

 [image: (missing alt)]

 Table of Contents

 Linux Utilities Cookbook

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers and more

 Why Subscribe?

 Free Access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Errata

 Piracy

 Questions

 1. Using the Terminal / Command Line

 Introduction

 Command retrieval and line editing

 Getting ready

 How to do it...

 How it works...

 Using history

 Getting ready

 How to do it...

 How it works...

 Filename auto-completion

 Getting ready

 How to do it...

 The shell prompt

 How to do it...

 There's more...

 Other environment variables

 How to do it...

 How it works...

 Using aliases

 How to do it...

 There's more...

 The .bashrc file

 How to do it...

 Dealing with blanks and special characters in filenames

 How to do it...

 There's more...

 Understanding the $? variable

 How to do it...

 How it works...

 There's more...

 Redirection and piping

 How to do it...

 There's more...

 Sending output from one terminal to another

 Getting ready

 How to do it...

 How it works...

 There's more...

 Using the Screen program

 Getting ready

 How to do it...

 How it works...

 There's more...

 2. The Desktop

 Introduction

 GNOME 2

 Getting ready

 How to do it...

 There's more...

 KDE desktop

 Getting ready

 How to do it...

 There's more...

 xfce

 Getting ready

 How to do it...

 There's more...

 LXDE

 Getting ready

 How to do it...

 There's more...

 Unity

 Getting ready

 How to do it...

 There's more...

 Mate

 Getting started

 How to do it...

 There's more...

 3. Files and Directories

 Introduction

 Understanding inodes and the superblock

 Copying, removing, and updating files and directories

 Getting ready

 How to do it...

 There's more...

 Finding files using find and locate

 How to do it...

 There's more...

 Creating text files – vim, Emacs, and others

 Getting ready

 How to do it...

 There's more...

 Using the file command

 How to do it...

 There's more...

 How to do it...

 Using grep to find patterns

 Getting ready

 How to do it...

 There's more...

 Compressing files using ZIP and TAR

 Getting ready

 How to do it...

 There's more...

 Other helpful commands such as stat, sum, touch, and more

 How to do it...

 There's more...

 4. Networking and the Internet

 Introduction

 Troubleshooting bad connections

 Getting ready

 How to do it...

 There's more...

 Copying files to another machine – FTP and SCP

 Getting ready

 How to do it...

 There's more...

 Logging into another machine – Telnet and Secure Shell

 Getting ready

 How to do it...

 There's more...

 Getting a web page without a browser – wget

 How to do it...

 There's more...

 Browsing the web – Firefox

 Getting ready

 How to do it...

 There's more...

 E-mail – Using a web mail program

 Getting ready

 How to do it...

 There's more...

 Running your own web server – httpd

 Getting ready

 How to do it...

 There's more...

 What is using that port? The /etc/services file

 How to do it...

 There's more...

 IPv4 versus IPv6

 How to do it...

 There's more...

 5. Permissions, Access, and Security

 Introduction

 Creating and managing user accounts – useradd

 Getting ready

 How to do it...

 There’s more...

 Working with passwords

 How to do it...

 There’s more...

 Working with file permissions

 Getting ready

 How to do it...

 There’s more...

 Working with the firewalls and router settings

 How to do it...

 There’s more...

 Working with Secure Linux – SELinux

 Getting ready

 How to do it...

 There’s more...

 Using sudo to secure a system

 Getting ready...

 How to do it...

 There’s more...

 The /tmp directory

 How to do it...

 There’s more...

 6. Processes

 Introduction

 Understanding processes

 How to do it…

 There’s more...

 Examining processes with ps

 How to do it...

 How it works...

 There’s more...

 Examining processes using top

 Getting ready

 How to do it...

 How it works...

 There’s more...

 Changing priorities with nice

 How to do it...

 There’s more...

 Observing a process using the /proc filesystem

 How to do it...

 There’s more...

 7. Disks and Partitioning

 Introduction

 Using fdisk

 Getting ready

 How to do it...

 There’s more...

 Using mkfs to format a drive

 Getting ready

 How to do it...

 Using fsck to check the filesystem

 Getting ready

 How to do it...

 There’s more...

 Logical Volume Management (LVM)

 Getting ready

 How to do it...

 There’s more...

 Understanding different filesystems

 8. Working with Scripts

 Introduction

 Removing text from a file

 How to do it...

 Script 1 – removing line numbers

 How it works…

 There's more...

 Using script parameters

 How to do it...

 Script 2 – parameters

 How it works…

 There's more...

 Coding a loop in a script

 How to do it...

 Script 3 - loops

 How it works...

 There's more...

 Backing up your system

 How to do it...

 Script 4 – making backups

 How it works...

 Locking a file for only one use at a time

 How to do it...

 Script 5 – file locking

 How it works...

 Getting introduced to Perl

 Getting ready

 How to do it...

 How it works...

 There's more...

 9. Automating Tasks Using Cron

 Introduction

 Creating and running a crontab file

 Getting ready

 How to do it...

 Running a command every other week

 How to do it...

 How it works...

 There's more...

 Reporting the errors from a crontab file

 How to do it...

 There's more...

 10. The Kernel

 Introduction

 A brief look at module commands

 How to do it...

 How it works...

 There's more...

 Building a kernel from kernel.org

 Getting ready

 How to do it...

 Using xconfig to modify the configuration

 Getting ready

 How to do it...

 There's more...

 Working with GRUB

 How to do it...

 How it works...

 Understanding GRUB 2

 How to do it...

 How it works...

 There's more...

 A. Linux Best Practices

 Introduction

 Root user versus normal user

 Running the GUI

 Creating, verifying, and storing backups

 Permissions and who you are

 Making backups in real time

 Environment variables and shells

 The best environment

 Using and monitoring a UPS

 Being careful when copying files

 Verifying archive files and using checksums

 Firewalls, router settings, and security

 What to do if you find an intrusion

 Spaces in filenames

 Using scripts and aliases to save time and effort

 Using scp and ssh with automatic authentication

 Saving history and taking screenshots

 Space on drives

 Being open to new ideas

 B. Finding Help

 Introduction

 Using man pages

 Using the info command

 Commands and the Usage section

 Local documentation directories

 Browsing the web to find help

 Distribution release notes

 Linux users' groups

 Internet Relay Chat (IRC)

 Index

 Linux Utilities Cookbook

Linux Utilities Cookbook

Copyright © 2013 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: October 2013
Production Reference: 1211013
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78216-300-8
www.packtpub.com
Cover Image by Abhishek Pandey (<abhishek.pandey1210@gmail.com>)

Credits

Author
James Kent Lewis
Reviewers
Samarendra Manohar Hedaoo
Jitesh Marathe
Young-Ho Song
Gene Wilburn
Acquisition Editor
Owen Roberts
Lead Technical Editor
Madhuja Chaudhari
Technical Editors
Aparna Chand
Adrian Raposo
Gaurav Thingalaya
Project Coordinator
Apeksha Chitnis
Proofreader
Ting Baker
Indexer
Hemangini Bari
Tejal R. Soni
Production Coordinators
Aparna Bhagat
Kirtee Shingan
Cover Work
Kirtee Shingan

About the Author

James Kent Lewis has been in the computer industry for over 30 years. He started out writing BASIC programs in high school and used punch cards in college for his Pascal, Fortran, COBOL, and assembly language classes. Jim taught himself the C programming language by writing various utilities, including a fully-functional text editor, which he uses everyday. He started out using DOS and AIX, and then OS/2. Linux is now his operating system of choice.
Jim has worked in the past for several companies, including IBM, Texas Instruments, Tandem, Raytheon, Hewlett-Packard, and others. Most of these positions dealt with low-level device drivers and operating system internals. In his spare time, he likes to create video games in Java.
Jim has written articles for IBM Developer Works and has one patent.

First, I would like to thank Red Hat for creating a great OS. I used Fedora 17 to develop this book and it worked flawlessly. I would also like to thank my brother David for letting me bounce ideas off of him. Last, but certainly not least, I would like to thank my girlfriend, Gabriele. Her patience was greatly appreciated, and she also helped by lending me her Ubuntu laptop from time to time.

About the Reviewers

Samarendra Manohar Hedaoo is currently working towards the automation of the IT infrastructure at SocialTwist (http://www.socialtwist.com) using Puppet. He has around two years' experience in IT, most of which he has worked on creating and tweaking existing solutions for automation. He is an alumnus of Symbiosis Institute of Computer Studies & Research, where he spent most of his time on creating and implementing internal solutions for academic and official purposes of Symbiosis, including software that printed his own graduation degree. He also has a bit of experience in writing, which he did mostly at the organizations that he worked for, documenting solutions that he created, and also producing short tutorials for internal use. He has a keen interest in anthropology and would like to work on applying AI to the field of anthropology, someday. He enjoys reading technical books that explain technology using stories and non-technical books that talk about various aspects of daily life.
Jitesh Marathe has more than 14 years' experience in IT. He currently works with the MNC Product company as a Staff Engineer, where he acts as POC for projects and acting architect for a few of them, which involves designing and implementation of project and guiding teams though the project life cycle.
He is a graduate in Computer Applications and has spent a major time frame of his career, acting as a system administrator; he has close links with Linux/Unix and system administrator- related jobs.
He holds a passion for reading books and travelling to new places with his family.
Young-Ho Song has spent over 10 years working as a software engineer for IT companies that specialize in the pay TV industry and networking devices. He currently manages a global team of software engineers who work on a variety of difference subjects, and he has the responsibility to ensure that all Linux-based STBs (Set-Top Boxes) including NDS CA (Conditional Access) system are securely protected by Linux hardening review. He's also very familiar with RTOS (Real Time OS) embedded systems, multimedia delivery systems, and network security. He has a Ph.D. degree in Computer Engineering. You can refer to the following site for further information about him: https://sites.google.com/site/profileyhsong.
All the following books were written by him (co-authored) and were published in Korea:
	Embedded Linux Based Mobile Device, INFO-TECH COREA, March, 2006
	Intel PXA255 XScale Based Embedded Linux System, SCITECH Media, 2005
	The Design and Implementation of the ARM9 Based SoC, INFO-TECH COREA, March, 2006

Gene Wilburn is a Canadian writer, photographer, and computer specialist residing in Port Credit, Ontario, near Toronto. He has worked on various Unix and Unix-like operating systems, including AIX, Solaris, Linux, FreeBSD, and OpenBSD. He has been a programmer, database analyst, infrastructure specialist, and technical lead on projects. He has worked at Micromedia Ltd., Ontario Training Corporation, Royal Ontario Museum, and Canada Life. He is currently self employed.
As a writer, his work has appeared in Small Print Magazine, PC Week, Shutterbug, Infoworld, InfoAge, Toronto Star, Computing Canada, Computer Paper, Access, Here's How!, and Photo Life. He is the author of Northern Journey: A Guide to Canadian Folk Music on CD, Reference Press Recreational Writing, lulu.com and Markdown for Writers. He is a co-author of Red Hat Linux System Administration Unleashed, and he wrote the popular Linux for Newbies, Wilburn Communications Ltd. and Linux Inside, Wilburn Communications Ltd., and columns for The Computer Paper (Canada). His website is genewilburn.com.

I would like to thank Ken Thompson and Dennis Ritchie for creating Unix and C, and all the people who have subsequently developed Linux, FreeBSD, Mac OS X, iOS, and Android.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers and more]
http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print and bookmark content
	On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.

Preface

Linux Utilities Cookbook shows how to solve typical problems on a Linux computer. The information is provided in a "recipe format” allowing the user to find desired topics quickly and efficiently. The steps to perform a task are clearly explained and have been tested for accuracy. There is also a section on shell scripting.
What this book covers

Chapter 1, Using the Terminal / Command Line, covers how to get the most out of the Linux command line.
Chapter 2, The Desktop, introduces some of the desktop environments available for Linux.
Chapter 3, Files and Directories, explains files, directories, and how to manage them.
Chapter 4, Networking and the Internet, covers connectivity and how to fix it when it goes down.
Chapter 5, Permissions, Access, and Security, gives a brief overview of Linux security features.
Chapter 6, Processes, explains how to manage processes in Linux.
Chapter 7, Disks and Partitioning, gives a brief insight into disk management.
Chapter 8, Working with Scripts, covers how to write scripts in Linux.
Chapter 9, Automating Tasks Using Cron, explains how to run jobs automatically.
Chapter 10, The Kernel, introduces how to make a custom kernel for your system.
Appendix A, Linux Best Practices, shows how to set up and run your systems like a pro.
Appendix B, Finding Help, covers locating the information you need quickly.

What you need for this book

To follow along with the examples in this book you will need a mainstream Linux distribution running on your computer. The author used Fedora by Red Hat to create this book along with the examples and scripts. However, any distro should work fine. Note that most can be downloaded and installed free of charge from the manufacturer's website.

Who this book is for

This book is intended for somewhat experienced computer users who want to know more about Linux. The recipe format is designed to allow quick access to typical tasks that come up often.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can include other contexts through the use of the include directive.”
Any command-line input or output is written as follows:
export PS1=”screen$WINDOW \h \u \w \$ "

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "clicking the Next button moves you to the next screen”.
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Commands that are part of a text section will be indicated like this: run cd /tmp

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Chapter 1. Using the Terminal / Command Line

In this chapter we will cover:
	Command retrieval and line editing
	Using history
	Filename auto-completion
	The shell prompt
	Other environment variables
	Using aliases
	The .bashrc file
	Dealing with blanks and special characters in filenames
	Understanding the $? variable
	Redirection and piping
	Sending output from one terminal to another
	Using the Screen program

Introduction

Knowing how to use the command line efficiently will really help you get the most out of your computer. There are many ways to save time and effort when typing commands, you just need to know what they are.
There are many different Linux environments available. This chapter focuses on the popular Bash shell.

Command retrieval and line editing

A standard Bash terminal is automatically set to insert mode, so you don't have to press the Insert key to insert text. Use the up and down arrow keys to recall a previous command, and then other cursor keys to edit that line as needed.
[image: Command retrieval and line editing]
Getting ready

All you need for this example is a terminal running the Bash shell. Other terminals may not have these capabilities.

How to do it...

We will run a few commands as follows:
	Type in the command route and press the Enter key.
	Do the same for uptime, ls, date, and sync, pressing Enter after each command.
	Now press the up arrow key one time. You should see the following command:
sync

	Now press the up arrow two more times. You should see date and ls.
	Press Enter. The ls command will run again. Pressing Enter will always run the command shown.

How it works...

The line is stored in a buffer with full editing capabilities. This buffer is sent to the OS when the Enter key is pressed.
The summary of the keys used for retrieval and editing is as follows:
	Up arrow: It is used to scroll up the history buffer
	Down arrow: It is used to scroll down the history buffer
	Home: It is used to bring the cursor to the beginning of the line
	End: It is used to bring the cursor to the end of the line
	Delete: It is used to delete the character to the right of the cursor
	Backspace: It is used to delete the character to the left of the cursor and shift the line
	Left and right arrow: These are the cursor movement keys

Using history

The standard Bash shell includes a history function. It records each command in a database that can be shown by running the history command. In this section we have shown how this is done.
Getting ready

All you need is a Bash terminal to follow the given steps.
See the following screenshot:
[image: Getting ready]

How to do it...

	Run a few commands such as route, uptime, date, and sync.
	Run the history command.
	Look for a command you would like to run again, but instead of typing the command, type an exclamation point (!) and then the number next to the command as shown in the history listing, and press Enter.
	That command will run again.

How it works...

Think of the command line history as a linear database. You can scroll up and down until you see the command you want. This is also helpful to recall something you did a while back. The HISTSIZE environment variable controls how many commands will be saved in the buffer.
Tip
Be careful with this feature. Make sure you have the correct command before running it.

Filename auto-completion

When running a command, you do not have to type the entire filename. This saves a lot of time and effort, and also helps prevent typos.
The Tab key is used to invoke filename auto-completion. See the following screenshot:
[image: Filename auto-completion]
You only need to type enough characters to make the filename you want unique, and then press Tab. If you didn't type enough characters, you will hear the console beep (in most shells). If you now press Tab again, all of the possibilities will be displayed.
Getting ready

All you need for this example is a terminal running the Bash shell.

How to do it...

	Change to your home directory, in my case it's:
cd /home/jklewis.

	Create a directory using the following command:
mkdir Linuxbook

	Change to it Linuxbook using the following command:
cd Linuxbook
ls > file2.txt
ls > file3.txt
ls > file4.txt
ls > unique1.txt

	Now let's create some dummy files; run using the following command:
ls > file1.txt

	Now type ls -la u and then press Tab. The rest of the filename "unique1.txt" will appear. Press Enter.
	Now type ls -al file and press Tab. Nothing will happen, and your console may beep. Press Tab again. Now all 4 filenames will appear.
	Add a 4, press Tab again, and then Enter. The command ls -la file4 will run.

This may look complicated or even clumsy but if you give it a chance you will become an expert in no time at all.

The shell prompt

A standard terminal usually has a rather cryptic command line prompt. This should be changed by modifying the PS1 environment variable.
How to do it...

An example is shown in the following screenshot:
[image: How to do it...]
Refer to the line export PS1="\u \h \w \$ "
	The \u command means to show the current user of this shell.
	The \h command shows the hostname of this machine.
	The \w command means to show the full path of the current directory. This change is highly recommended, as the user doesn't have to type pwd (Print Working Directory) all the time to know what directory is being used.
	The \$ means to display a $ or # depending on the effective UID.

There's more...

There are many more options, such as showing the time and date, using colors, and so on. For more information, run man bash and search for PS1.

Other environment variables

The PS1 variable is only one of literally hundreds of environment variables. Don't worry, you don't have to know them all! The following are a few very useful ones:
	PS1: It shows and sets the command line prompt
	USER: It shows the current user
	HOSTNAME: It shows the current hostname for this machine
	HOME: It shows the home directory of the current user
	SHELL: It shows the current shell this terminal is running in
	TERM: It shows which terminal type is being used
	PATH: It shows and sets the directories where programs are searched for
	PWD: It shows the current working directory
	EDITOR: It can be set to the full path to your desired text editor for use with certain commands such as crontab -e
	TZ: It shows and sets the time zone variable
	HISTSIZE: It shows and sets the size of the history buffer

Most of these are self-explanatory; however, a few need more discussion. The PATH environment variable is where commands are searched for in the filesystem.
 The echo command is used to display the contents of a variable:
[image: Other environment variables]
How to do it...

	Prepending a dot to the PATH means the program will be looked for in the current directory first, before searching the rest of the path. This is very useful during the code development for example. Do this by running:
export PATH=".:$PATH"

	The EDITOR variable can be set to your favorite text editor. Most people use vi (or vim); however, you can point it to the one you want. If you change this, be sure to use the full path. To change the EDITOR variable do this:
export EDITOR=/lewis/bin64/kw

	An export can be removed by setting it to nothing:
export EDITOR=

	By convention, environment variables are usually written in uppercase. View the man pages and/or search Google for more information on these variables.

How it works...

Think of these environment variables just as you would if you were using a programming language. In this case, the type of the variable is determined by the OS. For example, you could type A=1 or A="This is a string".
The OS knows the difference. Also, there is variable scope. Notice I did not use export above. That means this A is local to this shell. Only exporting a variable will make it available to other shells (after sourcing the file).

Using aliases

Wouldn't it be nice if you could easily create a simple command without having to make a script out of it? Well, there is a way. This is done using aliases.
How to do it...

The following are the steps to create an alias:
	Type tput clear and press Enter. Your screen should have cleared.
	Now enter alias cls="tput clear". Now when you run cls it will do the same thing.
	Let's create some more. To show a long directory listing enter alias la="ls -la". Enter 'la' to run the alias.
	To show a long listing with the most current files last enter 'alias lt="ls -latr"'.

If you create an alias and then decide you no longer want it you can remove it by using the unalias command, for example, unalias cls.
You can also use aliases to move around the filesystem efficiently. This is very handy and will save you an incredible amount of typing. Here are some examples:
	mkdir /home/jklewis/linuxbook
	alias lbook="cd /home/jklewis/linuxbook"
	lbook

You will now be taken to that directory. Here is something I make frequent use of on my systems:
	export LBOOK="/home/jklewis/linuxbook"
	alias lbook="cd $LBOOK"
	lbook

As you can see, running lbook will take you to the directory as shown above. However, you can also use the LBOOK variable to copy files to that directory:
	 cd /tmp
	 touch f1.txt
	 cp f1.txt $LBOOK

The file f1.txt will now exist in the /home/jklewis/linuxbook directory. This becomes even more handy when extremely long filenames are used.
Tip
To remove the lbook alias run unalias lbook

You can list your aliases by just running alias without any parameters. Any time you find yourself constantly typing the same commands or filenames consider creating an alias for it.

There's more...

Note that the above examples will only be effective in that terminal and will not persist across a reboot. See the next section on how to make the changes permanent.
Also, in some cases, what you want to do may be too complicated for an alias, for example, to check for the proper number of parameters. This is where you can create a shell script, which will be covered in Chapter 8, Working with Scripts.

The .bashrc file

There are many environment variables we can look at and change. However, we certainly don't want to enter these every time we start a new shell. There is a special file, named .bashrc, which is used to store your settings. It is located in the user's home directory. For example, the .bashrc file for the root user is in the /root directory.
Here is a .bashrc file from one of my systems:
[image: The .bashrc file]
How to do it...

The description of the lines is as follows:
	To comment a line, precede it with a # symbol.
	To create a variable, use the export tag.
	To create an alias, use the alias tag (as shown earlier in this chapter).
	Control statements are allowed; see the if clause in the previous screenshot.
	After modifying your .bashrc file, remember to source it using the dot operator as follows:
. .bashrc

Dealing with blanks and special characters in filenames

Linux (and Unix) filesystems were not originally designed to handle blanks in filenames. This can cause quite a few problems, as the shell treats each item after a blank as another file or parameter. A solution is to use quotes, the backslash, or the Tab key.
The following sections assume the user has not modified the Bash Internal Field Separator (IFS) variable.
How to do it...

See the following screenshot. I purposely created three "bad" filenames:
[image: How to do it...]
	Run ls -la file with blanks.txt and notice the errors.
	Now run it again, but enclose the filename in quotes: ls -la "file with blanks.txt"; it will work properly now.
	Enter ls -la file and press Tab. It will escape the blanks for you.
	Run ls -la special>.txt. Observe the error.
	Enclose in quotes as before using the following command:
ls -la "special>.txt"

	Now try ls -la -startswithdash.txt and then try quoting it. Doesn't work, right?
	Precede the filename with the ./ operator using the following command:
ls -la ./-starWtswithdash.txt

As you can see, this can also be a problem if special characters have been used in the filename. Study this one a bit and it will become clear. Remember the Tab key; it works really well for just about every case. If the file starts with a dash, use the ./ operator. It means to refer to the file in the current directory.

There's more...

The issue of blanks and special characters is even more of a problem in scripts. This will be covered in more detail in Chapter 8, Working with Scripts.

Understanding the $? variable

Typically, when a command is run in Linux it performs a task; it either reports what it did or indicates an error occurred. An internal return code is also generated, and is displayed by running the echo $? command. Note that this must be the very next thing typed after the original command.
The following screenshot shows echo $?:
[image: Understanding the $? variable]
How to do it...

Here is a quick example of echo $?:
	Run the following command:
ping -c 1 packt.com

	It should succeed. Run the following command:
echo $?

	You should get a 0 for success.
	Now run the following command:
ping -c 1 phooey

Tip
It may take a second or two to complete.

	Run echo $? again. It should return a non-zero value to indicate failure.

How it works...

In general, a return of zero means success. A non-zero return means an error has occurred, and in many cases the code returned indicates what the error was. Remember this the next time you type a command, hit Enter, and get the shell prompt back without anything appearing to happen.

There's more...

The man and info pages for a command typically contain an entry showing what the errors mean. If the man page is lacking, consult the web.

Redirection and piping

Suppose you run a command, say route, and want to save the output in a file. The redirection (>) operator is used to do this instead of sending the output to the screen.
How to do it...

Let's try some redirection:
	Enter ifconfig > file1.txt. You won't see anything, because the output went into the file.
	Run cat file1.txt. You should now see the output.
	This works the other direction as well, to read from a file run the following command:
sort < file1.txt

	You can even do both in one step:
sort < file1.txt > output-file.txt

	You can also send the output to another command using the pipe operator. For example, run route | grep eth0. The above command would display only the lines from route that contain the phrase eth0.

There's more...

Here is something that I use all the time. Say I have written a program in C a long time ago, have several versions, and want to find the latest one. I could run locate to find them all:

locate crc.c

This might return quite a few lines. How can I run ls on each file to find the latest one? By piping the output into the xargs command and then ls:

locate crc.c | xargs ls -la

This will now show the time and date of each file.
This might seem a bit complicated at first, but if you experiment a little it will become second nature to you.

Sending output from one terminal to another

This is a really handy feature that is unique to Linux/UNIX systems. It's most useful in scripts but can be used on the command line as well. If you have a system available try the given steps.
Getting ready

You will need two open terminals.

How to do it...

We show how to send the output from one terminal to another in the following steps:
	In one terminal run the tty command. The output should be something like /dev/pts/16.
	In the other terminal run the route command. You will see the output in that terminal.
	Now run route again, but now using the command:
route > /dev/pts/16

	The output will go to that other terminal.

How it works...

Terminals on Linux systems are devices that have their own buffer space. By referring to the device by name you can write to it.

There's more...

This feature is even more useful in scripts, which we will see in Chapter 8, Working with Scripts.

Using the Screen program

Screen is a full-screen window manager that shares a physical terminal with other processes (which are usually other terminals/shells). It is normally used when no other manager or desktop is available, such as on a server. It has a scroll-back history buffer and also allows for copy and paste of text between windows.
Getting ready

The following is a brief list of some of the many key bindings available with Screen:
	Ctrl + A + ?: It displays a list of commands and their key bindings
	Ctrl + A + C: It brings up a new window
	Ctrl + A + D: It detaches a window
	Ctrl + A + N: It is used to go to the next window in the sequence
	Ctrl + A + P: It is used to go to the previous window in the sequence
	Ctrl + A + # (where # is a number): It is used to go directly to that window
	Ctrl + A + ": It shows the list of windows; user can select any one by the number

The following is a list of frequently used commands:
	screen -list: It shows all of the windows
	screen <program>: It creates a new window and run that program in it

How to do it...

An example of running the Screen utility is as follows:
	In a terminal run the screen -L command.
	Now press Ctrl + A and then press C. This will create another window.
	Do this two more times.
	Try typing Ctrl + A + 0.
	Try Ctrl + A + 3.

How it works...

In the previous section, step 1 will create a new window, window 0. If you are running inside a window manager you may notice the title change showing which window it is.
Step 2 will create another window. After step 3, you will have 4 windows in total.
When you perform the actions in step 4, you should be in window 0. Typing Ctrl + a + 3 will take you to window 3.

There's more...

Here is a helpful hint, if you are running only a command line with no desktop, you may want to change your PS1 variable to something like the following in your .bashrc file:

export PS1="screen$WINDOW \h \u \w \$ "

Now the prompt will always show which window you are in.
This describes only a small part of what Screen can do. Consult the man page for more information.

Chapter 2. The Desktop

In this chapter we will cover these desktop environments:
	GNOME 2
	KDE desktop
	xfce
	LXDE
	Unity
	Mate

Introduction

A computer desktop is normally composed of windows, icons, directories/folders, a toolbar, and some artwork. A window manager handles what the user sees and the tasks that are performed. A desktop is also sometimes referred to as a graphical user interface (GUI).
There are many different desktops available for Linux systems. Here is an overview of some of the more common ones.

GNOME 2

GNOME 2 is a desktop environment and GUI that is developed mainly by Red Hat, Inc. It provides a very powerful and conventional desktop interface. There is a launcher menu for quicker access to applications, and also taskbars (called panels). Note that in most cases these can be located on the screen where the user desires.
The screenshot of GNOME 2 running on Fedora 14 is as follows:
[image: GNOME 2]
This shows the desktop, a command window, and the Computer folder. The top and bottom "rows" are the panels. From the top, starting on the left, are the Applications, Places, and System menus. I then have a screensaver, the Firefox browser, a terminal, Evolution, and a Notepad. In the middle is the lock-screen app, and on the far right is a notification about updates, the volume control, Wi-Fi strength, battery level, the date/time, and the current user. Note that I have customized several of these, for example, the clock.
Getting ready

If you have a computer running the GNOME 2 desktop, you may follow along in this section. A good way to do this is by running a Live Image, available from many different Linux distributions.
The screenshot showing the
Add to Panel window is as follows:
[image: Getting ready]

How to do it...

Let's work with this desktop a bit:
	Bring this dialog up by right-clicking on an empty location on the task bar.
	Let's add something cool. Scroll down until you see Weather Report, click on it and then click on the Add button at the bottom.
	On the panel you should now see something like 0 °F. Right-click on it.
	This will bring up a dialog, select Preferences.
	You are now on the General tab. Feel free to change anything here you want, then select the Location tab, and put in your information.
	When done, close the dialog. On my system the correct information was displayed instantly.
	Now let's add something else that is even more cool. Open the Add to Panel dialog again and this time add Workspace Switcher.
	The default number of workspaces is two, I would suggest adding two more. When done, close the dialog.
	You will now see four little boxes on the bottom right of your screen. Clicking on one takes you to that workspace. This is a very handy feature of GNOME 2.

There's more...

I find GNOME 2 very intuitive and easy to use. It is powerful and can be customized extensively. It does have a few drawbacks, however. It tends to be somewhat "heavy" and may not perform well on less powerful machines. It also does not always report errors properly. For example, using Firefox open a local file that does not exist on your system (that is, file:///tmp/LinuxBook.doc). A File Not Found dialog should appear. Now try opening another local file that does exist, but which you do not have permissions for. It does not report an error, and in fact doesn't seem to do anything. Remember this if it happens to you.

KDE desktop

The KDE desktop was designed for desktop PCs and powerful laptops. It allows for extensive customization and is available on many different platforms. The following is a description of some of its features.
Getting ready

If you have a Linux machine running the KDE desktop you can follow along. These screenshots are from KDE running on a Live Media image of Fedora 18.
The desktop icon on the far right allows the user to access Tool Box:
[image: Getting ready]
You can add panels, widgets, activities, shortcuts, lock the screen, and add a lot more using this dialog.
The default panel on the bottom begins with a Fedora icon. This icon is called a Kickoff Application Launcher and allows the user to access certain items quickly. These include Favorites, Applications, a Computer folder, a Recently Used folder, and a Leave button.
If you click on the next icon it will bring up the Activity Manager. Here you can create the activities and monitor them. The next icon allows you to select which desktop is currently in the foreground, and the next items are the windows that are currently open. Over to the far right is the Clipboard.
Here is a screenshot of the clipboard menu:
[image: Getting ready]
Next is the volume control, device notifier, and networking status.
Here is a screenshot of
Interfaces and Connections dialog:
[image: Getting ready]
Lastly, there is a button to show the hidden icons and the time.

How to do it...

Let's add a few things to this desktop:
	We should add a console. Right-click on an empty space on the desktop. A dialog will come up with several options; select Konsole. You should now have a terminal.
	Close that dialog by clicking on some empty space.
	Now let's add some more desktops. Right-click on the third icon on the bottom left of the screen. A dialog will appear, click on Add Virtual Desktop. I personally like four of these.
	Now let's add something to the panel. Right-click on some empty space on the panel and hover the mouse over Panel Options; click on AddWidgets.
	You will be presented with a few widgets. Note that the list can be scrolled to see a whole lot more. For example, scroll over to Web Browser and double-click on it.
	The web browser icon will appear on the panel near the time.

There's more...

You can obviously do quite a bit of customization using the KDE desktop. I would suggest trying out all of the various options, to see which ones you like the best.
KDE is actually a large community of open source developers, of which KDE Plasma desktop is a part. This desktop is probably the heaviest of the ones reviewed, but also one of the most powerful. I believe this is a good choice for people who need a very elaborate desktop environment.

xfce

xfce is another desktop environment for Linux and UNIX systems. It tends to run very crisply and not use as many system resources. It is very intuitive and user-friendly.
Getting ready

The following is a screenshot of xfce running on the Linux machine I am using to write this book:
[image: Getting ready]
If you have a machine running the xfce desktop, you can perform these actions. I recommend a Live Media image from the Fedora web page.
While somewhat similar to GNOME 2, the layout is somewhat different. Starting with the panel on the top (panel 1) is the Applications Menu, following by a LogOut dialog. The currently open windows are next. Clicking on one of these will either bring it up or minimize it depending on its current state. The next item is the Workspaces of which I have four, then the Internet status. To complete the list is the volume and mixer apps and the date and time. The screen contents are mostly self-explanatory; I have three terminal windows open and the File Manager folder.
The smaller panel on the bottom of the screen is called
panel 2.

How to do it...

Let's work with the panels a bit:
	In order to change panel 2 we must unlock it first. Right-click on the top panel, and go to Panel | PanelPreferences.
	Use the arrows to change to panel 2. See the screenshot below:[image: How to do it...]

	You can see it is locked. Click on Lock panel to unlock it and then close this dialog.
	Now go to panel 2 (on the bottom) and right-click on one of the sides. Click on AddNewItems....
	Add the applications you desire.

There's more...

This is by no means an exhaustive list of what xfce can do. The features are modular and can be added as needed. See http://www.xfce.org for more information.

LXDE

LXDE (Lightweight X11 Desktop Environment) was designed to work well in low resource conditions and is a relatively new environment. Unlike most of the other desktops, the components of LXDE do not have many dependencies and can run independently.
Getting ready

If you have a machine using this desktop you can follow along with this section.
This is a screenshot of LXDE running on a Live Media image of Fedora 18:
[image: Getting ready]
As you can see, there are two terminals open and the file manager. Starting on the left of the panel is the familiar-looking Fedora icon, which has just been clicked on. It brings up the pulldown as shown. The next icon is the file manager and then an LXTerminal.
The next icon says "Left click to iconify all windows. Middle click to shade them". I chose to leave this icon as is.
The next are two desktop icons, and then the event list. Farther to the right is a Wi-Fi icon (Wi-Fi not activated), a wired Ethernet status, a system monitor, volume control, and the Network Manager Applet. After that is the clipboard manager, time, a lock-screen icon, and a logout box.

How to do it...

Let's work with this desktop a bit:
	Right-click on an empty spot of the panel, a pulldown will be displayed.
	Click on Panel Settings. The following screen will pop up:[image: How to do it...]

	Let's change the font size. Click on Appearance, and then Size under Font.
	Using the scroll keys change the value to something else. The change will appear instantly. When it looks good, select Close.
	Let's add an app. Bring up the panel settings again and click on Add / Remove Panel Items.
	Click on Add, scroll down and click on Desktop Number / Workspace Name. The name of the workspace you are currently in shows up on the far right of the panel. I personally like this feature a lot.

There's more...

I found LXDE to be very intuitive and fast. I believe it would work well, particularly on laptops and mobile devices, where power is at a premium.

Unity

Unity is a shell interface for the GNOME environment used primarily on Ubuntu systems. It was designed to work well on small screens, for example, it employs a vertical application switcher. Unlike the other desktops/managers, it is not itself a collection of executables but uses existing applications.
Getting ready

If you have a machine running the Unity desktop, you can follow along with this section.
The following is a screenshot of Unity running on Ubuntu 12.04:
[image: Getting ready]
On the desktop is a GNOME terminal session and the Home folder. Starting with the vertical panel on the left is the Dash Home icon. It allows the user to find things quickly. Under that is the Home folder (already opened) and then the Firefox web browser. The next three are Libre Office Writer, Calculator, and Impress. Next is the Ubuntu Software Center, which is used to search for and purchase applications. The next icons are for Ubuntu One, a Terminal, System Settings, the Workspace Switcher, and the Trash folder.
To complete the discussion of the top panel, on the far right is the icon for Evolution. The next is the Battery status icon, network status (both wired and wireless), and the volume control. The remaining icons are the time, a switch user accounts icon, and the log out button.
Interesting enough, the terminal was not available by default on this guest desktop.

How to do it...

Let's add a terminal to this desktop:
	Open the Home folder and then click on File System.
	Double-click on the usr folder and then the bin folder.
	Click on Search to open that dialog box.
	Type in gnome-terminal and press Enter.
	Double-click on the gnome-terminal icon.
	It will open up on the screen, and you also see it as an icon along the left side panel.
	Right-click on this icon and select Lock to Launcher. You now have a terminal icon.

The top panel on Unity works a little differently from the other desktops. Try the given steps:
	Open the Home folder.
	Open a terminal if you haven't already done so.
	Now, click somewhere on the Home folder. The text Home Folder will be shown on the panel.
	Now click on the Terminal. The text Terminal now appears. The menu items listed on the panel always correspond to the window or app that has the focus.

[image: How to do it...]

There's more...

I found Unity to be very different from the other desktops. At first it was a bit difficult, but like everything else it gets better with time. I believe this desktop would be popular with users who do not have much experience with Linux/UNIX systems.

Mate

The Mate desktop was created to give users a more productive environment similar to GNOME 2. I am currently running Fedora 19 on my laptop using Mate and it is running fine. Note that I downloaded the F19 installation DVD and chose Mate during the install process.
Getting started

You can use a Live Image or a full install DVD from the Fedora site to follow along with these steps, whichever you prefer.
The following is a screenshot of Mate on Fedora 19:
[image: Getting started]
You can see I already have two terminals open. On the top left is the Applications pulldown, which allows you to browse and run installed applications. The next one is Places, which allows you to access documents, folders, and network places. Next is System, where you can change the desktop appearance and behavior, get help, or log out. The icons are Caja, a file manager, and then a terminal. Yes, the Mate people were smart enough to include one by default. The next icons are Firefox, a mail app, and a messenger app. I added the lock-screen icon, which is in the middle. On the right is the volume, then the Wi-Fi bars, the battery status, and the date (which I customized a bit).
On the bottom left is an icon that allows you to hide all windows and show the desktop. And finally, on the far right are four workspaces.

How to do it...

Let's change a few things on this desktop:
	First let's add the Lock Screen app. Right-click in the middle of the top panel.
	Click on Add to Panel....
	Click on Lock Screen and follow the instructions. Close the dialog.
	Now let's work with the time and date. Left-click on it and you will notice a calendar is displayed.
	Left-click on the time and date again to close the calendar and then right-click on it. Click on the Preferences tab.
	The Clock Preferences window should be displayed. Here you can change how the time and date are shown. I clicked on Show seconds because I like seeing the full time.
	Close the dialog.

There's more...

As you can see, Mate works very much like GNOME 2. It is very intuitive and easy to use. The designers did a fine job creating this desktop.

Chapter 3. Files and Directories

In this chapter we will cover:
	Copying, removing, and updating files and directories
	Finding files using find and locate
	Creating text files – vim, Emacs, and others
	Using the file command
	Using grep to find patterns
	Compressing files using ZIP and TAR
	Other helpful commands such as stat, sum, touch, and more

Introduction

You can think of everything in a Linux filesystem as a stream of bytes. This is simply called a file. A directory is also a file that contains other files. Most of the files are located on your computer's hard disk. However, some are in memory, for example, /proc and /sys are actually virtual filesystems. Files can also be stored on removable media too such as USB devices, CD/DVDs, and on other machines (that is, NFS mounts).
Understanding inodes and the superblock

Every file under a filesystem has a special number called an inode. The inode is where the OS stores the properties of the file and contains the following information:
	The file type such as regular, directory, special, link, socket, pipe, or block device
	The owner and group information
	The permissions of the file (more on this in Chapter 5, Permissions, Access, and Security)
	Date and time on which the file was created and when last changed or read
	The file size
	The inode contains some other information as well

Things that are not available in the inode are the full path and name of the file itself. This is stored in the /proc filesystem under the PID (process ID) of the process that owns the file.
The superblock is what ties all of the inodes together on a filesystem. It contains all of the information needed to manage the files. Being very important to the system, most Linux filesystems have a backup copy of the superblock at regular intervals, while also being retained in memory.
The dumpe2fs command can be used to show the contents of the superblock. The following is a screenshot of dumpe2fs taken on Fedora 17:
[image: Understanding inodes and the superblock]
This shows the superblock information for the first partition on this hard drive.

Copying, removing, and updating files and directories

In this section we will briefly explore how to copy, remove, and update files.
Getting ready

Several books have been written about filesystem management, and so this will serve as just a brief overview. If you have a Linux machine available you can try out these commands. We will be doing everything in the /tmp filesystem, so you don't have to worry about messing anything up on your system.

How to do it...

The following is the method to create some files and directories:
	Go to the /tmp directory:
cd /tmp

	Make a test directory:
mkdir lbooktest3

	Go to the directory:
cd lbooktest3

	Let's create some files:
ls > f1; ls > f2; ls > f3

	Also, create some directories:
mkdir dir1 dir2 dir3

	The syntax for copy is cp source-file destination-file, so now run cp f1 f5. This will create file f5 which is a copy of file f1.
	You can copy to a directory:
cp f1 dir1

	The above is a relative path, because it starts from the current directory. To use an absolute path do this:
cp f1 /tmp/lbooktest3/dir1

	Now let's remove file f3 from the current directory:
rm f3

	Let's move file f2 to dir2:
mv f2 dir2

	The mv command is also used to rename a file. To rename f1 to f6:
mv f1 f6

	To see a text mode graphical representation of this directory run the following command:
tree

	It is optional to clean up everything we just did, cd /tmp and then run:
rm -r lbooktest3

The following is a screenshot of the above commands:
[image: How to do it...]

