d1:df:e4:e3:
                    [16 more lines...]
                    d1:57
                Exponent: 65537 (0x10001)
    Signature Algorithm: sha1WithRSAEncryption
         49:70:70:41:6a:03:0f:88:1a:14:69:24:03:6a:49:10:83:20:
         [13 more lines...]
         74:a1:11:86
Self-signed certificates usually contain only the most basic certificate data, as
                seen in the previous example. By comparison, certificates issued by public CAs are
                much more interesting, as they contain a number of additional fields (via the X.509
                extension mechanism). Let’s go over them quickly.
The Basic Constraints extension is used to mark
                certificates as belonging to a CA, giving them the ability to sign other
                certificates. Non-CA certificates will either have this extension omitted or will
                have the value of CA set to FALSE. This extension is critical,
                which means that all software-consuming certificates must understand its
                meaning.
X509v3 Basic Constraints: critical
    CA:FALSE
The Key Usage (KU) and Extended Key
                    Usage (EKU) extensions restrict what a certificate can be used for.
                If these extensions are present, then only the listed uses are allowed. If the
                extensions are not present, there are no use restrictions. What you see in this
                example is typical for a web server certificate, which, for example, does not allow
                for code signing:
X509v3 Key Usage: critical
    Digital Signature, Key Encipherment
X509v3 Extended Key Usage:
    TLS Web Server Authentication, TLS Web Client Authentication
The CRL Distribution Points extension lists the addresses
                where the CA’s Certificate Revocation List (CRL)
                information can be found. This information is important in cases in which
                certificates need to be revoked. CRLs are CA-signed lists of revoked certificates,
                published at regular time intervals (e.g., seven days).
X509v3 CRL Distribution Points:
    Full Name:
      URI:http://crl.starfieldtech.com/sfs3-20.crl
Note
You might have noticed that the CRL location doesn’t use a secure server, and
                    you might be wondering if the link is thus insecure. It is not. Because each CRL
                    is signed by the CA that issued it, browsers are able to verify its integrity.
                    In fact, if CRLs were distributed over TLS, browsers might face a
                    chicken-and-egg problem in which they want to verify the revocation status of
                    the certificate used by the server delivering the CRL itself!

The Certificate Policies extension is used to indicate the
                policy under which the certificate was issued. For example, this is where
                    extended validation (EV) indicators can be found (as in
                the example that follows). The indicators are in the form of unique object
                identifiers (OIDs), and they are unique to the issuing CA. In addition, this
                extension often contains one or more Certificate Policy
                    Statement (CPS) points, which are usually web pages or PDF
                documents.
X509v3 Certificate Policies:
    Policy: 2.16.840.1.114414.1.7.23.3
    CPS: http://certificates.starfieldtech.com/repository/
The Authority Information Access (AIA) extension usually
                contains two important pieces of information. First, it lists the address of the
                CA’s Online Certificate Status Protocol (OCSP)
                responder, which can be used to check for certificate revocation in real time. The
                extension may also contain a link to where the issuer’s certificate (the next
                certificate in the chain) can be found. These days, server certificates are rarely
                signed directly by trusted root certificates, which means that users must include
                one or more intermediate certificates in their configuration. Mistakes are easy to
                make and will invalidate the certificates. Some clients (e.g., Internet Explorer)
                will use the information provided in this extension to fix an incomplete certificate
                chain, but many clients won’t.
Authority Information Access:
    OCSP - URI:http://ocsp.starfieldtech.com/
    CA Issuers - URI:http://certificates.starfieldtech.com/repository/sf_intermediate.crt
The Subject Key Identifier and Authority Key
                    Identifier extensions establish unique subject and authority key
                identifiers, respectively. The value specified in the Authority Key Identifier
                extension of a certificate must match the value specified in the Subject Key
                Identifier extension in the issuing certificate. This information is very useful
                during the certification path-building process, in which a client is trying to find
                all possible paths from a leaf (server) certificate to a trusted root. Certification
                authorities will often use one private key with more than one certificate, and this
                field allows software to reliably identify which certificate can be matched to which
                key. In the real world, many certificate chains supplied by servers are invalid, but
                that fact often goes unnoticed because browsers are able to find alternative trust
                paths.
X509v3 Subject Key Identifier:
    4A:AB:1C:C3:D3:4E:F7:5B:2B:59:71:AA:20:63:D6:C9:40:FB:14:F1
X509v3 Authority Key Identifier:
    keyid:49:4B:52:27:D1:1B:BC:F2:A1:21:6A:62:7B:51:42:7A:8A:D7:D5:56
Finally, the Subject Alternative Name extension is used to
                list all the hostnames for which the certificate is valid. This extension is
                optional; if it isn’t present, clients fall back to using the information provided
                in the Common Name (CN), which is part of the
                    Subject field.
X509v3 Subject Alternative Name:
    DNS:www.feistyduck.com, DNS:feistyduck.com

Key and Certificate
                        Conversion
                
                
                
                
                
                



Private keys and certificates can be stored in a variety of formats, which means
                that you’ll often need to convert them from one format to another. The most common
                formats are:
	Binary (DER) certificate
	Contains an X.509 certificate in its raw form, using DER ASN.1
                            encoding.

	ASCII (PEM) certificate(s)
	Contains a base64-encoded DER certificate, with -----BEGIN
                                CERTIFICATE----- used as the header and -----END
                                CERTIFICATE----- as the footer. Usually seen with only one
                            certificate per file, although some programs allow more than one
                            certificate depending on the context. For example, the Apache web server
                            requires the server certificate to be alone in one file, with all
                            intermediate certificates together in another.

	Binary (DER) key
	Contains a private key in its raw form, using DER ASN.1 encoding.
                            OpenSSL creates keys in its own traditional (SSLeay) format. There’s
                            also an alternative format called PKCS#8 (defined in RFC 5208), but it’s
                            not widely used. OpenSSL can convert to and from PKCS#8 format using the
                                pkcs8 command.

	ASCII (PEM) key
	Contains a base64-encoded DER certificate with additional metadata
                            (e.g., the algorithm used for password protection).

	PKCS#7 certificate(s)
	A complex format designed for the transport of signed or encrypted
                            data, defined in RFC 2315. It’s usually seen with
                                .p7b and .p7c extensions and
                            can include the entire certificate chain as needed. This format is
                            supported by Java’s keytool utility.

	PKCS#12 (PFX) key and certificate(s)
	A complex format that can store and protect a server key along with an
                            entire certificate chain. It’s commonly seen with
                                .p12 and .pfx extensions. This
                            format is commonly used in Microsoft products, but is also used for
                            client certificates. These days, the PFX name is used as a synonym for
                            PKCS#12, even though PFX referred to a different format a long time ago
                            (an early version of PKCS#12). It’s unlikely that you’ll encounter the
                            old version anywhere.



PEM and DER Conversion



Certificate conversion between PEM and DER formats is performed with the
                        x509 tool. To convert a certificate from PEM to DER
                    format:
$ openssl x509 -inform PEM -in fd.pem -outform DER -out fd.der
To convert a certificate from DER to PEM format:
$ openssl x509 -inform DER -in fd.der -outform PEM -out fd.pem
The syntax is identical if you need to convert private keys between DER and
                    PEM formats, but different commands are used: rsa for RSA
                    keys, and dsa for DSA keys.

PKCS#12 (PFX) Conversion



One command is all that’s needed to convert the key and certificates in PEM
                    format to PKCS#12:
$ openssl pkcs12 -export \
    -name "My Certificate" \
    -out fd.p12 \
    -inkey fd.key \
    -in fd.crt \
    -certfile fd-chain.crt
Enter Export Password: ****************
Verifying - Enter Export Password: ****************
The reverse conversion isn’t as straightforward. You can use a single command,
                    but in that case you’ll get the entire contents in a single file:
$ openssl pkcs12 -in fd.p12 -out fd.pem -nodes
Now, you must open the file fd.pem in your favorite
                    editor and manually split it into individual key, certificate, and intermediate
                    certificate files. While you’re doing that, you’ll notice additional content
                    provided before each component. For example:
Bag Attributes
    localKeyID: E3 11 E4 F1 2C ED 11 66 41 1B B8 83 35 D2 DD 07 FC DE 28 76
subject=/1.3.6.1.4.1.311.60.2.1.3=GB/2.5.4.15=Private Organization/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com
issuer=/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
BhMCVVMxEDAOBgNVBAgTB0FyaXpvbmExEzARBgNVBAcTClNjb3R0c2RhbGUxJTAj
[...]
This additional metadata is very handy to quickly identify the certificates.
                    Obviously, you should ensure that the main certificate file contains the leaf
                    server certificate and not something else. Further, you should also ensure that
                    the intermediate certificates are provided in the correct order, with the
                    issuing certificate following the signed one. If you see a self-signed root
                    certificate, feel free to delete it or store it elsewhere; it shouldn’t go into
                    the chain.
Warning
The final conversion output shouldn’t contain anything apart from the
                        encoded key and certificates. Although some tools are smart enough to ignore
                        what isn’t needed, other tools are not. Leaving extra data in PEM files
                        might result in problems that are difficult to troubleshoot.

It’s possible to get OpenSSL to split the components for you, but doing so
                    requires multiple invocations of the pkcs12 command
                    (including typing the bundle password each time):
$ openssl pkcs12 -in fd.p12 -nocerts -out fd.key -nodes
$ openssl pkcs12 -in fd.p12 -nokeys -clcerts -out fd.crt
$ openssl pkcs12 -in fd.p12 -nokeys -cacerts -out fd-chain.crt
This approach won’t save you much work. You must still examine each file to
                    ensure that it contains the correct contents and to remove the metadata.

PKCS#7 Conversion



To convert from PEM to PKCS#7, use the crl2pkcs7
                    command:
$ openssl crl2pkcs7 -nocrl -out fd.p7b -certfile fd.crt -certfile fd-chain.crt
To convert from PKCS#7 to PEM, use the pkcs7 command with
                    the -print_certs switch:
openssl pkcs7 -in fd.p7b -print_certs -out fd.pem
Similar to the conversion from PKCS#12, you must now edit the
                        fd.pem file to clean it up and split it into the desired
                    components.



Configuration



In this section, I discuss two topics relevant for TLS deployment. The first is cipher
            suite configuration, in which you specify which of the many suites available in TLS you
            wish to use for communication. This topic is important because virtually every program
            that uses OpenSSL reuses its suite configuration mechanism. That means that once you
            learn how to configure cipher suites for one program, you can reuse the same knowledge
            elsewhere. The second topic is the performance measurement of raw crypto
            operations.
Cipher Suite Selection



A common task in TLS server configuration is selecting which cipher suites are
                going to be supported. Programs that rely on OpenSSL usually adopt the same approach
                to suite configuration as OpenSSL does, simply passing through the configuration
                options. For example, in Apache httpd, the cipher suite
                configuration may look like this:
SSLHonorCipherOrder On  
SSLCipherSuite "HIGH:!aNULL:@STRENGTH"
The first line controls cipher suite prioritization (and configures
                    httpd to actively select suites). The second line controls
                which suites will be supported.
Coming up with a good suite configuration can be pretty time consuming, and there
                are a lot of details to consider. The best approach is to use the OpenSSL
                    ciphers command to determine which suites are enabled with a
                particular configuration string.
Obtaining the List of Supported Suites



Before you do anything else, you should determine which suites are supported
                    by your OpenSSL installation. To do this, invoke the ciphers
                    command with the switch -v and the parameter
                        ALL:COMPLEMENTOFALL (clearly, ALL does
                    not actually mean “all”):
$ openssl ciphers -v 'ALL:COMPLEMENTOFALL'
ECDHE-RSA-AES256-GCM-SHA384    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-GCM-SHA384  TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384        TLSv1.2 Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA384
ECDHE-ECDSA-AES256-SHA384      TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA384
ECDHE-RSA-AES256-SHA           SSLv3   Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA1
[106 more lines...]
Tip
If you’re using OpenSSL 1.0.0 or later, you can also use the uppercase
                            -V switch to request extra-verbose output. In this
                        mode, the output will also contain suite IDs, which are always handy to
                        have. For example, OpenSSL does not always use the RFC names for the suites;
                        in such cases, you must use the IDs to cross-check.

In my case, there were 111 suites in the output. Each line contains
                    information on one suite and the following information:
	Suite name

	Required minimum protocol version

	Key exchange algorithm

	Authentication algorithm

	Cipher algorithm and strength

	MAC (integrity) algorithm

	Export suite indicator



If you change the ciphers parameter to something other than
                        ALL:COMPLEMENTOFALL, OpenSSL will list only the suites
                    that match that configuration. For example, you can ask it to list only cipher
                    suites that are based on RC4, as follows:
$ openssl ciphers -v 'RC4'
ECDHE-RSA-RC4-SHA    SSLv3 Kx=ECDH       Au=RSA   Enc=RC4(128) Mac=SHA1
ECDHE-ECDSA-RC4-SHA  SSLv3 Kx=ECDH       Au=ECDSA Enc=RC4(128) Mac=SHA1
AECDH-RC4-SHA        SSLv3 Kx=ECDH       Au=None  Enc=RC4(128) Mac=SHA1
ADH-RC4-MD5          SSLv3 Kx=DH         Au=None  Enc=RC4(128) Mac=MD5
ECDH-RSA-RC4-SHA     SSLv3 Kx=ECDH/RSA   Au=ECDH  Enc=RC4(128) Mac=SHA1
ECDH-ECDSA-RC4-SHA   SSLv3 Kx=ECDH/ECDSA Au=ECDH  Enc=RC4(128) Mac=SHA1
RC4-SHA              SSLv3 Kx=RSA        Au=RSA   Enc=RC4(128) Mac=SHA1
RC4-MD5              SSLv3 Kx=RSA        Au=RSA   Enc=RC4(128) Mac=MD5
PSK-RC4-SHA          SSLv3 Kx=PSK        Au=PSK   Enc=RC4(128) Mac=SHA1
EXP-ADH-RC4-MD5      SSLv3 Kx=DH(512)    Au=None  Enc=RC4(40)  Mac=MD5  export
EXP-RC4-MD5          SSLv3 Kx=RSA(512)   Au=RSA   Enc=RC4(40)  Mac=MD5  export
The output will contain all suites that match your requirements, even if
                    they’re insecure. Clearly, you should choose your configuration strings
                    carefully in order to activate only what’s secure. Further, the order in which
                    suites appear in the output matters. When you configure your TLS server to
                    actively select the cipher suite that will be used for a connection (which is
                    the best practice and should always be done), the suites listed first are given
                    priority.

Keywords



Cipher suite keywords are the basic building blocks of
                    cipher suite configuration. Each suite name (e.g., RC4-SHA)
                    is a keyword that selects exactly one suite. All other keywords select groups of
                    suites according to some criteria. Keyword names are case-sensitive. Normally, I
                    might direct you to the OpenSSL documentation for a comprehensive list of
                    keywords, but it turns out that the ciphers documentation is not up to date;
                    it’s missing some more recent additions. For that reason, I’ll try to document
                    all the keywords in this section.
Group keywords are shortcuts that select frequently used cipher suites. For
                    example, HIGH will select only very strong cipher
                    suites.
Table 11.1. Group keywords
	Keyword	Meaning
	DEFAULT	The default cipher list. This is determined at compile time
                                    and, as of OpenSSL 1.0.0, is normally
                                        ALL:!aNULL:!eNULL. This must be the first
                                    cipher string specified.
	COMPLEMENTOFDEFAULT	The ciphers included in ALL, but not
                                    enabled by default. Currently, this is ADH.
                                    Note that this rule does not cover eNULL,
                                    which is not included by ALL (use
                                        COMPLEMENTOFALL if necessary).
	ALL	All cipher suites except the eNULL
                                    ciphers, which must be explicitly enabled.
	COMPLEMENTOFALL	The cipher suites not enabled by ALL,
                                    currently eNULL.
	HIGH	“High”-encryption cipher suites. This currently means those
                                    with key lengths larger than 128 bits, and some cipher suites
                                    with 128-bit keys.
	MEDIUM	“Medium”-encryption cipher suites, currently some of those
                                    using 128-bit encryption.
	LOW	“Low”-encryption cipher suites, currently those using 64- or
                                    56-bit encryption algorithms, but excluding export cipher
                                    suites. Insecure.
	EXP, EXPORT	Export encryption algorithms. Including 40- and 56-bit
                                    algorithms. Insecure.
	EXPORT40	40-bit export encryption algorithms. Insecure.
	EXPORT56	56-bit export encryption algorithms. Insecure.
	TLSv1, SSLv3, SSLv2	TLS 1.0, SSL 3, or SSL 2 cipher suites, respectively.



Digest keywords select suites that use a particular digest algorithm. For
                    example, MD5 selects all suites that rely on MD5 for
                    integrity validation.
Table 11.2. Digest algorithm keywords
	Keyword	Meaning
	MD5	Cipher suites using MD5. Obsolete and
                                        insecure.
	SHA, SHA1	Cipher suites using SHA1 and SHA2 (v1.0.0+).
	SHA256 (v1.0.0+)	Cipher suites using SHA256.
	SHA384 (v1.0.0+)	Cipher suites using SHA384.



Note
TLS 1.2 introduced support for authenticated encryption, which bundles
                        encryption with integrity checks. When the so-called AEAD (Authenticated
                        Encryption with Associated Data) suites are used, the protocol doesn’t need
                        to provide additional integrity verification. For this reason, you won’t be
                        able to use the digest algorithm keywords to select AEAD suites, even though
                        their names include SHA256 and SHA384
                        suffixes.

Authentication keywords select suites based on the authentication method they
                    use. Today, virtually all public certificates use RSA for authentication. Over
                    time, we will probably see a very slow rise in the use of Elliptic Curve (ECDSA)
                    certificates.
Table 11.3. Authentication keywords
	Keyword	Meaning
	aDH	Cipher suites effectively using DH authentication, i.e., the
                                    certificates carry DH keys. Not
                                        implemented.
	aDSS, DSS	Cipher suites using DSS authentication, i.e., the
                                    certificates carry DSS keys.
	aECDH (v1.0.0+)	Cipher suites that use ECDH authentication.
	aECDSA (v1.0.0+)	Cipher suites that use ECDSA authentication. 
	aNULL	Cipher suites offering no authentication. This is currently
                                    the anonymous DH algorithms. Insecure.
	aRSA	Cipher suites using RSA authentication, i.e., the
                                    certificates carry RSA keys.
	PSK	Cipher suites using PSK (Pre-Shared Key)
                                    authentication.
	SRP	Cipher suites using SRP (Secure Remote Password)
                                    authentication.



Key exchange keywords select suites based on the key exchange algorithm. When
                    it comes to ephemeral Diffie-Hellman suites, OpenSSL is inconsistent in naming
                    the suites and the keywords. In the suite names, ephemeral suites tend to have
                    an E at the end of the key exchange algorithm (e.g.,
                        ECDHE-RSA-RC4-SHA and
                        DHE-RSA-AES256-SHA), but in the keywords the
                        E is at the beginning (e.g., EECDH and
                        EDH). To make things worse, some older suites do have
                        E at the beginning of the key exchange algorithm (e.g.,
                        EDH-RSA-DES-CBC-SHA).
Table 11.4. Key exchange keywords
	Keyword	Meaning
	ADH	Anonymous DH cipher suites. Insecure.
	AECDH (v1.0.0+)	Anonymous ECDH cipher suites. Insecure.
                                
	DH	Cipher suites using DH (includes ephemeral and anonymous
                                    DH).
	ECDH (v1.0.0+)	Cipher suites using ECDH (includes ephemeral and anonymous
                                    ECDH).
	EDH (v1.0.0+)	Cipher suites using ephemeral DH key agreement.
	EECDH (v1.0.0+)	Cipher suites using ephemeral ECDH.
	kECDH (v1.0.0+)	Cipher suites using ECDH key agreement.
	kEDH	Cipher suites using ephemeral DH key agreements (includes
                                    anonymous DH).
	kEECDH (v1.0.0+)	Cipher suites using ephemeral ECDH key agreement (includes
                                    anonymous ECDH).
	kRSA, RSA	Cipher suites using RSA key exchange.



Cipher keywords select suites based on the cipher they use.
Table 11.5. Cipher keywords
	Keyword	Meaning
	3DES	Cipher suites using triple DES.
	AES	Cipher suites using AES.
	AESGCM (v1.0.0+)	Cipher suites using AES GCM.
	CAMELLIA	Cipher suites using Camellia.
	DES	Cipher suites using single DES. Obsolete and insecure.
	eNULL, NULL	Cipher suites that don’t use encryption. Insecure.
	IDEA	Cipher suites using IDEA.
	RC2	Cipher suites using RC2. Obsolete and
                                        insecure.
	RC4	Cipher suites using RC4. Insecure.
	SEED	Cipher suites using SEED.



What remains is a number of suites that do not fit into any other category.
                    The bulk of them are related to the GOST standards, which are relevant for the
                    countries that are part of the Commonwealth of Independent States, formed after
                    the breakup of the Soviet Union.
Table 11.6. Miscellaneous keywords
	Keyword	Meaning
	@STRENGTH	Sorts the current cipher suite list in order of encryption
                                    algorithm key length.
	aGOST	Cipher suites using GOST R 34.10 (either 2001 or 94) for
                                    authentication. Requires a GOST-capable engine.
	aGOST01	Cipher suites using GOST R 34.10-2001 authentication.
	aGOST94	Cipher suites using GOST R 34.10-94 authentication. Obsolete. Use GOST R 34.10-2001
                                    instead.
	kGOST	Cipher suites using VKO 34.10 key exchange, specified in RFC
                                    4357.
	GOST94	Cipher suites using HMAC based on GOST R 34.11-94.
	GOST89MAC	Cipher suites using GOST 28147-89 MAC instead of
                                    HMAC.




Combining Keywords



In most cases, you’ll use keywords by themselves, but it’s also possible to
                    combine them to select only suites that meet several requirements, by connecting
                    two or more keywords with the + character. In the following
                    example, we select suites that use RC4 and SHA:
$ openssl ciphers -v 'RC4+SHA'
ECDHE-RSA-RC4-SHA    SSLv3 Kx=ECDH       Au=RSA   Enc=RC4(128) Mac=SHA1
ECDHE-ECDSA-RC4-SHA  SSLv3 Kx=ECDH       Au=ECDSA Enc=RC4(128) Mac=SHA1
AECDH-RC4-SHA        SSLv3 Kx=ECDH       Au=None  Enc=RC4(128) Mac=SHA1
ECDH-RSA-RC4-SHA     SSLv3 Kx=ECDH/RSA   Au=ECDH  Enc=RC4(128) Mac=SHA1
ECDH-ECDSA-RC4-SHA   SSLv3 Kx=ECDH/ECDSA Au=ECDH  Enc=RC4(128) Mac=SHA1
RC4-SHA              SSLv3 Kx=RSA        Au=RSA   Enc=RC4(128) Mac=SHA1
PSK-RC4-SHA          SSLv3 Kx=PSK        Au=PSK   Enc=RC4(128) Mac=SHA1

Building Cipher Suite Lists



The key concept in building a cipher suite configuration is that of the
                        current suite list. The list always starts empty,
                    without any suites, but every keyword that you add to the configuration string
                    will change the list in some way. By default, new suites are appended to the
                    list. For example, to choose all suites that use RC4 and AES ciphers:
$ openssl ciphers -v 'RC4:AES'
The colon character is commonly used to separate keywords, but spaces and
                    commas are equally acceptable. The following command produces the same output as
                    the previous example:
$ openssl ciphers -v 'RC4 AES'

Keyword Modifiers



Keyword modifiers are characters you can place at the beginning of each
                    keyword in order to change the default action (adding to the list) to something
                    else. The following actions are supported:
	Append
	Add suites to the end of the list. If any of the suites are
                                already on the list, they will remain in their present position.
                                This is the default action, which is invoked when there is no
                                modifier in front of the keyword.

	Delete (-)
	Remove all matching suites from the list, potentially allowing
                                some other keyword to reintroduce them later.

	Permanently delete (!)
	Remove all matching suites from the list and prevent them from
                                being added later by another keyword. This modifier is useful to
                                specify all the suites you never want to use, making further
                                selection easier and preventing mistakes.

	Move to the end (+)
	Move all matching suites to the end of the list. Works only on
                                existing suites; never adds new suites to the list. This modifier is
                                useful if you want to keep some weaker suites enabled but prefer the
                                stronger ones. For example, the string RC4:+MD5
                                enables all RC4 suites, but pushes the MD5-based ones to the
                                end.



Sorting



The @STRENGTH keyword is unlike other keywords (I
                        assume that’s why it has the @ in the name): It will not
                        introduce or remove any suites, but it will sort them in order of descending
                        cipher strength. Automatic sorting is an interesting idea, but it makes
                        sense only in a perfect world in which cipher suites can actually be
                        compared by cipher strength.
Take, for example, the following cipher suite configuration:
$ openssl ciphers -v 'DES-CBC-SHA:DES-CBC3-SHA:RC4-SHA:AES256-SHA:@STRENGTH'
AES256-SHA                     SSLv3   Kx=RSA  Au=RSA   Enc=AES(256)    Mac=SHA1
DES-CBC3-SHA                   SSLv3   Kx=RSA  Au=RSA   Enc=3DES(168)   Mac=SHA1
RC4-SHA                        SSLv3   Kx=RSA  Au=RSA   Enc=RC4(128)    Mac=SHA1
DES-CBC-SHA                    SSLv3   Kx=RSA  Au=RSA   Enc=DES(56)     Mac=SHA1
In theory, the output is sorted in order of strength. In practice, you’ll
                        often want better control of the suite order:
	For example, AES256-SHA (a CBC suite) is
                                vulnerable to the BEAST attack when used with TLS 1.0 and earlier
                                protocols. If you want to mitigate the BEAST attack server-side,
                                you’ll prefer to prioritize the RC4-SHA suite,
                                which isn’t vulnerable to this problem.

	3DES is only nominally rated at 168 bits; a so-called
                                    meet-in-the-middle attack reduces its
                                strength to 112 bits,[523] and further issues make the strength as low as 108 bits.[524] This fact makes DES-CBC3-SHA inferior
                                to 128-bit cipher suites. Strictly speaking, treating 3DES as a
                                168-bit cipher is a bug in OpenSSL that might be fixed in a future
                                release.





Handling Errors



There are two types of errors you might experience while working on your
                    configuration. The first is a result of a typo or an attempt to use a keyword
                    that does not exist:
$ openssl ciphers -v '@HIGH'
Error in cipher list
140460843755168:error:140E6118:SSL routines:SSL_CIPHER_PROCESS_RULESTR:invalid command:ssl_ciph.c:1317:
The output is cryptic, but it does contain an error message.
Another possibility is that you end up with an empty list of cipher suites, in
                    which case you might see something similar to the following:
$ openssl ciphers -v 'SHA512'
Error in cipher list
140202299557536:error:1410D0B9:SSL routines:SSL_CTX_set_cipher_list:no cipher match:ssl_lib.c:1312:

Putting It All Together



To demonstrate how various cipher suite configuration features come together,
                    I will present one complete real-life use case. Please bear in mind that what
                    follows is just an example. Because there are usually many aspects to consider
                    when deciding on the configuration, there isn’t such a thing as a single perfect
                    configuration.
For that reason, before you can start to work on your configuration, you
                    should have a clear idea of what you wish to achieve. In my case, I wish to have
                    a reasonably secure and efficient configuration, which I define to mean the
                    following:
	Use only strong ciphers of 128 effective bits and up (this excludes
                            3DES).

	Use only suites that provide strong authentication (this excludes
                            anonymous and export suites).

	Do not use any suites that rely on weak primitives (e.g., MD5).

	Implement robust support for forward secrecy, no matter what keys and
                            protocols are used. With this requirement comes a slight performance
                            penalty, because I won’t be able to use the fast RSA key exchange. I’ll
                            minimize the penalty by prioritizing ECDHE, which is substantially
                            faster than DHE.

	Prefer ECDSA over RSA. This requirement makes sense only in dual-key
                            deployments, in which we want to use the faster ECDSA operations
                            wherever possible, but fall back to RSA when talking to clients that do
                            not yet support ECDSA.

	With TLS 1.2 clients, prefer AES GCM suites, which provide the best
                            security TLS can offer.

	Because RC4 was recently found to be weaker than previously thought,[525] we want to push it to the end of the list. That’s almost as
                            good as disabling it. Although BEAST might still be a problem in some
                            situations, I’ll assume that it’s been mitigated client-side.



Usually the best approach is to start by permanently eliminating all the
                    components and suites that you don’t wish to use; this reduces clutter and
                    ensures that the undesired suites aren’t introduced back into the configuration
                    by mistake.
The weak suites can be identified with the following cipher strings:
	aNULL; no authentication

	eNULL; no encryption

	LOW; low-strength suites

	3DES; effective strength of 108 bits

	MD5; suites that use MD5

	EXP; obsolete export suites



To reduce the number of suites displayed, I’m going to eliminate all DSA, PSK,
                    SRP, and ECDH suites, because they’re used only very rarely. I am also removing
                    the IDEA and SEED ciphers, which are obsolete but might still be supported by
                    OpenSSL. In my configuration, I won’t use CAMELLIA either, because it’s slower
                    and not as well supported as AES (e.g., no GCM or ECDHE variants in
                    practice).
!aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
Now we can focus on what we want to achieve. Because forward secrecy is our
                    priority, we can start with the kEECDH and
                        kEDH keywords:
kEECDH kEDH !aNULL !eNULL !LOW !3DES !MD5 !EXP !kEDH !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
If you test this configuration, you’ll find that RSA suites are listed first,
                    but I said I wanted ECDSA first:
ECDHE-RSA-AES256-GCM-SHA384    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-GCM-SHA384  TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384        TLSv1.2 Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA384
ECDHE-ECDSA-AES256-SHA384      TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA384
ECDHE-RSA-AES256-SHA           SSLv3   Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA1
ECDHE-ECDSA-AES256-SHA         SSLv3   Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA1
ECDHE-RSA-AES128-GCM-SHA256    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(128) Mac=AEAD
[...]
In order to fix this, I’ll put ECDSA suites first, by placing
                        kEECDH+ECDSA at the beginning of the
                    configuration:
kEECDH+ECDSA kEECDH kEDH !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
The next problem is that older suites (SSL 3) are mixed with newer suites (TLS
                    1.2). In order to maximize security, I want all TLS 1.2 clients to always
                    negotiate TLS 1.2 suites. To push older suites to the end of the list, I’ll use
                    the +SHA keyword (TLS 1.2 suites are all using either SHA256
                    or SHA384, so they won’t match):
kEECDH+ECDSA kEECDH kEDH +SHA !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
At this point, I’m mostly done. I only need to add the remaining secure suites
                    to the end of the list; the HIGH keyword will achieve this.
                    In addition, I’m also going to make sure RC4 suites are last, using
                        +RC4 (to push existing RC4 suites to the end of the list)
                    and RC4 (to add to the list any remaining RC4 suites that are
                    not already on it):
kEECDH+ECDSA kEECDH kEDH HIGH +SHA +RC4 RC4 !aNULL !eNULL !LOW !3DES !MD5 !EXP !DSS !PSK !SRP !kECDH !CAMELLIA !IDEA !SEED
Let’s examine the entire final output, which consists of 28 suites. In the
                    first group are the TLS 1.2 suites:
ECDHE-ECDSA-AES256-GCM-SHA384  TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(256) Mac=AEAD
ECDHE-ECDSA-AES256-SHA384      TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA384
ECDHE-ECDSA-AES128-GCM-SHA256  TLSv1.2 Kx=ECDH Au=ECDSA Enc=AESGCM(128) Mac=AEAD
ECDHE-ECDSA-AES128-SHA256      TLSv1.2 Kx=ECDH Au=ECDSA Enc=AES(128)    Mac=SHA256
ECDHE-RSA-AES256-GCM-SHA384    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(256) Mac=AEAD
ECDHE-RSA-AES256-SHA384        TLSv1.2 Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA384
ECDHE-RSA-AES128-GCM-SHA256    TLSv1.2 Kx=ECDH Au=RSA   Enc=AESGCM(128) Mac=AEAD
ECDHE-RSA-AES128-SHA256        TLSv1.2 Kx=ECDH Au=RSA   Enc=AES(128)    Mac=SHA256
DHE-RSA-AES256-GCM-SHA384      TLSv1.2 Kx=DH   Au=RSA   Enc=AESGCM(256) Mac=AEAD
DHE-RSA-AES256-SHA256          TLSv1.2 Kx=DH   Au=RSA   Enc=AES(256)    Mac=SHA256
DHE-RSA-AES128-GCM-SHA256      TLSv1.2 Kx=DH   Au=RSA   Enc=AESGCM(128) Mac=AEAD
DHE-RSA-AES128-SHA256          TLSv1.2 Kx=DH   Au=RSA   Enc=AES(128)    Mac=SHA256
AES256-GCM-SHA384              TLSv1.2 Kx=RSA  Au=RSA   Enc=AESGCM(256) Mac=AEAD
AES256-SHA256                  TLSv1.2 Kx=RSA  Au=RSA   Enc=AES(256)    Mac=SHA256
AES128-GCM-SHA256              TLSv1.2 Kx=RSA  Au=RSA   Enc=AESGCM(128) Mac=AEAD
AES128-SHA256                  TLSv1.2 Kx=RSA  Au=RSA   Enc=AES(128)    Mac=SHA256
ECDHE suites are first, followed by DHE suites, followed by all other TLS 1.2
                    suites. Within each group, ECDSA and GCM have priority.
In the second group are the suites that are going to be used by TLS 1.0
                    clients, using similar priorities as in the first group:
ECDHE-ECDSA-AES256-SHA         SSLv3   Kx=ECDH Au=ECDSA Enc=AES(256)    Mac=SHA1
ECDHE-ECDSA-AES128-SHA         SSLv3   Kx=ECDH Au=ECDSA Enc=AES(128)    Mac=SHA1
ECDHE-RSA-AES256-SHA           SSLv3   Kx=ECDH Au=RSA   Enc=AES(256)    Mac=SHA1
ECDHE-RSA-AES128-SHA           SSLv3   Kx=ECDH Au=RSA   Enc=AES(128)    Mac=SHA1
DHE-RSA-AES256-SHA             SSLv3   Kx=DH   Au=RSA   Enc=AES(256)    Mac=SHA1
DHE-RSA-AES128-SHA             SSLv3   Kx=DH   Au=RSA   Enc=AES(128)    Mac=SHA1
DHE-RSA-SEED-SHA               SSLv3   Kx=DH   Au=RSA   Enc=SEED(128  ) Mac=SHA1
AES256-SHA                     SSLv3   Kx=RSA  Au=RSA   Enc=AES(256)    Mac=SHA1
AES128-SHA                     SSLv3   Kx=RSA  Au=RSA   Enc=AES(128)    Mac=SHA1
Finally, the RC4 suites are at the end:
ECDHE-ECDSA-RC4-SHA            SSLv3   Kx=ECDH Au=ECDSA Enc=RC4(128)    Mac=SHA1
ECDHE-RSA-RC4-SHA              SSLv3   Kx=ECDH Au=RSA   Enc=RC4(128)    Mac=SHA1
RC4-SHA                        SSLv3   Kx=RSA  Au=RSA   Enc=RC4(128)    Mac=SHA1

Recommended Configuration



The configuration in the previous section was designed to use as an example of
                    cipher suite configuration using OpenSSL suite keywords, but it’s not the best
                    setup you could have. In fact, there isn’t any one configuration that will
                    satisfy everyone. In this section, I’ll give you several configurations to
                    choose from based on your preferences and risk assessment.
The design principles for all configurations here are essentially the same as
                    those from the previous section, but I am going to make two changes to achieve
                    better performance. First, I am going to put 128-bit suites on top of the list.
                    Although 256-bit suites provide some increase in security, for most sites the
                    increase is not meaningful and yet still comes with the performance penalty.
                    Second, I am going to prefer HMAC-SHA over HMAC-SHA256 and HMAC-SHA384 suites.
                    The latter two are much slower but also don’t provide a meaningful increase in
                    security.
In addition, I am going to change my approach from configuring suites using
                    keywords to using suite names directly. I think that keywords, conceptually, are
                    not a bad idea: you specify your security requirements and the library does the
                    rest, without you having to know a lot about the suites that are going to be
                    used. Unfortunately, this approach no longer works well in practice, as we’ve
                    become quite picky about what suites we wish to have enabled and in what
                    order.
Using suite names in a configuration is also easier: you just list the suites
                    you want to use. And, when you’re looking at someone’s configuration, you now
                    know exactly what suites are used without having to run the settings through
                    OpenSSL.
The following is my default starting configuration, designed to offer strong
                    security as well as good performance:
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES256-SHA384
DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES128-SHA
DHE-RSA-AES256-SHA
DHE-RSA-AES128-SHA256
DHE-RSA-AES256-SHA256
EDH-RSA-DES-CBC3-SHA
This configuration uses only suites that support forward secrecy and provide
                    strong encryption. Most modern browsers and other clients will be able to
                    connect, but some very old clients might not. As an example, older Internet
                    Explorer versions running on Windows XP will fail.
If you really need to provide support for a very old range of
                    clients—and only then—consider adding the following suites to the
                    end of the list:
AES128-SHA
AES256-SHA
DES-CBC3-SHA
ECDHE-RSA-RC4-SHA
RC4-SHA
Most of these legacy suites use the RSA key exchange, which means that they
                    don’t provide forward secrecy. The AES cipher is preferred, but 3DES and (the
                    insecure) RC4 are also supported for maximum compatibility with as many clients
                    as possible. If the use of RC4 can’t be avoided, the preference is to use the
                    ECDHE suite that provides forward secrecy.


