

 [image: (missing alt)]

 Table of Contents

 Apache Maven Dependency Management

 Credits

 About the Author

 About the Reviewer

 www.PacktPub.com

 Support files, eBooks, discount offers and more

 Why Subscribe?

 Free Access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. Basic Dependency Management

 Nomenclature

 Reminders on Maven origins

 Dependency

 Long and short designations

 Long designation

 Short designation

 Visualizing dependencies

 Transitive dependencies

 The concept of transitivity

 Resolution

 Exclusions

 Optional dependencies

 Parents/modules

 Parent POM

 Modules

 Version ranges

 Summary

 2. Dependency Mechanism and Scopes

 Scopes

 Nomenclature of scope

 Compile

 Provided

 Runtime

 Test

 System

 Import

 Scope overlay rules (via transitive dependencies)

 The dependencyManagement tag

 First case study

 Second case study

 The import scope

 Modules and submodules (advanced)

 Maven Reactor

 Reactor sorting

 Reactor options and the Reactor plugin for Maven 2

 Management of dependencies in folders

 The dependencies in their folders

 Nonarchive files

 Summary

 3. Dependency Designation (advanced)

 The type tag

 The classic cases

 Creating a new packaging/type

 Case study

 The first step – Maven plugin

 The second step – call the plugin

 The Classifier

 The dependency plugin

 The analyze goal

 Classpath

 Other goals of dependency

 Other miscellaneous plugins

 The Enforce plugin

 The dependency convergence

 Banned dependencies

 Other rules

 Tattletale

 Dependencies

 Reports

 Archives

 Dependency, enforce, and tattletale – conclusion

 Dynamic POMs and dependencies

 Effective POM and settings

 Dynamic POM

 Case study

 A quick and dirty solution

 A clean solution

 With properties in command lines

 Profiles and settings

 Dynamic POMs – conclusion

 Summary

 4. Migration of Dependencies to Apache Maven

 Case study

 Setting the folders

 Introducing Maven with standard libraries

 Available POM

 Unavailable POM

 Disclosing information from Manifest.MF

 Online tools

 Checksums

 Next steps

 Non-Maven standard libraries

 State

 Quick and (very) dirty

 (A bit) slower and (far) cleaner

 Summary

 5. Tools within Your IDE

 Case study

 IntelliJ IDEA

 XML with XSD completion

 Module Dependency Graph

 Dependency addition

 Dependency addition from Java code

 Dependency search and generation within a POM

 Conclusion on IntelliJ IDEA

 Eclipse

 Dependency view

 Dependency Hierarchy view

 Effective POM view

 Maven Repository view

 Conclusion on Eclipse

 NetBeans

 Overview

 Dependency addition

 Summary

 6. Release and Distribute

 Best practices before release

 Fixing conflicts with tier-parties

 Releasing the source code

 The Maven Release plugin

 Delivering artifacts and distributions

 Artifacts

 Release distribution

 A simple case

 Compiling both Java and Groovy sources

 A complex case

 Study case

 Following the process

 Conclusion

 Distribution management

 Summary

 A. Useful Public Repositories

 Maven Central

 iBiblio

 JavaNet

 JBoss

 CodeHaus

 Apache

 OSS Sonatype

 Index

Apache Maven Dependency Management

Apache Maven Dependency Management

Copyright © 2013 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: October 2013
Production Reference: 1211013
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78328-301-9

www.packtpub.com

Cover Image by Jonathan Lalou

Credits

Author

Jonathan Lalou

Reviewer

Cedric Gatay

Acquisition Editor

Akram Hussain

Commissioning Editors

Manasi Pandire
Shreerang Deshpande

Technical Editors

Sharvari Baet
Nadeem N. Bagban
Kanhucharan Panda

Project Coordinators

Romal Karani
Ankita Goenka

Proofreaders

Paul Hindle
Stephen Swaney

Indexer

Monica Ajmera Mehta

Production Coordinators

Nilesh R. Mohite
Manu Joseph

Cover Work

Nilesh R. Mohite

About the Author

Jonathan Lalou is an engineer fascinated by new technologies, computer sciences, and the digital world since his childhood. Graduated from the Ecole des Mines—one of the French best polytechnic institutes—, Jonathan has more than 13 years of experience in Java and the JEE ecosystem.
Jonathan has worked for several global companies and financial institutions such as Syred, Philips, Sungard, Ixis CIB, BNP Paribas, and Amundi AM with strong ties, daily contacts, and frequent trips in Western Europe, Northern America, Judea, and emerging Asia. During his career, Jonathan has successfully climbed many levels: developer, architect, Scrum master, team leader, and project manager. Now, Jonathan has joined StepInfo (http://www.stepinfo.com/), a high-tech company focused on Java, and sponsor of local JUG and Devoxx, where he works as a project director, trainer, and leader of the expert task forces.
Jonathan's skills include a wide range of technologies and frameworks such as Spring, Hibernate, GWT, Mule ESB, Struts, JSF, Groovy, Android, EJB, JMS, application servers, agile methods, and of course Apache Maven.
Jonathan is available on the cloud. You can catch him on:
	Blog: http://jonathan.lalou.free.fr
	Twitter: http://twitter.com/john_the_cowboy
	LinkedIn: http://www.linkedin.com/in/jonathanlalou

About the Reviewer

Cedric Gatay has an engineering degree in Computer Science. He likes well-crafted and unit-tested code.
He has a very good understanding of Java languages (giving courses in Engineering schools and talking at local Java Users Groups).
He has been working with Apache Maven since 2006, and, is from day one, the technical leader of a successful software company editing a wicket-based SaaS: SRMvision at http://www.srmvision.com.
He is also the founder of a collaborative blog for developers Bloggure: http://www.bloggure.info.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers and more]

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read, and search across Packt's entire library of books.
Why Subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print and bookmark content
	On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.

Preface

In one decade, Apache Maven has successfully established itself in most of the companies dealing, coding, and releasing Java and JEE applications. Facing the still increasing problems of greedy, complex, and voluminous enterprise applications, architects, and developers have taken advantage of Maven's power and its ability to manage the plenty of dependencies, imports, and links. However, to be effective, and not to induce endless conflicts (any developer's nightmare), the management of dependencies should prove to be rigorous. Fortunately, Maven itself, and several plugins, do include both flexible and powerful features and tools.
This is what we propose to explore, develop, and illustrate in this book.
What this book covers

Chapter 1, Basic Dependency Management, covers nomenclature, long and short designations, transitive dependencies, parents and modules, and version ranges.

Chapter 2, Dependency Mechanism and Scopes, covers scope nomenclature, the <dependencyManagement> tag, modules and submodules, Maven Reactor, and management of dependencies in folders.

Chapter 3, Dependency Designation (advanced), covers classic cases of <type>, how to create a new one, classifier, how to detect and fix dependency conflicts: Maven Dependency, enforce and Taggletatte plugins, and Dynamic POMs.

Chapter 4, Migration of Dependencies to Apache Maven, covers how to introduce Maven to non-Maven projects and even with non-Maven standard libraries.

Chapter 5, Tools within Your IDE, is specific to most spread IDEs: IntelliJ IDEA, Eclipse and NetBeans.

Chapter 6, Release and Distribute, deals with best practices before releases, how to fix conflicts with tier-parties, delivering artifacts and distributions, and distribution management.

Appendix, Useful Public Repositories, covers useful public repositories.

What you need for this book

In order to get the best out of this book, you need to have Maven 3.0.5 installed on your system, as well as a JDK (Java Development Kit), version 6 or above.
Access to the Internet is strongly advised.
You should also set environment variables such as JAVA_HOME and MVN_HOME, pointing respectively to JDK and Maven install folders.
Any text editor (PS-Pad, NotePad++, or even VIm and XEmacs) is sufficient to deal with Maven; anyways, you have interest then install an IDE like Eclipse, NetBeans, or IntelliJ IDEA. From a personal viewpoint, I advise the latter, but all of them are pretty good.

Who this book is for

This book is intended at developers, architects, and software urban planners, with a first experience of Apache Maven. More specifically, it suits teams who work on Java and JEE ecosystems, with wide spread frameworks, such as Spring, Hibernate, GWT, Groovy, and Apache Commons.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: " You can specify a different scope with the <scope> tag."
A block of code is set as follows:
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.9</version>
 </dependency>

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>${hibernate.version}</version>
 </dependency>

Any command-line input or output is written as follows:

 $ mvn dependency:tree

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "Clicking on the Next button moves you to the next screen".
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Chapter 1. Basic Dependency Management

In this chapter, we will recollect and/or explain the basics behind dependency management.
Throughout this work, we will assume that you know the basic notions about Maven, that is, repository, POM, plugin, goal, build, lifecycles, and so on.
Nomenclature

Let's review some basic notions related to Maven and dependencies.
Reminders on Maven origins

In late 1970s, Dr Stuart Feldman's make and makefiles allowed developers to order a build process, and then to build automatically a project.
In 2000, Sun released an equivalent of makefiles for Java platform, which is now known as Apache Ant. Ant used XML files to order and script the build.
Apache Maven was released in 2005 based on different concepts, it is aimed at automating the build. Ant was build oriented, Maven is project oriented; all Java projects may be considered as nodes and leaves of a huge dependency graph.

Dependency

What is a dependency? A dependency is another archive—JAR, ZIP, and so on—which your current project needs in order to compile, build, test, and/or to run. In other terms, a dependency is a file or a group of files that contain(s) the classes pointed at in your import clauses, and even more (think of an object that would be dynamically created, thanks to reflexivity).
From Maven's viewpoint, a project depends on other projects, and is depended on by other projects. Anyway, a project only need know which projects it does depend on; there is no burden to spread or inform the projects that depend on it.
The dependencies are gathered in the pom.xml file, inside of a <dependencies> tag.
On launching Maven on a project, either for a build or another goal, the dependencies are resolved, and are then loaded from the local repository; if they are not present there, then Maven will download them from a remote repository and store them in the local repository. Anyway, a manual installation of an archive remains possible.
Usually, the local repository is located at the home directory, for example, C:\Documents and Settings\myLogin\.m2\repository under Windows XP, C:\Users\myLogin\.m2\repository under Windows Vista/7/8, or ~/.m2/repository under Linux and Unix.
Tip
You can override the local repository folder. To perform that, you can add a tag <localRepository> within your settings.xml, for example:
<localRepository>/path/to/any/folder</localRepository>

Alternatively, you may dynamically specify a different folder, adding explicitly the destination folder as a runtime property on executing Maven, for example:
mvn clean \
-Dm2.localRepository=/path/to/another/folder/somewhere/else

Long and short designations

Maven standardizes the way to identify a dependency. So, each dependency is described by the following data:
	groupId: A macro group or family of projects or archives to which a project belongs. Usually a same groupId gathers projects released by a same editor or that share a same functional domain. For example, junit, org.hibernate, and org.richfaces.ui.
	artifactId: The unique identifier of the project among the projects sharing the same groupId. For example, junit, hibernate-annotations, and richfaces-components-ui.
	version: This tag can have various values:	If no version is hinted, then Maven will use the last available artifact in the local repository.
	The version of the project may be one of the following: 	A release version: A release version is "tagged", and can be considered as stable ; it shall not change anymore once published. For example,: 4.9, 3.3.1.GA, and 4.1.0.Final.
	A Snapshot version. Snapshots are artifacts still in development. They are expected to change and to be updated often. For example, SNAPSHOT, 1.0-SNAPSHOT (assumed to be released later as 1.0), and 1.2.3-SNAPSHOT (assumed to be released later as 1.2.3).

	classifier: We will study this dependency in detail in Chapter 3, Dependency Designation (advanced).
	type: We will study this dependency in detail in Chapter 3, Dependency Designation (advanced).
	scope: We will study this dependency in detail in Chapter 3, Dependency Designation (advanced).
	Other tags are available, we will review them later: exclusion, optional, and systemPath.

Long designation

So, basically, the preceding dependencies are equivalent to the following block in pom.xml:
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.9</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>3.3.1.GA</version>
 <!-- ''GA'' stands for ''General Availability''-->
 </dependency>
 <dependency>
 <groupId>org.richfaces.ui</groupId>
 <artifactId>richfaces-components-ui</artifactId>
 <version>4.1.0.Final</version>
 </dependency>
 </dependencies>

Tip
You can specify a range of values instead of a unique one. This will detailed later.

If your pom.xml points to many artifacts of the same groupId (which is common with frameworks such as Spring, and Hibernate), you would rather use properties in order to factorize the code and be sure to upgrade consistently the group when needed:
In other terms, you should add a properties block, and then reference them. Taking the same example, you should get something similar to the following:

 <properties>
 <junit.version>4.9</junit.version>
 <hibernate.version>3.3.1.GA</hibernate.version>
 <richfaces.version>4.1.0.Final</richfaces.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>${junit.version}</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>${hibernate.version}</version>
 </dependency>
 <dependency>
 <groupId>org.richfaces.ui</groupId>
 <artifactId>richfaces-components-ui</artifactId>
 <version>${richfaces.version}</version>
 </dependency>
 </dependencies>

The classic XML block notation is called long designation.

Short designation

Long designation is verbose and fits only XML usage. This is why in other contexts, such as in logs, the
short designation is preferred. It consists in collapsing the XML tree tags.
The preceding three dependencies are equivalent to the following:
	junit:junit:jar:4.9:compile
	org.hibernate:hibernate-annotations:jar:3.3.1.GA:compile
	org.richfaces.ui:richfaces-components-ui:jar:4.1.0.Final:compile

You may have noticed that jar and compile were introduced; in a few words, they correspond to the default values for the tags type and scope.

Visualizing dependencies

Modern IDEs include many features to help visualize dependencies.
With the dependency plugin, Maven includes a goal to print the tree of dependencies. The dependency:tree, for example, will be given as follows:

/workarea/development/cartography/$ mvn dependency:tree
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Cartography Application 1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- maven-dependency-plugin:2.1:tree (default-cli) @ cartography ---
[INFO] com.stepinfo.poc.cartography:cartography:jar:1.0-SNAPSHOT
[INFO] +- mockobjects:mockobjects-core:jar:0.09:test
[INFO] +- junit:junit:jar:4.9:test
[INFO] | \- org.hamcrest:hamcrest-core:jar:1.1:test
[INFO] +- org.hibernate:hibernate-annotations:jar:3.3.1.GA:compile
[INFO] | +- org.hibernate:hibernate:jar:3.2.6.ga:compile
[INFO] | | +- net.sf.ehcache:ehcache:jar:1.2.3:compile
[INFO] | | +- javax.transaction:jta:jar:1.0.1B:compile
[INFO] | | +- asm:asm-attrs:jar:1.5.3:compile
[INFO] | | +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | | +- antlr:antlr:jar:2.7.6:compile
[INFO] | | +- cglib:cglib:jar:2.1_3:compile
[INFO] | | +- asm:asm:jar:1.5.3:compile
[INFO] | | \- commons-collections:commons-collections:jar:2.1.1:compile
[INFO] | +- org.hibernate:hibernate-commons-annotations:jar:3.0.0.ga:compile
[INFO] | +- org.hibernate:ejb3-persistence:jar:1.0.1.GA:compile
[INFO] | \- commons-logging:commons-logging:jar:1.0.4:compile
[INFO] +- org.springframework:spring-core:jar:3.1.0.RELEASE:compile
[INFO] | \- org.springframework:spring-asm:jar:3.1.0.RELEASE:compile
[INFO] +- org.springframework:spring-orm:jar:3.1.0.RELEASE:compile
[INFO] | +- org.springframework:spring-beans:jar:3.1.0.RELEASE:compile
[INFO] | +- org.springframework:spring-jdbc:jar:3.1.0.RELEASE:compile
[INFO] | \- org.springframework:spring-tx:jar:3.1.0.RELEASE:compile
[INFO] | +- aopalliance:aopalliance:jar:1.0:compile
[INFO] | +- org.springframework:spring-aop:jar:3.1.0.RELEASE:compile
[INFO] | \- org.springframework:spring-context:jar:3.1.0.RELEASE:compile
[INFO] | \- org.springframework:spring-expression:jar:3.1.0.RELEASE:compile
[INFO] +- mysql:mysql-connector-java:jar:5.1.6:compile
[INFO] +- commons-lang:commons-lang:jar:2.3:compile
[INFO] \- log4j:log4j:jar:1.2.16:compile
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 2.485s
[INFO] Finished at: Mon Jun 24 19:08:20 CEST 2013
[INFO] Final Memory: 5M/15M
[INFO] --

This tool will be very useful when we deal with conflicts of JARs.

Transitive dependencies

One of Maven's major contributions is the way it deals and manages not only direct dependencies, but also transitive ones.
The concept of transitivity

Dependencies are transitive. This means that if A depends on B and B depends on C, then A depends on both B and C. Theoretically, there is no limit to the depth of dependency. So, if you observe the following diagram of the tree of dependencies, you will notice that by transitivity, A depends on B, C, D, … until Z:
[image: The concept of transitivity]
Even worse, we could have added a bit of complexity in mixing different versions of the same artifacts. In this very example with A as root project, B and C are level 1 or direct dependencies, D, E, J, and F are level 2 dependencies, C, G, H, and K are level 3, and so on.
You can imagine that the greater the level of dependencies, the more complex the situation is. The underlying issue of transitivity, you may guess, is when dependencies bear on the same groupId/artifactId but with different versions.

Resolution

Maven carries out the following algorithm to choose between two different versions:
	Nearest first: A dependency of lower level has priority over another of the higher depth. Hence, a direct dependency has priority over a transitive dependency.
	First found: At the same level, the first dependency that is found is taken.

This algorithm is known as
dependency mediation.
Let's consider an example. The following diagram shows a dependency tree:
[image: Resolution]
Here is the corresponding dependencies block in POM:
 <dependencies>
 <dependency>
 <groupId>directory</groupId>
 <artifactId>apacheds-core</artifactId>
 <version>0.9.3</version>
 <!--implicit dependency to commons-io:commons-io:1.0-->
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-exec</artifactId>
 <version>2.9.7</version>
 <!--implicit dependency to commons-io:commons-io:1.4-->
 </dependency>
 <dependency>
 <groupId>org.apache.tapestry</groupId>
 <artifactId>tapestry-upload</artifactId>
 <version>5.3.7</version>
 <!--implicit dependency to commons-io:commons-io:2.0.1-->
 </dependency>
 <dependency>
 <groupId>com.googlecode.grep4j</groupId>
 <artifactId>grep4j</artifactId>
 <version>1.7.5</version>
 <!--implicit dependency to commons-io:commons-io:2.4-->
 </dependency>
 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.3</version>
 </dependency>

The commons-io-2.3 dependency is a dependency of level 1. So, even though it is declared after other artifacts and their transitive dependencies, then the dependency mediation will resolve commons-io to version 2.3. This case illustrates the concept of nearest first.
Now let's compare to a POM for which commons-io-2.3 has been deleted from level 1. The dependency tree shown in the following diagram:
[image: Resolution]
All dependencies to commons-io are of level 2, and differ on the versions: 0.9.3 (via apacheds-core), 1.4 (via camel-exec), 2.0.1 (via tapestry-upload), and 2.4 (via grep4j). Unlike a popular belief, the resolution will not lead to take the greatest version number (that is, 2.4), but the first transitive version that appears in the dependency tree, in other terms 0.9.3.
Had another dependency been declared before apacheds-core, its embed version of commons-io would have been resolved instead of version 0.9.3. This case illustrates the concept of first found.

Exclusions

Let's consider the following example:
[image: Exclusions]
Our project needs JUnit-4.11, as well as DBUnit-2.4.9 and commons-collections-2.1. But the two latter depend on other versions of JUnit, respectively 2.3.0 and 3.2. Moreover, commons-collections depends on JUnit-3.8.1. Therefore, on building the project with goal test, we may encounter strange behaviors.
In this situation, you have to use an <exclusion> tag, in order to break the transitive dependency.
The POM will look similar to the following:
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>${junit.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.dbunit</groupId>
 <artifactId>dbunit</artifactId>
 <version>${dbunit.version}</version>
 <scope>test</scope>
 <exclusions>
 <!--Exclude transitive dependency to JUnit-3.8.2 -->
 <exclusion>
 <artifactId>junit</artifactId>
 <groupId>junit</groupId>
 </exclusion>
 <!--Exclude transitive dependency to Commons-Collections-3.1-->
 <exclusion>
 <artifactId>commons-collections
 </artifactId>
 <groupId>commons-collections</groupId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>commons-collections</groupId>
 <artifactId>commons-collections</artifactId>
 <version>${commons-collections.version}
 </version>
 <exclusions>
 <!--Exclude transitive dependency to JUnit-3.8.1 -->
 <exclusion>
 <artifactId>junit</artifactId>
 <groupId>junit</groupId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>

Most of the time, you will choose to exclude a transitive dependency for one of the following reasons:
	Conflicts between versions of the same artifact of your project, such as preceding version.
	Conflicts between artifacts of your project and artifacts from the platform of deployment, such as Tomcat or another server. For instance, if your project depends on wsdl4j-1.5.3 and is deployed on JBoss AS 7.1.1, then a conflict may appear with JBoss's dependency to wsdl4j-1.6.2.
	In some cases, you do not want some of your dependencies to be exported within the archive you build (even though in this case, using a play on the dependency scope should be more elegant). The opposite case (when you need use your own dependencies and ignore the similar artifacts bundled with the server) will be exposed in Chapter 6, Release and Distribute.

