Apache Maven 3
Cookbook

Over 50 recipes towards optimal Java software engineering with
Maven 3

Srirangan [||l

PUBLISHING

Apache Maven 3
Cookbook

Over 50 recipes towards optimal Java software
engineering with Maven 3

Srirangan

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Apache Maven 3 Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2011
Production Reference: 1180811

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-849512-44-2
www . packtpub.com

Cover Image by Parag Kadam (paragvkadamegmail . com)

Credits

Author
Srirangan

Reviewer
Carsten Ziegeler

Emmanuel Venisse

Acquisition Editor
Sarah Cullington

Development Editor
Chris Rodrigues

Technical Editor
Priyanka S

Copy Editor
Leonard D’Silva

Project Coordinator
Michelle Quadros

Proofreader
Lisa Brady

Indexer
Hemangini Bari

Graphics
Nilesh Mohite

Production Coordinator

Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Srirangan is a passionate programmer with nine years of experience in freelance, open
source, and Enterprise. He has executed projects in a broad range of technologies including
Python, PHP, Scala, Java, Adobe Flex, HTML5, Javascript, and so on.

He is the creator of Review19 (http://www.reviewl9.com); an innovative, real-time Agile
team collaboration and project management tool. He is also involved with India Defence
(http://www.indiadefence. in) which is India's largest web property dedicated to the
defense sector.

Sri is a senior consultant in Inphina Technologies (http://www.inphina.com), a rapidly
expanding, high-end technology startup in New Delhi focusing on cloud computing
(Google App Engine, Hadoop) and emerging technologies.

He is an enthusiastic open source contributor and his open source projects are available on
GitHub and BitBucket:

https://github.com/Srirangan
https://bitbucket.org/srirangan

To know more you can also visit the following links:
Blog - http://srirangan.net

Twitter - http://twitter.com/srirangan

LinkedIn - http://www.linkedin.com/in/srirangan

About the Reviewer

Carsten Ziegeler is a senior developer and software architect for JEE and portal
applications at Adobe Systems. He is a member of the Apache Software Foundation and has
been participating for more than twenty years in several open source projects. Carsten is

a member of several Apache communities and project management committees like Felix,
Sling, and Portals. In addition, Carsten is frequently writing articles, reviewing books, and
presenting at various conferences.

Emmanuel Venisse has been developing, architecturing, and integrating J2EE
applications for thirteen years for banks, government, holiday company projects, and so

on. For the last six years, he has worked as a freelancer. For the last eight years, he's been
working, in his spare time, on Apache Maven, Continuum and Archiva projects as a core
developer and he's also the Continuum project leader. He has contributed to the majority of
books written about Apache Maven.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

Im PACKT i1°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content
» On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents

Preface 1
Chapter 1: Basics of Apache Maven 7
Setting up Apache Maven on Windows 8
Setting up Apache Maven on Linux 11
Setting up Apache Maven on Mac 12
Verifying the Apache Maven installation 13
Creating a new project 14
Compiling and testing a project 17
Understanding the Project Object Model 19
Understanding the build lifecycle 21
Understanding build profiles 22
Chapter 2: Software Engineering Techniques 25
Build automation 26
Project modularization 28
Dependency management 31
Source code quality checks 34
Test Driven Development 37
Acceptance testing automation 40
Deployment automation 44
Chapter 3: Agile Team Collaboration 47
Creating centralized remote repositories 48
Performing continuous integration with Hudson 54
Integrating source code management 57
Team integration with Apache Maven 60
Implementing environment integration 64
Distributed development 67
Working in offline mode 69

Table of Contents

Chapter 4: Reporting and Documentation 73
Documenting with a Maven site 74
Generating Javadocs with Maven 77
Generating unit test reports 81
Generating code coverage reports 85
Generating code quality reports 87
Setting up the Maven dashboard 90

Chapter 5: Java Development with Maven 95
Building a web application 96
Running a web application 100
Enterprise Java development with Maven 102
Using Spring Framework with Maven 106
Using Hibernate persistence with Maven 112
Using Seam Framework with Maven 119

Chapter 6: Google Development with Maven 125
Setting up the Android development environment 126
Developing an Android application 128
Testing and debugging an Android application 132
Developing a Google Web Toolkit application 134
Testing and debugging a Google Web Toolkit application 139
Developing a Google App Engine application 142

Chapter 7: Scala, Groovy, and Flex 147
Integrating Scala development with Maven 148
Integrating Groovy development with Maven 153
Integrating Flex development with Maven 156

Chapter 8: IDE Integration 163
Creating a Maven project with Eclipse 3.7 164
Importing a Maven project with Eclipse 3.7 168
Creating a Maven project with NetBeans 7 172
Importing a Maven project with NetBeans 7 177
Creating a Maven project with IntelliJ IDEA 10.5 179
Importing a Maven project with Intelli) IDEA 10.5 183

Table of Contents

Chapter 9: Extending Apache Maven 187
Creating a Maven plugin using Java 188
Making your Java Maven plugin useful 192
Documenting your Maven plugin 196
Creating a Maven plugin using Ant 198
Creating a Maven plugin using JRuby 200

Index 203

Preface

Apache Maven is more than just build automation. When positioned at the very heart of your
development strategy, Apache Maven can become a force multiplier not just for individual
developers but for Agile teams and managers. This book covers implementation of Apache
Maven with popular enterprise technologies/frameworks and introduces Agile collaboration
techniques and software engineering best practices integrated with Apache Maven.

The Apache 3 Maven Cookbook is a real-world collection of step-by-step solutions for
individual programmers, teams, and managers to explore and implement Apache Maven
and the engineering benefits it brings into their development processes.

This book helps with the basics of Apache Maven and with using it to implement software
engineering best practices and Agile team collaboration techniques. It covers a broad range
of emergent and enterprise technologies in the context of Apache Maven, and concludes
with recipes on extending Apache Maven with custom plugins.

We look at specific technology implementations through Apache Maven, including Java Web
Applications, Enterprise Java Frameworks, cloud computing, mobile / device development,
and more. We also look at Maven integration with popular IDEs, including Eclipse, NetBeans,
and IntelliJ IDEA.

The book is rounded off by exploring how to extend the Apache Maven platform by building
custom plugins, integrating them with existing projects, and executing them through explicit
command-line calls or with Maven build phases.

What this book covers

Chapter 1, Basics of Apache Maven, assists you while you take your first steps with Apache
Maven. It will cover setting up Apache Maven on your operating system, verifying the setup,
and getting started with your first Apache Maven project.

Chapter 2, Software Engineering Techniques, introduces us to implementing software
engineering best practices and techniques (such as Test Driven Development, build automation,
dependency management, and so on) with Apache Maven.

Preface

Chapter 3, Agile Team Collaboration, helps you implement collaboration mechanisms with
Apache Maven that aid team and distributed development.

Chapter 4, Reporting and Documentation, helps you generate reports and documentation,
code quality, test coverage reports, and other related metrics and bundles them in a
Maven site.

Chapter 5, Java Development with Maven, helps you take on web application and enterprise
application development challenges with Java while leveraging popular frameworks including
Spring and Hibernate.

Chapter 6, Google Development with Maven, gets you up and running with Android, Google
App Engine, Google Web Toolkit development, and testing with Apache Maven.

Chapter 7, Scala, Groovy, and Flex, discusses these popular upcoming technologies and
frameworks and gets you started on these with Apache Maven.

Chapter 8, IDE Integration, looks at working with Apache Maven directly from your IDE without
having to switch back to the terminal.

Chapter 9, Extending Apache Maven, shows you how to extend Apache Maven features by
development in Java, Apache Ant, and JRuby.

What you need for this book

Apache Maven is based on the Java platform, thus the main requirement is the Java SDK.
Recipes in the first chapter guide you on how to set up the Java SDK on your machine. Other
than this, Apache Maven automatically downloads all dependencies during execution. Make
sure you have fairly good internet access available while working with Apache Maven.

For coding popular IDEs such as IntelliJ, IDEA, Eclipse, and NetBeans can be used. | prefer
and recommend IntelliJ IDEA, but even a text editor such as (Scite, TextMate, or Notepad++)
should be good enough.

Who this book is for

This book is for Java developers, teams, and managers who want to implement Apache Maven
in their development process, leveraging the software engineering best practices and Agile
team collaboration techniques it brings along. The book is also specifically for the developer
who wishes to get started in Apache Maven and use it with a range of emergent and
enterprise technologies including Enterprise Java, Frameworks, Google App Engine,

Android, and Scala.

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The archetype: generate command would have
generated a sample Apache Maven project for us".

A block of code is set as follows:

<mirrors>
<mirror>
<id>TestRepository</id>
<name>My test repository</name>

<urlshttp://localhost:8080/nexus-webapp-
1.8.0/content/repositories/TestRepository/</url>

<mirrorOf>*</mirrorOfs>
</mirrors>
</mirrorss>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<groupIds>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>
<skip>true</skip>
</configuration>

Any command-line input or output is written as follows:
$ mvn install -Dmaven.test.skip=true

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Enter the administrative
Username and Password."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www . packtpub . com or e-mail suggest@packtpub.com

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http: //www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Basics of Apache
Maven

In this chapter, we will cover:

v

Setting up Apache Maven on Windows
Setting up Apache Maven on Linux
Setting up Apache Maven on Mac
Verifying the Apache Maven installation
Creating a new project

Compiling and testing a project
Understanding the Project Object Model
Understanding the build lifecycle

vV vV vV v vV v VY

Understanding build profiles

Apache Maven originated as an attempt to simplify the build process for the now defunct
Apache Jakarta Alexandria project. Its formative years were then spent in the Apache Turbine
project where it eventually came to replace a brittle and fragile build system based on
Apache ANT.

Given Maven’s tremendous potency and effectiveness in solving a majority of our day-to-day
challenges, it has become hugely popular and is now widely used not only by developers but
by other roles in a team including scrum masters, product owners, and project managers.

In recent years, Maven has clearly emerged as an important force-multiplier for Agile teams
and organizations.

Basics of Apache Maven

On its official website, http://maven.apache.org, Apache Maven’s objectives are
listed as:

Making the build process easy

Providing a uniform build system

Providing quality project information

Providing guidelines for best practices in development

vV v.v.v .y

Allowing transparent migration to new features

Whatever the reasons that made you choose Maven (be it build automation, dependency
management, standardization, testability, lifecycle management, continuous integration, or
any other industry best practice), the recipes in this book will get you up and running in the
shortest time possible.

In the upcoming recipes, we will set up Maven on various platforms and host environments
followed by selectively exploring the core concepts of the Project Object Model and the
Maven build lifecycle.

Setting up Apache Maven on Windows

We will look at installing and setting up Apache Maven on the Windows operating system.
Maven is a command-line tool and needs to be integrated with the Windows environment
variables. The process is quite simple and Java dependent.

There is a chance Apache Maven may have been pre-installed on your machine. Verify that
Maven isn’t already installed before proceeding.

[See the recipe Verifying the Maven installation in this chapter]
Getting ready

As mentioned, a prerequisite for working with Maven is the availability of the Java
Development Kit. Make sure that the JDK is available before proceeding. This can
be verified by running the following command line:

Java -version
It will give the following output:

java version "1.6.0 21"
Java(TM) SE Runtime Environment (build 1.6.0 21-b06)
Java HotSpot(TM) Client VM (build 17.0-bl6, mixed mode, sharing)

—e1]

Chapter 1

If you do not have JDK installed, you can download it at http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

Got JDK? Next you need to get your hands on Maven. You can download it from:
http://maven.apache.org/download.html

After downloading Maven, extract the archive into any folder. For Windows, it is advised that
the path doesn’t contain any white-space characters. | extracted Maven in the D drive.

D:\apache-maven-3.0.2\

How to do it...

To start using Maven, we need to configure Windows environment variables. The M2 HOME
variable needs to be set and the PATH variable needs to be modified to include the Maven
binaries folder.

You can set the environment variables by accessing the System settings in the Control Panel.

System Properties e B

System Restore I Automatic Updates I Remate |
General I Computer Name I Hardware Advanced

ou must be logged on as an Administrator bo make most of these changes.

~ Performance
izual effects, proceszor scheduling, memony uzage, and virtual memary

Settings |

r— User Profiles

Deskiop zettings related to your lagan

Settings

i

i Startup and Fiecovery

Syztem startup, spstem failure, and debugging information

Seftings |

Error Reporting |

{ Enwironment Yariable

Ok, | Cancel | Spply |

Basics of Apache Maven

Select Environment Variables and then the New button to create a new environment variable.

Environment Yariables e

User variables for Srirangan

‘ariable | alue |
TEMP Ds\Cocuments and SettingsiSrirangan'iL. ..
TMP DiiDocuments and SettingsiSriranganiL. ..

ey Edit | Delete |

—aystem variables

Wariable | Yalue | -

ComSpec DWW INDOWS, syskem 32, cmd. exe

FP_MO_HOST C... NG =

JaY8_HOME Diijdkl.6.0_21

MZ_HOME [i\apache-mawen-3.0-beta-2

MUMBER_OF_P... 2 ;I
Edit | Delete |

oK | Cancel |

Create a new environment variable for M2_HOME pointing to the Maven base directory. For me,
the value of M2_HOME will be D: \apache-maven-3.0.2\.

The PATH environment variable will already exist. Select it and click Edit to modify. It must be
modified by appending the following text at the end:

; $M2_ HOMES$\bin

Apache Maven is now ready and available for use in the command line. It is also available for
integration with IDEs and other development tools, but more on that in upcoming chapters.

Setting up Apache Maven on Linux in this chapter

Setting up Apache Maven on Mac in this chapter

Verifying your Apache Maven installation in this chapter
Working with Eclipse and Maven in Chapter 8, IDE Integration
Working with NetBeans and Maven in Chapter 8, IDE Integration
Working with IntelliJ and Maven in Chapter 8, IDE Integration

vV v.v. v.YVvy Yy

Chapter 1

Setting up Apache Maven on Linux

The Linux distribution used in this book is Ubuntu 10.04. If you use any other Linux
distribution, the steps should nevertheless remain similar. Apache Maven is a command-line
tool; it just needs to be extracted and configured with the operating system’s environment.

There is a chance Apache Maven may have been pre-installed on your machine. Verify that
Maven isn’t already installed before proceeding.

[See the recipe Verifying the Maven installation in this chapter]
Getting ready

A prerequisite for working with Maven is the availability of the Java Development Kit. Make
sure the JDK is available before proceeding. This can be verified by running the command line:

java -version
It should give the following output:

java version "1.6.0 18"
OpendDK Runtime Environment (IcedTea6 1.8.1) (6bl8-1.8.1-Oubuntul)
OpendDK Client VM (build 16.0-bl3, mixed mode, sharing)

If you do not have JDK installed, you can download it at: http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

Got JDK? Next you need to get your hands on Maven. You can download it from:
http://maven.apache.org/download.html.

After downloading Maven, extract the archive into a folder. For example, | extracted Maven into
my home folder, /home/srirangan/apache-maven-3.0.2/. This will be an installation
for a single user.

How to do it...

The next step is to add commands for exporting the PATH and M2_HOME environment
variables in the .bashrc file. This file can be found in the user’s home folder, which for
me is /home/srirangan/.bashrc.

export M2 HOME=/home/srirangan/apache-maven-3.0.2
export PATH=${PATH}:${M2_HOME}/bin

s

Basics of Apache Maven

Apache Maven is now ready and available for use in the command line. It is also available for
integration with IDEs and other development tools, but more on that in upcoming chapters.

Setting up Apache Maven on Windows in this chapter

Setting up Apache Maven on Mac in this chapter

Verifying your Apache Maven installation in this chapter
Working with Eclipse and Maven in Chapter 8, IDE Integration
Working with NetBeans and Maven in Chapter 8, IDE Integration
Working with IntelliJ and Maven in Chapter 8, IDE Integration

Setting up Apache Maven on Mac

Installing Maven on the Mac OS X isn’t very different from the installation and setup on Linux.
This really shouldn’t be a surprise because OS X is built on top of BSD Linux in the first place.
Apache Maven is a command-line tool; it just needs to be extracted and configured with the
operating system’s environment.

vV v .v.v. vy

There is a chance Apache Maven may have been pre-installed on your machine. Verify that
Maven isn’t already installed before proceeding.

[See the recipe Verifying the Maven installation in this chapter]
Getting ready

A pre-requisite for working with Maven is the availability of the Java Development Kit. Make
sure the JDK is available before proceeding. This can be verified by running the following
command line:

java -version
It should give the following output:

java version "1.5.0 19"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0 19-b02-306)
Java HotSpot (TM) Client VM (build 1.5.0 19-138, mixed mode, sharing)

Chapter 1

If you do not have JDK installed, you can download it at:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Got JDK? Next you need to get your hands on Maven. You can download it from:
http://maven.apache.org/download.html

After download, extract the archive into a folder. For example, you can extract the archive in
/usr/local/maven/. This can, of course, be any directory of your choice and not /usr/
local/maven in particular.

How to do it...

The next step is to add commands to export the PATH and M2 _HOME environment variables in
the .bash login file.

export M2 HOME=/usr/local/maven
export PATH=${PATH}:${M2 HOME}/bin

Apache Maven is now ready and available for use in the command line. It is also available for
integration with IDEs and other development tools, but more on that in upcoming chapters.

See also

Setting up Apache Maven on Windows in this chapter

Setting up Apache Maven on Linux in this chapter

Verifying your Apache Maven installation in this chapter
Working with Eclipse and Maven in Chapter 8, IDE Integration
Working with NetBeans and Maven in Chapter 8, IDE Integration
Working with IntelliJ and Maven in Chapter 8, IDE Integration

vV v v.v.Vvy

Verifying the Apache Maven installation

Did you just try and install Apache Maven? It's time to verify it. Alternatively, your operating
system may have Apache Maven pre-installed.

Whether user installed or pre-installed, here’s how to verify that your workstation has Apache
Maven extracted and the operating system configured correctly.

Basics of Apache Maven

How to do it...

» You have installed Maven on your system, or so you think? Before you start using it,
the setup and availability of Maven needs to be verified. This is done by executing
the following command line:

mvn -version

» If Maven has been correctly installed, you will see something resembling the
following output:

Apache Maven 3.0.2

Java version: 1.6.0 18

Java home: /usr/lib/jvm/java-6-openjdk/jre

Default locale: en IN, platform encoding: UTF-8

OS name: "linux" version: "2.6.32-24-generic" arch: "i386" Family:

llunixll

If the output you get is similar, then you know Maven is available and ready
to be used.

» If your operating system cannot find the mvn command, make sure that your PATH
environment variable and M2 _HOME environment variable have been properly set.

See also

» Creating a new project in this chapter

Creating a new project

All done with downloads, setups, configurations, installations, and verifications? Great! Let's
get down to business. If not, refer to the first few recipes of this chapter.

In this recipe, we will create our first Apache Maven project. To be more specific, we will use
the Maven archetype :generate goal to generate our first Maven Java project.

Then we take a look at the Maven project structure to get an idea of what constitutes a Maven
project and what goes where by convention.

How to do it...

» Start the command-line terminal and run the following command:

$ mvn archetype:generate

» If this is the first time you are running this command, you will see that downloads are
taking place in the command line.

Chapter 1

» Then you will see a rather large list of archetypes, each having a number, a name,
and a short description explaining what they are. We’ll look at what archetypes are a
little later. For now, select the default archetype. Here we have considered that it is
archetype number 101 named maven-archetype-quickstart.

[INFO] No archetype defined. Using maven-archetype-quickstart
(org.apache.maven.archetypes:maven-archetype-quickstart:1.0)
Choose archetype:

1: remote -> docbkx-quickstart-archetype (-)

100: remote -> maven-archetype-profiles (-)
101: remote -> maven-archetype-quickstart (An archetype which
contains a sample Maven project.)

375: remote -> javg-minima
Choose a number: 101:

» You will be asked to select a version of the archetype. The default is the latest
stable version of the archetype; let’s choose that.

» Next, you will have to enter the Maven "project co-ordinates" such as groupid,
artifactId, version, and package.

GroupId co-ordinates are used to specify the hierarchical location of a project within
a Maven repository. In this case, the repository is the local Maven repository present
in your filesystem. GroupId co-ordinates are typically the root package and thus can
be shared by multiple projects within an organization.

The artifactId is an identifier for your project and version here refers to the
project version. Packages refer to the reverse dns root package name that is
commonly used in Java and a host of other programming languages. artifactID
identifiers will be used when artifacts are deployed in repositories and used as
dependencies for other projects; more on that later, as it’s not important right now.

» Upon completion you should see the following:
[INFO] = - - mmm o m o e oo e e e e e

[INFO] BUILD SUCCESS
[INFO] === -=-mmmmmmmmmm oo oo

We just asked Maven, actually a Maven plugin, to create or rather generate a new project for
us. A new project for Apache Maven can either be "hand-crafted" with manual pom.xml and
folder creations or generated through Maven project archetypes.

]

Basics of Apache Maven

So what exactly has Maven created for us? Simple answer—the following:

| -- pom.xml
T-- src
|-- main
| S-- java
| T-- net
| “-- srirangan, oackt
| “-- maven
| S-- App.java
T-- test
“-- java
“-- net

<~

-- srirangan, oackt
T -- maven

<~

-- AppTest.java

11 directories, 3 files

It created a folder for the project which contains the main pom.xml file and the source folder
which contains subfolders for the application and test sources. These then contain the
complete package structure and a sample application with a unit test case.

Name Size Type v
- MTestCreateApp 2 items folder
- lu src 2 items folder
- _ main 1item folder
= J"java 1item folder
- “ net litem folder
- “ srirangan 1 item folder
= “packt 1item folder
- _ maven 1item folder
=k App.java 188 bytes Java source code
- ljl"test 1item folder
= lj‘java 1item folder
- _ net 1item folder
- _ srirangan 1litem folder
= Ll"pack‘t 1item folder
- _ maven 1item folder
=S¢ AppTestjava 653 bytes Java source code

pom.mil 773 bytes XML document

Chapter 1

Compiling and testing a project

Let’s hope that you've read the previous recipe titled Creating a new project or that you have
a Maven project available because now we're entering the interesting part; compiling and
testing the project using Maven.

If you're new to Apache Maven, which is probably why you have this book in your hands, this
will be your first introduction to the Apache Maven build lifecycle.

Getting ready

» Start your command-line terminal window
» Navigate to the project folder that contains the pom. xm1l file
» Run the following command:

mvn compile

How to do it...

Now Apache Maven begins to download dependencies, if they aren’t available in your local
repository, and then proceeds to compile the project.

[INFO] === -=-mmmmmmmmmm oo oo
[INFO] BUILD SUCCESS
[INFO] === -=-mmmm oo oo oo oo oo

If the terminal shows BUILD SUCCESS, it means Maven has finished compilation and build of
the application.

Test Driven Development (TDD) is a popular practice that is advocated for and followed
religiously by some of the very best software craftsmen in the industry. Maven, having
recognized this, makes testing part of the default build lifecycle. This makes TDD easier for
teams who are trying to implement it in their development process.

When the default conventions are being used in a Maven project, they have the src/test
directory that contains all the tests for the code. Run the following command to run the tests:

mvn test

This command triggers Maven to run the tests presentin the ... /src/test folder. When
this is completed, you'll see a brief report echoed on the terminal.

Basics of Apache Maven

Running net.srirangan.packt.maven.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:

secC

Results
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

Run the following command:

$ mvn compile

0.037

It will trigger the Java compiler associated with the project. By default, it is set to JDK1.5, but

the project pom.xml can be modified to use other versions.

The compiled code is placed in the "target" directory. The target directory will contain the
compiled artifact (that is, a JAR file for a Java project by default) along with directories for
compiled classes and tests. It will further contain the pom.properties file along with test

reports and temporary files.
—TestSimpleApp-1.0-SNAPSHOT. jar

—-classes

| L—net
| L—srirangan
| L—packt
| L—maven
| L npp.class
—maven-archiver
| L pom.properties
—surefire
| L— ...temp files...
F——surefire-reports
| L net.srirangan.packt.maven.AppTest.txt
| L TEST-net.srirangan.packt.maven.AppTest .xml
L test-classes
L—net
L srirangan
L packt
L—maven
L AppTest.class

Downloading the example code

purchased from your account at http://www.PacktPub. com. If you

J‘Q You can download the example code files for all Packt books you have
purchased this book elsewhere, you can visit http://www.PacktPub.

com/support and register to have the files e-mailed directly to you.

Chapter 1

» Understanding the Project Object Model in this chapter
» Understanding the build lifecycle in this chapter
» Understanding build profiles in this chapter

Understanding the Project Object Model

Every Apache Maven project contains a pom.xml file. The pom.xml file is the XML
representation of the project and thus contains all metadata pertaining to the project.

This includes project configuration, defect tracking system details, project organization and
licenses, project paths, dependencies, and so on.

Structure of a POM

The structure of a typical Apache Maven Project POM file is described as follows:

<project .. >
<modelVersion>4.0.0</modelVersion>

<!-- The Basics -->

<grouplIds>...</groupld>
<artifactIds>...</artifactId>
<versions>...</version>

<packagings>. ..</packaging>
<dependencies>...</dependencies>
<parents>...</parent>
<dependencyManagement>. . .</dependencyManagement >
<modules>...</modules>
<properties>...</properties>

<!-- Build Settings -->
<builds>...</build>
<reportings...</reporting>

<!-- Project Meta Data -->
<name>...</name>
<descriptions>...</description>
<urls>...</urls>
<inceptionYears>...</inceptionYears>
<licenses>...</licenses>
<organizations...</organization>

Basics of Apache Maven

<developers>...</developers>
<contributorss...</contributorss>

<!-- Environment -->
<issueManagements>. . .</issueManagement>
<ciManagements>. . .</ciManagement>
<mailingLists>...</mailingLists>

<scms>. ..</scm>

<prerequisitess>...</prerequisites>
<repositoriess>...</repositories>
<pluginRepositoriess>...</pluginRepositories>
<distributionManagements>...</distributionManagement>
<profiles>...</profiles>

</projects>

Project co-ordinates

Project co-ordinates are the minimal basic fields that a POM definition must contain. The three
co-ordinate fields are groupId, artifactId, and version.

These three fields mark a specific location within the repository, hence the term co-ordinates.

Sections of the POM

The previously displayed sample POM contains four major sections. They are explained

as follows:
» The basics: This section contains project co-ordinates, dependency management, and
inheritance details. Additionally, it also contains modules and project level properties.
» Build settings: This section contains the build details.
» Project metadata: This section contains project-specific details such as name,
organization, developers, URL, inception year, and so on.
» Environment: This section contains all information regarding the environment

including details of the version control being, issue management, continuous
integration, mailing lists, repositories, and so on.

See also

>
>

=]

Understanding the build lifecycle in this chapter
Understanding build profiles in this chapter

Chapter 1

Understanding the build lifecycle

The build lifecycle explicitly defines the process of building, testing, distributing an artifact,
and is at the heart of every Maven project.

There are three inbuilt build lifecycles: default, clean, and site.

Default lifecycle

The default lifecycle handles the project compilation, test, and deployment. While it contains
over 20 build phases, the following are the most important phases:

Validate: validates that all project information is available and is correct

Compile: compiles the source code

Test: runs unit tests within a suitable framework

Package: packages the compiled code in its distribution format

Integration-test: processes the package in the integration-test environment

Verify: runs checks to verify that the package is valid

Install: installs the package in the local repository

vV vV v v v vy

Deploy: installs the final package in a remote repository

Whenever you execute a build phase, all prior build phases are executed sequentially. Hence,
executing mvn integration-test will execute the validate, compile, test, and package
build phases before executing the integration-test build phase.

Clean lifecycle

The clean lifecycle handles the project cleaning and contains the following build phases:

» Pre-clean: executes processes required before project cleaning
» Clean: removes all files generated by previous builds
» Post-clean: executes processes required to finalize project cleaning

Site lifecycle

The site lifecycle handles the generation and deployment of the project’s site documentation:

» Pre-site: executes processes required before generation of the site
» Site: generates the project’s site documentation

s

Basics of Apache Maven
» Post-site: executes processes required to finalize the site generation and prepares the
site for deployment
» Site-deploy: deploys the site documentation to the specified web server

» Understanding the Project Object Model in this chapter
» Understanding build profiles in this chapter

Understanding build profiles

Projects in Maven are generally portable. This is done by allowing configuration within the
POM, avoiding all filesystem references, and depending extensively on the local repository
to store the required metadata.

However, this isn’t always possible as under some circumstances configuration with
filesystem references become unavoidable. For these cases, Maven introduces the
concept of build profiles.

Build profiles are specifications made in the POM and can be triggered as and when required.
Some ways to trigger profiles are:

» Explicit command-line trigger

» Maven settings trigger

» Environment specific trigger

Explicit command-line trigger

Profiles can be directly triggered through the command line using the - P option. The list of
profiles, separated by commas, that are to be activated should be mentioned after the -p flag:

mvn install -P profile-1,profile-2

In this case, only the profiles explicitly mentioned in the command will be activated and all
other profiles stay dormant for this build.

The reverse is possible as well. You can explicitly specify which profiles should not be activated
through the command line:

mvn install -P !profile-1,!profile-2

Chapter 1

Maven settings trigger

Maven settings can also directly activate profiles if they are specified in the
<activeProfiles> section of the settings file.

<settings>

<activeProfiless
<activeProfile>profile-1l</activeProfile>
<activeProfile>profile-2</activeProfile>
</activeProfiless>

</settings>

Profiles listed in the Maven settings get activated by default every time and they don’t need
any explicit specification in the command line.

Environment specific trigger

Profiles can also be triggered based on the current build environment. The environment in
which the profile is to be activated is directly defined within the POM profile declarations.

<profiles>
<profile>
<activations
<property>
<name>environment</name>
<valuesdev</value>
</property>
</activations>
</profile>
</profiless>

In the code just written, the profile is only activated in the dev build environment. A template
of a typical Apache Maven command, wherein the environment is specified explicitly in the
command, is given as follows:

mvn groupld:artifactId:goal -Denvironment=dev

See also

» Understanding the Project Object Model in this chapter
» Understanding the build lifecycle in this chapter

s

Software Engineering
Techniques

In this chapter, we will cover some of the most prevalent, popular, and proven software
engineering practices like:

» Build automation

Project modularization
Dependency management
Source code quality checks
Test driven development
Acceptance testing automation

vVvYvyvVvyTyy

Deployment automation

These techniques have been around for more than a decade and are well-known by
practitioners of software engineering. The benefits, trade-offs, and pros and cons of
these practices are well-known and will only need little mentioning.

These practices are not inter-dependent, but some of them are inter-related in the larger
scheme of things. One such example would be the relation between project modularization
and dependency management. While nothing stops either from being implemented in
isolation, they are more beneficial when implemented together.

These techniques can be further supplemented by the industry's best practices such as
continuous integration, maintaining centralized repositories, source code integration,
and so on, which will be studied in detail in Chapter 3, Agile Team Collaboration.

Our focus here will be on steadily understanding these software engineering techniques
within the context of Maven projects and we will look at practical ways to implement and
integrate them.

Software Engineering Techniques

Build automation

Build automation is the scripting of tasks that software developers have to do on a day-to-day
basis. These tasks include:

» Compilation of source code to binary code
» Packaging of binary code

» Running tests

» Deployment to remote systems

» Creation of documentation and release notes

Build automation offers a range of benefits including speeding up of builds, elimination
of bad builds, standardization in teams and organizations, increased efficiency, and
improvements in product quality. Today, it is considered as an absolute essential for
software engineering practitioners.

Getting ready

You need to have a Maven project ready. If you don't have one, run the following in the
command line to create a simple Java project:

$ mvn archetype:generate -DgroupId=net.srirangan.packt.maven
-DartifactId=MySampleApp

How to do it...

The archetype:generate command would have generated a sample Apache Maven
project for us. If we choose the maven-archetype-quickstart archetype from the list,
our project structure would look similar to the following;:

L—src
—main
| L—Jjava
L—net

L packt

!
| L—srirangan
!
| L—maven

L—java
L net
L—srirangan
L packt
L —maven

Chapter 2

In every Apache Maven project, including the one we just generated, the build is
pre-automated following the default build lifecycle. Follow the steps given next to
validate the same:
1. Start the command-line terminal and navigate to the root of the Maven project.
2. Try running the following commands in serial order:

$ mvn validate
$ mvn compile
$ mvn package

$ mvn test

You just triggered some of the phases of the build life cycle by individual commands. Maven
lets you automate the running of all the phases in the correct order. Just execute the following
command, mvn install, and it will encapsulate much of the default build lifecycle including
compiling, testing, packaging, and installing the artifact in the local repository.