There's more...

A file can be copied from another location on your computer to the current directory. This is performed using the dot operator:

 cp /tmp/somefile

You don't have to cd to a directory first. You can do something like the following command:

 cp /bin/bash /tmp

This is very handy, especially when configuring a machine.
So what happens if you copy a file to a file that already exists? Assuming you have the proper permissions, the file being copied overwrites the other file. Also, be careful when using rm, as it is very difficult to recover a deleted file on a Linux system.

Finding files using find and locate

The find command is normally used to search for files starting from the current directory. The locate command uses the updatedb database to find files or directories on the entire system (with some exceptions).
How to do it...

Let's use find and locate to look for some common Linux files:
	First change the directory to /usr:
cd /usr

	Run the following command:
find -name bash

	Now try it with a wildcard:
find -name bash*

	It will also find directories:
find -name bin

Now suppose we want to look for a file, but don't really know where it might be on the system. The find command is also slow at times, because it has to search the filesystem from the current point. Here's where locate comes in real handy.
	You can be in any directory for this example. Run the following command:
locate gnome-terminal

	Now try the command:
locate vim

	See how fast this is? Now try:
locate ifconfig

	To ignore case do:
locate -i sudo

There's more...

The find command has over 100 parameters; consult the man page for more information.
The locate command uses a database(s) to store the location of files. This database is usually automatically recreated by a cron job every night. If you want to refresh the database immediately run the updatedb command. Note that it may take a while on a large filesystem and/or slow computer.

Creating text files – vim, Emacs, and others

Most users are probably familiar with a GUI-based word processing program. For example, I am using LibreOffice Writer to compose this book. However, you can edit files using the command line as well. Some of us even prefer it.
Getting ready

It is assumed the reader has access to a Linux machine with a selection of text editors available. We will start with vim, a text editor that is available on every Linux/Unix system. If Emacs is not on your system, try installing it with yum install emacs or apt-get install emacs.

How to do it...

The following is the method to create and edit a text file using the vi command:
	Let's go to the tmp directory. Run the following command:
cd /tmp

	Now run:
vim lbookfile1.txt

	Your terminal should have cleared with vim running in it. Vim is modeless, and so always has to be told what mode to be in. Press the A key.
	Vim should now be in Insert mode. You may see something like -- INSERT -- at the bottom of the screen. Now type some characters.
	The normal cursor control keys should be functional. When done editing, press the Esc key to get out of Insert mode.
	To enter command mode, press the colon key, and then any letter. To save the file for example type :w.
	To save the file and then quit vim, press Esc and then type :wq.

The following is a screenshot of vim editing a Java file:
[image: How to do it...]
Now let's take a look at the Emacs editor:
	Change to the /tmp directory:
cd /tmp

	To start Emacs in text mode run:
 emacs -nw lbooktest3.txt

	It will start up in edit mode. Type a few lines
	To save the file, press Ctrl + C and then press Ctrl + S.
	The standard cursor keys should get you around the screen; try it.
	Press Ctrl+H+? to bring up the Help window.
	To go back to your original screen, press Ctrl+X+1.
	To close the Emacs session, press Ctrl + X and then press Ctrl + C.

The following is a screenshot of Emacs editing the Java file:
[image: How to do it...]

There's more...

Vim and Emacs are very powerful editors. They are most often used by programmers writing code and sys admins maintaining shell scripts. To get more information consult the man and/or info pages, or their websites.
And for a bonus, here's a picture of my personally-written text editor:
[image: There's more...]
This was written in C language under DOS about 20 years ago. I have now compiled and run it on over 20 different platforms.

 Using the file command

We talked about text files above. In general, humans can read and edit text files rather easily. A binary file is different, it is (loosely) what the computer "reads". For example, when you run a command such as vim filename1.txt vim is a binary file and filename1.txt is a text file.
How to do it...

The following is an example of running the Linux file command:
	Change the directory to /tmp as usual:
cd /tmp

	Let's create a text file:
ls > temp1.txt

	What kind of file is it? Run the following command:
file temp1.txt

	As you can see, the file command can tell us what kind of file something is.
	Now run the following command:
file /bin/bash

	All of that information means it's a binary file. It also shows what platform bash was written for, and some other info.
	Try running file on some different files on your system to get an idea of what there is out there.

Tip
You must have the proper permissions to run the file command as it must perform an open operation on the file.

There's more...

We mentioned editing text files. Binary files can be edited as well, if you really know what you are doing. This is sometimes needed during low-level work, for example, when working on device drivers. A binary editor may look something like the following screenshot:
[image: There's more...]
Tip
Oh no, I have edited a file but now can't save it!
From time to time, you may get into a text editing situation that seems hopeless. You have spent some time changing a file but now can't save it. The error is usually something like "Permission denied". There are usually two things that can cause this; you can't write into the directory where the file is located, or the file already exists but not with the proper writeable permissions. The best way to save your work, if the program allows it, is to simply write the file somewhere else, for example, in /tmp.
This is a rather simplistic example, but it gets the idea across. I wish I had already known this procedure the first time it happened to me.

How to do it...

The following is the method to save a file when you get a permission error:
	As a normal user (not root) go to the /usr directory:
cd /usr

	Now run the following command:
vim lbookfake1.txt

	It should open up an empty file as normal. Press A and then then enter some text.
	Now press Esc, and type :w.
	It should show a write error, so save the file to /tmp:
:w /tmp/lbookfake1.txt

	That should succeed. You can then take steps to correct the real problem (that is, don't edit files where you are not supposed to!).

Using grep to find patterns

When dealing with files, it is convenient to be able to search for patterns within the text. This is often used in code development for example. Here we show how to use grep.
Getting ready

We will use the dmesg program, which shows information about the running kernel, for this example. If it is not available, or if your computer has been running for a long time, the following may not match up quite right on your system.

How to do it...

The following is an example on using grep:
	Run the following command:
cd /tmp

	Use dmesg to create a file, so we can search for some information about your system:
dmesg > dmesg1.txt

	Let's see if we can determine what network device is being used. Run:
grep network dmesg1.txt

	The output might not be very informative. But what if case is an issue? Try the following command:
grep -i network dmesg1.txt

	The -i tells grep to ignore case. You should now see which network driver your system is using. Now try the following command:
grep -i cdrom dmesg1.txt

	grep returns a code based on the results of the search. Run the above command again (remember the up arrow shortcut?):
grep -i cdrom dmesg1.txt

	Now run the following command:
echo $?

	Assuming the text was found, the return code will be 0. Now search for a string that should not be there:
grep -i jimlewis dmesg1.txt

	Run the following command:
echo $?

	The return code should not be 0.Tip
This might seem a little backwards, that zero means success and non-zero means failure. This is common to many Linux commands, because in many cases the number returned is an error code.

There's more...

The grep program can search in an incredible amount of different ways. You can specify very complicated patterns as well. Consult the man page for more information. Also, we will visit the return code from grep again in Chapter 8, Working with Scripts.

Compressing files using ZIP and TAR

It's no secret that a Linux system has a lot of files. A typical code development project might have over 1000 files, spread across several directories. And how do we back all of that stuff up?
The answer is file packaging and compression. Here we will show two favorites, ZIP and TAR.
Getting ready

Most Linux systems have both ZIP and TAR, and so it will be assumed they are already available on your system.

How to do it...

Here we will experiment with the zip and unzip command::
	Run the following command:
cd /tmp

	Let's make a temporary directory:
mkdir lbooktemp

	Run the following command:
cd lbooktemp

	Now let's create some files:
ls > f1.txt; route > f2.txt; dmesg > f3.txt

	Then, create some more files:
ifconfig > ifconfig.dat; dmesg > dmesg.dat

	Let's package and compress the first ones into a single file:
zip lbook1.zip f1.txt f2.txt f3.txt

	As you can see, the syntax for ZIP is "zip zipped-file files-to-zip". We could have also used wildcards above:
zip lbook1.zip *.txt

	Now let's include the others:
zip lbook1.zip *.txt *.dat

	The unzip program is used to extract files out of a zipped file (also called an archive). Make another directory using the command:
mkdir test

	Run the following command:
cp lbook1.zip test

	Run the following command:
cd test

	Now unzip the file:
unzip lbook1.zip

	Perform an ls -la command. You should see the files as before.
	You can also view the contents of a ZIP file, without extracting anything, by running the following command:
unzip -l zipped-file

I use ZIP when there are just a few files, or when I am sending them to someone running a non-Linux OS. While ZIP can be used to span directories, it doesn't normally deal well with some Linux files. Tar is a better alternative:
	We can use the same files as before: cd /tmp/lbooktemp
	Run tar cvzf lbook1.tar.gz *.txt. This will create a gzip compressed archive file.
	Now run file lbook1.tar.gz. It should show something like the following output:
lbook1.tar.gz: POSIX tar archive (GNU)

	To extract, first copy it to the test directory:
cp lbook1.tar.gz test

	Run the following command:
cd test

	Run the following command:
tar xvzf lbook1.tar.gz

	Perform an ls -la command. You should see the files again.
	To view a tar archive, use the t (for tell) option:
tar tvzf lbook1.tar.gz

	Now let's TAR the the whole directory:
cd /tmp

	Run the following command:
tar cvzf lbooktemp1.tar.gz lbooktemp

	This will get the entire directory, even the hidden files if any exist.

The following is a screenshot of the zip command:
[image: How to do it...]

There's more...

ZIP and TAR are used quite frequently in system administration to back up everything. It should be noted that "tarring up" a system, copying that file to another machine, and "untarring" the file is a great way to clone a box (I use this all the time).
Later, when we discuss crontab in Chapter 9, Automating Tasks Using Cron, I will show how I use TAR to backup my system every night.

Other helpful commands such as stat, sum, touch, and more

There are many more commands available in Linux that deal with files. In this section I show how to use a few of them.
How to do it...

The following are some of the commands I find myself using all the time:
	Run the following command:
cd /tmp

	Create a file:
dmesg > file1.txt

	Now run ls -la and remember the info. We will use this later.
	Use the stat command to see practically everything you would ever want to know about the file:
stat file1.txt

	Now suppose you have sent that file to someone that is running a Linux system, and want to ensure it did not get corrupted along the way. Run the following command:
sum file1.txt

	The first number is the checksum and the second is the number of blocks for that file. If the other person runs sum on his copy of the file and sees the same info, the files are the same.Tip
The file names do not have to match.

	We have created a lot of files by using the redirection operator. You can also use the touch command:
touch file2.txt

	Since file2.txt did not already exist, touch will create it as an empty file. In fact, let's prove that:
file file2.txt

	So what happens if we run touch on an existing file? Does it empty it? No, it updates the time and date on it. Run the following command:
ls -la file1.txt

	Now run the following command:
touch file1.txt

	Run ls -la again. You should notice it now shows the current date and time on that file.
	Suppose you want to just view a text file. Run the following command:
less file1.txt

	When using the less command press the Space bar to scroll down. Press Q to exit.
	Say we want to see just the first few lines in that file:
head file1.txt

	The head command shows the first 10 lines by default. How about the last 10 lines? Run the following command:
tail file1.txt

There's more...

As I have said before, there are many, many more commands that deal with files. And, of the commands I have mentioned, I have only scratched the surface of what they can do. As always, consult the man pages for more information.

Chapter 4. Networking and the Internet

In this chapter we will cover:
	Troubleshooting bad connections
	Copying files to another machine–FTP and SCP
	Logging into another machine – Telnet and Secure Shell
	Getting a web page without a browser – wget
	Browsing the web – Firefox
	E-mail – using a web mail program
	Running your own web server – httpd
	What is using that port? The /etc/services file
	IPv4 versus IPv6

Introduction

Being "on the net" is crucial in today's world. Here we explain connectivity and what to do when it doesn't work. But first we will explain the pros and cons of a wired versus a wireless connection.
A typical wired Ethernet connection is fast and reliable. It does not normally suffer from dropouts or lost packets. A good quality wire such as Cat 5E or Cat 6 can run for several feet without any loss of signal.
Wireless connectivity gives you the freedom to, well, not have a wire for one thing. When properly configured it can be effortless to use and be very reliable.
Wired connection has the following pros:
	Wired connection is typically faster than wireless
	In general, it is more reliable
	It doesn't suffer from periodic dropouts or lost packets
	Is easier to configure and troubleshoot

Wired connection has the following cons:
	We need to use wires; it can be very difficult to rearrange or change, especially in a computer lab environment
	We need someone to design and physically connect the network
	It can be confusing when using large servers with multiple Ethernet ports

Wireless connection has the following pros:
	It is convenient; we don't have to deal with wires
	In some cases, it can go pretty far from the base router
	It is easily set up for guest access

Wireless connection has the following cons:
	It is not always reliable. Dropped packets happen much more frequently than with a wired connection.
	It can be hard to set up, especially for the first time.
	We have to deal with passwords and encryption to prevent unwanted access.

Troubleshooting bad connections

This seems to happen occasionally, and at the worst possible time. These are the steps I normally take to diagnose and solve the problem on a wired connection. It is assumed that the connection worked properly at some time in the past.
Getting ready

There is no special setup for this example, unless you happen to have a broken machine somewhere. You can run most of these commands without fear of hurting a good system.

How to do it...

Try these steps when diagnosing a network issue:
	First let's make sure the connection is really down by pinging a known external address. I use Road Runner as my ISP, so for me the command would be:
ping rr.com

	Something like this should appear:[image: How to do it...]

	Press Ctrl + C to stop the output. If the command line says timed out, or says something about no host or bad route, the connection is indeed down. Let's try to fix it.
	Find your gateway address. Run the route command; your gateway should show up at the top of the output. Note, the route command taking a long time to complete is also a sign the connection is down.
	Ping the gateway provided by route above. If it pings successfully, then the problem is most likely on the router, or at the ISP itself.
	If it doesn't get a good ping, let's try this. If you already know the interface name, skip to the next step. If not, find it by using the ifconfig command. Look for a stanza that has something like eth0 or p3p2.
	Run the ethtool command on the interface. In my case it is ethtool eth0. Look at the last line; it should say:
Link detected: yes

	If it does not, the problem may be the wire. If your port has LEDs see if they are on. One of them should blink from time to time. Try wiggling the wire. Of course, if you have a known good wire, try replacing it. Note, a "known good wire" does not necessarily mean one right out of the package. Got bit by that once.
	If the wire seems okay, let's look deeper. Make sure, in the steps above, you have the right interface. Note at this point you may want to just read these steps instead of running the commands, as they will take your network down.
	Try running the ifdown <interface> command. You probably will not see any output.
	Now run the ifup <interface> command. It may take a few seconds, and then you should see some output. If you are using DHCP, you should see the connection being made. When you get the prompt back, try the ping again.
	I'll assume if you're still reading, the ping failed and the connection is still down. It is possible your router and/or modem has become jammed up. Try turning those off, wait about a minute, and then turn them back on.
	After waiting for the network to settle in try the ping again. If it is still down, continue with the next steps.
	Even though I despise this as a solution, at this point, I would suggest a cold shutdown. Close down all except one terminal and run the following command:
shutdown -h now

	I like to wait a few minutes before rebooting, just to make sure the memory is actually clear. Okay, so turn it back on and wait for it to boot all the way up.
	Try the ping command again. If it now works, I would suspect some kind of transient error or problem. If it continues to work, well that's great. However, if it fails again I would suspect the hardware might be going bad.
	If the ping command stills fails after a reboot, I would try booting up a Live Media image. If this works and gets on the net, something is out of whack in the files on your base system. If it does not work, I would suspect the hardware again.
	One last thing; make sure no one has made any changes to your DHCP server. A misconfigured server can cause all kinds of bad things to happen, such as not getting a connection.

There's more...

I hope this section has been useful. These steps have worked for me countless times in the past. One more thing I would suggest is to look at your /var/log/messages file (and/or dmesg). It may shed some light on why the connection is failing.
Note
Working with IP addresses, subnets, domains, and so on
This will serve as a very brief overview of what is meant by an IP address, subnet, and domain. Understanding this information will help you with future sections of this book.
An IP address, in general, is what distinguishes one computer from another on a network. It is a set of numbers such as 66.69.172.30. Within a home network, since NAT (Network Address Translation) is most likely used, you may be more familiar with the local addresses, such as 192.168.1.115.
The following is a quick list of the terminology:
	IP address: The Internet Protocol address of this machine, for example, 192.168.1.115.
	Subnet: The third octet (or set of numbers) is the subnet. For example, 192.168.1.115 and 192.168.1.120 are on the same subnet. However, 192.168.2.115 is not.
	Domain: A domain is usually referred to by a hostname, such as rr.com. It too has a numeric IP. Use the ping command to determine what IP a hostname is using.

Copying files to another machine – FTP and SCP

Not counting email, the two most common ways to copy files to another machine are FTP (File Transfer Protocol)and
SCP (Secure copy). Here we will discuss both.
FTP has been around for many years and is still used quite a lot today. However, standard FTP does have a serious drawback. The data is sent in what is called "clear text". This means a knowledgeable person could obtain the data under the right conditions. We will talk about this a bit later.
Getting ready

We will assume an FTP server has already been set up and is available for this exercise. Normally you would use ftp command from one machine (the client) to another (the server). However, for this example I am using just one machine. The command to start an FTP session is ftp server-name where server-name can be a host name known on your network, or a numeric IP address. For this example, I have created a file in /tmp named f1.txt and a file in /home/jklewis named f5.txt.
Most Linux distributions are already set up to allow the scp command, which is very convenient. We will assume your distro allows this. Note that some do not allow root access so we will use a guest account.
The syntax for SCP comprises of the given commands.
To copy to a machine:

scp local-filename username@hostname:/directory

To copy from a machine:

scp username@hostname:/directory/filename

(Don't forget the colon above.)
The following is a screenshot of the FTP help screen on Fedora 18:
[image: Getting ready]

How to do it...

Here is how to use the
ftp command:
	In a terminal session on the client, run the following command:
ftp 192.168.1.115

	It should present you with a prompt. Type in the username and press Enter.
	Type in the password and press Enter.
	It should show something like Login successful. If it doesn't, then you are not logged in, although there will still be an FTP prompt. Assuming it logged in run the following command:
ls -la

	You should see a listing of files. Run help to show a list of commands. They might not all be available on your system (which I consider a bug).
	One thing to remember when using ftp is to know where you are at all times. It is very easy to get confused. Use pwd often. Run it now:
pwd

	The commands you type are on the server. To run a command locally, prefix it with an exclamation point. Try these commands:
!pwd, !ls

	So, let's actually do something. Change your local directory to /tmp by running :
lcd /tmp

	Run the !ls command. Now let's copy file f1.txt to the server:
put f1.txt

	Now let's retrieve file f5.txt from the server:
get f5.txt

	This may appear a bit confusing at first. That's because it is. However, if you use it a lot it will become much easier. Remember, you put it to the server, and get it from the server.
	When you are finished with your FTP session run the following command:
quit

	Now let's run some scp commands, to begin:
cd /tmp

	Create a test file by running:
ls > f1.txt

	Run the following command:
scp f1.txt guest1@192.168.1.115:/temp

	Enter the password for user guest.
	Assuming file f5.txt is on the remote /temp, to get it run:
scp guest1@192.168.1.115:/temp/f5.txt

	Don't forget the colon above. Run ls -la to see how it went.

There's more...

I mentioned that FTP sends its data in clear text. The Secure Shell commands (more on that in the next section) use encryption and so security is not a problem. Also, it is possible to set up a machine so that the password is not required. For more on this, see the ssh-keygen command. This topic is also covered in Appendix A, Linux Best Practices. To configure sshd, for example, to change how root logins work, see the sshd_config file.

Logging into another machine – Telnet and Secure Shell

Telnet is an older protocol but is still used a lot today. It suffers from the same security problem as FTP; it sends text in a non-encrypted format. However, it is still useful in say a lab environment protected by a good firewall.
Getting ready

I will again use the same machine as both the client and server. For this example, we will assume both the Telnet client and server are already installed and operational.
The command to start a Telnet session is telnet hostname. The hostname can be a name reachable on your network or a numeric IP.
Secure Shell (SSH), is a more popular protocol as it provides for strong encryption of both the password and text. It's also much easier to use, in my opinion.
To start a secure shell, the command is as follows:

ssh username@hostname

How to do it...

Here we will run a few Telnet and SSH commands:
	Run the following command:
telnet 192.168.1.115

	A banner and prompt should appear. Enter the username.
	Enter the password.
	The message of the day (/etc/motd) file will probably be displayed. This is a good place to put messages and other information for anyone who is logging in. In this terminal you can run pretty much any text-mode command you want. Try pwd.
	You can change to another directory, edit files, and pretty much whatever you would normally do if you were actually on the system.
	When you are done with the session, run:
exit

This is a screenshot of Telnet running on Fedora 18:
[image: How to do it...]
	Now let's try running a Secure Shell session:
ssh jklewis@192.168.1.115

	Enter your password. The /etc/motd file should display as before. Let's try some commands. Run the following command:
pwd

	Run the following command:
uptime

	As with Telnet, every text-based command should work just as if you were on the actual machine. When done with the session, run:
exit

There's more...

Secure copy and Secure Shell are the best ways to copy files and to access remote machines. Get to know them well. I mentioned above that the ssh-keygen program allows one to copy files without a password. This works for SSH as well. I use this on all my home machines, and also on my website, which is hosted by a service provider. For more information on this very cool feature run man ssh-keygen.
One other thing, I mentioned that the Telnet and SSH sessions should work just like you were on the actual machine. This is not always true when the client is running on a non-Linux machine. For example, some of the key strokes may be mapped differently. Take a look at the documentation for the client program you are using as there may be a way to adjust the key mappings.

Getting a web page without a browser – wget

Probably everyone has received an e-mail from a questionable source. You know you shouldn't click on any of the links, but wouldn't it be nice if there was a safe way to determine what was on that site? Well, there is.
The wget program allows you to download files from URLs. Although it can do a lot, the simplest form of the command is: wget <some URL>. Assuming no errors, it will place that file in the current directory. If you do not specify a filename, by default it will attempt to get the index.html file.
How to do it...

The following is the method to run wget:
	Run the following command:
cd /tmp

	Run the following command:
wget www.jklewis.com

	The resulting file will be named index.html. View it with more index.html. Yes, it's my personal web page.
	You can also refer to specific files. Try:
wget www.jklewis.com/shipfire.gif

	Try it with some other sites. You can do this on a suspicious site to see if it is safe.
	If you have a suspect site in mind do a wget on the file. View it and look for links to other sites. If you see something like http:/DoWeCheatThemAndHow.com. I probably wouldn't click on that.

There's more...

The wget command can do a lot more. With the right parameters, it can be used to clone entire websites and a lot of other neat things. Consult the man page for more information.

Browsing the web – Firefox

There are several different browsers to choose from for your Linux system. Here we will focus on Firefox by Mozilla.
Getting ready

Firefox is usually available by clicking on the browser icon on your desktop. You can also start it from the command line. For this example we will start Firefox for the first time with user jklewis.
The following screenshot shows how Firefox looked like the first time I opened it under user jklewis:
[image: Getting ready]

How to do it...

The following is the method to run Firefox from a terminal:
	Open a terminal session for a guest user. For this example, I ran su - jklewis and entered my password
	Run firefox & (the ampersand tells it to run the command in the background so you can still access that terminal. Error messages will also be displayed here).
	Firefox should come up with the default settings. Let's change some of them. Go to Edit | Preferences.
Click on Edit->Preferences

	The Firefox Preferences screen should come up, on the General section. See where it shows Home Page, change it to something more useful. I changed mine to http://jklewis.com.
	The General section is also where you can control the behavior of the Downloads window. I have chosen to leave that checked for this user.
	Now click on the Tabs section. I personally despise browser tabs and so I have turned them off. To do this remove the check mark from Open new windows in a new tab instead and Always show the tab bar. Note you do not have to do that for this exercise.
	The Content section allows you to control what gets displayed. Take a good look at this page, however, I usually leave these settings as is.
	The Applications section shows what browser plugins are available. I don't change anything here.
	Now click on the Privacy section. This is where you can clear your history and deal with cookies.
	Now click on Security. I suggest leaving this as it is.
	The Sync section lets you sync up with a mobile device.
	The Advanced section has a few pages to it. The General page lets you control how the browser operates. Now click on the Network page. This is where you configure the cache.
	The Update page deals with what gets updated automatically, and the Encryption page is where the protocols are set and where you can view and modify your certificates. I suggest leaving these as they are. 
	Now close out the Preferences dialog.
	Now let's view a website and bookmark it. Go to the URL field and double-click on it. Press the Delete key. Now enter jklewis.com.Tip
The "www" is not normally required.

	You should see my web page. Now click on Bookmarks.
	Click on Bookmark This Page. A dialog titled Page Bookmarked will appear (actually this is absolutely wrong as the page has not been bookmarked yet). Here you can change the title of the bookmark, or the folder to put it in. For now just click on Done to finish.
	The page should now be bookmarked.

There's more...

As you can see, there are quite a few more options. Explore these as you need them. The following are a few more tips when browsing.
When bookmarking a page, take a good look at the title given. For some reason they don't always give a good descriptive name. "Account Login" just doesn't tell me much. However, if I change it to "Hi-Fee Bank and Trust – Login" that tells me exactly which account it is.
I highly recommend your browser be run from a guest account, and not root. Note that if you are running your desktop under a guest user (also highly recommended) starting Firefox from the icon will be fine.
On the right of the URL field is a star. Clicking on this brings up History. Next to that is a semi-circle with an arrow. This is the Refresh button. If a page ever seems to be loading too slowly, or is just not working right, try refreshing the page by clicking on this icon.

E-mail – Using a web mail program

There are many web mail clients available, such as Evolution and Thunderbird. I have used both and find them lacking in some areas. For this reason and others I use a browser web mail app instead.
Getting ready

If you already use a web mail program this will probably be old hat to you. However, if you have not used one before this should be very helpful. Note, for this section I do not suggest you try and run these commands, just read them.

How to do it...

The following is the method to access a webmail client using Firefox:
	Log in to your account on your provider's website. Somewhere on there should be a link to to access your e-mail. Your provider may even give you a choice of which web mail app to use. I chose Squirrel Mail.
	Whichever one you pick, it should open up and ask for your email account password. Remember that this might be different from the password you used to get into your provider's main account.
	Once you are in the mail app should present you with the contents of your inbox. Here you can respond to mails, forward them, provide attachments, and so on.
	There should also be an address book. Find it, open it, and get to know how to use it. If the provider has a way to export the address book file to your computer make frequent use of that feature so you can restore it later if it gets corrupted.
	Keep this in mind; if you are going to compose an email and attach a file to it, attach the file first before doing anything else. Then go fill out the other fields and compose the text. Trust me, your friends, family, potential employers, and so on will all thank you for not forgetting the attachment.
	Most web mail programs do not auto refresh the screen. So, if you leave it open (which I do all the time) and leave the computer, when you come back be sure to refresh the email session. This is usually done by clicking on the Inbox title. You can also click on the browser's Refresh button.
	One last thing about web mailers; the mail will probably eventually fill up your allocated space, and you might even get some e-mails about it from your provider. What I do is wait until I have used approximately 80 percent of my space in the inbox. I then go directly to the last page (usually page 30 or so) and move these to the trash. I go through and delete these one page at a time until I am back on page 20.
	Some people delete mail as they go. This is fine if you are good at it. I am not. If I do it that way I'll eventually delete something I wish I could get back.
	Speaking of getting a file back, you can usually recover a deleted file by looking for it in the Trash folder. However, once you have purged the folder, the e-mails will be gone for good. The purge usually occurs automatically about once a week (configurable on some mailers).

There's more...

One of the nice features of a web mailer is you should be able to access your email from any browser on any machine. All of the information is stored on the provider's website.
The following is a screenshot of Squirrel Mail | Options:
[image: There's more...]

Running your own web server – httpd

There may come a time when you will want to run your own web server. In my career as a software engineer I have been often asked to run the department lab. The easiest way to keep my users informed as to what is going on is to put the notes and files on my own local website that I control. This may sound hard but it really isn't.
Getting ready

This assumes you have a Linux system available to try this out on. If not, you can still get a lot out of this section. This also assumes that httpd is not already installed. These steps were performed on my laptop running Fedora 18.

How to do it...

The following are the steps to install your own Apache httpd server on Fedora:
	First install httpd:
yum install httpd

	Now change to the configuration directory:
cd /etc/httpd/conf

	Make a backup copy of the file: cp httpd.conf /tmp/httpd.conf.orig. You may want to choose a more suitable backup directory.
	Edit the file with a text editor:
vi httpd.conf

	This file contains almost everything you need to know in order to set up your httpd server. Read the first page very closely where it talks about ServerRoot.
	In brief, if a filename begins with a slash, the server will use that path as indicated. However, if a relative path is used, the value of ServerRoot is prepended. For example, scroll down to this line:
Include conf.modules.d/*.conf

	Since this is a relative path and ServerRoot is set to /etc/httpd, the directory that will be included is really /etc/httpd/conf.modules.d.
	In another terminal change to that directory now:
cd /etc/httpd

	Be sure to remember how ServerRoot works! It will save you a lot of time. Now let's go through the httpd.conf file a bit more. The Listen directive tells httpd which port to use. Leave it at 80 for now.
	Scroll down to ServerName. This is where you can enter the name of your particular server. Leave it blank for now.
	The last one we will talk about is DocumentRoot. This is the directory where your web pages will be served from. It should be set to /var/www/html.
	Let's actually start the httpd service. Run systemctl start httpd.service. This should silently return back to the command line.
	We have to enable it as well using the command systemctl enable httpd.service. This should show a successful link message.
	Now let's try it:
cd /var/www/html

	Run ls -la. It is probably empty. Create a file by running:
dmesg > dmesg1.txt

	Now either go to or open a browser session. We will check things locally first, so in the URL field enter file:///var/www/html/dmesg1.txt.
	The file contents should be displayed. Now let's create another file:
echo "This is a new file" > newfile.txt

	Substituting your IP for mine, try this in the URL field: 192.168.1.115:/newfile.txt. The contents of newfile.txt should be displayed.

There's more...

If you decide to do a lot of "web serving" be sure to read and understand the httpd.conf file. There is also quite a lot of information available on the net.
You may find that you cannot actually access your files from another computer on your network. That is most likely due to a firewall (iptables) issue; however, your router may need some configuring as well. This will be covered in Chapter 5, Permissions, Access, and Security.

What is using that port? The /etc/services file

From time to time you may need to know what service is running on a particular port. The /etc/services file contains that information and more.
How to do it...

Here we will take a look at some common services on a Linux system:
	View your /etc/services file: more /etc/services.
	Press the Space bar once to scroll the page down. See where it shows "ftp"?. The 21 in the next column indicates the port that FTP is using. The /tcp and /udp means that port is available for both protocols.
	You should also see telnet (if not, press Enter a few times). It should show port 23.
	Now let's search for a service. Press the Backspace key a few times to go back to the top, and enter /nameserver.
	We can see that nameserver is using port 42 and is available for both TCP and UDP.
	The file is quite long (over 11,000 lines on my system) as there are many, many standard ports.

There's more...

By convention, ports numbered 0 to 1023 are considered the "well-known ports". Ports numbered 1024 to 49151 are the "Registered Ports". The Private and Dynamic ports go from 49152 to 65535. If you are developing an application or are otherwise dealing with ports be sure to follow this port use convention.
The following is a screenshot of the first few lines of /etc/services on Fedora 18:
[image: There's more...]

IPv4 versus IPv6

As of the writing of this book, Internet Protocol Version 4 (IPv4)is used to route most of the network traffic on the Internet. It uses 32-bit (4 byte) addresses, which allows for a space of 232 addresses. Under IPv4, there are not enough addresses remaining to accommodate all of the Internet devices now in use, which is why IPv6 was created. In this section we will first run some commands and then discuss IPv4 and IPv6.
How to do it...

Let's try some commands using both protocols:
	Let's start with IPv4. Run the following command:
ping 192.168.1.115

	Then, run the following command:
ssh 192.168.1.115

	Now let's try IPv6. First let's see if your computer has an IPv6 address. Run ifconfig on your interface; on my laptop it's ifconfig wlan0.
	You should see something like the following output:
inet 192.168.1.115 netmask 255.255.255.0 broadcast 192.168.1.255

	You should also see something like the following output: inet6 2002:244:b303:0:221:5eff:feff:f15d. Try pinging it. On mine, it's ping 2002:244:b303:0:221:5eff:feff:f15d.
	Did you get a ping: unknown host error? That's because we have to use the IPv6 version of ping. Try again, but like the following command:
ping6 2002:244:b303:0:221:5eff:feff:f15d

	Now try ssh, it seems to already know about IPv6:
ssh 2002:244:b303:0:221:5eff:feff:f15d

There's more...

In general, under IPv4, a numeric IP address is written as xxx.yyy.zzz.www which is called dotted decimal format. Each of the 3 numbers separated by the dots are called an octet. The high order octet, the xxx in this example, indicates which class of IP this is. The following is a partial list of the classes available in IPv4:
	
Classes

	
Ports

	
Private network

	
10.0.0.0

	
Local loopback

	
127.0.0.1

	
Link-local

	
169.254.0.0

	
Private network

	
192.168.0.0

	
IP multicast

	
224.0.0.0

	
Broadcast

	
255.255.255.255

You have already seen some examples of the private addresses I use on my home network. The format is usually something like the following set of commands:

ping 192.168.1.115
scp file1.txt guest1@192.168.1.115:/temp
telnet 192.168.1.115
ssh 192.168.1.115

The IPv4 address space became officially exhausted in 2011. For this, and other reasons, IPv6 was created.
IPv6 is the most current version of the internet protocol. As opposed to IPv4 which uses a 32-bit address, IPv6 uses a 128-bit address. This is 2128 addresses, or enough for every person on Earth to each have well over a million for their own use. We probably won't run out of these anytime soon.
An IPv6 address has 8 groups of 4 hex digits, separated by colons: 2002:4244:b323:0:4687:fcff:fe69:4d0f.
Yes, this looks formidable but there were several reasons for the change:
	The longer address allows for more efficient routing
	It allows for special addressing techniques
	The size of a subnet is now 264 addresses
	Renumbering an existing network under IPv4 can be very complicated; when configured correctly, this is not an issue with IPv6
	Multicasting is done more efficiently
	IPv6 has Stateless Address Autoconfiguration (SLAAC)

IPv6 addresses can be abbreviated as follows: leading zeroes can be omitted.
Consecutive groups of zeroes can be omitted and replaced with two colons.
Look at the following example: the IP address is 2002:0244:0000:0000:0000:fcff:fe69:4d0f.
Omit leading zeroes, we get 2002:244:0:0:0:fcff:fe69:4d0f.
Now omit the zero groups and we get 2002:244::fcff:fe69:4d0f.
For more information consult the man pages and Internet. Large usage of IPv6 is still a long way off, but will be here eventually.

Chapter 5. Permissions, Access, and Security

In this chapter we will cover:
	Creating and managing user accounts – useradd
	Working with passwords
	Working with file permissions
	Working with firewalls and router settings
	Working with Secure Linux – SELinux
	Using sudo to secure a system
	The /tmp directory

Introduction

This chapter will serve as a brief review of Linux file permissions, and how access to the machine is handled by the password system. It will also show how to work with the security features in the firewall and router, and mentions SELinux and sudo.

Creating and managing user accounts – useradd

In this section we will show you how to add a user account using the useradd program.
Getting ready

These commands should not be destructive to your system; however, you will need to be the root user.
Note
In most Linux distributions there are two versions of this command, useradd and adduser. They do not always do the same thing, so consult your man page (and/or the file command) to make sure you are running the proper one. On Fedora, adduser is a symbolic link to useradd and so they are equivalent.

How to do it...

Here we will run the useradd command to add a user and the passwd command to set the password. There is more discussion of passwd in the following section:
	Firstly, we will be changing /etc/passwd, so let’s make a backup copy of it. Run the following command: cp /etc/passwd /tmp/passwd.orig
	Now let’s create a user named test1:
useradd test1

	It should have returned silently back to the command line. Now let’s try it:
su - test1

	You should see the prompt change. Run whoami, it should say test1. Be sure to run this every time you use su. Now let’s change the password:
run
passwd

	It will say something like Changing password for user test1. But then it prompts for the current password. What does this mean? What password does it want?
	I don’t really know the answer to this and the man pages are useless. They always skip this step, which is rather odd. There are ways to do this using the crypto function and some other complicated procedures. However, the following is my approach:
	Press Ctrl + C to come out of the passwd command and run exit to return to the root account. Now edit /etc/passwd and go to the bottom line. 1003 below will probably be different on your system, but you should see a line similar to this:
test1:x:1003:1003::/home/test1:/bin/bash

	Delete the x, so that the line now looks like:
test1::1003:1003::/home/test1:/bin/bash

	Save the file and exit. If you get a permission error remember you have to be root for this procedure.
	Now run su to become the test1 user again:
su – test1

	Run passwd.
	Hey, cool, it’s not asking for the current password this time. So go ahead and create one now as we really don’t want an open account on the system. If you plan to keep this account I suggest writing this password down or even better putting it into an encrypted file somewhere safe.
	After entering the same new password twice you should get a message similar to:
passwd: all authentication tokens updated successfully

We now have a new user. Note that in general this user can perform most of the activities on the command line that he has the proper permissions for. However, depending on the Linux distribution, the user may not be able to access all resources (the sound system, for example).
Here is a screenshot of useradd –help taken on my Fedora 17 system:
[image: How to do it...]

There’s more...

The useradd command can do a whole lot more than just create new accounts. You can change how an existing account works, or when it expires. You can even give a user system authority so he has almost has much power as root. Consult the man pages or use the –help option for more information.

Working with passwords

I mentioned the passwd command in the previous recipe. It is used to update a user’s authentication tokens. You will need to be the root user for this example. We will use the test1 user created in the above section.
How to do it...

Let’s work with the passwd command a little:
	From a user account, login to test1 to make sure that still works as expected:
su - test1

	Enter the password when prompted. This should work without errors.
	Now let’s lock this account. Exit back to root and run:
passwd -l test1

	From a user account run su - test1 and enter the password again. It should fail.
	Go back to root and unlock the account using the command passwd -u test1. Log in again to make sure it works.
	Now let’s expire the account. This will force the user to create a new password. As root run the following command:
passwd -e test1

	Now as a guest user, log into test1 using the command su - test1. Enter your password.
	You will be told to create a new password. Be careful here as you have to enter the old (current) password again, and then the new one two times. Yes, it does seem odd that we have to type the old password again, since we just did that.
	Note that you can delete a password for a user account by running passwd -d test1. This is easier than editing the /etc/passwd file directly as we did in the above section.

There’s more...

You can set a lot of other things on a user account. These include the amount of time for the account to remain active, and when to start warning the user to change their password. See the man pages for more info.
Note
A word about passwords
In the old days, we would pick a relatively simple password and keep it forever. We didn’t need to change it all the time, and could use it for everything, so it was not necessary to write it down. Unfortunately, that has now changed. Passwords usually need to be a combination of uppercase letters, numbers, and maybe even special characters. They have to be a lot longer in length as well. You can’t always use them for everything because the password rules on one system may differ from the rules on another. For these reasons I suggest using a different password for every account when reasonable, and record it somewhere safe. You will most likely have to change this password at regular intervals.

Working with file permissions

Since Linux was designed to be a multiuser operating system, every file has file permissions and ownership associated with it. This is to prevent one user from overwriting the files of another (either intentionally or unintentionally). The root user can (usually) access every file in the system.
Getting ready

Here is a quick review of basic file system permissions. For this example, it is assumed umask is set to 0022. Run umask to make sure.
Observe the following ls -la listing of my backup script b:

-rwxr-xr-x. 1 guest1 root 559 Mar 28 12:43 b

Starting from the left, the first position indicates what kind of file this is. A -, as shown, means this is a regular file. A d there would mean a directory, and an l would indicate it’s a link. The next three sets of three letters are the file permissions and can be referred to in either symbolic or numeric mode. We are going to use numeric (octal) mode.
The first three sets, rwx, are the settings for the owner (guest1) of this file. The next three, r-x, are the settings for the group (root). The third set is for all others. r means the file is readable, w means it’s writeable, and x means it’s executable.
The chmod command accepts one to four octal digits. If a digit is missing it is assumed to be a leading zero. The first digit sets the user ID, group ID, or the sticky bit. The second digit selects the permissions for this user, and the third selects the permissions for the others.
So, let’s now change some permissions on a temporary file and see what happens.

How to do it...

Let’s work with some file permissions:
	Let’s change to the /tmp directory by using the command:
 cd /tmp

	If the file f1 exists remove it using the following command:
rmf1

	Using a guest account (in my case jklewis) create a temporary file by using the command:
ls>f1

	Now run the following command:
ls -al f1

	It should show something like the following output:
-rw-rw-r--. 1 jklewisjklewis 131 Mar 29 10:35 f1

	Those are the default permissions based on the umask command. This indicates that owner and group have read and write privileges, and others have only read.
	So how do we change these? By using the chmod command. Suppose this is a script and we wanted to make it executable. Run the following command:
chmod 775 f1

	Now run ls -la f1; it should now look like the following output:
-rwxrwxr-x. 1 jklewisjklewis 131 Mar 29 10:35 f1

	Those xs show that every user can run the file. Let’s do one more. Run chmod 000 f1and then ls -la f1, it will show the following output:
----------. 1 jklewisjklewis 131 Mar 29 10:35 f1

Wow! No one will be able to do anything with this file now, right? Well, no, the owner of the file can still change the permissions. Speaking of ownership, the chown command is used to change that field. It is normally run as the root user.