Optional dependencies

The previous mechanism, based on exclusion tag, is in charge of the depending project to exclude unwanted dependencies.
Another mean exists to exclude transitive dependencies. This time, the charge lies on the project on which it is depended on. Maven provides the optional tag that takes a boolean value (true/false).
Let's consider the following example of dependencies:
[image: Optional dependencies]
Here are the corresponding POMs:
	For project back, the POM is as follows: <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.maven.dependency.optional
 </groupId>
 <artifactId>back</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Example of POM which is depended onwith 'optional' at true
 </name>
 <packaging>jar</packaging>

 <!-- no dependency at all -->

 </project>

	For project middle, the POM is as follows: <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.maven.dependency.optional
 </groupId>
 <artifactId>middle</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Example of POM with an optional dependency
 </name>
 <packaging>jar</packaging>

 <dependencies>
 <dependency>
 <groupId>
 com.packt.maven.dependency.optional
 </groupId>
 <artifactId>back</artifactId>
 <version>1.0-SNAPSHOT</version>
 <!-- The dependency to artifact 'back' is set at optional-->
 <optional>true</optional>
 </dependency>
 </dependencies>

 </project>

	For project front, the POM is as follows: <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.maven.dependency.optional
 </groupId>
 <artifactId>front</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Example of POM with scope import
 dependencyManagement of two artifactswith a version
 conflict because of transitive dependencies
 </name>
 <packaging>jar</packaging>
 <dependencies>
 <!-- Regular dependency ; 'front' dependson 'middle'-->
 <dependency>
 <groupId>
 com.packt.maven.dependency.optional
 </groupId>
 <artifactId>middle</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 </project>

Now, we will see how to display the dependency trees. For middle, the tree is not different from what it would be, had the optional tag been set at false:

[INFO] --- maven-dependency-plugin:2.1:tree (default-cli) @ middle ---
[INFO] com.packt.maven.dependency.optional:middle:jar:1.0-SNAPSHOT
[INFO] \- com.packt.maven.dependency.optional:back:jar:1.0-SNAPSHOT:compile

But for front, we get the following output:

[INFO] --- maven-dependency-plugin:2.1:tree (default-cli) @ front ---
[INFO] com.packt.maven.dependency.optional:front:jar:1.0-SNAPSHOT
[INFO] \- com.packt.maven.dependency.optional:middle:jar:1.0-SNAPSHOT:compile

In other terms, middle has prevented its dependency to back to propagate transitively to other projects that depend on middle (among which front; but middle has no idea of front).
Had we removed the optional tag, we would have got that other trace:

[INFO] --- maven-dependency-plugin:2.1:tree (default-cli) @ front ---
[INFO] com.packt.maven.dependency.optional:front:jar:1.0-SNAPSHOT
[INFO] \- com.packt.maven.dependency.optional:middle:jar:1.0-SNAPSHOT:compile
[INFO] \- com.packt.maven.dependency.optional:back:jar:1.0-SNAPSHOT:compile

As a conclusion, exclusions and optional allow to break the chain of transitivity. This may be driven either by the depending project or by the one on which it is depended on.

Parents/modules

When the number of your projects rises, the need of factorization and rationalization arises. Two tools exist for this purpose: parent POMs and modules. Although both kinds are often merged, they belong to different registers.
Parent POM

Parent POMs, aka super POMs, offer a mechanism of inheritance. They allow you to factorize some data and constants, among which are the following few:
	Common dependencies: In other terms, the artifacts that part or all of children POMs will depend on. Inscribing them in a parent POM has the same effect as writing them several times (and possibly having to update them manually on upgrading).
	Properties, such as:	Plugin
	Declarations
	Executions and IDs

	Configurations
	Common data: Developers' names, SCM address, distribution management, and so on.
	Resources

A parent POM, as a non archive target, will be declared with packaging pom; it is neither an archive nor expected to be distributed. It only references other projects.
So, a parent POM may look similar to the following:
 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <!-- Either in a parent POM or in a independent POM,the triplet groupId/artifactId/version remain the uniqueway to identify a project-->
 <groupId>com.packt.dependencyManagement.chapter1
 </groupId>
 <artifactId>superPom</artifactId>
 <version>1.0</version>

 <!-- The full name of the project-->
 <name>Example of super POM: rationalizes properties,
 versions, plugins, etc.
 </name>
 <!-- The version of the parent POM ; notice it can orcannot be the same as the sons' versions -->
 <packaging>pom</packaging>

 <!-- These properties are common to all son POMs-->
 <properties>
 <project.build.sourceEncoding>UTF-8
 </project.build.sourceEncoding>
 <maven.compiler.source>1.6</maven.compiler.source>
 <maven.compiler.target>1.6</maven.compiler.target>
 <gwt.version>2.0.3</gwt.version>
 <!-- etc. -->
 <dbunit.version>2.4.8</dbunit.version>
 <!-- sonar config -->
 <sonar.jdbc.url>
 jdbc:mysql://localhost:3306/sonar?useUnicode=true
 </sonar.jdbc.url>
 <sonar.jdbc.driver>com.mysql.jdbc.Driver
 </sonar.jdbc.driver>
 <!-- etc. -->
 </properties>

 <!-- The Source Code Management -->
 <scm>
 <connection>
 scm:svn:http://localhost:8066/packt/branches/1.0
 </connection>
 <!-- etc. -->
 </scm>

 <!-- The distribution management -->
 <distributionManagement>
 <repository>
 <id>repoDistrib</id>
 <name>repoDistrib</name>
 <!-- Here we use a local repository -->
 <url>file:///C:/artifacts</url>
 </repository>
 </distributionManagement>
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>sonar-maven-plugin</artifactId>
 <version>2.0</version>
 </plugin>
 <!-- etc. -->
 </plugins>
 </build>
 </project>

As you can see, the data of the parent POM are not specific to one project; unlike, the data are shared by many other projects. Moreover, the scalability is swift: you can add any child project; this will not disturb the behavior of the parent POM.
The son project will refer to its parent with this header, that is, as usual by the triplet groupId/artifactId/version version.
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <!--The identifier of the parent POM-->
 <parent>
 <groupId>com.packt.dependencyManagement.chapter1</groupId>
 <artifactId>superPom</artifactId>
 <version>2.6.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>sonPom</artifactId>
 <name>The first son project of the parent POM</name>
 <packaging>jar</packaging>
 </project>

Modules

Whereas parent POM provided a mechanism of inheritance, Maven modules provide a mechanism of aggregation, this means you can define groups of projects on which to run the same goal.
Let's consider the following pom.xml, and let's assume it is located in /anywhere/multimodule/ folder:
 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.dependencyManagement.chapter1</groupId>
 <artifactId>multimodule-simple</artifactId>
 <name>An example of multimodule POM</name>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>

 <modules>
 <module>multimodule-ear</module>
 <module>multimodule-war</module>
 </modules>
 </project>

Two modules are declared as many n-tiers architectures: the first for an EAR module, and a second one for a WAR module. On each and every goal that is executed on com.packt.maven.dependency:multimodule-simple:pom:1.0-SNAPSHOT, the same goal will be executed on the /anywhere/multimodule/multimodule-ear/pom.xml and /anywhere/multimodule/multimodule-war/pom.xml files.
For instance, the call (-f pom.xml is redundant, we write it only to be explicit) /anywhere/multimodule/ $ mvn clean install –f pom.xml is equivalent to the following:

/anywhere/multimodule/ $ cd multimodule-ear
/anywhere/multimodule/multimodule-ear/ $ mvn clean install –f pom.xml
/anywhere/multimodule/multimodule-ear/ $ cd ../multimodule-war
/anywhere/multimodule/multimodule-war/ $ mvn clean install –f pom.xml

The interest of modules appears when you combine them with profiles. Then, only the modules declared in the linked profile will be run.
Let's consider the following dependency tree:
[image: Modules]
There are three archives (EAR, WebApp, and Intranet), which depend on JARs (technical, services interface, web resources, and so on).
Sometimes you work only on the EAR, sometimes only on the Intranet; and sometimes you work on the three. With modules, you can define profiles of compilation. So, the pom.xml will look similar to the following (the code is self-documented):
 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.dependencyManagement.chapter1
 </groupId>
 <artifactId>multimodule-withProfiles</artifactId>
 <name>Example multimodule POM using profiles</name>
 <packaging>pom</packaging>
 <version>1.2.3-SNAPSHOT</version>

 <profiles>
 <profile>
 <!-- In this profile, all submodules will be built ;
 please note the order of build: from the module withthe least dependencies, to the module with the most ones -->
 <id>all</id>
 <activation>
 <!-- This profile is active by default,if no other is specified-->
 <activeByDefault>true</activeByDefault>
 </activation>
 <modules>
 <!--Submodules needed to build EAR-->
 <module>technical</module>
 <module>entities</module>
 <module>services-interface</module>
 <module>Ldap</module>
 <module>DAO</module>
 <module>Services-implementation</module>
 <!--Now EAR can be built-->
 <module>EAR</module>

 <!--Submodules needed to build WebApp-->
 <module>Web-resources</module>
 <!-- Services-implementation and Entitieshave already been built,
 we do not mention them here-->
 <module>JSF-utilities</module>
 <module>WebApp</module>

 <!--Submodules needed to build Intranet-->
 <module>Intranet-resources</module>
 <!-- Services-implementation and Entities have already been built,
 we do not mention them here-->
 <module>GWT-utilities</module>
 <module>Intranet</module>
 </modules>
 </profile>
 <profile>
 <!--In this profile, we build only artifactswhich EAR depends on, then EAR-->
 <id>EAR</id>
 <modules>
 <module>technical</module>
 <module>entities</module>
 <module>services-interface</module>
 <module>Ldap</module>
 <module>DAO</module>
 <module>Services-implementation</module>
 <module>EAR</module>
 </modules>
 <activation>
 <!-- this profile is not active by default : therefore, it will not be calledunless explicitly specified -->
 <activeByDefault>false</activeByDefault>
 </activation>
 </profile>
 <profile>
 <!--In this profile, we build only artifacts which WebApp depends on, then WebApp -->
 <id>WebApp</id>
 <modules>
 <!-- We need add Entities and Services-interface,because unlike above they have not been build-->
 <module>entities</module>
 <module>services-interface</module>
 <module>Web-resources</module>
 <module>JSF-utilities</module>
 <module>WebApp</module>
 </modules>
 </profile>
 <profile>
 <!--In this profile, we build only artifactswhich Intranet depends on, then Intranet -->
 <id>Intranet</id>
 <modules>
 <!-- We need add Entities and Services-interface,because unlike above they have not been build-->
 <module>entities</module>
 <module>services-interface</module>
 <module>Intranet-resources</module>
 <module>GWT-utilities</module>
 <module>Intranet</module>
 </modules>
 </profile>
 </profiles>

 </project>

A call to /anywhere/multimodule-withProfiles/ $ mvn clean install –f pom.xml is equivalent to the following:

/anywhere/multimodule-withProfiles/ $ mvn clean install –f pom.xml -Pall

But you can decide to build only EAR using the following:

/anywhere/multimodule-withProfiles/ $ mvn clean install –f pom.xml -PEAR

You can build only the Intranet using the following:

/anywhere/multimodule-withProfiles/ $ mvn clean install –f pom.xml –Pintranet

You can also build with two profiles, for instance EAR and WebApp:

/anywhere/multimodule-withProfiles/ $ mvn clean install \
 –f pom.xml \
 –PEAR,WebApp

In a further chapter, we will dive into module mechanisms.
Tip
Most of the time, module descriptions are gathered within the parent POM.

Version ranges

Earlier, we have seen an artifact is described by the groupId/artifactId/version triplet. Actually, you can specify not only a version number, but also a range of versions.
The grammatical meaning of the mathematical signs is as follows:
	Parenthesis signs (and) hint an including range
	Brackets signs [and] hint an excluding range
	Commas separate subsets

The following table explains the grammatical meaning of a few ranges:
	
Range

	
Meaning

	

1.2

	
Version equals to 1.2 or is starting with 1.2

	

[1.2]

	
Version strictly equal to 1.2

	

(,1.2]

	
Anything less than 1.2, included

	

(,1.2)

	
Anything less than 1.2, excluded

	

[1.2,)

	
Anything greater than 1.2, included

	

(1.2,)

	
Anything greater than 1.2, excluded

	

(1.2,3.4)

	
Anything between 1.2 and 3.4, both excluded

	

(1.2,3.4]

	
Anything between 1.2 (excluded) and 3.4 (included)

	

[1.2,3.4)

	
Anything between 1.2 (included) and 3.4 (excluded)

	

[1.2,3.4]

	
Anything between 1.2 and 3.4, both included

	

(,1.2],[3.4,)

	
Anything less that 1.2 (included) or greater than 3.4 (included)

	

(,1.2),(1.2,)

	
Anything except 1.2

The following are few meaningful examples, which will help you understand the ranges in a better way:
	
Range

	
Versions that will be accepted

	
Versions that will not be accepted

	

1.2

	

1.2, 1.2.0, 1.2.3-GA, 1.2.3-Final

	

1.1, 3.4, Foo-1.2

	

[1.2]

	

1.2

	

1.2.0, 1.2.3-GA, 1.2.3-Final, 1.1, 3.4, Foo-1.2

	

(,1.2]

	

0.1, 1.0, 1.1.1, 1.2

	

1.3, 3.4

	

(,1.2)

	

0.1, 1.0, 1.1.1

	

1.2, 1.3, 3.4

	

[1.2,)

	

1.2, 1.3, 3.4

	

0.1, 1.0, 1.1.1

	

(1.2,)

	

1.3, 3.4

	

0.1, 1.0, 1.1.1, 1.2

	

(1.2,3.4)

	

1.2.1, 1.3, 3.3.9

	

1.1.8, 1.2, 3.4, 3.4.1

	

(1.2,3.4]

	

1.2.1, 1.3, 3.3.9, 3.4

	

1.1.8, 1.2, 3.4.1

	

[1.2,3.4)

	

1.2, 1.2.1, 1.3, 3.3.9

	

1.1.8, 3.4, 3.4.1

	

[1.2,3.4]

	

1.2, 1.2.1, 1.3, 3.3.9, 3.4

	

1.1.8, 3.4.1

	

(,1.2],[3.4,)

	

1.1.9, 1.2, 3.4, 3.5

	

1.3, 3.0

	

(,1.2),(1.2,)

	

1.1, 1.3, 3.4

	

1.2

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Summary

In this opening chapter, we learned or revised different concepts. We are henceforth able to:
	Define a dependency and designations, whether short or long
	Describe the mechanism of dependency mediation
	Define parent POMs with different submodules
	Define different version ranges

Chapter 2. Dependency Mechanism and Scopes

In the course of this second chapter, we will study the different scopes. Then, we will see the dependencyManagement tag.
We will dive deeper in the dependency management seen for multimodule projects. In the end, we will describe the content and meaning of files in the local repository.
Scopes

In the previous chapter, we have seen the groupId, artifactId, and version tags, used to determine in a deterministic way a project.
The dependency tag owns another subtag named scope.
Nomenclature of scope

The scope hints at the visibility of a dependency, relatively to the different life phases (build, test, runtime, and so on). Maven provides six scopes: compile, provided, runtime, test, system, and import.
Let's review them a bit more.
Compile

This is the default scope. Dependencies with <scope>compile</scope> are needed to build, test, and run, and are propagated to dependent projects.
Scope compile is to be used in most of the cases, for instance, when a class of your src/ folder uses imports of classes.
So, as an example, consider that your code holds the following:
 import org.apache.log4j.Logger;
 import org.springframework.util.Assert;

If your code holds the preceding lines then, your pom.xml will contain the following:
 <dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.14</version>
 <!-- may be omitted -->
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>3.0.3.RELEASE</version>
 <!-- may be omitted -->
 <scope>compile</scope>
 </dependency>
 </dependencies>

Provided

Dependencies with <scope>provided</scope> are required to build and test. They are also required to run, but should not exported, because the dependence will be provided at runtime, for instance, by a servlet container or an application server. As a corollary, they are not propagated to dependent projects.
So, as an example, consider that your code holds the following:
 import javax.jms.TextMessage;
 import javax.ejb.EJBContext;

If your code holds the preceding lines then, your pom.xml will contain the following:
 <groupId>milyn</groupId>
 <!--
 also exists with:
 <groupId>j2ee</groupId>
 -->
 <artifactId>j2ee</artifactId>
 <version>1.4</version>
 <scope>provided</scope>

Runtime

Dependencies with <scope>runtime</scope> are not needed to build, but are part of the classpath to test and run, and are propagated to dependent projects.
To illustrate a use case, let's consider a very simple project that includes a unique class, without any import:
 package com.packt.maven.dependency.scopeRuntime;

 public class LazyGuy {
 public static void main(String[] args) {
 System.out.println("I am lazy");
 }
 }

The corresponding pom.xml is simple, too, and depends on no other artifact:
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.dependencyManagement.chapter2
 </groupId>
 <artifactId>scopeRuntime</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>ScopeRuntimeIllustrator</name>
 </project>

As given, the project compiles and runs.
Let's make the case a bit more complex. We instantiate XStream, but as done earlier, absolutely no import is declared and no dependence is added to pom.xml:
package com.packt.dependencyManagement.chapter2.scopeRuntime;

 public class LessLazyGuy {
 public static void main(String[] args) {
 try {
 final Object xstream;
 // We create an instance of XStream.
 // Beware that there is absolutely *no* import
 // of the class
 xstream = ClassLoader.getSystemClassLoader().
 loadClass("com.thoughtworks.xstream.XStream").
 newInstance();
 System.out.println("Success: " + xstream.toString());
 } catch (InstantiationException e) {
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 }
 }

The project compiles as follows:

/workarea/development/projects/ScopeRuntime $ mvn clean install --quiet
[debug] execute contextualize
[debug] execute contextualize

 T E S T S

Results :

Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

Tip
You can launch Maven in quiet mode with the –q or --quiet option then only errors are displayed in output console.

Let's get the execution classpath:

/workarea/development/projects/ScopeRuntime $ mvn dependency:build-classpath
[INFO] Scanning for projects...
[INFO]
[INFO] ---
[INFO] Building ScopeRuntimeIllustrator 1.0-SNAPSHOT
[INFO] ---
[INFO]
[INFO] --- maven-dependency-plugin:2.1:build-classpath (default-cli) @ ScopeRuntime ---
[INFO] No dependencies found.
[INFO] Dependencies classpath:

[INFO] ---
[INFO] BUILD SUCCESS
[INFO] ---
[INFO] Total time: 1.266s
[INFO] Finished at: Wed Jun 26 18:14:56 CEST 2013
[INFO] Final Memory: 5M/15M
[INFO] --

Tip
You can get the classpath used by a project in executing the dependency:build-classpath goal. We will deal with the dependency plugin in detail in a further chapter

Now, let's run the application:

/workarea/development/projects/ScopeRuntime $ java -cp target/ScopeRuntime-1.0-SNAPSHOT.jar com.packt.maven.dependency.scopeRuntime.LessLazyGuy
java.lang.ClassNotFoundException: com.thoughtworks.xstream.XStream
 at java.net.URLClassLoader$1.run(URLClassLoader.java:202)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.net.URLClassLoader.findClass(URLClassLoader.java:190)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:306)
 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:301)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:247)
 at com.packt.maven.dependency.scopeRuntime.LessLazyGuy.main(LessLazyGuy.java:8)

As expected, the XStream object could not be instantiated. Let's take the pom.xml file. We add a dependency with the runtime scope:
 <dependency>
 <groupId>com.thoughtworks.xstream</groupId>
 <artifactId>xstream</artifactId>
 <version>1.4.4</version>
 <scope>runtime</scope>
 </dependency>

It will not affect the build path, only the runtime classpath:

/workarea/development/projects/ScopeRuntime $ mvn dependency:build-classpath
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building ScopeRuntimeIllustrator 1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- maven-dependency-plugin:2.1:build-classpath (default-cli) @ ScopeRuntime ---
[INFO] Dependencies classpath:
/.m2/repository/com/thoughtworks/xstream/xstream/1.4.4/xstream-1.4.4.jar:/.m2/repository/xmlpull/xmlpull/1.1.3.1/xmlpull-1.1.3.1.jar:/.m2/repository/xpp3/xpp3_min/1.1.4c/xpp3_min-1.1.4c.jar [INFO] ---
[INFO] BUILD SUCCESS
[INFO] ---
[INFO] Total time: 1.266s
[INFO] Finished at: Wed Jun 26 18:20:35 CEST 2013
[INFO] Final Memory: 5M/15M
[INFO] --

Now, let's run the application:

/workarea/development/projects/ScopeRuntime $ java -cp /target/ScopeRuntime-1.0-SNAPSHOT.jar:/.m2/repository/com/thoughtworks/xstream/xstream/1.4.4/xstream-1.4.4.jar:/.m2/repository/xmlpull/xmlpull/1.1.3.1/xmlpull-1.1.3.1.jar:/.m2/repository/xpp3/xpp3_min/1.1.4c/xpp3_min-1.1.4c.jar
Success: com.thoughtworks.xstream.XStream@93dee9

Test

Dependencies with <scope>test</scope> are not needed to build and run the project, and are not propagated to dependent projects. But they are needed to compile and run the unit tests.
Dependencies with scope test are related to testing, among which we can quote the most famous: JUnit, DBUnit, various mock frameworks, and so on, for example,:
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.easymock</groupId>
 <artifactId>easymockclassextension</artifactId>
 <version>2.5.2</version>
 <scope>test</scope>
 </dependency>

Obviously, if some of your dependencies are imported only in tests (cglib, javax.mail, or anything else), then include them with test scope rather than compile scope. The main interest is to slim the archived created of unneeded dependencies.

System

Dependencies with <scope>system</scope> are similar to ones with scope provided. As such, they are required to build, test, and run, and are not propagated. The main difference is that system dependencies are not retrieved from a repository but from a hard written address on the filesystem.
When scope value is system, then an additional tag is mandatory: systemPath, which points at the location of the needed archive.
For instance, here is a system dependency:
 <dependency>
 <groupId>com.sun</groupId>
 <artifactId>tools</artifactId>
 <version>1.6.0</version>
 <scope>system</scope>
 <systemPath>
 ${java.home}/../lib/tools.jar
 </systemPath>
 </dependency>

As in the preceding example, most of the time system dependencies are needed to process or generate sources. Among the use cases is the generation of code thanks to annotations.

Import

Scope import is available only as a subtag of <dependencyManagement>. We will deal with it at the same time as <dependencyManagement>.

Scope overlay rules (via transitive dependencies)

Let's assume your project, let's say ''Blue'', depends on an artifact, say ''Green'', with scope compile that depends on a third artifact, say ''Yellow'', with scope runtime. Via transitivity, your project ''Blue'' will depend on ''Yellow''. The question is: what scope will ''Yellow'' be in your actual dependency tree?
The answer is: runtime. Indeed:
	In order to compile, Blue needs everything Green needs to compile; but Green does not need Yellow to compile; so Yellow is not needed by Blue to compile
	Yellow is needed by Green to run, and Green is needed by Blue to run; so Yellow is needed by Blue to run

More generally, here is the matrix of scope transitivity:
	 	
Scope of project ''Yellow'' within ''Green''

	

Scope of project ''Green'' within ''Blue''

	 	

Compile

	

Provided

	

Runtime

	

Test

	

Compile

	
Compile

	
(none)

	
Runtime

	
(none)

	

Provided

	
Provided

	
(none)

	
Provided

	
(none)

	

Runtime

	
Runtime

	
(none)

	
Runtime

	
(none)

	

Test

	
Test

	
(none)

	
Test

	
(none)

Scope of project ''Yellow'' within ''Blue''
The dependencyManagement tag

The dependencyManagement tag is used in parent POMs (but not only). Basically, it can be seen as a way to factorize implicit and default scope, exclusion, and version within the son POMs.
In a further chapter, we will deal of the means of displaying the effective POM, that is, the POM that is actually read and run by Maven, and which differs from the POM written by the user.
First case study

For instance, let's consider the following parent POM. A dependencyManagement tag is declared, as well as a scope (provided) and an exclusion; this information will be considered by inheriting projects:
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.dependencyManagement.chapter2
 </groupId>
 <artifactId>ParentWithDependencyManagement</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Example of multimodule parent POM with
 dependencyManagement tag
 </name>
 <packaging>pom</packaging>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-servlet</artifactId>
 <version>2.5.0</version>
 <scope>provided</scope>
 <exclusions>
 <exclusion>
 <groupId>org.json</groupId>
 <artifactId>json</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <modules>
 <module>DependencyManagementSon</module>
 </modules>
 </project>

The following is a son POM:
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <name>Example of son POM whose parent has
 dependencyManagement tag
 </name>
 <parent>
 <groupId>
 com.packt.dependencyManagement.chapter2
 </groupId>
 <artifactId>ParentWithDependencyManagement
 </artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>DependencyManagementSon</artifactId>
 <version>1.0-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <!-- Neither scope nor version are written-->
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-servlet</artifactId>
 </dependency>
 </dependencies>
 </project>

Then the dependency in the actual POM will be:
 <dependency>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-servlet</artifactId>
 <version>2.5.0</version>
 <scope>provided</scope>
 <exclusions>
 <exclusion>
 <artifactId>json</artifactId>
 <groupId>org.json</groupId>
 </exclusion>
 </exclusions>
 </dependency>

In other words, the scope, version, and exclusions provided by the parent POM within the dependencyManagement tag were propagated to the son POM.
Yet, if the son POM did not declare a dependency of which groupId and artifactId are referenced in dependencyManagement, then this dependency would not be added to the son POM dependencies.