Performance



As you’re probably aware, computation speed is a significant limiting factor for
                any cryptographic operation. OpenSSL comes with a built-in benchmarking tool that
                you can use to get an idea about a system’s capabilities and limits. You can invoke
                the benchmark using the speed command.
If you invoke speed without any parameters, OpenSSL produces a
                lot of output, little of which will be of interest. A better approach is to test
                only those algorithms that are directly relevant to you. For example, for usage in a
                secure web server, you might care about RC4, AES, RSA, ECDH, and SHA
                algorithms:
$ openssl speed rc4 aes rsa ecdh sha
There are three relevant parts to the output. The first part consists of the
                OpenSSL version number and compile-time configuration. This information is useful if
                you’re testing several different versions of OpenSSL with varying compile-time
                options:
OpenSSL 0.9.8k 25 Mar 2009
built on: Wed May 23 00:02:00 UTC 2012
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) blowfish(ptr2)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -O3 -Wa,--noexecstack -g -Wall -DMD32_REG_T=int -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM
available timing options: TIMES TIMEB HZ=100 [sysconf value]
timing function used: times
The 'numbers' are in 1000s of bytes per second processed.
The second part contains symmetric cryptography benchmarks (i.e., hash functions
                and private cryptography):
type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes
sha1             29275.44k    85281.86k   192290.28k   280526.68k   327553.12k
rc4             160087.81k   172435.03k   174264.75k   176521.50k   176700.62k
aes-128 cbc      90345.06k   140108.84k   170027.92k   179704.12k   182388.44k
aes-192 cbc     104770.95k   134601.12k   148900.05k   152662.30k   153941.11k
aes-256 cbc      95868.62k   116430.41k   124498.19k   127007.85k   127430.81k
sha256           23354.37k    54220.61k    99784.35k   126494.48k   138266.71k
sha512           16022.98k    64657.88k   113304.06k   178301.77k   214539.99k
Finally, the third part contains the asymmetric (public) cryptography
                benchmarks:
                  sign    verify    sign/s verify/s
rsa  512 bits 0.000120s 0.000011s   8324.9  90730.0
rsa 1024 bits 0.000569s 0.000031s   1757.0  31897.1
rsa 2048 bits 0.003606s 0.000102s    277.3   9762.0
rsa 4096 bits 0.024072s 0.000376s     41.5   2657.4
                              op      op/s
 160 bit ecdh (secp160r1)   0.0003s   2890.2
 192 bit ecdh (nistp192)   0.0006s   1702.9
 224 bit ecdh (nistp224)   0.0006s   1743.5
 256 bit ecdh (nistp256)   0.0007s   1513.3
 384 bit ecdh (nistp384)   0.0015s    689.6
 521 bit ecdh (nistp521)   0.0029s    340.3
 163 bit ecdh (nistk163)   0.0009s   1126.2
 233 bit ecdh (nistk233)   0.0012s    818.5
 283 bit ecdh (nistk283)   0.0028s    360.2
 409 bit ecdh (nistk409)   0.0060s    166.3
 571 bit ecdh (nistk571)   0.0130s     76.8
 163 bit ecdh (nistb163)   0.0009s   1061.3
 233 bit ecdh (nistb233)   0.0013s    755.2
 283 bit ecdh (nistb283)   0.0030s    329.4
 409 bit ecdh (nistb409)   0.0067s    149.7
 571 bit ecdh (nistb571)   0.0146s     68.4
What’s this output useful for? You should be able to compare how compile-time
                options affect speed or how different versions of OpenSSL compare on the same
                platform. For example, the previous results are from a real-life server that’s using
                the OpenSSL 0.9.8k (patched by the distribution vendor). I’m considering moving to
                OpenSSL 1.0.1h because I wish to support TLS 1.1 and TLS 1.2; will there be any
                performance impact? I’ve downloaded and compiled OpenSSL 1.0.1h for a test. Let’s
                see:
$ ./openssl-1.0.1h speed rsa
[...]
OpenSSL 1.0.1h 5 Jun 2014
built on: Thu Jul  3 18:30:06 BST 2014
options:bn(64,64) rc4(8x,int) des(idx,cisc,16,int) aes(partial) idea(int) blowfish(idx)
compiler: gcc -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -Wa,--noexecstack -m64 -DL_ENDIAN -DTERMIO -O3 -Wall -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DWHIRLPOOL_ASM -DGHASH_ASM
                  sign    verify    sign/s verify/s
rsa  512 bits 0.000102s 0.000008s   9818.0 133081.7
rsa 1024 bits 0.000326s 0.000020s   3067.2  50086.9
rsa 2048 bits 0.002209s 0.000068s    452.8  14693.6
rsa 4096 bits 0.015748s 0.000255s     63.5   3919.4
Apparently, OpenSSL 1.0.1h is almost twice as fast on this server for my use case
                (2,048-bit RSA key): The performance went from 277 signatures/s to 450 signatures/s.
                This means that I’ll get better performance if I upgrade. Always good news!
Using the benchmark results to estimate deployment performance is not
                straightforward because of the great number of factors that influence performance in
                real life. Further, many of those factors lie outside TLS (e.g., HTTP keep alive
                settings, caching, etc.). At best, you can use these numbers only for a rough
                estimate.
But before you can do that, you need to consider something else. By default, the
                    speed command will use only a single process. Most servers
                have multiple cores, so to find out how many TLS operations are supported by the
                entire server, you must instruct speed to use several instances
                in parallel. You can achieve this with the -multi switch. My
                server has four cores, so that’s what I’m going to use:
$ openssl speed -multi 4 rsa
[...]
OpenSSL 0.9.8k 25 Mar 2009
built on: Wed May 23 00:02:00 UTC 2012
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) blowfish(ptr2)
compiler: cc -fPIC -DOPENSSL_PIC -DZLIB -DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -m64 -DL_ENDIAN -DTERMIO -O3 -Wa,--noexecstack -g -Wall -DMD32_REG_T=int -DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DMD5_ASM -DAES_ASM
available timing options: TIMES TIMEB HZ=100 [sysconf value]
timing function used:
                  sign    verify    sign/s verify/s
rsa  512 bits 0.000030s 0.000003s  33264.5 363636.4
rsa 1024 bits 0.000143s 0.000008s   6977.9 125000.0
rsa 2048 bits 0.000917s 0.000027s   1090.7  37068.1
rsa 4096 bits 0.006123s 0.000094s    163.3  10652.6
As expected, the performance is almost four times better than before. I’m again
                looking at how many RSA signatures can be executed per second, because this is the
                most CPU-intensive cryptographic operation performed on a server and is thus always
                the first bottleneck. The result of 1,090 signatures/second tells us that this
                server can handle about 1,000 brand-new TLS connections per second. In my case,
                that’s sufficient—with a very healthy safety margin. Because I also have session
                resumption enabled on the server, I know that I can support many more than 1,000 TLS
                connections per second. I wish I had enough traffic on that server to worry about
                the performance of TLS.
Another reason why you shouldn’t believe the output of the
                    speed command too much is because it doesn’t use the fastest
                available cipher implementations by default. In some ways, the default output is a
                lie. For example, on servers that support the AES-NI instruction set to accelerate
                AES computations, this feature won’t be used by default when testing:
$ openssl speed aes-128-cbc
[...]
The 'numbers' are in 1000s of bytes per second processed.
type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes
aes-128 cbc      67546.70k    74183.00k    69278.82k   155942.87k   156486.38k
To activate hardware acceleration, you have to use the -evp
                switch on the command line:
$ openssl speed -evp aes-128-cbc
[..]
The 'numbers' are in 1000s of bytes per second processed.
type             16 bytes     64 bytes    256 bytes   1024 bytes   8192 bytes
aes-128-cbc     188523.36k   223595.37k   229763.58k   203658.58k   206452.14k


Creating a Private Certification Authority



If you want to set up your own CA, everything you need is already included in OpenSSL.
            The user interface is purely command line–based and thus not very user friendly, but
            that’s possibly for the better. Going through the process is very educational, because
            it forces you to think about every aspect, even the smallest details.
The educational aspect of setting a private CA is the main reason why I would
            recommend doing it, but there are others. An OpenSSL-based CA, crude as it might be, can
            well serve the needs of an individual or a small group. For example, it’s much better to
            use a private CA in a development environment than to use self-signed certificates
            everywhere. Similarly, client certificates—which provide two-factor
            authentication—can significantly increase the security of your sensitive web
            applications.
The biggest challenge in running a private CA is not setting everything up but keeping
            it secure. For example, the root key must be kept offline because all security depends
            on it. On the other hand, CRLs and OCSP responder certificates must be refreshed on a
            regular basis, which requires bringing the root online.
Note
Before you begin to properly read this section, I recommend first going through
                    Chapter 3, Public-Key Infrastructure, which will give you a good background in certificate
                structure and the operation of certification authorities.

Features and Limitations



In the rest of this section, we’re going to create a private CA that’s similar in
                structure to public CAs. There’s going to be one root CA from which other
                subordinate CAs can be created. We’ll provide revocation information via CRLs and
                OCSP responders. To keep the root CA offline, OCSP responders are going to have
                their own identities. This isn’t the simplest private CA you could have, but it’s
                one that can be secured properly. As a bonus, the subordinate CA will be
                    technically constrained, which means that it will be
                allowed to issue certificates only for the allowed hostnames.
After the setup is complete, the root certificate will have to be securely
                distributed to all intended clients. Once the root is in place, you can begin
                issuing client and server certificates. The main limitation of this setup is that
                the OCSP responder is chiefly designed for testing and can be used only for lighter
                loads.

Creating a Root CA



Creating a new CA involves several steps: configuration, creation of a directory
                structure and initialization of the key files, and finally generation of the root
                key and certificate. This section describes the process as well as the common CA
                operations.
Root CA Configuration



Before we can actually create a CA, we need to prepare a configuration file
                    that will tell OpenSSL exactly how we want things set up. Configuration files
                    aren’t needed most of the time, during normal usage, but they are essential when
                    it comes to complex operations, such as root CA creation. OpenSSL configuration
                    files are powerful; before you proceed I suggest that you familiarize yourself
                    with their capabilities (man config on the command
                    line).
The first part of the configuration file contains some basic CA information,
                    such as the name and the base URL, and the components of the CA’s distinguished
                    name. Because the syntax is flexible, information needs to be provided only
                    once:
[default]
name                    = root-ca
domain_suffix           = example.com
aia_url                 = http://$name.$domain_suffix/$name.crt
crl_url                 = http://$name.$domain_suffix/$name.crl
ocsp_url                = http://ocsp.$name.$domain_suffix:9080
default_ca              = ca_default
name_opt                = utf8,esc_ctrl,multiline,lname,align

[ca_dn]
countryName             = "GB"
organizationName        = "Example"
commonName              = "Root CA"
The second part directly controls the CA’s operation. For full information on
                    each setting, consult the documentation for the ca command
                        (man ca on the command line). Most of the settings are
                    self-explanatory; we mostly tell OpenSSL where we want to keep our files.
                    Because this root CA is going to be used only for the issuance of subordinate
                    CAs, I chose to have the certificates valid for 10 years. For the signature
                    algorithm, the secure SHA256 is used by default.
The default policy (policy_c_o_match) is configured so that
                    all certificates issued from this CA have the countryName and
                        organizationName fields that match that of the CA. This
                    wouldn’t be normally done by a public CA, but it’s appropriate for a private
                    CA:
[ca_default]
home                    = .
database                = $home/db/index
serial                  = $home/db/serial
crlnumber               = $home/db/crlnumber
certificate             = $home/$name.crt
private_key             = $home/private/$name.key
RANDFILE                = $home/private/random
new_certs_dir           = $home/certs
unique_subject          = no
copy_extensions         = none
default_days            = 3650
default_crl_days        = 365
default_md              = sha256
policy                  = policy_c_o_match

[policy_c_o_match]
countryName             = match
stateOrProvinceName     = optional
organizationName        = match
organizationalUnitName  = optional
commonName              = supplied
emailAddress            = optional
The third part contains the configuration for the req
                    command, which is going to be used only once, during the creation of the
                    self-signed root certificate. The most important parts are in the extensions:
                    the basicConstraint extension indicates that the certificate
                    is a CA, and the keyUsage contains the appropriate settings
                    for this scenario:
[req]
default_bits            = 4096
encrypt_key             = yes
default_md              = sha256
utf8                    = yes
string_mask             = utf8only
prompt                  = no
distinguished_name      = ca_dn
req_extensions          = ca_ext

[ca_ext]
basicConstraints        = critical,CA:true
keyUsage                = critical,keyCertSign,cRLSign
subjectKeyIdentifier    = hash
The fourth part of the configuration file contains information that will be
                    used during the construction of certificates issued by the root CA. All
                    certificates will be CAs, as indicated by the
                        basicConstraints extension, but we set
                        pathlen to zero, which means that further subordinate CAs
                    are not allowed.
All subordinate CAs
                    are going to be constrained, which means that the certificates they issue will
                    be valid only for a subset of domain names and restricted uses. First, the
                        extendedKeyUsage extension specifies only
                        clientAuth and serverAuth, which is
                    TLS client and server authentication. Second, the
                        nameConstraints extension limits the allowed hostnames
                    only to example.com and example.org domain names. In
                    theory, this setup enables you to give control over the subordinate CAs to
                    someone else but still be safe in knowing that they can’t issue certificates for
                    arbitrary hostnames. If you wanted, you could restrict each subordinate CA to a
                    small domain namespace. The requirement to exclude the two IP address ranges
                    comes from CA/Browser Forum’s Baseline Requirements, which have a definition for
                    technically constrained subordinate CAs.[526]
In practice, name constraints are not entirely practical, because some major
                    platforms don’t currently recognize the nameConstraints
                    extension. If you mark this extension as critical, such platforms will reject
                    your certificates. You won’t have such problems if you don’t mark it as critical
                    (as in the example), but then some other platforms won’t enforce it.
[sub_ca_ext]
authorityInfoAccess     = @issuer_info
authorityKeyIdentifier  = keyid:always
basicConstraints        = critical,CA:true,pathlen:0
crlDistributionPoints   = @crl_info
extendedKeyUsage        = clientAuth,serverAuth
keyUsage                = critical,keyCertSign,cRLSign
nameConstraints         = @name_constraints
subjectKeyIdentifier    = hash

[crl_info]
URI.0                   = $crl_url

[issuer_info]
caIssuers;URI.0         = $aia_url
OCSP;URI.0              = $ocsp_url

[name_constraints]
permitted;DNS.0=example.com
permitted;DNS.1=example.org
excluded;IP.0=0.0.0.0/0.0.0.0
excluded;IP.1=0:0:0:0:0:0:0:0/0:0:0:0:0:0:0:0
The fifth and final part of the configuration specifies the extensions to be
                    used with the certificate for OCSP response signing. In order to be able to run
                    an OCSP responder, we generate a special certificate and delegate the OCSP
                    signing capability to it. This certificate is not a CA, which you can see from
                    the extensions:
[ocsp_ext]
authorityKeyIdentifier  = keyid:always
basicConstraints        = critical,CA:false
extendedKeyUsage        = OCSPSigning
keyUsage                = critical,digitalSignature
subjectKeyIdentifier    = hash

Root CA Directory Structure



The next step is to create the directory structure specified in the previous
                    section and initialize some of the files that will be used during the CA
                    operation:
$ mkdir root-ca
$ cd root-ca
$ mkdir certs db private
$ chmod 700 private
$ touch db/index
$ echo 1001 > db/serial
$ echo 1001 > db/crlnumber
The following subdirectories are used:
	certs/
	Certificate storage; new certificates will be placed here as they
                                are issued.

	db/
	This directory is used for the certificate database (index) and
                                the files that hold the next certificate and CRL serial numbers.
                                OpenSSL will create some additional files as needed.

	private/
	This directory will store the private keys, one for the CA and the
                                other for the OCSP responder. It’s important that no other user has
                                access to it. (In fact, if you’re going to be serious about the CA,
                                the machine on which the root material is stored should have only a
                                minimal number of user accounts.)




Root CA Generation



We take two steps to create the root CA. First, we generate the key and the
                    CSR. All the necessary information will be picked up from the configuration file
                    when we use the -﻿config switch:
$ openssl req -new \
    -config root-ca.conf \
    -out root-ca.csr \
    -keyout private/root-ca.key
In the second step, we create a self-signed certificate. The
                        -extensions switch points to the
                        ca_ext section in the configuration file, which activates
                    the extensions that are appropriate for a root CA:
$ openssl ca -selfsign \
    -config root-ca.conf \
    -in root-ca.csr \
    -out root-ca.crt \
    -extensions ca_ext

Structure of the Database File



The database in db/index is a plaintext file that contains
                    certificate information, one certificate per line. Immediately after the root CA
                    creation, it should contain only one line:
V    240706115345Z        1001    unknown    /C=GB/O=Example/CN=Root CA
Each line contains six values separated by tabs:
	Status flag (V for valid, R for
                            revoked, E for expired)

	Expiration date (in YYMMDDHHMMSSZ format)

	Revocation date or empty if not revoked

	Serial number (hexadecimal)

	File location or unknown if not known

	Distinguished name




Root CA Operations



To generate a CRL from the new CA, use the -gencrl switch
                    of the ca command:
$ openssl ca -gencrl \
    -config root-ca.conf \
    -out root-ca.crl
To issue a certificate, invoke the ca command with the
                    desired parameters. It’s important that the -extensions switch points to the
                    correct section in the configuration file (e.g., you don’t want to create
                    another root CA).
$ openssl ca \
    -config root-ca.conf \
    -in sub-ca.csr \
    -out sub-ca.crt \
    -extensions sub_ca_ext
To revoke a certificate, use the -revoke switch of the
                        ca command; you’ll need to have a copy of the certificate
                    you wish to revoke. Because all certificates are stored in the
                        certs/ directory, you only need to know the serial
                    number. If you have a distinguished name, you can look for the serial number in
                    the database.
Choose the correct reason for the value in the -crl_reason
                    switch. The value can be one of the following: unspecified,
                        keyCompromise, CACompromise,
                        affiliationChanged, superseded,
                        cessationOfOperation, certificateHold,
                    and removeFromCRL.
$ openssl ca \
    -config root-ca.conf \
    -revoke certs/1002.pem \
    -crl_reason keyCompromise

Create a Certificate for OCSP Signing



First, we create a key and CSR for the OCSP responder. These two operations
                    are done as for any non-CA certificate, which is why we don’t specify a
                    configuration file:
$ openssl req -new \
    -newkey rsa:2048 \
    -subj "/C=GB/O=Example/CN=OCSP Root Responder" \
    -keyout private/root-ocsp.key \
    -out root-ocsp.csr
Second, use the root CA to issue a certificate. The value of the
                        -extensions switch specifies ocsp_ext,
                    which ensures that extensions appropriate for OCSP signing are set. I reduced
                    the lifetime of the new certificate to 365 days (from the default of 3,650).
                    Because these OCSP certificates don’t contain revocation information, they can’t
                    be revoked. For that reason, you want to keep the lifetime as short as possible.
                    A good choice is 30 days, provided you are prepared to generate a fresh
                    certificate that often:
$ openssl ca \
    -config root-ca.conf \
    -in root-ocsp.csr \
    -out root-ocsp.crt \
    -extensions ocsp_ext \
    -days 30
Now you have everything ready to start the OCSP responder. For testing, you
                    can do it from the same machine on which the root CA resides. However, for
                    production you must move the OCSP responder key and certificate
                    elsewhere:
$ openssl ocsp \
    -port 9080
    -index db/index \
    -rsigner root-ocsp.crt \
    -rkey private/root-ocsp.key \
    -CA root-ca.crt \
    -text
You can test the operation of the OCSP responder using the following command
                    line:
$ openssl ocsp \
    -issuer root-ca.crt \
    -CAfile root-ca.crt \
    -cert root-ocsp.crt \
    -url http://127.0.0.1:9080

In the output, verify OK means that the signatures were
                    correctly verified, and good means that the certificate
                    hasn’t been revoked.
Response verify OK
root-ocsp.crt: good
        This Update: Jul  9 18:45:34 2014 GMT


Creating a Subordinate CA



The process of subordinate CA generation largely mirrors the root CA process. In
                this section, I will only highlight the differences where appropriate. For
                everything else, refer to the previous section.
Subordinate CA Configuration



To generate a configuration file for the subordinate CA, start with the file
                    we used for the root CA and make the changes listed here. We’ll change the name
                    to sub-ca and use a different distinguished name. We’ll put
                    the OCSP responder on a different port, but only because the
                        ocsp command doesn’t understand virtual hosts. If you
                    used a proper web server for the OCSP responder, you could avoid using special
                    ports altogether. The default lifetime of new certificates will be 365 days, and
                    we’ll generate a fresh CRL once every 30 days.
The change of copy_extensions to copy
                    means that extensions from the CSR will be copied into the certificate, but only
                    if they are not already set in our configuration. With this change, whoever is
                    preparing the CSR can put the required alternative names in it, and the
                    information from there will be picked up and placed in the certificate. This
                    feature is somewhat dangerous (you’re allowing someone else to have limited
                    direct control over what goes into a certificate), but I think it’s fine for
                    smaller environments:
[default]
name                    = sub-ca
crl_url                 = http://$name.$domain_suffix:9081/$name.crl

[ca_dn]
countryName             = "GB"
organizationName        = "Example"
commonName              = "Sub CA"

[ca_default]
default_days            = 365
default_crl_days        = 30
copy_extensions         = copy
At the end of the configuration file, we’ll add two new profiles, one each for
                    client and server certificates. The only difference is in the
                        keyUsage and extendedKeyUsage
                    extensions. Note that we specify the basicConstraints
                    extension but set it to false. We’re doing this because we’re
                    copying extensions from the CSR. If we left this extension out, we might end up
                    using one specified in the CSR:
[server_ext]
authorityInfoAccess     = @issuer_info
authorityKeyIdentifier  = keyid:always
basicConstraints        = critical,CA:false
crlDistributionPoints   = @crl_info
extendedKeyUsage        = clientAuth,serverAuth
keyUsage                = critical,digitalSignature,keyEncipherment
subjectKeyIdentifier    = hash

[client_ext]
authorityInfoAccess     = @issuer_info
authorityKeyIdentifier  = keyid:always
basicConstraints        = critical,CA:false
crlDistributionPoints   = @crl_info
extendedKeyUsage        = clientAuth
keyUsage                = critical,digitalSignature
subjectKeyIdentifier    = hash
After you’re happy with the configuration file, create a directory structure
                    following the same process as for the root CA. Just use a different directory
                    name, for example, sub-ca.

Subordinate CA Generation



As before, we take two steps to create the subordinate CA. First, we generate
                    the key and the CSR. All the necessary information will be picked up from the
                    configuration file when we use the -config switch.
$ openssl req -new \
    -config sub-ca.conf \
    -out sub-ca.csr \
    -keyout private/sub-ca.key
In the second step, we get the root CA to issue a certificate. The
                        -extensions switch points to the
                        sub_ext section in the configuration file, which
                    activates the extensions that are appropriate for the subordinate CA.
$ openssl ca \
    -config root-ca.conf \
    -in sub-ca.csr \
    -out sub-ca.crt \
    -extensions sub_ca_ext

Subordinate CA Operations



To issue a server certificate, process a CSR while specifying
                        server_ext in the -extensions
                    switch:
$ openssl ca \
    -config sub-ca.conf \
    -in server.csr \
    -out server.crt \
    -extensions server_ext
To issue a client certificate, process a CSR while specifying
                        client_ext in the -extensions
                    switch:
$ openssl ca \
    -config sub-ca.conf \
    -in client.csr \
    -out client.crt \
    -extensions client_ext
Note
When a new certificate is requested, all its information will be presented
                        to you for verification before the operation is completed. You should always
                        ensure that everything is in order, but especially if you’re working with a
                        CSR that someone else prepared. Pay special attention to the certificate
                        distinguished name and the basicConstraints and
                            subjectAlternativeName extensions.

CRL generation and certificate revocation are the same as for the root CA. The
                    only thing different about the OCSP responder is the port; the subordinate CA
                    should use 9081 instead. It’s recommended that the responder
                    uses its own certificate, which avoids keeping the subordinate CA on a public
                    server.
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12 Testing with OpenSSL


Due to the large number of protocol features and implementation quirks, it’s sometimes
        difficult to determine the exact configuration and features of secure servers. Although many
        tools exist for this purpose, it’s often difficult to know exactly how they’re implemented,
        and that sometimes makes it difficult to fully trust their results. Even though I spent
        years testing secure servers and have access to good tools, when I really want to understand
        what is going on, I resort to using OpenSSL and Wireshark. I am not saying that you should
        use OpenSSL for everyday testing; on the contrary, you should find an automated tool that
        you trust. But, when you really need to be certain of something, the only way is to get your
        hands dirty with OpenSSL.
Connecting to SSL Services



OpenSSL comes with a client tool that you can use to connect to a secure server. The
            tool is similar to telnet or nc, in the sense that
            it handles the SSL/TLS layer but allows you to fully control the layer that comes
            next.
To connect to a server, you need to supply a hostname and a port. For example:
$ openssl s_client -connect www.feistyduck.com:443
Once you type the command, you’re going to see a lot of diagnostic output (more about
            that in a moment) followed by an opportunity to type whatever you want. Because we’re
            talking to an HTTP server, the most sensible thing to do is to submit an HTTP request.
            In the following example, I use a HEAD request because it instructs
            the server not to send the response body:
HEAD / HTTP/1.0

HTTP/1.1 301 Moved Permanently
Date: Mon, 04 Jun 2012 18:47:41 GMT
Server: Apache/2.2.14 (Ubuntu)
Location: https://www.feistyduck.com/
Vary: Accept-Encoding
Connection: close
Content-Type: text/html; charset=iso-8859-1

closed
Now we know that the TLS communication layer is working: we got through to the HTTP
            server, submitted a request, and received a response back. Let’s go back to the
            diagnostic output. The first couple of lines will show the information about the server
            certificate:
CONNECTED(00000003)
depth=3 L = ValiCert Validation Network, O = "ValiCert, Inc.", OU = ValiCert Class 2 Policy Validation Authority, CN = http://www.valicert.com/, emailAddress = info@valicert.com
verify error:num=19:self signed certificate in certificate chain
verify return:0
On my system (and possibly on yours), s_client doesn’t pick up the
            default trusted certificates; it complains that there is a self-signed certificate in
            the certificate chain. In most cases, you won’t care about certificate validation; but
            if you do, you will need to point s_client to the trusted
            certificates, like this:
$ openssl s_client -connect www.feistyduck.com:443 -CAfile /etc/ssl/certs/ca-certificates.crt
CONNECTED(00000003)
depth=3 L = ValiCert Validation Network, O = "ValiCert, Inc.", OU = ValiCert Class 2 > Policy Validation Authority, CN = http://www.valicert.com/, emailAddress = info@valicert.com
verify return:1
depth=2 C = US, O = "Starfield Technologies, Inc.", OU = Starfield Class 2 Certification Authority
verify return:1
depth=1 C = US, ST = Arizona, L = Scottsdale, O = "Starfield Technologies, Inc.", OU = http://certificates.starfieldtech.com/repository, CN = Starfield Secure Certification Authority, serialNumber = 10688435
verify return:1
depth=0 1.3.6.1.4.1.311.60.2.1.3 = GB, businessCategory = Private Organization, serialNumber = 06694169, C = GB, ST = London, L = London, O = Feisty Duck Ltd, CN = www.feistyduck.com
verify return:1
Instead of s_client complaining, you now see it verifying each of
            the certificates from the chain. For the verification to work, you must have access to a
            good selection of CA certificates. The path I used in the example
                (/etc/ssl/certs/ca-certificates.crt) is valid on Ubuntu 12.04
            LTS but might not be valid on your system. If you don’t want to use the system-provided
            CA certificates for this purpose, you can rely on those provided by Mozilla, as
            discussed in the section called “Building a Trust Store” in Chapter 11 .
The next section in the output lists all the certificates presented by the server in
            the order in which they were delivered:
Certificate chain
 0 s:/1.3.6.1.4.1.311.60.2.1.3=GB/businessCategory=Private Organization/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com
   i:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
 1 s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
   i:/C=US/O=Starfield Technologies, Inc./OU=Starfield Class 2 Certification Authority
 2 s:/C=US/O=Starfield Technologies, Inc./OU=Starfield Class 2 Certification Authority
   i:/L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com
 3 s:/L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com
   i:/L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com
For each certificate, the first line shows the subject and the second line shows the
            issuer information.
This part is very useful when you need to see exactly what certificates are sent;
            browser certificate viewers typically display reconstructed certificate chains that can
            be almost completely different from the presented ones. To determine if the chain is
            nominally correct, you might wish to verify that the subjects and issuers match. You
            start with the leaf (web server) certificate at the top, and then you go down the list,
            matching the issuer of the current certificate to the subject of the next. The last
            issuer you see can point to some root certificate that is not in the chain, or—if the
            self-signed root is included—it can point to itself.
The next item in the output is the server certificate; it’s a lot of text, but I’m
            going to remove most of it for brevity:
Server certificate
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
[30 lines removed...]
os5LW3PhHz8y9YFep2SV4c7+NrlZISHOZVzN
-----END CERTIFICATE-----
subject=/1.3.6.1.4.1.311.60.2.1.3=GB/businessCategory=Private Organization/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com
issuer=/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
Note
Whenever you see a long string of numbers instead of a name in a subject, it means
                that OpenSSL does not know the object identifier (OID) in
                question. OIDs are globally unique and unambiguous identifiers that are used to
                refer to “things.” For example, in the previous output, the OID
                    1.3.6.1.4.1.311.60.2.1.3 should have been replaced with
                    jurisdictionOfIncorporationCountryName, which is used in
                    extended validation (EV) certificates.

If you want to have a better look at the certificate, you’ll first need to copy it
            from the output and store it in a separate file. I’ll discuss that in the next
            section.
The following is a lot of information about the TLS connection, most of which is
            self-explanatory:
---
No client certificate CA names sent
---
SSL handshake has read 3043 bytes and written 375 bytes
---
New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:
    Protocol  : TLSv1.1
    Cipher    : ECDHE-RSA-AES256-SHA
    Session-ID: 032554E059DB27BF8CD87EBC53E9FF29376265F0BBFDBBFB7773D2277E5559F5
    Session-ID-ctx:
    Master-Key: 1A55823368DB6EFC397DEE2DC3382B5BB416A061C19CEE162362158E90F1FB0846EEFDB2CCF564A18764F1A98F79A768
    Key-Arg   : None
    PSK identity: None
    PSK identity hint: None
    SRP username: None
    TLS session ticket lifetime hint: 300 (seconds)
    TLS session ticket:
    0000 - 77 c3 47 09 c4 45 e4 65-90 25 8b fd 77 4c 12 da   w.G..E.e.%..wL..
    0010 - 38 f0 43 09 08 a1 ec f0-8d 86 f8 b1 f0 7e 4b a9   8.C..........~K.
    0020 - fe 9f 14 8e 66 d7 5a dc-0f d0 0c 25 fc 99 b8 aa   ....f.Z....%....
    0030 - 8f 93 56 5a ac cd f8 66-ac 94 00 8b d1 02 63 91   ..VZ...f......c.
    0040 - 05 47 af 98 11 81 65 d9-48 5b 44 bb 41 d8 24 e8   .G....e.H[D.A.$.
    0050 - 2e 08 2d bb 25 59 f0 8f-bf aa 5c b6 fa 9c 12 a6   ..-.%Y....\.....
    0060 - a1 66 3f 84 2c f6 0f 06-51 c0 64 24 7a 9a 48 96   .f?.,...Q.d$z.H.
    0070 - a7 f6 a9 6e 94 f2 71 10-ff 00 4d 7a 97 e3 f5 8b   ...n..q...Mz....
    0080 - 2d 1a 19 9c 1a 8d e0 9c-e5 55 cd be d7 24 2e 24   -........U...$.$
    0090 - fc 59 54 b0 f8 f1 0a 5f-03 08 52 0d 90 99 c4 78   .YT...._..R....x
    00a0 - d2 93 61 d8 eb 76 15 27-03 5e a4 db 0c 05 bb 51   ..a..v.'.^.....Q
    00b0 - 6c 65 76 9b 4e 6b 6c 19-69 33 2a bd 02 1f 71 14   lev.Nkl.i3*...q.

    Start Time: 1390553737
    Timeout   : 300 (sec)
    Verify return code: 0 (ok)
---
The most important information here is the protocol version (TLS 1.1) and cipher suite
            used (ECDHE-RSA-AES256-SHA). You can also determine that the server
            has issued to you a session ID and a TLS session ticket (a way of resuming sessions
            without having the server maintain state) and that secure renegotiation is supported.
            Once you understand what all of this output contains, you will rarely look at it.
Warning
Operating system distributions often ship tools that are different from the stock
                versions. We have another example of that here: The previous command negotiated TLS
                1.1, even though the server supports TLS 1.2. Why? As it turns out, some OpenSSL
                versions shipped with Ubuntu 12.04 LTS disable TLS 1.2 for client connections in
                order to avoid certain interoperability issues. To avoid problems like these, I
                recommend that you always test with a version of OpenSSL that you configured and
                compiled.


Testing Protocols that Upgrade to SSL



When used with HTTP, TLS wraps the entire plain-text communication channel to form
            HTTPS. Some other protocols start off as plaintext, but then they upgrade to encryption.
            If you want to test such a protocol, you’ll have to tell OpenSSL which protocol it is so
            that it can upgrade on your behalf. Provide the protocol information using the
                -starttls switch. For example:
$ openssl s_client -connect gmail-smtp-in.l.google.com:25 -starttls smtp
At the time of writing, the supported protocols are smtp,
                pop3, imap, ftp, and
                xmpp.

Using Different Handshake Formats



Sometimes, when you are trying to test a server using
            OpenSSL,
            your attempts to communicate with the server may fail even though you know the server
            supports TLS (e.g., you can see that TLS is working when you attempt to use a browser).
            One possible reason this might occur is that the server does not support the older SSL 2
            handshake.
Because OpenSSL attempts to negotiate all protocols it understands and because SSL 2
            can be negotiated only using the old SSL 2 handshake, it uses this handshake as the
            default. Even though it is associated with a very old and insecure protocol version, the
            old handshake format is not technically insecure. It supports upgrades, which means that
            a better protocol can be negotiated. However, this handshake format does not support
            many connection negotiation features that were designed after SSL 2.
Therefore, if something is not working and you’re not sure what it is exactly, you can
            try to force OpenSSL to use the newer handshake format. You can do that by disabling SSL
            2:
$ openssl s_client -connect www.feistyduck.com:443 -no_ssl2
Another way to achieve the same effect is to specify the desired server name on the
            command line:
$ openssl s_client -connect www.feistyduck.com:443 -servername www.feistyduck.com
In order to specify the server name, OpenSSL needs to use a feature of the newer
            handshake format (the feature is called Server Name Indication
            [SNI]), and that will force it to abandon the old format.

Extracting Remote Certificates



When you connect to a remote secure server using s_client, it will
            dump the server’s PEM-encoded certificate to standard output. If you need the
            certificate for any reason, you can copy it from the scroll-back buffer. If you know in
            advance you only want to retrieve the certificate, you can use this command line as a
            shortcut:
$ echo | openssl s_client -connect www.feistyduck.com:443 2>&1 | sed --quiet '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > www.feistyduck.com.crt
The purpose of the echo command at the beginning is to separate
            your shell from s_client. If you don’t do that,
                s_client will wait for your input until the server times out
            (which may potentially take a very long time).
By default, s_client will print only the leaf certificate; if you
            want to print the entire chain, give it the -showcerts switch. With
            that switch enabled, the previous command line will place all the certificates in the
            same file.

Testing Protocol Support



By default, s_client will try to use the best protocol to talk to
            the remote server and report the negotiated version in output.
    Protocol  : TLSv1.1
If you need to test support for specific protocol versions, you have two options. You
            can explicitly choose one protocol to test by supplying one of the
                -ssl2, -ssl3, -tls1,
                -tls1_1, or -tls1_2 switches. Alternatively,
            you can choose which protocols you don’t want to test by using one or many of the
            following: -no_ssl2, -no_ssl3,
                -no_tls1, -no_tls1_1, or
                -no_tls1_2.
Note
Not all versions of OpenSSL support all protocol versions. For example, the older
                versions of OpenSSL will not support TLS 1.1 and TLS 1.2, and the newer versions
                might not support older protocols, such as SSL 2.

