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Preface

In addition to the traditional cellular wireless networks, in recent past, many other wireless
networks have gained widespread popularity, such as sensor networks, military networks, and
vehicular networks. In a sensor network, a large number of sensors are deployed in a geographical
area for monitoring physical parameters (temperature, rainfall), intrusion detection, animal census,
etc., while in a military network, heterogenous military hardware interconnects to form a network
in a battlefield, and vehicular networks are being deployed today for traffic management,
emergency evacuations, and efficient routing. For efficient scalability, these new wireless networks
are envisaged to be self-configurable with no centralized control, sometimes referred to as ad hoc
networks.

The decentralized mode of operation makes it easier to deploy these networks, however, that also
presents with several challenges, such as creating large amount of interference, large overheads for
finding optimal routes, complicated protocols for cooperation and coordination. Because of these
challenges, finding the performance limits, both in terms of the amount of information that can be
carried across the network and ensuring connectivity in the wireless network, is a very hard problem
and has remained unsolved in its full generality.

From an information-theoretic point of view, where we are interested in finding the maximum
amount of information that can be carried across the network, one of the major bottlenecks in
wireless network is the characterization of interference. To make use of the spatial separation
between nodes of the wireless network, multiple transmitters communicate at the same time,
creating interference at other receivers. The arbitrary topology of the network further compounds
the problem by directly affecting the signal interaction or interference profile. Thus, one of the
several trade-offs in wireless networks is the extent of spatial reuse viz-a-viz the interference
tolerance. Another important trade-off is the relation between the radio range (distance to which
each node can transmit) of sensor nodes and the connectivity of the wireless network. Small radio
range leads to isolated nodes, while larger radio ranges result in significant interference at the
neighboring receivers affecting connectivity.

Over the last decade and a half, these trade-offs have been addressed in a variety of ways, with
exact answers derived for random wireless networks, where nodes of the wireless network are
located uniformly at random in a given area of interest. The primary reason for assuming random
location for nodes is the applicability of rich mathematical tools from stochastic geometry,
percolation theory, etc. that provide significant mathematical foundation and allow derivation of
concrete results. This book ties up the different ideas introduced for understanding the performance
limits of random wireless networks and presents a complete overview on the advances made from
an information-theoretic (capacity limits) point of view.

In this book, we focus on two capacity metrics for random wireless networks, namely, the
transmission and the throughput capacity, that have been defined to capture the successful number

X1



Xii Preface

of bits that can be transported across the network. We present a comprehensive analysis of
transmission capacity and throughput capacity of random wireless networks. In addition, using the
tools from percolation theory, we also discuss the connectivity and percolation properties of
random wireless networks, which impact the routing and large-scale connectivity in wireless
networks. The book is presented in a cohesive and easy to follow manner, however, without losing
the mathematical rigor. Sufficient background and critical details are provided for the advanced
mathematical concepts required for solving these problems.

The book is targeted at graduate students looking for an easy and rigorous introduction to the
area of information/communication theory of random wireless networks. The book also quantifies
the effects of network layer protocols (e.g., automatic repeat requests (ARQs)), physical layer
technologies such as multiple antennas (MIMO), successive interference cancelation,
information-theoretic security, on the performance of wireless networks. The book is accessible to
anyone with a background in basic calculus, probability theory, and matrix theory.

The book starts with an introduction to the signal processing, information theory, and
communication theory fundamentals of a point-to-point wireless communication channel.
Specifically, a quick overview of the concept of Shannon capacity, outage formulation, basic
information-theoretic channels, basics of multiple antenna communication, etc. is provided that
lays sufficient background for the rest of the book.

The book is divided into two parts, the first part exclusively deals with single-hop wireless
networks, where each source—destination communicates directly with each other, while in the
second part, we focus only on the multi-hop wireless networks, where source—destination pairs are
out of each others’ communication range and use multiple other nodes (called relays) for
communication.

For the first part, we begin by deriving analytical expressions for the transmission capacity for
a single-hop model with various scheduling protocols such as ALOHA, CSMA, guard-zone based,
etc. Next, we discuss in detail the effect of using multiple antennas on the transmission capacity of a
random wireless network and derive the optimal role of multiple antennas. We then extend our setup
and present performance analysis of random wireless networks under a two-way communication
model that allows for bidirectional communication between two nodes. We close the first part of the
book by applying stochastic geometry tools to derive a tractable performance analysis of a cellular
wireless network in terms of critical measures such as connection probability, average rate, etc.
which is extremely useful for practicing engineers.

The second part of the book starts by extending the transmission capacity framework to a multi-
hop wireless network, where we derive the transmission capacity expression and find the optimal
value of several key parameters relevant to the multi-hop communication model. Then, we give a
brief introduction to percolation theory results for both the discrete and the continuum case. The
background on percolation theory sets up the platform for deriving several important results for
random wireless networks, such as finding the optimal radio range for connectivity, formation of
large connected clusters under different connection models, and most importantly for finding tight
scaling bounds on the throughput capacity.

We then present the seminal result of Gupta and Kumar which shows that the throughput capacity
of a random wireless network scales as square root of the number of nodes. Finally, we discuss the
concept of hierarchical cooperation in a wireless network which is used to show that the throughput
capacity can scale linearly with the number of nodes.

This book is an effort to present the several disparate ideas developed for deriving capacity of a
random wireless network in a unified framework. For effective understanding, extensive effort is
made to explain the physical interpretation of all results. As an attempt to reach out to a wider
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audience, effects of practical communication models, such as cellular networks, two-way
communication (downlink/uplink) feedback constraints, modern communication techniques (such
as multiple antenna nodes, interference cancelation and avoidance, cognitive radios), are also
analyzed and discussed in sufficient detail.

Most of the ideas/results presented in this book are not more than a decade old and have not yet
found a consolidated treatment. The presentation is kept short and lucid with sufficient detail and
rigor. For clarity, at instances, places simplified proofs of the original results are provided.
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Chapter 1

Introduction

1.1 Introduction

Wireless networks can be broadly classified into two categories: centralized and de-centralized.
A canonical example of a centralized network is a cellular network, where all operations are
controlled by basestations, for example, when should each user transmit or receive, thereby
avoiding simultaneous transmission (interference) by closely located nodes. Prominent examples of
de-centralized or ad hoc networks include sensor or military networks. Sensor network is deployed
in a large physical area to either monitor physical parameters, such as temperature, rainfall, and
animal census, or intrusion detection. In a military network, a large number of disparate military
equipment, e.g., battle tanks, helicopters, ground forces, is connected in a decentralized manner to
form a robust and high throughput network. Ad hoc networks are attractive because of their
scalability, self-configurability, robustness, etc.

Vehicular network is a more modern example of an ad hoc wireless network, where a large
number of sensors are deployed on the highways as well as mounted on vehicles that are used
for traffic management, congestion control, and quick accident information exchange. Many other
applications of ad hoc wireless networks are also envisaged such as deploying large number of
sensors in large building for helping fire fighters in case of fire emergency and in case of earthquakes.

The key feature that distinguishes centralized and ad hoc wireless networks is interference.
With centralized control, interference can be avoided in contrast to ad hoc networks, where there is
no mechanism of inhibiting multiple transmitters from being active simultaneously. Thus, ad hoc
networks give rise to complicated signal interaction at all receiver nodes. As compared to additive
noise, interference is structured, and treating interference as noise is known to be sub-optimal.
Thus, performance analysis of ad hoc wireless networks is far more complicated than centralized
wireless networks.

In this book, we are interested in studying the physical layer issues of ad hoc wireless networks,
such as finding the limits on the reliable rate of information transfer and ensuring connectivity among
all nodes of the network. Traditionally, the Shannon capacity has been used to characterize the
reliable rate of information transfer in communication systems. In a wireless network, however,
finding the Shannon capacity is challenging and has remained unsolved. The main impediment in
finding the Shannon capacity of wireless networks is the complicated nature of interference created
by multiple simultaneously active transmitters at each other’s receivers and network topology that
directly influences the signal interaction.



2 Random Wireless Networks

To get some meaningful insights to the fundamental limits of throughput in wireless networks,
alternate notions of capacity have been introduced and analyzed, such as transmission [1] and
throughput/transport [2] capacity, which are defined by relaxing the reliability constraints
compared to the Shannon capacity.

One key relaxation/assumption made for the purposes of analyzing these new capacity metrics
is that the nodes of the network are assumed to be distributed uniformly at random in the area of
interest, called the random wireless networks. The random node location assumption allows the use
of tools from stochastic geometry and percolation theory for theoretical capacity analysis. In Chapter
2, we argue that random node location assumption is not very limiting for a practical ad hoc network.

Major focus of this book is on finding the transmission and the throughput capacity of random
wireless networks. Through the transmission capacity formulation, we also quantify the effects of
using multiple antennas at each node, using two-way communication between source and
destination, effect of ARQ protocol, and using “smart” scheduling protocols in the random wireless
networks. From here on in this book, when we say wireless network, we mean a random wireless
network unless specified differently.

A necessary condition for finding the maximum rate of transmission or throughput between a
pair of nodes in a wireless network is to ensure that they are connected to each other or have a
connected path between each other, under a suitable definition of connection. Since any source can
have an arbitrary choice for its destination, essentially, we need network wide connectivity, that is,
each node pair should be reachable from every other node via connected paths. This condition is
simply called as connectivity of the wireless network. Connectivity in a wireless network depends
on the density of nodes, radio (transmission) range of any node, topology of the network, connection
model between nodes, etc. In this book, we present relevant results from the percolation theory and
then describe their application in finding the network parameters that ensure connectivity in wireless
networks. Using percolation theory, we also study the size of the largest connected component in
wireless networks and find conditions when the size of the largest connected component is a non
vanishing fraction of the total number of nodes, which implies approximate connectivity.

The book is divided into two parts, first part exclusively deals with a single-hop model for
wireless networks, where each source has a destination at a fixed distance from it and transmits its
information directly to its destination without the help of any other node in the network. We define
the notion of transmission capacity for the single-hop model and derive it for single antenna nodes,
multiple antenna nodes, with scheduling protocols, and under two-way communication scenarios.
The first part of the book also includes the performance analysis of cellular wireless network
techniques using tools from stochastic geometry that are developed in the earlier chapters of the
first part.

In the second part, we deal with the more relevant model of multi-hop communication for a
wireless network and define two notions of capacity, namely the delay normalized transmission
capacity and the throughput capacity and present their analysis. In addition, in the second part, we
also study the connectivity and percolation properties of a multi-hop wireless network under the
signal-to-noise-plus-interfence ratio (SINR) model.

This chapter sets up the background for studying wireless networks from a physical layer point
of view. We begin by describing the basics of point-to-point communication, where a single
transmitter is interested in communicating with a single receiver. To keep the discussion general,
we consider the case when each node is equipped with multiple antennas. We first discuss the role
of multiple antennas in improving the error-probability performance as a function of number of
transmit and receive antennas with the optimal maximum likelihood (ML) decoder. We then state
some difficulties in using the optimal maximum likelihood decoder, such as an exponential
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complexity, and present the more popular sub-optimal decoders such as zero-forcing decoder that
have linear decoding complexity. We also discuss the error rate performance degradation while
using the sub-optimal zero-forcing decoder.

Next, we define the notion of Shannon capacity and present results on the Shannon capacity of
the point-to-point communication channel with multi-antenna equipped nodes. We show that the
Shannon capacity scales linearly with the minimum of the number of transmit and receive
antennas. We next present the outage formulation for characterizing capacity (called outage
capacity) in non-ergodic channels, for which the Shannon capacity is zero. The non-ergodic
channel is of interest since the popular slow-fading channel model of wireless signal propagation,
where channel coefficients remain constant for sufficient amount of time, falls in the class of
non-ergodic channels. The outage formulation also helps in defining the transmission capacity of
wireless networks.

Next, we describe the received signal model at any node of a wireless network, where multiple
transmitters are active at the same time. Using examples of some basic building blocks of a
wireless network, we discuss some of the difficulties in finding the Shannon capacity of a wireless
network. We then motivate the definitions of alternate capacity metrics, such as transmission
capacity and throughput capacity, which are defined under a relaxed reliability constraint compared
to the Shannon capacity.

We end this chapter by presenting some details on studying connectivity in wireless networks
under various link connection models.

1.2 Point-to-Point Wireless Signal Propagation Model

Consider a wireless communication channel between a single transmitter T equipped with Ny
antennas and a single receiver Rg with N, antennas. Let the distance between Tg and Rg be d, then
the received signal at Rp at time t is given by

r__
p <t

yitj=d =2 N Hmx[t  m]+w[t]; (1.1)
t

m=0

where M is the number of distinct multiple fading paths between the transmitter and the receiver,
d 72 is the distance-based path-loss function, is the path-loss exponent that is typically in the
range (2;4), H¢ 2 CN» N js the channel coefficient matrix at time t between the transmitter and the
receiver, where H(i; j) is the channel coefficient between the ith receive and jth transmit antenna.
The N¢ 1 transmit signal vector at time t is X[t] with unit power constraint, Efx[t]Yx[t]lg = 1, P
is the average transmitted power, and W[t] is additive white Gaussian noise vector with entries that
are independent and CN (0; 1) distributed.

Assumption 1.2.1 Throughout this book, we will use the simple distance-based path-loss function
ofd 72 that is valid in far-field, however, has a singularity in the near-field at d = 0.

Assumption 1.2.2 We will also always assume a flat fading channel, that is, no multi-path Hy = 0
for t = 0, for which the signal model (1.1) simplifies to

| g

P
— Hx + ; 1.2
Ny X+w (1.2)

y=d =
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where the entries of H are assumed to be independent and CN (0; 1) distributed to model a rich
scattering channel (Rayleigh fading). We also assume throughout this book that matrix H is perfectly
known at the receiver.

To decode the transmit signal X, the optimal decoder is the maximum a posteriori (MAP) decoder
that declares that signal to be transmitted which is the most likely signal X given the knowledge of
Y. Assuming an uniform distribution over the input signals, MAP decoding is equivalent to ML
decoding, where the decoded codeword maximizes the likelihood of y given X. Mathematically, ML
decoding solves the following optimization problem.

max P(yjx; H):

For the signal model (1.2), since each entry of W is independent and CN (0; 1) distributed,

q— q—
y d @2 PHx y d /2 Ppx ¥

. 1
P(yjx; H) = —exp ¢ Nt ;
which can be simplified to conclude that the ML decoder decodes vector X that solves

r—
max P(yjx; H) = minjjy d 2 injjz: (1.3)
X X Nt

Thus, the ML decoder decodes X, which is the closest codeword to the received signal Yy in terms
of the Euclidean distance. With ML decoding, all the components of vector X are decoded jointly,
thereby making the complexity exponential in the size of X which is N.

Assuming that the channel matrix H remains constant for T N¢ time slots, and if the
transmitter codes across T time slots to send codeword X; = [Xj[1]:::X;[T]], the probability of
decoding the codeword matrix Xj = [X;[1]:::X;[T]] instead of X; with an ML decoder is [3]

L
Y N
P(Xi ¥ Xj) kX Xj) p dvN.. (1.4)
k=1
where
div = mlg( frank(Xi Xj)(Xi Xj)yg (1.5)

and  (Xj Xj) are the non-zero eigenvalues of (X;  X;)(X;  Xj)Y. Thus, to minimize the
pairwise error probability (1.4), one has to maximize the minimum of the rank of the difference of
any two codeword matrices X; and Xj (1.5). Clearly, with T N¢, the maximum value of div is
N (since X; 2 CN¢ T: 8 i) and for achieving div = Ny, the codewords X;’s should be coded in
space and time; hence the codebook consisting of codewords X;’s is called a space—time block code
(STBC). STBCs with div = N¢ are called full-diversity achieving STBCs, and their error probability
is proportional to P N¢N~_Thus, with multiple transmit and receive antennas, the reliability of a
wireless channel can be improved exponentially with the increasing transmission power.

Even though ML decoding provides with the best error probability performance, its decoding
complexity is very high because of the joint decoding of all elements of transmitted vector X.
Several simple decoders with reduced decoding complexity are also known in literature, for
example, minimum mean square error (MMSE) decoder and zero forcing (ZF) decoder. ZF decoder
is specially attractive for its simple decoding rule and incurs linear decoding complexity in N¢ (the
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number of elements of X). We describe the ZF decoder in brief and present its error probability
performance. We will use the ZF decoder in Chapter 3 to analyze the effects of using multiple
antennas in a wireless network.

With ZF decoder, to decode stream X(*) of the transmitted vector

interference from all other streams X(j);j = 1;:::;° 1;°+1;:::; N¢. With this operation, from
(1.2), the resulting signal can be written as
| g
3 = P & &
y()=d = GarHOXO) +aw; (1.6)
8 ° = 1;::::N¢, where there is no inter-stream interference  from

can be decoded independently of each other using (1.6), thereby incurring linear decoding
complexity compared to the exponential decoding complexity of the ML decoder. This sub-optimal
receiver, however, has poor error probability performance because of correlating the noise
components in Y- for different * = 1;:::;N¢, and the error probability is proportional to
pPN- Ne+l 4] instead of P NtNr with the ML decoder.

We next discuss the alternative use of multiple antennas in improving the capacity of the point-
to-point communication channel. We first define the concept of Shannon capacity, a measure of
reliable throughput and show that Shannon capacity increases linearly with the minimum of the
number of transmit and receive antennas.

1.3 Shannon Capacity

Definition 1.3.1 The Shannon capacity C for a communication channel is defined as the largest
quantity such that for any rate R < C, reliable communication is possible. By reliable
communication, we mean that the probability of error can be driven down to zero with increasing
block length. Conversely, if the rate of transmission R C, the probability of error is lower
bounded by a constant.

Definition 1.3.2 Ler X[Nn] and y[N] be the input and output of a channel at time N, respectively, then
a channel is called a discrete memoryless channel (DMC), if given the most recent input, the output
is independent of all previous inputs and outputs, that is,

PCy[n]j x[1]; 2253 XNl y[A] o y[ne 1)) = P(y[n] j x[n])

forn = 1;2;3;::.. Thus, in a DMC, given the input at time N, the output at time N is independent
of all the past inputs and outputs.

C. E. Shannon, in his 1948 seminal paper [5], proved that the capacity of a DMC defined by P(yjX),
C = maxI(X;y); 1.7
maxi0Gy) (1.7)

where 1(X;y) is the mutual information between X and Yy [17]. This result is popularly known as
Shannon’s channel coding theorem.
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Specializing this result for thg, multiple antenna channel (13), when H is known at the receiver,
we have that I(X;yjH) = Ey logdet Iy, + I\%HQHV , and the Shannon capacity of the
multiple antenna channel is

P
C= max Ey logdet Iy + —HQHY ; 1.8
w@y N, H % N R (9
where Q = EfxxY( is the covariance matrix of the input signal X. The optimization in (1.8) depends
on whether the channel coefficient matrix H is known at the transmitter (referred to as CSIT) or not
(called CSIR). With CSIT, the Shannon capacity [7] is

8 o
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C=En _ log ( k(H)" _;
- k=1 ?

where is the Lagrange multiplier satisfying the power constraint
x Lo
( ki Xj) )" =P
K

and  (H) is the kth eigenvalue of HHY indexed in the decreasing order.

On the other hand, with CSIR, when transmitter has no information about H, the Shannon
capacity [7] is

C=FEy logdet Iy, + P HHY
; Ny

Thus for large signal power P, with CSIT or CSIR, by using multiple antennas at both the
transmitter and the receiver, the channel capacity grows linearly with minfN¢; Nyg. The
min fN¢; Ng factor is generally referred to as spatial degrees of freedom.

Next, we look at an alternate notion of capacity that is useful for non-ergodic channels for which
Shannon capacity is zero.

1.4 Outage Capacity

The Shannon capacity formulation is useful for an ergodic multiple antenna fading channel, where in
either each time slot or after a block of T time slots, an independent channel realization of H is drawn
from a given distribution. T is generally referred to as the coherence time of the wireless channel.
An ergodic model is valid for fast-fading case, where the fading channel coefficients change fast
and the communication duration is long enough to get averaging over multiple independent blocks.
Another model of interest is the non-ergodic or the slow-fading channel model, where the channel
coefficients vary very slowly. To be specific, with the slow-fading model, it is assumed that at the
start of the transmission, an independent realization of the channel matrix is drawn from any given
distribution, but then is held fixed for the total communication duration. This model is well suited
for low mobility wireless channels requiring short duration communication, where the coherence
time is large enough compared to the total transmission time.

It is easy to see that the Shannon capacity of any non-ergodic channel is zero, because with
increasing block length no averaging is available, and the error probability is lower bounded by
a constant for any non-zero rate of transmission. To have a meaningful definition of capacity for
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the non-ergodic channel, concept of outage capacity was introduced in [7], which is described as
follows. Let B bits/sec/Hz be the desired rate of communication. Then channel outage at rate B
is defined to be the event that the mutual information is less than B, and the outage probability is
defined as

Pout(B) = P(I(x;y) < B)):

The outage capacity Cout( ) is defined to be the maximum rate of transmission B for which the
outage probability is below a certain threshold , that is,

Cout( ) = b MaX B:
out

The outage capacity can be interpreted as the maximum possible rate for which there exists a code
whose probability of error can be made arbitrarily small for all but a set of H, whose total probability
is less than . Thus, in essence, outage capacity is the maximum rate which is guaranteed with
success probability of at least (1 ).

The outage capacity formulation naturally extends to a wireless network and will be used to
define a throughput metric for a wireless network called the transmission capacity in Chapter 2.

For the multiple antenna channel (1.2), with an ML decoder, the outage probability can be
simplified to obtain

P
Pout(B) = inf P logdet In.+—HQHY <B ;
ou(B) QQ 0itr(@) N, g N N Q

where Q is the covariance matrix of the transmitted vector X.

For the most popular Rayleigh channel fading model, where each entry of the channel matrix
H is i.i.d. CN (0; 1) distributed, the distribution of the maximum mutual information expression
log det(l + HHY) is unknown. Consequently, finding the outage capacity of the multiple antenna
channel has remained unsolved. The mutual information expression can be significantly simplified if
instead of an ML decoder, we use a ZF decoder, where different data streams sent by the transmitter
are decoupled before decoding. From [4] for (1.6), with N¢ independent data streams, and assuming
that each data stream is required to have rate B, and outage probability constraint , the outage
capacity of a N¢  Ny; Ny N¢ multiple antenna channel with ZF decoder is

CcZF ()= max N¢B; 1.9
out ()= g max gy Ne (19)

where jgj? is the signal power after zero forcing other Ny 1 signal components and hence jgj?
2(2(Ny  Ng¢ + 1)). Thus, the outage capacity of the multiple antenna channel with ZF decoder
can be found by using the CDF of a 2 distributed random variable with N~ N¢ + 1 degrees of
freedom.
After discussing the point-to-point communication scenario, we next look at the signal
interactions in a wireless network, which is of primary interest in this book.

1.5 Wireless Network Signal Model

Consider a wireless network with K nodes, where the nth node’s location is denoted by Tp,. We
assume that each node has N antennas for transmission and reception. The received signal at the
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mth node is

Ym = GpymHmmXm + Lid, , HkmXk + Wn; (1.10)
k=1;ké&m

where X, is the transmitted signal from transmitter Ty, dkm and Hygm 2 CN N are the distance
and channel coefficient matrix between the kth transmitter and the mth receiver node, respectively,
1k is the indicator function that represents whether kth node is active/transmitting, and Wy, is the
AWGN vector. We will assume throughout this book that each entry of Hyn, is i.i.d. and CN (0; 1)
distributed to model a Rayleigh fading channel. Scheduling policy of transmitter k defines the
indicator function 1k that critically determines the network performance, since it controls the
amount of interference seen at any receiver.

Remark 1.5.1 In a wireless network, the signal transmitted by the mth node (Xm) could be its own
signal or a signal that is being forwarded by it to facilitate communication between some other
source—destination pair, in which case X is function of the received signal in previous time slots.

In a wireless network, there are various source—destination configurations possible, for
example, a single node might be interested in communicating with a single node (unicast), few
nodes (broadcast), or all nodes (multicast), or two different nodes might be interested in
communicating with the same node, or a relay might be helping a single source—destination pair
communicate. A wireless network can essentially be broken down into four building block
channels that are listed as follows:

Interference channel: A canonical example of an interference channel is where there are two
source—destination pairs that are interested in receiving their own information and do not care
about the other pair’s data.

Relay channel: In its simplest form, in a relay channel, a single node (designated relay) helps a
single source—destination pair communicate. In more complex form, multiple relays can help
multiple source—destination pairs to communicate.

Broadcast channel: The simplest broadcast channel is where a single source wants to
communicate with two destinations, where the information content for the two destinations
has both common and private components. Extensions to multiple destinations are also
possible.

Multiple access channel: A multiple access channel is where multiple sources want to
communicate with a single destination at the same time.

1.5.1 Information Theoretic Limits of Wireless Networks

From an information theoretic point of view, one of the basic questions is to find the limit on reliable
rate of information transfer (Shannon capacity) in a wireless network. In comparison to point-to-
point communication, where the Shannon capacity is a scalar quantity, the Shannon capacity of a
wireless network is a region spanned by rate tuples corresponding to various source—destination
pairs that can be simultaneously supported, such that the error probability can be made arbitrarily
small for large block lengths.

Clearly, finding the Shannon capacity of the four basic building block channels discussed above
is a prerequisite for finding the Shannon capacity of a wireless network. Unfortunately, the Shannon
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capacity of the relay channel and the interference channel is unknown, precluding the possibility
of finding the Shannon capacity of a wireless network. Today, one of the biggest challenges (some
people call it the “holy grail”) in information theory is to find the Shannon capacity of a wireless
network. A simple upper bound on the Shannon capacity of the wireless network can be found using
the Fano’s inequality, called the cut-set bound; however, there is no known strategy with achievable
rates close to the upper bound.

Primary reason for the intractability of the Shannon capacity of the wireless network is the
strict reliability constraint that requires the error probability to be arbitrarily small for large block
lengths and complicated signal interaction resulting in interference, which is hard to charcterize.
In practice, however, if the SINR seen at the receiver is above a threshold, communication can be
deemed successful with sufficient reliability. This SINR model of successful transmission gives rise
to the concept of transmission capacity [1] and throughput capacity [2] that were introduced to
understand the fundamental limits on the overall throughout of the wireless network as a function of
the number of nodes.

Transmission capacity definition uses the concept of outage probability as a reliability metric.
Assuming that all the source—destination pairs are at a fixed distance from each other, the
transmission capacity is defined to be the maximum density of nodes per unit area such that the
outage probability at each node is below a threshold for a fixed rate of transmission by each node.
In essence, given a quality of service QoS constraint (rate of transmission and outage probability),
transmission capacity counts the maximum number of concurrently allowed transmissions in a
given area. In Chapter 2, we discuss the concept of transmission capacity in detail and derive it
using tools from stochastic geometry. We also quantify the effects of multiple antenna nodes,
interference cancelation, spectrum sharing on the transmission capacity and bi-directional
communication in Chapters 3 and 4. We also highlight the use of stochastic geometric tools to
analyze some important performance measures in cellular wireless network in Chapter 5, which are
hard to find otherwise.

The alternate notion of capacity, called the per-node throughput capacity for a random wireless
network with density n is defined to be t(n) bits/sec/Hz, if there is a spatial and temporal
scheduling strategy, such that each node can send t(n) bits/sec/Hz on average to its randomly
chosen destination with high probability. The network wide throughput capacity is obtained by
multiplying the density of nodes n with t(n). In Chapter 9, we will discuss the concept of
throughput capacity and derive the seminal result of [2], which showed that the petwork-wide
throughput capacity of a random wireless network with density n, scales as order © N under the
SINR model. The order = n scaling is specific to the SINR model and is not an information
theoretic limit. We next derive an information theoretic upper bound of order nlogn on the
throughput capacity and then show that a hierarchical cooperation strategy can achieve a
throughput capacity of order n by using multi-antenna transmission using distributed antennas of
different nodes in Chapter 9.

Both the throughput and transmission capacity yield the same scaling with respect to the number
of nodes of the wireless network. Because of the use of the outage probability framework, however,
quantifying the effects of advanced physical layer techniques, such as equipping nodes with multiple
antennas, using successive interference cancelation, and ARQ, on the transmission capacity is easier
than on throughput capacity.

An important distinction between the transmission and throughput capacity is in the averaging
of successful transmission event. The transmission capacity uses an outage probability constraint
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P(SINR < ) and counts the number of successful transmissions satisfying the outage
probability constraint. In contrast, in the throughput capacity definition, we are counting the
number of nodes that can simultaneously transmit so that the SINR (realization and not the
probability) for each pair of transmissions is above a threshold.

1.6 Connectivity in Wireless Networks

Global network connectivity is more or less a prerequisite for ensuring efficient operation of a
wireless network. For example, in a military network, where for obvious reasons, it is imperative to
have an active communication link between any pair of nodes. Similarly, in a sensor network,
fusion node needs to have a path from each of nodes for data collection and processing. Even
though connectivity is desirable, ensuring it is quite challenging, since even a single isolated node
breaks the connectivity of the network.

In addition to connectivity, efficient routing protocols that are robust to node failures/outages,
intelligent network management tools for transmission scheduling, smart application layer
protocols are equally important for a smooth operation of a wireless network. In this book,
however, we will restrict ourselves to studying the physical layer properties of the wireless network
such as connectivity and refer the reader to [8] for the discussion on higher layer issues such as
routing, link management, and scheduling etc.

Connectivity in a wireless network is defined for a variety of link connection models, for
example, the disc model, and the SINR model. With the disc connection model, two nodes within a
fixed distance are assumed to be connected. The motivation behind this model comes from the
radio range of each node—the distance to which each node’s signal can be received with sufficient
strength. The disc connection model, however, assumes that simultaneously active transmitters do
not interfere with each which is an idealization. A more realistic connection model is the SINR
model that allows multiple nodes to transmit at the same, where a link between two nodes exists if
the SINR between them is above a threshold. SINR model is far more complicated than the disc
model, since it gives rise to directed links in contrast to the disc model, and the existence of a link
between any pair of nodes depends on the formation of all other links.

Under any connection model, a wireless network can be naturally thought of a graph, where
an edge in the graph corresponds to a link in the wireless network. Because of this association,
graph theoretic tools, namely, percolation theory is used to study the connectivity properties of the
graph. In particular, questions like: what is the minimum radio range required to ensure connectivity
in a large wireless network and when does a connected component of unbounded size exists as a
function of the density of the nodes are answered using percolation theory. The event of formation
of an unbounded component is generally referred to as percolation and from a wireless network
perspective, percolation guarantees long-range communication possibility. Percolation theory is not
only useful for studying connectivity properties, but as we will see in Chapter 9, it is also useful in
deriving the throughput capacity of a wireless network.

In Chapter 7, we give a brief introduction to the basics of percolation theory that are required
for deriving the results presented in this book. In particular, we describe the basic ideas behind
main results in discrete percolation theory over square lattice and hexagonal face lattice, and study
some properties of the continuum percolation. In Chapters 7 and 8, we discuss in detail the
connectivity properties of the wireless network under the disc model and the SINR connection
models, respectively. For the disc model, we derive the critical radio range required for connectivity
as a function of the number of nodes. For the SINR model, we show that if nodes use multiple
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non-overlapping time slots/frequency bands that are of the order of the logarithm of the number of
nodes, connectivity of a wireless network is ensured.

As discussed above, percolation is a slightly weaker condition compared to connectivity and
only requires the formation of an unbounded connected cluster size. In general, for several network
parameters, percolation can be shown to exist with high probability even when connectivity cannot
be guaranteed. In Chapter 8, we study the percolation properties of the wireless network under the
SINR connection model, and information theoretically secure connection model in the presence of
eavesdroppers.
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Chapter 2

Transmission Capacity of ad hoc
Networks

2.1 Introduction

In the first part of this book, starting with this chapter, we focus on the single-hop model for wireless
networks, where each source has a destination at a fixed distance from it and each source transmits
information directly to its destination without the help of any other node in the network.

For the single-hop model, in this chapter, we begin by introducing the concept of transmission
capacity of wireless networks, which measures the largest number of simultaneously allowed
transmissions across space, satisfying a per-user outage probability constraint. To facilitate the
analysis of transmission capacity, we assume that the nodes of the wireless network are distributed
‘uniformly randomly’ in space as a Poisson point process (PPP). We first describe some
tools/results from stochastic geometry that are necessary for the transmission capacity analysis
with PPP-distributed nodes.

Using these tools/results from stochastic geometry, we then present an exact characterization of
the transmission capacity of a wireless network under the Rayleigh fading model, when each node
has a single antenna and uses an ALOHA protocol. The derived results reveal the dependence of
several important parameters on the transmission capacity, such as outage probability constraint,
path-loss exponent, rate of transmission per node, and ALOHA transmission probability. Using the
exact expression for the transmission capacity, we find the optimal transmission probability for the
ALOHA protocol that maximizes the transmission capacity. For the path-loss model, where
the effects of multi-path fading are ignored, we also present a lower and upper bound on the
transmission capacity that are tight in the parameters of interest. The technique used in finding the
lower and upper bound has wider ramifications for cases where exact expressions on the
transmission capacity cannot be found.

We then present a surprising result that even when each node transmits independently using an
ALOHA protocol in a wireless network with PPP-distributed node locations, the interference
received from all nodes at any point in space has spatial as well as temporal correlation. The
inherent-shared randomness arising out of PPP distribution on the location of nodes gives rise to
this correlation. Temporal correlation impacts the performance of ARQ-type protocols, and the

12
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results presented in this chapter help in analyzing the performance of ARQ-type protocols in
wireless networks in Chapter 6.

Finally, we consider guard-zone-based and collision sense multiple access (CSMA) scheduling
protocols that are smarter than ALOHA protocol in choosing which transmitters should be active
simultaneously to maximize the transmission capacity. With the guard-zone-based strategy, only
those nodes that are at a distance greater than a threshold from any receiver are allowed to transmit,
thus restricting the interference seen by any receiver. With the CSMA protocol, each node
measures the channel and transmits depending on a function of the channel measurement.
Guard-zone-based strategy or CSMA protocol, however, does not lend itself to exact analysis
because of correlations across different node transmissions, and we present only an approximate
characterization of its performance that is known to be accurate by extensive simulations.

2.2 Transmission Capacity Formulation

‘We begin by defining a homogenous PPP as follows, which will be used to model the location of the
nodes of the wireless network.

Definition 2.2.1 For compact sets A R?;B  R?, with finite area (A) < 1; (B) < A, a
homogenous PPP  with density is a random point process with

k
P (#(A)=k) = #e * 2.1)
and
P (#A) =Kk #B)=m) =P (#A) =Kk)P (#B)=m) 2.2)
for AN B = . The specific case of A containing no nodes K = 0 is called the void probability of
the PPP,
P (#A)=0)=e W (2.3)

The first condition (2.1) requires that the number of points of a PPP lying in a finite region is a
Poisson random variable with mean times the area of the region, where is the density or the
expected number of points of PPP in an unit area. The second condition (2.2) states that the number
of points in non-overlapping regions should be independent.

Consider the following example that shows the correspondence between PPP-distributed node
locations and nodes that are located uniformly randomly in a given area of interest.

Example 2.2.2 Let N nodes be distributed uniformly in region A with area (A). Then the

probability that there are K nodes in region B A is binomial with parameters n;, % . Taking

the limit in the number of nodes N ¥ 1, while fixing thedensity of nodes % = , the probability
that there are K nodes in region B is Poisson distributed with ~ (B).

To understand the fundamental throughput limits (capacity) of a wireless network, we model
the location of nodes of a wireless network to be distributed according to a PPP. The PPP
assumption corresponds to having nodes distributed uniformly random in a given area of interest.
Even though this is not entirely accurate, assuming that nodes are distributed uniformly randomly
is reasonable for some of the main examples of wireless networks such as sensor networks, where
sensors are thrown randomly in a given area, and military or vehicular networks, where nodes are
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mobile and their locations are close to being symmetrically distributed across the network. The
uniformly distributed node locations assumption serves as a reasonable approximation to a realistic
wireless network scenario as well as allows analytical tractability.

To be specific, we consider a wireless network located in R? with the location of nodes
distributed as a homogenous PPP with density , that is, the expected number of nodes per unit
areais . A PPP is characterized by two properties: the probability of the number of nodes in any
area A with Lebesgue measure (A) is Poisson distributed with parameter ~ (A) and the number
of nodes lying in non-overlapping areas are independent.

To avoid the overload of notation, whenever required, we let T, and R, denote both the node
and the location of the nth transmitter and receiver, respectively. Let 1 = fTg be the transmitter
location PPP process and r = fRRpg be the receiver location process. We assume that the receiver
Rn corresponding to the transmitter T, is at a fixed distance d away in a random orientation. This
assumption is not really binding but made for purposes of simple exposition. Results could be
extended to random distances between transmitters and receivers by taking an expectation with
respect to the distance distribution.

In this chapter, we assume each transmitter and receiver to have a single antenna. Extension to
multiple antennas is the subject matter of Chapter 3. We start by considering the ALOHA protocol,
where each transmitter is active with probability p independently of all other transmitters. Since an
independent thinning of a PPP is also a PPP (Proposition 2.3.2), the active set of nodes of a wireless
network with the ALOHA protocol is also a PPP, allowing analytical tractability. More sophisticated
scheduling policies provide better performance; however, they entail correlation among different
transmitters breaking the PPP assumption on the transmitter locations leading to a more complicated
analysis. We consider two such protocols in Sections 2.8.1 and 2.8.2.

Under this ALOHA protocol model, the received signal at receiver Ry, is

P < p

Yn = Pd :Zhnan + Edmnzzlmhmnxm +w; (24

m:T,,2 rnfT,g

where Xp, is the signal transmitted from transmitter Ty, with power P, dmp and hyn are the distance
and the channel coefficient between T, and receiver Ry, respectively, 1, is an indicator function
that represents if T, is active or not, and W is the additive white Gaussian noise (AWGN) with
zero mean and unit variance. With the ALOHA protocol, 1, = 1 with probability p and 0 with
probability 1 p. In (2.4), Pd,,,,jhmnj? is the interference power of transmitter T, at receiver R,
and >

= P dmnihmni® (2.5)

m:T,,2 onfT,g

is the total interference power seen at Rg.

As stated in Assumption 1.2.1, throughout this book, we consider the path-loss function to be
d forease of exposition. Most of the analysis presented in this book is applicable for more general
path-loss functions such as ﬁ, which compared to d  model does not have a singularity at 0.
Thed  path-loss function models the far field communication fairly well but results in unbounded
signal power at extremely close distances.

From (2.4), the signal-to-interference-plus-noise ratio (SINR) at receiver Ry, is

Pd  jhnnj? _
m:T,,2 rnfT,g Pdmn]—mjhmnj2 +1’

SINR, = P 2.6)



Transmission Capacity of ad hoc Networks 15

and the outage probability P/}, (B) at receiver Ry, is defined to be the event that the SINR is below
a threshold (B) that is a function of rate of transmission B bits/sec/Hz,

Poe(B) =P(SINR, ): 2.7

Remark 2.2.3 With PPP-distributed transmitter locations, the SINR is identically distributed for all
receivers; hence, we drop the index n from SINR definition (2.6) and outage probability definition
(2.7) and represent it as SINR and Poyt(B), respectively.

With mutual information to be equal to log(1 + SINR), for B bits/sec/Hz transmission rate,
(B) = 2B 1. For ease of notation, we just write in place of (B). We consider the quality of
service requirement as the constraint on the outage probability. In particular, we assume an outage
probability constraint of with transmission rate B bits/sec/Hz. The outage probability constraint
of allows on average (1  )B bits/sec/Hz of successful transmission rate between any transmitter
receiver pair. Since the transmitter density is nodes/m?, on average, (1 )B  bits/sec/Hz/m?
can be transmitted in the wireless network. This is essentially the idea behind the concept of
transmission capacity defined in [8] that captures the spatial capacity of the network or the number
of simultaneously allowed transmissions under an outage probability constraint. The formal
definition of transmission capacity is as follows.

Definition 2.2.4 Assuming B bits/sec/Hz of transmission rate between any transmitter receiver pair,
and an outage probability constraint of at each receiver, let

?=supf :Pow(B) ; 8ng:

The transmission capacity of a wireless network with PPP-distributed nodes with density 7 is
defined as
C:= (1 )B bits=sec=Hz=m?:

Assumption 2.2.5 To keep the problem non-trivial, we assume that the power transmitted P by each
transmitter is sufficient to satisfy the outage probability constraint of in the absence of interference.
In the absence of interference,

SINR=SNR=Pd jhanj?:

Thus, if Nnn'’s are Rayleigh distributed, that is, jnnnj?  exp(L), then the outage probability without
interference (I = 0in (2.5)) is

Pout(B)=P(SNR  )=P d jhpnj? =1 exp —

Thus, we assume that power P is such that 1  exp %

To find the transmission capacity, we first need to derive an expression for the outage probability

Pout(B) in terms of and B. Then optimizing over the constraint Py (B) , we can obtain

?. To find the outage probability expression, we need tools from stochastic geometry, which are
detailed as follows.
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2.3 Basics of Stochastic Geometry

Proposition 2.3.1 A homogenous PPP is stationary, that is, if = TX1;X2;:::0is any homogenous
PPP with density , then x = TXy + X;Xp + X;:::0is also a homogenous PPP with density

Proof: Follows easily from Definition 2.2.1, since for a PPP, the probability for any number of
nodes to lie in any region only depends on its Lebesgue measure/area in R?. O

Proposition 2.3.2 [f the points of a homogenous PPP are independently retained with probability
p and removed with probability 1 p, the resulting process is also a homogenous PPP with density
p. This is called the random thinning property of a PPP.

Proof: Left as an excercise. U

Theorem 2.3.3 Slivnyak’s theorem: Let  be any homogenous PPP. Then conditioned on X 2,
P(f( )jx2 )=P(F( [ Txg)) forany function t.

Slivnyak’s theorem is an important result that allows us to compute probabilities of events
conditioned on the event that there is a point of  at location X, which is a zero probability event. It
essentially says that conditioned on the event that there is a point of  at location X, the distribution
is equivalent to a new process that is a union of  and an extra point at X.

The utility of Slivnyak’s theorem is illustrated by the following example:

Example 2.3.4 Let B R? be a compact set containing the origin 0. Let  be a PPP. and let
02 |, thatis, there is a point of the PPP at the origin. Then

P# (B)=kjo2 )=P# rrg(B)=k)=P# (B)=k 1):

Note that without Slivnyak’s theorem, the same answer can be derived by conditioning on the event
that a point of  is in B(0; ) and lettingr ¥ 0.

Definition 2.3.5 Let G be the family of all non-negative, bounded measurable functions g : RY ¥ R
on RY whose support Tx 2 RY : g(xX) > 0g is bounded. Let F be the family of all functions
f=1 g;forg2G; 0 g 1 Then the probability-generating functional (PGF) for a point
process = TXnQ is defined as

C,

PGF(f)=E f(xn)

Xn 2
Theorem 2.3.6 For a homogenous PPP  with density , the PGF is given by
R
PGF(f)=exp ¢ T0O) dx.

Theorem 2.3.6 is very useful for deriving the outage probability in a PPP-distributed wireless
network by allowing us to compute the expectation of a product of functions over the entire PPP.
We will make use of Theorem 2.3.6 quite frequently in the book.

Theorem 2.3.7 Campbell’s theorem: For any measurable function ¥ : RY ¥ R and for a
homogenous PPP  with density

(X ) 7

E f(xn) = f(x) dx:
]Rd

n:x, 2
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Using Campbell’s Theorem, one can show that the interference received at the origin (or any
other point using stationarity) from all points of the PPP with the path-loss model of X s
unbounded for any  as follows.

F)
Example 2.38 Ler | = |, 5 X, jhnj? be the interference received at the origin from all
points of the PPP, where the fading gains jnnj? are i.i.d. with mean 1. Then from Campbell’s theorem

> D C >¢ ) 7
Eflg=E X, jhnj? =E X, = X dx; (2.8)

2
n:x,2 n:x,2 R

since Efjhnj?g = 1. Since the path-loss function X  has a singularity at 0, the expected
interference E ¥1Q is unbounded for any value of . However, if we can avoid interference coming
from a small disc of radius around the origin, B(0; ), that is, somehow inhibit all points of the
PPP within B(0; ), then Eflg will be finite. We will use this technique of inhibition to compute
the expected interference for finding meaningful bounds on the transmission capacity.

Definition 2.3.9 Marked Poisson Process: A marked PPP \, is obtained by attaching a mark mp,
to each point of Xn 2, where isa PPPand n = T(Xn;Mp) i Xn 2 ¢. Marks could represent
the power transmitted by point Xn, its colour, and shape of any other characteristic. The marks Mg,
belong to set M with distribution M, such that for any bounded set A R%, #( m(A M) < 1
almost surely, that is, the number of points of m lying in a bounded region is finite.

The next theorem allows us to make a correspondence between a marked PPP and a PPP defined
over RZ M.

Theorem 2.3.10 Marking theorem: The following statements are equivalent

a marked PPP \,, where if conditioned on the points ¥XnQ of the PPP , the marks mp, of
the marked PPP \y with marks in M, are independent, with probability distribution M on
M,

a PPPonR? M with measure (A B)= (A) M(B), where (A) isthe Lebesgue
measure of A.

The proofs of Theorems 2.3.3, 2.3.6, 2.3.7, and 2.3.10 can be found in [5].
We next present three examples to illustrate how Marking theorem is useful for analyzing PPP-
distributed ad hoc networks.

Example 2.3.11 Finding the distribution of the L™ strongest interferer in a PPP. Let  be a PPP

and let |, = X, jhnj? be the interference power of the N (unordered) transmitter Xn 2 at the

origin, where jhnj? are i.i.d. We want to find the distribution of the L™ largest interference power.
Let us define |, to be a mark corresponding to Xn 2  and consider the marked PPP as

M =FXn;In) 1 Xn2 @:

Note that |, 2 R* is independent given Xy, since jhnj? is independent. Thus, from the Marking
theorem, i is equivalent to a PPP on R?  R* with an appropriate density measure (B) on
subsets B of R? ™. Let us define

B(9) = f(Xn;In) : In > g9

to be the set of points Xn of  such that the interference they cause at the origin is more than some
threshold g. Note that B(Q) is the set of points lying in a subset of R> R™, and hence the
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number of points in B(Q) is Poisson distributed with mean equal to the density measure of the subset
corresponding to B(Q), that is,

(B@) = P jhj*=>g);
G L
= Ejhjz dx )
0;%x2RR?
@ Z (jhjz=g)/= )
- Ejhjz 2 xdx ;

0;x2R
Z 1Z (jhjZ:g)l/a

= 2 xdxfn(h)dh;
0 0;x2R

where we get the term 2 X in (a) by changing the integration from R? to RY. The cumulative
distribution function F\_(Q) of the L™ strongest interferer is equal to the probability that there are
less than or equal to L 1 points in B(Q).

Marking theorem can also be used to obtain many other interesting results as described in the
next two examples.

Example 2.3.12 Consider a random disc process on R? whose centers form a PPP with density

, and where for each point Xn 2  an independent random radius rn (mark) is selected with
distribution Fr(r) = P(R  r). From the Marking theorem, this process is equivalent to a PPP on
R?2  R™ with density measure (A [0; 1]) =  (A)Fr(r) for compact A R? andr > 0.

A disc B(X; r) contains the origin 0 if and only if (X; r) belongs to set S = T(X;r) : X 2 B(0;r)g,
that is, if X lies in the circle with center as origin and radius v. Since S is a subset of R?> R™*, the
number of points lying in S (also the number of discs containing the origin) are Poisson distributed
with mean that is equal to the density measure of S. From the Marking theorem the density measure
of S is 7 Z.

S) = Fr(dr)dx = (B(0;1))Fr(dr)dx = E( R?):
s 0

'Next, we present an application of the Marking theorem to prove the random thinning property of
the PPP (Proposition 2.3.2).

Example 2.3.13 Random Thinning: With each point Xn of a PPP on R? associate a mark mp, 2
T0; 19 with P(mp, = 1) = p independently of all other points Xm; M & n. Then from the Marking
theorem, this marked PPP is equivalent to a PPP on RZ fO; 19, with density measure

A fyg)= AGp+1T A p)
for compact A R? andy 2 T0; 19. Define a subset
S=f(A;m,):m,=1g R?> f0;1g

that corresponds to the thinned version of the original PPP . The number of points in S is Poisson
distributed with density measure (S) =  (A)p.

'Example 2.3.12 is taken from the lecture notes of Gustavo De Veciana, ECE Department, the University of Texas at
Austin.
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Now with relevant background of stochastic geometry tools at hand, we proceed toward
analyzing the outage probability (2.7) and consequently the transmission capacity. Note that the
outage probability (2.7) is invariant to the choice of any transmitter receiver pair because of the
stationarity of the PPP. Thus, without any loss of generality, we consider the pair (To; Rp) for the
transmission capacity analysis. From (2.6), the SINR for the (To; Ro) pair is

Pd  jhooj?

SINR=P - - :
Pd01lmjhmoj? +1

m:T,,2 7nfTog

Remark 2.3.14 Since we have considered a typical transmitter receiver pair (Tg; Ro), to derive the
outage probability P(SINR ), we need to know the distribution of interference | received by R,
where > - )
I = Pd01mjhmoj
m:T,,2 pnfTog

conditioned on a transmitter being located at Ty.

From Slivnyak’s theorem (Theorem 2.3.3), we know that conditioned on the event that there is a
transmitter at To, the equivalent point process is 9— = 1 [ fTo0. Thus, now working with 9,-,
for communication between transmitter Tg and receiver Ro, all transmitters belonging to

(T’nﬂi@g = 1 are interferers. Thus, the conditional interference seen at the receiver Rq is
19:=" 1 5 Pdnolmihmoj®
Therefore, the conditional distribution of interference 1° seen at receiver Rg is the sum of
interferences from all points of the homogenous PPP with density , which is also called as the

shot-noise process [11]. Thus, the conditional outage probability Pout(B) is equal to
1

"
PSINR ) = P P Pd  jhooj — To is a transmitter
m:T,,2 7nfTog I:)dmolmlhmoll +1
. _2 =
= P P Pd  jhooj ; 29

mT,2 P dmolmiNmoj? +1

where in the last step, we have replaced T with  that is also a PPP with density to avoid
confusion whether it contains Tg or not.

Now we are ready to derive a closed form expression for the outage probability, and consequently
the transmission capacity, as described in the next section.

2.4 Rayleigh Fading Model

In this section, we consider the received signal model of (2.4), when the fading channel magnitudes
hnm are i.i.d. exponentially distributed (Rayleigh fading) across different users n; m. Rayleigh
fading is the most popular fading model for analyzing wireless communication systems and
represents the scenario of richly scattered fading environment. In Section 2.5, we will consider just
the path-loss model with no fading, that is, hpmm = 1, which models the line-of-sight
communication, and find tight bounds on the transmission capacity.
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2.4.1 Derivation of Transmission Capacity

Theorem 2.4.1 The outage probability at a typical receiver Rg with PPP-distributed transmitter
locations with density s

Pout(B) =1 exp dT exp  pc «d? ;

2 2
where ¢ = 2 @ 2 4 () is the Gamma function. Hence, under an outage probability

constraint of , the transmission capacity is

In(1 dz
( 2) P_(1 )B bits=sec=Hz=m?
c «d?

C=

Remark 2.4.2 Recall from Assumption 2.2.5, In(1 ) > %. Thus, the transmission capacity
is always non-negative.

Proof: From the outage probability definition (2.7) and conditional SINR distribution with a
transmitter located at Tg (2.9),

Pd  jhooj?
Tz P Imdmojhmoj® +1

C | 1)

P P

Pout(B)

X
@1 E exp % Plmdpoinmo® +1
T2
o L))
d > L
= 1 exp -5 E exp d I mdmoihmoj ;
m:T,,2

where (@) follows by taking the expectation with respect to jhgoj?, where jhooj? exp(1). It
remains to take expectation with respect to jnmoj? exp(1), and ALOHA protocol’s indicator
variable 1, that is 1 with probability p and 0 otherwise. We first take the expectation with respect
to jhmoj? that are i.i.d. 8 m, and obtain

d Cv 1 ?

— E

P miT 2 1+1nd dyg

Pout(B) = 1 exp

Now we take the expectation with respect to the ALOHA protocol indicator function 1. Note
that
1 Im

1+1md doy 1+d dog

+1 14

Thus,

1 _ p
1+1md x  1+d dy

+1 p (2.10)
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Hence,
C D
® d Y p .
Pot(B) = 1 exp — E T+d x ‘"1 p
X2
© d z p
C
=1 — 1 @ —+1 -
exp 5 exp . 1+d x p dx ;
= 1 ex d— ex ‘ lDdixdx ;
- P P wl+d X ’
Z
_ d T pd x _
= 1 exp -5 exp 2 . 1+dixxdx ;
(d) d 2 2 .
= 1 exp 5 P pc =d® ;

where (b) follows by replacing the distance of the mth interferer dmg by X, (¢) follows by using the
probability-generating function of the PPP (Theorem 2.3.6), and finally in (d) ¢ = 2 Had
and is the Gamma function. The transmission capacity expression follows easily by using the
outage probability constraint of Poyt(B) . O

In Theorem 2.4.1, we derived the exact expression for the transmission capacity using the
probability-generating functional of the PPP. The probability-generating functional allowed us to
compute the expectation of a product of functions over the entire PPP. Also, the fact that the
channel coefficients are Rayleigh distribution was instrumental in allowing us to derive the closed
form distribution wusing the probability-generating functional. Instead of using the
probability-generating functional, an alternate way to compute an exact expression for the
transmission capacity is via the use of the Laplace transform of the shot-noise process as described
in [11].

The derived expression reveals the exact dependence of critical parameters such as the outage
probability constraint , rate B, and distance d between transmitter and receiver on the transmission
capacity. To see how does the transmission capacity scales with the outage probability constraint |,
it is useful to look at the regime of small values of that corresponds to an extremely strict outage
probability constraint. For small values of , using the Taylor series expansion of log, the
transmission capacity is seen to be directly proportional to the outage probability constraint of . So
tightening the outage probability constraint leads to a linear fall in the transmission
capacity.

To reveal the interplay between distance d between any transmitter receiver pair and the
transmission capacity, we look at the interference limited regime, where the interference power at
any receiver is much larger than the AWGN power that is,

| = Pd0ihmoj? >> 1;
Tm2

and we can ignore the AWGN contribution safely without losing accuracy. Ignoring the AWGN
term that gives rise to d  term in the numerator of the transmission capacity expression in
Theorem 2.4.1, the transmission capacity scales as (d 2). Thus, Theorem 2.4.1 reveals an
interesting spatial packing relationship, where the transmission capacity can be interpreted as the
packing of as many simultaneous spatial transmissions where each transmission occupies an area
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of (d?). This packing relationship is similar to the pﬁ scaling of throughput capacity result of [2]
(discussed in Chapter 9), where n nodes are distributed uniformly in an unit area. Throughput
capacity measures the sum of the rate of successful transmissions achievable between all pairs of
nodes simultaneously with high probability, where source destination pairs are randomly chosen. In
this section’s model, n corresponds to the density and each communication happens over a fixed
distance d, while in the throughput capacity model, the expected distance between each source
destination pair is a constant. Thus, the transport capacity, that is, the capacity multiplied with the
distance is same for the transmission capacity '5nd throughput capacity metric, since from TE)eorem
24.1, / d%, and transport capacity is d = n, similar to the transport capacity of order = n.

After deriving the transmission capacity with the Rayleigh fading model, next, we consider the
path-loss model, where the multi-path fading component is ignored. At first, this might appear futile,
and to make it appear even more ridiculous, we will only obtain bounds on the transmission in
contrast to an exact expression. The real advantage of the presented bounding techniques is that they
are extremely useful in analyzing the transmission capacity of many advanced signal processing
techniques, where exact expressions for transmission capacity cannot be found.

2.5 Path-Loss Model

In this section, we consider a slightly restrictive path-loss model, that does not account for multi-path
fading and where the received signal at a receiver Ry, is given by
_Ps, = > Ps . = :
yn= Pd Xn + Pdmn “Xm +W; 2.11)
m:T,,2 rnfT,g

where compared to (2.4), hnm = 1; 8; n; m, and we have absorbed the ALOHA parameter 1, into
the density of the PPP 1 which is now equaltop (Proposition 2.3.2). Generally, with a simplified
model, the analysis becomes easier. Finding an exact expression for the transmission capacity is
one exception, where it is known only for the Rayleigh fading model, and not for the path-loss
model. Tight lower and upper bounds on the transmission capacity [1] are, however, known with the
path-loss model, and described in this section.