There’s more...

I did not mention the setuid, setgid, or sticky bits. Consult the chmod man page for information on these settings. The restricted deletion bit is mentioned in The /tmp directory section.

Working with the firewalls and router settings

A firewall is used to prevent unauthorized network access to a machine(s) while still allowing normal (or legal) traffic to pass through. The iptables command is used to set up, configure, and view the tables of the IPv4 rules in the kernel. It is somewhat complicated and so this will serve as just a simple overview.
iptables uses one or more tables. Each table has a number of pre-made chains and can also contain user-created chains. A chain is a list of rules, and a rule specifies what to do with a packet that matches. This “match” is called a
target.
When a packet does not match, the next rule in the chain is looked at. If it does match, one of the following can be specified for the packet:
	ACCEPT: It allows the packet to pass on
	DROP: It rejects the packet
	QUEUE: It passes the packet on to the user space
	RETURN: It stops the running of this chain and continues at the next rule in the calling chain

How to do it...

Here are a few iptable commands. Do not run these commands on your system; this is an example only:
	To delete all existing rules, use the following command:
iptables -F

	To block a specific IP address, use the following command:
iptables -A INPUT -s 192.168.1.115 -j DROP

	To allow loopback access, use the following command:
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

Now let’s talk about routers. Most routers have a firewall built-in that can be managed by a web browser. While it does not replace iptables, it is usually easier to configure and can work across your entire network.
The web page for a typical home router usually has a 192.168.1.1 address. Try it in your browser now.
Here is a screenshot of my router on the Security page:
[image: How to do it...]
You may have to enter an ID and password. Consult your router documentation for the defaults if you haven’t already changed them. Go to the Security (or equivalent) tab to access those features.

There’s more...

There is a whole lot more to iptables, enough to fill an entire book. For more information refer to the man pages, or a book on firewalls. There are also quite a few good websites on the topic.

Working with Secure Linux – SELinux

This section will serve as an overview of Security Enhanced Linux (SELinux). In the Working with file permissions section, we discussed how standard Linux provides protection for the system. This method is called Discretionary Access Control (DAC), and has some limitations. For example, a typical user could open his files up, either accidentally or on purpose, for any other user to read or write. This could allow unauthorized access to sensitive information. To provide more security, SELinux uses MAC (Mandatory Access Control). MAC uses a security policy that covers all processes and files in the system. All files in SELinux have labels that contain security-relevant information.
For example, the following is a normal listing of a file under DAC:

ls -la ifcfg-eth0
-rw-r--r--. 1 root root 73 Apr 22 2011 ifcfg-eth0

Same file, but with the Z (security context) option to ls:

ls -Z ifcfg-eth0
-rw-r--r--. root root unconfined_u:object_r:default_t:s0ifcfg-eth0

unconfined_u is the user, object_r is the role, default_t is the type, and s0 is the level. This info is used to make access control decisions. Note that the normal DAC rules are checked first, if they do not allow the action then the SELinux rules are not used.
Getting ready

We are only going to run some commands as root and view some of the settings. We will not be making any changes to the configuration. This example will assume you are already running SELinux in Enforcing mode. To determine if this is so run the sestatus command. The output should be similar to the following screenshot
[image: Getting ready]

How to do it...

Okay, so let’s run some SELinux commands.
	Run getenforce; it should report enforcing.
	Now let’s view the list of mappings:
semanage login -l

	To view the SELinux contexts for processes run the following command:
ps –eZ

	To view the context for user run the following command:
id –Z

	The sealert command is used to view the complete SELinux message when an error occurs. Check your /var/log/messages file to see if any alerts have been generated, and if so can run sealert -l on the number to get a detailed view.
	To get a detailed list of the SELinux Booleans with descriptions run the following command:
semanage boolean –l

	To see the list but without the descriptions run the following command:
getsebool –a

	To check if files and directories have the correct SELinux context run the following command:
matchpathcon

There’s more...

As I mentioned SELinux is normally installed by default in most distributions. In some cases you may not even realize it is there. However, at times it will get in your way. If you try to install a service, for example, vsftpd, it may fail because it will violate the SELinux policy. It will usually pop up a fairly decent error message. The message may even tell you how to fix the problem, however, I have found in practice that it doesn’t work. You perform the action(s) it gives, it seems to run without error, but then the access is still denied. In these cases I use the setenforce command to put SELinux into Permissive mode and then carry on with my activity:

setenforce 0

Note that this only works until the next reboot.
For more information on SELinux there is a rather excellent guide on the Fedora website.

Using sudo to secure a system

There may be times, especially if you are a system administrator, when you would like to give a user more access to the computer, but not actually root authority. This can be done by modifying the
/etc/sudoers file and having your users invoke the sudo command.
Getting ready...

The following steps should not harm your system. We will perform these with a user account made above. You will need to be the root user for this section.

How to do it...

Here we will work with the /etc/sudoers file:
	 Make a backup copy of your /etc/sudoers file:
cp /etc/sudoers /tmp/sudoers.orig

	You don’t edit this file directly, the visudo command is used. This is poorly named as any text editor can be used if you export the EDITOR variable accordingly. Set the variable if desired then run the command:
visudo

	This command makes a temporary copy of the sudoers file and edits it. If all goes well it then copies the temporary file over the original when you are done. So, let’s take a look at this file.
	Read the section on aliases. They are divided into groups for things such as networking, software, services, locate, and others. For now let’s just jump in and see how this works.
	But first let’s try something. Open another session as a guest user. I’ll use my jklewis account.
	Under the jklewis account type the following command:
cd /tmp

	Create a file using the command:
ls>f1

	Now try to copy that file to /usr/bin:
cp f1 /usr/bin

	You should have received an error. This is correct of course, a normal user can’t normally write to the /usr/bin directory. Now go back to your visudo session.
	You will need the hostname for your machine. For this example we will use the numeric IP. You can obtain that from the ifconfig command if needed.
	Just after the lines that mention the shutdown command we are going to add a line for our guest user. The syntax is username, hostname, commands, and options, so add the line:
jklewis 192.168.1.115=(ALL) ALL

	Save the file and close the visudo session. Now try this command again. While still in the /tmp directory run cpf1 /usr/bin. It should still give the error message. Now try it like the following command:
sudo cp f1 /usr/bin

	Ah, it’s asking for a password, right? Yes, and it’s asking for the user’s password, not the one for root. This can be easy to confuse (well, it was for me anyway). The best way to remember this is you probably aren’t supposed to know what the root password is. Enter yours.
	If this is the first time sudo is being used by this user an interesting notice may pop up. Read it and understand it to avoid the wrath of your system admin.
	After all of this the command should proceed without error this time. Pretty cool, huh? Since we used ALL in the line we added to the sudoers file it effectively has given this user full access. Note that some things will still not work the same, redirection for one.
	Okay, so we probably don’t really want this jklewis jerk messing up our system, so let’s fine tune this a bit. Run visudo again.
	Scroll down or search for Processes. Uncomment the # Cmnd_Alias PROCESSES line by removing the # mark.
	Scroll back down to the jklewis line we added earlier. Change it to read:
jklewis 192.168.1.115=(ALL) PROCESSES

	Now we need a process to kill. As root start up a vi session. Something like vi mybook will work.
	In your user session run psauxw | grep”vi mybook” and remember the process number (PID).
	Also in your user session run kill -9 on the above PID. It will give an error. Now run it again but with like the following command:
sudo kill -9 <pid>

	The process with vi should be killed.Tip
If the screen stays blue or some other color just run the ls command. That should clear it up.

The following is a screenshot of my /etc/sudoers file:
[image: How to do it...]

There’s more...

You can see from the sudoers file that a lot of fine tuning can be performed on it. Users can be given very little extra authority, or a whole lot. For more information run man sudoers.
Here’s my two cents on sudo. There are many computer users who can be trusted to run as root without harming the system. However, there are exceptions. If you set up sudo you might spend a whole lot of time trying to get it just right, only to find that you are always having to add more things. Your users will get upset because they can’t do their work until you make the changes. Then, when you think you finally have it just right, someone, using sudo, will still mess up and mess up bad. It has been my experience that if a user makes this mistake once, he will do it again and again.

The /tmp directory

The /tmp directory is somewhat special as by default it allows all users to write files to it. Here is what the listing for
/tmp looks like on my system:

drwxrwxrwt. 10 root root 4096 Mar 31 03:48 tmp

You can see this is open for everyone. The t in the permissions indicates that the restricted deletion bit is set on the directory. So what does this actually mean? For directories, it prevents normal users from removing or renaming a file in the directory that they don’t have the proper permissions for.
As a normal user you still need to be careful when writing to /tmp, as there are some restrictions.
How to do it...

Let’s try a few things to get an idea of how /tmp works:
	Run the following command:
cd /tmp

	If there are any temporary .txt files lying around from earlier sections clean them up; an rm *.txt file should do it.
	Now run the following command:
ls>root1.txt

	In another session, as a guest user (I’ll use jklewis), run the following command:
cd /tmp

	Run the following command:
ls>jklewis.txt

	This should work without error. Now try:
 ls>root1.txt

	You should have received the Permission denied error. Why? Because even though normal users can all write to the /tmp directory, the normal file system (DAC) permissions must still be followed.

There’s more...

For the reasons outlined above I would suggest not using the /tmp directory for anything except for truly temporary files. In addition, most distributions routinely clean out /tmp and so anything not owned by root is going to get deleted. Remember all of this when generating temporary files especially when writing scripts (more on that in Chapter 8, Working with Scripts).

Chapter 6. Processes

In this chapter we will cover the following topics:
	Understanding processes
	Examining processes with ps
	Examining processes using top
	Changing priorities with nice
	Observing a process using the /proc filesystem

Introduction

All the programs running in Linux are processes. In this chapter, you’ll learn how to view their status by using ps and top, how to set the priority at which they run, and how to view the internals of a process by using the /proc filesystem.

Understanding processes

Every process has a unique identifier called a
Process Identifier (PID). Also, every process has a Parent Process Identifier (PPID). There is an exception, init (or systemd). The init process starts all other processes and has a PID of 1. This process is special because it cannot be killed (and any attempt to do so is often fatal).
Similar to files, a process also has access permissions. These are referred to as the Real user and Group IDs. This provides a level of protection by not allowing unprivileged users to access critical operating system tasks. Memory, open files, and other resources are owned by the process and are kept separate from other processes (in most cases).
From the user’s perspective, a process is typically started from the command line or desktop. Take editing a file with vi, for example. The user starts the session and works interactively with the editor. He can save the file or edit another one. As long as the session is active, there is a PID associated with it. When the user terminates vi, the PID and all the associated resources are terminated as well. That PID will be recycled and used by the OS again later. A program run is this way is called a foreground process.
A process can also be run in the background. For example, in Chapter 4, Networking and the Internet, we ran the browser with the firefox & command. The ampersand puts the process into the background, freeing up that terminal for more input/output. Note that messages coming from the application (Firefox in this example) will still be output to that terminal. This can really be helpful when debugging. Also note that a process run in the background tends to run at a lower priority than a foreground task (more on priorities later). In the old days, background processes were also commonly referred to as jobs.
There are some special file handles associated with each process:
	Standard input (stdin): A process takes its normal input from here (Handle 0)
	Standard output (stdout): A process writes its normal output to here (Handle 1)
	Standard error (stderr): A process writes its error output to here (Handle 2)

The following is a screenshot showing the standard handles:
[image: Understanding processes]
Other files opened by a process start at handle 3. There are some processes that have been given special names. For example, many of the processes on a Linux system are run in the background and, in most cases, are never meant to be run from the command line. These are called services or daemons. The Hypertext Transfer Protocol Daemon (HTTPD) web process is a good example of a service.
Typically, a service waits for an event or events to occur, performs an action or some actions, and then goes back to waiting again. If a service logs any activity, it will generally do so to the /var/log/<service-name> directory.
Note
If the terminal a background job was started from is terminated, the background job will end as well. Some Linux distributions will attempt to warn the user of this condition.

How to do it…

The following is a brief list of commands one can use to look at processes:
	To see a snapshot of the processes currently running on the system:
ps auxw

	To see the processes in real-time run:
top

	To see all the types of process directories:
ls /proc

There’s more...

A process can spin off other processes. It can also spin off threads. A thread inherits all the handles and resources of the parent. It is generally used in programming to perform a small task concurrently, while the main task is running, and return quickly.
Are there limits on the resources? Yes. The ulimit command is used to view and set the hard and soft limits on a process. It is not normally needed by the user; however, if you’re curious, run ulimit -a on your system. You should see an output similar to the following screenshot:
[image: There’s more...]
For more information on ulimit, consult the man page.

Examining processes with ps

The ps program allows the user to see a snapshot of the processes running on the system. By using the appropriate parameters, the output can be changed to include more or less information. For this section we will run as root, and use the BSD style ps. The options may be grouped, and no dash is used.
How to do it...

Carry out the following steps to run ps:
	Running just ps with no parameters will give something like the following output:
 Big4 /temp/linuxbook/chap6 # ps
 PID TTY TIME CMD
 5197 pts/25 00:00:00 su
 5218 pts/25 00:00:00 bash
 17789 pts/25 00:00:00 ps

	Since this is not very informative, let’s show every process that has a TTY:
ps a

	Now, include the processes that don’t have a TTY:
ps ax

	Display the output in a more user-oriented format: ps aux. Note the change in the header.
	If the lines are cut off at the end on your system, add the wide option using the following command:
ps auxw

	There sure is a lot of output. Here are some ideas on how to deal with it:
ps auxw | more

	You can redirect the output to a file as well: ps auxw > ps-output.txt and then view it with more or vi.
	You can also use grep to find a particular process ID. In another terminal, run the following command:
vi file1.txt

	Now back in your original terminal, run the following command:
ps auxw | grep file1.txt

	You should see a line containing the text vi file1.txt. This is the PID you are looking for and one of the most common uses of ps.
	You can also show a tree view of the processes:
pstree

How it works...

The ps command gets its information from the /proc file system. Every running process has an associated entry here. We will discuss /proc in more detail later in this chapter.

There’s more...

The BSD style header will look something like the following:

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

The definitions of each of the terms are given as follows:
	USER: It is the owner of the process
	PID: It is the process identifier
	%CPU: It gives the CPU time divided by the time the process has been running for
	%MEM: It gives the ratio of the process memory to the physical memory
	VSZ: It contains the virtual memory size of the process
	RSS: It contains real memory resident set size
	TTY: It represents the terminal associated with this process
	STAT: It represents the process state
	START: It gives the time the process started
	TIME: It gives the total CPU time
	COMMAND: It is the name of the command

The ps command has quite a few other options to it. You can view threads, get security (SELinux) info, tighten what is displayed by the username, and change the output format. You can even modify some environment variables to change how ps works. See the man page for more information.
The following screenshot gives an idea of what ps - auxw looks like on my Fedora 17 system:
[image: There’s more...]

Examining processes using top

The top program is similar to ps except that it shows the state of the system in real time. You can control how it operates using command line switches and/or its interactive interface. It can also use a configuration file. You can do quite a bit with top. The following are some examples of what is possible.
Getting ready

No special setup is needed. These commands will be run as root.
To get help for top, you can run the following command line:

 top -h or -v

These are equivalent and show the library version and usage.
The general syntax for top is as follows:

 top -bcHisS -d delay -n iterations -p pid [,pid...]

The following is a screenshot of top running on Fedora 17:
[image: Getting ready]

How to do it...

Following are some examples using the command line switches:
	To update the screen every 2 seconds:
top -d 2

	To update the screen every half second:
top -d 0.5

	To update 10 times and then quit:
top -n 10

	To do both:
top -d 0.5 -n 10

	To update the screen immediately, press Spacebar or Enter.
	To monitor a specific PID, use the -p option. This will show the init (or systemd) process:
top -p 1

	Let’s monitor a few processes. First, run ps auxw and remember the PIDs for four processes.
	Then run top, substituting the PIDs obtained previously:
top -p pid1,pid2,pid3,pid4

	To omit showing idle processes, run the following command:
top -i

	To also show threads, run top -H. To monitor only the processes for a certain user, the syntax is top -u <username>. Try it with root:
top -u root

	You can run top in the batch mode. For example, to save the output to a file:
top -b -n 10 > top1.txt

The following are some examples using the interactive commands. Start top and follow along:
	To show just the processes owned by a particular user (root in this example), press U and then enter root.
	To change the delay time, press D and then enter a time by pressing D followed by 1.
	To show all the CPUs on a multi-core machine, press 1 (press 1 again to toggle back).
	To toggle the showing of the command line versus the program name, press C.
	To change the nice setting on a process, press R and then enter the priority desired.
	To activate Secure Mode, press S (see Secure Mode explained afterwards).
	To send a signal to a process, press K and then enter the signal to send. Be sure you have the correct PID and signal before performing this action.
	To write the configuration file, press W. This will create the file .toprc in the user’s home directory and will use the settings in it on the next startup of top.
	To display the Help screen, press H.
	To quit top, press Q.

How it works...

The following is a description of the first five lines shown in the previous screenshot:
	top: It contains the time of day, machine uptime, number of users, and load average
	Tasks: It gives the number of total tasks, number currently running, sleeping, stopped, and zombie
	Cpu(s): The different types of CPU states are as follows:	us: It represents the user time
	sy: It represents the system time
	ni: It represents the nice time
	id: It represents the idle time
	wa: It represents the I/O wait time
	hi: It gives the time spent servicing hardware interrupts
	si: It gives the time spent servicing software interrupts
	st: It represents the stolen CPU time

	Mem: It gives the total memory in machine; used, free, and buffers in KBs
	Swap: It gives the total swap space; used, free, and cached in KBs

The following are the definitions for the standard header. Note that these can change based on command line options or interactive commands:
	PID: It defines the process identifier
	USER: It holds the username of the owner of this task
	PR: It holds the priority of this task
	NI: It consists of the nice value (more on priorities in the next section)
	VIRT: It exhibits the total amount of virtual memory used by this task
	RES: It gives the physical memory used by this task
	SHR: It gives the shared memory used by this task
	S: It stands for the process status, which will be one of the following:	S: It stands for sleeping
	D: It means uninterruptible sleep
	R: It shows the process is running (or ready to run)
	T: It shows that the process has been traced or stopped
	Z: It signifies the zombie status

	%CPU: It gives the share of the elapsed CPU time since the last update, expressed as a percentage
	%MEM: It holds the currently used share of available physical memory, expressed as a percentage
	TIME+: It gives the total CPU time used by this task since it began running
	COMMAND: It is the command used to start this task

There’s more...

In addition to the user configuration file, there can also be a global file. It is named /etc/toprc and consists of only two lines given as follows:

S # Line 1: secure mode switch
2.0 # Line 2: delay in seconds

This file is created manually by the root user. If this file exists, it activates the Secure Mode and changes how top operates:
	A different version of the Help screen is shown
	A user cannot kill a task
	A user cannot renice a task
	A user cannot change the delay interval of top

If top doesn’t appear to be working as you expected, check for the existence of the configuration files both for the users and root. There are plenty of other things you can do with top. You can change how the fields are arranged and sorted. You can change the color and highlighting. There is a multiple window option too. For more information, see the man page for top.
The following is a screenshot of
top on my Fedora 17 system:
[image: There’s more...]

Changing priorities with nice

The nice command allows you to adjust the priority a process runs at. Modern-day operating systems usually do a great job of task scheduling. However, a particular process may require some tweaking on occasions. Here, we will show how to use nice.
The priority is referred to as the niceness level. The range of niceness a process can have goes from 19, which is the least favorable, down to a maximum of -20, which is the most favorable (if this seems backwards to you, it does to me as well).
Most favorable________________________Least favorable
 20 __________________________________19
 Highest priority________________________Lowest priority
You may recall the NI column from the previous section on top. This is the niceness setting and on Fedora, several services run at the most favorable setting of -20.
Note that changing the niceness setting of a process is not a guarantee that the OS will honor it. It is simply a suggestion to the scheduler.
Also note that the command given to nice must not be a built-in command.
The syntax for nice is as follows:

 nice [Option]... [Command [Arg] ...]

How to do it...

Now, let’s run a few nice commands:
	To see the current nice value, run nice by itself:
nice

	Now run nice on itself:
nice nice

	See the output of 10? That’s the default adjustment if none is given.
	Now set it to the maximum value:
nice -n -20 nice

	For the minimum value:
nice -n 19 nice

	Now let’s try something else. In another terminal, run the following command:
nice -n 15 vi testfile.txt

	Then find its PID:
ps auxw | grep testfile.txt

	Now run top on the previous PID:
top -p <pid>

	The nice column (NI) should show a niceness of 15.

The following is a screenshot showing nice running on Fedora 17:
[image: How to do it...]

There’s more...

Unlike most other Linux programs, there isn’t anything more to nice. If you try to set it above the maximum of 20, it will still use 20 and if you try to set it lower than the minimum of -19, it will use -19. Also, the top program allows you to adjust the niceness level of a process dynamically.

Observing a process using the /proc filesystem

The /proc filesystem is where Linux stores the data related to the currently running processes. In most cases, a casual user would probably never (hopefully never) need to know this information. However, it can be really helpful during debugging, or if you just want to know about some of the internals of Linux.
How to do it...

The following steps explain how to see the information contained in /proc:
	Let’s try an experiment in /proc as root run:
file uptime

	It shows uptime: empty, right? So if we cat it, there should be no output ideally, right? Try it:
cat uptime

	Wow, so how did that happen? The files in /proc are special because the information is read out of them in real time. Let’s try some more and run the following command:
cat interrupts

	Now run cat version and cat meminfo.
	In another session, run the following command:
vi test5.txt

	Let’s find its PID:
ps auxw | grep “vi test5.txt”

	Change to that directory in /proc: cd /proc/<pid-from-above>.
	Now change the directory to the File Descriptor (FD) directory:
cd fd

	Run the ls -la command. You should see something like the following output:
Big2 /proc/20879/fd # ls –la.
 total 0
 dr-x------. 2 root root 0 Apr 11 16:27 .
 dr-xr-xr-x. 8 root root 0 Apr 11 16:27 ..
 lrwx------. 1 root root 64 Apr 11 16:27 0 -> /dev/pts/10
 lrwx------. 1 root root 64 Apr 11 16:27 1 -> /dev/pts/10
 lrwx------. 1 root root 64 Apr 11 16:27 2 -> /dev/pts/10
 lrwx------. 1 root root 64 Apr 11 16:27 4 -> /tmp/.test5.txt.swp

You can see this is indeed our session of vi editing the test5.txt file. Note that the file shown is a temporary file created by vi and left open during execution.

There’s more...

The following screenshot shows a listing of the /proc directory on the Fedora 17 system:
[image: There’s more...]
So what does all of that mean? The numbers are, as you may have guessed, process IDs. Every process will have a number here, which are actually directories that contain practically everything you would ever want to know about that process.
The following are what some of those files are for. I didn’t list each one but covered the ones that I think are the most interesting:
	buddyinfo: It contains data about nodes and memory
	cgroups: It contains data about CPU groups
	cmdline: It is the command line given to start the process
	consoles: It gives information about consoles
	cpuinfo: It has a very informative listing of the CPUs in your system
	crypto: It contains information about the crytographic routines available in the system
	devices: It has a list of the devices
	diskstats: It has a list of the disk statistics
	dma: It has a list of DMA
	filesystems: It gives a list of the filesystems available
	interrupts: It contains a very detailed listing of the interrupts being used by the system
	iomem: It gives the I/O memory information
	ioports: It gives the I/O port information
	kallsyms: It consists of a list of the OS symbols
	kcore: It represents the memory image of this machine
	meminfo: It contains a very detailed list of how memory is being used by the system
	modules: It contains a list of the modules used by the system
	mounts: It contains a list of the mounted filesystems (real and virtual) in the system
	partitions: It contains a list of the partitions
	slabinfo: It consists of a list of the slab memory objects
	softirqs: It is another IRQ listing
	uptime: It gives the amount of time the machine has been up (see the uptime command)
	version: It is the kernel version (see the uname command)
	vmstat: It gives the virtual memory statistics
	zoneinfo: It is another rather detailed memory listing

With a few exceptions, you can cat most of these files to get at important internal data. Note, do not cat (or do anything else with) the kcore file. Do not try to edit these files. Also, if you cat a file and nothing seems to happen, pressing Ctrl and C should make you back out.
Programs written in a language such as C can take advantage of the information in /proc to do some pretty cool things. For example, I have developed code that can allow a program to determine if it was run normally to the screen, or redirected to a file. The program can then take appropriate action, for example, clear the screen if run normally, and not clear it if redirected to a file. This way, control codes don’t get embedded in the file. I have another C code that can determine the full path and filename of any file currently opened by the program.
The following is another screenshot of top:
[image: There’s more...]
This was created by running
top and then pressing Z. You can customize top quite a bit. See the man page for more information.

Chapter 7. Disks and Partitioning

In this chapter we will cover the following topics:
	Using fdisk
	Using mkfs to format a drive
	Using fsck to check the filesystem
	Logical Volume Management (LVM)

Introduction

When installing a machine, you can take the defaults or set up your disk(s) practically any way you want. Here is a brief review of partitions and filesystems. A typical Linux system usually has at least three separate partitions. They are labelled /, /boot, and swap. The / (pronounced root) is the parent of the directory structure. /boot is where the system kernel and map files reside. The swap partition is used when parts of memory need to be moved to the hard drive because of over-commitment. This is called being swapped out to disk.
The following are usually on separate partitions:
	/: It is the parent directory
	/boot: The boot and map files are located in here
	(swap): It signifies the swap space

The following are traditionally on a separate partition, but do not have to be:
	/home
	/tmp
	/etc
	/var

Here is a partial list of the filesystems and directories and their general use, that are normally present on a Linux system. This is taken from Fedora 17 64-bit:
	/: It is the parent directory.
	/boot: The boot, map files, and system kernel are present in it.
	(swap): It stands for the swap space.
	/root: It is the home directory for the superuser.
	/home: The user directories go here (for example, /home/guest1, which has been used throughout this book).
	/tmp: It is a directory that has the file deletion bit set. Temporary files can be placed here by users and various other programs. A cron job run by root cleans /tmp at periodic intervals (usually once a week).
	/usr: It consists of the operating system's (OS)’s parent user directory.
	/usr/bin: It has the OS’s executable programs.
	/usr/etc: It contains the OS’s configuration files.
	/usr/games: It consists of the games provided by the distribution.
	/usr/include: It includes files for programming languages such as C.
	/usr/lib: It contains the OS’s library files.
	/usr/lib64: It consists of the OS’s library files of 64 bit versions.
	/usr/local: The user programs can be placed here by the system admin for their use.
	/usr/sbin: It has the OS’s executable programs used by the system.
	/usr/share: It includes the OS’s shared programs and files.
	/usr/src: The OS’s kernel source, include, and make files are placed here
	/dev: It represents the device directory. For example, the /dev/sda device points to the first SCSI hard drive.
	/lib: It is a symbolic link to /usr/lib.
	/lib64: It is a symbolic link to /usr/lib64.
	/mnt: It is used as a mount point.
	/opt: It represents the optional files.
	/var/logs: It consists of the OS’s logs.
	/var/spool: It contains the printer files.
	/var/run: The OS keeps data on running programs here.
	/run: It is the symbolic link to /var/run.
	lost+found: It is where the OS keeps track of filesystem data.
	/etc: It is pronounced etcetera and stands for everything else. Configuration files tend to be located here.

The different types of virtual filesystems are as follows:
	/proc: The OS keeps track of processes here. See the previous chapter for more information.
	/sys: The OS keeps track of other processes in this directory.

Some other useful terms have been defined in the following list:
	device: It refers to the entire disk. For example, the first SCSI disk is normally named /dev/sda.
	partition: It is the device name followed by a number. The first SCSI partition would be /dev/sda1.
	filesystem: It defines the type of filesystem being used. Some examples are ext2, ext3, ext4, vfat, and xfs.
	mount point: It is the directory that points to the partition. The /etc/fstab file contains a table showing mount points and the partitions they are associated with. This file, which is created by a system installer such an Anaconda, can be manually edited by the superuser to add or delete devices and mounts.

The boot partition is where the operating system kernel and other startup files are located. Here is a description of the files found in /boot:
	vmlinuz: It represents a symbolic link to the kernel. For example, it points to vmlinuz-2.6.35.6-45.fc14.x86_64 on Fedora 14.
	initramfs: It represents the initial RAM disk. On Fedora 14, it is named as initramfs-2.6.35.6-45.fc14.x86_64.img.
	config: This file is used to configure the kernel. We will see more on that in Chapter 10, The Kernel. On Fedora 14, it is named as config-2.6.35.6-45.fc14.x86_64.
	map: This is the system map file, which contains entry points into the various kernel routines. On Fedora 14, it is named as System.map-2.6.35.6-45.fc14.x86_64.

The initial RAM disk needs a bit more explanation. This file contains all the device drivers needed to get the kernel loaded and running. For example, the kernel needs to access the hard drive in order to boot up. If it needs a special driver for this (that is, if it can’t be accessed by the BIOS alone), it must be located in the initramfs file or else it will not be able to complete the process. The initramfs file is created during system install, and can be modified by an experienced person. This is normally done when testing and/or using a new hardware. This is a compressed GZIP file that is uncompressed and placed on a ram(in memory) disk during boot up.
The following is a snapshot of /boot and the file command on my Fedora 17 system:
[image: Introduction]
The df program is used to report the filesystem disk space usage statistics. The following output is a df -h listing from my Fedora 14 system. The -h parameter puts the output into a more human readable form (useful on large disks):

Big4 ~ # df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda3 97G 48G 45G 52% /
tmpfs 5.9G 780K 5.9G 1% /dev/shm
/dev/sda1 485M 51M 409M 12% /boot
/dev/sda2 385G 124G 242G 34% /data
/dev/sda5 49G 8.3G 38G 19% /lewis
/dev/sdf1 932G 243G 690G 27% /megadrive
/dev/sdg1 7.3G 3.1G 4.3G 42% /usb

The first column shows the partition of the filesystem. The second shows the size of the partition. The third is the amount used followed by the amount still available. The Use% is the percentage used, and the last column is the mount point.
This output tells you a lot about how I set up this system. I did not make separate partitions for /home, /tmp, /etc, or /var. They are all in the same partition under /. I have the required /boot partition which I made larger than the default since I frequently build new kernels. There is a separate /data and /lewis partition. All the mentioned partitions are on the /dev/sda device. So what device and partitions are /dev/sdf1 and /dev/sdg1? The first is an Iomega external USB drive and the second is an 8 GB Universal Serial Bus (USB) stick. These are used for backups, just in case the primary drive goes out.
The fsck program is used to check and optionally repair damaged filesystems. It can check multiple filesystems in parallel to speed up processing. If no parameters are given, fsck defaults to checking the filesystems in the /etc/fstab file.
When using partitions, you must keep in mind where a directory is mounted on. For example, suppose the space on / is getting tight and so you decide to delete some big files that are located in the /tmp directory. You need to first make sure that /tmp is indeed mounted on /, and not on its own partition. It is easy to make this mistake, so keep it in mind. This is even more of an issue if you are the system administrator for a lot of machines that are not all set up the same way.

Using fdisk

The fdisk program is used to manipulate the disk partition table. You can create, modify, and remove partitions with this utility.
Getting ready

You may follow along with these commands as long as you do not use the write table to disk action. However, just to be safe you may want to use a USB stick, or some other drive or system you don’t care about.
The syntax for the interactive version of fdisk is fdisk <device-name>. I will be using a 4GB USB stick, /dev/sdb for this example. Remember that fdisk works with the entire device, so you do not use a partition number when starting the command. We will perform these actions as root.
The following is a screenshot showing fdisk on Fedora 18:
[image: Getting ready]

How to do it...

Carry out the following steps for running fdisk:
	Start the command by running fdisk on the device:
fdisk /dev/sdb

	To display the Help menu: enter an m. It brings up the list of actions that can be performed on this device.
	To display the partition table: enter a p. A list of the partitions on this device will be displayed.
	In the case of my USB stick, there is only one partition. So let’s delete it:
enter a d

	Since there was only one partition, it was deleted by default. Now let’s add one:enter an n

	Since this is the first partition, press a p for Primary.
	Now run enter a 1 and take the default starting sector.
	We now have to enter a size. This can be done by the sector number or size. Let’s use size and make it 1 GB:
enter +1G

	Run enter a p again to see what we have. You should see something like the following output:
 Command (m for help): p
 Disk /dev/sdb: 4009 MB, 4009754624 bytes, 7831552 sectors
 Units = sectors of 1 * 512 = 512 bytes
 Sector size (logical/physical): 512 bytes / 512 bytes
 I/O size (minimum/optimal): 512 bytes / 512 bytes
 Disk identifier: 0xc3072e18
 Device Boot Start End Blocks Id System
 /dev/sdb1 2048 2099199 1048576 83 Linux
 Command (m for help):

	This looks good. Now let’s add another one and then take the defaults:
enter n, then p, then 2, and the default first sector

	For size, let’s use 2 GB this time:
enter +2G

	To see what it looks like:
enter a p

	The table should now show two partitions. At this point, you could continue to make more partitions, or save the table. You can always make more partitions later if you have the required disk space.
	For this example, we will quit without saving the changes:
enter a q

	To make sure nothing went wrong, run fdisk /dev/sdb -l to get a listing. It should show the same as when we started.

There’s more...

You may have noticed some other actions available on the fdisk help screen. You can change the way the units are displayed, list the known partition types, and a few other things. For more information, consult the fdisk man page.

Using mkfs to format a drive

The mkfs command builds a filesystem on the device (similar to formatting a drive). It determines the filesystem type and calls the appropriate mkfs.<type> program. For example, if you were to run mkfs -t ext4 /dev/sdb5, it would actually run the mkfs.ext4 program. The mkfs options are as follows:
	-t: It specifies the type of filesystem desired
	-V: It produces verbose output
	-V: It displays version information if used as the only parameter
	-h: It displays a help screen

Note that no other parameters are passed to the filesystem’s specific program. Also note that in some cases, a size value needs to be provided.
Getting ready

The mkfs program will destroy any data currently residing in the partition. So, make sure you have taken the desired backups before proceeding with this command. Once this action has been taken, it cannot be reversed. If you would like to follow these steps, you should first practice on a USB stick or some other device you don’t care about.
Be sure to unmount the partition before proceeding.

How to do it...

Carry out the following steps for formatting a partition in Linux:
	For this example, I have inserted a USB stick (one I don’t care about). To make sure we have the correct device, run dmesg and look at the last line:
dmesg | tail -20

	On my system, it shows the device is /dev/sdh1 (substitute your device accordingly). It did not mount it, so I am ready to proceed. However, if yours is auto-mounted, you should be able to unmount it by running:
umount /dev/sdh1

	Note that the following command will destroy any data on this device. So, be sure you have backed up anything that want to keep before proceeding!
	Run the command mkfs -V -t vfat /dev/sdh1. The following output is shown on my system:
Big2 /temp # mkfs -V -t vfat /dev/sdh1
mkfs (util-linux 2.21.2)
mkfs.vfat /dev/sdh1
mkfs.vfat 3.0.12 (29 Oct 2011)

	Now mount the device: mount /dev/sdh1 /usb2 (substitute your device and mount point as you feel appropriate).
	Run ls -la /usb2. It should look something like the following output:
Big2 /temp # ls -la /usb2
total 8
drwxr-xr-x. 2 root root 4096 Dec 31 1969 .
dr-xr-xr-x. 25 root root 4096 Jun 7 10:04 ..

That’s pretty much it for mkfs. Just be very careful when using this command and double check everything first before proceeding.

Using fsck to check the filesystem

In order to check and repair a Linux filesystem, the fsck program is used. In reality, fsck is just a frontend for the filesystem specific checker (similar to mkfs).
The fsck program can be run on different filesystems in parallel to speed up processing. Note that this feature can be disabled on low resource machines.
In general, the syntax for fsck is as follows:

 fsck [-lsAVRTMNP] [-C [fd]] [-t fstype] [filesys...] [--] [fs-specific-options]

Getting ready

The fsck program if used incorrectly, can corrupt the data currently residing on the partition. So make sure you have taken all the desired backups before proceeding with this command. Once this action has been taken, it cannot be reversed. If you would like to follow these steps, you may first want to practice on a USB stick you don’t care about.
The device must be unmounted before running the command.

How to do it...

Carry out the following steps to check and run a partition:
	For this example, I have inserted a USB stick (one I don’t really care about). To make sure we have the correct device, run dmesg and look at the last line:
dmesg | tail -20

	On my system, it shows the device is /dev/sdh1 (substitute your device accordingly). It did not mount it, so I am ready to proceed. However, if yours is auto-mounted, you should be able to unmount it by running umount /dev/sdh1.
	We can now run the fsck program. I first want to see what actions it will take and so, will use the -N option. Run fsck -N /dev/sdh1. The following output is shown on my system:
Big2 /home/guest1 # fsck -N /dev/sdh1
fsck from util-linux 2.21.2
[/sbin/fsck.vfat (1) -- /dev/sdh1] fsck.vfat /dev/sdh1

	This looks good, so let’s include a progress bar and run it for real: fsck -C /dev/sdh1. The following result is obtained on my system:
Big2 /home/guest1 # fsck -C /dev/sdh1
fsck from util-linux 2.21.2
dosfsck 3.0.12, 29 Oct 2011, FAT32, LFN
/dev/sdh1: 1743 files, 234381/977025 clusters

Since there were no problems on this USB stick, the output is not very exciting. I have seen some really bad errors in the past, and if this happens to you, I suggest getting the data off the drive as soon as possible, and then either reformatting the drive with mkfs or getting a new one just to be safe.

There’s more...

The following is a brief list of the options for fdisk along with their functions:
	-l: It will lock the device before checking and can be used on only one device at a time.
	-s: It will serialize the file checking operations. It is useful when checking more than one filesystem at a time in the interactive mode.
	-A: It uses the entries in the /etc/fstab file to go through and check all the filesystems in one run. Typically, the root filesystem is checked first and then the others based on the values of the passno value. See the man page of fstab for more information on the available options.
	-C: It will display a progress bar.
	-M: It specifies not to check the mounted filesystems.
	-N: It will show what actions would be performed on this device but does not actually make them
	-P: It will check the root filesystem in parallel with the other systems. Don’t ever use this option.
	-R: It will skip the root filesystem while checking the others.
	-V: It will enable verbose output and so its usage is recommended.

The following is a list of options usually supported by the filesystem specific program:
	-a: It will automatically repair the filesystem without any questions. Be very careful with this option as I have seen it go horribly wrong on more than one occasion.
	-n: This option is supposed to tell the specific checker to not perform any repairs. It is unreliable and so not recommended.
	-r: It will repair the filesystem interactively. Do not use this option if running fsck in parallel.
	-y: It tells some specific checkers to make repairs automatically.

In theory, a journaling filesystem, such as ext3 or ext4, should not need a lot of checking or repair. If this is not the case on your system, I would suspect the hardware or maybe the hardware CMOS levels. Make sure everything in your system is flashed to the proper version.
Note
In order to repair a filesystem, it must not be mounted. Also, checking a mounted filesystem may give bogus error messages sometimes.

Logical Volume Management (LVM)

LVM for Linux allows one to manage disks or arrays of disks as one large pool of storage. An LVM consists of one or more physical volumes along with one or more logical volumes.
Directories such as /root and /home for example, are located in a logical volume. Several commands exist to manage the LVM. Some operate on physical volumes, some operate on logical volumes, and some on both.
The following list can be used as a quick reference guide for the LVM commands:
	pvcreate: It initializes a disk or partition
	pvchange: It changes the allocation permissions of one or more physical volumes
	pvck: It checks the physical volume metadata
	pvdisplay: It displays the attributes of a physical volume
	pvmove: It moves physical extents
	pvremove: It removes a physical volume
	pvresize: It resizes a disk or partition
	pvs: It reports information about physical volumes
	pvscan: It scans all the disks for physical volumes
	vgcfgbackup: It backs up the volume group descriptor area
	vgcfgrestore: It restores the volume group descriptor area
	vgchange: It changes attributes of a volume group
	vgck: It checks the volume group metadata
	vgconvert: It converts the volume group metadata format
	vgcreate: It creates a volume group
	vgdisplay: It displays the attributes of volume groups
	vgexport: It makes volume groups unknown to the system
	vgextend: It adds physical volumes to a volume group
	vgimport: It makes exported volume groups known to the system
	vgimportclone: It imports and renames a duplicated volume group
	vgmerge: It merges two volume groups
	vgmknodes: It recreates a volume group directory and logical volume special files
	vgreduce: It removes the unused physical volumes from a volume group
	vgremove: It removes a volume group
	vgrename: It renames a volume group
	vgs: It reports information about volume groups
	vgscan: It scans all the disks for volume groups and rebuilds caches
	vgsplit: It splits a volume group into two
	lvchange: It changes the attributes of a logical volume
	lvconvert: It converts a logical volume from linear to mirror or snapshot
	lvcreate: It creates a logical volume in an existing volume group
	lvdisplay: It displays the attributes of a logical volume
	lvextend: It extends the size of a logical volume
	lvmdiskscan: It scans for all the devices visible to lvm2
	lvmdump: It creates lvm2 information dumps for diagnostic purposes
	lvreduce: It reduces the size of a logical volume
	lvremove: It removes a logical volume
	lvrename: It renames a logical volume
	lvresize: It resizes a logical volume
	lvs: It reports information about logical volumes
	lvscan: It scans all the disks for logical volumes

Getting ready

The following commands assume that you are running an LVM-aware system. Note that you do not need to actually have your drive in an LVM format in order to try the commands.