For every Apache Maven project, regardless of the packaging type, the default build lifecycle
is applied and the build is automated. As we just witnhessed, the default build lifecycle consists
of phases that can be executed from the command-line terminal.

These phases are:

» Validate: Validates that all project information is available and correct
Compile: Compiles the source code

Test: Runs unit tests within a suitable framework

Package: Packages the compiled code in its distribution format
Integration-test: Processes the package in the integration test environment
Verify: Runs checks to verify if the package is valid

Install: Installs the package in the local repository

vV v . v.v.Vvy

Deploy: Installs the final package in a remote repository

Each of the build lifecycle phases is a Maven plugin. We will have a detailed look at Apache
Maven plugins in Chapter 9, Extending Apache Maven. When you execute them for the
first time, Apache Maven will download the plugin from the default online Maven Central
Repository that can be found at http:// repol.maven.org/maven2 and will install

it in your local Apache Maven repository.

e

Software Engineering Techniques

This ensures that build automation is always set up in a consistent manner for everyone in the
team, while the specifics and internals of the build are abstracted out.

Maven build automation also pushes for standardization among different projects within an
organization, as the commands to execute build phases remain the same.

» The project object model section in Chapter 1, Basics of Maven
» Test driven development section in Chapter 2, Software Engineering Techniques
» Deployment automation section in Chapter 2, Software Engineering Techniques

Project modularization

Considering that you're building a large enterprise application, it will need to interact with a
legacy database, work with existing services, provide a modern web and device capable user
interface, and expose APIs for other applications to consume. It does make sense to split this
rather large project into subprojects or modules.

Apache Maven provides impeccable support for such a project organization through Apache
Maven Multi-modular projects. Multi-modular projects consist of a "Parent Project" which
contains "Child Projects" or "Modules". The parent project's POM file contains references to all
these sub-modules. Each module can be of a different type, with a different packaging value.

Module 1
Packaging Type - jar

Parent Project Module 2
Packaging Type - pom Packaging Type - War
Module 3

Packaging Type - swf

Getting ready

We begin by creating the parent project. Remember to set the value of packaging to pom, as
highlighted in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

=]

Chapter 2

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupIds>net.srirangan.packt.maven</groupId>
<artifactId>TestModularApp</artifactIds>
<version>1.0-SNAPSHOT</versions>
<packagings>pom</packaging>

<name>MyLargeModularApp</name>

</project>

This is the base parent PoM file for our project MyLargeModularApp. It doesn't contain any
sub-modules for now.

How to do it...

To create your first sub-module, start the command-line terminal, navigate to the parent POM
directory, and run the following command:

$ mvn archetype:generate

This will display a list of archetypes for you to select. You can pick archetype number
101, maven-archetype-quickstart, which generates a basic Java project. The
archetype:generate command also requires you to fill in the Apache Maven project
co-ordinates including the project groupld, artifactId, package, and version.

After project generation, inspect the POM file of the original parent project. You will find the
following block added:

<modules>
<modules>moduleJar</module>
</modules>

The sub-module we created has been automatically added in the parent POM. It simply
works—no intervention required!

We now create another sub-module, this time a Maven web application by running the
following in the command line:

$ mvn archetype:generate -DarchetypeArtifactId=maven-archetype-webapp

s

Software Engineering Techniques

Let's have another look at the parent PoM file; we should see both the sub-modules included:

<moduless>
<module>moduleJar</module>
<module>moduleWar</module>
</modules>

Our overall project structure should look like this:

MyLargeModularApp
—MyModuledar
| L—src
| —main
| | L—Jjava
| | L—net
| | L—srirangan
| | L—packt
| | L—maven
| L—test
| L—Jjava
| L—net
| L—srirangan
| L—packt
| L—maven
L—MyModuleWar
L—src
L—main
——resources
L webapp

L __WEB-INF

Compiling and installing both sub-modules (in the correct order in case sub-modules are
interdependent) is essential. It can be done in the command line by navigating to the parent
poM folder and running the following command:

$ mvn clean install

Thus, executing build phase on the parent project automatically gets executed for all its child
projects in the correct order.

NED

Chapter 2

You should get an output similar to:

INFO] Reactor Summary:

[

[INFO] MyLargeModularBPDeveremnennennnennnnn SUCCESS [0.439s]
[INFO] MyModuledaruuueiiuemnnennneennnn SUCCESS [3.047s]
[INFO] MyModuleWar Maven Webapp SUCCESS [0.947s]

Dependency management

Dependency management can be universally acknowledged as one of the best features of
Apache Maven. In Multi-modular projects, where dependencies can run into tens or even
hundreds, Apache Maven excels in allowing you to retain a high degree of control and stability.

Apache Maven dependencies are transient, which means Maven will automatically discover
artifacts that your dependencies require. This feature has been available since Maven 2, and
it especially comes in handy for many of the open source project dependencies we have in
today's enterprise projects.

Getting ready

Maven dependencies have six possible scopes:
» Compile: This is the default scope. Compile dependencies are available in
the classpaths.

» Provided: This scope assumes that the JDK or the environment provides
dependencies at runtime.

» Runtime: Dependencies that are required at runtime and are specified in the
runtime classpaths.

» Test: Dependencies required for test compilation and execution.
» System: Dependency is always available, but the JAR is provided nonetheless.

Import: Imports dependencies specified in POM included via the
<dependencyManagement /> element.

Software Engineering Techniques

How to do it...

Dependencies for Apache Maven projects are described in project POM files. While we take
a closer look at these in the How it works... section of this recipe, here we will explore the
Apache Maven dependency plugin.

According to http://maven.apache.org/plugins/maven-dependency-plugin/:

"The dependency plugin provides the capability to manipulate artifacts. It can copy
and/or unpack artifacts from local or remote repositories to a specified location."

It's a decent little plugin and provides us with a number of very useful goals. They are
as follows:

$ mvn dependency:analyze
Analyzes dependencies (used, unused, declared, undeclared)

$ mvn dependency:analyze-duplicate
Determines duplicate dependencies

$ mvn dependency:resolve
Resolves all dependencies

$ mvn dependency:resolve-plugin
Resolves all plugins

$ mvn dependency:tree
Displays dependency trees

Most Apache Maven projects have dependencies to other artifacts (that is, other projects,

libraries, and tools). Management of dependencies and their seamless integration is one of
Apache Maven's strongest features. These dependencies for a Maven project are specified in
the project's POM file.

<dependencies>
<dependencys>
<groupIds>...</groupld>
<artifactIds>...</artifactIds>
<versions>...</version>
<scope>...</scope>
</dependency>
</dependencies>

=

Chapter 2

In Multi-modular projects, dependencies can be defined in the parent POM files and can be
subsequently inherited by child PoM files as and when required. Having a single source for all
dependency definitions makes dependency versioning simpler, thus keeping large projects'
dependencies organized and manageable over time.

The following is an example to show a Multi-modular project having a MySQL dependency. The
parent POM would contain the complete definition of the dependency:

<dependencyManagement >
<dependencies>
<dependency>
<groupld>mysqgl</grouplds>
<artifactId>mysqgl-connector-java</artifactIds>
<version>5.1.2</version>
</dependency>
<dependencies>
</dependencyManagement >

All child modules that require MySQL would only include a stub dependency definition:

<dependency>
<groupId>mysqgl</groupId>
<artifactId>mysqgl-connector-java</artifactIds>
</dependency>

There will be no version conflicts between multiple child modules having the same
dependencies.

The dependencies scope and type are defaulted to compile and JAR. However, they can be
overridden as required:

<dependency>
<groupld>junit</grouplds>
<artifactIds>junit</artifactIds>
<version>4.8.2</version>
<scope>test</scope>
</dependency>

<dependency>
<grouplds>...</grouplds>
<artifactIds>...</artifactId>
<versions>...</version>
<types>war</type>
</dependency>

s

Software Engineering Techniques

There's more...

System dependencies are not looked for in the repository. For them, we need to specify the
path to the JAR:

<dependencies>
<dependencys>
<groupIds>sun.jdk</groupIds>
<artifactIdstools</artifactIds>
<version>1.5.0</versions>
<scope>system</scope>
<systemPath>${java.home}/../lib/tools.jar</systemPath>
</dependency>
</dependencies>

However, avoiding the use of system dependencies is strongly recommended because it kills
the whole purpose of Apache Maven dependency management in the first place.

Ideally, a developer should be able to clone code out of the SCM and run Apache Maven
commands. After that, it should be the responsibility of Apache Maven to take care of
including all dependencies.

System dependencies would force the developer to take extra steps and that
e dilutes the effectiveness of Apache Maven in your team environment.

Source code quality checks

In a perfect world, you are the best programmer alive and you are effortlessly able to mind
control every other programmer in your entire team and force him / her to code the way
you want.

In the real world, you and your team can, at best, agree upon a set of programming standards
and implement automated source code quality checks into your project build to verify that a
certain level of code quality is upheld.

These automated source code quality checks and verifications still cannot ensure that the
application itself is designed correctly. However, it can help some of the lesser experienced
programmers adhere to standards expected of them.

S E

Chapter 2

Getting ready

The Apache Maven PMD plugin automatically runs the PMD code analysis tool on the source
code and generates a site report with results. In a typical configuration, the build fails if PMD
detects quality issues in the source.

This plugin introduces four goals:

» pmd:pmd creates a PMD site report based on the rulesets and configuration set in
the plugin

pmd : cpd generates a report for PMD's Copy/Paste Detector (CPD) tool
pmd : check verifies that the PMD report is empty and fails the build if it is not
» pmd:cpd-check verifies that the CPD report is empty and fails the build if it is not

How to do it...

The following steps need to be taken to integrate source code quality checks into your Apache
Maven project's build cycle.

If you don't have an Apache Maven Java project, create one by running the following goal:

mvn archetype:generate

Launch the project's PoM file in a text editor for editing. The PMD plugin needs to be integrated
into your project. It can be added to the project POM file under the reporting element:

<reportings>
<pluginss>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactIds>maven-pmd-plugin</artifactId>
<versions>2.5</version>
</plugin>
</plugins>
</reporting>

This can be used to run the PMD checks with default rulesets and configuration.

Here's an optional step: if you wish to use a custom set of rules and configuration for
code-quality checks, it can be done by adding a configuration block to the plugin declaration.
Have a look at the following code:

<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-pmd-plugin</artifactId>

s

Software Engineering Techniques

<version>2.5</versions>
<configurations>
<rulesets>
<ruleset>/rulesets/basic.xml</ruleset>
<ruleset>/rulesets/controversial.xml</ruleset>
<ruleset>http://localhost/design.xml</rulesets>
</rulesets>
<sourceEncoding>utf-8</sourceEncoding>
<minimumTokens>100</minimumTokens>
<targetddk>1.6</targetJdk>
</configurations>
</plugin>

To execute these PMD checks, start the command line, navigate to the project poM folder, and
execute the pmd goal in the pmd plugin, as shown as follows:

mvn pmd:pmd

The PMD checks can be integrated with Maven's default build lifecycle, as shown in the
following code:

<builds>
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-pmd-plugin</artifactId>
<version>2.5</versions>
<executionss>
<execution>
<goals>
<goal>check</goal>
<goal>cpd-check</goal>
</goals>
</executions>
</executionss>
</plugin>
</plugins>
</build>

PMD is an open source tool that scans Java code and generates code quality reports. The
reports are generated based on identification of potential bugs, dead code, non-optimized
code, duplicate code, and so on.

NEQ

Chapter 2

The following diagram visualizes the build cycle with a quality check integrated with
the repository:

Personl creates new code p— o
— Apache Maven build triggers

% / — code quality checks

PMD verifies code quality based on
pre-defined rules.

quality guidelines? —

Poor code? Build fails. \

Quality issues need to be fixed

|
|
|
|
: Does the code meet —
|
|
|

Embedding the Apache Maven PMD plugin eliminates the need to otherwise install or
configure PMD as a third-party application.

As we just saw, there are two ways to invoke PMD's code quality checks. You could either do
it manually or automatically. In the first case, the individual developer would be responsible
for executing code quality check each time a change is made. This approach needlessly adds
another task for the already busy programmer. It makes more sense to follow the second
approach for full automation.

Source code quality checks are most beneficial when they are fully integrated with your build
automation and continuous integration processes. Whenever a build is run on the developer's
machine, Apache Maven automatically executes the PMD plugin. And when the code is
committed into the SCM, the SCM triggers an Apache Maven build that would execute the
PMD plugin automatically. If the new code fails to meet the code quality standards, the build
should fail and the team must be automatically notified.

Test Driven Development

Test Driven Development's origins can be traced to the Test-First programming concept
introduced by Extreme Programming in 1999.

Test Driven Development or TDD, as it's more commonly known, introduces very short,
iterative development cycles wherein the programmer first writes a failing test case, then
builds the functionality followed by code refactoring, if required.

Eis

Software Engineering Techniques

Apache Maven makes unit testing and integration testing an integral part of the build lifecycle,
thus enabling individual programmers and teams to easily implement the practice of TDD.

Create a failing test case

Refactor, if required € Code the functionality

Getting ready

We will need a simple Apache Maven Java project to get started with TDD. If you don't have
one, generate a Java project using the archetype : generate command:

$ mvn archetype:generate

We'll use the popular JUnit framework to create a unit test. Mention the dependency in
your POM:

<dependencys>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<versions>4.8.2</versions>
<scope>test</scope>
</dependency>

If you generated your project using the maven-archetype-quickstart archetype, it would
already contain the JUnit dependency and sample tests. However, this archetype may include
an older version of JUnit 3.8.1. You need to edit your POM file and revise the dependency
version to 4.8.2 or some of the newer features of JUnit will remain unavailable.

How to do it...

Test suites and test cases reside in the <project _base dirs>/src/test/java folder.
Create your first test case for an existing class using your IDE. Popular IDEs such as Eclipse,
NetBeans, IntelliJ, and others, which support JUnit and Maven make this process a breeze.

package net.srirangan.packt.maven;

import org.junit.Test;
import static org.junit.Assert.assertEquals;

NED

Chapter 2

public class MyClassTest {
@Test
public void testMultiply() {
MyClass tester = new MyClass() ;
assertEquals ("Result", 50, tester.multiply (10, 5));

}

Here we have created a test case for a class named MyClass that implements one
method called multiply. Do note that MyClass and MyClassTest must reside in
the same package.

If you need to merge several test cases, they can be combined into a test suite:

package net.srirangan.packt.maven;

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith (Suite.class)
@Suite.SuiteClasses({ MyClassTest.class })
public class AllTests {

}

Executing the test build phase from the command line executes the tests and all other phases
required for the test phase:

$ mvn test

Alternatively, the test phase is automatically executed in the default build lifecycle. Therefore,
executing install, for example, will run all the phases including the test phase:

$ mvn install

Apache Maven outputs the test results on the console. You should see something similar to:

Running net.srirangan.packt.maven.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.023 sec

Results

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

s

Software Engineering Techniques

The Maven Surefire plugin has a test goal bound to the test phase of the build lifecycle. This
executes all tests under the <project base dirs>/src/test/java folder with filenames
matching the following patterns:

> **/Test*.java

> **/*Test.java

» **/*TestCase.java

If one or more of the tests fail, the build fails. The output is shown on the console while an
XML version can be found at <project base dirs/target/surefire-reports

Acceptance testing automation section in Chapter 2, Software Engineering Techniques

Acceptance testing automation

Selenium is a popular automation testing framework which works with a variety of
technologies including Java, C#, Ruby, Groovy, Python, PHP, and Perl.

In order to write automation tests, Selenium provides the Selenium IDE, which is a plugin for
Mozilla Firefox that primarily allows you to record and playback tests and export them into
various languages including Java.

Selenium Maven Plugin allows you to specify automation tests created for Selenium in your
Maven project and integrate it with the Maven build lifecycle.

Getting ready

First we need a web application project to get started. This command ought to do it:

$ mvn archetype:generate -DgroupId=net.srirangan.packt.maven
-DartifactId=MySampleWebApp -DarchetypeArtifactId=maven-archetype-webapp
Include the relevant dependencies in the project POM:

<dependency>

<groupId>junit</groupIds>

<artifactIds>junit</artifactIds>

<version>4.8.2</version>

<scope>test</scope>
</dependency>

=)

Chapter 2

How to do it...

Starting the Selenium server requires it to be synced with the pre-integration test phase of
your build lifecycle. This can be done by adding the following to the project POM:

<pluginss>
<plugins>
<grouplds>org.codehaus.mojo</groupld>
<artifactIds>selenium-maven-plugin</artifactIds>
<executionss>
<execution>
<phase>pre-integration-test</phase>
<goals>
<goals>start-server</goals>
</goals>
<configurations>
<background>true</background>

</configurations
</execution>
</executionss>
</plugin>
</plugins>

This will start the Selenium server before running the integration tests.

However, to run the Selenium tests, we will need to start the web application server as well.
The Maven Jetty plugin allows us to accomplish the same:

<plugins>
<grouplds>org.mortbay.jetty</groupIld>
<artifactIds>maven-jetty-plugin</artifactId>
<version>6.1.10</versions>
<executionss>
<execution>
<ids>start-jetty</id>
<phase>pre-integration-test</phase>
<goals>
<goal>run</goals>
</goals>
<configurations>
<scanIntervalSeconds>0</scanIntervalSeconds>
<daemons>true</daemons>
</configurations>
</executions>
<execution>

@l

Software Engineering Techniques

<id>stop-jetty</id>
<phase>post-integration-test</phase>
<goals>
<goal>stop</goals>
</goals>
</executions>
</executions>
</plugin>

We have the Selenium and Jetty servers, that is, the test and web application servers
configured to automatically initiate with the integrated test phase of the Maven build lifecycle.

What's next? Of course, creating our first test! Introduce the JSP file src/main/webapp/
index.jsp in your project with the following markup:

<html>
<body>
<hl>Hello, World</hl>
</body>
</html>

With the Jetty application server running, try accessing http://localhost:8080/
mywebapp. You should be seeing the header text as Hello, World. If not, fix your web
application project to render the same.

Our Selenium test case will load the contents of http://localhost:8080/mywebapp and
will try to assert if the result contains a header with the text Hello, World

import junit.framework.TestCase;

import org.junit.Test;

import com.thoughtworks.selenium.DefaultSelenium;
import com.thoughtworks.selenium.SeleniumException;

public class SeleniumHelloWorldExample extends TestCase
private DefaultSelenium selenium;

@Override

public void setUp() throws Exception ({
super.setUp () ;
selenium = createSeleniumClient ("http://localhost:8080/") ;
selenium.start () ;

@Override
public void tearDown() throws Exception {
selenium.stop () ;

=

Chapter 2

super.tearDown () ;

}

protected DefaultSelenium createSeleniumClient (String url) throws
Exception

return new DefaultSelenium("localhost", 4444, "*firefox", url);
}
@Test
public void testHelloWorld() throws Exception

try {

selenium.open ("http://localhost:8080/mywebapp/index.jsp") ;
assertEquals ("Hello, World", selenium.getText("//hli"));
} catch (SeleniumException ex) {
fail (ex.getMessage()) ;
throw ex;

}

It's all set! Stir up that command line, navigate to the project base directory, and execute the
following command:

$ mvn integration-test

If you look at the preceding configuration, the Selenium and Jetty plugins are configured to
start in the pre-integration test phase. Thus, when the integration-test build phase is reached,
Jetty and Selenium are ready and available.

Now the execution of our test case begins. In the setup (), we create a Selenium client.
The client is the used in the test case testHelloWorld () to load a web page and assert a
simple condition, based on the response of that web page, thus simulating a user loading a
web page on his / her browser and asserting a condition.

Test driven development section in Chapter 2, Software Engineering Techniques

Software Engineering Techniques

Deployment automation

The Maven Deploy Plugin is used to add artifact(s) to a remote repository during the deploy
phase of the build lifecycle.

The deploy plugin introduces two goals:

» deploy:deploy: To deploy a project and all its artifacts
» deploy:deploy-£file: To deploy a single artifact file

Getting ready

Deployment to a repository means not only to copy the artifacts to a folder but to update
metadata regarding the artifacts as well. It requires:

» Target repository: Target repository is where the artifacts will be deployed. Its
location, the protocol for access (FTP, SCP, SFTP), and user-specific account
information are required.

> Target artifacts: Target artifacts are the artifacts which are to be deployed.
Artifact groupld, artifactId, version, packaging, and classifier
information are required

» Deployer method to actually perform the deployment: This can be implemented
either in a cross platform (wagon transport) or system-specific manner.

How to do it...

The project POM must include a valid <distributionManagement/> element, which
provides a <repository/> element defining the remote repository location for the artifact.

<distributionManagement>
<repositorys
<id>srirangan.repository</id>
<name>MyPrivateRepository</name>
<urls>...</urls>
</repositorys>
</distributionManagement >

For this, you need to specify a server definition in your settings.xml (<USER_HOME>/.
m2/settings.xml or <M2 HOME>/conf/settings.xml) to provide authentication
information for the repositories.

<servers
<idssrirangan.repository</id>
<username>srirangan</usernames

=

Chapter 2

<password>myTopSecretPassword</passwords>
</server>

The deployment can be executed from the command line by navigating to the project folder
and executing the following command:

$ mvn deploy

The Apache Maven Deploy plugin is invoked usually during the deploy phase of the build life
cycle. As we just saw, a <distributionManagement/> element with a <repository/>
element in it are required to enable this plugin.

Snapshots and releases can be separated by defining a <snapshotRepository/> element,
whereas site deployments require a <site/> element.

The <distributionManagement /> elementis inherited allowing for registry of this
information in the parent poM file to make them available to all sub-modules.

The actual deployment takes place based on the protocol defined in the repository with the
commonly used protocols being FTP and SSH. wagon- ftp and wagon-ssh-external are
providers for these two protocols.

There's more...

If the remote repository is accessible through FTP, then the project POM build elements
need to include the specification of the wagon-ftp extension.

<distributionManagement >
<repositorys
<id>sri-ftp-repository</id>
<url>ftp://...</urls>
</repositorys>
</distributionManagement>

<builds>
<extensionss>
<extension>
<grouplds>org.apache.maven.wagon</groupIds>
<artifactIds>wagon-ftp</artifactId>
<version>1l.0-beta-6</version>
</extensions>
</extensions>
</build>

Software Engineering Techniques

For deployment using SSH, note the changes in the extension artifactId and the URL.

<distributionManagement>

<repository>
<id>sri-ssh-repository</id>
<urls>scpexe://....</urls>
</repositorys>

</distributionManagement >

<builds>
<extensionss>
<extension>
<grouplds>org.apache.maven.wagon</groupIds>
<artifactId>wagon-ssh-external</artifactIds>
<version>1l.0-beta-6</version>
</extensions>
</extensions>
</build>

Authentication information can be provided in the settings.xml, but encrypted passwords
aren't supported. Hence SSH-based deployments allow secure deployments when required.

=)

Agile Team
Collaboration

In this chapter, we will cover:

» Creating centralized remote repositories
Performing continuous integration with Hudson
Integrating source code management

Team integration with Apache Maven
Implementing environment integration

Distributed development

vV v.v. v Yy

Working in offline mode

This chapter covers techniques such as distributed development, continuous integration,
environment integration, centralized remote repositories implementation, and so on. One
thing common to the recipes covered here is that they are context sensitive and cater to
situations that arise in medium to large software development teams.

This is a chapter for Agile teams, but can be useful for any team, regardless of the
methodologies followed. However, it is recommended that one is familiar with practices
that are followed by Agile teams because for many situations these practices are ideal.

A good example of this is the practice of pair programming. While it is an extremely effective
practice for any team, in the context of a distributed team, pair programming becomes critical
and its success can have a direct impact on the health of the team and the project.

Some of these techniques are well documented and have been popularized by software
engineering methodologjes such as Extreme Programming. The recipes here offer glimpses
at how these can be implemented using Maven in situations, where one is dealing with Agile,
distributed and cross functional teams.

Agile Team Collaboration

Creating centralized remote repositories

In Chapter 2, Software Engineering Techniques, we explored Dependency Management
capabilities of Apache Maven in the recipe Dependency management. Apache Maven
projects can be dependent on other "artifacts". These artifacts can be other projects or
external libraries. Apache Maven stores all packaged artifacts in a local repository. The local
repository exists on your filesystem and its location is configured in ${M2 HOME} /conf/
settings.xml or ${USER _HOME}/.m2/settings.xml.

In the instances where we have dependencies that aren't available in the local repository, we
see that Apache Maven automatically downloads them from the Maven Central Repository.

It is possible that our projects have unique dependencies that aren't available in the Apache
Maven Central Repository. Apache Maven does let you manually add libraries into the local
repository through the command line. However, to expect every project team member to
manually download and install the library in their local repository isn't a pragmatic approach
as it adds a lot of manual steps for each programmer in the team and undermines the very
purpose of Apache Maven's dependency management features.

Developers want to spend most of their time doing interesting work and being productive
rather than getting drawn into project configuration tasks such as ensuring all the prerequisite
dependency artifacts are available in their local repository.

A good solution here is to configure Apache Maven to work with a centralized remote
repository. All dependencies need to be made available and maintained on this remote
repository and everybody's Maven instance automatically installs missing dependencies
on their local repositories from this remote source.

The following diagram illustrates how this works:

Maven Central
Repository

Local Repository

% Maven Project Build ¢—+

Dependencies
(Artifacts)

Team Central
Repository

=

Chapter 3

Getting ready

In this recipe, we will be exploring the Sonatype Nexus Repository Manager. While other
alternatives such as Apache Archiva, Artifactory, and so on exist, Nexus powered by
Sonatype's support and community proves to be an excellent choice for programmers, teams,
and enterprises. Nexus, being a web application, needs a web application server to be
deployed upon. Here Apache Tomcat 6 is the chosen application server:

» Install it on the Windows 7 operating system by downloading the latest stable version
of the service installer at http://tomcat .apache.org.

» On Windows, you can install Tomcat using the Installer | Setup file available
for download. Run the installer (. exe) and you will get a wizard, as shown in the
following screenshots:

EH Apache Tomcat Setup

Choosze Components
Choose which features of Apache Tomcat you want to install.

=10

Chedk the components you want to install and unchedk the components you don't want to
install. Click Next to continue.

Select the type of install: B

pl selev:tgle opﬁq;:lm Tomeat _Efssi;roipnh;?;ur MOLUsE
Components you wi

install: Start Menu Items ovEr & component o

Space required: 8. 1IMB

Mullsoft Install System w2, 46

Documentation
Manager

|:| Host Manager
|:| Examples

see its descripkian,

< Back I MNext = I

Cancel |

Ensure that you install the Manager as displayed in the preceding screenshot. On
Ubuntu, you'll need to install an additional package, tomcat6-manager. We will be
using the manager to deploy the Sonatype Nexus WAR package.

Agile Team Collaboration

» The next step for the Tomcat installation on Windows is the selection of the root
directory for Tomcat.

[l

Choosze Install Location
Choaose the folder in which to install Apache Tomcat.

Setup will install Apache Tomcat in the following folder. To install in a different folder, dick
Browse and select another folder. Click Next to continue.

Destination Folder

L

C:Program Files\Apache Software Foundation\Tomcat 6.0 Browse...

Space required: 8. 1MB
Space available: 420.3GE

Iullsaft Install Systenm vz, 46

< Back I Next = I Cancel

» Enter the administrative Username and Password. Make sure you remember it, as it
will be needed for accessing the Tomcat manager.

E Apache Tomcat Setup: Configuration Options - | Ellll

Configuration p .
Tomcat basic configuration.

HTTP/1.1 Connector Port I 8080

Tomcat Administrator Login {optional)

User Name I root

Password I sene

ullsaft Inskall Systen v, 46

< Back I Mext = I Cancel

SNED

Chapter 3

» Open your web browser and visit http://localhost :8080.

You should see a confirmation page similar to the one shown in the next screenshot:

Apache Tomcat
% wpache Software Foundation
/‘& <= http://www.apache.org/

Administration If you're seeing this page via a web browser, it means you've setup Tomcat successfully.
Congratulations!

Status

Tomcat Manager As you may have guessed by now, this is the default Tomcat home page. It can be found on the
local filesystem at:

7 CATALINA HOME/webapps/ROOT/index.html

Documentation ? - PP

Release Notes where "$CATALINA_HOME" is the root of the Tomcat installation directory. If you're seeing this

Change Log page, and you don't think you should be, then you're either a user who has arrived at new installation

Tomcat Documentation of Tomcat, or you're an administrator who hasn't got his/her setup quite nght. Providing the latter is
the case, please refer to the Tomcat Documentation for more detailed setup and administration
information than is found in the INSTALL file.

Tomcat Online NOTE: For security reasons, using the manager webapp is restricted to users with role

Home Page "manager”. Users are defined in $CATALINA_HOME/conf/tomcat-users.xml.

EAQ Included with this release are a host of sample Servlets and JSPs (with associated source code),

Bua Database extensive documentation, and an introductory guide to developing web applications

Open Bugs X ry g ping ppi E

Users Mailing List
Developers Mailing List

IRC + users@tomcat.apache.org for general questions related to configuring and using Tomcat
+ dev@tomcat.apache.org for developers working on Tomcat

Thanks for using Tomcat!

Tomcat mailing lists are available at the Tomcat project web site:

Miscellaneous

Servlets Examples Powered by
JSP Examples

Sun's Java Server Pages Site

Sun's Servlet Site OMCAT

How to do it...

Now that we've got the Tomcat application server ready, the next thing for us is to install
Nexus Open Source. This can be done as follows:

1. Download the latest stable WAR package of Nexus Open Source from http://
nexus.sonatype.org. Once this is completed, start the Tomcat Manager. On my
Windows installation, the URL for Tomcat Manager is http://localhost:8080/
manager/html.

Agile Team Collaboration

2. The Tomcat Manager will present a web-based interface to deploy the Nexus
Open Source WAR. This deployment needs to be done, as shown in the
following screenshot:

Deploy

Deploy directory or WAR file located on server

Context Path (required): |

XML Configuration file URL: |

WAR or Directory URL: |

Deploy |

WAR file to deploy

Select WAR file to upload Choose File |nexus—webapp—1.8_0.war

Deploy |

3. You will see two forms. We'll select the second form and just upload the Nexus WAR
file. Alternatively, you can extract the WAR file on your machine and use the first form
by giving specific details for the context-path configuration file and directory where
Nexus was extracted.

4. After a successful deployment, Nexus will now be available at
http://localhost:8080/nexus-webapp-1.8.0.

Sonatype™ Servers Welcome

Nexus

Artifact Search - =

= Nlexus

Views/Repositories = Type in the name of a project, dass, or artifact into the text box be
and click Search. Use "Advanced Search” on the left for more options

i

Help - Nexus Log In *

Username: | admin
PassWOrd: | sesesess|

Forgot your username or password?

LogIn

=

Chapter 3

The default administrative login for Nexus is:
Username: admin
Password: admin123

Once you're logged in, you can create a repository for your project:

New Hosted Repository

Repository 1D

[

Repository Name

[

Repository Type o
Provider Maven2 hd &
Format L=
Repository Policy Release |+ @

Default Local Storage Location

g

Override Local Storage Location

g

« | Access Settings

Deployment Policy Disable Redeploy |~ L2
Allow File Browsing True v L]
Include in Search True v L%
Publish URL True v L%

| Expiration Settings

Not Found Cache TTL 1440 minutes &)
Save Cancel

You will find a repository URL available after creation. Make a note of this URL as it
needs to be used in your Apache Maven configuration or POM file.

The Maven settings.xml file now needs to be modified and a new mirror is
to be added:

<mirrorss

<mirrors
<id>TestRepository</id>
<name>My test repository</names
<url>http://localhost:8080/nexus-webapp-

1.8.0/content/repositories/TestRepository/</urls>

<mirrorOfs>*</mirrorOf>

</mirrors>

</mirrors>

-

Agile Team Collaboration

While setting up the Nexus repository and configuring Apache Maven is complete, one critical
aspect still remains. Nexus needs to be installed on the LAN so that everyone in the team can
access it.