From (2.11), the SINR at receiver Ry, is

Pd

SINR = P :
m:T,,2 7nfT,g Pdmnlm +1

2.12)

As before, we consider a typical transmitter receiver pair (Tp; Ro) and similar to (2.9), the outage
probability conditioned on the event that there is a transmitter at Ty is given by

Pd
Paut(B) = P P Pd 1 To2 1 ;
m:T,,2 nfT,g mn
@ P P Pd :
mT,.2 r Pdmn +1
® p, 9 % ; (2.13)

where (@) followsggom the Slivnyak’s Theorem, and (b) follows by defining the total interference

from t,asl:= | 5 dmn.
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2.5.1 Upper Bound on the Transmission Capacity

Theorem 2.5.1 The transmission capacity with the path-loss model is upper bounded by
Cw=—- a(l )B+ 2 pits=sec=Hz=m?;

d @

T+

as 1 0, where =

Proof: Let = 9~
inB(Ro; )is .Thus, by using the definition of in (2.13),itis clear that #B(Ro; ) >0
is sufficient to cause outage at Ry, since | >
To lower bound the outage probability (upper bound the transmission capacity), we assume that
. . . . . . 1
there is at least one transmitter from T in the disc with radius = centered at Rg. Consequently,
the total interference | > , and the outage is guaranteed. Thus, Pout(B) P #(B(Ro; é))

> 0). From the void probability of the PPP, we know that

%. Then the interference power received at Rg from a transmitter Ty, located

N

P #(B(Ry;, =))>0 =1 exp

With the given outage probability constraint of Py (B) , we find an upper bound on the largest
permissible tobe (= In(1 )% &.Expanding, we get
2 2.
ub = — @ + : (2.14)

Corresponding upper bound on the transmission capacity follows immediately by noting that
Cw = w( )B. U

Keeping ALOHA probability p separately in (2.13), we get yp = - :+ 2 and the upper
bound on the transmission capacity identical to (2.14), since Cyp =p w(l )B.

2.5.2 Lower Bound on the Transmission Capacity
Theorem 2.5.2 The transmission capacity with the path-loss model is lower bounded by

Cph= 1 E - %(l )B + 2

bits=sec=Hz=m?:

Proof: Finding this lower bound is slightly more involved than the upper bound. Consider the typical
receiver Rg, for which we divide R? into two regions, near field B(Ro; s) and far field R>nB(Ry; S)
for some s that will be chosen later. Let us define two events

En = F#(B(Ro;s) > 0)g

which corresponds to having at least one transmitter in disc B(Rg; S), and
8 e]
< > =
- dmn -
"mTn2 7;T,m2R2nB(Ro;s)

EF:

which corresponds to the case that the interference received at R from transmitters lying outside of
B(Ry; s) is more than , and hence sufficient to cause outage.
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24
, then

1

Let E = EN [ Er. Then note that for s o
either there is a transmitter in B(Rg; S) or the interference from transmitters lying outside B(Ro; S)
. Thus, outage implies either of the two events Eyn or Eg is true. Hence, we have

o, if outage happens (2.13), that is, | >

is more than
Pout(B)  P(E):

Moreover, because of the PPP property, events En and Er are independent since they are defined
over non-overlapping regions. Thus, we bound P(E) to get a lower bound on the transmission

capacity.
P(E) = P(En LEr);
P(En) +P(Er) P(En)P(Er);

. It is sufficient for our purpose since

where we have used the independence of En and Eg.
1and P(EF) 2

Now we try to find the largest density for which P(E)
. We can write P(E) equivalently as P(En )

. Defining
n =supf JP(En) 10

P(E) implies Poyt(B)
such that { + » 12

and
F =supf jP(EF)  20;
we get the lower bound on the optimal density 7 to be
? sup finff N; 90 (2.15)
1 0,2 0;1+2 12
From (2.14), we know that
N=-S a4+ 2. (2.16)
For computing g, we make use of the Chebyeshev’s inequality and get
O 1
> var
P(Er) =P@ do,,> A r—t (2.17)
m:T,,2 7;T,»2R2nB(Ro;S) ( )
where o 1
X
var = Var @ Pd, A= 132(1 )
m:T,,2 7:;T.,,2R2nB(Ro;s)
and s o
< > =
Pdy,_ = 252 ;

m=E _
TmMiTm2 7 Tm2R2NB(Ro;:s) ?

computed directly using the Campbell’s theorem (Theorem 2.3.7).
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By equating the bound on P(EF) (2.17) to 2, and keeping the dominant terms, we get

2
F= #sz( 1) 2+ (3): (2.18)

From (2.15), we know that for a given i; 2 pair, the optimal solution satisfies n = g. Equating
N = F from (2.16) and (2.18), we get

1
1 2a 1
s= — (. D)=
2
Thus, for a given 1; » pair, by substituting for S, we get
1211 22
N= E=( DF ES] Y5 (2.19)
Moreover, for small outage probability constraint , o = 1+ (?) and to get the lower bound,
we need to solve,
max N
=1t 2
Using (2.19), the optimumis ; = 1 1 and 7 = —, and we get the required lower bound
(2.15)on 7 as
1 2 1 2
N= =1 — o— + () (2.20)
Required lower bound on the transmission capacity Cjp = (1 )B. O

The derived upper and lower bounds on the transmission capacity for the path-loss model have
the exact same scaling in terms of the parameters (that depends on d, and ) and (the outage
probability constraint), and only differ in constants. Thus, this technique of dividing the overall
interference into two regions and using simple void probability expressions and Chebyeshev’s
inequality is powerful enough to derive meaningful expressions for the transmission capacity.
These bounding techniques will come in handy when we analyze more complicated protocols and
techniques such as multiple antennas, and ARQ protocols, and so on.

Similar to the Rayleigh fading model, comparing the upper and lower bounds derived in
Theorems 2.5.1 and 2.5.2, using the definition of , it is clear that the transmission capacity is
inversely proportional to d?, where d is the distance between each transmitter and receiver. So
operationally, the transmission capacity exhibits the same spatial packing behaviour with or
without taking fading into account.

In Fig. 2.1, we plot the transmission capacity with respect to the outage probability constraint
for both the Rayleigh fading and path-loss models. For the path-loss model, we plot both the derived
upper and lower bounds in addition to the simulated performance. We see that the upper bound is
very close to the simulated performance. We can also see that there is some performance degradation
in the transmission capacity while including the multi-path fading that is Rayleigh distributed.

For both the Rayleigh fading and path-loss models, the transmission capacity expressions (in
Theorems 2.4.1, 2.5.1, and 2.5.2) are independent of the ALOHA probability of access p. This
happens since we have constrained the outage probability to be below a threshold , which in turn
gives an upper bound on the effective density of the PPP p, and the transmission capacity loses its
dependence on p. If we define the transmission capacity as the product of the density of the PPP and
the success probability of any node, which we call as goodput, then we can unravel the dependence
of p on network performance which is presented in the next section.
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Outage Probability Comparison of ALOHA and CSMA for Rayleigh fading with d=10m,
0=3, B = 2 bits/sec/Hz
107
T — T -

Outage Probability

Density 1

Figure 2.1: Transmission capacity with Rayleigh fading and path-loss model with ALOHA protocol.

2.6 Optimal ALOHA Transmission Probability

Let the network goodput of a wireless network be defined as
G= (1 Pout(B))B bits/sec/Hz/m?;

by accounting for concurrent transmissions per meters square at rate B bits/sec/Hz with outage
probability Poyt(B).
Then from Theorem 2.4.1 using the expression for Poyt(B), we have

G= pexp d? exp  pc ad? ; (2.21)

—2 & a3 : o 4o
where ¢ = ——==———==_Ignoring the AWGN contribution exp ~ =5— , we get
G= pexp pc ad? : (2.22)

Differentiating G with respect to p and equating it to 0, the optimal ALOHA access probability is

? — H . 1
p°=min 1, - , and
8 1 : 2 4
—< exp(l)c = d? if ¢ =d®>1
G = _ 2 (2.23)
- exp ¢ «d 0.W.

Thus, even without an outage probability constraint, we see that the2 goodput expression (2.23) is
independent of both  and p, similar to Theorem 2.4.1 whenever ¢ =d? > 1, since the product of



Transmission Capacity of ad hoc Networks 27

x107* Goodput for the Rayleigh fading with A= .001, d=10m, 0=3, B = 2 bits/sec/Hz
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Figure 2.2: Network goodput G with Rayleigh fading as a function of ALOHA access probability p.

the density and the optimal ALOHA probability p is a constant. This is a result of an underlying
fundamental limit on the maximum density of successful transmissions in a wireless network, which
in case of the ALOHA protocol is equal to p.

In Fig. 2.2, we plot the network goodput as a function of the ALOHA access probability p. As
derived, we can see that the optimal p = :63 for = 10 3withd = 10m, = 3forB =2
bits/sec/Hz transmission rate. After analyzing the transmission capacity of wireless network with
ALOHA protocol in detail, we next highlight a surprising feature of the ALOHA protocol of having
both spatial and temporal correlations in interference received at any point in space. With ALOHA
protocol, at each time slot, each node transmits independently of all other nodes, but the shared
randomness between node locations due to PPP assumption gives rise to counterintuitive correlations
across time and space. We capture this critical phenomenon in the next section, which will be useful
for analyzing the performance of ARQ-type protocols in Chapter 6.

2.7 Correlations with ALOHA Protocol

In this section, we show a counterintuitive result from [4] that shows the interference received at
any point in space in a PPP network is both temporally and spatially correlated while using the
ALOHA protocol. One would assume that given that the locations of nodes in a PPP network are
uniformly random in any given area, and with ALOHA protocol, each node transmits independently
across space and time, the interference received at different locations or time instants would be
independent; however, that is shown to be incorrect as follows.
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To be concrete, in a PPP-distributed wireless network with the ALOHA protocol, we fix the
transmitter locations drawn from a single realization of PPP, while at each time slot, each node
decides to transmit with probability p independently of all other nodes. Finally, the averaging is
taken with respect to the PPP. Thus, the shared randomness of transmitter locations gives rise to
spatial and temporal correlations.

Let the interference seen at location u 2 R? at time Kk be

>
lu(k) := Pg(x  u)1p(x; K)jhxu(K)i%;

X2 1

where g(:) be the path-loss function that only depends on the distance. Throughout this book, we
use g(X U) = jx uj .The indicator function 1,(X; K) means that the transmitter at X 2 T
transmits with probability p using the ALOHA protocol at time K.

The spatio-temporal correlation coefficient between 1, (k) and I, (*) is

Ef(lu(k) Eflu(k)g) (v(*) EFfI,(*)g)g
Var(lu(k))2Var(l, ()2

Efl,(K)1v()g  (Eflu(k)g)*

Efly(k)2g  (Eflu(k)g)?

corrgu(k; 1) =

(2.24)

since 1y(K) and 1,,(“) are identically distributed. We now compute the three expectations in (2.24)
using the Campbell’s theorem and second-order product density (correlation) of the PPP as
follows.

First the expected value of 1 (K), which is

Efly(k)g = Ef)o(k)g;

&3 o

= E Pa(x)1p(X; K)jhyo (K)j 5
g“ e}
<< X =

Qg PIO)Lp(x; k) _;
'sz ) z

Q v gedx; (2.25)
]RZ

where (&) follows since the distribution of I, (K) is invariant to location of u and 0 is the origin, (b)
follows since the jhyoj? is Rayleigh distributed with Efjhyoj?g = 1, and, finally, (c) follows from
the Campbell’s theorem for PPP.

Next, we derive the expression for second moment of the interference as follows.

Efly(k)’g = Eflo(k)’g; o
1

< X =

= E Pg(x)lp(X;k)jhxo(k)jz o

X2 T

C ¢ D
E P g% () 1p(X; K)jhxo(K)j*

X2 1
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8 9
< X - .2. .2:
+E _ Pg()9(y)1p(X; K)1p(y; K)ihxo (K)j“jhyo (K)J~ _;
T Xy2 rixEy ”
Z
= pEfh'g g2(x)dx;
Rz 7
+p? Efh’g * 2 g()g(y)dx dy; (2.26)
R2 R2

where the first term in the last equality follows from Campbell’s theorem (Theorem 2.3.7) for PPP,
and the second term from the fact that jhyoj® and jhyoj? are independent, and second-order product
density of the PPP [5] which states that

8 o
< > = Z 7
E _ FOOf(y) . = 2 f(X)F(y)dx dy:

T xy2 (K)ix&y

Finally, by exactly following the same procedure as above, the cross-correlation of the

interference is given by
z

Eflu()I()g = p? g(x u)g(x v)dx
R 7 ,
+p? 2 g()dx 2.27)
RZ

where we have used Efjhj?g = 1.
Thus, using (2.25), (2.26), and (2.27), the spatio-temporal correlation of the
interference from (2.24) is

R
g2 0 I V)dx
Efih’g . 6200 dx

corry.v(K; ) = P (2.28)

Forthe g(X u) =jx uj path-loss function, which we use throughout this book, we next
show that the spatial correlation coefficient is zero.

Example 2.7.1 For the special case of §(X) = X, the spatial correlation coeffigjent is zero. For
the lysi ! =1 _andl 0, si herwi dx = 1
purposes of analysis, we let ¢ (X) +x= and let ¥ 0O, since otherwise X  dX .

From (2.28), the spatial correlation coefficient with path-loss function ¢ (X) is

R

P g (X pU)g (x  V)dx
Efjhj*g 4. g>(Qdx

R

P e e e e v 0K
Efihj%y L, —L_dx

+x

corryv(k; ) =

Taking the limit as ¥ 0, it follows that lim wqcorry.(K; ©) = 0. This result is an artifact of
the path-loss model of X , where the nearest interferers are the dominant interferers. Thus, for
two distinct receivers, most of the interference comes from small discs around them that are non-
overlapping, and since the number of points of PPP lying in non-overlapping discs are independent,
the result follows.
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Thus, even though the interferences seen at different receivers are not independent, however; they
are uncorrelated. Consequently, assuming independence of interference for ease of analysis is not
too limiting.

Example 2.7.2 From (2.28), we can get the temporal correlation coefficient as a special case of
corry.y(K; ©) by specializing v = u as corr(k; ©) = Efjpm.

Clearly from (2.28), the temporal correlation coefficient is non-zero, and hence repeated
transmissions (SINR at different times) between a transmitter receiver pair are not independent.
Direct impact of this observation is encountered in the analysis of ARQ protocols, where repeated
transmission attempts are made till the packet is successfully received. Typically, for the ease of
exposition, SINRs at repeated attempts are assumed independent, which is inaccurate as shown in
the next example. We next present a simple example to derive the joint success probability at a
receiver from [4]. A more general exact derivation for ARQ protocols will be described in Chapter
6 under a maximum retransmission/delay constraint.

Example 2.7.3 We consider a receiver located at origin 0 and for simplicity drop the AWGN
contribution and define the success to be the event that

i i2
d_ihk)i® _

SINR(K) = =~ 5

Then

P(SINR(k) > ;SINR(*) > )

]P’A'h(k)jz>d lo(K) ;jh(‘)j20>d ()

(%) ]E exp daln(k) eXp dalo(‘)
n P N 3
= E exp 9 2 P90O1,0Kiho (K]
« P N ,0
exp 97 w2 POCOL06)IN()]
® (Y p 2)
1+d X P
x2 .
© z p 2 =
C
= eX 1 N | dx ,
P R2 1+d x p

where (@) follows from the fact that jh()j?; jh(K)j?>  exp(1) and are independent, (b) follows by
taking the expectation with respect to ALOHA (similar to (6.9)) and jhyo(K)j%;jhxo(9)j?
that are i.i.d.  exp(l), and finally (C) follows from the probability-generating functional of the
PPP (Theorem 2.3.6).

Solving for this integral we get

P(SINR(k) > ;SINR() > ) _
P(SINR(K) > )°

exp(? P* */d® 2 ese(3)) > g

Thus, link success probabilities are positively correlated. Hence, if the transmission between a
transmitter and a receiver is successful at a given instant, it is more likely to be successful again.
Thus, the analysis of ARQ-type strategies, where a packet is repeatedly sent until it is successfully
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received is complicated, since the probability of success or failure in successive slots is not
independent. Most works assume the independence and make an inaccurate prediction on the
performance of ARQ protocols. In Chapter 6, we will illustrate the exact performance of a ARQ
protocol in a wireless network.

Until now in this chapter we have concentrated on analyzing the performance of wireless network
when each transmitter uses an ALOHA protocol. However, clearly, one can choose the set of
simultaneously active transmitters better than the ALOHA protocol by considering received SINRs,
neighbor distance, and so on, to reduce interference and improve the transmission capacity. In the
next section, we present two such protocols and analyze their performance.

2.8 Transmission Capacity with Scheduling in Wireless
Networks

In a PPP network, the most significant contributor of interference at each receiver is its nearest
interferer. The expected interference from the nearest interferer is of the same order as the
expectation of the sum of the interference from all other interferers. With the ALOHA protocol,
each node transmits independently and there is no restriction on the set of simultaneously
transmitting nodes. Thus, the nearest interferer is active with a fixed probability and limits the
performance of the ALOHA protocol. To improve the outage probability at any receiver, thus there
is a case for inhibiting transmission from some of the nearest interferers. This in turn, however,
reduces the number of simultaneous transmissions (spatial capacity) in the network. Thus, an
efficient scheduling strategy(transmitter inhibition strategy) has to find which transmitters to turn
off such that the improvement in the outage probability compensates for the spatial capacity loss.

One such strategy is based on guard zones, where any transmitter within a distance of dg, from a
receiver is not allowed to transmit [6]. Other class of strategies includes various versions of CSMA,
where each trasnmitter measures the channel and decides to transmit depending on a function of
its measurement. Intuitively, both these strategies, should improve the transmission capacity with
respect to ALOHA; however, exactly quantifying the improvement is complicated analytically. The
challenge is that with the guard zone strategy or CSMA, the set of active transmitters is correlated
(not PPP anymore) and the distribution of interference seen at any receiver does not have a closed
form expression or known Laplace transform or probability-generating functionals. To overcome this
difficulty, typically, approximations are made on the interference distributions to get some analytical
tractability. In this section, we first discuss the guard-zone-based strategy, and then follow it up with
analyzing two variants of CSMA.

2.8.1 Guard Zone Strategy

Consider a PPP network  with density nodes per unit area as described in Section 2.2, where each
transmitter has a corresponding receiver at distance d. With a guard zone, only those transmitters
that are not within a distance of dg, from any receiver are allowed to transmit, see Fig. 2.3. For the
typical transmitter—receiver pair (To; Ro), where Ry is at the origin, let the active set of interferers
be denoted by g = T : Tm 2 nB(0;dg;)g. Then, the outage probability at receiver Ry is

1

Pd  jhoof?
Po(B)=P P Pé o) — : (2.29)
mT,2 4. mOJhmOJ +1
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Figure 2.3: Dots represent transmitters and squares represent receivers. Only those transmitters
(squares) are allowed to transmit that lie outside the discs of radius dg, centered at all the receivers.

Then with an outage probability constraint of , the maximum density of successful transmissions is
1 — .poz .
g =supf PGL(B) @

Since the distribution of interference lg, = Pm:TmZ . P d,0jNmoj? received at any receiver is not
known, deriving exact expression for the outage probability is not possible. To facilitate the analysis,
Iy, is assumed to follow a Gaussian distribution. Similar to the computation of mean and variance in
(2.17), the exact mean Mgy, and variance varg, of Iy, can be computed using the Campbell’s theorem
(Theorem 2.3.7) (proof is left as an excercise) as

2
mo—4ddg, (2.30)
9z 2 4 ’ .
d? d2(1 )
varg, = 27921 (2.31)

Thus, using the Gaussian distribution approximation on lg, with mean Mgy, and variance varg,,
we have that
1
Pd  jhooj?

P3(B
out(B) P doimoj2 + L

P P

mT,,2 4.

d* g

exp P oexp

~
Q
"o

f dv 1,.9.
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n o d2% 32var
b 4% 3 de mg2+#

= exp T exp ; (2.32)

Y
o

where (@) follows since jhgoj?  exp(1) and (b) follows from using the moment generating function
of the Gaussian distribution. Thus, (2.32) reveals how the outage probability decreases with the
increasing guard zone distance dgz, and we can get é by equating it to the outage probability
constraint .

The probability for any receiver to not have any transmitter in a disc of radius of dg, around
it is equal to the void probability of transmitter PPP in a disc of radius dgz, which is given
by exp a3 Thus, with the inhibition criterion of the guard-zone-based policy, the density of
the active transmitter process is Pa , where pa = exp dg- | Hence, the operational density of

transmittersis 2, = exp  Y9=. Note that this separate analysis of éz

oz and gz is not completely
accurate since they depend on each other; however, it acts as a reasonable approximation.

There is inherent tension between inhibition radius dg, and the transmission capacity;
increasing dgy, decreases the interference and the outage probablhty (increases l) but at the same
time decreases the number of active transmitters (decreases g) Note é is the maximum density
that can be supported given an outage probability constraint of , and considering only the
interference coming from outside the disc of radius dg,, under the guard-zone-based strategy.
Hence, we want to find the best dg, and  such that 2 g (density corresponding to inhibition) is
equal to ! g (corresponding to the outage probability constralnt) Equivalently, one can also write

the optlmlzatlon problem as

’(dgz) = max minf J,; 2,0 : (2.33)

Corresponding transmission capacity is  ?(dgz)(1  )B bits/sec/Hz/m?.

Problem (2.33) is a non-linear optimization problem that can be solved using
numerical computations. In Fig. 2.4, we plot the transmission capacity as a function of dg, for
outage probability constraint of 10 percent ( = :1). We can see that the transmission capacity
increases with dg, for dg, dgz and decreases thereafter, since the decrease in the number of
concurrent transmissions for dg; > d , overtakes the improvement in the outage probability. We
can also see that there is significant 1mprovement by employing a guard-zone-based inhibition
policy over uninhibited transmissions (dg; = 0).

An alternative to guard-zone-based scheduling strategy, is the CSMA protocol, where each
node monitors the channels and follows a contention resolution strategy. We discuss two versions
of CSMA protocols in the next section for wireless networks and analyze their performance.

2.8.2 CSMA
Channel Gain-Based

We consider the same signal model as in Section 2.2, where the location of transmitters Tp, is
assumed to follow a PPP  with density . Each transmitter T, is defined to be qualified to
transmit if its channel gain with its associated receiver Ry, jh,rmj2 exceeds a threshold p. Thus,
this protocol requires channel feedback from each Ry, to Tp,. Let

0=FTn2 :jhnnj® ng
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10 Transmission Capacity v/s dgZ for Rayleigh fading with € =.1, d=10m, 0=3, B = 2 bits/sec/Hz
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Figure 2.4: Transmission capacity with Rayleigh fading as a function of guard zone distance dg;.

denote the set of qualified nodes or contenders. Note that o is a randomly thinned version of
T, since jhpnj? are i.i.d., and therefore o is also a homogenous PPP with density p ,, where
P, =PGhani® ).
We define that two transmitters T, and T, contend with each other if the received interference
power they see from each other, jnpnmj?d , is greater than the CSMA threshold ¢, jhpmj?d >
¢- For a transmitter Ty, its contention neighborhood is the set of nodes that contend with it,

en(n)=FfTm2 g hmni®iTm Thi O

The inhibition module of the CSMA protocol allows only one of the transmitters from ¢cn(N) to
transmit at any time to suppress interference.

To decide which node of cn(n)  gets to transmit in a decentralized
manner, each node of ¢n(N) is equipped with a timer value clkp, which is a uniformly distributed
random variable between [0; 1]. Thus, the node with the minimum timer value transmits in each
slot, and if any node in N hears a transmission from node Tp«, it does not transmit in that entire
slot and resets its timer value. For each slot, the node n”? 2 ¢n(N) transmits at time clky+, where

? H .
N =argming.t > . (n)Clkn:

Remark 2.8.1 There are two modules in this CSMA protocol, the first that finds
qualified nodes that have sufficient channel gains to their respective receivers, and the second that
chooses one node among the set of qualified nodes to minimize interference. Allowing only
qualified nodes to contend increases the chance of success; however, it limits the number of
simultaneously spatial transmissions, thus the choice of n, (parameter controlling the
qualification) is critical. Similar tradeoff exists as a function of . that controls the size of the
neighborhood, since only one node in each neighborhood is allowed to transmit.
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Let En = 1fjngojz  ,iclks Ming, > cpo Clkag TEPTESEN the event that transmitter T, is qualified
and has the least timer in its neighborhood and gets to transmit. Then a typical transmitter Tg located
at the origin gets to transmit with the above CSMA protocol if Eg = 1. Thus, the probability that a
typical transmitter Tg transmits is pcsma = EFEqg. Note that events Fjhgoj? nhg and fclky
mMinT, > (n) ClKng are independent.

Next, we find the distribution of cardinality of ¢n(0) (the contention neighborhood set of
To located at origin). By definition, the set ¢n(0) consists of all nodes of @ that lie in a disc

1

B o i “ . Since o is a PPP with density p ,, the number of nodes of ¢ lying in

|-
21N

B o mip is Poisson distributed withmean p , E -5
Thus,
pcsma = p ,Efclkg Tmin0 clkngg;
m2 %
@ 1
= PLE /5y
! 1+#( Q)
(b) 1 exp PN
topuN
1 exp PN

N L
where (a) follows since Tg has the least timer among its #( ¢n(0)) neighbors, and (b) follows
since #( cn(n)) is Poisson distributed with mean p , N.

Next, we compute the outage probability for the typical transmitter receiver
pair (To; Ro). The set of active users 5 = fTm 2 o : Em = 19 and the interference received at
R from active users is >

Ig = dmojhmOjZ:
Tm?2 anﬂ-og

Hence, the outage probability is given by
Pout(B) =P jhooj” < d 1§ jhooj* > n :

Deriving the outage probability with this CSMA protocol is challenging since the set of active
transmitters is no longer a homogenous PPP, and there are correlations among the active node
locations.

To facilitate the analysis, following [7], we will approximate 1§ by the interference from a non-
homogenous PPP 1, with density p , h(x;p, ), which is a function of X > 0. The function
h(x;p , ) is the conditional probability that Ty at origin is active and in addition, there is another
active transmitter T, with E;; = 1 at a distance X from the origin, and where the density of qualified
nodes o isp , .The difference between a homogenous and a non-homogenous PPP is that in the
non-homogenous case, the density is not constant and depends on the location X 2 R?.

By using the non-homogenous PPP |, we are trying to model the inhibition induced by the
CSMA among transmitters of the PPP . Note that h(x;p , ) ¥ Oasx ¥ 0. Thus, the density of
PPP |, goes to zero for short distance X, and correspondingly there is large scale inhibition
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Figure 2.5: A pictorial description of PPP  j, in comparison to original process , where the density
increases with increasing distance from the origin.

induced by the CSMA protocol at distances close to origin where Tg is located, allowing only very
few nodes to transmit at the same time as Tg. On the other hand, as x ¥ a1,
h(x;p, ) ¥ P clkmy, ming, 2 m clkn for some Ty 2 @, since as X increases, the effect of
conditioning (having an active transmitter To at the origin) over the event that there is an active
transmitter at distance X from the origin diminishes. Eventually at X = 21, having an active
transmitter T at the origin has no effect on having an active transmitter at distance X from the
origin, leading to h(X;p , ) being equal to the unconditional probability of having an active node
among the qualified nodes, which is equal to P clky, mint, 2 m clkn for some Ty 2 .
Thus, at large distances X, the density of process p is equal to Pcsma having no inhibition effect
from the transmitter located at the origin.

Thus, as a function of distance X from the origin, PPP |, essentially models the inhibiting
nature of the CSMA with respect to the typical node at the origin, having increasing number of
active transmitters with increasing X. We illustrate the PPP  y, pictorially in Fig. 2.5.

The utility of this new process p, is that its Laplace transform is known to be

R4aRon h(z,pry, \zdoda

L nrmog() =exp 0 © EIEIOET (2.34)

where F(x;d; ) = (X2 +d? 2xrcos( )) 72 and d is the distance between each transmitter
receiver pair [7]. This can also be derived from first principles similar to Laplace transform of a
homogenous PPP.

Using (2.34), by approximating 1§ with interference from nodes in 1, we can write

1

. 7_exp2i S h 1
Pout(B)=1 L hnfTog(Zl r ts)l 2 s ;

2i s '

(2.35)

using the Plancherel Parseval theorem [8]. The details of this derivation are intentionally deleted
because of being laborious and too technical.

Thus, wusing (2.35), we can numerically compute the outage probability and
consequently the transmission capacity, which is the density of successful transmissions multiplied
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10 Goodput v/s 7, for T =1 for Rayleigh fading with d=10m, 0:=3, B = 2 bits/sec/Hz
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Figure 2.6: Network goodput with Rayleigh fading as a function of CSMA transmitter channel
access threshold of R, for neighbourhood contention threshold of . = 1.

with rate of transmission 2 1. In this inhibition-based CSMA protocol, the two key parameters
are p and ¢, which control the number of qualified transmitters, and the size of the neighborhood.

In Fig. 2.6, we plot the goodput (1  Pout(B)) B as a function of density for fixed
neighborhood contention threshold = 1, and different values of transmitter channel access
threshold . We see that for small values of , no CSMA (ALOHA with access probability 1) is
better than CSMA, since interference is very low and inhibition provided by CSMA is unnecessary.
On the other hand, as we increase the density, the role of CSMA transmitter channel access
threshold p becomes more prominent, since with sufficient interference it is important to control
how many transmitters are allowed to transmit. We see a similar performance comparison in Fig.
2.7, where we plot the goodput as a function of density  for fixed transmitter channel access
threshold 1, and different values of neighbourhood contention threshold . = 1.

Remark 2.8.2 Recently, a more detailed analytical analysis of CSMA protocol with just the
neighbourhood contention model, that is, with ¢ = 0 (no qualification criteria) has been done

in [9] for small densities ( ) regime, to show that the transmission capacity scales as av , for
¥ 0, where 1 depends on the fading coefficient distribution. For Rayleigh fading, = 1.

Next, we present an alternate SINR-based CSMA protocol, where each node monitors the SINR
to its corresponding receiver and transmits only if the SINR is larger than a threshold. In all prior
sections in this chapter, we have assumed that each node’s data queue is backlogged, that is, it always
has a packet to transmit. This is only an abstraction, and a more realistic data arrival process model
is considered with the SINR-based CSMA protocol in the next section.
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1o Goodput v/s T for 7, =1 for Rayleigh fading with d=10m, 0:=3, B = 2 bits/sec/Hz
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Figure 2.7: Network goodput with Rayleigh fading as a function of CSMA neighbourhood
contention threshold . with channel access threshold of = 1.

SINR-based

In this section, we consider an SINR-based CSMA protocol and consider that packets arrive at each
node according to a 1-dimensional PPP. In all earlier sections, we have assumed that each node
always has a packet to transmit, which is only an abstraction. To analyze the SINR-based CSMA
protocol with random packet arrivals, we consider a slightly different network model compared to
Section 2.2, which has been introduced in [10]. We consider an area A and model the packet arrival
process as a 1-dimensional PPP with arrival rate (A=L) , where L is the fixed packet duration. Each
packet after arrival is assigned to a transmitter location that is uniformly distributed in area A, and
the receiver corresponding to a particular transmitter is located at a fixed distance d away with a
random orientation, as shown in Fig. 2.8. For A ¥ 1, this process corresponds to a 2-dimensional
PPP of transmitter locations with density (Section 2.2), where each transmitter has a packet arrival
rate of % Note that the performance of ALOHA protocol with data packet arrival process follows
similar to what follows next and omitted for brevity and can be found in [10].

Remark 2.8.3 If we wuse the model of Section 2.2, we would first fix the
transmitter locations according to a 2-dimensional PPP, and then packet traffic is generated, and
each transmitting node receives a packet according to 1-dimensional PPP over time. The packets
are then transmitted to the respective receivers that are located at a fixed distance d. Thus, with the
model of Section 2.2, one has to average over the spatial (to fix locations) and temporal (packet
arrivals) statistics, which is rather challenging. Instead, by slightly altering the model, as
described above, there is a single process that defines both the spatial location and temporal packet
arrival process.
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Distribution of packet arrivals to spatial nodes

5%

Figure 2.8: Spatial model for CSMA with packet arrivals.

For simplicity, we ignore the AWGN contribution. Hence, the SIR between transmitter T, and
its receiver Ry, at time t is given by

d  jhnnj? _
T.2 nfTog LT, (©)dmnjhmnj?’

SIRy(t) := P (2.36)

where 17 (t) = 1, if the transmitter Ts is not in back-off, and O otherwise, and  is a PPP with
density . With CSMA, transmitter T sends its packet at time t if the channel is sensed idle at time t,
which corresponds to SIR(t) > . Otherwise, the transmitter backs off and makes a retransmission
attempt after a random amount of time. If T, transmits the packet, the packet transmission can still

fail if SIRp, falls below during the packet transmission time L. Thus, the outage probability
Pout = Pp + (1 Pb)Pfailjno back-off

where Py is the back-off probability, and Ppijnoback-off 18 the probability that the
transmission fails during transmission. Hence, the transmission capacity with CSMA is defined as

C= (1 Pouw)B bits/sec/Hz/m?:

Remark 2.8.4 CSMA introduces correlation among different transmitter’s back-off events, and
hence the number of simultaneously active transmitters no longer follow a PPP. Nevertheless, for
analytical tractability, as an approximation, we assume that the transmitter back-off events are
independent, and simultaneously active transmitter locations are still PPP distributed. The
simulation results show that this assumption is reasonable [10].

In the following theorem, we derive the back-off probability for any transmitter with the SINR-based
CSMA.

Theorem 2.8.5 The back-off probability follows a recursive relationship
Pob=1 exp (1 Pyc =d? ;

which can be solved using Lambert’s function Wo (2).
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Proof: Undegghe independent back-off assumption, the set of active transmitters at time 0 is a PPP
with density ?: L £ (1 Pp) by counting for all active transmitters during the packet length of L
time slots. Thus, the density of active transmitters at time 0O is

a= (1 Py):

Hence, from Theorem 2.4.1, we get the recursive relation P, =P(SIR,(0) < )=
1 exp (1 Ppc ad? . O

Next, we derive an explicit expression for the packet failure probability Py, (B) with the CSMA
protocol.
R 1
P L1 l)Z(Lz—l)e 7 w2l %

=0
1 Py

e
+1 1 Py) do

Theorem 2.8.6 Pryjjino back-o = 1

Proof: Note that Pgjjjno back-off 1S the probability that at any time t, SIR,(t) < forO<t L given
that SIRL(0) > . Hence,

1 Phijnobackoit = P(SIRn(1) > ;:::;SIRa(L) > jSIRo > );
_ P(SIRp = ;SIRn(1)=> ;:::5;SIRn(L) > ).
- PSRy > ) ! (2.37)

and the desired expression for the joint probability in the numerator follows from Proposition 6.2.2,
using the probability-generating functional of the PPP (Theorem 2.3.6), similar to Example 2.7.3.
The transmitters that become active at any time t between time 0 and L is a PPP with density
(@ Py).

O

Hence using Pout = Py + (1 Pb)Phailjno back-ott> We get the transmission capacity C = (1

Pout)B for CSMA by combining Theorems 2.8.5 and 2.8.6. Finding the closed form expression for
Pfailjno back-oft derived in Theorem 2.8.6 is quite challenging. An upper bound on the Pjjjno back-off»
however, can be found using the Fortuin-Kasteleyn-Ginibre inequality as follows.

Definition 2.8.7 Ler ( ;F;P) be the probability space. Let A 2 F, and 1 be the indicator
function of A. Event A 2 F is called increasing if 1La(1)  1a(1°), whenever ¥ 10, 1:102
Sfor some partial ordering on 1. The event A is called decreasing if its complement A° is increasing.

Lemma 2.8.8 [FKG Inequality [1]] If both A;B 2 F are increasing or decreasing events then
P(AB) P(A)P(B).

Lemma 2.8.9 For SINR-based CSMA, Poyy 1 (1 Pp)-+i.

Proof: Clearly, SIR,(t) is a decreasing function of the number of interferers, since larger the number
of interferers, lesser the SIR. Therefore, the success event FSIRL(t) > g is a decreasing event.
Hence, from the FKG inequality,

P(SIRn(0) > ;SIRn(1) > ;::::SIRn(L)> ) P(SIRy > )t*1;

since SIRn (1) is identically distributed for any t. Hence, from (2.37), Pgijjno backott 1 (1 Pp)t,
andPoye 1 (1 Pyt
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Outage Probability Comparison of ALOHA and CSMA for Rayleigh fading with d=10m,
0=3, B = 2 bits/sec/Hz
107
T — T -

Outage Probability

Density 1

Figure 2.9: Outage probability comparison of ALOHA and SINR-based CSMA with Rayleigh
fading.

Consequently, we get a lower bound on the transmission capacity with CSMA as
cC @ Py-*iB:

|

Even though we have obtained closed form expression for the outage probability and
consequently the transmission capacity, it is not easy to directly compare the SINR-based CSMA
protocol and the ALOHA protocol. We hence turn to numerical simulation for comparing their
performance.

In Fig. 2.9, we plot the outage probabilities of ALOHA and SINR-based CSMA. For low
densities , we see that the performance of ALOHA is better than CSMA, because of unnecessary
back-offs initiated by CSMA that are not required. However, as the density increases, the
back-off mechanism of CSMA kicks in and reduces the interference and consequently outperforms
the ALOHA protocol.

2.9 Reference Notes

The notion of transmission capacity was introduced in [1], where upper and lower bounds for the
path-loss model were presented. The exact transmission capacity expression presented in Section
2.4.1 for the Rayleigh fading model, and the optimal ALOHA probability that maximizes the
goodput is derived from [11]. The spatial and temporal correlations with the ALOHA model
presented in Section 2.7 can be found in [4]. Transmission capacity analysis with scheduling using
guard zone is derived from [6], while the case of scheduling with CSMA can be found in [7, 10].
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Chapter 3

Multiple Antennas

3.1 Introduction

In this chapter, we address an important question on the optimal role of multiple antennas in a
wireless network. For a point-to-point channel with no interference, from Chapter 1, we know that
employing multiple antennas at both the transmitter and the receiver either linearly increases the
capacity or exponentially decreases the error rate with SNR. In contrast, in a wireless network,
where interference is the performance limiter, finding how to best use the multiple antennas is a
fairly complicated issue.

The problem is challenging because in the presence of interference, multiple antennas have dual
roles at both the transmitter and the receiver side. On the transmitter side, multiple antennas can be
used to beamform the signal toward the intended receiver or to suppress transmission (construed as
interference) toward other receivers. Similarly, on the receiver side, each receiver can use its multiple
antennas to improve the SNR from its intended transmitter or cancel the interference coming from
other transmitters. To further compound the problem, the roles of multiple antennas at both the
transmitter and the receiver side are inter-dependent on each other.

In this chapter, we derive results on the scaling of the transmission capacity with the number
of antennas for two cases; i) CSIR case, where only the receivers have channel coefficient/state
information (CSI), and ii) CSIT case, where in addition to CSIR, each transmitter also has CSI for
its intended receiver. We derive upper and lower bounds on the transmission capacity with multiple
antennas that do not match each other exactly but have a negligible gap for path-loss exponent values
close to 2.

We show that with linear decoders, for example, zero-forcing (ZF) or minimum mean square
error (MMSE), the transmission capacity scales at least linearly with the number of antennas for
both the CSIR and the CSIT case, and sending only one data stream from each transmitter achieves
the linear scaling of the transmission capacity in both cases. The derived upper and lower bounds are
identical for both the CSIR and the CSIT case; thus, we conclude that the value of CSIT is limited
in a wireless network. We obtain exact scaling results for transmission capacity with respect to the
number of antennas for two important special cases: having only a single antenna at each transmitter/
receiver and a simplified receiver with no interference cancelation capability.

We end the chapter by characterizing the effect of the interference suppression capability of
multiple antennas at the transmitter. For this end, we consider a cognitive/secondary wireless
network that is overlaid over a licensed/primary wireless network, which is allowed to operate

43
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under an outage probability constraint at each receiver node of the primary wireless network. The
secondary nodes are equipped with multiple antennas and use them at the transmitter side to
suppress the interference they cause to any primary user and at the receiver side to cancel dominant
interferers. We obtain explicit results on the scaling of the transmission capacity of the secondary
wireless network as a function of the number of transmit and receive antennas available at the
secondary nodes.

3.2 Role of Multiple Antennas in ad hoc Networks

In a point-to-point channel with no interference, the only objective with multiple antennas at both
the transmitter and the receiver is to improve the received signal strength. In an ad hoc network,
however, the role of multiple antennas is more diverse because of the presence of interference. For
example, each transmitter could attempt to increase its own data rate by transmitting multiple data
streams, or in the presence of CSI, could improve the signal strength by steering its beam toward
the direction of the receiver or suppress its interference toward other receivers by nulling its signal
toward them. Similarly, each receiver could decode its signal of interest after mitigating interference
using its multiple antennas. So inter-dependent questions like how many data streams to transmit
and how many interferers to cancel at receiver are critical in finding the optimal role of multiple
antennas in a wireless network.

One way to frame these questions more concretely is by defining the spatial transmit (receive)
degrees of freedom (STDOF)/(SRDOF). The STDOF refers to the signaling dimensions used at
the transmitter for either transmitting to the intended receiver or to suppress interference toward
other receivers. For example, with N transmit antennas, there are total N STDOF, out of which
possibly k can be used to send k independent data streams, leaving the remaining N k STDOF
for interference suppression in the presence of CSI at the transmitter or not using the N k STDOF
at all to decrease the overall interference at all other receivers. Similarly, the SRDOF refers to the
number of spatial dimensions, that through linear processing (linear decoder/receiver), can be used
to separate multiple source symbols at the receiver. For example, with N antennas at the receiver,
the total SRDOF is equal to N, out of which m can be used for mitigation/cancelation and leaving
the remainder of N m SRDOF for decoding the signal of interest.

When k STDOF are used by each transmitter to send k independent data streams, the number of
interferers that can be canceled at any receiver using its m SRDOF is at most 2 . Larger STDOFs
help in improving per-user transmission rates by sending more data streams but limit the interference
suppression ability of any receiver. In this chapter, we find the optimal values of STDOF used for
transmission k and SRDOF m used for interference cancelation that maximize the transmission
capacity with linear decoders under different CSI assumptions. The choice of linear decoders is
made for both their analytical tractability and low-complexity implementation.

3.3 Channel State Information Only at Receiver

We consider the fixed distance model of Section 2.2, where each transmitter—receiver pair is at a fixed
distance of d from each other. The transmitter locations fT,g are assumed to follow a Poisson point
process (PPP) distribution with density (. Each transmitter is assumed to transmit independently
with probability p using an ALOHA protocol. Consequently, the active transmitter density is =
p o. Welet = T, : T is activeg to represent the active transmitter locations that is a PPP with

density
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Ry

Any k antenna subset

Figure 3.1: Transmit-receive strategy with no CSI at the transmitter.

In this section, we consider the practically efficient model where each receiver has instantaneous
CSI, while no transmitter has any instantaneous or delayed CSI. We refer to this scenario as CSIR
(CSI at the receiver). The case with CSI at the transmitter (referred to as CSIT) is dealt in Section
3.4.

With no CSI at any transmitter, we assume that each transmitter uses any k, K = 1;2;:::; N, of
its N antennas to transmit K independent data streams to its receiver with equally dlstrlbutlng the
power over all the K antennas. In terms of STDOF, each transmitter uses K STDOF for transmission
out of its total N STDOF. Since CSI is not available, the choice of which antennas to use does not
impact the performance. Each receiver is assumed to have CSI for the channel from its intended
transmitter as well as from all the other interferers that are canceled/suppressed at that
receiver.

Let Xp = [Xn(l) Xn(2)::Xn(K)]" bethe k 1 signal sent from transmitter T,,, where each
element Xn(*); © = 1;2;:::;k is independent and CN O distributed, so that the total power
transmitted through X, is umty Then, the multiple antennas counterpart of received signal (2.4) at
the typical receiver Ry is

X
Yo=d “HooXo + d, “*HonXn; (3.1)
T,.2 nfTog

where dp, is the distance between T,, and Rg, Hon 2 CN K is the channel coefficient matrix
between Ty, and R, such that the i; jth entry Hon(i; J) of Hop is the channel coefficient between
the ith receive antenna of Rg and jth transmit antennas of Ty,. Each entry of Hgp, is assumed to be
independent and Rayleigh distributed. We consider the interference-limited regime and ignore the
AWGN contribution. For analysis, we will consider the typical transmitter—receiver pair (To; Ro).

Interference cancelation: To cancel interference, each receiver multiplies its received signal
with vector @Y that lies in the null space of the channel matrices corresponding to the interferers
that are chosen for cancelation. Thus, if C 2  is the subset of interferers to be canceled, then
q 2 O(Hc), where O(Hc) represents the null/orthogonal space of matrix Hc = [Hon]; n 2 C. The
system model is illustrated in Fig. 3.1.

Which interferers to cancel: Each receiver R, with multiple antennas has to make a judicious
choice of which interferers it should cancel before decoding its signal of interest Xp. The most
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natural choice is to cancel those interferers that maximize the post-cancelation SIR, that is, to find
subset C that solves

d gHooHEa”

T
7.2 nfro:cg dn dHonHg 0¥

méax SIR = max P (3.2)

Solving (3.2) is however, complicated and also the performance analysis is difficult. As we
have seen in Chapter 2, typically, the closest interferers dominate the total interference seen at any
receiver. This motivates the choice of canceling the nearest interferers in terms of distance from
each receiver R,. Canceling the nearest interferers is also efficient in terms of CSI requirement,
since CSI from only the nearest interferers to be canceled is required, in comparison to the global
CSI requirement for solving (3.2). Since any receiver with N antennas can cancel at most N
interferers, CSI is only needed from at most N nearest interferers. Throughout this chapter, for
analyzing the transmission capacity with multiple antennas, we assume that each receiver cancels
its nearest interferers.

Another choice for interference cancelation is to cancel those interferers that have the largest
interference power at the receiver. With this choice, some of the nearby interferers may not be
canceled if their channel gains are very low. After multiplication by the cancelation vector @,
however, the situation might change, and the post-cancelation channel gain values of the nearby
uncanceled interferers could become moderately high, and they could start dominating the
performance. We discuss this choice briefly in Remark 3.3.11 from the transmission capacity point
of view.

Choice of decoder: To decode Xp from (3.1), the optimal decoder is the maximum likelihood
(ML) decoder which finds Xg that maximizes the likelihood P(YojXp). As discussed in Chapter 1,
the complexity of the ML decoder is quite high since it finds the jointly optimal vector Xg.
Moreover, for the transmission capacity analysis with the ML decoder, we need to be able to
analyze the outage probability P(I(Xo;Yo) < ), where 1(Xg;Yo) is the mutual information
between input X and output Yo. The exponent of outage probability P(I(Xo;Yo) < ) for the
multiple input multiple output (MIMO) channel is only known for the high SNR regime [1] and
that too in the absence of interference. Thus, in the presence of interference, meaningful analysis of
transmission capacity is not possible with the optimal ML decoder. The obvious other choice is to
consider linear decoders, such as ZF or MMSE decoder. As discussed in Section 1.2, with linear
decoders, each element of the input signal vector Xp is decoded separately allowing the use of
scalar outage probability expressions, while incurring linear decoding complexity in the size of
vector Xo. For detailed analysis purposes, we will consider the ZF decoder and point out that
identical results can be obtained for MMSE decoder as well in Remark 3.3.7. In particular,
throughout this chapter, we consider a general ZF decoder called the partial ZF decoder that allows
the flexibility of choosing a variable number of SRDOF for interference cancelation and leaving the
remaining SRDOF for decoding the signal of interest.

3.3.1 Transmission Capacity With Partial ZF Decoder

With k data streams sent from each transmitter, and each receiver using m SRDOF for interference
cancelation, let Ncgne = % be the number of nearest canceled interferers. To cancel the nearest
interferers, let the indices of the interferers be sorted in an increasing order in terms of their distance
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from the typical receiver Ry, thatis, d;  d2  ::!  dnge  ONge+1 - i Then the received
signal (3.1) is

_ X _
Yo = d “ZHgeo()xo(*) + d  “?Hoo(i)*o()
i=tie

+  dy Hon(3)xn(); (3.3)
n=1 j=1
where we have intentionally separated the data stream Xgp(‘) and the rest of the data streams

To decode the Xo(‘)th data stream sent from transmitter Tg, © = 1;2;:::;k; receiver Ry uses
partial ZF decoder to remove the inter-stream interference from all the other data streams

Xo(1); i, %o 1); Xo(* +1);:::; Xo(K)

Let
H =[Hoo(1):::Hoo(* 1) Hoo(* +1):::Hoo(k) Ho1 Hoz : 2 Hongn|s

where H 2 CN M*k 1 pe the channel matrix corresponding to the kK 1 inter-stream interferers,
and the Ncanc nearest interferers in (3.3), where Hon 2 CN K is the channel matrix corresponding
to the nth nearest interferer, N > m + k 1. Since each channel coefficient is i.i.d. Rayleigh
distributed, the rank of matrix H is m + k 1 with probability 1. Let S be the orthonormal basis of
the null space O(H) of the matrix H, where S has dimension N (m + Kk  1). To decode stream
Xo(*), the receiver Rg multiplies q7; g 2 O(H) to the received signal (3.3) to get

. X X o
alyo=d ““q¥Hoo(*)xo(*) + dn ~ o!Hon()xn(); (34
N=N¢anc+1 ji=1
“=1;2;:::; k. Similar to the choice of which interferers to cancel, there is choice for selecting the

interference cancelation vector qY. The obvious choice is the one that maximizes the SIR, however,
that leads to analytic intractability.
So we consider the next best option of choosing ¢ 2 O(H) that maximizes the signal power
s = jgYHoo(*)j?. In Lemma 3.3.1, we show that the optimal g- that maximizes the signal power S
is given by
_ Hoo(*)’SSY
jHoo(“)YSSYj’

and the signal power s = jgHoo(“)j?is 2(2(N  m Kk + 1)), since the dimension of S is
N k m+ 1. Moreover, since gY is chosen to maximize the signal power s = jgYHoo(*)j?, it
does not depend on the uncanceled interferer’s channels Hpp for n Ncanc + 1 in (3.3). Hence,
the power of the jth stream of the nth interferer, N Neanc + 1, jgYHon(§)j?is  2(2), since each
entry of Hop, is independent and Rayleigh distributed. Adding the contribution from k independent
data streams of each interferer, the |gtal interference power of the nth uncanceled interferer from its
k data streams in (3.3) is pow,, = }‘zquYHOn(j)j2 thatis 2(2K) distributed.
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Lemma 3.3.1 Ler Q2 CN ";QYQ = I. Then

arg max jv’hej? = jQYhej?;
9 e _ vihol 1Q%hoj
and jQYhoj? is 2(2*) ifhg 2 CN 1 is complex Gaussian distributed with independent entries that
have zero mean and unit variance.

Proof: Without loss of generality, let v = Jg—z From Cauchy-Schwarz inequality,

<h#Qx>=<hiQ;x> jhiQj?
and the maximum is achieved by X = QYhg. Thus, we get that

max  jv’hoj® = jhYQQYhyj;
A L 0QQ” o]
which is the norm of vector h{ Q.
Since the columns of Q are orthonormal, the covariance matrix of vector h%Q of length “ is
diagonal, where the expectation is with respect to entries of hg. Thus, the elements of h}Q that
are Gaussian distributed are uncorrelated and hence are independent. Since the norm of an ‘-length

independent Gaussian vector is 2(2“) distributed, the result follows. More details can be found
in [2]. O

independent with zero mean agd unit variance. If vector Y of length N is independent of X1 .. Xm,
then jyYxij? 2(2); 8iand L, jyxij? 2(2m).

Definition 3.3.3 With partial ZF decoder, from (3.4), the SIR for the “th stream is given by

d s

SIR- = P ;
T dn pow,

N=Ncanc+1

(3.5)

where from Lemma 3.3.1, signalpola_gfr s = jgyHoo(9)j? 2(2(N  k m+1)), and from Lemma
3.3.2, interference power pOW,, = ;-;l i9YHon()j? 2(2K).

Note that the same decoding strategy is used for each stream “ = 1;2;:::;Kk sent by any
transmitter Tp; therefore, the SIR for each stream “ is identically distributed. Henceforth we drop
the subscript “ from SIR- and represent it as SIR. Thus, for each stream “; * = 1;2;:::;k, the
outage probability at rate B bits/sec/Hz is given by

Pout(B) = P(log(1+SIR) B);
= PSR 2B 1: (3.6)

Let 22 1 = . Since Kk streams are transmitted simultaneously, the transmission capacity is

defined as
C=k (1 )B bits/sec/Hz/m?; (3.7)

where is the outage probability constraint for each data stream, and  is the maximum density of
nodes such that Poyt(B) in (3.6). Here, C represents the average successful rate of information
transfer across the network when each transmitter sends k independent data streams.
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From (3.5, 3.6),
d s

Inc

Pout(B) = P

; (3-8)

Pa . . .
where Inc =  [Zn..+10n POW, is the total interference from uncanceled interferers, dn

dm; N < m, where dn’s are ordered in increasing distance from the receiver Ry.

Remark 3.3.4 For the case of K = 1 (single data stream transmission), the outage probability
expression (3.6) and consequently the transmission capacity expression (3.7) is also valid for the
ML decoder. Thus, the performance of ML decoder and ZF decoder is identical for K = 1. We will
show in Theorem 3.3.5 that the optimal K> = 1 with the ZF decoder and the transmission capacity
scales at least linearly with N. Thus, the same conclusion holds true for the ML decoder. What is
left open is the fact whether K? = 1 for ML decoder or not? The simulation results (Fig. 3.3) point
out that K? = 1 even for the ML decoder.

To find the transmission capacity expression (3.7), and to maximize that with respect to the
number of transmitted data streams K, and the number of SRDOF m used to cancel the nearest
interferers, we need to find a closed form expression for the outage probability (3.8). Unfortunately,
this is hard to find since the distribution of I,c is unknown. We thus rely on deriving upper and lower
bounds on the outage probability that allow us to find the optimal values of k and m that maximize
the transmission capacity.

The main result of this section is as follows (derived from [3] and [4]):

Theorem 3.3.5 The transmission capacity with multiple antennas and partial ZF decoder receiver
scales as

C= (N)andC =O(N™% 22);

with the number of antennas N. The optimal lower bound is achieved by sending a single data stream
from each transmitter, K? = 1, and usingm? = 1 2 N SRDOF for interference cancelation to
cancel the 1 2 N nearest interferers.

Theorem 3.3.5 tells us that similar to point-to-point channels without interference, the transmission
capacity of wireless network scales at least linearly with the number of antennas N. The derived
upper bound does not match with the lower bound; however, the gap is negligible for path-loss
exponents  close to 2 and the maximum gap is N*™* at = 4 forany 2 < 4. The simulation
results, however, suggest that this gap is only a manifest of the proof technique and not the
underlying principle and transmission capacity cannot scale faster than order N. Using simulations,
we show that the transmission capacity can be at best scale linearly with N by checking for many
different combinations of k and m. Thus, a more finer analysis is required for exactly
characterising the scaling of the transmission capacity with multiple antennas. For the special case,
when each transmitter has a single antenna or chooses kK = 1, we can obtain the exact results for the
scaling of transmission capacity with respect to number of antennas N in Theorem 3.3.6.

A  more important conclusion from Theorem 3.3.5 is that to maximize
the lower bound, that is, to achieve linear scaling with N, k? = 1, and m? / N, that is, one
should only transmit a single data stream from each transmitter, while linearly scaling the SRDOF
dedicated for interference cancelation. To interpret this result, note that the number of transmitted
data streams is directly related to the interference power and the number of interferers that can
be canceled by each receiver. Thus, in an interference limited network, such as an ad hoc wireless
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network, minimizing the number of data streams transmitted by each node keeps the interference
power low and at the same time leaves enough room for canceling significant number of nearest
interferers at the receiver. Moreover, by scaling the SRDOF used for interference cancelation
linearly with N, the number of nearest interferers that can be canceled scales linearly with N,
while leaving sufficient SRDOF (that also scales linearly in N) for decoding the signal of interest.

For the special case when each transmitter is equipped with a single transmit antenna, or chooses
k = 1 irrespective of N, the proof of Theorem 3.3.5 can be used to obtain the exact scaling of
transmission capacity with the number of receiver antennas as follows.

Theorem 3.3.6 With a single antenna at each transmitter or fixed K = 1, the transmission capacity
with partial ZF decoder scales linearly with the number of receive antennas N, that is,

c= (N);
and the optimal SRDOF for interference cancelationism’ = 1 2 N.

Theorem (3.3.6) shows that linear scaling of transmission capacity is possible even if each
transmitter has a single antenna. Thus, in a wireless network, the role of multiple antennas at the
receiver side is more important than the transmit side. This result is in contrast to a point-to-point
channel where the capacity scales linearly with the minimum of the transmit and the receive
antennas.

Remark 3.3.7 An alternate choice of linear decoder is the MMSE decoder, where to decode the

data stream Xo(*) from received signal (3.1), . *Hoo(*) is multiplied to the received signal, where
Hoo () is the “th column of Hoo, and

- - x _2
d  Hoo(i)Hoeo(i)Y + d, “*HonHY,
i=1;i&* T,.2 nfTog

is the spatial covariance matrix of the inter-stream interference and interference caused by other
transmitters. The MMSE decoder is known to maximize the received SINR, and hence the lower
bound derived for the transmission capacity in Theorem 3.3.5 with partial ZF decoder also holds
Jfor the MMSE case as well.

To upper bound the transmission capacity with MMSE decoder, we can let the signal power
with the MMSE decoder to be distributed as %(2N), which is clearly an idealization since after
canceling interferers by multiplying . *Hoo(*), the signal power is Ho(*) - YHoo(*) which is
less than the norm of vector Hoo(*) that is distributed as 2(2N). Moreover, by selecting r = N
(where 1 is the number of uncanceled nearest interferers used for lower bounding the outage
probability in Theorem 3.3.5) an upper bound identical to Theorem 3.3.5 on the transmission
capacity can also be found for the MMSE decoder as well [5]. Thus, results obtained for the ZF
decoder also hold for the MMSE decoder as well.

Towards proving Theorem 3.3.5, we first upper and lower bound the outage probability (3.8) as
follows:
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Figure 3.2: Squares represent the N¢anc nearest canceled interferers with dashed lines, solid circles
represent the I nearest uncanceled interferers whose interference contribution will be used to
derive the lower bound on the outage probability, and unfilled circles are all the other uncanceled
interferers.