Second case study

Anyway, a son POM can override the default scope and version, which is inherited from parent POM, and by declaring it explicitly. Therefore, let's consider this second son POM:
 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <name>Example of son POM whose parent has
 dependencyManagement tag
 </name>
 <parent>
 <groupId>
 com.packt.dependencyManagement.chapter2
 </groupId>
 <artifactId>ParentWithDependencyManagement
 </artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>DependencyManagementOverridingSon
 </artifactId>
 <version>1.0-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-servlet</artifactId>
 <!-- We explicitly hint at values of scope and
 version that are different from those in
 parent POM:
 * compile instead of provided
 * 2.1.0 instead of 2.5.0-->
 <version>2.1.0</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>
 </project>

The corresponding effective POM will contain this dependency:
 <dependency>
 <groupId>com.google.gwt</groupId>
 <artifactId>gwt-servlet</artifactId>
 <version>2.1.0</version>
 <scope>compile</scope>
 <exclusions>
 <exclusion>
 <artifactId>json</artifactId>
 <groupId>org.json</groupId>
 </exclusion>
 </exclusions>
 </dependency>

Notice that, unlike scope and version, there is no way to remove or update an exclusion tag.

The import scope

The dependencyManagement tag can be used out of a hierarchy parent/son POM, but also as an easy way to factorize dependencies, for instance in a large organization with plenty of projects.
Let's consider the following project, let's say head, the code is self-documented:
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.dependencyManagement.chapter2.scopeImport
 </groupId>
 <artifactId>head</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Example of POM with scope import
 dependencyManagement of two artifacts with a version
 conflict because of transitive dependencies
 </name>
 <packaging>pom</packaging>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-core</artifactId>
 <!-- Explicit declaration of version-->
 <version>1.2.0</version>
 </dependency>

 <dependency>
 <!-- The artifact induces a transitive
 dependency to:
 'org.apache.hadoop:hadoop-tools:jar:1.0.4'
 Therefore, there is a potential conflict
 with the version of the artifact declared above-->
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-hadoop</artifactId>
 <version>1.0.0.RELEASE</version>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <!-- spring-data-hadoop is explicitly declared as a dependency. Then its scope and version will be retrieved from the <dependencyManagement> data: 1.0.0.RELEASE Besides, the induced dependency ('org.apache.hadoop:hadoop-tools:jar:1.0.4') should be inherited. Unlike, org.apache.hadoop:hadoop-tools:jar:1.2.0, that is *not* declared, will *not* be retrieved, even though it appears in the <dependencyManagement> block -->
 <dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-hadoop</artifactId>
 </dependency>
 </dependencies>
 </project>

Let's consider another project, let's say legWithoutImport, of which POM is:
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.dependencyManagement.chapter2.scopeImport
 </groupId>
 <artifactId>legWithoutImport</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Example of POM without scope 'import'</name>
 <packaging>jar</packaging>
 <dependencyManagement>
 <dependencies>
 <!--Set a dependency to project Head-->
 <dependency>
 <groupId>
 com.packt.dependencyManagement.chapter2.scopeImport
 </groupId>
 <artifactId>head</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>pom</type>
 <!--no scope is indicated ; therefore it is the default 'compile'-->
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>
 com.packt.dependencyManagement.chapter2.scopeImport
 </groupId>
 <artifactId>head</artifactId>
 <type>pom</type>
 <!-- No need to hint at a specific version: the right one will ne got from the dependencyManagement tag above-->
 </dependency>
 </dependencies>
 </project>

This POM is a regular one. legWithoutImport depends on head, which is of type pom; hence, legWithoutImport will be transmitted by the dependencies schemes of head.
Among the dependency tree, we will get theses artifacts:
 org.springframework.data:spring-data-hadoop:jar:1.0.0.RELEASE:compile
 org.apache.hadoop:hadoop-core:jar:1.0.4:compile

As expected, the project depends on spring-data-hadoop:jar:1.0.0.RELEASE and org.apache.hadoop:hadoop-core:jar:1.0.4 as a transitive dependency.
Now, here is another project, let's say legWithImport. In the dependencyManagement tag, an import scope was added:
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.dependencyManagement.chapter2.scopeImport
 </groupId>
 <artifactId>legWithImport</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Example of POM with scope 'import'</name>
 <packaging>jar</packaging>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>
 com.packt.dependencyManagement.chapter2.scopeImport
 </groupId>
 <artifactId>head</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>
 com.packt.dependencyManagement.chapter2.scopeImport
 </groupId>
 <artifactId>head</artifactId>
 <type>pom</type>
 <!-- The right version should not be written explicitly ; but Maven 3 denies to build if the tag is omitted.-->
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 </project>

On printing the dependency tree, the following lines appear:
 org.springframework.data:spring-data-hadoop:jar:1.0.0.RELEASE:compile (version managed from 1.0.0.RELEASE)
 org.apache.hadoop:hadoop-core:jar:1.2.0:compile (version managed from 1.0.4)

The dependency that was retrieved was of version org.apache.hadoop:hadoop-core:jar:1.2.0, and not the implicit and transitive 1.0.4. Here, it is the effect of scope import.
Tip
The output (version managed from XXX) indicates a transitive dependency was shortcut because of an explicit one.

So, as a summary, what are the role and interest of scope import? Scope import allows forcing the version in the transitive dependencies. It offers consistency of multiprojects organizations with a common base set, and reduces the risk of anarchy on dependencies, among which the situation of diamond dependencies, that is, A depends on B and C; both B and C depend on D.

Modules and submodules (advanced)

In this section, we present Maven Reactor, which is behind Maven's ability to deal with multimodule projects.
Maven Reactor

Maven Reactor is the mechanism that Maven uses to manage multimodule projects. There also exists a plugin, called Reactor, which will be reviewed a bit later. Maven Reactor serves three primary functions given as follows:
	To list the modules to build
	To determine the best order of construction
	To perform the actual build on the right projects

Reactor sorting

In a multimodule project, the submodules often depend on each other: either as a project dependency, or as a plugin dependency. This is why the order of the submodules within the modules tag is not necessarily honored. Maven Reactor will sort the submodules in such a way that a needed dependency is built before another project that does need it. The actual rules are the following to sort the submodules:
	Project dependency first: If project A depends on project B, then B is built before A.
	Plugin dependency first: If project A depends on plugin C, then C is built before A.
	Build extension first: If F is a plugin declaring a build extension (refer the Creating new packaging/type section in Chapter 3, Advanced Dependency Designation) and G is a module of any other type (either another type of plugin or a project), then F is built before G.
	First declared, first built: Out of these rules, at same topologic level, the submodules are built in the same order as they are declared.

Let's illustrate these rules with the following case. Consider a POM having five submodules:
	Three projects:	project0: It depends on project1
	project1: It depends on no other project nor plugin
	project2: It depends on both project0 and project1; uses plugin4

	Two basic plugins, only print "hello world" or "hi world" on standard output:	plugin3: It is not used by any other module
	plugin4: It depends on no other module (but is used by project2)

	The tree of dependencies is shown in the following diagram:[image: Reactor sorting]

	Let's assume the dependencies are declared in the following order: <modules>
 <!--project0 depends on project1-->
 <module>project0</module>
 <!--project1 depends on no other project nor plugin-->
 <module>project1</module>
 <!--project2 depends on both project0 and project1;uses plugin4-->
 <module>project2</module>
 <!--Plugin3 is not used by any other module-->
 <module>plugin3</module>
 <!--Plugin4 is used by project2-->
 <module>plugin4</module>
 </modules>

	The question is: in which order shall Maven Reactor build these submodules?	First of all, Project2 and Plugin3 have no ties between them; but Plugin3 is declared after Project2, therefore, Project2 will be built before Plugin3.
	Secondly, Project2 depends on Project0, Project1, and Plugin4, therefore, Project2 will be built after these three modules.
	Thirdly, Project0 and Plugin4 have no ties, but Plugin4 is declared after Project0, therefore, Project0 will be built before Plugin4.
	Lastly, Project0 depends on Project1 hence Project1 will be built before Project0.

	So, we get the order of build that is confirmed by Maven execution:
[INFO] Reactor Summary:
[INFO]
[INFO] project1 SUCCESS [26.734s]
[INFO] project0 SUCCESS [0.797s]
[INFO] plugin4 SUCCESS [13.015s]
[INFO] project2 SUCCESS [0.594s]
[INFO] plugin3 SUCCESS [1.766s]

If we had set the submodules order declaration to this one:
 <modules>
 <module>plugin3</module>
 <module>project2</module>
 <module>plugin4</module>
 <module>project1</module>
 <module>project0</module>
 </modules>

Then, honoring the same rules, we would have got the following order:

[INFO] Reactor Summary:
[INFO]
[INFO] plugin3 SUCCESS [3.000s]
[INFO] project1 SUCCESS [0.500s]
[INFO] project0 SUCCESS [0.359s]
[INFO] plugin4 SUCCESS [0.984s]
[INFO] project2 SUCCESS [0.422s]

Tip

Parallel build

Since Maven 3.0, build can be performed in parallel. For instance, mvn –T 8 <goals> will build on eight parallel threads, and mvn -T 2C <goals> will build with two threads per CPU core. Anyway, this feature is still experimental and you should beware of Thread unsafe-plugins.

Reactor options and the Reactor plugin for Maven 2

Maven Reactor is available from any project, that is, you need not declare any dependency to call it. Maven Reactor has several convenient options. Until Maven 2.0.11, those available options were only through an explicit call to Reactor plugin.
	--also-make or -am: This option is used to build the projects given in arguments (including their dependencies).	Use case: Your build is launched with a -P (profile) argument, hinting that only a part of submodules should be built; this option allows you to add arbitrary modules to build.
	Equivalent goal in Maven 2: This option make folders and projects, for example, mvn reactor:make –Dmake.folders=project0, ~/workarea/project1, or mvn reactor:make –Dmake.projects=project2,plugin4.

	--also-make-dependents or -amd: This options is used to build the projects given in arguments, as well as the projects that depend on them.	Use case: You rebuild a module among a sequence of many; using this argument you can force the dependent projects to rebuild, too, without rebuilding the complete set of modules.
	Equivalent goal in Maven 2: This option is used to make dependents, for example, mvn reactor:make-dependents –Dmake.folders=project0, ~/workarea/project1, or mvn reactor:make-dependents –Dmake.projects=project2,plugin4.

	--fail-fast or -ff: (behavior activated by default) This option makes the whole-set build fail as soon as one module fails to build.
	--fail-at-end or -fae: If a module fails to build, the build keeps on running on the other modules. Anyway, at the end the build will be marked as failed.
	--non-recursive: This option does not build the submodules on all projects but only the very project on which the build was executed. 	Use case: When your project is not only a pom-packaged one, but contains useful code that need be compiled, independently of its submodules.

	-r: This option is used to build the list of projects given in arguments, ignoring the modules declared in the POM.
	--resume-from or -rf: This option starts or resumes the build since the module given as parameter, including the dependent projects.	Use case: Your project contains several submodules, and one of them makes the build fail. When you have identified and fixed the issue, building the former is not worthwhile; but you are interested in resuming the build at the last point where it was broken.
	Equivalent goal in Maven 2: Is used to resume the reactor, foe example, mvn reactor:resume –Dfrom=plugin3.

	A last goal is available for Maven 2 but has no native equivalent in Maven 3: make-scm-changes. It allows building the projects that have been changed locally, as well as the depended on projects. To enable this feature, an <scm> block is required in your POM.

Management of dependencies in folders

Let's take a look at how to manage the project dependencies in folders in the following sections.
The dependencies in their folders

Dependencies that are downloaded from a remote repository, or are manually installed, are stored in the local repository folder, let's say ~/.m2/repository. Each artifact is copied into a specific location, which depends on its groupId/artifactId/version, and so on. To determine the actual folder, the following algorithm is applied:
	groupId is split on dots; each piece of the result will result in a folder.
	artifactId and version are transposed to unique folders, even if their values contains dots.

As an example, let's consider a dependency to org.hibernate:hibernate-annotations:jar:3.3.1.GA:compile. The matching folder is .m2/repository/org/hibernate/hibernate-annotations/3.3.1.GA. The groupId is split, whereas artifactId and version are preserved. The folder will contain several files:
	Three files related to the JAR:	hibernate-annotations-3.3.1.GA.jar: The very artifact
	hibernate-annotations-3.3.1.GA.jar.tmp.sha1.tmp and hibernate-annotations-3.3.1.GA.jar.sha1: Secure hash files

	Three parallel files related to the POM:	hibernate-annotations-3.3.1.GA.pom
	hibernate-annotations-3.3.1.GA.pom.tmp.sha1.tmp
	hibernate-annotations-3.3.1.GA.pom.sha1

Nonarchive files

For snapshot versions, an additional file should appear: maven-metadata.xml (for a remote repository), or maven-metadata-${repoId}.xml for a local repository. Most of the time, this last file is called maven-metadata-local.xml. It contains the timestamps of the times when the considered snapshot was downloaded. When two snapshots share the same version, such as 1.2.3-SNAPSHOT, this mechanism allows to re-install a snapshot if, and only if, the snapshot has changed since the last update date.
 <snapshotVersion>
 <extension>jar</extension>
 <value>1.0-SNAPSHOT</value>
 <updated>20130711201754</updated>
 </snapshotVersion>

Other files that may appear:
	_maven.repositories: This file records the repository from which the artifact was downloaded. Theoretically, at least for release artifacts, there should not be a difference between an artifact anyGroup:anyArtifact:anyVersion downloaded from a repository RepoA and the very same artifact downloaded from RepoB. The following piece of code says that commons-beanutils-1.7.0.jar was downloaded from the repository of which the ID is central. commons-beanutils-1.7.0.pom>central=
 commons-beanutils-1.7.0.jar>central=

	..lastUpdated and resolver-status.properties: These files indicate Maven attempted and failed to download the archive. In order to save bandwidth, Maven will not try to download the same archive for a given time period. Anyway, you can force the attempt to download with the -U or --update-snapshots options.

Most of the time, you run Maven on an existing POM file. Anyway, sometimes you may need to run Maven independently of any project. This is the case, for instance, when you run mvn --help. In this situation, an implicit POM is called. Technically, it is referred to as standalone-pom.
You can download a given artifact and install it to local repository with a standalone command, thanks the plugin and dependency:get goal. You can point at the desired artifact by its short designation, for example:

mvn dependency:get \
 –Dartifact=org.springframework:spring-core:3.1.0.RELEASE \
 –DrepoUrl=http://repo1.maven.apache.org/maven2

The needed artifact will be quietly downloaded and copied at the right place on local file system.
For instance if you attempt to download the artifact unexistingGroup:unexistingArtifact:1.0 on Maven central in standalone, then a ~/.m2/repository/unexistingGroup/unexistingArtifact/resolver-status.properties folder and other files will be created, with a content similar to the following:
 #NOTE: This is an internal implementation file, its format can be changed without prior notice.
 #Fri Jul 12 12:20:57 CEST 2013
 maven-metadata-central.xml.lastUpdated=1373624457406
 maven-metadata-central.xml.error=

You can notice the date given as a number of milliseconds since 1970 (here it is 1373624457406) corresponds to the date given in human-readable format (here it is Fri Jul 12 12:20:57 CEST 2013).
In the same way, if your POM depends on the same unresolvable dependency (unexistingGroup:unexistingArtifact:1.0):
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.maven.dependency.chapter2
 </groupId>
 <artifactId>unresolvableArtifact</artifactId>
 <version>1.0-SNAPSHOT</version>
 <name>Example of POM with unresolvable artifacts ; files
 ..lastUpdated should be created in local repo
 dependencies
 </name>

 <dependencies>
 <dependency>
 <groupId>unexistingGroup</groupId>
 <artifactId>unexistingArtifact</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>

 </project>

Then the build will fail with an explicit error message:

Failed to execute goal on project unresolvableArtifact: Could not resolve dependencies for project com.packt.maven.dependency.chapter2:unresolvableArtifact:jar:1.0-SNAPSHOT: Failure to find unexistingGroup:unexistingArtifact:jar:1.0 in http://repo.maven.apache.org/maven2 was cached in the local repository, resolution will not be reattempted until the update interval of central has elapsed or updates are forced

And corollary, a folder will be created (~/.m2/repository/unexistingGroup/unexistingArtifact/1.0; notice that this is one level under the previous one, corresponding to the version) with two files unexistingArtifact-1.0.jar.lastUpdated and unexistingArtifact-1.0.pom.lastUpdated, of which content is similar:
 #NOTE: This is an internal implementation file, its formatcan be changed without prior notice.
 #Fri Jul 12 12:28:10 CEST 2013
 http\://repo.maven.apache.org/maven2/.lastUpdated=1373624890218
 http\://repo.maven.apache.org/maven2/.error=

The conveyed information includes the last update date and possibly the error returned by the server.

Summary

Thus, at the end of this second chapter, we are able to:
	Select and set the scope to the best value, among those available
	Use the dependencyManagement tag to rationalize the versions and scope with multi-module projects
	Use features and understand the underlying rules guiding Maven Reactor
	Identify, read, and understand the content of files within the local repository

Chapter 3. Dependency Designation (advanced)

In this chapter, we will see the last tags that define an artifact: type/packaging and classifier. Then, we will study some plugins that will help us identify and fix conflicts between dependencies of a project or a group of projects. In the end, we will present the dynamic POMs that allow developers to increase the flexibility and strictness of their POMs.
The type tag

The type tag in dependencies allows distinguishing the type of archive, that is, most often the file extension. In contrast with groupId and artifactId, which do not differ from an artifact self-declaration to a dependency reference, the type of archive will resort to two different tags: packaging for self-declaration and type for dependency reference.
The classic cases

Mostly, the type tag hints at the kind of archive or the packaging format. Here are the available types by default: pom, jar (default value), maven-plugin,
ejb,
war,
ear,
rar (Resource ARchive), par (Persistence ARchive, basically a JAR with a META-INF/persistence.xml file), and ejb3.
Plugins can create their own packaging, and therefore their own packaging types, so this list can be extended, for example, Android's Application PacKage (APK) file.
Most of the time, the type tag you depend on is the packaging tag that is declared on dependency POM. To illustrate this, let's consider a classic case; if you are familiar with WAR deployment on WebSphere you will know that IBM's Application Server can deploy EAR but no WAR. This is why people are used to bundling a WAR within an EAR. So, for instance, your EAR's POM will be declared of packaging ear, and depend on an artifact of type war, refer to the code highlighted in bold:
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <parent>
 <groupId>com.packt.dependencyManagement.chapter4
 </groupId>
 <artifactId>exampleWithType</artifactId>
 <version>1.0</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>exampleWithTypeEar</artifactId>
 <version>${project.parent.version}</version>
 <packaging>ear</packaging>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>exampleWithTypeWar</artifactId>
 <version>${project.version}</version>
 <type>war</type>
 </dependency>
 </dependencies>
 </project>

Likewise, the WAR's POM will declare a packaging war as follows:
 <?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packt.dependencyManagement.chapter4
 </groupId>
 <artifactId>exampleWithType</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>exampleWithTypeWar</artifactId>
 <version>${project.parent.version}</version>
 <packaging>war</packaging>
 </project>

Tip
The types available in the type and packaging tags are more restrictive than those allowed in the assembly.xml files; they extend the default types to ZIP, TAR (as well as tar.bz2 and tar.gz), GZIP, and so on.

Creating a new packaging/type

Generally speaking, default packages and types fit your needs. Sometimes, you must have a specific packaging; the cases vary from when only the output artifact extension is original, to when a complete new format (including extension, archive compression, and added descriptors) must be created.
Case study

You need to define a specific packaging format, let's say "Hello World ARchive" with hwar as extension. Basically, the hwar format is only a ZIP compression with a different name, for instance to discriminate the hwar files from other archives and make them follow a particular workflow.
Our study case will rely on a parent POM of identifiers: com.packt.dependencyManagement.chapter4:specificArchiveExample:pom:1.0.
The first step – Maven plugin

Create a new project. This project is intended to describe the packaging, the format, and the produced file extension.
The POM will be as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <parent>
 <groupId>com.packt.dependencyManagement.chapter4
 </groupId>
 <artifactId>specificArchiveExample</artifactId>
 <version>1.0</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>

 <artifactId>helloWorldARchivePlugin</artifactId>
 <version>${project.parent.version}</version>
 <!-- We should use maven-plugin ; but since we do not declare mojos we have to declare packaging jar-->
 <packaging>jar</packaging>

 </project>

Contrary to most of plugins, ours will be of packaging jar and not maven-plugin since it declares no Mojo. In short, a Maven Mojo is an implementation of a plugin goal. In our situation, the plugin shall not be called as a different step of build, but rather as an "over rider" of an existing goal, in order to change the extension of the built file; therefore no Mojo need be associated, and also, the plugin does not fit with a maven-plugin packaging declaration.
Tip
Let's make a small digression and introduce Codehaus' Plexus project, container and concepts. At first glance, Plexus can be seen as a software stack to write and run Java applications. Like Spring, Plexus is based on
Inversion of Control (IoC) and Dependency Injection (DI) patterns, and allows to build modular components to be easily combined and reused. Maven is executed within a Plexus container.
In Plexus, a component descriptor gives a map of roles and role implementations. This map is written as a component.xml file.
Actually, Plexus, with plenty of features, is a large and well-documented project, with a complete tutorial on its website, available at http://plexus.codehaus.org/.