Ideally, it should not reside on a development machine. A dedicated box, accessible on the
LAN will be perfect. Setting up a LAN is obviously beyond the scope of this recipe. However,
chances are that you are already on a LAN. In such a case, a preferred repository URL would
be something like:

http://<permamnet-hostname-on-networks>/nexus-webapp-1.8.0/content/
repositories/TestRepository/

Out of all the repository managers available, Nexus is recommended because it is
developed by Sonatype; which includes many core developers from Apache Maven.
Hence, interoperability with various versions of Apache Maven is better supported.

Repository managers are generally recommended, as they prevent the trouble of each
developer uniquely downloading the same dependencies over and over again. Only a single
download is required, and once downloaded, they are available to everyone in the team or
organization. In large organizations with multiple projects, this ends up saving considerable
bandwidth, and more importantly, developer time.

Another advantage is that internal projects / artifacts can be deployed onto the team /
organizational repository and each developer can access internal dependencies from the
repository instead of having to clone and locally build the project.

Performing continuous integration with

Hudson

In Chapter 2, Software Engineering Techniques, we saw how our project builds could be
automated in the Build automation section. Now that we can build and test our project
with a single command, the question of how often this should be done arises.

"Ship It!" by Jared Richardson and William Gwaltney Jr. says:

"Ideally, you will rebuild every time the code changes. That way you'll know
immediately if any change broke your build."

Sure, programmers always try and do it, but how often have you pulled an update from the
SCM and forgotten to build before committing your code? To avoid this occurrence, builds can
be triggered each time code is committed into the SCM. Such a setup is known as continuous
integration. It has become extremely popular and is extremely effective for small and large
teams working in an Agile environment.

=

Chapter 3

The key idea here is to launch a build every time a developer commits code. This catches a
bad commit in which the developer may have committed erroneous code or forgotten to add
any requisite files.

Getting ready

To implement continuous integration in your team, you will need to use a continuous integration
server. There are a number of options here such as Cruise Control, Apache Continuum, Hudson,
and so on. In this recipe, we will take a look at Hudson (http://hudson-ci.org/), which is a
continuous integration tool that integrates well with Maven projects.

Hudson, being a web application, needs a web application server to be deployed upon. Here
Apache Tomcat 6 is the chosen application server.

Downloading and installing Apache Tomcat 6 was covered in the Getting ready section of the
preceding recipe. You would have to follow the same steps for this recipe before proceeding
any further.

How to do it...

1. Now that we've got the Tomcat application server ready, the next thing for us is
to download Hudson from http://hudson-ci.org.

Download the latest stable WAR package of Hudson. Once this is completed,
start the Tomcat Manager. On Windows, the URL for Tomcat Manager is
http://localhost:8080/manager/html.

2. The Tomcat Manager will present a web-based interface to deploy the Hudson WAR.
This deployment needs to be done, as shown in the following screenshot:

Depioy

Deploy directory or WAR file located on server

Context Path (required): I
XML Configuration file URL: I

WAR or Directory URL: I

Deploy |

WAR file to deploy

Select WAR file to upload Choose File |hudgnn,war
Deploy |

Note that there are two forms available on the deployment page. We will directly
upload the WAR file using the second form.

s

Agile Team Collaboration

3. After a successful deployment, Hudson will now be available at:

http://localhost:8080/hudson.

EMABLE AUTO REFRESH

Hudsson

£ New Job [&add description

- Welcome to Hudson! Please create new jobs to get started.
Manage Hudsan

&

m People

= Build History

Build Queue
Mo builds in the queue.

Build Executor Status
Status
1| Idle
2 | Idle

Oct 13, 2010 4:50 Hudson ver. 1.379

Page generated: Oct 13, 2010 4:50:49 PM

» Hudson needs to be configured. This can be done by selecting Manage Hudson |
Configure System. Make sure you configure JDK, Maven, and SVN/CVS properties.

» Next we create a Hudson job for our project. Hudson provides a job type dedicated for
Maven; the job type "maven2" can be used for Maven 2 and Maven 3 projects.

Job name Test Jab

() Monitor an external jeb

This type of job allows you to record the execution of a process run outs
existing automation system. See the documentation for more details.

() Build a free-style software project
This is the central feature of Hudson. Hudson will build your project, con|

) Build multi-configuration project (alpha)
Suitable for projects that need 2 large number of different configuration

y Build a maven2 project
Build a maven2 project. Hudson takes advantage of your POM files and

(O]

O Copy existing job

Copy from

» Create the job by entering the project and Source Code Management properties.
Build triggers can be specified and so one can build settings including e-mail

notifications, if required.

5]

Chapter 3

Once set up correctly, every time code is committed to SVN / CVS, the Hudson job gets
triggered. The job then in-turn proceeds to trigger a Maven build. Hudson also continues to
monitor the console output of the Maven build. Hudson looks for patterns in the Maven output
and confirms if the build and tests are completed successfully or not.

~ Source Code ™
"~ Management

e >~
O

«e°

o S~ < Buid Triggered

Automatically

@

Depending on Hudson and job configuration, Hudson may e-mail the project team (or mailing
list) if any build or test failures occur.

Integrating source code management

If your team is not using Revision Control System (also known as Version Control), here is
some advice: stop everything and implement it right now. This advice also applies to individual
programmers or pairs who have used SCMs in the past but don't find it relevant for their
current setup.

Build failed, team notified
Programmer <

Working with an SCM lets you keep track of changes, associate important versions of the
source with milestones, create branches for parallel development, implement scheduled
backups, and configure best-practice techniques such as continuous integration and so on.

7}

Agile Team Collaboration

Getting ready

There are many revision control systems for you to choose from. Even enterprise quality
version control systems today are free and open source. Therefore, while choosing a version
control system, the only problem there is a problem of plenty. Today, version control systems
come in two flavors-centralized and distributed.

Centralized version control systems have a repository based on centralized remote servers
and developers download one specific revision / version of the source code (usually the latest
version, that is, HEAD revision) and work with it. Changes are made on the local workstation
and can be "committed" onto the centralized version control system. Popular centralized
SCMs include CVS, Subversion (SVN), MS Visual Source Safe, and so on.

Distributed version control systems are, however, fundamentally different in the sense that
at any given moment, the developer workstation has all the revisions of the source code and
is independently self-sufficient for all development work. Developers choose to either make
their source repository servers available to other users directly, or share it via a centralized
source repository. Popular distributed SCMs are Mercurial and GIT.

How to do it...

The first step is, of course, to choose a version control system. The primary open source
candidates include Subversion (SVN), Mercurial, and GIT. Your choice would depend on
various parameters including the standards of your organization, your team's comfort
level with new adoptions, and so on.

No matter which SCM suite you choose, be it centralized or distributed, some concepts
remain similar. For instance, the Subversion svn checkout command will download the
HEAD revision of the source repository on the developer machine while Mercurial and GIT
commands, which are hg clone and git clone, will create an instance of the entire
repository on the developer box.

The following table introduces basic commands for the three popular open source
revision / version control systems, that is, Subversion (SVN), Mercurial (HG), and Git.

These commands are not identical to each other and each revision
s control system has its own individual learning curve.

Chapter 3

Subversion commands Mercurial commands Git commands
svn checkout Hg init git init

svn add hg clone git clone

svn delete hg add git add

svn commit hg commit git commit
svn update hg status git status

svn diff hg pull git diff

svn log hg push git reset

svn merge hg serve git merge

and so on. and so on. and so on.

The source code configuration (SCM) information can be added to the POM file of an Apache
Maven project.

<scm>
<connection>...</connection>

<developerConnection>...</developerConnection>
<tag>...</tag>
<url>...</url>

</scm>

The preceding code snippet shows details of a revision control repository added in a project
POM file. The connection and developerConnection elements represent the read-only
and read/write paths of the repository respectively. The tag element dictates which tag is
being worked upon, while the url field is an optional field for a publicly browseable view of
the source code.

The workflow for the three revision control systems-SVN, Mercurial, and Git-can be different
depending on the configuration. However, a likely configuration for smaller teams (2-12
people) would involve a centralized repository even while you are leveraging benefits of
Distributed version control systems such as Git or Mercurial.

In such a case, the first step for a new developer would be to extract the source code on his
/ her workstation. With SVN, this would be the svn Checkout command, while for Git or
Mercurial you would use the clone command. In SVN, it is likely that you would be getting
only a copy of the HEAD revision while the c1lone command for Git / Mercurial extracts the
entire repository.

s

Agile Team Collaboration

The next step that would come in after the programmer has made changes is to commit
the code back into the repository. This is where the advantages of Git and Mercurial really
shine through. If you are using either one of those, you can commit your code into your local
repository and continue to work. However, if you're stuck with SVN, at this point, before
committing your code to the central repository, you need to update your local revision and
merge changes and resolve conflicts right away.

It is a best practice for programmers to commit small bunches of changes as often as
possible. This is where decentralized revision control systems really help because you can
commit small changes into your local repository and continue working. But if you're using
SVN, you need to update your revision, merge changes, and resolve conflicts. Doing this very
often can lead to significant loss of productivity; hence a lot of developers using SVN or similar
centralized version control systems abandon the practice of committing code very often in
small bunches and commit code mostly once a day or so.

However, in a DVCS, you would commit code often and push your changes to the central
repository, perhaps once a day if you are working in a central repository configuration.

There's more...

Latest versions of popular IDEs such as Eclipse, NetBeans, IntelliJ IDEA, and so on have
plugins for these various revision control systems and embed their user with the development
process itself. In fact, Eclipse's Team suite helps abstract different revision control commands
and standardizes the experience, regardless of which underlying system being used.

A popular option these days is also to make use of online cloud-based source code
repositories and revision control providers. They generally provide one or more SCM systems
and have various pricing options including free options. Some of these include:

» Google Code: Mercurial, SYUN-http://code.google.com

» BitBucket: Mercurial-http://www.bitbucket.org

» GitHub: Git-https://github.com

» SourceForge: CVS, SVN, Bazaar, Git, Mercurial-http://www.sourceforge.net

Team integration with Apache Maven

Most enterprise projects are generally executed by a team of programmers in an organization.
Teams may consist of developers and contributors. Teams can be onsite, offshore, or
distributed, which is a mix of onsite and offshore team members. Alternatively, there

might be multiple teams working on different modules of the same project.

Team information is integral toward achieving completeness in an Apache Maven project, and
this information can be defined inside an Apache Maven project POM file.

&)

Chapter 3

Getting ready

To set up team information in a POM, make sure you have a Maven project and have write
permissions to this file. The team information setup consists of:

» Licenses

» Organization

» Developers

» Contributors

Make sure you have all this team meta information available before we proceed.

How to do it...

License information is entered in the POM file in the following structure:

<licenses>
<license>
<name>...</name>

<urls>...</url>
<distribution>...</distribution>
<inceptionYear>...</inceptionYear>
<comments>...</comments>
</license>
</licenses>

The licensing information can include the name, description, URL, and inception year along
with additional comments.

Adding license information inside the POM is important because it is likely that the license
purchased by a business would be a team license and individuals in the team would need this
information to get started. While teams can share this information on wikis and mailing lists, it
makes sense that the project POM file contains this information. After all, the underlying idea
of the POM file is that it contains all requisite information for that particular project and all you
should ever need is the source code, POM file, and an Apache Maven instance to get started.

Organization information can be set up in the following format:

<organization>
<name>...</name>
<urls>...</url>

</organization>

Agile Team Collaboration

This includes a very basic set of information consisting of just the name and URL of the
organization. This can be a private company or an open source group. For teams working

with (ISV) Independent Software Vendors and implementing client projects, generally the
organization information would be the client information because typically, it is the clients who
would own the Intellectual Property rights. However, this may vary from case-to-case and will
need to be confirmed by a business representative.

Projects generally have multiple developers and information for all the developers can be
included in the POM file with the following format:

<developers>

<developer>
<id>...</id>
<name>...</name>
<email>...</email>
<url>...</url>
<organization>...</organization>
<organizationUrls>...</organizationUrl>
<roles>
<role>...</role>
<role>...</role>
</roles>
<timezone>...</timezone>
<properties>
<picUrls>...</picUrl>
</properties>
</developer>

</developers>
This developer information includes:
» id, name, and email: These correspond to the developer's ID, the developer's name,
and e-mail address.
» organization and url: These are the developer's organization name and it's URL.

» roles: They specify the standard actions that the person is responsible for. For
example, developer, architect, quality assurance, and so on.

» timezone: A numerical offset in hours from GMT to where the developer lives.

» properties: This element is where any other properties about the person are
mentioned. For example, links to a personal image or an instant messenger handle.

Chapter 3

Additionally, for developers, projects also have contributors who generally play supportive
roles such as making a bug-fix, working on documentation, and so on. Their information
can be set up in the POM file as well:

<contributors>

<contributor>
<name>...</name>
<email>...</email>
<url>...</url>
<organization>...</organization>
<organizationUrls>...</organizationUrl>
<roles>
<role>...</role>
</roles>
<timezone>...</timezone>
<properties>
<gtalk>...</gtalk>
</properties>
</contributor>

</contributors>

For small teams or teams located in the same geographical area, adding this team
information to the project POM file may seem redundant. However, for instances such as
multiple distributed teams working on the same project, or even large open source projects
with developers and contributors scattered around the world, having this information stored
in the project POM file really helps.

Of course, this information could also be present in wikis, and teams would leverage mailing
lists and instant messaging to communicate. Having team information stored in the project
POM doesn't seek to replace either of these, but rather just focuses on POM completeness.

This team information, while not critical to the project, is often used by various plugins.
It serves to ensure the completeness of the POM file and ensures the POM includes all
information regarding the project and not just technical information.

Several IDE (NetBeans, Eclipse, and IntelliJ) plugins or other software used in the
development process could also make use of this information. For example, the licenses
stored in the project POM may be required to run proprietary development software such
as IntelliJIDEA, Adobe Flash Builder (for Flex projects), and so on.

(&5}

Agile Team Collaboration

Implementing environment integration

As you would have discovered by now, your project's source code does not live in isolation.
Often you'll find your team (and yourself!) working with an issue tracker system, continuous
integration system, team mailing lists, source code revision tools, and so on.

I Issue Management [|

== e
I _—
Continuous I
Integration I
% I
- I
I

| Team Mailing Lists

! |
| N

This is the environment in which the project team resides and having this information in the
POM file is critical to achieve completeness of the project POM file.

Getting ready

To set up environment information in a POM, make sure you have a Maven project and have
"write" permission to this file. The environment information includes:

Issue management

v

Continuous integration

v

Mailing lists
SCM

v

Having these details is a prerequisite before we can proceed.

=

Chapter 3

How to do it...

Information for issue management tools (including JIRA, Bugzilla, and so on) can be set up in
the POM file in the following format:

<issueManagement >
<systems>...</system>
<urls>...</urls>

</issueManagement>

This information includes the name of the system and the URL by which it can be accessed.

We looked at the practice of continuous integration earlier in this chapter in the recipe
Performing continuous integration with Hudson. The Cl server's metadata can be entered
in the POM file in this format:

<ciManagement >
<system>hudson</system>
<urls>http://localhost:8080/hudson</url>
<notifierss>

<notifier>

<sendOnError>true</sendOnErrors>

<sendOnFailurestrue </sendOnFailures
<sendOnSuccess>true </sendOnSuccesss>
<sendOnWarning>true </sendOnWarnings>

</notifier>
</notifierss
</ciManagement >

While much of the CI configuration is specific to the Cl tool itself, depending on which one
you use, (Hudson, Continuum, Cruise Control, and so on), Maven allows the mention of
some recurring settings that are common across various Cl tools. These include Boolean
values of the e-mailing triggers-sendOnError, sendOnFailure, sendOnSuccess
and sendOnWarning.

Does your team have more than two members? You need a mailing list to provide an easy way
of communicating with everyone involved in the project, including the product owner and other
stakeholders if necessary.

Mailing lists have been around literally for decades now and there are many applications to
work with here. Google Groups (http://groups.google.com) provides an easy way to
quickly set up a mailing list. Google Groups is especially recommended if your project is
hosted on Google Code or your organization uses the Google Apps infrastructure.

]

Agile Team Collaboration

Here's the format for entering this mailing list information:

<mailinglLists>
<mailingList>
<names>. ..</name>
<subscribes>...</subscribe>
<unsubscribes>. . .</unsubscribe>
<post>...</post>
<archives>...</archive>
<otherArchives>
<otherArchives...</otherArchives>
</otherArchivess>
</mailingList>
</mailingLists>

Finally, to ensure the completeness of the POM, the only remaining project infrastructure
entity information that is missing is the SCM. This can be entered as follows:

<scm>
<connections...</connection>
<developerConnections. ..</developerConnection>
<tag>...</tag>
<urls>...</urls>

</scm>

The connection element should point to read-only access while developerConnection
points to read/write access to the repository. The connection format that needs to be used is:

scm:<scm_providers><delimiters<provider specific_ parts>

Once this information is available in the Project POM file (pom.xml), it can be used in various
ways such as being used by new team members getting up to speed with the development
ecosystem, by advanced IDEs such as IntelliJ IDEA to provide smoother integration with the
bug tracking tools, source code repositories tools, and so on.

This helps in achieving "completeness" of the Apache Maven Project POM in which the
underlying philosophy calls for all information concerning the project to be contained in
the Project Object Model (pom.xm1 file).

» Chapter 3, Performing continuous integration with Hudson section.

» Chapter 3, Integrating source code management section.

(&)

Chapter 3

Distributed development

Like it or not, it is a globalized world today and has been so for the software industry for at
least two or three decades. Software creative professionals along with professionals of many
other industries find themselves working with distributed cross functional teams. Rather
than going into our shells, this situation can be a great opportunity to work with people

from differing cultural, geographical, and professional backgrounds.

And while diversity is a gift and must be celebrated, it does bring along new challenges
that cannot be swept under the carpet and need to be addressed. One does need to
enforce certain practices that transcend cultural differences and make distributed software
development practical and productive.

You are supposed to work with people half way across the world. They don't speak your
language, they don't share your work culture, and neither do they share your time zone.
To put it mildly, this can be quite a challenge.

Yet if done correctly, it has proven itself to be of great benefit to the business. The key here is,
if done "correctly".

So how does one do it correctly? | suggest keep it simple.
First, speak a common language. Without this, one can't proceed.

Second, have honest communication with positive intent. Human beings, especially those who
speak differing languages, have this great ability to judge the moods of each other. It is not a
secret that over 90 percent of human communication in non-verbal.

If you are negative, that will be the first thing your distributed peers will pick up. This needs
to be stressed, as it is extremely important. Off shoring / outsourcing can be a controversial
subject, but if you are going to work with a distributed team, your intent should be to do your
best, regardless of your political stance on this subject.

How to do it...

While the practices described in other recipes of this chapter are suitable for any team, they
especially resonate and make most sense if implemented for distributed teams.
1. Start with setting up:
Remote source code repository / revision control system
Continuous integration server

Issue tracking systems

00 DO

Mailing list systems

&7}

Agile Team Collaboration

2.

&)

Configure them correctly and make sure everything has been tried and tested by you
or someone suitable in your local team. Note that all these systems need to work off
the Internet or on private company networks access, whichever is available to your
distributed teammates.

Once this is ready, create the requisite accounts and access controls for your
distributed partners. Share this information with them either on the wiki, on the
mailing list, or even through the Apache Maven Project POM file / Maven Project Site.

The next steps depend on the experience levels of the local

and distributed team. Do they understand how everything

should work? If not, ask them to buy my book. :-)

A good way to get started with less experienced team members, whether distributed
or local, is through pair programming. In a team of developers with mixed experience
levels, it is strongly recommended that developers start pairing up with more
experienced team members. The quickest learning happens by example and
experienced team members get an opportunity to motivate and mentor a

beginner by showing them how it's done.

A developer pair can set up the project on the developer box, make their first

code change, their first build, and first commit. This will be a tremendous learning
experience for the young developer. Rotate pairs often and soon you should have
achieved cohesiveness in your distributed team. Screen and voice sharing tools such
as Skype can be effectively employed for pair programming. Pair programming has
clear benefits and is more effective than day long trainings and sessions.

B

Pair Programming

10

Centralize respositories
+Revision Control

LAK f——7 3e—— A X1

Onsite Team Distributed Team
(Offshored)

)

Daily standups+
short iterations/sprints

Common tools
wikis,mailing List,
Issue Trackers etc.

Chapter 3

Eventually, everyone in your distributed team should be comfortable executing the following:

Updating the local code base from the revision control system
Picking up a task from the issue / task management system
Writing the tests for the tasks that they are implementing
Writing the code to implement the tasks

vV v.vy vy

Running a local build, and checking that code compiles, and all existing and new
tests execute successfully

» Updating and merging changes in case multiple commits have been made while the
programmer was coding

» Committing the code
Once your team is here, you know you have done a good job developing not only software,

but also shaping individuals and building teams. This, for the senior developers, can be an
extremely rewarding experience.

» Chapter 3, Creating centralized remote repositories section
» Chapter 3, Performing continuous integration with Hudson section
» Chapter 3, Integrating Source Code Management section

Working in offline mode

Stuck on a tropical island with no Internet access? Will you give in to that intrinsic urge to
write more code?

Maven, always a good friend of the developer, lets you work away from centralized SCMs,
central repositories, and issue tracking systems. It's called the Maven offline mode.

Getting ready

You will need an existing or new project to work on. If your project has dependencies
that are not available on the local repository, make sure you have the packages
JAR/WAR/EAR available.

[}

Agile Team Collaboration

How to do it...

It's simple. Just use an -o switch for any Maven command. For example:

mvn install -o
mvn test -o

Does the build fail because of the unavailability of a dependency?

If you have the packaged file JAR/WAR/EAR), dependencies can be manually installed in your
local repository using the following command:

mvn install:install-file -DgroupId=%GROUP_ ID% -DartifactId=%ARTIFACT
ID% -Dversion=%VERSION% -Dfile=%COMPONENT%.jar -Dpackaging=jar
-DgeneratePom=true

If you are getting tired of manually mentioning offline mode, "-o" in every command, you
could set it permanently in the Maven settings file settings.xml. The settings file can be
found in the <M2_ HOME>/conf/ folder or the <USER HOME>/m2/ directories.

You need to set the offline configuration element as follows:

<settings ..>
<offline>true</offline>

</settings>

When an Apache Maven command is executed in offline mode, then Apache Maven restricts
all access to external / remote repositories: Apache Maven Offline Mode expects all relevant
dependency artifacts to be available in the local repository.

Offline Mode

External Repository
Local Repository

; |

Programmer

Offline Mode
SPON 8ulyO

|

Source Code

[

Chapter 3

Apache Maven Offline Mode can be leveraged to speed up or execute commands while there
isn't any network access available, as it allows all commands and features possible as long as
there isn't any need to retrieve a dependency / artifact from a remote repository.

When used in conjunction with a distributed version control system (such as Git or Mercurial),
the programmer can achieve a higher level of productivity without any network access.

7}

Reporting and
Documentation

In this chapter, we will cover:

» Documenting with a Maven site
Generating Javadocs with Maven
Generating unit test reports
Generating code coverage reports
Generating code quality reports
Setting up the Maven dashboard

vvYvyyvwvyy

As seen in Chapter 3, Agile Collaboration Techniques, large projects are often integrated
with a support environment that includes issue trackers, and continuous integration systems
which complement the project’s online documentation with real-time data reflecting the
current status.

For open source and enterprise distributed projects, the site and documentation are arguably
as important as the strategy and code. Such projects revolve around the team/community
and proper reporting and documentation is a catalyst for the nurturing and growth of the
community and maintaining high productivity of the development team. For enterprise
projects, thorough documentation not only brings tangible value to the team, but adds to the
overall worth of the project.

In this chapter, we will see how Apache Maven and its plugins can be used to automate most
of our reporting, documenting, and analyzing requirements. The reports generated by Maven
plugins can broadly be categorized as follows:

» Technical documentation: Javadocs

» Test coverage reports: Cobertura, Clover, and so on

Reporting and Documentation

» Code quality reports: Checkstyle, PMD, CPD, FindBugs, and so on
» Unit testing reports: Surefire

We will begin with a study of the Maven site build phase and then take it from there to
examine specific plugins for each of the reporting categories just mentioned.

Documenting with a Maven site

A Maven project site is the foundation for the end users and the developers alike. End users
look to the site for user guides, API docs, and mailing list archives; and developers look to the
site for design documents, reports, issue tracking, and release road-maps.

A Maven project site can consist of everything from unit test failures to code quality reports. It
makes them available in a simple HTML or "website" format. HTML pages are rendered using
a consistent project template.

Additionally it can be presented as a PDF as well.

Maven project sites often contain the project Javadocs and binary releases. They can be
published to a remote server for distributed access.

Getting ready

A Maven site exists for a given Maven project. Our first step is, therefore, to create a new
Maven project if we don’t have one for the site. Executing the following command in the
terminal will create a sample Maven project.

$ mvn archetype:create -DgroupIld=org.sonatype.mavenbook
-DartifactId=sample-project

How to do it...

Now that we have the Maven project ready, let’s start working with the Maven site:

1. Working with Maven sites, true to Maven’s commitment to simplicity, has been
reduced to just a few terminal commands:
$ cd sample-project
$ mvn site:run
We have generated a basic Maven site. Now, our next logical stop is to customize
and configure it to our specific needs. This includes the specification of project meta

information, creating a requisite menu, setting up remote deployment, configuring
authentication information, and so on.

7

Chapter 4

2. The next step is to configure the site descriptor to customize the Maven project site.
Here’s an example of the site descriptor:
<project name="Sample Project"s>

<bannerLeft>
<names...</names
<src>...</src>
<hrefs>...</hrefs>

</bannerLeft>

<body>
<menu name="...">

<item name="..." href="..."/>

</menu>
<menu ref="reports"/>

</body>

</project>

A quick look and it’s easy to figure out that the site descriptor defines the upper-left
banner and navigation menus for the site.

The site descriptor goes in the folder <project-root>/src/site andis
conventionally named site.xml.

Your project’s site structure should look like this:

+- src/
+- site/

+- apt/
| +- index.apt
|
+- xdoc/
| +- other.xml
|
+- fml/

| +- general.fml
| +- faqg.fml

+- site.xml

3. Once you have a project site that is ready to be served to the intended audience
(developers and user community), the site plugin’s deploy goal can be used to
deploy a number of protocols including FTP, SFTP, DAV, and SCP.

Here’s an example of configuring the remote server:

<projects>

<distributionManagement >
<site>

Reporting and Documentation

<id>sample-project.website</id>
<url>dav:https://dav.sample.com/sites/sample-project</urls>
</site>
</distributionManagement>

</projects>

4. Remote server authentication can be defined in the Maven settings.xml file:

<settings>

<servers>
<servers
<id>sample-project.website</id>
<usernames>username</username>
<password>password</password>
</server>

</servers>
</settings>

5. If the remote server is a Unix/Linux service, the file and directory permissions and
modes need to be set correctly. This can also be done by entries in the Maven
settings.xml file:

<settingss>
<servers>

<servers
<ids>hello-world.website</id>

<directoryPermissions>0775</directoryPermissions>
<filePermissions>0664</filePermissions>
</servers>
</servers>

</settings>

To build the site for your project and start an embedded instance of the Jetty web server, use
the following command:

$ mvn site:run

The site can be viewed by pointing your web browser to the URL http://localhost:8080.

7@

Chapter 4

The following screenshot shows the generated site:

sample-project - About

& hop: //localhostB0B0 v

sample-project

Last Publisheg: 2008-04-216

Project Documentation

E
T About sample-project

AL & Integrat
e king There is currently no description associated with
& " this project.

B 2008

The $ mvn site:deploy invokes the plugin goals that generates the JARs and then uses
the SCP or FTP to remotely deploy the site. The configuration used for remote deployment was
covered in steps 3, 4, and 5 in the How to do it section of this recipe.

Depending on the configuration, the method of deployment is automatically chosen and the
appropriate command is executed behind the scenes.

For more information about the Maven site, check out http://
Lo maven.apache.org/guides/mini/guide-site.html

Generating Javadocs with Maven

Javadoc is a documentation generator introduced by Sun Microsystems (now part of Oracle)
for generating APl documentation in HTML format directly from the Java source code.

Over the years, Javadoc’s format has become the de facto industry standard for documenting
Java classes, methods, interfaces, and so on. It has proven to be very popular, and has
transcended Java, and been readily adopted in other technologies including Microsoft .NET,
PHP, ActionScript, Python, and a number of JVM-based programming languages.

The Maven Javadoc plugin uses the Javadoc tool and generates APl documentation directly
from the source code in HTML format.

(77}

Reporting and Documentation

Structure of a Javadoc comment:

/**

* @author Firstname Lastname <address @ example.com>
* @version 2010.0331

* @since 1.6

*/

public class Test
// class body

}

Getting ready

To get started, let us have a quick look at the various goals made available to us by the Maven
Javadoc plugin. These goals are important because we later make use of them in order
to generate, archive, or fix the project documentation.

This plugin comes with ten major goals. They are as follows:

» javadoc:javadoc: Generates documents for the project

» javadoc:test-javadoc: Generates documents for the test classes
» javadoc:aggregate: Generates documents for an aggregator project
>

javadoc:test-aggregate: Generates documents for tests of an
aggregator project

javadoc: jar: Creates an archive of the documents
javadoc:test-jar: Creates an archive of the tests’ docs

javadoc:aggregate-jar: Archives documents of an aggregated project

vV v vy

javadoc:test-aggregate-jar: Archives test documents of an
aggregated project

v

javadoc: fix: Fixes documents and tags for Java files

» javadoc:test-fix: Fixes documents and tags for Java test files

How to do it...

Javadoc can be generated as part of the "site" phase of the build lifecycle. This is perhaps
the most popular configuration for Javadoc generation. To implement this, the Javadoc plugin
needs to be part of the reporting element in the project POM file.

<projects>

<reporting>
<plugins>

@

Chapter 4

<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-javadoc-plugin</artifactIds>
<versions>2.7</version>
<configurations>

</configurations>
</plugin>
</plugins>

</reporting>

</project>

The command would be the same as the Maven site build phase command and the Javadocs
would be generated as part of the Maven site.

$ mvn site

While integrating the Javadoc generation with the Maven build lifecycle is the most beneficial,
in case a situation arises wherein you need to use the Javadoc plugin in a standalone mode,
the following configuration can be used.

Add the plugin to the build element of the project POM file:

<projects>
<builds>
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-javadoc-plugin</artifactIds>

<versions>2.7</version>
<configurations>

</configurations>
</plugin>
</plugins>
</build>

</project>

(7]

Reporting and Documentation

The following commands can be directly executed in the console/command-line terminal and
the goal specific action will take place.

mvn javadoc:javadoc

mvn javadoc:jar

mvn javadoc:aggregate

mvn javadoc:aggregate-jar

mvn javadoc:test-javadoc

mvn javadoc:test-jar

mvn javadoc:test-aggregate

©w» v v v v »n n un

mvn javadoc:test-aggregate-jar

The aggregate goal in the Javadoc plugin can be used in a Multi-modular project environment
where there is a need to aggregate all the Javadocs of all the modules into a single
Javadoc report.

The following project structure is a good candidate for using javadoc:aggregate:

Project
| -- pom.xml
| -- Modulel
| “-- pom.xml
| -- Module2
| “-- pom.xml
“-- Module3

S -- pom.xml

When the Maven Javadoc plugin is configured to be part of the reporting elementin
the project pom. xml file, then it is executed as part of the site phase of the Maven project
build lifecycle.

Hence the command to generate it is:
$ mvn site.

If the Maven Javadoc plugin has been installed in the standalone mode, which means it has
been explicitly defined in the build element of the project pom.xml file under the plugins
sub-element, then it is not automatically executed as part of the project build lifecycle and its
goals need to be explicitly executed, as shown in the How to do it section of this recipe.

Under this configuration, it behaves like any other Maven plugin that is not automatically
associated with the project build. This is a rare configuration, but maybe suitable for
testing/evaluation purposes.

(&)

Chapter 4

Generating unit test reports

The Maven Surefire plugin is executed in the "test" phase of the build lifecycle to run the unit
tests, generate plain text, and XML reports of the tests.

The Surefire plugin comes with one goal: surefire:test.

By default, Surefire reports can be found in {basedir}/target/surefire-reports

Getting ready

To get started, you need to include the dependency of the Maven Surefile plugin in your
project POM. xm1 file.