Theorem 3.3.8 The outage probability (3.8) when the transmitter sends K independent data streams
and the receiver cancels the Ncanc nearest interferers using the partial ZF decoder is lower bounded

by

N m k+1
Pout(B 1 Neanc +r+—=
OUt( ) (kl’ 1)d ( )% canc r 2 )

NIR

for any r 2 N* such that kr > 1.

To derive this lower bound, we consider the interference contribution from only the r nearest
uncanceled interferer (the Neape + 15U interferer to Neane + rth interferer) and consider their
aggregate interference

X
Ir';c = chanc+j pOWNcanc+j . (3-9)
i=1
Since 1. < Inc, from (3.8), we have
d s d s
Pout(B) =P P -
InC Inc

d %s

=
I’ILC

For any r, we can efficiently bound the outage probability P using the Markov’s

inequality as follows.

Proof: Consider the interference contribution from only the r nearest uncanceled interferers, I},..
Fig. 3.2 illustrates this scenario, where the Ncanc (squares) have been canceled, and only the
interference coming from the r nearest uncanceled neighbors of receiver Rg are considered toward
computing the outage probability. To derive the lower bound, we use the Markov’s inequality with
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S (signal power) as the random variable and compute the expectation with respect to the
interference power If,.. From (3.8),

1 POUt(B) = ]P (S > d InC)
P(s>d |I}.); sincelf, Incfrom (3.9);

E fsg

E
d 15

; from Markov’s inequality: (3.10)

Since interferers are ordered in increasing distance from the receiver Ro, Onge+j ~ ANeane+r; J =
1;::::r 1, we have I,‘:C I],c, where

f X
Inc = chanc"'r pOWNcanc"‘j (31 1)
i=t

is obtained by substituting for each of the path-loss term dy, jin I}.c by the path-loss term of the
farthest interferer dy ... Hence, from (3.10),

E fsg

1 Pout(B) E f
d Inc

(3.12)

There are three random variables involved in the analysis: signal power S, channel power of
uncanceled interferers POWy, +j, and the distance of the farthest uncanceled interferers dng,.+r
considered for deriving the bound. From Definition 3.3.3, s 2(2(I‘,.I_-, m k+1)) and powy_ -+ i
are independent and  ?(2K) distributed, hence, their sum pow =~ [_, powy ] 2(2kr).
Moreover, from Lemma 3.3.9, wehave  d}_ ., ?(2(Ncanc +1)). O

Lemma 3.3.9 Let dy, be the distance of the nth nearest node of a PPP  with density  from the
origin. Then — d? 2(2n).

Proof: The result follows from the direct computation of the distribution of ~ d? by finding the

distribution P(dy, > r) using the void probability of PPP  with density . O
Hence, from (3.12), we have 1 Pou¢(B)
@ Ef ¢ 1 ? 1
) E —
d chanc"'r pOW
® N k m+1" T xNancHr+ze x Za powkr 2g pow
= = dx dpow;
d ( )? 0 Neanc + 1! 0 kr 1l
N k m+1 Ncanc+r+1+§ 1 . (313)
d ( )2 (Neanc +r + 1) kr 1 ° '

where ip4a) we have substituted for If. from (3.11) and (b) follows sinces ~ 2(2(N m  k+1)),
oW =" j_iPOWn vy 2(2Kkr),and o} .o 220,
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1s
From Kershaw’s inequality [6] that states that gig X % + s+ % forx >0;0 <
s<1,since (X+1)=Xx (X)we have
Neanc +r+ 1+ > 2
Neanc +r+1+ -
(Ncanc +r+ 1) canc 2
Hence, from (3.13), we have,
N k m+1 H
1 P B — N +r+ — :
OUt( ) (kr 1)d ( )§ canc 2

Next, we derive an upper bound on the outage probability (3.8) using the Markov’s inequality
with ¢ as the random variable. For that purpose, we compute an upper bound on Efl,.g using the
Campbell’s theorem (Theorem 2.3.7).

Theorem 3.3.10 When each transmitter sends K independent data streams, and the receiver uses
m SRDOF for canceling the Ncanc nearest interferers using the partial ZF decoder, the outage
probability (3.8) is upper bounded by

8

3 1 1 «
. 2% 7 12 Neane dze = 25 k+m<N;
« = - 1
out(B) > exp do 2k( )aa(Ncanc dge)" 2 C K+m=N:
(s 1)
Proof: To upper bound the outage probability P dlnis (3.8), we use Markov’s inequality with
Ine = r::':,\,mcﬂ d, pow,, as the random variable. To apply Markov’s inequality on P(In¢

d Fs ), we need to bound the expected interference from uncanceled interferers Efl, g as follows.

From (3.8),

8 9
< > =
Eflncg = E _ d; pow; _;
j8Ncanc+1 o z
< X =
@ ke . d _;
- J Neanc+1 7 z
= L1 j 1
Q ()F  x =X _ZRX _eXp(' X dx;
J Neanc+1 0 (J 1)
. X i =
= 2k( )? — 2 (3.14)
J Neanc+1 (J)
where (@) follows since the power of jth interferer pow; 2(2k) and (b) follows from Lemma

3.3.9 where dJ2 2(2j). Note that ~j 5 s finite only for J > ; thus, we at least need to
cancel at least - nearest interferers. Since, typically, 2 < < 4, this is not much of a restriction.

Using the Kershaw’s inequality [6], a (j)% ) i z %, from (3.14), we get
. X I m .
Eftneg  2k( ) iy

j Ncanc+1
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(3.15)

=2

where (d) follows since X is a decreasing function.

Using (3.15), we now derive the required upper bound. From (3.8), Pout(B) =

PlncdS:EsPIncds;

Eflncg
d

1
E S ; from Markov’s inequality:

From Definition 3.3.3, signal power S 2(2(N  k m++1)). Thus, for N > k +m, we have
1
S

E = m Thus, substituting for the upper bound on the expected interference from (3.15),
by ds 2k()E I mas
nc d (N k m) 2 canc 2 .

Since s 22(N  k m+1)), with N =k +m, s is an exponential random variable with
parameter 1, and hence

Pout(B) = P(s d Inc);
EfL exp( d Inog;
1 exp( d ETFlsQ); (3.16)

since exp is a convex function. Thus, we get the required bound by plugging in the upper bound on
E flhcg from (3.15).

O
Using Theorems 3.3.8 and 3.3.10, we prove Theorem 3.3.5 as follows.

Proof: (Theorem 3.3.5) Recall that the number of nearest canceled interferers are Ngane = % .
Using the definition of transmission capacity C = (1 ) B, and fixing Pout(B) = , from the

lower bound derived on outage probability in Theorem 3.3.8, for any r 2 N such that kr > 1,

2 jk
kB )X &% N m k+1 = Im

C — +r+ - 3.17
(kr 1d k 2 3-17)

In terms of scaling with N, the upper bound is increasing in m, the SRDOF used for interference
cancelation, as long as the total SRDOF do not exceed N, that is, K + m < N. Thus, we fix

m = (N), the largest scaling factor with respect to N. Let the number of data streams to transmit
k= (N ), 1. We will find the tightest upper bound as a function of for all values of , and
not just 2 < 4. Recall that we can choose the parameter I, the number of uncanceled interferers

whose aggregate interference we accounted for while deriving the upper bound in Theorem 3.3.10.
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We let r = N%= | one can take ceil or floor function if N2= is not an integer. Then, for 1 < 5

2 b
the upper bound (3.17)isO N @ s = , for which the optimal =1, and yields
C=0 N¥™& & .
For the other case of 1 5, the upper bound (3.17) is O N 120 2 and the optimal

= 0 and upper bound is

4

C=0 N™& =

Thus, for any , we get
a4

C=0 NW& = .

Moving on to the lower bound, from Theorem 3.3.10, we consider the case of k+m < N which
provides a better lower bound than k + m = N. Equating Po,:(B) = , we have

C

% j Im 1 2
kB(L ) (N E m) ;. G3.18)

2

X\B

Clearly, k =1, m = N; 2 (0;1], yields C = (N). Finding the best constant that maximizes
the lower bound (3.18) is equivalent to solving,

max(l )= ! a:

By setting the derivative to zero, the optimal value of > =1 2. Note that the lower bound on
the transmission capacity is concave in m. Thus, to enforce the integer constraint on m, m should
bechosenas 1 2 N or 1 2 N depending on whichever value maximizes the lower
bound. O

Theorem 3.3.5 shows that with single data stream transmission, K = 1, and using a linearly
increasing (with N) SRDOF for interference cancelation, m = N, transmission capacity scales
linearly with the number of antennas N . To interlz)ret the optimality of K =1 and m = N, we need

w ° corresponds to the gain obtained by coherently

combining the signal of interest using Nk m SRDOF, while the term 2 S tE is
attributed to the gain obtained by canceling the m nearest interferers. Thus, using k = l and m =

N allows the two terms to balance out each other and allows a linear increase of the transmission
capacity with number of antennas N.

To illustrate the scaling behavior of the transmission capacity with respect to the number of
antennas N, we plot the simulated transmission capacity with different transmit-receive strategies,
for example, (K =1;m =N 1), (k =N=2;N m=N=2)and(k =1;m=(1 2= )N)
in Fig. 3.3 with increasing N. We plot the transmission capacity with both the partial ZF decoder
and the ML decoder. Since for k = 1, both the ML and partial ZF decoder are identical, their
transmission capacities are also the same. As expected from our derived results, sending a single
data stream and using a constant fraction of SRDOF for interference cancelation, kK = 1;m =
(1 2= )N, achieves a linear increase of transmission capacity with increasing N, in contrast to
sublinear increase for the other two cases. More importantly, Fig. 3.3 shows that the upper bound
derived in Theorem 3.3.5 where transmission capacity scales super-linearly with N is loose, and

to look at (3.18), where the term
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Figure 3.3: Transmission capacity versus N with CSIR while canceling the nearest interferers for
k=1,d=1m, =1bits, =3, =0:1.

at best only linear increase in N is possible for transmission capacity. Fig. 3.3 also shows that
performance of partial ZF decoder is very close to the ML decoder and all the conclusions we draw
from Theorem 3.3.5 hold reasonably well for the ML decoder as well.

An important lesson from Theorem 3.3.5 is the utility of using Markov’s inequality. Typically,
bounds obtained by Markov’s inequality are fairly loose, but for transmission capacity purposes this
seems to be a handy tool for obtaining tight enough scaling bounds. Next, we indicate how to obtain

the exact scaling results of Theorem 3.3.6, when each transmitter has a single antenna or chooses
k=1.

Proof: (Theorem 3.3.6) For a single transmit antenna or single stream transmission k = 1, we know
from Theorem 3.3.5that C = (N) by usingm = N. Moreover, from (3.17), for K = 1, choosing
r=N withm= (N), we get C = O(N), thus finishing the proof. a

Remark 3.3.11 In this section, we have analyzed the case when each receiver cancels the nearest
interferers using its multiple antennas. Another logical choice is to cancel those interferers that
have the largest interference power at the receiver. With a single transmit antenna and N receive
antennas, the scaling behavior of transmission capacity while canceling the N 1 strongest
interferers has been analyzed in [7], and it is shown that the transmission capacity scales as =N,
where is the outage probability constraint. Thus, using multiple antennas for canceling the
strongest interferers leads to diminished gains compared to canceling the nearest interferers, where
the transmission capacity scales linearly with the number of antennas.
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This might appear counter intuitive, however, it can be explained by nothing that while
canceling the strongest interferers, some of the nearby interferers may not be canceled if their
channel gains are very low. Post-cancelation, that is, after multiplication by the cancelation vector,
the situation might change, and the interference power from some of the nearest interferers could
become moderate, in which case the nearby interferers dominate the performance.

Next, using the results of this section, we find exact transmission capacity scaling result with
respect to the number of antennas when no CSI about other interferers’ channels is available at any
receiver, thereby precluding the possibility of interference cancelation.

3.3.2 No Interference Cancelation

In this section, we consider the case when no receiver employs any interference cancelation and
uses all its SRDOF for decoding the data streams transmitted by its intended transmitter. This
scenario is motivated for two important practical reasons. First, interference cancelation requires
the knowledge of channel coefficients between the interferer and the receiver which is typically
hard to get, especially in a wireless network. Second, the hardware complexity of the receiver is
fairly low without the interference cancelation capability. We next show that there is no loss in
terms of transmission capacity with or without interference cancelation in terms of scaling with
respect to the number of antennas. Thus, the restricted receiver design has no effect on the
transmission capacity performance, though the optimal transmit strategy used at each transmitter
differs significantly with respect to the interference cancelation case. The advantage of CSI shows
up in simplified encoding/decoding, since with CSI, only one data stream needs to be transmitted
and decoded to achieve linear scaling of the transmission capacity with multiple antennas, in
comparison to a constant fraction of N data streams that are transmitted and decoded without CSIL.

Theorem 3.3.12 The transmission capacity with multiple antennas when receiver uses ZF decoder
and does not employ any interference cancelation, scales as C = (N), and the optimal number of
data streams to transmit, K, scales linearly with N.

Proof: When no interferers are canceled, the SRDOF used for interference cancelation is m = 0
or Ngane = 0. Then from Theorem 3.3.10, for any r such that Kr > 1, the transmission capacity is
upper bounded by

kBL )Y % N k+1 =
C + — 1
(kr  1)d ™3 (3-19)

Since we have the freedom to choose r in the upper bound (Theorem 3.3.10), let r be a constant
independent of N. Then for number of transmitted data streams k = N , from (3.19), we have

C=0 N N%@ ) =0 N&* (@ 2 =o(N);

for the optimal value of = 1.
For the lower bound, similar to (3.18), for K < N with no interference cancelation m = 0,

KBL ) (N k) =

¢ k d

(3.20)

Letting k = (N), immediately from (3.20), we get C = (N), finishing the proof. 0
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Remark 3.3.13 [f we fix single data stream transmission K = 1, then from (3.19) and (3.20), we get
that with no interference cancelation, the transmission capacity scales only sublinearly as N&

This result was originally found in [8] using a direct outage probability computation. Thus to obtain
linear scaling, we have to scale the number of transmitted data streams with N.

Remark 3.3.14 Theorem 3.3.12 has been independently derived in [9] by explicitly computing the
outage probability, rather than finding tight lower and upper bounds.

Comparing Theorem 3.3.12 with Theorem 3.3.5, interestingly, we conclude that with or without
interference cancelation, the transmission capacity scales linearly with N, and only the transmit—
receive strategy changes. When no interference cancelation is employed, the number of data streams
sent from each transmitter should scale with the number of antennas, as opposed to the case of
interference cancelation where only single data stream should be transmitted. With no interference
cancelation, if the number of data streams is not scaled with N, the transmission capacity scales
only sublinearly with N (Remark 3.3.13). Thus, with single data stream transmission K = 1, the
maximal ratio combining gain available at the receiver for decoding the only data stream scales as
N2= , and to achieve a linear growth of transmission capacity, we need to linearly scale the number
of transmitted data streams with N.

From (3.20), one can easily show that usinga 1 2 fraction of the total transmit antennas
N maximizes the lower bound on the transmission capacity with no interference cancelation. Thus,
for small path-loss exponents , that is, when the interference is dominating, only a small number
of data streams should be transmitted, while for large path-loss exponents that corresponds to the
weak interference regime, almost all transmit antennas should be used to maximize the transmission
capacity.

Remark 3.3.15 For a cellular communication network, when each transmitter sends K
independent data streams with equal power allocation, and no interference cancelation is
employed at the receiver, using a single transmit antenna is shown to maximize the ergodic
Shannon capacity in the presence of small number of strong co-channel interferers in [10-13].
Thus, the results obtained in this section with no interference cancelation for PPP-distributed
transmitter locations in a wireless network match with results on cellular networks only for small
path-loss exponents

After discussing the case of having no CSI at any of the transmitters in this section, we move on
to the more general (but practically challenging) scenario in the next section, when each transmitter
is also assumed to have CSI for its corresponding receiver and find the impact of CSI availability at
each transmitter on the transmission capacity.

3.4 Channel State Information at Both Transmitter and
Receiver

In this section, we consider the case when in addition to each receiver having the CSI for all the
channels (Section 3.3), the transmitter also has CSI for the channel between itself and its intended
receiver. We refer to this as the CSIT case. From a transmission capacity perspective, the CSIT
case is fundamentally different from the CSIR case, since with CSI, each transmitter can increase
the signal power at its intended receiver by steering the beam towards it, and possibly the role of
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multiple receiver antennas and consequently the transmission capacity scaling is different from the
CSIR case.

Remark 3.4.1 With global CSIT, each transmitter could also use its multiple antennas for
interference suppression by nulling out its signal toward unintended receivers. We consider the
interference suppression role of multiple transmit antennas in Section 3.5 together with a cognitive
radio network.

We begin with a brief background on using CSIT for a point-to-point multiple antenna channel
without interference. Lets consider a point-to-point multiple antenna channel, where H 2 CN N ig
the channel matrix between the transmitter—receiver pair with N antennas each. If X is the transmit
signal, then the received signal is given by

y = Hx +w; (3.21)

where W is the AWGN vector with independent entries that have zero mean and unit variance. Let
H = UDVWVY be the singular value decomposition of H. To maximize the mutual information, the
transmitter sends its signal over the strongest singular values of the channel H [7]. Let V¥ be the
matrix consisting of the first k columns of V corresponding to the k strongest eigenvalues of HHY.
Thus, if X 2 CK 1 is the input signal, then the transmitter sends % = AVASY through its N antennas,
and the received signal is

y = UDWVYVKx + w: (3.22)

The case of k = 1 is referred to as beamforming, while the case of k > 1 is called multimode
beamforming. With multimode beamforming, if the receiver multiplies the received signal (3.22)
with UY, the equivalent received signal is given by

y(*) = D(5 )x(*) + W(*); (3.23)

unitary. Thus, with CSIT, the received signal decouples into k independent signals, where the signal
power of the “th channel is equal to the “th eigenvalue of HHY. Thus, the knowledge of H not only
helps in increasing the received SNR but also simplifies the decoding since each element of the input
signal X can be decoded independently.

Now we look at our model with interference. We assume that each transmitter uses multimode
beamforming even in the presence of interferers. As before, Hnm 2 CN N represents the channel
matrix between transmitter Ty, and receiver Rp,. Transmitter Ty, is assumed to only know Hpp, the
channel between itself and its corresponding receiver.

Consider the typical transmitter—receiver pair (Tp; Ro). Let the singular value decomposition of

number of independent data streams (STDOF) sent by each transmitter to its receiver. Then with
multimode beamforming, transmitter To sends V'goxo, where v'go be the matrix consisting of first
k columns of Vg corresponding to the K strongest eigenvalues of Hgg H%O, and Xg 2 CK 1 s the
data vector consisting of k independent streams, where each stream is CN  0; % distributed. Note
that in contrast to the CSIR case, with CSIT, the K data streams are transmitted by all the N transmit
antennas via processing through v‘go. For keeping the analysis tractable, we consider equal power
allocation among the K-transmitted streams.
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Figure 3.4: Transmit-receive strategy with beamforming at the transmitter.

Similar to the case of point-to-point channel with no interference (3.23), we will show in (3.27)
that even in a wireless network, with multimode beamforming, the channel between each
transmitter—receiver pair is equivalent to K scalar parallel channels with no inter-stream interference
in contrast to the CSIR case. Thus, we assume that each receiver uses K SRDOF to receive the
intended signal, while the remaining Nk SRDOF are used for canceling the c(k) = N 1

K
nearest interferers.

To cancel the ¢(K) interferers, the receiver projects the received signal on to the null space of
the c(k) interferers. A block diagram depicting the transmit-receive strategy is illustrated in
Fig. 3.4.

Using multimode beamforming at each transmitter, the received signal yo 2 CN 1 at receiver
Ro is

x
Yo = d :zHoovgo Xo + dn ZZHOnVEan; (3.24)
T,: nfTog

where Vn is the matrix of the right singular vectors of the channel between transmitter n and
receiver N, Vﬁn are the first K columns of Vpn, Han = UnnDnnV},- Let the indices of the
interferers be sorted in an increasing order in terms of their distance from Rp, that is,
di  d2 il dewy deo+r ool Let S be the basis of the null space of the channel matrices
[Hoz @1 - Hocqey] corresponding to the ¢(K) nearest interferers to be canceled. Since N k SRDOF
are used for interference cancelation, S 2 CX N. Multiplying S to the received signal (3.24),

b
d  “2SUgoDoo V¥ Vi Xo + d, “2SHonVK Xn:
n=c(k)+1

SYo

X
d “2SUE,DE %o + d, “2SHon VK, Xn; (3.25)
n=c(k)+1

where U, is the N K matrix consisting of the first k columns of Ugg, and Dy 2 CK ¥ is the
diagonal matrix consisting of the first k entries of Dgo. Since S and U, are both of rank k and are
independent of each other with each entry drawn from a continuous distribution, SUj is full rank
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with probability 1. Multiplying SU¥, ! to the received signal (3.25)

X
90 = d ZDlxo+ d, 2 SU  SHonVK Xn: (3.26)
n=c(k)+1

Note that Doy is the diagonal matrix of the eigenvalues of HooHg,. Denoting the “th eigenvalue
of Hpo H’éo by <(Hgo), the received signal (3.26) can be decomposed into K parallel channels as

. X X
9o()=d 2" (FHo)xo(*) + A 2 (i) = L2k (B2D)

n=c(k)+1 i=t

where Xn(j) is the jth element of the transmitted vector Xn, gn(“;j) is the (“;j)th element of
SUK, *SHonVX,

Thus, with multimode beamforming, as shown in (3.27), the received signal can be
decomposed into K parallel channels, with the “th channel corresponding to the data stream Xo(*)
having no contribution from data streams Xo(1);:::;Xo(*  1);Xo(* + 1);:::;Xo(K). Therefore,
with multimode beamforming, there is no inter-stream interference from the other k 1 data
streams sent by the same transmitter. Thus, using N k SRDOF for interference cancelation,
c(k) = = nearest interferers can be canceled at each receiver.

Since S Uoo’ and Vpn are independent of Hop, gn(“;j)’s in (3.27) are independent for j =

""" i K, and each gn(“; J) 2(2) from Lemma 3.3.2. Thus, the interference power of the “th data
stream of the nth interferer

8 o

= K ZE
powa()=E_ ~ gn(iDxn) _  2(2K):

- j:]_ >

Let
In(‘) = dn pOWn(‘)
be the interference power of the nth interferer for the “th channel in (3.27). Since S and U¥, are

independent of Hon, gn(; J)’s and consequently pow,, (“)’s are identically distributed for all *, and it
follows that I, (“) is identically distributed for all “. Then the total mterferencig,power seen at receiver

Ro for the “th channel corresponding to signal Xo(*) in (3.27)is Inc(*) = = (k)+1 Ih(“). Since
Ih(%) is 1dentlcally distributed for all “, it follows that Inc(*) is also identically distributed for all
=10 ; K channels.

We assume an uniform data rate of B bits/sec/Hz on each of the K-transmitted data streams.!
By combining the K streams, the total rate of transmission between a source and destination is kB
bits/sec/Hz. To define outage probability, we consider the outage event of the data stream with the
worst channel gain, which in this case is the kth data stream, since the eigenvalues of Hgg H%O are
indexed in the decreasing order. Thus, the outage probability for any channel in (3.27) is at most

d  k(Hoo)
Inc(k)
!In general with multimode beamforming, data rates can be a function of the magnitude of the eigenvalues, however, that

requires finding the optimal rate allocation that minimizes the maximum of the outage probability on k different streams,
which is an unsolved problem.
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d  k(Hoo) B
— 2 1 ; (3.28)

Inc(K)
where «(Hoo) is the kth eigenvalue of HooHY,. Since Inc(*) is identically distributed for each © =
1;2;:::;k, from here on we drop the index “ and represent lnc(“) as Ih¢ for each © = 1;2;:::;k.
Thus, with 2B 1=

d H
Pout(B) =P w : (3.29)
nc
where
X
lhe = dn pOWn;di dja |<jy
n=c(k)+1

and pow,, are i.i.d. with 2(2K) distribution.

This definition of outage probability (3.29) implies that if Pou¢(B) = , then all the Kk streams
can at least support a data rate of B bits/sec/Hz with probability 1 ~ , and the transmission capacity
is defined as

C=k (1 )B bits/sec/Hz/m?;

by combining the contribution from all the K-transmitted data streams. Deriving a closed form
expression for the outage probability requires the distribution of I, and k(Hgp), the kth
maximum eigenvalue of the Wishart matrix HooHY,. Unfortunately, both these distributions are
unknown, and hence finding an exact expression for the outage probability is difficult. To facilitate
analysis, we use upper and lower bounds on the outage probability derived in Theorems 3.3.8 and
3.3.10, and then find the optimal number of data streams K that maximize the transmission capacity.
Use of Theorems 3.3.8 and 3.3.10 also allows us to circumvent the problem of requiring a simple
closed form expression for the probability density function (PDF) of (Hggp). For our analysis, it
will suffice to know the expected value of the maximum eigenvalue of Hgg H‘éo, 1(Hoo), and the
expected value of the reciprocal of ;(Hgp). For large N, the maximum eigenvalue of Hgg H%’O,
1(Hoo), converges to 4N [14], and EF 31(Hoo)g 4N . With extensive simulation results (see
Fig. 3.5) we observe that Efﬁg ﬁ, however, an analytical proof for this result cannot be
found readily in literature. Note that the constant 1=3:5 is immaterial for us, we are only interested
in the scaling of the mean of the reciprocal of the maximum eigenvalue of Wishart matrix with N
and our simulations show that mean of the reciprocal of the maximum eigenvalue of Wishart matrix
does not decrease faster than N 1. We will use both these large N approximations on Ef 1(Hoo)g
and Efﬁg for our analysis.
The main result of this section is as follows that characterizes the scaling of transmission capacity
with multiple antennas using multimode beamforming.

Theorem 3.4.2 With multimode beamforming and ZF decoder, the transmission capacity scales as

C= (N); andC =O(N'"& 22)

with the number of antennas N. The optimal lower bound is achieved by K? = 1 andc(k) =N 1,
that is, sending only one data stream on the strongest eigenvector, and canceling the maximum
number of interferers N 1, is optimal.
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Figure 3.5: Empirical expected value of the reciprocal of the largest eigenvalue of HooHg,.

Proof: With the number of nearest canceled interferers to be ¢(k) = % 1, from Theorem 3.3.10,
for any r such that kr > 1,
kB(1 ) & Ef i (Hoo)g = N
C — l1+r+—- ; 3.30
(kr 1d k 2 ( )

where we have replaced the expected signal power Efsg = N m Kk + 1 of the CSIR case
with Ef «(Hoo)g, the expected signal power of the kth data stream with multimode beamforming
(3.26). Recall that we have ordered the eigenvalues k(Hgg) in decreasing order, «(Hoo) m if
k > m. From [14], Ef 1(Hoo)g = 4N, hence Ef «(Hgo)g < 4N for k > 1. Hence, from (3.30),
similar to the proof of Theorem 3.3.5, we can show that

C=0 NWY& &
with r = N?= by parametrizingk = N and findingthe best
For the lower bound, by substituting E % =E ﬁ in Theorem 3.3.8 for k < N, we
have

=~
vy}
~
H
Q
-
3
-
2N

(3.31)

1
x(Hoo)
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Transmission capacity with multi-mode beamforming and canceling the

nearest interferers with d=5m, p=1, a=4, £=0.1
08 T T

wefil== Upper Bound
07~ (1@ Simulation
Lower Bound

06 -

o o
> 3}
T T

Transmission Capacity

o
w
T

02

01

Il Il
0 5 10 15 20 25
Number of antennas N

Figure 3.6: Transmission capacity versus the number of antennas N with multimode beamforming
and canceling the nearest interferers with single stream data transmissionk = 1,d =5m, =1
(B = 1bits/sec/Hz), =4, =0:1.

As pointed out earlier, Efﬁg = ﬁ, Efﬁg > ﬁ for k > 1. Thus, evaluating the
lower bound (3.31) atk =1, we get C = (N). O

With multimode beamforming, the lower bound on the transmission capacity is maximized by
using single stream beamforming (k = 1) together with canceling the N 1 nearest interferers, and
the lower bound scales linearly with N . Thus, comparing the CSIT and CSIR cases, the transmission
strategy remains identical, but the reception strategy is completely different (with the CSIR case
m = (N) nearest interferers are canceled). This difference is because in the CSIT case, the average
signal power (strongest eigenvalue) scales linearly with N without any processing at the receiver,
while in the CSIR case, it is independent of N if signals received at multiple receive antennas are
not combined at the receiver. Thus, in the CSIR case, to boost the signal power, so that it scales with
N, (N) SRDOF are required for decoding the signal of interest allowing only m = (N nearest
interferers to be canceled.

The derived bounds on the transmission capacity in both the CSIR and CSIT cases are identical,
implying that the value of channel feedback (which is generally costly) is fairly limited. There is,
however, a constant multiplicative gain of 4 in terms of signal power with CSIT, since with the
optimal mode of k = 1, the signal power Ef 1(Hoo)gd = 4N in comparison to order N for the
CSIR case. The real advantage of CSIT is the simplified encoding and decoding, since with CSIT,
the multiple data streams sent by the transmitter can be resolved as parallel channels at the receiver
resulting in independent decoding.

To illustrate the scaling behavior of the transmission capacity with CSIT as a function of the
number of antennas N, we plot the derived lower and upper bound, and the simulated transmission
capacity in Fig. 3.6, for k = 1, d = 5 m, path-loss exponent = 4 and outage probability constraint
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Transmission capacity with multi-mode beamforming and canceling the nearest interferers
with N=8 antennas d=5m, B=1, a=4, £=0.1
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Figure 3.7: Transmission capacity versus the number of transmitted data streams k with multimode
beamforming and canceling the nearest interferers withd = 5m, =1, =4, = 0:1, total
number of antennas N = 8.

of = 0:1 with increasing N. We see that the transmission capacity grows linearly even for = 4,
for which the upper bound suggests super-linear scaling of N1*1=4, Thus, the derived lower bound
that scales linearly N is tight; however, some more analytical work is required to tighten the upper
bound to make it scale linearly with N. To show the optimality of using a single data stream from
each transmitter K, in Fig. 3.7, we plot the transmission capacity as a function of k for total N = 8
antennas. Fig. 3.7 clearly shows that the transmission capacity with multimode beamforming is a
decreasing function of k and sending a single data stream is optimal in a wireless network. Similar
to the CSIR case, for the CSIT case, we can get the exact result for the special case when each
receiver employs no interference cancelation. We show that with no interference cancelation, the
transmission capacity scales as (N) and the optimal number of data streams to transmit is kK =

(N). Further, if the number of receive antennas is 1, then we show that the transmission capacity
is (N 5), that is, scales sublinearly with N.

Theorem 3.4.3 Without interference cancelation at any receiver, with multimode beamforming, the

transmission capacity is C = (N), and the optimal number of data streams to transmit is K =
N; 2 (0;1]. If the number of receive antennas is 1, then the transmission capacity is C =
(N %), where N is the number of transmit antennas.

Proof: Follows similarly to the proof of Theorem 3.4.2 0
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Remark 3.4.4 In this section, even though we have assumed the availability of CSI at each
transmitter, we have not accounted for resources required for feeding back CSI from each receiver.
In general, it is a hard problem to quantify the effects of feedback. In Chapter 4, we present some
results in that direction.

3.5 Spectrum-Sharing/Cognitive Radios

After considering the dual role of multiple antennas in previous sections, sending multiple data
streams from the transmitter and canceling interference at the receiver, in this section, we look at
the third possible role of multiple antennas in a wireless network: using them at the transmitter for
suppressing interference toward other receivers. To highlight this feature, we consider a
cognitive/secondary wireless network that is overlaid over a pre-existing/primary wireless network
that consists of licensed/primary nodes.

In particular, we consider two co-existing networks, one primary and other secondary, where
primary network is oblivious to the presence of the secondary network, while the secondary
network is aware of the primary network. For the primary network, we assume the same model as
in Section 3.3, where each primary transmitter has a primary receiver associated with it at a fixed of
fixed distance dp, with SIR threshold p, and under an outage probability constraint of j at each
receiver, except that each transmitter and receiver has a single antenna. Thus, from Theorem 2.4.1,
the maximum density of primary network is

>_Inl p).
P Tz .

¢ pd3
for a constant C.

The secondary network is overlaid on top of the primary network, where each secondary

transmitter has a secondary receiver associated with it at a fixed of fixed distance dg, with density

s and SIR threshold s, under an outage probability constraint of ¢ at each secondary receiver.
Clearly, the presence of secondary transmitters increases the interference seen at any primary
receiver; thus, if s & 0, the primary outage probability constraint of , cannot be met if the
primary network is operating with density g. Therefore, s = 0 if primary network density is
and primary outage probability constraintis p.

To make the problem non-degenerate, we relax the primary outage probability constraint of
to p+ p while keeping the primary network density to be 3, and find the maximum value of ¢
such that the relaxed primary outage probability constraint of , + , and the secondary outage
probability constraint of g is satisfied simultaneously.

We assume that the secondary nodes are equipped with multiple transmit and receive antennas.
Multiple antennas at each secondary transmitter node are used for interference suppression toward
primary receivers, while multiple receive antennas are used for interference cancelation at each
secondary receiver. Since the secondary network has to operate under an outage probability
constraint at each primary node, it is important to control the interference that each secondary node
creates, and this is where the interference suppression feature of multiple transmit antennas comes
to the fore.

We let the locations of primary and secondary transmitters to be distributed as two independent
homogenous PPPs with density 1 and 2, respectively. We consider an ALOHA random access
protocol for both the primary and secondary transmitters, with access probability p. Consequently,

?
p
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the active primary and secondary transmitter processes are also homogenous PPPs on a
two-dimensional plane with density p, =p 1and s=0p »,respectively.

Let the location of the nth active primary transmitter be Tpn and the nth active secondary
transmitter be Tsn. The set of all active primary and secondary transmitters is denoted by p =
fTpn; N2 Ngand s = fTsn; N 2 Ng, respectively.

We assume that each secondary transmitter has N¢ antennas, while each secondary receiver
has N, antennas. We also assume that each secondary transmitter has CSI for its corresponding
receiver as well as for its N¢ nearest primary receivers that is used to suppress interference towards
them. Each secondary receiver is assumed to have CSI for its intended transmitter as well as for its
Ny nearest interferers (from the union s [ p). The system model of overlaid wireless networks
under consideration is illustrated in Fig. 3.8, where the squares represent the primary transmitters
and receivers, while the dots represent the secondary transmitters and receivers, and a dashed line
indicates a suppressed interferer. We restrict ourselves to the case when each secondary transmitter
sends only one data stream using its multiple antennas to its intended secondary receiver.

Let the beamformer used by the nth secondary transmitter for interference suppression toward
primary receivers is denoted by by 2 CN 1. Then, the received signal at the primary receiver Rpg is

>
Yo = pppdp “2NooXpo + P
NTyn2 nfTLo0

ID7Pdpp;riz honXpn
> | g—
P _
+  dspin”GonbnXsn: (3.32)
NTsn2 &

where Py and Ps is the transmit power of each primary and secondary transmitter, respectively,
hon 2 C is the channel between the nth primary transmitter Tpn and a primary receiver Rpo,
Jon 2 C! N is the channel vector between the nth secondary transmitter Tsp, with Ny antennas and
Rpo, dpp;n and dsp:n is the distance between Tpn and Rpo, and Tsp and Rpo, respectively, Xpn and
Xsn are data signals transmitted from Tpn and Tsn, respectively, with Xpn; Xsn CN(0; ).

The second term of (3.32) corresponds to the interference received from primary transmitters
at the primary receiver Rpo, while the third term corresponds to the interference received from
secondary transmitters at the primary receiver Rpo.

We consider the interference limited regime, that is, noise power is negligible compared to the
interference power and drop the AWGN contribution. We assume that each hgp, and each entry of
Jon is i.i.d. Rayleigh distributed.

Similarly, the CN- 1 received signal Vg at the secondary receiver Rgg is

r r
Ps . = >< Ps, =
Vo = N Gs QooboXso + sts;n QonbnXsn
N:Tsn2 <nfT400
> Poy
+ Ppdps;n” fonXpn; (3.33)
nT,,2 ,

where dss;n and dps:n is the distance between Tsn and Rsp, and Tpn and Rsp, respectively,
Qon 2 CN» N s the multiple antenna channel between the secondary transmitter Ts, and the
secondary receiver Rgg, fon 2 CN- 1 is the channel vector between Ton and Rso. Each of the
channel coefficients are assumed to be Rayleigh distributed.

Secondary Transmitter Interference Suppression: To minimize the interference caused at
primary receivers, the N¢ transmit antennas at each secondary transmitter are used to suppress
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Figure 3.8: Transmit-receive strategy of secondary transmitters and receivers (dots) and primary
transmitters and receivers (squares), where each secondary transmitter suppresses its interference
toward its Ny 1 nearest primary receivers.

interference towards its Ny 1 nearest primary receivers. Thus, the beamformer (suppressing
vector) employed by the nth secondary transmitter by, lies in the null space of the channel vectors
of the Ny 1 nearest primary receivers, that is, [gY,,::: g}/\l 1nl, to suppress the interference
toward its Ny 1 nearest primary receivers.

t

Remark 3.5.1 Note that each secondary transmitter nulls/suppresses its signal toward its Ny 1
nearest primary receivers. However, from a primary receiver’s perspective this does not translate
into not receiving any interference from its N¢ 1 nearest secondary transmitters.

Let Ngypp be the random variable denoting the number of consecutive nearest secondary
interferers that appear suppressed at the typical primary receiver Rpo. For example, as shown in
Fig. 3.9, each secondary transmitter tries to suppress interference toward its 3 nearest primary
receivers. A dashed line indicates suppressed interferer while a solid line indicates non-suppressed
interferer. In Fig. 3.9, we can see that the primary receiver Rpg can still receive interference from
its second nearest secondary transmitter Tsz, in which case Ngypp = 1.

With Ngypp = C nearest secondary interferers suppressed at primary receiver Rpo, the
interference received from both the primary and secondary transmitters at the primary receiver Rpo
in (3.32) is

X X
IMIMO(C) = depp;njhonj2 + Psdsp;njgon bﬂj2 : (334)
T:Tpnz pnf‘l'pof7 nn>c; Tgn2 {7 }

3o
Ic

IPP sp
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Figure 3.9: Each dot (secondary transmitter) suppresses its interference toward its 3 nearest squares
(primary receivers) denoted by dashed lines, but still a square can receive interference from one of
its 3 nearest dots.

Thus, with signal model (3.32), the SIR at Ry is

Ppdp jhooj?

IR, = :
SRy Imimo(€)

(3.35)

Secondary Receiver Interference Cancelation: Similar to Section 3.3, we consider the use of
a partial ZF decoder at each secondary receiver that uses its m SRDOF for canceling the nearest
interferers from the union of the primary and the secondary interferers, and the remaining N m
SRDOF are used for decoding the signal of interest. Since each primary and secondary transmitter
sends a single data stream, the number of interferers that can be canceled at each secondary receiver
using m SRDOF is m.

For interference cancelation, let the nth secondary receiver multiply t), to the received signal
(3.33). Then t, lies in the null space of channel vectors corresponding to its m nearest interferers
from T , [ sgnfTsng chosen such that it maximizes the signal power jt},Qnn bnj? in (3.33).

Thus, from (3.33), the SIR at the secondary receiver Rgp is

Psds jt}Qoobgi?

SIR, = P L —
NTen2 onFTe0g Psdss;njthQonbnj? + NTpn2 Pdeps;thofOnJ

(3.36)

where the beamforming vector by, used by secondary transmitter Tspn lies in the null space of
9, ::: g’,:l 1n] to suppress the interference from T, toward its Ny 1 nearest primary receivers,
and ty lies in the null space of channel vectors corresponding to the m nearest interferers of Rgg
from f , [ sgnfTsng chosen such that it maximizes the signal power jtQnnbnj?. From Lemma
3.5.2, optimal

_ (Qnnu)’ss¥

th=—~—""-"°9-—;
" j(Qnnu)YSYj
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where S 2 CN- N+ M ig the orthonormal basis of the null space of channel vectors corresponding
to the m nearest interferers of Rgg from , [ snfTsng.

Lemma 3.5.2 The signal power S = jt Qooboj? in (3.36) at the secondary receiver with t, =

QnnU)’SSY . 2
W Ls (2(Ny

transmitter N in (3.36), pOWOn = jt¥don bnj?, and the interference power at secondary receiver from
the primary transmitter n in (3.36), pOWOn = jtffonj? is 2(2).

m)). The interference power at secondary receiver from the secondary

Proof: The first statement follows from Lemma 3.3.1. The second and third statements of the

Lemma follow since t%, bn, and qon are independent, and since each entry of Qon;fon  CN(0; 1).

O

We next present an alternate way of representing the interference term in (3.36) which allows
both easy analysis and simpler notation.

Lemma 3.5.3 The interference term in (3.36)

X on X on
Is = Psdss:nPOWge + Ppdys:nPOWpg
N:Ts,2 snFTg00 NTpn2 ,

received at the typical secondary receiver Rgg can also be written as

X
Pnd, pow"
n:T2 nfTs0
where pow°" is 2(2) =f s[ p9 andPpnisa binary random variable which takes value

Pp with probablllty , and value P with probabzllty
Essentially, the Lemma says that the aggregate interference seen at a secondary receiver can be
thought of as interference coming for a single PPP  that is an union of the primary and the
secondary transmitter’s PPP, and where each node of PPP  transmits with either power Ps or P,

with probability and , respectively.
Proof: Since the superposmon of two independent PPPs is a PPP, consider the union of | and
s that are independent as a single PPP = f s [ 0. Thus, the interference received at the

typical secondary receiver Rgp is derived from the transmitters corresponding to ~ with channel
gains pow?D or pOWgQ, where both pow?? and pOWps are 2(2) and is denoted as pow. Note that
the primary transmitters use power Pp, and the secondary transmitters use power Ps. The probability

that any randomly chosen node of belongs to pis —£—; hence, the power transmitted by any

node of  is P, with probability —2— g

Thus, we can write the SIR expressmn (3.36) at the typlcal secondary receiver Rgp after
canceling the m nearest interferers from = , [ s at secondary receiver Rso, more compactly
as

Psds jt§Qooboj?

SIRs = P :
s Pndn powon

(3.37)
n>m; T,2 nfT,og

We assume that the rate of transmission for each primary (secondary) transmitter is B, = log(1+
p) (Bs = log(1+ )) bits/sec/Hz. Therefore, a packet transmitted by Tpo (Tso) can be successfully
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decoded at Rpg (Rso), if SIRp p (SIRs s). Without the presence of secondary network, the
SIR at the primary receiver Rpg is

Ppd, ihooj?

— (3.38)
nT2 ,nfT.g Pndn POW

SIRSC =P

Primary Network Outage Model: For a given rate Bp bits/sec/Hz and primary outage
probability constraint p, let g be the maximum density for which the outage probability of the
primary network

,;}gut =P SIRSC p p: (3.39)
From Theorem 2.4.1, S = %g—”) We assume that the primary network operates at the largest
c gd2

permissible density g.

Allowing secondary transmissions to co-exist with the primary transmissions, increases the
interference received at Rpg as quantified in SIRp (3.35) compared to SIREC (3.38), and thereby
increases the outage probability from Pp.out( p)™ (3.39) to

Pp:out( p) = P (SIRp p): (3.40)

Thus, if the primary outage probability constraint is fixed at p, and the primary network density is
g, the density of the secondary transmitters cannot be non-zero.

To make the problem non-trivial, we consider an increased outage probability tolerance at the
primary receivers of p + .

Secondary Network Outage Model: For the secondary network, we consider the usual outage
probability constraint of Ps.out( s) = P (SIRs s) s. Thus, we want to find the maximum
density of secondary transmitters ¢ satisfying both the outage constraint at primary receivers
Ppiout( p) p + p, and secondary receivers Pg.out( s) = P(SIRs s) s for primary
nodes’ density S. Thus, the maximum density of the secondary network is

?
s =
Ppout( p) p+ piPsout( s) s

Consequently, the transmission capacity of the secondary network is defined as
Cs= 2(1 &)Bs bits/sec/Hz/m?:

In the following, we derive ; as a function of secondary transmit (N¢) and receive (N ) antennas via
computing the outage probabilities. To compute the outage probability Pp.out( p) and Ps.out( s),
we once again consider a typical transmitter—receiver pair (Tpo; Rpo) and (Tso; Rso), respectively.

We next state the main theorem of this section, on the scaling of transmission capacity of
secondary nodes with multiple antennas under a primary and secondary outage probability
constraint.

Theorem 3.5.4 When each secondary transmitter uses Nt 1 STDOF for suppressing
interference toward its Ny 1 nearest primary receivers, and each secondary receiver uses m
SRDOF for canceling the m nearest interferers from t s [ pgnfTsoQ, then

2
a

Cs= minfN;; N &g ; and Cs = O (min fN¢; N,g);

andm = Ny; 2 (0; 1] maximizes the lower bound on the transmission capacity of the secondary
wireless network.
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Figure 3.10: Density of the secondary network with respect to number of transmit and receive
antennas N¢; N at the secondary nodes.

Theorem 3.5.4 highlights the dependence of transmission capacity of the secondary network on
the number of transmit and receive antennas, when multiple antennas are allowed to exploit their full
capability; perform interference suppression at the transmit side and interference cancelation at the
receive side. It also identifies that increasing only the transmit or receiver antennas is futile and to
get non-vanishing gain, both the transmit and receive antennas have to be increased simultaneously,
which is expected since there are two outage probability constraints.

Theorem 3.5.4 shows that if the number of transmit antennas is much larger than the number of
receive antennas Ny => N, then the transmission capacity increases linearly with N, the number
of receive antennas. With large number of transmit antennas at the secondary nodes Ny >> N,
each secondary transmitter can suppress its interference toward a very large number of primary
receivers and hence the outage probability constraint at each primary receiver is always met. Thus,
with Nt =>> N, only the outage probability constraint at the secondary nodes is active, and the
situation is identical to that of Theorem 3.3.5, where each transmitter has a single antenna and each
receiver has Ny antennas with a single outage probability constraint, and hence the result is identical
to that of Theorem 3.3.5.

When N >> Ny, the transmission capacity is limited by the interference suppression capability
of secondary transmitters, and Theorem 3.5.4 shows that the transmission capacity scales at least as
N 25 . This result is intuitive since larger the path-loss exponent , less is the interference caused
by each secondary transmitter at any primary receiver.

In Fig. 3.10, we plot the density of the secondary network with respect to the number of
secondary transmit and receive antennas N¢ and N for outage probabilities p = s = :1. We see
that for N¢ = Ny, the density of the secondary network scales sublinearly with N¢, however, for
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Nt = 1 the density of the secondary network is constant as expected.

Proof: Similar to the proof of Theorem 3.3.5, we will first find an upper and a lower bound on the
outage probability, but in this case, we have two outage probabilities to bound, one at the primary
receiver and the other at the secondary receiver. The outage probability bounds for the secondary
receiver follow from Theorems 3.3.8 and 3.3.10, since the secondary receiver employs partial ZF
decoder for interference cancelation, similar to Section 3.3. Thus, we only need to derive the
bounds for the outage probability expression at the primary receiver in Theorem 3.5.5, when each
secondary transmitter uses its Ny 1 STDOF for interference suppression.

Considering the relaxed outage probability constraint of , +  at any primary receiver when
each secondary transmitter uses K = N¢ 1 STDOF for interference suppression, from Theorem
3.55,

?

2= N % and 2=0O(Ny): (3.41)

Next, we consider the outage probability constraint of s on each secondary receiver. From
(3.37), the outage probability at the secondary receiver Rgg is

P.d. jt!Qooboj?
Psout(s) = P P sds J8Qoobo] -

n>m; T,,2 nfT, g Pndn pOWOn
where = f ¢ [ p0, and interference power pow®" 2(2) (Lemma 3.5.2) and signal power
jt%Qooboj2 2(2(Ny  m)) (Lemma 3.5.2). Thus, with m SRDOF used for interference
cancelation at each secondary receiver, from Theorems 3.3.8 and 3.3.10, for = | [ s with
density p+ s, we get for any r > 1,% with a single data stream transmission k = 1,
(Ny m)(m+r+5)a
Psiout( s) 1 — 2 oS ter sy G4
(r 1)%5( (s"‘ p))7 p(p s) s(p s)
and F)s;out( s)
o 1 1 g
(( p+ s))?2 pdp 2 1 m 2 i pPp + sPs . (3.43)
Ny m 1 pt s pt s’ '
respectively, where we have taken the expectation with respect to power transmitted P, by any node
of = pL s, whichis abinary random variable taking values Py and Ps, with probability . >

and —2—, respectively.
From the lower bound on the outage probability (3.42), we get that

2=0(Ny); (3.44)

by choosing r = N;2= , similar to Theorem 3.3.5, by fixing outage probability Ps.out( s) = s
Moreover, withm = N;; 2 (0;1]; using the upper bound on the outage probability (3.43),
we get
2= (Ny): (3.45)
Hence, considering both the outage probability constraints together, from (3.41), (3.44) and
(3.45), we get

2= minfN; Nt %9 ;and 2= O (minfNy; Neg):

2r represents the number of nearest uncanceled interferers considered for bounding the outage probability.
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Finally, we prove a more general result than required by Theorem 3.5.4, where we derive bounds
on the outage probability at any primary receiver when each secondary transmitter uses kK STDOF
for interference suppression towards its kK nearest primary receivers. The proof of Theorem 3.5.4 is
slightly long and complicated. For Theorem 3.5.4, we fix K = N¢ 1 to get (3.41).

Theorem 3.5.5 If kK STDOF are used for interference suppression at each secondary transmitter,
then

2

2= K' & ;and IT=0(K):

Proof: Since we are interested in establishing the scaling behavior of the density of the secondary
network with respect to N¢, we consider the case when both N¢ and k, the number of STDOF used
for interference suppression, are large enough. We bound the outage probability (3.40) at a typical
primary receiver and find the density of secondary network ¢ that satisfies the primary outage
constraint of Pp.out = p +

Lower Bound: Recall that Ngypp is the random variable representing the number of consecutive
nearest secondary interferers suppressed at the typical primary receiver Rpo. Let Ngypp = €, and
recall the definition of interference received at Rpo, Imimo(€) = lpp + Igp from (3.34), where Iy
is the interference contribution from primary transmitters other than Tpo, and Ig; is the secondary
transmitters other than the ¢ consecutive nearest secondary interferers, at the primary receiver Rpo.

From (3.40) and (3.35), the outage probability at primary receiver Ry is Pp:out( p)

LD
_ Ppdp  jhooj? _
Nouep Imimo(C) P
! D)
Ppd,  jhooj?
@ Nisupp = —— p Nsypp <bk= ¢ PP (Nsupp < bk= c)
Imimo(C) 3
Pod, jhoof? ) .
BNy Imimo(C) p. Napp Dk=c F(Nsupp b= ©);
C )]
(b) Ppdy, jhooj? _ N
+]ENsupp IP W p Nsupp bk— C P(Nsupp bk— C),
© | c)d
+Eny, 1 E exp %O()p Newp bk= c ;
@ s p
= +Eng, 1 exp I[,(Ipp)dp fy,,(s)ds
0
Z u
1 )P<d
exp % fie (00t Nopp  bk= € ;
0 p
®©
- + ENsupp 1 LIPP pdp 1 D)
Pod, jhooj? o
1 P P p% Jhoo) C bk=c : (3.46)

n: n>c;T:;,2 & PSdSp;thOnJ2

where (@) follows by splitting the expectation over conditioning the event Ngypp < bk= ¢ where
is a constant (b) follows by letting 2 N such that P (Ngypp < bk= ) ; p, where
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p is the additional tolerance of outage probability at the primary receivers, and is independent
of k. Existence of 2 N such that P (Nsypp < bk= ¢) p is guaranteed, since for large values
of k, canceling only a few nearest secondary interferers has a very small probability. Inequality (C)
follows by taking expectation with respect to jhooj?  exp(1l) and using P (Nsypp  bk= c) 1.
Equality (d) follows since Inmimo(C) = lpp + 15, and Ipp and Ig, are independent. Equality (€)
follows by defining L, (:) as the Laplace transform of I, and noting that

‘£ (15)Psd
exp ———
0 Pp

1
Ppd, jhooj® _
T (3.47)

fic (Odt="P

since jhooj?  exp(l), and where the expectation in the R.H.S. is taken only with respect to jhgoj?.
Thus, from (3.46), Pp.out( p)

Q) n 2 o
+Eng, 1 exp pC1 p dp
I m o
o P 1 18
1 ( 3)2 p Piz dp E 1 c E Nsupp bk— c
2 2
= +1 exp pC1 padg +exp pC1 pdp ( )2 p
I m a
Ps 1 13
p, 7 1 B © 3 Nopp  bk=¢
()] 2 a Ps
+ p+exp ptr pdy ( s)2 p P Ao
p
I m
5 1 (bk=c+ =)' % ; (3.48)

where (f) follows by using the lower bound on the success probability
1

Ppdp  jhooj?

P P
N N>c;Ten2 Psdsp:njdonj?

from Theorem 3.3.10, by substituting kK = 1 data stream, and N, Kk m = 1, since the signal
strength jhgoj? 2(2) in this case. Finally (g) follows since for Nsypp ~ bk= ¢;En,, f(C
5 ) 2jNgypp bk=c (bk=c > 32 2 for >2.
From the primary outage probability constraint in the absence of a secondary wireless network

(Theorem 2.4.1)
_ 2. 242 .
p=1 exp oC 5 dp

where g is the largest density of primary nodes satisfying the outage constraint of .

Hence, equating (3.48) with the relaxed outage probability of Pp.out( p) = p + p at each
primary receiver, and substituting for ,, we get

(0} 1

s 18 = ;2;
o o

2
26 & 2 P 1= 1 e
Xp oc1 g dg p = dy 3 1 “(bk=c+1)" 2 +c3
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and

2

= KA (3.49)

Upper bound: To find an upper bound on s, we consider the case when exactly K consecutive
nearest secondary interferers are suppressed at each primary receiver. Clearly, when each
secondary transmitter uses kK STDOF for interference suppression toward the primary receivers, at
best k consecutive nearest secondary interferers are suppressed at each primary receiver, thus
yielding the upper bound. This can also be seen from Fig. 3.9, where each secondary transmitter
tries to suppress interference toward its 3 nearest primary receivers.

Thus, from (3.40) and (3.35),

D
Ppd, jhooj?
Pp; = E _p7p 1001
poue( ) Naon IMIMO(C)| "
@ dep jhOOj2 .
Imimo(K) P
g 2
Q1 E exp p(Polpp + Pslsp)dy ’
Pp
Z 4
=1 exp p(lpp)d, Ti,,(s)ds
7z, ° '
T 1X)Psd
exp m 1. (t)dt;
0 Pp sp I
© ‘£ S(1E)Pd
= 1 L| pdp exp _PA'sp/” ST fl?, (t)dt,
pp o Pp 2,
n
Pod, jhoof?
@ 4 Li,, ody 1P P pdp_JNool” o,
n>k;Tsn2 Spsdsp;njg()nj
®© 2 kK+r+, 2
1 exp  jogdy ——— 5
d ( o=

where (a) follows from the fact that using k STDOF for interference suppression by each

secondary transmitter, at best K consecutive nearest secondary interferers are suppressed at each

primary receiver, (b) follows by definition of Iyymo(k) (3.34). Equality (c) follows since the

Laplace transform of lpp, the interference contribution from PPP  , with density g, evaluated at
pdy s

2
Li,, pdy =exp  p(lpp)d, Fi (s)ds=exp ‘o1 gd

2 .
pp p -

Equality (d) follows similar to (3.47), since jhooj? exp(1l), and finally (e) follows from the
lower bound on outage probability (Theorem 3.3.8), since the signal power is 2(2) instead of
N m k+ 1 for Theorem 3.3.8 and N¢anc = K nearest interferers are canceled at each primary
receiver.
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Thus, we get the upper bound
s = 0(k): (3.50)

Combining (3.49), and (3.50),

3.6 Reference Notes

The results presented in Section 3.3 and 3.4 can be found in [3]. The study of transmission capacity
with multiple antennas was initiated in [8], followed up in [4, 5,7, 9], and mostly settled in [3].
Results on multiple antennas in cellular networks can be found in [10-13]. Results on
space-division multiple access with multiple antennas can be found in [15], and impact of multiple
antennas with scheduling can be found in [16]. The results of Section 3.5 with multiple antennas in
overlaid networks are presented from [17]. Transmission capacity result for single antenna
equipped secondary nodes can be found in [18-23,23-26].
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Chapter 4

Two-Way Networks

4.1 Introduction

In this chapter, we consider a two-way transmission model for the wireless network, where all
source—destination pairs want to exchange information in both directions over a single hop. This
model is more realistic than the one-way single-hop model of Chapter 2, since most often in
practice, the communication between nodes is two-way, for example, uplink/downlink in cellular
networks, feedback for packet acknowledgments, control and channel state information.

For defining the transmission capacity with the two-way communication model, we define an
outage event if there is outage in any one of the two directions. Since the outage events in the two
directions in wireless networks are correlated, the transmission capacity analysis with the two-way
model is non-trivial and does not follow easily from the one-way communication case. Thus, instead
of deriving exact expressions for the transmission capacity as done for the one-way communication
in Chapter 2, we resort to deriving tight upper and lower bounds on the transmission capacity for the
two-way case, which only differ in constants. The tight bounds derived on the transmission capacity
also allow us to find the optimal bandwidth/resource partitioning between the communication in two
directions that maximizes the transmission capacity.