Then, create a src/main/resources/META-INF/plexus/components.xml Plexus file with following content (the code is self-documented):
<?xml version="1.0" encoding="UTF-8"?>
 <component-set>
 <!-- An XSD is supposed to be located at http://plexus.codehaus.org/xsd/components-1.3.0.xsd,but the link is dead. A JIRA ticket has been open, cfhttps://jira.codehaus.org/browse/PLX-469 -->
 <components>
 <component>
 <role>
 org.apache.maven.lifecycle.mapping.LifecycleMapping
 </role>
 <!-- The role-hint: basic role-hints are default packaging values, such as pom, jar, ejb, etc.-->
 <role-hint>helloWorldARchive</role-hint>
 <implementation>
 org.apache.maven.lifecycle.mapping.DefaultLifecycleMapping
 </implementation>
 <configuration>
 <phases>
 <!--name the usual jar lifecycle bindings,since format hwar is similar to jar. If needed, you can add others-->
 <process-resources>
 org.apache.maven.plugins:maven-resources-plugin:resources
 </process-resources>
 <package>
 org.apache.maven.plugins:maven-jar-plugin:jar
 </package>
 <install>
 org.apache.maven.plugins:maven-install-plugin:install
 </install>
 <deploy>
 org.apache.maven.plugins:maven-deploy-plugin:deploy
 </deploy>
 </phases>
 </configuration>
 </component>
 <component>
 <!-- Role and role-hint define the identity of thecomponent-->
 <role>
 org.apache.maven.artifact.handler.ArtifactHandler
 </role>
 <role-hint>helloWorldARchive</role-hint>
 <implementation>
 org.apache.maven.artifact.handler.DefaultArtifactHandler
 </implementation>
 <configuration>
 <!-- Built files will hold this extension.Besides, dependency will be resolved in considering this extension in Maven local repository.-->
 <extension>hwar</extension>
 <!-- The type to hint when an artifact is depended on -->
 <type>helloWorldARchive</type>
 <!--The packaging in artifacts self-declaration-->
 <packaging>helloWorldARchive</packaging>
 </configuration>
 </component>
 </components>
 </component-set>

This component.xml file can be used almost as is in a majority of situations. Build this artifact and install it in your local repository.

The second step – call the plugin

Create a project, specify the expected packaging (here it is helloWorldARchive) and add a tag for the plugin you have just created (com.packt.dependencyManagement.chapter4:helloWorldARchivePlugin:1.0):
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <parent>
 <groupId>com.packt.dependencyManagement.chapter4
 </groupId>
 <artifactId>specificArchiveExample</artifactId>
 <version>1.0</version>
 </parent>

 <modelVersion>4.0.0</modelVersion>
 <artifactId>helloWorldProject</artifactId>
 <version>${project.parent.version}</version>
 <packaging>helloWorldARchive</packaging>
 <build>
 <plugins>
 <!--Call the plugin that has just been created-->
 <plugin>
 <groupId>
 com.packt.dependencyManagement.chapter4
 </groupId>
 <artifactId>helloWorldARchivePlugin
 </artifactId>
 <version>1.0</version>
 <!-- These tag and value mean that the plugin will produce a file with a non-standard extension-->
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
 </project>

Then build this second project. If you have not previously built the preceding plugin at least once, then helloWorldProject will fail, because Maven will try to resolve the needed plugin before building it.
You should get an output that contains the following:
[INFO] Installing /workarea/development/projects/chapter4/specificArchiveExample/helloWorldProject/target/helloWorldProject-1.0.jar to /users/jlalou/.m2/repository/com/packt/dependencyManagement/chapter4/helloWorldProject/1.0/helloWorldProject-1.0.hwar

The preceding output means that a helloWorldProject-1.0.hwar artifact with the expected extension .hwar has successfully been created and installed in the local repository".

The Classifier

In the previous chapters, we dealt with the main ways to identify a dependency: groupId, artifactId, version, and scope. Let's see the final tags that are available.
The classifier tag is used to distinguish between different artifacts that were built from the same POM and source code. The classifier can be any string.
Common use cases when classifiers are specified are as follows:
	Artifacts generated owing to an environment (development, integration, QA, production, and so on)
	Artifacts related to a system, calling native functions, for example, one JAR for Windows, and another of Linux
	Artifacts related to different JDK and JRE levels, for example, one JAR for JDK-1.4 (that is, without annotations, generics, and so on), another for JDK 5, and a last for JDK 8 (with lambda features)
	Artifacts containing different outputs from the same project, for example, archives that are built with Maven Assemblies can be a JAR (with binaries), sources (with Java code), Javadoc (with generated HTML), and so on

Note

When type does not match the packaging

The type tag usually represents the archive filename extension; nonetheless, that is not an absolute rule. A type tag can be mapped to a different extension, based on a classifier. Therefore, sometimes the analysis must be thinner, for instance, how to consider a artifact ejb-client? Pieces of clue are in Plexus's component.xml file; such an artifact is of extension
 jar, packaging
 ejb, and classifier
 client.

The dependency plugin

The dependency plugin gathers many features that are worth diving into them.
dependency can be either through this short name, or through its complete designation: org.apache.maven.plugins:maven-dependency-plugin.
We have already seen the tree goal that allows displaying on standard output the hierarchy of dependencies, as well as the get goal that installs manually an archive to the local repository. Let's study a bit more the other features of the dependency plugin.
The analyze goal

The analyze goal (and analyze-only) will analyze the dependencies and determine which of them are used/unused or declared/undeclared.
The analyze goal is to be run standalone, whereas analyze-only is to be used in the build lifecycle.
Let's consider a POM with such dependencies:
 <dependencies>
 <dependency>
 <!-- declared and unused -->
 <groupId>directory</groupId>
 <artifactId>apacheds-core</artifactId>
 <version>0.9.3</version>
 <!--implicit dependency to commons-io:commons-io:1.0-->
 </dependency>
 <dependency>
 <!-- declared and used -->
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-exec</artifactId>
 <version>2.9.7</version>
 <!--implicit dependency to commons-io:commons-io:1.4-->
 </dependency>
 <dependency>
 <!-- declared and unused -->
 <groupId>org.apache.tapestry</groupId>
 <artifactId>tapestry-upload</artifactId>
 <version>5.3.7</version>
 <!--implicit dependency to commons-io:commons-io:2.0.1-->
 </dependency>
 <dependency>
 <groupId>com.googlecode.grep4j</groupId>
 <artifactId>grep4j</artifactId>
 <version>1.7.5</version>
 <!--implicit dependency to commons-io:commons-io:2.4-->
 </dependency>

Let's create a class with the following content:
package com.packt.maven.dependency.massiveConflicts;

 import org.apache.camel.component.exec.ExecCommand;
 import org.apache.camel.impl.DefaultCamelContext;
 import org.grep4j.core.GrepExpression;

 public class MassiveConflictsFoo {
 private ExecCommand execCommand;
 // from camel-core-2.9.7, that is induced by camel-exec
 private DefaultCamelContext defaultCamelContext;
 private GrepExpression grepExpression;
 }

Let's run the
dependency:analyze goal. Among the output, we get the following lines:

[INFO] --- maven-dependency-plugin:2.6:analyze (default-cli) @ massiveConflicts ---
[WARNING] Used undeclared dependencies found:
[WARNING] org.apache.camel:camel-core:jar:2.9.7:compile
[WARNING] Unused declared dependencies found:
[WARNING] directory:apacheds-core:jar:0.9.3:compile
[WARNING] org.apache.tapestry:tapestry-upload:jar:5.3.7:compile

As expected, dependencies to camel-exec and grep4j, which are used (via the imports of org.apache.camel.component.exec.ExecCommand and org.grep4j.core.GrepExpression) do not raise any alert. Unlike the import of org.apache.camel.impl.DefaultCamelContext from camel-core-2.9.7 raises a warning. Likewise, dependencies to apacheds-core and tapestry-upload that are unused although declared, raise a log of level WARN.
A close goal is analyze-report. In order to use it, the following block must appear in the POM:
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>
 maven-dependency-plugin
 </artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>copy</id>
 <phase>package</phase>
 </execution>
 </executions>
 </plugin>

Then, running mvn dependency:analyze-report will generate an HTML report, available at the target/dependency-analysis.html location. In addition to previous data, this report will add the dependencies which are both declared and used, such as camel-exec and grep4j in our case:
[image: The analyze goal]Report generated by analyze-report

Let's quote two other goals:
	analyze-dep-mgt: Check mismatches in the dependencyManagement block
	analyze-duplicate: Checks and reports the duplicate declared dependencies

Classpath

The dependency:build-classpath goal will display the complete classpath of your project, with the concrete locations, that is, most of the time, the path in the Maven local repository. This is very useful if you need to launch your application in standalone.
For example:

$ mvn dependency:build-classpath
(...)
[INFO] --- maven-dependency-plugin:2.6:build-classpath (default-cli) @ massiveConflicts ---
[INFO] Dependencies classpath:
/users/jonathan/.m2/repository/directory/apacheds-core/0.9.3/apacheds-core-0.9.3.jar;/users/jonathan/.m2/repository/commons-lang/commons-lang/2.0/commons-lang-2.0.jar;/users/jonathan/.m2/repository/commons-collections/commons-collections/3.0/commons-collections-3.0.jar;/users/jonathan/.m2/repository/commons-primitives/commons-primitives/20041207.202534/commons-primitives-20041207.202534.jar;/users/jonathan/.m2/repository/regexp/regexp/1.2/regexp-1.2.jar;(...)

Other goals of dependency

	Running mvn dependency:list will display the same information as tree, but removing the hierarchy, for example:
$ mvn dependency:list
(...)
[INFO] The following files have been resolved:
[INFO] com.google.guava:guava:jar:12.0:compile
[INFO] directory-shared:ldap-common:jar:0.9.3:compile
[INFO] commons-codec:commons-codec:jar:1.5:compile
(...)

	Running mvn dependency:list-repositories will display the repositories used for the current build, for example:
$ mvn dependency:list-repositories
(...)
 [INFO] Repositories Used by this build:
[INFO] id: central
 url: http://repo.maven.apache.org/maven2
 layout: default
snapshots: [enabled => false, update => daily]
 releases: [enabled => true, update => daily]
(...)

	Running mvn dependency:copy-dependencies will copy all the dependencies to a folder (by default, target/dependency). A use case is when you need create an archive or a distribution. Plugin assembly can do it, too, and in a better way.
	Running mvn dependency:sources will download the sources of dependencies when available, for example:
$ mvn dependency:sources
(...)
[INFO] --- maven-dependency-plugin:2.6:sources (default-cli) @ massiveConflicts ---
Downloading: http://repo.maven.apache.org/maven2/emma/emma/2.0.5312/emma-2.0.5312-sources.jar
Downloading: http://repo.maven.apache.org/maven2/regexp/regexp/1.2/regexp-1.2-sources.jar
(...)
[INFO]
[INFO] The following files have been resolved:
[INFO] com.googlecode.grep4j:grep4j:jar:sources:1.7.5:compile
[INFO] org.hamcrest:hamcrest-all:jar:sources:1.1:compile
(...)
[INFO] The following files have NOT been resolved:
[INFO] emma:emma:jar:sources:2.0.5312
[INFO] regexp:regexp:jar:sources:1.2
(...)

	Running purge-local-repository will clean the local repository. This operation is required in some cases:	As part of a continuous integration system (such as Apache Hudson/Jenkins, and Bamboo)
	As a periodic cleanse
	In order to force the update of all dependencies from a "clean" remote repository

Other goals are available but their interest is lesser. These goals are copy, get, go-offline, properties, resolve, resolve-plugins, unpack, and unpack-dependencies.

Other miscellaneous plugins

Maven's ecosystem is rich, and many plugins allow you to improve your dependency management quality, and to detect potential and actual conflicts. Among them, let's overview two: Maven Enforce and JBoss Tattletale.

The Enforce plugin

Enforce, or in long form org.apache.maven.plugins:maven-enforcer-plugin likes to think it is "The Loving Iron Fist of Maven". Enforcer allows to set up rules that your project and dependencies must abide by. These rules affect the dependencies, classes, packages, Java version, and so on. Let's see a first example, with Maven Enforcer 1.2.
The dependency convergence

Let's consider the following POM (the code is self-documented):
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packt.dependencyManagement.chapter4
 </groupId>
 <artifactId>head</artifactId>
 <version>1.0</version>
 </parent>
 <artifactId>enforcerDependencyConvergence</artifactId>
 <version>${project.parent.version}</version>
 <name>Example
 * POM with many conflicts because of JAR versions
 * use of plugin 'enforcer' with goal 'enforce' in
 order to detect them, thanks to rule
 'dependencyConvergence'
 </name>

 <dependencies>
 <dependency>
 <groupId>org.apache.pluto</groupId>
 <artifactId>pluto-portal-driver</artifactId>
 <version>1.1.7</version>
 <!--implicit dependency to 'taglibs:standard:1.0.6'->
 </dependency>
 <dependency>
 <groupId>org.grails</groupId>
 <artifactId>grails-web</artifactId>
 <version>2.2.3</version>
 <!-- implicit dependency to 'taglibs:standard:1.1.2'-->
 </dependency>

 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>
 maven-enforcer-plugin
 </artifactId>
 <version>1.2</version>
 <configuration>
 <rules>
 <!-- We will apply the rule of dependencyconvergence: this rule makes the buildfail if two dependencies (either director transitive) diverge on the version -->
 <dependencyConvergence/>
 </rules>
 </configuration>
 <executions>
 <execution>
 <goals>
 <!--We run the goal 'enforce'-->
 <goal>enforce</goal>
 </goals>
 <!-- The goal is called on phase'verify'-->
 <phase>verify</phase>
 </execution>
 </executions>
 </plugin>

 </plugins>
 </build>
 </project>

As specified in the POM, the two dependencies have conflicts of JAR on taglib:standard.
The Enforce plugin has been set to be called on each build and makes it fail when two dependencies diverge on their versions. In our case, the output will contain the following piece of text:
 [WARNING] Rule 0: org.apache.maven.plugins.enforcer.DependencyConvergence failed with message:
 Failed while enforcing releasability the error(s) are [
 Dependency convergence error for taglibs:standard:1.0.6 pathsto dependency are:
 +-com.packt.dependencyManagement.chapter4:enforcerUseCase:1.0
 +-org.apache.pluto:pluto-portal-driver:1.1.7
 +-taglibs:standard:1.0.6
 and
 +-com.packt.dependencyManagement.chapter4:enforcerUseCase:1.0
 +-org.grails:grails-web:2.2.3
 +-taglibs:standard:1.1.2

The Maven Enforce allows to prevent a build on which dependency conflicts are detected.

Banned dependencies

A classic case you encounter is when you depend on a certain artifact, of which a unique version raises problems, while all other are accepted. At a given time of your project, the problematic version is not used, but by the game a natural upgrade of versions and transitive dependencies, you can fear the "bad" version may emerge again. In the same way, sometimes all versions are problematic; meanwhile a unique version is acceptable. In this situations, you can resort to the Maven Enforcer's rule of <bannedDependencies/>.
Let's consider the previous example. There are transitive dependencies to jstl and commons-io. Let's assume javax.servlet:jstl:1.0.6 is the unique version of jstl that raises problem, and that only commons-io:commons-io:2.1 does work, excluding all other versions. Then the <rule> block will be (the rest of the POM does not differ from the previous one):
 <rules>
 <bannedDependencies>
 <excludes>
 <!-- All versions of commons-io are banned-->
 <exclude>commons-io:commons-io</exclude>
 <!-- Ban only version 1.0.6 of JSTL. The brackets *are*
 needed ; otherwise, Maven would ban versions
 "1.0.6 and above" -->
 <exclude>javax.servlet:jstl:[1.0.6]</exclude>
 </excludes>
 <includes>
 <!--Version 2.0.1 of commons-io
 is explicitly excluded from ban-->
 <include>commons-io:commons-io:2.0.1</include>
 <!--no use to add explicitly the allowed version of JSTL-->
 </includes>
 </bannedDependencies>
 </rules>

And the build will fail with the following error:
[WARNING] Rule 0: org.apache.maven.plugins.enforcer.BannedDependencies failed with message:
Found Banned Dependency: commons-io:commons-io:jar:1.3.1
Found Banned Dependency: javax.servlet:jstl:jar:1.0.6

Fixing the issue is very simple; identify the branch and add exclusions. In our case, only add a block of exclusions within dependency to org.apache.pluto:pluto-portal-driver:1.1.7:
 <exclusions>
 <exclusion>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 </exclusion>
 <exclusion>
 <groupId>javax.servlet</groupId>
 <artifactId>jstl</artifactId>
 </exclusion>
 </exclusions>

Banned dependencies can be specified with wildcards, and therefore groups of exclusions can be set: not only by groupId, artifactId, version, and so on, but also by type and scope. This way, you can ban "all artifacts of type JAR" (*:*:jar) or "all artifacts with scope runtime or provided" (*:*:runtime:provided).

Other rules

The Enforcer plugin defines other rules. Considering the same POM as earlier, the following rules illustrate the features offered by Maven Enforcer:
	Always passes; useful to test plugin configuration. The opposite rule is <alwaysFail/>:
 <alwaysPass/>

	Equivalent to <bannedDependencies> for plugins:
 <bannedPlugins>
 <excludes>
 <!-- Here we ban the dependency to JBoss plugin-->
 <exclude>
 org.codehaus.mojo:jboss-maven-plugin:1.5.0
 </exclude>
 </excludes>
 </bannedPlugins>

	Bans transitive dependencies:
 <banTransitiveDependencies>
 <excludes>
 <!-- Here we ban the dependencies on SNAPSHOTs -->
 <exclude>
 ::*SNAPSHOT
 </exclude>
 </excludes>
 </banTransitiveDependencies>

	Evaluates a beanshell script (simple Boolean expression or complete script with a Boolean returned value).For more details on BeanShell syntax and commands, refer to http://www.beanshell.org/.

 <evaluateBeanshell>
 <!-- Here we ensure both this project and its parentPOM share the same groupId and version-->
 <condition>
 ("${project.groupId}".
 equals("${project.parent.groupId}"))
 @and
 (${project.version}==${project.parent.version})
 </condition>
 <message>Build failed because
 the beanshell returned
 'false'
 </message>
 </evaluateBeanshell>

	Checks the existence of an environment variable:
 <requireEnvironmentVariable>
 <!--Here we check JAVA_HOME and M2_HOME exist and have been set-->
 <variableName>JAVA_HOME</variableName >
 <variableName>M2_HOME</variableName >
 </requireEnvironmentVariable>

	Checks whether the files in the list of files do not exist:
 <requireFilesDontExist>
 <files>
 <!-- Here we check the file ./helloWorld.txt does *not* exist -->
 <file>
 ${project.basedir}/helloWorld.txt
 </file>
 </files>
 </requireFilesDontExist>

	Checks whether the files in the list of files do exist:
 <requireFilesExist>
 <files>
 <!-- Here we check the file pom.xml *does* exist -->
 <file>
 ${project.basedir}/pom.xml
 </file>
 </files>
 </requireFilesExist>

	Enforces that the list of files exist and are within a certain size range:
 <requireFilesSize>
 <maxsize>1000000</maxsize>
 <minsize>1</minsize>
 <files>
 <file>
 ${project.basedir}/pom.xml
 </file>
 </files>
 </requireFilesSize>

	Enforces the JDK version:
 <requireJavaVersion>
 <!--Here we require JDK 5, 6 or 7-->
 <version>[1.5,)</version>
 </requireJavaVersion>

	Enforces the Maven version:
 <requireMavenVersion>
 <!--Here we require Maven version to be between 2.2 (included)and 3.1 (excluded)-->
 <version>[2.2,3.1)</version>
 </requireMavenVersion>

	Bans repositories inclusion. Defining repositories in pom.xml is not advised; best practices consist in using a repository manager:
 <requireNoRepositories/>

	Enforces the OS and/or CPU architecture. Available parameters include name, family, arch, and version:
 <requireOS>
 <!-- Here we ensure we run on an 86 platform-->
 <arch>x86</arch>
 </requireOS>

	Checks a property is set:
 <requireProperty>
 <!-- Here we check a version, a type and a namehave been set-->
 <property>project.version</property>
 <property>project.type</property>
 <property>project.name</property>
 </requireProperty>

	Checks if no SNAPSHOT is included as a dependency:
 <requireReleaseDeps/>

	Checks that the current project is not a snapshot.
 <requireReleaseVersion/>

Let's mention other existing rules:
	requireActiveProfile: Checks if one or more profiles are active
	requireSameVersions: Checks that specific dependencies and/or plugins are consistent and share the same version
	requireUpperBoundDeps: Checks all transitive dependencies are resolved to their specified version or higher

Finally, maven-enforcer-rule-api provides an API allowing you to implement your own rules, extending org.apache.maven.enforcer.rule.api.EnforcerRule.

Tattletale

Tattletale (last Versions: 1.1.2 as stable; 1.2.0.Beta2 on 1.2.X branch) is a tool provided and supported by JBoss. It provides analyzes related to a project, its dependencies and classes, albeit more focused on JARs than on other types. Some features of Tattletale are already available through Maven dependency and enforce plugins.
Tattletale generates a tree of reports. In the general summary, the information level (INFO, WARNING, and ERROR) is indicated.
[image: Tattletale]
Dependencies

The first set deals with the following dependencies:
	Class Dependants: It lists the classes that depend on the considered class.
	Class Depends On: It lists the classes on which the considered class does depend on. Basically, this is a summary of imports.
	Dependants: It lists the archives on which the considered archive is depended on.
	Depends On: It lists the archive on which the considered archive does depend on.
	Graphical dependencies: It generates a GraphViz .dot file (nothing to see with Word model document).
	Transitive Dependants: It is same as Class Dependants and includes transitive dependencies.
	Transitive Depends On: It is same as Class Depends On and includes transitive dependencies.
	Circular Dependency: It lists the circular dependencies.

Reports

The second set deals with various reports:
	Class Location: It gives, for each archive, the list of included classes.
	OSGi: It tells which archive is OSGi enabled or not. In other terms, this report checks the content of the MANIFEST files.
	Sealed information: It tells which archive is or is not sealed. In other terms, this report checks whether the flag Sealed is set at true in the MANIFEST files.Tip
Theoretically, sealed JARs guarantee all the classes of a package, (which is consequently said to be sealed) are included within the same JAR. A classic use case is when some of your classes have package-protected methods. With non-sealed JARs, nothing prevents another developer to declare a class in the same package and then access the package-protected methods and fields. Unlike, with sealed JARs, the JVM will refuse to run the code of two classes with the same package but in two different JARs. Anyway, beware the seal security is low and can be bypassed with very few efforts. For example, in org.jboss.threads:jboss-threads:2.0.0.GA, MANIFEST.MF file declares org/jboss/threads as sealed package. Hence, your IDE will deny you from create a class with such a package name. Yet, if you have created it from anywhere else, the project will compile.