How to do it...

The following are some non-destructive commands you can try on your system (you will need to be in root to run these):
	Let’s see all the physical volumes on the system:
pvdisplay

	Now let’s scan the disks:
pvscan

	Then, display the attributes of the volume groups:
vgdisplay

	We report information about volume groups:
vgs

	The disks for all the volume groups are then scanned:
vgscan

	Then the attributes for the logical volume (this one gets used a lot) need to be displayed:
lvdisplay

	Scan for all the devices visible to LVM:
lvmdiskscan

	Report information about the logical volumes:
lvs

	Scan all the disks for logical volumes:
lvscan

The following is a screenshot of pvdisplay and vgdisplay on my Fedora 14 system:
[image: How to do it...]

There’s more...

If you are accustomed to the traditional method of configuring disk drives, LVM can take a while to get used to. I have found the man pages to be pretty good in this area, and the Internet has some good articles on it as well.
Understanding different filesystems

At the time of writing this, there are over 60 different filesystems available for Linux. The following is a brief overview of the common ones you may frequently encounter:
	Btrfs: B-tree filesystem is a copy-on-write filesystem developed by Oracle in 2007. It is still in the developmental stage and considered experimental. The intention of Btrfs is to allow the filesystem to scale as drives get larger and larger. Because of its benefits, it is being considered as the filesystem to replace ext4.
	ext2: It was introduced in 1993. This filesystem does not have journaling and hence, has fewer writes per cycle, making it a good choice for flash drives.
	ext3: It is very similar to ext2 with the addition of journaling, which improves reliability, especially after an unclean shutdown.
	ext4: Being released in 2008, it is considered the successor of ext3. It can handle volumes up to 1 exbibyte and files up to 16 tebibytes. This filesystem uses extents to replace the traditional block mapping scheme used by earlier versions of ext. It has enhancements allowing for faster filesystem checks (fsck).
	FAT: This is the abbreviation of File Allocation Table and the format was originally used by DOS, OS/2, and Windows. It is available in the kernel mainly to provide support for external devices such as USB flash drives.
	ReiserFS (or Reiser3): It is a general purpose filesystem with journaling, originally designed and written by Hans Reiser. When it was created, it contained many features that were not yet available at the time including journaling, online growth, and a scheme to limit internal fragmentation.
	Reiser4: It is the successor of ReiserFS (due to the conviction of the designer Hans Reiser for murder, future development is uncertain).

Chapter 8. Working with Scripts

In this chapter we will cover the following topics:
	Removing text from a file
	Using script parameters
	Coding a loop in a script
	Backing up your system
	Locking a file for only one use at a time
	Getting introduced to Perl

Introduction

Knowing how to write scripts will allow you to run your system(s) much more efficiently. Script writing is easy; you don't need a degree in Computer Science or anything like that. Even better, everything you need to create and run scripts is already available on your Linux system.
The main thing to remember while programming is to think like the computer does. Try to understand what each step does. If you run into a problem, look at the line in question carefully. The computer will do exactly what you tell it to do, every time.
We will be writing Bash shell scripts in these examples. It is good programming practice to begin each script with a line indicating which shell is being used. This is done with a line that starts in the first column such as the following:

#!/bin/sh

Use a text editor to create scripts. I have seen people attempting to use a word processor for script writing but I don't recommend it. Word processors are cumbersome and always seem to insert bad characters into the file (even though they claim not to). If you don't already know by now, learn how to use EMACS, vi, or some other text editor (see Chapter 3, Files and Directories). You will be glad you did.
In order to execute the script as a command, you need to change the permissions on the file. For example, if you have created and saved a text file named mycmd, you can make it executable by running the following command:

 chmod 755 mycmd

If you have not done much script writing, to be on the safe side, I would suggest using a user account when creating and running scripts. When you get comfortable (or if you already are), you can run as root. You will probably have to at some point, especially if you are a systems administrator.
Several script examples have been given in the following paragraphs. These should give a good idea of what can scripts be used for and how to write them.

Removing text from a file

A script can be written to do almost anything you can imagine. The following is one such example.
How to do it...

The following is the listing for a script that can be used to cut the line numbers off the examples. You can then run them as is on your system.
Script 1 – removing line numbers

 1 #!/bin/sh
 2 # removelines 5/1/2013
 3 if ["$1" = ""] ; then
 4 echo "Usage: removenumbers filename > newfile"
 5 echo " This script will remove the line numbers from the beginning of the lines"
 6 echo " in filename. It assumes the number field is 5 characters wide."
 7 echo " Use the redirection operator to save the output to a new file."
 8 exit
 9 fi
 10 cat $1 | cut -c 1-5 --complement

How it works…

Let's discuss what the previous given lines do.
	The first line tells the OS what shell this script is for.
	Line 2 has a # in the first column. This is called a comment line. Here I have the date the script was written.
	The $1 variable is the first parameter you gave after the name of the command. If no parameter is given, it will be equal to the empty string (""). The Usage text will be displayed and the script will exit at line 8.
	If a parameter was indeed given, this script assumes it's a filename and so, processing will continue with line 10.
	Line 10 uses the cat command to stream the contents of the file. In this case, the stream is being piped to the cut command.
	The cut command would normally keep the first five characters of each line and discard the rest. However, since I used the --complement flag, it does just the opposite. Many Linux commands have this option or something similar to it.

There's more...

If you would like to try this on your system, carry out the following steps:
	Open a text editing session, for example vi removelines.txt.
	Put vi into Insert mode by pressing I.
	Copy the text of the script from the book and paste it into vi. Save the file and exit: wq.
	Now run the following command:
cat removelines.txt | cut -c 1-5 --complement > removelines

	Then make it executable:
chmod 755 removelines

	Run the following command:
removelines

If all went well, the usage screen should appear. You can now use this script on the rest of the examples in this chapter.

Using script parameters

Here we show how to count and show the number of parameters given to a script.
How to do it...

The following is the script listing:
Script 2 – parameters

 1 #!/bin/sh
 2 # 5/1/2013
 3 echo Script showing how to count and show the parameters
 4 N=$#
 5 echo Number of parameters: $N
 6 if [$N -eq 0] ; then
 7 echo "Usage: $0 parameters and/or a mask"
 8 exit
 9 fi
 10 for i in $* ; do
 11 echo Parm: $i
 12 done

How it works…

	You already know what lines 1 to 3 do. The $# built-in variable contains the number of parameters that were given to the script. In line 4, we set the variable N to that value.
	Line 5 displays the value of N. Note that to access a variable, you must precede it with a $ character.
	In line 6, we test N to see if any parameters were given. If not, we display the Usage message and exit at line 8.
	Line 10 is an example of a for loop. Note the syntax, and don't forget the done command at the end of the loop. Note that $* is a built-in variable that contains a list of all the parameters given to the script.
	In line 11, we display the value of the i variable.

There's more...

	Make this an executable script on your system by following the example in the previous section with the only change in its naming as parameters.
	Run it: parameters (you may need to run this as ./parameters on your system).
	You should see the Usage message. Now run it with this command:
parameters 1 34 56

	It should display the number 3 and then each parameter on a line.
	Try it with some other numbers. Also try some wildcard characters.Note
Variables require a bit more explanation. For example, the following are numbers:

i=1
RC=0

You test numbers in the following manner:

if [$i -eq 0] ; then # test for equal
if [$RC -ne 0] ; then # test for not equal

The following are strings:

FNAME=Jim
LNAME=Lewis
if ["$FNAME" = "Jim"] ; then # test string equality
if ["$LNAME" = "Lewis"] ; then # test string equality

This is another case where it helps to remember that it's backwards. Use letters such as -eq to test numbers, and = and other numeric operators to test strings.

Coding a loop in a script

Our previous scripts were commands that ran quickly to completion. Here is an example of a script that runs until you decide to terminate it. Note that if no parameters are required, a Usage section is probably not needed (but be sure to state what the script does in the comment section).
This script monitors the state of the network connection by pinging the provider once a minute. Failures are logged to a file.
How to do it...

The following is the program listing:
Script 3 - loops

 1 #!/bin/sh
 2 #
 3 # Check network once a minute and log failures to a file
 4 PROVIDER=192.168.1.102
 5 tput clear
 6 while [1]
 7 do
 8 echo Written by Jim Lewis 2/21/2007
 9 echo Pinging $PROVIDER
 10 ping -c 1 $PROVIDER
 11 rc=$?
 12 if [$rc -ne 0] ; then
 13 echo Cannot ping $PROVIDER
 14 date >> log1.txt
 15 echo Cannot ping $PROVIDER >> log1.txt
 16 fi
 17 sleep 60
 18 done

How it works...

	Line 4 is your provider's IP address or domain name. For this example, I used my bigtwo machine. Note that this variable could instead be placed in your .bashrc file (see Chapter 1, Using the Terminal / Command Line). That way you would only have to change it in one place if you get a new provider in the future.
	Line 5 clears the screen.
	Line 6 might look a little strange. Yes, that is what is known as an infinite loop. However, the script can still be terminated by pressing Ctrl and C, by issuing a kill command to it, or by having it watch for a file (more on that later).
	In line 7, remember that a while statement needs a statement after it.
	Line 10 uses the ping command. The -c 1 variable tells it to ping only once.
	Line 11 saves the error code from the previous command.
	The ping command returns 0 if there are no errors. In case errors are present, line 14 appends the system date to the log1.txt file.
	Line 15 then appends the text to the log file.
	Line 17 waits for 60 seconds and then the loop starts the back up again at line 6.

I have been running this script since January 2007. I have used the log1.txt file on more than one occasion to convince my provider to improve their service.
The following is a screenshot of the script running on my Fedora 17 system:
[image: How it works...]

There's more...

Carry out the following steps to run this script:
	Create the file as in the previous sections. You may name it whatever you want, as long as it does not conflict with another script or program. I named mine loop1.
	Open a terminal on your system. I suggest making it rather small as in the previous screenshot.
	You do not need to be root to run this script. So, simply type the name you gave it to start it up.
	Remember that this script is in a loop; it will run until you terminate it.
	From time to time you should look at the log1.txt file to see how reliable your Internet connection is. Note that if your connection goes down a lot, this file may get very large.

Scripts such as this one are used quite frequently, especially when performing system administration duties to monitor the resources of the network.
One word of caution, use services such as ping with care. For example, do not ping your provider an excessive number of times. Once a minute is fine. When developing a script like this, use a local ping address for testing until you get it just right.

Backing up your system

Automating tasks is what makes scripts really powerful. You can spend some time getting a script just right and then let it do its thing. I easily have at least ten scripts running on each of my Fedora systems right now.
Here's what I call my poor man's backup utility. In the past, I have tried some store-bought programs only to be disappointed with the quality of the software. There's nothing worse than needing your backup files and then discovering there aren't any! This script is called by a cron job every night at 3 a.m. We cover cron in the next chapter.
If you want to try and use this script, be sure you understand what is going on. The backup directories must be created manually first, along with the filenum1 file.
This script, as written, must run as root.
How to do it...

I use the following script to make a backup copy of my files:
Script 4 – making backups

 1 #!/bin/sh
 2 # Jim's backup program
 3 # Change to an appropriate directory on your system
 4 cd /lewis/backup
 5 VER="File backup by Jim Lewis 4/25/2011 A"
 6 echo $VER
 7 date >> datelog.txt
 8 T=`cat filenum1`
 9 T=`expr $T + 1`
 10 if [$T -gt 7] ; then
 11 T=1
 12 fi
 13 echo $T > filenum1
 14 TDIR=/temp/linuxbook/chap8/backups$T
 15 echo "Removing files from $TDIR"
 16 cd $TDIR
 17 pwd
 18 rm *.gz
 19 echo "Backing up files to $TDIR"
 20 X=`date "+%m%d-%H"` # create a timestamp
 21 echo $X
 22 cd /
 23 tar -cvzf "$TDIR/lewis$X.gz" lewis
 24 tar -cvzf "$TDIR/temp$X.gz" temp
 25 tar -cvzf "$TDIR/root$X.gz" root
 26 cd /home
 27 tar -cvzf "$TDIR/guest$X.gz" --exclude=Cache --exclude=.cache --exclude=.evolution --exclude=vmware --exclude=.thumbnails --exclude=.gconf --exclude=.kde --exclude=.adobe guest1
 28 echo $VER
 29 cd $TDIR
 30 pwd
 31 ls -lah

How it works...

	Line 4 changes to my backup directory. You would want to change this on your system.
	Line 7 appends the current date to the datelog.txt file. I check this from time to time to make sure everything looks okay.
	Line 8 looks really weird; what are those backticks for? The filenum1 file contains a number which is the next directory to copy the backup files to (7 in all). As you know, if you were to cat this file, it would display its contents on the screen. Well, the backticks mean to run this command, but place the resulting expression into a variable. This sounds complicated, but you will get used to it very quickly.
	The variable T now has the number of the next directory to use. Line 9 uses the expr command to evaluate the expression and add 1 to T.
	Line 10 checks to see if T is greater than 7, and if so, sets it back to 1. Yes, I make seven backups, one for each day of the week. Call me paranoid!
	Line 13 copies the new value of T back to filenum1 for the next use.
	Line 14 sets up the TDIR variable, which contains the backup directory we are going to copy the files to.
	Line 16 changes to TDIR.
	Line 17 displays the current working directory. I had put this in when writing this script and got used to it being there, so left it in. This is completely optional.
	Line 18 removes the previous compressed backed up files. I strongly suggest you comment this line when first trying out this script. Then, after being sure that everything is okay, you can put it back in.
	Line 20 sets up a date timestamp. Again, the backtick operators are being used to put the value of date into a variable (X in this case).
	Line 22 changes to /.
	Lines 23, 24, and 25 back up the directories /lewis, /temp, and /root.
	Line 26 changes to /home.
	Line 27 tars up my /home/guest1 directory. The parameters on tar tell it which directories to exclude from the archive. See the tar man page for more information.
	Line 28 displays the script version, line 29 goes back to the backup directory, line 30 displays the directory name, and line 31 shows the file listing.

This script is more of an example than a true backup program, but it's a good place to start from. The real one I use is similar to this, but also copies the files to an external USB drive and to another computer off-site (using unattended scp). Whenever I want to create a new Linux machine, I just copy these files to it and extract them, configure and source my .bashrc, and I am ready to run.

Locking a file for only one use at a time

This comes up often enough for me to mention it. There may be times when you want to edit a file in a terminal by running a simple script. However, if the file has already been opened in another terminal, there is the possibility that updates made in one session will get overwritten in the other. The following script should help prevent that from occurring.
How to do it...

Here is an easy way to prevent the same file from being edited by more than one terminal at the same time:
Script 5 – file locking

 1 #!/bin/sh
 2 # todo script 5/1/2013
 3 FN1=/tmp/file.lock
 4 if [-f $FN1] ; then
 5 echo -n "File is being used in tty: "
 6 cat $FN1
 7 exit
 8 fi
 9 echo `tty` > $FN1
 10 # perform your actions(s) here
 11 kw /lewis/todo.txt
 12 rm $FN1

How it works...

	Line 3 sets the variable FN1 to the name of the lock file.
	Line 4 checks to see if the lock file exists. If it does, it displays the contents of the lock file and exits the script.
	We get to line 9 if the lock file does not exist. The lock file is now created by redirecting the output of the tty command to the file.
	In line 11, you can perform whatever action(s) you desire. In my case, I edit /tmp/todo.txt here using kw, my text editor. Even after the editor session is closed, the processing of the script continues.
	Line 12 removes the lock file.

This is simple and works really well. I use a version of this script to edit several of my important files. The todo script can be run from anywhere on my system and the todo.txt file is displayed in my text editor. If I go off to another session or window later while the file is still being edited, and try to run todo again, it will not allow the edit. It also tells me if tty is in the original session. This can help me find it again more quickly, which is very useful as I always have a lot of workspaces and terminals open.

Getting introduced to Perl

Perl is a programming language that can be used for text manipulation, web development, network programming, system administration, development of GUIs, and a whole lot more. It was designed to be easy to use and efficient, and you can use either a traditional procedural or object oriented approach in your scripts. Perl also has a rather large list of third-party add-on modules that give it even more functionality.
Getting ready

In this section, we will cover just the very basics of Perl. Most typical Linux systems come with it and the documentation already installed. To see a brief introduction, run perldoc perlintro on your system. The Perl introduction should come right up.
In order to run a Perl script, you can use the following Perl command:

perl filename.pl

The .pl parameter is the usual extension given to Perl scripts. You can also place the path to Perl in the script similar to how we did with bash. First run which perl to see where Perl is located and then put that in as the first line of your script:

#!/usr/bin/perl

That's the correct path on Fedora. As with bash scripts, use a text editor to create them and use chmod 755 filename.pl to make it executable. Now, you can just type the name of the command to run it.

How to do it...

The following is a small Perl script I wrote when I was first starting out learning the language:

 1 #!/usr/bin/perl
 2 # t1.pl - Perl practice script 1
 3 use strict;
 4 use warnings;
 5 sub displaymessage
 6 {
 7 my $message = shift;
 8 print "message: $message\n";
 9 }
 10 system("tput clear");
 11 print "Practice script 1 5/4/2013\n";
 12 my $name = "Jim";
 13 print "name: $name\n";
 14 my @numbers = (23, 42, 69, 71);
 15 print "numbers 0: $numbers[0]\n";
 16 print "Last element is: $numbers[$#numbers]\n";
 17 if($numbers[0]==23)
 18 {
 19 print "numbers 0 is equal to 23\n";
 20 }
 21 my $count = 0 ;
 22 foreach (@numbers)
 23 {
 24 print "Element $count is $_\n";
 25 $count++;
 26 }
 27 print "Opening input.txt ...\n";
 28 open(my $in, "<", "input.txt") or die "Cannot open input.txt for reading: $!";
 29 print "Opening output.txt ...\n";
 30 open(my $out, ">", "output.txt") or die "Cannot open output.txt for writing: $!";
 31 while (<$in>)
 32 {
 33 print "line $_";
 34 print $out $_;
 35 }
 36 close $in or die "$in: $!";
 37 close $out or die "$out: $!";
 38 displaymessage("Type some keys. Press 'c' to clear the screen and 'q' to quit:");
 39 my $key = 1;
 40 $count = 1;
 41 while($count < 500)
 42 {
 43 # read a key from the keyboard
 44 open(TTY, "+</dev/tty") or die "no tty: $!";
 45 system "stty cbreak </dev/tty >/dev/tty 2>&1";
 46 $key = getc(TTY);
 47 if($key eq 'c')
 48 {
 49 system("tput clear");
 50 }
 51 if($key eq 'q')
 52 {
 53 print "\nEnding the script\n";
 54 $count = 10000;
 55 }
 56 $count++;
 57 }

How it works...

	Line 1 tells the shell which interpreter to use.
	Line 3 tells the compiler to be rather severe with the syntax. Always use this line.
	Line 4 says to show all warnings. Always use this too.
	Lines 5 to 9 are a subroutine. Line 7 puts the first parameter to the subroutine into the variable message. Line 8 displays it.
	Line 10 clears the screen.
	Line 11 tells us what this script is supposed to be. Note the \n parameter at the end of the line. This stands for newline, and signifies continuing the next print output on to the next line.
	Line 12 sets the variable name to Jim. Note the $ symbol in front of name. Don't forget it.
	Line 13 displays the variable.
	Line 14 creates an array of numbers. Note the @ character.
	Line 15 displays the first element in the array.
	Line 16 displays the last element by using the special Perl syntax of $#numbers.
	Line 17 checks to see if element 0 really is equal to 23 or not. Note the double equal sign.
	Line 21 creates the variable count and sets it to 0.
	Line 22 is another special Perl convention. The foreach command means to traverse through the array one element at a time. This is a very handy feature.
	Line 24 shows how the special $_ construct works to display each element of an array.
	Line 25 increments the count by 1.
	The next lines are a way to handle files in Perl. It attempts to open the input.txt file for reading and output.txt for writing. The input.txt file must exist or else the program will error out and stop right here. The contents of input.txt are as follows:
line 1
line 2
line 3
line 4
line 5

	Line 30 opens the output file.
	Lines 31 through 35 read each line from input.txt and write it to output.txt.
	Lines 36 and 37 close the files. Don't forget this step in your scripts.
	Line 38 uses the subroutine we created earlier to display a message.
	Line 39 creates and sets the key variable.
	Line 40 resets the count variable back to 1 again.
	Line 41 starts a while loop.
	Lines 43 through 46 are a way to read a key from the keyboard in Perl. If this looks convoluted to you, I couldn't agree more.

The remaining lines are self-explanatory. When the user presses q to quit, the count variable is increased to 10000. This causes the while loop at line 41 to finish early, effectively ending the script. You could have instead used a loop control variable here.
The following is a screenshot of the previous script running on my system:
[image: How it works...]

There's more...

Although this is an extremely trivial script, you can do an incredible amount of things with Perl. Many years ago, when I was first starting out with home computers, there was a text-mode game we could play based on Star Trek. I obtained a copy of this game in BASIC and eventually rewrote it in C. A few months ago, I decided to rewrite it again, this time in Perl. It's not done yet, probably because I am too busy writing this book, but it is getting there.
Good books on Perl should be easy to locate. I have bought a few and find them to be very valuable as I attempt to learn it in more detail.
There are several hundred standard Linux utilities that can be used standalone or in scripts. The following is a short list of some of the most common ones. Whenever you need to perform any task, check here to see if you can incorporate some of the given commands into your script.
The following utilities are located in /bin:
	awk, gawk: These are used for pattern scanning and processing language
	basename: It is used to strip directory and suffix from filenames
	bash: It is a GNU bourne-again shell
	cat: It is used to concatenate files and print on the standard output
	chmod: It is used to change file mode bits
	chown: It is used to change the file owner and group
	cp: It is used to copy files and directories
	cut: It is used to remove sections from each line of files
	date: It is used to print or set the system date and time
	dmesg: It is used to print or control the kernel ring buffer
	echo: It is used to display a line of text
	find: It is used to search for files in a directory hierarchy
	grep, egrep, fgrep: These are used to print lines matching a pattern
	hostname: It is used to show or set the system's host name
	ls: It is used to list the directory contents
	mkdir: It is used to make directories
	mktemp: It is used to create a temporary file or directory
	mv: It is used to move (rename) files
	ping, ping6: These are used to send ICMP ECHO_REQUEST to network hosts
	ps: It is used to report a snapshot of the current processes
	pwd: It is used to print the name of the current/working directory
	rm: It is used to remove files or directories
	sed: It is used to invoke the stream editor for filtering and transforming text
	sleep: It represents the delay for a specified amount of time
	sort: It is used to sort the lines of text files
	tar: It is used to combine and optionally compress files together into a single archive
	touch: It is used to change file timestamps

The following utilities are located in /usr/bin:
	diff: It is used to compare files line by line
	dirname: It is used to strip the last component from the filename
	expr: It is used to evaluate expressions
	file: It is used to determine the file type
	flock: It is used to manage locks from shell scripts
	stat: It is used to display file or filesystem status
	tee: It is used to read from the standard input and write to standard output and files
	time: It is used to time a simple command or give the resource usage
	tty: It is used to print the filename of the terminal connected to standard input
	uniq: It is used to report or omit repeated lines
	unzip: It is used to list, test, and extract compressed files in a ZIP archive
	who: It is used to show who is logged on
	xargs: It is used to build and execute command lines from the standard input

The following commands are built into the shell:
	cd: It is used to change the directory
	echo: It is used to display a line of text
	exit: It causes the shell to exit (with an optional return code)
	export: It is used to set an environment variable
	kill: It is used to send a signal to or terminate a process
	read: It is used to get a string from the keyboard and place it into a variable

Chapter 9. Automating Tasks Using Cron

In this chapter we will cover:
	Creating and running a crontab file
	Running a command every other week
	Reporting the errors from a crontab file

Introduction

The cron daemon, which is usually started automatically by the OS, looks at all of the crontab files once every minute. If the criterion has been met, the command is run. In this chapter we show how to create and maintain your crontab files using the crontab program.
Depending on how your system is set up, cron jobs are permitted (allowed or not allowed) based on the user. The files that control this are in /etc and are named cron.allow and cron.deny. These are explained in the following section:
	cron.allow: If this file exists, then the user must be listed in it, in order to use crontab
	cron.deny: If cron.allow does not exist but cron.deny does exist then the user must not be listed in the cron.deny file

If neither of the file exists, then only the root user can use the command. In most Linux systems only cron.deny exists and it is empty. Check this on your system before running the following commands.
We will use a user account to experiment with crontab. The crontab command is used to make changes to the crontab file, as it should not be edited directly. To view the crontab for the current user, run crontab -l.
The command to edit the crontab file for the current user is crontab -e. By default, this will bring up the crontab file in the vi editor. However, you can change the EDITOR environment variable to use whatever text editor you wish.
The following is the format of a typical user crontab file:

#
crontab for jklewis
Field 1 2 3 4 5 6
Min Hour Day of month Month of year Day of week
0-59 0-23 1-31 1-12 0-6 0=Sun /path/command
#
Days of the week: 0=Sun 1=Mon 2=Tues 3=Wed 4=Thu 5=Fri 6=Sat

I always add this template to the top of the crontab file so I can easily remember what the fields are. The following is an example crontab entry:

 10 0 * * 0 /path/mycommand

These values can be integers, a range, an element or list of elements, or an asterisk. An asterisk means to match all valid values.
	#: This indicates a commented line. It must be the first thing on the line (don't put it at the end of a line).
	Field 1: This is the minute. It starts at 0 meaning 00:00.
	Field 2: This is the hour. It starts at 0 which means 12:00 a.m.
	Field 3: This is the day of the month.
	Field 4: This is the month of the year. Names can also be used.
	Field 5: This is the day of the week. It starts at 0, which is Sunday. Names can also be used.
	Field 6: This is the path/command to run.

This example entry would run mycommand at 12:10 a.m. on every Sunday.
Tip
Use white space only to separate the fields. Do not use tabs.

Creating and running a crontab file

Here we will show an example of creating and running a user crontab file.
Getting ready

Be sure your system is set up as outlined in the Introduction. We will be using two terminal sessions, to see our results more easily.

How to do it...

The following is an example of how to create and run a crontab file:
	In a terminal session run tty and remember the output. This will be used in step 10.
	Open or use another terminal under a user account. I'll be using jklewis as in earlier chapters.
	Let's view the crontab file by running the following command:
crontab -l

	It may say something like no crontab for jklewis which is fine.
	Now let's make one by running the following command:
crontab -e

	It may say something like no crontab for jklewis - using an empty one which is good.
	Crontab should bring up a temporary file in vi (unless you have changed the EDITOR variable as I have, on my system). The file will not be used until it has been saved and the session has been ended.
	I suggest cutting and pasting the template I created above to your crontab file. It will make it much easier to remember the fields.
	Now let's add an entry that we can see takes effect quickly. Insert the following lines into the file (cut and paste should work):
TTY=/dev/pts/17
crontab example 1
* * * * * date > $TTY; echo "Yes it works" > $TTY

	Change the TTY line to what you found in step 1.
	Now save the file and quit the session. You should see a message such as the following:
crontab: installing new crontab

	In the next minute you should see something like the following output in your other session:
Tue May 7 19:52:01 CDT 2013
Yes it works

	The entry we just made with all of those asterisks means to run the command every minute. Edit the crontab again and change the line to the following code:
*/5 * * * * date > $TTY; echo "Every 5 minutes" > $TTY

	That strange looking syntax is a way to skip, or increment, a value. Now try the following command:
35 9 * * 1-5 date > $TTY; echo "9:35 every week day" > $TTY

	That runs every weekday (Mon - Fri) at 9:35 a.m. The 1-5 in the day field is a range.
	Names can also be used for the day and month fields, as in the following command:
17 13 8 May Wed date > $TTY; echo "May 8 at 13:17" > $TTY

	And also the following command:
0 0 * * Fri date > $TTY; echo "Run every Friday at 12:00 am" > $TTY

With names, the standard three letter abbreviations are used, and the case does not matter. Using names might be easier, however, you cannot use ranges or steps with names.

Running a command every other week

Now that we have looked at the basics of cron, how would you set up an entry to run a command every other week? You may be tempted to try something like the following code:

 * * * * 0/2 /path/command

That means to start on Sunday, and then run every other Sunday, right? No, this is wrong, but you often see this given as a solution on websites. Cron doesn't actually have a built-in way to do this, but there is a work-around.
How to do it...

The following are the steps to run a command every other week:
	Create the following script in your home directory and name it cron-weekly1 (feel free to cut and paste):
#!/bin/sh
cron-weekly1
Use this script to run a cron job every other week
FN=$HOME/cron-weekly.txt
if [-f $FN] ; then
 rm $FN
 exit
fi
touch $FN
echo Run the command here

	Make the script executable by running the following command:
chmod 755 cron-weekly1

	Under your user account run by running the following command:
crontab -e

	Add the following line:
 0 0 * * 0 $HOME/cron-weekly1

	End your editing session. This will install the modified crontab file.

How it works...

Take a look at this script. The first time it is run, the cron-weekly.txt file does not exist, and so it is created, and the command (the one you want to run every other week) is executed. The next week, when this script is run again, it sees that the cron-weekly.txt file is there, deletes it, then exits the script (the command is not run). This alternates every week, effectively running the command every other week. Pretty cool, huh?
In the preceding cron-weekly1 script, the command is executed the first time the script is run. You can change this to run the command starting with the next week by moving the line to run the command inside the if statement.
Although it might be very tempting to do so, do NOT put a comment # at the end of a line. Cron cannot tell if it's a comment or part of a command. If cron ever reports some errors you don't understand, check for comments that are in the wrong place. Yes, I admit I still do this from time to time.
If you do something crontab doesn't like (such as the * * * * 0/2 command line shown in the preceding section), it will usually report an error when you close the session. It will then give you the option to re-edit the file. By all means do so, and either fix the problem, or at least comment the line. You can go back and edit it again later.
You can remove a crontab file completely by running crontab -r. I would suggest making a backup copy before doing this, just in case. You should be able to save the file to a new name through whatever text editor you have chosen to use.

There's more...

Crontab files can make use of environment variables. The following are a few common ones:
	SHELL: This tells the OS to use a particular shell, overriding what is in the /etc/passwd file. For example, SHELL=/bin/sh.
	MAILTO: This tells cron to mail errors to this user. The syntax is MAILTO=<user> that is MAILTO=jklewis.
	CRON_TZ: This is used to set a particular timezone variable, that is CRON_TZ=Japan.

Cron has some shortcuts you can use. These are used in place of the 5 time and date fields, and are as follows:
	
Shortcuts for command

	
Command

	
Output

	
@reboot

	 	
Run once after reboot

	
@yearly or @annually

	
0 0 1 1 *

	
1st day of the month on the 1st day of the year

	
@monthly

	
0 0 1 * *

	
1st day of the month

	
@weekly

	
0 0 * * 0

	
Run on Sunday at 12:00 am

	
@daily

	
0 0 * * *

	
Run every day at 12:00 am

	
@hourly

	
0 * * * *

	
Run every hour on the hour

So in the preceding example we could have put @weekly $HOME/cron-weekly1.
Don't use cron for any time sensitive tasks. There is usually a short delay, just a few seconds, before the command is run. If you need better granularity than that, use a script and the sleep routine.
You can also set up a crontab for root. To see that and more, use man -a crontab.

Reporting the errors from a crontab file

You may be wondering, if there is an error in a crontab file how does the computer report it? It does this by using the sendmail system, to mail the crontab user.
How to do it...

The following is an example of how errors are reported by cron:
	Open a terminal with a user account.
	Edit your crontab file by running the following command:
crontab -e

	Now let's deliberately cause an error. Scroll to the bottom and add the following line:
* * * * date > /baddirectory/date.txt

	Save the file. Wait until cron runs in the next minute, and then press Enter in your user terminal.
	You should see a message saying you have mail. Run the following command:
mail

	There should be a mail indicating the error (in this case, file not found). You may delete the message by pressing D and then Q to leave the mail.
	To finish, be sure to re-edit your crontab file and remove the bad line we just added.

There's more...

You can also monitor the /var/log/cron file to see what cron is doing on the system throughout the day. This is very helpful when first creating a crontab file and trying to get it just right.

Chapter 10. The Kernel

In this chapter we will cover the following topics:
	A brief look at module commands
	Building a kernel from kernel.org
	Using xconfig to modify the configuration
	Working with GRUB
	Understanding GRUB 2

Introduction

The kernel is the main component, or the heart of an operating system. It controls all of the resources, timings, interrupts, memory allocation, process separation, error handling, and logging in the system. In a typical Linux computer, the kernel is modular, in that it has a core file (or files) and then loads the other device drivers as needed. In some cases, say an embedded device, the kernel may consist of one big image with all of the drivers it needs contained inside a file. This is known as a monolithic kernel.
Before deciding whether you need to build a custom kernel, you should first make sure you really do need one. Here are some of the pros and cons to running a custom kernel.
The following are the pros to running a custom kernel:
	If you know what you are doing and have the time to research it, you can end up with a kernel that gets the most out of your hardware
	You can take advantage of the features or devices that the stock kernel might not have
	By going through all of the kernel settings you gain a better understanding of Linux
	Building and running your own kernels is just plain fun

The following are the cons of running a custom kernel:
	Your own custom kernel might not contain features needed by your distribution
	VMware, and other virtual environments will probably not work without additional effort
	Be aware that if you run your own kernel, you will most likely no longer be supported by your distribution support channel

Tip
Most of these cons of running your own kernel can be worked around and/or solved. It just depends on how much time you have to spend on getting it right.

A brief look at module commands

There are several commands that are used to manipulate the modules on your system. Note that depending on your distribution, these commands may only be run as root.
How to do it...

In the following steps, we will run the lsmod, modprobe, insmod, and modinfo commands:
	To see the status of the modules currently loaded on the system, run lsmod.
	To load a module from the current /lib/modules/<kernel name> directory, you would use the modprobe command. An example would be modprobe pcnet32.
	To load a module directly, use the insmod command. An example would be insmod /temp/pcnet32.ko.
	To display the information about a module, use the modinfo command. Try this on your system by first running lsmod to find a module and then modinfo on one of the names modinfo video.

How it works...

The lsmod command takes the contents of the /proc/modules file and displays it in a nice, easy to read format. Use it to determine what modules are loaded in the system.
The following screenshot shows a partial listing of lsmod from my Fedora 19 system:
[image: How it works...]
The modprobe command is used to add and remove modules from the Linux kernel. It loads the module from the current /lib/modules/<kernel name> directory. The modprobe command does a lot more than insmod, such as load more than one module at a time to resolve dependencies, and is generally preferred over insmod. Since modprobe can load multiple modules, the files in /etc/modprobe.d and the /etc/modules.conf file are used to resolve any issues.
The insmod command can be used to insert a module into the system. It is normally used to load a module directly. For example, if you wanted to load a newly created version of the pcnet32 module, you would first change the directory to the proper directory and then run insmod pcnet32.ko.
The modinfo command shows information about a Linux kernel module. It is a very useful command that allows you to see the details about a particular module, such as what parameters it will accept. The following is what the output from modinfo looks like on my Fedora 17 system:

BIG2 /temp/linux-3.9.1 # modinfo nouveau
filename: /lib/modules/3.6.1-1.fc17.x86_64/kernel/drivers/gpu/drm/nouveau/nouveau.ko
license: GPL and additional rights
description: nVidia Riva/TNT/GeForce
author: Stephane Marchesin
alias: pci:v000012D2d*sv*sd*bc03sc*i*
alias: pci:v000010DEd*sv*sd*bc03sc*i*
depends: drm,drm_kms_helper,ttm,mxm-wmi,i2c-core,wmi,video,i2c-algo-bit
intree: Y
vermagic: 3.6.1-1.fc17.x86_64 SMP mod_unload
parm: agpmode:AGP mode (0 to disable AGP) (int)
parm: modeset:Enable kernel modesetting (int)
parm: vbios:Override default VBIOS location (charp)
parm: vram_pushbuf:Force DMA push buffers to be in VRAM (int)
parm: vram_notify:Force DMA notifiers to be in VRAM (int)
parm: vram_type:Override detected VRAM type (charp)
parm: duallink:Allow dual-link TMDS (>=GeForce 8) (int)
parm: uscript_lvds:LVDS output script table ID (>=GeForce 8) (int)
parm: uscript_tmds:TMDS output script table ID (>=GeForce 8) (int)
parm: ignorelid:Ignore ACPI lid status (int)
parm: noaccel:Disable all acceleration (int)
parm: nofbaccel:Disable fbcon acceleration (int)
parm: force_post:Force POST (int)
parm: override_conntype:Ignore DCB connector type (int)
parm: tv_disable:Disable TV-out detection (int)
parm: tv_norm:Default TV norm.
 Supported: PAL, PAL-M, PAL-N, PAL-Nc, NTSC-M, NTSC-J, hd480i, hd480p, hd576i, hd576p, hd720p, hd1080i.
 Default: PAL
 NOTE Ignored for cards with external TV encoders. (charp)
parm: reg_debug:Register access debug bitmask:
 0x1 mc, 0x2 video, 0x4 fb, 0x8 extdev, 0x10 crtc, 0x20 ramdac, 0x40 vgacrtc, 0x80 rmvio, 0x100 vgaattr, 0x200 EVO (G80+) (int)
parm: perflvl:Performance level (default: boot) (charp)
parm: perflvl_wr:Allow perflvl changes (warning: dangerous!) (int)
parm: msi:Enable MSI (default: off) (int)
parm: ctxfw:Use external HUB/GPC ucode (fermi) (int)
parm: mxmdcb:Santise DCB table according to MXM-SIS (int)

The rmmod command allows you to remove a loaded module from the Linux kernel. The usual syntax is rmmod modulename. The extension is not used. You can also use the modprobe -r command.
The depmod program generates the modules.dep and .map files. It does not normally need to be executed manually by the user as it is run during the kernel build. It creates a list of module dependencies by examining the modules in /lib/modules/<kernelname> and determining what symbols they need and which symbols they export.
Some of these commands have a force option available. It will attempt to perform the desired function, bypassing any checks. I have never seen this work reliably and so do not recommend its use. If you do decide to try it, make sure you have a complete OS backup available.
When running device driver commands, in many cases more information is available by looking at the /var/log/messages file. I suggest opening a terminal and running tail -f /var/log/messages in it. Keep this terminal where you can see it at all times. Also note that the file will eventually be recycled, so the command will have to be stopped and started again (about once a week on my systems). A simple test is to run logger hellojim. If you don't see that show up, then it's time to restart the tail session again.
You can also run the dmesg command. The following is an abbreviated example of the output of dmesg on Fedora 17:

Linux version 3.6.1-1.fc17.x86_64 (mockbuild@) (gcc version 4.7.2 20120921 (Red Hat 4.7.2-2) (GCC)) #1 SMP Wed Oct 10 12:13:05 UTC 2012
Command line: BOOT_IMAGE=/vmlinuz-3.6.1-1.fc17.x86_64 root=/dev/mapper/vg_bigtwo-lv_root ro rd.md=0 rd.dm=0 SYSFONT=True rd.lvm.lv=vg_bigtwo/lv_swap KEYTABLE=us rd.lvm.lv=vg_bigtwo/lv_root LANG=en_US.UTF-8 rd.luks=0 rhgb quiet
smpboot: Allowing 4 CPUs, 2 hotplug CPUs
Booting paravirtualized kernel on bare hardware
Kernel command line: BOOT_IMAGE=/vmlinuz-3.6.1-1.fc17.x86_64 root=/dev/mapper/vg_bigtwo-lv_root ro rd.md=0 rd.dm=0 SYSFONT=True rd.lvm.lv=vg_bigtwo/lv_swap KEYTABLE=us rd.lvm.lv=vg_bigtwo/lv_root LANG=en_US.UTF-8 rd.luks=0 rhgb quiet
Memory: 3769300k/5242880k available (6297k kernel code, 1311564k absent, 162016k reserved, 6905k data, 1032k init)
Console: colour dummy device 80x25
tsc: Fast TSC calibration using PIT
tsc: Detected 2699.987 MHz processor
CPU: Processor Core ID: 0
CPU0: Thermal monitoring enabled (TM2)
smpboot: CPU0: Intel Pentium(R) Dual-Core CPU E5400 @ 2.70GHz stepping 0a
NMI watchdog: enabled on all CPUs, permanently consumes one hw-PMU counter.
smpboot: Booting Node 0, Processors #1
smpboot: Total of 2 processors activated (10799.94 BogoMIPS)
atomic64 test passed for x86-64 platform with CX8 and with SSE
NET: Registered protocol family 38
Block layer SCSI generic (bsg) driver version 0.4 loaded (major 252)
Console: switching to colour frame buffer device 80x30
fb0: VESA VGA frame buffer device
input: Power Button as /devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/input0
ACPI: Power Button [PWRB]
Serial: 8250/16550 driver, 4 ports, IRQ sharing enabled
Non-volatile memory driver v1.3
Linux agpgart interface v0.103
ACPI: PCI Interrupt Link [LSA0] enabled at IRQ 21
ata1: SATA max UDMA/133 abar m8192@0xfe9fc000 port 0xfe9fc100 irq 21
usb usb1: New USB device found, idVendor=1d6b, idProduct=0002
usb usb1: Manufacturer: Linux 3.6.1-1.fc17.x86_64 ehci_hcd
usb usb1: SerialNumber: 0000:00:04.1
hub 1-0:1.0: USB hub found
hub 1-0:1.0: 8 ports detected
usb usb2: Manufacturer: Linux 3.6.1-1.fc17.x86_64 ohci_hcd
usb usb2: SerialNumber: 0000:00:04.0
usbcore: registered new interface driver usbserial
usbcore: registered new interface driver usbserial_generic
USB Serial support registered for generic
usbserial: USB Serial Driver core
serio: i8042 KBD port at 0x60,0x64 irq 1
serio: i8042 AUX port at 0x60,0x64 irq 12
mousedev: PS/2 mouse device common for all mice
rtc0: alarms up to one year, y3k, 114 bytes nvram, hpet irqs
device-mapper: uevent: version 1.0.3
device-mapper: ioctl: 4.23.0-ioctl (2012-07-25) initialised: dm-devel@redhat.com
cpuidle: using governor ladder
cpuidle: using governor menu
drop_monitor: Initializing network drop monitor service
ip_tables: (C) 2000-2006 Netfilter Core Team
input: AT Translated Set 2 keyboard as /devices/platform/i8042/serio0/input/input2
ata1: SATA link up 3.0 Gbps (SStatus 123 SControl 300)
ata1.00: ATA-8: WDC WD5000AAVS-00N7B0, 01.00A01, max UDMA/133
ata1.00: 976773168 sectors, multi 0: LBA48 NCQ (depth 31/32)
ata1.00: configured for UDMA/133
scsi 0:0:0:0: Direct-Access ATA WDC WD5000AAVS-0 01.0 PQ: 0 ANSI: 5
Freeing unused kernel memory: 1032k freed
Write protecting the kernel read-only data: 12288k
nouveau 0000:00:10.0: setting latency timer to 64
[drm] nouveau 0000:00:10.0: Detected an NV40 generation card (0x063000a2)
Console: switching to colour dummy device 80x25
usb 1-6: New USB device found, idVendor=0bda, idProduct=0181
Initializing USB Mass Storage driver...
scsi4 : usb-storage 1-6:1.0
tsc: Refined TSC clocksource calibration: 2699.931 MHz
usb 2-3: Manufacturer: American Power Conversion
hid-generic 0003:051D:0002.0001: hiddev0,hidraw0: USB HID v1.00 Device [American Power Conversion Back-UPS RS 700G FW:856.L3 .D USB FW:L3] on usb-0000:00:04.0-3/input0
EXT4-fs (dm-1): mounted filesystem with ordered data mode. Opts: (null)
e1000: Intel(R) PRO/1000 Network Driver - version 7.3.21-k8-NAPI
e1000: Copyright (c) 1999-2006 Intel Corporation.
r8169 0000:04:00.0: irq 43 for MSI/MSI-X
r8169 0000:04:00.0: eth0: RTL8102e at 0xffffc90010fae000, 44:87:fc:69:4d:0f, XID 04c00000 IRQ 43
microcode: CPU0 updated to revision 0xa0b, date = 2010-09-28
ALSA sound/pci/hda/hda_intel.c:1593 Enable delay in RIRB handling

There's more...

