Apache Maven Dependency
Management

Manage your Java and JEE project dependencies with ease with
this hands-on guide to Maven

Apache Maven Dependency
Management

Manage your Java and JEE project dependencies with
ease with this hands-on guide to Maven

Jonathan Lalou

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Apache Maven Dependency Management

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013
Production Reference: 1211013

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-301-9
www . packtpub. com

Cover Image by Jonathan Lalou

Credits

Author
Jonathan Lalou

Reviewer
Cedric Gatay

Acquisition Editor
Akram Hussain

Commissioning Editors
Manasi Pandire

Shreerang Deshpande

Technical Editors
Sharvari Baet

Nadeem N. Bagban

Kanhucharan Panda

Project Coordinators
Romal Karani

Ankita Goenka

Proofreaders
Paul Hindle

Stephen Swaney

Indexer
Monica Ajmera Mehta

Production Coordinators
Nilesh R. Mohite

Manu Joseph

Cover Work
Nilesh R. Mohite

About the Author

Jonathan Lalou is an engineer fascinated by new technologies, computer
sciences, and the digital world since his childhood. Graduated from the Ecole
des Mines — one of the French best polytechnic institutes —, Jonathan has more
than 13 years of experience in Java and the JEE ecosystem.

Jonathan has worked for several global companies and financial institutions such

as Syred, Philips, Sungard, Ixis CIB, BNP Paribas, and Amundi AM with strong
ties, daily contacts, and frequent trips in Western Europe, Northern America, Judea,
and emerging Asia. During his career, Jonathan has successfully climbed many
levels: developer, architect, Scrum master, team leader, and project manager. Now,
Jonathan has joined StepInfo (http://www.stepinfo.com/), a high-tech company
focused on Java, and sponsor of local JUG and Devoxx, where he works as a project
director, trainer, and leader of the expert task forces.

Jonathan's skills include a wide range of technologies and frameworks such
as Spring, Hibernate, GWT, Mule ESB, Struts, JSF, Groovy, Android, EJB, JMS,
application servers, agile methods, and of course Apache Maven.

Jonathan is available on the cloud. You can catch him on:

* Blog: http://jonathan.lalou.free.fr
e Twitter: http://twitter.com/john the cowboy

e LinkedIn: http://www.linkedin.com/in/jonathanlalou

About the Reviewer

Cedric Gatay has an engineering degree in Computer Science. He likes well-
crafted and unit-tested code.

He has a very good understanding of Java languages (giving courses in Engineering
schools and talking at local Java Users Groups).

He has been working with Apache Maven since 2006, and, is from day one, the
technical leader of a successful software company editing a wicket-based SaaS:
SRMyvision at http://www.srmvision.com.

He is also the founder of a collaborative blog for developers Bloggure:
http://www.bloggure.info.

www.PacktPub.com

Support files, eBooks, discount offers
and more

You might want to visit www . PacktPub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www . Packt Pub . com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT

http://PacktLib.PacktPub.com

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Basic Dependency Management 5
Nomenclature 5
Reminders on Maven origins 5
Dependency 6
Long and short designations 6
Long designation 7
Short designation 9
Visualizing dependencies 9
Transitive dependencies 11
The Concept of transitivity 11
Resolution 12
Exclusions 14
Optional dependencies 16
Parents/modules 19
Parent POM 19
Modules 21
Version ranges 26
Summary 28
Chapter 2: Dependency Mechanism and Scopes 29
Scopes 29
Nomenclature of scope 29
Compile 29
Provided 30
Runtime 31

Test 34
System 35
Import 36

Table of Contents

Scope overlay rules (via transitive dependencies) 36
The dependencyManagement tag 36
First case study 37
Second case study 39
The import scope 40
Modules and submodules (advanced) 44
Maven Reactor 44
Reactor sorting 45
Reactor options and the Reactor plugin for Maven 2 48
Management of dependencies in folders 49
The dependencies in their folders 49
Nonarchive files 50
Summary 52
Chapter 3: Dependency Designation (advanced) 53
The type tag 53
The classic cases 53
Creating a new packaging/type 55
Case study 55
The first step — Maven plugin 55
The second step — call the plugin 58
The Classifier 59
The dependency plugin 60
The analyze goal 60
Classpath 63
Other goals of dependency 64
Other miscellaneous plugins 65
The Enforce plugin 65
The dependency convergence 66
Banned dependencies 68
Other rules 69
Tattletale 73
Dependencies 74
Reports 74
Archives 75
Dependency, enforce, and tattletale — conclusion 76
Dynamic POMs and dependencies 76
Effective POM and settings 76
Dynamic POM 78
Case study 79
A quick and dirty solution 80
A clean solution 81
With properties in command lines 81
Profiles and settings 82

Lii]

Table of Contents

Dynamic POMs — conclusion 85
Summary 85
Chapter 4: Migration of Dependencies to Apache Maven 87
Case study 87
Setting the folders 91
Introducing Maven with standard libraries 91
Available POM 92
Unavailable POM 92
Disclosing information from Manifest. MF 92
Online tools 93
Checksums 94
Next steps 94
Non-Maven standard libraries 95
State 95
Quick and (very) dirty 95

(A bit) slower and (far) cleaner 97
Summary 97
Chapter 5: Tools within Your IDE 101
Case study 101
IntelliJ IDEA 102
XML with XSD completion 102
Module Dependency Graph 103
Dependency addition 105
Dependency addition from Java code 105
Dependency search and generation within a POM 106
Conclusion on IntelliJ IDEA 107
Eclipse 107
Dependency view 108
Dependency Hierarchy view 110
Effective POM view 111
Maven Repository view 112
Conclusion on Eclipse 113
NetBeans 113
Overview 113
Dependency addition 115
Summary 116
Chapter 6: Release and Distribute 119
Best practices before release 119
Fixing conflicts with tier-parties 121
Releasing the source code 124
The Maven Release plugin 124

[iii]

Table of Contents

Delivering artifacts and distributions 126
Artifacts 126
Release distribution 126

A simple case 126

A complex case 129
Distribution management 134
Summary 136
Appendix: Useful Public Repositories 137

Maven Central 137

iBiblio 137

JavaNet 138

JBoss 138

CodeHaus 139

Apache 139

OSS Sonatype 139

Index 141

[iv]

Preface

In one decade, Apache Maven has successfully established itself in most of the
companies dealing, coding, and releasing Java and JEE applications. Facing the still
increasing problems of greedy, complex, and voluminous enterprise applications,
architects, and developers have taken advantage of Maven's power and its ability
to manage the plenty of dependencies, imports, and links. However, to be effective,
and not to induce endless conflicts (any developer's nightmare), the management
of dependencies should prove to be rigorous. Fortunately, Maven itself, and several
plugins, do include both flexible and powerful features and tools.

This is what we propose to explore, develop, and illustrate in this book.

What this book covers

Chapter 1, Basic Dependency Management, covers nomenclature, long and short
designations, transitive dependencies, parents and modules, and version ranges.

Chapter 2, Dependency Mechanism and Scopes, covers scope nomenclature, the
<dependencyManagement > tag, modules and submodules, Maven Reactor, and
management of dependencies in folders.

Chapter 3, Dependency Designation (advanced), covers classic cases of <type>, how
to create a new one, classifier, how to detect and fix dependency conflicts: Maven
Dependency, enforce and Taggletatte plugins, and Dynamic POMs.

Chapter 4, Migration of Dependencies to Apache Maven, covers how to introduce Maven
to non-Maven projects and even with non-Maven standard libraries.

Chapter 5, Tools within Your IDE, is specific to most spread IDEs: Intelli] IDEA, Eclipse
and NetBeans.

Preface

Chapter 6, Release and Distribute, deals with best practices before releases, how
to fix conflicts with tier-parties, delivering artifacts and distributions, and
distribution management.

Appendix, Useful Public Repositories, covers useful public repositories.

What you need for this book

In order to get the best out of this book, you need to have Maven 3.0.5 installed on
your system, as well as a JDK (Java Development Kit), version 6 or above.

Access to the Internet is strongly advised.

You should also set environment variables such as JAVA HOME and MVN_HOME,
pointing respectively to JDK and Maven install folders.

Any text editor (PS-Pad, NotePad++, or even VIm and XEmacs) is sufficient to deal
with Maven; anyways, you have interest then install an IDE like Eclipse, NetBeans,
or Intelli] IDEA. From a personal viewpoint, I advise the latter, but all of them are

pretty good.

Who this book is for

This book is intended at developers, architects, and software urban planners, with a
first experience of Apache Maven. More specifically, it suits teams who work on Java
and JEE ecosystems, with wide spread frameworks, such as Spring, Hibernate, GWT,
Groovy, and Apache Commons.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " You can specify a different scope with
the <scope> tag."

A block of code is set as follows:

<dependencys>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<versions>4.9</version>
</dependency>

[2]

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<dependency>
<grouplds>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactIds>
<version>${hibernate.version}</versions>

</dependency>
Any command-line input or output is written as follows:

$ mvn dependency:tree

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on the Next button moves you to the next screen".

“ Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[31]

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

Basic Dependency
Management

In this chapter, we will recollect and/or explain the basics behind dependency
management.

Throughout this work, we will assume that you know the basic notions about
Maven, that is, repository, POM, plugin, goal, build, lifecycles, and so on.

Nomenclature

Let's review some basic notions related to Maven and dependencies.

Reminders on Maven origins

In late 1970s, Dr Stuart Feldman's make and makefiles allowed developers to order
a build process, and then to build automatically a project.

In 2000, Sun released an equivalent of makefiles for Java platform, which is now
known as Apache Ant. Ant used XML files to order and script the build.

Apache Maven was released in 2005 based on different concepts, it is aimed at
automating the build. Ant was build oriented, Maven is project oriented; all Java
projects may be considered as nodes and leaves of a huge dependency graph.

Basic Dependency Management

Dependency

What is a dependency? A dependency is another archive—JAR, ZIP, and so on—
which your current project needs in order to compile, build, test, and/or to run.

In other terms, a dependency is a file or a group of files that contain(s) the classes
pointed at in your import clauses, and even more (think of an object that would be
dynamically created, thanks to reflexivity).

From Maven's viewpoint, a project depends on other projects, and is depended on by
other projects. Anyway, a project only need know which projects it does depend on;
there is no burden to spread or inform the projects that depend on it.

The dependencies are gathered in the pom.xm1 file, inside of a <dependencies> tag.

On launching Maven on a project, either for a build or another goal, the
dependencies are resolved, and are then loaded from the local repository; if they
are not present there, then Maven will download them from a remote repository
and store them in the local repository. Anyway, a manual installation of an archive
remains possible.

Usually, the local repository is located at the home directory, for example, C:\
Documents and Settings\myLogin\.m2\repository under Windows XP, c:\
Users\myLogin\ .m2\repository under Windows Vista/7/8, or ~/ .m2/repository
under Linux and Unix.

You can override the local repository folder. To perform that, you can add
a tag <localRepository> within your settings.xml, for example:

<localRepositorys/path/to/any/folder</localRepository>
1
< Alternatively, you may dynamically specify a different folder, adding
explicitly the destination folder as a runtime property on executing

Maven, for example:
mvn clean \

-Dm2.localRepository=/path/to/another/folder/
somewhere/else

Long and short designations

Maven standardizes the way to identify a dependency. So, each dependency is
described by the following data:

[6]

Chapter 1

* groupId: A macro group or family of projects or archives to which a project
belongs. Usually a same groupId gathers projects released by a same editor
or that share a same functional domain. For example, junit, org.hibernate,
and org.richfaces.ui.

* artifactId: The unique identifier of the project among the projects sharing
the same groupId. For example, junit, hibernate-annotations, and
richfaces-components-ui.

* version: This tag can have various values:

° If no version is hinted, then Maven will use the last available artifact
in the local repository.

° The version of the project may be one of the following;:

1. A release version: A release version is "tagged", and can
be considered as stable ; it shall not change anymore once
published. For example,: 4.9, 3.3.1.GA, and 4.1.0.Final.

2. A Snapshot version. Snapshots are artifacts still in
development. They are expected to change and to be
updated often. For example, SNAPSHOT, 1. 0-SNAPSHOT
(assumed to be released later as 1.0), and 1.2.3-SNAPSHOT
(assumed to be released later as 1.2.3).

* classifier: We will study this dependency in detail in Chapter 3,
Dependency Designation (advanced).

* type: We will study this dependency in detail in Chapter 3, Dependency
Designation (advanced).

* scope: We will study this dependency in detail in Chapter 3, Dependency
Designation (advanced).

* Other tags are available, we will review them later: exclusion, optional,
and systemPath.

Long designation

So, basically, the preceding dependencies are equivalent to the following block in
pom.xml:

<dependencies>
<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<versions>4.9</version>
</dependency>

[71

Basic Dependency Management

<dependency>
<groupIds>org.hibernate</groupIld>
<artifactIdshibernate-annotations</artifactIds>
<version>3.3.1.GA</version>
<!-- '"'GA'' stands for ''General Availability''-->

</dependency>

<dependency>
<grouplds>org.richfaces.ui</groupId>
<artifactId>richfaces-components-ui</artifactIds>
<versions>4.1.0.Final</version>

</dependency>

</dependencies>

M . . .
‘Q You can specify a range of values instead of a unique

one. This will detailed later.

If your pom.xml points to many artifacts of the same group1d (which is common
with frameworks such as Spring, and Hibernate), you would rather use properties
in order to factorize the code and be sure to upgrade consistently the group when
needed:

In other terms, you should add a properties block, and then reference them. Taking
the same example, you should get something similar to the following:

<properties>
<junit.version>4.9</junit.version>
<hibernate.version>3.3.1.GA</hibernate.version>
<richfaces.version>4.1.0.Final</richfaces.version>
</properties>

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
</dependency>
<dependency>
<grouplds>org.hibernate</groupIds>
<artifactIdshibernate-annotations</artifactIds>
<version>${hibernate.version}</version>
</dependency>
<dependency>
<groupldsorg.richfaces.ui</groupId>

[8]

Chapter 1

<artifactId>richfaces-components-ui</artifactIds>
<version>${richfaces.version}</versions>
</dependency>
</dependencies>

The classic XML block notation is called long designation.

Short designation

Long designation is verbose and fits only XML usage. This is why in other contexts,
such as in logs, the short designation is preferred. It consists in collapsing the XML
tree tags.

The preceding three dependencies are equivalent to the following:

® Jjunit:junit:jar:4.9:compile
® org.hibernate:hibernate-annotations:jar:3.3.1.GA:compile

® org.richfaces.ui:richfaces-components-
ui:jar:4.1.0.Final:compile

You may have noticed that jar and compile were introduced; in a few words, they
correspond to the default values for the tags type and scope.

Visualizing dependencies

Modern IDEs include many features to help visualize dependencies.

With the dependency plugin, Maven includes a goal to print the tree of
dependencies. The dependency : tree, for example, will be given as follows:

/workarea/development/cartography/$ mvn dependency:tree
[INFO] Scanning for projects...
[INFO]

[INFO] --- maven-dependency-plugin:2.l:tree (default-cli) @ cartography

[o]

Basic Dependency Management

[INFO] com.stepinfo.poc.cartography:cartography:jar:1.0-SNAPSHOT

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

+- mockobjects:mockobjects-core:jar:0.09:test

+- junit:junit:jar:4.9:test

\- org.hamcrest:hamcrest-core:jar:1l.1l:test

+- org.hibernate:hibernate-annotations:jar:3.3.1.GA:compile

+- org.hibernate:hibernate:jar:3.2.6.ga:compile
| +- net.sf.ehcache:ehcache:jar:1.2.3:compile

| +- javax.transaction:jta:jar:1.0.1B:compile

| +- asm:asm-attrs:jar:1.5.3:compile

| +- dom4j:doméj:jar:1.6.l:compile

| +- antlr:antlr:jar:2.7.6:compile

| +- cglib:cglib:jar:2.1 3:compile

| +- asm:asm:jar:1.5.3:compile

| \- commons-collections:commons-collections:jar:2.1.l:compile

+- org.hibernate:hibernate-commons-

annotations:jar:3.0.0.ga:compile

[INFO]
[INFO]

[INFO]l +-

[INFO]

[INFO]l +-

[INFO]

E:compile
[INFO] +-
[INFO] +-
[INFO] \-

+- org.hibernate:ejb3-persistence:jar:1.0.1.GA:compile
\- commons-logging:commons-logging:jar:1.0.4:compile
org.springframework:spring-core:jar:3.1.0.RELEASE:compile
\- org.springframework:spring-asm:jar:3.1.0.RELEASE:compile
org.springframework:spring-orm:jar:3.1.0.RELEASE:compile
+- org.springframework:spring-beans:jar:3.1.0.RELEASE:compile
+- org.springframework:spring-jdbc:jar:3.1.0.RELEASE:compile
\- org.springframework:spring-tx:jar:3.1.0.RELEASE:compile

+- aopalliance:aopalliance:jar:1.0:compile

+- org.springframework:spring-aop:jar:3.1.0.RELEASE:compile

\- org.springframework:spring-context:jar:3.1.0.RELEASE:comp

\- org.springframework:spring-expression:jar:3.1.0.RELEAS

mysql:mysqgl-connector-java:jar:5.1.6:compile
commons-lang:commons-lang:jar:2.3:compile

log4j:log4j:jar:1.2.1l6:compile

[INFO] BUILD SUCCESS

[10]

Chapter 1

[INFO] Total time: 2.485s
[INFO] Finished at: Mon Jun 24 19:08:20 CEST 2013
[INFO] Final Memory: 5M/15M

This tool will be very useful when we deal with conflicts of JARs.

Transitive dependencies

One of Maven's major contributions is the way it deals and manages not only direct
dependencies, but also transitive ones.

The concept of transitivity

Dependencies are transitive. This means that if A depends on B and B depends on
C, then A depends on both B and C. Theoretically, there is no limit to the depth of
dependency. So, if you observe the following diagram of the tree of dependencies,
you will notice that by transitivity, A depends on B, C, D, ... until Z:

A

D E J E F

| ——
)

O o
[z

Even worse, we could have added a bit of complexity in mixing different versions of
the same artifacts. In this very example with A as root project, B and C are level 1 or
direct dependencies, D, E,], and F are level 2 dependencies, C, G, H, and K are level
3, and so on.

[11]

Basic Dependency Management

You can imagine that the greater the level of dependencies, the more complex
the situation is. The underlying issue of transitivity, you may guess, is when
dependencies bear on the same groupId/artifactId but with different versions.

Resolution

Maven carries out the following algorithm to choose between two different versions:

Nearest first: A dependency of lower level has priority over another of the
higher depth. Hence, a direct dependency has priority over a transitive
dependency.

First found: At the same level, the first dependency that is found is taken.

This algorithm is known as dependency mediation.

Let's consider an example. The following diagram shows a dependency tree:

N7

apacheds- camel-exec- tapestry-

core-0.9.3 197 upload-5.3.7 Grepdj-1.7.5

COMmMons-
o Level 1

e — — —— 5

COMMOons- COMMOons- CoOMmmons- COMMOons-
i0:0.9.3 io-1.4 i0:2.0.1 i0-2.4 Level 2

Here is the corresponding dependencies block in POM:

<dependencies>

<dependencys>
<groupld>directory</grouplds>
<artifactIdsapacheds-core</artifactIds>
<version>0.9.3</version>
<!--implicit dependency to commons-io:

commong-io:1.0-->

</dependency>

<dependencys>
<groupld>org.apache.camel</groupId>
<artifactId>camel-exec</artifactId>
<version>2.9.7</version>
<!--implicit dependency to commons-io:commons-io:
1.4-->

</dependency>

[12]

Chapter 1

<dependency>
<grouplds>org.apache.tapestry</groupIld>
<artifactId>tapestry-upload</artifactIds>
<versions>5.3.7</version>

<!--implicit dependency to commons-io:
commons-io0:2.0.1-->

</dependency>

<dependency>

<groupld>com.googlecode.grepdj</grouplds>
<artifactId>grep4j</artifactIds>
<versions>1.7.5</version>

<!--implicit dependency to commons-io:commons-io:
2.4-->

</dependency>

<dependency>
<groupId>commons-io</groupld>
<artifactId>commons-io</artifactIds
<versions>2.3</versions>

</dependency>

The commons-io-2.3 dependency is a dependency of level 1. So, even though it is
declared after other artifacts and their transitive dependencies, then the dependency
mediation will resolve commons-1io to version 2.3. This case illustrates the concept of
nearest first.

Now let's compare to a POM for which commons-io-2.3 has been deleted from level
1. The dependency tree shown in the following diagram:

My Project Level O

N7

apacheds- camel-exec- tapestry- "
core-0.9.3 207 upload-5.37 Grepdj-1.2.5 Level 1
—— —TL— P — —_—_ __E ;——

COMMONS=-or COMMONS=-o- COMMON5-io- COMMOons-io-
l 093 l = l 14 \ l = | l 201 ' : \ ' 24 \ l = \ Level 2

All dependencies to commons-io are of level 2, and differ on the versions: 0.9.3
(via apacheds-core), 1.4 (via camel-exec), 2.0.1 (via tapestry-upload), and 2.4
(via grep43j). Unlike a popular belief, the resolution will not lead to take the greatest
version number (that is, 2. 4), but the first transitive version that appears in the
dependency tree, in other terms 0.9.3.

[13]

Basic Dependency Management

Had another dependency been declared before apacheds-core, its embed version of
commons - io would have been resolved instead of version 0. 9. 3. This case illustrates
the concept of first found.

Exclusions

Let's consider the following example:

l MyProject ‘

I

commons-
JUnit-4.11 u DBUnit-2.3.0 collections-
3.2

) T
- — [
commaons-

collections-
3.1

JUnit-3.8.2 JUnit-3.8.1

Our project needs Junit-4.11, as well as DBUnit-2.4.9 and commons-
collections-2.1. But the two latter depend on other versions of JUnit, respectively
2.3.0 and 3.2. Moreover, commons-collections depends on JUnit-3.8.1. Therefore,
on building the project with goal test, we may encounter strange behaviors.

In this situation, you have to use an <exclusions> tag, in order to break the transitive
dependency.

The POM will look similar to the following:

<dependencies>
<dependencys>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>${junit.version}</versions
<scope>test</scope>
</dependency>
<dependencys>
<groupld>org.dbunit</groupld>
<artifactId>dbunit</artifactIds>
<version>${dbunit.version}</versions

[14]

Chapter 1

<scope>test</scope>

<exclusions>
<!--Exclude transitive dependency to
JUnit-3.8.2 -->
<exclusion>

<artifactId>junit</artifactId>
<groupId>junit</groupId>
</exclusion>

<!--Exclude transitive dependency to
Commons-Collections-3.1-->

<exclusion>
<artifactId>commons-collections
</artifactId>
<groupId>commons-collections</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupld>commons-collections</groupId>
<artifactId>commons-collections</artifactIds>
<version>${commons-collections.version}

</version>

<exclusionss>
<!--Exclude transitive dependency to
JUnit-3.8.1 -->
<exclusion>

<artifactId>junit</artifactId>
<groupId>junit</groupId>
</exclusion>
</exclusions>
</dependency>
</dependencies>

Most of the time, you will choose to exclude a transitive dependency for one of the
following reasons:

* Conflicts between versions of the same artifact of your project, such as
preceding version.

* Conlflicts between artifacts of your project and artifacts from the platform of
deployment, such as Tomcat or another server. For instance, if your project
depends on wsdl4j-1.5.3 and is deployed on JBoss AS 7.1.1, then a conflict
may appear with JBoss's dependency to wsd14j-1.6.2.

[15]

Basic Dependency Management

* Insome cases, you do not want some of your dependencies to be exported
within the archive you build (even though in this case, using a play on the
dependency scope should be more elegant). The opposite case (when you
need use your own dependencies and ignore the similar artifacts bundled
with the server) will be exposed in Chapter 6, Release and Distribute.

Optional dependencies

The previous mechanism, based on exclusion tag, is in charge of the depending
project to exclude unwanted dependencies.

Another mean exists to exclude transitive dependencies. This time, the charge lies on
the project on which it is depended on. Maven provides the optional tag that takes
a boolean value (true/false).