	Signing information: It tells which archive is or is not signed.
	Eliminate Jar files with different versions: It lists the archive with the same groupId/artifactId/type/classifier and different versions, which are source of JAR conflicts.
	Invalid version: This report is related to OSGi enability. It lists the archive of which OSGi version identifier is absent or invalid.
	Multiple Jar file: It lists the classes that appear in different archives, and the archives where these classes appear.
	Multiple Jar files (packages): It is same as Multiple Jar file however it includes packages.
	Multiple Locations: It lists the different locations of archives that appear more than once.
	Unused Jar: It lists the archives of which none of the content is imported anywhere. Be careful! Some classes and archive can be used in other ways out of canonical imports, such as through the Java reflection API or other dynamic instantiation.
	Black listed: It lists the archives that use black listed APIs.Tip

Black-listed APIs

Some frameworks or domains impose limitations on the Java APIs that can be called, known as white-listed APIs. For instance, Google AppEngine or Android do not accept multithreading or Java Reflection. Such APIs, by symmetry with white-list APIs are designed as black-listed APIs.

	No version: It lists the archives without a version identifier.
	JBoss AS7 (optionally): It lists the jboss-deployment-structure.xml file for archives

Archives

This sequence of report provides, for each JAR, WAR, and EAR, a map of values corresponding to the following keys: Name, Class Version, Locations, Profiles, Manifest, Signing information, Requires (list of imports), Provides (list of classes included within the archive, and their SerialVersionUID if present).

Dependency, enforce, and tattletale – conclusion

Thanks to dependency, enforce, and tattletate plugins, Maven features plenty of powerful tools that allow managing dependencies, and identifying and fixing the potential conflicts and cycles.
Anyway, the three plugins should be considered as complementary: while Tattletale is "report-oriented" (that means its purpose is to generate reports as support for analyze by developers), Enforce is "build-breaking-oriented"; it ensures a sequence of rules to be checked on each run, and makes the build failed as soon as a rule is transgressed, without any human monitoring or intervention.

Dynamic POMs and dependencies

Usually, POMs are written as XML files. However, never forget that XML is a representation (written, and hierarchical) of an object data structure. POMs might have been written in YaML, or even as Java POJOs. The actual POM is not the pom.xml file, but the intelligent object behind, of which a projection is pom.xml. This is why there is nothing amazing that a POM can or cannot be isomorphic to the XML file representing it.
This brings us into concepts, advanced and non-intuitive, such as effective POM and dynamic POM. The same line of reasoning can be made for the settings.xml file.
Effective POM and settings

The POM that is actually executed by Maven is not the one a human being can write and read in the pom.xml file. Maven adds blocks corresponding to references of the settings.xml files, such as repositories and mirrors, and default values and plugins, in more of the dependencies, either explicitly declared or resolved through transitivity, inheritance and interpolation.
Let's consider the simplest possible POM:
<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.dependencyManagement.chapter4
 </groupId>
 <artifactId>simplestPom</artifactId>
 <version>1.0</version>
 <!--nothing more, nothing less than a minimal declaration-->
 </project>

By executing the help:effective-pom goal, you can see the actual POM, as viewed by Maven (refer the chapter3/simplestPom/effective-pom.xml file in the code bundle linked to this chapter).
Several blocks emerge as follows:
	The repositories (by default: Maven Central, http://repo.maven.apache.org/maven2) and pluginRepositories blocks (lines 9-30), from the settings.xml file and/or Maven's default values.
	The actual folders for src, test, resources, output, and so on (lines 33-65 and 268-272).
	The plugins and pluginManagement (lines 90-266) block. This block explains why you can simply write mvn clean install instead of mvn maven-clean-plugin:clean maven-install-plugin:install whereas you must run the complete command for less widespread plugins. Plugins available by default are:	maven-antrun-plugin
	maven-assembly-plugin
	maven-dependency-plugin
	maven-release-plugin
	maven-clean-plugin
	maven-install-plugin
	maven-resources-plugin
	maven-surefire-plugin
	maven-compiler-plugin
	maven-jar-plugin
	maven-deploy-plugin
	maven-site-plugin
	maven-project-info-reports-plugin

Similarly, you can display the effective settings used by Maven by running the help:effective-settings goal. For instance, for the minimal settings.xml file:
<?xml version="1.0" encoding="UTF-8"?>
 <settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">
</settings>

The actual settings.xml is longer (yet less verbose than the effective POM):
 <settings xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.1.0 http://maven.apache.org/xsd/settings-1.1.0.xsd">
 <localRepository
 xmlns="http://maven.apache.org/SETTINGS/1.1.0">
 /users/jonathan/.m2/repository
 </localRepository>
 <pluginGroups
 xmlns="http://maven.apache.org/SETTINGS/1.1.0">
 <pluginGroup>org.apache.maven.plugins</pluginGroup>
 <pluginGroup>org.codehaus.mojo</pluginGroup>
 </pluginGroups>
 </settings>

Two blocks emerge: the path to the local repository (corresponding to $HOME/.m2/repository) and the default groupId of plugins that do not specify it; in other terms, if a plugin of artifactId fooPlugin (without more information on groupId) is referenced, Maven will try to resolve it as org.apache.maven.plugins:fooPlugin and org.codehaus.mojo:fooPlugin.
Knowing the effective POM and settings may help you to detect conflicts.

Dynamic POM

As a disclaimer, beware the following example is used for its pedagogical interest and may fit some situations, but does not match best practices for many other projects. Among other theoretical and practical reasons, common IDEs have some difficulties to support full dynamic POMs.

Case study

Our project meets the following requirements:
	It depends on org.codehaus.jedi:jedi-XXX:3.0.5. Actually, the XXX is related to the JDK version, that is, either jdk5 or jdk6.
	The project is built and run on three different environments: PRODuction, UAT, and DEVelopment
	The underlying database differs owing to the environment: PostGre in PROD, MySQL in UAT, and HSQLDB in DEV.
	Besides, the connection is set in a Spring file, which can be spring-PROD.xml, spring-UAT.xml, or spring-DEV.xml, all being in the same src/main/resource folder.

The first bullet point can be easily answered, using a jdk-version property.
The dependency is then declared as follows:
 <dependency>
 <groupId>org.codehaus.jedi</groupId>
 <!--For this dependency two artifacts are available,one for jdk5 or and a second for jdk6-->
 <artifactId>jedi-${jdk.version}</artifactId>
 <version>${jedi.version}</version>
 </dependency>

Still, the fourth bullet point is resolved by specifying a resource folder:
 <resources>
 <resource>
 <directory>src/main/resource</directory>
 <!--include the XML files corresponding to the environment: PROD, UAT, DEV. Here, the only XML file is a Spring configuration one. There is one file per environment-->
 <includes>
 <include>
 **/*-${environment}.xml
 </include>
 </includes>
 </resource>
 </resources>

Then, we will have to run Maven adding the property values using one of the following commands:
	mvn clean install –Denvironment=PROD –Djdk.version=jdk6
	mvn clean install –Denvironment=DEV –Djdk.version=jdk5

By the way, we could have merged the three XML files as a unique one, setting dynamically the content thanks to Maven's filter tag and mechanism.
The next point to solve is the dependency to actual JDBC drivers.

A quick and dirty solution

A quick and dirty solution is to mention the three dependencies:
 <!--PROD -->
 <dependency>
 <groupId>postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>9.1-901.jdbc4</version>
 <scope>runtime</scope>
 </dependency>
 <!--UAT-->
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.25</version>
 <scope>runtime</scope>
 </dependency>
 <!--DEV-->
 <dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>2.3.0</version>
 <scope>runtime</scope>
 </dependency>

Anyway, this idea has drawbacks. Even though only the actual driver (org.postgresql.Driver, com.mysql.jdbc.Driver, or org.hsqldb.jdbcDriver as described in the Spring files) will be instantiated at runtime, the three JARs will be transitively transmitted—and possibly packaged—in a further distribution.
You may argue that we can work around this problem in most of situations, by confining the scope to provided, and embed the actual dependency by any other mean (such as rely on an artifact embarked in an application server); however, even then you should concede the dirtiness of the process.

A clean solution

Better solutions consist in using dynamic POM. Here, too, there will be a gradient of more or less clean solutions.
Once more, as a disclaimer, beware of dynamic POMs! Dynamic POMs are a powerful and tricky feature of Maven. Moreover, modern IDEs manage dynamic POMs better than a few years ago. Yet, their use may be dangerous for newcomers: as with generated code and AOP for instance, what you write is not what you execute, which may result in strange or unexpected behaviors, needing long hours of debug and an aspirin tablet for the headache. This is why you have to carefully weigh their interest, relatively to your project before introducing them.
With properties in command lines

As a first step, let's define the dependency as follows:
 <!-- The dependency to effective JDBC drivers: PostGre,MySQL or HSQLDB-->
 <dependency>
 <groupId>${effective.groupId}</groupId>
 <artifactId>
 ${effective.artifactId}
 </artifactId>
 <version>${effective.version}</version>
 </dependency>

As you can see, the dependency is parameterized thanks to three properties: effective.groupId, effective.artifactId, and effective.version. Then, in the same way we added earlier the –Djdk.version property, we will have to add those properties in the command line, for example,:
mvn clean install –Denvironment=PROD –Djdk.version=jdk6 \
 -Deffective.groupId=postgresql \
 -Deffective.artifactId=postgresql \
 -Deffective.version=9.1-901.jdbc4

Or add the following property

mvn clean install –Denvironment=DEV –Djdk.version=jdk5 \
 -Deffective.groupId=org.hsqldb \
 -Deffective.artifactId=hsqldb \
 -Deffective.version=2.3.0

Then, the effective POM will be reconstructed by Maven, and include the right dependencies:
 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>3.2.3.RELEASE</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>org.codehaus.jedi</groupId>
 <artifactId>jedi-jdk6</artifactId>
 <version>3.0.5</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>9.1-901.jdbc4</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>

Yet, as you can imagine, writing long command lines like the preceding one increases the risks of human error, all the more that such lines are "write-only". These pitfalls are solved by profiles.

Profiles and settings

As an easy improvement, you can define profiles within the POM itself. The profiles gather the information you previously wrote in the command line, for example:
 <profile>
 <!-- The profile PROD gathers the properties relatedto the environment PROD-->
 <id>PROD</id>
 <properties>
 <environment>PROD</environment>
 <effective.groupId>
 postgresql
 </effective.groupId>
 <effective.artifactId>
 postgresql
 </effective.artifactId>
 <effective.version>
 9.1-901.jdbc4
 </effective.version>
 <jdk.version>jdk6</jdk.version>
 </properties>
 <activation>
 <!-- This profile is activated by default: in other terms, if no other profile inactivated, then PROD will be-->
 <activeByDefault>true</activeByDefault>
 </activation>
 </profile>

Or:
 <profile>
 <!-- The profile DEV gathers the propertiesrelated to the environment DEV-->
 <id>DEV</id>
 <properties>
 <environment>DEV</environment>
 <effective.groupId>
 org.hsqldb
 </effective.groupId>
 <effective.artifactId>
 hsqldb
 </effective.artifactId>
 <effective.version>
 2.3.0
 </effective.version>
 <jdk.version>jdk5</jdk.version>
 </properties>
 <activation>
 <!-- The profile DEV will be activated if, and only if, it is explicitly called-->
 <activeByDefault>false</activeByDefault>
 </activation>
 </profile>

The corresponding command lines will be shorter:

mvn clean install

(Equivalent to mvn clean install –PPROD)
Or:

mvn clean install –PDEV

You can list several profiles in the same POM, and one, many or all of them may be enabled or disabled.
Nonetheless, multiplying profiles and properties hurts the readability. Moreover, if your team has 20 developers, then each developer will have to deal with 20 blocks of profiles, out of which 19 are completely irrelevant for him/her. So, in order to make the thing smoother, a best practice is to extract the profiles and inset them in the personal settings.xml files, with the same information:
<?xml version="1.0" encoding="UTF-8"?>
 <settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <profiles>
 <profile>
 <id>PROD</id>
 <properties>
 <environment>PROD</environment>
 <effective.groupId>
 postgresql
 </effective.groupId>
 <effective.artifactId>
 postgresql
 </effective.artifactId>
 <effective.version>
 9.1-901.jdbc4
 </effective.version>
 <jdk.version>jdk6</jdk.version>
 </properties>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 </profile>
 </profiles>
</settings>

Dynamic POMs – conclusion

As a conclusion, the best practice concerning dynamic POMs is to parameterize the needed fields within the POM. Then, by order of priority:
	Set an enabled profile and corresponding properties within the settings.xml.mvn <goals> \
 [-f <pom_Without_Profiles.xml> \]
 [-s <settings_With_Enabled_Profile.xml>]

	Otherwise, include profiles and properties within the POMmvn <goals> \
 [-f <pom_With_Profiles.xml> \]
 [-P<actual_Profile> \]
 [-s <settings_Without_Profile.xml>]

	Otherwise, launch Maven with the properties in command linesmvn <goals> \
 [-f <pom_Without_Profiles.xml> \]
 [-s <settings_Without_Profile.xml>]
 -D<property_1>=<value_1> \
 -D<property_2>=<value_2> \
(...)
 -D<property_n>=<value_n>

Summary

Thus, at the end of this chapter, we are able to:
	Use the type/packaging and classifier tags, to make the difference between two artifacts with the same groupId/artifactId/version
	Create a new type
	Use various plugins to analyze our dependencies and detect early potential problems, and then fix them
	Set up POMs, dynamically owing to environment, properties, profiles, and so on

Chapter 4. Migration of Dependencies to Apache Maven

Starting a new project from scratch is, from many viewpoints, the best situation: you can introduce Maven with best practices from the beginning. Anyway, often you receive a project which is built on another system: Apache Ant or even an Eclipse configuration (the .classpath, .project, and .launch files). In such a situation, migrating to Maven is perfectly mastered, provided you follow a rigorous process.
Case study

Let's consider a project, built thanks to an Ant build.xml file and targets. Let's have a look and comment what we can read:
<?xml version="1.0" encoding="ISO-8859-1" ?>
<project name="ProjectFromAnt" default="generateJar">
 <description>
 Example of project to migrate from Ant to Maven 3.
 The main target is generateJar, that compiles the sources and compress them as a Java ARchive.
 </description>

Let's set some properties which are listed as follows:
	Folder for Java sources: <property name="src"
 location="src"/>

	Folder for unit tests: <property name="test"
 location="test"/>

	Folder for dependencies: <property name="libdir"
 location="lib"/>
 <property name="classesdir"
 value="target/classes"/>
 <property name="final.name"
 value="projectFromAnt"/>
 <property name="defaulttargetdir"
 value="target"/>
 <property name="testclassesdir"
 value="target/test-classes"/>
 <property name="testclassesdir"
 value="target/test-classes"/>

	Gives the dependencies needed to compile; there is no easy equivalent to different scopes, such as provided and runtime: <path id="build.classpath">
 <fileset dir="${libdir}">

	This JAR contains a POM: <include name="commons-lang-2.6.jar"/>

	This JAR does not contain any POM. But Manifest.MF is included. Moreover, you can find it in most of public Maven repos: <include name="commons-cli-1.0.jar"/>

	This JAR includes neither a POM nor a relevant Manifest.MF. Besides, you have to download it manually: <include name="ftp4j-1.7.2.jar"/>
 <!-- May have summed up as:
 <include name="**/*.jar"/>
 -->
 </fileset>
 </path>

	Target to clean build folders: <target name="clean" description="Cleans folders">
 <delete dir="${classesdir}"/>
 <delete dir="${defaulttargetdir}"/>
 </target>

	Target to compile the sources: <target name="compile"
 description="Compiles the code"
 depends="clean">
 <mkdir dir="${classesdir}"/>
 <javac destdir="${classesdir}"
 srcdir="${src}"
 classpathref="build.classpath"/>
 </target>

	Target to compress the *.class files as a JAR archive: <target name="generateJar"
 description="Create the jar"
 depends="compile">
 <jar jarfile="${defaulttargetdir}/${final.name}.jar"
 basedir="${classesdir}"/>
 </target>

	Target to compile the test sources: <target name="compile-tests" depends="compile">
 <delete dir="${testclassesdir}"/>
 <mkdir dir="${testclassesdir}"/>
 <javac destdir="${testclassesdir}">

	Folder for unit tests sources: <src>
 <pathelement location="${test}"/>
 </src>
 <classpath>
 <path refid="build.classpath"/>
 <pathelement path="${classesdir}"/>
 </classpath>
 </javac>
 </target>

	Runs the unit tests: <target name="run-unit-test"
 depends="compile-tests"
 description="runs the unit tests">
 <junit dir="./"
 failureproperty="test.failure">
 <classpath>
 <path refid="build.classpath"/>
 <pathelement path="${testclassesdir}"/>
 <pathelement path="${classesdir}"/>

	JUnit archive is added a dependency for tests; you can consider it as an equivalent to <scope>test</scope>: <fileset dir="lib">
 <include name="junit-4.11.jar"/>
 </fileset>
 </classpath>
 </junit>
 </target>
</project>

Note
In this example, we used JARs with their version numbers in suffix; but in real life, most of the time, you find JARs named commons-cli.jar, junit.jar, or ftp4j.jar, rather than commons-cli-1.0.jar, junit-4.11.jar, or ftp4j-1.7.2.jar.

The Eclipse .classpath equivalent file is similar to the following code:
<?xml version="1.0" encoding="UTF-8"?>
<classpath>
 <classpathentry kind="src"
 path="src"/>
 <classpathentry kind="src"
 path="test"/>
 <classpathentry kind="con"
 path="org.eclipse.jdt.launching.JRE_CONTAINER"/>
 <classpathentry exported="true"
 kind="lib"
 path="lib/commons-cli-1.0.jar"/>
 <classpathentry exported="true"
 kind="lib"
 path="lib/commons-lang-2.6.jar"/>
 <classpathentry exported="true" kind="lib"
 path="lib/ftp4j-1.7.2.jar"/>
 <classpathentry kind="lib"
 path="lib/junit-4.11.jar"/>
 <classpathentry kind="output"
 path="bin"/>
</classpath>

Our task is to migrate this project, and its underlying dependencies, to Maven. The scope of this work does not include the migration of any script to Maven. So, at the end of this chapter, we expect to hold a state-of-the-art pom.xml file.
The project relies on three JARs to compile, one more for JUnit.

Setting the folders

First of all, set the folders: src for project sources and test for unit tests:
<build>
 <sourceDirectory>src</sourceDirectory>
 <testSourceDirectory>test</testSourceDirectory>
</build>

Introducing Maven with standard libraries

The second step is to set the dependencies. External artifacts can be divided into two categories:
	Those which "respect/follow" Maven conventions. In 2013, the majority of de facto standard frameworks and libraries, most of which are open source, are built and published through Maven: Spring, Hibernate, and so on.
	Those which do not "respect/follow" Maven conventions. Although this case is less common, many projects remain reluctant to share Maven rigidity. Among them, let's mention former Sun JARs, Apache Tomcat, several libraries from Google, and so on.

So, you will have to review all the dependencies of build.xml and check whether they respect n-uplet groupId/artifactId/version (in more of type, classifier, and so on).
Available POM

Let's consider the dependency to commons-lang-2.6.jar. If you open the JAR, you will find a POM in the folder commons-lang-2.6.jar!/META-INF/maven/commons-lang/commons-lang. This POM will acquaint you with the complete project, among which is the data you are investigating for the block:
<dependency>
 <groupId>commons-lang</groupId>
 <artifactId>commons-lang</artifactId>
 <version>2.6</version>
</dependency>

A simple copy and paste to your POM, and the game is over for this dependency.

Unavailable POM

The previous situation is the best you can happen to encounter. Let's see how to manage with unfavorable cases.
Disclosing information from Manifest.MF

Identifying the right version may be a useful tactic. Open Manifest.MF within commons-cli-1.0.jar!/META-INF/:
Manifest-Version: 1.0
Created-By: Apache Jakarta Maven
Built-By: hen
Package: org.apache.commons.*
Name: org.apache.commons.*
Specification-Title: commons-cli
Specification-Version: 1.0
Specification-Vendor: Apache Software Foundation
Implementation-Title: org.apache.commons.*
Implementation-Version: 1.0
Implementation-Vendor: Apache Software Foundation

You can conclude the corresponding Version is 1.0.

Online tools

Let's consider the dependency to commons-cli-1.0.jar. You have the name of the archive, but neither the groupId nor the artifactId attributes (which may differ from the archive name). You should use tools such as
MvnRepository (http://mavenrepository.com/),
TheCentralRepository (http://search.maven.org/#browse),
findJAR (http://www.findjar.com/), and so on.
For commons-cli, with version 1.0, MvnRepository gives the following groupId and artifactId:
<dependency>
 <groupId>commons-cli</groupId>
 <artifactId>commons-cli</artifactId>
 <version>1.0</version>
</dependency>

As an alternative, you can decompress the JAR and read the full qualified name of the classes, for example, org.apache.commons.cli.GnuParser. Then, a quick search on findJAR retrieves the corresponding archive:
[image: Online tools]
Tip
You can add MvnRepository and findJAR search plugins within Mozilla Firefox, using the URLs https://addons.mozilla.org/fr/firefox/addon/mvnrepository-search/ and https://addons.mozilla.org/fr/firefox/addon/search-with-findjarcom/ respectively.