<projects
<builds>
<pluginManagement>
<plugins>
<plugin>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-surefire-plugin</artifactIds>

<versions>2.6</version>
</plugin>

</plugins>
</pluginManagement>
<plugins>
<plugin>
<grouplds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-surefire-plugin</artifactIds>

</plugin>

</plugins>
</build>
</projects>
You may also need to change the default configuration to suit your preferences. Configuration

elements can also be included as depicted:

<plugin>
<grouplds>org.apache.maven.plugins</groupId>
<artifactIds>maven-surefire-plugin</artifactId>

s

Reporting and Documentation

<configurations
<reportFormat>brief</reportFormat>
<useFile>false</useFile>
</configurations>
</plugin>

Surefire will work with unit tests created for:

» TestNG
» JUnit (3.8 or 4.x)
» Plain Java (POJO) tests

It will also work when a combination of the test frameworks just mentioned are being used in
the same project/module.

How to do it...

The Surefire plugin is invoked in the "test" phase of the Maven build lifecycle. Thus the
following command invokes Surefire:

$ mvn test
To see the Surefire output on a console, try:
$ mvn test -Dsurefire.useFile=false

Sometimes there may be a need to skip all tests, skip individual tests, execute individual
tests, or modify the test reports’ output destination or format. For these aspects, Maven is
remarkably easy to customize and can achieve the desired results with minimal fuss.

To permanently skip tests in a project, edit the POM with:
<projects>
<builds>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactIds>
<configuration>
<skip>true</skip>

</configuration>
</plugin>

</build>

</project>

[

Chapter 4

Tests can also be skipped on a one-off basis through an additional parameter in the
command line.

The following command skips the compilation and execution of tests:

$ mvn install -Dmaven.test.skip=true

This command only skips the execution of tests:

$ mvn install -DskipTests=true

By default, Surefire includes all tests of the following patterns:

> **/Test*.java
» **/*Test.java

» **/*TestCase.java

If your test classes don’t match these patterns, you can manually force Surefire to include
a test:

<plugin>
<groupld>org.apache.maven.plugins</groupIld>
<artifactIds>maven-surefire-plugin</artifactIds>
<configurations>
<includes>
<include> .java</include>
</includes>
</configurations>
</plugin>

In the preceding configuration, you can include a pattern for the test classes and Surefire
plugin will execute the same.

In some situations, especially when refactoring or dealing with legacy code that isn’t
maintained, you may need to exclude certain tests from the unit test phase of the build
lifecycle. This can be done by configuring the exclude property:

<plugin>
<groupld>org.apache.maven.plugins</groupIld>
<artifactIds>maven-surefire-plugin</artifactIds>
<version>2.6</version>
<configurations>
<excludes>
<exclude>**/TestCircle.java</exclude>
<exclude>**/TestSquare.java</exclude>
</excludes>
</configurations>
</plugin>

Reporting and Documentation

Sample reports of the Surefire plugin’s test executions in two formats (text and XML) are
shown as follows:

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
0.039 sec

<?xml version="1.0" encoding="UTF-8" ?>
<testsuite failures="0" time="0.033" errors="0" skipped="0" tests="1"
name="net.srirangan.packt.maven.AppTest">
<properties>
<property name="java.runtime.name" value="Java(TM) SE Runtime
Environment"/>
<property name="sun.boot.library.path" value="C:\Program Files\
Java\jdkl.6.0 21\jre\bin"/>
<property name="java.vm.version" value="17.0-bl7"/>
//... other environment properties
</propertiess>
<testcase time="0.009" classname="net.srirangan.packt.maven.AppTest"
name="testApp"/>
</testsuite>

As the Surefire plugin gets executed, every unit test is executed sequentially.

As each test is executed, a report is generated in the {basedir}/target/surefire-
reports directory. Reports are organized as per the project package structure as the tests
are organized in the same package structure.

These reports can be rendered to display on the console based on a command-line argument,
as seen in the How to do it section of this recipe.

As witnessed before, the Surefire plugin configuration can be modified in the project POM file.
We had earlier set up the skip configuration parameter to be true. With this, all tests would
be skipped by this plugin.

The Surefire reports contain a list for all the test cases that were executed along with
the time elapsed, class name/references, successes, failures, and errors encountered
during execution.

Additionally, the report will also contain environment and property information including the
relevant paths, JDK versions, and so on.

=

Chapter 4

Generating code coverage reports

In the Generating unit test report recipe, we leveraged the Surefire plugin to generate reports
of our unit tests. These reports contained information about the success or failure of each
individual test. However, what it lacked was an assessment of the scope of the unit tests
itself in relation to the source code base.

Are these unit tests sufficient? Do they provide test coverage to all important portions of the
functional code?

Cobertura is a tool that helps you answer some of these questions. It analyzes your source
code and test code, calculates the percentage of code accessed by the tests and thus
identifies portions of the code that aren’t covered by tests.

Cobertura instruments Java bytecode after compilation, and generates HTML and XML
based reports showing the percentage of code coverage for each class, each package,
and the project overall.

Getting ready

Cobertura Maven plugin http://mojo.codehaus.org/cobertura-maven-plugin/
embeds the code coverage features of Cobertura within your Maven build lifecycle. It is used
to analyze code coverage in your project and helps highlight portions of your source code
which lack enough unit test coverage.

The plugin provides us five goals to work with. They are:

cobertura : check: Checks the last instrumentation results
cobertura:clean: Cleans up rogue files being tracked
cobertura:dump-datafile: Provides a data file dump

cobertura: instrument: Instruments the compiled classes

v v vy

cobertura:cobertura: Instruments, tests, and generates the report
Installing the Cobertura Maven plugin is a two step process. It is explained as follows:

1. The first step involves the initial configuration in the reporting element of the project
POM file. Implement the plugin within the project POM file, as shown as follows:

<reporting>
<pluginss>
<plugin>
<groupIds>org.codehaus.mojo</groupIld>
<artifactIds>cobertura-maven-plugin</artifactIds>
<versions>2.4</version>
</plugin>

&1

Reporting and Documentation

</pluginss>
</reportings>

2. The second step is the instrumentation configuration, as shown in the following code.
The configuration/instrumentation element can be used to override the
default Cobertura instrumentation settings and meet our project needs.

The following settings show how to ignore a package and exclude certain packages
and patterns:

<builds>
<plugins>
<plugins>
<groupIds>org.codehaus.mojo</groupIlds>
<artifactId>cobertura-maven-plugin</artifactIds>
<configurations>
<instrumentations>
<ignoress>
<ignore>com.test.somepackage. *</ignore>
</ignores>
<excludes>
<exclude>com/test/somepackage/**/*.class</exclude>
<excludescom/test/**/*Test.class</exclude>
</excludes>
</instrumentations>
</configurations>
</plugin>
</plugins>
</build>

The following settings bind the execution of the plugin with the clean phase of the
build lifecycle:
<executionss>
<execution>
<goals>
<goal>clean</goals>
</goals>
</executions>
</executionss>

How to do it...

The Cobertura report can be generated by executing the following command in the console:

$ mvn cobertura:cobertura

This will generate the report in a standalone mode.

~[ee]

Chapter 4

If the Cobertura plugin is bound to the reports phase of the project’s build cycle, the Maven
site command will also lead to the generation of the Cobertura report:

$ mvn site

The following screenshot shows the Coverage Report grouped as Packages in a web browser:

Packages Coverage Report - All Packages
All
net.sourceforge.cobertura.ant Package # Classes Line Coverage Branch Coverage Complexity
T ———— All Packages 55 75% [ie2si2i7a 54 [NNATSTEN 2.319
net.sourceforge.cobertura.check
" - oy . net.sourceforge.cobertura.ant 1 529 [NEFO/ESON 430 AN 1.848
”i-““”‘a;ma-”hart“'a-”‘f’“a f 2 net.sourceforge.cobertura.check 3 Iy | o [GEE 2.429
net.sourcforae.cobertura.instrument
net.sourceforge.cobertura.coveragedata 13 wal___wa] wal___wa] 2.277
net.sourceforge.cobertura.merge
net.sourceforge.cobertura.instrument 10 a0% [EEE/SIGNN 75% NS e 1.854
net.sourceforge.cobertura.reporting
B e el net.sourceforge.cobertura.merqe 1 s6v [NSO/ESININ | 5.5
net.soureetorde.cooertura. rEnortind. Am net.sourceforge.cobertura. reporting 3 ey | sov. [NEEEE 2.882
net.sourceforge.cobertura.reporting.html.files
" - P e : net.sourceforge.cobertura.reporting.htm 4 o919 [NETSIEEENN 775 ESEEEE 4.444
DELSOUrEEarae. o bEMUI. [EROMING. XM net.sourceforge. coberturs. reporting. htmlfiles 1 &7+ [NESEASI 62+ [NSEI 45
net.sourceforge.cobertura. util
e —— net.sourceforae.cobertura.reporting.xml 1 1o0% [NESS/ESSENN o5 [NEIEER 1.524
someotherpackage .
sameotherpackags net.sourceforge.cobertura.util 9 0% S sav, [ISO/O 2.892
herpackage 1 53 (IS wa WA 12
All Packages
Report generated by Cobertura 1.9 on 6/9/07 12:37 AM.
Classes

AntUtil (68%)

Archive (100%)

ArchiveUtil (80%)
BranchCoverageData (N/A)
CheckTask (0%,)

ClassData (N/A)
ClassInstrumenter (94%,)
ClassPattern (100%)
CobertursFile (73%)
CommandLineBuilder (96%)
C Task (85%,) =

As seen in the preceding screenshot, Cobertura can be configured to be triggered in the site
phase of the Maven project build lifecycle. Alternatively, it can be triggered explicitly from the
command line.

When executed, Cobertura scans the source folder of the Maven project and begins analyzing
the source code package-wise and class-wise. At this point, it also takes into account the
configuration settings for inclusions and exclusions. After analysis, Cobertura produces
"pretty" reports in the form of HTML files viewable through the web browser. This can be
made part of the Maven project site as well as the reports produced by other tools, for
example, Sonar.

In an ideal scenario, Cobertura is part of the build lifecycle and automatically checks the code
coverage on every build.

Builds can be configured to fail if the code coverage doesn’t meet acceptable levels.

Generating code quality reports

There is good code, and then there is "good code". Presumably, there is a high level of
understanding in your team and everyone agrees on common conventions and standards
for code quality.

7}

Reporting and Documentation

Once we’ve reached this agreement as a team, we must make sure all team members adhere
to it as the code base of your projects evolves over time.

Checkstyle is a Java development tool to help developers adhere to coding standards. The
Maven Checkstyle plugin http://maven.apache.org/plugins/maven-checkstyle-
plugin/ allows developers to generate reports regarding the "code style" implemented by
the team in the project source code.

The Maven Checkstyle plugin introduces two goals:

» checkstyle:checkstyle: Performs analysis and generates a report
» checkstyle:check: Checks for violations against the last Checkstyle run

The minimum requirement for this plugin includes JDK 1.5 or higher and Maven 2.0.6
or higher.

Getting ready

To get started, you need to update the reporting element of the project POM file to include the
Checkstyle plugin:

<reporting>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
<version>2.6</version>
</plugin>
</plugins>
</reporting>

How to do it...

The plugin can then be executed and reports generated by invoking the Maven site command:

$ mvn site

Depending on your project configuration, the invocation of $ mvn site can lead to the
execution of many plugins and report generators. For situations where Checkstyle reports
need to be generated in isolation from any other process or from the build lifecycle, the
following command can be used:

$ mvn checkstyle:checkstyle

(e

Chapter 4

Based on your teams’ understanding and code conventions, Checkstyle can be configured to
match the same. To configure the Checkstyle plugin, it needs to be added to the build section
of the project POM file. An example is shown as follows:

<projects>
<builds>
<plugins>
<plugin>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-checkstyle-plugin</artifactIds>
<version>2.6</version>

<configuration>
<enableRulesSummary>false</enableRulesSummary>

</configurations>
</plugin>
</plugins>
</builds>

</projects>

The following screenshot shows a sample Checkstyle report with a list of files, number of
Infos, Warnings, and Errors. You can also see a package level summary of the same:

Summary

16 o 123 17

Files

org/apache/maven/plugin/checkstyle/CheckstyleExecutor.java
org/apache/mawven/plugin/checkstyle/CheckstyleExecutorException.java
org/apache/maven/plugin/checkstyle/CheckstyleExecutorRequest.java
org/apache/maven/plugin/checkstyle/CheckstyleReport.java
org/apache/maven/plugin/checkstyle/CheckstyleReportGenerator.java
org/apache/maven/plugin/checkstyle/CheckstyleReportListener.java
org/apache/maven/plugin/checkstyle/CheckstyleResults.java
org/apache/maven/plugin/checkstyle/CheckstyleViolationCheckMojo.java
org/apache/maven/plugin/checkstyle/DefaultCheckstyleExecutor.java
org/apache/maven/plugin/checkstyle/ReportResource.java
org/apache/maven/plugin/checkstyle/VelocityTemplate.java
org/apache/mawven/plugin/checkstyle/rss/CheckstyleRssGenerator.java
org/apache/maven/plugin/checkstyle/rss/CheckstyleRssGeneratorRequest.java
org/apache/maven/plugin/checkstyle/rss/DefaultCheckstyleRssGenerator.java
ora/codehaus/plexus/util/interpolation/RegexBasedInterpolator.java

o o0 o0 o000 oooooo oo
[e - T — B — - e S — B R I~ R

(== 7 BT R T - R = = TN

org/codehaus/plexus/util/interpolation/ValueSource.java

Reporting and Documentation

Checkstyle is typically executed as a part of the Maven site phase in the build lifecycle.
However, as seen in the preceding How to do it... section, it can also be executed explicitly
from the command line.

Regardless of how it is executed, during execution, Checkstyle covers a series of standard
checks which include:

» Annotations

» Block checks

» Class design

» Duplicate code

» Imports
The checks can be configured as part of the plugin rules and Checkstyle in itself supports

a far greater number of checks. Complete details of these can be found at
http://checkstyle.sourceforge.net/.

Setting up the Maven dashboard

The Maven dashboard plugin commits to centralizing and enabling effective sharing of
information, created by a number of other Maven reporting plugins. The list of plugins
supported by the dashboard is as follows:

v

Test coverage reports

Cobertura: Calculates the percentage of code accessed by tests

Clover: Calculates the test coverage metrics

Code quality reports

Checkstyle: Performs static code style analysis

PMD/CPD: Performs Java source code analysis and copy-paste detection
FindBugs: Performs Java source code analysis to detect bug patterns
JDepend: Calculates design quality metrics by package

vV vV v v Vv VvV Yy

Taglist: Performs static code analysis to find tags in the code, like
@todo or //TODO tags

v

Unit testing reports
Surefire: Executes the unit tests of an application

Chapter 4

Getting ready

The goals made available by the dashboard plugin are:

» dashboard:dashboard: Generates the dashboard to aggregate all reports
» dashboard:persist: Preserves the dashboard in a backend database

How to do it...

The dashboard plugin can be configured in the project’s POM file by including the plugin in the
POM’s build and reporting elements.

<projects>
<builds>
<pluginManagement>
<plugins>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>dashboard-maven-plugin</artifactId>
<version>1.0.0-beta-1</version>

</plugin>

</plugins>
</pluginManagement>

<plugins>
<plugin>
<groupIds>org.codehaus.mojo</groupId>
<artifactId>dashboard-maven-plugin</artifactId>
<version>1.0.0-beta-1l</version>
</plugin>

</plugins>
</build>

<reporting>
<plugins>
<plugin>
<groupIds>org.codehaus.mojo</groupId>
<artifactId>dashboard-maven-plugin</artifactId>

<version>1.0.0-beta-1</version>

i

Reporting and Documentation

</plugin>

</plugins>
</reportings>
</projects>
Usage from the command line includes the generation of all reports and then the generation

of the dashboard to include all reports generated before:

$ mvn site

$ mvn dashboard:dashboard

The following screenshot shows the Maven dashboard report for a single Maven project:

il]
|. Infos =G4 @ Errors =110 © Warnings = 2053|

LogAnalyzer Checkstyle Violations Chart

Line has trailing spaces.=41.801

Other categories (<1%) = 6.183
Expected @throwvs tag for X' =1. ‘

523

Line contains a tab character=2.
375

Expected @param tag for X' =7.
302

Iissing a Javadoc comment.
=18.056

Expected an @retum tag.=1.837|

Iethaod "% iz not designed for
extension - needs to be abstract,
final or empty.=15.581

PMD Report Summary

[Topl

40 67

CPD Report Summary

[Topl

[

Chapter 4

In this recipe’s introduction, we saw the list of plugins that the Maven dashboard supports.
The Maven dashboard is in fact dependent on these plugins, as a majority of its operations
are performed on the results of these plugins, as compiled by Maven site.

The Maven dashboard works on the reports generated by supported plugins. The Metrics
Collector uses these XML reports for data analysis, while the Graph Generator renders a
visual representation of these finds.

Finally, the DB service is used to keep these in a database so that analysis reports and
visualizations are available on the dashboard.

Java Development
with Maven

In this chapter, we will cover:

» Building a web application

Running a web application

Enterprise Java development with Maven
Using Spring Framework with Maven

Using Hibernate persistence with Maven

vV v v.Vvy Yy

Using Seam Framework with Maven

One of the primary reasons stated for the adoption of Maven is its tremendous potential

in enterprise Java development. Not only does it make practical sense for companies and
teams to implement Maven in their projects for methodology-related and best practice
implementation related reasons (see Chapter 2, Software Engineering Techniques and
Chapter 3, Agile Team Collaboration), but Maven does provide inherent capabilities for Java
Web and Java EE development which makes it an ideal choice with the best of both worlds,
that is, technical capability as well as management and methodology support.

This chapter will begin with a recipe on creating and building web applications with
Maven while moving on to a recipe on running this web application on an embedded
Web Application Server (Jetty).

The next recipe will look at Java EE development with the Maven EAR plugin to package our
EJBs in EAR packages for use with our web application projects.

Java Development with Maven

Then we will look at a host of popular enterprise frameworks including Spring Framework,
Hibernate ORM Framework, and JBoss Seam Framework. These frameworks are highly
popular, and with their popularity growing by the day among Agile teams, they are quickly
replacing the cumbersome J2EE development paradigm of the late 90s and early 2000s.
They represent the future of Web and Enterprise Java Development. The recipes in this
chapter will focus on specific plugins for these frameworks and the implementation of
these frameworks in your Maven projects.

Building a web application

This recipe will see us creating a simple web application with a Maven Archetype plugin. The
web application will:

» Runin an embedded web application server (Jetty)

» Have some dependencies added

» Contain a simple servlet

» Have a WAR file generated

Our goal here is for you to be able to start using Maven to accelerate web application
development.

Getting ready

We start off with the concept of a (POWA) Plain Old Web Application, that is, a web
application project consisting of one servlet and one Java Server Page (JSP). The archetype
template that will be used to generate a POWA is org . sonatype . mavenbook . simpleweb.

How to do it...

Start the command-line terminal and execute the following generate command:

$ mvn archetype:generate -DarchetypeArtifactId=maven-archetype-
webapp -DartifactId=testWebApp -DgroupIld=net.srirangan.packt.maven
-Dversion=1.0-SNAPSHOT -Dpackage=net.srirangan.packt.maven

You should get the following output. Notice that you will get a prompt asking for the package.

[INFO] Scanning for projects...
[INFO] — - oo oo o oo o oo oo
[INFO] Building Maven Stub Project (No POM) 1 ------------------------

[INFO]
[INFO] >>> maven-archetype-plugin:2.0-alpha-5:generate (default-cli) e
standalone-pom >>>

5]

Chapter 5

[INFO]
[INFO] <<< maven-archetype-plugin:2.0-alpha-5:generate (default-cli) @
standalone-pom <<<
[INFO]
[INFO] --- maven-archetype-plugin:2.0-alpha-5:generate (default-cli) @
standalone-pom ---
[INFO] Generating project in Interactive mode
[INFO] Using property: groupIld = net.srirangan.packt.maven
[INFO] Using property: artifactId = testWebApp
[INFO] Using property: version = 1.0-SNAPSHOT
[INFO] Using property: package = net.srirangan.packt.maven
Confirm properties configuration:
groupId: net.srirangan.packt.maven
artifactId: testWebApp
version: 1.0-SNAPSHOT
package: net.srirangan.packt.maven
Y: vy
[INFO] === === m i m i m i m o e e e e e e

[INFO] Using following parameters for creating OldArchetype: maven-
archetype-webapp:1.0 --------------"-"--"--~--~—-~~—~ "~~~

[INFO] Parameter: groupld, Value: net.srirangan.packt.maven
[INFO] Parameter: packageName, Value: net.srirangan.packt.maven
[INFO] Parameter: package, Value: net.srirangan.packt.maven
[INFO] Parameter: artifactId, Value: testWebApp

[INFO] Parameter: basedir, Value: C:\Projects

[INFO] Parameter: version, Value: 1.0-SNAPSHOT

[

INFQ] *****kkkkkkkkkxx**kx** End of debug info from resources from
generated POM **#k k&% kkkkkkkkhkdkxkkhk

INFO] OldArchetype created in dir: C:\Projects\testWebApp

INFO] BUILD SUCCESS - === - === === oo mmm o oo mmm oo oo mmo oo
INFO] Total time: 6.591s

INFO] Finished at: Mon Nov 15 21:25:38 IST 2010

INFO] Final Memory: 9M/114M ------------ - - - - oo oo m oo

The archetype:generate command executed before has created a new project folder,
testWebApp, which contains the following POM file:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">

<modelVersion>4.0.0</modelVersions>
<groupIds>net.srirangan.packt.maven</groupIld>

o7}

Java Development with Maven

<artifactId>testWebApp</artifactIds>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</versions>
<name>testWebApp Maven Webapp</name>
<urls>http://maven.apache.org</urls>
<dependencies>
<dependencys>
<groupId>junit</groupIlds>
<artifactId>junit</artifactIds>
<version>3.8.1l</versions>
<scope>test</scope>
</dependency>
</dependencies>
<builds>
<finalName>testWebApp</finalName>
</build>
</projects>

Now, we add a build plugin to compile the project with JDK 1.6. The build element of the
POM file should look similar to the following;:

<builds>
<finalName>testWebApp</finalName>
<pluginss>
<plugins>
<artifactId>maven-compiler-plugin</artifactIds>
<configurations>
<sources>l.6</sources
<target>1l.6</target>
</configurations>
</plugin>
</plugins>
</builds>

The Apache Maven web application project will work like any other Maven project. The project
structure looks like this:

—src
| L—main

| —resources

| L webapp

5]

Chapter 5

| L WEB-INF
L target

—-classes

—maven-archiver

—surefire

L testWebApp

—META- INF

L WEB-INF
L__classes

You can run the commands to compile and test the project.

$ mvn compile
$ mvn test

$ mvn install

On installation, it will be packaged and deployed in the local repository like any other Maven
project. It can also be deployed into a remote repository.

There's more...

If you have a look, you will find the project source/main/webapp folder consisting of
index.jsp. Make suitable changes to that file such as adding some HTML:

<html>
<body>
<h2>Hello World!</h2>
</body>
</html>

Now that we have the build phase plugin set up, we can proceed to built the project:
$ mvn install

After a successful build, the target folder has been generated. In the target folder, you will
find a WAR file named testWebApp . war. Take a closer look at the project POM file and
you will find that the packaging in there will be set to WAR and the final artifact reflects this
packaging property:

<artifactId>testWebApp</artifactId>
<packagings>war</packaging>
<version>1.0-SNAPSHOT</versions>

Java Development with Maven

See also

» Chapter 5, Running a web application section

» Chapter 2, Deployment automation section

Running a web application

Maven can automate the process of deploying, cleaning, and redeploying the WAR on a
developer machine web application server, making the entire process less cumbersome
for the developer. This is done with the Jetty plugin.

According to the Wikipedia:

"Jetty is a pure Java-based HTTP server and serviet container (application server).
Jetty is a free and open source project under the Apache 2.0 License. Jetty
deployment focuses on creating a simple, efficient, embeddable and pluggable
web server. Jetty's small size makes it suitable for providing web services in an
embedded Java application. It also offers support for Web Sockets, 0SGi, JMX,
JNDI, JASPI, AJP, and other Java technologies".

In the preceding recipe, we built the web application project and generated a WAR file.
Now deploying this WAR would generally include setting up Apache Tomcat, unpacking a
distribution, copying your application's WAR file to a webapps/ directory, and then starting
your Tomcat container.

Although you could still do this, the Maven Jetty plugin makes this entire process much easier.

Getting ready

Let us add the plugin element shown in the following code to your web application project's
build configuration:

<build>
<plugins>

<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>6.1l.17</version>

</plugin>

</plugins>
</build>

100

Chapter 5

How to do it...

Once the Jetty plugin has been set up in the project POM file, the jetty: run goal
is available:

$ mvn jetty:run

When running the preceding command for the first time, Maven will automatically download
all dependencies and start the Jetty plugin.

[INFO] Starting jetty 6.1.26
2010-11-16 07:37:00.135:INFO::jetty-6.1.26

2010-11-16 07:37:00.247:INFO::No Transaction manager found - if your
webapp requires one, please configure one.

2010-11-16 07:37:00.484:INFO::Started
SelectChannelConnector@0.0.0.0:8080

[INFO] Started Jetty Server

Now testWebApp is running on localhost:8080/testWebApp:

ﬁ . localhost: 8080/ testWebApp/
< C' O localhost:3080/te

Hello World!

A few notes specifically for Windows are:
; Make sure the inbuilt or external firewall does not interfere and allows the
Jetty server to execute on port 8080.
Make sure the path to the Maven repository does not contain spaces. This
may be verified in the Maven settings.xml file.

Java Development with Maven

The underlying process varies depending on the goal that has been executed. The Jetty plugin
makes the following goals available:

$ mvn jetty:run

This goal doesn't require the project to be assembled as a WAR file and will deploy the web
application directly from the project. This saves time and is used often during development.

$ mvn jetty:run-exploded

This goal is used to deploy the exploded WAR file assembled from the project.
$ mvn jetty:run-war

This goal is used to deploy the WAR file assembled from the project.

Jetty then starts as an application server and the web application is available at the URL
http://localhost:8080/<web-app-contexts.

Enterprise Java development with Maven

The Maven EAR plugin primarily is used to generate the J2EE Enterprise Archive file. The EAR
file (or Enterprise Archive) is a Java EE file format used for packaging one or more modules
for deployment onto application servers. It also contains deployment descriptors which are
XML files (like application.xml) that describe deployment information for the package.

According to the Maven EAR plugin FAQ:

"An EAR archive is used to deploy standalone EJBs, usually separated from the web
application. Thus there is no need for a web application to access these EJBs. The
EJBs are still accessible, though, using EJB clients."

The EAR plugin supports the following artifacts:
» ejb

war

jar

ejb-client

rar

ejb3

vV v v vy

par

102

Chapter 5

» sar
» wsr
» har

The minimum requirements for this plugin are Maven 2.0.6 or higherer and JDK 1.4 or higher.

Getting ready

If you don't have a Maven Java project, create one by executing the following command:
$mvn archetype:generate -DarchetypeArtifactId=maven-archetype-j2ee-simple
This command creates a simple J2EE Enterprise application with the following structure:

f—ear
—-ejbs

| L—src

| L—main

| L resources

| L META-INF
—primary-source
—projects

| “—1logging

——servlets
| L——servlet
| L—src
| L—main
| L webapp
| L WEB-INF
L—src
L—main

L resources

As of today, this archetype contains a bug. The generate pom.xml must be modified and
the site sub module must be removed.

How to do it...

The configuration of the EAR plugin is similar to the configuration of the other plugins. The
following needs to be specified in your Maven Java project:

<project>
[...]

<builds>

[...]

Java Development with Maven

<pluginss>
[...]
<plugins>
<artifactIds>maven-ear-plugin</artifactId>
<version>2.4.2</versions>
</plugin>
[...]

</project>
The Maven EAR plugin provides the following goals:

» ear:ear
Builds the Enterprise Archive files
» ear:generate-application-xml
Generates EAR deployment description files
» ear:help

Displays help information

This plugin can be executed on an individual goal basis or be called as part of the project's
"package" phase of the build lifecycle.

An example of individual goal executions is:

$ mvn ear:ear

$ mvn ear:generate-application-xml

A sample output is shown as follows:

[INFO] --- maven-ear-plugin:2.5:generate-application-xml (default-
cli) @ project -
[INFO] Generating application.xml

Chapter 5

cli)

cli)

--- maven-ear-plugin:2.5:generate-application-xml (default-
@ projects
Generating application.xml

--- maven-ear-plugin:2.5:generate-application-xml (default-
@ logging -
Generating application.xml

--- maven-ear-plugin:2.5:generate-application-xml (default-
@ primary-s
Generating application.xml

--- maven-ear-plugin:2.5:generate-application-xml (default-
@ servlets

Generating application.xml

--- maven-ear-plugin:2.5:generate-application-xml (default-
@ servlet -

Generating application.xml

Java Development with Maven

[INFO] Building enterprise java beans 1.0
[INFO] === === == o o o e e e e e e e e e e

[INFO] --- maven-ear-plugin:2.5:generate-application-xml (default-
cli) @ ejbs ---
[INFO] Generating application.xml

[INFO] --- maven-ear-plugin:2.4.2:generate-application-xml (default-
cli) @ ear ---
[INFO] Generating application.xml

An example of the package build phase call is:

$ mvn package

Using Spring Framework with Maven

Spring is a popular open source application framework for the Java platform. While Spring
Framework's core features can be used by any Java application, specialized extensions of
the Spring Framework for enterprise development are available. Spring has become a
popular alternative to the Enterprise JavaBean model.

One of Spring Framework's strongest aspects is its support of Inversion of Control. In a
broad sense, this can be described as allowing beans to be defined (through XML files or
annotations) and these can be "injected" as and when required.

This makes for easier design and architecture of enterprise applications and thus easier
development. It allows better leveraging of interfaces, allowing proper decoupling of API
definitions and implementations.

And since beans can be easily "injected" into tests (Spring Framework provides extensive unit
testing support), high testability of enterprise applications remains possible.

This recipe assumes that you have basic knowledge of the Spring Framework itself. The rest of
the recipe helps you integrate Spring Framework's components with your Maven Java project.

106

Chapter 5

Getting ready

You need a Maven Java project to implement the Spring Framework; if you don't have one,
running the following command in the terminal will create a sample Java project:

$ mvn archetype:generate -DarchetypeArtifactId=maven-archetype-
quickstart -Dgroupld=net.srirangan.packt.maven -DartifactId=TestAppCreate
-Dversion=1.0.0

Alternatively, you can also create a Maven Java web application as shown in the first recipe of
Chapter 5, Building a web application.

How to do it...

Spring Framework artifacts need to be defined as dependencies in the project POM file.
The following list contains all Spring Framework dependencies which allow you to acquire
Spring 3 artifacts for your Maven project. (Source: Keith Donald on http://blog.
springsource.com)

<!-- Shared version number properties -->

<propertiess
<org.springframework.version>3.0.5.RELEASE</org.springframework.

version>

</propertiess>

<dependencies>

<dependency>
<grouplds>org.springframework</groupIlds>
<artifactIds>spring-core</artifactIds>
<version>${org.springframework.version}</versions>

</dependency>

<dependencys>
<grouplds>org.springframework</groupIlds>
<artifactIds>spring-expression</artifactIds>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<grouplds>org.springframework</groupIlds>
<artifactIds>spring-beans</artifactIds>
<version>${org.springframework.version}</versions>
</dependency>

Java Development with Maven

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-aop</artifactIds>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-context</artifactIds>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactId>spring-context-support</artifactIds>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-tx</artifactId>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-jdbc</artifactIds>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-orm</artifactIds>
<version>${org.springframework.version}</versions>
</dependency>

<dependency>
<groupIds>org.springframework</groupIds>
<artifactId>spring-oxm</artifactId>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>

108

Chapter 5

<artifactId>spring-web</artifactId>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-webmvc</artifactIds>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-webmvc-portlet</artifactIds>
<version>${org.springframework.version}</versions>
</dependency>

<dependencys>
<groupIds>org.springframework</groupIds>
<artifactIds>spring-test</artifactIds>
<version>${org.springframework.version}</versions>
<scope>test</scope>

</dependency>

</dependencies>

Specifying the Spring Framework artifacts as dependencies works similarly to any other
dependency being defined in the project POM. They are made available to your application.