Let's consider the following example of dependencies:

* depends onmiddle * Depends on back *No dependency

roptional=false roptional=true

Here are the corresponding POMs:

* For project back, the POM is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersions>4.0.0</modelVersions>
<groupId>
com.packt.maven.dependency.optional
</groupld>
<artifactIdsback</artifactIds>
<version>1.0-SNAPSHOT</version>
<name>Example of POM which is depended on
with 'optional' at true
</names>
<packaging>jar</packaging>

<!-- no dependency at all -->

</project>

[16]

Chapter 1

For project middle, the POM is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xsi:schemalLocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>

com.packt.maven.dependency.optional
</groupld>
<artifactId>middle</artifactIds>
<versions>1.0-SNAPSHOT</version>
<name>Example of POM with an optional dependency
</name>
<packaging>jar</packaging>

<dependencies>
<dependency>
<groupIds>
com.packt .maven.dependency.optional
</groupIds>
<artifactIdsback</artifactIds>
<versions>1.0-SNAPSHOT</version>

<!-- The dependency to artifact 'back'
is set at optional-->

<optional>true</optionals>
</dependency>
</dependencies>

</projects>
For project £ront, the POM is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupIds>
com.packt .maven.dependency.optional
</groupIld>
<artifactIdsfront</artifactIds>
<version>1.0-SNAPSHOT</version>
<name>Example of POM with scope import

[17]

Basic Dependency Management

dependencyManagement of two artifacts
with a version
conflict because of transitive dependencies

</name>
<packaging>jar</packaging>
<dependencies>
<!-- Regular dependency ; 'front' depends
on 'middle'-->
<dependency>
<groupIds>

com.packt .maven.dependency.optional
</groupId>
<artifactId>middle</artifactIds>
<version>1.0-SNAPSHOT</version>
</dependency>
</dependencies>
</project>

Now, we will see how to display the dependency trees. For middle, the tree is not
different from what it would be, had the optional tag been set at false:

[INFO] --- maven-dependency-plugin:2.l:tree (default-cli) @ middle ---
[INFO] com.packt.maven.dependency.optional:middle:jar:1.0-SNAPSHOT

[INFO] \- com.packt.maven.dependency.optional:back:jar:1.0-
SNAPSHOT:compile

But for front, we get the following output:

[INFO] --- maven-dependency-plugin:2.l:tree (default-cli) @ front ---
[INFO] com.packt.maven.dependency.optional:front:jar:1.0-SNAPSHOT

[INFO] \- com.packt.maven.dependency.optional:middle:jar:1.0-
SNAPSHOT:compile

In other terms, middle has prevented its dependency to back to propagate
transitively to other projects that depend on middle (among which front; but
middle has no idea of front).

Had we removed the optional tag, we would have got that other trace:

[INFO] --- maven-dependency-plugin:2.l:tree (default-cli) @ front ---
[INFO] com.packt.maven.dependency.optional:front:jar:1.0-SNAPSHOT

[INFO] \- com.packt.maven.dependency.optional:middle:jar:1.0-
SNAPSHOT:compile

[INFO] \- com.packt.maven.dependency.optional:back:jar:1.0-
SNAPSHOT:compile

[18]

Chapter 1

As a conclusion, exclusions and optional allow to break the chain of transitivity.
This may be driven either by the depending project or by the one on which it is
depended on.

Parents/modules

When the number of your projects rises, the need of factorization and rationalization
arises. Two tools exist for this purpose: parent POMs and modules. Although both
kinds are often merged, they belong to different registers.

Parent POM

Parent POMs, aka super POMs, offer a mechanism of inheritance. They allow you to
factorize some data and constants, among which are the following few:

Common dependencies: In other terms, the artifacts that part or all of
children POMs will depend on. Inscribing them in a parent POM has the
same effect as writing them several times (and possibly having to update
them manually on upgrading).

Properties, such as:

o

Plugin
° Declarations
° Executions and IDs
Configurations

Common data: Developers' names, SCM address, distribution management,
and so on.

Resources

A parent POM, as a non archive target, will be declared with packaging pom; it is
neither an archive nor expected to be distributed. It only references other projects.

So, a parent POM may look similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<!-- Either in a parent POM or in a independent POM,
the triplet groupld/artifactId/version remain the unique
way to identify a project-->

[19]

Basic Dependency Management

<groupId>com.packt.dependencyManagement.chapterl
</groupId>

<artifactId>superPom</artifactId>
<version>1l.0</version>

<!-- The full name of the project-->
<name>Example of super POM: rationalizes properties,
versions, plugins, etc.

</name>
<!-- The version of the parent POM ; notice it can or
cannot be the same as the sons' versions -->

<packaging>pom</packaging>

<!-- These properties are common to all son POMs-->
<propertiess>
<project.build.sourceEncoding>UTF-8
</project.build.sourceEncoding>
<maven.compiler.source>1l.6</maven.compiler.source>
<maven.compiler.target>1l.6</maven.compiler.target>
<gwt.version>2.0.3</gwt.version>
<!-- etc. -->
<dbunit.version>2.4.8</dbunit.versions>
<!-- sonar config -->
<sonar.jdbc.urls>
jdbc:mysqgl://localhost:3306/sonar?useUnicode=true
</sonar.jdbc.url>
<sonar.jdbc.driverscom.mysql.jdbc.Driver
</sonar.jdbc.drivers>

<!-- etc. -->
</propertiess>
<!-- The Source Code Management -->
<scm>
<connections>
scm:svn:http://localhost:8066/packt/branches/1.0
</connections>
<!-- etc. -->
</scm>
<!-- The distribution management -->

<distributionManagement >
<repositorys
<id>repoDistrib</id>
<name>repoDistrib</name>

[20]

Chapter 1

<!-- Here we use a local repository -->
<urlsfile:///C:/artifacts</urls>
</repositorys>
</distributionManagement>
<builds>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</groupIld>
<artifactIds>sonar-maven-plugin</artifactId>
<versions>2.0</versions>
</plugins>
<!-- etc. -->
</plugins>
</build>
</project>

As you can see, the data of the parent POM are not specific to one project; unlike, the
data are shared by many other projects. Moreover, the scalability is swift: you can
add any child project; this will not disturb the behavior of the parent POM.

The son project will refer to its parent with this header, that is, as usual by the triplet
groupld/artifactId/version version.

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/maven-v4 0 0.xsd">

<!--The identifier of the parent POM-->

<parent>
<groupIld>com.packt.dependencyManagement.chapterl
</groupIld>
<artifactId>superPom</artifactId>
<version>2.6.0-SNAPSHOT</version>

</parent>

<modelVersion>4.0.0</modelVersion>

<artifactId>sonPom</artifactIds

<name>The first son project of the parent POM</name>

<packaging>jar</packaging>

</projects>

Modules

Whereas parent POM provided a mechanism of inheritance, Maven modules provide
a mechanism of aggregation, this means you can define groups of projects on which
to run the same goal.

[21]

Basic Dependency Management

Let's consider the following pom.xml, and let's assume it is located in /anywhere/
multimodule/ folder

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>com.packt.dependencyManagement .chapterl</groupIds>
<artifactId>multimodule-simple</artifactIds>
<name>An example of multimodule POM</names
<packaging>pom</packaging>
<versions>1.0-SNAPSHOT</version>

<modules>
<module>multimodule-ear</module>
<module>multimodule-war</module>
</modules>
</project>

Two modules are declared as many n-tiers architectures: the first for an EAR module,
and a second one for a wAR module. On each and every goal that is executed on com.
packt .maven.dependency:multimodule-simple:pom:1.0-SNAPSHOT, the same
goal will be executed on the /anywhere/multimodule/multimodule-ear/pom.xml
and /anywhere/multimodule/multimodule-war/pom.xml files.

For instance, the call (-f pom.xml is redundant, we write it only to be explicit) /
anywhere/multimodule/ $ mvn clean install -f pom.xml is equivalent to the
following;:

/anywhere/multimodule/ $ cd multimodule-ear
/anywhere/multimodule/multimodule-ear/ $ mvn clean install -f pom.xml
/anywhere/multimodule/multimodule-ear/ $ cd ../multimodule-war

/anywhere/multimodule/multimodule-war/ $ mvn clean install -f pom.xml

The interest of modules appears when you combine them with profiles. Then, only
the modules declared in the linked profile will be run.

[22]

Chapter 1

Let's consider the following dependency tree:

WebApp Intranet

T tronet- arvicas< W ;
ISF-utilitles resources interface GWT-utilities

Entities

There are three archives (EAR, WebApp, and Intranet), which depend on JARs
(technical, services interface, web resources, and so on).

Sometimes you work only on the EAR, sometimes only on the Intranet; and
sometimes you work on the three. With modules, you can define profiles of
compilation. So, the pom. xm1 will look similar to the following (the code is self-
documented):

<?xml versgion="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.packt.dependencyManagement .chapterl
</grouplds>
<artifactId>multimodule-withProfiles</artifactId>
<name>Example multimodule POM using profiles</names
<packagings>pom</packaging>
<version>1.2.3-SNAPSHOT</version>

<profiles>
<profiles
<!-- In this profile, all submodules will be built ;

[23]

Basic Dependency Management

please note the order of build: from the module
the least dependencies, to the module with the
most ones -->

<id>all</id>

<activations>
<!-- This profile is active by default,

if no other is specified-->

<activeByDefault>true</activeByDefault>

</activations>

<modules>
<!--Submodules needed to build EAR-->
<modules>technical</module>
<modules>entities</module>
<module>services-interface</modules
<module>Ldap</module>
<module>DAO</module>
<module>Services-implementation</module>
<!--Now EAR can be built-->
<module>EAR</module>

<!--Submodules needed to build WebApp-->
<modules>Web-resources</module>
<!-- Services-implementation and Entities
have already been built,
we do not mention them here-->
<module>JSF-utilities</module>
<module>WebApp</module>

<!--Submodules needed to build Intranet-->
<module>Intranet-resources</module>
<!-- Services-implementation and Entities
have already been built,
we do not mention them here-->
<module>GWT-utilities</module>
<module>Intranet</module>
</modules>
</profile>
<profile>
<!--In this profile, we build only artifacts
which EAR depends on, then EAR-->
<id>EAR</id>
<modules>
<modulestechnical</module>
<modules>entities</module>

with

[24]

Chapter 1

<module>services-interface</modules
<module>Ldap</module>
<module>DAO</module>
<module>Services-implementation</module>
<module>EAR</module>

</modules>
<activations>
<!-- this profile is not active by
default : therefore, it will not be called
unless explicitly specified -->
<activeByDefault>false</activeByDefault>
</activations>
</profile>
<profile>
<!--In this profile, we build only artifacts
which WebApp depends on, then WebApp -->
<id>WebApp</id>
<modules>
<!-- We need add Entities and Services-interface,

because unlike above they have not been build-->
<modules>entities</module>
<module>services-interface</modules
<modules>Web-resources</module>
<module>JSF-utilities</module>
<module>WebApp</modules>
</modules>
</profile>
<profile>
<!--In this profile, we build only artifacts
which Intranet depends on, then Intranet -->
<id>Intranet</id>
<modules>
<!-- We need add Entities and Services-interface,
because unlike above they have not been build-->
<modules>entities</module>
<module>services-interface</modules
<module>Intranet-resources</modules>
<module>GWT-utilities</module>
<module>Intranet</module>
</modules>
</profile>
</profiles>

</project>

[25]

Basic Dependency Management

A call to /anywhere/multimodule-withProfiles/ $ mvn clean install -f
pom.xml is equivalent to the following:

/anywhere/multimodule-withProfiles/ $ mvn clean install -f pom.xml -Pall
But you can decide to build only EAR using the following:
/anywhere/multimodule-withProfiles/ $ mvn clean install -f pom.xml -PEAR
You can build only the Intranet using the following;:

/anywhere/multimodule-withProfiles/ $ mvn clean install -f pom.xml -
Pintranet

You can also build with two profiles, for instance EAR and WebApp:

/anywhere/multimodule-withProfiles/ $ mvn clean install \
-f pom.xml \
-PEAR, WebApp

In a further chapter, we will dive into module mechanisms.

\
~ Most of the time, module descriptions are gathered
within the parent POM.

Version ranges

Earlier, we have seen an artifact is described by the group1d/artifactIid/version
triplet. Actually, you can specify not only a version number, but also a range of
versions.

The grammatical meaning of the mathematical signs is as follows:

* Parenthesis signs (and) hint an including range
* Brackets signs [and] hint an excluding range

* Commas separate subsets

The following table explains the grammatical meaning of a few ranges:

Range Meaning

1.2 Version equals to 1. 2 or is starting with 1.2
[1.2] Version strictly equal to 1.2

(,1.2] Anything less than 1. 2, included

[26]

Chapter 1

Anything less that 1 . 2 (included) or greater than 3 . 4 (included)

Range Meaning

(,1.2) Anything less than 1. 2, excluded

(1.2,) Anything greater than 1. 2, included

(1.2,) Anything greater than 1. 2, excluded

(1.2,3.4) Anything between 1.2 and 3. 4, both excluded
(1.2,3.4] Anything between 1. 2 (excluded) and 3. 4 (included)
[1.2,3.4) Anything between 1. 2 (included) and 3. 4 (excluded)
[1.2,3.4] Anything between 1.2 and 3. 4, both included

(

(

Anything except 1.2

The following are few meaningful examples, which will help you understand the
ranges in a better way:

Range Versions that will be Versions that will not be accepted
accepted
1.2 1.2, 1.2.0, 1.2.3-GA, 1.1, 3.4, Foo-1.2
1.2.3-Final
[1.2] 1.2 1.2.0, 1.2.3-GA,
1.2.3-Final, 1.1, 3.4,
Foo-1.2
(,1.2] 0.1, 1.0, 1.1.1, 1.2 1.3, 3.4
(,1.2) 0.1, 1.0, 1.2, 1.3, 3.4
[1.2,) 1.2, 1.3, 3.4 0.1, 1.0, 1.1.1
(1.2,) 1.3, 3.4 0.1, 1.0, 1.1.1, 1.2
(1.2,3.4) 1.2.1, 1.3, 3.3.9 1.1.8, 1.2, 3.4, 3.4.1
(1.2,3.4] 1.2.1, 1.3, 3.3.9, 3 1.1.8, 1.2, 3.4.1
[1.2,3.4) 1.2, 1.2.1, 1.3, 3.3 1.1.8, 3.4, 3.4.1
[1.2,3.4] 1.2, 1.2.1, 1.3, 1.1.8, 3.4.1
3.3.9, 3.4
(,1.2]1,1[03.4,) 1.1.9, 1.2, 3.4, 3.5 1.3, 3.0
(,1.2),(1.2,) 1.1, 1.3, 3.4 1.2

[27]

Basic Dependency Management

Downloading the example code

You can download the example code files for all
Al
~ Packt books you have purchased from your account
athttp://www.packtpub. com. If you purchased
this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the
— files e-mailed directly to you. -

Summary

In this opening chapter, we learned or revised different concepts. We are henceforth
able to:

* Define a dependency and designations, whether short or long

* Describe the mechanism of dependency mediation

* Define parent POMs with different submodules

* Define different version ranges

[28]

Dependency Mechanism
and Scopes

In the course of this second chapter, we will study the different scopes. Then, we will
see the dependencyManagement tag.

We will dive deeper in the dependency management seen for multimodule projects.
In the end, we will describe the content and meaning of files in the local repository.

Scopes

In the previous chapter, we have seen the group1d, artifactId, and version tags,
used to determine in a deterministic way a project.

The dependency tag owns another subtag named scope.

Nomenclature of scope

The scope hints at the visibility of a dependency, relatively to the different life phases
(build, test, runtime, and so on). Maven provides six scopes: compile, provided,
runtime, test, system, and import.

Let's review them a bit more.

Compile
This is the default scope. Dependencies with <scope>compile</scope> are needed
to build, test, and run, and are propagated to dependent projects.

Scope compile is to be used in most of the cases, for instance, when a class of your
src/ folder uses imports of classes.

Dependency Mechanism and Scopes

So, as an example, consider that your code holds the following:

import org.apache.log4j.Logger;
import org.springframework.util.Assert;

If your code holds the preceding lines then, your pom.xml will contain the following:

<dependencies>
<dependency>
<groupId>log4j</groupld>
<artifactIds>log4j</artifactIds>
<version>1.2.1l4</versions>
<!-- may be omitted -->
<scope>compile</scope>
</dependency>
<dependency>
<grouplds>org.springframework</groupId>
<artifactIds>spring-core</artifactIds>
<version>3.0.3.RELEASE</versions>
<!-- may be omitted -->
<scope>compile</scope>
</dependency>
</dependencies>

Provided

Dependencies with <scope>provided</scopes> are required to build and test. They
are also required to run, but should not exported, because the dependence will be
provided at runtime, for instance, by a servlet container or an application server. As
a corollary, they are not propagated to dependent projects.

So, as an example, consider that your code holds the following:

import javax.jms.TextMessage;
import javax.ejb.EJBContext;

If your code holds the preceding lines then, your pom.xml will contain the following;:

<grouplds>milyn</groupIds>
<!l--

also exists with:
<grouplds>j2ee</groupIld>

-->
<artifactId>j2ee</artifactIds>
<versions>1l.4</version>

<scope>provided</scope>

[30]

Chapter 2

Runtime

Dependencies with <scope>runtime</scope> are not needed to build, but are part
of the classpath to test and run, and are propagated to dependent projects.

To illustrate a use case, let's consider a very simple project that includes a unique
class, without any import:

package com.packt.maven.dependency.scopeRuntime;

public class LazyGuy {
public static void main(Stringl[] args)
System.out.println ("I am lazy");

}

The corresponding pom. xml is simple, too, and depends on no other artifact:

<?xml vergion="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupIds>
com.packt .dependencyManagement .chapter?2
</grouplds>
<artifactId>scopeRuntime</artifactIds>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>ScopeRuntimeIllustrator</name>
</projects>

As given, the project compiles and runs.

Let's make the case a bit more complex. We instantiate xSt ream, but as done earlier,
absolutely no import is declared and no dependence is added to pom.xm1:

package com.packt.dependencyManagement .chapter2.scopeRuntime;

public class LessLazyGuy {
public static void main(String[] args) {
try {
final Object xstream;
// We create an instance of XStream.
// Beware that there is absolutely *no* import

[31]

Dependency Mechanism and Scopes

// of the class
xstream = ClassLoader.getSystemClassLoader () .
loadClass ("com. thoughtworks.xstream.XStream") .
newInstance () ;

System.out.println("Success: " + xstream.toString()) ;
} catch (InstantiationException e) {

e.printStackTrace () ;
} catch (IllegalAccessException e) {

e.printStackTrace () ;
} catch (ClassNotFoundException e) {

e.printStackTrace () ;

}
The project compiles as follows:

/workarea/development/projects/ScopeRuntime $ mvn clean install --quiet
[debug] execute contextualize

[debug] execute contextualize

Results :

Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

|
‘\Q You can launch Maven in quiet mode with the -q or - -quiet

option then only errors are displayed in output console.

Let's get the execution classpath:
/workarea/development/projects/ScopeRuntime $ mvn dependency:build-
classpath

[INFO] Scanning for projects...

[INFO]

| 8.} /o) [OOSRy U Uy U Uy U Uy S Uy S Uy U Uy S Ry Uy Uy S Sy Sy Sy Sy USSRy
[INFO] Building ScopeRuntimeIllustrator 1.0-SNAPSHOT

| 8.} /o) [OOSRy U Uy U Uy U Uy S Uy S Uy U Uy S Ry Uy Uy S Sy Sy Sy Sy USSRy

Chapter 2

[INFO]
[INFO] --- maven-dependency-plugin:2.l:build-classpath (default-cli) @
ScopeRuntime ---

[INFO] No dependencies found.
[INFO] Dependencies classpath:

[INFO] = - - o m o m s o oo oo oo oo e
[INFO] BUILD SUCCESS

[INFO] = - - o m o m s o oo oo oo oo e e oo
[INFO] Total time: 1.266s

[INFO] Finished at: Wed Jun 26 18:14:56 CEST 2013

[INFO] Final Memory: 5M/15M

[INFO] = - - o m oo s o oo e o oo oo oo

M You can get the classpath used by a project in executing the
Q dependency:build-classpath goal. We will deal with
the dependency plugin in detail in a further chapter

Now, let's run the application:

/workarea/development/projects/ScopeRuntime $ java -cp target/
ScopeRuntime-1.0-SNAPSHOT.jar com.packt.maven.dependency.scopeRuntime.
LessLazyGuy

java.lang.ClassNotFoundException: com.thoughtworks.xstream.XStream
at java.net.URLClassLoader$l.run(URLClassLoader.java:202)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass (URLClassLoader.java:190)
at java.lang.ClassLoader.loadClass(ClassLoader.java:306)

at sun.misc.Launcher$AppClassLoader
.loadClass (Launcher.java:301)

at java.lang.ClassLoader.loadClass(ClassLoader.java:247)

at com.packt.maven.dependency.scopeRuntime.LessLazyGuy
.main(LessLazyGuy.java:8)

As expected, the xstream object could not be instantiated. Let's take the pom.xm1 file.
We add a dependency with the runtime scope:

<dependency>
<groupld>com.thoughtworks.xstream</groupIds>
<artifactIdsxstream</artifactIds>

[33]

Dependency Mechanism and Scopes

<versions>1.4.4</version>
<scope>runtime</scope>
</dependency>

It will not affect the build path, only the runtime classpath:
/workarea/development/projects/ScopeRuntime $ mvn dependency:build-
classpath

[INFO] Scanning for projects...

[INFO]

105 o [
[INFO] Building ScopeRuntimeIllustrator 1.0-SNAPSHOT

[INFO] === mmm s mm o o e e e e e e e e e e e oo
[INFO]

[INFO] --- maven-dependency-plugin:2.l:build-classpath (default-cli) @
ScopeRuntime ---

[INFO] Dependencies classpath:

/.m2/repository/com/thoughtworks/xstream/xstream/1.4.4/xstream-
l.4.4.jar:/.m2/repository/xmlpull/xmlpull/1.1.3.1/xmlpull-1.1.3.1.jar:/.
m2/repository/xpp3/xpp3 min/l.1l.4c/xpp3 min-1.1.4c.jar [INFO] -----------

[INFO] BUILD SUCCESS

1.1 o
[INFO] Total time: 1.266s

[INFO] Finished at: Wed Jun 26 18:20:35 CEST 2013

[INFO] Final Memory: 5M/15M

1.5 o [

Now, let's run the application:

/workarea/development/projects/ScopeRuntime $ java -cp /target/
ScopeRuntime-1.0-SNAPSHOT.jar:/.m2/repository/com/thoughtworks/xstream/
xstream/1l.4.4/xstream-1.4.4.jar:/.m2/repository/xmlpull/xmlpull/1.1.3.1/
xmlpull-1.1.3.1.jar:/.m2/repository/xpp3/xpp3 min/1.1.4c/xpp3 min-1.1.4c.
jar

Success: com.thoughtworks.xstream.XStream@93dee9

Test

Dependencies with <scope>test</scope> are not needed to build and run the
project, and are not propagated to dependent projects. But they are needed to
compile and run the unit tests.

[34]

Chapter 2

Dependencies with scope test are related to testing, among which we can quote the
most famous: JUnit, DBUnit, various mock frameworks, and so on, for example,:

<dependency>
<groupId>junit</grouplds>
<artifactId>junit</artifactIds>
<version>4.1l1l</version>
<scope>test</scope>

</dependency>

<dependency>
<grouplds>org.easymock</groupIld>
<artifactId>easymockclassextension</artifactIds>
<version>2.5.2</version>
<scope>test</scope>

</dependency>

Obviously, if some of your dependencies are imported only in tests (cglib, javax.
mail, or anything else), then include them with test scope rather than compile
scope. The main interest is to slim the archived created of unneeded dependencies.

System

Dependencies with <scope>system</scope> are similar to ones with scope provided.
As such, they are required to build, test, and run, and are not propagated. The main
difference is that system dependencies are not retrieved from a repository but from a
hard written address on the filesystem.

When scope value is system, then an additional tag is mandatory: systemPath,
which points at the location of the needed archive.

For instance, here is a system dependency:

<dependency>
<grouplds>com.sun</groupIlds>
<artifactId>tools</artifactIds>
<version>1.6.0</versions>
<scope>system</scopes>
<systemPath>

${java.home}/../lib/tools.jar

</systemPath>

</dependency>

As in the preceding example, most of the time system dependencies are needed to
process or generate sources. Among the use cases is the generation of code thanks
to annotations.

[35]

Dependency Mechanism and Scopes

Import
Scope import is available only as a subtag of <dependencyManagement>. We will
deal with it at the same time as <dependencyManagement>.

Scope overlay rules (via transitive
dependencies)

Let's assume your project, let's say "Blue", depends on an artifact, say "Green", with
scope compile that depends on a third artifact, say "Yellow", with scope runtime.
Via transitivity, your project "Blue" will depend on "Yellow". The question is: what
scope will "Yellow" be in your actual dependency tree?