For example, here’s the output you might get when testing a server that doesn’t
            support a certain protocol version: 
$ openssl s_client -connect www.example.com:443 -tls1_2
CONNECTED(00000003)
140455015261856:error:1408F10B:SSL routines:SSL3_GET_RECORD:wrong version number:s3_pkt.c:340:
---
no peer certificate available
---
No client certificate CA names sent
---
SSL handshake has read 5 bytes and written 7 bytes
---
New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
    Protocol  : TLSv1.2
    Cipher    : 0000
    Session-ID:
    Session-ID-ctx:
    Master-Key:
    Key-Arg   : None
    PSK identity: None
    PSK identity hint: None
    SRP username: None
    Start Time: 1339231204
    Timeout   : 7200 (sec)
    Verify return code: 0 (ok)
---

Testing Cipher Suite Support



A little trick is required if you wish to use OpenSSL to determine if a remote server
            supports a particular cipher suite. The cipher configuration string is designed to
            select which suites you wish to use, but if you specify only one suite and successfully
            handshake with a server, then you know that the server supports the suite. If the
            handshake fails, you know the support is not there.
As an example, to test if a server supports RC4-SHA, type:
$ openssl s_client -connect www.feistyduck.com:443 -cipher RC4-SHA
If you want to determine all suites supported by a particular server, start by
            invoking openssl ciphers ALL to obtain a list of all suites supported
            by your version of OpenSSL. Then submit them to the server one by one to test them
            individually. I am not suggesting that you do this manually; this is a situation in
            which a little automation goes a long way. In fact, this is a situation in which looking
            around for a good tool might be appropriate.
There is a disadvantage to testing this way, however. You can only test the suites
            that OpenSSL supports. This used to be a much bigger problem; before version 1.0,
            OpenSSL supported a much smaller number of suites (e.g., 32 on my server with version
            0.9.8k). With a version from the 1.0.1 branch, you can test over 100 suites and probably
            most of the relevant ones.
No single SSL/TLS library supports all cipher suites, and that makes comprehensive
            testing difficult. For SSL Labs, I resorted to using partial handshakes for this
            purpose, with a custom client that pretends to support arbitrary suites. It actually
            can’t negotiate even a single suite, but just proposing to negotiate is enough for
            servers to tell you if they support a suite or not. Not only can you test all the suites
            this way, but you can also do it very efficiently.

Testing Servers that Require SNI



Initially, SSL and TLS were designed to support only one web site per IP endpoint
            (address and port combination). SNI is a TLS extension that enables use of more than one
            certificate on the same IP endpoint. TLS clients use the extension to send the desired
            name, and TLS servers use it to select the correct certificate to respond with. In a
            nutshell, SNI makes virtual secure hosting possible.
Because SNI is not yet very widely used by servers, in most cases you won’t need to
            specify it on the s_client command line. But when you encounter an
            SNI-enabled system, one of three things can happen:
	Most often, you will get the same certificate you would get as if SNI
                    information had not been supplied.

	The server might respond with the certificate for some site other than the one
                    you wish to test.

	Very rarely, the server might abort the handshake and refuse the
                    connection.



You can enable SNI in s_client with the
                -servername switch:
$ openssl s_client -connect www.feistyduck.com:443 -servername www.feistyduck.com
You can determine if a site requires SNI by testing with and without the SNI switch
            and checking if the certificates are the same. If they are not, SNI is required.
Sometimes, if the requested server name is not available, the server says so with a
            TLS warning. Even though this warning is not fatal as far as the server is concerned,
            the client might decide to close the connection. For example, with an older OpenSSL
            version (i.e., before 1.0.0), you will get the following error message:
$ /opt/openssl-0.9.8k/bin/openssl s_client -connect www.feistyduck.com:443 -servername xyz.com
CONNECTED(00000003)
1255:error:14077458:SSL routines:SSL23_GET_SERVER_HELLO:reason(1112):s23_clnt.c:596:

Testing Session Reuse



When coupled with the -reconnect switch, the
                s_client command can be used to test session reuse. In this mode,
                s_client will connect to the target server six times; it will
            create a new session on the first connection, then try to reuse the same session in the
            subsequent five connections:
$ echo | openssl s_client -connect www.feistyduck.com:443 -reconnect
The previous command will produce a sea of output, most of which you won’t care about.
            The key parts are the information about new and reused sessions. There should be only
            one new session at the beginning, indicated by the following line:
New, TLSv1/SSLv3, Cipher is RC4-SHA
This is followed by five session reuses, indicated by lines like this:
Reused, TLSv1/SSLv3, Cipher is RC4-SHA
Most of the time, you don’t want to look at all that output and want an answer
            quickly. You can get it using the following command line:
$ echo | openssl s_client -connect www.feistyduck.com:443 -reconnect -no_ssl2 2> /dev/null | grep 'New\|Reuse'
New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Reused, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Here’s what the command does:
	The -reconnect switch activates the session reuse
                    mode.

	The -no_ssl2 switch indicates that we do not wish to
                    attempt an SSL 2 connection, which changes the handshake of the first connection
                    to that of SSL 3 and better. The older, SSL 2 handshake format handshake doesn’t
                    support TLS extensions and interferes with the session-reuse mechanism on
                    servers that support session tickets. 

	The 2> /dev/null part hides stderr
                    output, which you don’t care about.

	Finally, the piped grep command filters out the rest of the
                    fluff and lets through only the lines that you care about.



Note
If you don’t want to include session tickets in the test—for example, because not
                all clients support this feature yet—you can disable it with the
                    -no_ticket switch.


Checking OCSP Revocation



If an OCSP responder is malfunctioning, sometimes it’s difficult to understand exactly
            why. Checking certificate revocation status from the command line is possible, but it’s
            not quite straightforward. You need to perform the following steps:
	Obtain the certificate that you wish to check for revocation.

	Obtain the issuing certificate.

	Determine the URL of the OCSP responder.

	Submit an OCSP request and observe the response.



For the first two steps, connect to the server with the -showcerts
            switch specified:
$ openssl s_client -connect www.feistyduck.com:443 -showcerts
The first certificate in the output will be the one belonging to the server. If the
            certificate chain is properly configured, the second certificate will be that of the
            issuer. To confirm, check that the issuer of the first certificate and the subject of
            the second match:
---
Certificate chain
 0 s:/1.3.6.1.4.1.311.60.2.1.3=GB/businessCategory=Private Organization/serialNumber=06694169/C=GB/ST=London/L=London/O=Feisty Duck Ltd/CN=www.feistyduck.com
   i:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
-----BEGIN CERTIFICATE-----
MIIF5zCCBM+gAwIBAgIHBG9JXlv9vTANBgkqhkiG9w0BAQUFADCB3DELMAkGA1UE
[30 lines of text removed]
os5LW3PhHz8y9YFep2SV4c7+NrlZISHOZVzN
-----END CERTIFICATE-----
 1 s:/C=US/ST=Arizona/L=Scottsdale/O=Starfield Technologies, Inc./OU=http://certificates.starfieldtech.com/repository/CN=Starfield Secure Certification Authority/serialNumber=10688435
   i:/C=US/O=Starfield Technologies, Inc./OU=Starfield Class 2 Certification Authority
-----BEGIN CERTIFICATE-----
MIIFBzCCA++gAwIBAgICAgEwDQYJKoZIhvcNAQEFBQAwaDELMAkGA1UEBhMCVVMx
[...]
If the second certificate isn’t the right one, check the rest of the chain; some
            servers don’t serve the chain in the correct order. If you can’t find the issuer
            certificate in the chain, you’ll have to find it somewhere else. One way to do that is
            to look for the Authority Information Access extension in the leaf
            certificate:
$ openssl x509 -in fd.crt -noout -text
[...]
    Authority Information Access:
        OCSP - URI:http://ocsp.starfieldtech.com/
        CA Issuers - URI:http://certificates.starfieldtech.com/repository/sf_intermediate.crt
[...]
If the CA Issuers information is present, it should contain the
            URL of the issuer certificate. If the issuer certificate information isn’t available,
            you can try to open the site in a browser, let it reconstruct the chain, and download
            the issuing certificate from its certificate viewer. If all that fails, you can look for
            the certificate in your trust store or visit the CA’s web site.
If you already have the certificates and just need to know the address of the OCSP
            responder, use the  -ocsp_uri switch with the x509
            command as a shortcut:
$ openssl x509 -in fd.crt -noout -ocsp_uri
http://ocsp.starfieldtech.com/
Now you can submit the OCSP request:
$ openssl ocsp -issuer issuer.crt -cert fd.crt -url http://ocsp.starfieldtech.com/ -CAfile issuer.crt
WARNING: no nonce in response
Response verify OK
fd.crt: good
        This Update: Feb 18 17:59:10 2013 GMT
        Next Update: Feb 18 23:59:10 2013 GMT
You want to look for two things in the response. First, check that the response itself
            is valid (Response verify OK in the previous example), and second,
            check what the response said. When you see good as the status, that
            means that the certificate hasn’t been revoked. The status will be
                revoked for revoked certificates.
Note
The warning message about the missing nonce is telling you that OpenSSL wanted to
                use a nonce as a protection against replay attacks, but the server in question did
                not reply with one. This generally happens because CAs want to improve the
                performance of their OCSP responders. When they disable the nonce protection (the
                standard allows it), OCSP responses can be produced (usually in batch), cached, and
                reused for a period of time.

You may encounter OCSP responders that do not respond successfully to the previous
            command line. The following suggestions may help in such situations.
	Do not request a nonce
	Some servers cannot handle nonce requests and respond with errors. OpenSSL
                        will request a nonce by default. To disable nonces, use the
                            -no_nonce command-line switch.

	Supply a Host request header
	Although most OCSP servers respond to HTTP requests that don’t specify the
                        correct hostname in the Host header, some don’t. If you
                        encounter an error message that includes an HTTP error code (e.g., 404), try
                        adding the hostname to your OCSP request. You can do this if you are using
                        OpenSSL 1.0.0 or later by using the undocumented -header
                        switch. 



With the previous two points in mind, the final command to use is the
            following:
$ openssl ocsp -issuer issuer.crt -cert fd.crt -url http://ocsp.starfieldtech.com/ -CAfile issuer.crt -no_nonce -header Host ocsp.starfieldtech.com

Testing OCSP
                    Stapling



OCSP stapling is an optional feature that allows a server certificate to be
            accompanied by an OCSP response that proves its validity. Because the OCSP response is
            delivered over an already existing connection, the client does not have to fetch it
            separately.
OCSP stapling is used only if requested by a client, which submits the
                status_request extension in the handshake request. A server that
            supports OCSP stapling will respond by including an OCSP response as part of the
            handshake.
When using the s_client tool, OCSP stapling is requested with the
                -status switch:
$ echo | openssl s_client -connect www.feistyduck.com:443 -status
The OCSP-related information will be displayed at the very beginning of the connection
            output. For example, with a server that does not support stapling you will see this line
            near the top of the output:
CONNECTED(00000003)
OCSP response: no response sent
With a server that does support stapling, you will see the entire OCSP response in the
            output:
OCSP Response Data:
    OCSP Response Status: successful (0x0)
    Response Type: Basic OCSP Response
    Version: 1 (0x0)
    Responder Id: C = US, O = "GeoTrust, Inc.", CN = RapidSSL OCSP-TGV Responder
    Produced At: Jan 22 17:48:55 2014 GMT
    Responses:
    Certificate ID:
      Hash Algorithm: sha1
      Issuer Name Hash: 834F7C75EAC6542FED58B2BD2B15802865301E0E
      Issuer Key Hash: 6B693D6A18424ADD8F026539FD35248678911630
      Serial Number: 0FE760
    Cert Status: good
    This Update: Jan 22 17:48:55 2014 GMT
    Next Update: Jan 29 17:48:55 2014 GMT
[...]
The certificate status good means that the certificate has not been
            revoked.

Checking CRL Revocation



Checking certificate verification with a Certificate Revocation
                List (CRL) is even more involved than doing the same via OCSP. The
            process is as follows:
	Obtain the certificate you wish to check for revocation.

	Obtain the issuing certificate.

	Download and verify the CRL.

	Look for the certificate serial number in the CRL.



The first steps overlap with OCSP checking; to complete them follow the instructions
            in the section called “Checking OCSP Revocation”.
The location of the CRL is encoded in the server certificate; you can extract it with
            the following command:
$ openssl x509 -in fd.crt -noout -text | grep crl
                  URI:http://rapidssl-crl.geotrust.com/crls/rapidssl.crl
Then fetch the CRL from the CA:
$ wget http://rapidssl-crl.geotrust.com/crls/rapidssl.crl
Verify that the CRL is valid (i.e., signed by the issuer certificate):
$ openssl crl -in rapidssl.crl -inform DER -CAfile issuer.crt -noout
verify OK
Now, determine the serial number of the certificate you wish to check:
$ openssl x509 -in fd.crt -noout -serial
serial=0FE760
At this point, you can convert the CRL into a human-readable format and inspect it
            manually:
$ openssl crl -in rapidssl.crl -inform DER -text -noout
Certificate Revocation List (CRL):
        Version 2 (0x1)
    Signature Algorithm: sha1WithRSAEncryption
        Issuer: /C=US/O=GeoTrust, Inc./CN=RapidSSL CA
        Last Update: Jan 25 11:03:00 2014 GMT
        Next Update: Feb  4 11:03:00 2014 GMT
        CRL extensions:
            X509v3 Authority Key Identifier:
                keyid:6B:69:3D:6A:18:42:4A:DD:8F:02:65:39:FD:35:24:86:78:91:16:30

            X509v3 CRL Number:
                92103
Revoked Certificates:
    Serial Number: 0F38D7
        Revocation Date: Nov 26 20:07:51 2013 GMT
    Serial Number: 6F29
        Revocation Date: Aug 15 20:48:57 2011 GMT
[...]
    Serial Number: 0C184E
        Revocation Date: Jun 13 23:00:12 2013 GMT
    Signature Algorithm: sha1WithRSAEncryption
         95:df:e5:59:bc:95:e8:2f:bb:0a:4f:20:ad:ca:8f:78:16:54:
         35:32:55:b0:c9:be:5b:89:da:ba:ae:67:19:6e:07:23:4d:5f:
         16:18:5c:f3:91:15:da:9e:68:b0:81:da:68:26:a0:33:9d:34:
         2d:5c:84:4b:70:fa:76:27:3a:fc:15:27:e8:4b:3a:6e:2e:1c:
         2c:71:58:15:8e:c2:7a:ac:9f:04:c0:f6:3c:f5:ee:e5:77:10:
         e7:88:83:00:44:c4:75:c4:2b:d3:09:55:b9:46:bf:fd:09:22:
         de:ab:07:64:3b:82:c0:4c:2e:10:9b:ab:dd:d2:cb:0c:a9:b0:
         51:7b:46:98:15:83:97:e5:ed:3d:ea:b9:65:d4:10:05:10:66:
         09:5c:c9:d3:88:c6:fb:28:0e:92:1e:35:b0:e0:25:35:65:b9:
         98:92:c7:fd:e2:c7:cc:e3:b5:48:08:27:1c:e5:fc:7f:31:8f:
         0a:be:b2:62:dd:45:3b:fb:4f:25:62:66:45:34:eb:63:44:43:
         cb:3b:40:77:b3:7f:6c:83:5c:99:4b:93:d9:39:62:48:5d:8c:
         63:e2:a8:26:64:5d:08:e5:c3:08:e2:09:b0:d1:44:7b:92:96:
         aa:45:9f:ed:36:f8:62:60:66:42:1c:ea:e9:9a:06:25:c4:85:
         fc:77:f2:71
The CRL starts with some metadata, which is followed by a list of revoked
            certificates, and it ends with a signature (which we verified in the previous step). If
            the serial number of the server certificate is on the list, that means it had been
            revoked.
If you don’t want to look for the serial number visually (some CRLs can be quite
            long), grep for it, but be careful that your formatting is correct (e.g., if necessary,
            remove the 0x prefix, omit any leading zeros, and convert all letters
            to uppercase). For example:
$ openssl crl -in rapidssl.crl -inform DER -text -noout | grep FE760

Testing
                    Renegotiation



The s_client tool has a couple of features that can assist you with
            manual testing of renegotiation. First of all, when you connect, the tool will report if
            the remote server supports secure renegotiation. This is because a server that supports
            secure renegotiation indicates its support for it via a special TLS extension that is
            exchanged during the handshake phase. When support is available, the output may look
            like this (emphasis mine):
New, TLSv1/SSLv3, Cipher is AES256-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:
    [...]
If secure renegotiation is not supported, the output will be slightly
            different:
Secure Renegotiation IS NOT supported
Even if the server indicates support for secure renegotiation, you may wish to test
            whether it also allows clients to initiate renegotiation. Client-initiated
                renegotiation is a protocol feature that is not needed in practice
            (because the server can always initiate renegotiation when it is needed) and makes the
            server more susceptible to denial of service attacks.
To initiate renegotiation, you type an R character on a line by
            itself. For example, assuming we’re talking to an HTTP server, you can type the first
            line of a request, initiate renegotiation, and then finish the request. Here’s what that
            looks like when talking to a web server that supports client-initiated
            renegotiation:
HEAD / HTTP/1.0
R
RENEGOTIATING
depth=3 C = US, O = "VeriSign, Inc.", OU = Class 3 Public Primary Certification Authority
verify return:1
depth=2 C = US, O = "VeriSign, Inc.", OU = VeriSign Trust Network, OU = "(c) 2006 VeriSign, Inc. - For authorized use only", CN = VeriSign Class 3 Public Primary Certification Authority - G5
verify return:1
depth=1 C = US, O = "VeriSign, Inc.", OU = VeriSign Trust Network, OU = Terms of use at https://www.verisign.com/rpa (c)06, CN = VeriSign Class 3 Extended Validation SSL CA
verify return:1
depth=0 1.3.6.1.4.1.311.60.2.1.3 = US, 1.3.6.1.4.1.311.60.2.1.2 = California, businessCategory = Private Organization, serialNumber = C2759208, C = US, ST = California, L = Mountain View, O = Mozilla Corporation, OU = Terms of use at www.verisign.com/rpa (c)05, OU = Terms of use at www.verisign.com/rpa (c)05, CN = addons.mozilla.org
verify return:1
Host: addons.mozilla.org

HTTP/1.1 301 MOVED PERMANENTLY
Content-Type: text/html; charset=utf-8
Date: Tue, 05 Jun 2012 16:42:51 GMT
Location: https://addons.mozilla.org/en-US/firefox/
Keep-Alive: timeout=5, max=998
Transfer-Encoding: chunked
Connection: close

read:errno=0
When renegotiation is taking place, the server will send its certificates to the
            client again. You can see the verification of the certificate chain in the output. The
            next line after that continues with the Host request header. Seeing
            the web server’s response is the proof that renegotiation is supported. Because of the
            various ways the renegotiation issue was addressed in various versions of SSL/TLS
            libraries, servers that do not support renegotiation may break the connection or may
            keep it open but refuse to continue to talk over it (which usually results in a
            timeout).
A server that does not support renegotiation will flatly refuse the second handshake
            on the connection:
HEAD / HTTP/1.0
R
RENEGOTIATING
140003560109728:error:1409E0E5:SSL routines:SSL3_WRITE_BYTES:ssl handshake failure:s3_pkt.c:592:
At
            this time, the default behavior for OpenSSL is to connect to servers
            that don’t support secure renegotiation; it will also accept both secure and insecure
            renegotiation,
            opting
            for
            whatever the server is able to do. If renegotiation is successful with a server that
            doesn’t support secure renegotiation, you will know that the server supports
            insecure,
            client-initiated
            renegotiation.
Note
The most reliable way to test for insecure renegotiation is to use the method
                described in this section, but with a version of OpenSSL that was released before
                the discovery of insecure renegotiation (e.g., 0.9.8k). I mention this because there
                is a small number of servers that support both secure and insecure renegotiation.
                This vulnerability is difficult to detect with modern versions of OpenSSL, which
                prefer the secure option.


Testing for the BEAST Vulnerability



The BEAST attack exploits a weakness that exists in all versions of SSL, and TLS
            protocols before TLS 1.1. The weakness affects all CBC suites and both client and server
            data streams; however, the BEAST attack works only against the client side. Most modern
            browsers use the so-called 1/n-1 split as a workaround to prevent exploitation, but some
            servers continue to deploy mitigations on their end, especially if they have a user base
            that relies on older (and unpatched) browsers.
The ideal mitigation approach is to rely only on TLS 1.1 and better, but these newer
            protocols are not yet sufficiently widely supported. The situation is complicated by the
            fact that RC4 itself is now considered insecure. If you think BEAST is more dangerous
            than RC4 weaknesses, you might deploy TLS 1.2 for use with up-to-date clients, but force
            RC4 with everyone else.
	Strict mitigation
	Do not support any CBC suites when protocols TLS 1.0 and earlier are used,
                        leaving only RC4 suites enabled. Clients that don’t support RC4 won’t be
                        able to negotiate a secure connection. This mode excludes some potential web
                        site users, but it’s required by some PCI assessors.

	RC4 prioritization
	Because only a very small number of clients do not support RC4, the second
                        approach is to leave CBC suites enabled, but enforce RC4 with all clients
                        that support it. This approach provides protection to all but a very small
                        number of visitors.



How you are going to test depends on what behavior you expect of the server. With both
            approaches, we want to ensure that only insecure protocols are used by using the
                -no_ssl2, -no_tls_1_1, and
                -no_tls_1_2 switches.
To test for strict mitigation, attempt to connect while disabling all RC4 suites on
            your end:
$  echo | openssl s_client -connect www.feistyduck.com:443 \
-cipher 'ALL:!RC4' -no_ssl2 -no_tls1_1 -no_tls1_2
If the connection is successful (which is possible only if a vulnerable CBC suite is
            used), you know that strict mitigation is not in place.
To test for RC4 prioritization, attempt to connect with all RC4 suites moved to the
            end of the cipher suite list:
$ echo | openssl s_client -connect www.feistyduck.com:443 \
-cipher 'ALL:+RC4' -no_ssl2 -no_tls1_1 -no_tls1_2
A server that prioritizes RC4 will choose one of RC4 suites for the connection,
            ignoring all the CBC suites that were also offered. If you see anything else, you know
            that the server does not have any BEAST mitigations in place.

Testing for
                    Heartbleed



You can test for Heartbleed manually or by using one of the available tools. (There
            are many tools, because Heartbleed is very easy to exploit.) But, as usual with such
            tools, there is a question of their accuracy. There is evidence that some tools fail to
            detect vulnerable servers.[527] Given the seriousness of Heartbleed, it’s best to either test manually or by
            using a tool that gives you full visibility of the process. I am going to describe an
            approach you can use with only a modified version of OpenSSL.
Some parts of the test don’t require modifications to OpenSSL, assuming you have a
            version that supports the Heartbeat protocol (version 1.0.1 and newer). For example, to
            determine if the remote server supports the Heartbeat protocol, use the
                -tlsextdebug switch to display server extensions when
            connecting:
$ openssl s_client -connect www.feistyduck.com:443 -tlsextdebug
CONNECTED(00000003)
TLS server extension "renegotiation info" (id=65281), len=1
0001 - <SPACES/NULS>
TLS server extension "EC point formats" (id=11), len=4
0000 - 03 00 01 02                                       ....
TLS server extension "session ticket" (id=35), len=0
TLS server extension "heartbeat" (id=15), len=1
0000 - 01
[...]
A server that does not return the heartbeat extension is not vulnerable to Heartbleed.
            To test if a server responds to heartbeat requests, use the -msg
            switch to request that protocol messages are shown, then connect to the server, type
                B and press return:
$ openssl s_client -connect www.feistyduck.com:443 -tlsextdebug -msg
[...]
---
B
HEARTBEATING
>>> TLS 1.2  [length 0025], HeartbeatRequest
    01 00 12 00 00 3c 83 1a 9f 1a 5c 84 aa 86 9e 20
    c7 a2 ac d7 6f f0 c9 63 9b d5 85 bf 9a 47 61 27
    d5 22 4c 70 75
<<< TLS 1.2  [length 0025], HeartbeatResponse
    02 00 12 00 00 3c 83 1a 9f 1a 5c 84 aa 86 9e 20
    c7 a2 ac d7 6f 52 4c ee b3 d8 a1 75 9a 6b bd 74
    f8 60 32 99 1c
read R BLOCK
This output shows a complete heartbeat request and response pair. The second and third
            bytes in both heartbeat messages specify payload length. We submitted a payload of 18
            bytes (12 hexadecimal) and the server responded with a payload of the same size. In both
            cases there were also additional 16 bytes of padding. The first two bytes in the payload
            make the sequence number, which OpenSSL uses to match responses to requests. The
            remaining payload bytes and the padding are just random data.
To detect a vulnerable server, you’ll have to prepare a special version of OpenSSL
            that sends incorrect payload length. Vulnerable servers take the declared payload length
            and respond with that many bytes irrespective of the length of the actual payload
            provided.
At this point, you have to decide if you want to build an invasive test (which
            exploits the server by retrieving some data from the process) or a noninvasive test.
            This will depend on your circumstances. If you have permission for your testing
            activities, use the invasive test. With it, you’ll be able to see exactly what is
            returned, and there won’t be room for errors. For example, some versions of GnuTLS
            support Heartbeat and will respond to requests with incorrect payload length, but they
            will not actually return server data. A noninvasive test can’t reliably diagnose that
            situation.
The following patch against OpenSSL 1.0.1h creates a noninvasive version of the
            test:
--- t1_lib.c.original   2014-07-04 17:29:35.092000000 +0100
+++ t1_lib.c    2014-07-04 17:31:44.528000000 +0100
@@ -2583,6 +2583,7 @@
 #endif

 #ifndef OPENSSL_NO_HEARTBEATS
+#define PAYLOAD_EXTRA 16
 int
 tls1_process_heartbeat(SSL *s)
        {
@@ -2646,7 +2647,7 @@
                 * sequence number */
                n2s(pl, seq);

-               if (payload == 18 && seq == s->tlsext_hb_seq)
+               if ((payload == (18 + PAYLOAD_EXTRA)) && seq == s->tlsext_hb_seq)
                        {
                        s->tlsext_hb_seq++;
                        s->tlsext_hb_pending = 0;
@@ -2705,7 +2706,7 @@
        /* Message Type */
        *p++ = TLS1_HB_REQUEST;
        /* Payload length (18 bytes here) */
-       s2n(payload, p);
+       s2n(payload + PAYLOAD_EXTRA, p);
        /* Sequence number */
        s2n(s->tlsext_hb_seq, p);
        /* 16 random bytes */
To build a noninvasive test, increase payload length by up to 16 bytes, or the length
            of the padding. When a vulnerable server responds to such a request, it will return the
            padding but nothing else. To build an invasive test, increase the payload length by,
            say, 32 bytes. A vulnerable server will respond with a payload of 50 bytes (18 bytes
            sent by OpenSSL by default, plus your 32 bytes) and send 16 bytes of padding. By
            increasing the declared length of the payload in this way, a vulnerable server will
            return up to 64 KB of data. A server not vulnerable to Heartbleed will not
            respond.
To produce your own Heartbleed testing tool, unpack a fresh copy of OpenSSL source
            code, edit ssl/t1_lib.c to make the change as in the patch, compile
            as usual, but don’t install. The resulting openssl binary will be
            placed in the apps/ subdirectory. Because it is statically compiled,
            you can rename it to something like openssl-heartbleed and move it to
            its permanent location.
Here’s an example of the output you’d get with a vulnerable server that returns 16
            bytes of server data (in bold):
B
HEARTBEATING
>>> TLS 1.2  [length 0025], HeartbeatRequest
    01 00 32 00 00 7c e8 f5 62 35 03 bb 00 34 19 4d
    57 7e f1 e5 90 6e 71 a9 26 85 96 1c c4 2b eb d5
    93 e2 d7 bb 5f
<<< TLS 1.2  [length 0045], HeartbeatResponse
    02 00 32 00 00 7c e8 f5 62 35 03 bb 00 34 19 4d
    57 7e f1 e5 90 6e 71 a9 26 85 96 1c c4 2b eb d5
    93 e2 d7 bb 5f 6f 81 0f aa dc e0 47 62 3f 7e dc
    60 95 c6 ba df c9 f6 9d 2b c8 66 f8 a5 45 64 0b
    d2 f5 3d a9 ad
read R BLOCK
If you want to see more data retrieved in a single response, increase the payload
            length, recompile, and test again. Alternatively, to retrieve another batch of the same
            size, enter the B command again.



[527] Bugs in Heartbleed detection scripts (Shannon Simpson and Adrian
                    Hayter, 14 April 2014)



 
13 Configuring Apache


Apache httpd is a popular web server that has powered large parts of the Web since its
        early beginnings. Apache is a mature product and has superb TLS support in the 2.4.x branch,
        especially in the most recent releases (significant improvements were made in version
        2.4.7). If you’re compiling Apache from source code, you can take advantage of all the
        available features.
In practice, most people have access to some version from the 2.2.x branch, because that’s
        what the previous generations of the popular server distributions (e.g., Debian, Ubuntu, Red
        Hat Enterprise Linux, etc.) used to ship. The current generations either ship or will ship
        Apache 2.4.x, which means that this newer version will slowly start to gain in
        popularity.
The following table shows the major differences between the 2.2.x and 2.4.x
        branches.
Table 13.1. Apache httpd TLS features across the most recent stable branches
	 	Apache 2.2.x	Apache 2.4.x
	Strong default DH parameters	Barely; fixed at 1,024 bits	2,048 bits and stronger (2.4.7+)
	Configurable DH and ECDH parameters	-	Yes (2.4.7+)
	Elliptic curve support	Yes (2.2.26)[a]	Yes
	OCSP stapling	-	Yes
	Distributed TLS session caching	-	Yes
	Configurable session ticket keys	-	Yes
	Disable session tickets	-	-
	[a] Earlier versions can support ECDHE key exchange with a third-party
                                utility called TLS Interposer (described
                                later in this chapter).





Note
Most operating system distributions ship with software packages that carry the same
            (or similar) version numbers but differ in functionality from the stock releases made by
            the developers. The changes are most often only security fixes, but they could be
            features, too. You should review the package documentation and the source code (packages
            typically contain the original source code and the patches) to understand if the
            differences are important.

The biggest practical problem with the 2.2.x branch is lack of support for
            elliptic curve (EC) cryptography. Although Apache added EC
        support in 2.2.26 (released in November 2013), most distributions ship versions based on
        some earlier release. Without EC crypto, you cannot deploy the ECDHE key exchange, which
        means that you can’t have fast and robust support for forward secrecy. Some distributions
        backport important features; check yours for this possibility.
The lack of other features is tolerable. OCSP stapling is nice to have (it improves site
        performance) but not critical for most people. If it’s something you find important, you’ll
        probably want to install Apache 2.4.x from source code.
In addition to the big
        and obvious differences, the 2.4.x branch contains a large number of small improvements that
        are not obvious at first but might be significant because they add up. As one example,
        Apache 2.4.x probably consumes much less memory because it uses the reduced memory
        consumption mode in OpenSSL (the SSL_MODE_RELEASE_BUFFERS option). This
        OpenSSL feature was not enabled in the latest 2.2.x version when I checked.
This chapter is designed to cover the most important and interesting aspects of Apache’s
        TLS configuration, but it’s not a reference guide. For the finer details, please refer to
        the official documentation.
Installing Apache with Static OpenSSL



Back in 2004, when I was working on my first book, Apache
                Security, it was quite common to install Apache from source code, and I
            spent a lot of time documenting the process. As the technology stabilized, most people
            stopped bothering with the source code and relied on the binaries provided by the
            operating system.
Today, we’re back to the beginning; to use the best TLS features many of us have to
            roll up our sleeves and do everything the old-fashioned way. For example, I have a
            couple of servers running Ubuntu 10.04 LTS; the OpenSSL version installed does not
            support TLS 1.2, and its Apache 2.2.x does not support the ECDHE suites.
If you’re running one of the older distributions, the easiest way to run Apache with a
            recent version of OpenSSL is to compile the crypto code statically and install
            everything into a separate location. That way, you achieve the goal, but you don’t mess
            with the rest of the operating system. 
First, get the most recent stable version of OpenSSL and install it at a location in
            which it will not interfere with your system version. Follow the instructions in the section called “Building OpenSSL” in Chapter 11 .
Then, get the latest versions of Apache and the APR and APR-Util libraries. Unpack all
            three packages into the same source tree, with the latter two in the location in which
            Apache expects them:
$ tar zxvf httpd-2.4.10.tar.gz
$ cd httpd-2.4.10/srclib/
$ tar zxvf ../../apr-1.5.1.tar.gz
$ ln -s apr-1.5.1/ apr
$ tar zxvf ../../apr-util-1.5.3.tar.gz
$ ln -s apr-util-1.5.3/ apr-util
You are now ready to configure and install Apache. The mod_ssl
            module will be compiled statically; all other modules will be compiled
            dynamically.
$ ./configure \
    --prefix=/opt/httpd \
    --with-included-apr \
    --enable-ssl \
    --with-ssl=/opt/openssl-1.0.1h \
    --enable-ssl-staticlib-deps \
    --enable-mods-static=ssl
$ make
$ sudo make install
From here, you can proceed to tweak the configuration. All modules will be compiled by
            default, but only some of them will be enabled in the configuration.

Enabling TLS



If you are deploying a web site on the default HTTPS port (443), Apache will
            automatically enable the TLS protocol on the IP address in question. The only time you
            will need to explicitly enable TLS is when you’re using a nonstandard port. For
            example:
# TLS is enabled by default on port 443
Listen 192.168.0.1:443

# But explicit configuration is required on all other ports
Listen 192.168.0.1:8443 https
You might also find many configurations that do not configure the protocol using the
                Listen directive; they instead enable TLS in the site
            configuration using the SSLEngine directive:
<VirtualHost 192.168.0.1:443>
    # Site hostname.
    ServerName site1.example.com

    # Enable front-end TLS in this virtual host.
    SSLEngine on
    
    # Other configuration directives.
    ...
</VirtualHost>
This approach is popular with those who started with Apache 2.0.x, because the
                Listen directive in those versions had no support for protocol
            configuration.
Note
Apache implements a web server and a proxy server. Consequently, there are
                configuration directives that control TLS operation in both of these roles. Most
                proxy directives begin with SSLProxy; you should ignore them when
                you’re configuring the web server side of things.


Configuring TLS Protocol



To configure frontend TLS in Apache, you need three directives. The first is
                SSLProtocol, which specifies which protocols should be
            enabled:
# Enable all protocols except SSL 2 and
# SSL 3, which are obsolete and insecure.
SSLProtocol all -SSLv2 -SSLv3
The common approach is to enable all available protocols with all,
            then disable the ones you do not wish to deploy. The second directive is
                SSLHonorCipherOrder, which instructs Apache to select its
            preferred suite during TLS handshake (instead of choosing the first supported suite
            offered by the client):
# The server selects the cipher suite, not the clients.
SSLHonorCipherOrder on
Finally, SSLCipherSuite takes an OpenSSL suite-configuration string
            and configures which suites are going to be enabled and in which order:
# This cipher suite configuration uses only suites that provide
# forward security, in the order that provides the best performance.
SSLCipherSuite "ECDHE-ECDSA-AES128-GCM-SHA256 \
ECDHE-ECDSA-AES256-GCM-SHA384 \
ECDHE-ECDSA-AES128-SHA \
ECDHE-ECDSA-AES256-SHA \
ECDHE-ECDSA-AES128-SHA256 \
ECDHE-ECDSA-AES256-SHA384 \
ECDHE-RSA-AES128-GCM-SHA256 \
ECDHE-RSA-AES256-GCM-SHA384 \
ECDHE-RSA-AES128-SHA \
ECDHE-RSA-AES256-SHA \
ECDHE-RSA-AES128-SHA256 \
ECDHE-RSA-AES256-SHA384 \
DHE-RSA-AES128-GCM-SHA256 \
DHE-RSA-AES256-GCM-SHA384 \
DHE-RSA-AES128-SHA \
DHE-RSA-AES256-SHA \
DHE-RSA-AES128-SHA256 \
DHE-RSA-AES256-SHA256 \
EDH-RSA-DES-CBC3-SHA"
Note
The cipher suite configuration from this example is secure, but, depending on your
                preferences and risk profile, you might prefer something slightly different. You’ll
                find a thorough discussion of TLS server configuration in Chapter 8, Deployment and examples for OpenSSL in the section called “Recommended Configuration” in Chapter 11.

The previous example was primarily designed for newer Apache versions, which have
            elliptic crypto support, but will fall back gracefully on older installations.
Tip
TLS protocol configuration is best placed in the main server scope, where it
                applies to all sites hosted on the server. Tune it on a per-site basis only if
                necessary.


Configuring Keys and Certificates



In addition to configuring the TLS protocol, a secure web site also requires a private
            key and a certificate chain. For this, you typically require three directives, as in the
            following example:
# Configure the server private key.
SSLCertificateKeyFile conf/server.key

# Configure the server certificate.
SSLCertificateFile conf/server.crt

# Configure intermediate chain certificates supplied
# by the CA. This directive is not needed when the server
# certificate is self-signed.
SSLCertificateChainFile conf/chain.pem
Note
Starting with version 2.4.8, the SSLCertificateChainFile
                directive is deprecated. Instead, you are requested to provide all certificates in
                the file pointed to by the SSLCertificateFile directive. This
                change was probably driven by the fact that more sites want to use multikey
                deployments (e.g., RSA and ECDSA at the same time) and that each key might require a
                different certificate chain.