Checksums

The third dependency you have to identify is that of JUnit. Thanks to MvnRepository, you can guess the groupId and artifactId attributes. Yet, no piece of information related to the version is available within the JAR itself (no POM and nothing relevant in Manifest.MF). So, how to distinguish between JUnit 4.11 from 4.0 or even 3.8.1?
You will need a bit of savvy and insight. You can rely on the archive size, or, better, compare the checksum of the archive you hold against those provided in a website such as TheCentralRepository.
Besides, JUnit is used only in unit tests, so obviously its scope will be test.
At last, the dependency is:
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
</dependency>

Next steps

If needed, the natural next step is to upload the three JARs onto a remote repository, like Artifactory or Nexus.
If this is not possible, because the organization you belong to does not have any central repository or any other reason, then think of installing the JARs on your local repository. The command is as follows:
$ mvn install:install-file \-DgroupId= commons-lang -DartifactId= commons-lang -Dversion=2.6 \-Dpackaging=jar -Dfile=/complete/path/to/commons-lang-2.6.jar

Non-Maven standard libraries

Some of the non-Maven standard libraries are given in the following section.
State

At this point, you can delete the three JARs from the lib folder, and replace them with three dependencies in your POM. The last point to deal with is ftp4j-1.7.2.jar. To build this study case, the JAR was extracted from a ZIP file downloaded from the Sauron Software website: http://www.sauronsoftware.it/projects/ftp4j/. These ZIP and JAR files include neither POM nor other relevant information. Moreover, ftp4j-1.7.2.jar does not appear among archives known by popular websites.
You can decide on an arbitrary designation, such as sauron:ftp4j:jar:1.7.2, and then install on your local repository thanks to the mvn install-install-file command. But a main drawback of purely local installs of JARs that are not equivalent to a remote one is that any new developer integrating with the team will have to perform such operations, as well as any team member, each and every time he or she deletes his or her local repository. Besides, this will prevent from abiding by the best practice of building the release versions in a continuous integration environment, purging its own local repository before each build.
So, how to deal with this "uncommon" and "exotic" JAR?
Quick and (very) dirty

The quickest way is to add the JAR as a dependency, declared with scope system:
<!--Quick and dirty:-->
<dependency>
 <groupId>unknownGroupId</groupId>
 <artifactId>ftp4j</artifactId>
 <version>1.7.2</version>
 <scope>system</scope>
 <systemPath>
 ${project.basedir}/lib/ftp4j-1.7.2.jar
 </systemPath>
</dependency>

Please notice that we decided to set the version attribute to 1.7.2, but rigorously, we should have set it at UNKNOWN or unknownVersion.
The disadvantage of this dirty solution is that when you generate your archive, the JARs dependent on the scope system will not be exported. Quite a limitation, isn't it?
So, this solution should be opted for only in situations when the JAR is needed to compile, for instance, when it contains annotation processors or a code generator.
Notwithstanding, we may have used the plugin Maven Install, in order to install automatically the JARs on the local repository, with such a code similar to the following code:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-install-plugin</artifactId>
 <executions>
 <execution>
 <id>install-ftp-jar</id>
 <phase>validate</phase>
 <configuration>
 <file>${basedir}/lib/ftp-1.7.2.jar</file>
 <repositoryLayout>default</repositoryLayout>
 <groupId>UNKNOWN</groupId>
 <artifactId>ftp</artifactId>
 <version>1.7.2</version>
 <packaging>jar</packaging>
 <generatePom>true</generatePom>
 </configuration>
 <goals>
 <goal>install-file</goal>
 </goals>
 </execution>
 </executions>
</plugin>

In any case, this solution is quick and dirty, too, for many reasons: first, the module dependent on JAR will be installed on each build, increasing the build time. Second, as many <execution> blocks as dependencies must be added: the solution cannot be considered as long-term sustainable. Moreover, this solution may work with Maven 2.2 and yet raise strange issues with Maven 3, thereby preventing from upgrading the Maven version.

(A bit) slower and (far) cleaner

You have to declare a <remote repository> of which URL is local, such as:
<repositories>
 <repository>
 <id>pseudoRemoteRepo</id>
 <releases>
 <enabled>true</enabled>
 <checksumPolicy>ignore</checksumPolicy>
 </releases>
 <url>file://${project.basedir}/lib</url>
 </repository>
</repositories>

Then, declare the dependencies like:
<dependency>
 <groupId>UNKNOWN</groupId>
 <artifactId>ftp4j</artifactId>
 <version>1.7.2</version>
</dependency>

Move and/or rename the JARs, for instance, from the lib/ftp-1.7.2.jar folder to the actual one, such as lib/UNKNOWN/ftp4j/1.7.2/ftp4j-1.7.2.jar.

Summary

Thus, at the end of this chapter, you are able to migrate a wide range of projects to Maven:
	Getting information from the POM when available
	Searching and finding clues from the archives
	As a last resort, setting a pseudo-remote repository

However, this step of migration is not sufficient: despite you having performed migration, other tasks, such as detecting conflicts and fixing them, are still to be completed.
The complete POM, built on the former Ant build.xml file, looks like:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>
 com.packt.dependencyManagement.chapter4
 </groupId>
 <artifactId>ProjectFromAnt</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>Project from Ant to Maven</name>
 <repositories>
 <repository>
 <!--Fake remote repository, to retrieve the dependency to ftp-1.7.2-->
 <id>pseudoRemoteRepo</id>
 <releases>
 <enabled>true</enabled>
 <checksumPolicy>ignore</checksumPolicy>
 </releases>
 <url>file://${project.basedir}/lib</url>
 </repository>
 </repositories>
 <build>
 <sourceDirectory>src</sourceDirectory>
 <testSourceDirectory>test</testSourceDirectory>

 <!-- Quick and dirty solution ; we left it as a comment-->
<!--
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-install-plugin</artifactId>
 <executions>
 <execution>
 <id>install-ftp-jar</id>
 <phase>validate</phase>
 <configuration>
 <file>${project.basedir}/lib/ftp-1.7.2.jar</file>

 <repositoryLayout>default</repositoryLayout>
 <groupId>UNKNOWN</groupId>
 <artifactId>ftp</artifactId>
 <version>1.7.2</version>
 <packaging>jar</packaging>
 <generatePom>true</generatePom>
 </configuration>
 <goals>
 <goal>install-file</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
-->
 </build>
 <dependencies>
 <dependency>
 <!--Retrieved from its POM-->
 <groupId>commons-lang</groupId>
 <artifactId>commons-lang</artifactId>
 <version>2.6</version>
 </dependency>
 <dependency>
 <!--groupId and artifactId were retrieved thanks to http://findjar.com-->
 <groupId>commons-cli</groupId>
 <artifactId>commons-cli</artifactId>
 <!--Version was retrieved from the Manifest.MF-->
 <version>1.0</version>
 </dependency>

 <!-- Quick and dirty solution ; we left it as a comment-->
<!--
 <dependency>
 <groupId>unknownGroupId</groupId>
 <artifactId>ftp4j</artifactId>
 <version>1.7.2</version>
 <scope>system</scope>
 <systemPath>
 ${project.basedir}/lib/ftp4j-1.7.2.jar
 </systemPath>
 </dependency>
-->

 <dependency>
 <groupId>UNKNOWN</groupId>
 <artifactId>ftp4j</artifactId>
 <version>1.7.2</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <!-- The version was retrieved by comparison of checksums and sizes-->
 <version>4.11</version>
 <!-- The scope is test, because in the original Ant file JUnit was designed as needed for tests-->
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

Note
With the recipe exposed in this chapter, you should be able to migrate almost any project. Nonetheless, if truly special needs are encountered, do not forget that, as a last resort, Maven can execute any Ant script, thanks to the org.apache.maven.plugins:maven-antrun-plugin:1.7 plugin and goal run. Anyway, the actual goal of migration to Maven would be lost, as well as main features such as repositories. So, you should consider your case very carefully.

Chapter 5. Tools within Your IDE

Developers in the 2010s are lucky enough to dispose of various Integrated Development Environments (IDEs). The three most widely used are Eclipse, NetBeans, and IntelliJ IDEA. All are of good quality. They feature many tools that, once learned, allow increasing your productivity: auto-complete, dynamic management and visualization of dependencies, and so on.
Case study

Let's consider a basic three-tier project, organized on three layers: HSQLDB/Hibernate (Hibernate playing a simple role of JDBC layer), Spring, and JSF + Primefaces.
Functionally, the presentation layer consists of a date and hour widget, and a color picker. When a color is selected, a JSF bean is called, and then a Spring service, then a DAO runs a query in database.
[image: Case study]Expected display in browser

This study case will illustrate the IDEs features related to the Maven dependency management.
Tip
To execute this project, you have to launch the database (mvn exec:java -Dexec.mainClass="org.hsqldb.Server"), then build, and deploy the WAR on a servlet container (mvn clean install jetty:run).

IntelliJ IDEA

JetBrains IntelliJ IDEA is considered as a premium IDE by numerous developers and architects. Two versions are available: Community Edition (free and limited) and Ultimate Edition (complete with all features). The latest version is 12.1, which is also known as Leda. Next version, 13, known as Cardea, is expected to be released in December 2013.
XML with XSD completion

For any XML file, when an XML schema (XSD) or a DTD is indicated, IntelliJ IDEA (Community and/or Ultimate) can provide automatic completion. Therefore this is the case for POM files (and this explains why we have taken care to write complete XML headers since the beginning of this book).
In IntelliJ IDEA, two modes of auto-completion exist: the classic one, through pressing a combination of Ctrl + Space bar keys, and a smart mode ("guessing" what you intend to do), through pressing the Ctrl + Shift + Space bar keys.
Auto-completion increases your productivity and your typing lane, saving the time of searching for the exact command or writing a complete instruction, and avoiding spelling errors as shown in the following screenshot:
[image: XML with XSD completion]

Module Dependency Graph

IntelliJ IDEA Ultimate Edition has a plugin called Module

Dependency Graph. On editing a POM, just press Ctrl + Shift + Alt + U (or right-click on the POM interface and then navigate to Maven | Show Dependencies...), a figure will be generated, on which red arrows show a potential conflict.
This features allows you to see the dependencies of your project in a user-friendly manner, all the more if you are allergic to text outputs produced by a mvn dependency:tree.
[image: Module Dependency Graph]Dependency graph generated by IntelliJ IDEA 12.1 Ultimate

The graph can be filtered by scope, exported to a .PNG file, or printed.
Tip
DSM (or Dependency Structure Matrix) is a plugin available with IntelliJ IDEA Ultimate. While not linked specifically to Maven (the same tool is included in Sonar among others), it provides very useful information on your projects and modules: cycles, dependencies, relationships, and so on. For more details, consult http://blogs.jetbrains.com/idea/2008/01/intellij-idea-dependency-analysis-with-dsm/ and http://www.dsmweb.org/en/dsm.html.

The figure can also be displayed on editing the POM by pressing a combination of Ctrl + Alt + U (or right-click on the POM interface and then navigate to Maven | Show Dependencies...).

Dependency addition

Another cool feature of IntelliJ IDEA is the suggestion of imports and/or of Maven dependency addition.
Dependency addition from Java code

Dependencies can be added on-the-fly, while writing code, that is, without leaving the Java editor: a Maven dependency is added in the background, selected among those proposed by IntelliJ IDEA after scanning the repository. Clearly, the ability to add dependencies while writing Java code, therefore without switching of context between Java and Maven's XML POM, makes you save time and productivity.
When you call a class that is not yet referenced to in your imports, IntelliJ IDEA will consider it as an error (because it makes your code unable to compile). Then, move the caret to this piece of code, and press Alt + Enter (or wait for a red lamp to be displayed, then click on it): IntelliJ IDEA will propose several choices, among which one is Add library 'Maven: …' to classpath.
[image: Dependency addition from Java code]Import and dependency suggestions by IntelliJ IDEA 12.1 Community

Dependency search and generation within a POM

While editing a POM, you can search and add a dependency. Just press the Alt + Insert key combination. A pop-up appears as shown in the following screenshot:
[image: Dependency search and generation within a POM]
Click on Dependency or Managed Dependency. Then you can search and select a dependency by designation or by an embedded class as shown in the following screenshot:
[image: Dependency search and generation within a POM]
The same operations can be performed for plugins, repositories, and so on.

Conclusion on IntelliJ IDEA

IntelliJ IDEA is very complete in its support of Maven and provides powerful tools dedicated to dependency management.

Eclipse

Eclipse is released by the Eclipse Foundation. It is the most widespread IDE in Java projects. The latest version available is 4.3, also known as Kepler.
On opening a POM, Eclipse switches to a special view, dedicated to POMs. By default, five tabs are displayed in the POM editor. Overview summarizes macro-information related to the POM, such as details on the project, SCM, organization, and so on. You can fill in the form to update the POM, instead of writing XML blocks. The pom.xml file displays the text content of the file. The three other tabs are more interesting from a dependency management viewpoint.
Dependency view

Dependencies lists the dependencies referenced in the POM. On the upper right corner, a text field allows to filter them as shown in the following screenshot:
[image: Dependency view]Dependencies view in Eclipse 4.3 (Kepler)

On clicking on Add button, Eclipse opens a modal window. Then you can add an artifact, entering its groupId/artifactId/version if you know them, or performing a search. For instance, in the following screenshot, we search all the artifacts containing guava in their designation. If we select one of the results, then it will be added in the list of dependencies as shown in the following screenshot:
[image: Dependency view]Select dependency view in Eclipse 4.3 (Kepler)

In the main Dependency view, the
Manage button allows to pull up some of the dependencies to a parent POM as shown in the following screenshot:
[image: Dependency view]Manage dependencies view in Eclipse 4.3 (Kepler)

Dependency Hierarchy view

Dependency

Hierarchy lists, displays the hierarchy in a left pane, the tree-sorted dependencies, direct ones as well as transitive. On the right, Eclipse displays the Resolved Dependencies. On clicking on one dependency, Eclipse opens this artifact POM. Therefore, you can examine a dependency POM from your current project one.
This feature allows you to see your project declared dependencies, the transitive dependencies as they are resolved, and consequently, to know which version of a given artifact is actually loaded.
[image: Dependency Hierarchy view]Dependency Hierarchy view in Eclipse 4.3 (Kepler)

Effective POM view

Effective POM view displays the actual POM as it is resolved and completed by Maven. For details see the section, Dynamic POMs and dependencies in Chapter 3, Dependency Designation (advanced).
Tip

Dependency Graph

Until Eclipse 4.X branch, a Dependency Graph was featured. More precisely, the Dependency Graph was bundled with m2e, the main plugin for Maven integration within Eclipse, until m2e 1.0 release. Anyway owing to its authors, this plugin was not efficient with big projects; its development was ended and the plugin was removed from future versions of Eclipse.

Maven Repository view

Eclipse provides a view,
Maven Repository, which provides a synthetic view of your repositories (both local and remote) and their content as shown in the following screenshot:
[image: Maven Repository view]Maven Repository view in Eclipse 4.3 (Kepler)

This view synthesizes all remote and local repositories used by the project and their contents.
You can collapse, expand, and explore the different folders. You can also force a reindex of a repository.

Conclusion on Eclipse

Eclipse supports Maven well, yet this support is less broad than IntelliJ IDEA.

NetBeans

NetBeans is the official IDE promoted by Sun and now Oracle, for Java projects. Latest available version is NetBeans 7.3.
Overview

In similarity to Eclipse, on opening a POM, NetBeans switches to a POM-specific view. By default, four tabs are displayed. Source displays the text content of the POM. By the way, the Navigator frame displays the POM as a tree as shown in the following screenshot:
[image: Overview]Navigator frame in NetBeans 7.3

Another view, Effective, displays the effective POM. A virtual left column is added, to know the source of each block: this is useful for projects with complex or multi-level inheritance. The Graph view displays a graph of dependencies as shown in the following screenshot:
[image: Overview]Graph view in NetBeans 7.3

The dependencies can be filtered. Moreover, the maximum path depth to be highlighted can be set.
At last, the History view is common to all text files, and allows easy comparison of the currently edited file.

Dependency addition

In similarity to IntelliJ IDEA and Eclipse, you can add a dependency from the POM (by pressing Alt + Insert) and generate the corresponding code, thanks to a search and addition popup as shown in the following screenshot:
[image: Dependency addition]Add Dependency popup in NetBeans 7.3

At last, with NetBeans you can add dependencies into the POM from Java code. The process is similar to the one in IntelliJ: move the caret to the piece of code needing an import, and type Alt + Enter (or click on the red lamp replacing the line number on the left). NetBeans will propose several choices, among which one is Search dependency at Maven repositories for…. Then a modal window is opened, in which you can filter the right dependency to add as shown in the following screenshot:
[image: Dependency addition]Search in Maven Repositories popup in NetBeans 7.3

NetBeans can help developers and architects in managing the dependencies of their projects.

Summary

As a conclusion, we can say that the three main IDEs have many features that can alleviate the burden of managing dependencies, and therefore increase your productivity with:
	Auto-complete
	Dependency visualization
	Dynamic dependency addition

As usual, each and every developer will choose his or her favorite IDE owing to their usage, even though switching timely of an IDE still remains possible, when some particular features lack in the permanent one.
The following table compares the pros and cons of IDEs:
	
IDE

	
Pros

	
Cons

	
IntelliJ IDEA 12.1 (Leda)

http://www.jetbrains.com/idea/download/

	
	Complete set of features
	Code generation from POM and Java code
	Dependency graph
	XML completion

	
	Some plugins are not available in Community Edition
	No "effective POM" view

	
Eclipse 4.3 (Kepler)

http://www.eclipse.org/downloads/

	
	POM-specific view
	Maven Repository viewer
	Effective POM view
	Navigation to artifacts POMs

	
	No dependency graph
	Poor code generation tools

	
NetBeans 7.3

https://netbeans.org/downloads/

	
	POM-specific view
	Effective POM view
	Code generation from POM and Java code
	Dependency graph

	
	Dependency graph hard to read
	No navigation to artifacts POMs

Chapter 6. Release and Distribute

Until now, we have dealt with the artifacts on which your project does depend on. In this chapter, we will broaden the horizon and see your project as a released and depended on one.
We will review miscellaneous tips, tools, how-tos, and best practices. These might not always be 100 percent-Maven focused, however, that will improve your productivity and efficiency.
Best practices before release

Here are some pieces of advice, which are quite obvious, however, people tend to ignore them:
	Firstly, clean the POM, regularly. Frequency depends on your context, but cleanup should be performed at least once per release. The cleanup should deal with conflicts of dependencies, removal of unused JARs, version upgrade, and so on.
	Next, release versions should be built only on a continuous integration platform, such as Atlassian Bamboo, Apache Hudson/Jenkins, Continuum, and so on. Maven does not make a difference between foo:bar:version built locally and the "official" foo:bar:version built on continuous integration (even though the same source code should be compiled to the same bytecode, the rule "compile once, run everywhere" may fail). While discrepancies are common and inescapable with snapshots, such divergences should not be admitted with releases.
	Besides, the local repository of the machine on which release versions are built should be purged before building the release (goal mvn dependency:purge-local-repository). Yet, if multiple builds are run at the same time, issues may happen. As a workaround, consider having separate local repositories (accessed through—Dmaven.repo.local=/path/to/local/repo/for/releases in the command line) or even settings.xml files for different build profiles.
	Actually, this last point is part of a more general work organization. Schematically, a modern project can be considered as having several steps, which include development, building, and deployment. The following diagram shows a good organization:[image: Best practices before release]Efficient work organization with Maven: version control management, continuous integration, and repositories

Developers update the source code from version control systems (VCS), such as SubVersion, Git, and so on. They build locally snapshots, which are installed on their local repositories. Developers commit the code to the VCS. The source code is checked out by the continuous integration platform to be built and tested. The artifacts generated by a successful build are deployed on a remote repository, which is common to the organization. The developers' local repositories are fed with release versions downloaded from the organization repository (anyway, in some cases, developers may have to download and install manually some artifacts). If possible, the organization repository is the single entry point to feed external repositories, and get tier artifacts. Such a process guarantees a consistency of artifacts used within an organization.

Fixing conflicts with tier-parties

Your project dependencies are not the only artifacts that can raise conflicts—most of the time, a Java/JEE application is not purely standalone—and it lays on a tier application or container, which is either an application server or anything else. However, these tier applications embed their own dependencies—the amount of which can be in dozens—conflicts between resident application and host dependencies often happen. You have full interest to anticipate these conflicts and treat the problems ahead. The question that arises: "How to deal with them?"
Let's consider the artifact com.packt.dependencyManagement.chapter6:conflictWithTiers. It was generated through an archetype:

mvn archetype:generate -B \
 -DgroupId=com.packt.dependencyManagement.chapter6 \
 -DartifactId=conflictWithTiers \
 -DarchetypeGroupId=org.apache.struts \
 -DarchetypeArtifactId=struts2-archetype-blank \
 -DarchetypeVersion=2.3.8 \

Tip

Maven Archetype plugin

Maven Archetype allows us to create projects owing to a template. Such template structures are available for hundreds of frameworks and situations.

As is, the brand project has conflicts with Oracle WebLogic 11g on which it was targeted to be deployed. WebLogic has powerful tools to detect and fix such problems (among many others).
Classloader Analysis Tool (CAT) deserves to have a look at it. For instance, CAT reports the conflict with Apache Commons JARs and suggests the fix, as shown in the following screenshot:
[image: Fixing conflicts with tier-parties]Classloader Analysis Tool from WebLogic

In this situation, the solution consists in adding two configuration files, weblogic.xml and weblogic-application.xml, which are specific to WebLogic. The files are added within the folder src/main/webapp/WEB-INF/folder:
	Add the following code into the weblogic.xml file:<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app
 xmlns="http://www.bea.com/ns/weblogic/weblogic-web-app"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-web-app
 http://www.bea.com/ns/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd">
 <container-descriptor>
 <!-- Tells WebLogic to prefer libraries from WEB-INF folder rather than those from WebLogic self-classloader -->
 <prefer-web-inf-classes>true</prefer-web-inf-classes>
 </container-descriptor>
 <context-root>/conflictWithTiers</context-root>
</weblogic-web-app>

	Add the following code into the weblogic-application.xml file:<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE weblogic-application PUBLIC
 "-//BEA Systems, Inc.//DTD WebLogic Application 7.0.0//EN"
 "http://www.oracle.com/technology/weblogic/weblogic-application/1.1/weblogic-application.xsd">
<weblogic-application>
 <!--Apache Commons provoke conflicts with WebLogic: with the block below, we tell WebLogic the packagesfor which to prefer the dependencies of the WAR overthe dependencies of the WebLogic itself-->
 <prefer-application-packages>
 <package-name>org.apache.commons.*</package-name>
 <!--For this block to be taken in account, the tag<prefer-web-inf-classes> from weblogic.xml must be set at *true* -->
 </prefer-application-packages>
</weblogic-application>

Similar mechanisms exist for most of application servers. For a JBoss AS 7 of which you would like to exclude commons-lang, you would have to fill a src/main/webapp/WEB-INF/folder/jboss-deployment-structure.xml file with content similar to the following:
<?xml version="1.0" encoding="UTF-8"?>
<jboss-deployment-structure
 xmlns="urn:jboss:deployment-structure:1.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:jboss:deployment-structure:1.2http://www.jboss.org/schema/jbossas/jboss-deployment-structure-1_2.xsd">
 <deployment>
 <exclusions>
 <!-- Reference to $JBOSS_HOME/modules/org/jboss/as/jaxr/main -->
 <module name="org.jboss.as.jaxr"/>
 <!--You have to add as many blocks as modules withconflicts-->
 <module name="org.apache.velocity"/>
 <module name="org.apache.cxf"/>
 <module name="org.apache.juddi.scout"/>
 <!-- module etc.-->
 </exclusions>
 <dependencies>
 <!-- This is the name of dependency exported by the moduleof name javaee.api, in the module.xml file -->
 <module name="org.apache.commons.lang"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

This is similar for other application servers such as %JONAS_BASE%/conf/cloassloader-default-filtering.xml for JOnAS, WEB-INF/glassfish-web.xml for GlassFish, and so on.
As a conclusion, try to identify the potential conflicts at an earlier stage, that is, when a dependency is added or updated.