The answer is: runtime. Indeed:

* Inorder to compile, Blue needs everything Green needs to compile; but
Green does not need Yellow to compile; so Yellow is not needed by Blue
to compile

* Yellow is needed by Green to run, and Green is needed by Blue to run;
so Yellow is needed by Blue to run

More generally, here is the matrix of scope transitivity:

Scope of project "Yellow" within "Green"

Scope of Compile Provided Runtime Test
-I-)g;j: ecrtl” Compile Compile (none) Runtime (none)
within Provided Provided (none) Provided (none)
"Blue" Runtime Runtime (none) Runtime (none)
Test Test (none) Test (none)

Scope of project "Yellow" within "Blue"

The dependencyManagement tag

The dependencyManagement tag is used in parent POMs (but not only). Basically,
it can be seen as a way to factorize implicit and default scope, exclusion, and
version within the son POMs.

In a further chapter, we will deal of the means of displaying the effective POM, that
is, the POM that is actually read and run by Maven, and which differs from the POM
written by the user.

[36]

Chapter 2

First case study

For instance, let's consider the following parent POM. A dependencyManagement tag
is declared, as well as a scope (provided) and an exclusion; this information will be
considered by inheriting projects:

<?xml vergion="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupIds>
com.packt .dependencyManagement . chapter?2
</grouplds>
<artifactId>ParentWithDependencyManagement</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Example of multimodule parent POM with
dependencyManagement tag
</name>
<packaging>pom</packaging>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>com.google.gwt</groupIlds>
<artifactId>gwt-servlet</artifactIds>
<version>2.5.0</version>
<scope>provided</scope>
<exclusions>
<exclusion>
<groupId>org.json</groupId>
<artifactId>json</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
</dependencyManagement>
<modules>
<modules>DependencyManagementSon</module >
</modules>
</project>

[37]

Dependency Mechanism and Scopes

The following is a son POM:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<name>Example of son POM whose parent has
dependencyManagement tag
</name>
<parent>
<groupId>
com.packt .dependencyManagement .chapter?2
</groupIds>
<artifactId>ParentWithDependencyManagement
</artifactIds>
<versions>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>DependencyManagementSon</artifactIds>
<version>1l.0-SNAPSHOT</version>
<dependencies>
<dependency>
<!-- Neither scope nor version are written-->
<groupId>com.google.gwt</groupId>
<artifactId>gwt-servlet</artifactId>
</dependency>
</dependencies>
</projects>

Then the dependency in the actual POM will be:

<dependency>
<groupId>com.google.gwt</groupIld>
<artifactId>gwt-servlet</artifactIds>
<version>2.5.0</version>
<scope>provided</scope>
<exclusions>
<exclusion>
<artifactId>json</artifactId>
<groupId>org.json</groupIld>
</exclusion>
</exclusions>
</dependency>

[38]

Chapter 2

In other words, the scope, version, and exclusions provided by the parent POM
within the dependencyManagement tag were propagated to the son POM.

Yet, if the son POM did not declare a dependency of which groupId and artifactId
are referenced in dependencyManagement, then this dependency would not be added
to the son POM dependencies.

Second case study

Anyway, a son POM can override the default scope and version, which is inherited
from parent POM, and by declaring it explicitly. Therefore, let's consider this second
son POM:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<name>Example of son POM whose parent has
dependencyManagement tag
</name>
<parent>
<groupIds>
com.packt.dependencyManagement .chapter?2
</groupIld>
<artifactId>ParentWithDependencyManagement
</artifactIds>
<version>1.0-SNAPSHOT</versions>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>DependencyManagementOverridingSon
</artifactIds>
<version>1.0-SNAPSHOT</versions>
<dependencies>
<dependency>
<groupld>com.google.gwt</grouplds>
<artifactId>gwt-servlet</artifactId>
<!-- We explicitly hint at values of scope and
version that are different from those in
parent POM:
* compile instead of provided
* 2.1.0 instead of 2.5.0-->
<version>2.1l.0</version>
<scope>compile</scope>

[39]

Dependency Mechanism and Scopes

</dependency>
</dependencies>
</project>

The corresponding effective POM will contain this dependency:

<dependency>
<groupld>com.google.gwt</groupIld>
<artifactId>gwt-servlet</artifactIds>
<version>2.1l.0</version>
<scope>compile</scope>
<exclusionss>
<exclusion>
<artifactId>json</artifactId>
<groupld>org.json</groupIlds>
</exclusions>
</exclusions>
</dependency>

Notice that, unlike scope and version, there is no way to remove or update an
exclusion tag.

The import scope

The dependencyManagement tag can be used out of a hierarchy parent/son POM,
but also as an easy way to factorize dependencies, for instance in a large organization
with plenty of projects.

Let's consider the following project, let's say head, the code is self-documented:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>
com.packt .dependencyManagement . chapter2. scopeImport

</grouplds>

<artifactIdshead</artifactIds>

<version>1.0-SNAPSHOT</version>

<name>Example of POM with scope import
dependencyManagement of two artifacts with a version
conflict because of transitive dependencies

</name>

[40]

Chapter 2

<packaging>pom</packaging>

<dependencyManagement >
<dependencies>
<dependency>
<groupld>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactIds>
<!-- Explicit declaration of version-->
<version>1.2.0</version>
</dependency>

<dependency>
<!-- The artifact induces a transitive
dependency to:
'org.apache.hadoop:hadoop-tools:jar:1.0.4"
Therefore, there is a potential conflict
with the version of the artifact declared above
-->
<grouplds>org.springframework.data</groupIds>
<artifactId>spring-data-hadoop</artifactIds>
<version>1.0.0.RELEASE</version>
</dependency>
</dependencies>
</dependencyManagement >
<dependencies>

<!-- spring-data-hadoop is explicitly declared as a
dependency. Then its scope and version will be
retrieved from the <dependencyManagement> data:
1.0.0.RELEASE Besides, the induced dependency
('org.apache.hadoop:hadoop-tools:jar:1.0.4') should be
inherited. Unlike, org.apache.hadoop:hadoop-
tools:jar:1.2.0, that is *not* declared, will *not*
be retrieved, even though it appears in the

<dependencyManagement> block -->

<dependency>
<grouplds>org.springframework.data</groupIds>
<artifactIds>spring-data-hadoop</artifactId>
</dependency>
</dependencies>
</project>

Let's consider another project, let's say legwithout Import, of which POM is:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

[41]

Dependency Mechanism and Scopes

xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersions>
<groupId>
com.packt .dependencyManagement .chapter2.scopelmport
</groupld>
<artifactId>legWithoutImport</artifactIds>
<version>1.0-SNAPSHOT</version>
<name>Example of POM without scope 'import'</names>
<packaging>jar</packaging>
<dependencyManagement >
<dependencies>
<!--Set a dependency to project Head-->
<dependency>
<groupIds>
com.packt .dependencyManagement .chapter?2
.scopelImport

</groupId>

<artifactId>head</artifactId>

<version>1.0-SNAPSHOT</version>

<types>pom</type>
<!--no scope is indicated ; therefore it is
the default 'compile'-->
</dependency>
</dependencies>
</dependencyManagement >
<dependencies>
<dependency>
<groupIds>
com.packt .dependencyManagement .chapter?2
.scopelImport
</groupId>
<artifactIdshead</artifactId>
<types>pom</type>
<!-- No need to hint at a specific version:

the right one will ne got from the
dependencyManagement tag above-->

</dependency>
</dependencies>
</project>

This POM is a regular one. legWithout Import depends on head, which is of type
pom; hence, 1egWithout Import will be transmitted by the dependencies schemes
of head.

[42]

Chapter 2

Among the dependency tree, we will get theses artifacts:

org.springframework.data:spring-data-
hadoop:jar:1.0.0.RELEASE:compile

org.apache.hadoop:hadoop-core:jar:1.0.4:compile

As expected, the project depends on spring-data-hadoop:jar:1.0.0.RELEASE and
org.apache.hadoop:hadoop-core:jar:1.0.4 as a transitive dependency.

Now, here is another project, let's say legWithImport. In the
dependencyManagement tag, an import scope was added:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupIds>
com.packt .dependencyManagement .chapter2.scopelmport
</groupIld>
<artifactId>legWithImport</artifactIds>
<version>1.0-SNAPSHOT</versions>
<name>Example of POM with scope 'import'</names>
<packaging>jar</packaging>
<dependencyManagement >
<dependencies>
<dependency>
<groupIds>
com.packt .dependencyManagement .chapter?2
.scopelImport
</groupIld>
<artifactIdshead</artifactIds>
<version>1.0-SNAPSHOT</versions>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement >

<dependencies>
<dependency>
<groupIds>
com.packt.dependencyManagement .chapter?2
.scopelImport
</groupIds>
<artifactId>head</artifactIds>

[43]

Dependency Mechanism and Scopes

<types>pom</type>
<!-- The right version should not be written
explicitly ; but Maven 3 denies to build if
the tag is omitted.-->
<version>1.0-SNAPSHOT</version>
</dependency>
</dependencies>
</project>

On printing the dependency tree, the following lines appear:

org.springframework.data:spring-data-
hadoop:jar:1.0.0.RELEASE:compile (version managed from 1.0.0.RELEASE)

org.apache.hadoop:hadoop-core:jar:1.2.0:compile (version managed
from 1.0.4)

The dependency that was retrieved was of version org.apache . hadoop : hadoop-
core:jar:1.2.0, and not the implicit and transitive 1. 0. 4. Here, it is the effect of
scope import.

1
~ The output (version managed from XXX) indicatesa
transitive dependency was shortcut because of an explicit one.

So, as a summary, what are the role and interest of scope import? Scope import
allows forcing the version in the transitive dependencies. It offers consistency of
multiprojects organizations with a common base set, and reduces the risk of anarchy
on dependencies, among which the situation of diamond dependencies, that is, A
depends on B and ¢; both B and ¢ depend on D.

Modules and submodules (advanced)

In this section, we present Maven Reactor, which is behind Maven's ability to deal
with multimodule projects.

Maven Reactor

Maven Reactor is the mechanism that Maven uses to manage multimodule projects.
There also exists a plugin, called Reactor, which will be reviewed a bit later. Maven
Reactor serves three primary functions given as follows:

* To list the modules to build

* To determine the best order of construction

* To perform the actual build on the right projects

[44]

Chapter 2

Reactor sorting

In a multimodule project, the submodules often depend on each other: either as

a project dependency, or as a plugin dependency. This is why the order of the
submodules within the modules tag is not necessarily honored. Maven Reactor will
sort the submodules in such a way that a needed dependency is built before another
project that does need it. The actual rules are the following to sort the submodules:

* Project dependency first: If project 2 depends on project B, then B is built
before A.

* Plugin dependency first: If project A depends on plugin ¢, then ¢ is built
before A.

* Build extension first: If F is a plugin declaring a build extension (refer
the Creating new packaging/type section in Chapter 3, Advanced Dependency
Designation) and G is a module of any other type (either another type of
plugin or a project), then F is built before G.

* First declared, first built: Out of these rules, at same topologic level, the
submodules are built in the same order as they are declared.

Let's illustrate these rules with the following case. Consider a POM having five
submodules:
* Three projects:
° project0: It depends on project1
° projectl: It depends on no other project nor plugin

° project2: It depends on both projecto and project1; uses plugin4

* Two basic plugins, only print "hello world" or "hi world" on standard output:
° plugin3: Itis not used by any other module

° plugin4: It depends on no other module (but is used by project2)

[45]

Dependency Mechanism and Scopes

* The tree of dependencies is shown in the following diagram:

Project 2

Project 0

Project 1

—

* Let's assume the dependencies are declared in the following order:

<modules>
<!--project0 depends on projectl-->
<module>projectO</module>
<!--projectl depends on no other project nor plugin
-->
<module>projectl</module>
<!--project2 depends on both project0 and projectl;
uses plugin4-->
<module>project2</module>
<!--Plugin3 is not used by any other module-->
<module>plugin3</module>
<!--Plugin4 is used by project2-->
<module>plugind</module>
</modules>

* The question is: in which order shall Maven Reactor build these submodules?

° First of all, Project2 and P1lugin3 have no ties between them;
but P1ugin3 is declared after Project2, therefore, Project2 will
be built before Plugin3.

° Secondly, project2 depends on Project0, Projectl, and Plugin4,
therefore, Project2 will be built after these three modules.

© Thirdly, Projecto and Plugin4 have no ties, but P1lugina4 is declared
after Projecto, therefore, Project0 will be built before P1ugina4.

° Lastly, Project0 depends on Project1 hence Project1 will be built
before Projecto.

[46]

Chapter 2

* So, we get the order of build that is confirmed by Maven execution:

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Reactor Summary:

projectlccciiiiiinnn. SUCCESS
project0cciiiieennan. SUCCESS
plugindccciiiinnn.. SUCCESS
project2ciiiiiiiennns SUCCESS
plugin3dcciiiiiinnn.. SUCCESS

[26.7345s]
[0.797s]
[13.015s]
[0.5945s]
[1.766s]

If we had set the submodules order declaration to this one:

<modules>

<module>plugin3</modules>
<module>project2</module>
<module>plugind</modules>
<modules>projectl</module>
<module>projectO</module>

</modules>

Then, honoring the same rules, we would have got the following order:

[INFO] Reactor Summary:

[INFO]

[INFO] plugin3ccciieeeeencanns SUCCESS
[INFO] projectlc.ciieeeneneanns SUCCESS
[INFO] project0c.iceieeeneneanns SUCCESS
[INFO] plugingdc.ceieeeeeneanns SUCCESS
[INFO] project2c.iceieeeeencannn SUCCESS

Parallel build

-T 8 <goals> will build on eight parallel threads, and mvn -T 2C
<goals> will build with two threads per CPU core. Anyway, this feature
is still experimental and you should beware of Thread unsafe-plugins.

.\'Q Since Maven 3.0, build can be performed in parallel. For instance, mvn

[3.000s]
[0.500s]
[0.359s]
[0.9845s]
[0.42258]

[47]

Dependency Mechanism and Scopes

Reactor options and the Reactor plugin
for Maven 2

Maven Reactor is available from any project, that is, you need not declare any
dependency to call it. Maven Reactor has several convenient options. Until Maven
2.0.11, those available options were only through an explicit call to Reactor plugin.

* --also-make or -am: This option is used to build the projects given in
arguments (including their dependencies).

o

Use case: Your build is launched with a -p (profile) argument,
hinting that only a part of submodules should be built; this option
allows you to add arbitrary modules to build.

Equivalent goal in Maven 2: This option make folders and projects,
for example, mvn reactor:make -Dmake.folders=projecto,
~/workarea/projectl, Or mvn reactor:make -Dmake.
projects=project2,plugini.

* --also-make-dependents or -amd: This options is used to build the projects
given in arguments, as well as the projects that depend on them.

e}

Use case: You rebuild a module among a sequence of many; using
this argument you can force the dependent projects to rebuild, too,
without rebuilding the complete set of modules.

Equivalent goal in Maven 2: This option is used to make
dependents, for example, mvn reactor:make-dependents -Dmake.
folders=project0, ~/workarea/projectl, Or mvn reactor:make-
dependents -Dmake.projects=project2,plugini.

* --fail-fast or -ff: (behavior activated by default) This option makes the
whole-set build fail as soon as one module fails to build.

* --fail-at-end or -fae: If a module fails to build, the build keeps on
running on the other modules. Anyway, at the end the build will be marked
as failed.

* --non-recursive: This option does not build the submodules on all projects

but only the very project on which the build was executed.

o

Use case: When your project is not only a pom-packaged one, but
contains useful code that need be compiled, independently of its
submodules.

* -r: This option is used to build the list of projects given in arguments,
ignoring the modules declared in the POM.

[48]

Chapter 2

* --resume-fromor -rf: This option starts or resumes the build since the
module given as parameter, including the dependent projects.

o

Use case: Your project contains several submodules, and one of them
makes the build fail. When you have identified and fixed the issue,
building the former is not worthwhile; but you are interested in
resuming the build at the last point where it was broken.

Equivalent goal in Maven 2: Is used to resume the reactor, foe
example, mvn reactor:resume -Dfrom=plugin3.

* Alast goal is available for Maven 2 but has no native equivalent in Maven 3:
make - scm-changes. It allows building the projects that have been changed
locally, as well as the depended on projects. To enable this feature, an <scm>
block is required in your POM.

Management of dependencies in folders

Let's take a look at how to manage the project dependencies in folders in the
following sections.

The dependencies in their folders

Dependencies that are downloaded from a remote repository, or are manually
installed, are stored in the local repository folder, let's say ~/.m2/repository.
Each artifact is copied into a specific location, which depends on its group1d/
artifactId/version, and so on. To determine the actual folder, the following
algorithm is applied:

* groupId is split on dots; each piece of the result will result in a folder.

* artifactIdand version are transposed to unique folders, even if their
values contains dots.

As an example, let's consider a dependency to org.hibernate:hibernate-
annotations:jar:3.3.1.GA:compile. The matching folder is .m2/repository/
org/hibernate/hibernate-annotations/3.3.1.GA. The group1d is split, whereas
artifactIdand version are preserved. The folder will contain several files:

e Three files related to the JAR:

° hibernate-annotations-3.3.1.GA.jar: The very artifact

o

hibernate-annotations-3.3.1.GA.jar.tmp.shal.tmp and
hibernate-annotations-3.3.1.GA.jar.shal: Secure hash files

[49]

Dependency Mechanism and Scopes

* Three parallel files related to the POM:

° hibernate-annotations-3.3.1.GA.pom

[e]

hibernate-annotations-3.3.1.GA.pom.tmp.shal.tmp

° hibernate-annotations-3.3.1.GA.pom.shal

Nonarchive files

For snapshot versions, an additional file should appear: maven-metadata.xml (for a
remote repository), or maven-metadata-${repoId}.xml for alocal repository. Most of
the time, this last file is called maven-metadata-local.xml. It contains the timestamps
of the times when the considered snapshot was downloaded. When two snapshots
share the same version, such as 1.2 .3-SNAPSHOT, this mechanism allows to re-install

a snapshot if, and only if, the snapshot has changed since the last update date.

<snapshotVersion>
<extension>jar</extension>
<value>1.0-SNAPSHOT</value>
<updated>20130711201754</updated>

</snapshotVersion>

Other files that may appear:

* _maven.repositories: This file records the repository from which the artifact
was downloaded. Theoretically, at least for release artifacts, there should not
be a difference between an artifact anyGroup:anyArtifact:anyVersion
downloaded from a repository Repoa and the very same artifact downloaded
from RepoB. The following piece of code says that commons-beanutils-
1.7.0.jar was downloaded from the repository of which the ID is central.

commons-beanutils-1.7.0.pom>central=
commons-beanutils-1.7.0.jar>central=

e * * JastUpdatedand resolver-status.properties: These files indicate
Maven attempted and failed to download the archive. In order to save
bandwidth, Maven will not try to download the same archive for a given
time period. Anyway, you can force the attempt to download with the -u
or - -update-snapshots options.

Most of the time, you run Maven on an existing POM file. Anyway, sometimes you
may need to run Maven independently of any project. This is the case, for instance,
when you run mvn - -help. In this situation, an implicit POM is called. Technically,
it is referred to as standalone-pom.

[50]

Chapter 2

You can download a given artifact and install it to local repository with a standalone
command, thanks the plugin and dependency:get goal. You can point at the desired
artifact by its short designation, for example:

mvn dependency:get \
-Dartifact=org.springframework:spring-core:3.1.0.RELEASE \

-DrepoUrl=http://repol.maven.apache.org/maven2

The needed artifact will be quietly downloaded and copied at the right place on local
file system.

For instance if you attempt to download the artifact unexistingGroup:unexist
ingArtifact:1.0 on Maven central in standalone, then a ~/ .m2/repository/
unexistingGroup/unexistingArtifact/resolver-status.properties folder
and other files will be created, with a content similar to the following:

#NOTE: This is an internal implementation file, its format can be
changed without prior notice.

#Fri Jul 12 12:20:57 CEST 2013
maven-metadata-central .xml.lastUpdated=1373624457406
maven-metadata-central.xml.error=

You can notice the date given as a number of milliseconds since 1970 (here it is
1373624457406) corresponds to the date given in human-readable format (here it is
Fri Jul 12 12:20:57 CEST 2013).

In the same way, if your POM depends on the same unresolvable dependency
(unexistingGroup:unexistingArtifact:1.0):

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupIds>
com.packt.maven.dependency.chapter2

</groupld>

<artifactIdsunresolvableArtifact</artifactIds>

<version>1.0-SNAPSHOT</version>

<name>Example of POM with unresolvable artifacts ; files
* *_ lastUpdated should be created in local repo
dependencies

</name>

<dependencies>

[51]

Dependency Mechanism and Scopes

<dependency>
<groupld>unexistingGroup</groupIld>
<artifactIds>unexistingArtifact</artifactId>
<versions>1l.0</versions>
</dependency>
</dependencies>

</project>
Then the build will fail with an explicit error message:

Failed to execute goal on project unresolvableArtifact: Could not resolve
dependencies for project com.packt.maven.dependency.chapter2:unresolvab
leArtifact:jar:1.0-SNAPSHOT: Failure to find unexistingGroup:unexistingaA
rtifact:jar:1.0 in http://repo.maven.apache.org/maven2 was cached in the
local repository, resolution will not be reattempted until the update
interval of central has elapsed or updates are forced

And corollary, a folder will be created (~/.m2/repository/unexistingGroup/
unexistingArtifact/1.0; notice that this is one level under the previous one,
corresponding to the version) with two files unexistingArtifact-1.0.jar.
lastUpdated and unexistingArtifact-1.0.pom.lastUpdated, of which content
is similar:

#NOTE: This is an internal implementation file, its format

can be changed without prior notice.

#Fri Jul 12 12:28:10 CEST 2013

http\://repo.maven.apache.org/maven2/.lastUpdated=1373624890218

http\://repo.maven.apache.org/maven2/.error=

The conveyed information includes the last update date and possibly the error
returned by the server.

Summary

Thus, at the end of this second chapter, we are able to:

* Select and set the scope to the best value, among those available

* Use the dependencyManagement tag to rationalize the versions and scope
with multi-module projects

* Use features and understand the underlying rules guiding Maven Reactor

* Identify, read, and understand the content of files within the local repository

[52]

Dependency Designation
(advanced)

In this chapter, we will see the last tags that define an artifact: type/packaging and
classifier. Then, we will study some plugins that will help us identify and fix
conflicts between dependencies of a project or a group of projects. In the end, we
will present the dynamic POMs that allow developers to increase the flexibility and
strictness of their POMs.

The type tag

The type tag in dependencies allows distinguishing the type of archive, that is,
most often the file extension. In contrast with groupid and artifactId, which do
not differ from an artifact self-declaration to a dependency reference, the type of
archive will resort to two different tags: packaging for self-declaration and type
for dependency reference.

The classic cases

Mostly, the type tag hints at the kind of archive or the packaging format. Here are
the available types by default: pom, jar (default value), maven-plugin, ejb, war, ear,
rar (Resource ARchive), par (Persistence ARchive, basically a JAR with a META- INF/
persistence.xml file), and ejb3.

Plugins can create their own packaging, and therefore their own packaging types, so
this list can be extended, for example, Android's Application PacKage (APK) file.

Dependency Designation (advanced)

Most of the time, the type tag you depend on is the packaging tag that is declared
on dependency POM. To illustrate this, let's consider a classic case; if you are familiar
with WAR deployment on WebSphere you will know that IBM's Application Server
can deploy EAR but no WAR. This is why people are used to bundling a WAR
within an EAR. So, for instance, your EAR's POM will be declared of packaging

ear, and depend on an artifact of type war, refer to the code highlighted in bold:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<groupId>com.packt.dependencyManagement .chapter4
</groupIld>
<artifactIds>exampleWithType</artifactIds>
<version>1.0</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactIds>exampleWithTypeEar</artifactIds>
<version>${project.parent.version}</versions>
<packaging>ear</packaging>
<dependencies>
<dependency>
<grouplds>${project.groupld}</grouplds>
<artifactIds>exampleWithTypeWar</artifactIds>
<version>${project.version}</versions
<type>war</type>
</dependency>
</dependencies>
</projects>

Likewise, the WAR's POM will declare a packaging war as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersions>4.0.0</modelVersion>

<parent>
<groupId>com.packt.dependencyManagement .chapter4
</groupld>
<artifactId>exampleWithType</artifactIds>

[54]

Chapter 3

<versions>1l.0</versions>
</parents>
<artifactIds>exampleWithTypeWar</artifactId>
<version>${project.parent.version}</versions>
<packaging>war</packaging>
</project>

\ The types available in the type and packaging tags are
~ more restrictive than those allowed in the assembly .xml
Q files; they extend the default types to ZIP, TAR (as well as
tar.bz2 and tar.gz), GZIP, and so on.