Not configuring the entire certificate chain correctly is a frequent mistake that
            causes certificate warnings for connecting clients. To avoid this problem, always follow
            the instructions provided by your CA. When renewing a certificate, make sure you use the
            new intermediate certificates provided; the old ones might no longer be
            appropriate.
Note
The example in this section assumes that your private key is not protected with a
                passphrase. I recommend that keys are created and backed up with a passphrase but
                deployed without a passphrase on the server. If you want to use protected keys, you
                will have to use the SSLPassPhaseDialog directive to interface
                Apache with an external program that will provide the passphrase every time it is
                needed.


Configuring Multiple Keys



It’s not widely known that Apache allows secure sites to use more than one type of TLS
            key. This facility, which had originally been designed to allow sites to deploy RSA and
            DSA keys in parallel, is virtually unused because DSA faded into obscurity for web
            server keys.
These days, there is a lot of discussion about deploying ECDSA keys in order to
            improve handshake performance. In parallel, there is a desire to migrate certificate
            signatures to SHA2, because the currently widely used SHA1 is nearing the end of its
            useful life. The problem is that older clients might not support ECDSA keys and SHA2
            signatures. One solution is to deploy with two sets of keys and certificates: RSA and
            SHA1 for older clients and ECDSA and SHA2 for newer clients.
Deploying a site with multiple keys is straightforward: simply specify multiple keys
            and certificates, one set after another. For example:
# RSA key.
SSLCertificateKeyFile conf/server-rsa.key
SSLCertificateFile conf/server-rsa.crt

# DSA key.
SSLCertificateKeyFile conf/server-dsa.key
SSLCertificateFile conf/server-dsa.crt

# ECDSA key.
SSLCertificateKeyFile conf/server-ecdsa.key
SSLCertificateFile conf/server-ecdsa.crt

# Intermediate certificates; must work
# with all three server certificates.
SSLCertificateChainFile conf/chain.pem
The only catch is that the SSLCertificateChainFile directive can be
            used only once per server, which means that the intermediate certificates must be
            identical for all three certificates. There are early indications that the CAs who are
            starting to offer ECDSA keys are set up this way.
It’s possible to use different certificate hierarchies, but then you must avoid
                SSLCertificateChainFile altogether. Instead, concatenate all the
            necessary intermediate certificates (for all the keys) into a single file, and point to
            it using the SSLCACertificateFile directive. There might be a slight
            performance penalty with this approach because, on every new connection, OpenSSL now
            needs to examine the available CA certificates in order to construct the certificate
            chain.
Note
To ensure that all deployed keys are actually used, make sure you also enable the
                corresponding cipher suites in the configuration. ECDSA suites have the word “ECDSA”
                in the name; DSA suites have the word “DSS” in the name; all other authenticated
                suites are designed to work with RSA keys.


Wildcard and Multisite Certificates



If you have two or more sites that share a certificate, it is possible to deploy them
            on the same IP address, despite the fact that virtual secure hosting is not yet feasible
            for public web sites. No special configuration is required; simply associate all such
            sites with the same IP address and ensure that they are all using the same certificate.[528]
This works because TLS termination and HTTP host selection are two separate steps.
            When terminating TLS, in the absence of SNI information (see the next section for more
            information) Apache serves the certificate of the default site for that IP address,
            which is the site that appears first in the configuration. In the second step, Apache
            looks at the Host request header provided and serves the correct site
            at the HTTP level. If the requested hostname is not configured on the IP address, the
            default web site will be served.
With this type of deployment, you might get a warning similar to this one:
[Mon Dec 30 11:26:04.058505 2013] [ssl:warn] [pid 31136:tid 140679275079488] AH02292: Init: Name-based SSL virtual hosts only work for clients with TLS server name indication support (RFC 4366)
This is because Apache notices that you have multiple secure sites on the same
            endpoint but does not check to see that the default certificate is valid for all sites.
            From version 2.4.10 onwards, the warning doesn’t show.

Virtual Secure Hosting



Unlike the setup discussed in the previous section, true virtual secure hosting takes
            place when a number of unrelated web sites, each with its own certificate,
            share one IP
            address. Because this feature is not supported by SSL and the early versions of TLS,
            there are still many clients that do not have it. For this reason, it is not yet
            feasible to use virtual secure hosting for public web sites aimed at a wide audience,
            but it could possibly be used for sites with a modern user base.
Apache supports virtual secure hosting and uses it automatically when needed. The only
            question is: what happens if you do rely on virtual secure hosting but receive a client
            that does not support it? Normally, in situations like that Apache serves the
            certificate belonging to the default site associated with the requested IP address.
            Because that certificate is unlikely to match the desired hostname, the user ends up
            with a certificate warning. However, if they are able to bypass the warning, they will
            get through to the site they wanted to see.[529]
You can’t avoid certificate warnings in situations like this, but it’s best practice
            not to serve any content from sites that rely on virtual secure hosting to clients that
            don’t understand SNI. This is what the SSLStrictSNIVHostCheck
            directive does, and there are two ways to use it.
The first way is to enforce strict virtual secure hosting on the entire IP address. To
            do that, you place the directive in the default virtual host. For example:
# Apache 2.2.x requires the following directive to support
# name-based virtual hosting. Apache 2.4.x and better do not.
NameVirtualHost 192.168.0.1:443

<VirtualHost 192.168.0.1:443>
    ServerName does-not-exist.example.com

    # Do not serve any content to the clients that
    # do not support virtual secure hosting (via SNI).
    SSLStrictSNIVHostCheck On

    ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
    ServerName site1.example.com
    ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
    ServerName site2.example.com
    ...
</VirtualHost>
Alternatively, you can enforce strict virtual secure hosting only for some sites, with
            relaxed configuration for others. In the following example,
                site1.example.com will not be served to clients that do not
            support SNI, but other sites will be:
<VirtualHost 192.168.0.1:443>
    ServerName default.example.com
    ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
    ServerName site1.example.com

    # Do not serve this site to clients that
    # do not support virtual secure hosting (via SNI).
    SSLStrictSNIVHostCheck On

    ...
</VirtualHost>

<VirtualHost 192.168.0.1:443>
    ServerName site2.example.com
    ...
</VirtualHost>
Whenever an error occurs due to a strict SNI check, Apache will force the request to
            fail with status 403 and no indication of the root cause. If the information provided in
            the Host header is correct, the ErrorDocument
            directive of the matching host will be consulted. If it specifies a redirection or a
            message, that message will be sent back to the client. If
                ErrorDocument specifies a file or a script, its processing will
            fail.
If you want to deliver a custom error message for this case, it’s possible to do so by
            disabling the built-in strict SNI checking and implementing a custom check instead. The
                SSL_TLS_SNI Apache variable contains the client-provided SNI
            information; if this variable is empty, that means that the client doesn’t support SNI.
            The following mod_rewrite configuration (placed in a virtual host
            section) worked for me:
RewriteEngine On
RewriteCond %{SSL:SSL_TLS_SNI} =""
RewriteRule ^ /errors/no-sni.html
Note
The behavior described here is implemented in versions up until 2.4.9. From 2.4.10
                onwards, Apache behaves differently: (1)
                the stock 403 response page includes the reason for the rejection and (2) the ErrorDocument
                directive can invoke a script. These changes make it possible to configure a script
                to handle 403 errors, detect the mention of SNI in the error note (the
                    REDIRECT_ERROR_NOTES variable), and provide different
                messages depending on the exact context.


Reserving Default Sites for Error Messages



It is never a good idea to deliver actual web site content in response to an
            incorrectly specified request. For example, you don’t want a search engine to index a
            web site under arbitrary hostnames. Whatever content you deliver will be seen by the
            client as belonging to the site that it requested; a mismatch can sometimes be used to
            exploit a vulnerability from one site as if it existed on another. To avoid this, I
            suggest that you reserve default sites on each IP address and port combination for the
            delivery of error messages.
Here’s an example configuration you could use:
# We're using this default web site to explain
# host mismatch and SNI issues to our users.
<VirtualHost 192.168.0.1:443>
    # The hostname used here should never match.
    ServerName does-not-exist.example.com
    DocumentRoot /var/www/does-not-exist

    # Require SNI support for all sites on this IP address and port.
    SSLStrictSNIVHostCheck on    

    # Force all requests to this site to fail with a 404 status code.
    RewriteEngine On
    RewriteRule ^ - [L,R=404]

    # Error message for the clients that request
    # a hostname that is not configured on this server.
    ErrorDocument 404 "<h1>No such site</h1><p>The site you requested does not exist.</p>"

    # Other configuration directives as desired.
    # Enable TLS as usual and use a self-signed certificate.
    ...
</VirtualHost>

Forward Secrecy



If you are deploying Apache from the 2.4.x branch and compiling everything from source
            code, you have at your disposal DHE and ECDHE suites, which allow you to support robust
            forward secrecy. Otherwise, when relying on the system-provided packages, they sometimes
            don’t support EC cryptography, for several reasons: 
	EC cryptography is not supported by older Apache 2.2.x versions
	Many Apache 2.2.x versions found in popular distributions do not support
                        EC cryptography, even when coupled with an OpenSSL version that does. This
                        is largely because when OpenSSL decided to add support for EC, it left it
                        disabled by default. If you are in this situation but don’t want to install
                        Apache from source code, there’s a workaround that might be sufficient,
                        which I explain later in this section.

	Older OpenSSL version
	If the underlying OpenSSL installation does not support newer features
                        (such as EC crypto), then it does not matter if Apache does. Older versions
                        of OpenSSL are still prevalent on older installations, and even some newer
                        operating system releases use them. For example, OS X Mavericks, released in
                        November 2013, ships with OpenSSL 0.9.8y (that’s the most recent version
                        from the old 0.9.x branch).
A good OpenSSL version to use today is the most recent one from the 1.0.1
                        branch or newer. Luckily, Apache can be built with a statically compiled
                        OpenSSL version, which means that you can upgrade just the web server
                        without messing with a core operating system package.

	OpenSSL version without EC support
	For a long time, operating systems built by Red Hat used to ship without
                        any support for EC cryptography, because their lawyers wanted to play it
                        safe when it came to certain EC patents. This made it very difficult for
                        anyone using Fedora and Red Hat Enterprise Linux distributions (and the open
                        source derivatives, such as CentOS) to deploy forward secrecy well.[530] The only way to do it well was to recompile the key system
                        packages.
This changed in October 2013, when Fedora 18 and later versions were
                        updated with OpenSSL versions that have EC crypto enabled.[531]
Starting with version 6.5, which shipped in November 2013, all Red Hat
                        Enterprise Linux versions support EC cryptography.[532]



Enabling ECDHE Suites in Apache 2.2.x without Patching



TLS Interposer[533] is a Linux tool that can be used to improve how programs use OpenSSL
                without having to recompile them or change them in any other way. It works by
                intercepting calls to certain OpenSSL functions and overriding their
                behaviors.
By default, TLS Interposer will:
	Disable SSL 2 and SSL 3 protocols

	Enable support for ECDHE cipher suites

	Enforce its own cipher suite configuration, which is strong by
                        default



A great use case for TLS Interposer is enabling ECDHE cipher suites on Apache
                2.2.x. This tool can’t add all EC features to Apache, but the addition of ECDHE
                suites enables you to support robust forward secrecy, which is the most common
                requirement.


OCSP Stapling



Online Certificate Status Protocol (OCSP) is the protocol
            that’s used to obtain certificate revocation information on demand. Most certificates
            include OCSP information, which allows TLS clients to talk directly to the issuing CA to
            confirm that the certificate has not been revoked. OCSP stapling allows the web server
            to obtain a fresh OCSP response from the CA, cache it locally, and submit it to the
            client along with the certificate. In this case, the client does not need to contact the
            CA; this improves performance and results in better privacy. Apache supports OCSP
            stapling starting with the 2.4.x branch.
Configuring OCSP Stapling



Although Apache has many directives for OCSP stapling, most of them are needed
                only for fine-tuning. You need only two directives to enable stapling
                initially:
# Configure a cache of 128 KB for OCSP responses. Tune the
# cache size based on the number of certificates in use on
# the server.
SSLStaplingCache shmcb:/opt/httpd/logs/stapling_cache(128000)

# Enable OCSP stapling by default for all sites on this server.
SSLUseStapling on
In this example, I configured a server-wide cache for OCSP responses and then
                enabled stapling by default for all sites. You can also use the
                    SSLUseStapling directive elsewhere to enable or disable
                stapling for individual sites.
By default, successful OCSP responses will be cached for 3,600 seconds, but you
                can change this timeout using the SSLStaplingStandardCacheTimeout
                directive.
Note
OCSP requests are submitted over HTTP, which means that your web server needs
                    to be allowed to make outbound requests to various OCSP responders across the
                    Internet. If you’re operating an outbound firewall, ensure that there are
                    exceptions to allow this traffic. 

Configuring OCSP stapling can fail if your site does not have a properly
                configured certificate chain. In order for Apache to verify OCSP responses (which it
                always does), it needs the CA certificate that issued the server certificate.
                Without it, stapling won’t be possible and Apache will complain about the
                problem:
[Thu Jan 23 16:26:58.547877 2014] [ssl:error] [pid 1333:tid 140576489142080] AH02217: ssl_stapling_init_cert: Can't retrieve issuer certificate!
[Thu Jan 23 16:26:58.547900 2014] [ssl:error] [pid 1333:tid 140576489142080] AH02235: Unable to configure server certificate for stapling
If for some reason you are not using SSLCertificateChainFile to
                configure the chain, you can provide the required CA certificate in the
                    SSLCACertificateFile configuration. In fact, the best
                practice is to always have the root certificate there.
To use OpenSSL to see if OCSP stapling is configured correctly, follow the
                instructions from the section called “Testing OCSP
                    Stapling” in Chapter 12.

Handling Errors



Apache caches both successful and failed OCSP responses. In theory, there is no
                harm in this, because your clients are expected to obtain the same result by talking
                to the CA directly. In practice, it depends. For example, because even failed
                responses are cached (600 seconds by default; change the value with
                    SSLStaplingErrorCacheTimeout), a one-off problem might end up
                being propagated to all your users.
Given that there is a lot of anecdotal evidence that OCSP responders can be flaky,
                I think you should exercise caution and not return responder errors:
SSLStaplingReturnResponderErrors off
If you do choose to propagate the errors, remember that Apache by default
                generates fake OCSP tryLater responses in the cases in which the
                real OCSP responder is unresponsive. I think it’s safer to disable this
                functionality, too:
SSLStaplingFakeTryLater off
As an example of when this might be an issue, consider someone reconfiguring the
                outbound firewall around your web server and inadvertently preventing Apache from
                reaching the OCSP responders. If you disable fake responses, your clients will still
                be able to communicate with the responders directly.

Using a Custom OCSP Responder



Normally, OCSP requests are submitted to the OCSP responder listed in the
                certificate. But there are two cases in which you might want to hardcode OCSP
                responder information:
	Some certificates might not actually contain any OCSP information, even
                        though the issuing CA operates a responder. In this case, you can provide
                        the OCSP responder address manually.

	In heavily locked-down environments, direct outbound traffic from the web
                        server might be forbidden. In this case, if you want to use OCSP stapling,
                        you’ll need to configure an HTTP proxy for OCSP requests. 



You can override the certificate OCSP information globally or on a per-site basis,
                using the SSLStaplingForceURL directive:
SSLStaplingForceURL http://ocsp.example.com


Configuring Ephemeral DH Key Exchange



Traditionally, Apache has left OpenSSL to configure the default strength of the
                Diffie-Hellman (DH) key exchange. That worked for a long
            time, but the OpenSSL default strength of 1,024 bits is no longer considered adequate.
            Compare this strength to the current best practice that all server keys have at least
            2,048 bits.
For a very long time, the only way to increase the strength of DH key exchange had
            been to change the source code, using a patch that was available only for the 2.4.x branch.[534] But this is no more. Starting with version 2.4.7, Apache will automatically
            tune the strength of the DH key exchange to match the strength of the corresponding
            private key.
Note
Given that 1,024-bit DH parameters are considered weak but not entirely insecure,
                most sites will probably be just fine even if they are stuck with an earlier version
                of Apache. Further, if your server supports ECDHE suites for forward secrecy (which
                you can achieve even with older Apache versions), the DH key exchange will be used
                only with older clients.


TLS Session Management



Apache supports both mechanisms for session management: server-side state caching and
            session tickets. Apache 2.2.x has sufficient features for standalone deployments, but
            Apache 2.4.x adds features necessary for distributed operation.
Standalone Session Cache



For individual web servers, there is only one practical option for TLS session
                caching: shared memory. It’s also possible to cache the sessions in DBM files, but
                this approach is known to be unreliable under heavy load (per Apache
                documentation).
For caching using shared memory, you need to have the
                    mod_socache_shmcb module enabled first. After that, specify
                the following two directives in the server scope:
# Specify session cache type, path, and size (1 MB).
SSLSessionCache shmcb:/path/to/logs/ssl_scache(1024000)

# Specify maximum session cache duration of one day.
SSLSessionCacheTimeout 86400
By default, the timeout is set to five minutes, which is very conservative. There
                is little reason for new sessions to be renegotiated that often; I chose 24 hours
                instead. The default cache size is 512 KB, but I increased that to 1 MB. Both values
                would probably work for smaller web sites. Popular web sites will need to understand
                their usage patterns and set the cache size to the appropriate value. In my tests
                with Apache 2.4.x, you should expect to store roughly 4,000 sessions using a cache
                of 1 MB.
Note
Restarting Apache (even using the graceful option that keeps the master
                    process around) clears the session cache. Thus, each restart comes with a small
                    CPU penalty for the server and latency penalty for the users. In general, it’s
                    not something you should be worried about unless you’re restarting
                        very frequently.

Depending on the Apache version, for TLS session caching you might also need to
                configure the mutex that is used to synchronize access to the cache. Apache 2.4.x
                uses a mutex by default, but the configuration can be tweaked using the
                    Mutex directive. Inexplicably, stock Apache 2.2.x does not
                use a mutex by default, which means that its cache can get easily corrupted under
                heavy load.
To configure a mutex on Apache 2.2.x, use the SSLMutex
                directive:
# Configure the mutex for TLS session cache access synchronization.
SSLMutex file:/var/run/apache2/ssl_mutex
On Unix platforms, reliable automated mutex selection has traditionally been
                difficult, because it is generally not possible to select any one mutex type that
                performs and works well across all systems. For this reason, you’ll find that
                programs tend to use file-based mutexes by default; they are the most reliable but
                not the fastest.
Note
Apache uses the same TLS session cache for the entire server, but sharing the
                    session cache among unrelated applications can be dangerous. Session resumption
                    uses an abbreviated TLS handshake that skips certificate validation. A network
                    attacker who can redirect traffic from one port to another can potentially
                    bypass certificate validation and force request processing by an incorrect
                    application. This attack could, for example, lead to information leakage.


Standalone Session Tickets



By default, the session ticket implementation is provided by OpenSSL. For
                standalone servers, this approach “just works,” although there are some aspects that
                you should be aware of:
	Session tickets are protected using 128-bit AES encryption. A throwaway
                        key is generated when the web server is initially started. It’s possible
                        that multiple keys will be used, depending on the configuration.

	The key size is fixed, but 128 bits is sufficiently strong for most use
                        cases.

	When the server is restarted, new ticket keys are generated. This means
                        that all connections that arrive after the restart will need to negotiate
                        new TLS sessions.

	The same AES key is used for as long the server remains active. To
                        minimize the impact of session tickets on forward secrecy, you should ensure
                        that you regularly restart the web server. Daily is best.




Distributed Session Caching



If you operate more than one server for the same web site but you’re not
                terminating TLS centrally (e.g., on a load balancer) and not using sticky sessions
                (clients are always sent to the same node), you will need distributed TLS session
                caching—a mechanism to exchange session information among the cluster
                nodes.
Apache 2.4.x supports distributed TLS session caching out of the box, using the
                popular network caching program memcached. To use it, deploy an
                instance of memcached for the cache, and then connect all your
                web servers to it.
First, ensure you have the mod_socache_memcache module
                installed and activated:
LoadModule socache_memcache_module modules/mod_socache_memcache.so
Then, configure the TLS session caching, like so:
# Use memcached for the TLS session cache.
SSLSessionCache memcache:memcache.example.com:11211

# Specify maximum session cache duration of one hour.
SSLSessionCacheTimeout 3600
As for the memcached size, consider these important points:
	As with a standalone server, allocate enough RAM to ensure that the
                        session data is cached for the entire duration of the session (the
                            -m parameter).

	Lock the cache memory (the -k option) to improve
                        performance and prevent the sensitive TLS session data from being written to
                        swap.

	Ensure that the maximum number of connections allowed is sufficient to
                        cover the maximum number of concurrent connections supported by the entire
                        cluster (the -c option).



You can use the following configuration file as a starting point for
                customization:
# Run as daemon.
-d

# Run as user memcache.
-u memcache

# Run on port 11211.
-p 11211

# Log to this log file.
logfile /var/log/memcached.log

# Allocate a 10 MB cache.
-m 10

# Allow up to 10240 connections.
-c 10240

# Lock all memory to improve performance and (more importantly)
# to prevent sensitive TLS session data from being written to swap.
-k 
At a glance, running a distributed TLS session cache appears to be
                straightforward. In practice, it depends on the details, and there are many
                additional issues that you need to consider, including the following.
	Availability
	Web server nodes no longer keep any TLS session information locally,
                            instead relying on the configured memcache to provide the data. This
                            means that the memcache is now a point of failure for your cluster. How
                            are you going to handle the memcache misbehaving?

	Performance
	With TLS session data now hosted remotely, memcache lookups on resumed
                            TLS connections will add to the latency. If the network is fast and
                            reliable, that cost will be fixed and probably small. The only reliable
                            way to tell is to measure the cost, by comparing the performance of a
                            single server against that of the entire cluster. Just make sure you
                            disable session tickets in the client; otherwise you’ll be potentially
                            measuring the wrong resumption mechanism.

	Security
	Communication with the memcache is not encrypted, which means that the
                            sensitive TLS session data will be exposed as it travels over your
                            internal network. This is not ideal, because a compromise of any server
                            on the same network also results with the compromise of all your TLS
                            sessions. This issue can be solved by communicating with the memcache
                            over a special encrypted network segment.



Note
Because TLS session cache sharing can result in security weaknesses, it’s best
                    practice to never share a cache among unrelated applications. This is
                    particularly true for distributed caching, for which it’s more likely that
                    servers powering multiple applications will use the same cache. For best
                    security, run separate memcache sections, one for each application.


Distributed Session Tickets



If you are deploying a web server cluster in which each node is expected to
                terminate TLS, then session tickets introduce an additional management challenge. In
                order to decrypt session data reliably, all the cluster nodes must share the same
                key; this means that you can no longer rely on the per-server keys generated by
                OpenSSL.
Apache 2.2.x does not support configurable ticket keys, which means that your only
                option is to disable session tickets, as explained in the previous section. Apache
                2.4.x supports manually configured session ticket keys via the
                    SSLSessionTicketKeyFile directive. With it, you can manually
                generate a ticket key file and push it to all your cluster nodes, using the same
                mechanism you use to manage other configuration data.
A session ticket key file consists of 48 bytes of cryptographically random data.
                The data is used for three 16-byte (128-bit) fragments, one each for key name, HMAC
                secret, and AES key.
Using OpenSSL, you can generate a ticket key file like this:
$ openssl rand -out ticket.key 48
After that, you only need to tell Apache where the key file is:
SSLSessionTicketKeyFile /path/to/ticket.key
Warning
The session ticket key file must be protected in the same way as all other
                    private keys. Although it is not necessary to back it up, you must ensure that
                    only the root user can access the file. Also, always use a
                    different session ticket key for different applications. That will ensure that a
                    session from one site can’t be resumed on another.

As with standalone servers, to minimize the impact of session tickets on forward
                secrecy you have to rotate the session ticket key regularly—for example, once a
                day.

Disabling Session Tickets



Apache doesn’t currently have an option to disable session tickets, which is a
                problem if you want to deploy a cluster of Apache web servers but don’t want to
                configure distributed ticket sharing. The only solution available right now is to
                patch the Apache source code.
To disable session tickets in Apache 2.2.x (tested against v2.2.27), apply the
                following patch:
--- ./modules/ssl/ssl_engine_init.c.orig	2014-07-16 10:53:06.000000000 +0100
+++ ./modules/ssl/ssl_engine_init.c	2014-07-16 10:53:44.000000000 +0100
@@ -615,6 +615,11 @@
      */
     SSL_CTX_set_options(ctx, SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION);
 #endif
+
+#ifdef SSL_OP_NO_TICKET
+    /* Disable session tickets. */
+    SSL_CTX_set_options(ctx, SSL_OP_NO_TICKET); 
+#endif
 }
To disable session tickets in Apache 2.4.x (tested against v2.4.10), apply the
                following patch:
--- ./modules/ssl/ssl_engine_init.c.orig 2014-07-14 05:29:22.000000000 -0700
+++ ./modules/ssl/ssl_engine_init.c 2014-07-21 08:07:17.584482127 -0700
@@ -583,6 +583,11 @@
         SSL_CTX_set_mode(ctx, SSL_MODE_RELEASE_BUFFERS);
 #endif
 
+#ifdef SSL_OP_NO_TICKET
+ /* Disable session tickets. */
+ SSL_CTX_set_options(ctx, SSL_OP_NO_TICKET);
+#endif
+
     return APR_SUCCESS;
 }


Client Authentication



As far as the configuration is concerned, using client authentication is
            straightforward: you enable it, provide all the necessary CA certificates to form a full
            chain for validation, and provide revocation information:
# Require client authentication.
SSLVerifyClient require

# Specify the maximum depth of the certification path,
# from the client certificate to a trusted root.
SSLVerifyDepth 2

# Allowed CAs that issue client certificates. The
# distinguished names of these certificates will be sent
# to each user to assist with client certificate selection.
SSLCACertificateFile conf/trusted-certificates.pem
The traditional way to check client certificates for revocation is to use a local CRL
            list. This option provides the best performance, because all operations are done
            locally. A script is usually configured to run periodically to retrieve fresh CRLs and
            reload the web server:
# Enable client certificate revocation checking.
SSLCARevocationCheck chain

# The list of revoked certificates. A reload is required
# every time this list is changed.
SSLCARevocationFile conf/revoked-certificates.crl
Starting with Apache 2.4.x, you can also use OCSP revocation checking. This option
            provides real-time revocation information at the cost of reduced performance:
# Use OCSP to check client certificates for revocation.
SSLOCSPEnable On
If client authentication is required but the client doesn’t provide one,
                mod_ssl will reject the TLS handshake with a fatal alert. For end
            users, this means that they get a cryptic error message. It’s possible to handle this
            situation more gracefully by using different values for the
                SSLVerifyClient directive:
	optional
	Requests a client certificate during TLS handshake, but doesn’t require
                        it. The status of the validation is stored in the
                            SSL_CLIENT_VERIFY variable: NONE
                        for no certificate, SUCCESS for a valid certificate, and
                            FAILED: followed by an error message for a
                        certificate that failed validation. This feature is useful if you want to
                        provide a custom response to those users who fail client certificate
                        validation.

	optional_no_ca
	Requests a client certificate during TLS handshake, but doesn’t attempt
                        validation. Instead, it’s expected that an external service will validate
                        the certificate (which is available in the SSL_CLIENT_ family of
                        variables).



Note
Using optional client authentication can be problematic, because some browsers
                don’t prompt the user or otherwise select a client certificate if this option is
                configured. There are also issues with some other browsers that won’t proceed to the
                site if they can’t provide a certificate. Before you seriously consider optional
                client authentication for deployment, test with the browsers you have in your
                environment.

For performance reasons, mod_ssl doesn’t export its variables by
            default. If you need them, enable the export by configuring the required variables using
            the SSLOptions directive:
# Export standard mod_ssl variables as well
# as certificate data to the environment.
SSLOptions +StdEnvVars +ExportCertData

Mitigating Protocol Issues



Apache developers have generally been quick to address TLS protocol–related issues. In
            practice, because most deployments are based on Apache versions included with various
            operating systems, it’s up to the vendors to keep their packages secure.
Insecure Renegotiation



Insecure renegotiation is a protocol flaw discovered in 2009 and largely mitigated
                during 2010. Before this issue was discovered, Apache 2.2.x used to support
                client-initiated renegotiation. Version 2.2.15, released in March 2010, not only
                disabled client-initiated renegotiation but also provided support for secure
                renegotiation (RFC 5746). Apache 2.4.x was first released in early 2012, which means
                that it was never vulnerable.
Warning
Disabling client-initiated renegotiation does not fully address this
                    vulnerability if server-initiated renegotiation is used and if you are accepting
                    clients that do not support RFC 5746. This is because the attacker can connect
                    to the server, submit a request that initiates server-initiated renegotiation,
                    then exploit the victim (client). For best security, inspect the
                        SSL_SECURE_RENEG variable to confirm that the client
                    supports secure renegotiation.


BEAST



Technically, the predictable IV vulnerability in TLS 1.0 and earlier
                protocols—better known as the BEAST attack—affects both client and
                server sides of the communication. In practice, only browsers are vulnerable,
                because exploitation requires that the attacker is able to control what data is sent
                (and subsequently encrypted). For this reason, BEAST cannot be addressed with a
                server-side patch.

CRIME



The 2012 CRIME attack exploits compression at the TLS protocol level. The issue
                has not been fixed in the protocol, which is why everyone resorted to disabling
                compression. Unrelated to the CRIME attack, Apache added the
                    SSLCompression directive to versions 2.2.24 (February 2013)
                and 2.4.3 (August 2012), but compression stayed enabled by default.[535] Compression was disabled by default in versions 2.2.26 (November 2013)
                and 2.4.4 (February 2013).
When it comes to distribution-specific Apache versions, chances are that most
                vendors have provided security patches by now. For example, Debian fixed their
                version of Apache in November 2012[536]and Ubuntu in July 2013.[537] On Red Hat and derived distributions, for a period of time it was
                necessary to disable compression by manipulating environment variables,[538] but Red Hat eventually disabled compression by default in March 2013.[539]
If your version of Apache supports TLS compression, it’s best to explicitly
                disable it with:
SSLCompression off
Warning
Disabling compression depends on the functionality that is available in
                    OpenSSL 1.0.0 and later (the SSL_OP_NO_COMPRESSION
                    configuration option). Older OpenSSL versions might not actually be able to
                    disable compression.



Deploying HTTP Strict Transport Security



Because HTTP Strict Transport Security (HSTS) is activated via
            a response header, configuring it on a site is generally easy. However, there are
            certain traps you can fall into, which is why I recommend that you read the section called “HTTP Strict Transport Security” in Chapter 10
            before you make any decisions.
HSTS is enabled using the Header directive. It’s best to use the
                always condition to ensure that the response header is set on all
            responses, including errors:
# Enable HTTP Strict Transport Security.
Header always set Strict-Transport-Security "max-age=31536000; includeSubDomains"
According to the RFC, the HSTS policy can be set only on HTTP responses delivered over
            an encrypted channel. The same site on port 80 doesn’t need any HSTS configuration, but,
            for best results, it does need a redirection to port 443. This will ensure that all site
            visitors reach HTTPS as soon as possible:
<VirtualHost *:80>
    ServerName www.example.com
    ServerAlias example.com
    ...
    # Redirect all visitors to the encrypted portion of the site.
    RedirectPermanent / https://www.example.com/
</VirtualHost>

Monitoring Session Cache Status



It’s a little known fact that Apache exposes the status of the TLS session cache via
            the mod_status module. To enable this feature, first request that
            additional status information is recorded (in the main configuration context):
# Request tracking of extended status information. This directive
# is only necessary with Apache 2.2.x. Apache 2.4.x should automatically
# enable it when mod_status is loaded.
ExtendedStatus On
Then configure mod_status output in the desired location:
<Location /status>
    SetHandler server-status

    # Restrict access to the following IP addresses. We don't
    # want the world to see our sensitive status information.
    Require ip 192.168.0.1
</Location>
Warning
The output of mod_status contains sensitive data, which is why
                you must always restrict access to it. The best way is via HTTP Basic
                Authentication, but then you’ll have yet another password to remember. Network range
                restrictions, as in my example, are almost as useful.

When you open the status page, at the bottom you will see output similar to this
            (emphasis mine):
cache type: SHMCB, shared memory: 512000 bytes, current entries: 781
subcaches: 32, indexes per subcache: 88
time left on oldest entries' objects: avg: 486 seconds, (range: 0...2505)
index usage: 27%, cache usage: 33%
total entries stored since starting: 12623
total entries replaced since starting: 0
total entries expired since starting: 11688
total (pre-expiry) entries scrolled out of the cache: 148
total retrieves since starting: 6579 hit, 3353 miss
total removes since starting: 0 hit, 0 miss

Logging Negotiated TLS Parameters



Default web server logging mechanisms care only about HTTP requests and errors; they
            won’t tell you much about your TLS usage. There are two main reasons why you might want
            to keep an eye on your TLS operations:
	Performance
	Incorrectly configured TLS session resumption can incur a substantial
                        performance penalty, which is why you will want to keep an eye on the
                        session resumption hit ratio. Having a log file for this purpose is useful
                        to ensure that your server does resume TLS sessions and also to assist you
                        with the tuning of the cache. Only Apache 2.4.x allows you to do this, via
                        the SSL_SESSION_RESUMED environment variable.

	Protocol and cipher suite usage
	Knowing which protocol versions and cipher suites are actually used by
                        your user base is important when it’s time to disable the weak versions. For
                        example, SSL 2 remained widely supported over many years because people were
                        afraid to turn it off. We are now facing similar problems with the SSL 3
                        protocol and the RC4 and 3DES ciphers.



Assuming that you’re using Apache 2.4.x, use the following directives to monitor TLS
            connections:
# Make TLS variables available to the logging module.
SSLOptions +StdEnvVars

# Record per-request TLS information to a separate log file.
CustomLog /path/to/ssl.log "%t %h %k %X %{SSL_PROTOCOL}e\
 %{SSL_CIPHER}e %{SSL_SESSION_ID}e %{SSL_SESSION_RESUMED}e"
Please note the following:
	The session ID will be logged only when a session is resumed, not during the
                    initial request.

	The value of the SSL_SESSION_RESUMED variable will be
                        Initial for new sessions and Resumed
                    for resumed sessions.

	The %k variable keeps track of how many requests there have
                    been on the same connection. If you see a zero in a log entry, you’ll know it’s
                    the first request. That’s the one that counts.

	The %X variable records connection status at the end of the
                    request. A dash means that the connection will be closed, whereas a plus sign
                    means that the connection will stay open.



There’s a slight mismatch between Apache’s logging facilities and our need to track
            TLS processing in detail. TLS connection parameters are generally decided once at the
            beginning of a connection and don’t change unless renegotiation occurs. Apache’s
                CustomLog directive handles requests, which means that you will
            get multiple nearly identical log entries for long connections with many HTTP
            transactions. The %k variable is useful to keep track of this. On one
            hand, this will make the log grow more quickly. On the other, logging every transaction
            will help you determine the frequency of connection reuse, which is the most efficient
            mode of operation (for both HTTP and TLS).
Note
There is currently no way to log connections with successful TLS handshakes but
                without any requests. Similarly, it is not possible to log TLS handshake
                failures.


Advanced Logging with
            mod_sslhaf



Apache’s logging facilities allow you to determine which TLS parameters were used on a
            connection, but they don’t give you any information beyond that. For example, you don’t
            know the highest protocol version and cipher suites that were offered by each client.
            With that information, you could, for example, determine your users’ capabilities and
            arrive at the optimal TLS configuration without having to go through a potentially
            painful process of trial and error.
To answer these and similar questions, I built an Apache module called
                mod_sslhaf. This module does not hook into Apache; instead, it
            passively observes and parses all TLS connections to extract client capabilities. It can
            be used to provide the following interesting information:
	Highest protocol version supported

	List of offered cipher suites

	List of used TLS extensions—in particular:
	Availability of the SNI extension

	Support for session tickets

	Support for OCSP stapling






In addition to the above, mod_sslhaf can also log the entire raw
                ClientHello, which is very useful if you want to perform custom
            handshake analysis. There is also a special variable called
                SSLHAF_LOG, which is set only on the first request on a
            connection. This variable is designed to work with Apache’s conditional logging feature,
            and it allows you to record only one log entry per connection (which saves a lot of disk
            space).
Installing mod_sslhaf is straightforward. There are no formal
            releases, so you’ll have to use git to clone the source code repository:
$ git clone https://github.com/ssllabs/sslhaf.git
Because the module is small (only about 1,000 lines of code), the documentation is
            included with the source code itself, in the file mod_sslhaf.c. To
            compile the module, execute:
$ apxs -cia mod_sslhaf.c
The command line switches c, i, and
                a stand for compile,
                install, and activate. Depending on your
            configuration file, activation can sometimes fail. In that case, activate the module
            manually by adding the following line to your configuration (use the path that is
            correct on your system, of course):
LoadModule sslhaf_module /path/to/modules/mod_sslhaf.so
The following configuration uses all mod_sslhaf features and
            records the most important data points, but only once per connection:
# Make TLS variables available to the logging module.
SSLOptions +StdEnvVars

# Record per-request TLS information to a separate log file.
CustomLog /path/to/ssl.log "%t %h %k %X %{SSL_PROTOCOL}e\
 %{SSL_CIPHER}e %{SSL_SESSION_ID}e %{SSL_SESSION_RESUMED}e |\
 %{SSLHAF_HANDSHAKE}e %{SSLHAF_PROTOCOL}e %{SSLHAF_SUITES}e\
 %{SSLHAF_EXTENSIONS_LEN}e %{SSLHAF_EXTENSIONS}e \"%{User-Agent}i\""\
 env=SSLHAF_LOG
The first half of this log format is identical to the format used in the previous
            section; the additional mod_sslhaf information is provided after the
            pipe character.
Tip
Most people will never consider analyzing raw ClientHello
                records, which is why I have not included them in the log format. After all, they do
                take a lot of space and impact logging performance. If you do want to track this
                data, the variable that holds it is called SSLHAF_RAW.