Releasing the source code

Once all code is compiled and tested, and the dependencies have been checked, it is time to release the software.
For a final Version x.y.0, best practice consists in:
	Tagging the Version x.y.0 and removing its x.y.0-SNAPSHOT status
	Creating a new branch x.y that will generate snapshots (x.y.1-SNAPSHOT, x.y.2-SNAPSHOT, and so on) and releases (x.y.1, x.y.2, and so on)
	Upgrading the version of the trunk to x.(y+1).0-SNAPSHOT

The Maven Release plugin

Maven Release plugin can help you in performing these tasks with the minimum human intervention possible. Here is an example of a minimal POM using Maven Release:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packt.dependencyManagement.chapter6</groupId>
 <artifactId>exampleOfRelease</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 <properties>
 <!-- Manually set BRANCH_NAME before running the plugin-->
 <BRANCH_NAME>1.0</BRANCH_NAME>
 </properties>
 <scm>
 <connection>
 scm:svn:http://svn.mycompany.extension:8066/myProject/branches/${BRANCH_NAME}
 </connection>
 <developerConnection>
 scm:svn:http://svn.mycompany.extension:8066/myProject/branches/${BRANCH_NAME}
 </developerConnection>
 <url>
 http://svn.mycompany.extension:8066/myProject/branches
 </url>
 </scm>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>
 maven-release-plugin
 </artifactId>
 <version>2.4.1</version>
 <configuration>
 <!-- Tell Maven to tag the version-->
 <remoteTagging>true</remoteTagging>
 <!-- Should be parameterized in settings.xml file -->
 <username>myUserName</username>
 <!-- Should be parameterized in settings.xmlfile -->
 <password>myPassWord</password>
 <tagBase>
 http://svn.mycompany.extension:8066/myProject/tags/
 </tagBase>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Delivering artifacts and distributions

In a project life, you are led to release your artifacts, either independently of any other binary, or included in a wider archive.
Artifacts

A good practice is to implement a simple rule; as stated earlier, team members can build any
SNAPSHOT versions, but the task of delivering a release version should be reserved exclusively to the continuous integration system. Actually, theoretically, the same code on any platform should produce the same bytecode and hence be archived. Anyway, on loading them from the local repository, Maven does not discriminate artifacts that have been locally built from those that have been downloaded from a remote repository, provided they have the same designation. Therefore, to be sure the same release artifact is common to all developers; the release versions should never be locally built. This avoids human errors, inconsistency of JARs, and the nightmare of hunting and fixing them.

Release distribution

In the following sections, we will see how to distribute the artifact that is generated by our project.
A simple case

Let's consider the com.packt.dependencyManagement.chapter6:exampleOfSimpleAssembly project. This is a simple project with direct dependencies to Groovy, Spring, and transitively to other stuff. For such a project, you are not interested in exporting one-on-one dependencies, and having a long, ugly, unreadable classpath, hence command line as follows:

java ./exampleOfSimpleAssembly-1.0.jar:$M2_REPO/aopalliance/aopalliance/1.0/aopalliance-1.0.jar:$M2_REPO/commons-logging/commons-logging/1.1.1/commons-logging-1.1.1.jar:$M2_REPO/org/codehaus/groovy/groovy-all/2.1.6/groovy-all-2.1.6.jar:$M2_REPO/org/springframework/spring-aop/3.2.3.RELEASE/spring-aop-3.2.3.RELEASE.jar:$M2_REPO/org/springframework/spring-beans/3.2.3.RELEASE/spring-beans-3.2.3.RELEASE.jar:$M2_REPO/org/springframework/spring-context/3.2.3.RELEASE/spring-context-3.2.3.RELEASE.jar:$M2_REPO/org/springframework/spring-core/3.2.3.RELEASE/spring-core-3.2.3.RELEASE.jar:$M2_REPO/org/springframework/spring-expression/3.2.3.RELEASE/spring-expression-3.2.3.RELEASE.jar com.packt.dependencyManagement.chapter6.MainClass

Rather, you would be glad to satisfy of a mere:

java -jar exampleOfSimpleAssembly-1.0.jar

Then you can use the Maven Assembly plugin. Assembly allows you to package your application with other material, such as sources, documentation, external dependencies, and so on. Four default aggregators called descriptors exist: bin, src, project, and jar-with-dependencies. The latter interests us (you can consult the Maven Assembly website for more information on the other three).
In the POM, let's add the following block:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.4</version>
 <executions>
 <execution>
 <id>generateSingle</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <!-- This Assembly will generate the regular JAR,plus a second one, suffixed with '-full'. -->
 <finalName>${project.artifactId}-${project.version}-full</finalName>
 <descriptorRefs>
 <!-- We call the predefined descriptor 'jar-with-dependencies'-->
 <descriptorRef>jar-with-dependencies
 </descriptorRef>
 </descriptorRefs>
 <appendAssemblyId>false</appendAssemblyId>
 <archive>
 <manifest>
 <!-- Let's create a Manifest file, hinting at the executable class to launch-->
 <mainClass>com.packt.dependencyManagement.chapter6.MainClass</mainClass>
 </manifest>
 </archive>
 </configuration>
 </execution>
 </executions>
</plugin>

On running an mvn clean install, two artifacts are generated:
	exampleOfSimpleAssembly-1.0.jar the usual one
	exampleOfSimpleAssembly full-1.0.jar that artifact contains all the dependencies, exploded as .class files, then re-bundled within a JAR

Then you can run the application and get the expected output (last line) as follows:

$ java -jar target\exampleOfSimpleAssembly-1.0-full.jar
12 August 2013 16:18:28 org.springframework.context.support.AbstractApplicationContext prepareRefresh
INFO: Refreshing org.springframework.context.support.ClassPathXmlApplicationContext@ab50cd: startup date [Mon Aug 12 16:18:28 CEST 2013]; root of context hierarchy
12 August 2013 16:18:28 org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadBeanDefinitions
INFO: Loading XML bean definitions from class path resource [applicationContext.xml]
12 August 2013 16:18:30 org.springframework.beans.factory.support.DefaultListableBeanFactory preInstantiateSingletons
INFO: Pre-instantiating singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@104faf8: defining beans [anyService,anyDao,org.springframework.context.annotation.internalConfigurationAnnotationProcessor,org.springframework.context.annotation.internalAutowiredAnnotationProcessor,org.springframework.context.annotation.internalRequiredAnnotationProcessor,org.springframework.context.annotation.internalCommonAnnotationProcessor,org.springframework.context.annotation.ConfigurationClassPostProcessor.importAwareProcessor]; root of factory hierarchy
*** 'any data' retrieved by Groovy / Spring annotation ***

Compiling both Java and Groovy sources

In a project such as the one in the preceding section, you have to compile both Java and Groovy sources. To perform that, the easiest way is to set maven-compiler-plugin a little more complex than usual:
<plugin>
 <!-- Use this particular configuration of maven-compiler-plugin, in order to compile both Java and Groovy sources,thanks to groovy-eclipse-compiler-->
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.0</version>
 <configuration>
 <compilerId>groovy-eclipse-compiler</compilerId>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-compiler</artifactId>
 <version>2.8.0-01</version>
 </dependency>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-batch</artifactId>
 <version>2.1.5-03</version>
 </dependency>
 </dependencies>
</plugin>

Tip

Maven Shade Plugin

We may have got a similar result with using another plugin: Maven Shade.

A complex case

Sometimes, you face situations more complex than the previous case. Then you need to call more advanced features of Maven Assembly:
Study case

Let's consider the com.packt.dependencyManagement.chapter6:exampleOfDistributions artifact. It has been built merely through a Maven archetype (mvn archetype:generate -B -DarchetypeGroupId=org.codehaus.mojo -DarchetypeArtifactId=gwt-maven-plugin -DarchetypeVersion=2.5.1). In itself it does not have more interest than any other "Hello World" level application. This artifact can build, generate a WAR, and deploy on any servlet container or application server. Let's assume that, in the future, this WAR becomes a wide spread application that is downloaded and installed by many tier parties. As a developer and maintainer of this project, you will be interested in releasing not only the WAR, but a complete distribution, which consists of the considered WAR with a ready-to-use (and possibly customized) server, such as Jetty servlet container, or TomEE (a JEE6-certified application server based on Tomcat and OpenEJB). This kind of custom bundle is more frequently used than people think: Sonatype Nexus, as well as various Apache projects, Atlassian products or Liferay actually are (or can be reconfigured as) Jetty servers with an embedded web app.
Maven Assembly plugin answers the frequent case of distribution building, with some exotic folder architecture. We have already seen, in the previous section, how to use a predefined descriptor; now we will dive deeper in custom descriptors.
The target of the current exercise is to build the following with one command:
	A WAR containing or compiled code with the needed dependencies.
	A ZIP with a ready-to-use Jetty 8.1.12 (last branch, 9.X, is not compatible with Java 6).
	Another ZIP with a ready-to-use TomEE 1.5.2.

In order to reach this goal, you will have to call the plugin Maven Assembly. Most of the time, Assembly basic features are sufficient. But in a case like our current one, we have to follow the steps given in the following sections.

Following the process

	Download and install the binary of both servers.	Install Jetty archive as a regular artifact:
mvn install:install-file \
 -DgroupId=org.eclipse.jetty \
 -DartifactId=jetty-distribution \
 -Dversion=8.1.12.v20130726 \
 -Dpackaging=zip
 -Dfile=/path/to/file/jetty-distribution-8.1.12.v20130726.zip

	Install TomEE as a regular archive. Hierarchically, Apache Foundation has classed TomEE as a subproject of OpenEJB (hence, we get the groupId).
mvn install:install-file \
 -DgroupId=org.apache.openejb \
 -DartifactId=tomee-webprofile \
 -Dversion=1.5.2 \
 -Dpackaging=zip \
 -Dfile=/path/to/file/apache-tomee-1.5.2-webprofile.zip

(You can notice we declare the packaging as zip).
Tip
We have manually installed the archives on local repositories. This works, but is is not the best way to deal with. Indeed, if your organization owns a private repository (such as Nexus, Artifactory, and Archiva), then the archives must be installed on it; then all team members will retrieve the same archive, downloaded from the common repository.

	In the POM, add regular dependencies to the artifacts you have just installed: org.eclipse.jetty:jetty-distribution:zip:8.1.12.v20130726 and org.apache.openejb:tomee-webprofile:zip:1.5.2.
	Call the Assembly plugin from the POM as follows:<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <descriptors>
 <!--Call the descriptor to generate Jetty bundle-->
 <descriptor>src/main/assembly/assembly-jetty.xml</descriptor>
 <!--Call the descriptor to generate TomEE bundle-->
 <descriptor>src/main/assembly/assembly-tomee.xml</descriptor>
 </descriptors>
 </configuration>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
</plugin>

	Edit the assembly-jetty.xml file. The code is self documented as follows:<assembly xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2 http://maven.apache.org/xsd/assembly-1.1.2.xsd">
 <id>distribution-jetty</id>

 <baseDirectory>${project.artifactId}-${project.version}</baseDirectory>
 <formats>
 <!-- The generated distribution will be a ZIP. Other available formats include most common ones(tar, tar.gz, etc.)-->
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>

 <dependencySets>
 <dependencySet>
 <outputDirectory>/</outputDirectory>
 <includes>
 <!-- Get the dependency-->
 <include>org.eclipse.jetty:jetty-distribution:zip:8.1.12.v20130726 </include>
 </includes>
 <directoryMode>744</directoryMode>
 <!-- Uncompress the archive-->
 <unpack>true</unpack>
 <unpackOptions>
 <excludes>
 <!-- exclude webapps folder content-->
 <exclude>**/webapps/**</exclude>
 </excludes>
 </unpackOptions>
 </dependencySet>
 </dependencySets>

 <fileSets>
 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory>/jetty-distribution-8.1.12.v20130726/webapps/</outputDirectory>
 <includes>
 <!--include the jar file generated by ourproject, then copy it into the folderhinted at in the 'outputDirectory' tag,just above-->
 <include>**/${project.artifactId}-${project.version}.${project.packaging}</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

	Edit assembly-tomee.xml and perform the same operations.
	Now you can build the project. As output you will get the following three archives:	exampleOfDistributions-1.0.war: The web app, as usual
	exampleOfDistributions-1.0-distribution-jetty.zip: A Jetty distribution, ready to unzip, run, and deploy the embedded web app
	exampleOfDistributions-1.0-distribution-tomee.zip: The same for TomEE

Conclusion

	Maven Assemblies allow building and distributing complex and highly customized archives. The preceding example can be adapted to most of the market application servers. This is what Liferay offers: on downloading Liferay, you are offered a choice between several bundles, as shown in the following screenshot:[image: Conclusion]

Distribution management

Any organization should have a central repository, in order to guarantee the consistency of artifacts for all teams. Many solutions exist on the market, either open source or commercial. In this section, we will deal with
Apache Archiva. however, most of the concepts are common to other systems, such as Sonatype Nexus and JFrog Artifactory:
	Download (http://archiva.apache.org/download.cgi), install, and execute Archiva, let's say on http://localhost:8080.
	Create an admin account and password, let's say admin/admin1.
	In your settings.xml, add the following block of code: <servers>
 <server>
 <!-- Repository for releases -->
 <id>archiva.releases</id>
 <username>admin</username>
 <password>admin1</password>
 </server>
 <server>
 <!-- Repository for snapshots -->
 <id>archiva.snapshots</id>
 <username>admin</username>
 <password>admin1</password>
 </server>
 </servers>

	In the POM, add the following block of code: <distributionManagement>
 <repository>
 <!-- The distributionManagement.repository.id*MUST* match the value of servers.server.idin settings.xml-->
 <id>archiva.releases</id>
 <name>Internal Release Repository</name>
 <url>
 http://localhost:8080/archiva/repository/internal/
 </url>
 </repository>
 <snapshotRepository>
 <!-- The distributionManagement.repository.id *MUST* match the value of servers.server.id in settings.xml-->
 <id>archiva.snapshots</id>
 <name>Internal Snapshot Repository</name>
 <url>
 http://reposerver.mycompany.com:8080/archiva/repository/snapshots/
 </url>
 </snapshotRepository>
 </distributionManagement>

	Run the following command:
mvn deploy:deploy-file \
 -Dfile=target\exampleOfDistributionManagement-1.0.jar
 -DpomFile=pom.xml
 -DDrepositoryId=archiva.releases
 -Durl=http://localhost:8080/repository/internal/

	The artifact is then deployed and available in Archiva:[image: Distribution management]

Here are a few remarks:
	A good practice is to discriminate artifacts according to the version (release or snapshot), and deploy them on different repositories. Snapshots are to be frequently uploaded and downloaded, whereas release versions should seldom be. So, on installing a repository, think of creating two subrepositories (or even two separated repositories running on two different instances and even host and ports).
	As stated earlier, artifacts, at least release ones, should not be uploaded by common developers and committers, but rather only by a "golden source", that is, in most of situations by the automatic and continuous integration system.

Summary

Thus, at the end of this chapter, we are able to:
	Prepare the release
	Detect and fix conflicts between our project dependencies and any tier party
	Deliver simple and complex distributions, thanks to the Maven Assembly plugin
	Perform the actual distribution of our artifacts

Appendix A. Useful Public Repositories

Here is a list of public repositories. They are known to host widely used artifacts. Some repositories discriminate releases and snapshots, others offer channels of staging, nightly, branches, and so on. Most of the time, the release channel is to be favored, but owing to your project's needs, you would select one or more channels.
At last, remind repositories should be set in settings.xml rather than in the pom.xml.
Maven Central

Maven Central is the main public repository. It contains most of the popular and open sources' artifacts.
 <repository>
 <id>MavenCentral</id>
 <name>Maven Central, aka iBiblio</name>
 <url>
 http://repo1.maven.org/maven2/
 </url>
 </repository>

iBiblio

iBiblio offers a public mirror for Maven Central.
 <repository>
 <id>iBiblio</id>
 <name>iBiblio mirror of MavenCentral</name>
 <url>
 http://mirrors.ibiblio.org/pub/mirrors/maven2
 </url>
 </repository>

 "Local" mirrors exist, according to the region of the world: whereas Central is located in Missouri, iBiblio is hosted in North Carolina. The interest of "local" repositories is to lower latencies and lighten the load on Maven Central, for example, http://uk.maven.org/maven2 in UK and Antelik's http://maven.antelink.com/content/repositories/central/ in France (the latter is neither official nor supported by Apache Maven).

JavaNet

JavaNet offers a public repository.
 <repository>
 <id>java.net.public</id>
 <name>Java.net PUBLIC: contains both snapshots and releases</name>
 <url>
 https://maven.java.net/content/repositories/public/
 </url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>

JBoss

Many artifacts, among which those released by Red Hat JBoss, are available on the JBoss repository.
 <repository>
 <id>JBoss.public</id>
 <name>JBoss</name>
 <url>
 http://repository.jboss.org/nexus/content/groups/public/
 </url>
 </repository>

CodeHaus

CodeHaus hosts a repository.
 <repository>
 <id>CodeHaus.repository</id>
 <name>CodeHaus repository</name>
 <url>
 http://repository.codehaus.org/
 </url>
 </repository>

Apache

Here is the Apache Foundation public repository.
 <repository>
 <id>Apache.public</id>
 <name>Repository for Apache Foundation projects: releases and snapshots</name>
 <url>
 https://repository.apache.org/content/groups/public/
 </url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>

OSS Sonatype

Sonatype, main contributor to Apache Maven, deploys a public Nexus that points to several "small" repositories related to one organization: http://oss.sonatype.org/.

 Index

 A

 	--also-make-dependents option / Reactor options and the Reactor plugin for Maven 2

 	--also-make option / Reactor options and the Reactor plugin for Maven 2

 	-amd option / Reactor options and the Reactor plugin for Maven 2

 	-am option / Reactor options and the Reactor plugin for Maven 2

 	analyze-dep-mgt goal / The analyze goal

 	analyze-duplicate goal / The analyze goal

 	analyze goal / The analyze goal

 	Apache	about / Apache

 	Apache Archiva	about / Distribution management

 	Apache Maven	origins / Reminders on Maven origins

 	Application PacKage (APK) file / The classic cases

 	artifactId / Long and short designations

 	artifactId attribute / Checksums

 	artifacts	about / Artifacts

 B

 	Black listed / Reports

 C

 	case study	about / Case study

 	Central Repository	URL / Online tools

 	Circular Dependency / Dependencies

 	Class Dependants / Dependencies

 	Class Depends On / Dependencies

 	classifier dependency	about / Long and short designations

 	classifier tag	about / The Classifier

 	Classloader Analysis Tool (CAT) / Fixing conflicts with tier-parties

 	Class Location / Reports

 	CodeHaus	about / CodeHaus

 D

 	Dependants / Dependencies

 	dependencies	in folders / Management of dependencies in folders, The dependencies in their folders, Nonarchive files

 	dependency	about / Dependency
	groupId / Long and short designations
	artifactId / Long and short designations
	version / Long and short designations
	classifier / Long and short designations
	type / Long and short designations
	scope / Long and short designations
	visualizing / Visualizing dependencies
	addition, from Java code / Dependency addition from Java code
	view / Dependency view
	Hierarchy view / Dependency Hierarchy view

 	dependency$analyze goal / The analyze goal

 	Dependency Hierarchy / Dependency Hierarchy view

 	Dependency Injection (DI) / The first step – Maven plugin

 	dependencyManagement tag	about / The dependencyManagement tag
	case study / First case study, Second case study

 	dependency mediation / Resolution

 	dependency plugin	about / The dependency plugin
	analyze goal / The analyze goal
	analyze-dep-mgt goal / The analyze goal
	analyze-duplicate goal / The analyze goal
	dependency$build-classpath goal / Classpath
	goals / Other goals of dependency

 	dependency tag / Scopes

 	Depends On / Dependencies

 	descriptors / A simple case

 	distribution	management / Distribution management

 	Dynamic POMs	about / Dynamic POMs and dependencies, Dynamic POM
	effective POM / Effective POM and settings
	project, requisites / Case study
	quick and dirty solution / A quick and dirty solution
	clean solution / A clean solution
	command lines, properties / With properties in command lines
	profiles / Profiles and settings
	settings / Profiles and settings
	conclusion / Dynamic POMs – conclusion

 E

 	ear / The classic cases

 	Eclipse	about / Eclipse
	dependency view / Dependency view
	dependency hierarchy view / Dependency Hierarchy view
	Effective POM view / Effective POM view
	Maven Repository view / Maven Repository view

 	Eclipse .classpath equivalent file / Case study

 	Eclipse 4.3 (Kepler)	URL / Summary

 	Eliminate Jar files with different versions / Reports

 	Enforce plugin	about / The Enforce plugin
	dependency convergence / The dependency convergence
	dependencies, banned / Banned dependencies
	other rules / Other rules

 F

 	--fail-at-endoption / Reactor options and the Reactor plugin for Maven 2

 	--fail-fast option / Reactor options and the Reactor plugin for Maven 2

 	-fae / Reactor options and the Reactor plugin for Maven 2

 	-ff option / Reactor options and the Reactor plugin for Maven 2

 	findJAR	URL / Online tools

 	findJAR search plugins	URL / Online tools

 	folders	setting / Setting the folders

 	foobarversion / Best practices before release

 G

 	Graphical dependencies / Dependencies

 	Groovy sources	compiling / Compiling both Java and Groovy sources

 	groupId / Long and short designations

 I

 	iBiblio	about / iBiblio

 	IDE	pros / Summary
	cons / Summary

 	IntelliJ IDEA	about / IntelliJ IDEA
	XML, with XSD completion / XML with XSD completion
	Module Dependency Graph / Module Dependency Graph
	dependency addition / Dependency addition
	dependency addition, from Java code / Dependency addition from Java code
	dependency, search within POM / Dependency search and generation within a POM
	dependency, generation within POM / Dependency search and generation within a POM
	conclusion / Conclusion on IntelliJ IDEA

 	IntelliJ IDEA 12.1 (Leda)	URL / Summary

 	Invalid version / Reports

 	Inversion of Control (IoC) / The first step – Maven plugin

 J

 	JavaNet	about / JavaNet

 	Java sources	compiling / Compiling both Java and Groovy sources

 	JBoss	about / JBoss

 	JUnit archive / Case study

 K

 	Kepler / Eclipse

 L

 	..lastUpdated file / Nonarchive files

 	long designation	about / Long designation

 M

 	maven-metadata-local.xml / Nonarchive files

 	maven-plugin / The classic cases

 	Maven Archetype plugin	about / Fixing conflicts with tier-parties

 	Maven Assembly plugin / A simple case

 	Maven Central	about / Maven Central

 	Maven Reactor	about / Maven Reactor
	sorting / Reactor sorting, Reactor options and the Reactor plugin for Maven 2
	options / Reactor options and the Reactor plugin for Maven 2
	plugin / Reactor options and the Reactor plugin for Maven 2

 	Maven Release plugin	about / The Maven Release plugin

 	Maven Repository view / Maven Repository view, Conclusion on Eclipse

 	Maven standard libraries	about / Introducing Maven with standard libraries
	available POM / Available POM
	unavailable POM / Unavailable POM
	information from Manifest.MF, disclosing / Disclosing information from Manifest.MF
	online tools / Online tools
	archive, checksum / Checksums