Creating a new packaging/type
Generally speaking, default packages and types fit your needs. Sometimes, you
must have a specific packaging; the cases vary from when only the output artifact

extension is original, to when a complete new format (including extension, archive
compression, and added descriptors) must be created.

Case study

You need to define a specific packaging format, let's say "Hello World ARchive"
with hwar as extension. Basically, the hwar format is only a ZIP compression with a
different name, for instance to discriminate the hwar files from other archives and
make them follow a particular workflow.

Our study case will rely on a parent POM of identifiers:
com.packt .dependencyManagement . chapter4 :specificArchiveExample:pom:1.0.

The first step — Maven plugin

Create a new project. This project is intended to describe the packaging, the format,
and the produced file extension.

The POM will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<parent>

<groupId>com.packt.dependencyManagement .chapter4
</groupld>

[55]

Dependency Designation (advanced)

<artifactIds>specificArchiveExample</artifactIds>
<version>1l.0</version>

</parents>

<modelVersion>4.0.0</modelVersion>

<artifactId>helloWorldARchivePlugin</artifactId>
<version>${project.parent.version}</versions>

<!-- We should use maven-plugin ; but since we do not declare
mojos we have to declare packaging jar-->

<packaging>jar</packaging>

</projects>

Contrary to most of plugins, ours will be of packaging jar and not maven-plugin
since it declares no Mojo. In short, a Maven Mojo is an implementation of a plugin
goal. In our situation, the plugin shall not be called as a different step of build, but
rather as an "over rider" of an existing goal, in order to change the extension of the
built file; therefore no Mojo need be associated, and also, the plugin does not fit with
a maven-plugin packaging declaration.

- Let's make a small digression and introduce Codehaus' Plexus project, -
container and concepts. At first glance, Plexus can be seen as a software
stack to write and run Java applications. Like Spring, Plexus is based on
Inversion of Control (IoC) and Dependency Injection (DI) patterns, and
allows to build modular components to be easily combined and reused.

M : s .

*Q Maven is executed within a Plexus container.

In Plexus, a component descriptor gives a map of roles and role
implementations. This map is written as a component . xml file.

Actually, Plexus, with plenty of features, is a large and well-documented
project, with a complete tutorial on its website, available at http: //
. plexus.codehaus.org/. -

Then, create a src/main/resources/META-INF/plexus/components.xml Plexus
file with following content (the code is self-documented):

<?xml version="1.0" encoding="UTF-8"?>
<component-set>

<!-- An XSD is supposed to be located at
http://plexus.codehaus.org/xsd/components-1.3.0.xsd,
but the link is dead. A JIRA ticket has been open, cf
https://jira.codehaus.org/browse/PLX-469 -->

<components>

<component>

[56]

Chapter 3

<role>
org.apache.maven.lifecycle.mapping.

LifecycleMapping
</role>
<!-- The role-hint: basic role-hints are default
packaging values, such as pom, jar, ejb, etc.-->
<role-hint>helloWorldARchive</role-hint>
<implementations>

org.apache.maven.lifecycle.mapping.
DefaultLifecycleMapping
</implementations>
<configurations
<phases>
<!--name the usual jar lifecycle bindings,
since format hwar is similar to jar. If
needed, you can add others--»>
<process-resources>
org.apache.maven.plugins:maven-resources-
plugin:resources
</process-resources>
<package>
org.apache.maven.plugins:maven-jar-
plugin:jar
</package>
<installs>
org.apache.maven.plugins:maven-install-
plugin:install
</install>
<deploy>
org.apache.maven.plugins:maven-deploy-
plugin:deploy
</deploy>
</phases>
</configuration>
</component >
<component >
<!-- Role and role-hint define the identity of the
component-->
<role>
org.apache.maven.artifact.handler.ArtifactHandler
</role>
<role-hint>helloWorldARchive</role-hint>
<implementations>

[57]

Dependency Designation (advanced)

org.apache.maven.artifact.handler.
DefaultArtifactHandler

</implementations>
<configurations

<!-- Built files will hold this extension.
Besides, dependency will be resolved in
considering this extension in Maven local
repository.-->

<extension>hwar</extension>

<!-- The type to hint when an artifact
is depended on -->

<type>helloWorldARchive</type>
<!--The packaging in artifacts
self-declaration-->
<packaging>helloWorldARchive</packaging>
</configurations>
</component >
</components>
</component -set>

This component .xml file can be used almost as is in a majority of situations. Build
this artifact and install it in your local repository.

The second step — call the plugin

Create a project, specify the expected packaging (here it is helloWorldARchive) and
add a tag for the plugin you have just created (com.packt . dependencyManagement .
chapter4:helloWorldARchivePlugin:1.0):

<?xml vergion="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<parent>
<groupId>com.packt.dependencyManagement .chapter4
</grouplds>
<artifactIds>specificArchiveExample</artifactIds>
<version>1.0</version>

</parent>

<modelVersion>4.0.0</modelVersion>
<artifactIds>helloWorldProject</artifactIds>
<version>${project.parent.version}</versions
<packaging>helloWorldARchive</packaging>

[58]

Chapter 3

<build>
<plugins>

<!--Call the plugin that has just been created-->

<plugin>
<groupId>

com.packt.dependencyManagement.chapter4

</groupId>
<artifactId>helloWorldARchivePlugin
</artifactId>
<versions>1l.0</versions>

<!-- These tag and value mean that the plugin
will produce a file with a non-standard
extension-->

<extensions>true</extensions>
</plugins>
</plugins>
</build>
</project>

Then build this second project. If you have not previously built the preceding plugin
at least once, then helloWorldpProject will fail, because Maven will try to resolve
the needed plugin before building it.

You should get an output that contains the following:

[INFO] Installing /workarea/development/projects/chapter4/
specificArchiveExample/helloWorldProject/target/helloWorldProject-1.0.jar
to /users/jlalou/.m2/repository/com/packt/dependencyManagement/chapterd/
helloWorldProject/1.0/helloWorldProject-1.0.hwar

The preceding output means that a helloWorldProject-1.0.hwar artifact
with the expected extension .hwar has successfully been created and installed
in the local repository".

The Classifier

In the previous chapters, we dealt with the main ways to identify a dependency:
groupld, artifactId, version, and scope. Let's see the final tags that are available.

The classifier tag is used to distinguish between different artifacts that were built
from the same POM and source code. The classifier can be any string.

[59]

Dependency Designation (advanced)

Common use cases when classifiers are specified are as follows:

* Artifacts generated owing to an environment (development, integration, QA,
production, and so on)

* Artifacts related to a system, calling native functions, for example, one JAR
for Windows, and another of Linux

* Artifacts related to different JDK and JRE levels, for example, one JAR for
JDK-1.4 (that is, without annotations, generics, and so on), another for JDK 5,
and a last for JDK 8 (with lambda features)

* Artifacts containing different outputs from the same project, for example,
archives that are built with Maven Assemblies can be a JAR (with binaries),
sources (with Java code), Javadoc (with generated HTML), and so on

When type does not match the packaging

The type tag usually represents the archive filename extension;
. nonetheless, that is not an absolute rule. A type tag can be
% mapped to a different extension, based ona classifier.

- Therefore, sometimes the analysis must be thinner, for instance,
how to consider a artifact ejb-client? Pieces of clue are in
Plexus's component . xml file; such an artifact is of extension
jar, packaging ejb, and classifier client.

The dependency plugin

The dependency plugin gathers many features that are worth diving into them.
dependency can be either through this short name, or through its complete
designation: org.apache.maven.plugins:maven-dependency-plugin.

We have already seen the tree goal that allows displaying on standard output the
hierarchy of dependencies, as well as the get goal that installs manually an archive to
the local repository. Let's study a bit more the other features of the dependency plugin.

The analyze goal

The analyze goal (and analyze-only) will analyze the dependencies and determine
which of them are used/unused or declared/undeclared.

The analyze goal is to be run standalone, whereas analyze-only is to be used in the
build lifecycle.

[60]

Chapter 3

Let's consider a POM with such dependencies:

<dependencies>
<dependencys>
<!-- declared and unused -->
<groupId>directory</groupId>
<artifactIds>apacheds-core</artifactId>
<version>0.9.3</versions>

<!--implicit dependency to commons-io:
commons-io:1.0-->
</dependency>
<dependencys>
<!-- declared and used -->

<groupld>org.apache.camel</groupId>
<artifactId>camel-exec</artifactIds>
<version>2.9.7</versions>

<!--implicit dependency to commons-io:
commons-io:1.4-->

</dependency>

<dependencys>
<!-- declared and unused -->

<groupld>org.apache.tapestry</groupld>
<artifactId>tapestry-upload</artifactIds>
<version>5.3.7</version>

<!--implicit dependency to commons-io:
commons-io:2.0.1-->

</dependency>

<dependency>

<groupld>com.googlecode.grep4j</groupId>
<artifactId>grep4j</artifactId>
<version>1l.7.5</version>

<!--implicit dependency to commons-io:
commons-io:2.4-->

</dependency>
Let's create a class with the following content:
package com.packt.maven.dependency.massiveConflicts;
import org.apache.camel.component.exec.ExecCommand;

import org.apache.camel.impl.DefaultCamelContext;
import org.grep4j.core.GrepExpression;

public class MassiveConflictsFoo {

private ExecCommand execCommand;

[61]

Dependency Designation (advanced)

// from camel-core-2.9.7, that is induced by camel-exec
private DefaultCamelContext defaultCamelContext;
private GrepExpression grepExpression;

}

Let's run the dependency:analyze goal. Among the output, we get the
following lines:

[INFO] --- maven-dependency-plugin:2.6:analyze (default-cli)
@ massiveConflicts ---

[WARNING] Used undeclared dependencies found:

[WARNING] org.apache.camel:camel-core:jar:2.9.7:compile
[WARNING] Unused declared dependencies found:

[WARNING] directory:apacheds-core:jar:0.9.3:compile

[WARNING] org.apache. tapestry:tapestry-upload:jar:5.3.7:compile

As expected, dependencies to camel-exec and grep4j, which are used (via the
imports of org.apache.camel.component . exec . ExecCommand and org.grep4j .
core.GrepExpression) do not raise any alert. Unlike the import of org.apache.
camel.impl.DefaultCamelContext from camel-core-2.9.7 raises a warning.
Likewise, dependencies to apacheds-core and tapestry-upload that are unused
although declared, raise a log of level waRrN.

A close goal is analyze-report. In order to use it, the following block must appear
in the POM:

<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactIds>
maven-dependency-plugin
</artifactIds>
<versions>2.6</versions>
<executionss>
<executions
<id>copy</id>
<phase>package</phase>
</executions>
</executions>
</plugins>

Then, running mvn dependency:analyze-report will generate an HTML report,
available at the target /dependency-analysis.html location. In addition to
previous data, this report will add the dependencies which are both declared

and used, such as camel -exec and grep47 in our case:

[62]

Chapter 3

) Dapandancies Report - Mozilla Firafox
Exhier Edbion 4ffichage Hisorigue Moquepages (el 1

Deperdenes Reporl 7] =
€ 2 Flesjfic s fworkareajcheoskopment [PACKT_primes |- e 0| § A

Last published: 2013-07-05
Cenerared by Maven
Dependency Analysis

Used ad declared dependencies

Croupld Antifactld Version Scope Classifier Type Optional
g apache. camel camel-exec 297 compde Jar false
com googlecode. grepd) grepd) 175 compde jar false

Tsed but imdeclared dependencies

Groupld Artifactld Version Scope Classifier Type Optional

ong apiache camel camel-core 297 compile jar false

Tunsed but declared dependencies

Groupld ArtifactTd Version Scope Classifier Type Optional
dectory apacheds-core 033 compde jar Ealee
<1 apache tapestry tapestry-upload 537 compile jar false

Report generated by analyze-report
Let's quote two other goals:

* analyze-dep-mgt: Check mismatches in the dependencyManagement block

* analyze-duplicate: Checks and reports the duplicate declared dependencies

Classpath

The dependency:build-classpath goal will display the complete classpath of your
project, with the concrete locations, that is, most of the time, the path in the Maven local
repository. This is very useful if you need to launch your application in standalone.

For example:

$ mvn dependency:build-classpath

(...)

[INFO] --- maven-dependency-plugin:2.6:build-classpath (default-cli)
@ massiveConflicts ---

[INFO] Dependencies classpath:
/users/jonathan/.m2/repository/directory/apacheds-core/0.9.3/
apacheds-core-0.9.3.jar; /users/jonathan/.m2/repository/commons-lang/
commons-lang/2.0/commons-lang-2.0.jar; /users/jonathan/.m2/repository/
commons-collections/commons-collections/3.0/commons-collections-
3.0.jar;/users/jonathan/.m2/repository/commons-primitives/commons-
primitives/20041207.202534/commons-primitives-20041207.202534.jar; /users/
jonathan/.m2/repository/regexp/regexp/l.2/regexp-1.2.jar; (...)

[63]

Dependency Designation (advanced)

Other goals of dependency

Running mvn dependency:1list will display the same information as tree,
but removing the hierarchy, for example:

$ mvn dependency:list
(...)
[INFO] The following files have been resolved:

[INFO] com.google.guava:guava:jar:12.0:compile
[INFO] directory-shared:ldap-common:jar:0.9.3:compile
[INFO] commons -codec : commons-codec:jar:1.5:compile

(...)

Running mvn dependency:list-repositories will display the repositories
used for the current build, for example:

$ mvn dependency:list-repositories
(...)
[INFO] Repositories Used by this build:
[INFO] id: central
url: http://repo.maven.apache.org/maven2
layout: default
snapshots: [enabled => false, update => daily]
releases: [enabled => true, update => dailyl]

(...)

Running mvn dependency:copy-dependencies will copy all the
dependencies to a folder (by default, target /dependency). A use case is
when you need create an archive or a distribution. Plugin assembly can do it,
too, and in a better way.

Running mvn dependency: sources will download the sources of
dependencies when available, for example:

$ mvn dependency:sources

(...)

[INFO] --- maven-dependency-plugin:2.6:sources (default-cli) @
massiveConflicts ---

Downloading: http://repo.maven.apache.org/maven2/emma/
emma/2.0.5312/emma-2.0.5312-sources.jar

Downloading: http://repo.maven.apache.org/maven2/regexp/
regexp/l.2/regexp-1l.2-sources.jar

(...)

[64]

Chapter 3

[INFO]

[INFO] The following files have been resolved:

[INFO] com.googlecode.grep4j:grep4j:jar:sources:1.7.5:compile
[INFO] org.hamcrest:hamcrest-all:jar:sources:1l.l:compile
(...)

[INFO] The following files have NOT been resolved:

[INFO] emma :emma:jar:sources:2.0.5312

[INFO] regexp:regexp:jar:sources:1.2

(...)

* Running purge-local-repository will clean the local repository. This
operation is required in some cases:

° As part of a continuous integration system (such as Apache Hudson/
Jenkins, and Bamboo)

° Asaperiodic cleanse

° In order to force the update of all dependencies from a "clean" remote
repository

Other goals are available but their interest is lesser. These goals are copy,
get, go-offline, properties, resolve, resolve-plugins, unpack, and
unpack-dependencies.

Other miscellaneous plugins

Maven's ecosystem is rich, and many plugins allow you to improve your
dependency management quality, and to detect potential and actual conflicts.
Among them, let's overview two: Maven Enforce and JBoss Tattletale.

The Enforce plugin

Enforce, or in long form org.apache .maven.plugins:maven-enforcer-plugin
likes to think it is "The Loving Iron Fist of Maven". Enforcer allows to set up

rules that your project and dependencies must abide by. These rules affect the
dependencies, classes, packages, Java version, and so on. Let's see a first example,
with Maven Enforcer 1.2.

[65]

Dependency Designation (advanced)

The dependency convergence
Let's consider the following POM (the code is self-documented):

<?xml vergion="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.packt.dependencyManagement .chapter4
</grouplds>
<artifactIds>head</artifactId>
<version>1.0</version>
</parent>
<artifactIds>enforcerDependencyConvergence</artifactIds>
<versions>${project.parent.version}</versions
<name>Example
* POM with many conflicts because of JAR versions
* use of plugin 'enforcer' with goal 'enforce' in
order to detect them, thanks to rule
'dependencyConvergence'
</name>

<dependencies>
<dependencys>
<groupld>org.apache.pluto</groupId>
<artifactIds>pluto-portal-driver</artifactId>
<version>1.1.7</version>
<!--implicit dependency to 'taglibs:standard:1.0.6'
->
</dependency>
<dependencys>
<grouplds>org.grails</grouplds>
<artifactId>grails-web</artifactIds>
<version>2.2.3</version>
<!-- implicit dependency to 'taglibs:standard:1.1.2'
-->
</dependency>

</dependencies>
<build>

[66]

Chapter 3

<plugins>
<plugins>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactId>
maven-enforcer-plugin
</artifactId>

<versions>1l.2</versions>

<configurations
<rules>
<!-- We will apply the rule of dependency

convergence: this rule makes the build
fail if two dependencies (either direct
or transitive) diverge on the version
-->

<dependencyConvergence/>

</rules>
</configurations>
<executionss>
<executions
<goals>
<!--We run the goal 'enforce'-->
<goal>enforce</goal>
</goals>
<!-- The goal is called on phase
'verify'-->
<phase>verify</phase>
</executions>
</executions>
</plugins>
</plugins>

</builds>
</project>

As specified in the POM, the two dependencies have conflicts of JAR on
taglib:standard.

The Enforce plugin has been set to be called on each build and makes it fail when
two dependencies diverge on their versions. In our case, the output will contain the
following piece of text:

[WARNING] Rule O0:
org.apache.maven.plugins.enforcer.DependencyConvergence failed
with message:

Failed while enforcing releasability the error(s) are [

[67]

Dependency Designation (advanced)

Dependency convergence error for taglibs:standard:1.0.6 paths
to dependency are:

+-com.packt .dependencyManagement .chapter4:enforcerUseCase:1.0
+-org.apache.pluto:pluto-portal-driver:1.1.7
+-taglibs:standard:1.0.6
and
+-com.packt .dependencyManagement .chapter4:enforcerUseCase:1.0
+-org.grails:grails-web:2.2.3
+-taglibs:standard:1.1.2

The Maven Enforce allows to prevent a build on which dependency conflicts
are detected.

Banned dependencies

A classic case you encounter is when you depend on a certain artifact, of which a
unique version raises problems, while all other are accepted. At a given time of your
project, the problematic version is not used, but by the game a natural upgrade of
versions and transitive dependencies, you can fear the "bad" version may emerge
again. In the same way, sometimes all versions are problematic; meanwhile a unique
version is acceptable. In this situations, you can resort to the Maven Enforcer's rule of
<bannedDependencies/>.

Let's consider the previous example. There are transitive dependencies to jst1 and
commons-io. Let's assume javax.servlet:jstl:1.0.6 is the unique version of
jstl that raises problem, and that only commons-io:commons-io:2.1 does work,
excluding all other versions. Then the <rule> block will be (the rest of the POM does
not differ from the previous one):

<rules>
<bannedDependencies>
<excludes>
<!-- All versions of commons-io are banned-->
<exclude>commons-io:commons-io</exclude>
<!-- Ban only version 1.0.6 of JSTL. The brackets *are*
needed ; otherwise, Maven would ban versions
"1.0.6 and above" -->
<exclude>javax.servlet:jstl:[1.0.6]</exclude>
</excludess>
<includes>
<!--Version 2.0.1 of commons-io
is explicitly excluded from ban-->
<include>commons-io:commons-io:2.0.1</include>

[68]

Chapter 3

<!--no use to add explicitly the allowed version of JSTL-->
</includess>
</bannedDependencies>
</rules>

And the build will fail with the following error:

[WARNING] Rule 0: org.apache.maven.plugins.enforcer.BannedDependencies
failed with message:

Found Banned Dependency: commons-io:commons-io:jar:1.3.1

Found Banned Dependency: javax.servlet:jstl:jar:1.0.6

Fixing the issue is very simple; identify the branch and add exclusions. In our case,
only add a block of exclusions within dependency to org.apache.pluto:pluto-
portal-driver:1.1.7:

<exclusionss>
<exclusion>
<groupId>commons-io</groupId>
<artifactIds>commons-io</artifactIds>
</exclusions>
<exclusion>
<groupIds>javax.servlet</groupIld>
<artifactId>jstl</artifactIds>
</exclusion>
</exclusions>

Banned dependencies can be specified with wildcards, and therefore groups of
exclusions can be set: not only by group1d, artifactId, version, and so on, but also
by type and scope. This way, you can ban "all artifacts of type JAR" (*: *: jar) or "all
artifacts with scope runtime or provided" (*: *:runtime:provided).

Other rules

The Enforcer plugin defines other rules. Considering the same POM as earlier, the
following rules illustrate the features offered by Maven Enforcer:

* Always passes; useful to test plugin configuration. The opposite rule is
<alwaysFail/>:

<alwaysPass/>

* Equivalent to <bannedDependencies> for plugins:

<bannedPlugins>
<excludes>
<!-- Here we ban the dependency to JBoss plugin-->

[69]

Dependency Designation (advanced)

<exclude>
org.codehaus.mojo:jboss-maven-plugin:1.5.0
</exclude>
</excludes>
</bannedPlugins>

* Bans transitive dependencies:

<banTransitiveDependencies>

<excludes>
<!-- Here we ban the dependencies on SNAPSHOTs -->
<exclude>
* % : *SNAPSHOT
</exclude>
</excludes>

</banTransitiveDependencies>

* Evaluates a beanshell script (simple Boolean expression or complete script
with a Boolean returned value).

For more details on BeanShell syntax and commands, refer to
http://www.beanshell.org/.

<evaluateBeanshell>
<!-- Here we ensure both this project and its parent
POM share the same groupId and version-->
<condition>
("${project.groupIld}".
equals ("${project.parent.groupId}"))
@and
(${project.version}==
${project.parent.version})
</conditions>
<message>Build failed because
the beanshell returned
'false!
</message>
</evaluateBeanshell>

e Checks the existence of an environment variable:

<requireEnvironmentVariable>
<!--Here we check JAVA HOME and M2 HOME
exist and have been set-->

<variableName>JAVA HOME</variableName >
<variableName>M2 HOME</variableName >
</requireEnvironmentVariable>

[70]

Chapter 3

¢ Checks whether the files in the list of files do not exist:

<requireFilesDontExist>

<files>
<!-- Here we check the file ./helloWorld.txt does
not exist -->
<file>
${project.basedir}/helloWorld.txt
</file>
</files>

</requireFilesDontExist>

¢ Checks whether the files in the list of files do exist:

<requireFilesExist>
<files>
<!-- Here we check the file pom.xml *does* exist
-=>
<file>
${project.basedir}/pom.xml
</file>
</files>
</requireFilesExist>

* Enforces that the list of files exist and are within a certain size range:

<requireFilesSize>
<maxsize>1000000</maxsize>
<minsizes>l</minsize>
<files>
<file>
${project.basedir}/pom.xml
</file>
</files>
</requireFilesSize>

* Enforces the JDK version:

<requiredJavaVersion>
<!--Here we require JDK 5, 6 or 7
-->
<version>[1.5,)</version>

</requireJavaVersions>

[71]

Dependency Designation (advanced)

¢ Enforces the Maven version:

<requireMavenVersion>
<!--Here we require Maven version to be between 2.2 (included)
and 3.1 (excluded)-->
<version>[2.2,3.1)</version>

</requireMavenVersions>

* Bans repositories inclusion. Defining repositories in pom.xm1l is not advised;
best practices consist in using a repository manager:

<requireNoRepositories/>

* Enforces the OS and/or CPU architecture. Available parameters include
name, family, arch, and version:

<requireOS>
<!-- Here we ensure we run on an 86 platform-->
<arch>x86</arch>

</requireOS>

* Checks a property is set:

<requireProperty>
<!-- Here we check a version, a type and a name
have been set--»>
<propertys>project.version</propertys>
<propertys>project.type</property>
<propertys>project.name</property>
</requirePropertys>

* Checks if no sNAPSHOT is included as a dependency:

<requireReleaseDeps/>

* Checks that the current project is not a snapshot.