[528] Technically, the restrictions are per IP address and port combination (a
                    TCP/IP endpoint). You could, for example, host one secure site on
                        192.168.0.1:443 and another on
                        192.168.0.1.:8443. In practice, public sites can be
                    hosted only on port 443, so the restrictions are effectively per IP
                    address.

[529] Assuming, of course, that the requested hostname is configured on the server;
                    if it isn’t, they will get the default web site again.

[530] ECDHE is important, because the only alternative, DHE suites,
                                can’t be used to achieve forward secrecy with Internet Explorer. On
                                top of that, DHE is much slower than the RSA and ECDHE key
                                exchanges, which is why most sites don’t want to use it.
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[533] TLS
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                        Bugzilla, closed 3 March 2013)
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14 Configuring Java and Tomcat


This chapter focuses on the TLS capabilities of the Java platform, covering the evolution
        of features across many releases, but focusing mostly on Java 7 and Java 8. I start the
        chapter with a discussion of the cryptographic features available in the platform itself,
        and then move on to cover both client and server deployments and configurations. Finally, I
        discuss Tomcat, one of the most popular Java web servers.
Java Cryptography Components



In Java, there are several components that work together to provide a complete
            implementation of the SSL and TLS protocols and the surrounding functionality. They
            are:
	Java Cryptography Architecture (JCA)
	JCA provides a unified architecture for everything related to
                        cryptography. Conceptually, JCA consists of only a set of abstract APIs and
                        no actual code. The key aspect of JCA is that it allows an arbitrary number
                        of providers, which compete to provide the specified
                        functionality.

	Java Certification Path API
	The Java Certification Path API (or
                            CertPath, as it is commonly referred to
                        throughout the Java reference documentation) deals with everything related
                        to certificates and certification paths. For SSL/TLS specifically, CertPath
                        provides APIs that deal with X.509 certification paths, as specified by the
                        PKIX standards. Most SSL and TLS deployments rely on PKIX to establish
                        trust.

	Java Secure Socket Extension (JSSE)
	JSSE is the component that deals with the SSL and TLS protocols, building
                        on the cryptographic algorithms and other APIs provided by JCA packages.
                        JSSE is implemented as a set of APIs with support for interchangeable
                        implementations.

	JCA Providers
	Java comes with a number of providers that implement various cryptographic
                        algorithms and makes it easy to install new providers as desired. The
                        default configuration will satisfy the needs of most installations.
                        Sometimes, when you wish to enable specific functionality or improve
                        performance, you might decide to explicitly configure which providers are
                        used and how.

	Keytool
	Java does not keep keys and certificates as individual files; rather it
                        bundles them all in a single storage facility called a
                            keystore. In order to manipulate the contents of
                        a keystore, you will need to use keytool, which is
                        included with every Java Development Kit
                        (JDK).

	Java Root Certificate Store
	A TLS library is not very useful on the public Internet without a
                        collection of trusted certificates, which are known as
                            roots or root certificates. A
                        collection of root certificates is also called a
                            truststore. JVM vendors typically maintain their
                        own truststores and ship them with their products.[540]



In this section, I aim to provide you all of the SSL/TLS-related information you will
            need. However, if you want to go deeper, it is recommended that you visit the Java 7[541] and Java 8[542] reference documentation.
Strong and Unlimited
                        Encryption



Java cryptography operates in one of two modes of strength. In both cases, the
                code base is exactly the same, but some limits are imposed by the configuration. By
                default, each installation operates in strong mode, which is
                somewhat restricted to comply with the US export restrictions for cryptography. In
                this mode, for example, the AES cipher is limited to 128 bits. The other mode is
                called unlimited strength and does not have any artificial
                restrictions. The default mode is strong enough for most use cases, but the use of
                unlimited-strength encryption is recommended to reduce potential interoperability
                issues in edge cases. (I will discuss these issues further later in this
                chapter.)
If you do want to enable the unlimited mode (e.g., it’s very useful if you want to
                write an SSL assessment tool, in which case you want to have access to as many
                cipher suites as possible), you’ll need to download special policy files from
                Oracle’s web site[543] and put them in the correct location on the disk, per the installation
                instructions.
Note
On some systems, there will be more than one Java installation available. Make
                    sure you patch the correct one or all of them. Even when there is only one
                    version installed, the JDK and JRE usually go into separate directories and
                    might need to be patched separately.[544]


Provider Configuration



Java ships with many providers; some are generic, and some are platform specific.
                Oracle’s SSL/TLS implementation (SunJSSE) is a good example of a generic provider,
                because the same code is used on all platforms. On the other end of the spectrum,
                the SunMSCAPI provider is a special component that interfaces with cryptographic
                features of Windows operating systems.
You will generally not need to deal with provider configuration except in a few
                cases, such as when you desire specific functionality or if you are looking to
                improve performance. In the following cases, for example:
	Performance tuning
	Java-provided crypto is not inherently slower,[545] but in practice Java might not be the fastest platform.
                            There is certainly some evidence that shows that crypto performance can
                            be improved using OpenSSL and NSS. As an illustration, an Intel use case
                            claims up to 38% performance improvement when Java is coupled with NSS libraries.[546]

	FIPS
                            mode
	Java supports FIPS, but only if coupled with an external
                            FIPS-certified provider. One such provider is Mozilla’s NSS.



The ability to exchange one provider for another is also very useful if you come
                across bugs or implementation limitations. In theory, you should be able to overcome
                those by using another provider. Of course, in practice you might replace one set of
                bugs and limitations with another.

Features Overview



Java’s SSL/TLS implementation has traditionally been conservative and late to
                implement key protocol features. In that sense, Java’s library has been quite
                similar to others (except Microsoft’s). For example, client-side support for virtual
                secure hosting was added in Java 7, but for server-side support we had to wait until
                Java 8. Similarly, although TLS 1.2 support was added in Java 7, it was enabled by
                default only in Java 8.
Table 14.1. Evolution of SSL/TLS protocol features in JSSE
	 	Java 5 (May 2004–October
                                2009)	Java 6 (December 2006–February 2013)	Java 7 (July 2011–)	Java 8 (March 2014–)
	Elliptic Curve crypto	No[a]	Yes[b]	Yes[c]	Yes
	Client-side SNI	-	-	Yes	Yes
	Server-side SNI	-	-	-	Yes
	TLS 1.1 and 1.2	-	-	Yes[d]	Yes
	AEAD GCM suites	-	-	-	Yes
	SHA256 and SHA384 suites	-	-	Yes	Yes
	DH over 1,024 bits (client)	-	-	-	Yes
	DH over 768 bits (server)	-	-	-	Yes[e]
	Secure renegotiation	u26+	u22+	Yes	Yes
	BEAST mitigation (1/n-1 split)	-	u29+	u1+	Yes
	OCSP stapling	-	-	-	-
	Server cipher suite preference	-	-	-	Yes
	Disable client-initiated renegotiation	-	-	-	Yes
	Hardware-accelerated AES	-	-	-	Partial[f]
	Default client handshake format	v2	v2	v3	v3
	[a] In Java 5, JCA provided only EC APIs, but no
                                        implementation.

[b] In Java 6, JSSE added support for EC suites, but the JDK
                                        itself didn’t implement any EC algorithms. The only platform
                                        that supported EC suites by default was Solaris, which had
                                        native EC functionality and integrated with Java using
                                        PKCS#11.

[c] Official Java 7 implements EC algorithms via the SunEC
                                        provider. However, this component is not included in
                                        OpenJDK. To add EC support, look for third-party libraries
                                        such as BouncyCastle, or integrate with a native
                                        implementation using PKCS#11.

[d] Disabled by default in client mode. Enabled by default in
                                        server mode.

[e] Only 1,024 bits by default, but can be increased to 2,048
                                        bits.

[f] JEP
                                            164: Leverage CPU Instructions for AES
                                            Cryptography (OpenJDK web site)






Protocol Vulnerabilities



The most recent versions of Java do not suffer from any of the known SSL/TLS
                vulnerabilities. Although there are frequent Java releases with security fixes, most
                vulnerabilities affect only client software. For this reason, server-side
                installations are often left unpatched for long periods of time. However,
                occasionally a server-side bug is fixed, and sometimes the issue is in the
                cryptographic libraries. For example, the patch release in April 2014 fixed a
                serious problem in JSSE.[547]
 Another reason to upgrade server installations is to refresh the truststores.
                This might be relevant for web applications that communicate with external
                systems.
	Insecure renegotiation
	Oracle initially addressed insecure renegotiation on 30 March 2010
                            with an interim patch that disabled renegotiation.[548] Secure renegotiation was implemented on 12 October 2010 in
                            Java 5u26 and Java 6u22. Java 7 and later supported secure renegotiation
                            from the first release.
Like most other client-side software, Java clients will connect to
                            servers that do not implement secure renegotiation. This is dangerous,
                            because clients have no way of detecting attacks against insecure
                            renegotiation even if they themselves do support
                            secure renegotiation. The alternative is to allow clients to connect
                            only to servers that support secure renegotiation, but in that case you
                            will have to accept that connections with insecure servers will fail.[549]

	BEAST
	To address the BEAST attack, Java implements the 1/n-1 split starting
                            with Java 6u29 and Java 7u1.

	CRIME
	The CRIME attack exploits information leakage inherent in compression.
                            Java never supported compression at the TLS level, which means that no
                            Java client was ever vulnerable to CRIME. Java web applications might
                            still be vulnerable to the CRIME variants TIME and BREACH, which attack
                            HTTP response body compression.




Interoperability
                        Issues
                



With Java in server mode, you are not very likely to experience interoperability
                issues; Java supports a variety of protocols and suites, which means that you will
                be able to communicate with virtually any client.
It’s a different situation in client mode,
                where
                there are several potential problems that you need to be aware of:
	Missing root certificates
	The root certificate store shipped with the JRE enables Java clients
                            to communicate with previously unseen web sites. Over time, old roots
                            are retired and new ones are added. If a web site is relying on a root
                            certificate that is not in your store, connections to the site will
                            fail. If you’re not updating your JRE regularly, then the root store
                            might become stale, causing connectivity failures. Old root stores might
                            also contain roots that shouldn’t be trusted any more. In some cases, it
                            may be that the official root store does not contain a root you wish to
                            trust. If that happens, you will need to manually add such roots.

	Servers with only 256-bit suites enabled
	A very small number of sites are configured only with 256-bit cipher
                            suites. If your JRE hasn’t been upgraded to the unlimited mode (it’s
                            capable only of 128-bit AES), you might not be able to communicate with
                            such sites.

	DH parameters over 1,024 bits
	All versions prior to Java 8 are limited to supporting client-side
                            Diffie-Hellman (DH) parameters of only up to 1,024 bits. Although few
                            servers use anything stronger at the moment, 1,024-bit DH parameters are
                            considered weak, and there is a trend to deploy stronger
                            parameters.

	RSA keys under 1,024 bits
	Starting with 7u40, Java refuses to connect to servers that use
                            insecure RSA keys that offer less than 1,024 bits of security. It is
                            possible to bypass this restriction by changing the
                                jdk.​certpath.​disabledAlgorithms
                            property, but that’s generally not a good idea.

	MD2 root certificates
	Also from 7u40, Java versions will not accept certificates with MD2
                            signatures. A small number of servers contain such certificates in their
                            chains, and they will cause TLS connections to fail. Although it is
                            possible to override the rejection of MD2, you should consider it only
                            as a last resort.



Stricter Algorithm Restrictions



Java’s default algorithm restrictions for certification path building could be
                    improved for better security, disabling all insecure algorithms and key sizes.
                    Consider the following setting for the
                        jdk.certpath.disabledAlgorithms security property:
  MD2, MD5, RSA keySize < 2048, DSA keySize < 2048, EC keySize < 256
These restrictions don’t necessarily affect the root certificates in your
                    truststores. For best results, you should also inspect all the root certificates
                    and remove the weak ones (use the above criteria).


Tuning via Properties



Java exposes a number of system and security properties that can be used to change
                the default cryptography settings. In this section, I am including a selection of
                the most useful settings. You can find the full list in the JSSE documentation.[550]
Table 14.2. Most useful system and security properties for SSL/TLS and PKI tuning
	Purpose	Property name	Description
	Default client protocols for
                                    HttpsUrlConnection	https.​protocols	Provide a comma-separated list of desired protocols. For example:
                                    TLSv1,TLSv1.1,TLSv1.2. Starting with Java 8,
                                you can use jdk.tls.client.protocols to affect
                                all SunJSSE clients.
	Default client cipher suites for
                                    HttpsUrlConnection	https.​cipherSuites	Comma-separated list of desired cipher suites to be used by
                                    HttpsUrlConnection.
	Use Server Name Indication (SNI)	jsse.​enableSNIExtension	Enabled by default in Java 7 and later. Should not be disabled
                                unless you encounter incompatible servers.
	Allow insecure renegotiation	sun.security.ssl.​allowUnsafeRenegotiation
                            	Disabled by default and should stay that way.
	Allow insecure renegotiation clients	sun.security.ssl.​allowLegacyHelloMessages
                            	Enabled by default in order to allow not-yet-patched TLS clients.
                                Ideally, it should be disabled, but that may cause interoperability
                                problems.
	Disabled suite algorithms	jdk.tls.​disabledAlgorithms	A handy setting to use to disable certain algorithms without
                                changing application source code. Security
                                    property.
	Disabled certificate algorithms	jdk.certpath.​disabledAlgorithms	Algorithm restrictions for certification path processing.
                                Contains MD2, RSA keySize < 1024 in 7u40 and
                                newer. The documentation for this parameter is in the
                                    java.security file. Security property.
	Reconstruct incomplete certificate chains	com.sun.​security.enableAIAcaIssuers	If enabled, Java clients will follow AIA information when
                                available and attempt to reconstruct incomplete certificate chains.
                                Disabled by default.
	Enable revocation checking	com.sun.net.​ssl.​checkRevocation	Disabled by default. If enabled, requires that either CRL or OCSP
                                revocation methods are enabled.
	Enable OCSP revocation checking	ocsp.enable	When enabled, Java clients will check certificates for revocation
                                via OCSP. Disabled by default. Security
                                    property.
	Enable CRL revocation checking	com.sun.​security.enableCRLDP	When enabled, Java clients will check certificates for revocation
                                via CRL. Disabled by default. If OCSP checking is enabled, it will
                                be attempted first.



In Java 8, several new properties are available:
Table 14.3. New configuration system properties available in Java 8
	Purpose	Property name	Description
	Disable client-initiated renegotiation	jdk.tls.​rejectClientInitiatedRenegotiation	Set to true to disable client-initiated
                                renegotiation. Not documented at the time of writing.
	Configure server Diffie-Hellman strength	jdk.tls.ephemeralDHKeySize	Leave undefined for 1,024 bits. Set to legacy
                                for the weak Java 7 behavior, matched to match
                                key size, and a number from 1,024 to 2,048 for a fixed
                                value.
	Default SunJSSE client protocols	jdk.tls.client.protocols	Similar to https.protocols, but affects all
                                SunJSSE clients, not just
                                HttpsUrlConnection.



System and security properties are similar, but they are configured differently.
                You can set a system property in one of two ways. First is via
                the -D switch on the JVM command line. For example:
$ java -Dhttps.protocols=TLSv1 myMainClass
Alternatively, at runtime you can use the System.setProperty()
                method:
System.setProperty("https.protocols", "TLSv1");
Security properties, on the other hand, are chiefly
                configured by editing the $JAVA_HOME/lib/security/java.security
                file. If you want to override the settings from the command line, you can, but under
                two conditions:
	The security.overridePropertiesFile setting in the main
                        configuration file must be set to true (the
                        default).

	You can’t specify individual properties on the command line; instead, you
                        have to create a property file with all of your property overrides in
                        it.



If these two conditions are met, you can override the default security properties,
                like so:
$ java -Djava.security.properties=/path/to/my/java.security-overrides
There is also an undocumented feature that allows you to specify an entirely
                different security configuration (not just override the defaults) by using two
                equals signs:
$ java -Djava.security.properties==/path/to/my/java.security
At runtime, you can set a security property using the
                    Security.setProperty() method. For example, to improve the
                default policy on algorithm strength you could do this:
Security.setProperty("jdk.certpath.​disabledAlgorithms",
    "MD2, MD5, RSA keySize < 2048, DSA keySize < 2048, EC keySize < 256");
Warning
Setting properties at runtime might not always be reliable. Some classes might
                    look up the property values only once at startup, which might lead them to miss
                    the changed properties. For best results, configure properties in the
                    configuration files or by using command-line switches.


Common Error Messages



When something unexpected happens, JSSE will throw an exception, but the language
                used in the error messages tends to be very technical and often does not provide
                enough clues to help resolve the problem. This section contains a collection of
                commonly observed JSSE error messages and options to deal with them.
Certificate Chain Issues



Sometimes, a Java client attempting to connect to a server might not be able
                    to validate the certificate. When that happens, the following exceptions are
                    thrown:
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target
As for the root cause behind the problem, it can be one of the following
                    issues:
	Unknown certification authority
	The server’s certificate is signed by a CA unknown to your Java
                                client. This might happen if your keystore configuration is too old
                                and does not contain the new CA or if the server is using a custom
                                CA (which will never be recognized by the public). If you are
                                certain that the CA is genuine, you can solve this problem by adding
                                the missing certificate to your truststore. Other than that,
                                trusting arbitrary root certificates is not recommended; once added,
                                a root certificate can impersonate any web site in the world.

	Incomplete chain
	Although we spend most of our time discussing server certificates,
                                in reality servers need to configure chains of certificates. If a
                                server’s chain is incomplete, clients won’t be able to find a path
                                to a trusted root. The solution is to reconfigure the server with
                                the correct certificate chain.
Sometimes, incomplete chains can be reconstructed with the help of
                                the Authority Information Access (AIA)
                                extension, which contains a URL which you can use to download the
                                next certificate in the chain. Java does not follow AIA information
                                by default. To enable this feature, set the
                                    com.sun.security.enableAIAcaIssuers property
                                to true.

	Self-signed certificate
	Many servers run with only self-signed certificates. If they are
                                delivering services intended for public consumption, that’s
                                unacceptable. If not, it might be all right, and you should be able
                                to deal with the problem by creating an exception and trusting that
                                certificate.



Warning
Contrary to many “solutions” you can find on the Internet, you should
                        never attempt to solve the self-signed certificate problem by disabling
                        validation in your code. If you do that, your programs will fail miserably
                        when under a man-in-the-middle (MITM) attack.
                        Basically, anyone would be able to present any certificate to your code and
                        impersonate the server you’re connecting to.


Server Hostname Mismatch



When connecting to a remote web server over TLS, the expectation is that the
                    hostname from the URL will match one of the hostnames specified in the
                    certificate. If that’s not the case, the following exception will occur:
javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException: No name matching beta.feistyduck.com found
The solution simply is to install a correct certificate, which includes the
                    missing hostname.

Client Diffie-Hellman Limitations



All versions prior to Java 8 support Diffie-Hellman (DH) parameters of only up
                    to 1,024 bits. When a Java client running on one of those platforms encounters a
                    server that wishes to use a suite with DH parameters over 1,024 bits (almost
                    always 2,048 bits), you will see the following exceptions:
javax.net.ssl.SSLException: java.lang.RuntimeException: Could not generate DH keypair
...
Caused by: java.lang.RuntimeException: Could not generate DH keypair
...
Caused by: java.security.InvalidAlgorithmParameterException: Prime size must be multiple of 64, and can only range from 512 to 1024 (inclusive)
If you have control over the server in question, it is easy to make this
                    problem go away, by doing one of the following:
	Enable and prioritize ECDHE suites on the server. Java 6 and 7 clients
                            support these, and will happily use them. (But do note that with Java 6
                            you must switch to using the v3 handshake in order to utilize the ECDHE
                            suites at the client level.)

	If the server does not support ECDHE suites, you can prioritize RSA
                            suites on the server, but you will lose forward secrecy with your Java
                            clients.

	As a last resort, you can downgrade DH parameters to 1,024 bits. This,
                            of course, also downgrades the security of all DH suites.



If you’d rather make changes to the client configuration, you can try
                    replacing Oracle’s JCE component (where the limitation lives) with that
                    developed by the Bouncy Castle project.[551] I’ve had mixed results with this approach. Sometimes it works, but
                    the addition of a provider might produce other exceptions that can’t be easily
                    explained.

Server Name Indication Intolerance



A small number of servers are intolerant to the Server Name
                        Indication (SNI) extension, which is used by default by clients
                    starting with Java 7. More commonly, servers that do support SNI send a TLS
                    warning when the SNI information couldn’t be matched to any virtual host on the
                    server. Although TLS warnings are not fatal and can be ignored, Java clients
                    react to them by aborting the connection. You will know you have this problem if
                    you upgrade your JVM and start seeing the following exception:
javax.net.ssl.SSLProtocolException: handshake alert: unrecognized_name

Strict Secure Renegotiation Failures



When the JVM is in the strict secure renegotiation mode, the requirement for
                    every TLS handshake will be that both sides implement secure renegotiation. If
                    that’s not the case, you will get the following exception:
javax.net.ssl.SSLHandshakeException: Failed to negotiate the use of secure renegotiation
You will not get this exception unless you’ve explicitly enabled the strict
                    secure renegotiation mode by setting
                        sun.security.ssl.allowLegacyHelloMessages to
                        false. If you experience this problem in a Java client,
                    the best way to deal with it is to upgrade the server. If that’s not possible,
                    your only other option is to revert back to the default (and unsafe)
                    mode.

Protocol Negotiation Failure



SSL 3 is an older, obsolete protocol version that shouldn’t be used. Virtually
                    all servers on the Internet support at least TLS 1.0 and you’re not likely to
                    experience interoperability issues, but you might encounter an odd SSL 3-only
                    server. If you disable SSL 3, you might encounter the following exception with
                    such servers:
javax.net.ssl.SSLHandshakeException: Server chose SSLv3, but that protocol version is not enabled or not supported by the client.
To resolve this problem, you either need to get the server to upgrade or
                    downgrade the client.
On the other end of the spectrum, if you don’t enable newer protocols, you
                    might encounter a server that does not support TLS 1.0 and earlier. This, too,
                    is rare, but if you come across it, the message will be:
javax.net.ssl.SSLException: Received fatal alert: protocol_version

Handshake Format Incompatibility



Java 6 and older versions use the SSL 2 handshake format by default, but not
                    all servers do. If you come across a server that does not, you will see the
                    following message:
javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake
You can fix this problem by reconfiguring the client to use the SSL 3
                    handshake format, as described in the section called “Using Strong Protocols on the Client Side”.


Securing Java Web
                        Applications



In this section, I discuss several topics related to secure use of encryption in
                either Java clients or web applications. These topics aren’t very complicated, but
                the correct information is often difficult to find in the sea of documents available
                on the Web. Please note that I don’t discuss here anything outside encryption. For
                example, cookie security and session management security are complex topics and
                there is a lot to be said, but complete coverage of these topics is outside the scope
                of
                this book.
Enforcing Encryption



You can write a web application that wants to be secure (i.e., deployed under
                    TLS), but you can’t actually enforce that. Due to an operator mistake or
                    configuration error, your application might be available under plain-text
                    HTTP.
My advice is to always check programmatically if the application is accessed
                    securely by invoking the isSecure() method on the
                        HttpServletRequest instance supplied by the Servlet
                    container. For existing applications in which you don’t have control over the
                    source code, checks can be added in a servlet filter.
Note
This programmatic check will catch the obvious configuration errors, but
                        it is not foolproof. Some systems terminate TLS at earlier architectural
                        layers (e.g., load balancers and proxies) but use web server configuration
                        settings to convince applications that encryption is in place.


Securing Web Application Cookies



The following code snippet creates a cookie with both
                        httpOnly and secure flags set and adds
                    it to the response (via the HttpServletResponse instance
                    supplied by the Servlet container):
Cookie cookie = new Cookie(cookieName, cookieValue);
cookie.setMaxAge(cookieLifeInDays * 24 * 3600);
cookie.setHttpOnly(true);
cookie.setSecure(true);
response.addCookie(cookie);
Clearly, if you have an existing application that does not use cookies
                    properly, you will need to examine the source code to find where the cookies are
                    created, and make them all secure. If you don’t want to make changes to the
                    source code (or don’t have access to it), try writing a servlet filter[552] that intercepts cookies as they are being created and forcefully
                    makes them secure.

Securing Web Session Cookies



Java applications almost universally rely on the underlying servlet containers
                    to manage sessions for them. In practice, this means that configuration changes
                    need to be made in order to secure session cookies.
This is easy to do for applications that rely on the Servlet 3 specification
                    or newer,[553] which introduced configuration settings for securing session
                    cookies. To do this, add the following snippet to the application’s
                        web.xml file:[554]
<session-config>
    <cookie-config>
        <secure>true</secure>
        <http-only>true</http-only>
    </cookie-config>
<session-config>
For applications using earlier Servlet specification versions, the exact
                    behavior depends on the container. Some products automatically create secure
                    cookies when encryption is used.

Deploying HTTP Strict Transport Security



HTTP Strict Transport Security (HSTS) is a new
                    technology that enables strict handling of encryption by web applications that
                    don’t wish to receive any plaintext traffic. I cover HSTS in detail in Chapter 10, HSTS, CSP, and Pinning. To deploy it, you need to set a single
                    response header in your application. Only one method invocation is needed for
                    this:
response.setHeader("Strict-Transport-Security", "max-age=31536000; includeSubDomains");
However, configuring security policies is generally better done at the web
                    server level. Java applications can also use servlet filters. Rather than
                    writing your own, consider using one of the available open source projects, for
                    example, HeadLines.[555]

Using Strong Protocols on the Client Side



For client applications, Java’s default protocol configuration has
                    traditionally been focused on interoperability at the cost of security. Java 6,
                    for example, uses the old SSL 2 handshake format, which is necessary only if you
                    are actually willing to use SSL 2, but Java never supported this version of the
                    protocol. Java 7 doesn’t use the SSL 2 handshake format, but still doesn’t use
                    TLS 1.1 and 1.2 for clients by default, despite supporting these newer protocol
                    versions. (They are enabled by default for servers.) Java 8 enables TLS 1.1 and
                    1.2 for clients and servers alike.
If all you need is HttpsURLConnection, then the simplest
                    way to change the default behavior is via the https.protocols
                    system property I discussed earlier, in the section called “Tuning via Properties”. This will change the default protocol configuration for this class. Starting
                    with Java 8, the jdk.tls.client.protocols system property
                    does the same, but for all code that relies on SunJSSE.
If you’re an application developer and don’t control the environment in which
                    your application runs, changing system properties is not appropriate; it’s
                    better to programmatically ensure your application uses the desired protocols.
                    This task is straightforward if you’re handling synchronous sockets directly;
                    you can use SSLSocket.setSSLParameters() to deploy your own
                    configuration.
But for many common tasks, sockets are too low level, which is why you’ll
                    often find yourself using the higher-level HttpsURLConnection
                    class. Unfortunately, to change the protocols used by this class is more
                    difficult; you will need to create a custom SSLSocketFactory
                    and make sure it is always used.
Below is my custom factory, which enables all supported protocols (it’s future
                    compatible because protocol versions are not hardcoded) but disables the SSL 2
                    handshake format and the SSL 3 protocol:
import java.io.IOException;
import java.net.InetAddress;
import java.net.Socket;
import java.net.UnknownHostException;
import java.util.ArrayList;
import java.util.List;

import javax.net.ssl.SSLSocket;
import javax.net.ssl.SSLSocketFactory;

public class MySSLSocketFactory extends SSLSocketFactory {

    private String enabledProtocols[] = null;

    private String enabledCipherSuites[];

    private SSLSocketFactory sslSocketFactory;

    public MySSLSocketFactory() {
        sslSocketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();
        enabledCipherSuites = sslSocketFactory.getDefaultCipherSuites();
    }

    private Socket reconfigureSocket(Socket socket) {
        SSLSocket sslSocket = (SSLSocket) socket;

        if (enabledProtocols != null) {
            sslSocket.setEnabledProtocols(enabledProtocols);
        } else {
            List<String> myProtocols = new ArrayList<String>();

            for (String p : sslSocket.getSupportedProtocols()) {
                if (p.equalsIgnoreCase("SSLv2Hello")
                        || (p.equalsIgnoreCase("SSLv3"))) {
                    continue;
                }

                myProtocols.add(p);
            }

            sslSocket.setEnabledProtocols(myProtocols
                    .toArray(new String[myProtocols.size()]));
        }

        sslSocket.setEnabledCipherSuites(enabledCipherSuites);

        return socket;
    }

    public void setEnabledProtocols(String[] newEnabledProtocols) {
        enabledProtocols = newEnabledProtocols;
    }

    public void setEnabledCipherSuites(String[] newEnabledCipherSuites) {
        enabledCipherSuites = newEnabledCipherSuites;
    }

    @Override
    public Socket createSocket(Socket s, String host, int port,
            boolean autoClose) throws IOException {
        return reconfigureSocket(sslSocketFactory.createSocket(s, host, port,
                autoClose));
    }

    @Override
    public String[] getDefaultCipherSuites() {
        return enabledCipherSuites;
    }

    @Override
    public String[] getSupportedCipherSuites() {
        return sslSocketFactory.getSupportedCipherSuites();
    }

    @Override
    public Socket createSocket(String host, int port) throws IOException,
            UnknownHostException {
        return reconfigureSocket(sslSocketFactory.createSocket(host, port));
    }

    @Override
    public Socket createSocket(InetAddress host, int port) throws IOException {
        return reconfigureSocket(sslSocketFactory.createSocket(host, port));
    }

    @Override
    public Socket createSocket(String host, int port, InetAddress localHost,
            int localPort) throws IOException, UnknownHostException {
        return reconfigureSocket(sslSocketFactory.createSocket(host, port,
                localHost, localPort));
    }

    @Override
    public Socket createSocket(InetAddress address, int port,
            InetAddress localAddress, int localPort) throws IOException {
        return reconfigureSocket(sslSocketFactory.createSocket(address, port,
                localAddress, localPort));
    }
}
Then, whenever you create an instance of
                    HttpsUrlConnection, assign it a custom factory:
URL u = new URL("https://www.feistyduck.com");
HttpsURLConnection uc = (HttpsURLConnection) u.openConnection();
uc.setSSLSocketFactory(new MySSLSocketFactory());

Revocation Checking



By default, Java will not perform any revocation checks on the certificates it
                    encounters. This is potentially insecure. You should enable both CRL and OCSP
                    revocation checking for maximum security by setting
                        com.sun.net.ssl.checkRevocation,
                        ocsp.enable, and
                        com.sun.security.enableCRLDP to
                        true.
In addition, you should also consider allowing Java to attempt to reconstruct
                    incomplete certificate chains, via the
                        com.sun.security.enableAIAcaIssuers property.
                    Incomplete certificate chains can’t be validated, which means that communication
                    with such servers will fail.


Common Keystore Operations
                



In this section, I cover the most common tasks related to key and certificate
                management. The keytool utility will help you with many of these
                tasks, but you might need to resort to using OpenSSL for some, particularly for key
                and certificate import.
Note
If you don’t enjoy spending time on the command line, consider using a tool
                    called KeyStore Explorer,[556] which provides a friendly user interface for common
                        keytool operations.

Keystore Layout



Although it might not be obvious at first, Java will allow you to use any
                    number of keystores. For client-side activity, you most likely won’t need to do
                    much, because the system-provided root keystore will be sufficient. You might
                    need to update this keystore from time to time, but you’re unlikely to use more
                    than one.
It’s different for server operation. Here, not only are multiple keystores
                    possible, they are actively recommended. Unless you have a very good reason to
                    do otherwise, you should always use one keystore per web site. The advantages of
                    this approach are that (1) you can
                    secure web site keys individually, using different passphrases, and (2) migration of sites from one server to
                    another is easy.
Within a keystore, each certificate chain is required to have a unique alias.
                    If you adopt my recommendation about server keystore usage, you will not need to
                    think about these aliases much, because there will always be only one
                    certificate chain in the entire keystore. In the rest of this chapter, I will
                    assume this is the case, and I will always use the alias “server.”

Creating a Key and a Self-Signed Certificate



To create a private key with a self-signed certificate, use the
                        -genkeypair command:[557]
$ keytool -genkeypair \
    -keystore feistyduck.jks \
    -alias server \
    -keyalg RSA \
    -keysize 3072 \
    -validity 365 \
    -ext SAN="DNS:www.feistyduck.com,DNS:feistyduck.com"
Enter keystore password: ****************
Re-enter new password: ****************
In this example, I use a keytool feature that allows
                    creation of certificates valid for multiple hostnames (the
                        -ext switch). This feature is not available in Java 6 and
                    earlier versions.
Warning
The keytool utility is able to accept the keystore
                        password on the command line via the -storepass switch.
                        However, I prefer not to use it, because if you do the password is recorded
                        in your command-line history and might be seen on the process list.

After you provide the password, you will be asked for the information that
                    will go into the certificate. The first question is misleading; you shouldn’t
                    respond with your name, but with the desired hostname (e.g.,
                        www.feistyduck.com):
What is your first and last name?
  [Unknown]:  www.feistyduck.com
What is the name of your organizational unit?
  [Unknown]:  Engineering
What is the name of your organization?
  [Unknown]:  Feisty Duck Limited
What is the name of your City or Locality?
  [Unknown]:  London
What is the name of your State or Province?
  [Unknown]:  England
What is the two-letter country code for this unit?
  [Unknown]:  GB
Is CN=www.feistyduck.com, OU=Engineering, O=Feisty Duck Limited, L=London, ST=England, C=GB correct?
  [no]:  yes

Enter key password for <server>
        (RETURN if same as keystore password):
You can now check the resulting keystore to see what your key and certificate
                    look like:
$ keytool -keystore feistyduck.jks -list -v
Enter keystore password: ****************
[...]
Alias name: server
Creation date: 01-Jul-2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=www.feistyduck.com, OU=Engineering, O=Feisty Duck Limited, L=London, ST=England, C=GB
Issuer: CN=www.feistyduck.com, OU=Engineering, O=Feisty Duck Limited, L=London, ST=England, C=GB
Serial number: 4f3326e0
Valid from: Tue Jul 01 17:10:31 BST 2014 until: Wed Jul 01 17:10:31 BST 2015
Certificate fingerprints:
         MD5:  55:63:0B:F5:F5:45:67:62:2D:85:FE:5C:D2:8E:1E:27
         SHA1: A4:AD:C6:1E:F6:1F:73:B0:BD:C6:2F:83:F5:B1:67:82:61:94:89:CE
         SHA256: FD:0A:BE:5B:9F:93:9D:BA:DF:FD:54:8B:37:0A:A4:7C:92:1F:03:25:8C:01:ED:92:9B:BE:AA:19:68:27:B9:4D
         Signature algorithm name: SHA256withRSA
         Version: 3

Extensions:

#1: ObjectId: 2.5.29.17 Criticality=false
SubjectAlternativeName [
  DNSName: www.feistyduck.com
  DNSName: feistyduck.com
]

#2: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 02 14 B4 49 F6 15 F0 77   FE 9A C8 86 2A 02 10 95  ...I...w....*...
0010: 9A 46 FD EB                                        .F..
]
]

Creating a Certificate Signing Request



After you create a key and a self-signed certificate, creating a
                        Certificate Signing Request (CSR) requires little
                    effort:
$ keytool -certreq \
    -keystore feistyduck.jks \
    -alias server \
    -file fd.csr
Enter keystore password: ****************
Now you can submit the file fd.csr to your CA to obtain a
                    certificate.

Importing Certificates



When you receive the server certificate back from your CA, you will need to
                    import it into the keystore along with all other certificates that are necessary
                    to construct the entire chain.
First, import the root certificate:
$ keytool -import \
    -keystore feistyduck.jks \
    -trustcacerts \
    -alias root \
    -file root.crt
Then, using the same command (but with a different alias each time), import
                    the intermediate certificates:
$ keytool -import \
    -keystore feistyduck.jks \
    -trustcacerts \
    -alias intermediate1 \
    -file intermediate1.crt
Finally, import the server certificate:
$ keytool -import \
    -keystore feistyduck.jks \
    -alias server \
    -file fd.crt
Note
The great thing about keytool is that it checks that
                        the imported certificate matches the key and that the certificate chain is
                        valid. According to my research, about 6% of all servers have incorrect
                        certificate chains. This behavior of keytool ensures that
                        such mistakes do not happen.