Consult the man or info pages for any of these commands for more information. In particular, look at man modprobe.conf for details on how to use the configuration options available with modprobe.
You can use the uname -r command to see the current kernel version. You will often see that the expression uname -r in scripts and aliases works great.

Building a kernel from kernel.org

For this example, we will be using kernel files from the http://kernel.org website.
Getting ready

You should be able to perform all but the last step without any possible harm to your system. The make install command will modify your GRUB file(s), and so at a minimum, I would back those up. To be very safe, and since we already know I am paranoid, if you are going to install the new kernel, I would run all of these steps on a test machine.
This example assumes your computer has been installed as a full development system. You will need up-to-date versions of GCC, make, the QT development package, and others. If you have a current distribution elected to install the Software Development package (or equivalent), you are probably good to go. I suggest having at least 10 GB of file space available on the partition you plan to do the builds in; more if you are going to be creating a lot of kernel trees (the files in kernel 3.9.1 are using 6.5 GB).
The vmlinuz, initramfs, and map files will be copied to /boot, so make sure it is large enough to handle the number of extra kernels you want (about 500 MB is typical).
You will need to be root to run the make modules_install and make install commands. I suggest becoming root for all of this procedure to avoid any file permission problems.

How to do it...

The following are the steps to get and build a kernel:
	On your browser, navigate to http://kernel.org.
	Click inside the yellow square where it says Latest Stable Kernel and save the file. On Fedora, the Downloads directory is /home/<user>/Downloads.
	Where you want to build is pretty much up to you. I personally dislike long directory paths and so I have put mine in the /temp directory. You may choose another location if you wish.
	Copy or move the .xz file from the Downloads directory to /temp. For this example, the filename is linux-3.9.1.tar.xz.
	Change the directory to /temp and extract the file tar xvf linux-3.9.1.tar.xz. This used to take a long time, but it's not too bad these days.
	When it's finished, change directory to the cd /temp/linux-3.9.1 directory.
	The next step is to obtain a kernel configuration file. Unless you have a specific one already in mind, I usually take the latest one out of the /boot directory. On my system, I ran the following command:
cp /boot/config-3.6.1-1.fc17.x86_64

	You could have copied the file directly to .config, however, I like seeing what I started with. So do it now:
cp config-3.6.1-1.fc17.x86_64 .config

	We now need to run a kernel build program to get everything in sync. We will use the xconfig program, which will be discussed in more detail in the next section. For now, just run the following command:
make xconfig

	This will bring up a cool-looking screen with about a million things on it. Click on File | Save and then File | Quit.
	You should now be back at the text screen, with it showing something like the following:
Big4 /temp/linux-3.9.1 # make xconfig
 HOSTCC scripts/kconfig/conf.o
 HOSTCC scripts/kconfig/zconf.tab.o
 HOSTCXX scripts/kconfig/qconf.o
 HOSTLD scripts/kconfig/qconf
scripts/kconfig/qconf Kconfig
#
configuration written to .config
#

	Now run the make command. Depending on the speed of your computer, this may take a long while. If you're a coffee or tea drinker, this might be a good time to go get some.
	Check to make sure there were no errors, and then run the following command:
make modules_install

	This next step will modify your GRUB configuration. I always make sure I have backups for those just in case. When done, to install the kernel, run the following command:
make install

	In most cases, the make install command will set the new kernel as the default. You can check this by viewing your GRUB configuration files (we will see more on GRUB later in this chapter).
	To actually try out the new kernel, you must reboot the system (more on that later). When the screen comes up, make sure the proper kernel is selected on the menu.
	Since we made no real changes, the kernel should boot up without any issues. Check this by running the uname -a command to make sure it booted the right one. You should not see or notice any differences in this kernel. However, depending on several factors it may not work as expected, or it may not even boot at all. If this is the case, you should be able to reboot back into the previous good kernel.

When rebooting, I strongly suggest a cold start. Perform an orderly shutdown (shutdown -h now) and let the machine sit for at least a few seconds; minutes wouldn't hurt either. I have seen some very strange things happen with warm boots that any sane person would say was impossible.

Using xconfig to modify the configuration

As was mentioned in the previous section, the .config file is what controls everything that goes into the kernel files. This includes both the vmlinuz and initramfs files, and the device driver modules. The .config is a text file but is not meant to be edited directly, instead one of several different programs can be used. In this chapter we show you how to use the xconfig program to make changes to the .config file.
Getting ready

Please see the previous section on what is needed to prepare before performing these steps.

How to do it...

Here we will use xconfig to modify the configuration:
	Change to the kernel build directory and run the following command:
make xconfig

	That cool-looking screen should come up again. This program takes a few minutes to get used to, so we will go through it step-by-step.
	First, locate the string Processor type and features and click on it. You will see the screen change.
	Now in the panel on the right-hand side under Processor family, click on Core 2/newer Xeon. Click on the text, not the radio button.
	You should now be seeing something like the following screenshot (from my Fedora 19 system using a 3.9.9 kernel):[image: How to do it...]

	You must use caution when using this program. It is quite easy to accidentally click on a radio button, changing something you did not intend to. For this reason I suggest making frequent backups of your .config file. Since it is a text file, you can use the diff program to look for changes between files. If you are unfamiliar with diff, run man diff for more information.
	So, let's go ahead and change something. If you are running modern hardware, it probably has a Core 2 or Xeon processor in it. Run cat /proc/cpuinfo to see what you have. If it looks appropriate, click the radio button on the Core 2/newer Xeon line.
	Those are the basics for configuring a new kernel. When first getting started, I suggest making as few changes as possible between builds. This way it will be much easier to track down what change caused a problem, if one should occur.
	To complete this discussion of xconfig, let's try another field. On the left-hand side, click on the text of General setup.
	You should see the text on the right change. In general, when using xconfig you click on the text to change the display, to expand or compress an entry click on the appropriate button, and to actually change a value click on the radio button. A small black dot in a box means a module will be built.

There's more...

You can use the diff command to look at the differences between the .config files you have saved. This will save a lot of time when debugging.
The program can be somewhat confusing. In places, the text on the right will indicate Say Y here. That means to make sure there is a check in the checkbox. Likewise, No means no checkmark. In some cases the program will say to indicate Y or N in a field that doesn't even have a checkbox. I suppose those are bugs, if so, they have been there for a long time.
You may also click on Help | Introduction for some brief text on how xconfig is used.
Extra care must be taken when building kernels. It is easy to make a mistake when using xconfig to modify your .config file resulting in an unbootable kernel. The following are a few pointers:
	Make a backup of the current .config every single time you make a change.
	Make as few changes as possible at one time. It's tempting to try and save time by making a lot of changes, if this works for you that is great. It does not work for me though.
	If your latest kernel will not boot, try using diff to compare your latest .config file with the last good one. You might be able to spot the problem right away.
	If all fails, go back to a known working configuration file and start again from there. You have been making backups of your .config files all this time, right?

Working with GRUB

When working with kernels, you may need to change your GRUB configuration file from time to time. You can modify which kernel comes up by default, the timeout value for the kernel selection menu, the parameters passed to the kernel, boot other operating systems, and many other things.
The grub.conf file is normally located in /boot/grub, or you can use the /etc/grub.conf file, which is a symbolic link.
The following is what grub.conf looks like on my Fedora 14 system:

grub.conf generated by anaconda
#
Note that you do not have to rerun grub after making changes to this file
NOTICE: You have a /boot partition. This means that
all kernel and initrd paths are relative to /boot/, eg.
root (hd0,0)
kernel /vmlinuz-version ro root=/dev/sda3
initrd /initrd-[generic-]version.img
default=2
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Fedora (3.9.1)
 root (hd0,0)
 kernel /vmlinuz-3.9.1 ro root=UUID rhgb quiet
 initrd /initramfs-3.9.1.img
title Fedora (2.6.38.4)
 root (hd0,0)
 kernel /vmlinuz-2.6.38.4 ro root=UUID rhgb quiet
 initrd /initramfs-2.6.38.4.img
title Fedora (2.6.35.6-45.fc14.x86_64)
 root (hd0,0)
 kernel /vmlinuz-2.6.35.6-45.fc14.x86_64 ro root=UUID rhgb quiet
 initrd /initramfs-2.6.35.6-45.fc14.x86_64.img

How to do it...

Here we will show you how to change some of the items in the grub.conf file. Note that a mistake here can render your system unbootable, so either just follow along or be very careful.
	Change to the proper directory:
cd /etc

	Make a backup copy: cp grub.conf /temp (or some other suitable location).
	Edit it with vi or equivalent:
vi grub.conf

	Referring to my file above let's boot the first stanza by default. Change the default=2 line to default=0. Note that they count starting at 0.
	Now let's increase the amount of time it will wait for you to make a selection; change the timeout value to 10.
	Suppose you want to boot up in text mode, to do this comment out (that is, put a # in front of) the splashimage and hiddenmenu lines.
	And also remove the rhgb quiet from the stanza (or all of them).
	If you have any parameters you want passed to the kernel, you can just add them to the end of the kernel line.

How it works...

Let us see the break-up of the above mentioned steps in the following section:
	The commented section says You have a /boot partition. This means that all kernel and initrd paths are relative to /boot. What this is trying to say is when you come across a line later containing something like /vmlinuz-3.9.1, it really means /boot/vmlinuz-3.9.1. Don't forget that it works this way, and you will save yourself a lot of grief later.
	The default=2 means to use the third title or stanza (yes, this is another place where they start counting at 0 instead of 1).
	The timeout=5 means to display the kernel boot menu for 5 seconds before booting into the default one.
	The splashimage line shows a graphical image on the screen while booting. I dislike this immensely and so I comment it out.
	The hiddenmenu line means to hide the kernel boot menu. You comment this line out to show the menu. Yes, it's backwards again, but not quite as awkward as counting things starting at 0.
	The first title line begins a kernel stanza. Everything between that line and the next title line (or end of file) is associated with that kernel. In this case, the first listed kernel is the latest one I have created (3.9.1).
	The root (hd0,0) line means that my /boot directory is located on the first hard drive on the first partition.
	The next line is the actual kernel file and parameters.
	The last line of this stanza is the initial RAM disk image file.
	As you can see, there are two more stanzas (kernels) available on this machine. I am running 2.6.35-6-45.fc14.x86_64, the default kernel for Fedora 14 64-bit.

Understanding GRUB 2

GRUB 2 is now being used in many Linux distributions. It is a complete rewrite and was created to fix some of the perceived issues in GRUB Legacy. It is still being developed, and so the information here may not be complete or up-to-date.
The boot configuration when using GRUB 2 is in the /boot/grub2/grub.cfg file. You can also refer to it by the /etc/grub2.cfg file which is a symbolic link.
The following is what the first few lines look like on my Fedora 17 system:

#
DO NOT EDIT THIS FILE
#
It is automatically generated by grub2-mkconfig using templates
from /etc/grub.d and settings from /etc/default/grub
#
BEGIN /etc/grub.d/00_header
if [-s $prefix/grubenv]; then
 load_env
fi
set default="1"
if [x"${feature_menuentry_id}" = xy]; then
 menuentry_id_option="--id"
else
 menuentry_id_option=""
fi

As the commented line says, this file is not intended to be edited directly. Instead, the /etc/default/grub file is used in combination with the set of files in the /etc/grub.d directory.

Big2 /etc/grub.d # ls -la
total 76
drwx------. 2 root root 4096 Oct 18 2012 .
drwxr-xr-x. 167 root root 12288 May 15 03:34 ..
-rwxr-xr-x. 1 root root 7528 Aug 2 2012 00_header
-rwxr-xr-x. 1 root root 9265 Aug 2 2012 10_linux
-rwxr-xr-x. 1 root root 9948 Aug 2 2012 20_linux_xen
-rwxr-xr-x. 1 root root 2564 Aug 2 2012 20_ppc_terminfo
-rwxr-xr-x. 1 root root 9339 Aug 2 2012 30_os-prober
-rwxr-xr-x. 1 root root 214 Aug 2 2012 40_custom
-rwxr-xr-x. 1 root root 216 Aug 2 2012 41_custom
-rw-r--r--. 1 root root 483 Aug 2 2012 README

How to do it...

The following are the steps to make changes to the boot configuration when using GRUB 2. Remember, the grub.cfg file is not edited directly; changes are instead made to the files in the /etc/grub.d directory.
	Let's change the timeout and rhgb values. Edit the /etc/default/grub file.
	Change GRUB_TIMEOUT to 10.
	In GRUB_CMDLINE_LINUX, remove the rhgb quiet. Save the file.
	Create the new file by running the following command:
grub2-mkconfig -o /boot/grub2/grub.cfg

	The modified grub.cfg file should be ready for booting.

How it works...

The following is a description of what the scripts in /etc/grub.d are for:
	00_header: This generates the header for grub2.cfg and gets the info from the /etc/default/grub file
	10_linux: This loads the menu entries
	20_linux_xen: This looks for zen kernels to add them to the menu
	20_ppc_terminfo: This checks for a correct size terminal on PPC systems
	30_os-prober: This searches the hard drives for other operating systems so it can add them to the boot menu
	40_custom: This is a template that can be used to add extra entries to the boot menu
	41_custom: This reads information from /boot/grub/custom.cfg if it exists
	README: This is a file that contains some other useful information

There's more...

The following is a partial list of the GRUB 2 commands available in the operating system:
	grub2-editenv: This edits the GRUB environment block
	grub2-fstest: This is a debug tool for GRUB filesystem drivers
	grub2-kbdcomp: This generates a GRUB keyboard layout file
	grub2-menulst2cfg: This transforms legacy menu.lst into grub.cfg
	grub2-mkfont: This makes GRUB font files
	grub2-mkimage: This makes a bootable image of GRUB
	grub2-mklayout: This generates a GRUB keyboard layout file
	grub2-mkpasswd-pbkdf2: This generates a hashed password for GRUB
	grub2-mkrelpath: This makes a system path relative to its root
	grub2-mkrescue: This makes a GRUB rescue image
	grub2-mkstandalone: This makes a memdisk-based GRUB image
	grub2-script-check: This checks grub.cfg for syntax errors
	grub2-bios-setup: This sets up a device to boot using GRUB
	grub2-install: This installs GRUB to a device
	grub2-mkconfig: This generates a GRUB configuration file
	grub2-mknetdir: This prepares a GRUB netboot directory
	grub2-ofpathname: This finds an OpenBOOT path for a device
	grub2-probe: This probes device information for GRUB
	grub2-reboot: This sets the default boot entry for GRUB, for the next boot only
	grub2-set-default: This sets the saved default boot entry for GRUB
	grub2-sparc64-setup: This sets up a device to boot using GRUB

To learn more about GRUB 2, the official web page is http://www.gnu.org/software/grub/grub.html.

Appendix A. Linux Best Practices

In this appendix we will cover the following topics:
	Root user versus normal user
	Running the GUI
	Creating, verifying, and storing backups
	Permissions and who you are
	Making backups in real time
	Environmental variables and shells
	The best environment
	Using and monitoring a UPS
	Being careful when copying files
	Verifying archive files and using checksums
	Firewalls, router settings, and security
	What to do if you find an intrusion
	Spaces in filenames
	Using scripts and aliases to save time and effort
	Using scp and ssh with automatic authentication
	Saving history and taking screenshots
	Space on drives
	Being open to new ideas

Introduction

There are many things you can do to get the most out of your Linux system(s). Conventional wisdom states that there are many ways to perform a particular task on a computer. This is true, however, in reality there is usually only one good way to accomplish something. The trick is to be open-minded and see the good when it happens.

Root user versus normal user

Running as the root user versus a normal user mostly depends on the environment you are in. If each person has their own workstation and is in charge of how it is set up, then running as root might be very natural for you (especially if you don't make mistakes). However, if you're working in a bank or other situation where a typing error might wipe out a million dollar account, running as root is certainly not advisable. In these cases, assuming you have the authority, you would switch to root only when necessary and only to perform the needed task. Using sudo, if it has been configured correctly, is also an option. See Chapter 5, Permissions, Access, and Security, for more information on sudo.
Another thing to keep in mind is how comfortable you are running as root. If you are error prone or nervous, and/or have caused serious damage in the past running as root, you obviously need to take great care when doing so. On the other hand, if you consistently run as root and don't ever make a mistake then that is great. It is certainly more efficient.
A special note to system administrators: I have seen this on more than one occasion and so will mention it here. This applies to both novice and seasoned system administrators.It is customary for you (and maybe your manager) to be the only ones with root authority on the systems. This sounds like a good idea, right? It might avoid having someone make a mistake that could take out an entire project. And, it just feels good being the person in charge. People come to you when they need something changed and you happily do it. Then they come again, and again, and again. At some point you realize you can't get any of your work done because of all the requests, and that they can't have their work done if you are not around. So you try and set up sudo. Now it's even worse; every time you think you have it set up to handle anything, someone may come to you if it fails again. So what do you do?
You may be able to give selected users root access. Use your instincts. For example, watch how the individual users type. Are they comfortable when using the command line? Do they type with authority, or seem scared of the machine? If a particular user consistently uses the GUI to perform tasks that are done much more efficiently on the command line, then I would see that as a strong warning sign.
In time you will get a feel of who can be trusted with root access and be able to grant it to them. If, of course, someone does make a mistake, then it should not be the end of the world. They can't really hurt the entire project, because you have been creating and verifying daily backups, right? You can restore the damage and take root back from them. Note, one mistake is all it takes. I would not trust that user with root again.

Running the GUI

While I am somewhat quick to trust my users with root access, and use it myself most of the time, I absolutely do not recommend running the GUI this way. Some distributions won't even allow it. By running the GUI as root, you are in effect running a lot of other things as root, such as your browser and mail programs. Not a good idea at all.
Here is my preferred environment on a Linux or UNIX system. I use Fedora, but these ideas should work on most other distributions. After installing a system, one of the first things I do is change it so that the machine comes up in command line mode and not in a GUI. This way if a graphics problem has occurred, it is much easier to diagnose and correct. I also have a choice in which GUI to bring up by running the appropriate startx type command. At the command prompt, I log in as a normal or guest user. On my Fedora 14 system I then run startx, which brings up Gnome 2.
After the GUI has come all the way up, I open a terminal session and run su to root. I check to make sure the machine can ping, and usually do a few more sanity checks. If all is well, I then run my jset script. It performs some desktop customization such as opening terminal windows into their proper directories, and reminding me of what command to run (I have written a lot of programs and so really need this). It also mounts my USB devices, or warns me if there is a problem. I then position the terminal sessions right where I want them to be. I am now set to get some work done.
The following is a script similar to the one that I use to set up my desktop after booting up:

#!/bin/sh
last update 6/9/2013 (rebooted)

echo percentused - run go
cd /lewis/java/percentused
xterm +sb -title Xterm -geom 80x20 &

echo apcupsd - run go
cd /lewis/java/apc
xterm +sb -title Xterm -geom 80x20 &

echo jtail - run jtail
cd /lewis/jtail-f/jtail
xterm +sb -title jtail -geom 137x30 &

echo jsecure - run jsecure
cd /lewis/jtail-f/jsecure
xterm +sb -title jtail -geom 125x33 &

echo ping - run loop1
cd /lewis/ping
xterm +sb -title ping -geom 86x8 &

echo runbackup1 - run runbackup1
cd /lewis/backup
xterm +sb -title runbackup1 -geom 65x21 &

echo jwho - run jwho
cd /lewis/jwho
xterm +sb -title jwho -geom 65x8 &

mount usb stick
mount /dev/sdg1 /usb
mount Iomega external drive
mount /dev/sdf1 /megadrive

Creating, verifying, and storing backups

I cannot stress how important it is to create backups of your system(s). At a minimum, copy your personal and business data, and configuration files to a safe place. Some people backup everything, even the operating system itself. Whatever you decide to do, make a plan and stick to it. As mentioned in Chapter 8, Working with Scripts, this is a great time to design and use a script. Use crontab if desired, to automate the periodic taking of backups.
The tar command is great for backing up entire directories. Note that it will get any hidden files as well. You can exclude specific directories if desired, and do quite a few other things with tar. The following are the commands similar to the ones I use to backup my /home/guest1 directory.
Tip
tsback1 is a text file containing the number to start with.

cat tsback1
0

The following is the start of the script:

 cd /home
 NUM=`cat tsback1` # get the next number to use
 tar -cvzf /megadrive/backups/backup$NUM.gz --exclude=Cache --exclude=.cache --exclude=.thumbnails guest1

Remember to include the directory to be backed up as the last thing on the line. This first changes the /home directory, because for tar, you want to be in the parent directory of the sub-directory to be backed up. The next line sets the NUM variable to the next one to use. The last line creates the tar file directly onto my USB external drive in the appropriate directory.
I attempt to be very careful while creating backups. The script I actually use to back things up does quite a few other things. For example, it checks to make sure my USB external drive is really there, and can be written to (it should also check if there is enough free space on the drive, that's a TODO of mine). If the code determines the drive is not there or some other error occurs, a really loud and obnoxious alarm goes off. And, if I have not responded to this alarm in 5 minutes, an email is sent to my cell phone. How's that for paranoid?
Making backups is great. However, if the backup is unusable, it doesn't do you much good. So, it is wise to verify your backups from time to time. How often do this is up to you and your comfort level. My script routinely copies the backup files to another machine, which then extracts them and runs a few tests. If anything doesn't look quite right, another alarm goes off. This is all done automatically in scripts.
Okay, we are now making backups and verifying them. What about storing them? Suppose you have everything just right, all your files are copied and verified, and they are all located in the same place such as your home or office. And now something unspeakable occurs, such as a fire or theft. I agree, there is a very low chance of this happening, but it still could. I, for one, do not want to try and reproduce the million lines of code I have written since 1982 and so have backups all over the place, including off-site. In some of the companies I have worked at, the files were copied to tape, CDs, and/or hard drives, and stored in a walk-in fireproof safe. Pretty good idea.

Permissions and who you are

This mostly pertains to system administrators. As a system administrator, you probably do most of your work as the root user. You set up guest accounts and quotas, and maybe even create scripts, and so on. It is sometimes easy to forget that your users don't have root authority.
With this in mind, be sure to check out your additions and changes from the user's perspective. Become that user with su and make sure you can access everything normally. This will save you a lot of time, and maybe even embarrassment, if you find a problem before your users do.

Making backups in real time

When editing scripts and other files, it is a good idea to make numbered backups. Nothing is more frustrating than having something work, then break after some changes, and then not be able to get it working again quickly. With numbered backups you can always go back to a previous version that worked, and then use diff to find the mistake. I sure learned this one the hard way.
The following is a backup script I wrote for the users of this book (the one I normally use is written in C). It is named mkbak:

#!/bin/sh
mkbak script to create backup files
if ["$1" = ""] ; then
 echo "Usage: mkbak filename(s)"
 echo "Creates numbered backup file(s) in the current directory."
 exit
fi
for i in $* ; do
 if [! -f $i] ; then
 echo File $i not found.
 continue
 fi

 num=1
 while [1]
 do
 ibak=bak-$num.$i
 if [-f $ibak] ; then
 num=`expr $num + 1`
 else
 break
 fi
 done
 cp $i $ibak
 rc=$?
 if [$rc -eq 0] ; then
 echo File $i copied to $ibak
 else
 echo "An error has occurred in the cp command, rc: $rc"
 fi
done

This script comes free of charge, but with some limitations. It will not handle filenames with blanks, and only works on files in the current directory. Note that you can cd to the directory you want first and then run it.
The following is the script I use to backup the current book file I am working on:

#!/bin/sh
b1 script to copy book file
Date 1/22/2013
FN=startA1.txt # name of file to back up
STARTDIR=`pwd` # remember the starting directory
cp $FN /usb/book # copy to USB stick
cd /usb/book # cd to it
mkbak $FN # make the numbered backup

cd $STARTDIR # go back to the starting directory
cp $FN /megadrive/book # copy to USB external drive
cd /megadrive/book # cd to it
mkbak $FN # make the numbered backup

cd $STARTDIR # go back to the starting directory
sum $FN /usb/book/$FN /megadrive/book/$FN # use sum to check
scp $FN $B2:/temp # copy to my other machine
ssh $B2 /usr/bin/sum /temp/$FN # check the copy

While editing the file (the FN variable), I will manually run this from time-to-time, usually after a lot of changes, and definitely just before I get up to take a break or whatever.

Environment variables and shells

One thing that comes up a lot during system administration is the monitoring of several machines. It's not uncommon to have 5 or 6 ssh sessions open at a time, more if you have multiple monitors. It's crucial to know which session is running on which machine, as typing the right command on the wrong machine can be a disaster. For this reason and others, I recommend using a custom PS1 variable when logging into a remote machine.
This was mentioned in Chapter 1, Using the Terminal / Command Line, during the discussion of environment variables. The following is what my PS1 variable looks like on my machine running Fedora 17:

Big2 /temp/linuxbook/chapA # echo $PS1
Big2 \w #
Big2 /temp/linuxbook/chapA #

Simple, and not too cluttered. The following is what PS1 looks like on my other machine when I log into it:

BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 /temp # echo $PS1
BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 \w #
BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 BIG4 /temp #

It should be pretty hard to mix those up.
While we are on the subject of environment variables, there is something else to keep in mind. When you make a change to your .bashrc file and source it, the changes are only visible in that session (as well as any newly opened sessions). In order to see the change in other existing sessions you must source it in them as well. It would be rather cool if there was a way to make the changes visible in every session with just one command, however, I do not believe that is possible. Of course, one could argue that shutdown -r now will do it.

The best environment

What works best for one person may not work the best for another. However, I know that I am most productive when using a fast desktop system with plenty of memory and storage, and two big displays. The following is my typical set up:
On my left-hand side display, I put the scripts, and the following programs that I use to monitor the system:
	A disk space monitoring program written in Java and C
	A program that monitors my Uninterruptible Power Supply (UPS), also written in Java and C
	A script that pings the network once a minute and logs any failures
	A program that uses tail -f /var/log/messages to monitor kernel messages
	My backup script that runs every night at 3 a.m.
	A "poor man's" intrusion detection script (more on that later)
	A script that e-mails the system status to my cell phone twice a day
	I have the Computer and Guest folder icons visible and easy to access
	Any ssh sessions to remote machines
	And a few others that are too boring to mention

All of these are set to remain visible in all workspaces. Speaking of workspaces, I usually have four of them. I always place the same programs and terminal sessions in the same workspace, and in about the same place on the screen. This way, I can get to where I want to be very quickly. Have you ever been in a situation where your team is about to miss an important deadline, and you are being forced to watch and wait as someone else wastes a lot of time trying to find or do something on their system? You do not ever want to be that person.
On the right-hand side display I do most of my actual work. The following is how my workspaces tend to be laid out:
	In Workspace 1 are a couple of terminals. Those are there and ready in case I need to do something right away
	Workspace 2 is normally used for program development. I do C, Java, and script development here
	Workspace 3 is where I am currently typing this book in my custom written text editor (which will eventually be imported into LibreOffice)
	Workspace 4 is where I have my webmail client

Speaking of browsing, I tend to open those on the left-hand side display, and in whatever workspace that goes with what I am currently working on. This is very fast and efficient, and is also easier to cut and paste when needed.
Not all of us have the luxury of fast machines or dual monitors, particularly at our jobs, where it sometimes seems to be more important to management to save money, instead of giving the employees what they need to be productive. All I can say to that, is try your best to get what you need to do your job as efficiently as possible.

Using and monitoring a UPS

In my opinion it is imperative that a UPS be used on at least your primary workstation. All kinds of bad things can happen to the hardware if the power suddenly goes off (or worse, browns out), not to mention what might happen to your data. With modern journaling filesystems, I realize data loss is somewhat rare, but why take the chance? Also, I really just don't like to reboot. Ever.
Depending on your situation, try to get the best UPS you can afford. You want one that will run your system for a long time and also power your display, modem, router, and external drives if you have them. This way, if the power goes out for just a short time you won't lose anything, and won't have to wait for everything to come back up.
There are many different UPS brands available today. I am somewhat partial to the American Power Conversion (APC) devices. I have several of them, and they work well with Linux. Be sure to get one with a phone-connector to USB port, as the old-style serial port units do not work properly.
The apcupsd daemon can be used to monitor the UPS. If your distribution does not already have it, the package can be installed.
	If using Fedora, run yum -y install apcupsd (substitute your package installer as appropriate)
	Comment out the WALL statement in the /etc/apcupsd/apccontrol file to keep annoying messages from being broadcasted to every terminal
	Run apcaccess status to query the UPS

There's quite a bit more you can do with apcupsd, for more information check its website at http://www.apcupsd.com. This also lists some UPS units that might not be as compatible with Linux as the ones I have.
One more thing, you will probably want to use the auto-shutdown feature of the UPS. It can be set up to automatically shutdown your machine if the power has been out for too long. Most units allow you to set the amount of time to stay running, before shutting down. Remember that the longer the UPS runs on the batteries, the shorter their life span will be.

Being careful when copying files

When copying files to a directory, make sure it really is a directory. This happens enough for me to mention it, and I have to admit I still almost do it from time-to-time. It is quite easy to copy a lot of files to what you believe is a directory, but isn't. The result is that just the last file that was copied will be there, and if you don't still have the source files, they might now be lost. Use the file command to verify whether the target really is a directory before you copy the files.

Verifying archive files and using checksums

One thing that comes up a lot is mistakes that go unnoticed in the creation of tar or zip archives that are going to be sent to another person or site.
The following are the steps that should be followed:
	Copy the files to an appropriate directory (make sure it really is a directory first).
	Use zip or tar to compress and create the archive.
	Use the tell or list option to be sure it looks correct. For TAR it's tar -tvzf filename.gz and for ZIP it's unzip -l filename.zip.
	Run the sum command against your file, and then send the file to where it needs to go.
	If using scp, use ssh to run the sum command on the file on the remote system like the following:
ssh <user@remote-host> /usr/bin/sum filename.gz

	The two sum values should match.
	If using e-mail, run sum on your end, and send the result along with the e-mail.

A piece of advise for developers; suppose you are creating an archive of a programming project. To make absolutely sure you have copied every file it needs, create the archive and then copy it to another machine. Un-compress and build it as you normally would. An error will occur if a needed file is missing.

Firewalls, router settings, and security

Firewalls were covered in Chapter 5, Permissions, Access, and Security, and so this will just be a brief recap. If you are running a home system and using a good router, the default settings for iptables is probably all you need. It may require some tweaking, for example, to use a scanner, but for the most part you are probably safe from hackers. On the other hand, if you are the system administrator for a large company, iptables is probably not enough. I would investigate using a hardware intrusion appliance or some other method, to insure data and system security.
It is highly suggested that a router with a built-in firewall be used at all times. By no means would I connect a system directly to the Internet. While a typical Linux system may survive this, I have seen Windows boxes get infected with a virus in less than 30 minutes.
The default router settings are probably already strong enough to keep out the typical hacker. To be sure, and just to get an idea of what is going on inside your router, it's a good idea to login and check everything from time-to-time. On most routers, pointing your browser to 192.168.1.1 will bring up the login screen. In most cases, an ID and password are required.
The who command can be used in Linux to show the username, tty, date, time and IP address of each user on the system, as shown in the following screenshot:
[image: Firewalls, router settings, and security]
Here is another thing you can do to help prevent an intrusion. It is a good idea to deny root access by ssh/scp because hackers will usually attempt to break in as root. This can be accomplished by editing the /etc/ssh/sshd_config file. Locate the line that says #PermitRootLogin yes and change it to PermitRootLogin no. Don't forget to remove the # (pound sign). You will also need to restart sshd. Now, any attempt to login as root will fail. I have all of my machines set up this way as an added precaution.
One last thing, any time someone logs (or attempts to log) into your system, a record is made of it. On Fedora this is put into the /var/log/secure file. You can check this file from time-to-time, or monitor it by using the tail -f /var/log/secure command.
And now for a bonus. The following is a simple script I use to watch for unauthorized access to my machine:

#!/bin/sh
tput clear
echo "jwho by Lewis 10/23/2011"
numusers=`who | wc -l`
while [1]
do
 rc=`who | wc -l` # get number of users
 if [$rc -gt $numusers] ; then
 echo "Someone new has logged on!!!!!!!!!!!"
 date
 who
 jalert5 & # see below
 numusers=$rc
 elif [$rc -lt $numusers] ; then
 echo "Someone logged off."
 date
 numusers=$rc
 fi
 sleep 5
done

Basically what this does is check every 5 seconds to see if the number of users have changed. If it has increased, the jalert5 script is run in the background. It plays a really obnoxious WAV file every 5 seconds until I turn it off. This will also fire every time you open a new session, so you will probably want to run it last after a boot up.

What to do if you find an intrusion

Suppose you have found that an intrusion has occurred. What should you do?
Tip
These instructions are for your machine or for one you have total responsibility for. If this occurs on a machine where you work, immediately follow whatever procedures your company has in place for a security event.

Quick action is needed if you suspect a break-in. Run the who command or cat /var/log/secure and check the output. If you see a suspicious IP address, take the following actions:
	If this were a very important machine with critical data on it, I would pull out the Ethernet wire(s) and shut it down now. I would then boot up from rescue media and try to determine if anything bad had occurred. Checking the date and time they got in (from the who command) could give you an idea of how much damage they may have caused.
	If this were my home system, I would first pull the Ethernet wire. I would then run ps auxw to a file to capture what is going on in the system right now. I would copy this file to some other machine or device and then shutdown the system.

By examining the ps output and looking at the tty value I could probably determine what programs they were running, if any. This might point to what they were trying to accomplish by getting into the system.
Obviously, if someone does get into your system, they most likely did it by guessing or somehow determining a password. I would probably reset all the passwords to something much harder to crack, and then inform my users to pick better ones. Or probably assign them myself.
Okay, so at least one person reading this is thinking why pull out the Ethernet wire? Why not just bring down the interface? Well, because a shrewd attacker is going to think of that, and as soon as he has access, he is going to put code on the system to automatically bring the interface back up if it goes down. He may even put a timer on it, or hide it in some other way.
It is possible that an attacker had time to do all kinds of things. He may have even been able to modify the who, ps, and other commands to make it almost impossible to track what he did (or is still doing) from the running system. With this in mind, you still need to shutdown asap and then boot up with a rescue disk or equivalent. Some of the things to look at are the commands such as ps and who. Run the file command, it should show them as being a binary executable and not a shell script. If they are shell scripts, you may discover the attacker has renamed the executable files with a . to hide them, and then wrapped them around a script to help cover up his presence. There are many other ways to hide as well.

Spaces in filenames

When generating files for yourself or other people, do not include blanks in the filename. This can cause a lot of problems on Linux and UNIX machines. If necessary, use capital letters and/or underscores. Do not use parentheses or other special characters either. I was really amazed the first time I downloaded a file using Firefox, as it inserted parentheses to differentiate it from another file of the same name. I appreciate the fact that it didn't just over-write the original file, but using parentheses was and is a really bad idea.

Using scripts and aliases to save time and effort

One thing I see a lot of in the field is people wasting time and effort typing the same things over and over again. Don't do this. Use aliases and scripts. Don't think about how much time you might spend writing the script, think about how much time you will save by being able to use it all the time. You might also be able to incorporate it into another script later on (especially if it was written well, to begin with). Also, having these available should help with meeting deadlines.

Using scp and ssh with automatic authentication

Follow these steps to allow the use of ssh/scp without having to enter a password. You will need to be root.
	First, make sure the client has used ssh at least once. This will create the proper directory that is needed.
	On the master machine run the ssh-keygen -t rsa command. This will create some necessary files.
	If the /root/.ssh/authorized_keys file does not already exist on the client, you can run scp /root/.ssh/id_rsa.pub <hostname>:/root/.ssh/authorized_keys.
	Otherwise, copy the id_rsa.pub file over to the client and then add it to the authorized_keys file (I usually put it at the bottom).
	You should now be able to scp and ssh to the client without having to enter a password. This is really handy, especially in scripts.

You can also add this entry to another user account. For example, I added it to my /home/guest1/.ssh/authorized_keys file. This way I can copy files as root from one machine, and it will still be accepted by the other.

Saving history and taking screenshots

We all have to learn new things when dealing with computers. Sometimes the steps involved are pretty complicated, and I have found that in practically every situation whatever document or site I am using to perform the steps, has errors. It's not complete, the author skipped an important step, and so on. For these reasons and others, after I have (finally) gotten something to work, I run the history command in that session and output it to a file. I then save this under a suitable name so I can find it again later.
Depending on how much effort was required, and if appropriate, I may take screenshots of each step as well. This can be valuable later as a reference, and if you ever have to help someone else accomplish the same task. Or, if someone talks you into writing a book about it someday.

Space on drives

In the old days there was never enough hard drive space. We were always running low or out, and trying to find ways to increase our storage. Now, in modern times, this might not be as much of an issue. However, it is still a good idea to monitor your available space at all times.
There are quite a few ways to do this. On my systems I use a program I wrote in C and Java. It's called Percent Space Used and just uses df -h under the covers. You can put df in a script, or just check the space manually from time to time. Just don't run out! Filling up a partition is a good way to have a disaster on your hands, especially if it is a system partition.

Being open to new ideas

Here is my last bit of advice for people wanting to know Linux better. I consistently see people in the field doing their everyday jobs, and doing it the same way. Always be on the lookout on how to improve the way you perform your daily tasks. If you see a co-worker doing something that seems odd to you, don't just assume his way is wrong and yours is right. His process may be a whole lot better than yours. Learn from it. On the other hand, he may not have a better way, yours may be better. At this point, it's up to you to decide whether to attempt to share your ideas. I have found most people very resistant to this.
Do not let yourself get caught in the "Your way isn't better than mine, it's just different" argument. As I mentioned before, there is usually only one right way to perform a task, but most people just don't see this. Try to find it when you can, and share your ideas only if the person you are trying to help is receptive.

Appendix B. Finding Help

In this appendix we will cover the following topics:
	Using man pages
	Using the info command
	Commands and the Usage section
	Local documentation directories
	Browsing the web to find help
	Distribution release notes
	Linux users' groups
	Internet Relay Chat (IRC)

Introduction

There are many different places to find help on Linux. There is also quite a lot of information available; in fact, it is too much in some cases. It can be difficult to filter out the noise from the good stuff. Here we try to show you how to get what you need quickly and efficiently.