<requireReleaseVersion/>
Let's mention other existing rules:

* requireActiveProfile: Checks if one or more profiles are active

* requireSameVersions: Checks that specific dependencies and/or plugins
are consistent and share the same version

* requireUpperBoundDeps: Checks all transitive dependencies are resolved to
their specified version or higher

Finally, maven-enforcer-rule-api provides an API allowing you to implement
your(nvnrukﬁ,ex&ﬂuﬁngorg.apache.maven.enforcer.rule.api.EnforcerRule

[72]

Chapter 3

Tattletale

Tattletale (last Versions: 1.1.2 as stable; 1.2.0.Beta2 on 1.2.X branch) is a tool provided
and supported by JBoss. It provides analyzes related to a project, its dependencies
and classes, albeit more focused on JARs than on other types. Some features of
Tattletale are already available through Maven dependency and enforce plugins.

Tattletale generates a tree of reports. In the general summary, the information level
(INFO, WARNING, and ERROR) is indicated.

{ | JBass Tattletale 1.1.2.Final: Index + b
(- File: i c E"' GUUg‘E/’t" ¥+

JBoss Tattletale 1.1.2.Final
Dependencies

Class Dependants (INFO)
Class Depends On (INFO)
Dependants (INFO)

Depends On 3

Graphical dependencies (INFO)
Transitive Dependants (INFO)
Transitive Depends On bl
Circular Dependency (ERROR)

Reports

Class Location {INFO)

OSGi (INFO)

Sealed information {INFO)

Signing information {INFO)

Eliminate 1ar files with different versions (WARNING)
Invalid version {WARMING)

Multiple Jar files (WARNING)

Multiple Jar files (Packages) (3
IMultiple Locations {WARNING)

Unused Jar

Black listed {(ERROR)

Mo wversion {ERROR)

Archives

cssparser-0.9.5 jar {INFO)

el-ri-1.0.1ar {INFO)

guava-r08.jar (INFO)

jsf-api-2.1.7.jar {IMNFO)

jsf-impl-2.1.7 jar (INFO)

jsp-api-2.1.jar {INFO)

jstl-1.2.jar (INFO}

primefaces-3.5.jar {INFO)
richfaces-components-api-4.1.0.Final.jar (INFO)
richfaces-components-ui-4.1.0.Final. jar {INFO)
richfaces-core-api-4.1.0.Final.jar (INFO)
richfaces-core-impl-4.1.0.Final jar (INFO)
sac-1.3.jar {INFO)

servlet-api-2.5.jar (INFO)

Generated by: JBoss Tattletale 1.1.2.Final

[73]

Dependency Designation (advanced)

Dependencies

The first set deals with the following dependencies:

Class Dependants: It lists the classes that depend on the considered class.

Class Depends On: It lists the classes on which the considered class does
depend on. Basically, this is a summary of imports.

Dependants: It lists the archives on which the considered archive is
depended on.

Depends On: It lists the archive on which the considered archive does
depend on.

Graphical dependencies: It generates a GraphViz . dot file (nothing to see
with Word model document).

Transitive Dependants: Itis same as Class Dependants and includes
transitive dependencies.

Transitive Depends On:Itissame as Class Depends On and includes
transitive dependencies.

Circular Dependency: It lists the circular dependencies.

Reports

The second set deals with various reports:

a Q methods and fields. Unlike, with sealed JARs, the JVM will refuse to

Class Location: It gives, for each archive, the list of included classes.

0sGi: It tells which archive is OSGi enabled or not. In other terms, this report
checks the content of the MANIFEST files.

Sealed information: It tells which archive is or is not sealed. In other terms,

this report checks whether the flag Sealed is set at true in the MANIFEST files.
Theoretically, sealed JARs guarantee all the classes of a package, (which -

is consequently said to be sealed) are included within the same JAR. A

classic use case is when some of your classes have package-protected

methods. With non-sealed JARs, nothing prevents another developer to

declare a class in the same package and then access the package-protected

run the code of two classes with the same package but in two different

JARs. Anyway, beware the seal security is low and can be bypassed

with very few efforts. For example, in org. jboss.threads:jboss-
threads:2.0.0.GA, MANIFEST.MF file declares org/jboss/

threads as sealed package. Hence, your IDE will deny you from create a
class with such a package name. Yet, if you have created it from anywhere
else, the project will compile. -

[74]

Chapter 3

* Signing information: It tells which archive is or is not signed.

* Eliminate Jar files with different versions: It lists the archive with
the same groupId/artifactid/type/classifier and different versions,
which are source of JAR conflicts.

* Invalid version: This report is related to OSGi enability. It lists the archive
of which OSGi version identifier is absent or invalid.

* Multiple Jar file: Itlists the classes that appear in different archives, and
the archives where these classes appear.

* Multiple Jar files (packages):ItissameasMultiple Jar file
however it includes packages.

* Multiple Locations: It lists the different locations of archives that appear
more than once.

* Unused Jar: It lists the archives of which none of the content is imported
anywhere. Be careful! Some classes and archive can be used in other ways
out of canonical imports, such as through the Java reflection API or other
dynamic instantiation.

e Black listed: It lists the archives that use black listed APIs.

Black-listed APIs

APIs that can be called, known as white-listed APIs. For instance,
Google AppEngine or Android do not accept multithreading or Java
Reflection. Such APIs, by symmetry with white-list APIs are designed
as black-listed APIs.

~\‘Q Some frameworks or domains impose limitations on the Java

* No version: It lists the archives without a version identifier.

* JBoss AS7 (optionally): It lists the jboss-deployment-structure.xml file
for archives

Archives

This sequence of report provides, for each JAR, WAR, and EAR, a map of values
corresponding to the following keys: Name, Class Version, Locations, Profiles,
Manifest, Signing information, Requires (list of imports), Provides (list of
classes included within the archive, and their serialVersionUID if present).

[75]

Dependency Designation (advanced)

Dependency, enforce, and tattletale —
conclusion

Thanks to dependency, enforce, and tattletate plugins, Maven features plenty
of powerful tools that allow managing dependencies, and identifying and fixing the
potential conflicts and cycles.

Anyway, the three plugins should be considered as complementary: while Tattletale
is "report-oriented" (that means its purpose is to generate reports as support for
analyze by developers), Enforce is "build-breaking-oriented"; it ensures a sequence
of rules to be checked on each run, and makes the build failed as soon as a rule is
transgressed, without any human monitoring or intervention.

Dynamic POMs and dependencies

Usually, POMs are written as XML files. However, never forget that XML is a
representation (written, and hierarchical) of an object data structure. POMs might
have been written in YaML, or even as Java POJOs. The actual POM is not the
pom.xml file, but the intelligent object behind, of which a projection is pom. xm1.
This is why there is nothing amazing that a POM can or cannot be isomorphic to
the XML file representing it.

This brings us into concepts, advanced and non-intuitive, such as effective POM and
dynamic POM. The same line of reasoning can be made for the settings.xml file.

Effective POM and settings

The POM that is actually executed by Maven is not the one a human being can write
and read in the pom.xml file. Maven adds blocks corresponding to references of

the settings.xml files, such as repositories and mirrors, and default values and
plugins, in more of the dependencies, either explicitly declared or resolved through
transitivity, inheritance and interpolation.

Let's consider the simplest possible POM:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/
4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersions>4.0.0</modelVersions>
<groupId>

[76]

Chapter 3

com.packt .dependencyManagement .chapter4
</groupld>
<artifactId>simplestPom</artifactId>
<versions>1l.0</versions>
<!--nothing more, nothing less than a minimal declaration-->
</project>

By executing the help:effective-pom goal, you can see the actual POM, as viewed
by Maven (refer the chapter3/simplestPom/effective-pom.xmnl file in the code
bundle linked to this chapter).

Several blocks emerge as follows:

* The repositories (by default: Maven Central, http://repo.maven.
apache.org/maven2) and pluginRepositories blocks (lines 9-30), from the
settings.xml file and/or Maven's default values.

* The actual folders for src, test, resources, output, and so on (lines 33-65
and 268-272).

* The plugins and pluginManagement (lines 90-266) block. This block explains
why you can simply write mvn clean install instead of mvn maven-
clean-plugin:clean maven—install—plugin:install\Vhereasyournust
run the complete command for less widespread plugins. Plugins available by
default are:

° maven-antrun-plugin

° maven-assembly-plugin

° maven-dependency-plugin
maven-release-plugin
maven-clean-plugin
maven-install-plugin
maven-resources-plugin
maven-surefire-plugin
maven-compiler-plugin
maven-jar-plugin
maven-deploy-plugin
maven-site-plugin

maven-project-info-reports-plugin

[77]

Dependency Designation (advanced)

Similarly, you can display the effective settings used by Maven by running the
help:effective-settings goal. For instance, for the minimal settings.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/
SETTINGS/1.0.0 http://maven.apache.org/xsd/
settings-1.0.0.xsd">

</settings>
The actual settings.xml is longer (yet less verbose than the effective POM):

<settings xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xsi:schemalLocation="http://maven.apache.org/
SETTINGS/1.1.0 http://maven.apache.org/xsd/
settings-1.1.0.xsd">

<localRepository
xmlns="http://maven.apache.org/SETTINGS/1.1.0">
/users/jonathan/.m2/repository
</localRepository>
<pluginGroups
xmlns="http://maven.apache.org/SETTINGS/1.1.0">
<pluginGroup>org.apache.maven.plugins</pluginGroup>
<pluginGroup>org.codehaus.mojo</pluginGroup>
</pluginGroups>
</settings>

Two blocks emerge: the path to the local repository (corresponding to $HOME/ .
m2/repository) and the default group1d of plugins that do not specify it; in
other terms, if a plugin of artifactId fooPlugin (without more information
on groupId) is referenced, Maven will try to resolve it as org.apache .maven.
plugins: fooPlugin and org.codehaus.mojo: fooPlugin.

Knowing the effective POM and settings may help you to detect conflicts.

Dynamic POM

As a disclaimer, beware the following example is used for its pedagogical interest
and may fit some situations, but does not match best practices for many other
projects. Among other theoretical and practical reasons, common IDEs have some
difficulties to support full dynamic POMs.

[78]

Chapter 3

Case study

Our project meets the following requirements:

* Itdepends on org.codehaus.jedi:jedi-XXxX:3.0.5. Actually, the xxx is
related to the JDK version, that is, either jdk5 or jdkeé.

* The project is built and run on three different environments: PRODuction,
UAT, and DEVelopment

* The underlying database differs owing to the environment: PostGre in PROD,
MySQL in UAT, and HSQLDB in DEV.

* Besides, the connection is set in a Spring file, which can be spring-PROD.
xml, spring-UAT.xml, Or spring-DEV.xml, all being in the same src/main/
resource folder.

The first bullet point can be easily answered, using a jdk-version property.

The dependency is then declared as follows:

<dependency>
<groupld>org.codehaus.jedi</groupIld>

<!--For this dependency two artifacts are available,
one for jdk5 or and a second for jdké6-->

<artifactId>jedi-${jdk.version}</artifactId>
<version>${jedi.version}</version>
</dependency>

Still, the fourth bullet point is resolved by specifying a resource folder:

<resources>
<resource>
<directory>src/main/resource</directory>
<!--include the XML files corresponding to
the environment: PROD, UAT, DEV. Here, the
only XML file is a Spring configuration one
There is one file per environment-->
<includes>
<include>
**/*_-${environment}.xml
</include>
</includes>
</resource>
</resources>

[79]

Dependency Designation (advanced)

Then, we will have to run Maven adding the property values using one of the
following commands:

®* mvn clean install -Denvironment=PROD -Djdk.version=jdkeé

®* mvn clean install -Denvironment=DEV -Djdk.version=jdk5

By the way, we could have merged the three XML files as a unique one, setting
dynamically the content thanks to Maven's filter tag and mechanism.

The next point to solve is the dependency to actual JDBC drivers.

A quick and dirty solution

A quick and dirty solution is to mention the three dependencies:

<!--PROD -->

<dependency>
<grouplds>postgresqgl</groupIld>
<artifactIds>postgresgl</artifactIds>
<version>9.1-901.jdbc4</version>
<scopes>runtime</scope>

</dependency>

<!--UAT-->

<dependencys>
<groupId>mysgl</groupld>
<artifactId>mysqgl-connector-java</artifactIds>
<version>5.1.25</version>
<scope>runtime</scope>

</dependency>

<!--DEV-->

<dependency>
<grouplds>org.hsgldb</groupIld>
<artifactId>hsqgldb</artifactIds>
<version>2.3.0</version>
<scopes>runtime</scope>

</dependency>

Anyway, this idea has drawbacks. Even though only the actual driver (org.
postgresqgl.Driver, com.mysqgl.jdbc.Driver, Or org.hsgldb.jdbcDriver as
described in the Spring files) will be instantiated at runtime, the three JARs will be
transitively transmitted —and possibly packaged —in a further distribution.

[80]

Chapter 3

You may argue that we can work around this problem in most of situations, by
confining the scope to provided, and embed the actual dependency by any other
mean (such as rely on an artifact embarked in an application server); however, even
then you should concede the dirtiness of the process.

A clean solution

Better solutions consist in using dynamic POM. Here, too, there will be a gradient of
more or less clean solutions.

Once more, as a disclaimer, beware of dynamic POMs! Dynamic POMs are a
powerful and tricky feature of Maven. Moreover, modern IDEs manage dynamic
POMs better than a few years ago. Yet, their use may be dangerous for newcomers:
as with generated code and AOP for instance, what you write is not what you
execute, which may result in strange or unexpected behaviors, needing long hours
of debug and an aspirin tablet for the headache. This is why you have to carefully
weigh their interest, relatively to your project before introducing them.

With properties in command lines

As a first step, let's define the dependency as follows:

<!-- The dependency to effective JDBC drivers: PostGre,
MySQL or HSQLDB-->
<dependency>
<groupld>${effective.groupIld}</groupIld>
<artifactIds>
${effective.artifactId}
</artifactIds>
<version>${effective.version}</version>
</dependency>

As you can see, the dependency is parameterized thanks to three properties:
effective.groupld, effective.artifactId, and effective.version. Then, in
the same way we added earlier the -Djdk.version property, we will have to add
those properties in the command line, for example,:

mvn clean install -Denvironment=PROD -Djdk.version=3jdké \
-Deffective.groupIld=postgresgl \
-Deffective.artifactId=postgresqgl \

-Deffective.version=9.1-901.jdbc4

[81]

Dependency Designation (advanced)

Or add the following property

mvn clean install -Denvironment=DEV -Djdk.version=jdk5 \
-Deffective.groupId=org.hsqldb \
-Deffective.artifactId=hsqgldb \

-Deffective.version=2.3.0

Then, the effective POM will be reconstructed by Maven, and include the right
dependencies:

<dependencies>
<dependencys>
<groupIds>org.springframework</groupIld>
<artifactId>spring-core</artifactId>
<version>3.2.3.RELEASE</version>
<scope>compile</scope>
</dependency>
<dependencys>
<groupIds>org.codehaus.jedi</groupld>
<artifactId>jedi-jdk6</artifactId>
<version>3.0.5</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>postgresqgl</groupId>
<artifactId>postgresql</artifactId>
<version>9.1-901.jdbc4</version>
<scope>compile</scope>
</dependency>
</dependencies>

Yet, as you can imagine, writing long command lines like the preceding one
increases the risks of human error, all the more that such lines are "write-only". These
pitfalls are solved by profiles.

Profiles and settings

As an easy improvement, you can define profiles within the POM itself. The profiles
gather the information you previously wrote in the command line, for example:

<profile>
<!-- The profile PROD gathers the properties related
to the environment PROD-->
<id>PROD</id>

[82]

Chapter 3

<propertiess
<environment >PROD</environment>
<effective.groupIds>
postgresqgl
</effective.groupld>
<effective.artifactIds>
postgresqgl
</effective.artifactIds>
<effective.versions
9.1-901.jdbc4
</effective.versions>
<jdk.version>jdké</jdk.version>
</propertiess>
<activations>
<!-- This profile is activated by default:
in other terms, i1f no other profile in
activated, then PROD will be-->
<activeByDefault>true</activeByDefaults>
</activations>
</profile>

Or

<profiles
<!-- The profile DEV gathers the properties
related to the environment DEV-->
<id>DEV</id>
<propertiess
<environment >DEV</environment>
<effective.groupIds>
org.hsgldb
</effective.grouplds>
<effective.artifactId>
hsgldb
</effective.artifactIds>
<effective.versions>
2.3.0
</effective.versions>
<jdk.version>jdk5</jdk.version>
</propertiess>
<activations
<!-- The profile DEV will be activated if,
and only if, it is explicitly called-->
<activeByDefault>false</activeByDefault>
</activations>
</profile>

[83]

Dependency Designation (advanced)

The corresponding command lines will be shorter:

mvn clean install
(Equivalent to mvn clean install -PPROD)

Or:

mvn clean install -PDEV

You can list several profiles in the same POM, and one, many or all of them may be
enabled or disabled.

Nonetheless, multiplying profiles and properties hurts the readability. Moreover, if
your team has 20 developers, then each developer will have to deal with 20 blocks of
profiles, out of which 19 are completely irrelevant for him/her. So, in order to make
the thing smoother, a best practice is to extract the profiles and inset them in the
personal settings.xml files, with the same information:

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/
SETTINGS/1.0.0 http://maven.apache.org/xsd/
settings-1.0.0.xsd">
<profiles>
<profile>
<id>PROD</id>
<properties>
<environment >PROD</environment>
<effective.groupId>
postgresqgl
</effective.groupId>
<effective.artifactIds>
postgresqgl
</effective.artifactIds>
<effective.versions
9.1-901.5dbc4
</effective.versions>
<jdk.version>jdké</jdk.version>
</propertiess>
<activations>
<activeByDefault>true</activeByDefault>
</activations>
</profiles>
</profiles>
</settings>

[84]

Chapter 3

Dynamic POMs - conclusion

As a conclusion, the best practice concerning dynamic POMs is to parameterize the
needed fields within the POM. Then, by order of priority:

* Set an enabled profile and corresponding properties within the settings.xml.
mvn <goals> \
[-f <pom Without Profiles.xml> \]

[-s <settings With Enabled Profile.xmls>]

* Otherwise, include profiles and properties within the POM
mvn <goals> \
[-f <pom With Profiles.xml> \]
[-P<actual Profile> \]

[-s <settings Without Profile.xml>]

* Otherwise, launch Maven with the properties in command lines

mvn <goals> \
[-f <pom Without Profiles.xmls> \]
[-s <settings Without Profile.xml>]
-D<property ls=<value 1> \

-D<property 2>=<value 2> \

-D<property ns>=<value n»>

Summary

Thus, at the end of this chapter, we are able to:
* Use the type/packaging and classifier tags, to make the difference
between two artifacts with the same groupId/artifactIid/version
* Create a new type

* Use various plugins to analyze our dependencies and detect early potential
problems, and then fix them

* Set up POMs, dynamically owing to environment, properties, profiles,
and so on

[85]

Migration of Dependencies to
Apache Maven

Starting a new project from scratch is, from many viewpoints, the best situation: you
can introduce Maven with best practices from the beginning. Anyway, often you
receive a project which is built on another system: Apache Ant or even an Eclipse
configuration (the .classpath, .project, and . launch files). In such a situation,
migrating to Maven is perfectly mastered, provided you follow a rigorous process.

Case study

Let's consider a project, built thanks to an Ant build.xml file and targets. Let's have
a look and comment what we can read:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<project name="ProjectFromAnt" default="generateJar">
<description>
Example of project to migrate from Ant to Maven 3.

The main target is generateJar, that compiles the
sources and compress them as a Java ARchive.

</description>
Let's set some properties which are listed as follows:

e Folder for Java sources:

<property name="src"
location="src"/>

Migration of Dependencies to Apache Maven

e Folder for unit tests:

<property name="test"
location="test"/>

* Folder for dependencies:

<property name="libdir"
location="1ib"/>

<property name="classesdir"
value="target/classes"/>

<property name="final.name"
value="projectFromAnt"/>

<property name="defaulttargetdir"
value="target"/>

<property name="testclassesdir"
value="target/test-classes"/>

<property name="testclassesdir"
value="target/test-classes"/>

* Gives the dependencies needed to compile; there is no easy equivalent to
different scopes, such as provided and runtime:

<path id="build.classpath">
<fileset dir="${libdir}">

e This JAR contains a POM:

<include name="commons-lang-2.6.jar"/>

* This JAR does not contain any POM. But Manifest .MF is included.
Moreover, you can find it in most of public Maven repos:

<include name="commons-cli-1.0.jar"/>

* This JAR includes neither a POM nor a relevant Manifest .MF. Besides, you
have to download it manually:

<include name="ftp4j-1.7.2.jar"/>
<!-- May have summed up as:
<include name="**/* jar"/>
-=>
</fileset>
</path>

* Target to clean build folders:

<target name="clean" description="Cleans folders">
<delete dir="${classesdir}"/>

[88]

Chapter 4

<delete dir="${defaulttargetdir}"/>
</target>

Target to compile the sources:

<target name="compile"
description="Compiles the code"
depends="clean">
<mkdir dir="${classesdir}"/>
<javac destdir="${classesdir}"
srcdir="${src}"
classpathref="build.classpath"/>
</target>

Target to compress the * . class files as a JAR archive:

<target name="generatedJar"
description="Create the jar"
depends="compile">
<jar jarfile="${defaulttargetdir}/${final.name}.jar"
basedir="${classesdir}"/>
</target>

Target to compile the test sources:

<target name="compile-tests" depends="compile">
<delete dir="${testclassesdir}"/>
<mkdir dir="${testclassesdir}"/>
<javac destdir="${testclassesdir}">

Folder for unit tests sources:

<src>
<pathelement location="${test}"/>
</src>
<classpath>
<path refid="build.classpath"/>
<pathelement path="${classesdir}"/>
</classpath>
</javac>
</target>

Runs the unit tests:

<target name="run-unit-test"
depends="compile-tests"
description="runs the unit tests">
<junit dir="./"

[89]

Migration of Dependencies to Apache Maven

failureproperty="test.failure">
<classpath>
<path refid="build.classpath"/>
<pathelement path="${testclassesdir}"/>
<pathelement path="${classesdir}"/>

* JUnit archive is added a dependency for tests; you can consider it as an
equivalent to <scope>test</scopes:

<fileset dir="1ib">
<include name="junit-4.11.jar"/>
</fileset>
</classpath>
</junits>
</target>
</project>

. In this example, we used JARs with their version numbers in suffix; but
in real life, most of the time, you find JARs named commons-cli.jar,
s junit.jar, or £tp4j.jar, rather than commons-cli-1.0.jar,
junit-4.11.jar,or ftp4j-1.7.2.jar.

The Eclipse . classpath equivalent file is similar to the following code:

<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="src"
path="src"/>
<classpathentry kind="src"
path="test"/>
<classpathentry kind="con"
path="org.eclipse.jdt.launching.JRE CONTAINER"/>
<classpathentry exported="true"
kind="1ib"
path="1ib/commons-cli-1.0.jar"/>
<classpathentry exported="true"
kind="1ib"
path="1ib/commons-lang-2.6.jar"/>
<classpathentry exported="true" kind="1lib"
path="1ib/ftp4j-1.7.2.jar"/>
<classpathentry kind="1ib"

[90]

Chapter 4

path="1ib/junit-4.11.jar"/>
<classpathentry kind="output"
path="bin"/>
</classpath>

Our task is to migrate this project, and its underlying dependencies, to Maven. The
scope of this work does not include the migration of any script to Maven. So, at the
end of this chapter, we expect to hold a state-of-the-art pom.xm1 file.

The project relies on three JARs to compile, one more for JUnit.

Setting the folders

First of all, set the folders: src for project sources and test for unit tests:

<builds>
<sourceDirectorys>src</sourceDirectorys>
<testSourceDirectory>test</testSourceDirectory>
</build>

Introducing Maven with standard libraries

The second step is to set the dependencies. External artifacts can be divided into
two categories:

* Those which "respect/follow" Maven conventions. In 2013, the majority of de
facto standard frameworks and libraries, most of which are open source, are
built and published through Maven: Spring, Hibernate, and so on.

* Those which do not "respect/follow" Maven conventions. Although this case
is less common, many projects remain reluctant to share Maven rigidity.
Among them, let's mention former Sun JARs, Apache Tomcat, several
libraries from Google, and so on.

So, you will have to review all the dependencies of build.xml and check
whether they respect n-uplet groupId/artifactId/version (in more of type,
classifier, and so on).