Converting Existing Certificates



If you are migrating an existing server from, say, Apache, you will need to
                    merge several key and certificate files into a single keystore. The
                        keytool utility can’t do this, but it’s easy using
                    OpenSSL.
The following command will take existing keys and certificates and convert
                    them into a new keystore in pkcs12 format:
$ openssl pkcs12 -export \
    -out feistyduck.p12 \
    -inkey fd.key \
    -in fd.crt \
    -certfile fd-intermediates.crt \
    -name server
Enter Export Password: ****************
Verifying - Enter Export Password: ****************
If you have more than one intermediate certificate, put them all into a single
                    file (fd-intermediates.crt in the previous example).
You can use this new keystore directly, but because it’s not in Java’s native
                    format you might need to specify the type in the configuration. For example, in
                    Tomcat you do that with the keystoreType parameter set to
                        pkcs12.
Alternatively, if you like everything neat and tidy, you can use
                        keytool to convert the keystore into the native (JKS)
                    format:
$ keytool -importkeystore \
    -srckeystore feistyduck.p12 \
    -srcstoretype pkcs12 \
    -destkeystore feistyduck.jks
Enter destination keystore password: ****************
Re-enter new password: ****************
Enter source keystore password: ****************
Entry for alias server successfully imported.
Import command completed:  1 entries successfully imported, 0 entries failed or cancelled

Importing Client Root Certificates



From time to time, you might encounter a situation in which your Java clients
                    can’t connect to a server even though the certificate was issued by a public CA.
                    In such cases, you will need to add the missing root certificate to your
                    keystore.
The first step is to obtain the missing root certificate. This is generally
                    easy, because these days every browser has a certificate viewer. Simply navigate
                    to the web site in question, choose the certificate viewer option, and export
                    the root certificate to a file. There is no need to export the intermediate
                    certificates.
Then issue the following command:
$ keytool -import \
    -keystore /path/to/keystore.jks \
    -trustcacerts \
    -file /path/to/root.crt \
    -alias UNIQUE_ROOT_ALIAS
Note
If you’re creating a custom keystore for explicit use by an application,
                        you can choose an arbitrary password for it. The password is of little
                        importance if you’re only keeping root certificates in the keystore. If you
                        intend to replace Java’s default keystore, however, use “changeit” for the
                        password, to match the one used by default.

I recommend that you maintain your master keystore in a separate location and
                    distribute it as needed. To change the default Java keystore, simply copy yours
                    to the correct location; in most cases that’s
                        $JAVA_HOME/jre/lib/security/cacerts.



Tomcat



If you are looking to run a web server on the Java platform, chances are you will rely
            on Tomcat or one of the many products derived from it. Using TLS with Tomcat can be
            confusing, because there are several ways to do it:
	No TLS at Tomcat level
	Historically, quite a few Tomcat deployments are placed behind Apache
                        reverse proxies. Apache is not only popular but also robust, and it has a
                        wide range of modules that support every feature imaginable; it makes sense
                        to have it as a separate architecture layer to handle all HTTP-related
                        functionality, leaving Tomcat to focus on Java-specific bits. This approach
                        is so popular that Apache comes standard with a special proxy module,
                                mod_proxy_ajp, which interfaces directly with
                        Tomcat by using a custom protocol called AJP.
In this mode, everything related to TLS is configured at the Apache level.
                        This approach will appeal to those who already have experience using Apache
                        but also to those who wish to avoid Java’s and Tomcat’s TLS
                        limitations.

	Using JSSE
	If you do want to terminate TLS at the Tomcat level, the default choice is
                        to use JSSE. This approach is straightforward, because every Java
                        installation supports it out of the box without any tuning. Easy as it is,
                        this choice also means accepting all the limitations of JSSE. However, many
                        improvements in Java 8 mean that JSSE is now a viable platform for strong
                        secure servers.

	Using APR and OpenSSL
	In order to make Tomcat perform better, its developers have come up with a
                        special native library called Tomcat Native.[558] This library wraps two other mature native libraries: APR (the
                        core of the Apache web server) and OpenSSL. If Tomcat Native is discovered
                        by Tomcat at startup, it’s automatically picked up. There is some anecdotal
                        evidence that the performance with Tomcat Native will be better, but because
                        this library also takes over socket handling and other I/O operations it’s
                        difficult to say which performance improvements are from better I/O and
                        which come from OpenSSL. At startup, Tomcat itself will tell you that using
                        Tomcat Native improves performance.
A major downside of Tomcat Native is that it complicates deployment; it’s
                        another component that needs to be installed and maintained. Tomcat Native
                        binds to the specific JDK, which means that you might need to recompile it
                        whenever you change Java versions.
For Windows, binaries are provided. Some platforms—for example,
                        Ubuntu—include Tomcat Native as an optional package (on Ubuntu the name is
                            libtcnative-1), but that version might be too old for
                        use with recent Tomcat versions. Furthermore, newer Tomcat Native versions
                        include important improvements.
When you do decide to use OpenSSL, Java’s cryptography features and
                        performance no longer matter; it only matters what versions of Tomcat Native
                        and OpenSSL you’re using and what features they support.



To make things more confusing, Tomcat with JSSE supports two connectors (server
            components that handle incoming connections): the older BIO (blocking) and the newer NIO (nonblocking).[559] If you want to use OpenSSL, there is only one connector that supports a mix
            of blocking and nonblocking operations.
The following table, copied from Tomcat documentation, shows a comparison of the
            different options.
Table 14.4. Comparison of performance features of various Tomcat connectors
	 	Java BIO	Java NIO	Java NIO2	Tomcat Native
	Class name	Http11Protocol	Http11NioProtocol	Http11Nio2Protocol	Http11AprProtocol
	Tomcat version	3.x onwards	6.x onwards	8.x onwards	5.5.x onwards
	Supports polling	No	Yes	Yes	Yes
	Polling size	N/A	maxConnections	maxConnections	maxConnections
	Read HTTP request	Blocking	Nonblocking	Nonblocking	Blocking
	Read HTTP body	Blocking	Sim-blocking[a]	Blocking	Blocking
	Write HTTP response	Blocking	Sim-blocking	Blocking	Blocking
	Wait for next request	Blocking	Nonblocking	Nonblocking	Nonblocking
	SSL implementation	Java (JSSE)	Java (JSSE)	Java (JSSE)	OpenSSL
	SSL handshake	Blocking	Nonblocking	Nonblocking	Blocking
	Max connections	maxConnections	maxConnections	maxConnections	maxConnections
	[a] Although the connector is nonblocking, traditionally the
                                    Servlet specification requires blocking I/O for request and
                                    response bodies. Thus, the nonblocking connector is simulating
                                    blocking I/O. The Servlet 3.1 specification (which is supported
                                    in Tomcat 8) introduces nonblocking I/O.





This complicated choice is perhaps why many decide to put a reverse proxy in front of
            Tomcat, thus avoiding a difficult decision. The main problem is that there are no clear
            guidelines to help us determine which approach might be best and when. However,
            performance is only one aspect of the decision. When it comes to TLS, the actual
            features are perhaps more important. The following table summarizes the differences
            between using JSSE with Java 7 and Java 8, Tomcat Native, and terminating TLS in an
            Apache reverse proxy before Tomcat.
Table 14.5. Comparison of TLS features of the available options for TLS termination
	 	Tomcat (Java 7)	Tomcat (Java 8)	Tomcat Native	Apache 2.4.x
	Strong DH parameters	No (768 bits)	Borderline (1,024 bits)	Borderline (1,024 bits)	Yes (2.4.7)
	Configure stronger DH parameters	-	Yes	-	Yes (2.4.7)
	Elliptic Curve support	Yes	Yes	Yes (1.1.30)	Yes
	Configure EC parameters	-	-	-	Yes (2.4.7)
	Cipher suite preference	-	Not yet[a]	Yes	Yes
	Virtual secure hosting	-	Not yet[a]	-	Yes
	Disable client-initiated renegotiation	-	Yes	Yes	Yes
	TLS session caching control	Yes	Yes	-	Yes
	TLS session cache clustering	-	-	-	Yes
	Session ticket support	-	-	Yes	Yes
	Disable session tickets	-	-	-	No
	Explicit session ticket configuration	-	-	-	Yes
	OCSP stapling	-	-	-	Yes
	Multikey support[b]	-	-	-	Yes
	[a] Although supported by JSSE in Java 8, this feature requires
                                    explicit support in the Tomcat code. It’s not available at the
                                    time of writing.

[b] The underlying JSSE engine supports multikey operation
                                    starting with Java 7, but this feature is not used by
                                    Tomcat.





Some of the features listed in the previous table are of an advanced nature and will
            affect only demanding users. But some are quite basic and significantly limit JSSE in
            Java 7 and earlier releases:
	Insecure DHE suites
	In Java 8, server ephemeral Diffie-Hellman (DH) suites use 1,024 bits of
                        security by default, which is a good choice for interoperability but not a
                        great one for security. The strength can be increased to 2,048 bits by using
                        the jdk.tls.ephemeralDHKeySize system property.
In Java 7 and earlier, server ephemeral DH is limited to 768 bits. For
                        this reason, you should not use any ephemeral DH suites with JSSE unless you
                        upgrade to Java 8.

	Cipher suite preference
	In versions before Java 8, JSSE does not allow servers to control cipher
                        suite order. This means that the first supported suite from the list offered
                        by the client will be used. In practice, this limits your ability to enforce
                        secure configuration. For example, it’s not possible to have RC4 in your
                        configuration but use it only with clients that don’t support anything
                        better. Similarly, it’s not possible to prefer suites that provide forward
                        secrecy over the ones that don’t.
Starting with Java 8, server preference is supported by JSSE, but each
                        server application will probably need to be updated to support this feature.
                        Tomcat doesn’t support it yet, but a patch is available to enable it.[560]

	Disable client-initiated renegotiation
	Client-initiated renegotiation is a protocol feature that is not used for
                        anything useful, but what it does do is create an opportunity for an
                        attacker to execute a DoS attack by forcing the server to continuously
                        renegotiate, consuming significant CPU resources. The weakness here is
                        principally that multiple handshakes are taking place on the same TCP
                        connection. Because most DoS detection techniques operate by observing
                        connection rates, this type of attack is difficult to mitigate.
Starting with Java 8, it is possible to disable client-initiated
                        renegotiation by using the undocumented
                            jdk.tls.​rejectClientInitiatedRenegotiation
                        system property.



In the light of these problems, until Java web servers are updated to support server
            cipher suite preference, I recommend using either Tomcat Native (version 1.1.30 or
            newer) or an Apache httpd reverse proxy for TLS termination.
Note
The TLS implementation (JSSE) included with Java 8 has been significantly
                improved, addressing all the major shortcomings from Java 7. If you’re running TLS
                servers using Java, you should upgrade to version 8 as soon as the new runtime
                stabilizes and the new features are supported by server software.

Configuring TLS Handling



To configure TLS,[561] you need to set a number of attributes on the
                    Connector element of the Tomcat configuration. The
                    protocol attribute determines which of the three supported
                connectors will be used. The default value (”HTTP/1.1”) will have Tomcat first
                attempt to use the APR connector. If the APR connector is not available, Tomcat 7
                and earlier will fall back to the BIO connector, whereas Tomcat 8 will use the NIO
                connector.
You shouldn’t rely on this auto-configuration behavior in production; instead,
                explicitly configure the desired connector by entering its name into the
                    protocol attribute, as described in the following
                sections.
To use JSSE with a blocking connector (BIO):
<Connector
    protocol = "org.apache.coyote.http11.Http11Protocol"
    port = "443"
    ...
/>
To use JSSE with a nonblocking connector (NIO):
<Connector
    protocol = "org.apache.coyote.http11.Http11NioProtocol"
    port = "443"
    ...
/>
By default, Tomcat will look for Tomcat Native and enable it. This is implemented
                in the AprLifecycleListener class, whose parameters are described
                in a later section. If you don’t want to use Tomcat Native, you can simply disable
                the class. Or if you only want to disable the OpenSSL bits, set the
                    SSLEngine parameter to off:
<Listener
    className = "org.apache.catalina.core.AprLifecycleListener"
    SSLEngine = "off"

If, on the other hand, you leave Tomcat Native in and wish to use OpenSSL, specify
                the Http11AprProtocol class in the protocol
                attribute:
<Connector
    protocol = "org.apache.coyote.http11.Http11AprProtocol"
    port = "443"
    ...
/>
External TLS Termination



Some TLS configuration is necessary even if you are not terminating TLS at the
                    Tomcat level. In this situation, the deployment is secure, but Tomcat is not
                    aware of it, and the applications running on it won’t be aware, either. This
                    might lead to subtle problems and security issues. For example, session cookies
                    might not be marked as secure, exposing sessions to the possibility of
                    hijacking.
If you are deploying Tomcat behind Apache using mod_jk or
                        mod_proxy_ajp, both of which implement the AJP
                    communication protocol, there is actually nothing for you to do. This protocol
                    will transparently communicate the TLS information from Apache to Tomcat.
In all other cases, you will have to invest more effort into configuration and
                    information exchange. For example, to tell Tomcat that TLS is handled
                    externally, configure the scheme and
                        secure fields only:
<Connector
    scheme = "https"
    secure = "true"
    ...
>
For the information exchange, you can use Tomcat’s SSL Valve,[562] which can extract information from request headers (placed there by
                    the proxy terminating TLS) and use it to populate the relevant Tomcat
                    structures.
If none of these solutions work for your case, it’s easy to write a custom
                    extension to do the same work as the AJP protocol, transparently setting the
                    secure flag, the correct remote port, protocol scheme, and so on.[563]


JSSE Configuration



The following configuration snippet enables TLS on port 443 and explicitly
                configures all parameters except client certificate authentication (which is only
                very rarely used):
<Connector
    protocol = "org.apache.coyote.http11.Http11Protocol"
    port = "443"

    SSLEnabled = "true"
    scheme = "https"
    secure = "true"

    clientAuth = "false"

    sslProtocol = "TLS"
    sslEnabledProtocols = "TLSv1, TLSv1.1, TLSv1.2"
    ciphers = "... omitted for clarity; see below"

    keystoreFile = "${catalina.home}/conf/feistyduck.jks"
    keystorePass = "YOUR_PASSWORD"
    keyAlias = "server"

    sessionTimeout = "86400"
    sessionCacheSize = "10000"
/>
Most of the parameters are self-explanatory, but please note the following:
	You should never need to change the SSLEnabled,
                            scheme, secure, and
                            sslProtocol parameters.

	Use the sslEnabledProtocols parameter to control
                        protocol selection. (Ignore sslProtocol, which interfaces
                        with an internal detail of JSSE and does not let you do anything useful.) My
                        example does not enable SSLv2Hello and
                            SSLv3, which I think is reasonable given that these
                        are needed only for very old clients, such as Internet Explorer 6 on Windows
                        XP.

	I recommend that you always include the keystore along with the web server
                        configuration. The ${catalina.home} variable is handy to
                        avoid using absolute paths.

	The keyAlias parameter selects the correct key and
                        certificate chain from the desired keystore.

	By default, Tomcat does not limit the number of cached TLS sessions, which
                        could open you up to a DoS attack. The best approach is to set a fixed
                        amount of RAM for the TLS session cache and configure this parameter
                        accordingly.



Omitted from the configuration example are the cipher suites. I recommend the
                following default configuration:
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
I’ve made the following assumptions and choices:
	You are using Java 7, which means that you have access to EC
                        suites.

	You are not using a DSA key (which is effectively limited to 1,024 bits
                        and thus weak).

	You don’t want to use insecure DHE suites that are limited to insecure
                        768-bit DH parameters.

	I’ve included suites that work with both ECDSA and RSA keys, which means
                        that the same configuration will work no matter what keys you have.



This configuration uses only suites that support forward secrecy and provide
                strong encryption. Most modern browsers and other clients will be able to connect,
                but some very old clients might not. As an example, older Internet Explorer versions
                running on Windows XP will fail.
If you really need to provide support for a very old range of clients—and only
                then—consider adding the following suites to the end of the list:
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_SHA
Note
The complete list of supported cipher suites is available as part of the
                    SunJSSE provider documentation.[564]

Forward Secrecy



My recommended suite configuration allows for only spotty forward secrecy
                    support. There are two reasons for that, and both stem from the limitations
                    imposed by JSSE.
	JSSE does not allow explicit selection of cipher suite order. At the
                            moment, most clients prefer ECDHE suites (that provide forward secrecy),
                            but some don’t. One such client is Internet Explorer, which, until very
                            recently, preferred vanilla RSA suites over ECDHE.

	ECDHE suites are the preferred way to enable forward secrecy, because
                            they’re fast. Unfortunately, older clients do not support them, and
                            enabling DHE suites is necessary for robust forward secrecy
                            configuration. In JSSE, all DHE suites are limited to 768 bits, which is
                            insecure; for this reason you can’t have any DHE suites in the
                            configuration, which means no forward secrecy with older clients.




Configuration with Java 8



If you are deploying with Java 8, some of the new features will be available
                    to you automatically:
	Stronger (1,024-bit) DH parameters will be used by default, and you
                            can configure the JVM to increase the strength to 2,048 bits to make it
                            more secure.

	You can configure the JVM to reject client-initiated
                            renegotiation.

	Deployments that rely on default cipher suite configuration will
                            automatically start offering the new GCM cipher suites.



For everything else, we will have to wait a little while longer until the
                    remaining new JSSE features are utilized by web servers. The two most important
                    features are:
	Respecting server-side cipher suite order.

	Support for virtual secure hosting.



The recommended cipher suite configuration for Java 8 deployments is as
                    follows:
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
The list of recommended suites is now longer, not only because of the new GCM
                    suites but also because I added back the DHE suites, which are secure when used
                    with Java 8.
If you really need to provide support for a very old range of clients—and only
                    then (see the discussion in the previous section)—consider adding the following
                    suites to the end of the list:
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_SHA


APR and OpenSSL Configuration



To use the APR and OpenSSL combination to handle TLS, use the following
                configuration snippet:
<Connector
    protocol = "org.apache.coyote.http11.Http11AprProtocol"
    port = "443"

    SSLEnabled = "true"
    scheme = "https"
    secure = "true"

    SSLVerifyClient = "none"

    SSLProtocol = "All"
    SSLCipherSuite = "... omitted for clarity; see below"
    SSLHonorCipherOrder = "true"

    SSLCertificateFile = "${catalina.home}/conf/fd.crt"
    SSLCertificateKeyFile = "${catalina.home}/conf/fd.key"
    SSLCertificateChainFile = "${catalina.home}/conf/fd-intermediates.crt"
    SSLPassword = "KEY_PASSWORD"    
        
    SSLDisableCompression = "true"
/>
Compared to the JSSE equivalent, there are many similarities but also some
                differences:
	Protocol selection is broken. In the version I tested (7.0.40), Tomcat
                        doesn’t know that TLS 1.1 and TLS 1.2 exist, which means that the only
                        practically useful value for the SSLProtocol parameter is
                            All, which enables all protocols from SSL 3 onwards.
                        All my attempts to disable SSL 3 failed. When Tomcat is updated, the
                        configuration string TLSv1+TLSv1.1+TLSv1.2 should do the
                        trick.

	Unlike with JSSE, it is not possible to control SSL 2 handshake format
                        compatibility; this format is always supported.

	You can enforce cipher suite order using
                            SSLHonorCipherOrder.

	There is no keystore; keys and certificates are stored as files.

	There is a configuration parameter to disable compression, which is
                        necessary because, unlike JSSE, OpenSSL does support compression. (But you
                        want it disabled nevertheless, because otherwise you’d be exposing yourself
                        to the CRIME attack.)

	There appears to be no way to control TLS session caching, which is
                        potentially worrying.



For the recommended cipher suite configuration, please refer to the section called “Recommended Configuration” in Chapter 11, OpenSSL.
                However, do note that ECDSA keys are not supported by Tomcat Native at this
                time.
Global OpenSSL Configuration



Some OpenSSL features are configured globally and controlled from the
                        AprLifecycleListener configuration. For example:
<Listener
    className = "org.apache.catalina.core.AprLifecycleListener"
    SSLEngine = "on"
    SSLRandomSeed = "builtin"
    FIPSMode = "off"
/>
There are two situations in which you will want to make some changes:
	If your OpenSSL installation supports multiple engines (e.g., hardware
                            acceleration), you can put the desired engine name in the
                                SSLEngine parameter.

	If your OpenSSL installation is FIPS compliant and you wish to enable
                            FIPS mode, set the FIPSMode parameter to
                                on.
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15 Configuring Microsoft Windows and IIS


Microsoft is one of the key players in the SSL/TLS and PKI ecosystem. Their client
        operating systems are everywhere, on the desktop and on mobile devices. Their server and
        cloud platforms power a large number of critical systems. Their development environments are
        a popular choice for building web sites.
In the light of Microsoft’s very long history and the longevity of their platforms, it’s
        not surprising that the biggest issues I encountered were complexity and lack of good
        documentation. The complexity comes from the fact that the software codebase is very old,
        with features added over a long period of time. Documentation often does not exist. When it
        does, finding it is not always easy; you will often run into older, now inaccurate articles
        online. That said, their cryptographic libraries provide good support for the important
        features, with only a few peculiarities here and there.
Schannel



Microsoft Secure Channel[565] (or Schannel, as it’s better known) is a
            cryptographic component that implements a set of protocols designed to enable secure
            communication. Schannel is the official SSL/TLS library on all Windows platforms, which
            means that most Windows programs rely on it, especially those developed by
            Microsoft.
Features Overview



Schannel has generally always offered good coverage of SSL and TLS protocol
                features. Microsoft was the first to support TLS 1.2 when it introduced Windows 7 in
                2009. For comparison, OpenSSL added support for TLS 1.2 in 2012; most other major
                desktop browsers started supporting it only in 2013. But even though TLS 1.2 had
                been implemented, it was left disabled by default. Ironically, Microsoft was
                subsequently late in enabling TLS 1.2 by default and did so only with Internet
                Explorer 11 in November 2013.
The biggest problem with Microsoft’s SSL/TLS implementation is the fact that
                Windows XP does not support virtual secure hosting (via the Server Name
                    Indication extension, or SNI). We can’t blame Microsoft for not
                supporting SNI at the initial launch of Windows XP in 2001, because SNI did not
                exist until 2003. But, for one reason or another, Microsoft decided not to add SNI
                support in the following three service packs even though it was clear that this
                operating system was going to be supported for a very long time. Because Windows XP
                is still used by a substantial number of users, the lack of SNI makes it very
                complicated and costly to deploy web site encryption at scale. That said, the
                support for Windows XP Service Pack 3 ended in April 2014; there’s hope that users
                will now start to migrate to other operating systems.
Note
This section describes the capabilities of Schannel, Microsoft’s SSL/TLS
                    library. Because Windows incorporates multiple layers of cryptographic
                    functionality, it can sometimes be difficult to pinpoint where exactly
                    limitations are coming from. Schannel inherits all limitations of the underlying
                    lower-level libraries and then adds some of its own. For example, even though
                    Windows 8 is documented to support DSA keys of up to 3,072 bits,[566] Internet Explorer still refuses to connect to servers that use keys
                    over 1,024 bits. The limitation is probably in Schannel.

Table 15.1. Evolution of SSL/TLS protocol features in Schannel
	 	Windows XP, Server 2003 / IIS 6	Windows Vista, Server 2008 / IIS 7	Windows 7, Server 2008 R2 / IIS 7.5	Windows 8, Server 2012 / IIS 8	Windows 8.1, Server 2012 R2 / IIS 8
	Elliptic curve cryptography	-	Yes	Yes	Yes	Yes
	Client-side SNI	-	Yes	Yes	Yes	Yes
	Server-side SNI	-	-	-	Yes	Yes
	TLS 1.0	Optional	Yes	Yes	Yes	Yes
	TLS 1.1, TLS 1.2[a]	-	-	Yes (IE 11)[b]	Yes (IE 11)[b]	Yes
	AES suites	-[c]	Yes	Yes	Yes	Yes
	AES GCM suites	-	-	Yes[d]	Yes[d]	Yes[e]
	DH parameters > 1,024 bits	-	-	Yes (IE 11)	Yes (IE 11)	Yes[f]
	Ephemeral DH with RSA	-	-	-	-	-
	DSA keys > 1,024 bits	-	-	-	-	-
	Session tickets	-	-	-	Yes (client)	Yes
	Secure renegotiation	MS10-049	MS10-049	MS10-049	Yes	Yes
	ALPN	-	-	-	-	Yes (client)
	BEAST mitigation	MS12-006	MS12-006	MS12-006	Yes	Yes
	OCSP stapling	-	-	Yes	Yes	Yes
	Default client handshake format[g]	v2	v3	v3	v3	v3
	[a] This row describes the default settings of Internet
                                        Explorer. Other applications might have different defaults
                                        depending on whether they explicitly configure SSL and
                                        exactly which underlying library they’re using.

[b] Windows 7 added support for TLS 1.1 and 1.2, but kept them
                                        disabled by default until Internet Explorer 11.

[c] Windows Server 2003 can be updated with KB 948963
                                        (released in 2008) to add support for some AES cipher
                                        suites.

[d] Only in combination with ECDSA keys, which are still a
                                        novelty.

[e] As of April 2014, four additional GCM suites are
                                        supported; they can be used with RSA keys.

[f] Starting with Windows 8, DH parameters up to 4,096 bits
                                        are supported.

[g] There are two client handshake formats: the old one used
                                        by SSL 2 and the new one introduced with SSL 3. Not all
                                        servers support the old format, meaning the connections from
                                        very old clients will fail.






Protocol Vulnerabilities



Despite their very large user base (even small changes can have a large impact
                with such a large pool of users and require extensive testing), Microsoft has a very
                good record of addressing protocol issues as they arise.
	Insecure renegotiation
	Like most other vendors, Microsoft initially addressed insecure
                            renegotiation with a workaround that disables renegotiation; the patch
                            was released as KB 977377 on 9 February 2010.[567] Secure renegotiation (RFC 5746) was implemented later, in
                            MS10-049, which was released for all platforms on 10 August 2010.[568]

	BEAST
	The BEAST vulnerability was fixed across all platforms in MS12-006,
                            which was released on 10 January 2012. The fix implements the 1/n-1
                            split when protocols TLS 1.0 and earlier are used.

	CRIME
	Microsoft never supported TLS compression in their SSL/TLS stack,
                            which meant that it was never vulnerable to the CRIME attack.




Interoperability
                        Issues



Schannel does not suffer from many practical interoperability issues. Those
                aspects that you will need to be aware of are mainly related to the deprecation of
                weak and obsolete cryptographic primitives.
	DSA
	Schannel does not support DSA keys stronger than 1,024 bits and never
                            did. Given the size of the Microsoft’s user base, this makes DSA
                            practically dead. The strength of DSA keys is roughly equivalent to the
                            strength of RSA keys, which means that 1,024 bits is too weak according
                            to current standards. In practice, this is not an issue, because there
                            are virtually no servers with DSA keys on the public Internet (and there
                            never were).

	DH parameters over 1,024 bits
	Before version 11, Internet Explorer did not support DH parameters
                            stronger than 1,024 bits. But this is a problem only in theory, because
                            the only practical way to use such parameters is with a DHE and RSA
                            suite combination (DHE_RSA), which IE also didn’t
                            support until April 2014.

	RSA keys under 1,024 bits
	RSA keys and certificates weaker than 1,024 bits were initially
                            deprecated with an optional update on 14 August 2012, which then became
                            mandatory on 9 October 2012.[569] This update applies to certificates issued by both public
                            and private CAs.

	MD5
	On 13 August 2013, Microsoft deprecated MD5 signatures in the
                            Microsoft Root Certificate Program with the release of KB 2862973.[570] The update applies to Windows Vista, Server 2008 and other
                            older platforms but not to the newer Windows 8.1, RT 8.1, and Server
                            2012 R2, which rejected MD5 signatures from the start.
Because this update affects only the certificates issued under the
                            root certificate program, MD5 certificates issued by private CAs are not
                            impacted. Deprecating all MD5 certificates can be done manually, after
                            installing KB 2862966.[571]

	RC4
	Microsoft was the first vendor to deprecate RC4. Starting with Windows
                            8.1, this cipher is not enabled by default. On 13 November 2013,
                            Microsoft released KB 2868725 for Windows 8 and earlier platforms,[572] making it possible for applications to disable RC4 by
                            requesting strong crypto and for users to completely disable RC4 by
                            making registry tweaks.
Internet Explorer 11 is hyped as the first browser to not offer RC4 by default,[573] but although that’s true on Windows 8.1, on my Windows 7
                            desktop (after the KB 2869725 update) RC4 is still present.
Removing support for RC4 leads to potential interoperability issues
                            for those upgrading to IE 11 and Windows 8.1. According to Microsoft’s
                            research, about 3.9% of the SSL sites they sampled supported only RC4 in
                            November 2013. SSL Pulse measurements indicate 1.8% in July 2014. When
                            connecting to such sites, IE 11 will fail on the first attempt. It will
                            then voluntarily downgrade the connection twice, first to TLS 1.0 (still
                            without RC4 and failing again) and then to SSL 3, this time with RC4
                            added. Thus, for a site that offers only RC4 cipher suites, one of the
                            following two situations can occur: (1) if the site supports SSL 3, IE 11 will use this
                            protocol version after some delay while it determines how to
                            successfully connect; (2) if
                            the site doesn’t support SSL 3, IE 11 won’t be able to connect at
                            all.
Microsoft should not be blamed for this problem. Being the first to
                            disable a major cipher with such a large user base is a bold move. On
                            the positive side, the introduction of a small penalty when connecting
                            to RC4-only sites creates a small incentive for site operators to
                            improve their configuration.

	SHA1
	On November 12th, 2013, Microsoft announced their plans to deprecate
                            SHA1 signatures by the end of 2016.[574] At the same time, they started to require that new roots
                            accepted to their Root Certificate Program must use SHA2 and RSA keys of
                            at least 4,096 bits. Microsoft was famously bitten when the Flame
                            malware attacked MD5 used past its due date. This time, they are not
                            taking any chances.



Apart from the potential issues listed here, the main interoperability worry you
                will have related to Schannel is supporting very old clients—for example,
                Internet Explorer 6—running on old operating systems such as Windows XP before
                Service Pack 3.


Microsoft Root Certificate Program



The Microsoft Root Certificate Program[575] maintains a collection of certificates trusted in Windows operating systems.
            Windows Vista and newer platforms ship only with a small number of trusted certificates
            that are required by the operating system. All other root certificates are securely
            retrieved from Microsoft the first time they are encountered (e.g., while browsing the
            Web). Because of this on-the-fly update mechanism, Microsoft users are guaranteed to
            always have the latest trusted certificates.
Windows XP doesn’t support the same update mechanism; updating the trusted roots
            requires a system update, usually via a manual download from the Microsoft Update Catalog.[576]
Managing System Trust Stores



If you are running a modern Windows version, you should very rarely need to
                manually configure the trust stores; the auto-update processes will take care of
                everything for you. The list of trusted certificates is updated once a week, new
                roots are downloaded on demand, and blacklisted certificates are downloaded daily.[577]
Note
Windows operates multiple certificate repositories. There is the main one
                    associated with the computer, but there are also separate stores for each
                    service and user account. As a rule of thumb, it’s best to work with the
                    computer certificate repository.

To view and change the system trust stores, use Microsoft Management Console
                (MMC), as explained later in this chapter in the section called “Creating a Custom IIS Management Console”. The main trust
                store is called Trusted Root Certification Authorities; it
                contains the roots from the Microsoft Root Program. By default, this store contains
                only a small number of certificates, but the number grows with usage. For example,
                after several years of usage my Windows desktop trusts 49 root certificates.
If you’re administering a Windows domain, you can manage the entire domain’s trust
                stores via Group Policy Management.[578]

Importing a Trusted Certificate



Adding a new trusted CA is easy. Once you obtain the correct certificate, you need
                to follow the Certificate Import wizard. To start the process,
                simply double-click the certificate (the extension should be
                    .cer) and then press the Import
                    Certificate button.
Warning
The decision to trust a new CA should be made only after carefully considering
                    the potential security impact. Once you trust a CA, you trust that it will issue
                    only genuine certificates and that their security practices are strong.
                    Remember, any CA can issue a certificate for any web site in the world.[579]


Blacklisting Trusted Certificates



Because of the auto-update system, if you wish to revoke trust in a particular CA
                it is not sufficient to delete their certificates from the Trusted Root
                    Certification Authorities store. If you do, your system will simply
                download the missing certificates the next time they are needed.
To ensure that a certificate is permanently blacklisted, place it into the
                    Untrusted Certificates store. The next time you visit a web
                site that depends on the root certificate in question, Internet Explorer (and other
                programs that depend on the Windows trust stores) will refuse to connect.

Disabling the Auto-Update of Root Certificates



If you don’t like the auto-update mechanism for root certificates, you can disable
                it by following these steps:[580]
	Open the Local Group Policy Editor by running
                            gpedit.msc.

	In the left pane, navigate to Computer Configuration >
                            Administrative Templates > System > Internet Communication Management >
                            Internet Communication settings.

	In the right pane, find and double-click on Turn off Automatic
                            Root Certificates Update.

	To disable automatic updates, change the setting to
                            Enabled.



From this moment on, you will need to manually maintain your root
                certificates.


Configuration



Interestingly for an operating system that is inherently GUI-oriented, Windows doesn’t
            have tools for SSL/TLS protocol, suite, and cryptographic algorithm configuration. The
            Internet Information Server (IIS) comes with a basic user interface for key and
            certificate manipulation, but other configuration changes are made by changing the
            registry directly.
Note
The instructions in this section apply to the operating system and programs that
                use system libraries. Programs that use their own SSL/TLS and PKI libraries won’t be
                affected unless they make an effort to respect Schannel configuration. For example,
                Firefox uses its own libraries and root certificates. Chrome also relies on its own
                libraries, but it uses system root certificates.

Schannel Configuration



Schannel configuration can be tuned to decide what protocols and cipher suites
                should be used. For protocols, there are separate controls for client and server
                applications. For everything else, there is one set of registry keys that apply to
                all application types.
All Schannel configuration options are nested under the following root key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\Schannel
Protocol Configuration



Protocols are configured using a number of registry keys nested under the
                        Protocols subkey. Each protocol gets its own key, and
                    there are two further subkeys to allow for separate configuration for client and
                    server applications. Starting with Windows Server 2008 R2 and Windows 7, all
                    major protocols are supported, starting with SSL 2.0 and ending with TLS 1.2.
                    This is what the entire structure looks like:[581]
Protocols\SSL 2.0
Protocols\SSL 2.0\Client
Protocols\SSL 2.0\Server
Protocols\SSL 3.0
Protocols\SSL 3.0\Client
Protocols\SSL 3.0\Server
Protocols\TLS 1.0
Protocols\TLS 1.0\Client
Protocols\TLS 1.0\Server
Protocols\TLS 1.1
Protocols\TLS 1.1\Client
Protocols\TLS 1.1\Server
Protocols\TLS 1.2
Protocols\TLS 1.2\Client
Protocols\TLS 1.2\Server
Each leaf key can contain one or both of the following
                        DWORD entries:
	DisabledByDefault
	This setting is for applications that do not explicitly configure
                                enabled protocols but use system defaults. If the entry is not
                                present or if the value is 0, the protocol is
                                enabled by default. If the value is 1, the
                                protocol is disabled by default. Normally, Windows will disable SSL
                                2 and leave all other protocols enabled.

	Enabled
	This entry allows you to disable certain protocol versions for all
                                applications, even those that explicitly enable them. To disable a
                                protocol, set the Enabled entry to
                                    0. If the entry is not configured or if its
                                value is anything except zero (the documentation recommends
                                    0xffffffff), the protocol will be
                                enabled.



After you make a change to the protocol configuration, you will need to
                    restart any active programs for the changes to take effect.

Cipher Suite Algorithm Selection



Two configuration methods are available for cipher suite configuration.
                    Cryptographic algorithms that make up suites can be configured individually.
                    Then, if a particular algorithm is
                    disabled,
                    all the suites that use it will also be disabled. This mechanism ensures that
                    weak algorithms are not used anywhere, even if configuration elsewhere suggests
                    to do so.
The following subkeys are available, one per algorithm:[582]
Ciphers\AES 128
Ciphers\AES 256
Ciphers\DES 56
Ciphers\NULL
Ciphers\RC4 40/128
Ciphers\RC4 56/128
Ciphers\RC4 64/128
Ciphers\RC4 128/128
Ciphers\Triple DES 168
Hashes\MD5
Hashes\SHA
Hashes\SHA256
Hashes\SHA384
KeyExchangeAlgorithms\Diffie-Hellman
KeyExchangeAlgorithms\ECDH
KeyExchangeAlgorithms\PKCS
Note
The PKCS key refers to the use of RSA for key exchange
                        only. The use of RSA for authentication is not affected (e.g.,
                            TLS_RSA_* suites will be disabled, but
                            TLS_ECDHE_RSA_* will not).

To disable an algorithm, create a DWORD entry called
                        Enabled under the correct key and set its value to
                        0. To reenable the algorithm, delete the entry or set its
                    value to 0xffffffff. Changes sometimes take effect
                    immediately, but you should always restart your programs to reliably change the
                    settings.
Note
The restrictions on hashes apply only to cipher suites, not to certificate
                        signatures. To disable, for example, MD5 for certificate signatures, follow
                        the instructions later in this chapter.