Spring also requires the availability of the context configuration XML file. This file traditionally
contained bean declarations, but since Spring 3 supports annotation-based bean declarations,
the context file could contain additional configuration information such as the package paths
which Spring should scan for annotation-based beans.

Here is a Spring 3 context file <project-root>/src/main/resources/context .xml,
which defines the package path that must be scanned for beans:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"

Java Development with Maven

xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-
context.xsd

http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd">

<context:component-scan base-package="net.srirangan.packt.maven"

/>

</beans>

There's more...

You'll now find brief explanations of two of the core development and design concepts that
Spring Framework brings along, namely, Inversion of Control (loC) and Aspect Oriented
Programming (AOP).

Inversion of Control

The Inversion of Control (I0C) container is a central concept of the Spring Framework. It
provides a consistent mechanism to configure and manage JavaBeans. Typically, the l1oC
container is configured using XML files, which contain the bean definitions.

Aspect Oriented Programming

Aspect Oriented Programming focuses on core business logic programming by isolating
supporting functions and logic. The Spring Framework supports Aspect Oriented
Programming (AOP) based on interceptions and runtime configuration. Compared to Aspect,
Spring AOP framework is much simpler while supporting all major features.

Unit testing with Spring Framework

If you are using Spring in your project, you will definitely need to write tests that require the
injection of Spring Beans for broad-ranged test coverage. We will look at how that can be
achieved by creating a service class, exposing it as a Spring 3 bean, writing tests which
inject the Service class, and testing it.

Let's start by creating MyServiceOne.java in src/main/java/net/srirangan/packt/
maven/services

package net.srirangan.packt.maven.services;
import org.springframework.stereotype.Service;

@Service ("myServiceOne")
public class MyServiceOneImpl {

110

Chapter 5

public String getA() {
return "A";

}

Notice the @Service annotation just preceding the class definition and note that the @
Service annotation contains the bean name @Service ("...bean..name..here...")

Our next step is to ensure that our context . xml file's component scan element contains
the services package.

<context:component-scan base-
package="net.srirangan.packt.maven.services" />

Finally we define a test called MyServiceOneTest.java under
"src/test/java/net/srirangan/packt/maven/services":
package net.srirangan.packt.maven.services;

import org.junit.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;

import org.springframework.test
.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration("classpath:context.xml")
public class MyServiceOneTest extends
AbstractJUnit4SpringContextTests {

@Autowired
private MyServiceOne myServiceOne;

@Test

public void shouldGetA() {
// .. test body here

}

}

Few quick pointers to note in the preceding test:

» Test class extends AbstractJUnit4SpringContextTests, which initializes Spring

» The eContextConfiguration annotation defines the location of the context file for
the Test

» Use of the @Autowired annotation to inject the bean

Java Development with Maven

Using Hibernate persistence with Maven

Persistence is definitely a common feature for a majority of web and enterprise applications.
Hibernate replaces interaction with JDBC by providing an object-relational mapping layer.

In plain English, Hibernate lets you read and write Java objects into a database in a more
seamless and business-oriented manner.

Hibernate's inherent simplicity has lead to its enormous growth and adoption. This simplicity
is demonstrated by the fact that neither a deep understanding of the Hibernate API nor

any real SQL skills are required to implement and efficiently leverage the framework into
your application.

The following image shows the various tools provided by Hibernate and its evolution:

J2SE 1.4 Java SE 5.0
J2EE 1.4 Java EE 5.0
Tools JPA
Provider
[Natve APl | | [NatveAPI | [Entity Manager |
| Core | | Core | | Core | .

Validator | | Shards |

Envers

Experienced software engineers have been consistent in advocating Hibernate not only for
the features mentioned and described, but for arguably the biggest advantage that Hibernate
adoption generates, to make developers more efficient with their time while standardizing
data access code style across projects and teams.

In pre-Hibernate days, a majority of the developer's time was drained by monotonous,
repetitive yet bulky code interacting with the underlying data store. The effective
implementation of Hibernate successfully reduces this and lets the developer focus on more
challenging aspects of the project such as design, business/domain logic, and testing.

Chapter 5

Not surprisingly, we find Hibernate's stated goal being;:

"..to relieve the developer from 95 percent of common data persistence related
programming tasks"

Getting ready

To use Hibernate in our Maven project, we will implement the Maven Hibernate3 plugin found
athttp://mojo.codehaus.org/maven-hibernate3.

But first, we will create a simple Maven Java project and implement Hibernate-based
persistence. Use the following command to create a Maven Java project based on
maven-archetype-quickstart

$ mvn archetype:generate -DarchetypeArtifactId=maven-archetype-
quickstart -DgroupId=net.srirangan.packt.maven -DartifactId=TestAppCreate
-Dversion=1.0.0

This will create a simple Maven Java project with a valid POM file. If you have some basic
knowledge of Hibernate 3, it will be helpful in going along. This recipe will help merge this
knowhow of Hibernate 3 with your Maven project. Hibernate, in itself, is a vast topic and has
entire books dedicated to it. However, we will take a quick look at implementing Hibernate in
this project and complementing it with the use of the Hibernate Maven plugin.

How to do it...

The first step is to identify and include all of Hibernate's artifacts and its dependencies
into your Maven project. Open the pom.xml file of your Maven project and include the
following dependencies:

<dependencys>
<groupIds>org.hibernate</groupld>
<artifactIdshibernate-annotations</artifactIds>
<version>3.4.0.GA</version>
<type>jar</type>
<scope>compile</scope>
</dependency>
<dependencys>
<groupIds>org.hibernate</groupld>
<artifactIdshibernate-core</artifactIds>
<version>3.3.2.GA</version>
<type>jar</type>
<scope>compile</scope>
</dependency>
<dependencys>

Java Development with Maven

<groupIds>org.slfd4j</groupId>
<artifactIds>slf4j-api</artifactIds>
<version>1l.6.1</versions>
<types>jar</type>

<scope>compile</scope>

</dependency>

<dependencys>
<groupIds>org.slfd4j</groupId>
<artifactId>slf4j-simple</artifactIds>
<version>1l.6.1</versions>
<type>jar</types>
<scope>compile</scope>

</dependency>

<dependency>
<groupIds>javassist</groupId>
<artifactId>javassist</artifactId>
<version>3.12.1.GA</version>
<type>jar</types>
<scope>compile</scope>

</dependency>

<dependencys>
<groupIds>mysqgl</groupId>
<artifactIds>mysqgl-connector-java</artifactIds>
<version>5.1.15</version>
<type>jar</types>
<scope>compile</scope>

</dependency>

The included Hibernate artifacts are:

» hibernate-annotations 3.4.0.GA

» hibernate-core 3.3.2.GA

Hibernate is notorious for requirements of further dependencies, some of them at runtime.
We have pre-included them in the preceding code. They are:

» slf4aj-api 1.6.1

» slf4j-simple 1.6.1
» Jjavassist 3.12.1.GA
>

mysqgl-connector-java 5.1.15

Our example will be showcasing Hibernate's interaction with an underlying MySQL data store.

114

Chapter 5

We will now create two Java files and one Hibernate properties file. | am using the following
package structure net . srirangan.packt.maven.TestHibernateApp. However, of
course you are free to use your own. The project structure we create is:

F—ijava

| L—net

| L—srirangan

| L—packt

| L—maven

| L TestHibernateApp
| —app

| —}—app.java
| L—domain

| —|—=User.java
L resources

| L hibernate.properties

User.java is a Hibernate 3 entity. We use annotations to limit the need for XML configuration
files for Hibernate.

package net.srirangan.packt.maven.TestHibernateApp.domain;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.Id;

import javax.persistence.Table;

@Table
@Entity
public class User {
private Long id;
private String username;
private String password;
public void setUsername (String username) {

this.username = username;

@Column
public String getUsername() {
return username;

Java Development with Maven

public void setPassword(String password) {

this.password = password;

@Column
public String getPassword() ({
return password;

public void setId(Long id) {
this.id = id;

@Id

@GeneratedValue

public Long getId() ({
return id;

}

Notice the use of the @Table, @Entity, @Id, @Column annotations. These are configurable
and customizable, of course, but the defaults work great as well. In this case, the table name
is the same as the class/entity name and column names and types are exactly as defined in
the entity.

hibernate.properties is the next file we define. It contains external data source
configuration and some Hibernate behavior-specific configuration as well.

hibernate.
hibernate.
hibernate.
hibernate.
hibernate.

connection.
connection.
connection.

connection
connection

driver class=com.mysql.jdbc.Driver
url=jdbc:mysql://localhost/testdatabase
username=testUser

.password=testPass
.pool size=1

hibernate.dialect=org.hibernate.dialect.MySQLDialect

hibernate.show sqgl=true

hibernate.hbm2ddl.auto=create

The first six properties are specific to the underlying MySQL database and the connection
pool size available. hibernate.show_sqgl echoes all queries onto the console, while
hibernate.hbm2ddl.auto=create generates the tables in the database each time the
application is executed. Other possible values for this field are validate, update, and
create-drop. While validate and update are self-explanatory, create-drop creates
the schema on application startup and drops it after execution is completed.

Chapter 5

Finally, we create the main application to use our entity in App. java:

package net.srirangan.packt.maven.TestHibernateApp.app;
import net.srirangan.packt.maven.TestHibernateApp.domain.User;

import org.hibernate.Session;
import org.hibernate.cfg.AnnotationConfiguration;

public class App {
public static void main(Stringl[] args) {

AnnotationConfiguration configuration = new
AnnotationConfiguration/()

.addPackage ("net.srirangan.packt.maven.TestHibernateApp.
domain™")
.addAnnotatedClass (User.class) ;

Session session = configuration.buildSessionFactory ().
openSession() ;

User userl = new User();
userl.setUsername ("hello") ;
userl.setPassword ("world") ;
session.save (userl) ;

session.close();

}

It's a very simple example that starts a session, creates a user, and saves it in the database.

When you execute this application, the console will show a log of Hibernate starting up and an
insert query to save the User that was created.

If you check your database, a new table named user was created with one record inserted
with the username as hello and password as world while id would be 1.

mysqgl >> show tables;
|| *Tables in testdatabase* ||

|| user ||

mysqgl >> select * from user;
|| *id* || *password* || *username* ||
|| 1 || world || hello ||

Java Development with Maven

We will now have a look at the Maven Hibernate plugin which provides a set of goals

to simplify Hibernate development and automate certain aspects of it. To integrate the
Maven Hibernate3 plugin with your Maven Java project, you need to define the plugin in
thebuild | plugins element of the project POM file.

<builds>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</grouplds>
<artifactIds>hibernate3-maven-plugin</artifactIds>
<version>2.2</version>
<configurations>
<components>
<component >
<name>hbm2ddl</name>
<implementation>jdbcconfiguration</implementations>
</component >
<component >
<name>hbm2hbmxml < /name>
<outputDirectory>src/main/resources</outputDirectory>
</component >
</components>
<componentProperties>
<drop>true</drop>
<configurationfile>/src/main/resources/hibernate.cfg.xml
</configurationfile>
</componentPropertiess>
</configurations>
<dependencies>
<dependency>
<groupld>jdbc.artifact.groupid</grouplds>
<artifactId>jdbc-driver</artifactIds>
<version>1.0</version>
</dependency>
</dependencies>
</plugin>
</plugins>
</builds>

Interestingly, to run the Maven Hibernate3 plugin, you don't need to specify the Hibernate
artifacts (JARs) as dependencies in the POM file.

The requirements of the Hibernate plugin include Maven 2.0.6 or higher and JDK 1.4
or higher.

Chapter 5

It is also recommended that you set up the build | pluginManagement:
<pluginManagement>
<plugins>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>hibernate3-maven-plugin</artifactId>
<version>2.2</version>

</plugin>

</plugins>
</pluginManagement>

The Maven Hibernate3 plugin provides us with seven goals. Each of these goals can be
executed by the command line, provided you are in the Maven project root folder.

» hibernate3:hbm2cfgxml to generate the hibernate.cfg.xml file:
$ mvn hibernate3:hbm2cfgxml

» hibernate3:hbm2ddl to generate database schema:
$ mvn hibernate3:hbm2ddl

» hibernate3:hbm2doc to generate database schema docs:
$ mvn hibernate3:hbm2doc

» hibernate3:hbm2hbmxml to generate hbm.xml files:
$ mvn hibernate3:hbm2hbmxml

» hibernate3:hbm2java to generate Java classes from * . hbm.xml files:
$ mvn hibernate3:hbm2java

» hibernate3:hbmtemplate to renders templates against Hibernate
Mapping information:

$ mvn hibernate3:hibernate3

Using Seam Framework with Maven

Seam Framework is a next generation Java web application framework developed by
JBoss, Red Hat. It combines two frameworks, namely, the Enterprise JavaBeans (EJB3)
and Java Server Faces (JSF). It also introduces the concept of "bijection" (similar to Spring
Framework's injection) which allows for injection and removal of beans using simple @In
and @out annotations.

This recipe assumes you have basic knowledge of the Seam Framework and helps integrate
Seam within your Maven web application project.

Java Development with Maven

Getting ready

Seam is a web application framework. Hence you need a Maven web application project
to implement it in. If you don't have one ready, create it by running the following command
in the console:

$ mvn archetype:generate -DarchetypeArtifactId=maven-archetype-
webapp -DartifactId=testWebApp -Dgroupld=net.srirangan.packt.maven
-Dversion=1.0-SNAPSHOT -Dpackage=net.srirangan.packt.maven

How to do it...

Seam3 artifacts and examples are published on the JBoss Community Maven Repository.
These include source and JavaDoc artifacts as well. To access them, you need to modify
your Maven settings.xml to recognize and access the JBoss public repository.

<profiles>
<profile>
<id>jboss-public-repository</id>
<activations
<property>
<name>jboss-public-repository</name>
<values!false</value>
</property>
</activations>
<repositories>
<repositorys
<id>jboss-public-repository-group</id>
<name>JBoss Public Maven Repository Group</names>
<url>http://repository.jboss.org
/nexus/content/groups/public</urls>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enableds>
<updatePolicy>never</updatePolicy>
</snapshots>
</repositorys>
</repositories>
<pluginRepositoriess
<pluginRepository>
<id>jboss-public-repository-group</id>
<name>JBoss Public Maven Repository Group</names>

120

Chapter 5

<url>http://repository.jboss.org
/nexus/content/groups/public</urls>
<releases>
<enabled>true</enabled>
<updatePolicys>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enableds>
<updatePolicy>never</updatePolicy>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

The pluginRepositories can be defined at the project POM level, but it may be more
convenient to do it at the Maven settings.xml level if the dependency spans across
multiple projects.

Seam3 artifacts need to be individually included as dependencies in your project/module
POM file as and when required.

The Seam3 artifacts available are:

» Faces

<dependencys>
<groupld>org.jboss.seam.faces</groupIld>
<artifactId>seam-faces</artifactIds
<version>3.0.0.Alpha3</version>
</dependency>

» International

<dependencys>
<groupld>org.jboss.seam.international</groupId>
<artifactId>seam-international</artifactIds>
<version>3.0.0.Alphal</version>

</dependency>

> JMS

<dependencys>

<groupld>org.jboss.seam.jms</groupIds>

<artifactId>seam-jms</artifactIds>

<version>3.0.0.Alphal</version>
</dependency>

Java Development with Maven

» Remoting

<dependency>
<groupld>org.jboss.seam.remoting</groupId>
<artifactId>seam-remoting-core</artifactIds>
<version>3.0.0-Betal</version>
</dependency>

> REST

<dependency>
<groupld>org.jboss.seam.rest</groupld>
<artifactId>seam-rest</artifactIds>
<version>3.0.0.Alphal</version>
</dependency>

> XML

<dependency>
<grouplds>org.jboss.seam.xml</groupIds>
<artifactId>seam-xml-config</artifactIds>
<version>3.0.0.Alpha2</version>
</dependency>

The Seam Framework community has also developed Seam Forge, which is defined according
to http://seamframework.org as:

"A core framework for rapid-application development in a standards-based
environment. Plugins / incremental project enhancement for Java EE and more”

Think of it as a command-line based application to achieve rapid code generation for Java/
Seam. The following screenshot shows the Seam Forge command line in an active state:

\| [forge-distribution] $ cd ~/Desktop/
[no project] $ new-project --named example --topLevelPackage com.example
Use [/home/1b3/Desktop/example] as project directory? [Y/n]
Wrote /home/1b3/Desktop/example/src/main/java/com/example/Helloworld. java

Wrote /home/1b3/Desktop/example/src/main/resources/META-INF/forge.xml
] #=*SUCCESS*** Created project [example] in new working directory [example]
M [example] $
BN [example] S echo "that was easy..."
\ | that was easy...
[example]

122

Chapter 5

Seam Forge is a Maven project which is publicly hosted on GitHub . com. You will need a Git
client installed to "clone" (similar to svn checkout) the project on to your workstation.

[You will need Maven 3 and Java 6]

There are five steps for downloading, installing, and executing Seam Forge. They are as follows:

1. The first step is to clone the project using a Git or Git client:
$ git clone git://github.com/seam/forge.git seam-forge
This will clone, checkout, download the Seam Forge sources on to a new folder
created on your current working directory called seam-forge.

2. Navigate into this folder:
$ cd seam-forge

3. Build/install Seam Forge:
$ mvn install

4. Onceyouseebuild success, havigate into the dist folder:
$ cd dist

5. Execute!:

$ mvn exec:java

A Seam Framework Maven web application works exactly like any typical Maven web
application; it is compiled and tested, then artifacts are generated and made ready for
deployment on an application server.

Seam Framework artifacts are of course dependencies that are required during the compile
and test phases of the project lifecycle.

Google Development
with Maven

In this chapter, we will cover:

» Setting up the Android development environment
Developing an Android application

Testing and debugging an Android application
Developing a Google Web Toolkit application

Testing and debugging a Google Web Toolkit application

vV v v.Vvy Yy

Developing a Google App Engine application

Google has been a technology company like no other, and in less than a decade it has
established itself as a major frontrunner in the Java technology space as well with
commercially successful, technically path breaking and innovatory platforms, concepts,
and framework.

In this chapter, we look at three of the most popular Google offerings in the Java world today:

» The Android platform
» Google Web Toolkit
» Google App Engine

The Android platform is already a dominant player in a highly competitive mobile market
where Google, for a change, did not enjoy the first mover advantage. However, sound
engineering practices and honest, principle driven policies have quietly yet quickly placed
Google's Android platform at an enviable position; wherein a vast number of device makers
and service providers have adopted and pushed the platform to an audience which was
craving for openness and access on their mobiles.

Google Development with Maven

The Google Web Toolkit (GWT) solves a very different type of problem. GWT provides a set
of APIs and tools which let you create rich web applications, without having to deal with
the cumbersome and often unsuccessful process of cross-browser compatibility in a very
fragmented browser market.

The Google App Engine (GAE) offering, unlike Android, did enjoy the first mover advantage.
Bundled with the Google Apps offering, it was the first introduction of cloud computing to
small and large enterprises alike. Google App Engine lets you use the cloud APIs on offer,
develop hosted applications, and deploy them on the Google cloud. The Google cloud in turn
offers unmatchable performance, risk free hosting, and unlimited scalability.

This chapter gets you up and running, leveraging Maven to help your development team make
the most of these offerings from Google.

Setting up the Android development

environment

The Android platform is one of the fastest, if not the fastest, growing mobile and device
platforms today. It has been strongly promoted by Google since 2008, along with a host of
industry partners and heavy weights, and is quickly replacing alternatives as the dominant
mobile platform today.

Android's primary strengths lie in its open platform, architecture, and underlying technologies.
For developers, it is a charm to work with as it's based on the very mature Java platform.
Hence tools, IDEs, and development methodologies are already available and the relative
learning curve is tiny compared to other proprietary platforms.

The prerequisites for Android development on Maven primarily include downloading and
setting up the Android Software Development Kit (Android SDK) and Android artifacts
in the Maven repository (local or remote).

Getting ready

At this moment, we assume that you are comfortable developing with Maven and understand
the basics of the Maven development paradigm. If not, a good place to start is with Chapter 1,
Basics of Apache Maven of this book.

Our first step is to get a hold of the Android SDK. Google maintains an impressive
Android developer portal at http://developer.android.com which contains
all the relevant downloads.

The specific URL for the Android SDK download is: http://developer.android.com/
sdk/.

126

Chapter 6

How to do it...

Follow the subsequent steps to install and set up the Android SDK:

1.
2.

Extract the downloaded Android SDK into any folder.

Define the ANDROID HOME environment variable. The value of ANDROID HOME
should be the root directory of the Android SDK. The following commands can be
used to define ANDROID HOME:

Linux ### export ANDROID HOME=/opt/android-sdk
Windows ### set ANDROID HOME=C:\android-sdk

An optional step here is to install the ANDROID HOME/tools to the PATH
environment variable. (Check the Maven Installation section in Chapter 1,
Basics of Apache Maven for instructions on modifying the PATH variable)

The following steps are now optional as Android SDK artifacts
i have been made available in the Maven Central Repository.

The installation and setting up of the Android SDK is followed by the installation of
the Android API JARS (or Android artifacts) in the Maven repository.

The Maven Android SDK deployer tool allows you to deploy in a local repository as well
as in a remote repository server. The Maven Android SDK deployer tool is available at:
http://github.com/mosabua/maven-android-sdk-deployer.

The source needs to be downloaded from the GitHub repository of the Maven Android
SDK deployer and needs to replace the Android SDK. The Android APl JARS (artifacts)
can now be installed in local and remote repositories. We will be running Maven build
phase commands to do the same.

Installation into a Maven local repository is pretty simple. Open the command
line and navigate to the Maven Android SDK deployer root folder and execute the
following command:

$ mvn clean install

To install these on a remote repository, make sure the remote repository is defined in
the Maven settings.xml file. Additionally, the server credentials need to be added
as well:

<settings>
<servers>
<servers
<id>android.repo</id>
<username>your username</usernames
<passwords>your password</passwords>

Google Development with Maven

</servers
</servers>
</settings>

Once everything is set up, the following command will install the artifacts in the
remote repository:
$ mvn deploy

8. To use the Maven Android plugin goals on the command line with the short plugin
name "android", pluginGroups need to be defined in the settings.xml file:
<pluginGroups>

<pluginGroup>
com.jayway.maven.plugins.android.generation2
</pluginGroup>
</pluginGroups>

In the preceding steps, we set up the Android SDK on your operating system. This means
the SDK is available for use directly or through external applications. It is also available
for use for Apache Maven projects and plugins.

Then we followed it up by deploying the Android SDK and API artifacts (JAR/library files) in our
repository. By deploying it to the repository, any new Maven module that has a dependency on
Android will be able to reference the artifacts from the repository.

This step is now optional as Android artifacts are directly

available from the Maven Central Repository. Deployment

information has still been preserved in this recipe for reference.

» Chapter 1, Basics of Maven

Developing an Android application

In the preceding recipe, we covered the basics of setting up the Maven Android development
environment. Now that we're ready, we'll proceed to the actual development of an Android
application with Maven.

128

Chapter 6

Getting ready

If you haven't set up the Maven Android development environment, you need to do it before
you can continue with this recipe. Refer to the previous recipe for guidance.

How to do it...

You can set up your Maven Android application project by either directly configuring the project
pom.xml file or by running the Maven archetype : generate command. Steps for both the
methods are as follows:

The first step is to create a Maven project with the POM file, as shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<grouplIds>...</groupld>
<artifactIds...</artifactIds>
<version>0.1-SNAPSHOT</version>
<packaging>apk</packaging>
<names. ..</names
<dependencies>
<dependency>
<groupId>com.google.android</groupId>
<artifactIdsandroid</artifactIds>
<version>2.1 rl</versions>
<scope>provided</scope>
</dependency>
</dependencies>
<builds>
<sourceDirectorys>src</sourceDirectory>
<pluginss>
<plugins>
<groupId>
com. jayway.maven.plugins.android.generation2
</grouplds>
<artifactIds>maven-android-plugin</artifactId>
<version>2.2.3-SNAPSHOT</version>
<configurations>
<sdk>

Google Development with Maven

<platform>2.1</platform>
</sdk>
<deleteConflictingFiless>
true
</deleteConflictingFiles>
</configurations>
<extensions>true</extensions>
</plugin>
<plugins>
<artifactId>maven-compiler-plugin</artifactIds>
<configurations>
<sources>1l.5</sources
<target>1.5</target>
</configurations>
</plugin>
</plugins>
</build>
</project>

The notable highlights from the POM are:

O Packaging has been set to apk

O Dependencies for Android artifacts have been defined with the scope
provided

O Build plugins have been configured for integration with the Maven build cycle

1. To create the project from the Maven archetype, execute the following command in
the terminal:

$ mvn archetype:generate -DarchetypeCatalog=http://kallisti.eoti.
org:8081l/content/repositories/snapshots/archetype-catalog.xml

[INFO] Scanning for projects...
[INFO]

[INFO]

[INFO] --- maven-archetype-plugin:2.0-alpha-5-SNAPSHOT:generate
(default-cli) @ standalone-pom ---

[INFO] Generating project in Interactive mode

130

Chapter 6

Define value for property 'groupId': : org.eoti.android.test
Define value for property 'artifactId': : TestAndroid

Define value for property 'version': 1.0-SNAPSHOT: :

Define value for property 'package': org.eoti.android.test: :
Confirm properties configuration:

groupId: org.eoti.android.test

artifactId: TestAndroid

version: 1.0-SNAPSHOT (hit enter)

package: org.eoti.android.test (hit enter)

Y: : (hit enter)

[WARNING] Don't override file F:\work\TestAndroid\src\main\
android\res\values\strings.xml

[WARNING] Don't override file F:\work\TestAndroid\src\main\
android\res\layout\main.xml

[INFO] Total time: 1:02.860s
[INFO] Finished at: Sun Apr 18 19:58:56 PDT 2010
[INFO] Final Memory: 6M/11M

Once the archetype creation command is successfully executed, you should see the
following project structure generated:

C:.

| pom.xml

L—src

| AndroidManifest.xml

L—main
F—android
| L—res
| ——drawable
| | icon.png
|

Google Development with Maven

—1layout

| main.xml

|
|
|
| L—values
| strings.xml
|
L—Hava

L—org
L —eoti

L—android
L—test

MyActivity.java

This can be worked with as any other Maven project.

2. Inorder to run it on the emulator, the following command can be executed after
initializing the emulator or USB test device:

Package & Deploy
mvn install

3. To uninstall the application from the emulator, run the Maven clean command.
Uninstall from Emulator

mvn clean

As we just saw, a Maven Android project can simply be generated by an archetype :generate
command. This not only greatly simplifies things, but also makes one more productive.

This archetype is provided by the Maven Android Plugin Project: http://code.google.
com/p/maven-android-plugin/.

Once set up, a Maven Android project is quite similar to a generic Maven Java project, and all
the build phases and plugins are available and can be configured in a way no different to a
Maven Java project.

Testing and debugging an Android

application

Now that you've got your Android development environment fully set up, and your first Android
application up and running, we now proceed to the details of setting up, testing,
and debugging practices for a development team.

132

Chapter 6

The first two recipes of this chapter are a prerequisite for this recipe
i and it is recommend that you go through them if you haven't already.

Luckily for us, integration of Android App Development with Maven works like a charm as
an already mature Android development platform leverages the best of what the Maven
environment has to offer in terms of Test Driven Development and other best practices.

In this recipe, we will not only explore unit testing, but we will delve into integration and
instrumentation tests for your Android application as well.

Getting ready

Unit testing and Test Driven Development has been covered in elaborate detail in
previous chapters. See Chapter 2, Software Engineering Techniques for more on Test
Driven Development (TDD). Continuing any further requires understanding of the core
practice of TDD.

How to do it...

For unit testing with the Surefire plugin, please follow the ensuing steps:

1. The testSourceDirectory element needs to be configured in the build of the
project's POM file.
<builds>
<sourceDirectory>src/main/java</sourceDirectory>
<testSourceDirectory>src/test/java</testSourceDirectory>

</builds>
2. Surefire executes these tests as part of the "test" phase of the Maven build cycle. The

following command can be executed to run these tests:

$ mvn test

Instrumentation tests can be set up in a modular format with one module for the
application while another for the tests and the two modules tied together with a
parent POM.

<dependencys>
<grouplds>net.srirangan.packt.maven.testandroidapp</groupId>
<artifactIdsintents</artifactIds>
<version>0.1l</versions>
<type>apk</type>

</dependency>

Google Development with Maven

As shown in the code of the previous section, the sourceDirectory has been modified
to the Maven standard src/main/java and the testSourceDirectory has been added
with the value src/test/java.

This is in alignment with Maven standards for any Java project. Here, the main application
source code lies in the sourceDirectory, thatis, src/main/java while the supporting
test suites lie in the testSourceDirectory, which is <project root>/src/test/java.

Instrumentation tests are integration tests that run on the emulator or device and can interact
with another deployed application. These are bundled into the application.

The setup of the instrumentation tests with the Maven Android plugin is similar to setting up
any normal application. The instrumentation tests are a separate application with an added
dependency to the application, which needs to be tested. Adding the type of apk to the

dependency allows the Maven Android plugin to find the Android package of the application.

See also

» Project modularization section in Chapter 2, Software Engineering Techniques

Developing a Google Web Toolkit application

According to http://code.google.com/webtoolkit/:

"Google Web Toolkit (GWT) is a development toolkit for building and optimizing
complex browser-based applications. Its goal is to enable productive development
of high-performance web applications without the developer having to be an expert
in browser quirks, XMLHttpRequest, and JavaScript. GWT is used by many products
at Google, including Google Wave and the new version of AdWords. It's open
source, completely free, and used by thousands of developers around the world."

This is how Google describes Google Web Toolkit (GWT), and it would be a futile effort to
try to define it in a different way. GWT lets you create high-end, advanced, cross-browser
applications while abstracting the underlying client-side browser technologies, giving you
a set of Java APIs and widgets to interact with.

Getting ready

The Google Web Toolkit framework is itself beyond the scope of this recipe. A good place to
get started with GWT is http://code.google.com/webtoolkit/overview.html.

Chapter 6

This recipe focuses on GWT developers who wish to leverage Maven in their development
process. It also assumes basic knowledge of Maven itself. Please make sure you are familiar
with the concepts in Chapter 1, Chapter 2, and Chapter 3 of this book.

How to do it...

1. Let us start by generating a Google Web Toolkit (GWT) project by running the following
archetype command in the terminal:
mvn archetype:generate -DarchetypeRepository=repol.maven.org

-DarchetypeGroupId=org.codehaus.mojo -DarchetypeArtifactId=gwt-
maven-plugin -DarchetypeVersion=2.1.0-1

This creates a new GWT project with the following tree structure:
C:.
L TestGwtApp

—.settings

L—src

|

| L—srirangan

| L packt

| L—maven

| L—gwt

| —-client
| ——server
|

L shared

—resources

| L—mnet

| L—srirangan

| L packt

| L—maven

| —gwt

| L——client
L webapp

L _WEB-INF
L—test

F—java

| L—mnet

| L—srirangan

| L packt

| L—maven

| —gwt

| L——client

Google Development with Maven
L__resources
L net

L srirangan
L—packt
L—maven

L—gwt
2. The project can be compiled with the following command:

$ mvn compile

Additional Compilation Options:

$ mvn compile -Dgwt.logLevel=[LOGLEVEL]
i LOGLEVEL can be ERROR, WARN, INFO, TRACE, DEBUG, SPAM, or ALL

$ mvn compile -Dgwt.style=[PRETTY | DETAILED]

An initial look at the structures reveals that it is similar to any typical Maven Java project.
We have the src/main/java and src/test/java folders for source and test packages
respectively, and a sub folder for resources in both test and source directories.

In addition, the sourceDirectory contains the webapp folder similar to a Maven
web application.

See the Building a Web Application recipe in Chapter 5, Java
L Development with Maven.

Open the GWT project POM file that was generated in the preceding step.

<modelVersion>4.0.0</modelVersion>
<groupId>net.srirangan.packt.maven.gwt</groupId>
<artifactId>TestGwtApp</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>

<name>GWT Maven Archetype</name>

Note that the packaging has been set to war. This is done for any Maven web application as
well as any GWT application.