[91]

Migration of Dependencies to Apache Maven

Available POM

Let's consider the dependency to commons-lang-2.6.jar. If you open the JAR, you
will find a POM in the folder commons-lang-2.6.jar!/META-INF/maven/commons -
lang/commons-lang. This POM will acquaint you with the complete project, among
which is the data you are investigating for the block:

<dependencys>
<groupId>commons-lang</groupIld>
<artifactId>commons-lang</artifactIds>
<versions>2.6</version>

</dependency>

A simple copy and paste to your POM, and the game is over for this dependency.

Unavailable POM

The previous situation is the best you can happen to encounter. Let's see how to
manage with unfavorable cases.

Disclosing information from Manifest.MF

Identifying the right version may be a useful tactic. Open Manifest .MF within
commons-cli-1.0.jar!/META-INF/:

Manifest-Version: 1.0

Created-By: Apache Jakarta Maven

Built-By: hen

Package: org.apache.commons.*

Name: org.apache.commons.*

Specification-Title: commons-cli
Specification-Version: 1.0

Specification-Vendor: Apache Software Foundation
Implementation-Title: org.apache.commons.*

Implementation-Version: 1.0

Implementation-Vendor: Apache Software Foundation

You can conclude the corresponding vVersionis 1.0.

[92]

Chapter 4

Online tools

Let's consider the dependency to commons-cli-1.0.jar. You have the name of the
archive, but neither the group1d nor the artifact1d attributes (which may differ
from the archive name). You should use tools such as MvnRepository (http://
mavenrepository.com/), TheCentralRepository (http://search.maven.
org/#browse), findJAR (http://www.£findjar.com/), and so on.

For commons-c1i, with version 1.0, MvnRepository gives the following groupId
and artifactId:

<dependencys>
<groupld>commons-cli</groupIlds>
<artifactId>commons-cli</artifactIds>
<version>1.0</version>

</dependency>

As an alternative, you can decompress the JAR and read the full qualified name
of the classes, for example, org.apache.commons.cli.GnuParser. Then, a quick
search on findJAR retrieves the corresponding archive:

©) org.apache.commons.cli.GnuParser, - JAR Search - findJAR.com - Mo.

Fichier ~Edition Affichage Historique Marque-pages Qutls 7

=’ org.apache.commons.cli.GnuParser - JAR Se.. | + ‘ I:-IZIl
(' P | @ v findjar.com|index. x?query=arg. apa C'| | & - Findlar ;‘I ¥+ #H
Q% findJAR.cn

ache commons.cli. GnuParsen | [JARYClass Search

Last queries: MessageFactoryImpl www,rancontre, pro spring-tr

Search results for:
org.apache.commons.cli.GhuParser

[cLass] org.apache.commons.cli.GnuParser
[cLess] org.apache.commons.cli.GnuParser
[cLass] org.apache.commons.cli.GnuParser
[cLess] org.apache.commons.cli.GhuParser
[cLass] org.apache.commons.cli.GnuParser
[cLass] org.apache.commons.cli.GnuParser
[cLess] org.apache.commons.cli.GnuParser
[cLass] org.apache.commons.cli.GnuParser

SHOW ALL

([DONATE B0 wes =) | [BOOKMARK o™ 20 £7

All vights reserved, (2) serFISH com, 2002-2010,
find]AR. com iz part of the serFISH, com service network,
Crther services: « Free browser-based S5H client = HT TP tunnel far POPS and SMTE « and many more,

[93]

Migration of Dependencies to Apache Maven

You can add MvnRepository and findJAR search plugins within
M Mozilla Firefox, using the URLs https://addons.mozilla.org/
Q fr/firefox/addon/mvnrepository-search/ and https://
addons.mozilla.org/fr/firefox/addon/search-with-
findjarcom/ respectively.

Checksums

The third dependency you have to identify is that of JUnit. Thanks to
MvnRepository, you can guess the groupId and artifactId attributes. Yet, no piece
of information related to the version is available within the JAR itself (no POM and
nothing relevant in Manifest .MF). So, how to distinguish between JUnit 4.11 from
4.0 or even 3.8.17

You will need a bit of savvy and insight. You can rely on the archive size, or, better,
compare the checksum of the archive you hold against those provided in a website
such as TheCentralRepository.

Besides, JUnit is used only in unit tests, so obviously its scope will be test.

At last, the dependency is:

<dependencys>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<versions>4.1ll</version>
<scope>test</scope>
</dependency>

Next steps

If needed, the natural next step is to upload the three JARs onto a remote repository,
like Artifactory or Nexus.

If this is not possible, because the organization you belong to does not have any
central repository or any other reason, then think of installing the JARs on your local
repository. The command is as follows:

$ mvn install:install-file \
-DgroupId= commons-lang -DartifactId= commons-lang -Dversion=2.6 \
-Dpackaging=jar -Dfile=/complete/path/to/commons-lang-2.6.jar

[94]

Chapter 4

Non-Maven standard libraries

Some of the non-Maven standard libraries are given in the following section.

State

At this point, you can delete the three JARs from the 1ib folder, and replace

them with three dependencies in your POM. The last point to deal with is £tp47j-
1.7.2.jar. To build this study case, the JAR was extracted from a ZIP file
downloaded from the Sauron Software website: http://www.sauronsoftware.it/
projects/ftp4j/. These ZIP and JAR files include neither POM nor other relevant
information. Moreover, ftp4j-1.7.2.jar does not appear among archives known
by popular websites.

You can decide on an arbitrary designation, such as sauron:ftp4j:jar:1.7.2,
and then install on your local repository thanks to the mvn install-install-
file command. But a main drawback of purely local installs of JARs that are not
equivalent to a remote one is that any new developer integrating with the team will
have to perform such operations, as well as any team member, each and every time
he or she deletes his or her local repository. Besides, this will prevent from abiding
by the best practice of building the release versions in a continuous integration
environment, purging its own local repository before each build.

So, how to deal with this "uncommon" and "exotic" JAR?

Quick and (very) dirty

The quickest way is to add the JAR as a dependency, declared with scope system:

<!--Quick and dirty:-->

<dependencys>
<groupId>unknownGroupId</groupIds>
<artifactId>ftp4j</artifactId>
<version>1l.7.2</versions>
<scope>system</scope>
<systemPaths>

${project.basedir}/lib/ftp4j-1.7.2.jar

</systemPath>

</dependency>

Please notice that we decided to set the version attribute to 1. 7.2, but rigorously,
we should have set it at UNKNOWN or unknownversion.

[95]

Migration of Dependencies to Apache Maven

The disadvantage of this dirty solution is that when you generate your archive, the
JARs dependent on the scope system will not be exported. Quite a limitation, isn't it?

So, this solution should be opted for only in situations when the JAR is needed to
compile, for instance, when it contains annotation processors or a code generator.

Notwithstanding, we may have used the plugin Maven Install, in order to install
automatically the JARs on the local repository, with such a code similar to the
following code:

<plugins>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-install-plugin</artifactId>
<executionss>
<execution>
<ids>install-ftp-jar</id>
<phase>validate</phase>
<configurations>
<file>${basedir}/lib/ftp-1.7.2.jar</file>
<repositoryLayout>default</repositoryLayouts>
<groupId>UNKNOWN</groupId>
<artifactId>ftp</artifactId>
<version>1l.7.2</versions>
<packaging>jar</packaging>
<generatePom>true</generatePom>
</configurations>
<goals>
<goals>install-file</goals>
</goals>
</executions>
</executions>
</plugin>

In any case, this solution is quick and dirty, too, for many reasons: first, the module
dependent on JAR will be installed on each build, increasing the build time. Second,
as many <executions> blocks as dependencies must be added: the solution cannot be
considered as long-term sustainable. Moreover, this solution may work with Maven
2.2 and yet raise strange issues with Maven 3, thereby preventing from upgrading
the Maven version.

[96]

Chapter 4

(A bit) slower and (far) cleaner

You have to declare a <remote repositorys of which URL is local, such as:

<repositoriess
<repositorys>
<id>pseudoRemoteRepo</id>
<releases>
<enabled>true</enabled>
<checksumPolicy>ignore</checksumPolicy>
</releases>
<url>file://${project.basedir}/lib</urls>
</repositorys>
</repositories>

Then, declare the dependencies like:

<dependencys>
<groupId>UNKNOWN</groupId>
<artifactId>ftp4j</artifactIds>
<version>1l.7.2</versions>
</dependency>

Move and/or rename the JARs, for instance, from the 1ib/ftp-1.7.2.jar folder to
the actual one, such as 1ib/UNKNOWN/ftp4j/1.7.2/ftp4j-1.7.2.ar.

Summary

Thus, at the end of this chapter, you are able to migrate a wide range of projects
to Maven:

* Getting information from the POM when available

* Searching and finding clues from the archives

* Asalast resort, setting a pseudo-remote repository
However, this step of migration is not sufficient: despite you having performed

migration, other tasks, such as detecting conflicts and fixing them, are still to
be completed.

The complete POM, built on the former Ant build.xml file, looks like:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

[97]

Migration of Dependencies to Apache Maven

xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersions>
<groupId>
com.packt .dependencyManagement .chapter4
</groupld>
<artifactId>ProjectFromAnt</artifactIds>
<packagings>jar</packaging>
<version>1.0-SNAPSHOT</versions>
<name>Project from Ant to Maven</name>
<repositoriess>
<repositorys
<!--Fake remote repository, to retrieve the dependency to
ftp-1.7.2-->
<id>pseudoRemoteRepo</id>
<releases>
<enabled>true</enabled>
<checksumPolicys>ignore</checksumPolicy>
</releases>
<urls>file://${project.basedir}/lib</urls>
</repository>
</repositories>
<builds>
<sourceDirectory>src</sourceDirectory>
<testSourceDirectory>test</testSourceDirectory>

<!-- Quick and dirty solution ; we left it as a comment-->
<!l--
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-install-plugin</artifactIds>
<executionss>
<execution>
<id>install-ftp-jar</id>
<phase>validate</phase>
<configurations>
<file>${project.basedir}/lib/ftp-1.7.2.jar</file>

<repositoryLayout>default</repositoryLayouts>
<groupId>UNKNOWN</groupId>
<artifactId>ftp</artifactIds>
<version>1l.7.2</versions>

[98]

Chapter 4

<packagings>jar</packaging>
<generatePom>true</generatePom>

</configurations>

<goals>
<goals>install-file</goal>

</goals>

</execution>
</executions>
</plugins>

</plugins>

</build>
<dependencies>
<dependencys>

<!--Retrieved from its POM-->
<groupId>commons-lang</groupId>
<artifactId>commons-lang</artifactIds>
<versions>2.6</version>

</dependency>
<dependencys>
<!--groupld and artifactId were retrieved thanks to

http://findjar.com-->
<groupIds>commons-cli</groupIds>
<artifactIdscommons-cli</artifactIds>

<!--Version was retrieved from the Manifest.MF-->
<version>1.0</version>

</dependency>

<!-- Quick and dirty solution ; we left it as a comment-->

<dependency>

<groupId>unknownGroupld</groupId>

<artifactId>ftp4j</artifactIds>

<version>1l.7.2</versions>

<scope>system</scope>

<systemPaths>
${project.basedir}/lib/ftp4j-1.7.2.jar

</systemPath>

</dependency>

<dependencys>

<groupId>UNKNOWN</groupId>

[99]

Migration of Dependencies to Apache Maven

<artifactId>ftp4j</artifactIds>
<version>1l.7.2</versions>

</dependency>

<dependencys>
<groupId>junit</groupIld>
<artifactId>junit</artifactIds>
<!-- The version was retrieved by comparison of checksums
and sizes-->
<version>4.1l1l</versions>
<!-- The scope is test, because in the original Ant file
JUnit was designed as needed for tests-->
<scope>test</scope>

</dependency>

</dependencies>
</project>

With the recipe exposed in this chapter, you should be able to
migrate almost any project. Nonetheless, if truly special needs
. are encountered, do not forget that, as a last resort, Maven can
% execute any Ant script, thanks to the org. apache .maven.
s plugins:maven-antrun-plugin:1. 7 plugin and goal
run. Anyway, the actual goal of migration to Maven would
be lost, as well as main features such as repositories. So, you
should consider your case very carefully.

[100]

Tools within Your IDE

Developers in the 2010s are lucky enough to dispose of various Integrated
Development Environments (IDEs). The three most widely used are Eclipse,
NetBeans, and Intelli] IDEA. All are of good quality. They feature many tools
that, once learned, allow increasing your productivity: auto-complete, dynamic
management and visualization of dependencies, and so on.

Case study

Let's consider a basic three-tier project, organized on three layers: HSQLDB/Hibernate
(Hibernate playing a simple role of JDBC layer), Spring, and JSF + Primefaces.

Functionally, the presentation layer consists of a date and hour widget, and a color
picker. When a color is selected, a JSF bean is called, and then a Spring service, then
a DAO runs a query in database.

1 ailla Firefox

Fcteer fdten Affchage Metongss Maguepages Otk 1
[[TSe—— A —— |+

€ & lcsras - @3- Fl s W

{empty heacd)

Basic JSF/PrimeFaces/Spring/fake-Hibernate
with a clock and color picker
What 12 the date and dav?

08/06/2013 13:01:00

Select a caler

then

Click me!

Expected display in browser

Tools within Your IDE

This study case will illustrate the IDEs features related to the Maven
dependency management.

To execute this project, you have to launch
M the database (mwvn exec:java -Dexec.
Q mainClass="org.hsgldb.Server"), then
build, and deploy the WAR on a servlet container
(mvn clean install jetty:run).

IntelliJ IDEA

JetBrains Intelli] IDEA is considered as a premium IDE by numerous developers
and architects. Two versions are available: Community Edition (free and limited)
and Ultimate Edition (complete with all features). The latest version is 12.1, which
is also known as Leda. Next version, 13, known as Cardea, is expected to be released
in December 2013.

XML with XSD completion

For any XML file, when an XML schema (XSD) or a DTD is indicated, Intelli] IDEA
(Community and/or Ultimate) can provide automatic completion. Therefore this is
the case for POM files (and this explains why we have taken care to write complete
XML headers since the beginning of this book).

In Intelli] IDEA, two modes of auto-completion exist: the classic one, through pressing
a combination of Ctrl + Space bar keys, and a smart mode ("guessing" what you intend
to do), through pressing the Ctrl + Shift + Space bar keys.

[102]

Chapter 5

Auto-completion increases your productivity and your typing lane, saving the time
of searching for the exact command or writing a complete instruction, and avoiding
spelling errors as shown in the following screenshot:

é < /properties:-

@ <dependencies:

= <dependency>

Zgroupld-org. springfraneworks /groupId=

= <L

= S o Td http: //maven. apache. org/POMA4, 0.0

artifactId
classifier
exclusions
optional
scope
systemnPath
type

version
Press CtH+Espace to wiew tags fom other namespaces T

Module Dependency Graph

Intelli] IDEA Ultimate Edition has a plugin called Module Dependency Graph. On
editing a POM, just press Ctrl + Shift + Alt + U (or right-click on the POM interface
and then navigate to Maven | Show Dependencies...), a figure will be generated, on
which red arrows show a potential conflict.

This features allows you to see the dependencies of your project in a user-friendly
manner, all the more if you are allergic to text outputs produced by a mvn
dependency:tree

[103]

Tools within Your IDE

M—-Hmm-lm
g s —— 8
My s | g et |—) |
e T
Bt | |
L i
o | Hiosues
PR -
s e
e o
Wy seregeoore |
B regbesrs |
it Bl oot
et il oo
e
spractre |~ hsa |
e |
L
—"W’—“.m
e rogwm
Bl sprng core
g prntuces |
L0
et lly bl el
ﬂ
'—'liw“
lkaMHWI
st |
B b
5 I evosrre BN -yronrey W -wemmermess|
| . iy commons colecons.
P
el it
st
st |—{shem
L]
s commors-colechars.
= —im
o il b3 peritonn.
* il commons logpng
——"
m— L]

Dependency graph generated by IntelliJ IDEA 12.1 Ultimate

[104]

Chapter 5

The graph can be filtered by scope, exported to a . PNG file, or printed.

DSM (or Dependency Structure Matrix) is a plugin available
with Intelli] IDEA Ultimate. While not linked specifically to
Maven (the same tool is included in Sonar among others),

Mz it provides very useful information on your projects and
modules: cycles, dependencies, relationships, and so on.
For more details, consult http://blogs.jetbrains.
com/idea/2008/01/intellij-idea-dependency-
analysis-with-dsm/ and http://www.dsmweb.org/
en/dsm.html.

The figure can also be displayed on editing the POM by pressing a combination of
Ctrl + Alt + U (or right-click on the POM interface and then navigate to Maven |
Show Dependencies...).

Dependency addition

Another cool feature of Intelli] IDEA is the suggestion of imports and/or of Maven
dependency addition.

Dependency addition from Java code

Dependencies can be added on-the-fly, while writing code, that is, without leaving
the Java editor: a Maven dependency is added in the background, selected among
those proposed by Intelli] IDEA after scanning the repository. Clearly, the ability to
add dependencies while writing Java code, therefore without switching of context
between Java and Maven's XML POM, makes you save time and productivity.

[105]

Tools within Your IDE

When you call a class that is not yet referenced to in your imports, Intelli] IDEA will
consider it as an error (because it makes your code unable to compile). Then, move
the caret to this piece of code, and press Alt + Enter (or wait for a red lamp to be
displayed, then click on it): Intelli] IDEA will propose several choices, among which
one is Add library 'Maven: ...' to classpath.

public class VracUnitTest |

private HibernateTemplate hibernateTemplate !

® Add construckor parameter

'E' add library ‘Maven: org.springframework; spring-orm: 3, 1.0, RELEASE' to classpath
'E' Create Class 'HibernateTemplate'

ol @ Create Enum HibernateTemplate'

E Create Inner Class "Hibernate Template'

= 'E' Create Intetface 'HibernateTemplate'

'E' &dd Maven Dependency...

=l 5» Make 'protected' b
= Make 'public' [
= Make package-local 3

Import and dependency suggestions by IntelliJ IDEA 12.1 Community

Dependency search and generation within a POM

While editing a POM, you can search and add a dependency. Just press the Alt +
Insert key combination. A pop-up appears as shown in the following screenshot:

Lenerate

ity Dependency

il Managed Dependency

ith Dependency Template
& Plugin Templat =
“m Flug plate

.'fﬁ. Repositary Template

[Ffy Parent

ap
“ML Tag... -

«/artifactTd-

[106]

Chapter 5

Click on Dependency or Managed Dependency. Then you can search and
select a dependency by designation or by an embedded class as shown in the
following screenshot:

-

-'| Maven Artifact Search [z|

Search Far artifack | Search For class l

org.apache

apache. ant: :

= !|| org.apache. ant: ant-launcher:1.5.1
':l.E!.l
1.7.0

—!|| org.apache. ant: ant-nodeps:1.5.1

F— Wl org. apache., ant: ant-parent: 1.8, 1

— !|| OEd. apache. CONnons: Conmons-exec: 1.1

U, O SRS SRS ST T

add I | Cancel

The same operations can be performed for plugins, repositories, and so on.

Conclusion on IntelliJ IDEA

Intelli] IDEA is very complete in its support of Maven and provides powerful tools
dedicated to dependency management.

Eclipse

Eclipse is released by the Eclipse Foundation. It is the most widespread IDE in Java
projects. The latest version available is 4.3, also known as Kepler.

On opening a POM, Eclipse switches to a special view, dedicated to POMs. By
default, five tabs are displayed in the POM editor. Overview summarizes macro-
information related to the POM, such as details on the project, SCM, organization,
and so on. You can fill in the form to update the POM, instead of writing XML
blocks. The pom.xm1 file displays the text content of the file. The three other tabs are
more interesting from a dependency management viewpoint.

[107]

Tools within Your IDE

Dependency view

Dependencies lists the dependencies referenced in the POM. On the upper right

corner, a text field allows to filter them as shown in the following screenshot:

) Lproject [m| chapters/porm.xml &2
Dependencies Filer:

Dependencies laz %: oo |§| Dependency Management

() spring-core : ${spring.version}
() spring-orm ¢ $4spring.version;

(") spring-weh : ${spring.version}

() primefaces 1 ${primefaces . version}

() jsF-api : $4jsf.version}
() jsF-impl ¢ $4isf version}

st 1.2

() serviet-api: 2.5

) jsp-api: 2.2

() commons-Fileupload : 1.3 [runtime]

() gkimpl : 2,2

(Ihsgldb: 2.2.8

() hibernate-annotations ¢ $4hibernate. versionk:

(" lombok : 0,12.0 [compile]

(1 log4i ¢ $4log4i.versionk

To manage your transitive dependency exclusions, please use the Dependency Hierarchy page.

Owerview | Dependencies | Dependency Hierarchy | Effective POM | porn,xml

= Ft

Qék.

3, m [

]

A Th

Dependencies view in Eclipse 4.3 (Kepler)

[108]

Chapter 5

On clicking on Add button, Eclipse opens a modal window. Then you can add

an artifact, entering its groupId/artifactId/version if you know them, or
performing a search. For instance, in the following screenshot, we search all the
artifacts containing guava in their designation. If we select one of the results, then
it will be added in the list of dependencies as shown in the following screenshot:

r% Select Dependency |:|E]1

Group Id: *|

|
Artifact Id: *| |
|

Version: |

Enter groupld, artifactId or shal prefiz or pattern (*):

*guava®

Search Resulks:

f'j biz.littej. jreqs jreqs-guava ~
) com.blogspot. mydailyiava guava-cache-overflow-extension

lfl com.Fastersml.jackson jackson-datatype-guava =
() com .Fastersml.jackson.datatype jackson-datatype-guava

lfl com.github. danielwegener. xjc xjc-guava-plugin

lfl com.github,jknack handlebars-guava-cache

f'j com.github.rhaolder guava-retrying

f'j com.google.guava guava

lfl com.google.quava guava-annotations

(| com.oooale.quava auava-base b’

@

Artifact Id cannot be empky

)

Cancel

Select dependency view in Eclipse 4.3 (Kepler)

[109]

Tools within Your IDE

In the main Dependency view, the Manage button allows to pull up some of the
dependencies to a parent POM as shown in the following screenshot:

& Manage Dependencies

This will skart managing the selected dependencies For all child POMs, You may select the POM that will manage these
dependencies. The version information will then be moved ko it.

Select dependencies to manage: Select the POM which will manage the dependencies:

[j spring-core : ${spring. version} 1= com.packt dependencyManagement.chapters : chapters : 1.0
ITI spring-arm : ${spring. version}t

I spring-web : ${spring. version}

I primefaces : ${primefaces,version}
I jsF-api : ${jsf version}

[j jsf-impl : $4jsf.version}

O

C1Ca

jsp-api ¢

commons-fileupload : 1,3 [runtime]

) el-impl : 2.2

lfl hsqldb : 2.2.8

'T' hibernate-annotations : ${hibernate ve...
(7 lormbak : 0,12.0 [campile]

[j log4] ¢ $4logs.version}

=
ke

@:‘ [Ok,] [Cancel

Manage dependencies view in Eclipse 4.3 (Kepler)

Dependency Hierarchy view

Dependency Hierarchy lists, displays the hierarchy in a left pane, the tree-sorted
dependencies, direct ones as well as transitive. On the right, Eclipse displays the
Resolved Dependencies. On clicking on one dependency, Eclipse opens this artifact
POM. Therefore, you can examine a dependency POM from your current project one.

This feature allows you to see your project declared dependencies, the transitive
dependencies as they are resolved, and consequently, to know which version of a
given artifact is actually loaded.

[110]

Chapter 5

¥ .project
Dependency Hierarchy [test]

Dependency Hierarchy S & | 13 | e
= —+!