Cipher Suite Configuration



Disabling individual algorithms is useful, but in most cases what you really want
                to do is specify exactly which suites are enabled and in which order. Schannel on
                Vista and newer systems allows suites to be configured in this way, with the changes
                affecting client and server applications equally.
Cipher suite configuration is the only Schannel setting that can be configured via
                a graphical user interface:
	First, start the Local Group Policy Editor by running
                            gpedit.msc.[583]

	In the left pane, navigate to Computer Configuration >
                            Administrative Templates > Network > SSL Configuration
                            Settings.

	Then, in the right pane double-click on SSL Cipher Suite
                            Order and edit away.



Warning
When editing cipher suite configuration via the policy editor, pay close
                    attention to the size of the resulting suite string. The editor will accept only
                    up to 1,023 bytes and will silently cut off any extra data you put in.

The list of cipher suites supported by Schannel can be found on Microsoft’s web site.[584] I recommend the following cipher suite configuration, designed for
                security and speed:
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256_P256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384_P384
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA_P256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA_P256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256_P256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384_P384
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA_P256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA_P256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256_P256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
I made the following assumptions:
	Use only suites that provide forward secrecy.

	Provide support for RSA and ECDSA server keys in the configuration. At the
                        moment, RSA keys are dominant by far, which means that ECDSA suites will
                        remain unused in most cases. But if you do decide to switch, you won’t have
                        to change your suite configuration.

	The last two suites were added only to Windows 8.1 and Server 2012 R2 in
                        April 2014.[585] It’s not clear if these suites will be used in practice because
                        the clients that might support them already support the faster ECDHE
                        suites.



This configuration uses only suites that support forward secrecy and provide
                strong encryption. Most modern browsers and other clients will be able to connect,
                but some very old clients might not. As an example, older Internet Explorer versions
                running on Windows XP will fail.
If you really need to provide support for a very old range of clients—and
                only then—consider adding the following suites to the end of the list:
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_RC4_128_SHA
Note
If you look carefully at the suite names, you will notice that Microsoft uses
                    extended cipher suite name syntax, constructed by combining the official name
                    (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) with a
                        P256 or P384 suffix. These suffixes
                    refer to the elliptic curves that can be used for the ECDHE key exchange, the
                    NIST curves secp256r1 and secp384r1,
                    respectively. Although the underlying suite is the same no matter which suffix
                    is used, this naming approach enables you to have control over exactly which
                    elliptic curve is preferred.

If you want to configure suites by manipulating the registry directly, the key
                that controls cipher suite configuration is:[586]
HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Cryptography\↩
Configuration\SSL\00010002
If the key is empty, create a new entry: Functions of type
                    MULTI_SZ (a list of strings). The value must contain the list
                of cipher suites enabled by default in the order of preference. Changing this entry
                is easy using the registry editor. When editing from a command line or via a
                registry file, put all suites on a single line separated with commas. Do not use any
                spaces. When you’re done, a reboot is required for the changes to take
                effect.

Key and Signature Restrictions



Microsoft relatively recently added the ability to restrict the usage of weak
                cryptographic algorithms during certificate chain validation. This capability is
                available by default on Windows 8.1 and Windows Server 2012 R2 as well as on other
                Microsoft platforms that have KB 2862966 applied.[571]
The policy framework is quite extensive and supports a wide range of useful
                functionality:
	Disable weak cryptographic algorithms

	For key algorithms, enforce minimum key length

	Apply policy depending on certificate type (e.g., different policies for
                        server authentication and code signing)

	Specify policy that applies to all certificates or only to public
                        CAs

	Apply policy only to certificates issued after a certain date (e.g., keep
                        legacy certificates in use, but do not allow any new certificates with weak
                        algorithms)

	Log policy violations

	Log violations but do not enforce the policy otherwise

	Create per-certificate exceptions



The recommended approach is to start with a logging-only policy that enables you
                to monitor the violations but avoids potential disruption due to the mismatch
                between what is ideally desired and what is used in real life. After policy tuning
                and further monitoring, it will be possible to safely enable enforcement. Once a
                policy is tested on a single workstation, it can be pushed to other users via Group
                Policy Objects.
At the time of writing, it is possible to restrict the usage of the MD5 and SHA1
                signatures and DSA, ECDSA, and RSA keys. Restrictions are created by manipulating
                the registry keys under the following root key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\OID\EncodingType 0\↩
CertDllCreateCertificateChainEngine\Config
Because the policies can be elaborate, a special approach to key name construction
                is used to express the logic in a way that can be stored in the registry. Each key
                name must be in the following format:
Weak<CryptoAlg><ConfigType><ValueType>
To construct a key name, replace each option name with one of the possible values,
                as documented in the following table.
Table 15.2. Option values used for registry key name construction
	Option	Value	Description
	CryptoAlg	Md5	Specifies the name of the algorithm to which the
                                policy applies.
	Sha1
	Dsa
	Ecdsa
	Rsa
	ConfigType	ThirdParty	Applies only to the roots in the Microsoft root program (public
                                CAs).
	All	Applies to all certificate roots (public and private CAs).
                                    Because ThirdParty is a subset of
                                        All, the following also applies:

                                	Most flags set on All will also be
                                            set on ThirdParty; logging flags will
                                            not be affected.

	The earliest AfterTime will
                                            apply.

	The largest MinBitLength will
                                            apply.




	ValueType	Flags	List of flags that are used to select which certificate types are
                                restricted and how; see ahead for more information
                                    (REG_DWORD).
	MinBitLength	Specifies the minimum public key length in bits; applies only to
                                key algorithms (REG_DWORD). 
	AfterTime	Apply policy only to signatures generated after a certain time;
                                does not apply to certificate chains used for timestamping
                                    (REG_BINARY with an 8-byte
                                    FILETIME).
	Sha256Allow	List of explicitly allowed weak certificates, specified using
                                their hex-encoded SHA256 thumbprints (REG_SZ or
                                    REG_MULTI_SZ).



The purpose of key flags is twofold. First, they are used to enable a rule and
                control if it is enforced (see following table).
Table 15.3. Flags that control rule activation and enforcement
	Flag	Description
	CERT_CHAIN_ENABLE_WEAK_SETTINGS_FLAG
                                    (0x80000000)	This flag is required in order for a policy to be activated. If
                                the flag is disabled, then all other settings (for the same
                                combination of CryptoAlg and
                                    ConfigType) will be ignored.
	CERT_CHAIN_ENABLE_WEAK_LOGGING_FLAG
                                    (0x00000004)	Enables logging of certificate chains that violate
                                policy.
	CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG
                                    (0x00000008)	Policy violations are recorded, but weak certificate chains are
                                not rejected. This setting is very useful to test policies before
                                hard activation.



Additionally, multiple flags are used to control which certificate types the rule
                applies to, as documented in the following table.
Table 15.4. Flags that select certificate types on which rules operate
	Flag	Description
	CERT_CHAIN_DISABLE_ALL_EKU_WEAK_FLAG
                                    (0x00010000)	Applies policy to all certificates.
	CERT_CHAIN_DISABLE_SERVER_AUTH_WEAK_FLAG
                                    (0x00100000)	Applies policy to certificates used for server
                                authentication.
	CERT_CHAIN_DISABLE_CODE_SIGNING_WEAK_FLAG
                                    (0x00400000)	Applies policy to certificates used for code signing.
	CERT_CHAIN_DISABLE_MOTW_CODE_SIGNING_WEAK_FLAG
                                    (0x00800000)	Applies policy to certificates used for code signing, provided
                                they originated from the Web.
	CERT_CHAIN_DISABLE_TIMESTAMP_WEAK_FLAG
                                    (0x04000000)	Applies policy to certificates used for timestamping.
	CERT_CHAIN_DISABLE_MOTW_TIMESTAMP_WEAK_FLAG
                                    (0x08000000)	Applies policy to certificates used for timestamping, provided
                                they originated from the Web.



Note
To specify a weak signature, enable
                        CERT_CHAIN_ENABLE_WEAK_SETTINGS_FLAG on the appropriate
                    registry key (e.g., WeakMd5AllFlags for MD5). To specify a
                    weak key algorithm,
                    enable
                    the
                    appropriate
                    flag
                    and
                    configure
                    the minimum key length (e.g., set WeakRsaAllMinBitLength to
                    1,024 if you want to blacklist all RSA keys weaker than 1,024 bits).

Using CertUtil to Manipulate Cryptographic Policy



Manipulating the registry directly can sometimes be tricky, and it definitely
                    is in this case because policies can get quite complex. Another way to work with
                    policies is by using the CertUtil tool, which allows you to
                    display, create and change, and delete policy registry keys. This tool also
                    allows individual manipulation of flags, times, and string lists:
$ CertUtil -setreg -?
Usage:
  CertUtil [Options] -setreg [{ca|restore|policy|exit|template|enroll|chain|PolicyServers}\[ProgId\]]RegistryValueName Value
  Set registry value
    ca -- Use CA's registry key
    restore -- Use CA's restore registry key
    policy -- Use policy module's registry key
    exit -- Use first exit module's registry key
    template -- Use template registry key (use -user for user templates)
    enroll -- Use enrollment registry key (use -user for user context)
    chain -- Use chain configuration registry key
    PolicyServers -- Use Policy Servers registry key
    ProgId -- Use policy or exit module's ProgId (registry subkey name)

    RegistryValueName -- registry value name (use "Name*" to prefix match)
    Value -- new numeric, string or date registry value or filename.
        If a numeric value starts with "+" or "-", the bits specified
        in the new value are set or cleared in the existing registry value.

        If a string value starts with "+" or "-", and the existing value
        is a REG_MULTI_SZ value, the string is added to or removed from
        the existing registry value.
        To force creation of a REG_MULTI_SZ value, add a "\n" to the end
        of the string value.

        If the value starts with "@", the rest of the value is the name
        of the file containing the hexadecimal text representation
        of a binary value.
        If it does not refer to a valid file, it is instead parsed as
        [Date][+|-][dd:hh] -- an optional date plus or minus optional
        days and hours.
        If both are specified, use a plus sign (+) or minus sign (-) separator.
        Use "now+dd:hh" for a date relative to the current time.

    Use "chain\ChainCacheResyncFiletime @now" to effectively flush cached CRLs.

Options:
  -f                -- Force overwrite
  -user             -- Use HKEY_CURRENT_USER keys or certificate store
  -GroupPolicy      -- Use Group Policy certificate store
  -gmt              -- Display times as GMT
  -seconds          -- Display times with seconds and milliseconds
  -v                -- Verbose operation
  -privatekey       -- Display password and private key data
  -config Machine\CAName    -- CA and Machine name string

CertUtil -?              -- Display a verb list (command list)
CertUtil -setreg -?      -- Display help text for the "setreg" verb
CertUtil -v -?           -- Display all help text for all verbs
Warning
Changes to cryptographic policy take effect immediately if you’re changing
                        the registry directly or using the CertUtil tool. As
                        always, it is recommended that you make a backup of your registry before you
                        begin.


Recording Weak Certificate Chains



Weak certificate chains can be recorded for later analysis. To activate this
                    feature, first configure the WeakSignatureLogDir key with the
                    desired storage location:
$ CertUtil -setreg chain\WeakSignatureLogDir C:\Log\WeakCertificateChains
Then, when creating individual policies ensure that
                        CERT_CHAIN_ENABLE_WEAK_LOGGING_FLAG is set.
                    Alternatively, to record certificate chains without enforcing policy set
                        CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG instead.

Complete Policy Example



To illustrate, I will put together a simple policy that enforces restrictions,
                    with logging, on any certificate chain containing:
	MD5 signatures

	RSA keys below 1,024 bits

	DSA keys below 1,024 bits

	ECDSA keys below 160 bits



The initial policy will assume logging without enforcement:
$ CertUtil -setreg chain\WeakSignatureLogDir C:\Log\WeakCertificateChains
$ CertUtil -setreg chain\WeakMd5AllFlags 0x80010008
$ CertUtil -setreg chain\WeakRsaAllFlags 0x80010008
$ CertUtil -setreg chain\WeakRsaAllMinBitLength 1024
$ CertUtil -setreg chain\WeakDsaAllFlags 0x80010008
$ CertUtil -setreg chain\WeakDsaAllMinBitLength 1024
$ CertUtil -setreg chain\WeakEcdsaAllFlags 0x80010008
$ CertUtil -setreg chain\WeakEcdsaAllMinBitLength 160
The 0x80010008 value is made of the following three
                    flags:
CERT_CHAIN_ENABLE_WEAK_SETTINGS_FLAG (0x80000000)
CERT_CHAIN_DISABLE_ALL_EKU_WEAK_FLAG (0x000010000)
CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG (0x000000008)
The equivalent registry file is:
Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\OID\EncodingType 0\↩
CertDllCreateCertificateChainEngine\Config]
"WeakSignatureLogDir"="C:\\Log\\WeakCertificateChains"
"WeakMd5AllFlags"=dword:80010008
"WeakRsaAllFlags"=dword:80010008
"WeakRsaAllMinBitLength"=dword:00000400
"WeakDsaAllFlags"=dword:80010008
"WeakDsaAllMinBitLength"=dword:00000400
"WeakEcdsaAllFlags"=dword:80010008
"WeakEcdsaAllMinBitLength"=dword:000000a0
To change from logging only to enforcement, you can re-set the configuration
                    later on, changing 0x80010008 to
                        0x80010004 (replacing
                        CERT_CHAIN_ENABLE_ONLY_WEAK_LOGGING_FLAG with
                        CERT_CHAIN_ENABLE_WEAK_LOGGING_FLAG). Alternatively, you
                    can change individual flags as you see fit:
$ CertUtil -setreq chain\WeakMd5Flags -0x00000008
$ CertUtil -setreq chain\WeakMd5Flags +0x00000004


Configuring Renegotiation



There are two or three aspects of renegotiation that you might want to configure
                on your Windows systems. The most important one is adding support for secure
                renegotiation, which is something you will want to do for all your servers and
                workstations alike. On all platforms before Windows 8, patching with MS10-049 is
                required.
However, adding support for secure renegotiation doesn’t fully resolve the root
                issue. For compatibility reasons, most servers are configured to accept clients that
                do not support secure renegotiation; MS10-049 calls it Compatible
                    Renegotiation. In this mode, when either a client or the server
                requests renegotiation Schannel will not refuse it, even if it can’t be performed
                securely.
If you don’t need server-initiated renegotiation, the issue is easy to fix. Before
                the secure renegotiation feature, Microsoft released a workaround in KB 977377 that
                added the ability to disable renegotiation. When you fully disable renegotiation in
                a server, even clients that do not support secure renegotiation can’t be exploited.
                To do this, set the following key to any nonzero value:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\↩
SecurityProviders\SCHANNEL\DisableRenegoOnServer
Note
Early versions of IIS had allowed client-initiated renegotiation, but all
                    versions from IIS 6 onwards don’t. Strictly speaking, this means that if your
                    server never initiates renegotiation (e.g., if you are not requiring client
                    certificates), then it won’t be possible to exploit insecure renegotiation.
                    Still, I recommend that you take the extra step and explicitly disable
                    renegotiation; other programs might be vulnerable. For example, Microsoft’s
                    Forefront Threat Management Gateway (TMG) is known to allow client-initiated
                    renegotiation.

If, on the other hand, you do need server-initiated renegotiation, your only
                choice is to switch to Strict Renegotiation. In this mode,
                your servers will accept secure connections only from clients that implement secure
                renegotiation. This too adds security, but at the expense of rejecting unpatched
                browsers.
To enable the strict mode, set the value of the following key to zero:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\↩
SecurityProviders\SCHANNEL\AllowInsecureRenegoClients
In my tests, changes take effect immediately without even requiring a program
                restart.
The final decision to make is whether to allow your clients (e.g., browsers) to
                connect to servers that do not support secure renegotiation. This is the default,
                but it can be dangerous because such servers can be attacked, and yet clients have
                no way of detecting the attacks. The tradeoff is the same as for the servers: after
                enabling strict mode you won’t be able to connect to a sizable portion of the Web.
                According to the SSL Pulse results from July 2014, about 11.6% of the monitored
                servers do not support secure renegotiation.
If you decide to change your clients to the strict mode, change the value of the
                following key to zero:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\↩
SecurityProviders\SCHANNEL\AllowInsecureRenegoServers
Note
The workaround from KB 977377 also makes it possible to completely disable
                    renegotiation in clients, but doing so doesn’t improve their security. Insecure
                    renegotiation is exploited by tricking servers to accept renegotiation, not
                    clients.


Configuring Session Caching



SSL and TLS use session caching to avoid repeating slow cryptographic operations
                on every connection. Schannel maintains a server-wide memory store of session
                information. Different default settings are used on different platforms, which is
                why explicitly configuring the values on all servers is the best approach.[587]
All session caching parameters reside in the main Schannel registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\Schannel    
	To configure the server session retention period, set the
                            ServerCacheTime entry to the desired duration in
                        milliseconds.

	You are unlikely to ever need to change the retention period for client
                        applications, but if you do, then use the ClientCacheTime
                        entry. The value is also in milliseconds.

	To change the maximum number of stored sessions, create or change the
                            MaximumCacheSize value. If you use a zero, session
                        caching will be disabled.



As a rule of thumb, you should allocate as much RAM as you can for the session
                cache. Under ideal conditions, you want each session to stay in the cache until it
                expires (and not be evicted due to RAM shortage). Each session consumes 2 to 4 KB of
                RAM. Thus, to arrive at the maximum number of stored sessions you can support,
                divide the amount of RAM reserved for this purpose by 4 KB.
However, the problem with this approach is that Schannel’s session caching
                is implemented in a way that allows it to grow over the
                specified memory limit. This is because new sessions are created as needed, but old
                sessions are deleted only periodically (at intervals that match
                    ServerCacheTime), even when the cache is at maximum capacity.
                With normal traffic, even with spikes, such behavior is unlikely to be a problem;
                however, it does create a new DoS attack vector. For example, an attacker could
                start creating a very high number of SSL sessions per second. They will all remain
                in memory (each consuming about 4 KB) until the cache is pruned.
Normally, I would recommend that you set the session retention period to 24 hours.
                In light of Schannel’s session cache behavior, it’s prudent to reduce this
                value to something much lower: for example, one hour. Consider allocating more
                memory to the cache to serve as a buffer.
Note
Starting with Windows 8.1, Schannel supports server session
                        tickets, which are a stateless session resumption mechanism.
                    However, at the time of writing, this feature is not yet documented. Some hints
                    are available in the PowerShell documentation.[588]


Monitoring Session Caching



Schannel exposes several performance counters that you can use to monitor the
                session cache as well as the session resumption success rate. On older platforms,
                the resumption rate will be influenced only by the server-side session cache.
                Presumably, session tickets will contribute to the success rate on systems that
                support this feature.
The performance counters (see the following table) are in the Security
                    System-Wide Statistics category; you can view them by using the
                Performance Monitor tool (run perfmon on the command
                line).
Table 15.5. Schannel performance counters
	Performance counter	Description
	Active Schannel Session Cache
Entries	This counter tracks the number of Secure Sockets Layer (SSL)
                                entries that are currently stored in the secure channel (Schannel)
                                session cache and that are currently in use. The Schannel session
                                cache stores information about successfully established sessions,
                                such as SSL session IDs. Clients can use this information to
                                reconnect to a server without performing a full SSL
                                handshake.
	Schannel Session Cache Entries	This counter tracks the number of SSL entries that are currently
                                stored in the Schannel session cache. The Schannel session cache
                                stores information about successfully established sessions, such as
                                SSL session IDs. Clients can use this information to reconnect to a
                                server without performing a full SSL handshake.
	SSL Client-Side Full Handshakes	This counter tracks the number of SSL full client-side handshakes
                                that are being processed per second. During a handshake, signals are
                                exchanged to acknowledge that communication can occur between
                                computers or other devices.
	SSL Client-Side Reconnect
Handshakes	This counter tracks the number of SSL client-side reconnect
                                handshakes that are being processed per second. Reconnect handshakes
                                allow session keys from previous SSL sessions to be used to resume a
                                client/server connection, and they require less memory to process
                                than full handshakes.
	SSL Server-Side Full Handshakes	This counter tracks the number of SSL full server-side handshakes
                                that are being processed per second. During a handshake, signals are
                                exchanged to acknowledge that communication can occur between
                                computers or other devices.
	SSL Server-Side Reconnect
Handshakes	This counter tracks the number of SSL server-side reconnect
                                handshakes that are being processed per second. Reconnect handshakes
                                allow session keys from previous SSL sessions to be used to resume a
                                client/server connection, and they require less memory to process
                                than full handshakes.




FIPS 140-2



The Federal Information Processing Standards (FIPS) is a
                group of standards developed by the United States National Institute of
                    Standards and Technology (NIST) for use in nonmilitary government
                systems. There’s a variety of standards, and not all are focused on security. Among
                the security ones, FIPS 140-2 is of special interest to us because it defines the
                guidelines for the use of cryptography. For simplicity, I will refer to FIPS 140-2
                simply as FIPS.
Any system designed for US government use must comply with FIPS. In general,
                ensuring compliance is quite complicated. First, you must ensure that the systems
                are running only validated cryptographic components. Then, for every deployed
                application you must also ensure that its use of cryptography complies with the
                standard.
Microsoft makes this process easier because it maintains compliance for the core
                libraries and components. Most difficulties lie in ensuring compliance of
                third-party applications and software developed in house.
On all Windows platforms, FIPS is effectively implemented in five layers:
	Low-level libraries
	Microsoft actively maintains FIPS 140 certifications for their two
                            core cryptographic libraries: Cryptographic API
                            (CAPI) and Cryptographic API: Next Generation
                            (CNG). These libraries are not necessarily FIPS aware; they provide
                            support for approved and unapproved algorithms alike. It is the
                            responsibility of upper layers to comply with standards when
                            needed.

	FIPS registry indicator
	There is a single registry key that is used to indicate that a
                            particular system is required to comply with FIPS. All deployed
                            applications must ultimately adjust their behavior to comply with this
                            setting.

	Higher-level libraries
	Some higher-level cryptographic libraries are FIPS aware. They read
                            the FIPS registry key and adjust their behavior accordingly. In
                            particular, Schannel and Microsoft .NET Framework will comply with the
                            FIPS setting.

	Operating system components
	Key operating system components are declared to rely on and respect
                            FIPS. This makes FIPS deployments much easier. For example, the
                                Remote Desktop Protocol (RDP), filesystem
                            encryption (EFS, BitLocker), and IPSec are on the compliant list.

	Applications
	Applications are the actual consumers of cryptographic algorithms and
                            have the ultimate responsibility to comply with FIPS. Applications that
                            work with low-level libraries (CAPI and CNG) have the tedious job of
                            ensuring that those components are used in a compliant fashion. On the
                            other hand, applications that rely exclusively on higher-level libraries
                            are compliant by default.



Configuring FIPS



The easiest way to enable FIPS is by making changes using the Local Security
                    Policy management console:
	From the command prompt or the Run menu, invoke
                                secpol.msc.

	In the left pane, navigate to Local Policies > Security
                                Options.

	In the right pane, find and double-click the System
                                cryptography: Use FIPS compliant algorithms for encryption, hashing,
                                and signing entry.

	A property window will appear; choose Enabled or
                                Disabled, and press Apply
                            (see the following figure).



Note
You should reboot after making any changes that might affect the FIPS
                        status.

Figure 15.1. Configuring FIPS using the Local Security Policy management
                            console
[image: Configuring FIPS using the Local Security Policy management console]


If you prefer to work with the registry directly, you need to set the value of
                    the FIPS registry key to 1 for enabled or
                        0 for disabled. The location of the key differs depending
                    on the operating system. On Windows Vista and later platforms, the key is
                    at:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\Enabled
On Windows XP and Windows Server 2003, the key is at:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy


Third-Party Utilities



You might know all the Schannel registry keys, but that does not mean that you
                want to work directly with the registry every time. Nartac Software’s IIS
                    Crypto (shown in the following figure) is an IIS configuration
                utility that allows you to configure enabled cipher suites and their order. It comes
                with predefined templates and also has a handy link to the SSL Labs web site that
                allows you to test your new configuration.
Figure 15.2. Nartac Software’s IIS Crypto configuration tool
[image: Nartac Software’s IIS Crypto configuration tool]




Securing ASP.NET Web Applications
            



In this section, I discuss several topics related to the secure deployment of ASP.NET
            web applications. These topics cover several ways in which applications can subvert
            encryption, for example, by allowing plaintext access or using insecure cookies.
Enforcing SSL Usage



To prevent misconfiguration, applications that expect to be run under TLS should
                actively check for its presence on every request. The check can be made in the code,
                like so:
if (Request.Url.Scheme.Equals("https") == false) {
    // Error, access without SSL.
}
However, it is generally not advisable for each execution unit (script) to check
                for SSL individually. A better approach is to write the code once and invoke it
                whenever necessary. ASP.NET supports authorization filters, which is a way of
                executing a common chunk of code on every request. This filter is the ideal location
                for your TLS checks.

Securing Cookies



Every cookie you use in your application should be separately secured. All you
                need to do is set the Secure property to true.
                If the cookie is not intended to be accessed from JavaScript, also set the
                    HttpOnly property to true:
// Create a new cookie and initialize it.
HttpCookie cookie = new HttpCookie();
cookie.Name = "CookieName";
cookie.Value = "CookieValue";
cookie.Expires = DateTime.Now.AddMinutes(10d);

// Secure the cookie.
cookie.HttpOnly = true;
cookie.Secure = true;

// Add the cookie to the response.
Response.Cookies.Add(cookie);

Securing Session Cookies and Forms Authentication



In the ASP.NET configuration file, the <httpCookies> element[589] controls how the session cookies are secured. For example, to configure
                the session cookies to use the httpOnly flag (prevents access to
                the session cookie value from JavaScript) and the secure flag
                (ensures the cookies are sent only over SSL), do the following:
<configuration>
    <!-- other configuration options -->

    <system.web>
        <httpCookies
            domain = "www.example.com"
            httpOnlyCookies = "true"
            requireSSL = "true"
            lockItem = "true"
        />
    </system.web>
</configuration>
The purpose of the lockItem attribute is to prevent other parts
                of the configuration from overriding the values configured here. Despite that, there
                is still a catch. If your configuration also contains the
                    <forms> element (in other words, you are using forms
                authentication), you will need to ensure that the requireSSL
                attribute on <forms> is also set to
                true:
<forms
    requireSSL = "true"
    cookieless = "UseCookies"
    <!-- Your other attributes here. -->
/>
You will notice that I also configured the cookieless attribute
                to UseCookies. Forms authentication supports two modes of session
                token transport: the main approach is to use cookies, but there is also the
                URI-based method, which embeds session tokens in the page links. The URI-based
                method is interesting because it allows your application to work even for those
                users that do not support cookies. However, it comes with a significant security
                problem: because browsers embed URIs in the Referer request
                header as they follow links to external
                sites,
                the session tokens may be exposed in other sites’ logs. If an attacker can trick one
                of your users into following a link to a web site under the attacker’s control, he
                will be able to hijack that user’s session.

Deploying HTTP Strict Transport Security



HTTP Strict Transport Security (HSTS) is a recent standard
                that allows web applications to request that browsers use only encrypted access for
                them. This fact alone makes HSTS work as a defense-in-depth measure, even in the
                face of application design errors (e.g., insecure session cookies). In addition, the
                handling of invalid certificates is improved so that end users can no longer
                override warning messages. Deploying HSTS is easy, but before you do it make sure to
                fully understand its advantages and disadvantages.
The following code example enables HSTS with a long-term maximum age of about one
                year (specified in seconds), active on the main hostname as well as all
                subdomains:
Response.AppendHeader(
    "Strict-Transport-Security", 
    "max-age=31536000; includeSubDomains"
);
Alternatively, you could configure the header in configuration, using the
                following snippet:
<configuration>
    <!-- other configuration options -->

    <system.webServer>
        <httpProtocol>
            <customHeaders>
                <add name="Strict-Transport-Security"
                     value="max-age=31536000; includeSubDomains" />
            </customHeaders>
        </httpProtocol>
    </system.webServer>
</configuration>
The IIS Manager GUI also supports custom response headers. However, using any of
                these methods can be tricky, because the HSTS specification doesn’t allow for
                sending the Strict-Transport-Security header on plaintext
                responses. The easiest and cleanest approach is to use a third-party module that
                will take care of all the details for you.[590]


Internet Information Server
            



Internet Information Server (IIS) is the main web server used on Windows operating
            systems. It comes in several flavors (e.g., desktop and server versions), but the
            underlying code is usually the same in all cases. And of course, all flavors ultimately
            rely on Schannel for their SSL/TLS needs.
Because Schannel is a reasonably well-rounded TLS library, IIS also provides decent
            features in this area. The biggest practical problem comes from the fact that IIS
            exposes no user interfaces to configure TLS but relies on the underlying Schannel
            configuration. Schannel, in turn, can be configured only by working with the registry
            directly, which can be difficult.
In the rest of this section, I will highlight some of the issues with running secure
            sites on the Internet Information Server.
	Forward secrecy
	With IIS, you will be unable to provide robust support for forward
                        secrecy, because Schannel doesn’t support ephemeral Diffie-Hellman (DHE) key
                        exchange in combination with RSA keys. The majority of clients support the
                        faster ECDHE key exchange, but, according to Twitter, about 25% don’t.[591]
In April 2014, Microsoft released an update that added two new
                            DHE_RSA suites (used with 1,024-bit DH parameters) to
                        Windows 8.1 and Server 2012 R2. However, these suites won’t provide better
                        support for forward secrecy, because they use GCM authenticated encryption
                        that’s not supported by older clients.

	GCM suites
	At the time of writing, authenticated GCM suites are the only suites
                        thought to be completely secure. Even though the issues in other suites are
                        largely mitigated, if you’re keen to have the best possible security, GCM
                        suites should be your priority. Schannel does support GCM suites, but
                        largely in combination with ECDSA keys. At this point, virtually all sites
                        use RSA keys, and only the adventurous experiment with ECDSA.

	OCSP stapling
	Starting with Windows 2008, IIS enables OCSP stapling by default. Because
                        most other web servers require manual configuration, 96% of all stapled
                        responses are currently served by IIS.[592] The only catch is that your IIS server needs to be able to
                        communicate with the CAs that issued the certificates in order to obtain
                        OCSP responses and cache them locally. If you have a very restrictive
                        outbound traffic policy (firewall), such traffic might be blocked. To deal
                        with this, you can either relax your firewall policy or use a forward proxy
                        for the OCSP traffic.[593]

	Lack of per-site configuration
	IIS allows for only partial SSL/TLS configuration on per-site basis, which
                        means that for things such as protocol support and cipher suite order you
                        will be forced to find one configuration that suits all your sites. It
                        shouldn’t be a problem in practice, but it might prove to be constraining if
                        you’re hosting sites with special needs (e.g., FIPS).



Managing Keys and Certificates



IIS Manager comes with a GUI that supports basic key and certificate operations.
                It’s sometimes unintuitive, but it gets the job done. My instructions and examples
                here will be for Windows Server 2012 and IIS 8, but the workflow with the earlier
                (IIS 7 and 7.5) and later (IIS 8.5) versions should be the same.
Note
The language used in the IIS user interface is not accurate. Most labels and
                    action names refer to certificates, whereas you will almost
                    always be managing keys and certificates at the same time.
                    For simplicity, in this section I will use the IIS terminology.

Creating a Custom IIS Management Console



Before you start to do any actual certificate work, I recommend that you
                    create a custom Microsoft Management Console (MMC).
	On the Run menu, type mmc to
                            create an empty console.

	From the File menu, select Add/Remove
                                Snap-in. A new window will appear; the left pane will
                            contain the list of available snap-ins.

	Add the Certificates snap-in. On the first
                            screen, select Computer account; on the second,
                            select Local computer.

	Add the Internet Information Server
                            snap-in.

	Again from the File menu, select
                                Save to save this console for later. If you
                            save it to the desktop, your custom console will be only a double-click
                            away when you need it.



Now you have a custom console that gives you access to the web site
                    certificates as well as to IIS Manager. 

IIS Certificate Management



To start managing IIS certificates, open the IIS Management Console and click
                    on the server name. A new pane will open with many configuration options; one
                    will be Server Certificates.
Figure 15.3. Server certificates in the IIS Management Console
[image: Server certificates in the IIS Management Console]



Creating a Self-Signed Certificate



Creating self-signed certificates is trivial: simply select the
                        Create Self-Signed Certificate... action from the right
                    pane and provide a friendly name for it. You also have the ability to choose
                    where the new certificate will go, to the Personal store or
                    to the Web Hosting one. It’s not clear what the difference
                    is between the two, but I tend to choose the latter.

Importing a Certificate



If you already have a certificate, you can import it using the
                        Import action. The only supported format is PKCS#12, or
                    PFX. If you are transitioning from a web server that uses different formats, you
                    can use OpenSSL to convert the keys and certificates, as explained in the section called “Key and Certificate
                        Conversion
                
                
                
                
                
                ” in Chapter 11.
Warning
When you’re importing the certificate, it’s best to disable the
                            Allow this certificate to be exported option. Doing
                        that makes it more difficult to extract the key from the server. Of course,
                        if you disable, make sure to have a backup of the key elsewhere.


Requesting Certificates from a Public CA



To obtain a certificate signed by a public CA, you first need to create a
                        Certificate Signing Request (CSR). To do this, use
                    the Create Certificate Request action, which activates a
                    wizard that consists of three steps:
	On the first page, enter your information. Ensure that the information
                            about your organization is accurate. You should use your web site’s
                            primary domain name for the Common name
                            field.

	On the second page, choose key type and strength. For the type, the
                            default (Microsoft RSA SChannel Cryptographic
                                Provider) is the only practical choice at the moment and
                            needs no changing. For the strength, select 2,048 bits. (In my case, the
                            default was 1,024, but that’s weak and bordering on insecure.)

	On the third page, specify the location of the CSR file.



Now that you have the CSR, you need to submit it to your selected CA. In most
                    cases, you will need to open up the CSR file in a text editor and copy the
                    contents into the form on the CA’s web site. Once the CA verifies your
                    right to hold a certificate in the requested domain name (a short and automated
                    process for domain-validated certificates but a long one when extended
                    validation is used), your certificate will be issued.
Warning
When you generate a CSR, you also create a private key that is stored on
                        that computer and nowhere else. Because your certificate is not useful
                        without the matching key, you should ensure that both are safely kept in
                        backup. It’s best to create your keys and CSRs on the server on which they
                        will be used, and export them for backup using the
                            Export action.


Completing Certificate Signing Requests



More often than not, your CA will send you several certificates in response to
                    your CSR. The main one will be your site’s certificate, but you will often need
                    one or more intermediate certificates and, in some cases, even the root. If you
                    get the certificates as a single file, importing will be easier. If you have
                    them as separate files, you will need them to import them one by one, usually
                    like this:
	If the CA’s root certificate is not already in your main trust
                            store (called Trusted Root Certification
                                Authorities), import it.

	Import all the intermediary certificates to the Intermediate
                                Certification Authorities store.



At this point, you can finally use the Complete Certificate
                        Request action to import the site certificate and match it to the
                    private key that’s stored on your computer. If you’ve correctly configured the
                    CA’s root and intermediate certificates, this step will complete without
                    a warning. Otherwise, IIS will complain that it is unable to construct a
                    complete trusted certificate chain.
Note
Completing CSRs sometimes fails with Failed to Remove
                            Certificate or Access Denied error
                        messages. When this happened to me, I discovered that the process actually
                        completed successfully and that I was able to use my certificates despite
                        the error messages.


Configuring SSL Sites



Assuming you already have a certificate, to enable TLS on a web site you need
                    to add SSL bindings to it. This translates to configuring
                    the following:
	Protocol; always https

	IP address and port

	Hostname

	The correct setting for the Require Server Name
                                Indication option (more about this in a minute)

	The desired SSL certificate



There are three ways in which you can configure secure web sites:
	One SSL site per IP address and port combination
	Traditionally, secure sites require a unique IP address and port
                                combination. Because specifying ports is not practical for public
                                services, this really means a unique IP address. This approach is
                                straightforward for small hosting operations, but it requires that
                                you procure a sufficient number of IP addresses.

	Certificate sharing
	Even though virtual secure hosting is not yet practical, it is
                                possible to host more than one site on the same IP address, but only
                                if you don’t mind all of them using the same certificate. You can do
                                this by obtaining a certificate that lists all the site names or by
                                obtaining a wildcard certificate that supports an unlimited number
                                of subdomains. (Or both, for that matter.) This option is fully
                                supported in IIS 8; when configuring SSL bindings for a site, select
                                the desired IP address and certificate and enter the correct
                                hostname. You can repeat the process on as many web sites as you
                                want. The SNI option should remain disabled.
Before version 8, the IIS user interface allowed only one secure
                                site to be configured on the same IP address and port combination.
                                However, it is still possible to achieve the same effect by making
                                configuration changes directly from the command line and by using an
                                asterisk as the first character in the certificate’s friendly name.[594]

	Virtual secure hosting
	Because the support for virtual secure hosting was not available
                                in TLS from the start, some older platforms still don’t support it.
                                And because one such older platform—Windows XP—remains
                                quite popular, we must still continue to bind secure sites to IP
                                addresses. Virtual secure hosting is supported by IIS starting with
                                version 8; you enable it by checking the Require Server
                                    Name Indication option. However, if you
                                have
                                any
                                users who
                                still
                                rely
                                on
                                Internet Explorer on Windows
                                XP, they
                                won’t
                                be able to connect to your web site securely. If you are sure that
                                you have no such users, SNI is safe to deploy today.