An added benefit of the two-way model of transmission model is that it allows us to quantify
the loss in the multiple antenna transmission capacity with practical feedback in comparison to
the genie-aided feedback. The multiple antenna transmission capacity analysis of the CSIT case in
Chapter 3 assumes a genie-aided feedback, that is, the transmitter has error-free access to channel
coefficients without accounting for resources used for feedback. In this chapter, we characterize the
effect of practical channel feedback on the transmission capacity with CSIT and show that genie-
aided feedback is a severely simplifying assumption and there is significant performance loss while
accounting for realistic feedback requirements.

4.2 Two-Way Communication
In this chapter, we consider an ad hoc network with two-way communication, where each
source—destination pair has data to exchange in both directions and extend the one-way

transmission capacity framework of Chapter 2 to allow two-way communication, by defining an
outage event if there is outage in any one of the two communication directions. With this new

80
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Figure 4.1: Schematic for wireless network with two-way communication, where black dots
represent nodes of T and gray dots represent nodes of R.

definition, we find the maximum density of nodes with two-way communication that satisfies a
per-user data rate and outage probability constraint for transmissions in both directions. This
framework also allows us to find the optimal resource allocation (time/bandwidth) in the two
directions, given data rate requirements of the two directions.

Consider an ad hoc network with two sets of nodes 1 = fTy; n2Ngand r =fRn; n 2
Ng, where T, and R, want to exchange data between each other for each n. Similar to Chapter 2,
we let Tph; Ry denote the nodes as well as their locations. We assume each T, and R, to have a
single antenna and consider a slotted ALOHA protocol, where at any given time, the pair (Tn; Rp)
transmits data to each other with an access probability p for each n, independent of all other nodes

nfThg; RNFRKQ, respectively. We assume that the distance between each Ty, and Ry, pair is
fixed to be d with random orientation. We consider a general system, where the data requirement
in both directions can be different, and a frequency division duplex (FDD) communication model,
where two separate frequency carriers are used for two directions, thereby forming a full-duplex
link. Analysis with time division duplex (TDD) is identical.

As in Chapter 2, for purposes of analysis, the set 1 = FT,g is modeled as a homogenous
Poisson point process (PPP) on a two-dimensional plane with density ¢. Since Ry, is at a fixed
distance d from the Ty, in a random direction, the set r = TRpg is also a homogenous PPP on a
two-dimensional plane with density . With ALOHA protocol, at any given time, the active node
location processes § = TTnjTn isactivegand & = fRnjRn is activeg are homogenous PPPs
on a two-dimensional plane with density = p o, where p is the ALOHA access probability. The
total available bandwidth is Figta), out of which FtR is dedicated for T, ¥ R, communication
to support a rate demand By bits/sec/Hz, and the rest Frt = Fiotal Frr forthe R, ¥ T,



82 Random Wireless Networks

communication to support a rate demand of Brt bits/sec/Hz. Fig. 4.1 illustrates the considered
system model.
In a time slot, when a typical pair (To; Rg) is active, the received signal at Ry is

=< _
yo=0d “ZhgoXo + dr. “honXn; 4.1)
nT,2 %

and the received signal at Ty is
- > -
Zo=d "“goolo + dr, “YonUn; (4.2)
nR,2 ¢

where hgg and goo are the channel coefficients between Tg and Ry and Rg and Tp, respectively,
hon and gon are the channel coefficients between Tp, and Rg and Ry, and To, respectively, drt,, and
dr,, are the distances between T, and Rg and R, and To, respectively, > 2 is the path loss
exponent, and X, and Up, are the signals transmitted from T, and R, respectively. We consider an
interference-limited regime and ignore the effects of AWGN. We assume that hoo; §oo, hon, and gon,
are i.i.d. with Rayleigh distribution.

With the received signal models (4.1) and (4.2), SIRs from Top ¥ Rp and from Ry ¥ Ty are

ih 2
L N L — “3)
n:T,2 %nfTog dTn JhOnJ
i i2
SIRgy = 9 J900) 4.4)

dr,_9onj?’
n:R,2 %nfRog RnJgonJ

respectively.
The mutual informations [17] for the T ¥ Rg channel using bandwidth Frr, and for the
Ro ¥ Tp channel using bandwidth Frt are

IR = Frrlog (1 + SIRTR) bits/sec/Hz;

and
Irt = Frt log (1 + SIRRT) bits/sec/Hz;

respectively. Recall that the rate requirement for the Top ¥ Rg transmission is Byr bits/sec/Hz,
and for the Ry ¥ Tp communication is Brt bits/sec/Hz. Thus, to account for the two-way or
bidirectional nature of communication, we define the success probability (complement of the outage
probability ) as the probability that communication in both directions is successful simultaneously,
that is,

Psuc = P (Itr = BtRr; IrT = BRrr): 4.5)

This is a natural definition since it models the fact that successful communication in one direction
depends on the success of the communication in the other direction, for example channel feedback,
ACK-NACK, signals.

Let v be maximum density of nodes of 1 (or R) per unit area that can support rate Bt
from Top ¥ Rp and Brt from Rg ¥ Tp, with success probability Psyc = 1 , using bandwidth
Ftotal- Then a natural extension of single-hop transmission capacity defined in Chapter 2 to capture
the two-way communication model is as follows.
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Definition 4.2.1 The two-way transmission capacity is defined as

Btr +Brr

w bits/sec/Hz/mz;
FTotal

Cw=(@@ )
by accounting for y two-way transmissions per meter square with communication rate of Btr
and Brt in two directions under a joint success probability constraint of (1 ).

It remains to find y, which will allows us to derive Cy for a given rate Btr; BgrT, success
probability 1 , and bandwidth Fyotay.

Remark 4.2.2 Assuming different success probability requirements in two directions, we can define
f _
Psuc = P (lrr > BrR)

for the Tg ¥ Rq direction and
I:)sruc =P (IRT = BRT)

for the Rg ¥ Tq direction. Let ¢ be the maximum density of nodes per unit area that can support
rate Brr from Tg ¥ Ro with success probability P, ...s =1 ¢, and ¢ be the maximum density
of nodes per unit area that can support rate Brt bits from Rg ¥ To with success probability
Pdiccess = 1 r. Then, with the total bandwidth of Frotal, the two-way transmission capacity can
be defined as

B B .
C,. =01 ¢ =2 +@Q@ ) —=_ bits=sec=Hz=m*:
Frr Frota Frr
With this definition, the two-way network gets decoupled into two one-way networks, and C .
can be derived easily by finding ¢,  similar to the results from transmission capacity of one-way
networks (Theorem 2.4.1).

4.2.1 Computing the Two-Way Transmission Capacity

We consider a typical pair (Tg; Ro) to compute the success probability Psyc (4.5). From Slivnyak’s
theorem (2.3.3), we know that conditioned on the event that Tg 2 , the locations of the interferers
for Rp form a homogenous PPP with density (Remark 2.3.14). Similarly, for the interference seen
at To, when Rq transmits. Thus, from (4.3) and (4.4), the conditional SIRs (To 2 §;Rp 2 2)are

d jhooj?
SIRrr = P Poof (4.6)
nT,2 4 dT,, JhOnJ
d g2
SIRgr = o Sl @7
nR,2 % anJQOn]
From (4.5), the success probability is
Brr BRT
Psue = P SIRfgr>2frr 1;SIRgRt =>2Frr 1 : 4.8)
Brr Brr .
Define 1 = 2Frr 1 ; o= 2Frr 1 | and aggregate interference seen at Ry and Ty,

. P S P N,
respectively: as Itr = .1 2 o Or Jhon]5 IrRT = .2 o dral9on)®



84 Random Wireless Networks

Then, from (4.8)

-h .2 -
JNooJ >d o

Psue = P
ITr IrT

>d 5 ;

~
Q
=7

Efexp( d i1lyr)exp( d 2lrT7)0;
8 0] (@) 11
< >

E _exp@ d ,@ dr jhonj?AA
- nT,2 &

(@) (0] 119

=

x =
exp@ d ,@ dr. j9oni?AA _;
nR,2 % z
8 ' '
= Y 1 Y 1
= E _ [ — _— ; “4.9)
1+d 1d-|— 1+d zan

nT,2 % n nR,2 ¢

,\
2
1o

where (@) follows since P jhgoj> > X = P jgooj> >x = exp( X) as jhooj?; j900j°
exp(1), and hgg and gog are independent, (b) follows by using the definition of Itk and IrT, and
(c) follows by taking the expectation with respect to hgn, ~ exp(1), and go,  €xp(1), and noting
that hopy, and gon, are independent.

Finding exact expression for (4.9) is challenging since the distances fdr, g and fdgr, g are not
independent in a two-way wireless network. To visualize their dependence, consider Fig. 4.2, where
there are only two active pairs of nodes, (To; Ro) and (T1; R1). For Rg, the transmission from Ty
at a distance dt1 is interference, while for receiver Tg, the transmission from R7 at distance dr;
is interference. For the case when d is very smalld ¥ 0, dr;  dr1, and thus distances dr; and
dr1 are dependent. Moreover, explicitly computing the correlation between dr, and dgr, is also a
hard problem. Thus, to get a meaningful insight into the two-way transmission capacity, we derive
tight lower and upper bounds. The upper bound is derived using the FKG inequality (Lemma 2.8.8),
similar to Section 2.8.2, while for deriving a lower bound, we make use of the Cauchy—Schwarz
inequality.

4.2.2 Lower Bound on the Success Probability

From Definition 2.8.7, both the terms inside the expectation of (4.9),
1

Y 1
nT,2 &% 1+d ldTn
and 1
Y 1
nR,2 ¢ 1+d zan

R

are decreasing random variables, since each term in the product is less than 1, and with the increasing
number of terms (number of interferers) in the product, the total value of each expression decreases.
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<d\0 Iy

Figure 4.2: Schematic of two-way communication with two pairs of nodes.

Thus, using FKG inequality (Lemma 2.8.8), from (4.9)

8 19 8 19
Psuc E_ a1 g _E_ —
“nT,2 & 1+d 1dTn i "niR,2 1+d Zan i
VA
@ 1
= eX 1 ——  dx
P R2 1+d 1X
VA
ex 1 1 ax
P R2 1+d ,x '
z a1 +1
®) d 1X
= eX 2 —  dx
p 0 1+d 1X
z 1
d 5X +1
e 2 — d ;
Xp 0 1+d 2X X '
2 2
= exp cid 7 oexp cd 5
2 2
= exp co d p+d 5 (4.10)

where (@) follows from the probability-generating functional of the PPP (Theorem 2.3.6) (b) follows
by changing the integration from over R? to R, and ¢; = 22 csc(Z-) is a constant, where CsC is the
co-secant.
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4.2.3 Upper Bound on the Success Probability
Using the Cauchy—Schwarz inequality EFXY g pIEfXZgIEfY 2g, from (4.9)

O 8 1.9
< v 1 " 2=
PSUC @E - 1 4 a4 -
nT,2 & 1+d 1dTn >
8 91,
= v . 1,23
E _ _ A
nR,2 % 1+d 2dR z
7 L
@ 1 2
= ex dx
P n2 T+d 1x
Z 1 2 b 3
ex 1 —  dx ;
p R2 1 + d 2X
7 L
1 2 2¢ 2+1,49 +1
Q@ ep 2 ¢ ix d ;X dx
0 1+d 1x )
7 L
T g2 2¢ 2 +149( oX +1 2
exp 2 2 5 dx ;
0 1+d >x )
© 2 2 2 2
= exp cod [ exp cod 5 exp cc d p+d 5 ; (41D

where (a) follows from the probability-generating functional of the PPP (Theorem 2.3.6), (b)
follows by changing the integration from over R? to R, and (c) follows by evaluating the integral
where C, = —icsc 2. ( +2) is a constant. This leads us to the following theorem that

characterizes the two-way transmission capacity upto a constant.
Theorem 4.2.3 The two-way transmission capacity is lower and upper bounded by

In(1 ) Brr + Brr .

C 1
W ( l:Total

NQ\N

2
cp d f"‘d

In(1 Brr+B
th (1 ) 2( ) TR RT;

2 2 E
Co d T+ d 5 Total
where
2 2 2
€1 =—0CC — ; Cp=—CsC ( +2);

and C,=C1 = % + 1

Proof: With Py, =1 , and using the definition of Cy, in Definition 4.2.1, the result follows
from (4.10) and (4.11). ]

The bounds derived in Theorem 4.2.3 differ only in constants €1 and C2, where the ratio of ¢, and
€y depends only on the path-loss exponent . Thus, Theorem 4.2.3 gives a simple characterization
of the exact dependence of transmission capacity on the outage probability constraint , the rate
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Figure 4.3: Comparison of one-way and two-way transmission capacity with d = 5m, = 4,

Btr = 1 Mbits, Brt = 0:03 Mbits, F = 1:1 MHz, and Frr = 1 MHz.

of information transfer in two directions Btr; Brt and consequently the thresholds 1; 2, and
density

Note that if we define Psyc = P (Itr = B1r) P (IrT > BgrT) assuming independence of I+r
and IgT or SIRTR and SIRRT instead of

Psuc = P (Itr = Btr; IrT = BRrT)

as in (4.5), using Thereom 2.4.1, we will get exactly the same bounds in Theorem 4.2.3 with only a
difference in the constants. This is indeed surprising and tells us that there is only a constant
performance difference assuming independent SIRs in two directions instead of the actual
correlated SIRs with two-way communication in wireless networks. The technique used in deriving
Theorem 4.2.3 is fairly novel in its use for wireless networks and surprisingly results in tight
bounds on the transmission capacity since typically, Cauchy—Schwarz inequality provides a loose
upper bound. The FKG inequality allows us to derive a matching lower bound (upto a constant).
This technique is also expected to be useful for cases when exact expressions for transmission
capacity cannot be obtained.

Requiring that transmissions be successful in both directions, there is a loss in the two-way
transmission capacity compared to the one-way transmission capacity. In Fig. 4.3, we quantify this
loss for Byr = 1 Mbits, Bgt = 0:03 Mbits, F = 1:1 MHz, Frr =1 MHz,and F Fyr = 0:01
MHz by plotting the two-way transmission capacity with respect to the outage probability constraint

. For plotting one-way transmission capacity, we use rate B = Btr +Brt = 1:03 Mbits with total
bandwidth F = 1:01 MHz and d = 5m and = 4. Fig. 4.3 shows that the two-way transmission
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Figure 4.4: Two-way transmission capacity as a function of bandwidth allocation.

capacity is approximately half the one-way transmission capacity, thus accounting for the two-way
outage constraint severely impacts the transmission capacity and the network design.

The two-way transmission capacity found in Theorem 4.2.3 has been derived for a fixed
bandwidth allocation in the two directions. Given different rate requirement Btr, BrT, in the two
directions, it is important to find the optimal bandwidth allocation that maximizes the two-way
transmission capacity. We accomplish this in the next section, where given the rate requirements
Btr and Bgrt, success probability 1 , and total bandwidth Fiota, we find the optimal
bandwidth allocation.

4.2.4 Two-Way Bandwidth Allocation

In Section 4.2.1, we derived the two-way transmission capacity of ad hoc networks within a constant
as a function of bandwidth F1r and Frt allocated to the Tgo ¥ Rg and Rg ¥ Tg communication,
respectively. Since the total bandwidth Fyorg is finite, an important question to answer is what
is the optimal bandwidth allocation between the two directions that maximizes the transmission
capacity? For the special case of equal rate requirement in both directions, that is, Brr = Brr,
equal bandwidth allocation is optimal, that is, Ftr = FrT = Fota1=2. For the non-symmetric case,
however, the answer is not obvious and is derived in the following theorem.

Theorem 4.2.4 The optimum bidirectional bandwidth allocation that maximizes the transmission
capacity with two-way communication is FZ g = X° and Fi1 = Fiotal  X°, where X? is the unique
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positive solution to the following equation:

1 g BTtr 1 g BrTt
Brr X Brt~ Ftota X

=0; 4.12)

where g(t) = 222t  1)C D for0 <t < Fyota, and = 2.

Proof: Neglecting the constants €1 and Cp, from Theorem 4.2.3, the two-way transmission capacity
is

B B
In@ ) P

Cw = (1 )

2N
2N

Brr BRrT

d> 2Frr 1 + 2Frr 1

In(1 ) Bra*Bar
= @1 ) total —. (4.13)
B B [e%
2 2Fr 1 4+ 2Fwwm Frm 1

2N

where in last equality we have substituted Frt = Fiotar FrRr. To derive the optimal bandwidth
partitioning, that is, the optimal Frr that maximizgs Cty, we need to minimize the denominator in
2 2"

BTR e BrT a
(4.13), 2Frr 1 + 2Fota Frr 1 , with respect to Frr. Let = 2 and
1
B
fF)= 25 1 4+ 2Fwm ¢ 1

Thus, the problem we need to solve is MiNy2(0:F o) F(X)-
The first derivative of f(X) is

Btr + 1 9 Brt
Btr X Brt W Ftota X

d
&f(x) = log, 2

where g(t) = t221(2¢  1)C D fort 0, while the second derivative of F(X) is

2

d B 1 Brr 1 Brr
@f(x)— log, 2 ﬁg

=+ 5 g
X (Frota  X) Fiotar X

Since g(t) is monotonically increasing in t for t 0, we have g(t) > g(0) = O forall t > 0.

Therefore, %f(x) > 0 for all X 2 (0; Ftotar). Thus f(X) is a convex function over (0; Fiotal).
Differentiating f(X) and equating it to zero, results in the optimal solution X that satisfies

1 g Btr 1 g Brt
Brr X Brt~ Ftota X

O
For asymmetric traffic requirement in two directions, that is, Btr & Bgr, allocating
bandwidths proportional to the desired rate in each direction Frr = B‘T§+gm|:t°ta' does not
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satisfy (4.12). Thus an important conclusion we derive from Theorem 4.2.4 is that the proportional
bandwidth allocation policy is not optimal for asymmetric traffic for maximizing the transmission
capacity and (4.12) must be satisfied to find the optimal policy. If the traffic is symmetric, that is,
Btr = Brr, the intuitive strategy of allocating equal bandwidths for two directions with
Frr = FrRT = Fiotal=2 is optimal.

In Fig. 4.4, we plot the transmission capacity as a function of the bandwidth allocated in the
forward channel from T, ¥ Ry, FrR, for both the symmetric traffic with Brr = Brt = 1 Mbits,
and asymmetric traffic with Brg = 1 Mbits and Bgt = 0:05 Mbits, with total bandwidth Foa =
1 MHz,d = 5mand = 4, and outage probability constraint of = :1. For both the cases, we
see from Fig. 4.4 that the transmission capacity is maximized at the optimal bandwidth allocation
derived in Theorem 4.2.4.

Next, we present one application of two-way transmission capacity formulation presented in
this section to quantify the impact of limited feedback on the transmission capacity with multiple
antennas and CSIT. Typically, a genie-aided error-free feedback is assumed to show remarkable
capacity gains using multiple antennas (Section 3.4). These results are misleading, since they do
not account for the resources used for feedback, for example, the number of bits of feedback that
determine the quality of feedback and the time taken in the reverse link for feedbacking the required
bits. Using the results derived in this section, we analyze the performance of multiple antennas
with CSIT under practical feedback in terms of the transmission capacity and show that practical
feedback severely limits the promised gains (see below).

4.3 Effect of Limited Feedback on Two-Way Transmission
Capacity with Beamforming

In this section, we quantify the effect of practical feedback on the multiple antenna transmission
capacity with CSIT. We consider the case where each transmitter Ty, is equipped with N antennas,
while each receiver Ry, has a single antenna. All other system parameters and assumptions remain
the same as defined in Section 3.4.

For simplicity, we assume that each transmitter sends only one data stream and uses
beamforming from all its N antennas for its transmission, where the signal is transmitted along the
strongest eigenmode of the channel between the transmitter and the receiver. The received signal
model is given by (3.24) with kK = 1. For this case, from Theorem 3.4.2 we know that with the
genie-aided feedback, the transmission capacity scales as N &. Theorem 3.4.2 though does not
account for the resources used for feeding back the channel coefficients that are required for
beamforming, and therefore overestimates the transmission capacity.

Limited feedback techniques [3] are commonly used in practical systems to feedback the
channel coefficients, where a codeword from the codebook (pre-decided by the transmitter and the
receiver) is fed back by the receiver to the transmitter that is closest to the actual channel
coefficients under some chosen metric. Clearly, larger the codebook size, better is the quality of the
feedback, and consequently better is the data rate from the transmitter to the receiver with
beamforming. With a codebook size of 27 codewords, each codeword requires F bits of feedback.
We assume an FDMA system, where the transmitter and receiver use different portions of the
bandwidth for transmitting data to the receiver and feedbacking the channel coefficient
information, respectively. Use of a large codebook at the receiver increases the precision of the
channel coefficient information but at the same time requires larger bandwidth for the feedback
channel, thereby restricting the bandwidth allocated for data transmission from the transmitter to
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the receiver. Thus, there is a three-fold tradeoff between the bandwidth allocation for the two
directions, the size of the codebook, and the transmission capacity.

In this section, we want to quantify this tradeoff and evaluate the effect of practical feedback
mechanism on the transmission capacity with beamforming. Towards that end, we will use the two-
way communication model of Section 4.2. In particular, we let Fyota) be the total bandwidth that
is divided between the Tg ¥ Ro (Frr) and Rp ¥ Tg (Fiotat FrRr) communication, similar to
Section 4.2. As before, we assume that each transmitter—receiver pair is at a distance d from each
other.

The received signal at typical receiver Rg over bandwidth Frg is

yo=d “2h¥boxo + dr. h}nboXn; (4.14)
n:T,2 nfTeg

where by, is the beamforming vector used by transmitter T, hY),, 2 C N is the channel between
Tn and Ro, dr,, is the distance between T, and Rg, Xo and X, are the data symbols transmitted from
To and Tp, respectively. We assume a unit power transmission from all transmitters and ignore the
additive white Gaussian noise.
The received signal at a typical transmitter To with N antennas, corresponding to the feedback
by a typical receiver Rg, over bandwidth Fiotar  FrRr 1S
>

zo0=d “?goolp + dr, “GonUn; (4.15)
n:R,2 nfRog

where gon 2 CN 1 s the channel vector between Ry and T, dgr,, is the distance between Ry, and
To, and Ug and Up, are the feedback signals transmitted by R and Ry, respectively. To decode Up,

Yy
receiver Rp employs maximum ratio combining and multiplies jgggj to the received signal zg, and
we get
y x y
g —_ =2: H =2 g .
9.20=d ~?jdoojuo + g, Gon-Un: (4.16)

T on- n
J900J nR,2 nfRog J9o0)

If genie-aided feeback (channel coefficients are exactly known at the transmitter) is available,
the optimal beamformer by, is known to be bn, = hy. In practice, however, only a finite number
of bits are available for feedback. With F bits of feedback, that is, codebook size of 2F, using a

Grassmannian codebook, the SNR degradation compared to the ideal feedback with N transmit
T
antennas is [4], jhooj?® 1 % N1 for some constant . Thus, from (4.14), the SIR for Tg to Rg

communication with F bits of feedback is
1
d jhooj2 1 ¢ % Nt
SIRTr = P ; 4.17)

T
T,2 nfTog O1, JNonbo]

where jhgoj? is the signal power if by, = h,. The corresponding mutual information from Tq to Ry
using bandwidth FrR is
ltr = Frrlog (1 + SIRTR):
Similarly, from (4.15), the SIR for the feedback link from Rg to Tg is

: "
SIRgy = d  jgoo(1)j

P gt 2’
f d Jons 00,
T,2 nfTog "R, 1900j
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and thus with bandwidth Fyotay  F1R, the mutual information of the feedback link is
IrT = (Ftotar Frr)l0g (1 + SIRRT):

Let the target rate for transmission from Tg to Rg be Brr bits/sec/Hz, and Ry to Tg be F
bits/sec/Hz because of F bits/sec/Hz of feedback. Similar to Section 4.2, we define the success
probability as the probability that communication in both directions is successful simultaneously,
that is,

Psue =P(lrr  Brr;lrt F):

Consequently, the two-way transmission capacity with feedback is defined as

1 B
Ceg = M bits/sec/Hz/m?;
I:total

where ¢ =supf :Psyc 1 )gisthe largest density for which the outage probability constraint
of is met.

As shown by Fig. 4.2, in a two-way communication model, where the transmitter locations are
modeled as a PPP, the interference received in both directions is correlated. Therefore, deriving
the success probability in closed form is a hard problem. Thus, similar to Section 4.2 to derive
a meaningful insight into the dependence of bandwidth allocation, and feedback bits on two-way
transmission capacity, we derive a lower bound on the success probability using the FKG inequality
as follows.

From Definition 2.8.7, it is easy to see that the success events in two directions flrr ~ BtRr0,
and flrt  Fg, respectively, are decreasing events. Thus, invoking Lemma 2.8.8,

Psue P(rr Brr)P(rT F): (4.18)
By definition,
P(htr Btr) = P(Frrlog(l1+SIRTRr) Btr);
@
= P(SIR ;
E) TR 21) L 1
1 H N 1
0) @dnlhooJ 1 ¢cg A,
- — . . )
T.2 nfTog dT,,LJh%nbOJZ '
© d h 2 =
P P JNoo) =

T
T,2 nfTeg A1, JNonDo]

B
where (@) follows by defining ; = 2Frr 1 , (b) follows by substituting for SIRTr (4.17),

1
and (C) follows by defining = 1 ¢ é N

Note that jhgoj? 2(2N), since it is the norm of an N length independent Gaussian vector.
Moreover, since hY, and by are independent, similar to Lemma 3.3.1, jh{,boj?2  2(2). Thus, we

can now make use of Theorem 3.3.10, where we obtained lower bound on the success probability
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Figure 4.5: Comparison of transmission capacity performance of beamforming with genie-aided and
practical feedback as a function of number of transmit antennas N .

with multiple antennas, by specializing for single data stream k = 1, and signal power s = jhgoj?
2(2N) and interference power pow,, = jhy, boj? 2(2) to get

e Bre) 1 o) (4.19)
d N
where C is a constant.
Similarly,
P(rr F) = PEINRrr  2);
F
where 5 = 2Fwta Frr
For the Rg ¥ Ty transmission, from (4.18), the signal power S = jgooj? 2(2N), while
2
g%o_

the interference power is POW,, = Jon 2(2) from Lemma 3.3.2, since Qon and Qoo are

1900]
independent. Thus, from Theorem 3.3.10, specializing for single data stream transmission K = 1,

and no interference cancelation m = 0, we get
k3
2 2

IP(|RT F) =1 Cdii (4.20)
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Thus, from (4.19) and (4.20), using (4.18),

« (1) 2 o2
P 1 ¢c2 ~~2+-_= +0( )
suc N N ( )
Let Psy¢ =1  , then for small , the transmission capacity accounting for feedback is

(1 )N&  Brr
cd?[( 1= )+ 2]= Frotal

(of bits/sec/Hz/m?: 4.21)

Thus, as a function of F (the precision of channel coefficient feedback), the transmission
capacity (4.21) increases as F o Da (using definition of ) because of the improvement in signal
strength, however, decreases as 2 (using definition of 3), because of the stringent requirement
of supporting F bits on the feedback link that corresponds to having SIR more than ». This result
quantifies the degradation in transmission capacity with beamforming due to practical limited
feedback, compared to assuming a genie-aided feedback in Section 3.4. The practical feedback
requirement not only decreases the available bandwidth for transmitter to receiver communication
but also degrades the overall performance due to the successful reception requirement of the
feedback bits. In Fig. 4.5, we compare the transmission capacity performance of beamforming with
genie-aided feedback and practical finite rate feedback, for total bandwidth Fiotay = 1 MHz, out of
which Frg = 1MHz is used for data transfer at rate Btg = 1MBits, and the rest
Fiota Frr = :1MHz is used for feedbacking a F = 16 bit codebook. We can see there is
massive loss in transmission capacity with the practical feedback strategy.

Similar to Section 4.2.4, for a fixed value of F and BtR, the optimal bandwidth allocation Ftr
that maximizes the transmission capacity lower bound with beamforming can be computed using
Theorem 4.2.4, since here again, the optimization problem is convex. For a fixed value of Fyr and
Bt R, finding the optimal F is slightly complicated since the lower bound is not a convex function of
F, however, the problem is a single variable problem and can be solved easily by using techniques
like bisection.

4.4 Reference Notes

This chapter is based on results from [2].
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Chapter 5

Performance Analysis of Cellular
Networks

5.1 Introduction

In this chapter, we consider cellular wireless networks and apply the tools from stochastic
geometry to get some critical insights and almost closed-form results for several important
performance measures, such as connection probability, mean rate of communication, call-drop
probability, that for long have evaded analytical tractability. Traditionally, these parameters are
either computed for very simple and unrealistic models or using large scale Monte—Carlo
simulations that are environment-specific.

The breakthrough is made possible because in the modern paradigm, many different types of
basestations are overlaid on top of each other, and the overall basestation deployment closely
resembles a uniformly random basestation deployment. In the new paradigm, three different types
of basestations, the macro basestation, the femto basestation, and the pico basestation, all operate at
the same frequency. The location of macro basestations is controlled by cell operators, while the
femto and pico basestations are deployed by users in an arbitrary manner with no centralized
control over their locations. Thus, the overall basestation locations resembles a uniform
deployment model, where the basestations are deployed uniformly at random locations within the
area of interest. Modeling cellular network with random basestation locations enables us to
explicitly find, for example, the connection probability of any user, the average transmission rate or
the call drop probability using stochastic geometry results.

In this chapter, we also address another limitation made for cellular network analysis of
modeling the shadowing loss because of blockages (trees or buildings) as a single loss-parameter at
the receiver, which is independent of the length of the transmitter—receiver link. Although this
assumption helps in the analysis and simulations, it is grossly inaccurate, since shadowing loss is
distance-dependent. Larger the distance between the basestation and the mobile user, larger is the
number of buildings and trees obstructing the communication. Moreover, the loss is also different
for signals from different basestations.

To overcome this limitation, we consider a propagation model that assumes that the blockages
are located uniformly randomly in the field of interest. Under this propagation model, together with
random basestation locations, we find the distribution of the number of obstructions a typical user

95
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experiences from any basestation. This enables us to find the distribution of the
signal-to-interference-plus-noise ratio (SINR) and allows us to derive the connection probability,
average transmission rate and so on.

We show that the distance-dependent shadowing model is fundamentally different than the single
shadowing parameter model, and many of the conclusions drawn for the latter model do not hold in
general. We also show a surprising result that if a user connects to its nearest basestation, then the
connection probability of the user with the distance-dependent shadowing model is larger than with
the single shadowing parameter model, thus leading to a better transmission rate.

5.2 Random Cellular Network

Traditional deployment of basestations consists of macro basestations that are placed on a regular
hexagonal grid by cell operators for maximizing coverage. In addition to macro basestations, in
a modern paradigm, wireless networks also include femto and pico basestations, which are low-
powered and are deployed by users to improve their coverage and throughput. Since user locations
these femto or pico basestations are located arbitrarily in the area of interest. Considered together,
the location of these different layers of overlaid basestations resemble more to a random deployment
of basestations rather than a fixed regular deployment. For example, see Fig. 5.1 (a) and (b), where in
Fig. 5.1 (a), we illustrate the locations of a practical basestation deployment that consists of overlaid
macro (dots), femto (circles), and pico basestations (squares), while in Fig. 5.1 (b), we show a
random basestation deployment with the number of basestations equal to the sum of the three types
of basestations in Fig. 5.1 (a). We can see that Fig. 5.1 (a) and (b) resemble each other if we do not

Figure 5.1: (a) Multi-tier wireless network with macro (dots), femto (circles), and pico basestations
(squares) versus (b) the random cellular network deployment with identical density. Fig. (a) shows
the Voronoi regions of macro basestations, while (b) shows the the Voronoi regions of all basestations
combined.
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consider the basestation type. Thus, it is reasonable to model these overlaid basestation locations as
uniformly randomly distributed in the area of interest.

In this section, we consider a random cellular network model that consists of basestations fTg
whose locations are distributed according to a homogeneous Poisson point process (PPP)

= fThg with density , identical to the model considered in Section 2.2. This is reasonable since
with a PPP, given the number of nodes lying in the given area, the node locations are uniformly
distributed in the given area. In contrast to Section 2.2, however, here the mobile users are located
according to an independent PPP with density R, and multiple mobiles can be associated to a
single basestation. There are many possible choices for basestation association for each user, such
as connecting to the nearest basestation or the basestation with the largest signal power or SINR.
We will restrict ourselves to analyzing the most widely used case, where each user
associates/connects to its nearest basestation in . Therefore, by the definition of Voronoi regions
with respect to basestation locations, all users in a Voronoi region connect to its representative
basestation.

As we will see, assuming randomly distributed basestation locations simplifies the analysis,
however, it potentially allows the case where two basestations are very close or very far from each.
Analysis with some “realistic” correlations among the basesation locations, such as no two are closer
than a fixed distance and so on, is also possible using stochastic geometry tools.

Under this random cellular network model, in downlink, the received signal at a typical user Uq
located at the origin (without loss of generality) that is connected to its nearest basestation T is
given by P— > P

y = P dO hoSp +
m:T,,2 nfTog

Pd,, “2hmSm + W; (5.1)

where Sp, is signal transmitted from T, with power P, dy, and hyy, are the distance and the channel
coefficient between T, and user Uo, respectively, > 2 is the path-loss exponent, and W is the
AWGN with unit variance. As before, we assume that the fading gains hp, are Rayleigh distributed,
that is, jhmj?  exp(1).

Let Rear be the distance of the nearest basestation Tg from U, that it connects to. Then conditioning
on Ryear =1, from (5.1), the SINR at user Uy is

Pr  jhoj?

SINR=P ..2 ;
m:T,,2 nB(uU;r)Pdm jhmjc +1

(5.2)

since Ty is the nearest basestation to U, and the interference seen at U, only comes from basestations
located outside of disc B(Uo; I).
The connection probability at user U, is defined to be the event that the SINR is above a
threshold
Pc( ) =P(SINR> ): (5.3)

In the next subsection, we present the first main result of this chapter on computing the connection
probability for user Uy. Note that Ug is a randomly chosen user, so the performance obtained by Ug
is identical to any other user.

5.2.1 Connection Probability

To analyze the connection probability (5.3), we need the distribution of the distance Rye,r of the
nearest basestation Tg from Ug.
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Proposition 5.2.1
P(Rnear = ) = exp r’ ;and fr,_ () =2 rexp r2 .
Proof: Event R,., > r is equivalent to having no basestation in the disc B(Uo; ). Thus, P(Rpear >
r) is equal to the void probability of the basestation location process — over the disc B(Uo; ), which
is equal to exp r? ,since is a PPP with density . g
Next, we derive the connection probability of user U, using Proposition 5.2.1.

Theorem 5.2.2 The connection probability of user U, with PPP-distributed basestation locations
of density is
z -
1 x =2

P.( )= exp
C 0 P

exp( xX(L+c(; ))dx; (5.4)

Ra
. —_ = 1 .
wherec( ; )= ? 2/0 TryarzdV:

Proof: From the SINR and connection probability definitions (5.2, 5.3),

PC( ) = anear P (SINR = jRnear = r)ga 1
- .2 -
= PP Pr_ihol > fr,(Ndr;
r ngde(uo;r)gdm JhmJ +1 119
a Z << r X =
@ E i, _exp@ T@ Pdy jhmj? +1AA _
r - m: T,,2 nB(u,;r) z
f r)dr;
1R (D)
P
r
C P LD
r ) .y Pd jhmj?
E n, €xp m: Tn2 ”i‘”“’r) m Il ()
7 8 o
< Y =
(b) r 1
= — E T — f dr;
P o B o7 % - fRa(0dn
X2 nB(u,;r)
© Z . Z 1
C
= exp — exp 2 1 —— xdx
r P x>r 1+r X
fRncar(r)dr;
d z r z ! !
@ exp — exp 2 —— Xxdx
r P X>r + ?
2 rexp r2 dr;
z r
Q@  exp S exp r2c(; )2 rexp r? dr;
r
® z a =2
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where (@) follows by taking the expectation with respect to jhoj>  exp(1), (b) follows by taking

the expectation with respect to jnmj>  exp(1) that are independent 8 m, (c) follows by using

the probability generating function of the PPP (Theorem 2.3.6), in (d) we substitute the PDF of
2

the nearest basestation from Prop. 5.2.1, (€) is obtained by defining v = X andc( ; )=
r o
2= Ra 1
2/ 14ya/2

dv: Finally in (f), we replace r?> = Xx.
0
Even though the connection probability expression derived in Theorem 5.2.2 is not in absolute
closed-form, it can be computed efficiently using numerical integration methods. This is in contrast
to the usual practice of finding the connection probability via extensive simulations that are
computationally intensive.
For the special case of an interference-limited network, where we can ignore the first exponent

term exp rQF/,Z in (5.4) that corresponds to the AWGN contribution, evaluating the integral in
(5.4) we get that
1

The most important implication of (5.5) is that it shows that the connection probability is
independent of the density of basestations . This is surprising, since this means that no matter how
large the density of basestations is, as long as each mobile user connects to its nearest basestation,
it has the same connection probability. This result essentially means that the increase in the
interference because of increasing density of basestations is completely nullified by the reduced
distance between any user and its nearest basestation. This phenomenon has been known in
literature using simulations, but it was mathematically proven only in [1]. Fig. 5.2 depicts this
graphically, where we plot the connection probability Pc( ) as a function of the basestation
density

Note that this independence of connection probability with density is in contrast to what we
observed in Section 2.4.1, where the outage probability (1-connection probability) was an increasing
function of the density , since we assumed that each transmitter—receiver pair is at a fixed distance d
independent of the density . However, when we allow each user to connect to its nearest basestation,
essentially in the model of Section 2.4.1, it corresponds to scaling d with as ( 172), which
compensates for the increase in the interference.

In Fig. 5.3, we plot the connection probability Pc( ) as a function of the SINR threshold
for = 1 and path-loss exponent = 4, with and without noise, to show that neglecting the
effect of noise has very little impact. Finally, in Fig. 5.4, we compare the connection probability for
the random wireless network with PPP-distributed basestations and a square grid network, where
basestations are located on a square grid with density = 1. We see that the random wireless
network lower bounds the connection probability with the grid model, since for a typical receiver, the
distances to significant interfering basestations are closer in the random basestation location model
than in a square grid model. Decreasing the path-loss parameter , the gap between the random
wireless network and the grid model decreases, since for low values of , even far off interferers
matter and the interference profile with the PPP and square grid is more or less similar.

With the expression for connection probability in hand, we next characterize the mean data rate
obtained by any user in the network. Finding mean data rate is important for both the network



100 Random Wireless Networks

Connection Probability v/s density A for o = 4, B =2

1 T T T T T T T
+ Noise Variance =2
=== Noise Variance =1
09 == Without Noise
08 - : . B
07 b
a®
> 06 —
=
©
o)
[
o 051 b
c
i)
©
2
[=3 L -
5 o 7 ————s e —
03 . . 4
02 b
01 —
0 | | | | | | | |

|
0 2 4 6 8 10 12 14 16 18 20
Density A

Figure 5.2: Connection probability P.( ) as a function of the basestation density . For the no noise

case, Pc( ) is invariant to . With additive noise, P¢( ) does depend on , but the dependence is
very minimal, and no noise assumption is fairly accurate.

operator and the mobile user, since it directly determines the operator’s revenue and pricing models
and determining utility-payoff tradeoff for each user.

5.2.2 Average Rate per User

Using Shannon’s capacity formula, we define the average rate to be
EfBg = E flog(1 + SINR)g; (5.6)
and derive an expression for EfBg explicitly in Theorem 5.2.4.

Remark 5.2.3 If we insist on the user being connected, that is, with SINR > | then the average
rate it achieves when it connects to its nearest basestation is defined as

EfB.g = Pc( ) Eflog(1l + SINR)jSINR > g:

We can find EfB.g similar to Theorem 5.2.4.
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Figure 5.3: Connection probability Pc( ) as a function of SINR threshold for =1 and path-loss
exponent = 4.

Theorem 5.2.4 The average rate each user gets by connecting to its nearest basestation is

Z 7 Z 4 ) 1
EfBg = ex r’Qt 1= ———dx
‘ r t P ( ) @t 1) 2/a 1+x =2
eXp r (1:P )(Zt l) dtfRnear (r)dr: (5.7)
Proof: From the average rate definition (5.6) and SINR definition (5.2),
EfBg = ]Eflo%z(1+SINR)g; 5
Z o |
= E log, 1+#P Pr_inol” fr,.. (1)
- 2 v 1 H Rnear 1
r m:T,.2 nB(u,:r) P dm jimj2 +1
1 1
zz Pr jhoj? i i
@ P log 1+ P JNo) __ >t dt
rot mT,.2 nBu,:r) P dm jhmj* +1

fr. (r)dr;

near
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ZZ
@ P ojho2>r I +— (20 1) dtfe.(r)dr
z'7' i
© E exp r Ir+% " 1) dtfg,(r)dr;
r _t
£ t r @ 1)
= E ep r (28 1)l exp —p dtfg,. (rdr;
r t
1
Zz Z, !
(g) exp I‘2(2t 1)2: ;_zdx
r t @t 1) 2/a1+X_
t
exp y dtfr,_ (r)dr;

where (@) follow§dy the equivalent definition of expectation EfXg = i P(X > t)dt, (b) follows
by defining Ir = .1 > nB(.in dr, jhmj?, (c) follows by taking the expectation with respect to
jhoj>  exp(1), and finally (d) follows similarly to finding Efexp( r (2' 1)I,)g in the proof
of Theorem 5.2.2. g

Again considering the special case of interference-limited network, where we can ignore the last

re2 1)
P

exponent term exp in (5.7) that corresponds to the AWGN contribution, computing

the integrals, the average rate

z 1
EfBg = R

n dt;
(exp(t) 1) 2/« 1+xo/2

t1+(exp(t) 1)* dx

which most importantly is independent of the density of basestations . Hence, the per-user rate
is not affected by the density of the basestations. Thus, if there are a large number of users in the
system, each basestation has at least one user in its Voronoi cell, and the overall rate or the network
capacity scales linearly with , since the per-user rate is constant with respect to

The average rate expression derived in Theorem 5.2.4 involves computation of three integrations
but is still a significant reduction in complexity compared to large-scale simulations. Also, it gives
the true average and not the empirical average (simulation output). Thus, Theorem 5.2.4 is a great
asset in the hands of network designers as it can be used for efficient deployment.

One limitation of the analysis presented in this section is that we have ignored the distance-
dependent shadowing effects over the wireless link. One expects that larger the length between
the basestation and the user, weaker is the received signal because of larger number of blockages
(trees/buildings) encountered. Typically, to incorporate shadowing losses, a single fading coefficient
is multiplied to the sum of the received signals from different basestations, which is assumed to be
log-normal distributed instead of Rayleigh fading, without any dependence on the distance between
the basestation and the mobile user. Even though we have considered a Rayleigh fading channel,
the results of this section remain more or less the same even with a single log-normal distributed
fading model. The real challenge is to incorporate distance-independent shadowing losses. In the
next section, we extend the network model to allow for distance-dependent shadowing losses and
show that there is a fundamental difference in terms of connection probability and average rate for
each user in a random wireless network with and without the distance-dependent shadowing model.
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Figure 5.4: Comparing the connection probability P¢( ) as a function of SINR threshold for =1
and path-loss exponent = 4 for the random wireless network and a square grid network.

5.3 Distance-Dependent Shadowing Model

Similar to Section 5.2, in this section, we assume a random cellular network, where the basestation
locations are modeled by a PPP with density . In addition, to model the distance-dependent
shadowing losses, we let the locations of blockages (buildings/trees) to be also distributed as a PPP
with density , where each blockage is assumed to have i.i.d. length, breadth, and height.
Assuming PPP distribution on the blockage locations corresponds to assuming that blockages are
located uniformly randomly in a given area. Even though blockages are not always uniformly
located in an urban environment, however, assuming uniformly random locations is a useful
abstraction to begin with. Under this model, we will present an exact analysis of the connection
probability and the average rate for a typical user located at the origin.

In this section, buildings/blockages in an urban area are modeled as a process of cuboids with
random length, width, height, and orientations, whose centers form a PPP. Alternative approaches
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to model the effect of blockages on wireless propagation include using ray tracing to perform site-
specific simulations [2, 3] or using a grid model for blockages, where each grid point is occupied
by a blockage with a certain probability [4—6]. The first approach is cumbersome, while the second
one is more suited for Manhattan-type geographies and not for general urban wireless propagation
scenario.

5.3.1 Cellular Network Model with Randomly Located Blockages

We consider a random cellular network, defined in Section 5.2, where basestation locations fThg
are distributed according to a PPP with density . We model blockages using a Boolean scheme of
random cuboids (to model buildings), which is defined as follows.

Definition 5.3.1 Let g 2 R? be a PPP with density . Let S be a collection of cuboids with
i.i.d. lengths Ly, widths Wy, and heights Hy, with PDF T_(X), fw (X), and Ty (X), respectively. A
Boolean scheme is defined by independently sampling cuboids from S and placing the centers Cy!
of these cuboids in R? at points generated by the point process g, where the orientation Oy of
each cuboid is distributed over [0;2 ) with PDF fo(X). Thus, a Boolean scheme is represented by
TCy; Lk; Wi; Hy; Okg.

We let the blockage process to be a cuboid Boolean scheme
= TCy; Lk; Wi; Hk; Okg:

We consider a typical mobile user Uy, located at the origin and denote the link between basestation
Th to the typical user Ug as Lp, and the distance between them to be jLnj = dp.
For ease of exposition, we only consider a rectangle Boolean scheme

Rect = FCy; Li; Wi; Okg;

where height Hi = 0 for all blockages. Heights can also be incorporated in the model for which
case the results are only scaled by a parameter that depends only on the distribution of heights [7].
In Fig. 5.5, we illustrate a typical network realization with randomly located rectangular blockages,
where we can see that the nearest basestation of any receiver need not not have the largest signal
power.

Definition 5.3.2 A location Y 2 R? is defined to be indoor or contained by a blockage if there
exists a blockage D 2 TCy; Lx; W; Ox0, such that Y 2 D.

Assumption 5.3.3 We model the penetration power loss caused by any blockage b as p 2 [0; 1],
irrespective of its shape, size, or any other specific property. Thus, the signal power is pP after
crossing one blockage if transmit power was P. Results could be easily generalized by assuming a
distribution for p, and taking the expectation of the results derived with fixed p.

Definition 5.3.4 The special case of p = 0, that is, no signal can pass through any blockage is
defined as the impenetrable case.

I The center does not necessarily have to be the geographic center of the object: any well defined point will suffice.
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Figure 5.5: Circle nodes are basestations and the square node is the receiver. The blockage process
is described by randomly oriented rectangles, and the thickness of the line between basestations
and receiver indicates the relative signal strength at the receiver that is inversely proportional to the
number of blockages crossing the link.

The impenetrable case is specially useful for obtaining closed-form results that allow us to draw
critical insights.
Let b, be the number of blockages on link L, between basestation Ty, and user Uy. Then, in
downlink, the received signal at a typical user U is given by
y=d 2PePehusnt o PEPEd his: (5.8)
m:T,,2 nfT,g

where Sp, is signal transmitted from Ty, dy and hy, are the distance and the channel coefficient
between T, and user U,, respectively. For ease of exposition, we have assumed an interference-
limited network and ignored the AWGN contribution. This is also reasonable since noise has a very
small impact on the performance as shown in Fig. 5.3. We will once again assume that each fading
gain hpy, is i.i.d. and Rayleigh distributed.
Thus, the SIR at user Uy, when it is connected to basestation Tp, is
ik _i20bn

SIR, = P JniPd : (5.9)

m:T,,.2 ;m&njh‘szbmdm

Similar to Section 5.2, we are interested in finding the connection probability P(SIR > ) and
mean achievable rate with this distance-dependent blockage model. Toward that end, we first derive
the distribution of the number of blockages on link L, b, as follows.
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5.3.2 Distribution of the Number of Blockages on link L

In this section, we show that the number of blockages b on link L, with length d is a Poisson
random variable for any n with mean proportional to d. For simplicity, we drop the index n from by,
and other variables, since we are working with only one link L.

Define a sub-collection of blockages

(Ck; 5w; ) Rect;

that consists of all blockages with lengths (“; “+d*), widths (w; w+dw), and orientations ( ; +d ).
(Ck; “;w; ) can be equivalently defined as a new blockage process

TCx; Li; Wy; Okg;

where centers C 2 g(“;w; ),and g(“;w; ) g is a thinned version of the PPP g, where
each center/point of PPP g is retained if its blockage has length (“; © + d*), width (w; w + dw),
and orientation ( ; + d ) and dropped otherwise. Note that g(“;w; ) is also a PPP since the
thinning is random as fLyg, FW\(g, and fOg are i.i.d. random variables. Moreover, if (“1;wy; 1) &
(“2;w2; 2),then pg(“1;wi; 1)and g(“2;Wz; »2) are independent processes.

We summarize this in the next Lemma.

Lemma 5.3.5 g(“;w; ) is a PPP with density
aw; = FL(Hd*fw (W)dwfo( )d ;
and, if (“1;W1; 1) & (“2;W2; 2), then (“1;W1; 1) and (“2;W2; 2) are independent PPPs.

Definition 5.3.6 Let Jq(“;W; ) be the number of blockages which belong to the subset
(Ck; “;w; ) and cross the link L of length d.

Lemma 5.3.7 Jq(“;W; ) is a Poisson random variable with mean
E[Ja(“sw; )] = «w; (d(*jsin j+wjcos J) + ‘w);
where d is the length of the link L.

Proof: We use the alternate characterization of sub-collection of blockages (Ck;“;w; ) as a
blockage process
fCy; Lic; Wi; Okg;

where centers Cx 2 g (“;W; ). As shown in Fig. 5.6, a rectangle belonging to fCy; Li; W; Okg
intersects the link L if and only if its center belonging to g (“;w; ) falls in the region defined by
vertices ABCDEF. Note that each vertex is the center of the rectangles with width w, length *, and
orientation . Hence, Jq(“;W; ) equals the number of points of g(“;w; ) falling in the region
ABCDEEF. Let the area of region ABCDEF be (“;w; ), then

. P—0
djsin( + )j w2+ “2+w";

5w; )

o . W P——p
d jsin( )jp—=——— +jcos( )jp=——— W2 + ‘2 4+ w*,
W2+ <2 W2+ 2
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w

Figure 5.6: Link L of length d between basestation T and mobile user at 0. Any rectangle of
(Cx; “;w; ) intersects Ly only if its center lies in the region defined by vertices ABCDEF,
where each vertex is the center of the six rectangles of length “ and width w.

= d(‘jsin j+wjcos j)+ “w;

where and are the angles depicted in Fig. 5.6. By Lemma 5.3.5, g(“;w; ) is a PPP of density
<w: , thus, the number of points of g(*;w; ) falling in the region ABCDEF is a Poisson random
variable with mean <. (“;w; ). Consequently, Jq(“;w; ) is a Poisson variable with mean

EJa(;w; )= <w;  (5w; )
= <. (d(“jsin j+wjcos j)+ ‘w): U

Recall that b, the total number of blockages crossing the link L, is b =
Lemma 5.3.7, we calculate the distribution of b in the following theorem.

Ja(“;w; ). Using

“w;

Theorem 5.3.8 The number of blockages b on a link L of length d is a Poisson random variable
with the mean Lyd +  , where L, = 2-EWIFELD gy = E[L]E[W] is the expected area of
any blockage.

Proof: By Lemma 5.3.5 and Lemma 5.3.7, Jgq(“; w; ) are independent Poisson random variables
for different values of the tuple (“; w; ). By definition, the total number of blockages on any link of
length d is 7
b= Ja(5;w; )
“iw;
Since the superposition of independent Poisson random variables is also Poisson distributed, b is a
Poisson distributed random variable, since each Jq(“;w; ) is independent and Poisson distributed.
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The expectation of b can be computed as follows.
z
Efbg = E Ja(5w; )
z 2% .
= (d(“jsin j+wjcos j)+ ‘w) f(*)d* fw (w)dw —d ;
L W O 2
_ 2 (E[L]+E[W])

d+ E[LJE[W];

=Ld+

where Ly = 2 ELITEWD g | = E[L]E[W]. O
Thus, we get the intuitive result that the average number of blockages on a link is proportional to
the length of the link d, since longer the link, more blockages are likely to appear on that link. The
two parameters L, and |, correspond to the expected perimeter of any blockage times the blockage
density divided by , and the expected area occupied by any blockage, respectively.
Next, we present some simple but useful corollaries of Theorem 5.3.8 as follows.

Corollary 5.3.9 The probability that a link of length d admits line-of-sight propagation, that is, no
blockages cross the link, isP(b =0) =exp( (Lpd + p)).

We can also evaluate the probability that a user is located inside a blockage/building in the following
lemma.

Corollary 5.3.10 The probability that a location in R? is contained by a blockage is 1 exp
( b) b, for small .

Proof: A location is contained in a blockage if there is at least one blockage on link L no matter
how small the length d of link L. For a link with lengthd, P(b >0) =1 exp( (L,d+ 1)) from
Corollary 5.3.9. Thus, taking d ¥ 0, we get that the probability that a location in R? is contained by
ablockageis 1 exp( b) b, for small . O

After deriving the distribution of the number of blockages on any link, in the next subsection, we
derive the connection probability of a random cellular network under the realistic distance-dependent
blockage/shadowing model.

5.3.3 Connection Probability

In this section, we analyze the connection probability with the distance-dependent blockage model.
Recall that the connection probability is defined as

Pe( )=P@EIR> ): (5.10)

We next consider the impenetrable blockage case, where p = 0, that is, no signal penetrates any
blockage. The results presented next can easily be extended for p 2 (0; 1), but this specific case
helps in getting closed-form expression and design insights.

Definition 5.3.11 We define a basestation T, to be visible (V\n = 1) to the typical user U, if the
number of blockages by, = 0 on direct link L, between Ty, and Ug, and Vi, = 0 otherwise.
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As in Section 5.2, each mobile follows the nearest basestation association rule, where it connects
to its nearest visible basestation, if there is any. If the distance of the nearest visible basestation Tp,
1S Rpear = ¥ from Ug, then from (5.11), the SIR at Ug is

SR = P injr

—— ; (5.11)
m:T,,2 ;m&n;dm>rJh‘12dm Vim
where Vi, is a Bernoulli random variable, which takes value 1 if basestation T, is visible to Ug,
and 0 otherwise.

Assumption 5.3.12 We make the assumption that the number of blockages on links Ly, between
Uo and basestations Tn are independent. Thus, Bernoulli random variables V', are independent.
Clearly, this is not true in general, since nearby basestations are likely to have similar number of
blockages, however, this assumption serves as a good abstraction and helps in understanding the
fundamental performance measures of this general blockage model. Simulation results also suggest
that this independence assumption is not really limiting.

To analyze the connection probability Pc( ) = P(SIR > ), we next find the distribution of the

distance of the nearest visible basestation Ty, from U,. We already know the distribution of Vi, from
Corollary 5.3.9.

Distribution of the distance of the nearest visible basestation T, from u,

Theorem 5.3.13 Assuming that the numbers of blockages bn on different links Ly, from basestation
Th to Ug are independent, the distribution of the distance R,qq, to the nearest visible basestation Tg
is

P(Ryear = 1) =exp( 2 U(r)); (5.12)
where U (r) = %s—") [1 (Lor+1)exp( Lpr)], and Ly and  are defined in Theorem 5.3.8.

Proof: The distance R, from U, to the nearest visible basestation is larger than r if and only if all
the basestations located within the ball B(U,; ) are not visible to Uy. Since the basestations form a
PPP of density , it follows that

P(Ryear = r) =P (all basestations in B(Uo; ') are not visible);
=[x P (all basestations in B(Ug; ) are not visible
J# basestations in B(Uo; r) = k)g;
a X . . . K
= (IP (any one basestation in B(Uo; r) is not visible))
k=0
exp r2 ( ra)k
k! '
where (a) follows from the fact that the number of basestations in B(Uo; ) are Poisson distributed
with mean  r?, and the assumption that V,,, are independent.
Next, we compute the IP(any one basestations in B(Ug; ) is not visible) as follows. Let
basestation Tn, 2 B(Uo; ') be at a distance of dy  r from the origin. Since basestation process
is a PPP, the location of basestation Ty, is uniformly distributed in B(Uo; r). Thus, d% is uniformly
distributed between [0; r?], and PDF of d, is fg, (t) = % With basestation Tp, at distance of
dn = t from the origin, from Corollary 5.3.9, we know that

~
7

(5.13)
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IP (basestation T, at distance d, = tin B(Uo; ) is not visible)

=1 exp( (Let+ b))
Taking the expectation with respect to dp,, we get

P (basestation 2’ n at distance d, = tin B(Uo; ) is not visible) =
r

2t
(1 exp( (Lpt+ b)))ﬁdti (5.14)
0
Thus, using (5.14), from (5.13),
X Zr 2 K ex r2 r2)k
PRy = 1) = @ ep( G+ o) aa 2P T LT
k=0 O :
X | um e ( OF
= > :
Ko r k!
2U ()
— 2 .
=exp r- 1 1 2 ;
=exp( 2 U(N);
where (b) follows from the definition of U (r). O

The following Corollary is immediate.
Corollary 5.3.14 The PDF of the distance to the nearest visible basestation from Uo, R;eqr, is
fr,., (N =2 rexp( (Ler+ p+2 U())):
We are now ready to derive the connection probability P¢( ) expression (5.10), using (5.11).