136

Chapter 6

However, as displayed in the following code, the GWT application's POM file contains
additional dependencies to GWT artifacts:

<dependencies>
<dependency>
<groupld>com.google.gwt</groupIld>
<artifactId>gwt-servlet</artifactIds>
<version>2.1.0-1</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupld>com.google.gwt</groupIld>
<artifactId>gwt-user</artifactId>
<version>2.1.0-1</version>
<scope>provided</scope>
</dependency>
<dependencies>

<builds>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</grouplds>
<artifactId>gwt-maven-plugin</artifactId>
<version>2.1.0-1</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>generateAsync</goals>
<goal>test</goals>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</builds>

The build plugin configuration shown in the preceding code now synchronizes the Maven GWT
project with the Maven build lifecycle.

Google Development with Maven

There's more...

The Maven-GWT plugin provides the following goals:

gwtiresources

gwtirun
gwt:sdkinstall

gwt:source-jar

gwt:test

gwt:mergewebxml No

non GWT servlets into shell).

It copies GWT Java source code and module descriptor as
resources in the build output directory. It is an alternative to

No declaring a <resources in the POM with finer filtering as the
module descriptor is read to detect sources to be copied.
No It is a goal which runs a GWT module in the GWT hosted mode.
No Install a GWT (home built) SDK in local repository.
Add GWT Java source code and module descriptor as resources
No to the project jar. It is an alternative to gwt : resources for
better Eclipse project synchronization.
No Mimic Surefire to run GWTTestCases during integration test

phase, until SUREFIRE-508 is fixed.

Goal Report? Description
gwt:clean No Clean up the webapp directory for GWT module compilation
output.
:compile No It in.vokes the GWT compiler for the project source. See compiler
gwt options.
It creates a CSS interfaces for . csg files. It uses the utility tool
gwt:css No provided in gwt sdk, which creates a corresponding Java
interface for accessing the class names used in the file.
It extends the gwt goal and runs the project in the GWT hosted
. N . ;
gwt:debug 0 mode with a debugger port hook (optionally suspended).
gwt:eclipse No A goal which creates Eclipse launch configurations for GWT
modules.
gwt:generateAsync No It generates an Asyn interface.
gwt:il8n No It creates 118N interfaces for constants and messages files.

It merges GWT servlet elements into deployment descriptor (and

[

Additional details, updates, and documentation for this plugin are

available at http://mojo.codehaus.org/gwt-maven-plugin/.

]

138

Chapter 6

Testing and debugging a Google Web Toolkit

application

If you haven't set up and created your Maven-Google Web Toolkit (GWT) application, stop
following this recipe and move back to the preceding recipe. Here's where we deal with
setting up a Test Driven Development based workspace for our Maven-GWT projects.

Getting ready

As mentioned before, the preceding recipe is a prerequisite for everything we're going to
explore here. Also, you need to be familiar with Test Driven Development (TDD) covered in
the Test Driven Development recipe in Chapter 2, Software Engineering Techniques.

Unit testing of the GWT application would consist of unit testing of the custom libraries
and custom APIs that are being used. This is the same as unit testing for any Java project
using the Surefire plugin. This part has already been covered in Chapter 2, Software
Engineering Techniques.

Integration testing for GWT projects is where things get interesting. The GWT-Maven plugin
testing support is bound to the Maven integration test phase of the build lifecycle. It is not
meant for standalone execution.

How to do it...

1. We begin with a configuration to enable integration goal execution. To get gwt : test
to run, you should include the test goal in your plugin configuration executions and
you should invoke mvn integration test (or mvn install).

Add the GWT-Maven-Plugin to the build plugins, as shown in the following code:

<projects>
[...]
<builds>
<plugins>
[...]
<plugin>
<groupld>org.codehaus.mojo</grouplds>
<artifactId>gwt-maven-plugin</artifactId>
<version>2.1.0-1</version>
<executions>
<execution>
<goals>
<goal>test</goals>

Google Development with Maven

</goals>
</executions>
</executions>
</plugin>
[...]
</plugins>
</build>
[...]

</project>

This integrates the plugin test goal with the integration test phase of Maven.

2. Selenium mode can be used for running your test suite on real browsers using
Selenium RC. The test mode parameter must be set to selenium, that is,
Dgwt . test .mode=selenium on the command line. The Selenium parameter
needs to be configured with the host running the Selenium RC browser, as shown
in the following code:

<plugins>
<groupIds>org.codehaus.mojo</groupIld>
<artifactId>gwt-maven-plugin</artifactIds>
<version>2.1.0-1</versions>
<configurations>

<selenium>myhost:4444/*firefox"</selenium>

</configurations>

</plugin>

3. Google Web Toolkit is an alternative to Selenium. It comes with a custom remote
browser server. This can be launched using the gwt : browser goal, which will
trigger the launch of the default operating system browser:

$ mvn gwt:browser

Testsuite can be run on a remote browser by setting the mode parameter
to remoteweb. The remoteweb parameter has to be configured to declare
your remote browser server, as shown:
<plugins>
<groupIds>org.codehaus.mojo</groupIld>
<artifactId>gwt-maven-plugin</artifactIds>
<version>2.1.0-1</versions>
<configurations>
<remoteweb>rmi://myhost/ie</remoteweb>
</configurations>
</plugin>

140

Chapter 6

As discussed earlier, your project's testSourceDirectory will contain typical unit tests
meant to be run by Surefire, and in addition, will contain GWT-specific integration tests. It
is a recommended best practice to follow a differing naming convention to keep the two
tests separate.

Here our integration test class files are post-fixed with GwtTest . java, which allows us to set
up a rule to exclude them from the Surefire unit test runner:

<plugins>
<artifactId>maven-surefire-plugin</artifactIds>
<version>2.6</versions>
<configurations>
<excludes>
<exclude>**/*GwtTest.java</exclude>
</excludes>
</configurations>
</plugin>

R By default, the gwt -maven plugin uses GwtTest*.java as an
inclusion pattern so that such tests will not match the standard
s Surefire pattern. While using this convention, you don't have to
change your configuration.
GWT integration tests run on an inbuilt browser, which unfortunately does not purge the need
for testing on a "real" browser.

This is where we leverage the Selenium testing framework for real world acceptance testing.

» Test Driven Development section in Chapter 2, Software Engineering Techniques

» Acceptance testing automation section in Chapter 2, Software Engineering
Techniques

Google Development with Maven

Developing a Google App Engine application

According to http://code.google.com/appengine/:

"Google App Engine enables you to build web applications on the same scalable
systems that power Google applications. App Engine applications are easy to build,
easy to maintain, and easy to scale as your traffic and data storage needs grow.
With App Engine, there are no servers to maintain: You just upload your application,
and it's ready to serve to your users."

Ever since Google offered the Google App Engine (GAE) platform, it has revolutionized the
industry giving birth to a game changing concept-Cloud Computing.

Google App Engine (as we know it today) lets you develop server hosted web applications in
Python and Java based on the Google App Engine APIs on offer. These applications can be
deployed onto Google data centers giving you extremely efficient, well-run, and scalable
web applications.

Getting ready

Google App Engine as a development and cloud computing platform is beyond the scope of
this recipe (and book!). Here, we assume that you are knowledgeable about the GAE platform
and have a fair idea of application development. This recipe helps you leverage Maven for
your GAE application development.

Visithttp://code.google.com/appengine/ for more
i information on Google App Engine.

This recipe also assumes basic knowledge of Maven itself. Please make sure you are familiar
with the concepts in Chapter 1, Chapter 2, and Chapter 3 of this book.

How to do it...

Let's get started by creating a Maven-Google App Engine (GAE) project using an archetype
command. Execute the following in the command line terminal:

mvn archetype:create -DarchetypeGroupId=net.kindleit
-DarchetypeArtifactId=gae-archetype-gwt -DgroupId=net.srirangan.packt.
maven.gae -DartifactId=TestGaeApp

142

Chapter 6

This command creates a new Google App Engine project for you in a folder named after the
artifactId provided in the command, TestGaeApp.

L—src

—main
F—ijava

| L—net

| L—srirangan

| L—packt

| L—maven

| L—gae

| L—net

| L kindleit
| L—gae

| L—example
|

|

|

|

|

—-—client
| Lb—ui
—model
—server
L—web
—resources
| L—META-INF
L webapp

—META-INF

L WEB-INF
L—test

L—java
L net

L srirangan
L—packt
L —maven
L—gae
——com
| L——google
| L——apphosting
| L—api
L net
L kindleit
L—gae
L—example
L server

Google Development with Maven

You can see a typical Maven web application structure with sourceDirectory (src/main/
java)and testSourceDirectory (src/test/java) being generated along with the
package structure.

An existing Maven web application project can also be converted to a Google App Engine
project by making the following modifications to the existing project POM file:

<projects>
[...]
<builds>
<plugins>
<plugin>
<groupId>net.kindleit</groupId>
<artifactId>maven-gae-plugin</artifactId>
<version> [plugin version]</version>
<dependencies>
<dependency>
<groupId>net.kindleit</groupId>
<artifactId>gae-runtime</artifactId>
<version>${gae.version}</version>
<type>pom</type>
</dependency>
</dependencies>
</plugin>
</plugins>
</build>
[...]

</project>
Use the following command to run the GAE application on the local server:
$ mvn gae:run
Use the following command to deploy the GAE application on the Google appspot cloud:

$ mvn gae:deploy

Inspecting the POM file of the generated project reveals that:

» Packaging type remains WAR, similar to Maven web and GWT apps
» Dependencies, that is, Google App Engine artifacts have been included

Chapter 6

» Build plugin integration has been set up for synchronization with the Maven
build lifecycle
» Profiles have been generated for integration-build, release-build, and release

Apart from the two main goals described in the preceding commands, the Maven Google App
Engine plugin also provides the following:

Goal Description

Displays times for the next several runs of each cron job from Google's

gae:cron-info
servers.

Extends the run goal for running the project with a debugger port hook
gae:debug (optionally suspended). It is a simple utility method, as the run goal
supports the passing of jvm options in the command line.

gae:deploy Uploads a WAR project onto Google's servers.
gae:enhance Enhances classes.
gae:logs Retrieves logs from Google's servers.
gae:rollback Rolls back an update on Google's servers.
Runs the WAR project locally on the Google App Engine development
gae:run server. You can specify jvm flags via the jvmFlags in the configuration
section.

Runs the WAR project locally on the Google App Engine development
gae:start server, without executing the package phase first. This is intended to be
included in your project's POM and runs in the pre-integration test phase.

Stops a running instance of the Google App Engine development server.
gae:stop This is intended to be included in your project's POM and runs in the post-
integration test phase.

Downloads and unzips the SDK to your Maven repository. Use this goal,
gae:unpack if you don't wish to specify a gae . home or Dappengine. sdk.home
property. The plugin will now search for the SDK in that default location.

gae:update-indexes Updates data store indexes.

Check outhttp://www.kindleit .net/maven gae plugin/
s for more information, updates, and documentation of this plugin.

Google Development with Maven

There's more...

There are additional archetypes provided to generate your GAE project in an integrated state
with popular Java Web Frameworks and technologies. The following commands can be used
for the same:

JSP

mvn archetype:generate -DarchetypeGroupId=net.kindleit
-DarchetypeArtifactId=gae-archetype-jsp -DgroupId=... -DartifactId=...
-DarchetypeRepository=http://maven-gae-plugin.googlecode.com/svn/
repository

Objectify JSP

mvn archetype:generate -DarchetypeGroupId=net.kindleit
-DarchetypeArtifactId=gae-archetype-objectify-jsp -DgroupId=...
-DartifactId=... -DarchetypeRepository=http://maven-gae-plugin.
googlecode.com/svn/repository

Wicket

mvn archetype:generate -DarchetypeGroupId=net.kindleit
-DarchetypeArtifactId=gae-archetype-wicket -DgroupId=... -DartifactId=...
-DarchetypeRepository=http://maven-gae-plugin.googlecode.com/svn/
repository

JSF based example

mvn archetype:generate -DarchetypeGroupId=net.kindleit
-DarchetypeArtifactId=gae-archetype-jsf -DgroupId=... -DartifactId=...
-DarchetypeRepository=http://maven-gae-plugin.googlecode.com/svn/
repository

GWT based example

mvn archetype:generate -DarchetypeGroupId=net.kindleit
-DarchetypeArtifactId=gae-archetype-gwt -DgroupId=... -DartifactId=...
-DarchetypeRepository=http://maven-gae-plugin.googlecode.com/svn/
repository

146

Scala, Groovy,
and Flex

In this chapter, we will cover:

» Integrating Scala development with Maven
» Integrating Groovy development with Maven

» Integrating Flex development with Maven

Java has been the dominant enterprise programming platform for over a decade and a half.
In many ways, it has shaped the way the industry does business, especially with the advent
of the Internet and followed by cloud computing. It is very evolved and mature, and has good
infrastructure support.

For all its successes, however, it has some serious problems competing with modern dynamic
programming languages in the context of ease of programming, especially while getting
started in the initial stages of a project.

An advantage that Java traditionally enjoyed over the likes of Python, Ruby, and so on is that
a lot of enterprises were committed to Java Virtual Machine (JVM) as their platform due to
its inherent advantages. This always worked in favor of the Java programming language.

However, all this has changed with modern languages such as Scala, Groovy, and so on
supporting JVM bytecode, which made them compatible with existing enterprise infrastructure
and assets. Furthermore, RIA (Rich Internet Applications) technology, such as Flex, never
faced the JVM challenge in the first place due to the widespread adoption of the Flash Player.

Apache Maven's flexible plugin-based architecture allows the tools to evolve with time and
lends its benefits to developers and development teams that are keen to leverage this new
breed of modern programming languages.

Scala, Groovy, and Flex

Integrating Scala development with Maven

Scala stands for "Scalable Language". It is defined as a multi-paradigm programming language
and has integrated support for object-oriented programming and functional programming.

It runs on the JVM and on Android. Furthermore, it can read existing Java libraries which give it
a huge advantage in cases where there is a lot of existing code infrastructure in Java.

The Scala bytecode is in many ways, identical to the Java bytecode. In many cases, Scala
generates more optimal byte-code than Java.

Twitter, Foursquare, and a whole bunch of exciting software startups have adopted Scala.
Scala helped Twitter get over its scalability issues when the micro blogging pioneer first hit
the mainstream and needed to scale-up as it served millions of new users each day.

This is, of course, not to say that scalable applications can't be built in pure Java. However,
the Scala programming language features itself (such as pattern matching, concurrency, and
Actors) and frameworks built on top of Scala (for example, Akka, GridGain, and so on.) allow
application scalability with ease.

Below is an example of a popular sorting algorithm implemented in Scala:

def gsort: List[Int] => List[Int] = {
case Nil => Nil

case pivot :: tail =>
val (smaller, rest) = tail.partition(_ < pivot)
gsort (smaller) ::: pivot :: gsort (rest)

}

The creator of Scala, Martin Odersky, has given a number of popular talks and presentations
examining Scala's comparability. When Scala code is up against comparable code in other
programming languages including Java, C#, Ruby, and so on, the conciseness of Scala really
stands out.

The Scala implementation of quicksort in the preceding code demonstrates this very
conciseness of Scala code.

While the Scala community recommends SBT (Simple Built Tool) for pure Scala projects,
often you'll be implementing modules in Scala while other modules of the project would have
been built with Java. This is one of the strongest cases for using Maven in a multi-modular
project with Java and Scala-based modules. It is probably the reason why SBT is more or less
compatible with Maven's conventions and even provides a feature for "Mavenizing" an existing
SBT project.

148

Chapter 7

Getting ready

You'll need Apache Maven installed. The Maven version preferably should be Maven 3 but
Maven 2.0.7 or higher is supported. JDK 1.5 or higher is recommended. Do note, installation
of Scala is not required. Apache Maven will take care of the Scala dependency.

How to do it...

Generate the Scala project archetype:

$ mvn archetype:generate

This will show a list of available archetypes in which you need to select the archetype for a
simple Scala project, which is scala-archetype-simple.

Maven interactive mode will also ask you for archetype version, groupId, artifactiId,
and other Maven project co-ordinates. This is the same step we've encountered in previous
recipes. You can choose reasonable values for groupId, artifactId, and package. For
me, the groupId was net . srirangan.packt.maven, artifactId was scalaexample,
version was the default value, and package was the same as groupId.

On completion, your terminal will look similar to the following lines:

..
[INFO] BUILD SUCCESS

..
[INFO] Total time: 1:38.142s

[INFO] Final Memory: 10M/114M

..

The completion of this operation has created a project folder with the same name as the
project artifact ID. The project directory tree structure would look similar to this:

Folder PATH listing for volume OS
Volume serial number is 7C69-DF5D

C:.
L—src
f—main
| L—scala
| L—net
| L—srirangan
| L—packt
| L—maven
| L App.scala
L—test

Scala, Groovy, and Flex

L scala
L samples
L junit.scala
L scalatest.scala
L specs.scala

Also generated is a simple Hello World! Scala application-App.scala:

package net.srirangan.packt.maven
object App {

def foo(x : Array[String]) = x.foldLeft("") ((a,b)
def main(args : Array[Stringl) {
println("Hello World!")

println("concat arguments = " + foo(args))

=> a + b)

}
}

The pom.xml file is configured in a way that integrated the build lifecycle with the Maven
Scala plugin:
<builds>
<pluginss>
<plugin>
<groupId>org.scala-tools</groupId>

<artifactId>maven-scala-plugin</artifactId>
<executions>

<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>

</plugin>
</plugins>
</build>
To compile the project, run:

$ mvn compile

To run the tests, use the default project lifecycle command:

$ mvn test

150

Chapter 7

If you inspect the Scala project pom.xml file that was generated, you would see dependencies
defined for Scala: 1ibrary, testing, specs, and scalatest

<dependencies>

<dependencys>
<grouplds>org.scala-lang</groupIld>
<artifactIds>scala-library</artifactIds>
<version>2.9.0-1
</versions>

</dependency>

<dependencys>
<grouplds>org.scala-tools.testing</grouplds>
<artifactIds>specs_2.9.0-1</artifactIds>
<version>1l.6.5</versions>
<scope>test</scope>

</dependency>

<dependencys>
<grouplds>org.scalatest</grouplds>
<artifactIdsscalatest</artifactIds>
<versions>1l.2</versions>
<scope>test</scope>

</dependency>

</dependencies>

The first dependency listed here is the Scala programming language itself, that is, org.
scala-lang.scala-library. The other two dependencies are for running Scala tests.
There may also be a fourth dependency which is not listed in the preceding code for junit.
It is unrelated to Scala, but has been explained and looked at in detail earlier in Chapter 2,
Software Engineering Techniques.

Looking at the build settings and plugin configuration hereafter, we see that the source and
test directories are being setto src/main/scala and src/test/scala respectively. The
plugin execution is being bound to the compile and testCompile build phases.

<builds>
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
<pluginss>
<plugins>
<grouplds>org.scala-tools</grouplds>
<artifactId>maven-scala-plugin</artifactId>
<version>2.15.0</versions>
<executionss>

Scala, Groovy, and Flex

<execution>
<goals>
<goal>compile</goals>
<goal>testCompile</goals>
</goals>
<configuration>
<args>
<arg>-make:transitive</arg>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala dependencies</
arg>
</args>
</configuration>
</execution>
</executions>
</plugin>

</plugins>
</build>

There's more...

In addition to what was described up to now, the Maven Scala plugin has more features which
meet the needs of most developers and development situations.

The following table lists all goals made available by the Maven Scala plugin, their respective
Apache Maven console commands, and brief explanations:

Goal Maven command Details
scala:compile $ mvn scala:compile Compiles the Scala source directory
scala:console $ mvn scala:console Launches the Scala REPL with
all project dependencies made
available
scala:doc $ mvn scala:doc Generates the documentation for all
Scala sources
scala:help $ mvn scala:help Displays the Scala compiler help
scala:run $ mvn scala:run Executes a Scala class
scala:script $ mvn scala:script Executes a Scala script

scala:testCompile 3$mvn scala:testCompile Compiles the Scala test sources

152

Chapter 7

Integrating Groovy development with Maven

Groovy, which is an object-oriented programming language for the Java Virtual Machine (JVM),
provides dynamic programming features similar to Python, Ruby, Smalltalk, and so on. It is
often used as a scripting language and interacts freely with existing Java code and libraries.

Groovy was created by James Strachan and Bob McWhirter and is currently being lead by
Guillaume Laforge. It is released under the Apache License v2.0.

Groovy is defined as an agile and dynamic programming/scripting language built for the Java
Virtual Machine. While it is inspired by Python, Ruby, and Smalltalk; for a Java developer it
promises an "almost-zero" learning curve.

In the past few years, Groovy has become popular for scripting and DSLs (Domain Specific
Languages) in addition to its use in application development. In an application development
environment, Groovy enhances developer productivity by reducing scaffolding code while
providing built-in capability for unit and mock testing.

Groovy is based on the JVM and thus interoperates with existing Java-based infrastructure,
libraries, and frameworks.

You can find more information on the official Groovy website
s http://groovy.codehaus.org/.

Getting ready

Apache Maven needs to be installed and set up along with JDK. Apache Maven 3+ and JDK
1.6+ are recommended. The Groovy setup is not required as the dependency is taken care of
by Maven.

How to do it...

Generate the Groovy project archetype:
$ mvn archetype:generate

This will show a list of available archetypes in which you need to select the archetype for
a basic Groovy project, which is gmaven-archetype-basic. Maven interactive mode

will also ask you for the archetype version, groupld, artifactId, and other Maven
project co-ordinates.

Scala, Groovy, and Flex

Alternatively, you can try executing;:

$ mvn archetype:generate -DarchetypeGroupId=org.codehaus.groovy.
maven.archetypes -DarchetypeArtifactId=gmaven-archetype-basic
-DarchetypeVersion=<VERSION>

On completion, your terminal will look similar:

[o) R T e
[INFO] BUILD SUCCESS

[o) R T e
[INFO] Total time: 1:38.142s

[INFO] Final Memory: 10M/114M

[e) R et e e

The completion of this operation has created a project folder with the same name as the
project artifact ID. The project directory tree structure would look similar to this:

C:.
L—pom.xml
L src

—main

| L—groovy

| L—net

| L—srirangan

| L—packt

| L—maven

| L—Example.groovy
| L Helper.java

L srirangan
L—packt
L —maven
L FExampleTest.groovy
L HelperTest.groovy

What has been generated is a simple "Hello world!" Groovy application-Example .groovy:

package net.srirangan.packt.maven
/**

* Example Groovy class.

*/

class Example

{

Chapter 7

def show() {
println 'Hello World'
}
}

The pom.xml file is configured in a way that integrated the build lifecycle with the Maven
Groovy plugin:

<builds>
<pluginss>
<plugin>
<groupId>org.codehaus.groovy.maven</groupId>
<artifactId>gmaven-plugin</artifactId>
<version>1.0</version>
<executions>
<execution>
<goals>
<goal>generateStubs</goal>
<goal>compile</goal>
<goal>generateTestStubs</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

To compile the project, run:
$ mvn compile

To run the tests, use the default project lifecycle command:

$ mvn test

If you inspect the POM file (pom.xm1) of the Groovy project that was generated, you will find
declared dependencies, as shown in the following code:

<dependency>
<groupId>org.codehaus.groovy.maven.runtime</groupId>
<artifactId>gmaven-runtime-1.6</artifactId>
<version>1l.0</version>

</dependency>

Scala, Groovy, and Flex

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1l</version>
<scope>test</scope>
</dependency>

The first dependency listed here is the GMaven runtime, that is, gmaven-runtime-1.6. The
other dependency listed in the preceding code is junit which is unrelated to Groovy, but has
been explained and looked at in detail earlier in Chapter 2, Software Engineering Techniques.
It is used for running unit tests.

With the help of the GMaven plugin, these dependencies are integrated with the Maven build
lifecycle and the build workflow for the developer is achieved through Apache Maven.

One of the advantages of Apache Maven is on display here, as despite the various differences
in underlying technologies, libraries, and toolkits, the Maven build lifecycle, the interface for
the developer, and external tools remains consistent.

There's more...

Groovy Shell provides the developer with a very convenient command-line shell to execute
Groovy commands. The GMaven plugin provides for command-line access to the Groovy
shell with the following command:

$ mvn groovy:shell

The Groovy Shell can be accessed. If you prefer a GUI access to the shell, run the
following command:

$ mvn groovy:console

Integrating Flex development with Maven

Adobe Flex is one of the pioneers and leaders in the Rich Internet Applications (RIA) space,
and with the advent of Adobe AIR, it has proved itself as a viable option for desktop and
mobile applications as well.

Here's how Adobe describes Flex on http://www.adobe.com/products/flex/:
"Build engaging, cross-platform rich Internet applications

Flex is a highly productive, free, open source framework for building expressive
web applications that deploy consistently on all major browsers, desktops, and
operating systems by leveraging the Adobe® Flash® Player and Adobe

AIR® runtimes."

156

Chapter 7

Flex is a rich framework that lets you build rich applications for deployment on the Internet
as well as desktops and devices. Flex application code consists of MXML (. mxm1) and
ActionScript (. as) files, classes, and packages. It compiles to produce a SWF (. swf)
artifact that can be rendered in the Flash Player and Adobe AIR runtime.

While Adobe ships a good IDE, that is, Adobe Flash Builder and it brings with it an Eclipse
project structure, it is generally advisable to "Mavenize" your Adobe Flex project especially
if it's a large enterprise project with multiple developers involved.

As an Apache Maven project, not only can the Flex module be integrated with a unified build,
but also a number of other benefits described in Chapter 2 and Chapter 3 can be reaped such
as continuous integration, Test Driven Development, and so on.

Getting ready

You need Apache Maven installed. Preferred versions are Apache Maven 3 along with JDK
1.6 or higher. The Adobe Flex SDK is an Apache Maven project dependency and will be
automatically included when required.

How to do it...

Generate a Maven Flex project using the FlexMojos application archetype:

$ mvn archetype:generate

This will show a list of available archetypes in which you need to select the f1exmojos-
archetypes-application archetype (which is number 353 for me). Maven interactive
mode will also ask you for archetype version, groupld, artifactId, and other Maven
project co-ordinates.

On completion, your terminal will look similar:

[INFO] == - = m s s o m o oo o o o oo e e e e
[INFO] BUILD SUCCESS

[INFO] == - = m s s o m o oo o o o oo e e e e
[INFO] Total time: 2:55.017s

[INFO] Final Memory: 10M/114M

[INFO] == - = o s s m o m oo o o o oo e e e e

The completion of this operation has created a project folder with the same name as the
project artifact ID. The project directory tree structure will look similar to this:

C:.
L—src

—main

Scala, Groovy, and Flex

F—rflex

|
| | L—Main.mxml
| L—resources
L—test
L—flex
L—net
L srirangan
L packt
L—maven
L TestApp.as

As seen above, a Flex application, Main.mxml, was generated. The file template was created
by Marvin Herman Froeder and is distributed with the Apache License through
the flexmojos archetype. The contents for the file are:

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute">

<mx:Text text="Hello World!"/>
</mx:Application>

Another file generated is TestApp . as in the src/test folder, which contains a simple
test case:

package net.srirangan.packt.maven
import flexunit.framework.TestCase;
import Main;
public class TestApp extends TestCase

{

public function testNothing() :void
{

//TODO un implemented

trace ("Hello test");

}

Let's inspect the project dependencies defined in the POM file (pom.xm1 in the project
root folder):

<dependencies>
<dependencys>
<groupId>com.adobe.flex.framework</groupId>
<artifactId>flex-framework</artifactIds>
<version>4.0.0.13875</version>

158

Chapter 7

<types>pom</type>

</dependency>

<dependencys>
<groupId>com.adobe.flexunit</groupIds>
<artifactId>flexunit</artifactIds>
<version>0.85</version>
<type>swc</types>
<scope>test</scope>

</dependency>

</dependencies>

It's as simple and beautiful as it can get. Just the two dependencies—one for the Flex
framework itself followed by the f1exunit dependency for unit testing.

Let's now compile our Apache Maven-Flex project:
$ mvn compile

And let's run the unit tests:

$ mvn test

You can combine these two steps by running:

$ mvn install

In the How to do it... section above, we created a hew Adobe Flex project using an Apache
Maven archetype. We have also seen how to execute Maven build lifecycle phases for the
project (compile, test, install, and so on).

While inspecting the project POM file (pom.xml), we see that the f1exmojos plugin is
integrated with the default build cycle:

<build>
<sourceDirectory>src/main/flex</sourceDirectory>
<testSourceDirectory>src/test/flex</testSourceDirectory>
<plugins>
<plugin>
<groupId>org.sonatype.flexmojos</groupId>
<artifactId>flexmojos-maven-plugin</artifactId>
<version>4.0-pre-alpha-1</version>
<extensions>true</extensions>
</plugin>
</plugins>
</build>

Scala, Groovy, and Flex

The POM also reveals that the packaging of the project is swf as Flex projects generate
output in the Flash Player format, namely, SWF:

<grouplds>net.srirangan.packt.maven</groupIds>
<artifactId>TestFlexApp</artifactIds>
<version>1.0-SNAPSHOT</version>

<packaging>swf</packaging>

In addition to the compilation and test features we witnessed above, the £1lexmojos plugin
provides many more goals that cater to most of our needs as Flex developers.

The table below lists the f1lexmojos goal, its corresponding Maven command, and an
explanation of its function:

FlexMojos Goal

Maven Command

Details

flexmojos:asdoc

flexmojos:asdoc-report

flexmojos:compile-swc
flexmojos:compile-swf

flexmojos:copy-flex-
resources

flexmojos:flexbuilder

flexmojos:generate

flexmojos:optimize

flexmojos:sources

report

S mvn

flexmojos:

S mvn

flexmojos:

$ mvn

flexmojos:

$ mvn

flexmojos:

S mvn

flexmojos:

S mvn

flexmojos:

$ mvn flexmojos:asdoc

$ mvn flexmojos:asdoc-

compile-swc

compile-swf

$ mvn flexmojos:coyp-
flex-resources

flexbuilder

generate

optimize

sources

Generates documentation for
ActionScript source files

Generates documentation for
ActionScript source files as a report
to be included in the Maven site

Compiles MXML and ActionScript
sources into a SWC library

Compiles MXML and ActionScript
sources into a SWF executable

Copies Flex resources into a web
application project-used in a
multi-modular project setup
Generates Adobe Flash Builder
(previous known as Flex Builder)
configuration files

Generates ActionScript classes
based on Java classes using
GraniteDS

Runs post-line SWF optimization on
SWC library files

Creates a JAR containing all the
sources

160

Chapter 7

FlexMojos Goal

Maven Command

Details

flexmojos:test-compile
flexmojos:test-run
flexmojos:test-swc

flexmojos:wrapper

$ mvn flexmojos:test-
compile

$ mvn flexmojos:test-
run

$ mvn flexmojos:test-
swc

$ mvn
flexmojos:wrapper

Compiles all the test classes

Runs the tests in the Adobe Flash

Player

Builds an SWC file containing the

test sources

Generates an HTML wrapper for an

SWF application

IDE Integration

In this chapter, we will cover:

» Creating a Maven project with Eclipse 3.7
Importing a Maven project with Eclipse 3.7
Creating a Maven project with NetBeans 7
Importing a Maven project with NetBeans 7
Creating a Maven project with IntelliJ IDEA 10.5

vV v . v.yVvyy

Importing a Maven project with IntelliJ IDEA 10.5

Advanced, modern Integrated Development Environments (IDEs) are being used by an
overwhelming majority of developers and professional programmers in the industry. This
holds true for most technologies, regardless of the underlying programming language/
framework being used.

In previous chapters, most of what we covered eventually involved the running of and
execution of Apache Maven commands on the terminal/console. This is the way Apache
Maven works; it is, after all, a command-line tool.

In this chapter, many of the same commands will be executed by the IDE in the background
while the developer works and interacts with the IDE's graphical Ul.

It must be said that it isn't too hard to switch between the command line and your IDE in most
modern operating systems, and it is this "is a command-line tool" property of Maven and its
well-defined standards and conventions that has enabled its easy integration with other tools
in the development infrastructure, including the developer's IDE.

IDE Integration

The three most popular development IDEs for developers today would surely be Eclipse,
NetBeans, and JetBrains IntelliJ IDEA. Each of these has excellent integration with Maven,
Maven projects, and the extended Maven ecosystem.