Using man pages

The man utility is an interface to the local reference manuals. It is used to quickly find information on programs, utilities, functions, and other topics. The man utility will accept several options; however, the usual invocation is simply man page, where page actually refers to a topic. You can even run man by itself to learn how to use it.
The following is a screenshot of the command man man:
[image: Using man pages]
Running man on a page displays that topic of interest. The spacebar is used to page down, and Q is used to quit. Pages (topics) are presented in a more or less standard order with these possible section names: NAME, SYNOPSIS, CONFIGURATION, DESCRIPTION, EXAMPLES, OVERVIEW, DEFAULTS, OPTIONS, EXIT STATUS, RETURN VALUE, ENVIRONMENT, FILES, VERSIONS, CONFORMING TO, NOTES, BUGS, AUTHORS, HISTORY, and SEE ALSO.
man shows the first page found, even if there are more pages in other sections. For example, suppose you are looking for information on how to code the readlink function in your C program. You might try the following command:

man readlink

It brings up a page, but of the command readlink and not the C function. Why? Because it shows the first page, unless you specify the section number before the page. Well, how do you know what that is? You can run man with the -a option in the following manner:

man -a readlink

This brings up the command readlink as before. Now press Q to quit. The page goes away, but instead of terminating, the man session shows something as follows:

Big4 /lewis/Fedora/17 # man -a readlink
--Man-- next: readlink(2) [view (return) | skip (Ctrl-D) | quit (Ctrl-C)]

This is giving you a choice: pressing Enter will show the next page (topic), Ctrl + D will skip to the next topic, and Ctrl + C will end the man session. Pressing Q when you are on the last topic will cause man to terminate normally as before.
So what if you already know that you want the page from section 3 and load it directly? You can specify it in the following manner:

man 3 readlink

This will skip the first two and go right into the page for readlink out of the POSIX Programmer's Manual.
Here is a list of the section numbers and their names:
	1: Executable programs or shell commands
	2: System calls (functions provided by the kernel)
	3: Library calls (functions within program libraries)
	4: Special files (usually found in /dev)
	5: File formats and conventions (for example, /etc/passwd)
	6: Games
	7: Miscellaneous (including macro packages and conventions), for example, man(7) and groff(7)
	8: System administration commands
	9: Kernel routines

The local reference manuals can be a great source of information. They contain a wealth of data on just about everything in a Linux system. Unfortunately, they do have some drawbacks. Most are well-written and make sense. Some are, well, rather horrible. When this happens, there are other places to find help.

Using the info command

In addition to the man pages, most Linux systems also have Info documents. These are accessed by using the info program. In general, the data provided by Info documents tend to go into more detail and are more informative than a typical man page.
Like man, you can run info on its own:

info info

This presents an introduction on how to use info. The last paragraph says If new to info, type 'h' now. This brings you to a programmed instruction sequence. If you are interested in learning how to use info to its fullest, I suggest pressing H here to run the tutorial.
The following is a screenshot of running info info and then pressing H:
[image: Using the info command]

Commands and the Usage section

Most commands in Linux have a Usage section, which can be displayed by running it with the --help option. Typical examples of this are cat, cut, ifconfig, bash, rm, and many others.
The following is a screenshot of rm --help:
[image: Commands and the Usage section]
Note that, in general, the Usage section is not really intended to teach someone a whole lot about a command. It's really used to remind the user what the parameters are, and the general format of the command.
Note that some commands, especially those that require parameters in order to accomplish something, will display their usage information just by being invoked with no parameters given.
The following is a screenshot of running the awk command with no parameters:
[image: Commands and the Usage section]

Local documentation directories

Most full Linux distributions have directories that contain documentation on various topics. Depending on which distribution is being used, the layout may differ slightly but in most cases, the files are located in the /usr/share/doc directory. The following is a partial listing of the /usr/share/doc directory taken from Fedora 14:
	/usr/share/doc/BackupPC-3.1.0
	/usr/share/doc/ConsoleKit-0.4.2
	/usr/share/doc/Django-1.2.3
	/usr/share/doc/GConf2-2.31.91
	/usr/share/doc/GeoIP-1.4.7
	/usr/share/doc/GitPython-0.2.0
	/usr/share/doc/HTML
	/usr/share/doc/ImageMagick-6.6.4.1
	/usr/share/doc/ModemManager-0.4
	/usr/share/doc/MySQL-python-1.2.3
	/usr/share/doc/NetworkManager-0.8.1
	/usr/share/doc/abrt-1.1.13
	/usr/share/doc/ant-1.7.1
	/usr/share/doc/apcupsd-3.14.8
	/usr/share/doc/doxygen-1.7.1
	/usr/share/doc/ethtool-2.6.38
	/usr/share/doc/fedora-release-14
	/usr/share/doc/gcc-4.5.1
	/usr/share/doc/gcc-c++-4.5.1
	/usr/share/doc/gimp-2.6.11
	/usr/share/doc/git-1.7.3.1
	/usr/share/doc/gnome-desktop-2.32.0
	/usr/share/doc/gnuchess-5.07
	/usr/share/doc/httpd-2.2.16
	/usr/share/doc/httpd-tools-2.2.16
	/usr/share/doc/java-1.6.0-openjdk-1.6.0.0
	/usr/share/doc/java-1.6.0-openjdk-devel-1.6.0.0
	/usr/share/doc/kaffeine-1.1
	/usr/share/doc/mailx-12.4
	/usr/share/doc/make-3.82
	/usr/share/doc/man-db-2.5.7
	/usr/share/doc/man-pages-3.25

There is also a documentation viewer/browser, which is normally accessed through the file folder dialog. For example, if you open your file manager and go to one of the directories under /usr/share/doc, you will see many files. Clicking on the README file will bring up more information about that particular program on your system. There may be other readable files as well, such as CONTENT, AUTHOR, MAINTAINERS, INSTALLATION, and so on.

Browsing the web to find help

Using the Internet is certainly a great way to find help on Linux tasks. In many cases, it may even be better than relying on local sources as updates may have occurred since the documentation was last put on your system. When I need to look up something using the web, I go directly to Google Advanced Search.
The following is a screenshot of http://www.google.com/advanced_search with some of the fields already filled in:
[image: Browsing the web to find help]
Using this search method is fast and you can use those fields to narrow down what you are looking for.
Keep in mind that there is a lot of information out on the Internet. Some of it is accurate and is exactly what you are looking for. However, in many cases the information is not correct. The person giving the answer may act as though he or she is an expert on the subject when in fact, he or she is not. Many people also don't always check their solution before presenting it as a definitive answer to your question/problem. Be aware of this as you try solutions given on the Internet.
The reverse of this situation is also true. If you want to help people, then that is absolutely great. However, be considerate and test any solution you wish to provide for accuracy before sending it as a reply to their problem.

Distribution release notes

A great way to learn more about your Linux distribution is to look at the release notes for it. These usually contain information such as the following:
	They keep a record of the changes that have been made since the last release. This is usually separated into sections for specific users such as system administrators, desktop users, developers, and others. Note that in some distributions, more information is available in the Technical Notes document.
	They spell out the minimum hardware requirements/architecture needed to run the distro effectively. Special attention is given to memory, graphics, and video concerns.
	They give installation instructions with emphasis on booting, and special or unusual setups.
	They provide a list of the possible desktop environments that can be installed, often accompanied by the steps to do so. This is a very important section because using a poorly designed and/or buggy desktop will hinder your productivity.
	They have an explanation of the new features, functions, and programs that have been added into the release. This is sometimes followed by the reasoning behind the addition, and what program(s) it replaces.
	They consist of a list of the depreciated (removed) programs and features.
	They have pointers on where to get additional help such as websites and chat rooms.
	They contain a list of the known bugs and problems that still exist in the distro, along with information about possible workarounds. Always consult this list before filing a bug report.
	They give instructions on how to provide feedback on both the distribution and release notes, as well as any features you would like to see added/changed.

The following is a screenshot of the release notes for Fedora 19 from http://docs.fedoraproject.org/en-US/Fedora/19/html/Release_Notes/index.html:
[image: Distribution release notes]
The following is the link to the release notes for Ubuntu 13.04 from https://wiki.ubuntu.com/RaringRingtail/ReleaseNotes:
[image: Distribution release notes]
The following screenshot is of Debian 7.0 (Wheezy) taken from http://www.debian.org/releases/stable/amd64/release-notes:
[image: Distribution release notes]
The release notes make for very good reading. I browse them before, during, and after installing a new distribution. This ensures I get the most out of my distribution, informs me of new features, and helps me avoid spending too much time and effort trying to solve a known bug or problem.

Linux users' groups

Another really good place to ask for help is on your local users' group. To find one near you, try an advanced Google search on Linux User Group, and then put in your city (and state if necessary). You should be presented with a few options. Note that most just require a valid e-mail address to get subscribed to the group. In general, to ask a question you simply compose it like a normal one and then e-mail it to the group's e-mail address. People who are knowledgeable in that area are usually quick to provide help and will e-mail back to the group with a possible answer. In most cases, you can also search through the group's archives to find things.
I have found answers to many difficult issues by asking questions on the Central Texas Linux Users Group (CTLUG).
The following is a screenshot of the CTLUG site at http://ctlug.org/:
[image: Linux users' groups]

Internet Relay Chat (IRC)

Using IRC is a great way to stay informed about various topics that are of interest to you. It is also a very good place to ask for help. The people who frequent these chat rooms do so by joining channels that pertain to the subject they are interested in and are knowledgeable of. This is all done in real time as well with no need to wait for an e-mail reply to come back. You just need an IRC client, a server, and a group (channel) to join and (in most cases) are ready to go. There are quite a few different IRC clients. Some of these are text- mode (command line) and some are GUI-based.
The following is a screenshot of http://www.irchelp.org/irchelp/clients/unix/, a site that shows different IRC clients for Linux and Unix:
[image: Internet Relay Chat (IRC)]
If you are new to IRC, here are a few pointers to get you started. I did not already have one and so began by getting a client. I prefer command line programs and so installed irssi on my Fedora 17 machine by running the yum command as root:

yum -y install irssi

This worked just fine.
The following is a screenshot of irssi –help on Fedora 17:
[image: Internet Relay Chat (IRC)]
This program allows for quite a bit of customization. The default configuration on my system is contained in the /home/<user>/.irssi/config file. You can override this using the previous settings. For now, let's just run it plain to see what it looks like.
	Start by running irssi. It should bring up a text mode screen and present you with a welcome message since this is your first time in.
	Connect to a server. For this example, we will use freenode. Run:
/connect irc.freenode.net

	You should see another welcome-type message. Now we need a channel. For this example, run the /join #chat command (don't forget the # symbol).
	You should now be connected to freenode through the channel #chat and be able to chat with the other users.

Note that irssi does take a bit of getting used to. At the bottom is a status screen. You may see something such as [Act: 2] or equivalent. This indicates that there is new text present in another window, which you can access by pressing the Alt key followed by the number. So, Alt + 2 will get you to the next screen.
Anything you type in that is not preceded by a / symbol, will go to everyone currently in the group. Remember that this is a public forum; be careful with what you say and follow the directions. Also take care to not put personal information in a chat session.
There are quite a few websites that contain information on IRC. The following are a few I found:
	http://www.irchelp.org/
	http://www.linux.org/article/view/irssi-for-beginners-2012
	http://www.tldp.org/LDP/sag/html/irc.html
	https://wiki.archlinux.org/index.php/IRC_Channel

There are so many Linux channels available that it is difficult to put them in a list. Some require authentication, while some let you start chatting right away. The best way to find these is to search the Internet for the subject you are looking for help on, and include the phrase IRC. Connect to the appropriate server, join the channel, follow any special directions there might be, and have fun chatting!

 Index

 A

 	aliases	about / Using aliases
	creating / How to do it...
	using / How to do it...

 	American Power Conversion (APC) / Using and monitoring a UPS

 	archive files	verifying / Verifying archive files and using checksums

 	awk command / There's more...	about / Commands and the Usage section

 B

 	.bashrc file	about / The .bashrc file, How to do it...

 	/bin utilities	awk / There's more...
	gawk / There's more...
	basename / There's more...
	bash / There's more...
	cat / There's more...
	chmod / There's more...
	chown / There's more...
	cp / There's more...
	cut / There's more...
	date / There's more...
	dmesg / There's more...
	echo / There's more...
	find / There's more...
	grep / There's more...
	egrep / There's more...
	fgrep / There's more...
	hostname / There's more...
	ls / There's more...
	mkdir / There's more...
	mktemp / There's more...
	mv / There's more...
	ping / There's more...
	ping6 / There's more...
	ps / There's more...
	pwd / There's more...
	rm / There's more...
	sed / There's more...
	sleep / There's more...
	sort / There's more...
	tar / There's more...
	touch / There's more...

 	/boot	about / Introduction

 	backups	creating / Creating, verifying, and storing backups
	verifying / Creating, verifying, and storing backups
	storing / Creating, verifying, and storing backups
	performing, in real times / Making backups in real time

 	basename command / There's more...

 	bash command / There's more...	about / Commands and the Usage section

 	Bash Internal Field Separator (IFS) variable / Dealing with blanks and special characters in filenames

 	Bash shell	about / Introduction
	command retrieval / Command retrieval and line editing
	line editing / How it works...
	history function / Using history
	filename auto-completion / Filename auto-completion
	shell prompt / The shell prompt
	environment variables / Other environment variables, How to do it...
	aliases / Using aliases, There's more...
	.bashrc file / The .bashrc file
	blanks and special characters, dealing with / Dealing with blanks and special characters in filenames
	$? variable / Understanding the $? variable
	redirection (>) operator / Redirection and piping
	output, sending from one terminal to another / How to do it..., How it works...
	screen program, using / Using the Screen program, How it works...

 	Bash shell scripts	about / Introduction

 	best practices, Linux	about / Introduction
	root user versus normal user / Root user versus normal user
	GUI, running / Running the GUI
	backups, creating / Creating, verifying, and storing backups
	backups, storing / Creating, verifying, and storing backups
	backups, verifying / Creating, verifying, and storing backups
	permissions / Permissions and who you are
	backups, performing in real time / Making backups in real time
	environment variables / Environment variables and shells
	shells / Environment variables and shells
	best environment / The best environment
	UPS, using / Using and monitoring a UPS
	UPS, monitoring / Using and monitoring a UPS
	files, copying to directory / Being careful when copying files
	archive files, verifying / Verifying archive files and using checksums
	checksums, using / Verifying archive files and using checksums
	firewalls / Firewalls, router settings, and security
	router settings / Firewalls, router settings, and security
	security / Firewalls, router settings, and security
	actions, for intrusion / What to do if you find an intrusion
	no spaces, in filenames / Spaces in filenames
	scripts, using / Using scripts and aliases to save time and effort
	aliases, using / Using scripts and aliases to save time and effort
	ssh/scp, using with automatic authentication / Using scp and ssh with automatic authentication
	history, saving / Saving history and taking screenshots
	screenshots, taking / Saving history and taking screenshots
	hard drive space / Space on drives
	new ideas / Being open to new ideas

 	blanks and special characters	dealing with / Dealing with blanks and special characters in filenames, How to do it...

 	BSD style header	about / There’s more...

 	Btrfs filesystem / Understanding different filesystems

 C

 	Cat 5E	about / Introduction

 	Cat 6	about / Introduction

 	cat command / How it works…, There's more...	about / Commands and the Usage section

 	cd command / There's more...

 	checksums	using / Verifying archive files and using checksums

 	chmod command	about / Getting ready

 / There's more...

 	chown command / There's more...

 	command	running, every other week / How to do it..., How it works...

 	command retrieval	about / Command retrieval and line editing

 	commands, GRUB 2	grub2-editenv / There's more...
	grub2-fstest / There's more...
	grub2-kbdcomp / There's more...
	grub2-menulst2cfg / There's more...
	grub2-mkfont / There's more...
	grub2-mkimage / There's more...
	grub2-mklayout / There's more...
	grub2-mkpasswd-pbkdf2 / There's more...
	grub2-mkrelpath / There's more...
	grub2-mkrescue / There's more...
	grub2-mkstandalone / There's more...
	grub2-script-check / There's more...
	grub2-install / There's more...
	grub2-mkconfig / There's more...
	grub2-mknetdir / There's more...
	grub2-ofpathname / There's more...
	grub2-probe / There's more...
	grub2-reboot / There's more...
	grub2-set-default / There's more...
	grub2-sparc64-setup / There's more...

 	computer desktop	about / Introduction

 	config file / Introduction

 	configuration	modifying, xconfig used / Getting ready, How to do it...

 	cp command / There's more...

 	cron	about / Introduction

 	cron-weekly.txt file / How it works...

 	cron.allow file	about / Introduction

 	cron.deny file	about / Introduction

 	crontab / Creating, verifying, and storing backups

 	crontab command	about / Introduction

 	crontab file	editing / Introduction
	format / Introduction
	creating / How to do it...
	running / How to do it...

 	crontab files	about / Introduction
	environment variables / There's more...
	errors, reporting from / Reporting the errors from a crontab file, How to do it...

 	CTLUG	URL / Linux users' groups

 	custom kernel, running	pros / Introduction
	cons / Introduction

 	cut command / How it works…, There's more...	about / Commands and the Usage section

 D

 	date command / There's more...

 	depmod program	about / How it works...

 	device	about / Introduction

 	df program / Introduction

 	diff command / There's more..., There's more...

 	directories	creating / How to do it...

 	directory	about / Introduction

 	dirname command / There's more...

 	Distribution Release Notes	about / Distribution release notes
	URL, for release notes for Ubuntu 13.04 / Distribution release notes
	URL, for Debian 7.0 (Wheezy) / Distribution release notes

 	dmesg command	about / How it works...
	output, on Fedora 17 / How it works...

 	dmesg program	about / Getting ready

 	domain	about / There's more...

 	drive	formatting, mkfs command used / Getting ready, How to do it...

 	dsmeg command / There's more...

 	dumpe2fs command	about / Understanding inodes and the superblock

 E

 	/etc/services file	about / What is using that port? The /etc/services file

 	echo command	about / Other environment variables

 / There's more...

 	EDITOR variable	about / Other environment variables

 	egrep command / There's more...

 	Emacs	about / Getting ready

 	Emacs editor	about / How to do it...
	used, for editing Java file / How to do it...

 	environment variables	about / Environment variables and shells

 	environment variables, Bash shell	PS1 / Other environment variables
	USER / Other environment variables
	HOSTNAME / Other environment variables
	HOME / Other environment variables
	SHELL / Other environment variables
	TERM / Other environment variables
	PATH / Other environment variables
	PWD / Other environment variables
	EDITOR / Other environment variables
	TZ / Other environment variables
	HISTSIZE / Other environment variables
	working / How it works...

 	environment variables, crontab files	SHELL / There's more...
	MAILTO / There's more...
	CRON_TZ / There's more...

 	errors	reporting, form crontab file / Reporting the errors from a crontab file, How to do it...

 	ethtool command / How to do it...

 	Evolution	about / GNOME 2, E-mail – Using a web mail program

 	exit command / There's more...

 	export command / There's more...

 	expr command / How it works..., There's more...

 	ext2 filesystem / Understanding different filesystems

 	ext3 filesystem / Understanding different filesystems

 	ext4 filesystem / Understanding different filesystems

 F

 	FAT filesystem / Understanding different filesystems

 	fdisk program	about / Using fdisk
	running, steps / How to do it...
	options / There’s more...

 	Fedora	httpd server, installing on / How to do it..., There's more...

 	Fedora 14	about / GNOME 2

 	Fedora 17	about / Introduction

 	fgrep command / There's more...

 	file	about / Introduction
	copying / There's more...
	searching, locate command used / How to do it...
	searching, find command used / How to do it...
	text, removing from / How to do it..., How it works…
	locking / Locking a file for only one use at a time, How it works...

 	file command	using / Using the file command, There's more..., How to do it...

 / There's more...

 	File Descriptor (FD)	about / How to do it...

 	file handles, processes	standard input (stdin) / Understanding processes
	standard output (stdout) / Understanding processes
	standard error (stderr) / Understanding processes

 	filename auto-completion, Bash shell	about / Filename auto-completion, How to do it...

 	file permissions	working with / Working with file permissions, How to do it...

 	files	creating / How to do it...
	compressing, zip used / Getting ready, How to do it...
	compressing, tar used / Getting ready, How to do it...
	copying, to another machine / Copying files to another machine – FTP and SCP, How to do it...

 	filesystem	about / Introduction
	checking, fsck program used / Getting ready, How to do it...

 	filesystems	about / Introduction
	using / Introduction, Understanding different filesystems
	/ / Introduction
	/boot / Introduction
	(swap) / Introduction
	/root / Introduction
	/home / Introduction
	/tmp / Introduction
	/usr / Introduction
	/usr/bin / Introduction
	/usr/etc / Introduction
	/usr/games / Introduction
	/usr/include / Introduction
	/usr/lib / Introduction
	/usr/lib64 / Introduction
	/usr/local / Introduction
	/usr/sbin / Introduction
	/usr/share / Introduction
	/usr/src / Introduction
	/dev / Introduction
	/lib / Introduction
	/lib64 / Introduction
	/mnt / Introduction
	/opt / Introduction
	/var/logs / Introduction
	/var/spool / Introduction
	/var/run / Introduction
	/run / Introduction
	lost+found / Introduction
	Btrfs / Understanding different filesystems
	ext2 / Understanding different filesystems
	ext3 / Understanding different filesystems
	ext4 / Understanding different filesystems
	FAT / Understanding different filesystems
	ReiserFS / Understanding different filesystems
	Reiser4 / Understanding different filesystems

 	filesystem specific program	options / There’s more...

 	find command	about / Finding files using find and locate
	used, for finding files / How to do it...

 / There's more...

 	Firefox	running, from terminal / How to do it...
	used, for accessing webmail client / How to do it...

 	firewall	about / Working with the firewalls and router settings
	settings / Working with the firewalls and router settings

 	firewalls	about / Firewalls, router settings, and security

 	flock command / There's more...

 	fsck program	about / Introduction, Using fsck to check the filesystem
	used, for checking filesystem / Getting ready, How to do it...

 	FTP	about / Copying files to another machine – FTP and SCP

 	ftp command	using / How to do it...

 G

 	gawk command / There's more...

 	Gnome 2 / Running the GUI

 	GNOME 2	about / GNOME 2
	screenshot / GNOME 2
	Add to Panel window / Getting ready
	working with / How to do it..., There's more...

 	Google Advanced Search	about / Browsing the web to find help

 	graphical user interface (GUI)	about / Introduction

 	grep command	used, for searching patterns / Using grep to find patterns, How to do it...

 / There's more...

 	Group IDs	about / Understanding processes

 	GRUB	working with / Working with GRUB, How to do it..., How it works...

 	grub.conf file / Working with GRUB

 	GRUB 2	working with / Understanding GRUB 2, How to do it..., There's more...
	URL / There's more...

 	grub2-bios-setup command / There's more...

 	grub2-editenv command / There's more...

 	grub2-fstest command / There's more...

 	grub2-inst command / There's more...

 	grub2-kbdcomp command / There's more...

 	grub2-menulst2cfg command / There's more...

 	grub2-mkconfig command / There's more...

 	grub2-mkfont command / There's more...

 	grub2-mkimage command / There's more...

 	grub2-mklayout command / There's more...

 	grub2-mknetdir command / There's more...

 	grub2-mkpasswd-pbkdf2 command / There's more...

 	grub2-mkrelpath command / There's more...

 	grub2-mkrescue command / There's more...

 	grub2-mkstandalone command / There's more...

 	grub2-ofpathname command / There's more...

 	grub2-probe command / There's more...

 	grub2-reboot command / There's more...

 	grub2-script-check command / There's more...

 	grub2-set-default command / There's more...

 	grub2-sparc64-setup command / There's more...

 	GUI	running / Running the GUI

 H

 	head command	about / How to do it...

 	history function, Bash shell	using / Using history, How it works...

 	HISTSIZE variable	about / Other environment variables

 	HOME variable	about / Other environment variables

 	hostname command / There's more...

 	HOSTNAME variable	about / Other environment variables

 	httpd	about / Getting ready

 	httpd server	installing, on Fedora / How to do it..., There's more...

 	Hypertext Transfer Protocol Daemon (HTTPD)	about / Understanding processes

 I

 	ifconfig command	about / Commands and the Usage section

 	ifdown command / How to do it...

 	ifup command / How to do it...

 	info command	about / Using the info command
	using / Using the info command

 	init process	about / Understanding processes

 	initramfs file / Introduction

 	inode	about / Understanding inodes and the superblock

 	insmod command / How to do it...	about / How it works...

 	intrusion	about / What to do if you find an intrusion

 	IP address	about / There's more...

 	iptable commands	about / How to do it...

 	IPv4	about / IPv4 versus IPv6
	versus IPv6 / How to do it..., There's more...
	classes / There's more...

 	IPv6	about / IPv4 versus IPv6, There's more...

 	IRC	about / Internet Relay Chat (IRC)
	using / Internet Relay Chat (IRC)

 J

 	Java file	editing, vim editor used / How to do it...
	editing, Emacs editor used / How to do it...

 K

 	KDE desktop	about / KDE desktop, There's more...
	Tool Box, accessing / Getting ready
	default panel / Getting ready
	clipboard menu / Getting ready
	Interfaces and Connections dialog / Getting ready
	customizing / How to do it...

 	kernel	about / Introduction
	building, from kernel.org / Getting ready, How to do it...

 	kernel.org	kernel, building from / Getting ready, How to do it...

 	Kickoff Application Launcher	about / Getting ready

 	kill command / There's more...

 L

 	LibreOffice Writer	about / Creating text files – vim, Emacs, and others

 	line editing	about / How it works...

 	Linux	Bash shell / Introduction
	user account, managing / Creating and managing user accounts – useradd
	user account, creating / Creating and managing user accounts – useradd
	file permissions, working with / Working with file permissions
	firewalls and router settings, working with / Working with the firewalls and router settings
	SELinux / Working with Secure Linux – SELinux
	/tmp directory / The /tmp directory

 	Linux file permissions	about / Introduction

 	Linux systems	GNOME 2 / GNOME 2
	KDE desktop / KDE desktop
	xfce / xfce
	LXDE / LXDE
	Unity / Unity
	Mate / Mate

 	Linux User Group / Linux users' groups

 	local documentation directories	about / Local documentation directories

 	locate command	about / Finding files using find and locate
	used, for finding files / How to do it...

 	loop	coding, in script / Coding a loop in a script, How it works...

 	ls /proc command	about / How to do it…

 	ls command / There's more...

 	lsmod command	about / How to do it...

 	lvchange command / Logical Volume Management (LVM)

 	lvconvert command / Logical Volume Management (LVM)

 	lvcreate command / Logical Volume Management (LVM)

 	lvdisplay command / Logical Volume Management (LVM)

 	lvextend command / Logical Volume Management (LVM)

 	LVM	about / Logical Volume Management (LVM)

 	LVM commands	pvcreate / Logical Volume Management (LVM)
	pvchange / Logical Volume Management (LVM)
	pvck / Logical Volume Management (LVM)
	pvdisplay / Logical Volume Management (LVM)
	pvmove / Logical Volume Management (LVM)
	pvremove / Logical Volume Management (LVM)
	pvresize / Logical Volume Management (LVM)
	pvs / Logical Volume Management (LVM)
	pvscan / Logical Volume Management (LVM)
	vgcfgbackup / Logical Volume Management (LVM)
	vgcfgrestore / Logical Volume Management (LVM)
	vgchange / Logical Volume Management (LVM)
	vgck / Logical Volume Management (LVM)
	vgconvert / Logical Volume Management (LVM)
	vgcreate / Logical Volume Management (LVM)
	vgdisplay / Logical Volume Management (LVM)
	vgexport / Logical Volume Management (LVM)
	vgextend / Logical Volume Management (LVM)
	vgimport / Logical Volume Management (LVM)
	vgimportclone / Logical Volume Management (LVM)
	vgmerge / Logical Volume Management (LVM)
	vgmknodes / Logical Volume Management (LVM)
	vgreduce / Logical Volume Management (LVM)
	vgremove / Logical Volume Management (LVM)
	vgrename / Logical Volume Management (LVM)
	vgs / Logical Volume Management (LVM)
	vgscan / Logical Volume Management (LVM)
	vgsplit / Logical Volume Management (LVM)
	lvchange / Logical Volume Management (LVM)
	lvconvert / Logical Volume Management (LVM)
	lvcreate / Logical Volume Management (LVM)
	lvdisplay / Logical Volume Management (LVM)
	lvextend / Logical Volume Management (LVM)
	lvmdiskscan / Logical Volume Management (LVM)
	lvmdump / Logical Volume Management (LVM)
	lvreduce / Logical Volume Management (LVM)
	lvremove / Logical Volume Management (LVM)
	lvrename / Logical Volume Management (LVM)
	lvresize / Logical Volume Management (LVM)
	lvs / Logical Volume Management (LVM)
	lvscan / Logical Volume Management (LVM)
	running / How to do it..., There’s more...

 	lvmdiskscan command / Logical Volume Management (LVM)

 	lvmdump command / Logical Volume Management (LVM)

 	lvreduce command / Logical Volume Management (LVM)

 	lvremove command / Logical Volume Management (LVM)

 	lvrename command / Logical Volume Management (LVM)

 	lvresize command / Logical Volume Management (LVM)

 	lvscan command / Logical Volume Management (LVM)

 	lvs command / Logical Volume Management (LVM)

 	LXDE	about / LXDE
	running / Getting ready
	working with / How to do it..., There's more...

 M

 	make install command / Getting ready

 	man pages	using / Using man pages

 	man utility	about / Using man pages

 	map file / Introduction

 	Mate desktop	about / Mate
	screenshot / Getting started
	customizing / How to do it...

 	mkdir command / There's more...

 	mkfs command	about / Using mkfs to format a drive
	options / Using mkfs to format a drive
	used, for formatting drive / Getting ready, How to do it...

 	mktemp command / There's more...

 	modinfo command	about / How to do it..., How it works...

 	modprobe command / How to do it...	about / How it works...

 	module commands	lsmod / How it works...
	modprobe / How it works...
	insmod / How it works...
	modinfo / How it works...
	rmmod / How it works...
	dmesg / How it works...

 	monolithic kernel	about / Introduction

 	mount point	about / Introduction

 	mv command / There's more...

 N

 	NAT (Network Address Translation)	about / There's more...

 	network issue	diagnosing, steps / How to do it...

 	nice command	about / Changing priorities with nice
	used, for modifying process priority / Changing priorities with nice, There’s more...

 	normal user	versus root user / Root user versus normal user

 O

 	octet / There's more...

 	output	sending, from one terminal to another / Sending output from one terminal to another

 P

 	/proc directory	listing, on Fedora 17 system / There’s more...

 	/proc filesystem	about / Introduction, Understanding inodes and the superblock, Observing a process using the /proc filesystem
	used, for observing process / How to do it..., There’s more...

 	panels	about / GNOME 2

 	Parent Process Identifier (PPID)	about / Understanding processes

 	partition	about / Introduction

 	partitions	about / Introduction
	using / Introduction

 	passwd command	working with / Working with passwords

 	patterns	searching, grep command used / Using grep to find patterns, How to do it...

 	Perl	about / Getting introduced to Perl
	scripts / How to do it..., How it works...

 	permissions	about / Understanding processes, Permissions and who you are

 	PID (process ID)	about / Understanding inodes and the superblock

 	ping6 command / There's more...

 	ping command	about / There's more...

 / How it works..., There's more...

 	process	about / There’s more...
	observing, /proc filesystem used / How to do it..., There’s more...

 	processes	about / Understanding processes
	file handles / Understanding processes
	standard handles / Understanding processes
	examining, ps program used / Examining processes with ps, How it works...
	examining, top program used / Getting ready, How to do it..., How it works...

 	Process Identifier (PID)	about / Understanding processes

 	process priority	modifying, nice command used / Changing priorities with nice, There’s more...

 	PS1 variable	about / Other environment variables

 	ps auxw command / How to do it…

 	ps command / There's more...

 	ps program	used, for examining processes / Examining processes with ps, How it works...

 	pvchange command / Logical Volume Management (LVM)

 	pvck command / Logical Volume Management (LVM)

 	pvcreate command / Logical Volume Management (LVM)

 	pvdisplay command / Logical Volume Management (LVM)

 	pvmove command / Logical Volume Management (LVM)

 	pvremove command / Logical Volume Management (LVM)

 	pvresize command / Logical Volume Management (LVM)

 	pvscan command / Logical Volume Management (LVM)

 	pvs command / Logical Volume Management (LVM)

 	pwd command / There's more...

 	PWD variable	about / Other environment variables

 R

 	read command / There's more...

 	readlink function	about / Using man pages

 	real user	about / Understanding processes

 	redirection (>) operator	about / Redirection and piping

 	Reiser4 filesystem / Understanding different filesystems

 	ReiserFS filesystem / Understanding different filesystems

 	rm command / There's more...	about / Commands and the Usage section

 	rmmod command / How it works...

 	root user	versus normal user / Root user versus normal user

 	route command / How to do it...

 	router settings	about / Working with the firewalls and router settings, Firewalls, router settings, and security

 S

 	/sys filesystem	about / Introduction

 	SCP (Secure copy)	about / Copying files to another machine – FTP and SCP

 	Screen	about / Using the Screen program
	using / Using the Screen program, Getting ready, There's more...

 	script	about / Removing text from a file
	loop, coding in / Coding a loop in a script, How it works...

 	script parameters	using / Using script parameters, How it works…

 	script writing	about / Introduction

 	Secure Shell (SSH)	about / Getting ready

 	sed command / There's more...

 	SELinux	about / Working with Secure Linux – SELinux
	commands, executing / Getting ready, How to do it...

 	services	on Linux system / How to do it...

 	shell prompt	about / The shell prompt, There's more...
	example / How to do it...

 	shells	about / Environment variables and shells

 	SHELL variable	about / Other environment variables

 	sleep command / There's more...

 	sort command / There's more...

 	Squirrel Mail	about / How to do it...

 	ssh-keygen command / There's more...

 	SSH commands	running / How to do it..., There's more...

 	stat command / There's more...

 	Stateless Address Autoconfiguration (SLAAC)	about / There's more...

 	subnet	about / There's more...

 	sudo command	used, for securing system / Using sudo to secure a system, How to do it...
	about / There’s more...

 	superblock	about / Understanding inodes and the superblock
	information, for partition on hard drive / Understanding inodes and the superblock

 	swap partition	about / Introduction

 	system	securing, sudo command used / Using sudo to secure a system, Getting ready..., How to do it...
	backing up / Backing up your system, How it works...

 T

 	/tmp directory	about / The /tmp directory
	working / How to do it...

 	tar	used, for compressing files / Getting ready, How to do it...

 	tar command / There's more..., Creating, verifying, and storing backups

 	target	about / Working with the firewalls and router settings

 	tee command / There's more...

 	Telnet	about / Logging into another machine – Telnet and Secure Shell

 	telnet commands	running / How to do it..., There's more...

 	TERM variable	about / Other environment variables

 	text	removing, from file / How to do it..., How it works…

 	text files	creating / How to do it...

 	threads	about / There’s more...

 	Thunderbird	about / E-mail – Using a web mail program

 	time command / There's more...

 	top program	about / How to do it…, Examining processes using top
	used, for examining processes / Getting ready, How to do it..., How it works...

 	touch command / There's more...

 	tty command / There's more...

 	TZ variable	about / Other environment variables

 U

 	/usr/bin utilities	diff / There's more...
	dirname / There's more...
	expr / There's more...
	file / There's more...
	flock / There's more...
	stat / There's more...
	tee / There's more...
	time / There's more...
	tty / There's more...
	uniq / There's more...
	unzip / There's more...
	who / There's more...
	xargs / There's more...

 	ulimit command	about / There’s more...

 	uniq command / There's more...

 	Unity	about / Unity
	running / Getting ready
	terminal, adding / How to do it...
	working with / How to do it...

 	Universal Serial Bus (USB)	about / Introduction

 	unzip command / There's more...

 	UPS	about / The best environment
	using / Using and monitoring a UPS
	monitoring / Using and monitoring a UPS

 	Usage section	about / Commands and the Usage section

 	user accounts	creating, useradd program used / Creating and managing user accounts – useradd, How to do it...
	managing, useradd program used / How to do it...

 	useradd command	used, for adding user account / Creating and managing user accounts – useradd, How to do it...
	about / There’s more...

 	USER variable	about / Other environment variables

 V

 	$? variable	about / Understanding the $? variable
	using / Understanding the $? variable
	example / How to do it...
	working / How it works...

 	vgcfgbackup command / Logical Volume Management (LVM)

 	vgcfgrestore command / Logical Volume Management (LVM)

 	vgchange command / Logical Volume Management (LVM)

 	vgck command / Logical Volume Management (LVM)

 	vgconvert command / Logical Volume Management (LVM)

 	vgcreate command / Logical Volume Management (LVM)

 	vgdisplay command / Logical Volume Management (LVM)

 	vgexport command / Logical Volume Management (LVM)

 	vgextend command / Logical Volume Management (LVM)

 	vgimportclone command / Logical Volume Management (LVM)

 	vgimport command / Logical Volume Management (LVM)

 	vgmerge command / Logical Volume Management (LVM)

 	vgmknodes command / Logical Volume Management (LVM)

 	vgreduce command / Logical Volume Management (LVM)

 	vgremove command / Logical Volume Management (LVM)

 	vgrename command / Logical Volume Management (LVM)

 	vgscan command / Logical Volume Management (LVM)

 	vgs command / Logical Volume Management (LVM)

 	vgsplit command / Logical Volume Management (LVM)

 	vim	about / Getting ready

 	vim editor	used, for editing Java file / How to do it...

 	virtual filesystems	about / Introduction
	/proc / Introduction
	/sys / Introduction

 	vmlinuz file / Introduction

 	VMware / Introduction

 W

 	web	browsing, for help / Browsing the web to find help

 	webmail client	accessing, Firefox used / How to do it...

 	web page	obtaining, without browser / How to do it..., Getting ready

 	web server	running / How to do it...

 	wget program	about / Getting a web page without a browser – wget
	running / How to do it..., Getting ready

 	who command / There's more...	about / Firewalls, router settings, and security

 	wired connection	about / Introduction
	pros / Introduction
	cons / Introduction

 	wireless connection	about / Introduction
	pros / Introduction
	cons / Introduction

 X

 	xargs command / There's more...

 	xconfig	used, for modifying configuration / Getting ready, How to do it...

 	xfce	about / xfce
	running / Getting ready
	panel 1 / Getting ready
	panel 2 / Getting ready
	panels, working with / How to do it...
	URL / There's more...

 Z

 	zip	used, for compressing files / Getting ready, How to do it...