Theorem 5.3.15 In the impenetrable blockage case p = 0, when each user connects to its nearest
visible basestation, the connection Erobability for any user is
Z4 1

P()= exp 2 d ex‘i(f“’r” ) (it fe, (r)dr; (5.15)
0 r

where Tr,, (1) is the PDF of the distance to the nearest visible basestation derived in Corollary
5.3.14, and Ly and  are defined in Theorem 5.3.8.

Proof: First we compute the expression for the connection probability conditioning on the distance
to the nearest visible basestation R 5. Given that Ry, = I, the expression of SIR from (5.11) is

SR= P r_ihnf’

PR )
m:T,,2 ;d,,>rmé&n dm Jhm] Vi

where jhmj? are Rayleigh distributed, Vyy, (in the impenetrable case) are independent Bernoulli
random variables with parameter exp( ( dj + p)) (Corollary 5.3.9), modeling whether the
basestation m is visible or not. Conditioned on the nearest visible basestation to be at distance
Rpear =1, the connecti(%n probability c(%n be computed as follows P &ST > Ry =)

><
=PQ@jh,j>> r @ dy jhmjPVmAA;

m:T,,2 ;d,.>r
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8 (0] 19
<< > =
@g _exp@ r Ay Jhmi2VmA
R M:T,2 ;dm>r z
8 o
< Y =
=E _ Ev,, jh,.jz €XP r d, jpmj®Vm _;
"mMTm2 dm>r z
8
.~ Y
=E _ Ejh,.jz exp( T jhmj?dy, )

"mMmiT,m2 dn>r

exp( ((dm+ 5)g+1 exp( ( dm+ 1)))g;

where (@) follows by taking the expectation with respect to jhnj?  exp(1), (b) follows by taking
expectation with respect to Bernoulli random variable Vi, (Corollary 5.3.9) and noting that Vi,
are independent by assumption. Taking the expectation with respect to jhmj?  exp(l) that are
independent 8 m, P (SIR > jRyeyr =)

8 o
< Y =

Qp _ L CAm*P) g e (di+ W) _;
"TMiTe2 dwm>r 1+ 1 dm 7
g "t o

g Y rep((dnt ) T
z dm+ 1 s

m:T,,2 ;dzm>r
T orexp( (t+ b))

tdt
t +r

=exp 2

r

and finally (d) follows directly from the probability generating functional of the PPP formed by the
basestations TT,g Theorem 2.3.6. Hence, the unconditional connection probability is given by
z
Pe( )= P(SIR> jRuyear = Nfr,, (r)dr;

near

Zrl z a1
+
= Texp 2 roexp( (Let+ 1))
0 r t+r

tdt fgr, (r)dr: O

In Theorem 5.3.15, we have derived the connection probability for random cellular networks with a
distance-dependent blockage model, generalizing Theorem 5.2.2. The expression derived in
Theorem 5.3.15 is not in exact closed form, but it lends itself to fast numerical integration
techniques.

Recall that we showed in Theorem 5.2.2 that the connection probability without considering
blockages is invariant to the basestation density . Thus, the basestation density can be increased
without affecting the per-user performance to get larger and larger total network throughput. In
contrast to Theorem 5.2.2, Theorem 5.3.15 shows that accounting for more realistic
distance-dependent blockages, the connection probability depends on the basestation density. Since
the user connects to its nearest basestation, without blockages, the strengths of the desired signal
and interference seen at any user scale by a common factor with changing basestation density. In a
network with blockages, however, if the user connects to its nearest visible basestation, the scale
factors for signal and interference powers are different with changing basestation density, since the
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Figure 5.7: Connection probability as a function of the basestation density for E[L] = E[W] = 15m,
0=45 10 4=m? (=35 10 5=m?, =4,andP =1.

interference links (that are at larger distances than the basestation to which the user connects) are
likely to experience more blockages on their links on average than the link of the connected
basestation. Thus, considering distance-dependent blockages is fundamentally different than the
scenario that neglects the presence of blockages.

We show this behavior in Fig. 5.7, where we compare the performance of cellular networks
with and without considering blockages. As expected, the connection probability is invariant to the
basestation density without considering blockages. While considering blockages, Fig. 5.7 shows an
interesting result that including blockages in the system model often helps improve the coverage by
increasing the SINR and consequently the connection probability for reasons discussed at the end of
previous section.

Another object of interest is the behavior of connection probability in the blockage case as a
function of different basestation density . We see that the connection probability is not monotone
in the basestation density, and one has to find optimum basestation density for a given blockage
density either analytically or through simulations. A final point to note from Fig. 5.7 is that when
the basestation density goes to infinity, the connection probability converges to the case with no
blockages. This is indeed expected, since with increasing basestation density, the effect of blockages
in reducing interference decreases and in the limit, the interference profile is similar to that of the no
blockage case.



Performance Analysis of Cellular Networks 113

We next quantify the average rate each user gets when it connects to its nearest visible basestation
in the distance-dependent blockage model.

5.3.4 Average Rate per User
As in Section 5.2.2, we define the average rate t% be EfBg = E flog(1 + SINR)g which is equal to

EfBg = P20 1)dt; (5.16)
t
R
by using the fact that EFXg = P(X > t)dt.
In Table 5.1, we provide simulation results for average rate, where we notice that considering
blockage effects, the average rate is no longer invariant to the basestation density, and the modeling
realistic blockages could help increase the achievable rate.

Table 5.1: Average Rate Comparison

Blockage density | None | Low Intermediate | High
0= 0 0 0:1 o= o 0= o 10 o= ¢
Average rate (bits/sec/Hz) | 2.15 2.42 4.99 3.14

Note: (o= g is the ratio of the blockage density to the basestation density. We assume E[L] = E[W] = 15m, o =
45 10 *=m?and 0=35 10 5=m?

In summary, in this chapter, we have shown that the connection probability and the average rate
seen by any user with and without accounting for the distance-dependent blockages are
fundamentally different. We also note that the SIR with the distance-based blockage model is
typically higher than without considering it, which could appear counter-intuitive at first. This
result is well explained by noting that with the distance dependent-blockage model, if each user is
connecting to its nearest visible (unblocked) basestation or basestation with least number of
blockages, then automatically either the other interfering basestations are invisible or have much
larger number of blockages on their paths, thus reducing the interference power. Numerical results
also confirm this assertion by showing better connection probabilities for the distance-dependent
blockage model. Thus, not considering distance-dependent blockages might actually underestimate
the performance of the real-world wireless networks.

5.4 Reference Notes

Traditionally, for performance evaluation in wireless networks, either a simple one-dimensional
Wyner model [8, 9], where interference is received from only two nearest basestations, or a
hexagonal or square grid model is assumed for basestation locations [4-6]. Clearly, the efficacy of
the Wyner model is limited in a realistic two-dimensional network, and the analysis with the grid
model is limited to special cases of mobile locations such as those close to cell boundaries, which
could underestimate the actual system performance. The idea of using randomly located
basestations for analyzing the performance of cellular networks was first proposed in [1], where
both the connection probability and the average rate expressions were derived. Extensions to
modeling multi-tier wireless cellular networks can be found in [10]. The random cellular network is
easily extendable to incorporate more flexibility such as in [11], where a hybrid network model is
considered where only the interferers are modeled as a PPP outside a fixed-size cell to characterize
the site-specific performance of cells with different sizes, rather than the aggregate performance
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metrics of the entire system. The random network model also lends itself for analysis of
complicated network performance indicators such as connectivity between all pairs of nodes [12].
The random cellular network model can be rigorously shown to lower bound a hexagonal grid
network in terms of certain performance metrics [13].

Modeling blockages as a point process with independent and identically distributed length,
breadth, and height were proposed in [7] and extensively studied in [14], where the distribution of
number of blockages seen by any link, the SINR distribution, and expressions for connection
probability and average rate were derived. More detailed results with this model can be found
in [14]. Earlier a grid model [4-6] or ray tracing model [3, 15-17] was proposed to tackle the
problem of modeling distance-dependent signal losses in wireless networks.
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Chapter 6

Delay Normalized Transmission
Capacity

6.1 Introduction

In the first part of this book, we considered the single-hop model of a wireless network, where each
source—destination pair is at a fixed distance from each other and performs direct communication
between themselves. For the single-hop model, we introduced the concept of transmission capacity
to characterize the spatial capacity and derived it for many different strategies such as scheduling,
multiple antenna transmission, and two-way communication.

Even though the single-hop model is elegant, it is not realistic in a large wireless network,
where the primary mode of operation is hop-by-hop communication from each source to its
destination using multiple relay nodes. Three important distinctions between single-hop and
multi-hop communications are i) routing protocol, finding optimal routes for each source and
destination, ii) retransmissions, any relay can forward packet only after it receives it successfully,
which potentially requires retransmissions, and iii) shared relay nodes that are used by many
source—destination pairs.

In this second part of the book, we exclusively consider the multi-hop communication model
for wireless networks. In this chapter, we begin by extending the transmission capacity framework
to allow retransmissions using ARQ over multiple hops, and define a new notion called the delay
normalized transmission capacity that normalizes the end-to-end throughput with the expected
number of retransmissions required for successful delivery of any packet at the destination. We
analyze the delay normalized transmission capacity for a simple multi-hop model, where each
source—destination pair is at a fixed distance from each other and there are dedicated relays
between each source and its destination. Even though this model is simple, it still allows us to
capture the interplay of three important quantities: throughput, delay, and reliability, in a multi-hop
wireless network.

Even with this simple model, the analysis of the delay normalized transmission capacity is
quite involved, and the exact derived expressions are not in the simplest closed form. To get more
insights, we also derive useful bounds on the delay normalized transmission capacity that allow us
to answer some key questions such as the optimal per-hop retransmission allocation under an
end-to-end retransmissions constraint and optimal number of hops to use between each source and
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destination. Many shorter hops increase the per-hop success probability but entail larger end-to-end
delay, and hence its important to find the optimal number of hops for effective operation of a
multi-hop network. Using delay normalized transmission capacity as the metric, we show that for
small densities of wireless network, it is advantageous to communicate over small number of hops.

Finally, we consider a more general multi-hop wireless network, where all source—destination
pairs are at a random distance from each with no dedicated relays in between them. We show a
surprising negative result that the expected number of retransmissions required for a packet to be
successfully received at any node is infinite, when node locations are distributed as a PPP. Thus, the
rate of transmission between any source—destination pair tends to be zero. This is a serious limitation
and we show that it exists even if there is no interference, that is, there are no other active transmitters
in the network. Thus, it is the AWGN and the PPP-distributed node locations that limit the ability
of any transmitter to send its packet successfully to any other node in the network in finite expected
time.

To make the model non-degenerate, either one has to either neglect the AWGN contribution (or
assume that the AWGN variance is zero) or assume that nodes are located in a bounded area.
Neglecting the AWGN contribution, we define spatial progress capacity with PPP-distributed node
locations that has identical scaling with respect to the density of nodes as the throughput capacity
defined in Chapter 9, where the nodes are distributed uniformly at random in a bounded
area.

6.2 Delay Normalized Transmission Capacity

With multi-hop communication, each packet is transmitted hop by hop toward its destination, where
in any hop similar to the single-hop case, we define that any packet is successfully decoded/received
at any relay node at time t if the signal-to-interference-plus-noise ratio (SINR) at time t is larger
than the threshold . We assume that each relay employs a decode and forward protocol, where a
packet is forwarded onto the next hop once it is successfully decoded. With PPP-distributed nodes,
the SINR seen at any relay node at any time slot is a random variable, and hence potentially, multiple
transmission attempts are required for a packet to be successfully decoded at any relay node.

To model retransmissions, we consider an automatic-repeat-request (ARQ)-based transmission
strategy, where a packet is repeatedly transmitted by each relay node until it is successfully
received at the next hop relay or if the maximum retransmissions constraint is exhausted. Thus, the
transmission delay for any packet is the number of retransmissions required to transmit the packet
successfully.

To capture a notion of capacity in multi-hop networks with ARQ protocol, the delay normalized
transmission capacity is defined as the number of successfully delivered packets in the network per
second per Hertz multiplied by the spectral efficiency, that is,

number of successful packets at any destination node until time t B
t

m
a1

bits/sec/Hz/m?, where B bits/sec/Hz is per-hop rate of transmission corresponding to SINR
threshold , and is the density of transmitters in the network.

Let Np be the number of hops between any source and its destination, and let Dy, be the
maximum number of retransmissions used on hop Nn. Then assuming an end-to-end retransmissions
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constraintof D, D D, with the ARQ protocol between any source and its destination, from
the renewal reward theorem [1], the delay normalized transmission capacity Cq is also equal to

Cya H;LDZ’B— bits/sec/Hz/m? 6.1)

Ef X, Mng

where Py is the probability that a packet is successfully decoded by any destination within D end-to-
end retransmissions, and My, gs the random variable denoting the number of retransmissions used at
hopn,M,, Dp+1,and Ef ﬁgl Mg is the total expected end-to-end number of retransmissions
or end-to-end transmission delay.

The delay normalized transmission capacity Cq quantifies the end-to-end rate that can be
supported by  simultaneous transmissions/unit area, with success probability Ps, and maximum
delay D + Np (where one original transmission is counted for each hop other than the D
end-to-end retransmissions). The delay normalized transmission capacity not only gives us a
capacity metric but also captures the through‘glt -delay-reliability (T-D-R) trade-off of wireless
networks, where throughput = Cy, delay = Ef ", Mg, and reliability = Ps.

Remark 6.2.1 Compared to the single-hop definition of transmission capacity (Definition 2.2.4)
without ARQ protocol, here we have normalized the transmission capacity with expected delay to
account for the loss in capacity due to retransmissions.

We first analyze the delay normalized transmission capacity for a single-hop network in Section
6.2.1, and then build upon it to extend the analysis to the multi-hop network case in Section 6.3.1.
Compared with the transmission capacity framework for single-hop network studied in Section 2.2,
which took a single time slot view of transmission, with the ARQ protocol, we have to consider time
correlations of SINRs to characterize the delay normalized transmission capacity of a single-hop
network, which is done as follows.

6.2.1 Single Hop Transmission with ARQ Protocol

In this section, we consider a single-hop wireless network, where source locations are distributed as
aPPP  with density and each source—destination pair S D is at a fixed distance d. We consider
a typical source—destination pair So  Dg, where the received signal at the typical destination Dg at
time t is given by

X
y() =d  “Zhgo(t)Xo(t) + 1t.@ds “2hos(t)Xs(t); (6.2)
s:T;(t)2 nfSyg

where 1t () is the indicator variable denoting whether transmitter Ts is active at time t, hgs(t) 2 C
is the channel coefficient between Tg(t) and Dg, Xs(t)  CN(0;1) is the signal transmltted from
source Tg in time slot t, and for ease of exposition we have neglected the additive noise. As before,
we assume that each h{(t) is i.i.d. with Rayleigh distribution.

Any packet from the typical source Sy is defined to be successfully received at the typical
destination Dg in time slot t if

d, jhoo(t)j?
s:T,(t)2 nfSpg 1Ts(t)d3 jhOS(t)j2

SIR(t) = (6.3)

Each packet is retransmitted (at most D times) until it is successfully received at its corresponding
destination, or dropped otherwise. We assume that each source uses an ALOHA protocol with
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Total D retransmission slots

S>> . A .
O . Pl .
[ atal . P Ol .
>N . P .

original
transmission
slot
Retransmission in slot ¢ if 17,y =1

Figure 6.1: Retransmission strategy where in any slot, retransmission (shaded square) is made if
11,y = 1 and no attempt is made (empty square) otherwise.

parameter p for transmitting/retransmitting any packet at each time t irrespective of the number of
previously failed retransmission attempts for that packet.

Recall that the success probability P is the probability that the packet is correctly received by
the typical destination within D retransmissions. Because of stationarity of the PPP, we will restrict
our attention to the typical source—destination pair for deriving Ps. For any packet, we count slot 0
as the slot in which the source makes the first transmission attempt. Hence, starting from slot 0, there
are a total of D + 1 potential transmission slots for each packet, where in each slot, retransmission
happens if the ALOHA protocol parameter 17ty = 1. In Fig. 6.1, we describe the retransmission
strategy.

We first derive an expression for the success probability Ps and use that to find the delay
normalized transmission capacity Cq (6.1). Let E be the event that a packet is successfully received
within D retransmissions, that is, Ps = P(E), and

E= [}320 Ej ;
where event
E; = Ta packet is received correctly for the first time in the jth retransmission slotg: (6.4)

Event Ej means that the packet is successfully received in the jth retransmission slot and in all the
previous j slots (including the first original slot), whenever a transmission attempt was made by the
ALOHA protocol, the packet reception was not successful.

protocol before the successful reception at the jth retransmission slot, that is,

Eyj = ffailures in K previous attempts and success in the jth retransmission slotg;

on how many failures have happened before retransmission slot j, and not where those failures
happened. For example,

P(SIR(1) ;SIR(t) )=P(SIR(L) ;SIR(n) ) t&n;

since the channel coefficients are independent across time slots, and in any time slot each source
transmits with probability p independent of others.



120 Random Wireless Networks

Thus,
Pl =P(E) =P(SIR(L) ;:::; SIRK)  ; SIRG) > ): (6.5)

Clearly, Ej = [k=0:1;2;:::;j Exj. Then, the probability of event E;, defined as Pg_ is equal to

Pd = P([k=0:1:2::::; Ekj):

The events
[k=0;1;2;:::;j Ekj
are mutually exclusive for any j, j = 0;:::; D, hence, the success probability Ps = P(E) is
x
Ps = Pd: (6.6)
j=0

With ALOHA protocol, K retransmission attempts are made before the jth retransmission slot with
probability 4 pk(1  pY 1 X hence

k
] X ] k j knpkij-
Ps = K P@opy TPk (6.7)
k=0
by accounting for K = 0 or 1, or, :::; ] failures before success at the the jth retransmission slot,

where extra p is because of the original transmission in slot O that happens with probability p.
Computing the joint probability PXJ in (6.7), assuming that the typical destination Dy is located at
the origin, the expression for Ps is given by the following proposition.

Proposition 6.2.2 The success probability P is given by

KX G ko koo 1y K

Ps = @ e (D
j=0k=0 ‘=0 '
Z p ‘1 -
exp ]Rzl 1+dix+1 p dx

P
Proof: Defining I () = 1.5 nfSog 1r,(90ds jhos(“)j? as the interference received at Dg in
time slot “. Then from (6.5),

Psk;j = P(SIR() c=12:0k SIRG) > );
_p d  jhoo(1)j? ...:;d jhoo (K)j? ; d  jhoo(3)j? >
(YI (1) ‘ I )' @
@ g 1 exp (Ij © exp (Ij a) ;
8~'o 11
CEEAE Y L
"o T2 nfseg T T a1l
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19
Y 1 =
- (6.8)
s:Ts2 nfSopg 1+d lTs(j)dS 7
where (a) follows by taking the expectation with respect to hoo(“); © = 1;:::;k + 1; j, since

jhoo(9)j? areiid. exp(l), (b) follows by using the definition of I () and taking the expectation
with respect to hos(*), where jhos(*)j>  exp(1) and i.i.d. for each *, and ds is the distance of node
Ts from Dg located at the origin.

Now we take the expectation with respect to the ALOHA protocol indicator function 1t -y
which is 1 with probability p and O otherwise. Note that

1 _ 1o

= +1 1t (o
1+d 1TS(‘)dS 1+d ds 0
Thus,
C . D
Y
= +1 p 6.9
1+d 1y s 1+d ds P ©9)
Substituting (6.9) into (6.8), and replacing ds = X, we get
8 O 1
<Y Y
pki = E @1 P 41 pA
° - =1 x2 nfSopg 1+d X P
8]
Y =
p
+1 :
+d x P ;)
x2 nfToeg
Q F x @ x)k;
x k .
@ "y TE X,
=0
where (C) follows by defining
Y p
X = + ;
1+d x L
x2 nfSpg

(d) follows from linearity of expectation and using the Binomial expansion, and finally the result
follows since

Z ‘+1 !

E X =exp 1 ﬁ+l p dx
R2

using the probability-generating function of PPP (Theorem 2.3.6). g

Now, using the derived expression for the success probability Pg, we find the expected number
of retransmissions required. Recall that M is the random variable denoting the total number of
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transmissions (one plus the number of retransmissions) required for each packet that takes values in
[0: D +1]. The event fM = jg is the same as event Ej (6.4)forj D 1, hence

PM=j)=Pl j=0;1;2::5;D L (6.10)

For the special case of having M = D + 1 transmissions or D retransmissions, one has to also take
into account the delay incurred by packets that are not decoded correctly even after D
retransmissions, and hence

D
P(M =D)=PP+ PI=PP+(@1 Py); (6.11)
j=0
PD*1 i the probability of successfully receiving the packet by the D + 1st transmission or Dth
retransmission. Using Prgposmon 6.2.2, from (6.10) and (6.11), the expected number of
retransmissions EfMg = -_0(j + 1)P(M = ]}) is derived as follows.

Proposition 6.2.3 The expected delay EYMQ in a single-hop wireless network with at most D
retransmissions is

KK XK

. + i <k
EfMg = P ey Y
j=0k=0 =0
z ‘ !
P +1
exp 2l W+1 p dx +(D+1(1 Py):
R

Propositions 6.2.2 and 6.2.3 allow us to derive an explicit expression for the delay normalized
transmission capacity as follows, whose proof directly follows from Definition 6.1.

Theorem 6.2.4 The delay normalized transmission capacity of a single-hop wireless network with
at most D retransmissions is
Ps

Ca= EfMg;

where Ps is given by Proposition 6.2.2, and EfM( is given by Proposition 6.2.3.

Proposition 6.2.2 and Theorem 6.2.4 give exact expressions for the success probability and the
delay normalized transmission capacity, respectively, of a wireless network with single-hop
transmission, with a retransmissions constraint of D. Because of correlation among SIRS across
different time slots with PPP-distributed source locations, the derived expressions are complicated
and do not allow for a simple closed-form expression for Ps and Cgq, as a function of D. Thus,
precluding a derivation of a simple expression for the T-D-R trade-off of a wireless network. To get
more insights on the dependence of Ps and C4 on D (to obtain simple T-D-R trade-off), we next
derive tight lower and upper bounds on Pg, and consequently on Pg, and the delay normalized
transmission capacity Cy.
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Bounds on the Delay Normalized Transmission Capacity

For deriving the bounds, we will make use of the FKG inequality (Lemma 2.8.8).

Upper bound on the success probability Ps.

Proposition 6.2.5 The success probability Ps with single-hop transmission in a wireless network
with at most D retransmissions is upper bounded by

Ps 1 (pg+1 p)°*Y

2 2d? %csc(%’r)

where = P (SIR(1) )=1 exp

Proof: Recall that each source with an ALOHA protocol retransmits with probability p in each
time slot. Let source Sp make total K attempts with ALOHA protocol to transmit a packet to the

destination Dy within the total D + 1 slots, k = 1;2;:::;D + 1. Then the event fsuccess in at
most D retransmissionsg is also equal to the complement of the event ffailures in all k attemptsg
for kK = 1;2;:::; D + 1. Then counting for all possible choices of K, we have
> p+1
Ps = 1 « P p)P*t kPE (6.12)
k=1
where
P{ = P(failure in k attempts) = P(SIR(1)  ; :::; SIR(KK) )

since each SIR(t) is identically distributed, it does not matter where those K failures happen. From
Definition 2.8.7, it follows that FSIR(1) g is an increasing event. Thus, using the FKG inequality
(Lemma 2.8.8),

A4
Pf P(SIRG) ) (6.13)
j=1

where P (SIR(t) ) =P (SIR(m) ), t& m.Letq = P(SIR(1) ). From Theorem 2.4.1,
L

p 2 2d2 Zcsc 2-
g=1 exp : (6.14)

Substituting (6.13) into (6.12),

> b+
Ps 1 ‘ pk(L p)°*t Kgk=1 (pg+1 p)°rh:
k=1

O
Lower bound on the success probability Ps.

Proposition 6.2.6 The success probability Ps with single-hop transmission in a wireless network
with at most D retransmissions is lower bounded by

poio+1 1 (pql+1 )P
q

PDD+1 =P (SIR(D +1) > jSIR(1) ;:::; SIR(D) ).

Ps ; where (6.15)
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Proof: From (6.7), the success probability

o XK 0 g i CSR() = ).
s = p“@@ pY¥ %pP(SIR(Q)  ;:::;SIR(K)  :SIRG)> ) (6.16)
j=0k=0 K
Note that P (SIR(1) ; it SIR(K) i SIRG) = )
= PFfP(SIRG) > jSIR(L)  ;:::; SIR(K) )
g“P(SIRG) > jSIRA) ;:::;SIRK) ) (6.17)

where (&) follows from (6.13), and g = P(SIR(J) Yforany j = 1;:::;k.
Because of positive temporal correlation of SIRs (Example 2.7.3), the probability of success
given j failures is more than the probability of success given j + 1 failures, hence

P(SIR(j) > jSIR®Q) ;i1 SIR(K) )
P(SIR() > jSIR() ;i SIR(k + 1) ):

Therefore, since SIR(J) are identically distributed for all j, for D  k+1,

P(SIR(J) > jSIR(1) ;i1 SIR(K) )=
P(SIR(D +1) > jSIR(1) ;i1 SIR(K) ); (6.18)
and
P(SIR(D +1) > jSIR®) ity SIR(K) )
P(SIR(D+1)> jSIR®) ;1115 SIR(D) ): (6.19)

Thus, from (6.16), (6.17), (6.19), we get the following lower bound on the success probability
Ps

Ps P(SIR(D +1) > jSIR(1) ; 110 SIR(D) )
R XK J I J kpek
K P@ P Tpat
j=0k=0
= P(SIR(D+1)> jSIR(1) ;i1 SIR(D) )
1 (pq+1 p)°*
1 g : (6.20)
Thus, finishing the proof. 0
For small values of D, we can analytically show (Example 6.2.7) that
POP* =P(SIRD+1)> jSIR(L) ;:::;;SIRMD) ) c o) (6.21)

where C is a constant.
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Example 6.2.7 By definition, P (SIR(D + 1) j SIR(2) 115 SIR(D) )
P (SIR(1) ; 110 SIR(D) ; SIROD+1)> ).
P (SIR(1) ;1107 SIR(D) ) '
P ) R “+1
2.0 D) 2 exp wl mae=tl op dx
P ‘ R —
P01 2 exp wl =+l p o dx

where (@) follows from Proposition 6.2.2. Hence, for D = 2, by computing the integral for * = 1; 2,

2

withc, =p 2 d?> &, P(SIR(3) iSIR(1)) ;SIRQ) )

czcsc(%") 2

exp 2exp C 2 p —2 cSC

co csc(2x
ez oso(%) +exp C 2 p —=2 CsC 2

1 2exp

c2( 3 ( 2+p)p+2p?+ 2(3+P(p 3)))csc(2z)
3

c2 csc(2z)

+exp C 2 p —2 csc

exp Scd? =1 g
Similarly, for D = 3, it can be shown that
P (SIR(4) J SIR(2) i SIR(2) ; SIR(3) ) 1 q
Thus, from Proposition 6.2.6,
Ps ¢1 (pg+1 p)P*t; (6.22)

for small values of D, where C is a constant. Comparing the lower bound on Ps (6.22) with the upper
bound on Ps from Proposition 6.2.5, we get that our derived lower and upper bounds on Pg are tight
upto a constant for small values of D. For higher values of D also, the bounds can be shown to
be tight using simulations in the sparse network regime, that is, small or ¥ 0. To get a better
sense of our derived upper and lower bounds, in Fig. 6.2, we plot the success probability Ps as a
function of maximum retransmissions constraint D together with the upper and lower bound for
density = 0:1, SIR threshold = 3, and path-loss exponent = 3. Clearly, the simulated success
probability closely follows the derived upper and lower bound.

Using approximation (6.22), in light of tight bounds from Propositions 6.2.5 and 6.2.6, we have
that the success probability of any packet within D retransmissions in a single-hop wireless network
is

Ps ¢1 (pg+1 p°*; (6.23)

where ¢ 11is a constant. The approximate success probability expression reveals that even though
the success/failure of packet decoding is correlated across time slots, for small D or in a sparse
network, the success probability Pg is equal to CPSi”dep, where ¢ 1 is a constant, and PsindeP
is the success probability in at most D retransmissions if the success/failure of packet decoding
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Success Probability as a function of delay D for single hop N,=1,4=0.1,$ =3, a:=3,d=1m
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Figure 6.2: Success probability as a function of D for N, = 1.

is independent across time slots. Thus, an important conclusion we draw is that the independence
assumption on SIRs across time slots, if made for simpler analysis, is not too limiting. Using (6.23),
we can get an approximate delay normalized transmission capacity expression for the single-hop
wireless network as follows.

Approximate Delay Normpglized Transmission Capacity: Recall that the expected number of
retransmissions EfMg = F:O(j + 1)]P’(M_= J).where P(M = j) =Pd; j =0;1,2;:::;D,
and P(M = D) = PP + (1 Ps) and PJ, the probability of successful reception in the jth
retransmission slot for the first time, is given by (6.7). Now we use the expansion of PJ from (6.5)

in terms of Pskj, the probability of k unsuccessful attempts before the successful reception in the
jth slot for the first time. Hence, from (6.5) and (6.7), EfMg

X
= g +DP(M =j);

j=o0
= (G +1) " p*(@  p) ! XpP(SIR(L) ;117 SIR(K) :SIR(G) > ):
j=0 k=0

Following approximation (6.21) used for deriving (6.23), using simple algebra we get that

1 (pg+1 pP+t
@ o

EfMg=c +(D+1H(1 o) (6.24)
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Therefore, from (6.22) and (6.24), the approximate delay normalized transmission capacity (6.1) is
given by

c, @ (u+i pP°Th) B

' D+1 !
¢ LEHLDTE L (D+1)(1 o)

(6.25)
for some constantc 1.

The approximate expression (6.25) for the delay normalized transmission capacity in a
single-hop network allows us to get useful insights on the interplay between the three inter-related
quantities, throughput, delay, and reliability, and tells us how they can be traded off against each
other. We get the intuitive result that as we allow more retransmissions, the success probability
increases but at the cost of expected delay. The throughput expression (6.25), which is the ratio of
reliability and expected delay, captures the trade-off completely and tells us how the real quantity
of interest, the rate of transmission, increases with increasing number of allowed retransmissions.

After discussing at length, the techniques used to derive the single-hop delay normalized capacity
presented in this section; we next build upon it to find the delay normalized transmission capacity of
a multi-hop wireless network.

6.3 Fixed Distance Dedicated Relays Multi-Hop Model
with ARQ

In this section, we consider a simple fixed distance multi-hop wireless network with dedicated relays
for each source—destination pair and derive its delay normalized transmission capacity. We assume
that each source—destination pair is at a fixed distance d from each other with multiple dedicated
relays helping their communication. A more realistic model of random source—destination distance
with non-dedicated relays is discussed in Section 6.4.

Compared to other parts of this book, in this section, we make a distinction between transmitters
and sources, since there are many nodes that will only relay other sources’ information. The location
of source nodes S,; M 2 N is assumed to be distributed as a homogenous PPP  on a two-
dimensional plane with density . The destination Dy, corresponding to source Sy, is at a distance

(Np hops) in between each source Sy, and its intended receiver D, 8 m, not necessarily on a straight
line between S, and Dy, with inter-hop distance dy,. For simplicity, we assume that all the N, 1
relays on the Sm-Dp, link are dedicated and cannot be used by any other source—destination pair.
» 1:m;Dm0. A schematic of the
considered model is shown in Fig. 6.3.

Transmission Strategy: We assume all nodes in the network to a have a single antenna each.
The transmission happens hop by hop using an ARQ protocol under a maximum end-to-end
retransmissions constraint of D, for each packet transmission between Sy, and Dy,; 8 m. For
simplicity, the same packet is assumed to be retransmitted (at most D times) with every NACK on
any hop, without any incremental redundancy or rate adaptation.

Assumption 6.3.1 We assume a simple transmission protocol that allows only one active packet on
each link, that is, the source waits to transmit the next packet until the previous packet has been
received by the destination, or the delay constraint has been violated. This assumption is critical
for the ease of analysis. In a practical system, however, pipelining can significantly increase the
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Figure 6.3: Schematic of the system model where connected lines depict a path between a source
and its destination.

throughput, and analysis with more than one active packet is an important topic, however, that
remains unsolved.

Let the transmitter and the receiver on link m between source Sy, and its destination Dy, in time
slot t be Tm (t) and Ry (t), respectively, where

and

The set of interfering nodes for receiver Ry (t) at time slot tis () = F ()nTm(t)g, where
(t) = fT(H)g.

Remark 6.3.2 When the active transmitter process is a PPP, there is spatial correlation, and the
success/failure of packet decoding at different receivers is correlated (as discussed in Section 2.7).
Therefore, retransmission of packets depending on the NACK in a multi-hop network introduces
correlation among the active transmitter process (t), and strictly speaking, (%) is no longer a
random thinning of PPP, and consequently not a PPP.

Assumption 6.3.3 7o facilitate analysis, we assume that the success/failure of packet decoding on
different links with ARQ is independent, and therefore the active transmitter process (t) at any
time t is a PPP. There are two justifications for this assumption, i) the decoupling argument [2],
which states that in a large network, the success probability over different links is independent
using the mean-field type argument, and ii) the fact that spatial correlation coefficient in a PPP
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network is zero with the X path-loss model (Example 2.7.3). We do, however, take into account
the spatial/temporal correlations over different hops on the same link.

Similar to the single-hop model, we consider a slotted ALOHA protocol, where each transmitter
(source or any relay) attempts to transmit its packet (either new or retransmission) with an access
probability p, independently of all other transmitters. Consequently, the active transmitter process

(t) is a homogenous PPP on a two-dimensional plane with density =p o.

that at time slot t only one of the nodes of link fSp; Dog is transmitting, let that be the nth relay
Rn:o (N = 0 corresponds to the source Sp), that is, To(t) = Rn:0. Then the received signal over the
nth hop at the n + 1th relay (defined Ro(t)) of link fSp; Dog at time slot t is

>

Yon(t) = d,, “2h{(t)Xon(t) + 1r.@mds ~2hfs(t)Xsn(t); (6.26)
s Ts()2 ()nfTo(t)g

where hils(t) 2 C is the channel coefficient between the active transmitter Ts(t) of the TSs; Dsg
link and the active receiver Ro(t) of the fSp; Dog link, d, is the nth hop distance between Tq(t)
and Rp(t) and dg is the distance from Tg(t) 2 (t)nfTp(t)g to Ro(t), Xsn(t)  CN(0;1) is the
signal transmitted from transmitter Ts(t) in time slot t, and 11 () = 1if transmitter Ts(t) is active
at time t which happens with probability p because of the ALOHA protocol. As before, we assume
that each h{j;(t) is i.i.d. with Rayleigh distribution and ignore the AWGN contribution.

Let SIRL (1) denote the SIR between the active transmitter and receiver of link fSp; Dog at time
slot t on hop n. With the received signal model (6.26),

dn jhGo(DJ?
ST, ()2 (D)nfTo(t)g 1Ts(t)d3 jh{)‘s(t)jZ

SIRL () = P (6.27)

We assume that the rate of transmission for each hop is B = log(1 + ) bits/sec/Hz. Therefore,
a packet transmitted by transmitter To(t) can be successfully decoded at receiver Rp(t) in time slot
tif SIRg(t) > . Then the delay normalized transmission capacity Cq of a wireless network with
multi-hop transmission as defined in (6.1) is the number of successfully delivered packets in the
network per second per Hertz multiplied by the spectral efficiency.

Remark 6.3.4 The definition of delay normalized transmission capacity Cq takes a holistic view of
the network by coupling the interdependent metrics, namely throughput, delay, and success
probability. Some earlier work [3—8] focussed on finding routing protocols for minimizing delay or
minimizing transmit energy or maximizing reliability.

6.3.1 Deriving Delay Normalized Transmission Capacity

In this subsection, we derive the delay normalized transmission capacity of the fixed distance
dedicated relays multi-hop wireless network model. Let D be the maximum number of
retranfgllilssions used on hop n. Since the total end-to-end retransmissions are constrained by D, we
have 2, Dp D. The success probability, as before, is defined as the probability that the
packet is successfully received at the destination within D end-to-end retransmissions. Let E(Jn)
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denote the event that a tagged packet sent from the typical source Sg is received correctly for the
first time in the jth retransmission slot over hop n of link ¥Sg; Dog. Thus, defining

P-siljz:::jNh = ]P)(\n En(jn))!

the success probability is given by

P, = D pluzing
J1=0j2=0  jn,=0

Note that SIRn(t) (6.27) is identically distributed 8 t; N, thus, P*“ ™ only depends on how
many failures have happened before the success at the jhth retransmission slot on hop n, and not
where those failures happened. Let “\, be the number of failed attempts on hop n before success at
the jnth slot. Then we can write,

Juzitivg . {n pr(L pyn n
<=0 <y=0n=1 n
P(SIR1(k1)  ;ki=1;2;:::5 %5 SIR1() > ooy
SIRn(kn)  ;kn =1;2;:::;%; SIR1(n) > );

since at each slot any relay makes a transmission attempt with probability p independently. Note
that the joint probability in the RHS is similar to (6.5), and thus using the derivation of the proof
of Proposition 6.2.2 where we derive an expression for (6.5), we get the exact expression for the
success probability as follows.

Proposition 6.3.5
O a0 o
Ps = D D .op( opyn
j1=0  jn,=0+=0 ‘y=on=1 "
>< > N ‘“H
L ( D™
ri=0 ry=0n=1 n
Z N 0 rp+1
ex 1 —_ +1 dx
P R2 n=1 1+d, X P

The expected end-t&end delay EfMg can be computed easily by using the linearity of
expectation, EfMg = 2‘;1 E fMg, where E Mg is given by Proposition 6.2.3 by replacing
D, with D. Thus, we get the main result of this section on the delay normalized transmission
capacity of a multi-hop network.

Theorem 6.3.6 The delay normalized transmission capacity of a wireless network with Nn-hop
transmission with dedicated relays and end-to-end retransmission constraint of D is
BPs
= PR oo
ne1 EfTMpg
where Pg is given by Proposition 6.3.5, and EfMn(g is given by Proposition 6.2.3.

Cq
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Similar to the single-hop case (Section 6.2.1), because of correlated SIRs across time slots and
different hops, we again see that finding a closed-form expression for the success probability Pg and
the delay normalized transmission capacity in terms of the end-to-end retransmissions constraint
of D is not possible. The complicated derived expression for the delay-normalized transmission
capacity of Theorem 6.3.6 limits our ability to find the optimal allocation of nuggber of per-hop
retransmissions Dp’s, under the end-to-end retransmissions constraint of D, that is, E;l D, D,
and the optimal number of hops Np, to use for transmission between any source and its destination.
Both these questions are rather important for effective operation of the wireless network.

To gain more insight into the delay normalized transmission capacity, and facilitate finding the
optimal Dp’s and Np, we derive a lower bound on Pg, and the delay normalized transmission
capacity as follows.

6.3.2 Lower Bound on the Delay Normalized Transmission Capacity

By definition, the probability of successful reception of packet in at most D end-to-end

.....

Sp, = fsuccessin Dp, retransmissions on the nth hopg: (6.28)

Event Sp, is a decreasing event (Definition 2.8.7), since increasing the number of interferers decre-
ases the probability of event Sp,, . Therefore, from the FKG inequality (Lemma 2.8.8), we get the
following lower bound.

Lemma 6.3.7 The succesy probability in a wireless network with Ny hop communication is lower
bounded as Ps c” E;l 1 (pga, +1 p)P»*1 | where qu, = P(SIRn ) is the
probability of failure in any one attempt on the nth hop, andc 1 is a constant.

.....

N
Ps ]P)(SD,L)

n=1

from the FKG inequality (Lemma 2.8.8). Result follows by substituting for the lower bound on
P (Sp,,) from Proposition 6.2.6. O

To get some numerical insight, in Fig. 6.4, we plot the success probability Ps and the derived
lower bound as a function of end-to-end retransmission constraints of D for a two-hop N = 2
network, for density = 0:1, SIR threshold = 3, with d; = d> = 1m and equally dividing the
retransmissions constraint over two hops, D1 = D, = D=2 and path-loss exponent = 3. Clearly,
the lower bound appears to be tight.

Remark 6.3.8 The lower bound on the success probability (Lemma 6.3.7) corresponds to the case
when the success events on each hop are independent. Since the spatial correlation coefficient of
interference in a PPP is zero with path-loss model of X~ (Example 2.7.3), the derived lower bound
is expected to be tight (can be verified using simulations).
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Success Probability with Two Hops Nh=2, 2=0.1,3=3,0=8
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Figure 6.4: Success probability as a function of number of retransmissions D for a two-hop network
Np = 2 with d; = dz = 1m and equally dividing the retransmissions constraint over two hops,
Dl = D2 = D=2.

Now we move on to upper bound the ex$cted end-to-end delay. Recall that the end-to-end
retransmlsl%ons (delay) is M = -1 Mp, and by linearity of expectation
EfMg=" N\ EfMyg, where EfM,g = jzo(j + 1)P(M,, = j). Using (6.24), we get that

o #

c1l (pqu, +1 p)°*t
1 qa4,)

Using Lemma (6.3.7) and (6.29), we obtain the following theorem.

EfMug

+Dp+1)(A ¢ : (6.29)

Theorem 6.3.9 The delay normalized transmission capacity of a wireless network with multi-hop
transmission, under an end-to-end retransmissions constraint of D is lower bounded as

Bc”Qﬁil 1 (pgg, +1 p)P-+?

Ca P
N 1 1 Dp+1
Ny €O UL DT 4 (D, + 1)1 ©)

The lower bound (Theorem (6.3.9)) for the delay normalized capacity of multi-hop wireless
network is far simpler to understand than the exact expression (Theorem (6.3.6)). It directly tells us
the dependence of several important parameters of interest, for example, number of hops Np,, number
of retransmission attempts to be made at hop n, and Dy, on the delay normalized transmission
capacity.

bits=sec=Hz=m?:
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Example 6.3.10 For the special case of D ¥ 1 that corresponds to no retransmissions constraint,

1
Ca/ Py——— (6.30)
n=1 (1 da,)
where we have dropped the additive term (D + 1)(1  C) in the denominator, since with D = 1L

there is no last retransmission. This is an intuitive result, since over the Nth hop it takes on average
attempts to receive any packet successfully with Dn = 1, where g, = P(SIRp ) is the

1
1 da,
outage probability on the nth hop in a single transmission. Accounting for total Ny, hops, we get the
result. If all hops have the same outage probability, that is, 0q,, = 0; 8 n, then from (6.30),

q

Cd:N7h

for any n.

The delay normalized transmission capacity or the T-D-R trade-off (Theorem 6.3.6) of a
multi-hop wireless network derived in this section allows us to fix any two of the QoS parameters
(among throughput, delay, and reliability) and find the fundamental limit on the third parameter.
The T-D-R trade-off defines a three-dimensional region and allows the network designer to choose
any point on the boundary of the three-dimensional region. The derived delay normalized
transmission capacity expression is easy to compute numerically, however, it is not amenable for
finding direct analytical relations between the three quantities. To get more insights into the
inter-dependence of throughput, delay, and reliability, leveraging FKG inequality, we first showed
that the end-to-end success probability is lower bounded by the product of the success probabilities
on each hop, and using that lower bound we then derived a lower bound on the delay normalized
transmission capacity for simpler interpretation of the T-D-R trade-off.

Next, using the delay normalized transmission capacity framework, we answer some important
questions in a multi-hop network, such as how to optimally divide the total retransmissions constraint
D into per-hop retransmissions constraint Dp,’s, and find the optimal number of hops/relays to use
between any source and destination.

Optimal Per-Hop Retransmissions

In this section, we first derive a lower bound that is simpler than Theorem 6.3.9 on the delay
normalized transmission capacity, and then find the optimal per-hop maximum retransmissions
Dn’s under the end-to-end retransmissions constraint D that maximizes the lower bound. Note that
the number of retransmissions allocated on each hop critically depends on the hop distance dp,, and
consequently on the one slot failure probability on each hop qq, = P(SIRn ). We have to take
recourse in working with a simple lower bound on the delay normalized transmission capacity
because the exact expression is a complicated function of (q,’s, and not directly amenable for
analysis.

By definition, thvizglumber of retransmissions Mp, used on hop n satisfy Mp, Dn + 1. Thus,

Nr EfMng Nt Dp+1 = D+ Np. Then using the lower bound on the success
probability Ps with end-to-end retransmission constraint of D (Lemma 6.3.7), the delay
normalized transmission capacity (6.1) can be lower bounded as follows

Qn
Bcn <Nt 1 +1 p)Pn*l
Cq max n=1 (PG, P) : 6.31)
D,. D, D D + Np
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Proposition 6.3.11 The D}’s that maximize the lower bound (6.31) on the delay normalized
transmission capacity satisfy

In

n(@a,)+
Di+1=——""
; In(4q,.)
F)
where is the Lagrange multiplier that satisfies Eil Dn = D. For equidistant hops

dn =d=N; 8n, D7 = D=N.
Proof: Letfy, =1 p -+ pdq,,from (6.31), the objective function is

Ne
max (@ (@)

Since log is a monotone function, an equivalent problem is

M
max In(L 43" (6.32)

It is easy to verify that the objective function (6.32) is a concave function of Dy,’s. Using Lagrange
multiplier , we can write the Lagrangian as

o 4 B
L= In@ 4"+ ( D, D)

n=1 n=1

Differentiating with respect to Dy, and equating it to zero, we have

dL In(CI‘dn)CI‘(?,LT”Ll+ — o
an 1 q‘g)n+1 .

¢
In g5+

Thus, optimal DY + 1 = RIC)
easigy, hence we need to use an 1ter'9_:§1ve algorithm to find optimal . At each step is increased
if " Dn D, or decreased if 2, Dy > D, similar to the Waterfilling solution [17]. For
equldlstant hops dn = dn+1; 8 N, §4 = Gy, 8 N, the optimal

. An explicit solution for the optimal cannot be found

In(¢y) exp |n(q\d)('113+Nh)

In(@4)(D+N4)
N

1 exp

and D} = N%;s n, if D is a multiple of Np,. O

To find the optimal number of per-hop retransmissions Dp’s, we derived a simple lower bound
on the delay normalized transmission capacity that is concave in Dp’s, and derived the sufficient
conditions for optimality using the KKT conditions. The optimal solution tries to give larger number
of retransmissions on longer hops with smaller success probabilities, so as to minimize the difference
in per-hop success probabilities across different hops. This is an intuitive result since if the per-hop
success probabilities are very different, then the end-to-end success probability will be limited by the

longest hop with the smallest success probability. For the special case of equidistant hops, d, = %,



Delay Normalized Transmission Capacity 135

Nh=2—hops, with total Retransmissions constraint D = 4, A =0.1, f =3, o =3, inter-hop distance d1=1 m, d2 =1m
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Figure 6.5: Delay normalized transmission capacity as a function of retransmissions used on
first hop Dy with total retransmissions D = 4, for equidistant and non-equidistant two hops
Nh =2.

we get the expected result that equally distributing D (the end-to-end delay constraint) among the
Np hops, maximizes the delay normalized transmission capacity.

To get numerical insights, in Fig. 6.5, we plot the exact delay normalized transmission capacity,
and the derived lower bound (6.31) for two-hop communication N, = 2, as a function of the number
of retransmissions used on hop 1 (D;), under an end-to-end retransmissions constraint of D = 4, for
equidistant hops d; = dz = 1m, and non-equidistant hops d; = 0:5m, d, = 1:5m, respectively,
with = 0:1. The delay normalized transmission capacity (simulated and the lower bound) is
maximized at Dy = Dy, =2ford; =d, =1m,and D; =1; D, =3 ford; =0:5m, d» =1:5m
which is in accordance with Proposition 6.3.11.

After finding the optimal per-hop retransmissions allocation, in the next section, we answer a
related important question on finding the optimal number of hops to use in a multi-hop wireless
network.
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Optimal Number of Hops Np,

In a multi-hop network, how many hops to use for transmitting information from the source to the
destination is an important question to answer. Increasing the number of hops Ny, between source
and its destination decreases the distance between any two hops, and consequently increases the
success probability on each hop, however, at the cost of increased end-to-end delay. Thus, we
consider the delay normalized transmission capacity to find the optimal number of hops, since this
metric inherently captures the incurred delay together with the success probability on each hop.

In [10], a detailed discussion and quantitative comparison of the performance of short hops
versus long hops has been made for twelve different metrics. Most notable among these metrics
are; overall energy efficiency, end-to-end reliability, routing overhead, and path efficiency, which is
defined to be the ratio of total distance traversed by the packet and the actual distance between the
source and destination. Overall, it is argued that the conventional wisdom of short hops being better
than long hops is unfounded, and long hop (fewer number of hops) communication could be more
efficient. We show that the conclusion of using fewer number of hops of [10] also holds in terms of
maximizing the delay normalized transmission capacity, and in particular a single-hop N = 1 is
optimal for small node densities . For analysis, we consider that each relay is located on a straight
line between the source and the destination.

Proposition 6.3.12 With equidistant hops, for a sparse network, where exp( ) 1 , and
=c % 2 %) single-hop transmission (Nn = 1) maximizes the lower bound (6.31) on the

transmission capacity.

Proof: With equidistant relays located on a straight line between the source and the destination, the
inter-hop distance d, = d=N; 8 n, where d is the distance between the source and destination.
Thus, the outage probability on each hop is equal and given by (g, = 04=N, and the optimal D, =
bD=Nc ;8 n (Proposition 6.3.11). Hence, the lower bound on the delay normalized transmission
capacity (6.31) specializes to

) BQEﬁl 1 qu:th+1 | .
d D+N; : (6.33)
2
Recall from (6.14) that gy = 1 exp c Nih & for a constant . Thus, to find the

optimal number of hops N that maximize the lower bound (6.33), we need to solve the following
optimization problem

]
2 bD=Njc+1 -~ N
d 2
1 1 exp ¢ N a
max
Np D + Np
. . . 2 .
Using the Taylor series expansion of exp c % = , and keeping only the first two terms, the
optimization problem is
]
) bD=Nj,c+1 - N

oIN

Ny, D + Np
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bD=Njc+1 =

2N

1 C d2 Nih )
— +0 : 6.34
D+ N, D+ N, ) (6.34)

Note that for small d2 & for which the Taylor series expansion is valid, (6.34) is a decreasing
function of Np; thus, N, = 1 maximizes the delay normalized transmission capacity by maximizing
(6.34).

O

Remark 6.3.13 For Y O, from Proposition 6.3.5, it is easy to see that the success probability
Ps Y 1, and on average only one transmission is required for successful transmission on each hop.
Hence, the delay normalized transmission capacity Cq N—lh for X 0, and clearly, a single-hop
(Nn = 1) maximizes the delay normalized transmission capacity. Proposition 6.3.12 shows that
even for values of  for which exp( ) 1 , (s a constant), Nn = 1 maximizes the delay
normalized transmission capacity.

Proposition 6.3.12 shows that in a sparse network regime with equidistant hops, it is optimal
to transmit over a single-hop. The physical interpretation of this result is that in a sparse network
with few interferers, the decrease in transmission capacity due to the end-to-end delay (linear in

Np) outweighs the increase in per-hop success probability because of the reduced per hop distance

Nih . In general, however, using single-hop is not optimal, and finding optimal number of hops

remains an open problem, and one has to resort to extensive simulations to answer this question.

To get a better understanding, in Fig. 6.6, we plot the delay normalized transmission capacity
as the function of the number of hops Np with end-to-end retransmissions constraint D = 10
for transmission density = 0:1 and = 0:5, respectively. From Fig. 6.6, we can see that for
smaller densities, for example, = 0:1, single-hop transmission is optimal (as derived in Proposition
6.3.12), however, as we increase to = 0:5, that is no longer true.

In the next section, we generalize the fixed source—destination distance with dedicated relays
model of wireless networks studied in this section, to allow for random source—destination distances
and non-dedicated relays, which is fundamentally different from the dedicated relays model.

6.4 Shared Relays Multi-Hop Communication Model

In Section 6.3, we considered a fixed distance multi-hop communication model, where the source—
destination distance is fixed, and there are Ny, dedicated relays between them. In this section, we
generalize that earlier restrictive model to allow for random distances between each source and its
destination [11], and more importantly there are no dedicated relays for any source—destination pair.
Each-source destination pair is chosen uniformly randomly from the set of nodes whose locations
are distributed as a PPP, with the expected source—destination distance of W. We let each node to be
a source or destination for some other node, and all nodes act as relays for communication between
multiple source—destination pairs.

We consider the location of nodes fLhg =  to follow a PPP with density ¢. At time t, each
node n is tagged with a indicator random variable 1,(t) 2 f0;1g, where if 1,(t) = 1 it acts as
a transmitter, otherwise as a receiver. Note that each node at time t can be acting as a relay or a
source or a destination. Each 1,(t) is independent for all n, and t, with Ef1,(t)g = p. The set of
transmitting (receiving) nodes at time t is denoted as 1(t) = fL, 2 : 1,(t) = 1g ( r(t) =
fLn2 :1,4(t) =00).
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Transmission Capacity as a function of number of hops
Nh forp=3,D=10,0=3,d=1m, dn = 1/Nh for every hop
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Figure 6.6: Delay normalized transmission capacity as a function of number of hops N, for = 0:1
and =05.

Under this model, the received signal at Rj 2 (%) is given by

=2 2 =2
yj() = dij hij (DX (t) + dmj Nmj (O)Xm (1) + w; (6.35)
m:T,,2F +()nfT,;gg

where the first term is the signal received from T; 2 1 (t), Xm(t) 2 CN(0; 1) is the transmitted
signal from node m at time t, dmj is the distance between Tr, and Rj, hmj(t)’s are the fading
coefficients between Ty, and Rj that are i.i.d. Rayleigh-distributed random variable, and w is the
AWGN with variance Ng. This is the only place in this book, where considering or neglecting AWGN
produces dramatically different results. Thus, we consider the AWGN variance explicitly.

We assume that the transmission between transmitter T; 2 7 (t) and Rj 2 r(t) is successful
(denoted by indicator function e;;j (t)) at time t if the

dy; Jhij (07

SINR;; (t) = P : :
N m:T,,2Ff +(OnfT;g9g dmj Jhmj (t)Jz

No +

between them is greater than a threshold , where hijj(t) is the channel coefficient, and dj is the
distance between nodes Tj and R; at time t, respectively. Thus, €;.j(t) = 1if SINR;;(t) > , and
zero otherwise.

Since SINR;j’s are random variables, multiple transmissions are required for a packet sent by
Tj to be successfully received at Rj. To further the discussion on the total number of transmissions
used by a packet to reach its destination successfully, we define the following two quantities.
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Definition 6.4.1 Let the minimum time taken by any packet to successfully reach Rj from Tj be
Mij = minfk > 0: e;;j(k) = 1g:

Definition 6.4.2 The exit time is defined as the minimum time taken by any packet to be successfully
received at any other node of  from Tj, that is,
Mi = min M;is:
s2 nfT;g
The exit time M; is the minimum time required for a packet to leave T; and be successfully received
at any other node and clearly a lower bound on the time taken by a packet to reach its destination.
We next show a negative result that as long as the noise variance Ng > 0, the expected exit time is

infinite. Thus, in a sense, it takes infinite time for a packet to reach its destination, making the rate
of transmission close to zero for any source—destination pair.

Theorem 6.4.3 With PPP-distributed node locations, for AWGN variance Ng > 0, the expected exit
time EfM;jg = 1.

Proof: To prove the result, we will neglect interference in (6.35) and replace the SINR;; (t) with
SNR;; (t), where

di: jhi; (D)2
SNR;j(t) = =127 Jhy; (OF,
No
Neglecting interference, we denote all relevant quantities with a hat, that is, &;;(t) = 1 if

SNRjj(t) = and zero otherwise, similarly for Mi j and the exit delay I\I)Ii etc. The basic idea
behind neglecting interference is the lower bound

M M

since SINR;j (t)  SNR;; (t), and hence if there is no interference, it takes less time for a packet to
exit Tj.
To complete the proof, we show that

EfMig = 1

To show that Efl\’)lig = 1, itis sufficient to show that P M; >k > % for k 2 N as follows.