/\

Maven APIs

— ==

D

Maven Project

This integration is provided through IDE plugins that strictly adhere to the Maven standards.

A project that has been integrated with the IDE almost always remains uncorrupted and
independent of the IDE, fully compliant with Maven standards, and thus ready for use from
the console/terminal, if the developer (or any third-party application) chooses to do so.

Creating a Maven project with Eclipse 3.7

For many years now, Eclipse remained a popular IDE for enterprise and open source
development in Java and other technologies. Eclipse is free and open source and
shares its roots and origin with VisualAge. According to Wikipedia:

"Eclipse began as an IBM Canada project. It was developed by Object Technology
International (OTl) as a Java-based replacement for the Smalltalk-based VisualAge
family of IDE products, which itself had been developed by OTI. In November 2001,
a consortium was formed to further the development of Eclipse as an open source
product and platform. In January 2004, the Eclipse Foundation was created."

Eclipse is more than just an IDE; it also is a platform for extension and plugin/add-on
development. Here then comes M2Eclipse, which is an Eclipse plugin developed by Sonatype
providing extensive Eclipse-Maven integration.

M2Eclipse isn't the only Eclipse-Maven integration plugin, but it is definitely one of the
most complete yet easy-to-use plugins. As of Eclipse 3.7, M2Eclipse is pre-installed in the
Java-specific bundle.

164

Chapter 8

Getting ready

To get started, you need to download and install Eclipse 3.7 from the Eclipse website:
http://www.eclipse.org/downloads/.

Make sure you download a Java-specific package of Eclipse so that the Maven M2Eclipse
plugin is bundled. If your Eclipse installation does not have M2Eclipse pre-installed, you can
manually install the plugin from the Eclipse Marketplace.

How to do it...

1. Make sure the correct installation of Maven is configured in Eclipse. You can find
this setting in Window | Preferences | Maven | Installations. You can continue to
use the Eclipse embedded Maven or choose an external installation, as shown in the
following screenshot:

Preferences

| @| Installations G -
> General Select the installation used to launch Maven:
: J::ltp Embedded (3.0.2/1.0.0.20110607-2117) | Add...
& External fopt/apache-maven-3.0.3 (3.0.3)

B Install/Update Edit...
B Java i
v Maven Remove

Archetypes

Discovery

Templates Note: Embedded runtime is always used for dependency

User Inkerface resolution, but does not use global settings when it is used

User Settings to launch Maven. To learn more, visit the Maven web page.
B Mylyn
» Run/Debug Global settings from installation directory (open file):
B Team |,r‘opt,r‘apache—maven—3.0.3,r‘conf,r‘settings.xml Browse...
P Usage Data Collector

Validation
* WindowBuilder
B XML
| Restore Defaulr5| | Apply |
@ | Cancel | [*]

IDE Integration

2. Create a new project (Ctrl+N), select Maven Project, and continue on the wizard
to select an archetype and set up the project co-ordinates.

166

New Maven Project

New Maven project

Select an Archetype

Catalog: |AI.I. Catalogs

:J |§unf|gure. J

» Advanced

@

[show the Last version of Archetype only

7] Include snapshot archetypes

Filter: | |
Group Id Artifact 1d Version
org.apache.cocoon cocoon-22-archetype-webapp RELEASE
org.apache.maven.archetypes maven-archetype-j2ee-simple RELEASE |
org.apache.maven.archetypes maven-archetype-marmalade-mojo RELEASE
org.apache.maven.archetypes maven-archetype-mojo RELEASE
org.apache.maven.archetypes maven-archetype-portlet RELEASE
org.apache.maven.archetypes maven-archetype-profiles RELEASE
org.apache.maven.archetypes maven-archetype-quickstart RELEASE

|Add Archetype

| < Back Mext= ‘ Cancel

Finish

="

. New Maven P

New Maven project

Specify Archetype parameters

Group Id: |test

v
Artifact Id: lDroject1| -
Version: |0.0.1-SNAPSHOT | ¥

Package: |test project1 hd

Properties available from archetype:

Name Value | Add
| Remove
» Advanced

Next >

‘ < Back

Chapter 8

A new project has been created, which is both a valid Eclipse project and a valid
Apache Maven project.

Now we would like to execute Maven commands through Eclipse. This is done by
creating Eclipse Run Configurations for Maven goals. We start by selecting the Run |
Run configurations. Select Maven Build and create a new configuration.

B Run Configurations

J Create, ge, and run configurations @
OB X B & Name: [Maven Clean| l
| || [E]Main >, =k JRE| 1 Refresh | B§ Environment|] Common
— Base directory:
Java Applet b
Java Application ${workspace_loc;/test-eclipse-project}
Ju Junit | Browse Workspace... | | Browse File System... | | Variables... |
¥ m2 Maven Build
m2 New_configuration Goals: |clean | Select... |
Juj Task Conkext Test N
Profiles:
| Offline | Update Snapshots
| Debug Output [] skip Tests [Non-recursive
| Resolve Waerkspace artifacts
Parameter Name Value Add.. |
X . Apply Revert
Filter matched 6 of 6 items | | | ‘
® | Close | Run]

The Base directory, Goals, Profiles, and other settings can be configured while
creating or modifying the Run configuration.

We just created a project that is an Eclipse and Maven project. If you inspect the filesystem,

you will find that a valid pom.xm1 file exists in the project root, which makes it a valid
Maven project.

IDE Integration

In addition, you will also find .classpath and .project files and the . settings folder
which are Eclipse-specific resources, making it a valid Eclipse project as well.

e

srirangan@ubuntu: ~fworkspaceftest-eclipse-project

srirangang@ubuntu:~/workspace/test-eclipse-project$ tree -a

.classpath
pom. xml
.project

org.eclipse.jdt.core.prefs

FEE org.eclipse.core.resources.prefs
org.eclipse.m2e.core.prefs

Lo
=
L
L
L
L

— App.java

L
L
B

L AppTest.java

18 directories, 8 files
srirangan@ubuntu:~/workspace/test-eclipse-projects [l

Once you create and execute a Maven build run configuration, Eclipse starts a read-only
console at the path defined in the Run configuration. Then the goals defined in the
Run configuration are executed using Maven APIs and the output is shared on the
read-only console.

Importing a Maven project with Eclipse 3.7

In the previous recipe, Creating a Maven project with Eclipse 3.7, we created a project
compatible with Eclipse and Apache Maven. We also created custom Maven build run
configurations to execute lifecycle or other Maven plugin goals from within the IDE itself.

168

Chapter 8

However, most of the time your Apache Maven project would exist on a shared filesystem
or version control/code repository. This would be shared by your entire team and itis a
best practice not to share IDE files on the code repository.

In such situations, you need to import your Apache Maven project into the Eclipse IDE.
M2Eclipse allows you to do the same through an easy and intuitive wizard.

Getting ready

Firstly, you need to download and install Eclipse 3.7 from the Eclipse website:
http://www.eclipse.org/downloads/.

Make sure you download a Java-specific package of Eclipse so that the Maven M2Eclipse
plugin is bundled in, otherwise you will have to manually install the plugin from the
Eclipse Marketplace.

You will also need a pre-existing Apache Maven project to import into Eclipse IDE.

How to do it...

Launch the project import wizard by selecting File | Import and then selecting Maven |
Existing Maven Projects.

When you enter the root directory of your project, you will find the listing of the Maven projects
(and their modules, if they have any) in the following screenshot.

Select one or more projects that you want to import and hit Finish.

Eclipse (well in fact, the M2Eclipse plugin) has now created the requisite Eclipse-specific file
and converted the Maven project into a "Maven + Eclipse" project.

IDE Integration

You will find .project, .classpath files, and the .settings folder in your filesystem:

srirangan@ubuntu: ~/workspace ftest-eclipse-project
srirangan@ubuntu:~/workspace/test-eclipse-project$ tree -a

pom.
.project

org.ecl core.resources.prefs
org.eclipse.jdt.core.prefs
org.eclipse.m2e.core.prefs

-
L
L

L— App.java

L
L
B

L AppTest.java

18 directories, 8 files
srirangan@ubuntu:~/workspace/test-eclipse-projects |J

Project-specific Maven options are available by right-clicking on the project and selecting the
Maven menu item.

170

Chapter 8

As shown in the following screenshot, these options include adding of dependencies, plugins,
downloading JavaDocs and sources, creating new modules, and so on:

Mo Java - Eclipse

| File Edit Source . N ar ect Run Win
Civ mv $v Ov Qv |8 G | ® & - w o
[# Package Explorer 53 = (& T =8

ved

B (# sre/main/fjava bz

B 2 sroftest/fjava Crins
P =i JRE System Library| Open in New Window
b =i Maven Dependenc Open Type Hierarchy

B (= src Show In
(= target Copy
M pomxml

Copy Qualified Name
P
Delete

Build Path @ Javadoc |[E, Declaration | 5 Progr

Refactor nning for projects...

e = = = = = = = = = == === e

maven-clean-plugin:2.4.1:cleg
eting /home/srirangan/workspa

nWorking Sets..
Run As

Debug As

Validate Add Dependency
Team Add Plugin

aven Module Project

Compare With

R > from Local History...
r.—— Download JavaDoc

Maven 4

Properties Update Dependen

test-eclipse-project

Update Project Configuration..

IDE Integration

Global Maven settings for Eclipse can be modified by selecting Windows | Preferences |
Maven:

§ D@ Ppreferences

L3
o Maven =1 4 - ||
* General :
Offline
B ANE
» Help Do not automatically update dependencies from remote repositories
P Install/Update Debug Output
B Java .
B Download Artifact Sources
Archetypes Download Artifact JavaDoc
Discovery [Download repository index updates on startup
Installations .
Update Maven projects on startup
Templates

User Interface Hide folders of physically nested modules (experimental) H

User Settings
Mylyn
Run/Debug
Team

¥ ¥ vV ¥

Usage Data Collector
Validation
WindowBuilder

¥

v

XML Restore Defaults Apply

':?:' Cancel OK

1 T

Here you can configure the M2Eclipse behavior, defaults for Maven integration, Archetypes,
Discovery, Installations, User Settings, and so on.

Creating a Maven project with NetBeans 7

Much like Eclipse, NetBeans is an open source platform-framework and an IDE (Integrated
Development Environment) for developing with Java and other technologies.

It is a free and open source software maintained by the NetBeans community and backed by
Sun/Oracle Corporation. According to http://netbeans-org:

"The NetBeans IDE is written in Java and runs everywhere where a JVM is installed,
including Windows, Mac OS, Linux, and Solaris... The NetBeans Platform allows
applications to be developed from a set of modular software components called
modules. Applications based on the NetBeans platform (including the NetBeans
IDE) can be extended by third party developers."

The Maven module will either be pre-included in your NetBeans installation or can be installed
on top of the NetBeans IDE.

172

Chapter 8

The Maven module comes with an embedded instance of Maven or alternatively can be
configured to work with one or more standalone instances of Maven.

It provides comprehensive integration between NetBeans and Maven, and you the developer
could almost do without executing Maven commands from the terminal/console.

Getting ready

Download the NetBeans 7 bundle for Java EE from the NetBeans website.
http://netbeans.org/downloads/index.html

Install NetBeans 7 and configure your Maven home directory in Tools | Options |
Miscellaneous | Maven.

% Z a

General Editor Fonts & Colors Keymap

Ant Appearance Diff Files GUI Builder Issue Tracking

Java Debugger Javascript Maven Profiler Spellchecker Tasks Terminal Versioning
Mawven Home : Joptfapache-maven-3.0.3 E'I

(version: 3.0.3)

Global Execution Options : [][Add]

[skip Tests for any build executions not directly related to testing

Local Repaository : [: default local repository as defined by Maven=][Bmwg.,]
Dependency Download Strategy:

Download Binaries : MNever |

Check Javadoc: Never (¥

Check Sources: Never v

Please note that setting any of these to values other than "Mewver" can make opening projects
significantly slower,

|Edit Global Custom Goal Definicions...

Index Update Freguency: [Onceaweek | '] [NﬁLNCW]

B Include Snapshots In Lacal Index

(K |cancel) | et |

If you have an existing Apache Maven installation, you can point to that or continue to use the
bundled version of Apache Maven.

IDE Integration

How to do it...

Launch the New Project wizard by selecting File | New Project and then select Maven |
Java Project.

Next, specify the Maven project co-ordinates and complete the wizard:

r B
New Project

Steps Name and Location

1. Choose Project

; Project MName: |.maven|3r0ject1 |
2. Name and Location - -

Project Location: |:,|’the,l’srirangan,l’NetBeansprujects | [Brgwse...J

Project Folder:

Artifact Id:

Group Id: [corn.rnycornpany |

Version: |1.0-SNAPSHOT |

Package: [com.mycompany.mavenproject1 | (Optional)

Processing Archetype
%

<Back | | Next= | | Finish | | Cancel | [Eelp

Here you can enter the Project Name and Project Location on your filesystem and the
Apache Maven project co-ordinates.

The Artifact ID is picked up from the project name, while the text fields for Group Id, Version,
and Package can be edited.

On completion, a new project will be created, which is both a NetBeans project and an Apache
Maven project.

174

Chapter 8

NetBeans directly integrates with the Maven build lifecycle and provides you with a range
of options to quickly clean, build, and execute your project under the Run and Debug
menu options:

File Edit Mavigate Source

] ® 9
Projects 41 X | Files
)

» [@ Source Packages

> [@ TestPackages

» [§ Dependencies

» [§ Test Dependencies

» [Project Files

Shift+F8

Fa
Alc+Fo
Alt+Shift+Fy

kot - mavenneaieck]

To create a custom Maven goal execution configuration, right-click the project, select Custom
| Goals, and define your custom goal:

Goals: cleaninstall

Profiles:

Properties:

[Recursive (with Madules) [| Update Snapshots

| Build OFfline | show Debug Qutput
| Skip Tests
| o | =P Remember as: |Clean & Install l

OK || Cancel|
——— |

Apart from specifying the custom goal, you can also define Profiles and custom Properties for
the custom run configuration.

Select the checkbox at the bottom to save this configuration for future use.

IDE Integration

We just created a project that is a NetBeans and Maven-compatible project. If you inspect
the filesystem, you will find that a valid pom.xml file exists in the project root, which makes
it a valid Maven project:

-

srirangan@ubuntu: ~/Desktop/mavenpr
srirangan@ubuntu:~/Desktop/mavenprojectl$ tree

nbactions.xml
pom. xml

L App.java

==
L AppTest.java

L
L

L App.class

16 directories, 5 files
srirangan@ubuntu:~/Desktop/mavenproject1$ |

The presence of a project POM file makes it a valid NetBeans project, as NetBeans is fully
compatible with the configurations in the POM.

In addition to the pom.xml file, you will also find the nbactions.xml file, which is a
NetBeans-specific file, to store the custom goal/execution configuration.

Once you execute the project clean, build, run, or custom Maven goal, NetBeans starts a
read-only console at the project root. The appropriate Maven goals are executed using
Maven APIs and the output is shared on the read-only console.

176

Chapter 8

Importing a Maven project with NetBeans 7

In the previous recipe, Creating a Maven project with NetBeans 7, we created a project
compatible with NetBeans and Apache Maven. We also created custom run configurations
to execute lifecycle or other Maven plugin goals from within the IDE itself.

However, most of the time your Apache Maven project would exist on a shared filesystem or
version control/code repository. This would be shared by your entire team and it is a best
practice not to share IDE files on the code repository.

In such situations, you need to import your Apache Maven project into the NetBeans IDE.
NetBeans is fully compatible with the Apache Maven Project Object Model and thus allows
you to natively open any Apache Maven project.

Getting ready

Download the NetBeans 7 bundle for Java EE from the NetBeans website:
http://netbeans.org/downloads/index.html.

Install NetBeans 7 and configure your Maven home directory in Tools | Options |
Miscellaneous | Maven.

% KB & &8

General Editor Fonts & Colors Keymap

Ant Appearance Diff Files GUI Builder Issue Tracking

Java Debugger JavaScript ‘ Maven ‘ Profiler Spellchecker Tasks Terminal Versioning
Maven Home : Jopktfapache-maven-3.0.3 [+

{Version: 2.0.3)

Global Execution Options: [][Add J

] skip Tests for any build executions not directly related to testing

Local Repository : [] [Browse... J

Dependency Download Skrategy :

Download Binaries : Never [«
Check Javadoc: Never [«
Check Sources: Never [+

Please note that setting any of these tovalues other than "Never" can make opening projects
significantly slower.

Edit Global Custom Goal Definitions... J

Index Update Frequency: [Once aweek (] [lndexﬁnw]

B Include Snapshots In Local Index

Import - Cancel| | Help

IDE Integration

If you have an existing Apache Maven installation, you can point to that or continue to use a
bundled version of Apache Maven.

In addition, you would also need an existing Apache Maven project to import as a
NetBeans project.

How to do it...

To work on your Apache Maven project with NetBeans, select the File | Open Project dialog
and navigate to your project root folder.

I Open Project 1
Look In: ||j Desktop [- H @& o
e

| test-netbeans-project

[] Open as Main Project

File Mame: [IhomefsriranganlDesktopltest-netbeans-project | |g|:nen Ffioject

Files of Type: |:|3r0ject Folder E l = i

You will find the folder with the pom. xml file highlighted with a special Maven icon, and this
folder can be selected and opened as a NetBeans 7 project.

As we saw in the previous recipe, Creating a Maven project with NetBeans 7, an Apache
Maven project is fully compatible with NetBeans 7. This means that there isn't any actual
import process that converts a Maven project into a NetBeans project.

An Apache Maven project in itself is a valid NetBeans 7 project. The NetBeans IDE relies on
the information and project configuration specified in the pom.xm1 file and lets the developer
work seamlessly on the Maven project with the NetBeans IDE.

A Maven project on NetBeans IDE behaves no different from a native NetBeans project and
the developer may work seamlessly on either without ever having to know the internals.

178

Chapter 8

There's more...

Global settings for Apache Maven on NetBeans can be modified by selecting Tools | Options |
Miscellaneous | Maven.

% ¥ @

General Editor Fonts & Colors Keymap

Ant Appearance : Diff Files GUI Builder Issue Tracking

Java Debugger Javascript | Maven | Profiler Spellchecker Tasks Terminal Versioning
Maven Home : fopt/apache-maven-3.0.3 [+

(Version: 3.0.3)

Global Execution Options : [l[Add J

[skip Tests for any build executions not directly related to testing

Local Repository : [l [Browse... J

Dependency Download Strategy:

Download Binaries Never [+
Check Javadoc: Never [+
Check Sources: Never [+
Please note that setting any of these to values other than "Newver" can make opening projects
significantly slower.
[Edit Global Custom Goal Deﬁnitions...]
Index Update Freguency: [Once aweek [v | [Indexﬂow]

& include Snapshots In Local Indesx

Impork - Cancel| | Help

The settings that can be modified include Maven installation location, repository location,
dependency download strategies (binaries, sources, docs), global custom goal definitions,
and so on.

Creating a Maven project with IntelliJ

IDEA 10.5

An extremely popular alternative to Eclipse and NetBeans, IntelliJ IDEA is according to many
programmers, the best IDE available. While Eclipse and NetBeans are quite similar to each
other, JetBrains IntelliJ IDEA offers a unique experience to the developer.

IDE Integration

In my personal experience, after years of using Eclipse and NetBeans, when | migrated
to Intelli) IDEA, at first it was a little challenging. However, within a matter of days, | could
experience productivity enhancements in my own work. Now it has been a while since |
migrated to IntelliJ IDEA and I'm as strong an advocate as any for JetBrains IntelliJ IDEA.

Originating back in 2001, it was the pioneer of popular features now taken for granted,
including code navigation and re-factoring. It is now available as commercial software
and also as a free, open source community software. According to Wikipedia:

"JetBrains is a Czech software development company with offices in Prague,
Czech Republic; Saint Petersburg, Russia and Boston, USA. It is best known for its
Java IDE, IntelliJ IDEA and for its Visual Studio plugin ReSharper ... JetBrains was
founded in 2000 as a private company, by Sergey Dmitriev, Eugene Belyaev, and
Valentin Kipiatkov."

Getting ready

For this recipe, you need to download and install IntelliJ IDEA. You can download it from the
JetBrains website:

http://www.jetbrains.com/idea/download/index.html.

IntelliJ IDEA comes pre-installed with an Apache Maven plugin and no additional installations
are required. Your external installation of Apache Maven is compatible with IntelliJ IDEA.

The IntelliJ IDEA Maven plugin automatically picks up your Apache Maven installation if the
M2_ HOME environment variable is defined. You can manually change the Maven installation
by overriding the path through File | Settings | Maven.

180

Fp= . B
i Settings L
[I @] Maven
Template Project Settings I work offline
BashSupport
@ Code Style [Use plugin registry
@ Compiler V] Execute goals recursively
Coverage
Deployrment [J Print exception stack traces
File Calors
File Encodings PRl E
e
Inspections Multiproject build fail policy |Fail Fast E
@ JavaSeript Libraries Snapshot update policy Always Update E
P M
et Elugin updte polcy
Ignored Files Mzven home directory:
Runner [foptiapache-maven-3.0.3 |[] Ooverride
OSGI User gettings file:
& pHp [fhome/srirangans.m2/settings.xml |[-] Ooverride
Resources - —
Speliing Local repasitory: -
SQL Dialects [thome/srirangani. m2/repository H7| [override
Template Data Languages
oK apply | [kel

Chapter 8

How to do it...

To create a new Apache Maven project through IntelliJ IDEA, you need to select the menu
option File | New Project and create a project from scratch.

Name your project and select its location on the filesystem. Then proceed to create your
first module, enter the module Name, and select the type Maven Module, as shown in the
following screenshot:

x New Project x

|
Name:
|my-pr0ject |
i Project files location:
W\‘ |fhomefs;r\ranganfDes;ktopar |E]
. 7 B Project file format: |.idea (directory based) |ZH

|nte"iJ lDEA ¥l Create module

~Module Setting

NEW Marne: \my-module |
project Content root: \fhomefsriranganIDesktopﬁmy-module |E]
Module file location: \IhomefsriranganfDesktopﬁmy-module |E]
Select type Description
E%Ja\.fa Module Creates a blank Maven module or from
Maven Archetype
S@ Plugin Madule

E@ ActionSeript / Flash / Flex Module
Cl Android Module
ﬁ Python Module

' Ruby Module
& Maven Module

I = Previous] [MNext = I ‘ Einish | I Cancel] I Help] o

In the next step, you can enter your project co-ordinates and make an Apache Maven project
archetype selection.

IDE Integration

Once your project is created, you can proceed to create a run configuration to execute one

or more Apache Maven goals. Select Run | Edit Configurations and add a new Maven run
configuration by selecting the +icon.

Run/Debug Configurations 1
=] T+ & Name: [Mawen Clean Compile |
liﬁll-l'la\.l'en Faramsters | General | Runner
_ Working directory:
45 Defaults

|fhomefsriranganfDesktop,fmy-module |E]

Goals (separated with spacel
[clean compile |

Profiles (separated with space):

~Before launch

W Make] [Build Artifacts [
[J Run Ant target IZI] Run Maven Goal IZI
[Show settings

[Share configuraticn
Temporary configurations limit:

| ok |[Cancel][Apply][Help]

You can now select a working directory, which should be the project root containing the pom.
xml file, specify the Maven goals to be executed, and define other IDE / Maven options.

Once the run configuration is created, it can be executed through the Run menu option.

We have created an Apache Maven project that is at the same time an IntelliJ IDEA project
as well.

182

Chapter 8

If you inspect the filesystem, you will find the . idea directory and an . iml file which are
specific to IntelliJ IDEA. The project also contains a valid pom.xml file, which makes it an
Apache Maven project.

o

srirangan@ubuntu: ~/Desktop/ftest-idea-project

srirangang@ubuntu:~$% cd Desktop/test-idea-project/
srirangan@ubuntu:~/Desktop/test-idea-project$ tree -a

ant.xml
compiler.xml
encodings.xml

misc.xml
modules . xml
.name
ves . xml
workspace.xml

my-module. iml
pom. xml

5, 18 files
srirangan@ubuntu:~/Desktop/test-idea-project$ ||

We also created a custom Apache Maven run configuration in IntelliJ IDEA and when that
is executed, IntelliJ IDEA launches a console at the working directory defined in the Run
Configuration.

Then, the specified goals are executed and the output is shared on the console.

Importing a Maven project with IntelliJ

IDEA 10.5

In the previous recipe, Creating a Maven project with IntelliJ IDEA 10.5, we created a project
compatible with IntelliJ IDEA and Apache Maven. We also created custom run configurations
to execute lifecycle or other Maven plugin goals from within the IDE itself.

However, most of the time your Apache Maven project would exist on a shared filesystem or
version control/code repository. This would be shared by your entire team and it is a best
practice not to share IDE files on the code repository.

IDE Integration

In such situations, you need to import your Apache Maven project into the IntelliJ IDEA IDE.
IntelliJ IDEA is fully compatible with the Apache Maven Project Object Model and thus allows
you to natively open any Apache Maven project.

Getting ready

For this recipe, you need to download and install IntelliJ IDEA. You can download it from the
JetBrains website:

http://www.jetbrains.com/idea/download/index.html.

Intelli) IDEA comes pre-installed with an Apache Maven plugin and no additional installations
are required. Your external installation of Apache Maven is compatible with IntelliJ IDEA.

The IntelliJ IDEA Maven plugin automatically picks up your Apache Maven installation if the
M2 HOME environment variable is defined. You can manually change the Maven installation
by overriding the path through File | Settings | Maven.

e N B
W Settings L
[l @| | Maven
Template Project Settings O work offline
BashSupport ; ;
@ Code Style [Use plugin registry
© Compiler [#] Execute goals recursively
Coverage
Deployment [Print exception stack traces
File Colors
File Encodings e E
E;apd;itions Multiproject build fail policy
@ JavaScript Libraries Snapshot update policy Ahways Update E
@ Maven _
Importing Flugin update policy Do Mot Update |Z]
Ignored Files Maven home directory:
Runner [foptfapache-maven-3.0.3 |[~] O overrice
OSGi User settings file:
[o3 i
PHP [fhome/srirangan/. m2/settings.xml [[-] O override
Resources - =
spelling Local repositony: -
SOL Dialects |!h0mef5riranganf‘m2frep05it0ry ||;| [cwerride
Ternplate Data Languages
[OK I [Cancel] ‘ Apply | [Help]

In addition, you will also need an existing Apache Maven project to import into IntelliJ IDEA.

184

Chapter 8

How to do it...

Let's begin by launching the open project dialog by selecting File | Open Project and then
navigating to the root of your Apache Maven project:

Open Project
Project files (ipr, .classpath, .project, pom.xml)

I8 @ Hide path

|fhomefsriranganfDesktopftest—project |

O dev
CJetc
o [= home
& = srirangan
C3J AppData
£J Audiobooks
3 build

& pom.xml
3 Documents
%EI Downloads
o= 3 Music
o~ CJ Pictures

o~ 3 Podcasts
@~ 3 Public

DOrag and drop a file inte the space abowe to quickly locate it in the tree

| [0]4 S’ Cancel]

Select that folder or the pom.xml file it contains and click OK. The Apache Maven project will
now automatically open up inside IntelliJ IDEA.

Intelli) IDEA comes pre-installed with the Apache Maven plugin. This plugin makes Apache
Maven projects directly compatible with IntelliJ IDEA and discards the need for any Apache
Maven to IntelliJ IDEA "import" process.

IDE Integration

If you inspect the filesystem, you will not only find the pom.xml but additional .iml, .iws, and
.ipr files in the directory. These are project files created by IntelliJ IDEA for its internal use.

srirangan@ubuntu: ~,(Deslg:opft(
srirangan@ubuntu:~/Desktop/test-projects tree =

my -module. iml
my-module.ipr
my-module. iws
pom.xml

K=

5 directories, 4 files
srirangan@ubuntu:~/Desktop/test-projects ||

For all Apache Maven projects, IntelliJ IDEA provides the Maven Projects tool window. The
Maven Projects tool window lists out all Apache Maven modules along with their lifecycle
goals in the tree-menu format.

Maven Projects

EIEE R e

— % clean

- 8 validate
I & compile

- 8 test

I i package
- 8% install

- 8 site

L & deploy

[FEETTE™] [JepuBWWO] T @] [s1o8lold UBAE B}]

A button/menu option is provided for the execution of these goals.

How to execute custom Apache Maven goals has been explained in the
preceding recipe, Creating a Maven project with IntelliJ IDEA 10.5.

186

Extending Apache
Maven

In this chapter, we will cover:

» Creating a Maven plugin using Java
Making your Java Maven plugin useful
Documenting your Maven plugin

Creating a Maven plugin using Ant

v v.v .y

Creating a Maven plugin using JRuby

This chapter looks at ways you can extend the current functionality of Apache Maven and its
plugins by writing plugins of your own. We are not going into specific details of end-to-end
implementation of one particular plugin, but will broadly look at the various ways we can
extend Apache Maven and present examples for each of these methods.

By design, Apache Maven is nothing more than a set of plugins wrapped together within a
common framework. Every Maven functionality we have explored in this book from Chapter 1
to Chapter 8 has made use of one or more Apache Maven plugins. This module architecture
holds true for many Java applications, including the popular JetBrains IntelliJ IDEA IDE as well.

Like Apache Maven, an Apache Maven plugin needs to be executed on the JVM (Java Virtual
Machine) and hence needs to be either written in Java itself or in any other programming/
scripting language that leads to compilation of artifacts compatible with the JVM. These
artifacts are usually JAR files.

Extending Apache Maven

The following image illustrates this very structure where Apache Maven is a bundled collection
of plugins:

Compile plugin Clean plugin Test plugin
Deploy plugin Jetty plugin
Dependency plugin Jboss plugin

Surefire plugin Cobertura plugin

Apache Maven

In this chapter, we have recipes for creating these plugins in Java, Apache Ant, and JRuby.
We will also look at some advanced techniques of Java plugins to make them more intuitive
and usable.

Creating a Maven plugin using Java

Given its internal architecture, Apache Maven can be defined as no more than a framework
with collections of plugins. Plugins are where the real action happens. Be it compilation of
code, running of tests, creation of artifacts, and so on. A plugin can have one or more goals
that can be called upon explicitly from the command line or sometimes be integrated with
one of the project build phases.

In this recipe, we will create a MOJO (Maven plain Old Java Object), build it, include it in
another project, and execute it from the command line.

Getting ready

For this recipe, you need Apache Maven 3 installed and set up correctly and you need to be
familiar with Maven concepts such as archetypes, project co-ordinates, dependencies, and
so on.

188

Chapter 9

How to do it...

We start by generating an Apache Maven plugin project using an archetype. Archetypes, as
discussed earlier, are project templates, and the Maven community has made an archetype
available for generating a basic Maven plugin project.

1.

Start your console and execute the following command:

$ mvn archetype:generate -DgroupId=net.srirangan.packt.maven
-DartifactId=maven-pluglOl-plugin -DarchetypeGroupId=org.apache.
maven.archetypes -DarchetypeArtifactId=maven-archetype-mojo

Now build and install this project in your local repository with the following command:
$ mvn clean install
Open the MyMojo. java file in any text editor. If you are using an IDE (such as IntelliJ

IDEA or Eclipse), you can start by importing the project and then opening MyMojo.
java for editing.

You will see that the source code for the MOJO is already populated. We will replace
that code with an even simpler example, as shown in the following code:

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;

/**
* @goal helloworld
*/
public class MyMojo extends AbstractMojo
public void execute() throws MojoExecutionException

getLog () .info("Hello, world.");

}
}

Let's now modify the POM file (pom.xm1) to include this plugin:

<builds>
<pluginss>
<plugins>
<groupldsnet.srirangan.packt.maven</groupIds>
<artifactIds>maven-pluglOl-plugin</artifactId>
<version>1.0-SNAPSHOT</version>
</plugin>
</plugins>
</build>

Extending Apache Maven

5.

We can now execute the plugin using the fully qualified goal command:

$ mvn net.srirangan.packt.maven:maven-pluglOl-plugin:1.0-
SNAPSHOT:helloworld

The result should be:

[INFO] Scanning for projects...