=) spring-care : 3.1.0,RELEASE [compile] A
() spring-asm : 3.1.0,RELEASE [rampile]
() commons-logging 3 1.1.1 [rampile]
=) spring-orm @ 3.1.0.RELEASE [compile]
=) spring-beans : 3.1.0,RELEASE [campile]
| spring-core @ 3.1.0,RELEASE [campilz]
| spting-core ¢ 3.1.0,RELEASE [compile]
=) spring-jdbe : 3.1.0,RELEASE [compils]
" spring-beans : 3.1.0,RELEASE [compile]
() spring-core ; 3.1.0,RELEASE [compile]
() spring-t 1 3.1.0,RELEASE [rampile]
=) spring-tx ! 3,1.0.RELEASE [compile]
) aopaliance : 1.0 [compile]
=) spring-zop @ 3.1.0,RELEASE [compile]
| aopaliance : 1.0 [compile]
| spring-asm : 3.1.0,RELEASE [compils]
() spring-beans : 3.1.0.RELEASE [compile]
() spring-core ; 3.1.0,RELEASE [compile]
) spring-beans : 3.1.0.RELEASE [compile] v
< >

% Prohlems 57 Javadnr Cieclaration

[m| chapter6fpom.xml 52 | [w) commons-filaupload:commons-fleupload: 1.2, pom

=}

EE
Fileer: | | - |

Resolved Dependencies 1az il :=:=>
() antle : 2.7.6 [compile] A
() aopaliance : 1,0 [compile]

() asm : 1,53 [campile]

(") asm-attrs : 1,5.3 [compile]

(Jeglb s 2.1_3 [compile]

) commons-collzctions ¢ 2.1.1 [compilz]

() commens-fleupload : 1.3 [runtime]

() commans-io ¢ 2.2 [runtime]

() commans-lagaing : 1.1,1 [compils]

() domd ¢ 1.6.1 [compile]

() ehcache ; 1.2.3 [compile]

") ejb3-persistence : 1.0.1.GA [compile]

(") el-api : 2.2 [compile]

() el-impl @ 2.2 [compile]

) hibernate : 3.2.6.ga [compile]

| hibernate-annotations : 3.3.1.G4 [compile]

() hibernate-commons-annokations : 3.0.0,ga [compile]

(I hsgldb ;2,28 [compile]

() jsf-api : 2.2.0-m0& [compile] w
< >

Cverview |Dependencies | Dependency Hierarchy | Effective POM | porm,xmil

am

o4
o

Dependency Hierarchy view in Eclipse 4.3 (Kepler)

Effective POM view

Effective POM view displays the actual POM as it is resolved and completed by
Maven. For details see the section, Dynamic POMs and dependencies in Chapter 3,

Dependency Designation (advanced).

Dependency Graph

Until Eclipse 4.X branch, a Dependency Graph was

\! featured. More precisely, the Dependency Graph was
bundled with m2e, the main plugin for Maven integration
within Eclipse, until m2e 1.0 release. Anyway owing to
its authors, this plugin was not efficient with big projects;
its development was ended and the plugin was removed
from future versions of Eclipse.

[111]

Tools within Your IDE

Maven Repository view

Eclipse provides a view, Maven Repository, which provides a synthetic view
of your repositories (both local and remote) and their content as shown in the
following screenshot:

=

& Java - chapteré/pom.xml - Eclipse

File Edit Mavigate Search Project Run MWindow Help
I W NS O QG
: = -1 | | ‘ = |3}JJava |
- fiProblems @ Javadoc [Declara.. SjProgress [FMaven.. 52 T &
2 =ty IR
= d | —
[Local Repositary {C:\Documents and Settingsiilalou), m2repositary n 5
== Workspace Projects O—
== com o=
== packk e
=1l Global Repositories =
=&l central (htkp:f{repo. maven. apache. orgfmavenz) il
[abbat
[= aceqgisecurity
[= activakion
[= activecluster
= activein
== ackivemq
lfl activemq - zip
= lfl activemg-axis - jar
= activemg-axis : 2.1
=l activemg-axis : 2.0 bt

Maven Repository view in Eclipse 4.3 (Kepler)

This view synthesizes all remote and local repositories used by the project and
their contents.

You can collapse, expand, and explore the different folders. You can also force a
reindex of a repository.

[112]

Chapter 5

Conclusion on Eclipse
Eclipse supports Maven well, yet this support is less broad than Intelli] IDEA.

NetBeans

NetBeans is the official IDE promoted by Sun and now Oracle, for Java projects.
Latest available version is NetBeans 7.3.

Overview

In similarity to Eclipse, on opening a POM, NetBeans switches to a POM-specific
view. By default, four tabs are displayed. Source displays the text content of the
POM. By the way, the Navigator frame displays the POM as a tree as shown in the
following screenshot:

Navigator =

POM miodel

Model Version : 4.0.0

Groupld ¢ com. packk, dependencyManagement, chapters
ArtifackId : chapterd

Packanging : war

Mame : Example common to all IDEs
Version : 1.0

Build

Dependencies

Spring-care

Spring-orm

spring-web

primefaces

jsF-api

jsf-irmpl

jstl

servlet-api

jsp-api
commons-fileupload

v ey ey i [[

1=l

Navigator frame in NetBeans 7.3

[113]

Tools within Your IDE

Another view, Effective, displays the effective POM. A virtual left column is
added, to know the source of each block: this is useful for projects with complex

or multi-level inheritance. The Graph view displays a graph of dependencies as
shown in the following screenshot:

] pom.xml [chapter6] - Editor
@ pom.xml [chaptere] =

Effective Hstary @, €, Find;| |Path:| 3 |Sc0pes:|nll v\l

Source

hiemie
3288 o Pt oo
AINGA

| eornmm s heugiaad
\

W13
|| = 1
s:rmg-|dlic |I 2 e e impl

.y a5 22 \
110REEASE| |
(] Al T
*.". If G-A\
W |f 22 Y,
! \
Ly \
sy arm commerns.ia
310RELEASE 22

Graph view in NetBeans 7.3

The dependencies can be filtered. Moreover, the maximum path depth to be
highlighted can be set.

[114]

Chapter 5

At last, the History view is common to all text files, and allows easy comparison of
the currently edited file.

Dependency addition

In similarity to Intelli] IDEA and Eclipse, you can add a dependency from the POM
(by pressing Alt + Insert) and generate the corresponding code, thanks to a search
and addition popup as shown in the following screenshot:

r B

W Add Dependency E]
Group ID: | |
Artifact ID: | |
ersion: | |§cu:u|:ue: |cum|:ui|e v|
Tvpe: | |§Iassifier: | |

Search | Open Projects || Dependency Management |

ety |guava|

Search Resulks:

P E Searching. ..
f- @ com.google.guava : guava
com.google.guava : guava-parent

org.sonakbvpe.sisd | sisu-guava

W v v

org.sonakype.sisu.inject | quava-parent

Add Dependency popup in NetBeans 7.3

[115]

Tools within Your IDE

At last, with NetBeans you can add dependencies into the POM from Java code. The
process is similar to the one in Intelli]: move the caret to the piece of code needing

an import, and type Alt + Enter (or click on the red lamp replacing the line number
on the left). NetBeans will propose several choices, among which one is Search
dependency at Maven repositories for.... Then a modal window is opened, in which
you can filter the right dependency to add as shown in the following screenshot:

rublic class AnyBean {
fAutowired
private Anylervice anyiervice;

private XStream xtrestn; 3
PRI B It [Search In Maven Repositories F§|

private 3tring color;
Class Mame

public String process|() |><Stream |

anyService.calllerwy Matching Artifacts

return Tindex™;
=~ @ com thoughtworks,xstream @ xstream

e E 1.4.3[jar] - local
= .

sl 1301 [ar] - local
bk 130 dar] - lacal

com, thoughtworks, xstream : xstream : 1.4.3 [jar]

I Add H Cancel

Search in Maven Repositories popup in NetBeans 7.3

NetBeans can help developers and architects in managing the dependencies of
their projects.

Summary
As a conclusion, we can say that the three main IDEs have many features that
can alleviate the burden of managing dependencies, and therefore increase your
productivity with:
* Auto-complete
* Dependency visualization
* Dynamic dependency addition
As usual, each and every developer will choose his or her favorite IDE owing to their

usage, even though switching timely of an IDE still remains possible, when some
particular features lack in the permanent one.

[116]

Chapter 5

The following table compares the pros and cons of IDEs:

IDE Pros Cons

Intelli] IDEA 12.1 (Leda)

Complete set of features

Some plugins
are not available

http://www. * Code generation from POM ‘ 3
jetbrains.com/ and Java code };dipmmumty
idea/download/ e Dependency oraph 1uon
P Y gap No "effective

* XML completion POM" view
Eclipse 4.3 (Kepler) ¢ POM-specific view No dependency
http://www. * Maven Repository viewer graph
eclipse.org/ ¢ Effective POM view Poor code
downloads/ generation tools

* Navigation to artifacts POMs
NetBeans 7.3 * POM-specific view Dependency
https://netbeans. e Effective POM view gragh hard to

rea

org/downloads/

Code generation from POM
and Java code

Dependency graph

No navigation to
artifacts POMs

[117]

Release and Distribute

Until now, we have dealt with the artifacts on which your project does depend on.
In this chapter, we will broaden the horizon and see your project as a released and
depended on one.

We will review miscellaneous tips, tools, how-tos, and best practices. These might
not always be 100 percent-Maven focused, however, that will improve your
productivity and efficiency.

Best practices before release

Here are some pieces of advice, which are quite obvious, however, people tend to
ignore them:

Firstly, clean the POM, regularly. Frequency depends on your context, but
cleanup should be performed at least once per release. The cleanup should
deal with conflicts of dependencies, removal of unused JARs, version
upgrade, and so on.

Next, release versions should be built only on a continuous integration
platform, such as Atlassian Bamboo, Apache Hudson/Jenkins, Continuum,
and so on. Maven does not make a difference between foo:bar:version
built locally and the "official" foo:bar : version built on continuous
integration (even though the same source code should be compiled to the
same bytecode, the rule "compile once, run everywhere" may fail). While
discrepancies are common and inescapable with snapshots, such divergences
should not be admitted with releases.

Release and Distribute

* Besides, the local repository of the machine on which release versions
are built should be purged before building the release (goal mvn
dependency :purge-local-repository). Yet, if multiple builds are run
at the same time, issues may happen. As a workaround, consider having
separate local repositories (accessed through —Dmaven.repo.local=/path/
to/local/repo/for/releases in the command line) or even settings.xml
files for different build profiles.

* Actually, this last point is part of a more general work organization.
Schematically, a modern project can be considered as having several steps,
which include development, building, and deployment. The following
diagram shows a good organization:

===

“—Jnstall releases

Tier remofe
repositories

Installreleases (&

Deploy snapshots &
releases

Organization remote repositories Continuous Integration-.

update

—

Install snapshots

Localrepo

Install releases (&

. - Update / commit
some snapshots) Version Management System d /

Developper

Local repo

Install snapshots

Efficient work organization with Maven: version control management, continuous integration, and repositories

[120]

Chapter 6

Developers update the source code from version control systems (VCS), such as
SubVersion, Git, and so on. They build locally snapshots, which are installed on

their local repositories. Developers commit the code to the VCS. The source code is
checked out by the continuous integration platform to be built and tested. The artifacts
generated by a successful build are deployed on a remote repository, which is common
to the organization. The developers' local repositories are fed with release versions
downloaded from the organization repository (anyway, in some cases, developers may
have to download and install manually some artifacts). If possible, the organization
repository is the single entry point to feed external repositories, and get tier artifacts.
Such a process guarantees a consistency of artifacts used within an organization.

Fixing conflicts with tier-parties

Your project dependencies are not the only artifacts that can raise conflicts —most
of the time, a Java/JEE application is not purely standalone —and it lays on a tier
application or container, which is either an application server or anything else.
However, these tier applications embed their own dependencies — the amount

of which can be in dozens — conflicts between resident application and host
dependencies often happen. You have full interest to anticipate these conflicts
and treat the problems ahead. The question that arises: "How to deal with them?"

Let's consider the artifact com.packt . dependencyManagement .
chapteré6:conflictWithTiers. It was generated through an archetype:

mvn archetype:generate -B \
-DgroupId=com.packt.dependencyManagement.chapter6 \
-DartifactId=conflictWithTiers \
-DarchetypeGroupId=org.apache.struts \
-DarchetypeArtifactId=struts2-archetype-blank \
-DarchetypeVersion=2.3.8 \

Maven Archetype plugin
Q Maven Archetype allows us to create projects owing to

a template. Such template structures are available for
hundreds of frameworks and situations.

[121]

Release and Distribute

As is, the brand project has conflicts with Oracle WebLogic 11g on which it was
targeted to be deployed. WebLogic has powerful tools to detect and fix such problems
(among many others). Classloader Analysis Tool (CAT) deserves to have a look at it.
For instance, CAT reports the conflict with Apache Commons JARs and suggests the
fix, as shown in the following screenshot:

©) CAT - Classloader Analysis Tool - Mozilla Firefox

Fichier Ediion Affichage Historique Marque-pages Outils de déweloppement 7

i ICAT - Classloader Analysis Tool | + | bl
€ 10.10.0.112: 7001 fwils-catfindex. jsp? app=conflict WithTiers-1 &module=conflictWith Tiers-1 0-SNAPSHOT, waraction=conflics & | |B- Googe FEINE T
ORACLE Weblogic Server® A

Classloader Analysis Tool
Running Applications Conflict Report for Application: conflictWithTiers-1 Module: conflictWithTiers-1.0-SNAPSHOT.war
ryserver [refresh]
=h-conflickwithTiers-1 View: basic | detaled . n -
b ConflickWithTiers-1 . 0-SHAPSHOT war Actions: Summary | Analyze Conflicts | Classloader Tree | Generate Repork

-consoleapn

bea_wlsd_async_response Report
“wlls-cat
“bea_wls_internal
#meib There are potential conflicts detected and they do not seem ko have been The filtering classloader acts as a barrier between the application
resalved, Please review the potential solutions below, Classloaders and the system classloaders. By configuring the filtering
classloader correctly, the application can choose to load certain
o 119 classes are in conflict classes locally rather than from the system dasspath,

o Those classes are found in the Following main packages:

* Mo references
org.apache,commans, *

<prefer-application-packages>
<package-name>rorg. apache . commons. *</ package-name>
</prefer-application-packages>

Conflicts

Below is a list of classes that are marked as patential
conflicts, By clicking on a class, further information about
this class will be shavn in this space. This infarmation
includes the alternative locations this class may be found
and which classloader actually will load this class.

* org.apache.commons, fileupload, ef aultFilelbem

& org.apache.commons. fileupload. Def aultFileIkemFackory ™

kdanache comoone Filonolood NickEilel olood

Classloader Analysis Tool from WebLogic

In this situation, the solution consists in adding two configuration files, weblogic.
xml and weblogic-application.xml, which are specific to WebLogic. The files are
added within the folder src/main/webapp/WEB-INF/folder

e Add the following code into the weblogic.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<weblogic-web-app
xmlns="http://www.bea.com/ns/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/ns/weblogic/
weblogic-web-app
http://www.bea.com/ns/weblogic/weblogic-web-app/

1.0/weblogic-web-app.xsd">

[122]

Chapter 6

<container-descriptors>
<!-- Tells WebLogic to prefer libraries from WEB-

INF folder rather than those from WebLogic self-
classloader -->

<prefer-web-inf-classes>true
</prefer-web-inf-classes>
</container-descriptor>
<context-root>/conflictWithTiers</context-roots>
</weblogic-web-app>

* Add the following code into the weblogic-application.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE weblogic-application PUBLIC
"-//BEA Systems, Inc.//DTD WebLogic Application
7.0.0//EN"
"http://www.oracle.com/technology/weblogic/weblogic-
application/1.1/weblogic-application.xsd">
<weblogic-application>
<!--Apache Commons provoke conflicts with WebLogic:
with the block below, we tell WebLogic the packages
for which to prefer the dependencies of the WAR over
the dependencies of the WebLogic itself-->
<prefer-application-packages>
<package-name>org.apache.commons. *</package-name>

<!--For this block to be taken in account, the tag
<prefer-web-inf-classes> from weblogic.xml must
be set at *true* -->

</prefer-application-packages>
</weblogic-application>

Similar mechanisms exist for most of application servers. For a JBoss AS 7 of which
you would like to exclude commons-1ang, you would have to fill a src/main/
webapp/WEB-INF/folder/jboss-deployment-structure.xml file with content
similar to the following;:

<?xml version="1.0" encoding="UTF-8"?>

<jboss-deployment-structure
xmlns="urn:jboss:deployment-structure:1.2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:jboss:deployment-structure:1.2

http://www.jboss.org/schema/jbossas/jboss-deployment-
structure-1_2.xsd">
<deployment >
<exclusions>
<!-- Reference to $JBOSS HOME/modules/org/jboss/as/jaxr/
main -->
<module name="org.jboss.as.jaxr"/>

[123]

Release and Distribute

<!--You have to add as many blocks as modules with
conflicts-->

<module name="org.apache.velocity"/>

<module name="org.apache.cxf"/>

<module name="org.apache.juddi.scout"/>

<!-- module etc.-->

</exclusions>

<dependencies>
<!-- This is the name of dependency exported by the module

of name javaee.api, in the module.xml file -->

<module name="org.apache.commons.lang"/>

</dependencies>

</deployment>

</jboss-deployment -structures>

This is similar for other application servers such as $JONAS_BASE%/conf/
cloassloader-default-filtering.xml for JOnAS, WEB-INF/glassfish-web.xml
for GlassFish, and so on.

As a conclusion, try to identify the potential conflicts at an earlier stage, that is, when
a dependency is added or updated.

Releasing the source code

Once all code is compiled and tested, and the dependencies have been checked, it is
time to release the software.

For a final Version x.y . 0, best practice consists in:

* Tagging the Version x.y. 0 and removing its x.y. 0- SNAPSHOT status

* Creating a new branch x.y that will generate snapshots (x.y.1-SNAPSHOT,
x.y.2-SNAPSHOT, and so on) and releases (x.y.1, x.y.2, and so on)

* Upgrading the version of the trunk to x. (y+1) . 0-SNAPSHOT

The Maven Release plugin

Maven Release plugin can help you in performing these tasks with the minimum
human intervention possible. Here is an example of a minimal POM using
Maven Release:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

[124]

Chapter 6

<modelVersion>4.0.0</modelVersions>

<groupIds>com.packt.dependencyManagement .chapteré</groupIds>
<artifactId>exampleOfRelease</artifactIds>
<version>1.0.0-SNAPSHOT</version>
<propertiess
<!-- Manually set BRANCH NAME before running the plugin-->
<BRANCH NAME>1.0</BRANCH NAME>
</properties>
<scm>
<connections>
scm:svn:http://svn.mycompany.extension:8066/myProject/
branches/${BRANCH NAME}
</connections>
<developerConnections>
scm:svn:http://svn.mycompany.extension:8066/myProject/
branches/${BRANCH NAME}
</developerConnection>

<urls>
http://svn.mycompany.extension:8066/myProject/branches
</urls>
</scm>
<builds>
<pluginss>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactIds>
maven-release-plugin
</artifactIds>
<version>2.4.1l</versions>
<configurations>
<!-- Tell Maven to tag the version-->
<remoteTagging>true</remoteTagging>
<!-- Should be parameterized in settings.xml
file -->
<username>myUserName</username>
<!-- Should be parameterized in settings.xml
file -->
<password>myPassWord</passwords>
<tagBase>
http://svn.mycompany.extension:8066/
myProject/tags/
</tagBase>
</configurations>
</plugin>
</plugins>
</build>

</project>

[125]

Release and Distribute

Delivering artifacts and distributions

In a project life, you are led to release your artifacts, either independently of any
other binary, or included in a wider archive.

Artifacts

A good practice is to implement a simple rule; as stated earlier, team members can
build any SNAPSHOT versions, but the task of delivering a release version should be
reserved exclusively to the continuous integration system. Actually, theoretically, the
same code on any platform should produce the same bytecode and hence be archived.
Anyway, on loading them from the local repository, Maven does not discriminate
artifacts that have been locally built from those that have been downloaded from a
remote repository, provided they have the same designation. Therefore, to be sure the
same release artifact is common to all developers; the release versions should never be
locally built. This avoids human errors, inconsistency of JARs, and the nightmare of
hunting and fixing them.

Release distribution

In the following sections, we will see how to distribute the artifact that is generated
by our project.

A simple case

Let's consider the com.packt .dependencyManagement . chapter6 : exampleOfSim
pleAssembly project. This is a simple project with direct dependencies to Groovy,
Spring, and transitively to other stuff. For such a project, you are not interested in
exporting one-on-one dependencies, and having a long, ugly, unreadable classpath,
hence command line as follows:

java ./exampleOfSimpleAssembly-1.0.jar:$M2 REPO/aopalliance/
aopalliance/l.0/aopalliance-1.0.jar:$M2 REPO/commons-logging/commons -
logging/1.1.1/commons-logging-1.1.1.jar:$M2 REPO/org/codehaus/groovy/
groovy-all/2.1.6/groovy-all-2.1.6.jar:$M2 REPO/org/springframework/
spring-aop/3.2.3.RELEASE/spring-aop-3.2.3.RELEASE.jar:$M2_ REPO/org/
springframework/spring-beans/3.2.3.RELEASE/spring-beans-3.2.3.RELEASE.
jar:$M2 REPO/org/springframework/spring-context/3.2.3.RELEASE/
spring-context-3.2.3.RELEASE.jar:$M2 REPO/org/springframework/
spring-core/3.2.3.RELEASE/spring-core-3.2.3.RELEASE.jar:$M2 REPO/org/
springframework/spring-expression/3.2.3.RELEASE/spring-expression-
3.2.3.RELEASE.jar com.packt.dependencyManagement.chapter6.MainClass

[126]

Chapter 6

Rather, you would be glad to satisfy of a mere:

java -jar exampleOfSimpleAssembly-1.0.jar

Then you can use the Maven Assembly plugin. Assembly allows you to package
your application with other material, such as sources, documentation, external

dependencies, and so on. Four default aggregators called descriptors exist: bin, src,
project, and jar-with-dependencies. The latter interests us (you can consult the

Maven Assembly website for more information on the other three).

In the POM, let's add the following block:

<plugin>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactId>maven-assembly-plugin</artifactId>
<versions>2.4</version>
<executionss>
<execution>
<id>generateSingle</id>
<phase>package</phase>

<goals>
<goals>single</goal>
</goals>
<configuration>
<!-- This Assembly will generate the regular JAR,
plus a second one, suffixed with '-full'. -->

<finalName>${project.artifactId}-
${project.version}-full</finalName>
<descriptorRefs>
<!-- We call the predefined descriptor
'jar-with-dependencies'-->
<descriptorRef>jar-with-dependencies
</descriptorRef>
</descriptorRefs>
<appendAssemblyId>false</appendAssemblyIds>

<archive>
<manifest>
<!-- Let's create a Manifest file, hinting

at the executable class to launch-->
<mainClass>com.packt.dependencyManagement.
chapteré6.MainClass</mainClass>
</manifest>
</archives>
</configurations>
</executions>
</executions>
</plugin>

[127]

Release and Distribute

On running an mvn clean install, two artifacts are generated:

* exampleOfSimpleAssembly-1.0.jar the usual one

* exampleOfSimpleAssembly full-1.0.7jar that artifact contains all the
dependencies, exploded as .class files, then re-bundled within a JAR

Then you can run the application and get the expected output (last line) as follows:

$ java -jar target\exampleOfSimpleAssembly-1.0-full.jar

12 August 2013 16:18:28 org.springframework.context.support.
AbstractApplicationContext prepareRefresh

INFO: Refreshing org.springframework.context.support.
ClassPathXmlApplicationContext@ab50cd: startup date [Mon Aug 12 16:18:28
CEST 2013]; root of context hierarchy

12 August 2013 16:18:28 org.springframework.beans.factory.xml.
XmlBeanDefinitionReader loadBeanDefinitions

INFO: Loading XML bean definitions from class path resource
[applicationContext.xml]

12 August 2013 16:18:30 org.springframework.beans.factory.support.
DefaultListableBeanFactory preInstantiateSingletons

INFO: Pre-instantiating singletons in org.springframework.beans.
factory.support.DefaultListableBeanFactory@l04faf8: defining beans
[anyService, anyDao, org.springframework.context.annotation.internalConfig
urationAnnotationProcessor,org.springframework.context.annotation.intern
alAutowiredAnnotationProcessor,org.springframework.context.annotation.in
ternalRequiredAnnotationProcessor, org.springframework.context.annotation.
internalCommonAnnotationProcessor, org.springframework.context.annotation.
ConfigurationClassPostProcessor.importAwareProcessor]; root of factory
hierarchy

*** lany data' retrieved by Groovy / Spring annotation ***

Compiling both Java and Groovy sources

In a project such as the one in the preceding section, you have to compile both Java
and Groovy sources. To perform that, the easiest way is to set maven-compiler-
plugin a little more complex than usual:

<plugin>
<!-- Use this particular configuration of maven-compiler-
plugin, in order to compile both Java and Groovy sources,
thanks to groovy-eclipse-compiler-->
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>

<version>3.0</version>

[128]

Chapter 6

<configurations>
<compilerId>groovy-eclipse-compiler</compilerId>
<sources>l.6</sources
<target>1l.6</target>
</configurations>
<dependencies>
<dependency>
<groupIds>org.codehaus.groovy</groupIld>
<artifactId>groovy-eclipse-compiler</artifactId>
<version>2.8.0-01l</version>
</dependency>
<dependency>
<groupIds>org.codehaus.groovy</groupIds>
<artifactId>groovy-eclipse-batch</artifactId>
<version>2.1.5-03</version>
</dependency>
</dependencies>
</plugins>

\l Maven Shade Plugin

We may have got a similar result with using another plugin:
Maven Shade.