We begin by conditioning over the PPP , where the remaining randomness, induced by the
channel coefficient hyj(t), is independent across different users and time slots. Essentially, given
, SNR;; (t) are independent for 8 j and 8 t. In any slot, the transmission from T; to node Lj is
unsuccessful if Lj is in transmitting mode 1;(t) = 1(Lj 2 1) or SNR;j;(t) if 1;(t) = 0 with
Lj 2 Rr.
Thus, we can write

P Mi>ki =PQ t k;8L;j2 nfTig:1j(t)=10orSNR;j(t) j )

(@ k
= ij No ;
b . . k
@ p+(1 PP jhg®PR d;No

L;2 nfT;g

P 8Lj2 nfTig;1j(t) =Llorjhij(®)j* d
Y
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o Y
= p+(1 p) 1 exp dj
Lj2 nﬂ'lg

o

~
g

No ;
1

X
= exp @k log p+(1 p) 1 exp di:No A (6.36)

L;2 nfT;g

ij

where (&) follows from the definition of SNR;j(t), and since given , SNR;j(t) and 1;(t) are i.i.d.
for t, (b) follows by taking the expectation with respect to 1;(t) since Ef1;(t)g = p, (c) follows
since jhij (t)j? exp(1). Now we make use of the probability-generating functional (Theorem
2.3.6) to uncondition (6.36) over , as follows.

n o
PMi>k = E P Mi>kj ;
z
@ k .
= exp 2 o 1 1 (@ pexp( v No)) vdv ;
7 v=0
= exp 0 1 @1 FfW)* dv ; (6.37)
v=0

where (d) follows from (6.36) using Theorem 2.3.6 and replacing djj by v, and () follows by
defining F(v) = (1 p)exp( v Ng ).Let Vi be a unique solution of T(v) = %, that is,

Vi log(k(1  p))* : (6.38)

_ 1
(N )

Since f(v) ¥ Oasv ¥ 1 andvk ¥ 1 ask ¥ 71, there exists a constant A such that for all
k andv Vg,

1 f(v) exp( F(V):

Hence, with some manipulations, we can get that for all k ,

Z Z 4
1 @ fW) dv Vi + kf(u + vi)du: (6.39)

v=>0 u=0

Using the definition of f(v), we get

z Z 4
kf(u+wddu = k(1 p)exp( (u+vy) No )du;
v=>=0 u=0
Z5
k(1 p)exp( (u+v)No )du;
u=0
1
= — 6.40
N (6.40)
where the second inequality follows since for large enough k, (U + vi) u + v, , and the last

equality follows, since by definition f(v) = (1 p)exp( v Ng )= %
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Using (6.40) in (6.39), we get for k

z
1
1 @ fW) dv Vi + ——: (6.41)
v=>0 No
This implies that for k ,
z 1
exp 0 1 (1 f(v))k dv exp 0o Vk+— dv ;
v=0 No
1
= 6.42
K (6.42)
where the last inequality follows since for > 2, from (6.38)
log k 1
Vi 70 7N0 .

Substituting (6.42) into (6.37), we have proved that

P Mi >k > },
k
thus proving that the expected exit delay Efl\ﬁig = 1, and consequently EfM;g = 1.
O

Theorem 6.4.3 tells us that on average, it takes an unbounded number of retransmissions for a
packet to be successfully received at any other node. This result is essentially a manifestation of
the fact that in PPP-distributed network, for a given realization of node locations, there can be large
enough area/void around a typical node that contains no other node. Thus, even without considering
interference, no matter how many retransmission attempts are made, for a typical node, the effect of
additive noise cannot be overcome to support a minimum SNR at any of the other receiving nodes.

This clearly is a very disappointing result and does not allow for any meaningful capacity metric
definition with PPP-distributed nodes, since the effective transmission rate is arbitrarily close to
zero, as it takes infinitely many retransmissions for a packet to even leave its source, let alone reach
the destination. Instead of assuming a network with PPP-distributed nodes, if nodes are assumed to
lie uniformly at random in a bounded area, this limitation can be overcome, and meaningful capacity
metric of transport and throughput capacity can be defined. In Chapter 9, we discuss and analyze the
transport and throughput capacity in detail.

To define a useful notion of capacity in a network with PPP-distributed nodes, one alternative
is to ignore the AWGN contribution. Ignoring the AWGN contribution, the first encouraging result
one can obtain is that the mean exit time from a transmitter to its nearest neighbor is finite. To derive
this result, conditioned on the PPP  and the distance to the nearest neighbor, note that the success
probability Ps is independent across multiple time slots, and hence, the expected time for successful
reception at the nearest neighbor is P%. Unconditioning over  and the nearest neighbor distance,
one can explicitly show the finiteness of the exit time. We leave the complete proof of this result as
an exercise.

The finite nearest neighbor expected exit time is an encouraging result, since it allows for the
possibility of the packet reaching its destination in finite time. To make this more concrete, we next
define a notion of capacity called the spatial progress capacity and show that it is non-zero for a
network with PPP-distributed nodes as long as AWGN variance is zero or AWGN contribution can
be neglected.
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6.4.1 Spatial Progress Capacity

The system model remains the same as defined in Section 6.4, except now we assume that the
AWGN variance in (6.35) is Ng = 0. Without loss of generality, let source Sg = Tg be located at
the origin and its destination lie on the X-axis at a random distance W from Tg, with mean W. For
defining the spatial progress capacity, we will not directly require multiple transmission attempts by
any node, and hence we suppress the dependence of time on all quantities of interest such as SINR,
SIR, 71; wri&ij;and1ln. Thus, v+ =fLhn 2 :1,=19( r =FfLn 2 :1, = 09). With
No = 0, from (6.35), for transmitter T; 2 1 and receiver Rj 2 R, €jj = 1if SIRj; > , where

dij J-hijj2

SIR;; = P ;
N O fPm; 2
m:T,,2f nfT;gg “mjli'mj

We assume that whenever a node has a packet to transmit, it forward it to its farthest neighbor in
the direction toward the packet’s destination. Therefore, the effective progress W made in one hop
by any packet toward its destination is given by the maximum distance of nodes Rj 2 R from T;
such that ej;; = 1. Therefore, for node Tij, the effective spatial progress of its packets toward their
destination in one hop is

We = max (ex; = DiRsi(cos( (R)*

where (Rj) is the angle node Rj makes with the X-axis in the counter-clockwise direction. In Fig.
6.7, we pictorially illustrate the progress of packets towards their destination.
Let the expected spatial progress over one hop be We = Efw, g. Since the expected source—

destination distance is W, it takes on average Wieﬁ hops for a packet to reach its destination. Since

at each time slot, transmission happens with probability p from any node, on average pWV‘\*,ff packets

are drained from source per slot. Thus, we define

C. =

s=P W
as per-node spatial progress capacity of the network with PPP-distributed nodes. Next, we show that
with Ng = 0, Cs = P= similar to the throughput capacity derived in Chapter 9, where nodes
are distributed uniformly at random in a bounded area with density

To derive the spatial capacity Cs, we need to find a closed-form expression for Wes¢, which is

rather challenging. To simplify analysis, instead we consider Weff, that we obtain by replacing the
indicator variable e;.j with its expectation in the definition of Wef¢. Note that Efe;jg = P(SIR;; >

), for which we know the exact expression from Theorem 2.4.1. Hence, we define

Werr = max  P(SIRy; > )iRji(cos( (R ;
J R
and Wers = Efwerrg. One can show using Jensen’s inequality that Wess  Wers, thus it is useful

to work with Wegf to obtain a lower bound on the per-node spatial progress capacity. We next derive
an expression for Wees as follows

Proposition 6.4.4 Wees = W“ppr (p; ) for constant ¢, where H(p; ) is defined in the proof.
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Figure 6.7: Transmission model for multi-hop communication, where dots are transmitters and
squares are receivers, and the spatial progress for Tg is the largest projection of squares on the
X-axis for which egj = 1.

Proof: The effective per-hop spatial progress
Werr = max - P(SIR;; > )iR;i(cos( (Ry))"
is of the form of an extremal shot noise process
,max g(xi);

where g(X) = pjxjixj(cos( (x)))™ and pj;(:) is a probability measure. For the extremal shot noise
process, its distribution is known via the Laplace transform [11] for a PPP g to be

G D)
]P’(Xr_nzax gixi) z2)=E exp In(Lgx) 2) - (6.43)

Xi2 R

Using (6.43), and the probability-generating functional (Theorem 2.3.6) for PPP g with density
(1 p) o, we get 7

]P)(Weff Z) = exp 0(1 p) ) 1g(xi)>zdx
R
R
After some manipulations, using the definition EfXg = 01 P(X > x)dx, we get

c
Wers = Efterrg = 2HZQ:DH(D: );
0



144 Random Wireless Networks

R
where H(p; )= 011 exp 1 % CaG(ZZ/)a dz and

z ze(t)
G(@)=2 arccos p— dt:
T 0N 2e

2et

~t

w R

O
Using the fact that Wegg  Werf, from Proposition 6.4.4, it follows that the per-node spatial
progress capacity

1
Cs = P= .
where =p o.
Thus, the per-node spatial progress capacity scales as #= , and accounting for all

sirrtgganeous transmissions ggross the network, the network-wide spatial progress capacity is
(" ). Thus, on average, () bits can be pushed toward their destinations in each time slot.

It is instructive to compare the per-node spatial progress capacity Cs with the per-node
throughput capacity (Chapter 9). The per-node throughput capacity is defined as the per-node
throughput that can be simultaneously supported by all source—destination pairs with high
probability, when nodes are distributed uniformly at random in a unit area. Similar to the per-node

spatial progress capacity scaling result of = , in Chapter 9, we will show that the per-node

throughput capacity is Y= with density . However, there are two main differences between

the spatial progress capacity and throughput capacity framework i) spatial progress capacity is an
expected rate of transmission, while the throughput capacity guarantees certain rate with high
probability and, ii) to derive spatial progress capacity we needed AWGN noise variance Ng = O,
while such a restriction is not required for deriving throughput capacity as long as we consider that
the nodes are distributed in a bounded area.

6.5 Reference Notes

The delay normalized transmission capacity was first proposed in [12], and its detailed analysis can
be found in [13]. A qualitative and quantitative performance comparison of short hops versus long
hops in a wireless network can be found in [10], though it does not explicitly consider interference
or SINR model. The infinite expected exit time result for shared relays model was derived in [14],
while the analysis of spatial progress capacity under the no noise assumption can be found in [11].
Some related results on dynamic time-dependent connectivity properties can be found in [15].
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Chapter 7

Percolation Theory

7.1 Introduction

Percolation theory studies the phenomenon of formation of unbounded connected clusters in large
graphs, and percolation is defined as the event that there exists an unbounded connected component
in a graph. Any wireless network can be naturally thought of as a graph, where the presence of an
edge/connection between any two nodes can be defined in variety of ways. Percolation in a wireless
network corresponds to having long-range connectivity, that is, nodes that are far apart in space have
a connected path between them.

The objective of this chapter and the next is two-fold: study percolation properties of wireless
networks and lay sufficient background required for deriving the throughput capacity of wireless
networks in Chapter 9.

In this chapter, we begin by introducing basics of discrete and continuum percolation. We first
consider discrete percolation over square lattice, where each edge of the square lattice is assumed
to be open or closed independently of each other with probability p, and 1  p,, respectively. We
show that there is a phase transition at p, = P¢, such that for p, > pc (Po < Pc), the probability
of percolation in non-zero (zero), and find non-trivial bounds for pc. The techniques presented to
derive bounds on p. are also helpful for obtaining percolation results for wireless networks, and
finding throughput capacity of wireless networks in Chapter 9. We also state results for the discrete
face percolation over a hexagonal lattice that are relevant for finding percolation regimes of wireless
networks.

Next, to model a wireless communication network, we consider continuum percolation, where
node locations are drawn from a spatial distribution, and connections are defined appropriately. First,
we study the percolation properties of the most popular Gilbert’s disc model, where two nodes are
connected if they are within a fixed distance (radio range) r from each other, inspired by point-
to-point wireless communication under a path-loss model. We find percolation properties of the
Gilbert’s disc model as a function of the density of nodes and radio range r. Then we consider
the more difficult problem of ensuring connectivity in the Gilbert’s disc model, where each node
is required to have a connected path to every other node, that is, the graph defined by the Gilbert’s
disc model should be completely connected. Assuming N nodes are located in a unit disc, we find
conditions on the minimum radio range r(n) that ensures connectivity with high probability in the
Gilbert’s disc model.

146
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We then generalize the Gilbert’s disc model to better suit a heterogeneous wireless network
model by allowing each node to have an i.i.d. random radio range called the Gilbert’s random disc
model and find its percolation properties. Finally, we consider the point-to-point wireless
communication network with a path-loss plus fading model, where two nodes are connected if the
signal strength between them is above a threshold. We make use of the results derived for
identifying percolation properties of the Gilbert’s random disc model to find the percolation
properties of the wireless communication network with the path-loss plus fading model.

7.2 Discrete Percolation

In this section, we will consider percolation for graphs defined over lattices, typically referred to
as discrete percolation. We begin with the simplest model of percolation over square lattice Z2,
and follow it up with percolation over a discrete hexagonal face grid that is useful for studying
percolation regimes for wireless networks.

7.2.1 Square Lattice Percolation

Consider the square lattice Z? shown in Fig. 7.1, where each edge between any two adjacent lattice
points is open (bold line) with probability p, and closed (dotted line) with probability 1  p,
independently of all other edges. Let the connected component of any arbitrary lattice point be all
the lattice points that are reachable from it using only the open edges. Assume that we want to ask
the question : when is the probability that the size of the connected component of any arbitrary
lattice point is unbounded is non-zero. This is a vital question and the main object of study in
percolation theory [1, 1,2, 4], introduced by Broadbent and Hammersley [5], where the quest is to
find the smallest (critical) probability p¢, such that for p, > pc, the probability that the connected
component of any arbitrary lattice point is unbounded, is non-zero. We begin with some
preliminaries that allow us to get some insights on pc.

Definition 7.2.1 We define that there is a path from a lattice point X 2 72 to'y 2 72, if y can be
reached from X using only the open edges. A path from X and Y is represented as X ¥ .

Definition 7.2.2 The connected component of any node X 2 72 is defined as Cy := fy 2 72;x 1
yg, with cardinality jCyj.

We define x(p,), as the probability that the connected component of lattice point X is of infinite
size when the edge open probability is p,, that is,

x(Po) = Pp,(1ICxj = 1) (7.1

We drop the subscript p, from Py () whenever possible. Since the lattice 7?2 is symmetric or
translationally invariant, for the purposes of computing x(p,), there is no way of distinguishing
between x(Po,) and y(po). Thus, x(p,) does not depend on the choice of the lattice point X, and
we can drop the subscript X from »(p,), and just consider (p,), and find conditions on edge open
probability p, such that (p,) > 0. Similarly, we drop subscript X from the connected component,
and just consider the connected component C of the origin.

Definition 7.2.3 Event [Cj = 1 is referred as percolation and (p,) is referred to as the percolation
probability.



148 Random Wireless Networks

ZZ

closed edi

Figure 7.1: Square lattice Z? with open and closed edges.

Next, we define the critical edge open probability as follows.

Definition 7.2.4 The critical edge open probability p. is defined as the “smallest” probability p,
for which (p,) > 0. Formally,

pc = inffp, : (p,) > 0g:

To show that for p, > pe, (Po) > 0, while for p, < pe, (Po) = 0, we next show that (p,)
is non-decreasing in p,. The regime of p, < pc (Po = Pc) is called sub (super)-critical regime. In
general, sub-critical (super-critical) regime refers to the case when the largest connected component
of a graph is of bounded (unbounded) size.

Proposition 7.2.5 The percolation probability (p,) is a non-decreasing function of the open edge
probability p,.

Proof: The proof is via a standard coupling argument. Let 0 < pa < pg < 1. Then for each
edge (i; j) of square lattice Z2, draw a random variable vjj with uniform distribution in [0; 1]. Then
consider two different subgraphs Ga; Gg ~ Z?, where in G only those edges of Z? are present for
which vij < p , 2 fA;Bg. Then one can easily see that the connected component C(G ) of the
origin in the subgraph Ga and Gg satisfies C(Ga) C(Gg). Thus,

Pp.(Ci = 1) =P(C(GA)i = 1) P(C(Ge)i = 1) = Pp,(Cj = 1);

proving (pa) (p) for 0 < pa <pp <1. O
Thus, using Definition 7.2.4, we know that there is a phase transition at p¢, such that for p, > pc,
the percolation probability is non-zero, while for p, < p¢, the probability of percolation is zero.
Finding the exact value of p is a hard problem, however, has been found exactly to be equal to %
in [6]. Next, we present some simple techniques to find non-trivial bounds on pc. The techniques
presented here will be re-used to study percolation and connectivity regimes in wireless networks.
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Figure 7.2: Dual lattice ID? of the square lattice Z? is represented with dashed lines, where an edge
is open/closed in D? if the edge of Z? intersecting it is open/closed.

Proposition 7.2.6 For square grid percolation, pc %

Let D? = Z?+(3; 3) be the dual lattice of Z? obtained by translating each edge of Z? by (3; 3
as shown in Fig. 7.2 by dashed lines. Any edge €’ 2 D? is defined to be open (closed) if and only if
the edge e 2 Z? intersecting €’ is open (closed).

Definition 7.2.7 A circuit in 7Z? or D? is a self-avoiding connected path of 7? or D? which starts
and ends at the same point. A circuit in 72 or D? is defined to be open/closed if all the edges on
the circuit are open/closed in 72 or D?. A pictorial representation of a closed circuit is given by
Fig. 7.3.

The following property of discrete percolation follows easily.

Lemma 7.2.8 The connected component of the origin is finite if and only if there is a closed circuit
in D? surrounding the origin.

Lemma 7.2.8 can be intuitively understood by looking at Fig. 7.3, where if there is a closed circuit of
D? surrounding the origin, then the origin can only be connected to lattice points of Z? lying inside
the closed circuit.

Thus, if we can show that the probability of having a closed circuit in D? surrounding the origin is
less than one, we have that the percolation probability in the square lattice Z? is non-zero, (p,) = 0.
To prove Proposition 7.2.6, we show that for p, > %, the probability of having a closed circuit in D?
surrounding the origin is less than one, and hence the probability that the connected component of
the origin is of infinite size is greater than zero.

Proof: [Proposition 7.2.6] Note that

P(having a closed circuit of length n around the origin)
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Figure 7.3: Depiction of a closed circuit of dual lattice D? surrounding the origin.

Ep, Tj the total number of closed circuits of length njg; (7.2)
hence

P(having a closed circuit of around the origin)
X
Ep, fj the total number of closed circuits of length njg: (7.3)
n=1

First, we count the maximum number of circuits in D? of length n surrounding the origin 0. In
D2, for a circuit of length n, there are at most N possible choices where the circuit intersects the
X-axis (horizontal line containing the origin), as shown in Fig. 7.4. Moreover, for each lattice point,
there are at most 3 possible choices (except for starting point when it is 4) to continue on a self-
avoiding path of the circuit, as shown in Fig. 7.4. Thus, there are at most n:4:3" 1 circuits of length
N surrounding the origin 0.

Since each of the edges on any circuit are closed with probability 1  p, independently of all
other edges, we have

Ep, j the total number of closed circuits of length njg ~ 4n:3" (1 p,)™ (7.4)

Note that

4n:3" 11 p)" <

n=1
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X any closed circuit of length n
ORI | can cross z-axis at most
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n different places

I'_‘j____-j__l ‘

......... L T-axis

1 . :
oo - <+>- - - 3 possible options
: | :

Figure 7.4: Counting the maximum number of closed circuits of length n surrounding the origin.

forl p, < % that is, p, > % Thus, for p, > % there exists a finite N, such that for

1
4n:3" 11 p)" 5
n=N
and
X 1
Ep, Tj the total number of closed circuits of length njg E: (7.5)
n=N

Therefore, similar to (7.3), we have that for p, > %,

P(having a closed circuit of length N or more around the origin)

X 1
E,, fj the total number of closed circuits of length njg E: (7.6)
n=N

Let By=o = [ N=2 N=2] [ N=2 N=2] be a square box centered at origin of Z? with side

12 .
) , since there

length N. The probability that all edges inside box Bz, are open is at least pgN+
are at most (N + 1)? edges inside Bp=».

Thus, the overall probability of not having any closed circuit in D? surrounding the origin 0 is
at least equal to the product of the probability of not having any closed circuit of finite length N or
more surrounding 0, and the probability that all edges inside box Byn=, are open since that allows
origin to be connected to some node outside of box By =».

Since both these probabilities are non-zero, hence, using Lemma 7.2.8, we have that the
probability of percolation is non-zero as long as p, > %

O

Next, we move on to show a lower bound of % on the critical probability pc.

Proposition 7.2.9 For square grid percolation, pc %
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Proof: Consider the self-avoiding connected paths of length n starting from the origin 0 2 Z2.
Clearly, for a path going out from the origin, there are 4 possible choices, and thereafter at each
lattice point, there are 3 choices for any self-avoiding path to proceed further. Thus,

the total number of self-avoiding connected paths of length n ~ 4:3" 1:

Since each edge is open with probability p, independently of all other edges, the expected number
of self-avoiding connected paths of length n starting from the origin is

Ep, fj the total number of self-avoiding connected paths of length njg ~ 4:3" *p: (7.7

Note that if there is percolation, that is, jCj = 1, then there has to be a self-avoiding connected
path of length n starting from the origin for each n. Thus,

(Po) PP(9 at least 1 self-avoiding connected path of length n from 0): (7.8)
Since trivially,

P(9 at least 1 self-avoiding connected path of length n from 0)
Ep, fj the total number of self-avoiding connected paths of length njg:

‘We have from (7.7) and (7.8), that

(po) 4:3" pp:
Since 4:3" 1p? ¥ 0 for p, < %, we have that the percolation probability (p,) is zero
for p, < % U

So far we have shown that for square lattice Z?, the critical probability p. satisfies % Pc %

A stronger result is known for p¢, which shows that pc = 5 [6]. The analysis to obtain pc = % is far
more involved and requires finer analysis that is beyond the scope of this book. We state this result

formally without a proof here.

. L. . . . _1
Theorem 7.2.10 For square lattice 72, the critical probability for percolation is pc = 3

Remark 7.2.11 We will not show here, but another important related result is an interesting
property that whenever there is percolation in square lattice 72, that is, there exists an unbounded
size connected component, this component is unique. This property is useful for many of the finer
analyses in percolation theory.

We next state some important results from percolation theory on the number of connected paths
of square lattice Z? crossing the square box Bp-,, a square centered at origin with side n. Let
Bn-2(L ¥ R) (left-right crossing) denote a connected path of the square lattice Z? crossing both
the left and the right side of the box Bj,=». The next result states that for p, = p. (above criticality),
there are roughly an order n (side length of box considered) edge disjoint left-right crossings of
Bn-> with high probability.

The utility of edge-disjoint left-right crossings of B, in terms of wireless networks is that they
can be mapped to interference-free parallel communication paths crossing the physical area of the
wireless network. Theorems 7.2.12 and 7.2.13 will be useful in analyzing the throughput capacity
of wireless networks in Chapter 9, as they allow us to estimate the number of such interference-free
parallel paths that exist with high probability for p, > pc.
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Figure 7.5: Left-right crossings of box Bp,=, by connected paths of square lattice Z2.

Theorem 7.2.12 Let Jy, denote the number of edge-disjoint left-right crossings of Bn=p. For p, =
pc, constants and (that depend on the edge open probability p,),

P(Jn n) exp( n):

Proof: See Theorem 4.3.8. [7]. O
Actually, one can say a little more about the number of Bh=o(L ¥ R) in the sense that if we
divide the box Bp= horizontally in multiple slabs with height of each slab being Inn as shown in
Fig. 7.5, there are roughly an order In n edge-disjoint left-right crossings of B, that are completely
contained inside each slab with high probability.
Formally, let the box By,-, be horizontally divided into slabs S}, of height Inn n, Where

n > 0 is chosen such that —— is an integer. Let J}, be the number of edge-disjoint left-right

crossings in slab S}, and let J = min; J}.

Theorem 7.2.13 For p, > g, such that2+ In(6(1 p,)) <O, there exists a (depends on and
p,) such that
lim PQ Inn)=0
Nt

Proof: See Theorem 4.3.9. [7]. O

After studying square lattice percolation, in the next subsection, we discuss a discrete hexagonal
face percolation model that will also be useful in Section 7.3.1 for studying percolation in wireless
networks.

7.2.2 Percolation on the Hexagonal Grid

Consider a hexagonal grid with side 1, as shown in Fig. 7.6. Each face of the hexagonal grid is open
(closed) with probability p, (1 p,) independently of all other faces. The question once again is: for
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open face

Figure 7.6: Hexagonal tilting of R? with each face open (shaded)/closed independently.

what values of p, does an unbounded connected component exist in the hexagonal grid. The answer
is not very surprising given Theorem 7.2.10, as stated next, whose proof can be found in [1, 2].

Theorem 7.2.14 For hexagonal grid with side 1, the critical probability for face percolation is
—1
Pc = 3.

We will make use of Theorem 7.2.14 in the next section to derive percolation regimes for graphs
derived from a wireless communication model, by mapping it to an appropriate hexagonal grid.

7.3 Continuum Percolation

In this section, rather than looking at graphs generated by discrete geometry-based points as done
in Section 7.2, we will let the points/nodes of the graph to lie in a region whose locations are
derived from a spatial distribution. We then study percolation on a suitably defined graph over the
spatially realized points, which has connections to wireless communications models. We begin
with the simplest model, called the Gilbert’s disc model, where nodes/point locations follow a
Poisson point process (PPP), and two nodes are defined to be connected if they are within a fixed
distance from each other.

7.3.1 Gilbert’s Disc Model

Consider R?, and a spatial point process R?, where node locations ~ follow a PPP with density

. We define two nodes X;y 2  to have an edge between them if jjX  Yjj r, where r is
some fixed distance. This is known as the Gilbert’s disc model denoted by Gp ( ; r). This model
is motivated by the path-loss model of wireless communication, where communication is deemed
successful between two nodes X and Y at a distance of dxy, if the received signal power d,, is more
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edge

if discs overlap

Figure 7.7: Gilbert’s disc model where each node has a radio range r=2 and any two nodes are
connected that are at a distance of less than r.

than a threshold . Essentially, that translates to the radio range of r = 1%

can communicate with each other if they are inside each other’s radio range.

Note that Gilbert’s disc model defines an undirected graph assuming reciprocity of
communication. A pictorial representation of Gilbert’s disc model is as shown in Fig. 7.7, where
we draw a disc of radius r=2 for each node, and two nodes are connected or have an edge between
them if their discs overlap. We call node y to be a neighbor of node X if there is an edge between
them.

We let a node of to be present at the origin and consider its connected component. Recall
that from Theorem 2.3.3, conditioning on a node being present at the origin, the distribution of
the rest of the nodes remains unchanged. As before, percolation is defined to be the event that the
connected component of the node at the origin or simply the origin is of unbounded size. Clearly,
the percolation properties of Gilbert’s disc model depend on both the density and the radius r.
One can either fix or r, and find the conditions on the other parameter under which the graph
defined by the Gilbert’s disc model percolates or not. Note that by definition, percolation probability
is non-decreasing in both and r.

, such that two nodes

Remark 7.3.1 An important property of the Gilbert’s disc model is that the expected number of
neighbors given by  r? is an invariant for percolation, that is, for two different Gilbert disc models
Gp ( 1;r1) and Gp ( 2;12), their percolation properties are identical as long as 1I’f = zl’g.
To see this equivalence, consider Fig. 7.8, where on the left side we have Gp ( ;T), while on the
right, we let radio range to be v = 1 and scale the distances between any two points/nodes of
with density by % to get the new density to be 2. Thus, the figure on the right is equivalent
to Gp ( r?;1), and it is easy to notice that whenever there is a connection between two nodes in
Gp ( ;r) sodoes in Gp r2:1 , and vice versa.

Next, we obtain bounds on the percolation regimes in the Gilbert’s disc model as a function of
its invariant  r? using results from the hexagonal grid percolation.
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& ;

Figure 7.8: Invariance property of the Gilbert’s disc model under fixed r?, where scaling radio
range by 1=r and scaling distance between any two nodes also by % has no effect on the connection
model, where the two-sided arrow depicts an edge.

Theorem 7.3.2 For
5, 26log2.
r — 1
3 3
the probability of percolation in the Gilbert’s disc model is greater than 0.

Proof: Consider a hexagonal grid partition of R? with side length s. Define any face to be open if
it contains at least one node of in it, and closed otherwise, as shown in Fig. 7.9. Clearly, since the
number of nodes of lying in disjoint sets are independent, faces of the hexagonal grid are open or
closed independently of each other. Moreover, the probability p, (1  p,) of a face of the hexagonal
grid being open (closed) is given by the void probability of the PPPtobep, =1 exp ¥ ,
since the area of each hexagonal face is 3p2332 .

Note that because of the hexagonal grid geometry, aﬁitwo nodes of in neighboring open
faces in {he hexagonal grid are at a distance of at most ((2 3)?2 +1)172s = * 13s from each other.
Thus, if © 13s < r (r=2 is the radio range for Gp ( ;r)), the nodes of  in neighboring open faces
are connected to each other in the Gilbert’s disc model. From Theorem 7.2.14, we know that for
po > 1=2, the probability of percolation in the hexagonal grid is greater than 0. Hence, as long

as the probability of any face of the hexagonal grid being open 1  exp # > 1=2, and

13s < r, there is percolation in the Gilbert’s disc model. Solving these two equations, we get that
probability of percolation in the Gilbert’s disc model is greater than O if

.2 261092

373
O
We can also use this method to obtain a lower bound on the r? below which the Gilbert’s disc
model does not percolate, as follows. From Fig. 7.9, any two nodes of  in non-neighboring faces
of the hexagonal grid are at least S distance away. So if the hexagonal grid does not percolate (open

face probability p, < 1=2), that is, the connected component of open faces is of bounded size, and
S > r, then the connected components in the Gilbert’s disc model are also of bounded size. Thus,

equating the probability of open face being less than 1=2, 1  exp # <1=2,ands >r, we

2 < 2 IogﬁZ :

3 3

get that for
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$s8 face is open if there is
at least one point of ®

Figure 7.9: Mapping Gilbert’s disc model on a hexagonal tiling of R?, where a face is open if it
contains at least one node of

the Gilbert’s disc model does not percolate.

This, however, is a disappointing result since a simple branching process argument can tell us
that as long as the expected number of neighbors  r? of any node is less than 1, the Gilbert’s disc
model cannot percolate. We next present a refined version of the simple branching process argument
from [8], which shows that as long as r2< ﬁpi, the Gilbert’s disc model does not percolate.
Theorem 7.3.3 If r? < ﬁ@? then the probability of percolation in the Gilbert’s disc model is
zero.

Proof: Let the neighborhood set of the origin be No, that is, the set of nodes lying in B(0;r)
other than the one at origin. Let X3 2 Np, and let the neighborhood set of the X; be N1. We are
interested in the neighbors of X; in N3NNp, since this is really the effective new nodes that belong
to the connected component of the origin contributed by X;. #(N1nNp) corresponds to the number
of nodes lying in the region of the disc B(Xy1; r)nB(0; ), as represented by the shaded area in Fig.
7.10 for X3 2 B(0;r). Since X3 2 B(0;r), the area of the region B(Xy; r)nB(0; r) is maximized

when X; is exactly at distance r frompo, and the corresponding maximum area of shaded region in
Fig. 7.10 is upper bounded by 5 + 73 r2. Thus,
P. !

2.

Moreover, note that #(N1nNp) is independent of #(Ny), since they count the number of nodes
of a PPP  that are defined over non-overlapping areas. The same process can be repeated for any
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'

Effective new Area of shaded region
neighbors in set Np is maximized if d = r

Figure 7.10: The largest region for finding new neighbors of X; that are not neighbors of the origin.

neighbor of Xg or X; while discounting the neighbors found in Ng [[ N1, and for each such step, it
follows that the new set of neighbors is independent of previous ones, and the expected number of

new neighbors is always upper bounded by
L

™| 0

—+
3

since the neighbor set to be discounted is growing, for example, first it was Ng, then it becomes
(No [ N1) and so on.

Now we invoke the well-known branching process result that says that if the children are born
independently with the expected number of children born at any step is less than 1, then the family
dies out in finite time almost surely. This is true even if at any one step, the expectation is larger than
1. In our case, the number of children born apt each step #(No); #(N1nNp);::: are independent,

with expected value for each term 3+ 73 r2 except for Ef#(Ng)g =  r?. Substituting
P_
3+ 73 r2 <1, we get the result. OJ

Remark 7.3.4 Similar to discrete percolation over square grid 7.2, whenever there is percolation in
the Gilbert’s disc model, there is a unique unbounded size connected component.

Percolation guarantees the existence of an unbounded connected component, however, that is
sometimes not sufficient for efficient operation of a wireless network. Typically, in wireless
networks, there is a strict requirement that each node should be reachable from every other node,
generally known as connectivity. Asking for connectivity for node locations distributed as a PPP
over the entire R? is hopeless, and one has to restrict to a finite area of operation. In the next
subsection, we discuss the connectivity properties of a Gilbert’s disc model when nodes are
distributed uniformly over a bounded area.

7.3.2 Connectivity in Gilbert’s Disc Model

In contrast to percolation studied in Section 7.3.1, now we demand connectivity; each node should
have a connected path to every other node in the network. It is easy to see that ensuring connectivity
is a much more stricter condition than percolation, and finding conditions under which connectivity
holds is rather challenging.
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To study connectivity, we consider a unit area disc B(0;1), where n nodes are distributed
uniformly in B(0;1). With reference to Section 7.3.1, this corresponds to the density = n. For
the ease of interpretation, we use N instead of . Any two nodes are defined to be connected by an
edge if they are within a distance of r from each other, and we refer to this graph as G(n; r), where
compared to Section 7.3.1, we have dropped the subscript P that represented that the node
locations were derived from a PPP

It is apparent that if we keep increasing the radio range r=2 in G(r;n), all nodes will have
connected paths to each other, thereby ensuring connectivity. Since larger radio range requires larger
transmission power which is at a premium for the purposes of efficiency as well as decreasing
interference, the object of study is to find the minimum radio range that ensures connectivity in the
wireless network. For this purpose, we make r dependent on n as r(n) and represent the graph as
G(n;r(n)).

In a seminal paper [9], Gupta and Kumar found the critical radio range required for ensuring
connectivity in G(n; r(n)), which is stated in the next theorem.

Theorem 7.3.5 G(n; r(n)) is connected for r?>(n) = w with probability Lasn ¥ 1 jf
and only ifc(n) ¥ 1.

Remark 7.3.6 We have considered what is known as dense network setting, where in a unit square,
nodes are located uniformly randomly with density n.rj4n alternate formulation is the extended
network setting, where we consider a square with side = N and unit density of nodes. An extended
network is equivalent to a dense network after scaling all distances by = N. Hence, we can get the
connectivity results for the extended network by scaling the critical radio range by " n.

a

Theorem 7.3.5 states that as long as the radio range scales larger than '”Tn, however, small that

additional scaling with n be, the whole network is camected with high probability. In converse, it

says that if the radio range does not scale larger than %, the whole network cannot be connected

Inn
n
disc model, when n n%ies are distributed uniformly in a unit disc.

with high probability. Thus, radio range of order is critical for connectivity of the Gilbert’s

With r(n) = M0 there are  (Inn) neighbors for each node. Hence, one interpretation

of this result is that if each node has order Inn neighbors, there is high likelihood of having
connectivity in the network. This phenomenon is known to be true in many other networks, such as
Erd6s-Rényi graph, where the network is com%:elcted in the presence of Inn neighbors [10]. The

intuitive explanation for critical r(n) = '”T” or Inn neighbors for connectivity can be

obtained by considering a unit square S instead of a unit disc B(0; 1) as follows.
Consider a unit square S; and let there be &nodes uniformly distri'tiuted inISbI Considqﬁoa
n

log n
n

tiling of Sy into smaller squares Sjj with side , where i;j 2 1;:::; “Togn

Let the number of nodes lying in Sjj be Njj. From the Chernoff bound in Lemma 7.3.7, we have
P(N;; < %) n =8 Taking the union bound over all smaller squares Sij, we get

logn .. -
P Nij<Tgforanyl;j < nt &
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where is a constant. Thus, for > 8, we see that each small équare Sj;j contains at least %

logn

sensors with high probability. If the radio range is rs(n) = , then this means that each

node is connected to every other node in the same square, as well as nodes lying in the adjacent
square. Thus, there exist paths (routed through adjacent smaller squares) between any pair of nodes
lying in the unit square S; .

Lemma 7.3.7 (Chernoff Bound) Let Xi;Xjz;::: be ide'gjical and independently distributed

Bernoulli random variables with mean E¥X g, and let X = in=1 Xi. Then for0 < <1, we have
thatP(X < (1 ) ) exp @ .

Conversely, if the side of small squares is S(N) = o an , then we cannot use Chernoff

bound or ag other tool to show that each small square contains ns?(n) nodes. Similarly, for

r(n) =o % , we cannot guarantee that for all nodes there are nr2(n) neighbors with high

probability.
We first show the necessary part of Theorem 7.3.5, and then follow it up with the sufficiency
condition.

Proof: [Necessary part of Theorem 7.3.5] To bound the probability of disconnection (i.e., there
is some node that is not reachable from some other node), we will consider the extreme case of
isolated nodes, nodes that are not connected to any other node. Clearly, if the probability of having
any isolated nodes does not go to zero, the probability of disconnection cannot go to zero. Even
though having isolated nodes is a very small subset of all possible ways of not having connectivity,
as we will see, it suffices for proving Theorem 7.3.5.
Let Pjso be the probability that there is at least one isolated node in G(n; r(n)). Then,
@ X
Piso P(fi is the only isolated node in G(n; r(n))g);
i=1
® . .
(IP(fi is an isolated node in G(n; r(n))g)

P(fi and j are isolated nodes in G(n; r(n))g));
jEi
X
= P(fi is an isolated node in G(n; r(n))g)
i=1
XXX
P(fi and j are isolated nodes in G(n; r(n))g); (7.9)

i=1 j&i
where (&) follows since each of these events are exclusive, and (b) follows since

P(fi is an isolated node in G(n; r(n))g)
IP(fi is the only isolated node in G(n; r(n))g)

X
+ P(fi and j are isolated nodes in G(n;r(n))g):

j=1ljei
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Throughout this proof we neglect edge effects resulting from nodes lying close to the boundary
of disc B(0;1). For a node i located at X;j to be isolated in G(n; r(n)), the disc B(X;j; r(n)) should
not contain any of the other n 1 nodes, thus,

P(fi is an isolated node in G(n; r(n))g) = (1 r?(n))" (7.10)

The event Ti and J are isolated nodes in G(n; r(n))g implies that i and j are not connected to each
other as well as to any other node. Thus, the distance djj between node i and j is more than r(n).
Considering the two exclusive events, dij 2 [r(n); 2r(n)] and d;j > 2r(n), we can write

P(fi and j are isolated nodes in G(n; r(n))g)
(4 r’(n) r¥n)Q Z rP(n)" 2+ @ 4 () 2 rF(n)" % (71D

where the two terms correspond to the two events, respectively.
Consider the case when r?(n) = '””% for a fixed c. Subsequently, we will replace ¢ with
¢(n). Using (7.10) and (7.11), from (7.9), we get

X
F)iso (l rz(n))n !
i=1
X XX 5 n 2
3 r?(n) 1 2 r2(n)
i=1 j&i
+1 4r2) 1 23" % (7.12)

@

nl r’n)"? .
n 2 -

nn 1) 3 r%n) 1 g r2(n) +1 2r3n)" % ;

(b)
exp( ©) ,
n 2 -

n(in 1)3 r’(n) 1 % r2(n) +1 23" % ;

© 2 5 2

exp( ¢) n(n 1)3 re(n) exp Z(n 2) r<(n)
+exp 2(n 2) r?(n) ;

exp( ¢) @+ )exp( 2c); (7.13)
where to get (a) we have dropped the term 4 r2(n)(1 2 r?(n))" 2, (b) follows from Lemma
7.3.8 that holds for large enough n for any fixed and c, for r2(n) = '"”% (c) follows from

Lemma 7.3.9 where (1 t) exp( t).Lastinequality follows by evaluating the second expression
of the RHS at r?(n) = '””% forany > 0 and large enough n.

Lemma 7.3.8 If r?(n) = 'n”% then for any fixed < 1 and for large enough n

nd )" exp( c):
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Proof is left as an exercise. It can found in Lemma 2.2 [9].

Lemma 7.3.9 For any t 2 [0;1], (1 t) exp( t), and for any given 1, there exists a
to 2 [0;1], such tharexp( t) (1 ¢t)forall0 t to.If >1 thenty > 0.

Since having an isolated node implies disconnection, we have Pjso P4, where Pq =1 Pg,
and P is the probability of connectivity. Thus, from (7.13), we have

Pqg exp( ¢) A+ )exp( 2c); (7.14)

for all n > N that depends on ; ;andc.

The quantity ¢ in (7.14) is actually ¢(n) coming from r?(n) = W Let c(n) be bounded,
and limpwq ¢(n) = c. Then forany > 0,c(n) ¢+ forall n > N’ ). Moreover, by
definition, the probability of disconnection Py is monotone decreasing in C, since larger C increases
the radio range and decreases the chance of isolation. Hence, from (7.14),

Pa exp( (c+ )) (1+ )exp( 2(c+ ));

for n > maxfN;N’( )g. Asn ¥ 1, we have

nIi!mliand exp( (c+ ) @+ )exp( 2(c+ )):

Note that this relation holds for all > 0 and < 1, thus, we have that the disconnection
probability is lower bounded by a non-zero quantity forn ¥ 1A as long as ¢(n) is bounded. Thus,
proving the only if condition of Theorem 7.3.5.

O

We have shown that as long as ¢(n) is bounded, with r?(n) = W, the disconnection
probability of finding at least one node that is not connected to some other node is non-zero. Next,
we work toward showing the sufficiency conditions of Theorem 7.3.5. For this purpose, we will
use the Gilbert’s disc model with node locations RR? distributed as a PPP discussed in Section
7.3.1. As before, let there be a node of  at the origin, and let qx( ; r( )) be the probability that the
connected component of the origin has K nodes in it. One result that we did not discuss in Section
7.3.1, which is useful now, is as follows.

. 1 Pl
Lemma 7.3.10 lim w4 wCr()) k=1 qk( ;r( )) =1

For proof see Propositions 6.4-6.6 [1]. Lemma 7.3.10 says that as the density grows large, either
the origin is isolated or is part of the infinite size component (that is known to be unique from
Remark 7.3.4) with probability 1.

Proof: [Sufficiency part of Theorem 7.3.5] Consider the restriction of Gilbert’s disc model
Gp (n; r(n)) with node locations  (that is a PPP) to the unit disk B(0;1), with density = n.
What we will show is that the characteristics of Gp (Nn; r(n)) and G(n; r(n)) (the object of interest)
over B(0; 1) are not very different for the purposes of analyzing the connectivity probability.

As a first step, we make an important observation from Lemma 7.3.10, that for large enough
density of nodes N, the probability that Gp (n; r(n)) is disconnected is asymptotically the same as
the probability of having an isolated node in Gp (Nn; r(n)). Formally, we state the result as follows.
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Proposition 7.3.11 Forany > 0, and for sufficiently large n,
Pa(Gp(n;r(n))) (1 + )Piso(Gp (N;r(n)));

where Pg(Gp(n;r(n))) = 1 P (Gp(n;r(n))), and P.(Gp(Nn;r(n))) is the connectivity
probability in graph Gp (n; r(n)).

Next, we upper bound Pjso(Gp (n; r(n))), the probability of having at least one isolated node in
Gp (n; r(n)).

Proposition 7.3.12 If r2(n) = N0 40y

n

limsup Piso(Gp (N; r(n)))  exp( c);
nyai
where ¢ = limpyx 1 ¢c(n).

Proof: Since Gp (n;r(n)) is defined over nodes  distributed as a PPP with density n, the
probability that the number of nodes of Gp (n; r(n)) lying in unit disc B(0;1) is equal to j is
Poisson distributed with parameter n, that is,

PE#(Gp (n;r(n)) 2 B(0;1)) = j) = exp( n)?:i
Conditioned on #(Gp (n; r(n)) 2 B(0;1)) =],

Piso(Gp (n; r(n))) = Piso(G(; r(n)));

since from the PPP property, conditioned on the fact that B(0;1) contains j nodes of
Piso(Gp (N; r(n))), the j nodes are distributed uniformly in B(0; 1). Hence, taking the expectation
with respect to #(Gp (n; r(n)) 2 B(o; 1)),

> ni
F)iso(GP (n; r(n))) = Piso(G(j; r(n))) exp( n)ﬁi (7~15)
Jj=1 '

Let the expected number of isolated nodes in G(j; r(n)) be Eiso(G(j; r(n))). Then,

P

E lnode i isisolated in G(J;r(n)) ;
i=1

jP(node i is isolated in G(j; r(n)));
IO (1)) (7.16)

@
Piso(G(U; r(n))) Ei?(G(j; r(n)));
X

—~
o
N

1®

C))

where (a) follows from the definition of the expectation, (b) follows from the linearity of
expectation, () follows since the event that fnode i isisolated in G(j;r(n))g is identically
distributed for all nodes i, and finally (d) follows since for a node to be isolated there have to be no
nodes within a disc of radius r(n) around it.
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Using (7.16) in (7.15), we get

X ) ni
Piso(Gp (N; r(n))) i@ rP(n) exp( n)ﬁ;

i=1 '
X ) ni
n (1 r?n)) exp( n=;
j=o )
= nexp( n r?(n));

where the second inequality is obtained by upper bounding j by n, the total number of nodes. This

completes the proof by substituting for r?(n) = w and ¢ = limp » 7 c(N). O

We next present a basic inequality that will be required later on.
Lemma 7.3.13 Forall >0, and large enough n
X nd
exp( MT
j=1 r

Proof left as an exercise.
Next, using Proposition 7.3.12, we upper bound the probability of disconnection in G(n; r(n))
as follows.

Theorem 7.3.14 If r?(n) = w then

limsup Pg(G(n;r(n))) 4exp( c);
nt® 1

where ¢ = limp x 1 c(N).

This result once proven shows thatif c(n) ¥ 1 asn ¥ 1, then the disconnection probability
is zero and proves the sufficiency condition of Theorem 7.3.5.

Proof: Similar to the fact noted to get (7.15) in the proof of Proposition 7.3.12, we have the
following relation

X N
Pa(Gp(n;r(n))) =  Pa(G(3;r(n))) exp( n)jﬁ; (7.17)
i=1 )

for the disconnection probability in the Gp (Nn; r(n)) and G(j; r(n)).
For a fixed radio range r = r(n), where there are k nodes lying in B(0; 1), we have

Pa(G(k: r(n))) P(fk™node is isolated in G(k; r(n))g) + P4(G(k 1;r(n))); (7.18)

which follows by the union bound. Recursing this relation for j steps, for 0 < j < n, we have

X
P4a(G(n;r(n))) P(fk™node is isolated in G(k; r)g) + Pa(G(j; r(n)));
k=j+1
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X
= @ rAn)k t+Py(GG; r(n));

k=j+1
= £ rZ(n))Jrz(S )" +P4(G(j; r(n)))
p i
(1r2r(r$)n))1 +Pq(G(; r(n))); (7.19)

where the second equality is obtained by computing the isolation probability of any node in
G(k; r(n)) with total k nodes.
Substituting for P4(G(j; r(n))) in (7.17) from (7.19), we get

X ni
Pa(Gp (n; r(n))) Pa(G(n;r(n))  exp( n)jﬁ
i=1 '
e oyt
— —:
i T j!
1 exp n r?(n)
Pa(G(n;r(n = —_— 7.20
(G r (M) 5 2y (7.20)
where in the first inequality we have only kept sum until j = n for the first term, and the last
inequality is obtained by using Lemma 7.3.13 for all > O for large enough n. g

Next, we invoke Proposition 7.3.11 that gives a relation between Pgy(Gp (n;r(n))), the
disconnection probability and Pjso(Gp (n; r(n))), the probability of having at least one isolated
node in Gp (Nn; r(n)). Using Proposition 7.3.11 in (7.20), we get

1

Xp n r2(n) i

Pa(GIT(M) 2(1+4 ) Piso(Gr (mir(m)) + o (.21

Now we use the exponential decay bound on Pjso(Gp (N; r(n))) that we obtained in Lemma
7.3.12, the probability of having at least one isolated node in Gp (n; r(n)), to get
1

xp n ré(n) __

e

Pa(G(ir())  2(1+4 ) exp( o)+ e (122)

forany > 0and large enough n. For r? = 1M 'we have

: exp(_c(n)) .
Pa(G(n;r(n))) 2(1+4 ) exp( c(n))+ Inn+on) (7.23)
Since > 0 is arbitrary,
limsup Pg(G(n; r(n))) exp( c); (7.24)
n® 1

where ¢ = limp s 7 ¢(n). Sincec ¥ 1L

“m-s;l'ﬂp Pg(G(n;r(n))) =0

proving Theorem 7.3.14, and consequently the sufficiency condition in Theorem 7.3.5. 0



166 Random Wireless Networks

Figure 7.11: A realization of the Gilbert’s random disc model, where each node X; has radius r; and
two nodes are defined to be connected if their corresponding discs overlap.

After analyzing the percolation and connectivity properties of the Gilbert’s disc model, in the
next section, we study a generalized version of the Gilbert’s disc model, called the Gilbert’s random
disc model, where each node has a disc with random radius (random radio range), and two nodes
are connected if their discs overlap.

7.3.3 Gilbert’s Random Disc Model

In this section, we generalize the Gilbert’s disc model to allow for non-identical radio ranges. In
particular, we consider the node locations to follow a PPP  over R? with density . In contrast
to Section 7.3.1, we let each node X to have a random radio range ry that is i.i.d. for all X. We
denote the random variable representing the radio range as . This generalization essentially models
non-homogeneous nodes in the network, that can potentially have different transmission powers,
sophisticated signal processing algorithms, and so on. The connection model is defined by drawing
discs of radius ry around each node X, and two nodes X and Yy are defined to be connected if their
corresponding discs overlap, as shown in Fig. 7.11. Similar to Section 7.3.1, we want to study the
percolation properties of the Gilbert’s random disc model as a function of and random radio
range

We define the critical density as the minimum density for which there is percolation in the
Gilbert’s random disc model

() =inff :jCj=1g;
where C is the connected component of the origin. We first present a sub-critical regime result that

shows that ¢( ) in Section 7.3.3 is at least leg times a constant for the Gilbert’s random disc
model, and then study the super-critical regime in Section 7.3.3.
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Lower Bound on ()

Let B, be a square box with side 2m centered at origin, thatis, B,y =[ mm] [ m m]. Consider
a node at the origin, and let C be its connected component. Let Xg 2 C be the farthest node from the
origin in terms of the Euclidean distance.

Definition 7.3.15 For any bounded set B R?, let Ag(r) be the event that the maximum radio
range of any node X lying in B is less than r, that is, Ag(r) = frx r, 8x2 \Bg.

Definition 7.3.16 The translation of set S~ R? by vector ( is denoted by ( + S, that is, ( + S =
fg+x:x28Sg.

Definition 7.3.17 The complement of set S R? and event E is denoted by S¢ = R?nS and EC,
respectively.

Definition 7.3.18 For a point q 2 R?, let E(; r) denote the event that there is a path from a node
X2 \Ng+Brtoanodey2 \(q+ BornQq+ Bgr with all the nodes on the path between X and
y lying inside Byor + Q.

Note that due to stationarity P(E(q; r)) = P(E(o; r)).

Definition 7.3.19 Let G(r) be the event that there is a node X 2 outside of Bior such that the
disc B(X; ry) overlaps with Boy as shown in Fig. 7.12. Formally,

G(r) = fB(X;rx) \ Boy & ; for some X 2 nBiorQ:

Let the farthest node Xg of C lie in Bfy, as shown in Fig. 7.12. In addition, let event G(r)° also
occur. Then there is a connected path from the origin to a node y 2 BgnBg, with all the nodes
on the path lying inside B1gr, since there is path from the origin to Xg, and there is no node of
outside of B1gr whose disc has any overlap with Bg, because of G(r)®. Thus, event E(0; r) occurs
if Xg 2 B$,, and G(r)® occur simultaneously, that is, P(fxg 2 B§,,g \ G(r)¢) P(E(o;r)):
Hence, the following proposition follows.

Proposition 7.3.20
P(xe 2 Bfy,)  P(E(0;r)) + P(G(r)): (7.25)

For percolation, the farthest node Xg of the connected component has to lie at an unbounded
distance from the origin, hence
o . c N\
P(GCj = 1) rIl!rn1 P(xe 2 Bigr);
since infinitely many nodes of a PPP cannot lie in a finite region. It easily follows that P(G(r)) ¥ 0
asr ¥ 1 (Proposition 7.3.28). Thus, to show that P(jCj = 1) = O for some < ¢( ), from

(7.25), it is sufficient to show that P(E(0;r)) goesto zeroasr ¥ 1 for < (). The main
theorem on the Gilbert’s random disc model is as follows.

Theorem 7.3.21 () > m, that is, for m, where C is a constant, P(jCj = 1)
=0.
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Bior x

Event G(r)

Figure 7.12: Depiction of scenario considered for obtaining Proposition 7.3.20, where the farthest
node lies outside of B1g, and event G(r).

Proof: From Proposition 7.3.20,

i
L

P(GCj=1) rI m P(E(o;r)) + rIi!m1 P(G(r)):

From Proposition 7.3.28, we get lim, s 1 P(G(r)) = 0, and more importantly from Lemma 7.3.24,
1
for  zeEFzg:
rIl!m1 P(E(o;r)) =0:

Thus, proving the result. g

Theorem 7.3.21 says that if the expected number of neighbors ~ EF 2g is less than a constant
(exactly derivable, see proof), then the probability of percolation is zero for the Gilbert’s random
disc model. This is one of very few concrete bounds for the random disc models, where most often
only existential results are known for percolation.

The basic idea behind proving Theorem 7.3.21 is to show that

rli!nl P(E(o;r)) =0
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points
of set K

Figure 7.13: Covering of B1ghBg by discrete points (black dots) lying on the boundary of B1g using
boxes Bj.

for m. What that means is that if the expected number of neighbors ~ EF 2g is less than

a constant, the probability that the farthest node Xg of the connected component of the origin lies in
BgnBg, such that all nodes on the connected path lie inside B1o,r goes to zero as I goes to infinity.

Now, we state the most important result required for proving Lemma 7.3.24 where we show that
limyx 1 P(E(0; r)) = 0, which in turn proves Theorem 7.3.21.

Lemma 7.3.22 P(E(0; 10r))  c4P(E(0; 1))? + P(Ag,q,, ()°), where C4 is a constant.

Lemma 7.3.22 is the main result required to prove Lemma 7.3.24. The idea behind proving
Lemma 7.3.22 is that if events E(0; 10r) and Ag,,,,(I) occur simultaneously, that is, there is a
path from a point inside of \ Bigr to some point in Bgg,NBgor where all the nodes on the
connected path are inside box Bigor, and all nodes lying in B1gor have radio ranges less than r,
respectively, then two independent and identically distributed disjoint events E(Kr; r) and E(r; r)
occur simultaneously, where K lies on the boundary of Big and * lies on the boundary of Bgg.

Proof: Let K and L be two discrete set of points that lie on the boundary of Big and Bgy,
respectively, such that union of boxes Bj centered at points of K and L contain BjgpnBg and
Bg1nBgo, respectively. Formally, B1gnBg [k2k (k + B1) and Bg;nBgg [-2L(* + B3). For
example, see Fig. 7.13, where black dots represent the points of K on the boundary of Big
covering B1gnBg using B1. Let ¢4 be the product of the cardinality of K and L.

Assume that E(0; 10r) and Ag,,,, () occur simultaneously. Event E (0; 10r) implies that there
exists a node Xg in Bjgr which is connected to a node X, 2 BgprNBgpr as shown in Fig. 7.14.
Moreover, because of simultaneous occurrence of event Ag,,,, (I), that is, the radio range ry < r
for all nodes X 2  \ Biggr, in fact, there exists a node at 2 B1o,nBg, which is connected to
anode g in + BgrnBg, with all nodes on the connected path between and g lying inside
Bior +

Since B1gnBg [k2k (k + B1), we have ByornBgr [kok (kr + B1). Hence, 2 rk +
B, for some k 2 K. See Fig. 7.14 for a pictorial description. Hence, if E(0;10r) and Ag,,, (1)
occur, then because of the connected path between and g, event [kok E(rk; r) happens, where
P(E(rk;r)) = P(E(o;r)) for any k 2 K.
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Similarly looking at nodes around Bgpy, it follows that if E(0;10r) and Ag,,,, () occur
together, then there exists anode 2 r° + By;* 2 L, such that there is a connected path from to
a node in + Bg/nBg, that is completely contained in  + Bjgr. Thus, event [<2. B(r¢;r)
happens. Hence, if both E(0;10r) and Apg,,,. () occur simultaneously, then two events
Lo E(rk;r) \ [<2_E(r;r) happen simultaneously, where both events are translations of
E (0; r) and are identically distributed to E(0; r), that is, P(E(r*; r)) = P(E(0;r)) for any “ 2 L.

Because of event A, (), radius of each node lying inside B1gor is less than r, thus the event
k2 B(rk; r) depends only upon the nodes of  lying in Bygr, while the event [ B(r<;r)
depends only upon the nodes of  lying in Bgg,. Since By, and By, are disjoint, the events
[-2LE(r*;r) and [kok E(rk; r) are also independent, and hence we get that

P(E(0; 10r) \ Ag,.,. (1)) C4P(E(0;r))*:

O
Now we are ready to prove Lemma 7.3.24 that shows that P(E(0;r)) ¥ Oasr ¥ 1 required
for proving Theorem 7.3.21 though, there are few more intermediate results that are required for the
proof that are stated after the proof of Lemma 7.3.24 for ease of exposition.
We first state an analytical result from [11] first.

Proposition 7.3.23 Let T and g be two measurable, bounded and non-negative functions from
[1;+A] to RT. If £(X) 1=2 for x 2 [1,;10], and g(Xx) 1=4 for x 2 [1;,+1] and
f(x) f(x=10)? + g(x) for x 10, then T(X) converges to 0 as X ¥ 1 whenever g(X)
convergestoOasx ¥ 1.

Proof: See Lemma 3:7 [11]. O
L _ (BEf 2g)*/? _ . — 2 R 2 .
et M = =—5—, f(r) = cP(E(0;Mr)), and g(r) = ¢ i S T (s)ds, where T (©)
denotes the PDF of , and ¢ = maxfcs; Cy; 30, C1;C; C3 are constants defined in Propositions
7.3.27,7.3.28, and 7.3.29, respectively.