[INFO] == -mmmm o m oo o oo oo oo
[INFO] Building maven-pluglOl-plugin Maven Mojo 1.0-SNAPSHOT
[INFO] == -mmmm o m oo o oo oo oo

[INFO] --- maven-pluglOl-plugin:1.0-SNAPSHOT:helloworld (default-
cli) @ maven-pluglOl-plugin ---

[INFO] Hello, world.
[INFO] - - - - - - oo oo oo oo oo oo oo m
[INFO] BUILD SUCCESS
[INFO] - - - - - - oo oo oo oo oo oo m

You just executed a five step process to create your first Apache Maven plugin. Here are
explanations for each step described in the preceding section:

1.

190

Here we executed an Apache Maven archetype :generate command using the
maven-archetype-mojo archetype as your project template. After a successful
execution, this command created a sample MOJO class file embedded inside the
Apache Maven project structure. The end result should look like this:
L—pom.xml
L—src
L—main
L—java
L—net
L—srirangan
L packt
L—maven
L—MyMojo.java

Here we executed Maven clean and install on the newly-generated Apache
Maven plugin project. This command cleans and builds the project and would have
created the target folder which contains the artifact (JAR file) along with test
reports, package structures, and . class files. It also installs the plugin in your
local repository.

L target
—maven-plugl0l-plugin-1.0-SNAPSHOT. jar

—-classes

Chapter 9

| B—META-INF
| | L—maven
| L—mnet
| L—srirangan
| L—packt
| L—maven
—maven-archiver
L—surefire

Now, let's have a look at the Maven plugin project's POM file. We see that it has a
dependency on the Maven plugin APl along with a JUnit dependency and typical
project co-ordinate information.

<projects>
<modelVersion>4.0.0</modelVersion>

<groupIds>net.srirangan.packt.maven</groupIld>
<artifactIds>maven-pluglOl-plugin</artifactIds>
<packaging>maven-plugin</packaging>
<version>1.0-SNAPSHOT</versions>

<name> maven-plugl0l-plugin Maven Mojo</names

<dependencies>
<dependencys>
<grouplds>org.apache.maven</groupIds>
<artifactIds>maven-plugin-api</artifactIds>
<version>2.0</version>
</dependency>
<dependencys>
<groupId>junit</groupIld>
<artifactId>junit</artifactIds>
<version>3.8.1l</versions>
<scope>test</scope>
</dependency>
</dependencies>

</project>

3. Here we modified the source of your Maven plugin (MyMojo.java). Do note that:

0 The MyMojo class extends org.apache.maven.plugin.AbstractMojo
AbstractMojo is part of the Maven plugin APl and it provides infrastructure
required to implement a MOJO.

O You are required to implement the execute () method.

O The @goal annotation is used inside a comment which is different from
typical annotation usage in Java 6.

Extending Apache Maven

4. In this step, we included our plugin into a Maven project by appending to the
<Build><Plugins> elementin the pom.xml.

5. In the fifth step, we executed our plugin on the command line. Note that we used the
fully qualified plugin name, which included the complete package structure.

You have just created your first plugin, specified a custom goal, included the plugin in
a project, and executed it from the command line. Not a bad start! :-)

Making your Java Maven plugin useful

This recipe is a continuation of the preceding recipe in which we saw how to create an Apache
Maven plugin in Java.

We ran an archetype:generate, a Maven command to create a Maven plugin project and
modified the MyMojo . java source and the POM file. We then built, installed, and executed
the plugin from the command line.

However, in a real-world scenario, in addition to what we explored in the preceding recipe, your
plugin may need:

» Support for multiple goals

» External configuration

» Short commands

» Execution in build phase

In this recipe, we take this to its logical conclusion. We have a fully-functional plugin and will
understand how to tweak, reconfigure, and enhance it further.

Getting ready

A prerequisite for the recipe is the preceding recipe, Creating a Maven plugin using Java.
You need to complete that recipe, create the Maven plugin project, and then continue with
this recipe.

How to do it...

Follow the ensuing steps to support multiple goals in your Apache Maven plugin:

1. Inourmaven-pluglol-plugin project, let us create a new file called
MyMojo2.java:

package net.srirangan.packt.maven;

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;

192

Chapter 9

/**
* @goal wassup
*/
public class MyMojo2 extends AbstractMojo
public void execute() throws MojoExecutionException
getLog () .info ("Wassup") ;

}

The plugin project can now be built, and plugin goals executed as follows:

$ mvn install
$ mvn pluglOl:wassup

To enable your Apache Maven plugin to be externally configurable, you need to make
use of the parameter annotation (@parameter) in the MOJO while defining it, as
shown in the following code:

import java.util.Properties;

/**
* @parameter
*/

private Properties myProperties;

These are not typical Java 6 annotations and you need to
i encapsulate them in the /** **/ comments tag.

Our next step is to modify the project's POM file to include the configuration for
myProperties. You will need to add a configuration element to your existing
<build><plugins><plugins structure, as shown in the following code:

<build>
<plugins>
<plugin>

<configurations>
<myProperties>

<property>
<names>name</names
<values>Sri</value>
<property>
<property>
<name>age</names
<values>26</value>
<property>

Extending Apache Maven

</myProperties>
</configurations>
</plugin>
</plugins>

myProperties is now available for use in your MOJO and its values are read during
execution from the POM file.

For a plugin that needs to be executed from the console, a short command
line is preferable. Here's a quick recap of how we executed the plugin from
the command line:

$ mvn net.srirangan.packt.maven:maven-pluglOl-plugin:1.0-
SNAPSHOT:helloworld

A little too long, don't you think? Remember how we ran the Jetty server through the
plugin in earlier chapters?
$ mvn jetty:run
Short and sweet. How do we do the same, that is, shorten the command-line call with
our plugin? (We're off to a good start, so the process of shortening won't be
very hard.)

O Firstly, we have the latest version of the plugin installed in our local

repository. That is what we're trying to execute. We can directly do
away with the version number, and our command becomes:

$ mvn net.srirangan.packt.maven:maven-pluglOl-
plugin:helloworld

O We also followed the Maven plugin naming conventions, that is,
maven- {plugin name}-plugin. This allows us to shorten it a bit further.

O Finally, add the plugin's groupId as a pluginGroup in the Maven settings
file (settings.xml):
<pluginGroups>
<pluginGroup>net.srirangan.packt.maven</pluginGroup>
</pluginGroups>

O We should now be able to run the plugin using a short command in
the console:
$ mvn pluglOl:helloworld

Here's how you integrate the Apache Maven plugin with the project build lifecycle:

You will need to modify the project's POM file and include the executions element
in the build and plugin description. The following code consists of the integration
of the plugin with the compile phase:

<builds>
<pluginss>
<plugins>

Chapter 9

<groupIds>net.srirangan.packt.maven</groupIld>
<artifactIds>maven-pluglOl-plugin</artifactIds>
<version>1.0-SNAPSHOT</versions>
<executionss>
<execution>
<phase>compile</phase>
<goals>
<goal>helloworld</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

O Nowthe plugl01:helloworld goal is executed as part of the Maven
compile phase:

$ mvn compile

» Multiple goals: The Maven plugin APl and Maven plugin project inherently support
multiple goals. A parallel can be drawn as one goal equals to one M0OJO. Each MOJO
refers to a goal. Therefore, your plugin project can define N number of MOJOs for N
number of goals.

MyMojo2 . java will complement the original MyMojo . java file. Our plugin now
supports two goals, namely, hello world and wassup.

» External configuration: The approach for creating externally configurable plugins is to
create parameters in the MOJO and expose them via annotations. These parameters
can be individual attributes of the data types like String, Boolean, Integer, Double,
Date, File, URL, and so on.

However, if your plugin needs multiple configurable parameters, it is recommended
that you use "Properties", that is, java.util.Properties.

» Properties let you define N number of name-value pairs as XML tags which can then
be included in your POM file and thereafter be configured as required.

» Execution in build phase: Often you'll find the need to integrate a plugin and goal with
the default Maven project lifecycle. Why is this important when you can always run
the plugin from the console?

It is important because a Maven project doesn't live in isolation. Often, you find it
integrated with third-party systems in the development ecosystem such as the IDE,
SCM, or the continuous integration server. These systems may run only the default
build phases and you want them to automatically invoke the plugin goal.

Extending Apache Maven

Another reason for integration is that, just like a Maven project, you aren't working in
isolation. If you need this plugin executed, say at the test phase, isn't it easier for you
and your team to be able to run the plugin as part of your existing workflow and not
change the day-to-day workflow to include an additional command?

Documenting your Maven plugin

It is not an exaggeration when it's said that Apache Maven is being used by hundreds and
thousands of developers, if not more, everyday.

In addition, Apache Maven has a thriving community and hundreds of individuals, groups, and
teams that contribute to Apache Maven in the form of plugins.

However, a common complaint in the Apache Maven community discussions has been the
lack of sufficient documentation, especially for Apache Maven plugins.

Thus the Apache Maven community recommends a set of plugin documentation guidelines for
plugin developers.

Adhering to these guidelines helps plugin users and thus, in turn, fuels the greater adoption of
the plugin.

Getting ready

For this recipe, you need to have an existing Apache Maven plugin project.

In addition, you should also be familiar with the Apache Maven site plugin and the overall
reporting/documentation process in an Apache Maven project.

How to do it...

1. Add the Maven plugin to the reporting element of the project POM file pom.xml,
as shown in the following code:
<reporting>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupIds>
<artifactIdsmaven-plugin-plugin</artifactId>
<version>2.5.1</version>
</plugin>
</plugins>
</reporting>

196

Chapter 9

Documentation for an Apache Maven plugin project can be automatically generated.
The command for doing so is as follows:

$ mvn site

2. \Verify that plugin documentation adheres to the Maven community standards by
running the command:

$ mvn docck:check

The mvn site command will automatically generate a plugin site for your plugin project
based on available information in the project POM file, the src/site folder, and available
reporting plugins.

The Maven plugin is an important reporting plugin as it leads to the generation of
documentation for each MOJO and thus for each plugin goal.

The first step for ensuring good documentation is to achieve completeness of the project's
POM file. Make sure all optional elements in the project object model are filled in including
organization details, names, descriptions, URLs, mailing lists, licenses, issue/bug trackers,
source code repositories, and so on.

Additional recommended reporting plugins for your Maven plugin project are:

» Maven Javadoc plugin
» Maven JXR plugin

The following example shows how both can be included in your pom.xm1l file in the
reporting element:

<reporting>
<plugins>
<plugin>
<groupIds>org.apache.maven.plugins</groupIds>
<artifactIds>maven-javadoc-plugin</artifactIds>
<version>2.4</version>
<configuration>
<minmemory>128m</minmemory>
<maxmemory>512</maxmemory >
</configurations>
</plugin>

Extending Apache Maven

<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactIds>maven-jxr-plugin</artifactIds>
<versions>2.l</version>
</plugin>
</plugins>
</reporting>

Creating a Maven plugin using Ant

Apache Ant is a software build automation tool for the Java platform. It uses an XML build
configuration file (similar to Apache Maven and dissimilar to Make) for defining project builds.

Ant is extremely popular. Not only is it lightweight and an occasional replacement for Maven
itself, but it inherently is easy to use for non-programmers. This is because it consists of
instructions written in XML rather than any programming language.

If you want to create an extension for Maven, that is, create a Maven plugin in Apache Ant,
then this recipe is for you.

Getting ready

For this recipe, you need Apache Maven 3 installed and set up correctly. You also need to be
familiar with Maven concepts such as archetypes, project co-ordinates, dependencies, and
SO on.

Additionally, you need to be familiar with Apache Ant and the overall reporting/documentation
process in an Apache Maven project.

How to do it...

Let's get started.

1. Create a new project named maven-plugant-plugin with the following folder tree
structure thereafter:
L—src
L—main
L scripts

2. Create an XML file named src/main/scripts/hello.build.xml with the
following contents:

<projects>
<target name="hello">
<echo>Hello, World</echo>
</target>
</project>

198

3. Follow this by creating src/main/scripts/hello.mojos
following contents:

<pluginMetadata>
<mojos>
<mojo>

<goal>hello</goals>
<call>hello</call>
<description>

World.

</description>

Say Hello,

</mojo>
</mojos>
</pluginMetadatas>

Maven project configuration:
<projects>
<modelVersion>4.0.0</modelVersion>
<grouplds>net.srirangan.packt.maven</groupIds>
<artifactIdsmaven-plugant-plugin</artifactIds>
<version>1.0-SNAPSHOT</version>
<packagings>maven-plugin</packaging>
<name>maven-plugant-plugin Plugin</names>
<dependencies>
<dependency>
<grouplds>org.apache.maven</groupId>
<artifactIds>maven-script-ant</artifactIds>
<version>2.0.6</version>
</dependency>
</dependencies>
<builds>
<plugins>
<plugin>

Chapter 9

.xml with the

Finally, in the project's root folder, create a POM file (pom.xm1) with the following

<artifactIdsmaven-plugin-plugin</artifactId>

<version>2.6</version>
<dependencies>
<dependency>

<groupIds>org.apache.maven.plugin-tools</groupId>

<artifactIds>maven-plugin-tools-ant</artifactIds>

<version>2.5</version>
</dependency>
</dependencies>
<configuration>
<goalPrefix>hello</goalPrefix>

Extending Apache Maven

</configurations>
</plugins>
</plugins>
</build>

</project>
5. The next step is to build and install the project into your Maven local repository:

$ mvn install
6. On build success, you can now execute the plugin from the command line:

$ mvn net.srirangan.packt.maven:maven-plugant-plugin:hello

hello.mojos.xml contains the definition and configuration of the Mojo. It is the one that
associates the hello goal with the hello.build.xml Ant build script.

The project POM file shows a dependency on Ant itself (of course!). It also makes use of
maven-plugin-plugin with a dependency on maven-plugin-tools-ant.

These together allow Maven plugins to be written in Ant and located in the src folder to be
discovered, packaged, and installed.

If you look at your local repository, you will find that the Ant plugin has been converted into
an artifact (. jar) at repository/net/srirangan/packt/maven/maven-plugant -
plugin/1.0-SNAPSHOT/maven-plugant-plugin-1.0-SNAPSHOT.jar

Creating a Maven plugin using JRuby

JRuby is a 100 percent pure Java implementation of the popular scripting and programming
language-Ruby. JRuby shares a number of features from Ruby like being dynamic and
reflective. To its audience, JRuby/Ruby is close to being the best thing since sliced bread.

Syntactically, JRuby/Ruby makes it easy to get started and to quickly accomplish programming
tasks that would otherwise take you a while with Java.

But since JRuby is based on the Java Virtual Machine, it compiles into bytecode for JVM and
can interact seamlessly with existing Java infrastructure, much like Groovy and Scala.

Getting ready

For this recipe, you need Apache Maven 3 installed and set up correctly. You also need to
be familiar with Maven concepts such as archetypes, project co-ordinates, dependencies,
and so on.

Additionally, you need to be familiar with programming/scripting in JRuby/Ruby.

200

Chapter 9

How to do it...

1.

Create a folder called maven-plugjruby-plugin. This is your plugin project
folder. In this, implement the standard Apache Maven directory structure and
create src|main|scripts.

Inside scripts, create the hello.rb MOJO:
@goal "hello"

class Hello < Mojo

def execute
info "hello world"

end
end

run _mojo Hello

The next step is to create the project POM file (pom.xm1) in the project root folder:
<projects>
<modelVersion>4.0.0</modelVersion>
<groupldsnet.srirangan.packt.maven</groupIlds>
<artifactIds>maven-plugjruby-plugin</artifactId>
<name>Example Ruby Mojo</names
<packaging>maven-plugin</packaging>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependencys>
<groupIld>org.codehaus.mojo</grouplds>
<artifactId>jruby-maven-plugin</artifactId>
<version>1l.0-beta-4</versions>
<scope>runtime</scope>
</dependency>
</dependencies>
<builds>
<pluginss>
<plugins>
<artifactIds>maven-plugin-plugin</artifactIds>
<version>2.4</versions>
<dependencies>
<dependencys>
<grouplds>org.codehaus.mojo</grouplds>

201

Extending Apache Maven

<artifactId>jruby-maven-plugin</artifactIds>
<version>1l.0-beta-4</version>
</dependency>
</dependencies>
</plugin>
</plugins>
</build>
</project>

You need to build and install the plugin into your Maven local repository:

$ mvn install

After build success, the plugin is now available for execution from the command line
or for further integration into other projects. To execute from the command line, try
the following:

$ mvn net.srirangan.packt.maven:maven-plugant-plugin:hello

In the first step, we created the project structure based on the standard Apache Maven project
skeleton. We followed it by creating a MOJO hello. rb. This MOJO class extends the Abstract
Mojo and implements the execute method.

We now have the source code ready for the JRuby plugin. However, to complete the

project, we create the project POM file pom.xml. Here, we defined the dependency to the
jruby-maven-plugin and included it in the <build><plugins> element of the project
object model.

Finally, we installed our Maven JRuby plugin with the Smvn install command and saw an
example on how to execute the plugin from the command line.

202

Symbols

<distributionManagement/> element 45
(ISV) Independent Software Vendors 62
(POWA) Plain Old Web Application 96

A

Adobe Flash Builder 63
Adobe Flex
about 156
reference link 156
Agile team collaboration 47
Android APl JARS 127
Android application
debugging 132-134
developing 128-132
testing 132, 134
working 132
Android artifacts 127
Android development environment
Android SDK, downloading 126
Android SDK, installing 126
Android SDK, setting up 127, 128
prerequisites 126
setting up 126-128
Android platform 125
Android Software Development Kit (Android
SDK) 126
download link 126
installing 126, 128
working 128
Apache Ant
about 198
used, for creating Maven plugin 198-200
Apache Archiva 49

Index

Apache Maven

about 7

Agile team collaboration 47

centralized remote repositories, creating 48-
53

code coverage reports, generating 85-87

code quality reports, generating 87-90

continuous integration, performing with Hud-
son 54-56

distributed development 67, 68

documentation 73

Enterprise Java development 102-104

environment integration, implementing 64-66

extending 187

Flex development integration 156

Google development 125

Groovy development integration 153

Hibernate persistence, using 112-118

IDE integration 163, 164

Java development 95

Javadoc, generating 77-80

offline mode 69

overview 7,8

project, creating 14, 15

reporting 73

Scala development integration 148

Seam Framework, using 119-123

setting up, on Linux 11, 12

setting up, on Mac 12, 13

setting up, on Windows 8-10

software engineering techniques 25

source code management, integrating 57-60

Spring Framework, using 106-109

structure 188

team integration 60-63

unit test reports, generating 81-84

Apache Maven Central Repository 48
Apache Maven installation
verifying 13, 14
Apache Maven Multi-modular projects 28
Apache Maven PMD plugin 35
Apache Maven project
build lifecycle 21
build profiles 22
compiling 17, 18
creating 14, 15
creating, with Eclipse 3.7 164-168
creating, with IntelliJ IDEA 10.5 179-183
creating, with NetBeans 7 172-176
importing, with Eclipse 3.7 168-172
importing, with IntelliJ IDEA 10.5 183-186
importing, with NetBeans 7 177-179
POM 19
testing 17, 18
working 15
Apache Tomcat 6
about 49
installing 49-51
archetype
generate command 97
archetype:generate command 26, 129
Artifactory 49
Aspect Oriented Programming (AOP) 110
automation testing
about 40
implementing 40-42
working 43

build automation
about 26
setting up 26, 27
working 27, 28
build element 98
build lifecycle
about 8, 21
clean lifecycle 21
default lifecycle 21
site lifecycle 21
build profiles
about 22
command line trigger 22

204

environment specific trigger 23
Maven settings trigger 23

C

C# 40
centralized remote repositories
creating 48-53
working 54
centralized version control systems 58
Checkstyle 88
Child Projects 28
clean lifecycle
about 21
phases 21
Cobertura 85
Cobertura Maven plugin
about 85
goals 85
installing 85, 86
URL 85
working 87
code coverage reports
generating 85-87
code quality reports
generating 87-90
continuous integration
about 54
implementing 55, 56
performing, with Hudson 54
working 57

D

default lifecycle
about 21
phases 21
dependency management
about 31
implementing 31
working 32, 34
deployer method 44
deployment automation
implementing 44
working 45
distributed development
about 67
working 69

distributed version control systems 58
DSLs (Domain Specific Languages) 153

E

EAR file 102
Eclipse 63,164
Eclipse 3.7
about 164, 165
download link 165

Maven project, creating with 164-168
Maven project, importing with 168-172

Enterprise JavaBean model 106

Enterprise Java development 102-104

environment integration
continuous integration 64
implementing 64, 65
issue management 65
mailing lists 64
SCM 64
working 66

F

Flex development

integrating, with Maven 156-159
flexmojos plugin

about 160

goals 160

G

Git commands 59

GitHub repository 127

GMaven plugin 156

goals, Cobertura Maven plugin
cobertura:check 85
cobertura:clean 85
cobertura:cobertura 85
cobertura:dump-datafile 85
coberturazinstrument 85

goals, Maven Checkstyle plugin
checkstyle:check 88
checkstyle:checkstyle 88

goals, Maven dashboard
dashboard:dashboard 91
dashboard:persist 91

goals, Maven Javadoc plugin
javadoc:aggregate 78
javadoc:aggregate-jar 78
javadoc:fix 78
javadoc:jar 78
javadoc:javadoc 78
javadoc:test-aggregate 78
javadoc:test-aggregate-jar 78
javadoc:test-fix 78
javadoc:test-jar 78
javadoc:test-javadoc 78

Google App Engine application
developing 142-146

Google App Engine (GAE) 126, 142

Google App Engine (GAE) platform 142

Google Cloud 126

Google development
about 125
Android application, debugging 132
Android application, developing 128
Android application, testing 132

Android development environment, setting up

126-128

Google App Engine application, developing

142-146

Google Web Toolkit application, debugging

139

Google Web Toolkit application, developing

134

Google Web Toolkit application, testing 139

Google Web Toolkit application
debugging 139-141
developing 134, 136
testing 139-141
working 136, 137
Google Web Toolkit (GWT) 126, 134
Groovy 40,153
Groovy development
integrating, with Maven 153-156
Groovy project archetype
generating 153

H

Hibernate
about 112
tools 112

205

Hibernate persistence
using, with Maven 112-118
hibernate.properties 116

Integrated Development Environments (IDEs)
163
IntelliJ 63
IntelliJIDEA 63
IntelliJ IDEA 10.5
about 179
download link 180, 182
Maven project, creating with 179-183
Maven project, importing with 183-186
Inversion of Control (loC) 110

J

Java 40
Java development, with Maven
web application, building 96-99
web application, running 100, 102
Javadoc 77
Java Maven Plugin
making, useful 192
Java Server Page (JSP) 96
Java Virtual Machine (JVM) 147
JetBrains Intelli) IDEA 164

JRuby
about 200
used, for creating Maven plugin 200, 202
L
Linux
Apache Maven, setting up 11, 12
M
M2Eclipse 164
Mac

Apache Maven, setting up 12, 13
Maven Android Plugin Project 132
Maven Android SDK deployer tool

about 127

URL 127

206

Maven archetype:generate command 129

Maven Checkstyle plugin
about 88
goals 88
URL 88
working 90
Maven dashboard
goals 91
setting up 90, 92
supported plugins 90
working 93
Maven dependencies
Compile 31
Import 31
Provided 31
Runtime 31
System 31
Test 31
Maven EAR plugin
about 102
ear:ear 104
ear:generate-application-xml 104
ear:help 104
Maven Flex project
generating 157
Maven Google App Engine plugin
goals 145
Maven-GWT Plugin
goals 138
Maven Hibernate3 plugin
about 113
goals 119
Maven Javadoc plugin
about 77
goals 78
implementing 78
working 80
Maven local repository
installing 127
Maven multi-modular projects 28
Maven offline mode
about 69
offline configuration 69, 70
working 70, 71
Maven Plugin
creating, Ant used 198-200
creating, Java used 188-192

creating, JRuby used 200, 202
documenting 196, 197
enabling 193
implementing 192, 194
working 195
Maven project site
about 74
documenting, with 74-76
working 76, 77
Maven Scala plugin
features 152
goals 152
Maven Surefire plugin
about 81
implementing 82
working 84
Mercurial commands 59
modules 28
MOJO (Maven plain Old Java Object) 188
MyMojo class 191

NetBeans 63, 164
NetBeans 7
about 172
download link 173
Maven project, creating with 172-176
Maven project, importing with 177-179
Nexus Open Source
installing 51-53
working 54

P

Parent Project 28
Perl 40
PHP 40
pluginRepositories 121
POM
about 19
basic section 20
build settings section 20
environment section 20
project co-ordinates 20
project metadata section 20

sections 20

structure 19
project. See Apache Maven project
project modularization

about 28

implementing 28, 29

working 30
Project Object Model. Seec POM
Python 40

remoteweb parameter 140
Revision Control System 57

RIA (Rich Internet Applications) 147
Ruby 40

S

Scala 148
Scala bytecode 148
Scala development
integrating, with Maven 148-151
Seama3 artifacts
about 121
faces 121
international 121
JMS 121
remoting 122
REST 122
XML 122
Seam Forge
about 123
downloading 123
executing 123
installing 123
Seam Framework
about 119
using, with Maven 119-123
Selenium 40
site lifecycle
about 21
phases 21
software engineering techniques
about 25
automation testing 40

201

build automation 26

dependency management 31

deployment automation 44
project modularization 28

source code quality checks 34

Test Driven Development 37

Sonatype Nexus Repository Manager

exploring 49
source code management
integrating 57-59
working 59, 60
source code quality checks
about 34
implementing 34, 36
working 36, 37
sourceDirectory 134
Spring Framework
AOP 110
loC 110
unit testing 110, 111
using with Maven 106-109
Subversion commands 59

T

target artifacts 44
target repository 44

208

team integration
about 60
setting up 61-63
working 63
Test Driven Development (TDD)
about 17, 37
implementing 38
working 39
testHelloWorld() 43
testSourceDirectory 134
testWebApp 97

U

unit testing, Spring Framework 110, 111
unit test reports
generating 81-84

w

web application

building 96-99

running 100-102
Web Application Server (Jetty) 95
Windows

Apache Maven, setting up 8-10

open source

community experience distilled

PUBLISHING

Thank you for buying
Apache Maven 3 Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should

be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Apache Wicket Cookbook

ISBN: 978-1-84951-160-5 Paperback: 312 pages

Master Wicket by example by implementing real-life
solutions to every day tasks

1. The Apache Wicket Cookbook covers the full
spectrum of features offered by the Wicket web

framework
Apache Wicket 2. Implement advanced user interactions by

Cookbook following the live examples given in this Cookbook

3. Create reusable components and speed up your
web application development

Apache Solr 3.1 Cookbook
ISBN: 978-1-84951-218-3 Paperback: 300 pages

Over 100 recipes to discover new ways to work with
Apache’s Enterprise Search Server

1. Improve the way in which you work with Apache
Solr to make your search engine quicker and more

effective
ApaChe Solr 3.1 2. Deal with performance, setup, and configuration
COOkbOOk problems in no time

3. Discover little-known Solr functionalities and
create your own modules to customize Solr to your
company's needs

4. Part of Packt's Cookbook series; each chapter
covers a different aspect of working with Solr

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Cassandra
High Performance Cookbook

‘Edward Capriolo BADRBL L

Cassandra High Performance
Cookbook

ISBN: 978-1-84951-512-2 Paperback: 310 pages

Over 150 recipes to design and optimize large scale
Apache Cassandra deployments

1. Get the best out of Cassandra using this efficient
recipe bank

2. Configure and tune Cassandra components to
enhance performance

3. Deploy Cassandra in various environments and
monitor its performance

4. Wellillustrated, step-by-step recipes to make all
tasks look easy!

Apache Axis2

Web Services

2nd Edition

Apache Axis2 Web Services,

2nd Edition
ISBN: 978-1-84951-156-8 Paperback: 308 pages

Create secure, reliable, and easy-to-use web services
using Apache Axis2

1. Extensive and detailed coverage of the enterprise
ready Apache Axis2 Web Services / SOAP / WSDL
engine.

2. Attain a more flexible and extensible framework
with the world class Axis2 architecture.

3. Learn all about AXIOM - the complete XML
processing framework, which you also can use
outside Axis2.

4. Covers advanced topics like security, messaging,
REST and asynchronous web services.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Apache CXF Web Service

"4
\ Development
3 “ ISBN: 978-1-847195-40-1 Paperback: 336 pages
Develop and deploy SOAP and RESTful Web Services
1. Design and develop web services using contract-
first and code-first approaches

2. Publish web services using various CXF frontends
ApaChe CXF Web such as JAX-WS and Simple frontend

Service Development

3. Invoke services by configuring CXF transports

4. Create custom interceptors by implementing
advanced features such as CXF Interceptors, CXF
Invokers, and CXF Features

Apache MyFaces 1.2 Web

Application Development
ISBN: 978-1-847193-25-4 Paperback: 408 pages

Building next-generation web applications with JSF and
Facelets

1. Build powerful and robust web applications with
Apache MyFaces

Apache MyFaces 1.2 2

Web Application Development Reduce coding by using sub-projects of MyFaces

like Trinidad, Tobago, and Tomahawk

3. Update the content of your site daily with ease by
using Facelets

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

OSGi and Apache Felix 3.0

OSGi and Apache Felix 3.0

Beginner's Guide
ISBN: 978-1-84951-138-4 Paperback: 336 pages

Build your very own OSGi applications using the flexible
and powerful Felix Framework

1. Build a completely operational real-life application
composed of multiple bundles and a web front
end using Felix

2. Getyourself acquainted with the OSGi concepts,
in an easy-to-follow progressive manner

3. Learn everything needed about the Felix
Framework and get familiar with Gogo, its
command-line shell to start developing your OSGi
applications

4. Simplify your OSGi development experience by
learning about Felix iPOJO

Apache Struts 2

Web Application Development

PACKT

Apache Struts 2 Web

Application Development
ISBN: 978-1-847193-39-1 Paperback: 384 pages

Apache Struts 2 Web Application Development

1. Design, develop, test, and deploy your web
applications using Struts 2 framework

2. No prior knowledge of JavaScript and CSS is
required

3. Apply the best of agile development techniques
and TDD techniques

4. Step-by-step instructions and careful explanations
with lots of code examples

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Basics of Apache Maven
	Setting up Apache Maven on Windows
	Setting up Apache Maven on Linux
	Setting up Apache Maven on Mac
	Verifying the Apache Maven installation
	Creating a new project
	Compiling and testing a project
	Understanding the Project Object Model
	Understanding the build lifecycle
	Understanding build profiles

	Chapter 2: Software Engineering Techniques
	Build automation
	Project modularization
	Dependency management
	Source code quality checks
	Test Driven Development
	Acceptance testing automation
	Deployment automation

	Chapter 3: Agile Team Collaboration
	Creating centralized remote repositories
	Performing continuous integration with
Hudson
	Integrating source code management
	Team integration with Apache Maven
	Implementing environment integration
	Distributed development
	Working in offline mode

	Chapter 4: Reporting and Documentation
	Documenting with a Maven site
	Generating Javadocs with Maven
	Generating unit test reports
	Generating code coverage reports
	Generating code quality reports
	Setting up the Maven dashboard

	Chapter 5: Java Development with Maven
	Building a web application
	Running a web application
	Enterprise Java development with Maven
	Using Spring Framework with Maven
	Using Hibernate persistence with Maven
	Using Seam Framework with Maven

	Chapter 6: Google Development with Maven
	Setting up the Android development
environment
	Developing an Android application
	Testing and debugging an Android application
	Developing a Google Web Toolkit application
	Testing and debugging a Google Web Toolkit application
	Developing a Google App Engine application

	Chapter 7: Scala, Groovy, and Flex
	Integrating Scala development with Maven
	Integrating Groovy development with Maven
	Integrating Flex development with Maven

	Chapter 8: IDE Integration
	Creating a Maven project with Eclipse 3.7
	Importing a Maven project with Eclipse 3.7
	Creating a Maven project with NetBeans 7
	Importing a Maven project with NetBeans 7
	Creating a Maven project with IntelliJ IDEA 10.5
	Importing a Maven project with IntelliJ IDEA 10.5

	Chapter 9: Extending Apache Maven
	Creating a Maven plugin using Java
	Making your Java Maven plugin useful
	Documenting your Maven plugin
	Creating a Maven plugin using Ant
	Creating a Maven plugin using JRuby

	Index