 OEBPS/graphics/3008_02_05.jpg
arux- Liveuser liveuser
druxr-xr-x. 2 liveuser liveuser
druxr-xr-x. 2 liveuser liveuser
-ruxr-xr-x. 1 liveuser liveuser
- ru- Tiveuser liveuser Ixsession-errors
- ru- . 1 liveuser liveuser Ixsession-errors-:0
[liveuser@localhost ~1$ history

mount
ping io.com
pwd
Tt
1s -la
scp snapshotl.png guest1@192.168.1.111:/temp
tput_clear
1s -la
Lot B
[liveuser@localhost ~]$ scp *.png guest1@192.168.1.111:/temp
guest1@192.168.1.111's password:
snapshotl.png 100% 1238 1.2¥8/s O
<napshot2.png 100% 542KB 542.4KB/s O
<napshot3.png 100% S52KB 552.3KB/s O
[liveuser@localhost ~]$
[liveuser@localhost ~I$ ver
bash: ver: command not found
[liveuser@localhost ~1$ [

Interfaces Connections

& <hidden network>

Connected 3
A= wired connecti

WLAN Interface .
5010920
Not connected

OEBPS/graphics/3008OS_03_06.jpg
0009EO

0009FO

000A00 .libncurses.so.5
000A10 ._ITM_deregister
000A20 THMCloneTable.cbr
000A30 eak.__gmon_start
000A40 __.COLS.reset_pr
000A50 og_mode .stdscr.d
000A60 ef_prog_mode .LIN
000A70 ES._Jv_RegisterC
000A80 lasses._ITM_regi
000A90 sterTMCloneTable
000AAG .printw.nonl.wad
(000ABO dch.noecho .wgetc
000ACO h.winsch.waddnst
000ADO r._fini.endwin._
000AEQ init.wrefresh.wc
(000AFO lear.wclrtoeol.w

NEW

Lewis Binary Editor 4/3/2002a File: kw 0009E0 159

OEBPS/graphics/3008OS_06_01.jpg
Big2 /temp

Big2 /temp
10
17
24
34
872
976
Big2 /temp
Big2 /temp
Big2 /temp
10
17
24
34
872
976
Big2 /temp
Big2 /temp
-bash: cd:
Big2 /temp
Big2 /temp
Big2 /temp
-bash: cd:
Big2 /temp

Big2 /temp

read from stdin
sort < filel.txt

write the output to stdout
sort < filel.txt > sortedl.txt
cat sortedl.txt

cause an error to appear on screen
cd /baddir

/baddir: No such file or directory

redirect the error to stderr

cd /baddir 2>error.txt

cat error.txt

/baddir: No such file or directory

#

#0

OEBPS/graphics/3008OS_04_00.jpg
Big2 /home/guestl # ping rr.com
PING rr.com (24.28.199.168) 56(84) bytes of data

64 bytes from 24-28-199-168.rr.com (24.28.199.168):

64 bytes from 24-28-199-168.rr.com (24.28.199.168):

64 bytes from 24-28-199-168.rr.com (24.28.199.168):

64 bytes from 24-28-199-168.rr.com (24.28.199.168):

64 bytes from 24-28-199-168.rr.com (24.28.199.168):

64 bytes from 24-28-199-168.rr.com (24.28.199.168): icmp_|

64 bytes from 24-28-199-168.rr.com (24.28.199.168): icmp_reg=’
I

--- rr.com ping statistics ---

7 packets transmitted, 7 received, 0% packet loss, time 6008ms
rtt min/avg/max/mdev = 42.795/43.555/44.028/0.465 ms

Big2 /home/guestl # I

3333333

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/graphics/3008OS_B_09.jpg
e Edt View Htory Bookmerks ol Heb.
& (Eaigorg v @ 1)
B Most Visitedv “edora Documentation @iFedora Projectv [Google Advanced Se. wwwklewis.com

EOFFiciaL WEBSITE OF THE

Ceniral Texas

LINUX O
Users Group

Austin, Texas, USA

cllug@ctlug.org
TOPICS REQUEST THE CENTRAL TEXAS LINUX USERS GROUP s aninformalmig ~ ShiuLinucrelated Links
LisT mannered, and interesing collection of L users and enhusiast based n Austn, <o
Texas, Ourfocus is more enteprise minded use o Linuxand reated technologes. We
EMBEDDED (RT) ‘operate amaling st for those interested in Linux, and sharing ideas with the wider
DEED GNUL i communy
PUPPET November 17th Meetin
Cree [—) —
DNS
1Wouldlike o have a speaker ned up for January before end of Decerber The siot s
ASTERISK open and am requesting thatyou voineer 0l . Fyou can, please malthe g AT Florida LinuShow
COBBLER Clug DOT org st withyour avaiabi ‘Asincon Astensk consenion
“The November 17th meeting wil be held ai Mangia izza's Domain ocaton. Tre
RPM ‘address s here 2011 Linux Festvals and Comventons
o T Texas Linafestsides and mp3s
= Sofware Freedom D3y
IPV6 SUBSCRIBE tothe CTLUG maling ists
O cilug @cig.og s goes out 0 locl i enhusiasts and prfessionals with
GIUSTERRS! anmouncements and discussions about meetings,oca everts, and job opporules.
(CLUSTER FS?) ur lnux@cilg.org st fortechrical Line Guestons and answers i subscibers
beyond CentalTexas

HOME AUTOMATION ourLinux discussion st arcive s at
iy ‘http://www.ctlug.org/mailman/private/linux &

OEBPS/graphics/3008OS_10_01.jpg
Option

Option

4bit kernel
= General setup
IRQ subsystem
Timers subsystem
CPUTask time and stats accounting
RCU Subsystem
~-Control Group support
Group CPU scheduler
EINamespaces support
OConfigure standard kernel features (expert users)
Kernel Performance Events And Counters
GCOV-based kemel profiling
Provide system-wide ring of trusted keys
rovide system-vide ring of blackiisted keys
nable loadable module support
~Enable the block layer
Partition Types
10 Schedulers

@Paravirtualized guest support
~-Power management and ACPI options
@IACPI (Advanced Configuration and Power Interface) St
@ISFI (Simple Firmware Interface) Support
CPU Frequency scaling
Memory power savings
~Bus options (PCl etc.)
@Pccard (PCMCIA/CardBus) support
@Support for PCI Hotplug
Executable file formats / Emulations
~Networking support
% Networking options
- BINetwork packet filtering framework (Netfiter)
Core Netfiter Configuration
@IP set support
@IP virtual server support

ymmetric multi-processing sUpport
A
nable MPS table
upport for extended (non-PC) x86 platforms
ONumascale NumaChip
OScaleMP vSMP
OSGl Ultraviolet
Olntel Low Power Subsystem Support
ESingle-depth WCHAN output
Oparavirt-ops debugging
Eivamtast
<-Processor family
O opteron/Athlons4/Hammer/ks
Olntel P4 / older Netburst based Xeon
Olntel Atom
DIBM calgary IOMMU support
DEnable Maximum number of SMP Processors and NUMA Nodes
(128) Maximum number of CPUs

Core 2/newer Xeon (MCORE2)

CONFIG_MCORE2

Select this for Intel Core 2 and newer Core 2 Xeons (Xeon 5Lox and
53300 CPUs. You can distinguish newer from older Xeons by the CPU
family in Jproc/cpuinfo. Newer ones have 6 and older ones 15

(not a typo)

Symbol: MCORE2 [=n]

Type : boolean

Prompt: Core 2/newer Xeon

Defined at arch/xg6/Kconfig.cpu:254
Depends on: <choice>

Location:

-> Processor type and features

> Processor family (<choice> [=y))

OEBPS/graphics/3008OS_A_01.jpg
Big2 / #
guestl
guestl
guestl
guestl
guestl
guestl
guestl
guestl
guestl
guestl
guestl
guestl
guestl
guestl
Big2 / #

who
ttyl
pts/0
pts/1
pts/2
pts/3
pts/4
pts/5
pts/6
pts/8
pts/9
pts/10
pts/12
pts/11
ts/13

2013-03-11
2013-04-23
2013-03-11
2013-04-23
2013-03-11
2013-03-11
2013-04-23
2013-04-25
2013-04-26
2013-04-26
2013-05-13
2013-05-16
2013-06-09
2013-06-11

(

:0.0)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
.0)
192.168.1.111)
:0.0)

OEBPS/graphics/3008OS_04_04.jpg
File Edit View History Bookmarks Tools Help

Mozilla Firefox

& @ https://emaiimg.ipower.com/sqmai

mail. php

EaMost Visitedv @Fedora Documentation EdFedora Project [Google Advanced Se

2 wwwiklewls.com - H

l l Compose

Addresses |

[E3 Folders

Webmail Info

emailmg.ipower.com
Wed, 4:07 pm
Check mail

Jl[ellm

i Folders

INBOX (1022/1291)
Drafts

Sent

Trash

= Options

© Change Settings
© Folder Preferences
© Message Filtering

(Calendar

Options

Personal Information
This contains personal information about yourself such as your name, your email address, etc.

Message Highiighting

Based upon given criteria, incoming messages can have different background colors in the message list. This
helps to easily distinguish who the messages are from, especially for mailing lsts.

Index Order

The order of the message index can be rearranged and changed to contain the headers in any order you want.

Calendar Preferences

Change the way your calendars behave and are displayed, including the miniature calendar beneath the folder
list.

Message Filters

Filtering enables messages with different criteria to be automatically filtered into different folders for easier
organization

NewMail Options
This configures settings for playing sounds and/or showing popup windows when new mail arrives,

Display Preferenc
You can change the way that SquirrelMail looks and displays information to you, such as the colors, the
language, and other settings.

Folder Preferences
These settings change the way your folders are displayed and manipulated.

Translation Options
Which translator should be used when you get messages in a different language?

Unsafe Image Rules
Set up rules about how unsafe images in HTML messages are handled,

SPAM Fiters

SPAM fiters allow you to select from various DNS based blacklists to detect junk email in your INBOX and
move it to another folder (iike Trash).

SpellChecker Options

Here you may set up how your personal dictionary is stored, edit i, or choose which languages should be
available to you when spell-checking.

OEBPS/graphics/3008OS_07_03.jpg
File Edit Vi Terminal Go Hely
laptop ~ # pvdisplay
--- Physical volume ---

PV Name /dev/sda7

VG Name fedora_laptop

PV Size 146.72 GiB / not usable 4.00 MiB
Allocatable yes (but full)

PE Size 4.00 MiB

Total PE 37559

Free PE [

Allocated PE 37559

PV UUID omHKKR - 837t - v fXb-RHsn-803r - r1dE -u5GTwb

laptop ~ # vgdisplay
--- Volume group ---

VG Name fedora_laptop
System ID

Format lvm2

Metadata Areas 1

Metadata Sequence No 4

VG Access read/write

VG Status resizable

MAX LV 0

Cur LV 3

Open LV 3

Max PV 0

Cur PV 1

Act PV 1

VG Size 146.71 GiB

PE Size 4.00 MiB

Total PE 37559

Alloc PE / Size 37559 / 146.71 GiB

Free PE / Size 0/0

VG UUID rvkjj3-qP8S-U9oh-c1lw-0rTV-spTU-hfgemY

OEBPS/cover/cover.jpg
Linux Utilities
Cookbook

OEBPS/graphics/3008_01_07.jpg
bigtwo jklewis ~/tmp $ ls -la
‘total 20

drwxrwxr-x. 2 jklewis jklewis
8 jklewis jklewis
1 jklewis jklewis
1 jklewis jklewis
1 jklewis jklewis
bigtwo jklewis ~/tmp $ s -la

ls: cannot access file: No such file or directory
1s: cannot access with: No such file or directory

1s: cannot access blanks.txt:
bigtwo jklewis ~/tmp $ 1s -la
crw-rw-r--. 1 jklewis jklewis
bigtwo jklewis ~/tmp $ s -la
Srw-rv-t--. 1 jklewis jklewis
bigtwo jklewis ~/tmp $ ls -la
1s: cannot access special: No
bigtwo jklewis ~/tmp $ ls -la
crw-rw-r--. 1 jklewis jklewis
bigtwo jklewis ~/tmp $ s -la

ls: invalid line width: ithdash.txt

bigtwo jklewis ~/tmp $ ls -la
Srw-rv-r--. 1 jklewis jklewis
bigtwo jklewis ~/tmp $ ||

4096 Feb
4096 Feb

13:40 .
13:17 ..

® 00 w0 m

21 Feb 13:31 file with blanks.txt
335 Feb 13:34 special>.txt
1616 Feb 13:35 -startswithdash.txt

file with blanks.txt

No such file or directory
“file with blanks.txt"

21 Feb 8 13:31 file with blanks.txt
file\ with\ blanks.txt # used Tab key
21 Feb 8 13:31 file with blanks.txt
special>. txt

such file or directory

“special>.txt"

335 Feb 8 13:34 special>.txt
-startswithdash.txt

./-startswithdash.txt
1616 Feb 8 13:35 ./-startswithdash.txt

OEBPS/graphics/3008_02_07.jpg
Tue 19 Feb 2013 11. 16 AM CST

erminal Go
drwx . jklewis jklewis

Home [l drwxr-xr-x. root root

A -rw-r- g jklewis jklewis 3008_01_06.txt
-;m ﬁ User specific aliases and functions for jklewis on bigtwo :m::: ;Egzwis ;Egzwis E’zz;g?siééz:smc

4 S |-rw-r- . jklewis jklewis .bash_profile

" -rw-r- 8 jklewis jklewis .bashrc

2/5/2013 - added jklewis user account and files guestl guestl bashre. jklewis
ﬁ 4 o - rw-r--r--. ;!k'LeW}s ;!k'LeW}s bashrc.orig

" drwxrwxr-x. jklewis jklewis
M drwxr-xr-x. 2 jklewis jklewis

#

-rW-rw-r--. jklewis jklewis 1 kwfilelog.txt
-rW-rw-r--. jklewis jklewis & kwstack. fil
drwxrwxr-x. jklewis jklewis

drwxr-xr-x. jklewis jklewis

drwx- - @ jklewis jklewis

drwxrwxr-x. jklewis jklewis

-rw-r-- . 1 jklewis jklewis .zshrc
bigtwo jklewis ~ $ ||

export Hl=/home/jklewis
alias hl="cd $H1"

Tue Feb 19 11:23am ==
- Enabled for TABS Col 1 NEW 112

R Feb 19 02:08:15 bigtwo dbus[720]: [system] Activating service name='org.freedesk|
Lewis Linux Editor play | Appearance Itel

top.nm_dispatcher' (using servicehelper)

Feb 19 02:08:15 bigtwo dbus-daemon[720]: dbus[720]: [system] Activating service

name='org. freedesktop.nm_dispatcher' (using servicehelper)

Feb 19 02:08:15 bigtwo dbus-daemon[720]: dbus[720]: [system] Successfully actival

ted service 'org.freedesktop.nm_dispatcher

Feb 19 02:08:15 bigtwo dbus[720]: [system] Successfully activated service 'org.f]

reedesktop.nm_dispatcher"'

Feb 19 03:11:01 bigtwo pcscd[28030]: 00000000 utils.c:53:GetDaemonPid() Can't op]

len /var/run/pcscd/pcscd.pid: No such file or directory

Feb 19 03:11:01 bigtwo pcscd[28030]: 00003941 winscard.c:241:SCardConnect() Read|
- er E-Gate 0 0 Not Found

¥ Automatically inc e the Feb 19 03:11:01 bigtwo pcscd[28030]: 00000071 winscard.c:241:SCardConnect() Read

er E-Gate 0 0 Not Found

Feb 19 03:11:01 bigtwo pcscd[28030]: 00000056 winscard.c:241:SCardConnect() Read|

er E-Gate 0 0 Not Found

Feb 19 03:11:01 bigtwo pcscd[28030]: 00000194 winscard.c:241:SCardConnect() Read|

er E-Gate 0 0 Not Found

Feb 19 10:44:46 bigtwo kernel: [3016443.205730] [drm] nouveau 0000:00:10.0: Sett|

ing dpms mode 0 on vga encoder (output 0)

General

O Automatically

Measurements

OEBPS/graphics/3008OS_B_08.jpg
Debian 7.0 - Rels

Ble Edt View History Bookmarks Tools Help
& [vww.deblan.orgireleases/stabl

~) [Q) @
BMost Vistedv @Fedora Documentation @Fedora Projectv [Google Advanced Se... [} wwwiilewis.com - H...

(O vouDetian_Gettg Debin_support_Devaapers Comer
b T eban s ony e o 7.0~

Debian 7.0 -- Release Notes

o find out what's new in Debian 7.0, see the Release Notes for your architecture:

« Rl i i PC (
« R o

+ Release Notes for MPS (big endian)
* Release Notes for [BM System

The Release Notes also contaln Instructions for users who are upgracing from prior releases.

1f you have set your browser's localization properly, you can use the above link to get the right HTML version automatically — see contert,
neqotiation. Otherwise, pick the exact architecture, language, and format you want from the table below:

Architecture Format Languages

¥ ms HIML Danish English French Gerran Italn Japanese Polish Portuguese Portuguese (Braziian) Romanian
Busslen Siovak Spanish Swedish

POF Danish Englsh French German Italn Japanese Polish Portuquese Portuguese (Brazlian) Romanian

Russian Slovak Spanish Swedish :

OEBPS/graphics/3008_02_01.jpg
§ Applications Places Systen S QD I (3 BB

S MonFeb1s, 1:27:29 P guests

o eiewzetapto:

Fle €8t View Seach Terminal Help
laptopl Jklewis ~ § cat fetc/issue
Fedora release 14 (Laughlin)
Kernel \r on an \n (\L)

taptopl jklewis ~ $ uname -3
Linux taptopl 2.6.35.6-45. cl4.x86,
X85 64 %8664 GNU/Linux

taptapl jklewis ~ $

taptopl Jklewis ~ 5 Us

total 48
drx- -
draxexr
drexruxe
drexexr
drexr-xr-x

jtents
Foot

jKlewis
Jlewis
jlewis
Itewis
Itewts
Ilewts
jlewts
JKlewts
Jlewis
IKlewss

Taptopl jklewis -

B [guest] @laptopl: B klewis@laptopl:~

1o

jtewts
Foot

JKlewts
Jlewis
jlewis
Itewis
Itewts
Itewts
jlewts
Jlewts
Jlewis
IKtewis

64 #1 SHP Hon Oct 18 23:57:44 UTC 2010 x86_64

12:31
12:21

2010 bash_logout
2010 bash profile
12:28 _bashrc
12:30

2010

12:31 kufilelog. txt
12:31 kustack. fil
2011

12:21 xauthn2jAuz
2010 zshre

&5 quests
e Deskeop
3 Fie system
8 etwork

) 200% o) konview
= computer

a8 2 =)

320G8Had0isk: CoDVD Drve filesystem
524 M8 Fesysiem

OEBPS/graphics/3008_02_09.jpg
- liveuser@localhost:

liveuser
Fle Edit

[Liveuseralc Ha

total

drux- .18 L
drwxr-xr-x.
- - ru-r
scrot.png
- rw-ru-

Iscrot.png

euser

euser

L
T
T
i
T
Tiv
Tiv
T
> 1
T
T
i
T
Tiv
Tiv
T
2 1
T
T
i
T
2 liv
Tiv s _
5 X : sac
i eb 2 : [system] Activating service nam
ry-------0 1T o
euseralc s — n[634]: dbusl
[pumserct top. Packagekit
Tocalhost dbus[634]: [systen] Successfully activate

ar/log/messages
es” for reading: Permis

ion denied

st yum[1 Installed: giblib-1
st yum[1 Installed: sc
st _dbus-dae + dbusl)

21 localh
ekit' (using servicehelper)
21 Localhost dbus-daemon(634]: dbus[634]
i
Feb 20 1 localhost dbusl fully activate
o.fr top. PackageKi t

systen] Successfu|

Panel Preference:

OEBPS/graphics/3008OS_07_01.jpg
Big2 /boot # 1s -la
total 80324

dr-xr-xr-x. 5 root root 1024 Oct 18 13:24
dr-xr-xr-x. 24 root root 4096 Mar 11 17:01 ..
-rWere-r 1 root root 115179 May 7 2012 config-3.3.4-5.fc17.x86_64
-rwere-r 1 root root 122022 Oct 10 2012 config-3.6.1-1.fcl7.x86_64
drwxr-xr-x. 2 root root 1024 Oct 18 12:09 grub
drwxr-xr-x. 6 root root 1024 Oct 18 13:24 grub?2
1 root root 17418117 Oct 14 2012 initramfs-3.3.4-5.fc17.x86_64.img
1 root root 18279716 Oct 18 13:24 initramfs-3.6.1-1.fc17.x86_64.img
1 root root 24603970 Oct 15 2012 initramfs-3.6.2.img
2 root root 12288 Oct 14 2012 Lost+found
1 root root 22 Oct 15 2012 System.map -> /boot/System.map-3.6.2
1 root root 2412391 May 7 2012 System.map-3.3.4-5.fc17.x86_64
1 root root 2504428 Oct 10 2012 System.map-3.6.1-1.fc17.x86_64
1 root root 2478546 Oct 15 2012 System.map-3.6.2
Urwxrwxrwx. 1 root root 19 Oct 15 2012 vmlinuz -> /boot/vmlinuz-3.6.2
-rwxr-xr-x. 1 root root 4662160 May 7 2012 vmlinuz-3.3.4-5.fcl7.x86_64
rwere-r 1 root root 164 May 7 2012 .vmlinuz-3.3.4-5.fcl7.x86_64.hmac
-rwxr-xr-x. 1 root root 4831632 Oct 10 2012 vmlinuz-3.6.1-1.fcl7.x86_64
-rWere-r 1 root root 164 Oct 10 2012 .vmlinuz-3.6.1-1.fc17.x86_64.hmac
1

-rw-r--r--. 1 root root 4777120 Oct 15 2012 vmlinuz-3.6.2
Big2 /boot # file vmlinuz-3.6.1-1.fc17.x86_64 System.map-3.6.1-1.fcl7.x86_64 config-3.6
.1-1.fc17.x86_64

vmlinuz-3.6.1-1.fc17.x86_64: Linux kernel x86 boot executable bzImage, version 3.6.1
-1.fc17.x86_64 (mockbuild@) #1 SHP Wed Oct 10 12:13:05 UTC, RO-rootFS, swap_dev 0x4, No
rmal VGA

System.map-3.6.1-1.c17.x86_64: ASCII text

config-3.6.1-1.fc17.x86_64: ASCII text

Big2 /boot # I

OEBPS/graphics/3008OS_06_05.jpg
top - 13:57:16 up 29 days, 20:57, 12 users,
Tasks: 2 total, O running, 2 sleeping
Cpu(s): 0.7%s, 0.5%y, 0.0%ni, 98.3%id
Mem: 3791496k total, 3613128k used,
Swap: 5898236k total, 14916k used

PID USER
1 root
2 root

20

20 0 0 0

top - 13:57:17 up 29 days, 20:57, 12 users,
Tasks: 2 total, 0 running, 2 sleeping
Cpu(s): 1.0%us, 0.5%sy, 0.0%ni, 98.5%id
Mem: 3791496k total, 3613276k used,
Swap: 5898236k total, 14916k used

PID USER
1 root
2 root

PR NI VIRT RES SHR S %Cl
20 0 67540 11m 1988 S 0
20 0 0 0 s 0

‘top - 13:57:18 up 29 days, 20:57, 12 users,

178368k free,
5883320k free,

PR NI VIRT RES SHR S %CPU %MEM

0 67540 1lm 1988 S 0.0 0.3
0SS 0.0 0.0

178220k free,
5883320k free,

load average: 0.02, 0.03, 0.05
0 stopped, 0 zombie
0.4%wa, 0.0%i, 0.0%si,
469456k buffers
2083844k cached

0.0%st

TIME+ COMMAND
5.01 systemd
0:00.61 kthreadd

load average: 0.02, 0.03, 0.05
0 stopped, 0 zombie
0.0%a, 0.0%hi, 0.0%si
469456k buffers
2083836k cached

0.0%st

PU %MEM TIME+ COMMAND
.0 0.3 0:15.01 systemd
.0 0.0 0:00.61 kthreadd

load average: 0.02, 0.03, 0.05

Tasks: 2 total, 0 running, 2 sleeping, O stopped, 0 zombie
Cpu(s): 1.0%us, 0.0%sy, 0.0%ni, 98.0%id, 0.0%a, 0.5%hi, 0.5%si, 0.0%st
Mem: 3791496k total, 3613260k used, 178236k free, 469456k buffers
Swap: 5898236k total, 14916k used, 5883320k free, 2083840k cached
PID USER PR NI VIRT RES SHR S %CPU SMEM TIME+ COMMAND
1 root 20 067540 1lm 1988 S 0.0 0.3 0:15.01 systemd
2 root 20 0 O 0 0S 0.0 0.0

Big2 /home/guestl/lbooktmp/chap6 # ||

OEBPS/graphics/3008OS_05_01.jpg
Fle Edtt View History Bookmarks Tools Help

[&192.168.1.1

Most Visttedv @Fedora Documentation [iFedora Project

alvafn
cisco

Security

Firewall

Internet Filter

Web Filter

Sewp Wireless Storage

Firoval |

SP1Firawall

Protaction Enabled ® Disabled

Filter Anonymous Internet Requests
Filter Multicast
Filter Internet NAT Redirection

Filter IDENT (Port 113)

Proy OJava O actwex O Cookies

Save Settings

Applications &

Cancel ci

[

Google Advanced Se.

Gaming

CNN.com - Breaking,

Linksys E3000

Administration

Q) @

E3000

Status

OEBPS/graphics/3008_01_06.jpg
User specific aliases and functions for jklewis on bigtwo

export BIN=/home/jklewis/bin # my bin directory
alias bin="cd $BIN"

export EDITOR=$BIN/kw

export Bd=guest1Q192.168.1.111 # used for scp of files

alias locate="locate # ignore case

alias s -la"

alias s -latr"

alias tput clear"

alias term +sb -geom 88x20 &"
alias ail -f /var/log/messages"

alias pi="cat /proc/interrupts”
Source global definitions
if [-f /etc/bashrc]; then
. /etc/bashrc
fi
export PS1="\h \u \w \$ "

PAT

$PATH" # prepend the dot
bigtwo jklewis ~/tmp $. .bashrc
bigtwo jklewis ~/tmp $ []

OEBPS/graphics/3008_01_05.jpg
/usr/1ib64/ccache: /usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/j
klewis/.local/bin:/home/jklewis/bin

bigtwo jklewis ~ $ # now prepend a dot

bigtwo jklewis ~ $ export PATI . 1$PATH"

bigtwo jklewis ~ $ echo $PATH

. 1/usr/1ib64/ccache:/usr/local/bin:/bin:/usr/bin:/usr/local/shin:/usr/sbin:/home
/jklewis/.local/bin: /home/jklewis/bin

bigtwo jklewis ~ $

bigtwo jklewis ~ $ # now append another directory
bigtwo jklewis ~ $ export PATH="$PATH:/lewis/java/bin"

bigtwo jklewis ~ $ echo $PATH

.:/usr/1ib64/ccache: /usr/local/bin:/bin:/usr/bin:/usr/local/shin:/usr/shin:/home|
/jklewis/ . local/bin: /home/jklewis/bin:/lewis/java/bin

bigtwo jklewis ~ $ []

OEBPS/graphics/3008_01_04.jpg
[jklewis@bigtwo tmp]$ # Here
[jklewis@bigtwo tmp]$ echo $PS1
[\u@\h \W]$
[jklewis@bigtwo tmp]$
[jklewis@bigtwo tmp]$ # Let's modify it to something better
[jklewis@bigtwo tmp]$ export PS1="\u \h \w \$ "

jklewis bigtwo /tmp §

jklewis bigtwo /tmp $ cd /usr/local/bin

jklewis bigtwo /usr/local/bin $

jklewis bigtwo /usr/local/bin $ cd /tmp

jklewis bigtwo /tmp $

jklewis bigtwo /tmp $ cd /etc

jklewis bigtwo /etc $

jklewis bigtwo /etc $]

OEBPS/graphics/3008OS_B_02.jpg
File: info.info, Node: Top, Next: Getting Started, Up: (dir)

Info: An Introduction
PSR ——————

The GNU Project distributes most of its on-line manuals in the "Info
format", which you read using an “Info reader”. You are probably using
an Info reader to read this now.

There are two primary Info readers: ‘info', a stand-alone program
designed just to read Info files (*note Stand-alone Info:
(info-stnd)Top.), and the ‘info' package in GNU Emacs, a
general-purpose editor. At present, only the Emacs reader supports
using a mouse.

If you are new to the Info reader and want to learn how to use it,
type the command ‘h' now. It brings you to a programmed instruction

--zz-Info: (info.info.
asic Info command keys

X Close this help window.
q Quit Info altogether.

H Invoke the Info tutorial.

Up Move up one line.

Down Move down one line.

DEL Scroll backward one screenful.
SPC Scroll forward one screenful.
Home Go to the beginning of this node.
End Go to the end of this node.

TAB Skip to the next hypertext link.

RET Follow the hypertext Llink under the cursor.

OEBPS/graphics/3008OS_06_07.jpg
Big2 /p
1

10
10594
10604
12

13
1321
1387
14
1420
1430
1465
15
1518
1533
1552
1589
16
161
16212
16213
1640
16429
16438
16442
1649
1652
17
1712

roc # 1s

177
178
18
1876
1878
19
1987
2

20
2066
2083
20914
20927
2093
21
21593
21695
21705
22
22048
2210
22325
22326
22330
22331
22332
2271
2287
23

2385
2386
2390
2399
24

2400
2405
2410
2417
2419
2424
2425
2427
2429
2431
2435
2438
2440
2442
2444
2450
2458
2459
2463
2466
2474
2502
2525
2543

Big2 /proc #[|

2548
2557
2566
2570
2581
260
2604
262
2690
2693
2695
2701
2704
2707
2709
2713
2714
2724
2726
2728
2732
2741
2752
2756
2757
28
2817
2848
2855

pil
29183
29203
2986

30
30209
30340
30368
30370
30478
30488
307
3076
3083
309
31
31600
32
3200
3248
3261
3301
3375
3409
3505
3518
354
355

359
3655
3656
3743
3839
3852
391
392
394
40
411
429
43
44
45
4506
46
4668
4681
485

50
5007
51
516
5166
5235
5274
56

568
569
571
593
594
597
629
631
643
645
646
650
651
658
660
661
664
669
672
678
683
688
698

700
701
702
703
704

707
709
710
711
714
715
720
728
754
759
760
763
770
775
776
781
791
796
799

8

809
813
867

9

921
955
acpi
asound
buddyinfo

bus
cgroups
cndline
consoles
cpuinfo
crypto
devices
diskstats
dna

dri

driver
execdomains
b
filesystems
fs
interrupts
iomem
ioports

irq
kallsyms
keore

keys
key-users
kmsg
kpagecount
kpageflags
latency_stats
oadavg
Tocks

mdstat
meminfo
misc
modules
mounts

mtrr

net
pagetypeinfo
partitions
sched_debug
schedstat
scsi

self
slabinfo
softirgs
stat

swaps

sys
sysrg-trigger
sysvipc
timer_list
timer_stats
tty

uptime
version
vmallocinfo
vmstat
zoneinfo

OEBPS/graphics/3008OS_B_03.jpg
Big2 /home/guestl/lbooktmp/chapB # rm --help
Usage: rm [OPTION] ... FILE..
Remove (unlink) the FILE(s)

-f, --force ignore nonexistent files, never prompt
prompt before every removal
prompt once before removing more than three files, or
when removing recursively. Less intrusive than -i,
while still giving protection against most mistakes
--interactive[=WHEN] prompt according to WHEN: never, once (-I), or
always (-i). Without WHEN, prompt always
--one-file-system when removing a hierarchy recursively, skip any
directory that is on a file system different from
that of the corresponding command line argument
--no-preserve-root do not treat '/' specially
-preserve-root do not remove ‘/' (default)
R, --recursive remove directories and their contents recursively
-v, --verbose explain what is being done
--help display this help and exit
--version output version information and exit

By default, rm does not remove directories. Use the --recursive (-r or -R)
option to remove each listed directory, too, along with all of its contents.
To remove a file whose name starts with a '-
use one of these commands:

rm -- -foo

for example *-foo'

rm ./-foo

Note that if you use rm to remove a file, it might be possible to recover
some of its contents, given sufficient expertise and/or time. For greater
assurance that the contents are truly unrecoverable, consider using shred.

Report rm bugs to bug-coreutils@gnu.org
GNU coreutils home page: <http://www.gnu.org/software/coreutils/>
General help using GNU software: <http://www.gnu.org/gethelp/>
For complete documentation, run: info coreutils 'rm invocation
Big2 /home/guestl/lbooktmp/chapB # ||

OEBPS/graphics/3008_02_02.jpg
749 PH _ guastd

Fintn e t a0 t Top Paner®

Custom Application Launcher

Application Launcher...

Ccharacter palette

clock
e carentme an e
Command Line 4
=] Connectto Srver

P Fraquency Scaling Monitor

U

Dictionary Look up

scrcamanordong Cock o words n cetionry
I Disk Mounter

o outcrawer tostore cthr ems
owel cick

ebals o your panel

OEBPS/graphics/3008OS_06_02.jpg
core file size (blocks, -c)
data seg size (kbytes, -d)
scheduling priority (-e)
file size (blocks, -f)
pending signals (-1)
max locked memory (kbytes, -1)

max memory size (kbytes, -m)
open files (-n)
pipe size (512 bytes, -p)
POSIX message queues (bytes, -q)
real-time priority (-r)
stack size (kbytes, -s)
cpu time (seconds, -t)
max user processes (-u)
virtual memory (kbytes, -v)

file locks (-x
Big2 /home/guestl/lbooktmp/chap6 #

Big2 /home/guestl/lbooktmp/chap6 # ulimit -a

[¢]
unlimited
[¢]
unlimited
29447

23
unlimited
1024

8

819200

[¢]

8192
unlimited
1024
unlimited
unlimited

OEBPS/graphics/3008OS_03_02_new.jpg
public class subgame extends Applet inplements Runnable, KeyListener

{

String ver = "Sub Game in Java written by Jim Lewis - 4/9/2010 A";

Thread timer = 1/ ;

boolean left; /1 left
boolean right; /1 right

boolean up; /1 up

boolean down; /1 down

boolean allstop; /1 Enter

Inage subtrans; /1 submarine

Inage Imissile; /1 missile

Inage depcharge; // depth charge

Inage mine; // mine

Inage bship; /1 battleship

Inage sship; /1 small ship

Inage dboat; // David's boat

Inage carrier; /1 carrier

Inage bship2; /1 second battleship

Inage torp; /1 torpedo

Inage ast; /1 use asteroid for explosion
Inage counter; // countermeasures

Inage phantom; // Phantom sub

Inage biplane; // Bi-plane for banner

BufferedImage backbuff;
Graphics2D g; // was g2d
AffineTransform identity = new AffineTransform();
Color beolor; /1 background color

// Image subl] = new Image[5];

167,2

7%

OEBPS/graphics/3008_02_04.jpg
View Bookmarks

mount
ping io

aswne

N}

91774 Feb
o Feb

-ssh
Templates

on-erro
ion-errors

| Desktop. |

0.0 MiB Hard Drive
@) Fedora-18-x86_64-Liv|
Fedora-18-x86.
[&) Fedora-18x@6_6

) 52.8 GiB Hard Drive
[50.0 GiB Hard Drive
[Loop Device

) 500.0 M8 Hard Drive
) 977 GiB Hard Drive
[Loop Device

7] 48 8 iR biard Drive
>

]

Pictures

L\ Z

tLpng

8 Folders, 3 Files (2.3 MiB)

Documents

oy | Kiipper - Clipboard Tool

|

rd>

<empty clip

Enable Clipboard Actions

ar Clipboard History

nfigure Klipper
nually Invoke Action on
L Edit Contents.

Show Barcode.
[® Help

B auit

current Clipboard

- - lliveuser=Dolphin

Bjiveuser

bashi=konsole

ek

OEBPS/graphics/3008OS_B_01.jpg
MAN(1) Manual pager utils MAN(1)

NAME
man - an interface to the on-line reference manuals

SYNOPSIS
man [-C file] [-d] [-D] [--warnings[=warnings]] [-R encoding] [-L
locale] [-m system[,...]] [-M path] [-S list] [-e extension] [-i|-I]
[--regex|--wildcard] [--names-only] [-a] [-u] [--no-subpages] [-P
pager] [-r prompt] [-7] [-E encoding] [--no-hyphenation] [--no-justifi-
cation] [-p string] [-t] [-T[devicel] [-H[browser]] [-X[dpil] [-Z]
[[section] page ...] ..
man -k [apropos options] regexp ...
man -K [-w|-W] [-S list] [-i|-I] [--regex] [section] term ...
man -f [whatis options] page ...
man -1 [-C file] [-d] [-D] [--warnings[=warnings]] [-R encoding] [-L
locale] [-P pager] [-r prompt] [-7] [-E encoding] [-p string] [-t]
[-Tldevice]] [-H[browser]] [-X[dpi]] [-Z] file ...
man -w|-W [-C file] [-d] [-D] page ...
man -c [-C file] [-d] [-D] page ...
man [-hV]

DESCRIPTION

man is the system's manual pager. Each page argument given to man is
normally the name of a program, utility or function. The manual page
associated with each of these arguments is then found and displayed. A
section, if provided, will direct man to look only in that section of
the manual. The default action is to search in all of the available
sections, following a pre-defined order and to show only the first page
found, even if page exists in several sections.

The table below shows the section numbers of the manual followed by the
types of pages they contain.

OEBPS/graphics/3008OS_B_11.jpg
bigtwo guestl ~ $ irssi
Usage:
irssi [OPTION...

Help Options:
-7, --help

Application Options:
- -config=PATH
- -home=PATH
-c, --connect=SERVER
password=PASSWORD
port=PORT
noconnect
nick
hostname
dummy
-v, --version

bigtwo guestl ~ $]

Show help options

Configuration file location (~/.irssi/config)
Irssi home dir location (~/.irssi)
Automatically connect to server/network
Autoconnect password

Autoconnect port

Disable autoconnecting

Specify nick to use

Specify host name to use

Use the dummy terminal mode

Display irssi version

OEBPS/graphics/3008OS_08_01.jpg
Written by Jim Lewis 2/21/2007
Pinging rr.com
PING rr.com (24.28.199.168) 56(84) bytes of data.

64 bytes from 24-28-199-168.rr.com (24.28.199.168): icmp_req=1 tt1=52 time=43.8
ms

--- rr.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time Oms
itt min/avg/max/mdev = 43.883/43.883/43.883/0.000 ms

OEBPS/graphics/3008OS_03_07.jpg
Big2 /lewis/kw/backupsl # ls -la
total 220

drwxr-xr-x. 2 root root 4096 Mar 7 147 .
drwxr-xr-x. 22 root root 4096 Mar 7 +46, n
-rw-r--r 1 root root 61 Mar 7 13:47 configl
Srw-re-r 1 root root 656 Mar 7 13:47 config2
-rw-r--r 1 root root 45962 Mar 7 13:44 kl.c
-rw-r--r 1 root root 66663 Mar 7 13:44 k2.c
-rw-r--r 1 root root 11581 Mar 7 13:44 k3.c

e bl 1 root root 25176 Mar 7 13:44 k4.c
-rw-r--r 1 root root 19020 Mar 7 13:44 k5.c
Srw-re-r 1 root root 12108 Mar 7 13:44 kw.h
-rw-r--r 1 root root 8172 Mar 7 13:44 kuhelpl txt
-rwxr-xr-x. 1 root root 133 Mar 7 13:44 m
—rw-r--r--. 1 root root 345 Mar 7 13:44 Makefile

Big2 /lewis/kw/backupsl # zip kwl.zip kw.h *.c Makefile m kwhelpl.txt
adding: kw.h (deflated 69%)

adding: k1.c (deflated 69%)
adding: k2.c (deflated 79%)
adding: k3.c (deflated 69%)
adding: k4.c (deflated 73%)

adding: k5.c (deflated 73%)
adding: Makefile (deflated 61%)
adding: m (deflated 6%)
adding: kwhelpl.txt (deflated 56%)
Big2 /lewis/kw/backupsl # file kwl.zip
kwl.zip: Zip archive data, at least v2.0 to extract
Big2 /lewis/kw/backupsl # | |

OEBPS/graphics/3008_02_03.jpg
- rw- rw-r
drux .
[drwxr-xr-x.
[drwxr-xr-x.
- rwxr-xr-x.
[

- rw- .
[liveuser@l
total 1o
drux .
[drwxr-xr-x.

-rw-r--r
- rw-ro-r
-rw-r-or--.
[drwxr-xr-x.
[druxr-xr-x.
[drwxr-xr-x.
fase

[drwxr-xr-x.
[drwxr-xr-x.
- rw- :
Fwxrwxr-x.
i .
[drwxr-xr-x.
[drwxr-xr-x.
[drwxr-xr-x.
[drwxr-xr-x.
[drwxr-xr-x.

drux.

-

- rw-rw-r

- rw-rw-r
drux .
[drwxr-xr-x.
[drwxr-xr-x.
- rwxr-xr-x.

- rw-
- rw-

ttings _Help
Tiveuser liveuser 12 snapshotl.png
Tiveuser liveuser
Tiveuser liveuser
Tiveuser liveuser
Tiveuser liveuser
Tiveuser liveuser
Tiveuser liveuse

Thost ~I$

Tool Box
Click to access configuration

options and controls, or to add
more widgets to the Default
Deskiop.

liveuser liveuser
root root
liveuser liveuser ~bash_logout
Tiveuser liveuser .bash_profile
Tiveuser liveuser “bashr
liveuser liveuser

liveuser

liveus

liveuser liveuser 105 .dnrc
Tiveuser liveuser

Tiveuser liveuser

~esd_auth

“gtkrc-2.0-kded

iveus:

liveuser liveuser
liveuser liveuser
liveuser liveuser + split 403 Control
liveuser liveuser v

Tiveuser liveuser 256 7 .pulse-cookie
Tiveuser liveuser 7 snapshotl.png
Tiveuser liveuser 5553 3 snapshot2.png

liveuser liveuser
liveuser liveuser
liveuser liveuser
liveuser liveuser

_xsession-errors
Tiveuser liveuser .xsession-errors

13 0

OEBPS/graphics/3008OS_05_03.jpg
Host Aliases

Groups of machines. You may prefer to use hostnames (perhaps using
wildcards for entire domains) or IP addresses instead.

Host_Alias FILESERVERS = fsl, fs2

Host_Alias MAILSERVERS = smtp, smtp2

won

User Aliases

These aren't often necessary, as you can use regular groups

(ie, from files, LDAP, NIS, etc) in this file - just use %groupname
rather than USERALIAS

User_Alias ADMINS = jsmith, mikem

Command Aliases
These are groups of related commands...

Networking
Cnnd_Alias NETWORKING = /sbin/route, /sbin/ifconfig, /bin/ping, /sbin/dhclient

Installation and management of software
Cmnd_Alias SOFTWARE = /bin/rpm, /usr/bin/up2date, /usr/bin/yum

Services
Cmnd_Alias SERVICES = /sbin/service, /sbin/chkconfig

Updating the locate database
Cmnd_Alias LOCATE = /usr/bin/updatedb

- laptop Sun Mar 31 11:49am ==
- Enabled for TABS - Line 36 Col 1 NEW 103

Lewis Linux Editor 12/18/2012 /etc/sudoers.tm

OEBPS/graphics/3008OS_05_02.jpg
Big2 /tmp # sestatus
SELinux status:
SELinuxfs mount:
SELinux root directory:
Loaded policy name:

Current mode:
Mode from config file:
Policy MLS status:

Policy deny_unknown status:

Max kernel policy version:
Big2 /tmp # D

enabled
/sys/fs/selinux
/etc/selinux
targeted
enforcing
enforcing
enabled

allowed

28

OEBPS/graphics/3008OS_04_05.jpg
Fle Edit View Terminal Go Hel
$Id: services,v 1.53 2011/06/13 15:00:06 ovasik Exp $

Network services, Internet style
IANA services version: last updated 2011-06-10

#

#

#

#

#

Note that it is presently the policy of IANA to assign a single well-known
port number for both TCP and UDP; hence, most entries here have two entries
even if the protocol doesn't support UDP operations.

Updated from RFC 1700, '‘Assigned Numbers'' (October 1994). Not all ports
are included, only the more common ones.
#
#
#
#
#
#
#
#
#
#

The latest IANA port assignments can be gotten from
http://www.iana.org/assignments/port-numbers

The Well Known Ports are those from 0 through 1023.