Advanced Options



The instructions in this section are generally adequate for small deployments,
                    such as when you have servers that are serving only a few sites, but they get
                    increasingly difficult when you have to deal with complex architectures. If you
                    fall into this category, there are some advanced options that you might want to
                    consider:
	Centralized SSL certificates for web server clusters
	Starting with IIS 8.0, web server cluster management is much
                                easier because it is possible to store keys and certificates in a
                                single location on a file share.[595]

	Active Directory integration with a public CA
	Public CAs have recently developed products that simulate a
                                private CA but fulfill requests using their own (public)
                                infrastructure. With this approach, many tasks (e.g., certificate
                                renewal) are simplified and automated. The advantage of this
                                approach is that you control certificate issuance via Active
                                Directory policies, but your certificates ultimately chain to a
                                public CA.
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16 Configuring Nginx


Nginx is a web server and reverse proxy that’s become very popular because of its
        efficiency and frugal use of system resources. Nginx generally has good TLS support in the
        current stable branch (1.6.x), which means that you shouldn’t experience any problems in
        this area. Because Nginx is a relatively young project, features are added at a fast pace.
        If you’re an advanced user, I recommend that you keep an eye on the improvements in the
        development branch.
Table 16.1. Nginx TLS features across recent stable and development versions
	Feature	1.4.x	1.6.x	1.7.x (development)
	Strong default DH parameters	Barely; 1,024 bits	Barely; 1,024 bits	Barely; 1,024 bits
	Configurable DH and ECDH parameters	Yes	Yes	Yes
	Elliptic curve (EC) support	Yes	Yes	Yes
	OCSP stapling	Yes	Yes	Yes
	Distributed TLS session caching	-	-	-
	Configurable session ticket keys	-	Yes	Yes
	Disable session ticket keys	-	Yes	Yes
	Backend certificate validation	-	-	Yes



The stable version provides everything you need to deploy a well-configured standalone TLS
        server. The strength of ephemeral DH parameters (1,024 bits) is perhaps weaker than it
        should be, but that can be addressed in the configuration. One thing to watch is that this
        version doesn’t perform backend certificate validation when Nginx operates as a reverse
        proxy. This might not be a problem when the backend is local (e.g., on the same network),
        but it’s definitely insecure with backend servers that are reached over public
        networks.
This chapter is designed to cover the most important and interesting aspects of
        Nginx’s TLS configuration, but it’s not a reference guide. For other information,
        please refer to the official documentation.
Installing Nginx with Static OpenSSL



Unless told differently, Nginx will detect and use system OpenSSL libraries during
            installation, linking to them dynamically. Sometimes you don’t want to use the system
            libraries, however. For example, they could be an older version and missing some
            essential features.
It’s possible to compile Nginx statically against any compatible OpenSSL version. To
            do this, when configuring Nginx for compilation, use the
                --with-openssl parameter to point to the OpenSSL source
                code:
$ ./configure \
--prefix=/opt/nginx \
--with-openssl=../openssl-1.0.1h \
--with-openssl-opt="enable-ec_nistp_64_gcc_128" \
--with-http_ssl_module
Unlike some other programs, which compile against an OpenSSL installation, Nginx wants
            access to the source code so that it can configure and compile OpenSSL itself. This
            creates a level of indirection, because you don’t configure OpenSSL yourself. If you do
            need to pass a configuration parameter to OpenSSL, use the
                --with-openssl-opt Nginx parameter (as in my example, in which I
            activated EC optimizations that are disabled by default).

Enabling TLS



To enable TLS, you need to tell Nginx that you want to use a different protocol on the
            desired port. You do this with the ssl parameter to the
                listen directive:
server {
    listen 192.168.0.1:443 ssl;
    server_name www.example.com;
    ...
}
Another parameter that you might want to use here is spdy, which
            enables the SPDY protocol.[596] To enable TLS and SPDY at the same time, do something like this:
server {
    listen 192.168.0.1:443 ssl spdy;
    server_name www.example.com;
    ...
}

Configuring TLS Protocol



Once you enable TLS, you need to tweak the protocol configuration. I don’t believe in
            using default settings; they change over time and you end up not knowing exactly what
            your servers are doing. For protocol configuration, there are three directives that you
            should use. The first is ssl_protocols, which specifies which
            protocols should be enabled:
# Enable all protocols except SSL 2 and
# SSL 3, which are obsolete and insecure.
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
The second is ssl_prefer_server_ciphers, which tells Nginx that we
            want the server to select the best cipher suite during TLS handshake instead of letting
            clients do it:
# Have the server decide what suites to use.
ssl_prefer_server_ciphers on;
Finally, ssl_ciphers controls which suites are going to be enabled
            and in which order; it takes an OpenSSL suite-configuration string. For example:
# This cipher suite configuration uses only suites that provide
# forward security, in the order that provides the best performance.
ssl_ciphers "ECDHE-ECDSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES128-SHA ECDHE-ECDSA-AES256-SHA ECDHE-ECDSA-AES128-SHA256 ECDHE-ECDSA-AES256-SHA384 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-AES128-SHA ECDHE-RSA-AES256-SHA ECDHE-RSA-AES128-SHA256 ECDHE-RSA-AES256-SHA384 DHE-RSA-AES128-GCM-SHA256 DHE-RSA-AES256-GCM-SHA384 DHE-RSA-AES128-SHA DHE-RSA-AES256-SHA DHE-RSA-AES128-SHA256 DHE-RSA-AES256-SHA256 EDH-RSA-DES-CBC3-SHA";
Note
The cipher suite configuration from this example is secure, but depending on your
                preferences and risk profile you might prefer something slightly different. You’ll
                find a thorough discussion of TLS server configuration in Chapter 8, Deployment and examples for OpenSSL in the section called “Recommended Configuration” in Chapter 11.


Configuring Keys and Certificates



The final step in configuring a secure server is to specify the desired private key
            and certificates, for which you need two directives:
# Server private key.
ssl_certificate_key server.key;

# Certificates; server certificate first, followed by all
# required intermediate certificates, but excluding the root.
ssl_certificate server.crt;
Nginx uses one directive for certificate configuration. If you have the server
            certificate and the intermediate certificates as separate files, you’ll need to make a
            single file out of them. Just make sure you put the server certificate first; otherwise
            you will get a configuration error. Of course, you also need to ensure that all
            intermediate certificates are correctly ordered; not doing so might lead to subtle
            interoperability issues that are difficult to troubleshoot.[597]
Note
Although Nginx supports password-protected private keys, the only input mechanism
                it supports is interactive, on server startup. For this reason, the only practical
                approach in production is to configure a private key without a passphrase, which is
                not ideal. However, version 1.7.3 (in the development branch at the time of writing)
                added a new directive, ssl_password_file, which can be used to
                supply the password for encrypted keys.


Configuring Multiple Keys



Nginx does not currently allow sites to have more than one private key. There had been
            some work done on this feature in November 2013, so we might see it in a future release.[598]

Wildcard and Multisite Certificates



If you have two or more sites that share a certificate, it is possible to deploy them
            on the same IP address despite the fact that virtual secure hosting is not yet feasible
            for public web sites. No special configuration is required; just associate all such
            sites with the same IP address and ensure that they are all using the same certificate.[599]
This works because TLS termination and HTTP host selection are two separate processing
            steps. When terminating TLS, Nginx serves the certificate of the default server (the
            server that appears first in the configuration) for that IP address. When processing
            HTTP, Nginx examines the Host request header and looks for the
            correct site based on the server_name configuration. If the requested
            hostname cannot be found, the default web site is used.
The best approach when reusing certificates is to place them in the
                http scope so that the configuration is inherited by the servers
            that follow:
# Configure one key and certificates for all subsequent servers.
ssl_certificate     server.crt;
ssl_certificate_key server.key;

# site1.example.com
server {
    listen          443 ssl;
    server_name     site1.example.com;
    ...
}

# site2.example.com
server {
    listen          443 ssl;
    server_name     site2.example.org;
    ...
}
This approach simplifies maintenance and keeps only one copy of the certificate and
            key information in memory.

Virtual Secure Hosting



Unlike the setup discussed in the previous section, true virtual secure hosting takes
            place when multiple unrelated web sites, each with its own certificate, share one IP
            address. Because this feature was not in the SSL and TLS protocols at the beginning,
            there are still many older clients that do not support it. For this reason, it is not
            yet feasible to use virtual secure hosting for public web sites that are targeted at a
            wide general audience, but it could possibly be used for sites whose users have access
            to modern browsers.
Nginx supports virtual secure hosting and uses it automatically when needed. The only
            question is: what happens if you do deploy with virtual secure
            hosting but then encounter a client that does not support this feature? Normally, Nginx
            will serve the certificate belonging to the default site associated with the requested
            IP address. Because that certificate is unlikely to match the desired hostname, the user
            will receive a certificate warning. However, if they are able to bypass the warning,
            they will get through to the site they wanted to see.[600]

Reserving Default Sites for Error Messages



It is never a good idea to deliver web site content in response to an incorrectly
            specified request. For example, you don’t want a search engine to index a web site under
            an incorrect hostname. More importantly, lax checking of hostnames can lead to security
            issues from one site being transferred to other sites. To avoid this, I suggest that you
            always deploy default sites to deliver error messages and nothing else.
Here’s an example configuration you could use:
# This default web site will be used to deliver error
# messages to those clients that request a hostname
# we don't have a site for.
server {
    listen 443 ssl default_server;

    # There is no need to specify server_name, because we
    # never actually want it to match. We want this site
    # to be delivered when the correct site cannot be found.
    # server_name "";
       
    root /path/to/site/root;

    location / {
        return 404;
    }

    location /404.html {
        internal;
    }

    error_page 404 /404.html;
}
With this configuration, users who request a hostname that isn’t configured on your
            server will see the contents of 404.html. In most cases, they will
            need to click through a certificate warning first, although it’s possible that a server
            has a valid certificate for a name but doesn’t have a virtual host for it. This is a
            potential issue with wildcard certificates, for example.
At the time of writing, Nginx doesn’t support strict SNI checking that could detect a
            user that doesn’t support SNI and refuse to serve the host specified at the HTTP level,
            even if the hostname is correct. Because all non-SNI users have to click through
            certificate warnings when accessing SNI-only sites, this feature would be very useful to
            inform such users why they’re experiencing problems.[601]

Forward Secrecy



You won’t have any trouble configuring robust forward secrecy with Nginx, given that
            it has had full support for the necessary key exchanges (DHE and ECDHE) since version
            1.1.0, which was released in August 2011. The only thing to watch for is the support for
            EC cryptography in OpenSSL; not all versions have it, for two reasons: 
	Older OpenSSL version
	If the underlying OpenSSL installation does not support newer features
                        (such as EC crypto), then it does not matter that Nginx does. Older versions
                        of OpenSSL are still prevalent on older installations, and even some newer
                        operating system releases use them. For example, OS X Mavericks, released in
                        November 2013, ships with OpenSSL 0.9.8y (that’s the most recent version
                        from the old 0.9.x branch). For EC
                        cryptography,
                        you need version 1.0.1 or newer.

	OpenSSL version without EC support
	For a long time, operating systems built by Red Hat used to ship without
                        support for EC cryptography, because their lawyers wanted to play it safe
                        when it came to certain EC patents. This made it very difficult for anyone
                        using Fedora and Red Hat Enterprise Linux distributions (and the
                        derivatives) to deploy forward secrecy. The only way to do it well had been
                        to recompile OpenSSL and all the packages that depend on it.
This changed in October 2013, when Fedora 18 and later versions were
                        updated with OpenSSL packages that do have EC crypto enabled.[602] In November 2013, Red Hat Enterprise Linux 6.5 shipped with EC
                        crypto enabled.[603]




OCSP Stapling



Nginx supports OCSP stapling starting with the 1.4.x branch. At this time, Nginx
            treats this feature as an optimization, and this approach is reflected in the
            implementation. For example, Nginx does not prefetch OCSP responses on startup. Instead,
            it waits for the first connection and only then initiates its own OCSP request. As a
            result, the first connection is never going to have an OCSP response stapled. Further,
            OCSP responses are not shared among all worker processes, which means that each worker
            needs to obtain an OCSP response before the entire server is fully primed.
In practice, because obtaining OCSP responses from the responders takes some time it
            is reasonable to assume that there will be a period immediately after server startup
            during which OCSP stapling will not be fully operational. The busier your server, the
            shorter this period will be.
The delay will not create problems in practice, because OCSP stapling is not
            mandatory; browsers will use a stapled response when one is provided, but will obtain
            their own otherwise. If you really want OCSP responses to be used on every connection,
            it is possible to provide them to Nginx manually. I discuss this feature later in this
            section.
Warning
Due to a bug,[604] Nginx might sometimes send expired OCSP responses. It appears that the
                OCSP response refresh process is triggered only by the internal response timeout
                (one hour), but not by the cached response’s expiration time (set by the CA). Thus,
                if the server ever receives an OCSP response that expires in less than one hour,
                there will potentially be a period during which invalid responses will be
                served.

Configuring OCSP Stapling



To use OCSP stapling, you just need to tell Nginx that you want to use it:
# Enable OCSP stapling.
ssl_stapling on;

# Configure a DNS resolver so that Nginx can convert
# domain names into IP addresses.
resolver 127.0.0.1;
Note
OCSP requests are submitted over HTTP, which means that your web server needs
                    to be able to make outbound requests to various OCSP responders across the
                    Internet. If you’re operating an outbound firewall, ensure that there are
                    exceptions to allow this type of traffic. 

I recommend that you also enable OCSP response verification, which is disabled by
                default. This requires a bit more work to configure trusted certificates, but you
                can then be sure that only valid responses are served to your users:
# Verify responses before consdering them for stapling.
ssl_stapling_verify on;

# OCSP response validation requires that the complete
# certificate chain is available. Provide here all intermediate
# certificates including the root, which is normally not
# included when configuring server certificates.
ssl_trusted_certificate trusted-for-ocsp.pem;
Notably absent from the OCSP stapling configuration are directives for cache
                configuration and various timeouts. The cache does not need to be configured because
                OCSP responses are not shared among workers; every worker has its own memory cache
                that grows as needed. As for timeouts, Nginx relies on hardcoded values: valid
                responses are cached for one hour, and errors are cached for five minutes.
                Networking timeouts are set to 60 seconds.[605]

Using a Custom OCSP Responder



Normally, OCSP requests are submitted to the OCSP responder hardcoded in each
                certificate. However, there are two cases in which you might want to use a different
                responder:
	In a heavily locked-down environment, direct outbound traffic from the web
                        server might not be allowed at all. In this case, if you want to support
                        OCSP stapling, you will need to configure a forward proxy for OCSP requests.
                    

	Some certificates might not actually contain OCSP responder information
                        even though the issuing CA operates one. In this case, you can provide the
                        OCSP responder URI manually.



You can override the OCSP responder information globally or on per-site basis,
                using the ssl_stapling_responder directive:
# Use a forward proxy for OCSP requests originating from this server.
ssl_stapling_responder http://ocsp.example.com;

Manual Configuration of OCSP Responses



If you want reliable and consistent OCSP stapling for all secure connections,
                you’ll have to manually handle OCSP response fetching and refreshing, leaving Nginx
                only to pass on the responses to clients.
For the Nginx part of the setup, use the ssl_stapling_file
                    directive to specify a file that contains an OCSP response in DER
                format:
# Tell Nginx that it should not try to fetch
# OCSP responses; we will handle that ourselves.
ssl_stapling_file ocsp-response_www.example.com.der;
The simplest way to obtain an OCSP response is to use the OpenSSL command-line
                tools. Before you begin, you will need both the server certificate and the issuing
                CA’s certificate. The issuing certificate should be among your intermediate
                certificates. It is also possible that the issuing certificate is a root (but that’s
                getting increasingly rare these days), in which case you should obtain it directly
                from the CA.
Your next task will be to find the address of the OCSP responder. You can do this
                by examining the Authority Information Access (AIA) extension
                in the server certificate. For example:
$ openssl x509 -in server.crt -noout -ocsp_uri
http://rapidssl-ocsp.geotrust.com
With the URL and the two certificates, you can submit an OCSP request to the
                responder:
$ openssl ocsp -issuer issuer.crt -cert server.crt -url http://rapidssl-ocsp.geotrust.com -noverify -respout ocsp-response_www.example.com.der
server.crt: good
	This Update: Jan 10 08:15:33 2014 GMT
	Next Update: Jan 17 08:15:33 2014 GMT
Note
Obtaining OCSP responses manually works without problems most of the time, but
                    it can sometimes get messy because of edge cases. You will find more information
                    about the possible issues in the section called “Checking OCSP Revocation” in
                        Chapter 12.

You should now have a valid OCSP response in the designated file. Although this
                approach is good enough for a proof of concept, for deployment in production you
                will need to handle error cases and run continuously in order to keep all OCSP
                responses fresh. Reload Nginx whenever one of the files changes.


Configuring Ephemeral DH Key Exchange



When it comes to the strength of the Diffie-Hellman (DH) key
            exchange, Nginx normally delegates all the work to OpenSSL. That will give you 1,024
            bits of security, which is on the weak side, but not yet critically weak.
Fortunately, it’s easy to tune the strength of the DH key exchange. Just use the
                ssl_dhparam directive and provide the name of the file containing
            stronger parameters:
# Use stronger DH parameters rather than the default 1024 bits.
ssl_dhparam dh-2048.pem;
Use the following OpenSSL command to generate the parameter file:
$ openssl dhparam -out dh-2048.pem 2048
Increasing DH parameter strength might negatively reflect on interoperability with
            some clients. For example, Java 6 and Java 7 don’t support DH parameters stronger than
            1,024 bits. Anything over that means that they might not be able to connect. In
            practice, Java 7 clients should be able to connect if you ensure that you always offer
            ECDHE suites first. For Java 6 clients, there is no workaround.
Tip
From the security point of view, you should choose the strength of DH parameters
                to match the strength of the private key used by the server. In practice, most sites
                use 2,048-bit private keys, which means that a 2,048-bit DH key exchange is going to
                be adequate for virtually everyone. Using stronger DH parameters is not recommended,
                as they significantly slow down the TLS handshake.


Configuring Ephemeral ECDH Key Exchange



The default strength of the ephemeral ECDHE key exchange is 256 EC bits, using the
                secp256r1 curve (OpenSSL prefers to call it
                prime256v1). That is sufficiently strong (equivalent to a
            3,072-bit RSA key), and you probably won’t need to change it. If you do want to change
            it, use the ssl_ecdh_curve directive:
# Use a stronger curve to give us 192 bits of
# security (equivalent to a 7680-bit RSA key).
ssl_ecdh_curve secp384r1;
At this time, there is little choice when it comes to curve selection. Even though
            OpenSSL and some other platforms might support a number of curves (for OpenSSL, you can
            obtain the complete list with openssl ecparam -list_curves), only
                secp256r1 and secp384r1 are widely supported
            by browsers at this time. You should know that secp256r1 is currently
            optimized to run fast in OpenSSL, whereas secp384r1 isn’t.

TLS Session Management



Nginx provides good support for TLS session resumption on standalone servers,
            supporting both server-side state caching and session tickets. But although there is
            support for distributed session tickets, distributed server session caching isn’t
            supported.
Standalone Session Cache



For standalone server deployments (which typically operate multiple workers), you
                should configure a shared memory cache so that TLS session information is shared
                among all the processes. The default for Nginx is to operate without a TLS session
                cache, which results in less than optimal performance.
To configure a cache, you need to allocate a certain amount of RAM to it and
                specify the maximum duration of a single session:
# Configure a shared memory cache of 1 MB.
ssl_session_cache shared:ssl_session_cache:1M;

# Expire individual sessions after 24 hours.
ssl_session_timeout 1440m;
It’s difficult to recommend one default configuration that will work for everyone,
                but the values I used in this example will satisfy most sites. The 1 MB of RAM
                should accommodate about 4,000 sessions.
The default session timeout is only five minutes, which is too short. I used 24
                hours instead. There is generally little reason to limit the session timeout,
                because you want to ensure that your cache runs at maximum capacity. If it runs out
                of space, the oldest session will be evicted to make room for a new one. That said,
                values over 24 hours are not recommended for security reasons.
Nginx provides a lot of flexibility for the cache configuration. For example, it’s
                possible to have a hierarchy of caches within the same site. It’s also possible to
                have many sites use the same cache. For best security, each site should be
                configured with its own session cache. Session cache sharing is safe only among
                sites that are logically part of the same application and share the
                certificate.

Standalone Session Tickets



By default, session tickets are handled by OpenSSL, and no Nginx configuration is
                necessary. For standalone servers, this approach tends to “just work,” although
                there are some aspects of it that you should be aware of:
	Session tickets are protected using 128-bit AES encryption. A throwaway
                        key is generated when the web server is initially started. Depending on the
                        server configuration, multiple ticket keys might be in use.

	The key size is fixed, but 128 bits is sufficiently strong for most use
                        cases.

	A new private key is generated every time the server is restarted. This
                        means that all connections that arrive after the restart will have to
                        negotiate new TLS sessions. There will be a performance penalty, but it’s
                        unlikely to be noticeable.

	If you leave the server running without restarts for extended periods of
                        time, all tickets will be protected with the same AES key. This is not recommended,[606] which is why you should ensure that your servers are regularly
                        restarted: for example, daily.



When it comes to session ticket security, for best results allocate a different
                ticket key to each site.

Distributed Session Cache



Distributed session caching is currently not supported. In 2011, a patch for Nginx
                0.8.x was released to add this functionality,[607] but there are no patches for modern versions. Furthermore, according to
                one of the Nginx developers,[608] the patch operates in blocking mode, which breaks the event-based model
                on which Nginx is built. In practice, this means that a lookup in the network cache
                can suspend all processing of an entire Nginx process (affecting all ongoing
                requests), which translates to a serious performance penalty.
Because Nginx does not support distributed session caching, your cluster design
                options are limited; you cannot deploy a cluster in which new connections are freely
                distributed among the nodes. Instead, you have to design a sticky mode in which
                clients are always forwarded to the same node.[609] Then, on that node you can operate a standalone, shared memory cache.
            

Distributed Session Tickets



Starting with version 1.5.7, Nginx supports manually configured session ticket
                keys. With this feature, you can implement your own rotation scheme on a single
                server or, more interestingly, share the same ticket in a web server cluster.
The relevant directive is ssl_session_ticket_key, which you use
                to specify the ticket key:
# Explicit configuration of the session ticket key.
ssl_session_ticket_key ticket.key;
A session ticket key file consists of 48 bytes of cryptographically random data.
                The data is used for three 16-byte (128-bit) fragments, one each for key name, HMAC
                secret, and AES key. This isn’t the same format as used by OpenSSL, which means that
                the keys probably can’t be shared with other web servers.[610]
Use the following OpenSSL command to generate a new key file:
$ openssl rand -out ticket.key 48
In practice, you will need at least two keys in your configuration: your main key
                to generate new tickets and the previous key, kept around to use for decryption
                only:
# Specify the active session ticket key, which will
# be used for both encryption and decryption.
ssl_session_ticket_key current-ticket.key;

# Keep the previous key around so that we can
# resume the sessions protected by it.
ssl_session_ticket_key previous-ticket.key;
With the two-key setup, no tickets will be dropped because of key rotation.
Rotating session ticket keys in a cluster can be difficult to do reliably, because
                it requires that a new key is introduced simultaneously to all nodes. If one node
                uses a new key before others, other nodes will not be able to decrypt its tickets,
                forcing a full handshake. But this is probably not going to be an issue, unless
                you’re reloading your keys very frequently. Furthermore, many
                clusters are designed to send the same client to the same node, which means that
                this scenario is unlikely to happen.
Still, if you want to implement session ticket keys rotation absolutely right and
                don’t mind reconfiguring the cluster two times, here’s what you can do:
	Generate a new session ticket key.

	Introduce the new key to the configuration as a decryption-only key and
                        reconfigure the cluster. With this step, you’ve prepared all your nodes for
                        decryption.

	Change the configuration once more, promoting the key from the previous
                        step to be your active key. Move the previously active key to be your
                        decryption key. Then reconfigure the cluster again. Because all nodes have
                        the new active key in the previous configuration, session resumption will
                        work irrespective of any timing issues.




Disabling Session Tickets



Starting with version 1.5.9, Nginx allows session tickets to be disabled. This
                could be useful if you’re running a cluster of servers but don’t want to set up a
                distributed ticket key:
# Disable session tickets.
ssl_session_tickets off;
If you’re running an earlier Nginx version, a patch for this feature can be
                obtained from the development list archives.[611]


Client Authentication



Using client authentication requires enabling it in configuration, providing all the
            CA certificates needed to form a complete certification path, and pointing Nginx to a
            certificate revocation list. Here’s a complete example:
# Require client authentication.
ssl_verify_client on;

# Specify the maximum depth of the certification path,
# from the client certificate to a trusted root.
ssl_verify_depth 2;

# Allowed CAs that issue client certificates. The
# distinguished names of these certificates will be sent
# to each user to assist with client certificate selection.
ssl_client_certificate sub-ca.crt;

# Additional CA certificates that are needed to
# build a complete certification path.
ssl_trusted_certificate root-ca.crt;

# The list of revoked certificates. A reload is required
# every time this list is changed.
ssl_crl revoked-certificates.crl
With these changes, Nginx will accept only requests accompanied by a valid client
            certificate. If a certificate is not provided or if the validation fails, it will send
            with a 400 response instead.
In addition to enabling strict client authentication, there are also two further
            settings for ssl_verify_client that are useful in some
            situations:
	optional
	Requests a client certificate during TLS handshake but doesn’t require it.
                        The status of the validation is stored in the
                            $ssl_client_verify variable: NONE
                        for no certificate, FAILED for a certificate that failed
                        validation, and SUCCESS for a valid certificate. This
                        feature is useful if you want to provide a custom response to those users
                        who fail client certificate validation.

	optional_no_ca
	Requests a client certificate during TLS handshake but doesn’t attempt
                        validation. Instead, it’s expected that an external service will validate
                        the certificate (which is available in the
                            $ssl_client_cert variable).



Note
Using optional client authentication can be problematic, because some browsers
                don’t prompt the user or otherwise select a client certificate if this option is
                configured. There are also issues with some browsers that won’t proceed to the site
                if they can’t provide a certificate. Before you seriously consider optional client
                authentication for deployment, test with the browsers you have in your
                environment.


Mitigating Protocol Issues



Nginx users have little to worry about when it comes to SSL and TLS protocol issues.
            They have been as quickly addressed as they have arisen, in one case even before the
            public announcement.
Insecure Renegotiation



Insecure renegotiation is a protocol flaw discovered in November 2009 and largely
                mitigated during 2010. Nginx addressed this issue in version 0.8.23, which was
                released within a week of discovery. Since then, client-initiated renegotiation is
                not accepted.
Additionally, Nginx does not use server-initiated renegotiation. This feature is
                typically used when the same site operates multiple security contexts. For example,
                you might allow anyone to visit the home page of your web site but require client
                certificates at a deeper level. Nginx supports client certificates, but only at the
                server level (no subfolder configuration), which means that renegotiation is
                unnecessary. Technically, Nginx supports
                and
                advertises
                secure renegotiation when compiled against a capable version of
                OpenSSL, but refuses to renegotiate when asked. 

BEAST



Technically, the predictable IV vulnerability in TLS 1.0 and earlier protocols
                affects both client and server sides of the communication. In practice, only
                browsers are vulnerable (the so-called BEAST attack), because exploitation requires
                that the attacker is able to control what data is sent (and subsequently encrypted)
                by the victim. For this reason, there is nothing for server code to do about
                it.

CRIME



The 2012 CRIME attack exploits information leakage that occurs when compression is
                used at the TLS protocol level.[612] No work has been done to address this issue and keep compression in the
                protocol. Instead, the advice is to disable compression altogether. For performance
                reasons, Nginx developers started to disable compression in 2011, but the initial
                changes (in versions 1.0.9 and 1.1.6) covered only OpenSSL 1.0.0 and better. Nginx
                disabled compression with all OpenSSL versions during 2012, in versions 1.2.2 and 1.3.2.[613]


Deploying HTTP Strict Transport Security



Because HTTP Strict Transport Security (HSTS) is activated via
            a response header, configuring it on a site is generally easy. However, there are
            certain traps you can fall into, which is why I recommend that you read the section called “HTTP Strict Transport Security” in Chapter 10
            before you make any decisions.
Once HSTS is deployed on a web site, your users will arrive on port 443 on their
            subsequent visits. But you still have to ensure that those who arrive on port 80 get
            redirected to the right place. For that redirection, and because the HSTS response
            header is not allowed on plaintext sites,[614] you should have two different servers in the configuration. For
            example:
server {
    listen 192.168.0.1:80;
    server_name www.example.com;

    return 301 https://www.example.com$request_uri;
    
    ...
}

server {
    listen 192.168.0.1:443 ssl;
    server_name www.example.com;
    
    add_header Strict-Transport-Security "max-age=31536000; includeSubDomains";
    
    ...
}
There are two Nginx add_header behaviors that you need to watch
            for. First, headers are added only to responses with non-error-status codes (e.g., from
            the 2xx and 3xx range). This shouldn’t be a problem for HSTS, because most of your
            responses should be in the correct range. Second, the configuration directive
            inheritance behavior is sometimes surprising: if a child configuration block specifies
                add_header, then no directives of this type are inherited from
            the parent block. In other words, if you need to add a header in a child block, make
            sure to explicitly copy all add_header directives from the parent
            block.

Tuning TLS Buffers



Starting with version 1.5.9, Nginx allows you to configure the size of the TLS buffer
            using the ssl_buffer_size directive. The default value for the buffer
            is 16 KB, but that might not be optimal if you want to deliver the first content byte as
            fast as possible. Using a value of 1,400 bytes is reported to substantially reduce the latency.[615]
# Reduce the size of the TLS buffer, which will result
# in substantially reduced time to first byte.
ssl_buffer_size 1400;
You should be aware, however, that reducing the size of TLS records might reduce the
            connection throughput, especially if you’re transmitting large amounts of data.[616]

Logging



Default web server logging mechanisms care only about errors and what content is being
            accessed and thus don’t tell you much about your TLS usage. There are two main reasons
            why you might want to keep an eye on your TLS operations:
	Performance
	Incorrectly configured TLS session resumption can incur a substantial
                        performance penalty, which is why you will want to keep an eye on the
                        session-resumption hit ratio. Having a log file for this purpose is useful
                        to ensure that your server does resume TLS sessions and also to assist you
                        with the tuning of the cache.
Starting with version 1.5.10, Nginx supports the
                            $ssl_session_reused variable, which allows you to
                        track session reuse directly. If you are using an earlier version, you’ll
                        have to rely on log postprocessing to count the number of times the same
                        session ID appears in the logs. From that, you can get a decent idea about
                        the performance of your TLS session cache. 

	Protocol and cipher suite usage
	Knowing what protocol versions and cipher suites are actually used by your
                        user base is important, for two reasons: (1) you want to be sure that your assumptions about your
                        configuration are correct and (2)
                        you need to know if some older features are still required. For example, SSL
                        2 remained widely supported over many years because people were afraid to
                        turn it off. We are now facing similar problems with the SSL 3 protocol and
                        the RC4 and 3DES ciphers.



It is best to use a separate log file for TLS connection information. In Nginx, this
            means using two directives, one to define a new log format and another to generate the
            log files:
# Create a new log format for TLS-specific logging. The variable
# $ssl_session_reused is available only from v1.5.10 onwards.
log_format ssl "$time_local $server_name $remote_addr $connection $connection_requests $ssl_protocol $ssl_cipher $ssl_session_id $ssl_session_reused";

# Log TLS connection information.
access_log /path/to/ssl.log ssl;
Warning
Due to a bug in Nginx versions before versions 1.4.5 and 1.5.9, the
                    $ssl_session_id variable did not contain TLS session IDs. If
                you want to deploy this type of TLS logging, you’ll need to upgrade to a newer
                release.

This type of log will create one entry for every HTTP transaction processed. In a
            sense, it’s wasteful because the TLS parameters are determined only once, at the
            beginning of a connection (Nginx does not allow renegotiation, which would potentially
            change the parameters). On the other hand, connection reuse is the most efficient mode
            of operation, so tracking its usage is important. For this reason, I added
                $connection and $connection_requests variables
            to the log format.
Note
There is currently no way to log connections with successful TLS handshakes but
                without any requests. Similarly, it is not possible to log TLS handshake
                failures.




[596] SPDY is not compiled-in by default. You have to use the
                        --with-http_spdy_module configuration parameter to enable
                    it.

[597] The ssl_certificate directive also allows the server
                    private key to be included in the same file. However, storing private and public
                    data in the same file is dangerous because it could lead to accidental
                    disclosures of the keys.

[598] [PATCH] RSA+DSA+ECC bundles (Rob Stradling, 17 October 2013)

[599] Technically, the restrictions are per IP address and port combination (a
                    TCP/IP endpoint). You could, for example, host one secure site on
                        192.168.0.1:443 and another on
                        192.168.0.1:8443. In practice, public sites can be hosted
                    only on port 443, so the restrictions are effectively per IP address.

[600] Assuming, of course, that the requested hostname exists as a virtual site at
                    the HTTP level. If it doesn’t, they will get the default web site.

[601] Version 1.7.0, currently still in development, introduced a new variable
                    called $ssl_server_name, which contains the SNI hostname when
                    one is provided. This variable is empty for a client that doesn’t support SNI.
                    You can detect this situation in the virtual host configuration and respond with
                    a different error message. The only catch is that you have to include the check
                    in the configuration section of each virtual host.

[602] Bug #319901: missing ec and ecparam commands in openssl
                                    package (Red Hat Bugzilla, closed 22 October 2013)

[603] Red Hat Enterprise Linux 6.5 Release Notes (Red Hat, 21
                                November 2013)

[604] ocsp stapling
                            may send expired response (Nginx bug #425, retrieved 10 July
                        2014)

[605] OCSP stapling patches (Maxim Dounin, 5 September 2012)

[606] With session tickets, the AES key is used to encrypt all session
                                data (which includes the master secret, which can be used to decrypt
                                all communication), after which that information is sent over the
                                network to the client. This approach makes the AES key a new attack
                                point. It also defeats forward secrecy, if the AES key is
                                compromised.

[607] SSL Session Caching (in nginx) (Matt Palmer, 28 June
                        2011)

[608] Re: Distributed SSL session cache (Maxim Dounin, 16 September
                        2013)

[609] This is typically done by a load balancer, which remembers the origin of
                        each session ID and directs subsequent visits belonging to the same ID to
                        the same web server node.

[610] NGINX SSL Session Ticket Key (ZNV, 25 February 2014)

[611] [PATCH] SSL: ssl_session_tickets directive (Dirkjan Bussink, 10
                        January 2014)

[612] TLS is not the only affected protocol; information leakage depends on how
                        compression is implemented and might exist at other networking layers. For
                        example, HTTP response compression using the gzip algorithm is also
                        vulnerable.

[613] crime tls attack (Igor Sysoev, 26 September 2012)

[614] If this were allowed, a man-in-the-middle attacker could inject HSTS
                    information into plaintext-only sites and perform a DoS attack.

[615] Optimizing NGINX TLS Time To First Byte (TTTFB) (Ilya Grigorik, 16
                    December 2013)

[616] Optimizing NGINX TLS Time To First Byte (TTTFB) (Discussion on the
                    Nginx development list, 16 December 2013)



 
17 Summary


Congratulations on making it all the way through this book! I hope you’ve had as much fun
        reading it as I did writing it. But with so many pages dedicated to the security of TLS,
        where are we now? Is TLS secure? Or is it irreparably broken and doomed?
As with many other questions, the answer is that it depends on what you expect. It’s easy
        to poke holes in TLS by comparing it with an imaginary alternative that doesn’t exist; and
        it’s true, TLS has had many holes, which we’ve been repairing over the years. However, the
        success of a security protocol is measured not only in pure technical and security terms but
        also by its practical success and usefulness in real life. So, although it’s certainly not
        perfect, TLS has been a great success for the billions of people who use it every day. If
        anything, the biggest problems in the TLS ecosystem come from the fact that we’re not using
        enough encryption and that, when we do, we haven’t quite made up our minds if we really want
        proper security. (Think about certificate warnings.) The weaknesses in TLS are not our
        biggest problem.
Therefore, we’re discussing the security of TLS because it’s been so successful.
        Otherwise, we would have long ago replaced it with something better. However, chances are
        that even if we replaced TLS with something else, years of steady use would have led us to
        the same situation we have now. I’ve come to realize that you can’t have perfect security at
        world scale. The world, with its diversity, moves slowly and prefers avoiding breakage to
        enhanced security. And you know what? That’s fine. It’s the cost of participating in a
        global computer network.
The good news is that TLS is improving at a good pace. At some point a couple of years
        ago, we started to pay more attention to security, especially encryption. This process
        accelerated during 2013, when we discovered the harsh reality of widespread mass
        surveillance. The TLS working group is busy working on the next protocol version; it’s not
        going to be fundamentally different, because it doesn’t have to be—but it will take our
        security to the next level. I’ll write about it in a future edition of this book.
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