Lemma 7.3.24 For m, f(r) ¥ Oand P(E(0;r)) ¥ Oasr ¥ 1.
Proof: Using definitions of T(r) and g(r), from Lemma 7.3.22,
f(r) F(r=10) +g(r):

Moreover, from Proposition, 7.3.25 and 7.3.26, we have

1
f(r)y =
M
for r 2 [1;10] and
1
r -8r
O
Hence, using Proposition 7.3.23, it follows that f(r) ¥ 0 and consequently P(E(0;r)) ¥ O as
r? 1. O

Proposition 7.3.25 For m f(r) 3 forr2[1;10]
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Figure 7.14: Depiction of scenario when both events E (0; 10r) and Ag,,, (I') occur simultaneously,
giving rise to two smaller events that are i.i.d. with E(0; r) around B1g, and Bgoy.

Proof: From Proposition 7.3.27, f(r) = cP(E(0; Mr)) c®?M?r?. Using the definition of M,
we get

r 2
f(r C’Ef 2g —
(r) 9 1o
from which the result follows. O
Proposition 7.3.26 For m, g(r) % 8r2[1+1]

Rq
Proof: Note that ;. s°f (s)ds [Ef 2g, hence
10
g(r) = c? s?f (s)ds =; 8r;
Mr 4

10

1
when 4c2ET 2g-

Proposition 7.3.27 P(E(o;r)) C1r?, where Cy is a constant.

Proof: Event E(0; r) implies that there is at least one node of  in Bigy, thus #( \ Bigr) > 0.
Hence, P(E(0;r)) P(#( \Bior) > 0).Since Ef#( \Bior)g = (Bior)r?isclearly greater
than or equal to P(#( \ Bigr) > 0), the result follows. |
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Proposition 7.3.28
IP>(G(r)) cEf 2:I-f >rgJ-

Proof: Following the Definition 7.3.19 of event G(r) , we get

(@
P(G(r)) ]E{#fx 2 nBgor:BX;rx) \Dgr & qg;
(b)
P(B(X;rx) \ Dgr & )dXx;
R2nB1o,
(© 1
(Bs-+ornBior)T (s)ds;
ZO
a1
(Bs+or)f (s)ds;
ZI’
a

(B1os)F (s)ds;
r Z 1
= 1007 f (s)ds;

.
= 100°Ef ?1¢ =40;

where (@) follows since expectation is more than the probability of one of the participating event,
(b) follows from the definition of PPP , (¢) follows since the set G(r) can also be written as

G(r) = f(x;r) 2 (R%(0; 1)) : X 2 B1or; X 2 Bor+s0;
and (©) is the Lebesgue measure. Since Ef 2g is finite, P(G(r)) ¥ Oasr ¥ 1. d
Proposition 7.3.29 P(Ag, ) C3 er s?f (s)ds, where C3 is a constant, and
P(AB10o, (1)) 1 0

asr ¥ 1.

Proof: Note that 1 P(Ag,,,, (r)) = P(9 at least one node X 2\ Biogr; such that ryx > r).
Hence,

X
1 P(Agyy. (1) = P#( \ Buioor) = j)P(frx, >rg [::: [ fry, >rg);

j=0

@) -

PE( \ Bioor) =)JP(f >rg);

j=0
X i

— ( (B_JiOOI’)) e (BlooT)jP(f > rg),
i=o T

(B1oo)r?P(f > rg);
Z a1
(Bio)  S°F (s)ds;

r
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(B10o)EF *1¢ ~rq0;

where (@) is obtained by using the union bound and since fry,  rgis identically distributed 8 j.
Since Ef 2g is finite, P(AB,,,, (r)¢) ¥ Oasr ¥ 1.
O

Upper Bound on ()

One easy way to obtain upper bounds on the critical density ¢( ) is by mapping the Gilbert’s
random disc model to a Gilbert’s disc model as follows. Choose a radius rg, and delete all points of
the set FX 2 : X, < rgg, that is, drop all points of the Gilbert’s random disc model that have their
radio ranges less than rg. Since ry is i.i.d., this translates to random thinning of PPP  and results in
anew PPP [ with density P( o). Now in addition, for points in the set fx 2 : X  rog,
we artificially make ry = rp, since reducing the radio ranges can only decrease the size of the
connected component. Following this process, we get a Gilbert’s disc model with fixed radio range
ro and density P( ro). Now, we can use the result obtained in Theorem 7.3.2 to get that as long

as

261092
P( ro)r§>ﬂ%3 % ;

the probability of percolation is non-zero. Optimizing over the choice of ry allows us to obtain the
tightest bound with this technique.

Using the results of this section, we next derive percolation results on the path-loss plus fading
model for wireless communication, where two nodes are connected if the signal power (function of
both distance and fading) between them is larger than a threshold.

7.3.4 Incorporating Fading using Gilbert’s Random Disc Model

In this section, we consider a more general path-loss plus fading model of wireless communication
compared to the path-loss model of Section 7.3.1, where two nodes X and Yy can communicate with
each other or have an edge between them if the received signal power d,,, jhxyj® >, where hyy is
the random fading coefficient, and 1is the threshold. Thus, node X can connect to node y if

jhxyj2 o

ix il = Iy

|-

. . . hz i2 o .
The random connection distance (radius) ryy = Myl corresponds to the random radius Ik

from the Gilbert’s random disc model, however, now it depends on both nodes X and y. So even
though this model seems similar to the Gilbert’s random disc model, it is much harder to analyze
since the edges/link connections are directional in nature, and connections are not monotonic with
distance. We represent p, as the random variable denoting the random radius Fyy .

As before, we assume that the node locations X are distributed as a PPP  with density , and
assuming there is a node of  at the origin 0, we are interested in finding the probability that the
size of the connected component of the origin is unbounded. The critical density ¢( n) is defined
correspondingly.

The technique of obtaining the lower bound on . for the Gilbert’s random disc model can be
used for obtaining a lower bound on the  for the path-loss plus fading model as follows.
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Theorem 7.3.30 .( 1) where C is a constant.

1
cEf £g’
Proof: For the sake of brevity, we just indicate how to modify the proof of Theorem 7.3.21, to get
the proof of Theorem 7.3.30. Corresponding to Definitions 7.3.15, 7.3.18, and 7.3.19, we define the
following quantities

Definition 7.3.31 For any bounded set B R?, let Ag(r) be the event that the maximum length of
any edge between any pair of nodes X;y 2 \B isless than r, that is, Ag(r) = fryy, 18Xy 2
\ Bg.

Definition 7.3.32 For a point q 2 R?, let E(Q; ¥) denote the event that there is a path from a node
X2 \Qq+Brtoanodey 2 \q-+ Bgrnq+ Bg, with all the nodes on the path between X and
y lying inside Bior + Q.

Note that due to stationarity P(E(q; r)) = P(E(o; r)).

Definition 7.3.33 Let G(r) be the event that there is a node X 2\ Bgr that has an edge to a
node lying outside of Bior, that is, there is at least one node X 2 Bgy, such that jjX Yjj = Txy for
y 2 By, Note that edges are directional now. Formally,

G(r) =T(jjx VYii rxy; forsomey 2 nBior and some X 2 Bo,Q:

Following the main ideas of proof of Theorem 7.3.21, one can easily show that if the farthest
node Xg of the connected component of the origin 0 lies outside Bor and if G(r) does not occur,
then E(0; r) occurs, and we get

Proposition 7.3.34
P(xg 2 Bip,) P(E(0;1)) + P(G(r)): (7.26)

Moreover, we have
P(GCj= 1) rIi'm1 P(XF 2 Bip,):

It can be shown similar to Proposition 7.3.29 that P(G(r)) ¥ Oasr ¥ 1. Hence, showing that
P(E(o;r)) goestozeroasr ¥ 1A for < . is sufficient to lower bound . Next, we indicate
how to show P(E(0;r)) goestozeroasr ¥ 1A for < ..

Similar to Lemma 7.3.22, if event E(0; 10r) occurs together with Ajgor(r), then we have that
two independent events [kox E(rk; r) and [-2 E(r*; r) happen simultaneously, since ryy < for
all X;y 2 Bjgor because of Agor(r), where K and L be two finite subsets of the boundary of Bg
and Bgp, respectively, and B1gnBg K + B1; BginBgg L + B;. Each of these two events is
a translation of E(0; r) and are i.i.d. to E(0; r), that is, P(E(r*;r)) = P(E(o;r)) for any “ 2 L.
Thus, once again, we get,

Lemma 7.3.35 P(E(0; 10r))  c3P(E(0; r))? + P(Ag,q,, (1)°), where C3 is a constant.

Rest of the proof follows almost identically to the proof of Theorem 7.3.21.



Percolation Theory 175

7.4 Reference Notes

The basic percolation results presented in Sections 7.2 and 7.3.1 are derived from [1, 2,7, 8], and
lecture notes of Rahul Roy from Indian Statistical Institute, New Delhi. The connectivity results of
Section 7.3.2 are derived from the seminal paper [9], which kick started the research in connectivity
of wireless networks. The lower bound on the critical density for the Gilbert’s random disc model
presented in Section 7.3.3 is derived from [11], while the upper bound follows from [12].
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Chapter 8

Percolation and Connectivity in
Wireless Networks

8.1 Introduction

In this chapter, we exploit the basic ideas of percolation theory discussed in Chapter 7 to study
percolation and connectivity in wireless networks under a signal-to-interference-plus-noise ratio
(SINR) model. In the SINR model, two nodes are connected if the SINR between them is larger
than a threshold. The SINR model allows multiple transmitters to share the same time/frequency
and consequently interfere with each other. This is in contrast to the Gilbert’s disc model, where all
nodes transmit in orthogonal time/frequency slots, and consequently the spatial reuse/capacity of the
SINR model is significantly larger than that of the Gilbert’s disc model.

We assume that the locations of the nodes of the wireless network are drawn from a Poisson
point process (PPP), and study the critical density of nodes required for percolation in the SINR
model. The SINR model is characterized by the interference suppression parameter —that measures
the capacity of any node to suppress the interference received from non-intended transmitters. We
show that for any density larger than the critical density of an appropriate Gilbert’s disc model, the
SINR model percolates for a small enough > 0. Thus, if each node can sufficiently mitigate the
interference, percolation in the Gilbert’s disc model guarantees the percolation in the SINR model.
Conversely, we will show that if the density is smaller than the critical density of an appropriate
Gilbert’s disc model, the SINR graph cannot percolate.

Next, we look at ensuring connectivity in the SINR model, where we assume that there are n
nodes that are independently and uniformly distributed in a unit square. We consider the case when
Col(n) separate frequency bands/time slots (called colors) are used by the n nodes for transmission
and reception, where only signals belonging to the same color interfere with each other. We show
that Col(n) = (Inn) is necessary and sufficient for ensuring connectivity in the SINR model with
high probability.

Finally, we study a secure SINR model, where legitimate nodes want to communicate securely
among themselves in the presence of eavesdropper nodes. In the secure SINR graph, two legitimate
nodes Xj and X; are defined to be connected if the SINR at X from X;j is larger than the maximum
of the SINR between X; and all eavesdropper nodes. Assuming that the location of legitimate and
eavesdropper nodes is drawn from two independent PPPs, we derive percolation regime for the

176
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secure SINR graph by mapping the continuum percolation of the secure SINR graph to an
appropriate percolation over a discrete graph.

8.2 SINR Graph

Consider a wireless network with the set of nodes denoted by = fXnpg. For Xi; Xj 2, let djj
denote the distance between X; and Xj. We assume an unit power transmission from each node.
Then the received signal power at node Xj from node X; is g(dij), where g(:) is the monotonically
decreasing signal attenuation function with distance.

With concurrent transmissions from all nodes of , the received signal at node X;j at any
time is

q > g
yi = 9g(dij)si + 9(dkj)sk + wj; 8.1)
k2 ;k&i

where Sy is signal transmitted from node Xy, and wj is the AWGN with CN (0; 1) distribution. From
(8.1), the SINR for the Xj to Xj communication is

9(dij)
SINR;j = P ; (8.2)
S P IC)
where 0 < 1 is the processing gain of the system that captures the interference suppression

capability of each node. For example, in a CDMA system, depends on the orthogonality between
codes used by different legitimate nodes during simultaneous transmissions. Under this model, we
define the SINR graph as follows.

Definition 8.2.1 SINR graph is a directed graph SG( ) = T ;EQ, with vertex set , and edge set
E = f(xi; Xj) : SINR;j g, where  is the SINR threshold required for correct decoding required
between any two nodes of .

Each edge of the SINR graph represents successful communication between the two nodes at
transmission rate determined by the threshold

To study percolation in the SINR graph, we assume that the locations of  are distributed as a
homogenous PPP  with density , and refer to the SINR graph as the Poisson SINR graph (PSG).
The object of interest is the critical density required for percolation in the PSG, that is,

<(SINR) = inff :P(jCj= 1) > Og;
where C is the connected component of the node at the origin in the PSG.

Remark 8.2.2 Note that we have defined PSG to be a directed graph, and the component of the
origin 0 is its out-component, that is, the set of nodes with which 0 can communicate. One can
similarly define the bi directional component C°% = fx,c 2 X ¥ 0and 0 ¥ X0, and either
one-directional component C*9 = fx,c 2 Xk ¥ 00r0o ¥ xyQ.

8.3 Percolation on the PSG

We first look at the sub-critical regime of percolation in PSG, where we can directly reuse results
from the sub critical regime of the Gilbert’s disc model discussed in Section 7.3.1.



178 Random Wireless Networks

Consider the special case of = 0, where there is an edge in the PSG between nodes X; and
x;j if g(dij) , that is, if the distance djj between them is less than a fixed threshold g *( ).
Thus, the PSG with = 0 is equivalent to a Gilbert’s disc model Gp ( ; Fsjnr), Where the radius
rsink =9 *( ). This correspondence between the PSG for = 0 and Gilbert’s disc model can be
used directly to find the sub-critical regime for the PSG percolation as follows.

Let ¢(rsinr) be the critical density of percolation in Gilbert’s disc model with radius rsiNg,
that is, for < ¢(rsinRr), there is no percolation in the Gilbert’s disc model with radius rg;ngR.
Thus, for = 0, there is no percolation in the PSG for < ¢(rgnr). Since PSG with > 0isa
subgraph of the PSG with = 0, we have thatif < (rs;nR), the PSG cannot percolate for any

> 0. Therefore,
c¢(SINR) > c(rsinr):

Finding the super critical regime is comparatively non trivial, where we will be able to show,
that for any > ((rsinR), there exists a small enough > 0 such that the PSG percolates. Note

that percolation is monotonic in , that is, if there is percolation for = ¢, then there is percolation
forall < q.

Theorem 8.3.1 For theyPSG, where the attenuation function (%) is monotonically decreasing and
satisfies 9(0)  land xg(X)dx < A, for any > (rsinr), and any , there exists a small
enough = 0 for which the probability of percolation on the PSG is greater than zero.

The main idea of the proof is to consider a super-critical Gilbert’s disc model Gp ( ; r) and map
it to an appropriate square lattice percolation, such that whenever the square lattice percolates, the
connections/edges in the super critical Gilbert’s disc model Gp ( ;) are also present in the PSG.
Hence, making the PSG also super critical.

Proof: For the Gilbert’s disc model Gp ( ;r), let rc( ) be the critical radius for a fixed density
that is,
rce( ) =inffr: P(Cj = 1) > 0g:

Thus, for r > r¢( ), the Gilbert’s disc model percolates. By invariance property (Remark 7.3.1), we
have
c(rsnR)réing = 15( )

We consider a super critical Gilbert’s disc model Gp ( ;r), for > (rging)andre( ) <r <
FsINR-

We will map the continuum percolation of Gp (' ; r) to a discrete edge percolation over a square
lattice S with side S. Let the center of any horizontal edge € 2 S be Ce = (Xe;Ye) 2 R2. Then we
define a binary event A which is 1 if (Ae = 0 otherwise)

the rectangle Re = [Xe %; Xe + %S] [Ye %:Ye+ 3]containing the edge € has a left-right
crossing of the connected component of the super critical Gilbert’s disc model Gp ( ; ), and

both squares [xe 3% 3] [Ye §iVet+3land[xe+5iXe+ ] [ye Five+ 3]
containing the edge e have a top-bottom crossing of the connected component of the super-
critical Gilbert’s disc model Gp (' ;r). The event Ag is similarly defined for a vertical edge.

Both these conditions are pictorially illustrated in Fig. 8.1.
Next, we define another event B corresponding to each edge e that represents that the
interference received inside any point of the rectangle Re = [Xe %; Xe + ?:1—5] [Ye 3$:Ye+ 3]
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(e, Ye) \{

edge e

s/2

3s/2

Figure 8.1: Definition of event A for any edge e in S.

is less than a certain fixed threshold M. Towards that end, we define a new path-loss function & as
follows.

P—
9(0); x 3%

g(x) = 0 x P . x>@' (8.3)
4 ’ 4

Then the interference I'received at any point X 2 R? is correspondingly defined as
X - -
M) = gGx  xj):

X2

Recall that the interference seen at any point X 2 R? in the PSG without the interference suppression
parameter is >
1) = 90x X))
X 2

For an edge e, we define a binary event B = 1 if the interference defined by function I'(:) is less
than M at the center of the edge, that is, if ['(Ce) < M, and B = 0 otherwise. Since the distance
between any point inside the rectangle Rg = [Xe %; Xe + %] [Ye 3:Ye + 3] and the center
of the rectangle R is at most }105, I(ce) < M implies 1(X) < M for any X 2 Re. Thus, if the
interference seen at the center is less than M with interference function I, then the interference seen
at any point of the rectangle is less than M with interference function I (:).

Then, we define an edge € 2 S to be open (closed) if both Ac = 1 and B = 1, that is,
Ce = AcBe = 1 (Ce = 0 otherwise). We will be interested in the regime when S percolates, that is,
the connected component of S is of unbounded size with non-zero probability. Next, we show that
if the square lattice S percolates, so does the PSG for some value of > 0.

First, we show that if B = 1, then any two nodes of Re\  connected in Gp ( ;r) forre( ) <
I < rsinr have an edge between them in the PSG as well. Note that the PSG is a directed graph, and
what we claim is that edges exist in both directions in the PSG corresponding to the undirected edge
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in the Gp ( ; r). With Be = 1, the interference received at any point in Ry is less than M. Thus, for
any two nodes Xij; Xj 2 Re that are connected in Gp ( ; r), thatis, jXj  X;j  r, the SINR at node
Xj from a node X;j is

SINR;j = palx i) .
1+ x2 nfx;g g9(@x XjJ)
90xi %)) . . — . .
ﬁ, since Be = 1, 1(Xj) M;
9(r) . . -
1+ M’ since JXj  Xj) I

As r < rgnr and as g(b) is strictly decreasing, we can choose

-1 90

> 0;
M g(rsinr)

for which
SINRj;  g(rsinr) = 5

using the definition of rgyng = 0 1( ). Thus, the nodes lying in Re connected in the Gilbert’s disc
model are also connected in the PSG if Be = 1.

If square lattice S percolates (for some choice of side length s and interference upper bounding
parameter M in Lemma 8.3.2), then there is an infinite sequence of connected open edges of the
square lattice. Using the definition of event Ae, consequently, we know that there is a connected
component of Gp ( ; ) crossing (both left-right and top-bottom) the rectangles R¢’s corresponding
to the connected open edges e’s of S, as shown in Fig. 8.2. We also know that an edge e 2 S is
open only if Be = 1, hence from above, for small enough > 0, all the edges of the connected
component of Gp ( ; r) crossing the rectangles R¢’s corresponding to the connected open edges e
of S are also present in the PSG. Hence, PSG percolates whenever square lattice S and Gp ( ;)
does for small enough > 0. U

The only thing left to be shown is that the square lattice percolates for a large enough choice
of square lattice size S and interference threshold parameter M. This is accomplished as follows.
We will use the idea of defining closed circuits in the dual lattice of S described in Definition 7.2.7
in Section 7.2.1 for this purpose and show that for large enough choice of square lattice side S and
interference threshold parameter M, the probability of finding a closed circuit in the dual lattice
around the origin in S is zero.

Lemma 8.3.2 The square lattice S percolates for some choice of lattice side S and interference
upper bounding parameter M.

Proof: We want to bound the probability of having a closed circuit in the dual lattice of S
surrounding the origin in S. As before, the dual lattice S' = S + %; % and any edge of the dual
lattice is open/closed if the intersecting edge of S is open/closed. Recall that an edge € 2 S is open
(closed) if both A = 1 and B, = 1, that is, Ce = AgBe = 1 (C. = 0 otherwise).

Letting Aj = Ae,;Bi = Be,, and C;j = Cg,, we will first bound the probability of a closed
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5/2 edge e; S

3s/2

Figure 8.2: Two adjacent open edges of S imply a connected component of Gp( ;r) crossing
rectangle Re’s corresponding to the open edges of S. Solid lines are for rectangle Re, and dashed
lines for Re,.

Lemma 8.3.3 P(A; = 0;A; =0;:::;A, =0)  pY, where p1 = pa -

Proof: Follows from the fact that in any sequence of n edges of S, there are at least Nn=4 edges such
P(\e20Ae = 0), where O is the set of edges for which their adjacent squares Ry (e) [ R2(e) have
no overlap, and jOj  n=4. Since Re; € 2 O have no overlap, the events Ae = 0 are independent
for e 2 O, and the result follows. O

Remark 8.3.4 Since Gp ( ;1) is super critical, by choosing a large enough side length S, there is
always a connected component of Gp ( ;1) satisfying the event A for any edge [1], and hence pa
can be made arbitrarily small by choosing a large enough side length S.
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R4

o Xg(X)dx < L andg() 1,

Lemma 8.3.5 /3, Proposition 2] For

R
where pa = exp % g(x)dx % , and K is a constant.

Proof: With c; as center of the edge e;, by definition,

P(B1=0;B2=0;:::;Bn=0) = P(I(c1) M;I(c2)y M;iiiiT(cs) M)
= |
P I(ci) nM ;
=t C = LD

exp( tnM)E exp t i) ;
i=1

where in the last inequality we have used Markov inequality for any t > 0. Now we make use of
Campbell’s theorem (Theorem 2.3.7) to compute the expectation on the R.H.S. to get

C = D 7 = LRI B

E exp t I(ci) =exp exp t  g(x cij) 1 dx : (8.4)
i=1 R? i=1

The centers C; of &c}ges are located on a square lattice with side {%, thus the interference seen
at any point X 2 R?, ?:1 g(jx cij), is coming from vertices of a square lattice with side 1% as

shown in Fig. 8.3. P
For any X 2 R?, the contribution in in=1 g(jx cjj) from the four nearest vertices Cj is 4, since
g(:) 1. Looking at the next nearest level in Fig. 8.3, there are at most 12 (solid) vertices C; at a
distance of at least {% Continuing on, at the kth nearest level, there are at most 4 + 8K vertices Ci

at a distance of at least 15% Thus,

X X ks
g(x  cij) 4+  (4+8k)g 193 ;
i=1 k=1
= K: (8.5)

R
rom assumption, yl xg(X)dx < 21 for some y > 0, it follows that for some y > 0,

yl Xg(x)dx < 1. Hence, K is bounded. Since t can be arbitrary, we let t = % and get

X
t g(x cj) 1 8x (8.6)
i=1

Noting that exp(X) 1 <2xforallXx 1, we have

x ) X ) 2 X )
exp tg0x c) 1 2t g0x G)=  glx ci); (8.7)
i=1 i=1 i=1
by substituting t = 1=K. Thus, using (8.4), we get

1 1

C = D z ,x !

E exp t I(ci) exp K g(ix cijdx ;

RZ i=

i=1 1



Percolation and Connectivity in Wireless Networks 183

2n z
= exp o~ gxdx ;
2 n
= exp — g(jxj)dx : (8.8)
K ge
Thus, we get
1
C = D
P(B1 =0;B, =0;:::;Bh=0) = exp( thM)E exp s ) ;
'Z
ex| M ex z (xj)dx N
p K p K Rzg J ;
2 . M "
= ep RZQ‘(JXJ)dX 3 ;
where the segond inequality is obtained from (8.8) for t = 1=K. Finally, we define

P2=exp % e(xi)dx i
O
Next, we upper bound the probability of having n consecutive closed edges P(C; = 0;C, =

0;:::;Ch =0).

Lemma 8.3.6 /3, Proposition 3] P(C1 =0;C, =0;:::;Cn =0)  (Ppr+ Ppa)".
Proof:
e e _y @ . .
P(C; =0;C,=0;:::;Ch=0) ¥ Efl C)A Cp):::(1 Cpa:
®)
E (Al 'EB]_)(AZ + ?2) L (An +! %n) y
© X Y Y
E Ai Bi ;
b2[2"] i:b;=0 i:b;=1

where (@) follows since C; 2 f0; 1g, (b) follows by defining Aj =1 A, and noting that
1 Ci=1 AB (@ A)+(@ Bj)=A+8B;;

and (c) follows by taking the sum over all binary 2" binary sequences b. Next, we use the Cauchy—
Schwarz inequality to upper bound the expectation of the product to get

€<
@ X !li‘é Y Y
P(C1 =0;C,=0;:::;Cr =0) E Ai2 E Bi2 ;
b2[2"] i:b;=0 itb;,=1
P En e G 1
(e) X % Y Y
E Ai E Bi ;
b2[2"] ib;=0 itb;=1
@ X Sy——v—
P1 P2;

b2[2n] ;=0 i:b;=1
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Figure 8.3: Square grid formed by centers (represented as dots) of edges of S with side %

1 1
XX Y T Y )
pﬁ p@ ;

b2[2"] i:b;=0 itb;=1

P+ P

where (d) follows from the inequality of Cauchy—Schwarz, (€) follows since by definition A? = A;,
and (T) follows from the definition of p; and p, from Lemma 8.3.3 and Lemma 8.3.5. O

Letq = (pﬁ + p@). Using the Peierls argument, the next Lemma characterizes an upper
bound on g for which having a closed circuit in S surrounding the origin is less than 1.

P
Lemma 8.3.7 Ifq < %, then the probability of having a closed circuit in the dual lattice S°
surrounding the origin is less than 1.

Proof: As shown in Proposition 7.2.6, the number of possible closed circuits of length n around the
origin is less than or equal to 4n3" 2. From Lemma 8.3.6, we know that the probability of a closed
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circuit of length n is upper bounded by q". Thus,

P(closed circuit around origin in S%) 4n3" 2qM;
n=1

4q .
3(1 3g)?’

P
which is less than 1 for q < 11210, O

Back to the proof of Lemma 8.3.2, for q = (pﬁ + pp?), using the definitions of p; and p»
from Lemma 8.3.3 and Lemma 8.3.5, by appropriately choosiggi the side length s and the
interference threshold M, for any density , we can have < %. Hence, from Lemma 8.3.7,
the probability of having a closed circuit surrounding the origin is less than 1 and therefore, from
Lemma 7.2.8, we can conclude that the square lattice S percolates for appropriate choice of s and
M. O

Thus, we have shown that for small enough interference suppression parameter , if the Gilbert’s
disc model percolates, so does the SINR graph, where the radio range used for the Gilbert’s disc
model is g 1( ). An alternate way of stating these results could be in terms of the SINR threshold

. Since the SINR graph percolates for small enough > 0, it is clear that if an edge exists between
nodes X; and Xj, that is,
g{di;)

1+ i 9(de)

for small enough , it will also exist even if we fix = 0 and choose a small enough . Thus,
alternatively, we can say that the SINR graph percolates for a small enough SINR threshold for
any fixed . The physical interpretation of choosing small enough is to say that if the rate of
communication between any nodes is small enough, then the connected component with the SINR
graph is of unbounded size.

After establishing the percolation regime for the SINR graph, next we consider ensuring
connectivity in wireless networks with the SINR connection model.

8.4 Connectivity on the SINR Graph

In this section, we now consider the problem of ensuring connectivity in the wireless network with
the SINR graph. Similar to Section 7.3.2, for studying the SINR graph connectivity, we restrict
ourselves to a bounded area, in particular, an unit square S;, where N nodes = fXy;:::;XnQ are
located independently and uniformly randomly.

Following Section 8.2, the SINR graph on the unit square is defined as SG( ;S1) = n;Eng,
where En = T(Xi; Xj) : SINR;j g, and

SINRy; = P 9) :
1+ k2 ke 9(dkj)

The presented results will not depend on , hence for the ease of exposition, we let = 1.

Definition 8.4.1 The SINR graph SG( ; S1) is defined to be connected if there is a path from X; ¥
Xj inSG( ;S1); 81, =1,2;::5;ni & .
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S

Sij

]

nlnn

Figure 8.4: Square tiling of the unit square, and pictorial definition of square S¢(m) for each
node X.

To analyze the connectivity of the SINR graph, we color the nodes of network ~ with Col(n)
different colors, where nodes assigned different colors correspond to having orthogonal signals in
either time or frequency, which do not interfere with each other. Col(n) essentially corresponds to
the spatial reuse in the network, smaller the value of Col(n), larger is the number of nodes allowed
to transmit at same time/frequency and consequently larger the spatial capacity. Thus, we want to
find the minimum Col(n) that ensures connectivity in the wireless network.

Let the color of node X; be ¢(X;j). Then the colored SINR graph (CSG) is defined as
SG( ;S1;Col(n) =T niEng;

where En = F(Xi; Xj) : SINR;j g; and

SINRy; = — P 9ii) :
1+ o L ikeicon=cx:) (ki)

where only the same colored node contribute to the interference. SG( ; S1; Col(n)) is defined to be
connected if there is a path from X; ¥ X;j in SG( ;Sy;Col(n)) 8;i;J = 1;2;:::;n;i & j. Note
that SG( ;S1) = SG( ;Si;1). In the next theorem, we find an upper bound on Col(n) for which
SG( ;S1;Col(n)) is connected with high probability.
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8.4.1 Upper bound on Col(n)

We will prove the upper bound on Col(n) for the path-loss model g(dij) = d;; g+ Which can be easily

extended to all other path-loss models with monotonically decreasing g(:) and Xg(x)dx < 1. The
upper bound on the number of colors Col(n) that ensures connectivity in the CSG is as follows.

Theorem 8.4.2 CSG  SG( ;Si;Col(n)) is connected  with  high  probability  if
Col(n) 4+ ) Inncolors are used, where and are constants.

Proof: Consideral 1 squa@| Si, where n nodes are distributed uniformly in S;. We tile S; into
Inn
n

small square Sjj be N (Sij). From Chernoff bound (Lemma 7.3.7),

smaller squares Sjj with side as shown in Fig. 8.4. Let the number of nodes lying in any

P(NGi) (+ ) Inn) n5": 8.9)

Thus, there are most a constant times In N nodes in any anall square Sjj with high probability.

minn
n

For any node X¢, consider a square S¢(m) with side centered at X¢ as shown in Fig. 8.6,
where m < is a constant. Define event
n (0]

m
F¢(m) = there are less than > Inn nodes in s¢(M) :

Again, using the Chernoff bound (Lemma 7.3.7), we have that
P(Fe(m)) n 2
and taking the union bound over all n nodes X, we get
P(Lx,Fe(m)) n * (8.10)

Thus, for large n, every square S¢(m) has at least a constant times In n nodes in it.

Coloring strategy: Let jCol(n)j = 4(1+ ) Inn, and partition Col(n) into four parts Col(n) =
fColy(n); Col(n); Colz(n); Cols(n)g, where jCol-(N)j = (1+ ) Inn; “ =1;2;3;4and Col-(nN)\
Colg(n) = ;8 “; k. We drop the index n from Col-(n) for ease of notation. Colors from set Coly
and Col, are associated with alternate rows in odd numbered columns, while sets Cols and Coly are
associated with alternate rows in even numbered columns in the tilting of S; using Sjj as shown in
Fig. 8.5. Nodes in each smaller square Sjj are colored as follows. Let the nodes lying in each sjj be
indexed using numbers 1 to N (Sjj). Then we associate (1 + ) Inn colors to each S;j in a regular

Define Ejj = ftwo nodes with the same color lie in S;jjg. From (8.9), N(sj;) < (1+ ) Inn
with high probability for any square Sij, hence with this coloring, the probability that there are two
or more nodes with the same color in a given square S;j is

n82

P(Eij) n s : (8.11)

Taking the union bound over all squares, we get

ns2

P([i;jEij) n* 5 (8.12)
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Figure 8.5: Coloring the square tiling of the unit square with four sets of colors.

Thus,
n|l!m1P([i;j Eij) =0; (8.13)

for 2=3 1. Using the union bound, P(FLij Eijg [ FLtFe(M)g) P(LijEij) + P(Lij Eij) and
from (8.10) and (8.13), we have
P(fLijEijg L fL:F«(m)g) ¥ O; (8.14)

asn ¥ 1.

Thus, with high probability, each square s¢(m) has at least Inn nodes, and no square Sjj
contains two or more nodes with the same color.

With the definition of events Ejj and F¢(m), the probability that the CSG is connected can be
written as P(SG( ; S1; Col(n)) is connected)

= P(fLijEijg [ fLFc(m)g)
P (SG( ;Sy;Col(n)) is connected jF[i; Eijg [ fLcFc(m)g)
+P((FLijEijg [ FLFt(m)g)*)
P (SG( ;Si;Col(n)) is connected j(FLij Eijg [ FLcFt(M)g)°);
P (SG( ;Sy;Col(n)) is connectedj(FL;; Eijg [ F[Fe(m)g)©); from (8.14):
Hence, we can analyze the SINR connectivity while conditioning on the event that no square Sjj

has more than two nodes with the same color, and each square S¢(m) has at least 5 In n nodes.
Under this conditioning, to show that the CSG is connected, it iéqsufﬁcient to show that for any

minn
n

the CSG. To see this, ignoring edge effects, if X¢ is connected to all nodes in S¢(mM) in the CSG, it
is also connected to all nodes lying in four equal partitions of the square S¢(m). Since each of the
four smaller squares also have a constant times In n nodes from the Chernoff bound, thus X¢ has a

t = 1;:::;n, X¢ is connected to all nodes in S¢(m) (square of side centered at node X¢) in
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Tu

el

Figure 8.6: Interference for node X, with respect to node X¢ only comes from at most one node lying
in the s(%aded squares, where distance from X, to nodes in the shaded squares at level z is at least

Inn mlinn
2z —_ mAun
n n

connection to nodes in all four directions, and recursing this argument for each node X, we see that
there is a connected path from each node to every other node in the ntazvork.

minn
n

we show th%‘xt is connected to all nodes X, 2 s¢(m);u & t in the CSG. SirEF the side length

Consider a node X and its corresponding square S¢(m) of side centered at X¢. Next,

of sg(m) is w, the distance between X¢ and Xy, iy, is upper bounded by w, thus the
signal power between X and X, is lower bounded by

2minn
dey —n : (8.15)

Now consider Fig. 8.6 for analyzing the interference power seen at X,,. Without loss of generality,
assume that X¢ belongs to the square associated with color set Coly, and is associated with color
C(Xt). Note that there is no other node in s;jj that has the same color as X¢. So the interference
received at X, is attributed to nodes lying in square Sjojo associated with color c(X¢) 2 Coly, where
either i’ & iorj' & j.

From Fig. 8.6, it is clear that for any level K; k = 1;2;:::; n; there are maximum 8K nodes using

a

the same color as X, at a distance at least k

Inn mlinn

n n from Xy,. Thus, the interference
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power
208 X 8k
dvy

VEL;C(X, )=C(X¢) k=1 k Inn minn

Since m < is a constant by construction,
r r ! r !
Inn minn Inn
n n n

for some > 0. Hence, the interference seen at Xy, is upper bounded by

X 8 X
dyy ——= K (8.16)
VEL;c (X, )=C(X¢) () Irr:n k=1
. Pn 1 — PI’] 1
Since ,_; k converges for 2,let cs = ,_; k- . Then, from (8.15) and (8.16)
computing the SINR, we have
=2
2m
duy
SINRy, = P
VEL;c(Xy ) =C(X¢) dvu 8cs

Appropriately choosing constant m, SINRy, be made larger than as required to show that X¢ is
connected to every Xy 2 S¢(m).
Thus, for an appropriate choice of m and

P(SG( ;Sy;Col(n)) is connectedj(FLij Eijg [ f[:Fc(m)g)°) = 1;

and from (8.15),
nli'ml P(SG( ;Si1;Col(n))is connected) = 1:

O
Theorem 8.4.2 implies that O(Inn) colors are sufficient for guaranteeing the connectivity of
SG( ;S1;Col(n)) with high probability. The intuition behind this result is that if only n=In(n)
nodes interfere with any node’s transmission, then the total interference received at any node is
bounded with high probability, and each node can connect to a large number of nodes. In the next
subsection, we show that actually Col(n) = (Inn) colors are also necessary for the SG( ; Sy; Col
(n)) to be connected with high probability, and if Col(n) is less than order In n, then the interference
power can be arbitrarily large and difficult to bound, making SG( ; S;; Col(n)) disconnected with
high probability.

8.4.2 Lower bound on Col(n)

In this section, we show that if less than order In(n) colors are used, then the CSG is disconnected
with high probability. To show this, we actually show that any node is not connected to any other
node with high probability if less than order In(n) colors are used. For proving thisglower bound, we
will restrict ourselves to path-loss models with monotonically decreasing g(:) and xg(x)dx < 1,
since with singular path-loss models, g(dij) = d;; , the signal power between any two nodes cannot
be bounded. Formally, our result is as follows.

ij



Percolation and Connectivity in Wireless Networks 191

Theorem 8.4.3 IfCol(n) = o(Inn), that is, Col(N) is sub-logarithmic in N, then the CSG SG( ; Sq;
Col(n)) i not connected with high probability for path-loss models with monotonically decreasing
g(:) and xg(X)dx < 1.

roof: Similar to the last suhsection, we consider the tiling of the unit square S; by squares Sjj, bu
PfSaltthlt t der the tiling of th tsq S1 by sq j» but

Inn
n

With this tiling, the expected number of nodes in any square EfN(sjj)g = Inn, and from
Chernoff bound P(N(sij) < (1 )Inn) n 2=2, forany 0 < < 1. Thus, there are at least a
constant times In N nodes in each smaller square.

Let the number of colors jCol(n)j = T Wwhere is the SINR threshold and limp s 1 % =
0, that is, the number of distinct colors scales slower than Inn. Since there are at least a constant

times In N nodes in each smaller square Sjj with high probability, with any coloring using jCol(n)j =

T colors, there are at least = nodes in any square Sjj using any one particular color col 2
Col(n), with high probability.
Let coi(Sij) = fXm : ¢(Xm) = col; Xm 2 sijg be the set of nodes in square S;jj that use the
same color col. As noted j coi(Sij)j = with high probability. Consider two nodes Xi; Xm 2
col(Sij) \ Sij, that is, both Xk and Xm lie in Sjj and share the same color. Let X, be any other
node lying in S;jj. By the defaition of smaller square S;jj, the distance between nodes Xm and Xp,

with side 'nTn, instead of

2Inn
n 9
interference received at node X, from nodes inside S;j using color col is

dmn is no more than dyn, + where dyn is the distance between Xi and Xp. Therefore, the

g (dmn)

Xm2 col(Si;);mEk

a
which is greater than ( = Dg den+ 220 since j coi(Sij)i = . Thus, the SINR

between Xk and Xp, is

1+(- 1g dun+ 2P0

g(dkn)
g
(- Dg dun+ 2lnn,

n

Since g(:) is bounded, for large enough n, choosing  appropriately, we can make SINRy, <
Thus, we have shown that node Xk is not connected to any node inside Sjj. Similarly, it follows that
Xk 2 Sij is not connected to any node outside of s;j, since for Xq 2 Sjj, the signal power g(diq) is
less compared to g(dkn), the signal power at any node X, 2 S;j, while the interference powers at
Xq 2 sjj and Xn 2 S;j are identical. Thus, we conclude that if less than order In n colors are used,
then SG( ; Sy; Col(n)) is not connected with high probability. O
We have shown that the CSG SG( ; S1; Col(n)) is disconnected as long as the number of colors
or orthogonal time/frequency slots is less than order Inn colors. Thus, for ensuring connectivity,
the network can tolerate at most n=Inn interferers for any node. This result holds for any SINR
threshold and interference suppression parameter , and hence, even for small enough and ,
the CSG cannot be connected by using less than Inn colors. This is in contrast to our percolation
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connection radius is the
nearest eavesdropper distance

Figure 8.7: Distance-based secure graph model, where dots are legitimate nodes and crosses are
eavesdropper nodes, and X;j is connected to Xj if Xj lies in the disc of X; with radius equal to the
nearest eavesdropper distance.

result over PSG, where we showed that for small enough ( ), percolation happens for densities
above the critical density for any fixed ( ) while using a single color.

We next, consider a more general SINR graph model that allows secure communication between
legitimate nodes in a wireless network in the presence of eavesdroppers.

8.5 Information Theoretic Secure SINR Graph

In this section, we consider the information theoretic secure model for communication in wireless
networks [6, 7], where two legitimate nodes can communicate with each other at a non-zero rate
even in the presence of eavesdroppers. Under this model, the security guarantee is absolute rather
than dependent on the large complexity of problem to be solved at eavesdroppers as guaranteed by
cryptography.

The simplest example of secure communication is a distance-based secure model, where two
legitimate nodes i and j are connected securely, provided node j is closer to node i than its nearest
eavesdropper, as shown in Fig. 8.7. These are the links over which secure communication can take
place in the presence of eavesdroppers of arbitrary capability. A natural question from percolation
point of view that arises is “when does the secure graph percolates as a function of the legitimate
and the eavesdropper node locations?

When both the legitimate and eavesdropper nodes are distributed according to independent PPP
inR2 of densities and g, respectively, with the distance-based secure model, the expected number
of legitimate neighbors of any legitimate node is = g. Thus, using a branching process argument,
one can show that if the expected number of legitimate neighbors = g < 1, then almost surely,
no unbounded connected component exits [8, 9]. Concrete results for the super critical regime are,
however, harder to derive. Existential results for the super critical regime can be derived by an



Percolation and Connectivity in Wireless Networks 193

appropriate mapping of the continuum percolation of the distance-based secure graph model to a
square lattice [10], similar to the procedure used in Section 8.3.

The distance-based secrecy graph model has a limited scope since it assumes that the signals
transmitted from different legitimate nodes do not interfere with each other. In reality, that is difficult
to incorporate, since there are large number of legitimate nodes, and all nodes cannot transmit on
orthogonal frequency or time slots. To generalize the distance-based secrecy graph and model a
more realistic scenario, the secrecy graph is defined using the SINR model, where two legitimate
nodes are connected if the SINR between them is more than the SINR at any other eavesdropper
node.

The secure PSG (called SSG) allows all legitimate nodes to transmit at the same time/frequency
and interfere with each other’s communication. Let  be the set of legitimate nodes, and g be
the set of eavesdropper nodes. We assume that the location of nodes in and g are distributed
according to independent PPPs with densities and g, respectively. Let Xj;Xj 2 ,ande 2 E.
Without loss of generality, we assume an average power constraint of unity (P = 1) at each node
in , and unit noise variance at all nodes of ; g.Let0 < 1 be the processing gain of the
system (interference suppression parameter), which depends on the orthogonality between codes
used by different legitimate nodes during simultaneous transmissions. Then the SINR between two
legitimate nodes X; and X;j is

a(xi  Xji)
k2 kei 90X X))+ 1’

S|NRij = P

and between X; and an eavesdropper € is

g0xi__ej) :
k2 kei 90X Xji) +1
Note that the parameter is absent in the SINR expression at the eavesdropper e, since depends
on the coding strategy between the legitimate nodes, for example, spreading code used in a CDMA
system, that is not known to the eavesdroppers, hence no processing gain can be obtained at any of

the eavesdroppers. Then the maximum rate of reliable communication between X; and X; such that
an eavesdropper € gets no knowledge of communication between X; and X;j is [6]

SINR;e = P

R?;_ecum(e) = [log, (1 + SINRj;) log, (1 + S|NRie)]+ ;

and the maximum rate of communication between X; and Xj that is secured from all the eavesdropper
nodes of g,
R = min R;j;(e):
5 = min Ry (@)

Definition 8.5.1 SINR secrecy graph (SSG) is a directed graph SSG( ) = T ; EQ, with vertex set
, and edge set E = T(Xi; Xj) : RE™® > g, where is the minimum rate of secure communication
required between any two nodes of .

We will consider = 0 and represent SSG(0) as SSG, since the derived results can be generalized
easily for > 0. With = 0, SSG = f ;Eg, with edge set
E= f(Xi;Xj) : SINRjj > SINRje; 82 EgQ.
We want to find the critical density for percolation for the legitimate nodes for any eavesdropper
nodes density, that is,
¢( ) =inff :P(Cj= 1) > 0g;

where C is the connected component of the node located at origin in the SSG.
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We will show that for any given density g of the eavesdropper nodes, the secrecy graph SSG
percolates for sufficiently large density  of legitimate nodes and sufficiently small interference
suppression parameter [11]. Conversely, we show that for a given density g of the eavesdropper
nodes, and > 0, if the density of legitimate nodes is below a threshold, then the SSG does not
percolate [11].

Remark 8.5.2 Instead of existential results, concrete bounds can be found for percolation in SSG,
by following the proof of Theorem 7.3.21 for the Gilbert’s random disc model, as long as the path-
loss function 9(©) has a finite support, that is, §(X) = 0 for X [12]. With a finite support path-loss
function, the dependency of the SSG is restricted to distances of at most , since (Xi; Xj) 2 E only
depends on Xj 2 \B(Xi; )ande 2 g \B(Xi;2 ). Hence, the proof idea of Theorem 7.3.21
can be used, by defining the maximum distance to which a node Xj 2 can have a connection in
SSG as

cov(Xj) =sup d: g(d) > max SINRje
e2 g

Therefore, a node Xj can be connected to node X; only if dij < cov(X;). Note that cov(X;) ; 8 Xi;
since the signal power received at a distance X, §(X), is zero for X . Now, cov(X;) can play the
role of random radius rx of the Gilbert’s random disc model, and similar to Theorem 7.3.21, we can

obtain a lower bound on the critical density as m.

8.5.1 Super Critical Regime

In Theorem 8.5.3, we show that for small enough , there exists a large enough for which the
SSG percolates with positive probability for any value of E.

Theorem 8.5.3 For any g, there exists ° < A and a function °( ; g) > 0, such that P(jCj =
1) 7 0inthe SSG for > Cand < ' ; ). forany signal attenuation function §(X), such
that xg(X)dx < L andg(:) 1

This result is similar in spirit to Theorem 8.3.1, where percolation is shown to happen in the PSG,
where two nodes are connected if the SINR between them is more than a fixed threshold , (without
the secrecy constraint due to eavesdroppers) for small enough interference suppression parameter
The major difference between the SSG and PSG is that with the SSG, the threshold for connection
between two nodes (maximum of SINRs received at all eavesdroppers) is a random variable that
depends on both the legitimate and eavesdropper density, while in contrast, the threshold in the PSG
is a fixed constant.

Proof: To prove the result, we consider percolation on an enhanced graph SSGE€ that is a subset
of SSG obtained by removing the interference power at each of the eavesdropper nodes, thereby
increasing the SINR seen at any eavesdropper node. The SSGF€ is defined as follows, SSG® =
T ;E®g, with edge set

E® = f(xi; xj) : SINRj;  g(dic); 8e2 gg:

Since g(dije)  SINRje, SSG®  SSG. Thus, if SSG* percolates, so does SSG.

To find conditions for SSG* to percolate, we map the continuum percolation of SSG€ to an
appropriate discrete percolation on Z?2, similar to the technique used for Gilbert’s disc model in
Section 7.3.1. Consider a square lattice S with side s. Let S” = S + (5; 3) be the dual lattice of
S obtained by translating each edge of S by (3; 3). For any edge a of S, let S;(a) and Sz(a) be
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the two adjacent squares to a. Let fa;g{_; denote the four vertices of the rectangle Sl(a);:[ S,(a).

Let Y (@) be the smallest square containing [{—,B(a;; t), where t is such that g(t) < Q(Tgs). See
Fig. 8.8 for a pictorial description.

Definition 8.5.4 Any edge a of S is defined to be open if
1. there is at least one legitimate node of  in both the adjacent squares S1(8) and S,(a),
2. there are no eavesdropper nodes of g inY (a),

3. and for any legitimate node Xi 2  \ (S1(a) [ S2(Q)), the interference received at any
legitimate node X;j 2\ (S1(a) [ S2(a)),
X L1
i< 90xk X))
k2 ki

An open edge is pictorially described in Fig. 8.8 by edge a, where the black dots represent a
legitimate node while a cross represents an eavesdropper node.

The next lemma allows us to tie up the continuum percolation on SSGE€ to the percolation
on the square lattice, where we show that if an edge a is open, then all legitimate nodes lying in
S1(a) [ S2(a) can connect to each other in the SSGE.

Lemma 8.5.5 If an edge a of S is open, then any node X; 2\ (S1(3) [ S2(@)) can connect to
any node Xj 2\ (S1(a) [ S2(a)) in SSG®.

P_
Proofi5  For any  Xi; Xj 2 \ (S1(a) [S2(a)), SINR;jj @, since
i = 2 «kei 0% X)) L for each Xx;; Xj 2\ (S1(a) [ S2(a)). Moreover, since there
are no eavesdropper nodes in Y (@), the minimum distance between any eavesdropper node from
any legitimate node in  \ (S1(a) [ S2(@)) is at least t. By choice, t is such that g(t) < 9(2755).
Therefore, SINR;j maxXe SINRje, and hence Xi;Xj 2\ (S1(a) [ S2(a)) are connected in
SSGE. O

Recall from Lemma 7.2.8 that the connected component of S containing the origin is finite
if and only if there is a closed circuit in dual lattice S’ surrounding the origin. Hence, if we can
show that the probability that there exists a closed circuit in S' surrounding the origin is less than
1, then it follows that an unbounded connected component exists in S with non-zero probability.
Moreover, having an unbounded connected component in the square lattice S implies that there is an
unbounded connected component in SSGE from Lemma 8.5.5. Thus, to show that SSG€ percolates,
it is sufficient to show that the probability of having a closed circuit in S’ surrounding the origin is
less than 1.

Next, we find a bound on as a function of g such that the probability of having a closed
circuit in S” surrounding the origin is less than 1.

For an edge a, let Aﬁl) =1if \Sj@) & ;,i = 1,2, and zero otherwise. Similarly, let
B@=1=0iflj = 5 i 90% Xji) L for xj; Xj 2 \(S1(a) [ S2(a)) (otherwise),
and C(a) = 1 (= 0) if there are no eavesdropper nodes in Y (@) (otherwise). Then by definition, the
edge ais openif D(a) = A(a)B(a)C(a) = 1.

Now we want to bound the probability of having a closed circuit surrounding the origin in S'.
Towards that end, we will first bound the probability of a closed circuit of length n, that is,
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X Y(a) ® ® °

Figure 8.8: Open edge definition on a square lattice for super critical regime.

pa := P(A(aj) = 0) for any i. Since is a PPP with density ,pa =1 (1 exp( s?))>2
Then we have the following intermediate results to upper  bound

Lemma 8.5.6 P(A(a1) = 0;A(a2) =0;:::;A(an) =0) pY, wherepy = p}: 4

Proof: Follows from the fact that in any sequence of n edges of S, there are at least n=4 edges such

that their adjacent rectangles S1(a¢) [ S2(ae) do not overlap. Therefore, P(A(a;) = 0; A(az) =

0;::5;A@R) = 0)  P(N\e20A(ae) = 0), where O is the set of edges for which their adjacent

rectangles S1(a¢) [ S2(ae) have no overlap and jOj  n=4. Since S;(a¢) [ S2(ae); € 2 O have no

overlap, and events A(ae) = 0 are indc;pg_ndent for ac 2 O, the result follows. g
Recall from Lemma 8.3.5, that for xg(x)dx < L andg(:) 1,

0
P(B(a;) =0;B(az) =0;:::;B(an) =0) pY;
where Z

2 1
P2 =exp 1 g(x)dx =<

and K is a constant and 1 is the interference upper bound (Definition 8.5.10) corresponding to M
in Lemma 8.3.5.

Lemma 8.5.7 P(C(a;) =0;C(az) =0;:::;C(an) =0) p§, for some p3 independent of n.

Proof: By definition, events C(a;) and C(&;) are independent if Y (a;) \ 'Y (a;) = . Consider a
circuit Py, in S of length n, with a subset P3 Pn, where PS5 = fajgiz, where for any n;m 2
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I;Y(@n) \Y (am) = . Since Y (a) occupies at most L + % L+1+ % squares of
lattice S, where L = 2 5 , it follows that ilj D where = 8 L+ % 2 1. Thus,
P(C(a1) = 0;C(az) = 0;:::;C(an) = 0)  pf, where p3 = P(C(aj) = O)% and P(C(a;) =
0)=exp( e (Y(a)). O

Lemma 8.5.8 ]P’(D(al) = 0; D(aZ) = O; - D(an) — O) (pm + p21:4 + p31:4)n.

Proof: Follows from Lemma 8.3.6, where event D(a) = 1if A(a)B(a)C(a) = 1. O

Letq = (pﬁ + po'™* + p3¥™). Then from Lemma 8.3.7, we have that if ¢ < 1% 227 10 then

the probability of having a closed circuit in S’ surrounding the origin is less than 1.
Thus, for q = (pm +po ™+ pat™) < %, the

P(closed circuit around origin) < 1;

and hence, P(JCj = 1) > 0 from Lemma 7.2.8. Now we show that for an appropriate choice of
s;t; , we can make ( as small as we like. For any eavesdropper density g, p3 can be made
arbitrarily small by choosing small enough S (side length) and t (radius used to define Y (a)).
Depending on the choice of S, p; can be made arbitrarily small for large enough legitimate node
density , and finally depending on the choice of , choosing small enough , p2 can be made
arbitrarily small. In summary, we see that for any g, there exists a small enough °( ; g)and °
suchthatfor > %and < 9 ; g), SSG® percolates. O

8.5.2 Sub-Critical Regime

In this section, through Theorem 8.5.9, we lower bound the critical density . and show that for any
,and g, there exists a - for which the SSG does not percolate with positive probability, that is,
>
Cc

Theorem 8.5.9 Forevery g Qand 2 (0;1), there existsa ( g; ) > 0 such that for all
< c( &; ).P(GCj= 1) =0inthe SSG.

To prove this result, we define a graph Gg over eavesdropper nodes, such that if the straight line
in R? between two eavesdropper nodes that have an edge in Gg intersects the straight line between
any legitimate node pair Xj;Xj 2 in R?, then (Xi; Xj) 2 SSG, that is, X; and X; do not have
an edge in the SSG. Assume that the eavesdropper graph Gg percolates. Then there are left-right
crossings and top-bottom crossings of any square box of large size in R? by connected edges of the
eavesdropper graph Gg. Since edges of SSG and Gg cannot cross each other, percolation over Gg
precludes the possibility of having left-right crossings and top-bottom crossings of any square box
of large size in R? by connected edges of SSG, which is necessary for percolation in the SSG. Thus,
only one of the two graphs Gg and SSG can percolate. We derive conditions for percolation on Gg
to characterize the sub-critical regime of percolation over the SSG. We show that for any given g
and > 0, if the density of legitimate nodes is below a threshold, then the eavesdropper nodes’
graph Gg percolates.

Proof: Without loss of generality, we consider the case of = 0, where the SINR between any two



198 Random Wireless Networks

o L4 x
X
X ® °
. .
S X X
t
X X X °
s t a °
X ]
. Ti(a) T5(a)
S1(a) S2(a)
.
. . .
X °
X
X .
X

Figure 8.9: Open edge definition on a square lattice for sub critical regime.

legitimate nodes is g(d;j), while the SINR at the eavesdropper nodes remains the same. Thus, two
legitimate nodes X; and Xj are connected in the SSG if

g(dij) SINRje; 82 E:

If we can show that o > - for = 0, then since SSG with > 0 is contained in SSG with
= 0, we have that forall >0, . > -. So the lower bound - for . obtained with =0
serves as a universal lower bound on the critical density  required for percolation.
For the case of = 0, we proceed as follows. Consider a square lattice S with side S. Let
S" = S+ (3;3) be the dual lattice of S obtained by translating each edge of S by (3;3). For
any edge a of S, let S1(a) and Sz(@) be the two adjacent squares to a. See Fig. 8.9 for a pictorial
description. Let T;(a) and T»(a) be the smaller squares with side t contained inside S;(a) and
S, (@), respectively, as shown in Fig. 8.9, with centers identical to that of S;(a) and S,(a).
Lelt;,the interference power received at any eavesdropper e with respect to signal from Xy is

I(!Z‘( = x;2 ;j&k g(ij ej).

Definition 8.5.10 For any edge a of S, we define three indicator variables A(a); B(a); and C(a)
as follows.

1. A(a) = 1ifthere is at least one eavesdropper node of g in both the adjacent squares T1(a)
and T»(a).

2. B(a) = 1 if there are no legitimate nodes of  in S1(8) and S, (a).

3. C(a) = 1 if for any eavesdropper pedee 2 g \ (T1(2) [ T2(a)), the interference received

from all the legitimate nodes le = 5 9(Xk;€) C.

Then an edge a is defined to be open if D(a) = A(a)B(a)C(a) = 1. An open edge is pictorially
described in Fig. 8.9 by a solid edge a, where the black dots represent legitimate nodes while crosses
are used to represent eavesdropper nodes.
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Lemma 8.5.11 For any c, for large enough S, the straight line between two nodes that have an edge
(Xi; Xj) 2 SSG cannot cross an open edge a of S.