The Registered Ports are those from 1024 through 49151

The Dynamic and/or Private Ports are those from 49152 through 65535

Each line describes one service, and is of the form:

service-name port/protocol [aliases ...] [# comment]

tepmux 1/tcp # TCP port service multiplexer
tepmux 1/udp # TCP port service multiplexer
rje 5/tcp # Remote Job Entry

rje 5/udp # Remote Job Entry

echo 7/tcp

echo 7/udp

-More- - (0%)l

OEBPS/graphics/3008OS_B_05.jpg
Google Advanced Seardh - Wozilla Firefox
e Edt View History Bookmerks ools e,
& [googecom =T @

BMost Visitedv @Fedora Documentation @iFedora Project~ [} Google Advanced Se.. (- wwwjklews.com - H.

mail Drive Calendar M

+You Search Images Maps Play YouTul

Google

Advanced Search

Find pages with...
althese words: Stratego
s exactwordorphrase: Jm Lewis
any ofthese words:

none ofhese words:

numbers ranging from: ©

Then narrow your
results by.

language: any anguage =
region any region =

fast pdate: anytime -

OEBPS/graphics/3008OS_03_00.jpg
Filesystem volume name
Last mounted on:
Filesystem UUTI
Filesystem magic number:
Filesystem revision #:
Filesystem features:

Filesystem flags:
Default mount options:
Filesystem state:
Errors behaviol
Filesystem 05 type:
Inode count

Block count:
Reserved block count:
Free blocks:

Free inodes

First block

Block siz

Fragment size:
Reserved GDT blocks:
Blocks per group:
Fragments per group:
Inodes per group:
Inode blocks per group:
Flex block group size:
Filesystem created:
Last mount time:

Last write time:

Mount count:

Maximum mount count:
Last checked:

Check interval
Lifetime writes:
Reserved blocks uid:
Reserved blocks gid:
First inode:

Inode size:

<none>
/boot

25bc74c0-5452-455d-a7a6- 1af316a7212
OxEF53

1 (dynamic)

has_journal ext_attr resize_inode dir_index filetype needs_recover

y extent flex_bg sparse_super huge_file uninit_bg dir_nlink extra_isize

signed_directory_hash
user_xattr acl

clean

Continue

Linux

128016

512000

25600

392021

127665

1

1024

1024

256

8192

8192

2032

254

16

Sun Oct 14 12:44:57 2012
Mon Mar 11 17:00:04 2013
Mon Mar 11 17:00:04 2013
17

-1

Sun Oct 14 12:44:57 2012
0 (<none>)

90 M8

0 (user root)

0 (group root)

11

128

OEBPS/graphics/3008OS_03_03.jpg
subgame. java
Java Applet

2010
2/27 - initial program creation
2/28 - add battleship
3/1 - new GIF files from Gimp

- show sub coordinates

- added missiles

- added depth charge

- change how ship is moved (no gravity)
3/2 - remove old code

- changed sub movement again

- added depth charges

- added depth charge timer

- added collision detect - missiles

- added collision detect - depth charges
added mine

L1 (Java/l Abbrev)
For_information about GNU Emacs and the GNU system, t:

OEBPS/graphics/3008_01_08.jpg
bigtwo jklewis ~/tmp $ # example of a successful command
bigtwo jklewis ~/tmp $ route
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
default 192.168.1.1 0.0.0.0 uG 0 0 0 p3pl
192.168.1.0 * 255.255.255.0 U 0 0 0 p3pl
192.168.122.0 * 255.255.255.0 U 0 0 0 virbro

bigtwo jklewis ~/tmp $ echo $?
o
bigtwo jklewis ~/tmp $ # example of a command that has failed
bigtwo jklewis ~/tmp $ ifconfig eth0

eth0: error fetching interface information: Device not found
bigtwo jklewis ~/tmp $ echo $?

1
bigtwo jklewis ~/tmp $ []

OEBPS/graphics/3008OS_08_02.jpg
Practice script 1 5/4/2013
name: Jim

numbers 0: 23

Last element is: 71
numbers 0 is equal to 23
Element 0 is 23

Element 1 is 42

Element 2 is 69

Element 3 is 71

Opening input.txt ...
Opening output.txt ...
line line 1

line line 2

line line 3

line line 4

line line 5

message: Type some keys. Press
Hello Jim

Perl is fun

Linux rules!

' to clear the screen and 'q' to quit:

q
Ending the script
Big2 /home/guestl/lbooktmp/chap8 # ||

OEBPS/graphics/note.jpg

OEBPS/graphics/3008OS_04_03.jpg
Ble £t View Moy Gookmarks Tols ko

mozinorg ~G| A

@ \Welcome to Firefox!

See how Firefox keeps the power of the web in your hands:

Get Firefox news

reforFeaures - Firefoc Help

OEBPS/graphics/3008OS_06_03.jpg
USER PID %CPI
root 1

VSZ RSS STAT START COMMAND
67540 13472 ? Ss Marll :14 /usr/lib/systemd/systemd

root 355 0 0 S< Marll [ext4-dio-unwrit]
root 391 35220 6100 ? Ss Marll /usr/lib/systemd/systemd-
root 394 29832 4352 Ss Marll /usr/lib/udev/udevd

root 516
root 629

0 0 ? S< Marll
344036 6468 Ssl Marll

[hd-audio0]
Jusr/sbin/NetworkManager

root 631 141100 1420 ? Ss Marll Jusr/sbin/abrtd -d -s
root 643 19496 1880 Ss Marll /Jusr/sbin/smartd -n -q ne
root 645 91764 1080 ? S<sl Marll /sbin/auditd -n

root 646 4288 552 Ss Marll /Jusr/sbin/acpid

root 650
root 658
avahi 660
root 661
root 664
dbus 669
root 672
avahi 678

138988 1040 ? Ss Marll
28332 1604 Ss Marll
28012 1368 Ss Marll
251928 4452 ? Ssl Marll

7408 280 Ss Marll
31260 2656 ? Ssl Marll

6952 768 Ss Marll
27880 196 ? S Marll

Jusr/bin/abrt-watch-log -
/usr/Lib/systend/systend-
avahi-daemon: running [bi
/sbin/rsyslogd -n -c 5

Jusr/sbin/gpm -m /dev/inp
/bin/dbus-daemon - -system
Jusr/sbin/mcelog --ignore
avahi-daemon: chroot help

root 683 118392 1496 Ss Marll /usr/sbin/crond -n
root 688 21188 920 ? Ss Marll /usr/sbin/atd -f
root 791 19160 772 Ss Marll /sbin/rpcbind -w
root 796 77608 3248 7 Ss Marll /Jusr/sbin/sshd -D

root 799
rpcuser 813
nobody 867
root 921
root 955
root 1518
root 1552
root 1589
guestl 2417
questl 2427

140868 1492 Ssl Marll
23532 1236 ? Ss Marll
13140 552 £ Marll
88844 6660 ? S Marll
1038832 3400 ? sl Marll
223916 5220 Ssl Marll
209064 4012 ? Ss Marll
341224 4836 Ssl Marll
157896 2252 ? S Marll
5 910948 21188 SU Marll
booktmp/chap6 # i]

/sbin/apcupsd -b -f /etc/
/sbin/rpc.statd
/sbin/dnsmasq --strict-or
/sbin/dhclient -d -4 -sf
/usr/sbin/console-kit-dae
/usr/libexec/upowerd
/usr/sbin/cupsd -f
/Jusr/lib/udisks2/udisksd
Xscreensaver -no-splash
xfced-panel

&£

eesioosasssbosteiosososenn oot
nolhiiolroooooo00000ORo0ODODOR RO WE Y

OO OO0 O OO0 OOOOOOCOOOOOOND

FE00000000000000000000000000000000H
8LI82E888K 08538 RELERERRE8LE8NRS

U
0
0
0
[
0
0
[
0
0
0
[
)
[
0
0
.0
[
0
0
0
0
[
0
[
0
[
)
[
0
[
0
0
u

Big2 /home/guestl/

OEBPS/graphics/3008OS_B_04.jpg
Big2 /tmp # awk
Usage: awk [POSIX or GNU style options] -f progfile [--] file ...
Usage: awk [POSIX or GNU style options] [--] 'program' file ...

POSIX options: GNU long options: (standard)
-f progfile --file=progfile
-F fs --field-separator=fs
-v var=val --assign=var=val
Short options: GNU long options: (extensions)
-b --characters-as-bytes
-c --traditional
-C --copyright
-d[file] --dump-variables[=file]
-e 'program-text’ --source='program-text"'
-E file --exec=file
-9 --gen-pot
-h --help
-L [fatal] --lint[=fatal]
-n --non-decimal-data
-N --use-lc-numeric
-0 --optimize
-plfile] --profile[=file]
-P --posix
-r --re-interval
-S - -sandbox
chy --lint-old
-V --version

To report bugs, see node ‘Bugs' in ‘gawk.info', which is
section ‘Reporting Problems and Bugs' in the printed version.

gawk is a pattern scanning and processing language.
By default it reads standard input and writes standard output.

Examples:
gawk '{ sum += $1 }; END { print sum }' file
gawk -F: '{ print $1 }' /etc/passwd

Big2 /tmp # ||

OEBPS/graphics/3008OS_B_06.jpg
1. Welcome to Fedora 19 - Mozilla Firefox

Hle Edit View History Bookmarks Ibols Help.

- (@ docs fedoraproject orglent

edora/19/ntmiRel jsect-Release_Notes-Wel rv @) (v T

[aMost Visted @Fedora Documentation EFedora Project~ [} Google Advanced Se... {jwwwiklewis.com - H...

Fedora h
UMENTATIO

Engish ER

- Communty Senvces infastrucure

vis
Felaase lgis.
SscurtsGuige

I

Federa Conrutor Documentaton
Fedora Core

 Fedora DratDocumentaton
Fedora Secunty Team

Map | Satsics | Tein

DOCUMENTATION
e

1. Welcome to Fedora 19

1.1 Welcome to Fedora
You can help e Fedora Projctcommunty coninu o Improve Fedorafyou s bug s and enhancament
equess Peerto g And Ftur Faquess, on he Fdora b, or more nfomalion aboutbup and feaurerepatng
Trankyou o your patcpaton.

o 1 outmore genera nformaton about Fedora, fer o e following ages,on e Focorawii
o Medorapreactorgiy

Ry —

» Fatorapig

> Help and Discussions

+ Partcpae i e FedoraPrject

L1 e Help?
“Thee are anumber flacesyou can gt assistance should you un o prablems.
o0 un 0 apoblem andwould ke soma assistance, o o ik odorapojctor, Mary anwers ae alieaty

Mere but 0w dontind yours,youcan siMply Post a new aueston This has e acantage thalanjone sl wi e
Sam prolam can ind e anewer, o0

ou maysso i sssstance onne fedara channel o he I7C et irc. freenode. net. Keep inmind nat e
channel s populated by volutaers wanting o el, bt ks nowadgeabl abouta speci pic mightnot abays be
alave

12 Overview
1 ahuays, Fodoraconbnues o devlap (R4 Hat conution) and negrateh aest e and open soutce sofware
(Fdora 1 Featrcs) Th allowing sectons provid a e ventew ofmajor changes from he s elease ofFedora.

Formor geas aboune featres mat e nclade n Fedora 19 e [e Incidual i pages ht dealfatre
G041 and roBress: N TedorABIjocorgWIIPeleasesGFouUrEL st

13, Hardware Overview

Fodora 19 preides sotware o st wid vt of aplicaons Th sorage, memry and processing requiemants
VAt depending onusage.Forexampl, AN e GRS SN 6GUIES MUCh mors memay and S0age han 3
Dusiness dsHiop, Whch It has igher requrements han a iglepurpase vital machne

131, Winimum System Configuration
“The flgures belowar aecommended minmum o e defautinstalaio.Your requements may it and st

docs fedoraproject orglen-Us/Fedora/19/ntmi/Release. Notes/sect-Release_Notes-Changes_for_Sysadmin.htmi

OEBPS/graphics/3008OS_10_00.jpg
Fle Edt View Search Terminal Help

Module

fuse
lLpt_MASQUERADE
lipstable_nat
Inf_nat_ipv6
lipBtable_nangle
Inf_connt rack_ipvé
Int_defrag_ipvé
liptable_nat
Int_nat_ipv4
liptable_nangle
Inf_connt rack_ipv4
Int_defrag_ipva
[1TC0_vendor_support
lsnd_hda_intel
lathsk
lsnd_hda_codec
lath

lsnd_hwdep
lsnd_seq
InacB0211
Isnd_seq_device
Isnd_pcm
lcfgB0211
[thinkpad_acpi
Isnd_page_alloc
lsnd_timer
rfkIll

Inperf

Isdnci

innc_core

le1060e

ptp

lsoundcore

lvideo

Size
82124
12880
13015
13213
12700
18782
18205
13011
13199
12695
14808
12673
13419
44037

181833
178706
23142
17650
64849
595898
14136
98071
517234
78907
18268
28698
21694
12607
38121
112242
245861
18413
14491
18990

[laptop guestl ~/lbooktmp $ [

guesti@Iocalhost: ~/Ibooktmp

Used by
3

1
1

1 ipétable_nat
1

24
1 nf_conntrack_ipvé
1

1 iptable_nat

)
nf_conntrack_ipv4
1TC0_wdt

snd_hda_codec_conexant , snd_hda_intel
athsk
snd_hda_codec

athsk
snd_seq

snd_hda_codec, snd_hda_intel
ath, athSk,mac80211

snd_pcm, snd_hda_intel
snd_pcm, snd_seq
780211, thinkpad_acpi
acpi_cpufreq
sdhcl_pei

sdhci

21000e
snd

OO R WNN WSSO RSN G &N -

OEBPS/graphics/3008OS_B_07.jpg
Release Notes | Ubuntu - Mozilla Firefox

File Edit View History Bookmarks Tools Help

& [@ www.ubuntu.com/getubuntu/relea

Most Visted~ @Fedora Documentation EiFedora Projectv [Google Advanced Se... 7 wwwiklewis.com - H

Phone Tablet

Release Notes

Release notes

The release notes contain technical information that can help ensure a smooth upgrade, so we
recommend you consult them beforehand. For reference, the list also contains links to the
release notes For previous versions

Ubuntu 13.04

Ubuntu 13.04 is the newest release of Ubuntu, released on April 25, 2013. In the desktap,
perFormance on lightweight systems was a core Focus For this cycle, as a result 13.04 delivers
significantly Faster response times in casual use, and a reduced memory Footprint. Key desktop
updates are; Unity 7, Upstart 1.8, LibreOffice 4.0, CUPS 1.6.2 and cups-filters 1.0.34 and Python
3.3.0n the server, there are many new Features including Openstack Grizzly, updates to Juju,
VMWare integration, Ceph 0.56.4, MongoDB 2.2.4. All versions use Linux kernel 38.8. More

Ubuntu 12,10

Ubuntu 1210 was released on October 18, 2012 It contains 3 host of new Features, including
integrated web apps, extended dash searching, dash previews, and many more enhancements
andimprovements. More»

Ubuntu 12.04.2LTS

Ubuntu 12.04.2 LTS is the latest point release of Ubuntu, released an February 14, 2013. It
includes a move to the Qualtal hardware enablement stack as well as a series of bug fixes and
security updates, making it our most robust Ubuntu to date. Mare»

Ubuntu 12.04.1LTS

Ubuntu 12.04.1 LTS is the latest point release of Ubunty, released on August 23, 2012. It includes
a series of bug fixes and security updates. More »

Ubuntu 12,04 LTS

Ubuntu 12.04 LTS i the Latest release of Ubuntu, released on April 26, 2012. It includes host of
refinements and new Features, making it more responsive and enjoyable to use than ever before
More»

Ubuntu 11.10

T URGAL G e T alas la e aerisinca t ik cAlaste SR Hbiinkis s ae Pastiiti o chaneamunts to)

OEBPS/graphics/3008OS_04_01.jpg
Laptop_jklewis - $ ftp 192.168.1.115
Connected to 192.168.1.115 (12.168.1.115) .
220 Welcome to the FIP service on Laptop
Name (192.168.1.115: jklewis): jKlewis

331 Please specify the password

Password

230 Login succassful.

Remote system type is UNIX.

Using binary mode to transfer files.

Ftp> help

Comnands may be abbreviated. Commands are:

debug mdir sendport site
s dir mget put size
account disconnect midir pud status
append exit nls quit struct
ascii form mode quote system
bell get modtine recy sunique
binary glob mput reget tenex
bye hash never rstatus tick
case help nmap rhelp trace
cd idle nlist rename type
cdup image ntrans reset user
chmod led open restart umask
close 1s prompt rmdir verbose
cr macdef passive runique ?
delete ndelete proxy send

fp 1

OEBPS/graphics/3008OS_04_02.jpg
Fle Edit View Terminal Go Help
laptop jklewis ~ $ telnet 192.168.1.115

Trying 192.168.1.115...

Connected to 192.168.1.115.

Escape character is '"]'.

Fedora release 18 (Spherical Cow)

Kernel 3.6.10-4.fc18.x86_64 on an x86_64 (4)
laptop login: guestl

Password:

Last login: Thu Mar 21 11:03:05 from 192.168.1.115

/etc/motd

Fedora 18 64-bit on laptop
Installed: 2/11/2013

Installed xfce4 2/28/2013
- Run startxfce4 to start the Desktop

[guestl@laptop ~]1$ exit
laptop jklewis ~ $ |:|

OEBPS/graphics/3008OS_06_06.jpg
Big2 /home/guestl/lbooktmp/chap6 # nice

Big2 /home/guestl/lbooktmp/chap6 # nice nice
Big2 /home/guestl/lbooktmp/chap6 # nice -n -20 nice
Big2 /home/guestl/lbooktmp/chap6 # nice -n 19 nice

Big2 /home/guestl/lbooktmp/chap # ps auxw | grep "vi testfile.txt"

root 12255 0.0 0.0 120320 1508 pts/12 SM+ 18:12 0:00 vi testfile.txt

root 12291 0.0 0.0 109400 880 pts/5 S+ 18:12 0:00 grep --color=auto vi t
lestfile. txt

Big2 /home/guest1/lbooktmp/chap # top -b -n 1 -p 12255

top - 18:12:59 up 32 days, 1:13, 13 users, load average: 0.85, 0.77, 0.77

Tasks: 1 total, 0 running, 1 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.8%us, 0.5%sy, 0.0%i, 98.2%id, 0.4%a, 0.0%i, 0.0%si, 0.0%t

Mem: 3791496k total, 3613056k used, 178440k free, 171700k buffers

Swap: 5898236k total, 27792k used, 5870444k free, 2554468k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
12255 root 35 15 117m 1508 1236 S 0.0 0.0 0:00.00 vi

Big2 /home/guestl/lbooktmp/chap6 # |

OEBPS/graphics/3008_01_03.jpg
bigtwo jkle nuxbook $ s -la
total 40

drwxrwxr-x. 2 jklewis jklewis 4096 Feb 7 22:41 .

drwx 7 jklewis jklewis 4096 Feb 7 22:39 ..
-rw-rw-r--, 1 jklewis jklewis 10 Feb 7 22:40 filel txt
-rW-rw-r 1 jklewis jklewis 20 Feb 7 22:40 file2. txt
-rW-rw-r 1 jklewis jklewis 30 Feb 7 22:40 file3.txt
-rw-rw-r 1 jklewis jklewis 40 Feb 7 22:40 filed. txt
-rw-rw-r--. 1 jklewis jklewis 52 Feb 7 22:40 lewisl.java
-rw-rw-r 1 jklewis jklewis 64 Feb 7 22:40 lewis2.java
-rW-rw-r 1 jklewis jklewis 76 Feb 7 22:40 lewis3.java
-rW-rw-r 1 jklewis jklewis 88 Feb 7 22:41 uniquel. txt

bigtwo jklewis ~/Linuxbook $ ls -la uniquel.txt
-rw-rw-r--. 1 jklewis jklewis 88 Feb 7 22:41 uniquel.txt

bigtwo jklewis ~/Linuxbook $ 1s -la file

filel.txt file2.txt file3.txt filed.txt

bigtwo jklewis ~/Linuxbook $ 1ls -la filed.txt

-rW-rw-r 1 jklewis jklewis 40 Feb 7 22:40 filed . txt
bigtwo jklewis ~/Linuxbook $ ||

OEBPS/graphics/3008OS_03_04.jpg
Top of file ----

subgame . java

Java Applet

2010

2/27 - initial program creation
2/28 - add battleship

3/1 - new GIF files from Gimp

- show sub coordinates

- added missiles

- added depth charge

- change how ship is moved (no gravity)
3/2 - remove old code

- changed sub movement again

- added depth charges

- added depth charge timer

- added collision detect - missiles

bigtwo Thu Mar 7 1:06pm ===
Line 1 Col 1 NEW 2384
Lewis Linux Editor 12/20/2012 subgame.java

OEBPS/graphics/3008_02_06.jpg
plications a .. |@ Terminal - jklew ' i) 4l Tue 19 Feb 2013 10:52:40 AM CST

Terminal - jklewis@bigtwo:

drwx jklewis jklewis

. 8 9
e bashrcTop of file drwxr-xr-x. 9 root root 8
. -rw-r--r--. 1 jklewis jklewis 608 Feb 8 13:16 2008 _01 _06.txt
- ﬁ User specific aliases and functions for jklewis on bigtwo :m::::::: i ;Egzwis ;Egzwis 15% Eﬁ? 2‘81 I;Gﬁ ?zz;gfsiééz:smc
. 1 jklewis jklewis 193 Jul 24 2012 .bash_profile
[Ei2YSLEm H . 1 jklewis jklewis 1575 Feb 8 12:30 .bashrc
: P . -rw-r--r--. 1 guestl guestl 1535 Feb 5 15:18 bashrc.jklewis
ﬁ ﬁ 2/5/2013 - added jklewis user account and files crw-r--r--. 1 jklewis jklewis 124 Feb 5 15:03 bashrc.orig
drwxrwxr-x. 2 jklewis jklewis 4096 Feb 18 12:29
drwxr-xr-x. 2 jklewis jklewis 4096 Jan 14 2012
-rw-rw-r--. 1 jklewis jklewis 3413 Feb 8 13:16 kwfilelog.txt
-rw-rw-r--. 1 jklewis jklewis 200 Feb 8 13:16 kwstack.fil
sxnort HI=7Homaz kyewis drwxrwxr-x. 2 jklewis jklewis 4096 Feb 7 22:41
P - J drwxr-xr-x. 4 jklewis jklewis 4096 Oct 14 12:54
lins hi="ed SH1 drwx------. 2 jklewis jklewis 4096 Feb 5 15:35
- drwxrwxr-x. 2 jklewis jklewis 4096 Feb 8 13:41
export DISPLAY=:0.0 “rw-r--r--. 1 jklewis jklewis 658 Mar 4 2012 .zshrc

export BIN=/home/jklewis/bin
alias bin="cd $BIN"

bigtwo Tue Feb 19 10:52am ===
- Enabled for TABS - Line 1 Col 1 NEW 112
Lewis Linux Editor 12/20/2012 .bashrc

Feb 19 02:08:15 bigtwo dbus[720]: [system] Activating service name='org.freedesk|
top.nm_dispatcher' (using servicehelper)

Feb 19 02:08:15 bigtwo dbus-daemon[720]: dbus[720]: [system] Activating service
name='org. freedesktop.nm_dispatcher' (using servicehelper)

Feb 19 02:08:15 bigtwo dbus-daemon[720]: dbus[720]: [system] Successfully actival
ted service 'org.freedesktop.nm_dispatcher

Feb 19 02:08:15 bigtwo dbus[720]: [system] Successfully activated service 'org.f]
reedesktop.nm_dispatcher"'

Feb 19 03:11:01 bigtwo pcscd[28030]: 00000000 utils.c:53:GetDaemonPid() Can't op]
len /var/run/pcscd/pcscd.pid: No such file or directory

Feb 19 03:11:01 bigtwo pcscd[28030]: 00003941 winscard.c:241:SCardConnect() Read|
er E-Gate 0 0 Not Found

Feb 19 03:11:01 bigtwo pcscd[28030]: 00000071 winscard.c:241:SCardConnect() Read|
er E-Gate 0 0 Not Found

Feb 19 03:11:01 bigtwo pcscd[28030]: 00000056 winscard.c:241:SCardConnect() Read|
er E-Gate 0 0 Not Found

Feb 19 03:11:01 bigtwo pcscd[28030]: 00000194 winscard.c:241:SCardConnect() Read|
er E-Gate 0 0 Not Found

Feb 19 10:44:46 bigtwo kernel: [3016443.205730] [drm] nouveau 0000:00:10.0: Sett|
ing dpms mode 0 on vga encoder (output 0)

(141.6 MB), Fr P B Q .

OEBPS/graphics/3008OS_07_02.jpg
laptop /tmp # fdisk /dev/sdb
Welcome to fdisk (util-linux 2.22.1).

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): m
Command action

‘toggle a bootable flag

edit bsd disklabel

toggle the dos compatibility flag
delete a partition

list known partition types

print this menu

add a new partition

create a new empty DOS partition table
print the partition table

quit without saving changes

create a new empty Sun disklabel
change a partition's system id

change display/entry units

verify the partition table

write table to disk and exit

extra functionality (experts only)

XxE£<CcAWLTOSS ~anco

Command (m for help): []

OEBPS/graphics/3008_02_12.jpg
2 Watching systen buttons on /dev/input/events
irq 48 for b
5.0: 1rq 48 for
6: ADDRCONF(NETDEV_UP): enps25: Link is not
IPVG: ADDRCONF(NETOEV_UP): wip3s0: 1ink is not
Wp350: authenticate Wit 98:fc:11:83:68:00
Send auth to 98:fc:11:63:66:00

authenticat
Sociate with 98:fc:11:83:68:00 (try
Resp from 99:fc:11:83:6e:

1PV6: ADDR N Uk becones read)
fuse init (API version 7.
Linux: initialized (del fuse, type fuse), uses genfs contexts
athsk: athSk_fw_get_Lsr: 1SR: 0xB00008B0 1HR: 0x00000680
one/ quest1/Desktop # Uptine
9 wp O nin sers, load average: 0.9, 0.20, 0.17

SRR X rocx@iccahos: [=]

OEBPS/graphics/3008_01_01.jpg
Linux

bigtwo jklewis ~ $ 1s
‘total 56

6 jklewis

8 root
1 jklewis
1 jklewis
. 1 jklewis
1 guestl
1 jklewis
drwxrwxr-x. 2 jklewis
drwxr-xr-x. 2 jklewis
Srw-rv-r--. 1 jklewis
-rW-rw-r 1 jklewis
drwxr-xr-x. 4 jklewis
drwx PR
Srwere- 1 jklewis

bigtwo jklewis ~ $ ||

bigtwo jklewis ~ $ uname -a
Linux bigtwo 3.6.2 #1 SMP Mon Oct 15 15:23:36 CDT 2012 x86_64 x86_64 x86_64 GNU/

-la

jklewis
root
jklewis
jklewis
Jklewis
guestl
jklewis
jklewis
jklewis
Jklewis
jklewis
jklewis
jklewis
jklewis

bigtwo jklewis ~ $ cat /etc/issue
Fedora release 17 (Beefy Miracle)
Kernel \r on an \m (\l)

4096
4096
18
193
1537
1535
124
4096
4096
1046
176
4096
4096
658

Feb
Feb
Jul
Jul
Feb
Feb
Feb
Feb
Jan
Feb
Feb
Oct
Feb
Mar

NN

-
vwhRooRunuwunuRRuw

-

14:54
2012
2012

15:20

15:18

15:03

15:01
2012

10:42

10:42

12:54

15:35

4 2012

15:35 .

.bash_logout
.bash_profile
.bashrc
bashrc. jklewis
bashrc.orig
bin

. gnome2
kwfilelog.txt
kwstack . fil
.mozilla

.ssh

.zshrc

OEBPS/graphics/3008OS_05_00.jpg
Big2 /lewis/Fedora/17 # useradd --help
Usage: useradd [options] LOGIN

Options:
-b, --base-dir BASE_DIR

-c, --comment COMMENT
home-dir HOME_DIR
defaults

expiredate EXPIRE_DATE
nactive INACTIVE

-g, --gid GROUP

-G, --groups GROUPS

--help
skel SKEL_DIR

K, --key KEY=VALUE
-1, --no-log-init
-m, --create-home
-M, --no-create-home
-N, --no-user-group

-0, --non-unique

- -password PASSWORD

-r, --system
-s, --shell SHELL
-u, --uid UID

-U, --user-group

-Z, --selinux-user SEUSER

Big2 /lewis/Fedora/17 # I

base directory for the home directory of the
new account

GECOS field of the new account

home directory of the new account

print or change default useradd configuration
expiration date of the new account

password inactivity period of the new account
name or ID of the primary group of the new
account

list of supplementary groups of the new
account

display this help message and exit

use this alternative skeleton directory
override /etc/login.defs defaults

do not add the user to the lastlog and
faillog databases

create the user's home directory

do not create the user's home directory

do not create a group with the same name as
the user

allow to create users with duplicate
(non-unique) UID

encrypted password of the new account

create a system account

Tlogin shell of the new account

user ID of the new account

create a group with the same name as the user
use a specific SEUSER for the SELinux user mapping

OEBPS/graphics/3008OS_06_04.jpg
top - 10:49:54 up 29 days, 17:50, 12 users, load average: 0.04, 0.09, 0.12
Tasks: 20 total, 0 running, 20 sleeping, O stopped, 0 zombie
Cpu(s): 0.2%us, 0.5%sy, 0.0%i, 99.3%id, 0.0%a, 0.0%hi, 0.0%i, 0.0%st
Mem: 3791496k total, 3627506k used, 163900k free, 469308k buffers

: 5898236k total 14480k used, 5883756k free, 2108112k cached

PID USER PR NI VIRT RES SHR S %CPU
29203 guestl 20 1685m 121m 71m
1 root 20 67540 1lm 1988

TIME+ COMMAND
.37 soffice.bin
.9 systemd

391 root 20 36476 6128 1216 .11 systemd- journal
629 root 20 336m 6468 3500 .35 NetworkManager
631 root 20 137m 1420 1148 .01 abrtd

683 root 20 115m 1496 924 .52 crond

799 root 20 137m 1492 1076 1 .49 apcupsd
867 nobody 20 13140 552 392 .38 dnsmasq
921 root 20 88844 6660 2300 .14 dhclient
1552 root 20 204m 4012 2432 .26 cupsd

1876 root 20 4240 308 244 .03 jtail

1878 root 20 104m 496 424 .00 tail
2385 guestl 20 13864 752 592 .00 xinit
2390 guestl 20 109m 1360 1152 .00 sh

2411 root 20 10836 1156 908 42 kw

2419 guestl 20 418n 10m 7868 .56 xfced-session
2438 guestl 20 369m 18m 6728 .33 applet.py
2566 guestl 9 474m 5420 2960 .07 pulseaudio
3656 root 20 2355m 69m 7400 .47 java

VLLVVLLVVLLNVLLVLLVL LYK
Ry R e R R R R-N-R-F-Y
cooooooo0o0o00o00OODOW
P HO00O0000000O00O00OW

hrorwooooORNOODONNWW

8o
88cocoocoooooRNoconos

30340 guestl 20 1305m 236m 34m .65 firefox

OEBPS/graphics/3008_01_02.jpg
ey
kw file.c
sum file.c
od -h file.c
cp file.c /temp
route
sum file.c
cls
history
bigtwo jklewis ~ $ 15
route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 192.168.1.1 0.0.0.0 UG 0 0 0 p3pl
192.168.1.0 il 255,255.255.0 U ()) 0 p3pl
192.168.122.0 * 255.255.255.06 U 0 <] 0 virbro

bigtwo jklewis ~ $ []

DNV AWN R

OEBPS/graphics/3008_02_10.jpg
Terminal

®

=
)
=
L}

guest-s3Zalh@scallywag: ~/Pictures

[783323.679279] sd 6:0:0:0: [sdb] Assuming drive cache: write through
guest-s3Zaih@scallywag:~/Pictures$ route
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use
default 192.168.1.1 0.60.0.0 WG e [°
link-local * 255.255.0.0 u 1000 © 0
192.168.1.0 * 255.255.255.0 U 2 o °

lquest-s3Zath@scallywag:~/PicturesS uname -3

Linux scallywag 3.2.6-37-generic #58-Ubuntu SMP Thu Jan 24 15:28:57 UTC
6 athlon 1386 GNU/Linux

lguest-s3Zath@scallywag:~/Picturess cat /etc/issue

Ubuntu 12.04 LTS \n \l

lquest-s3zaih@scallywag:~/Picturess ls -la
‘total 1556 LY
|drwxr-xr-x 2 guest-s3Zaih guest-s3zaih 100 Feb 20 20:28 .

drwx------ 20 guest-s3Zaih guest-s3zath 620 Feb 20 20:16 .
-rw-rw-r-- 1 guest-s3Zaih guest-s3zaih 475075 Feb 20 s1.png
-rw-rw-r-- 1 guest-s3Zaih guest-s3zaih 630408 Feb 20 s2.png

-rw-rw-r-- 1 guest-s3Zaih guest-s3Zaih 483914 Feb 20 20:27 s3.png
lguest-s3zaih@scallywag:~/Pictures$
lguest-s3zaih@scallywag:~/Pictures$
lguest-s3zaih@scallywag:~/Picturess [l

Iface
wlane
wlan®
wlane

2013 68|

Computer

uments

3]

Publi

) 831PM 2 Guest {it

OEBPS/graphics/3008OS_03_01.jpg
bigtwo jklewis ~ $ cd /tmp

bigtwo jklewis /tmp $ mkdir lbooktest3

bigtwo jklewis /tmp $ cd lbooktest3

bigtwo jklewis /tmp/lbooktest3 $ 1s > fl; 1s > f2; 1s > f3
bigtwo jklewis /tmp/lbooktest3 $ mkdir dirl dir2 dir3
bigtwo jklewis /tmp/lbooktest3 $ cp f1 f5

bigtwo jklewis /tmp/lbooktest3 $ cp fl dirl

bigtwo jklewis /tmp/lbooktest3 $ cp f1 /tmp/lbooktest3/dirl
bigtwo jklewis /tmp/lbooktest3 $ rm 3

bigtwo jklewis /tmp/lbooktest3 $ mv 2 dir2

bigtwo jklewis /tmp/lbooktest3 $ mv fl f6

bigtwo jklewis /tmp/lbooktest3 $ tree

- dir1
-

— dir3
— f5
— f6

3 directories, 4 files
bigtwo jklewis /tmp/lbooktest3 $ ||

OEBPS/graphics/3008OS_B_10.jpg
T
Ble Edt View Hitory Bookmarks Tools Help

(irchelp.org

[aMost Visted @Fedora Documentation EFedora Project~

Google Advanced Se... () wwwjdewis.com - H...

Unix/Linux IRC Clients
Terminal

The first dlients and servers for IRC were written as portable C code, which could be compiled and run on a variety of
Unix derivatives, including many of the systems common in academic research at the time. The original IRC diient,
which was once distribtted in the same package with IRCNet's IRCD, is now obsolete, but many other diients have
improved upon it's design.

irssi

irssi has taken ircll's place as the modem gold standard for IRC clents, with a sensible, familiar intetfaces, sane defaits,
modem featureset, and of course, an embedded perl interpeter as its scripting interface.

ircll and derivatives

For years, the standard by which all other iients were measured, ircll and its derivatives remain a solid choice. ircl, and
it's closest descendant, EPIC are still aclively maintained, but maintain faithfuiness with the original “blank canvas” of ircll
- they are typically highly customized by each user, with by hand, or via a script pack.

BitchX and ScrollZ take a different approach, both having their original start as script packs, they eventually applied their
modifications direl to the client tself, creating a derivative of ircll with more bells and whistles than any user could
possibly need.

WeeChat

WeeChat is a relative newcomer to the terminal oriented client scene, but still compares favorably to the ofhers. I's
comparable in features to irssi, but, uniquely, also functions as a Jabber dlent.

OEBPS/graphics/3008_02_08.jpg
liveuser@localhost:~ liveuser

DRCONF(NETDEV_UP) : wlan0: Link is not read
etho NIC Link is Up 1000 Mbps Full Duplex, Flow Control

ADDRCONF (NETDEV_ : etho: link becomes re Pla

[liveuser@localhost
total 112

euser liveuser 6 bash_history
ser ser 201 _bash_Logout
“bash profile
veu veu “bashre
veuser liveuser
veuser liveusel

veu: veu:
veuser liveuser 4
veuser Liveuser

root@localhost:

dbus[634]: [systen] Activating service name=!
(using servicehelper)
veuser 4 e 16 localh al: dbusl

veu:

e top. Packagekit
dbus[634]: [systen] Successfully activate
PackageKit
21 Localhost yum[1
21 Localh _fc18.x85_
Activ

euser
ser

scrot

A 21 localhost dbusl [system] Activating service name
i ey esktop. Packagekit' (using
Taep 10; scrot Feb 20 21 Tocalhost dbus ystem] Successfu
iuated “freedeskt
Feb 20 21 Tocalh
g £ roedask top.PackageKst
Feb 20 12:14
Feb 20

ul

™ veuser@localho... M ro

OEBPS/graphics/3008_02_11.jpg
Termin: File Edit View Search Terminal Help N = ¢)) 10:57AM 2 Guest %

5 ©© guest-s3zaih@scallywag: ~/Pictures
-rwxr-xr-x 1 root root 46576 Mar 31 2012
guest-s3zaih@scallywag:~/Pictures$ ls -la /usr

total 180

|drwxr-xr-x 10 root root 4096 Oct 19 2011
drwxr-xr-x 22 root root 4096 Feb 1 08:05 ..
[druxr-xr-x 2 root root 49152 Feb 20 ©8:00 bin
[drwxr-xr-x 2 root root 4696 Apr 30 2012 games
[drwxr-xr-x 36 root root 20480 Oct 3 13:51 include
[drwxr-xr-x 205 root root 61440 Dec 20 ©7:55 lib
drwxr-xr-x 10 root root 4696 May 22 2011 local
[drwxr-xr-x 2 root root 12288 Dec 20 ©7:55 sbin

——
o
S
i [drwxr-xr-x 334 root root 12288 Sep 10 13:56 share
=
u

|drwxrwsr-x 38 root src 4096 Feb 1 88:05 src
lquest-s3zaih@scallywag:~/Picturess ls -la

‘total 2700

|drwxr-xr-x 2 guest-s3Zaih guest-s3zaih 140 Feb 21 10:40 .
[drwx- - - 20 guest-s3Zaih guest-s3zZaih 620 Feb 20 20:16 ..
-rW-rwer--

-rW-rwer--

guest-s3Zaih guest-s3Zaih 475075 Feb 20 20:00 si.png
guest-s3Zaih guest-s3Zaih 630408 19 s2.png
- rW-rW-r- - guest-s3Zaih guest-s3Zaih 483914 20:27 s3.png
- rW-rWer-- guest-s3Zaih guest-s3Zaih 573863 Feb 20 20:31 s4.png
-rw-rw-r-- 1 guest-s3Zaih guest-s3zaih 592434 Feb 21 10:40 s5.png
lguest-s3zaih@scallywag:~/Picturess [l

1
1
1
1

Compute: Q search

[® Home
Search: | gnome-terminal

Search results

gnom

OEBPS/graphics/3008OS_06_08.jpg
Tasks: 228 total,
Cpu(s): 1.8%us, 1.5%sy,
Mem 3791496k ool
Cvwop 5898236k ool
PID USER
2386 root 20
2752 guestl 20
3656 root 20
27546 root 20
1 root 20
2 root 2 0
3 root 20 0
5 root 0 -20
7 root 0 -20
8 root RT ©
9 root RT 0
10 root RT ©
12 root 0 -20
13 root 20 0
14 root RT ©
15 root 0 -20
16 root 0 -20
17 root 2 o0
18 root 0 -20
19 root 20 0
20 root 0 -20
21 root 0 -20
22 root 0 -20
23 root 2 o
24 root 0 -20
28 root 20 0

top - 14:29:59 up 29 days, 21:30, 12 users,
1 running, 227 sleeping

0.0% 96.1%

3472928k o

17764k

0 184m
0 850m
0 2355m
0 15256
0 67540

P P00 0O0O0O0O0C0OO0000

e L e - R R

1lm

912

=
©
@
®

PP 0C0C0O0P0C0C0C0000R

PR NI VIRT RES SHR S
29m 9120
23m
71m 7396
1300
8616

VLVVLVLLVLVLLLLLLLLLLLLLOLI LYK

R R R R g e Ry T]

PU

cooooooo0oP00o0P0OOOOOORROO R

Toad averag;
 stopped,

1.5%va,
318568k -
5880472k -

PP O0OOO0O0O0OOOOOOOOOOH OO

0.0%
462676k oo
2000036k

TIME+ COMMAND
42
.18
.10
.41
.02
61
.65
.00
.00
.98
.30
502
.00
19
.45
.00
.00
.00
.00
412
.00
.00
.00
.02
.00
.38

®38333333333hwonwroo0conRBNOs

0

.05, 0.10, 0.12
0 zombie

0.0% 0.0%

X
Terminal
java

top

systemd
kthreadd
ksoftirqd/0
kworker/0:0H
kworker/u:0H
migration/0
watchdog/0
migration/1
kworker/1:0H
ksoftirqd/1
watchdog/1
cpuset
Kkhelper
kdevtmpfs
netns
bdi-default
kintegrityd
kblockd
ata_sff
khubd

md

kswapdo