 	Module Dependency Graph / Module Dependency Graph

 	modules	about / Modules

 	Multiple Jar file / Reports

 	Multiple Jar files (packages) / Reports

 	Multiple Locations / Reports

 	mvn dependency$list / Other goals of dependency

 	mvn dependency$list-repositories / Other goals of dependency

 	MvnRepository	URL / Online tools

 N

 	--non-recursive option / Reactor options and the Reactor plugin for Maven 2

 	NetBeans	about / NetBeans
	overview / Overview
	dependency addition / Dependency addition

 	NetBeans 7.3	URL / Summary

 	Non-Maven standard libraries	about / Non-Maven standard libraries
	state / State
	JAR, adding as dependency / Quick and (very) dirty
	<remote repository>, declaring / (A bit) slower and (far) cleaner

 O

 	OSGi / Reports

 	OSS Sonatype	about / OSS Sonatype

 P

 	packages	creating / Creating a new packaging/type
	Maven plugin / The first step – Maven plugin
	plugin, calling / The second step – call the plugin

 	par (Persistence Archive) / The classic cases

 	Parent POM	about / Parent POM

 	Plexus	URL / The first step – Maven plugin

 	POM	about / Case study
	dependency, search / Dependency search and generation within a POM
	dependency, generation / Dependency search and generation within a POM
	block, adding / A simple case

 	POM view / Effective POM view

 	public repositories	Maven Central / Maven Central
	iBiblio / iBiblio
	JavaNet / JavaNet
	JBoss / JBoss
	CodeHaus / CodeHaus
	Apache / Apache
	OSS Sonatype / OSS Sonatype

 	purge-local-repository / Other goals of dependency

 R

 	--resume-from option / Reactor options and the Reactor plugin for Maven 2

 	-rf option / Reactor options and the Reactor plugin for Maven 2

 	-r option / Reactor options and the Reactor plugin for Maven 2

 	rar (Resource Archive) / The classic cases

 	release	best practices / Best practices before release
	distribution / Release distribution

 	release distribution	simple case / A simple case
	complex case / A complex case

 	release distribution, complex case	about / A complex case
	study case / Study case
	process, following / Following the process
	conclusion / Conclusion

 	release distribution, simple case	about / A simple case, Compiling both Java and Groovy sources

 	release version / Long and short designations

 	requireActiveProfile / Other rules

 	requireSameVersions / Other rules

 	requireUpperBoundDeps / Other rules

 	resolver-status.properties file / Nonarchive files

 S

 	Sauron Software website	URL / State

 	scope	importing / The import scope

 	scope dependency	about / Long and short designations

 	scopes	about / Scopes
	nomenclature / Nomenclature of scope
	compile / Compile
	provided / Provided
	runtime / Runtime
	test / Test
	system / System
	import / Import
	overlay rules / Scope overlay rules (via transitive dependencies)

 	Sealed information / Reports

 	short designation	about / Short designation

 	Signing information / Reports

 	SNAPSHOT versions / Artifacts

 	source code	releasing / Releasing the source code

 T

 	Tattletale	about / Tattletale
	dependencies / Dependencies
	reports / Reports
	archives / Archives

 	Tattletale, dependencies	Class Dependants / Dependencies
	Class Depends On / Dependencies
	Dependants / Dependencies
	Depends On / Dependencies
	Graphical dependencies / Dependencies
	Transitive Dependants / Dependencies
	Transitive Depends On / Dependencies
	Circular Dependency / Dependencies

 	Tattletale, reports	Class Location / Reports
	OSGi / Reports
	Sealed information / Reports
	Signing information / Reports
	Eliminate Jar files with different versions / Reports
	Invalid version / Reports
	Multiple Jar file / Reports
	Multiple Jar files (packages) / Reports
	Multiple Locations / Reports
	Unused Jar / Reports
	Black listed / Reports

 	tier-parties	conflicts, fixing / Fixing conflicts with tier-parties

 	Transitive Dependants / Dependencies

 	transitive dependencies	about / Transitive dependencies
	transitivity, concept / The concept of transitivity
	resolution / Resolution
	exclusions / Exclusions
	optional, dependencies / Optional dependencies

 	Transitive Depends On / Dependencies

 	type dependency	about / Long and short designations

 	types	creating / Creating a new packaging/type

 	type tag	about / The type tag
	classic cases / The classic cases

 U

 	Unused Jar / Reports

 V

 	version	about / Long and short designations
	ranges / Version ranges

 	version control systems (VCS) / Best practices before release

 W

 	war / The classic cases

 	white-listed APIs / Reports

 X

 	XML	with XSD completion / XML with XSD completion

 OEBPS/graphics/3019OS_05_01.jpg
%) Mozilla Firefox
Fiier Edtion Affichege Hstorigue Marquepages Outs 2
[e—— =l

€ @ locahhost:a080chaptert) ¢ ||B- cooge

(empty head)

Basic JSF/PrimeFaces/Spring/fake-Hibernate
with a clock and color picker

What is the date and dav?
08/06/2013 13:01:00

Select a color

then
Click me!

OEBPS/graphics/3019OS_05_07.jpg
X project [l chaptersfpom.aml 52 = =
Dependencies Fiter &
Dependency Management 4, w3

Dependencies 3 & (3

[Spmr——

) spring-orm: §{spring.version}
0 spring-tneb : §{spring.version)

) primefaces : ${primefaces.version).

O isF-pi §isf.version)

sfmpl : $4s version}

B2

serdet-api 1 2.5

fprapi 2.2

commons-fieupload : 1.3 [runtime]
Cekinpl: 2.2

Chsaldb :2.2.8

5 hibernate-annotations ${fibernate.version).

) lombek £ 0.12.0 [compie]
Clogéi + $flagdj.version)

To manage your ransitive dependency exclusions, please use the Dependency Herarchy page.

Overview | Dependenciss | Dependency Hirarchy | Effective POM | pom.m

OEBPS/graphics/3019OS_06_01.jpg
iferay Portal Downloads - Liferay.com - Mozilla Firefox

hier dtion Affichage _ Historique ges Outils de développement.

"4 Liferay Portal Downloads - Leray:com

& | @ vy feray.comffdownloadslferay-portalfavaia (B~ cooge

Gther.

CEvs EE

Additional Files License

Liferay Portal 6.1

Community Edition
6.1 CE GA2

Bundled with Tomcat

Looking for additional St Bundieg with Gerorimd ? Check the Addiional

Bundled with Glassfish
Bundled with JBoss

F| Bundied with Jetty
Bundled with JORAS + Tomeat
Bundled with Resin
Portal JavaDocs

Portal Source

OEBPS/graphics/3019OS_01_01.jpg
Co)
e .
LIE K

T H
L=
o
|
o
| —

OEBPS/graphics/3019OS_05_12.jpg
Navigator x

POM mackel

Model Versian :4.0.0
Grouptd : com packtdependencyManagement. chapters
Artfactid : chaptert
Packaging : war
Name ; Exsmple common to al 10Es
Verson : 1.0
Buld
Dependencies
spring-core.
spring-orm
spring-web
prinefaces
f-epi
efimpl
El
serviet-api
Fprapi
cammons fleupload

OEBPS/graphics/3019OS_01_04.jpg
MyProject

commons-
collections-
3.2

JUnit-4.11 DBUnit-2.3.0

commons-
collections-
.3

JUnit-3.8.2 JUnit-3.8.1

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/graphics/3019OS_03_02.jpg
£ Boss Tattletale 1,1.2.Final: Index

(€

i)

JBoss Tattletale 1.1.2.Final

Dependencies

Class Dependants (INFO)
Class Depends On (INFO)
Dependants (INFO)

Depends On (/')

Graphical dependencies (INFO)
Transitive Dependants (INFO)
Transitive Depends On (/)
Circular Dependency (ERROR)

Reports

Class Location (INFO)
05Gi (INFO)

Sealed information (INFO)

Signing information (INFO)

Eliminate Jar files with different versions (WARNING)
Invalid version (WARNING)

bultiple Jar fles (WARNING)

Multiple Jar files (Packages) (/4 7111)

Multiple Locations (WARNING)

Unused Jar (1 20015)

Black listed (ERROR)

o version (ERROR)

Archives

cssparser-0.9.5.jar (INFO)
el-ri-1.0.jar (INFO)

‘Quava-r08.jar (INFO)

sf-api-2.1.7.ar (INFO)

sfimpl-2.1.7 jar (INFO)

sp-api-2.1.jar (INFO)

5t-1.2 jar (INFO)

Drimefaces-3.5.jar (INFO)
fichfaces-components-api-4.1.0.Final jar (INFO)
richfaces-components-Li-4, 1.0 Final jar (INFO)
tichfaces-core-api-4. 1.0 Final jar (INFO)
tichfaces-core-impl-4.1.0.Final jar (INFO)
sac-1.3 jar (INFO)

Servlet-3pi-2.5 jar (INFO)

Generated by: JBoss Tattletale 1.1.2.Final

OEBPS/graphics/note.jpg

OEBPS/graphics/3019OS_05_02.jpg
a
5
9

</properties>
<dependencies>

<dependency>

<growpId>ory. springEranework</groupId>

i

</ae]

artifactId

classifier
exclusions
optional
scope
systenPath
ype

heep:

:/ /maven.
7 /maven.
7 maven.

+/ /maven.

+/ /maven.
+/ /maven.
+/ /maven.

//maven.

apache.
apache.
apache.
apache.
apache.
apache.
apache.
apache.

Press Cul+Espace o view tags om ater namespaces

org/PON/4.
org/pON/4.
org/pON/4.
org/pON/4.
org/pON/4.
org/pON/4.
org/pON/4.
org/pON/4.

OEBPS/graphics/3019OS_01_05.jpg
« depends onmiddle « Depends on back *Nodependency
soptional=false soptional=true

OEBPS/graphics/3019OS_06_02.jpg
) Apache Archiva - Mozilla Firefox
Echer Eoton Affkhage Hstovie Marquepages Qutlsde dévekppenent

pen—— =

€)@ bbost otiex et i e a0] [B- come

Archiva oo IEEieS s I < occomecren

ARTIFACTS Browse Repository
Al

Upload Artfact

ADMINSTRATION
@@ com packt dependencyManagement | chapter? | exampleQiDistrboutionManagement / 1.0

Repository Groups

Repostories

e Info Dependencies Dependency Tree Dependency Graph Affacts UsedBy MallngLists Metadata

ProxyConnector

Rules

Network Proxies
Legacy Support

GroupID com packt dependencyManagementchapter” POM Shippet

Repository Scanning ArtifactID exampleOiDistrioutionManagement <dependency>
<growpId> can. packe. dependencyanaganent . chapter7</group

Version 10 o
<artifactId> exanpleofDiztribution anaganent ¢ artifact1d

Runtine
Configuration

System Status Packaging jar
Ul Configuration <version1.0c/versiom

Reports </dependency>

users.
Manage Other details
Roles

Users Runtime

OEBPS/graphics/3019OS_05_03.jpg
it o nn || hoen |
L.

il commons-l logging
f——— sl sorng-om | g sprng-beans |—» gy sprngore |
shsprng-core
I e ——
shsprng-core
gt
e I e
i springraop |—> B sopaliance
sl sprngam
il spring-boans
shsprng-core
il spring-boans
il pring-context
shsprog-core

f——— s spogueb | —» g opatnce

N —

I spnr@M—b iy soring-aop

b i prinefaces

[N
s it
I

b o] st
[N —
b o] commorss fieupload

L hsgs

ottt ||t || gt E et
Hh Jecti

e
b/ s commons-toggng
b gy asmates
s iy dome

s gantr

L flfombok.

[—

OEBPS/graphics/3019OS_05_13.jpg
L{EE

xml [chaptere]

pom.

3.3 scopesi al

Path:

Hatory @, €, Find

[Gaah] tteane
T

OEBPS/cover/cover.jpg
Apache Maven Dependency
Management

Jonathan Lalou []”P,Sli?i"e&

OEBPS/graphics/3019OS_05_14.jpg
® Add Dependency.

Growp I

Artioct 1D

Version;

comple

Type: Classter

Seatch | Open projets [Deperdry encenert |

Query: |guave]

(coordinate, class name, praject name...)
Search Resuks:

Searching,

com.google.guava: guava
cam.google.guava t guava-parent
orgsonatype.sisu sisu-guava
orgsonatype.sisu.nject : guava-parent

OEBPS/graphics/3019OS_01_06.jpg

OEBPS/graphics/3019OS_02_01.jpg
Project2 Plugin3

Project0

Project1

Plugind

OEBPS/graphics/3019OS_05_11.jpg
& Java - chapter6/pom.xml - Eclipse

Flo Edt Nevgate Seach Projct & window Help
C5o E B G N O QB G
© * FErETE——

5 [Problems @ Javadoc [, Declara... = Progress

]
Local Repostories
ocal Repository (C:\Documents and Settings|jlaloul, m2irepository)
=5 workspace Projects
=& com
& packt
=[5 dlobal Repostories
= central (http:/jrepo.maven. apache.orgjmavenz)
& abbot
& acegisecurty
G activation
& activecuster
& activeio
=G activemq
0 activema -2
&0 activemq-axis - jar
® activema-axis 2.1
® activema-axis : 2.0

OEBPS/graphics/3019OS_05_15.jpg
public class AnyBean {
@hutowired
private AnyService anyService;
private XStream xtream:
B .] ¥ Search In Maven Repositories.
private String color;

Class Name

public String process() | [sweam

anyService.callServy yaghing atfacts
return "index”;

E-a com.thoughtworks sstream :xstream

T et -lees
5130 -local

com thaughtworks xstream :xstream : 1.4.3 [far]

OEBPS/graphics/3019OS_05_09.jpg
& Manage Dependencies

This il start managing the selected dependencies for all child POMS, You may select the POM that wil manage these.
dependencies. The version information wil then be moved to t

Select dependencis to manage:

Select the POM which will manage the dependencies:

5 spingcare §{spring,version

5 springram : g, version}

5 springweb - §{spring.version):

0 primefaces : ${primefaces.version}
{7 fsf-api : $jsF.version}

0 jsimpl . version)

{7 commons-fileupload : 1.3 [runtime]

O ebimpl: 2.2

O hsadb :2.28

) hibernate-annotations : ${fibernate.ve.
) lombok : 0.12.0 [compile]

(loge : $logé).version).

& compack.dependencyManagement chapter : chapter : 1.0

OEBPS/graphics/3019OS_04_02.jpg
Echier Edton Affichage Hstorigus Marque-pages Outls

 org.apache. commons.ci GnuPerser - J4R Se.

(&)@ woniodorcomindex srauery=org opa

'ﬁ ndJAR.cn

[[JAR/Class Search

Last queries: MessaqeFactoryImel iy encentrepm sprina-tr

Search results for
org.apache.commons.cli.GnuParser

tctass] org.apache.commons cli.GnuParser
tctass] org.apache.commaons cli.GnuParser
tctass] org.apache.commons cli.GnuParser
tctass] org.apache.commans cli.GnuParser
tctass] org.apache.commaons cli.GnuParser
tctass] org.apache.commaons cli.GnuParser
tctass] org.apache.commons cli.GnuParser
tctass] org.apache.commaons cli.GnuParser

SHOW AL

O DoNATE B e) (3 BoOKARK o 40 27

Al rights reserved, () serFISH.com, 2008-2010,
find)AR.com i part of the sarFISH.com service natwork
Other saruices: « Fres brouser-bazed SSH client » HTTE funnl far POP3 4nd SMTE » snd many more.

OEBPS/graphics/3019OS_05_06.jpg
Maven Artifact Search

Search for artFact | Search for class

forg.apache

&~ Ml oxg. apache.

t;.a.;
17.0

M oxg. apache.
& Ml oxg. apache.
M oxg. apache.

ant:ant-Launcher: 1.5.1

ant:ant-nodeps:1.5.1
ant:ant-parent:1.5.1

OEBPS/graphics/3019OS_03_01.jpg
Dependencies Report - Mozilla Firefox EEX
Echer Edvon afchege tistoique Marquepages Qutls 2
" Dependencies Report

€ HesliCworareaidevelopment PACKT_prvex c|[m- s & A

Last published: 2013-07-05

Generared by Maven

Dependency Analys

Used and declared dependencies

Groupld Artifactld Version Scope Classifier Type Optional
orgapache camel camel-exec 297 compile jar false
comgooglecode grepdjgrepdj 175 compile jar false

Used but undeclared dependencies

Groupld Astifactld Version Scope Classifier Type Optional
org apache camel camel-core 297 compile jar Balse

Unused but declared dependencies

Groupld AttifactTd Version Scope Classifiex Type Optional
directory apacheds-core 0.93 compile jar false
org apache tapestry tapestry-upload 5,37 compile jar false

OEBPS/graphics/3019OS_06_04.jpg
Echier Edtion Affchage _istorique Marque-pages Qutls de développement.
)T - Classlosder Analyss Tool L+

€ @ 10100112 701t e

ORACLE Weblogic Server®

Classloader Analysis Tool
Running Applications

onfictwEhTirs-18modl

orfictWahTiers-1.0-SNAPSHOT.wartaction=conficts c|[B- sooe £l e

Conlflict Report for Application: conflictWithTiers-1 Module: conflictWithTiers-1.0-SNAPSHOT.war

myserver refresh]

Eh-confictWihTirs-1 Tl 2

T Leictititare {0 SPEOTrE ‘Actions: Summary | Analyze Conflcts | Classloader Tree | Generate Report
B-conscleapp.

Report

Conflcts Summary Filtering Classloader Info

There are potential conflts detected and they do not seem ta have been

The fitering classloader acts a5 @ barter between the applcation
resolved. Plase review the potential souions below,

classloaders and the system classloaders. By configurng the fitering
classloader correcty, the appication can choose to load certain

e — classes localy ather then from the system casspath.
« Those dlasses are found n the folowing main packages: « Noreferences
© oraapache.commons.®

Suggested Solution

<prefer-application-packages>
<package-name>org. apache. commons . </ pa
</prefer-application-packages>

age-nae>

Conflicts.
Resource: <select below>

Below i a st of classes that re marked 2 potent
conflcts, By cicking on a dass, further formation about
tisclas i be shown n this space. This nformation
Inchades the akternative locatons thisclss may be found
and whch cassloader actually vl load this cless.

Classes:

« crg.apache.commons fleugoad DefaFeltem

« org.apache.commans leupload OefautFieltenFactary
= e ko Diclede ooy

OEBPS/graphics/3019OS_05_05.jpg
Generate

il Maneged Dependency

il Dependency Template
45 Plugi Templete
1 Repostory Tenplate

i Parert

ML Tag,

< Fartifactis

OEBPS/graphics/3019OS_05_08.jpg
& Select Dependency

Growp ;4]

Artfact 1d:]

Version! comple

Enter oroupld, artfactId or shal prefix o pattern (*):

*quava®

Search Resuks:

0 bizlitel.reqs reas-quava
) com blogspot.mydaiyjava guava-cathe-overflow-extension

com fasterxmljackson jackson-datatype-guava

com fasterm jacksan. datatype. jackson-datatype-guava
com.github.derielwegener.xic. xjc-guave-plugin
com.github.jknack. handiebars-guava-cache
com.github.rholder quavarretrying

com.google.guava quava

com.google.guava quava-annotations
com.acodle.auava_auavarbase

[elele lelele el

© artfact 1d cannot be empty

@

OEBPS/graphics/3019OS_05_10.jpg
X project
Dependency Hierarchy [test]

Dependency Hierarchy o ®

spring-core : 3.1.0.RELEASE [compe]
3 spring-asm : 3.1.0.RELEASE [compie]
commons-logaing : 1.1.1 [compie]
spring-orm : 3.1.0 RELEASE [comple]
=1 springrbeans : 3.1.0.RELEASE [compie]
3 spring-core : 3.1.0.RELEASE [compie]
3 spring-core 3.1.0.RELEASE [compie]
spring-jdbc : 3.1.0.RELEASE [compie]
3 springrbeans : 3.1.0.RELEASE [compie]
spring-care : 3.1.0.RELEASE [compie]
) spring-bx: 3.1.0.RELEASE [compie]
=3 springrtx: 3.1.0.RELEASE [compie]
) aspaliance : 1.0 [compie]
=+ spring-aop : 3.1.0.RELEASE [compie]
) aspaliance : 1.0 [compie]
) spring-asm : 3.1.0.RELEASE [compie]
) springrbeans 3.1.0.RELEASE [comple]
53 spring-core : 3.1.0 RELEASE [compie]
spring-beans : 31,0 RELEASE [<omple]

<

a
%, 10

[chapterefpom.xl 52w commons-fleuploact commons-fleupioad:1.3.pom

>

=g
s [] it
Resalved Dependsndes RS
O antl : 2.7.6 [compile] L

0 aopaliance : 1.0 comple]

s+ 1.5.3 [compie]

seattrs : 1.5.3 [compie]

glb : 2.1_3 [compie]
ommans-colectians : 2.1.1 [comple]

ommons-fleupload : 1.3 runtime]

ommons-i : 2.2 [runtine]

) commons-ogging : 1.1.1 [compie]

foms) - 1.6.1 [compie]

D ehcache : 1.2.3 [comple]

efb3-persistence : 1.0.1.G# [comple]

D ekapi: 22 [compie]

0 kil 2.2 [compie]

) ibernate : 3.2.6.a [compie]

5 ibernate-annotations : 3.3.1.GA [compie]

5 hibernate-commons-annotations : 3.0.0.a [compie]

) hsaldb : 2.2.8 [comple]

) if-api : 2.2.0-m06 [compie] v
< >

Overview | Dependenciss | Dependsncy Hisrarchy | Effective PO | pom.ml

) probiame F— [—

OEBPS/graphics/3019OS_05_04.jpg
publlic class JraginitTest {
[)
private HibernateTemplate hibernateTenplate;

Adbrary Miaven: org,springframemarkispringorm3. .0 RELEASE to csspath
@ Creste clss HbermteTemplate

| @ creste Enum HibsmateTenplate

@ Creste Iner Clss HbernateTemplate

S| @ Create Interface HbemateTemplats’
Addaven Dependency.
ke fprotected >
ke puble >

Make package-ocal »

OEBPS/graphics/3019OS_01_03.jpg
l My Project

apacheds
core09.3

camel-exec
297

tapestry-
upload-53.7

l Grepaj17.5

Level 0

VA

Level 1

_J

Level 2

OEBPS/graphics/3019OS_06_03.jpg
= Installreleases (&

Tier remote
repositories

Deploy snapshots &
releases

Organization remote repositories

Continuous Integratiom___

update

—
Install snapshots

Localrepo
Install releases (& Do mme Update / commit
some snapshots) Version Management System \""

Build locally

Localrepo Developper

Install snapshots