Proof: Let two legitimate nodes Xj;Xj 2  be such that the straight line between X; and X;
intersects an open edge a of S. Then by definition of an open edge, Xi; Xj 2 (S1(a) [ S2(a)). Thus,
the distance between X; and X;j is at least S, dij S. Moreover, the SINR between X; and any
eavesdropper node € 2 (T1(a) [ T2(a)),

g(die)_
1+¢c’

SINRje

since edge a is open and hence, ¢ ¢ for any e 2 (Ty(a) [ T2(a). Thus, choosing s large
enough, we can have g(dij) < SINR;e for any € 2 (T1(a) [ T2(a)), and hence, X; and X; cannot
be connected directly in SSG if the straight line between them happens to cross an open edge
aof S. O

Lemma 8.5.12 If percolation happens on square lattice S for large enough S for which an edge
(Xi; Xj) 2 SSG cannot cross an open edge a of S, then the connected component of SSG is finite.

Proof: Consider a square box By=, of side N centered at the origin. Let S be large enough such
that the straight line between two nodes that have an edge (Xi;Xj) 2 SSG cannot cross an open
edgeaof S (Lemma 8.5.11). LetL ¥ Rand T ¥ D denote the left-right and top-bottom crossing.
If percolation happens on square lattice S, then

Nli'ml]P’ 9alL ¥ RandT ¥ D crossing of Bn=; by open edges of S = 1: (8.17)

We use contradiction to conclude the result. Let there be an infinite connected component in the
SSG with probability 1. Then, necessarily

Nli.m:LIP’ 9aL " RandT ¥ D crossing of By=p by SSG = 1: (8.18)

Since for large enough side length s of S an edge (Xj; X;j) 2 SSG cannot cross an open edge a of
S, (8.17) and (8.18) cannot hold simultaneously. O

Next, we show that for any g, square lattice S percolates for small enough density of legitimate
nodes , as long as S is such that an edge (X;; Xj) 2 SSG cannot cross an open edge a of S.

Theorem 8.5.13 For large enough s that ensures that (Xi; Xj) 2 SSG cannot cross an open edge
aof' S, forany g, S percolates for a small enough density of legitimate nodes

Proof: Similar to the proof in the super-critical regime, we need to show that the probability of
having a closed circuit surrounding the origin in S is less than 1. Towards that end, consider the
probability of a closed circuit of length n,
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where (1 = pf‘l andpa=1 1 exp gt? % is the probability that there is no eavesdropper
in either T1(a) or T»(a). Similarly, following Lemma 8.5.6,

P(B(a1) =0;B(az) =0;:::;B(an) =0) a5}

where g2 = pg - andpg = 1 exp( 2 s2) is the probability that there is at least one legitimate
node of in Sp(a) or Sz(a),

P(C(a1) =0;C(a2) = 0;:::;C(an) = 0) q3;

R
where g3 = exp 2? g(x)dx & following Lemma 8.3.5, and finally

n

Par+ i + g™

following Lemma 8.5.8. Let q = qu + q;:“ + q?l,:4.

Using Lemma 8.3.7, percolation happens in S if we can get < for sufficiently small > 0.
Let us fix such a 0. Then, by choosing t large enough, we can have " 1 < 3. Moreover, for
fixed interference upper bound c, let s be large enough such that for any pair of legitimate nodes
Xi; Xj 2 (S1(a) [ S2(a)) for which the straight line between them intersects an open edge a of
S, g(dij) < SINRje for any e 2 (T1(a) [ T2(a)). Now, given c; t; and S, we can choose small
enough so that q%=4 < 3z and qé=4 < 3. Thus, we have that ¢ <  as required for an appropriate

choice of c;t;sand ,forany g. O

Thus, from Theorem 8.5.13, we have that square lattice S percolates. In addition, from Lemma
8.5.12, we know that for small enough legitimate node density ,SSG with = 0 does not percolate
as long as S percolates, completing the proof. g

8.6 Reference Notes

Percolation on the SINR graph was first studied in [2] with a finite support path-loss function, and
later generalized in [3] for all path-loss functions. Connectivity on the SINR graph over a one-
dimensional network was studied in [5] that was generalized for the two-dimensional network in [4].
The distance-based secure model was introduced in [8, 9] and studied in [8—10]. Percolation results
for the more general secure SINR graph with a finite support path-loss function can be found in [11],
and for all path-loss functions in [12].
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Chapter 9

Throughput Capacity

9.1 Introduction

We are at the final frontier of this book, where we study the concept of transport capacity of a
random wireless network. The transport capacity captures the maximum number of bits that can be
transported across the network multiplied by the distance they (bits) travel. Neglecting the effect
of distance, transport capacity becomes the throughput capacity, which measures the successful
sum-rate of the transmission between all pairs of source—destination pairs at the same time. For a
random wireless network located in a bounded area, the average source—destination pair distance
is a constant, and hence, it is sufficient to analyze the throughput capacity rather than the transport
capacity. Following this, in this chapter, we analyze the throughput capacity of a random wireless
network and present its fundamental characterization.

We begin by deriving an upper bound on the throughput capacity of a random wireless network
under the SINR model, where communication between two nodes is successful if the signal-to-
interference-plus-noise ratio (SINR) between them is larger than a threshold. We show that the
throughput capacity of a random wireless network with n nodes cannot scale faster than order = n
under the SINR model. Next, using results from percolation theory, we construct a three-phase
achievle_a)ble strategy, where nearest neighbor routing is used, which achieves the upper bound of
order © N on the throughput capaci% scaling under the SINR model.

To identify whether the order = n scaling is fundamental or a result of the considered SINR
model, we next turn toward an information theoretic upper bound on the throughput capacity and
show that no matter what strategy one uses, the throughput capacity of a random wireless network
cannot scale faster than order nInn. Next, we present the most remarkable result of this chapter,
which shows that almost linear scaling of the throughput capacity can be achieved, that is, each
source can communicate at a constant rate with its destination simultaneously, leaving a gap of only
order Inn between the upper and the lower bound. This in turn shows that the nearest neighbor
routing strategy is not optimal in general.

Almost linear scaling of the throughput capacity is achieved by a hierarchical cooperation
strategy, where we progressively combine weak strategies with small throughput capacity scalings
to get an overall strategy with better throughput capacity scaling. In particular, the network is
divided into smaller clusters, and the given weak strategy is used within each cluster for
intra-cluster communication. Inter-cluster communication is accomplished via a virfual multiple

202
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antenna channel. By reducing the number of hops between source—destination pairs and exploiting
the multiplexing gain of multiple antennas, the new strategy provides a better throughput capacity
scaling. Recursing this procedure with the new strategy, we can build better and better strategies
with throughput capacity approaching linear scaling.

For most part of this book, and this chapter, we consider a dense wireless network, where we
fix the area of operation and increase the density of nodes. An alternate model is what is called as
the extended network, where we fix the density of nodes and increase the area of operation. Dense
and extended networks are fundamentally different, the former being interference-limited, while
the latter is power-limited since ensuring minimum received SNR with increasing distances is a
challenge. In the last section of this chapter, we present results on the throughput capacity of the
random extended wireless networks that are fairly different than the results for dense networks. For
example, we show that for path-loss exponents larger than 3, the nearest neghbor routing strategy is
in fact optimal, and the throughput capacity cannot scale faster than order ~ n.

9.2 Throughtput Capacity Formulation

Consider the unit square S; and assume that N nodes = X3;:::;Xn0 are distributed uniformly
randomly in S;. Each node X; has a destination that is defined to be the node in nfx;g that is
closest to a randomly chosen point in S;. Ignoring edge effects, the average distance W between any
source—destination pair is a constant. Packets between source—destination pairs travel over multiple
hops, where in any hop, a receiving node decodes an incoming packet, and then either re-transmits
it to the next node or buffers it up for a later retransmission.. Finding routing paths for packet
forwarding between different source—destination pairs is also part of the problem.

We let each node to have a single antenna each and consider the path-loss model. For ease of
exposition, we assume that each node transmits unit power, and the SINR between nodes X; and X;
with distance dijj = jX;  Xjj at time tis

SINR;j (t) = —P di : ©.1)
! 1+ X2 nnfx;g 1k(t)dkj

where 1, (t) is the indicator variable denoting whether node Xy is active at time t or not.

SINR model: With the SINR model, the transmission between nodes X; and X; is deemed to
be successful at time t if the SINR between them at time t is larger than a threshold , that is,
SINR;j(t) > . Thus, the rate of transmission between X; and X;, if successful, is B( ) bits/sec/Hz.

Remark 9.2.1 In this chapter, we will primarily deal with the SINR model, but another model of
interest is the protocol model, where communication between nodes Xj and Xj is defined to be
successful if there is no other transmitter in a disc of radius (1 + )jXi  X;] around the receiver
Xj. The quantity  defines a guard zone around each receiver.

Definition 9.2.2 We define a per-node throughput of t(n) bits/sec/Hz to be feasible if there is a

spatial and temporal scheduling strategy, such that each node can send t(n) bits/sec/Hz on average

to its randomly chosen destination. The per-node throughput capacity is defined to be of order
(f(Nn)) bits/sec/Hz if there exists constants C1 and Cp such that

r_'Ii.ml P(t(n) = c1F(n) is feasible) = 1,
Iinnl igf P(t(n) = cof(n) is feasible) < 1,

where the probability is over random node locations.
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Summing over all N nodes, we define throughput capacity of the network to be T(n) = nt(n),
orT(n) = (nf(n)).

Definition 9.2.3 For any wireless network, we define that the network transport one bit-meter if one
bit is successfully transmitted to a distance of one meter toward its destination. Then the transport
capacity is defined to be the sum of all such bit-meters across the network.

Remark 9.2.4 For a random wireless network, where N nodes are distributed uniformly randomly
in an unit area, the average distance between source-destination pair is W = (1). Therefore,
assuming a symmetric traffic demand of t(n) bits/sec/Hz/node, the transport capacity of a random
wireless network is WT(n) = (T (n)). Thus, to characterize the transport capacity of a random
wireless network, it is sufficient to study the throughput capacity of a random wireless network as
done in the rest of this chapter.

It is important to compare the definition of the throughput capacity under the SINR model and
the transmission capacity definition (Definition 2.2.4) of Chapter 2 that we have used in the earlier
chapters of this book. The philosophy behind the throughput capacity definition is that it tries to
capture how much data can be “transported” across the network with n nodes per unit time, using
multi-hops between randomly placed source-destination pairs. In contrast, transmission capacity
counts the number of successful transmissions satisfying the outage probability constraint
P(SINR < ) , over a single hop and fixed source-destination distances. Throughput capacity
takes a network-wide view of data dissemination and critically depends on routing protocols, while
in contrast, the transmission capacity tries to express the physical layer aspects of the network, for
example, effect of signal processing algorithms and multiple antennas.

Another important distinction between the two capacity definitions is in the definition of
successful transmission event. The transmission capacity uses an outage probability constraint
P(SINR ) and counts the number of successful transmissions satisfying the outage
probability constraint. In contrast, in the throughput capacity definition, we are counting the
number of nodes that can simultaneously transmit, so that the SINR (realization and not the
probability) for each pair of transmissions is above a threshold.

In Sections 9.2.1 and 9.2.2, we show that under the SINR model, the per-node throughput

capacity t(n) of the random wireless network is F% . This is indeed a negative result, since it
shows that as the number of nodes increase, the per-node throughput goes down to zero.

9.2.1 Upper Bound on the Per-Node Throughput Capacity t(n)

Theorem 9.2.5 The per-node throughput capacity t(n) of random wireless network under the SINR
model is t(n) = O éﬁ .

The main idea of the proof is to show that if a transmission between a tagged transmitter—receiver
pair is successful in the SINR model, it precludes the possibility of other transmitters lying physically
close to the tagged receiver. Thus, each successful transmission consumes a minimum area (bounded
from below) of the unit square S1, and since the total area of S; is bounded, the total number of
simultaneously successful transmissions are also bounded. Since the rate of transmission between
any transmitter-receiver pair is B (fixed), this gives us an upper bound on the throughput capacity.
Proof: To upper bound the per-node throughput capacity, we map the SINR constraint on successful
transmissions to a spatial separation constraint between any transmitter—receiver pairs that are active
at the same time.
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Let the transmission from node X; be successfully received at node X;j at time t. Moreover, let
transmission from node X be also successfully received at node X- at time t. Thus, both SINR;; (t) >
and SINRg:- (t) >
Therefore, by the definition of SINR;; (t) (9.1), we have

d;;
P ; = 9.2)
1+ 2 g Im(Ddn,;

Since node X is also transmitting, that is, 1k (t) = 1, from (9.2), we get

d..
b o> 9.3)
dkj
which implies that
X x>0+ )X X, 94
where = & 1, thatis, for communication to be successful between a tagged source-destination

pair, the distance between them has to be less than a scaled multiple of the distance between any other
active transmitter and the tagged receiver. Hence, with the SINR model, if two transmitter-receiver
pairs can simultaneously communicate with each other successfully, they have to be sufficiently
separated in space, as shown in Fig. 9.1. The quantity = defines a guard-zone/exclusion region
around each receiver, as shown in Fig. 9.1, where an interfering transmitter cannot be present.

The spatial separation constraint (9.4) imposed by the SINR model is identical to the protocol
model (Remark 9.2.1), where any node is allowed to transmit if it satisfies (9.4) for all receivers in
the network, except the intended receiver.

Since the SINR constraint implies a spatial separation constraint, that is, SINR model implies
a protocol model with appropriate , the transport capacity with the SINR model is bounded from
above by the transport capacity of the protocol model. Next, we derive an upper bound on the
transport capacity of the protocol model to get an upper bound on the per-node throughput capacity
of the random wireless network.

As before, let communication between transmitter-receiver pairs (Xi;Xj) and (Xi;X:) be
simultaneously successful. From the triangle inequality, we have

i X Xio Xk jXe o Xk
> 1+ )ixi X)X Xk 9.5)

where the second inequality follows from (9.4).
Similarly, we can get

Xeo X =1+ )X XX X! 9.6)
Combining (9.5) and (9.6), we get
X< Xjj > > (% X j+jxi X)) 9.7

Condition (9.7) implies that the two discs B Xj; 5jXi Xjj and B X:; 5jXk X:j of radius
»JXi Xjjand 5jXk X:]j centered at receivers Xj and X+ do not overlap as shown in Fig. 9.2. Thus,
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Exclusion Region

Figure 9.1: Shaded region is the guard-zone based exclusion region around the receiver Xj, where
no transmitter (squares) other than the intended transmitter X; is allowed to lie.

Disjoint discs

B (¢, Zlok — x) B (zj, §lzi — zjl)

Figure 9.2: Shaded discs around the two receivers (dots) Xj and X- are not allowed to overlap for
successful reception at both Xj and X- from X; and X, respectively.

if we consider the set of all simultaneously active successful transmissions A(t) at any time t, we
have that all discs of radius - times the transmission distance (distance between the transmitter and
its receiver at time t) centered at the successful receivers have to be non-overlapping. Equivalently,
what we have shown is that each successful transmission requires a certain exclusive area of Sy,
and since the total area of S; is 1, the total number of successful transmissions can be bounded as
follows.

It can be the case that nodes Xj; Xj 2 Sy, but B Xj; 7in Xjj 6 Si.However, even in this
case, one can easily argue that the area of the disc B Xj; =jXi X;jj that lies inside S is at least
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Ti

T B(zi,r)

S1

Figure 9.3: Overlap of B(X;; jXi  X;j = r) with S; when X;; X; 2 S;.

zi of the area of disc B X;j; 7in Xjj , whenever X;j; Xj 2 Si. To see this, consider Fig. 9.3,
where for Xj; Xj 2 S1, the minimum overlap of disc B(Xi;jXi Xjj = r) with Sy is achieved if
Xj and X;j lie on the diagonally opposite corners of Sy, in which case S; B Xj; %jXi Xjj and
exactly Zi fraction of the area of B Xj; wjXi Xjj isinside S;.

Thus, only accounting for the zi fraction of the exclusive area of B Xj; 5jXi Xjj occupied
by each successful transmission, and summing over all areas corresponding to the set of
simultaneously successful transmissions A(t), we have that

> 2
N 7 iji Xj] 1 9.8)
@@2AM0

Using Cauchy—Schwarz inequality, we get

< _ S—<— - <
Xi o Xj] (xi  xjj) 12;
(i:)2A®) (i:)2A®) (i:)2A1®
S—x<

(xi  xji) JAQ)i;
(1)2A(1)

N
ey

. L2 N

(xi X)) Ei
(I1)2A()

r

8
T2

S

> from (9.8);

where the third inequality follows since at most half the nodes transmit at any time t, that is, JA(t)j
n

5.
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Thus, summing over all the successful bit-meters, the transport capacity of the protocol model
at any time t is upper bounded by

x< . 2B _
B() ix xj) 2OPH 9.9)
(L))2A(1)

where B( ) is the rate of transmission between any two nodes with SINR constraint of . Since,
we know that the SINR model is equivalent to a protoi‘:s)l model with = 17 1, therefore, the
transport capacity with the SINR constraint is also O(' n).

Recall that the transport capacity of the random wireless network is WT(IB = Wnt(n), where
W = (1) is the average source-destination distance. Thus, Wnt(n) = O(" n), and we get that
the per-node throughput capacity of the wireless network with SINR constraint scales as

1
t(n) =0 &ﬁ

O
There is one fine point to be noted in this discussion. We have used a binary rate of transmission,
that is, rate is B( ) if SINR >, and zero otherwise. One can argue that if the minimum separation
between successful transmitter-receiver pairs is limiting the throughput capacity, then to be fair, the
rate obtained between each transmitter-receiver pair should be made dependent on the SINR between
them, that is, rate should be log(1 + SINR) from the Shannon’s formula. It turns out tbat even with
the SINR-dependent rate definition, the throughput capacity cannot scale faster than ~ n as shown
in [1].

Remark 9.2.6 In the process of proving Theoerem 9.3.1, we have shown another result, that the
transport capacity of any arbitrary wireless network, where N nodes are located arbitrarily (not
randomly) in a unit area, and source-destination choices are also arbitrary can at best scale as
O( n) under the protocol model. A matching lower bound can also be shown when
source-destination pairs are located on a grid [2].

9.2.2 Lower Bound on the Per-Node Throughput Capacity

In this section, we show that the upper bound of O éﬁ derived in Theorem 9.2.5 is actually

achievable. Toward that end, we will use results from percolation theory and ideas presented in
Section 7.2.

Theorem 9.2.7 A per-node throughput of t(n) = {iﬁ is achievable with the SINR model.

The main idea behind the proof is as follows. Assume that there exists equally spaced horizontal
and vertical connected paths (called highways) crossing the unit square S;, where each highway
can support a unit capacity simultaneously. Such a construction will be guaranteed by results from
percolation theory (Theorem 7.2.12 and Theorem 7.2.13), even though highways will not be perfect
straight lines, however, no two horizontal or vertical highways will have any intersection. Then think
of a simple driving strategy to reach location B from location A in S; (A corresponds to a source
and B to a destination), where we first enter the horizontal highway at a point that is nearest to
location A, and then switch to the vertical highway that is closest to location B, and exit the vertical
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s

open edge

Sy
(a) (b)

Figure 9.4: Left figure defines a tiling of Sy by smaller squares of side #=. On the right figure we
join the opposite sides of square by an edge (dashed line) and define it to be open (solid line) if the
corresponding square contains at least one node in it.

highway at the point closest to location B. We show that with randomly locatetblocations A and B
for different users, each of the horizontal and verticaHlighways serve at most = N users with high
probability, and thus a per-user throughput of order 1=" n is achievable, since each highway has unit
capacity.

Proof: As before, n nodes of |, are distributed uniformly randomly in S;. Consider a tiling of S
by smaller squares Sjj of side P= with 45 deg orientation as shown in Fig. 9.4 (a). Any square Sj;
is defined to be open if at least one node of p, lies in Sjj, and defined to be closed otherwise. Since
nodes are distributed uniformly randomly, squares Sjj are open and closed independently, and

P(sijisopen) =1 (1 Z=n)" 1 exp( 2);

for large n.

Now we connect an edge (dashed line) between opposite corners of each small square as shown
in Fig. 9.4 (b), and define the edge to be open (solid line) or closed (dashed line) depending on
whether the square containing it is open or closed. Thus, we get a square grid, where each edge is
open/closed independently, and for which we can use results from Section 7.2 to study formation of
connected paths over the square grid.

Let us partition S into horizontal rectangles R;’s of size f@% In {%ﬁ 1, as shown in Fig. 9.5.
Since S; is a scaled version of box B,-, a square with side n, from Ther())rem 7.2.13, we know that
for large enough PP(s;jj is open), that is, for large enough , there are In pii ( = ()= 0)disjoint
left-right crossings (called highway hereafter) of each rectangle R; 2 S; by lglle connlggted edges of
the square grid with probability 1 as n goes to infinity. Thus, for each of the {éipn: In pii rectangles,

there are at least In pﬁi disjoint left-right crossings. Similarly, defining vertical rectangles, we can
get the same conclusion about top-bottom crossings of S; .
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Figure 9.5: Partitioning S; into rectangles of size 49% In pzﬂ 1, where each rectangle contains at

pP—
least In Pii disjoint left-right crossings of the square grid defined over S;.

For any two consecutive connected open edges of the square grid, there is at least one node
in each of the two corresponding smaller squares, thus, one can think of these left-right and top-
bottom crossings of S; as horizontal and vertical hjghways, where inter-hop distance between any
two connected nodes on the highways is less than 2 Ei@kﬁ, since the edge length is Eimﬁ.

Moreover, we divide each rectangle horizontally into slices of width éf’ﬁ 1, where w is chosen
so that the number of sliceE within any rectangle is less than or equal to the number of left-right
crossings (highways) In 19§L of each rectangle. Then we associate each slice with one of the
highways.

We first compute the total achievable throughput on these highways. An edge being open means
the corresponding square contains at least one node. Designate any one node of the square as relay
that acts as the sender and the receiver for the square corresponding to the open edge of the
horizontal highway. Note that the distance between gny two consecutive relays lying on any
horizontal or vertical highway is less than equal to 2° 2+, since the inter-hop distance on any
highway is 2° 2#=.

We next show that if relay nodes employ a time-sharing strategy, then we can achieve a constant
total throughput on each highway.

Lemma 9.2.8 A time-sharing schedule in which each relay on any highway transmits once every K?
time slots achieves a constant throughput along each highway, where K is a constant that depends
on the SINR threshold and the path-loss exponent
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Figure 9.6: Time-sharing by relay nodes using K? different time slots, where at any time relays
lying in shaded squares transmit.

Proof: We divide the set of relays into K?2 equal-sized groups Gp;m =1;:::; K2, where any two
relays in a single group lie in squares that are at least at a distance of K = from each other as shown
in Fig. 9.6, and only one group is active at a particular time. We consider the SINR between two

onsecutive relays I and rj+1 on any horizontal or vertical path, where without loss gf generality
ri 2 G;. As noted before, the distance between any two consecutive relays is at most 2 iﬁkﬁ, then
with unit power transmission, the signal power received at rj41 from rj is at least

2p§|&ﬁ : (9.10)

Next, we look at interference power seen at relay rj+;. Because of time-sharing, the interference
seen at relay ri41 is coming from multiple levels of relays, where in level *, there are 8° relays that
are at a distance of (‘K 1)#= from relay ri+; as shown in Fig. 9.6. Thus, the total interference

power seen at i+ is upper bounded by
x< ] b ¢ 8¢
i Ti+)
i2Gyj&i =1 (‘K 1)ps

(9.11)

Hence, the SINR between rj and rj+1 is bounded as follows.

TR
SINRi;i+1 — P Jri i+1)

1+ joejeilfi Tl
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2p§pﬁ
P 5 ; from (9.10) and (9.11);
1+ o, —5 -
=l Kk D=
23 _
l_) )
_ o+ 8 -
i%n K« =1 ((‘ %))
. P, ]
It is easy to check that 9 a constant ¢ > 0, such that  Z; GESE cfor >2and K > 1.
K
Thus, we get
3
I 5 M
Choosing K = 2 2(8c )= , we have that SINR;.j+1 > as required for successful

communication between relay r; and Ij+1. Most importantly, note that the time-sharing parameter
K is a constant, hence, we get that each relay on the highway can get a constant throughput per unit
time.

O

Next, we define a three-phase protocol to show that the throughput of order F;'ﬁ is achievable for
each node.

Phase 1: Draining Recall that each rectangle is horizontally divided into slices of width d’ﬁ 1,
where the number of sliceg ~within any rectangle is less than or equal to the number of left-right
crossings (highways) In péi of each rectangle.

In the draining phase, each node lying in the ith slice transmits to its nearest relay on the it
horizontal highway of its own rectangle. From the Chernoff bound (Lemma 7.3.7), we know that
each smaller square sjj with side #5 contains at most 2Inn nodes with high probability. We will

let each of the 2 In n cohabitants of any smaller square S j time share equally to access their nearest
relay.

Next, we find the throughput achievable from any one node of a square to its nearest relay
assuming that there is Fg)nly oneg node in each square.

P_
Since there are ®5-=In p- horizontal rectangles in Sy, each containing at least In Pz
disjoint left—gight crossings of Sj, the distance between any node and its nearest relay is no more

n

2In p5= . .
than —p=—>= as shown in Fig. 9.7.
Similar_to LSEnma 9.2.8, we can show that since any node and its nearest relay are at most

n

2In p=
. 2 . 2 . . .
distance —P=—2= away, using a K“(n) phased time-sharing protocol across different squares,

pP_
Km) =226 ): P2in % :

where

each node can get a throughput of order @ to their nearest relay. Since all nodes (at most 2 Inn)

within each square equally time-share, the per-node achievable throughput is order Wn)lﬁ =

1
(Inn)3-
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Figure 9.7: Each node (black dots) connects to its nearest relay (hollow circle) and tIFl)e distance
c 2In pii

between any node and its nearest relay is no more than the width of the rectangle —p=—>=.

Phase 2: Highway In the highway phase, the packet is first transmitted horizontally and then
vertically toward its destination. The packet is switched over to the vertical highway that is nearest
to the destination in the vertical highway.

Any relay on the left-right crossing or highway path lying in slice i of any rectangle serves only
those nodes that lie within slice i. From the Chernoff bound, we know that each slice of width ié“’ﬁ

contains at most Wpﬁ nodes. Thus, each relay has to route data for at most (pﬁ) nodes, and since
each highway can support a constant throughput (Lemma 9.2.8), a per-node throughput of 19%

is achievable. Vertical highway analysis follows identically.
Phase 3: Delivery Delivery phase is identical to the draining phase, where the packet is
delivered to the destination from the nearest relay on the vertical highway. Thus, it follows that the

delivery from the nearest relay to the destination can also be done at a per-node throughput of

1
(Inn)3 -

Hence, we have shown that among the three phases, Phase 2 (highway-phase) is the bottleneck,
where a per-node throughput of F}ﬁ can be achieved, completing the proof.

0
In the initial paper by Gupta and Kuma{q[2], a similar achievable strategy of partitioning the
square Sy into smaller squares S;j;j of side % was proposed but it achieved only a per-node

throughput of pﬁ compared to the three phase strategy [S] presented above to prove

Theorem 9.2.7 that achieves a per-node throughput of F% . The limiting factor of the
strategy [2] was its routing protocol. Let line L be the straight line between the source-destination
pair i. Then hop-by-hop, the packet for destination i is forwarded to a node lying in a square that
intersects L, where any one node acts as a forwarder (receiver and transmitter). Thus, the overall
throughput is limited by the maximum number of lines L; that cross any one particular square,
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since nodes in that square can only transmit at rate proportional to the reciprocal of the number of
lines crossing it.
The best bound one can show is that

o)
P supfnumber of lines intersecting square Sj:jQ 1 ninn ¥ 1 (9.13)
H]

Hence, the per-node throughput capacity with this strategy is pﬁ .

By now, we have shown that under the SINR model, the per-node throughput capacity is p% ,

which is essentially a negative result, since the throughput of each node goes down to zero as we
add more and more nodes/users in the system. One natural question to ask at this stage is “whether
this scaling result is fundamental or a manifestation of the considered assumptions, such as the
SINR model, no cooperation between different nodes, and nearest-neighbor multi-hop routing?. To
answer this question, in the next section, we first consider an information theoretic upper bound
on the throughput capacity, and then present a hierarchical cooperation strategy that achieves the
information theoretic upper bound upto an order In n factor.

9.3 Information Theoretic Upper Bound on the Throughput
Capacity

In Theorem 9.2.5, we derived an upper bound of O(pﬁ) on the throughput capacity of a wireless
network under the SINR model of communication. Ideally, we would like to know a protocol/model
independent upper bound in the spirit of Shannon capacity, where no matter what the model is, or
how smart the signal processing is, that upper bound cannot be breached. For this purpose, in this
section, we work toward an information theoretic upper bound and show that the throughput capacity
of a wireless network cannot scale faster than order nInn.

In this section, we consider the same assumptions as in Section 9.2, except now we consider the
fading-plus-path-loss model of wireless signal propagation, where the received signal at node X; at
time t is

X
yi(t) = dij exp( k(1) sk(t) +w;(t); (9.14)
k2[1:n];k&j

where Sk (t) is the signal transmitted by node Xk at time K, w;j(t) is AWGN with zero mean and
unit variance, and j(t) is the random phase between nodes Xk and X; at time t, that is i.i.d.
across time slots. The main idea behind considering the fading-plus-path-loss model is to obtain
multiplexing gain similar to the point-to-point multiple input multiple output (MIMO) channel, by
allowing multiple distributed nodes to collaborate for transmission and reception, forming a virtual
multiple antenna channel.

Note that this model is a slight deviation from our usual fading-plus-path-loss model, where we
typically have >
yi(t) = dij hij sk (t) + w;(1); (9.15)

k2[1:n];k&])
where hy; (t) = jhgj(t)jexp ( kj(t)) consists of attenuation by multi-path and the random phase.

In (9.14), we have ignored the multi path attenuation, that is, jhy;j (t)j = 1. This simplification allows
us simpler analytical exposition, though the results presented next extend to the general case as well.
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9.3.1 Upper Bound on Throughput Capacity T(r) = O(n In n)

Theorem 9.3.1 The throughput capacity of a wireless network is T(n) = O(nlInn).

Proof: Consider a source-destination pair X ; X2. Then the rate of communication between X; and
Xz is clearly upper bounded by the rate of communication between X; and nfX;g, where we
assume that all nodes of nfX;g are collocated and have access to each other’s received signals
without any additional noise. This is equivalent to a point-to-point communication setting between
a single trangmit antenna and N 1 receive antennas, for which the capacity is upper bounded by

log 1+ ©,d

i : Thus, the throughput of any source-destination pair is upper bounded by

O O 11

1j

X
R() log@1+@ d;; AA: (9.16)
j=2

We can bound the R.H.S. as long as d;j is bounded. Recall that n nodes are uniformly

distributed in a unit square S1, hence the probability that d;j is greater than nl%" forany > 0is
equal to the case when none of the n 1 nodes lie inside a disc of radius n%h with center X;j. Thus,

1 1 n 1
Taking the union bound over all nodes,
]
1 1 n 1°
Thus, limpx 1 P min;;j dij < & =0, forany > 0, and hence there is a minimum separation

of nl% between any two nodes of the network with high probability. Therefore, from (9.16), we
have

O O 11
X
R(n) log@1+@ np'* AA; (9.19)
i=2
clnn: (9.20)

Thus, per-node throughput cannot scale faster than order In n and counting for all n nodes, we get
T(n) O(nlinn):

O

To derive this upper bound, we have assumed that for each source, all the N 1 nodes can

collaborate (noiselessly) to receive the signal for the corresponding destination, and all source

transmissions can be scheduled simultaneously without any interference, which is clearly a gross

simplification. Remarkably, we will show next that a hierarchical cooperation strategy can achieve

an almost linear scaling of the throughput capacity, leaving only a gap of order Inn between the
upper and the lower bound.
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Phase 2

Figure 9.8: Hierarchical layered strategy for achieving almost linear scaling of the throughput
capacity.

9.3.2 Achieving Throughput Capacity of T(n) = n' ?

In this section, we describe a hierarchical cooperation strategy proposed in [3] to achieve almost
linear scaling of throughput capacity with the number of nodes N. Assuming that there is a strategy
P with T(n) = n®0 b < 1 (a simple time-sharing strategy has T(n) = (1), i.e., b = 0), the
two key ideas behind the hierarchical cooperation strategy are

1. Partition the unit square S; into small clusters and use P simultaneously in sufficiently
separated clusters to exchange all bits of all nodes within the cluster. One can show that a
constant fraction of clusters can do this simultaneously.

2. Then for each source-destination pair, consider the corresponding clusters, called the source
and destination clusters. For transmitting any one source’s bits, schedule long-range
communication between all the nodes of the source and the destination clusters, which
resembles a multiple antenna channel. Long-range communication is done for the n sources
serially in N time slots. Within each cluster, each receiver quantizes the received signal to Q
bits and sends it to the destination, with intra-cluster communication using P.

The throughput capacity of this new strategy critically depends on the cluster size, since smaller the
cluster size, less multiplexing gain is available for the long-range communication, while large cluster
sizes require larger intra-cluster communication overhead. Choosing the cluster size such that each
cluster has Nz 5 expected number of nodes, one can show that the new strategy has T(n) = nzs.
Since for 0 b <1, ﬁ > D, the new strategy has a higher throughput capacity. Recursing
this procedure multiple times, which resembles a hierarchical structure as shown in Fig. 9.8, one
can achieve T(N) = n | for any > 0. This idea of combining short-range and long-range
communication was first presented in [4], which showed a strategy with T(n) = n?=3, which was
later refined in [3] to get an almost linear scaling of throughput capacity as stated next.

Theorem 9.3.2 For any > 0, there exists constants K( ) > 0 such that with high probability,
with hierarchical cooperation, the throughput capacity

T(n) K()n'

The proof of Theorem 9.3.2 critically depends on the following Lemma that shows that if there
exists a strategy with throughput capacity of T(n) Kin° forany 0 b < 1, then one can use that
to build another strategy (hierarchical cooperation) with throughput capacity of T(n) Kgnﬁ.
Since for0 b <1, ﬁ > b, the new strategy provides a better scaling of the throughput capacity.
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Lemma 9.3.3 For > 2, let there exists a strategy with
T(n) Kin®

for0 b <1 with probability L exp (n°t) for ¢c; > 0, where each node uses power % . Then
one can construct another strategy with a higher throughput capacity

T(Nn) Kznzf1b

with probability 1 exp (N®2) for ¢, > 0, where each node again uses power % .

Since we are going to recursively use older strategies to produce better ones, it is necessary to
ensure that per-node power of each new strategy is % so that the per-node power used by the

final strategy remains bounded.
Remark 9.3.4 Lemma 9.3.3 holds with a scaling by ﬁ for =2, thatis, if there is a strategy with

nb

for 0 b <1 with probability 1 exp (N°t), then one can construct another strategy with

.
nz s

with probability 1 exp (n°2). The scaling with In N appears because the interference received at
any cluster with a time-sharing protocol scales as Inn for = 2.

We first present the proof of Theorem 9.3.2 using Lemma 9.3.3, and thereafter describe the
proof of Lemma 9.3.3.

Proof: (Theorem 9.3.2) To make use of Lemma 9.3.3, we need a strategy to begin with. Let that be
the simplest time-sharing strategy, where there is direct transmission between each
source-destination pair, which take turns and only one source-destination pair is active at any time
slot. Thus, using (n) slots, all source-destination pairs can communicate at a constant rate.
Therefore, the throughput capacity of the time-sharing strategy is T(n) = (1), thus satisfying
T(n) = nP for b = 0. Moreover, the probability of achieving T(n) = (1) is 1, since all
communication happens in orthogonal time slots, and since each node transmits once in n slots, the
transmit power is % for each node. This is our base starting point.

Starting with b = 0, applying Lemma 9.3.3 recursively m times, we get that there exists a

strategy with T(n) n=+1 . Thus, givenany > 0, we can choose m such that 0> >1 |
proving the desired existence of a strategy with
T(n) (n* )

O
Now we present the proof of Lemma 9.3.3, which shows that there is a way of hierarchically
building a better strategy using a weaker strategy in terms of the throughput capacity.

Proof: (Lemma 9.3.3) We divide the unit square S; into smaller squares/clusters S;;j with area (s),
where each cluster contains M = (S)n nodes on average, as shown in Fig. 9.9. Using Chernoff
bound, we can show that each cluster contains (M) nodes with high probability as follows.
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Lemma 9.3.5 Forany > 0, the number of nodes lying in any smaller square/cluster S with area
(s) lies in the interval [(1 ) (s)n; (L + ) (S)Nn] with probability at least

1 exp( c( ) (s)n);

2
(s)
where ¢( ) > 0 for > 0and is independent of n and (S).

In particular, we will assume that each cluster contains M nodes. We restrict our attention to a
particular source-destination pair S D that lie in non-adjacent clusters, where S intends to send M
bits to D using the following three phase strategy. Remark 9.3.6 points out how to handle the case
when S D lie in the same cluster or in adjacent clusters.

1. Short-range cluster cooperation: S distributes its M bits to the M nodes in its cluster, one bit
to each node. Within a cluster, there are M nodes, and each wants to send M bits to its other
M nodes in the cluster. Thus, the total traffic demand is for M 2 bits. One can think of this as
small-scale counterpart of the original problem, where M? bits need to be communicated in a
network of M nodes spread over an area of size (S). We divide this communication over M
sessions, where in each session a designated set of M source-destination pairs exchange their
1 bit. M sessions are held in series one after another, completing the traffic demand. Phase 1
is illustrated in Fig. 9.9.

For this intra-cluster communication, we make use of the strategy given by the hypothesis that
promises a throughput capacity of T(M) = (MP). Therefore, each of the M sessions can be

Ny b b

[ y=—

pesm— )

=N\ /&
.\j

0.<—>.

== g

M nodes o~ =0 oy <@
i}\[acl?lster 1{‘./ ‘. 5’ 1 ¢E§ZZ§.
s a5 <

Figure 9.9: In phase 1 all nodes in a cluster exchange their bits, where only the clusters in shaded
squares are active at any time.
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Figure 9.10: Sequential transmission of information between all M nodes of two clusters over long-
range multiple antenna communication.

completed in M1 ® time slots, and all M sessions can be completed in M2 ° time
slots. We need to show this rigorously (Lemma 9.A.1), because we are now working over a
smaller area (S) rather than S; as promised by the hypothesis.

We note an important point that multiple clusters can be active at the same time as long as they
are sufficiently separated by a constant distance as shown in Lemma 9.2.8, since interference
seen at any receiving node can be bounded by a constant for > 2. Therefore, using a
constant time-sharing parameter, all clusters can finish their M sessions in M2 P time
slots.

2. Long-range virtual MIMO transmission: Consider a single source-destination pair S D. At
the end of phase 1, out of total M bits of S, 1 bit is available with each of the M nodes of its
cluster (source cluster). In phase 2, at any time slot, all the M bits of a source S are
transmitted together by the M nodes of the source cluster to the M nodes of the cluster of D
(destination cluster). This communication is equivalent to virtual multiple antenna
transmission, since the M transmit and M receive antennas are not co located but cooperate
distributively for transmission and reception. This process is repeated for all
source-destination pairs, and hence takes (n) time slots to complete. Fig. 9.10 depicts the
long-range multiple antenna transmission in phase 2.

3. Short-range cluster dissemination: In phase 2, each node of any cluster receives M signals
corresponding to the M nodes in its cluster. In phase 3, each node quantizes each of its M
received signals using Q bits and sends them to their respective destinations, similar to phase
1. In total, the traffic demand is QM2 bits, and similar to phase 1, this can be satisfied in

(M? ) time slots using the strategy described in the hypothesis (Lemma 9.A.1).

Assuming that the aggregate rate of M M virtual multiple antenna link scales linearly in M
(Lemma 9.B.1 and Lemma 9.B.4) with quantization used at each node of the destination clusters in
phases 2 and 3, we calculate the throughput capacity of this three-phase strategy as
follows.

Each source transmits M bits to its destination, thus overall, NM bits are transported through
the network in total (M? ®+n+ M? P) time slots (accounting for the three phases), yielding a
throughput capacity of

nM

T M2 b+n+M2 b’

bits/time slot
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Figure 9.11: Three-phase protocol for source (hollow dot)-destination (black square) pairs lying in
adjacent clusters.

o

Recall that we can choose M (or the size of smaller square (S), where M = n (S)). Fixing
M = n¥C b we get

T(n) nz's:
Note that we also need to show that T(n) nz's with probability 1 exp (n°2) and that the per-

node power used in the new strategy scales as % . We next show that the success probability

constraint is satisfied, while defer proving the required per-node powers scaling to Lemma 9.B.1.

Note that the new strategy fails to achieve the promised throughput if each cluster does not
contain M nodes or when the old (hypothesis) strategy fails to achieve the promised throughput in
any of the clusters. From the Chernoff bound, we know that each cluster contains M nodes with
high probability, so that takes care of first “bad” event. Moreover, the old strategy is used in each
of the Nn=M cluster M times, which is polynomial in n and M. Thus, taking the union bound, we
conclude that the new strategy has T(n) nz's with probability 1 exp (n®2) whenever the old
strategy achieves T(n)  n® with probability 1 ~ exp (n°t). O

All the intermediate lemmas used in the proof of Lemma 9.3.3 are presented in Appendix 9.A
and 9.B.

Remark 9.3.6 If a particular source-destination pair lies in the same cluster, then phase 2 and
phase 3 are not required. Otherwise, if the source-destination pair lie in adjacent clusters, then we
divide both the smaller squares/clusters in two halves, and the source transmits its M=2 bits to
the M=2 nodes of its cluster that lie in the partition farther away from the destination node. Then
in phase 2, all the M=2 nodes of the source cluster transmit their bits to the M=2 nodes of the
destination cluster that lie in the partition that is farther from the source node. Thereafter, these
M=2 nodes communicate their quantized signals to the destination in phase 3. Pictorially this is
depicted in Fig. 9.11.

In summary, this hierarchical cooperation strategy, where nodes cooperate at multiple levels, is
able to beat the bottleneck of 19% per-node throughput capacity of the nearest neighbor multi-

hop routing. Recall that the key limitati%l of the nearest neighbor multi-hop routing is that each
node has to relay traffic for roughly (* n) nodes. By allowing cooperation between nodes, we
can break this ceiling, and with hierarchical cooperation strategy each node needs to route traffic
for far fewer nodes, and each source can reach its destination in significantly less number of hops.
Even though the hierarchical cooperation strategy provides better per-node throughput capacity, it
also requires larger signaling overhead required for cooperation compared to the nearest neighbor
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multi-hop routing. Thus, there is an inherent tradeoff between the per-node throughput capacity and
the signaling overhead.

In Section 2.4.1, we compared the transmission capacity and the throughput capacity with
multi-hop routing under the SINRﬁnodel and showed that they have identical scaling, that is, the
transmission capacity scales as (" n). The poor scaling performance of the transmission capacity
in comparison to the throughput capacity of the hierarchical cooperation strategy is attributed to
node cooperation, and the ensuing large signaling overhead, since in the transmission capacity
framework, all transmissions are over a single hop with no cooperation.

9.3.3 Multiple Antennas

In addition to using virtual multiple antenna channel, one can ask what if we equip each node with N
antennas, how will the scaling of throughput capacity change with n or N ? Not surprisingly, in terms
of the number of nodes N, there is no change, while in terms of N, the throughput capacity scales
linearly with N. Both of these claims can be easily established as follows. For the upper bound on
the throughput capacity, ( following Theorem 9.3.1), one can easily see that the per-node throughput
capacity is bounded by order N log(nN), since the per-node throughput capacity is bounded from
above by a point-to-point multiple antenna channel with N transmit antennas and N(n 1) receive
antennas. Similarly, for the lower bound, following Theorem 9.3.2, assume that each node has M N
bits to transmit to its destination. Assuming that there exists a strategy with throughput capacity of
Nn®, in phase 1, each source transmits M N bits to its M 1 neighbors in clusters, which takes
M? P time slots. Similarly, for phase 2, using NM N M virtual multiple antenna channel, long-
range communication of M N bits takes n time slots, and phase 3 is similar to phase 1. Thus, overall,
NM N bits are transported through the network in total (M? °+n+M?2 ), yielding a throughput
capacity of
T(Nn) MZ b T\::T_ MZ D bits/time slot:

Recall that we can choose M (or the size of smaller square (S), where M = n (S)), fixing M =
n'=C b and we get

T(n) Nnzs;

Note that the linear scaling of the throughput capacity with multiple antennas is similar to the
case of transmission capacity (Theorem 3.3.5); however, finding the role of multiple antennas and
the analysis in the transmission capacity framework is much more complicated as seen in Chapter
3. The main reason being that in the transmission capacity framework, there is no cooperation and
the system is interference limited, and the optimal role of multiple antennas is to balance the
increase in signal power with respect to mitigating the interference. In comparison, with
hierarchical cooperation strategy, nodes cooperate with each other and essentially avoid all
interference, allowing full multiplexing gain of the multiple antennas to be realized.

9.4 Extended Networks

In this chapter, we have essentially considered what is called as the dense wireless network, where
we have fixed a unit area and increased the density of the nodes Nn. An alternate way to model a
wireless network is the e)E)ended network, where the density of nodes is fixed, while increasing the
area, say a square of side = Nn. Dense network model nodes locations in urban areas, where more and
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more basestations and users are added in a fixed area, while extended networks are more suited for
rural areas, where the density of nodes is fixed and we want to cover a large piece of geographical
area.

It is easy to notice that dense networks are inherently interference limited, while extended
networks are power/coverage limited, since with large transmitter-receiver distances in extended
networks, maintaining the minimum regeived SNRs is a challenge. An extended network with unit
density of nodes over a squaB of side * N is equivalent to a dense network with distance between
any pair of nodes scaled by * n. Thus, equivalently, in terms of power, an extended network with
per-node power constraint of P is identical to a dense network with power constraint of ﬁ at
each node. This observation allows us to construct the hierarchical cooperation strategy for the
extended network case as follows.

We noted in Theorem 9.3.2 that for the hierarchical cooperation strategy, each node uses power
of % . Thus, for = 2, the hierarchical cooperation strategy satisfies the power constraint of
% imposed by the extended networks. Thus, an almost linear scaling of the throughput capacity
can also be achieved in an extended network with the hierarchical cooperation strategy. For > 2,
the power constraint of & is violated if we use the hierarchical cooperation strategy since that uses
power % . To fix this, one can operate the hierarchical cooperation strategy for a fraction ﬁ
of time with power % and remain silent for the rest of the time. Thus, satisfying the power
constraint % imposed by extended networks. Thus, using the hierarchical cooperation strategy,
the throughput capacity of

1 1 —n2 =2
n= 1
is achievable in an extended network, where the throughput capacity of n"*  follows from Theorem
9.3.2.

Sofor2 < < 3,wehave T(N) n2? =2 | which is better than the order DE) scaling of
the nearest neighbor multi-hop strategy (Section 9.2.2), while for 3,n> 2 < "'n,andthe
nearest neighbor multi-hop strategy starts outperforming the hierarchical cooperation strategy. Thus,
we get that the following throughput is achievable in an extended network.

Theorem 9.4.1 For an extended network with unit density over a square of side pﬁ, the achievable
throughput scales as

1. For2 <3 T(n) K()n* =2 |
2 For  3T() KO)Pn
with high probability for any > 0.
Matching upper bounds can also be derived using the cut-set bound that are stated as follows.

Theorem 9.4.2 For an extended network with unit density over a square of side pﬁ, the throughput
capacity is bounded by

1. For? 3, T(n) K°%)n? =2+,
2. For >3,T(n) K% )n¥=*,

with high probability for any > 0.
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Theorem 9.4.2 is obtained by considering a cut across the extended network that divides the square
with side * N in two equal halves. With random source-destination pairs, with high probability, one-
fourth of the source-destination pairs lie on opposite sides of the cut. Thus, the throughput across
the cut is at least one-fourth of the total throughput. Then, the throughput across the cut is bounded
by the capacity of the multiple antenna channel, assuming that all nodes on either side of the cut
cooperate with each other under suitable power constraints.

9.5 Reference Notes

This chapter is based on work started by the seminal paper of Gupta and Kumar [2]. The upper
und on the throughput capacity of the SINR model follows from [2], while the achievability of
n scaling of the throughput capacity is based on [5]. The information theoretic study of throughﬁut
capacity was initiated by [6], while the idea of using multi phase transmission to beat the order * n
scaling was first presented in [4] and later refined to show that linear scaling of throughput capacity
is possible in [3]. The results presented in Section 9.3 are based on [3]. The hierarchical cooperation
strategy for arbitrary networks has been analyzed in [7]. Several other important results in this area
include an upper bound on the throughput capacity by [8—10], analyzing effect of mobility [11],
and characterizing the effect of fading channels [12]. Results on the transport capacity of extended
networks can be found in [13, 14]. Some reslgts on the physics of signal transmission showing that
throughput capacity cannot scale better than * n under realistic assumptions appear in [15].

9.A Hierarchical Cooperation

Lemma 9.A.1 If any strategy has a throughput capacity of T(M) =  (MP) for M nodes in S;.
Then T(M) = (MP) can be achieved even if M nodes lie in a smaller square Sij of area (S).

Proof: Recall that to exchange M? bits in phase 1, M sessions are organized within each cluster,
where in each session, one bit is exchanged between each of the M source-destination pairs inside
the cluster. Changing the choice of source-destination pairs over the M sessions ensures that each
node in the clusters gets one bit from every other node. We next show that in each session, we can
achieve a throughput capacity of MP given the hypothesis strategy.

For the hypothesis strategy, let power P is transmitted by each of the M nodes lying in S;
for which T(M) = (MP). Compared to Sy, in any smaller square Sij, the distances are scaled
down by 1= (S). Hence, the received power at any node within S;;j is increased by a factor ﬁ
compared to the case when the node was lying in S;. Thus, if originally each node lying in S; used
transmit power P, transmit power of only P (S) =2 is needed by each node lying in any smaller
square/cluster Sjj with area (s).

Consider any one session in a given cluster. With the reduced transmit power of P (S) =2 used
by each node of each cluster, similar to the proof of Lemma 9.2.8, if simultaneously active clusters
are separated by a constant distance, the interference received at any node in a cluster is bounded
by a constant. Hence, the rate of transmission supported between nodes lying in Sjj with power
P (s) 72 is order wise similar to when nodes lie in S; with power P. Thus, using the hypothesis
strategy, we can get an order wise rate of MP for each session within each cluster. Moreover, note
that, at any time a constant fraction of clusters are active, and hence all clusters finish their session in
constant time. Thus, we conclude that the throughput capacity of MP? with M nodes can be achieved
even on a smaller square Sjj of Sz in Phases 1 and 3. O
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Figure 9.12: Shaded squares are active source-destination clusters in Phase 2.

9.B Mutual Information of Multiple Antenna Channel with
Quantization

Note that to conclude the proof of Lemma 9.3.3, we need to show that the mutual information
between the M M virtual multiple antenna communication with quantization increases linearly
in the number of nodes M. In particular, we are interested in the spatial multiplexing gain r that is
defined as

r= tim 'Y,
NIl N
where 1(X;Y) is the mutual information between the input X and output Yy, and N is the number of
antennas at the input and the output. For our case N = M and we want r = 1.

Toward, that end, we first show in Lemma 9.B.1 that without quantization, » = 1 for the M
M virtual multiple antenna communication, that is, the mutual information increases linearly in
the number of nodes M. Thereafter by arguing that the scaling of the mutual information with
quantization cannot be less than without quantization, we prove the required result in Lemma 9.B.4.

Lemma 9.B.1 The mutual information achieved by the M M virtual multiple antenna
transmission in Phase 2 between any two clusters grows at least linearly in M.

Proof: Following (9.14),the M M multiple antenna channel between the M receivers with single
antenna of the destination cluster and the M transmitters with single antenna of the source cluster is

| g—
Vo= -Fea®s() +w(); ©21)
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q_
where normalization ﬁ is to ensure that total unit power is transmitted by the cluster, S(t) is

the M 1 signal sent from the M nodes of a cluster, w(t) is the AWGN vector with each entry
independent with zero mean and unit variance, and the matrix Fgq is such that its (i; j)th entry is
the path-loss times the random phase between it" receive antenna of the destination cluster and the
j™ transmit antenna of the source cluster, that is, Fsq(i; ) = d; i =2 exp( ij)-

In phase 2, any cluster is active for only % time slots and remains silent for the rest of the slots.
Therefore, the average energy used by any node in phase 2 is % even if it transmits with power
ﬁ whenever active. For phases 1 and 3, the hypothesis strategy is used within each cluster; hence,
the power used in phases 1 and 3 is also % . Thus, counting for all the 3 phases, we conclude that
the per-node power with the new strategy is also % as required in Lemma 9.3.3.

Let the distance between the closest poiﬁs (not nodes) of the source-destination clusters be dsp.
Then, we have that dsp  djj dsp +2 2 (S) as shown in Fig. 9.12, where djj is the distance
between the it" node of the source cluster and jth node ?_f, the destination cluster. Moreover, when

source-destination clusters are not adjacent, then dsp > (s). Thus, we get

1 dsp
a= —p= 1:
1+2 2 dij

For adjacent source-destination clusters, using Remark 9.3.6, we know that the minimum separation
between source-destination clusters is at least  (S).

Thus, there exists b > a > 0 with a and b independent of n, such that d; i =2 = dSD:ZZi j, Where
zij 2 [a; D], both in cases when S and D are in neighboring clusters or not. Let Gsq be a matrix with

entries Gsq(i; j) = zjj exp ( ij), thatis, Fsg = dSD:ZGsd. Thus, we can write the received signal
(9.21) as

| g

Vo) = - dp 2Gaa(DS() + w(O): ©22)

Assuming perfect knowledge of channel state information (CSI) at all the receivers in the
destination cluster, the mutual information of this channel is

1(s;Y;Gsg) =E logdet 1+ dSW'Z’GGy : (9.23)

Coe >
1(s;¥;Gsq) = E log 1+dgp i(G) (9.24)
i=1
Let (G) be an eigenvalue picked uniformly randomly from 1(G);:::; m(G), then
@) 1 >
I5Y:Gsa) = Mo E log 1+dgp i(G)
i=1
Q)

= ME log 1+dgp (G) ;
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Mlog(1 +dspt)P( (G) > 1);

for any t 0, where (a) follows from the linearity of expectation, (b) follows by definition of
expectation, and (c) follows by only considering (G) > t. From Lemma 9.B.2, we have

(Ef (G)g 12

1(s;¥; Gsq) = M log(1 + det 9.25
It is easy to check that
1 X 2 2.
Ef (G)g = M2 zij a%
i;j=1
Moreover,
2 _ 2 2.2 4
Ef (G)g= M3 ZijZik 2b
ij:k=1
Thus, we have forany t < a
a2 t)?
1(s;y; Gsa) = M log(1 + dSDt)%i (9.26)
Choosing t = a=2 shows that (S; y; Gsq) grows linearly with M, that is, r = 1. O

Lemma 9.B.2 (Paley-Zygmund inequality) For any non-negative random variable X such that
EfX%g< 4, foranyt 0
(EfXg t)?
P(X>t) ——
( ) EfX2g

for any t < EfXg.

Now we come to the final stage, where we show that even with quantized signals being sent at a
constant rate from each of the nodes of the destination cluster, the spatial multiplexing gain r = 1.

The following result from information theory [16] using [ [17], 13.6] is useful to characterize the
transmission rates that ensure decoding of X with arbitrarily small probability at the destination.

quantization rates from the J* receiver to the destination.
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Lemma 9.B.4 There exists a strategy to encode the observations at a fixed rate Q bits per
observation to get r = 1 for the M M quantized virtual multiple antenna channel.

Proof: Proof is based on Proposition 9.B.3. Consider the conditional probability densities
g (riiy;)  N(yj;d?) (9.27)

for the quantization process, where d is the distortion corresponding to the quantization. From
Proposition 9.B.3, we know that all rate pairs (R; Ry ::: Rp) are achievable if

and

where R is the transmission rate from the source to the destination, and Rj’s are the quantized
encoding rate of the j™" stream from the j receiver in the destination cluster to the destination.

We note the following observation that the received power at any node in the destination cluster
in phase 2 is bounded by a constant, say P, since the distance between any node in the destination
cluster and any node in the source cluster is bounded from below. Thus, the received signal at the
j™ node of the destination cluster Yj has an average power constraint of P,. Hence, from (9.27),
and using the fact that Gaussian distribution maximizes mutual information, we have

P
I(Y;;Y;) log 1+ oT22

for any probability distribution on the input space p(X).
So if we choose the constant quantization rate (as it does not depend on M),

for some = 0, all rates
R I(X;Y1;:::0Ym)

are achievable between the source and the destination for any input distribution p(X), where the
equivalent channel between the source and the destination using the conditional distribution (9.27),
can be written as

Y =Hx+w+D; (9.28)

and Gaussian distributed with zero mean and d? variance. R i plays the role of Q quantized bits
being sent from each receiver in the destination cluster to the destination.

Comparing (9.28) to (9.21), we note that (9.28) has been degraded by an additive independent
noise compared to (9.21), thus the spatial multiplexing gain r of the channel with quantization (9.28)
is no less than the original virtual multiple antenna channel (9.21). Thus, we conclude that r = 1
even for the M M quantized virtual multiple antenna channel. 0
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