A complex case

Sometimes, you face situations more complex than the previous case. Then you need
to call more advanced features of Maven Assembly:

Study case

Let's consider the com.packt .dependencyManagement .
chapteré6:exampleOfDistributions artifact. It has been built merely through a
hdavenznr}mﬁype(mvn archetype:generate -B -DarchetypeGroupId=org.
codehaus.mojo -DarchetypeArtifactId=gwt-maven-plugin
-DarchetypeVersion=2.5.1). Initself it does not have more interest than any other
"Hello World" level application. This artifact can build, generate a WAR, and deploy
on any servlet container or application server. Let's assume that, in the future, this
WAR becomes a wide spread application that is downloaded and installed by many
tier parties. As a developer and maintainer of this project, you will be interested

in releasing not only the WAR, but a complete distribution, which consists of the
considered WAR with a ready-to-use (and possibly customized) server, such as Jetty
servlet container, or TomEE (a JEE6-certified application server based on Tomcat and
OpenE]B). This kind of custom bundle is more frequently used than people think:
Sonatype Nexus, as well as various Apache projects, Atlassian products or Liferay
actually are (or can be reconfigured as) Jetty servers with an embedded web app.

[129]

Release and Distribute

Maven Assembly plugin answers the frequent case of distribution building, with
some exotic folder architecture. We have already seen, in the previous section, how
to use a predefined descriptor; now we will dive deeper in custom descriptors.

The target of the current exercise is to build the following with one command:

1. A WAR containing or compiled code with the needed dependencies.

2. A ZIP with a ready-to-use Jetty 8.1.12 (last branch, 9.X, is not compatible
with Java 6).

3. Another ZIP with a ready-to-use TomEE 1.5.2.

In order to reach this goal, you will have to call the plugin Maven Assembly. Most of
the time, Assembly basic features are sufficient. But in a case like our current one, we
have to follow the steps given in the following sections.

Following the process
* Download and install the binary of both servers.
° Install Jetty archive as a regular artifact:
mvn install:install-file \
-DgroupId=org.eclipse.jetty \
-DartifactId=jetty-distribution \
-Dversion=8.1.12.v20130726 \
-Dpackaging=zip
-Dfile=/path/to/file/jetty-distribution-
8.1.12.v20130726.zip

° Install TomEE as a regular archive. Hierarchically, Apache
Foundation has classed TomEE as a subproject of OpenEJB (hence,
we get the groupI1d).
mvn install:install-file \

-DgroupId=org.apache.openejb \
-DartifactId=tomee-webprofile \
-Dversion=1.5.2 \
-Dpackaging=zip \

-Dfile=/path/to/file/apache-tomee-1.5.2-
webprofile.zip

(You can notice we declare the packaging as zip).

[130]

Chapter 6

We have manually installed the archives on local
repositories. This works, but is is not the best way to deal
~ with. Indeed, if your organization owns a private repository
Q (such as Nexus, Artifactory, and Archiva), then the archives
must be installed on it; then all team members will retrieve
the same archive, downloaded from the common repository.

* Inthe POM, add regular dependencies to the artifacts you have just installed:
org.eclipse.jetty:jetty-distribution:zip:8.1.12.v20130726 and
org.apache.openejb:tomee-webprofile:zip:1.5.2.

* (Call the Assembly plugin from the POM as follows:

<plugin>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactId>maven-assembly-plugin</artifactId>
<versions>2.4</version>
<configurations>
<descriptorss>
<!--Call the descriptor to generate Jetty
bundle-->
<descriptor>src/main/assembly/assembly-
jetty.xml</descriptor>
<!--Call the descriptor to generate TomEE
bundle-->
<descriptor>src/main/assembly/assembly-
tomee.xml</descriptor>
</descriptors>
</configurations>
<executionss>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goals>single</goal>
</goals>
</executions>
</executions>
</plugin>

e Edit the assembly-jetty.xml file. The code is self documented as follows:

<assembly xmlns="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xs1:schemalocation="http://maven.apache.org/
plugins/maven-assembly-plugin/assembly/1.1.2
http://maven.apache.org/xsd/assembly-1.1.2.xsd">

[131]

Release and Distribute

<id>distribution-jetty</id>

<baseDirectory>${project.artifactId}-
${project.version}</baseDirectory>

<formatss>
<!-- The generated distribution will be a ZIP.
Other available formats include most common ones
(tar, tar.gz, etc.)-->
<format>zip</format>
</formats>

<includeBaseDirectory>false</includeBaseDirectory>

<dependencySets>
<dependencySet>
<outputDirectory>/</outputDirectory>
<includes>
<!-- Get the dependency-->

<include>org.eclipse.jetty:jetty-
distribution:zip:8.1.12.v20130726
</include>
</includes>
<directoryMode>744</directoryMode>
<!-- Uncompress the archive-->
<unpack>true</unpacks>
<unpackOptions>
<excludes>
<!-- exclude webapps folder content-->
<exclude>**/webapps/**</exclude>
</excludes>
</unpackOptions>
</dependencySet>
</dependencySets>

<fileSets>
<fileSet>
<directory>${project.build.directory}
</directory>
<outputDirectory>/jetty-distribution-
8.1.12.v20130726/webapps/</outputDirectory>
<includes>
<!--include the jar file generated by our
project, then copy it into the folder
hinted at in the 'outputDirectory' tag,
just above-->
<include>**/${project.artifactId}-
${project.version}.${project.packaging}
</include>
</includes>
</fileSet>
</fileSets>
</assembly>

[132]

Chapter 6

* Edit assembly-tomee.xml and perform the same operations.

* Now you can build the project. As output you will get the following
three archives:

o

exampleOfDistributions-1.0.war: The web app, as usual

exampleOfDistributions-1.0-distribution-jetty.zip: A Jetty
distribution, ready to unzip, run, and deploy the embedded web app

exampleOfDistributions-1.0-distribution-tomee.zip: The
same for TomEE

Conclusion

* Maven Assemblies allow building and distributing complex and highly
customized archives. The preceding example can be adapted to most of the
market application servers. This is what Liferay offers: on downloading
Liferay, you are offered a choice between several bundles, as shown in the
following screenshot:

=

©) Liferay Portal Downloads - Liferay.com - Mozilla Firefox |Z||E|P5__<|

Fichier Edition Affichage Historigue Marque-pages Qutils de développement 2

¥ Liferay Portal Downloads - Liferay.com | + | |:|-|:|l

vy, [iferay, com/Fridownloads)liferay-portalfavaila (& EV Google ,_ ‘ ﬁ

other. A

CEws EE

Additional Files License

Liferay Portal 6.1

Community Edition
6.1 CE GAZ

Bundled with Torncat hd

Bund| th To
Looking for additional s Elled wit ronimo

Bundled with Glassfish

Bundled with JBoss

Fl Bundied with Jetty 2

Bundled with JOnAS + Torncat

Bundled with Resin

Partal JavaDocs

Partal Source

? Check the Additional

|14

Dioubal T Sopivd

[133]

Release and Distribute

Distribution management

Any organization should have a central repository, in order to guarantee the
consistency of artifacts for all teams. Many solutions exist on the market, either open
source or commercial. In this section, we will deal with Apache Archiva. however,
most of the concepts are common to other systems, such as Sonatype Nexus and

JFrog Artifactory:

1.

Download (http://archiva.apache.org/download.cgi), install, and

execute Archiva, let's say on http://localhost:8080.
Create an admin account and password, let's say admin/admin1.

In your settings.xml, add the following block of code:

<servers>
<servers
<!-- Repository for releases -->
<id>archiva.releases</id>
<username>admin</username>
<password>adminl</passwords>
</server>
<servers
<!-- Repository for snapshots -->
<id>archiva.snapshots</id>
<username>admin</username>
<password>adminl</passwords>
</server>
</servers>

In the POM, add the following block of code:

<distributionManagement >
<repositorys

<!-- The distributionManagement.repository.id
MUST match the value of servers.server.id

in settings.xml-->
<id>archiva.releases</id>
<name>Internal Release Repository</names>
<urls>
http://localhost:8080/archiva/
repository/internal/
</urls>
</repositorys>
<snapshotRepositorys>

<!-- The distributionManagement.repository.
id *MUST* match the value of
servers.server.id in settings.xml-->

[134]

Chapter 6

5. Run

mvn

<ids>archiva.snapshots</id>
<name>Internal Snapshot Repository</names>
<urls>

http://reposerver.mycompany.com: 8080/
archiva/repository/snapshots/

</urls>
</snapshotRepository>
</distributionManagement>

the following command:

deploy:deploy-file \
-Dfile=target\exampleOfDistributionManagement-1.0.jar
-DpomFile=pom.xml

-DDrepositoryId=archiva.releases

-Durl=http://localhost:8080/repository/internal/

6. The artifact is then deployed and available in Archiva:

°) Apache Archiva - Mozilla Firefox

Fichier ~ Edition Affichage

Histarique

Marque-pages Outils de développement 2

ache Archiva

[E3)

. packt . dependen: hapter 7, exampleCFD /1.0

& @ locahost:a0a0/nd

| [B- sooge

Archiva

ARTIFACTS
Search

Upload Artifact

ADMINISTRATION
Repositary Groups
Repositories

Proqy Connectars

ProxyConnector
Rules

Metwork Proxies
Legacy Suppart
Repasitary Scanning

Runtime
Configuration

System Status
Ul Canfiguration
Feports

USERS

Manage

Roles

Users Runtime

SE DECONNECTER

Browse Repository
All

£ @ com packt / dependencyManagement

chapter?

exampleOfDistributionManagement © 1.0

Info Dependencies Dependency Tree Dependency Graph Artifacts Used By Mailing Lists Metadata

Group ID com.packt.dependencytanagement. chapter?

POM Snippet

Artifact ID exampleOfDistributiontanagement <dependency>
¢groupIdscam. packt . dependencyanagement . chapter7</ group
Id»

<artifactd> exampleOfDistributionvanagemant</artifactld

Version 1.0

Packaging jar

<version>1.@</version>

</ dependency>

Other details

[135]

Release and Distribute

Here are a few remarks:

A good practice is to discriminate artifacts according to the version (release
or snapshot), and deploy them on different repositories. Snapshots are

to be frequently uploaded and downloaded, whereas release versions
should seldom be. So, on installing a repository, think of creating two
subrepositories (or even two separated repositories running on two different
instances and even host and ports).

As stated earlier, artifacts, at least release ones, should not be uploaded by
common developers and committers, but rather only by a "golden source", that
is, in most of situations by the automatic and continuous integration system.

Summary

Thus, at the end of this chapter, we are able to:

Prepare the release

Detect and fix conflicts between our project dependencies and
any tier party

Deliver simple and complex distributions, thanks to the Maven
Assembly plugin

Perform the actual distribution of our artifacts

[136]

Useful Public Repositories

Here is a list of public repositories. They are known to host widely used artifacts.
Some repositories discriminate releases and snapshots, others offer channels of
staging, nightly, branches, and so on. Most of the time, the release channel is to be
favored, but owing to your project's needs, you would select one or more channels.

At last, remind repositories should be set in settings.xml rather than in
the pom.xml.

Maven Central

Maven Central is the main public repository. It contains most of the popular and
open sources' artifacts.

<repositorys>
<ids>MavenCentral</id>
<names>Maven Central, aka iBiblio</names>
<urls>
http://repol.maven.org/maven2/
</urls>
</repository>

iBiblio
iBiblio offers a public mirror for Maven Central.

<repositorys
<id>iBiblio</id>
<name>iBiblio mirror of MavenCentral</name>
<urls>
http://mirrors.ibiblio.org/pub/mirrors/maven2
</urls>
</repositorys>

Useful Public Repositories

"Local" mirrors exist, according to the region of the world: whereas Central is
located in Missouri, iBiblio is hosted in North Carolina. The interest of "local"
repositories is to lower latencies and lighten the load on Maven Central, for example,
http://uk.maven.org/maven2 in UK and Antelik's http://maven.antelink.
com/content/repositories/central/ in France (the latter is neither official nor
supported by Apache Maven).

JavaNet

JavaNet offers a public repository.

<repositorys
<id>java.net.public</id>
<name>Java.net PUBLIC: contains both snapshots and releases
</name>
<urls>
https://maven.java.net/content/repositories/public/
</urls>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repositorys>

JBoss

Many artifacts, among which those released by Red Hat JBoss, are available on the
JBoss repository.

<repositorys
<id>JBoss.public</id>
<name>JBoss</name>
<urls>
http://repository.jboss.org/nexus/content/groups/public/
</urls>
</repositorys>

[138]

Appendix

CodeHaus

CodeHaus hosts a repository.

<repositorys>
<id>CodeHaus.repository</id>
<name>CodeHaus repository</names
<urls>
http://repository.codehaus.org/
</urls>
</repositorys>

Apache

Here is the Apache Foundation public repository.

<repositorys
<id>Apache.public</id>
<name>Repository for Apache Foundation projects: releases and
snapshots</name>
<urls>
https://repository.apache.org/content/groups/public/
</urls>
<releases>
<enabled>true</enableds>
</releases>
<snapshots>
<enabled>true</enableds>
</snapshots>
</repository>

OSS Sonatype

Sonatype, main contributor to Apache Maven, deploys a public Nexus that points to
several "small" repositories related to one organization: http://oss.sonatype.org/.

[139]

Symbols

--also-make-dependents option 48
--also-make option 48
-amd option 48

-am option 48

-fae 48

--fail-at-endoption 48
--fail-fast option 48

-ff option 48

** lastUpdated file 50
_maven.repositories file 50
--non-recursive option 48
--resume-from option 49
-rf option 49

-r option 48

A

analyze-dep-mgt goal 63
analyze-duplicate goal 63
analyze goal 60-62
Apache 139
Apache Archiva 134
Apache Maven
dependencies, migrating to 87
origins 5
Application PacKage (APK) file 53
artifactld attribute 7, 94
artifacts 126

B

Black listed 75

Index

C

case study 87-91
Central Repository

URL 93
Circular Dependency 74
Class Dependants 74
Class Depends On 74
classifier dependency 7
classifier tag 59, 60
Classloader Analysis Tool (CAT) 122
Class Location 74
CodeHaus 139

D

Dependants 74
dependency

about 6

addition, from Java code 105

artifactld 7

classifier 7

groupld 7

Hierarchy view 110

in folders 49-52

migrating, to Apache Maven 87

scope 7

type 7

version 7

view 108,110

visualizing 9, 11
dependency:analyze goal 62
Dependency Hierarchy 110
Dependency Injection (DI) 56
dependencyManagement tag

about 36

case study 37-40
dependency mediation 12
dependency plugin
about 60
analyze-dep-mgt goal 63
analyze-duplicate goal 63
analyze goal 60-62
dependency:build-classpath goal 63
goals 64, 65
dependency tag 29
Depends On 74
descriptors 127
distribution management 134-136
Dynamic POMs
about 76, 78
clean solution 81
command lines, properties 81, 82
conclusion 85
effective POM 76, 77
profiles 82, 84
project, requisites 79
quick and dirty solution 80, 81
settings 82

E

ear 53
Eclipse
about 107
dependency hierarchy view 110
dependency view 108, 110
Effective POM view 111
Maven Repository view 112
Eclipse 4.3 (Kepler)
URL 117
Eclipse .classpath equivalent file 90
Eliminate Jar files with different
versions 75
Enforce plugin
about 65
dependencies, banned 68, 69
dependency convergence 66, 67
other rules 69-72

F

findJAR
URL 93

folders
setting 91
foo:bar:version 119

G

Graphical dependencies 74
Groovy sources

compiling 128, 129
groupld 7

iBiblio 137,138
IDE
cons 117
pros 117

Integrated Development Environments.

See IDE
Intelli] IDEA
about 102
conclusion 107
dependency addition 105

dependency addition, from Java code 105

dependency, generation within
POM 106, 107

dependency, search within POM 106, 107

Module Dependency Graph 103-105
XML, with XSD completion 102
Intelli] IDEA 12.1 (Leda)
URL 117
Invalid version 75
Inversion of Control (IoC) 56

J

JavaNet 138
Java sources
compiling 128, 129
JBoss 138
JBoss Tattletale. See Tattletale
JUnit archive 90

K

Kepler 107

[142]

L

long designation 7, 8

Maven Archetype plugin 121
Maven Assembly plugin 127
Maven Central 137
Maven Enforce. See Enforce plugin
maven-metadata-local.xml 50
maven-plugin 53
Maven Reactor

about 44

options 48

plugin 48, 49

sorting 45-49
Maven Release plugin 124
Maven Repository view 112,113
Maven standard libraries

about 91

archive, checksum 94

available POM 92

information from Manifest.MF,

disclosing 92

online tools 93, 94

unavailable POM 92
Module Dependency Graph 103, 105
modules 21, 23, 26
Multiple Jar files (packages) 75
Multiple Locations 75
mvn dependency:list 64
mvn dependency:list-repositories 64
MvnRepository

URL 93, 94

N

NetBeans
about 113
dependency addition 115, 116
overview 113,114

NetBeans 7.3
URL 117

Non-Maven standard libraries
<remote repository>, declaring 97
about 95
JAR, adding as dependency 95, 96

state 95

(0

OSGi 74
OSS Sonatype 139

P

packages

creating 55

Maven plugin 55-58

plugin, calling 58, 59
Parent POM 19, 21
par (Persistence Archive) 53
Plexus

URL 56
POM

about 88

block, adding 127,128

dependency, generation 106, 107

dependency, search 106, 107
POMs. See Parent POM
POM view 111
Project Object Model. See POM
public repositories

Apache 139

CodeHaus 139

iBiblio 137, 138

JavaNet 138

JBoss 138

Maven Central 137

OSS Sonatype 139
purge-local-repository 65

R

rar (Resource Archive) 53
release
best practices 119-121
distribution 126
release distribution, complex case
about 129
conclusion 133
process, following 130-133
study case 129, 130
release distribution, simple case 126-129

[143]

release version 7
requireActiveProfile 72
requireSameVersions 72
requireUpperBoundDeps 72
resolver-status.properties file 50

S

Sauron Software website
URL 95
scope dependency 7
scopes
about 29
compile 29, 30
importing 36, 40-44
nomenclature 29
overlay rules 36
provided 30
runtime 31-33
system 35
test 34, 35
Sealed information 74
short designation 9
Signing information 75
SNAPSHOT versions 126
standalone-pom 50
source code
releasing 124

T

Tattletale
about 73
archives 75
dependencies 74
reports 74,75
Tattletale, dependencies
Circular Dependency 74
Class Dependants 74
Class Depends On 74
Dependants 74
Depends On 74
Graphical dependencies 74
Transitive Dependants 74
Transitive Depends On 74
Tattletale, reports
Black listed 75
Class Location 74

Eliminate Jar files with different
versions 75

Invalid version 75

Multiple Jar file 75

Multiple Jar files (packages) 75

Multiple Locations 75

OSGi 74

Sealed information 74

Signing information 75

Unused Jar 75
tier-parties

conflicts, fixing 121-124
Transitive Dependants 74
transitive dependencies

about 11

exclusions 14-16

optional, dependencies 16-18

resolution 12-14

transitivity, concept 11
Transitive Depends On 74
type dependency 7

types
creating 55

type tag
about 53

classic cases 53, 54

U

Unused Jar 75

\'

version
about 7
ranges 26, 27
version control systems (VCS) 121

w

war 53
white-listed APIs 75

X

XML
with XSD completion 102

[144]

open source

community experience distilled

PUBLISHING

Thank you for buying
Apache Maven Dependency Management

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Apache Maven 3
Cookbook

Apache Maven 3 Cookbook
ISBN: 978-1-84951-244-2 Paperback: 224 pages

Over 50 recipes towards optimal Java software
engineering with Maven 3

1. Grasp the fundamentals and extend Apache
Maven 3 to meet your needs

2. Implement engineering practices in your
application development process with
Apache Maven

3. Collaboration techniques for Agile teams with
Apache Maven

4. Use Apache Maven with Java, Enterprise
Frameworks, and various other cutting-edge
technologies

Apache Maven 2

Effective Implementation

Apache Maven 2 Effective

Implementation
ISBN: 978-1-84719-454-1 Paperback: 456 pages

Build and manage applications with Maven,
Continuum, and Archiva

1. Follow a sample application which will help
you to get started quickly with Apache Maven

2. Learn how to use Apache Archiva - an
extensible repository manager - with Maven
to take care of your build artifact repository

3. Leverage the power of Continuum - Apache's
continuous integration and build
server - to improve the quality and maintain
the consistency of your build

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Instant Apache ActiveMQ
Messaging Application
Development How-to [Instant]
ISBN: 978-1-78216-941-3 Paperback: 78 pages

Develop message-based applications using ActiveMQ
and the JMS

Short | Fast |/ Focused 1. Learn something new in an Instant!
Apache ActiveMQ Messaging A short, fast, focused guide delivering
Application Development How-to immediate results

2. Learn how to use the J]MS API

Timothy Bish [PACKT] 3. Explore advanced messaging features
in ActiveMQ

4. Useful information on common pitfalls new
developers often encounter

Instant Apache Maven Starter

[Instant]
ISBN: 978-1-78216-760-0 Paperback: 62 pages

Get started with the fundamentals of developing Java
projects with Apache Maven

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

Short | Fast | Focused

2. Create Java projects and project templates with
Apache Maven Starter Maven archetypes

3. Manage project dependencies, project
coordinates, and multi-modules

MaurizioTurati Maurizio Pillitu [PACKT]

4. Download, install, and configure Maven on
different operating systems

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Basic Dependency Management
	Nomenclature
	Reminders on Maven origins
	Dependency

	Long and short designations
	Long designation
	Short designation

	Visualizing dependencies
	Transitive dependencies
	Concept of transitivity
	Resolution
	Exclusions
	Optional dependencies

	Parents/modules
	Parent POM
	Modules

	Version ranges
	Summary

	Chapter 2: Dependency Mechanism
and Scopes
	Scopes
	Nomenclature of scope
	Compile
	Provided
	Runtime
	Test
	System
	Import

	Scope overlay rules (via transitive dependencies)
	The dependencyManagement tag
	First case study
	Second case study

	The import scope

	Modules and submodules (advanced)
	Maven Reactor
	Reactor sorting

	Reactor options and Reactor plugin for
Maven 2

	Management of dependencies in folders
	The dependencies in their folders
	Nonarchive files:

	Summary

	Chapter 3: Dependency Designation (advanced)
	The type tag
	The classic cases

	Creating a new packaging/type
	Case study
	The first step – Maven plugin
	The second step – call the plugin

	Classifier
	The dependency plugin
	The analyze goal
	Classpath
	Other goals of dependency
	Other miscellaneous plugins
	The Enforce plugin
	The dependency convergence
	Banned dependencies
	Other rules

	Tattletale
	Dependencies
	Reports
	Archives

	Dependency, enforce, and tattletale – conclusion

	Dynamic POMs and dependencies
	Effective POM and settings
	Dynamic POM
	Study case
	A quick and dirty solution
	A clean solution
	With properties in command lines
	Profiles and settings
	Dynamic POMs – conclusion

	Summary

	Chapter 4: Migration of Dependencies to Apache Maven
	Case study
	Setting the folders
	Introduce Maven with standard libraries
	Available POM
	Unavailable POM
	Disclosing information from Manifest.MF
	Online tools
	Checksums

	Next steps

	Non-Maven standard libraries
	State
	Quick and (very) dirty
	(A bit) slower and (far) cleaner

	Summary

	Chapter 5: Tools Within Your IDE
	Case study
	IntelliJ IDEA
	XML with XSD completion
	Module Dependency Graph
	Dependency addition
	Dependency addition from Java code
	Dependency search and generation within a POM

	Conclusion on IntelliJ IDEA

	Eclipse
	Dependency view
	Dependency Hierarchy view
	Effective POM view
	Maven Repository view
	Conclusion on Eclipse

	NetBeans
	Overview
	Dependency addition

	Summary

	Chapter 6: Release and Distribute
	Best practices before release
	Fixing conflicts with tier-parties
	Releasing the source code
	Maven Release plugin

	Delivering artifacts and distributions
	Artifacts
	Release distribution
	Simple case
	Complex case

	Distribution management
	Summary

	Appendix: Useful Public Repositories
	Maven Central
	iBiblio
	JavaNet
	JBoss
	CodeHaus
	Apache
	OSS Sonatype

	Index

