Learning OpenStack
Networking (Neutron)

Architect and build a network infrastructure for your cloud using
OpenStack Neutron networking

http://www.it-ebooks.info/

Learning OpenStack
Networking (Neutron)

Architect and build a network infrastructure for your
cloud using OpenStack Neutron networking

James Denton

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack Networking (Neutron)

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014
Production reference: 1071014

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-330-8

www . packtpub.com

Cover image by Suyog Gharat (yogiee@me . com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
James Denton

Reviewers
Kevin Jackson

Jorge Armin Garcia Lopez
Jacob Walcik

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Richard Harvey

Content Development Editor

Susmita Panda

Technical Editor
Shiny Poojary

Copy Editors
Roshni Banerjee

Sarang Chari

Karuna Narayanan

Project Coordinator
Kartik Vedam

Proofreaders
Martin Diver

Ameesha Green

Samantha Lyon

Indexers
Hemangini Bari

Monica Ajmera Mehta

Tejal Soni

Graphics
Sheetal Aute

Ronak Dhruv
Valentina D'silva
Disha Haria

Abhinash Sahu

Production Coordinators
Aparna Bhagat

Shantanu N. Zagade

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

James Denton lives with his beautiful wife, Amanda, and son, Wyatt, in San
Antonio, Texas. He is an experienced IT professional with extensive experience in
application networking technologies and OpenStack networking. He specializes in
OpenStack for Rackspace in San Antonio, Texas. He is a Network Architect for

the Rackspace Private Cloud team. He can be found on Twitter @jimmdenton and
on Freenode IRC as busterswt.

I'd like to thank my wife, Amanda, for providing encouragement
and patience throughout the writing of this book. In addition, I
would like to thank my team at Rackspace for reviewing many
rough drafts and providing excellent feedback.

Without OpenStack and Rackspace, the opportunity to write this
book would not have been possible. A big thanks goes out to the
OpenStack community for developing, and continuing to improve
on, the product. It has been an amazing experience to be involved
in this open source movement, and I look forward to the future.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Kevin Jackson is married and has three children. He is an experienced IT
professional working with a range of clients, from small businesses to online
enterprises. He has extensive experience of various flavors of Linux and Unix. He
works as Principal Cloud Architect for Rackspace UK, specializing in OpenStack
and covering the international market for the DevOps & Automation Advisory
Services team. He is a co-author of OpenStack Cloud Computing Cookbook,

Packt Publishing and OpenStack Architecture Design Guide, OpenStack Foundation.
He can be found on Twitter @itarchitectkev.

Jorge Armin Garcia Lopez is a very passionate information security consultant
from Mexico with more than 6 years of experience in computer security, penetration
testing, intrusion detection/prevention, malware analysis, and incident response. He
is the leader of a tiger team at one of the most important security companies placed
in Latin America and Spain. He is also a security researcher at Cipher Storm Ltd
Group and is the cofounder and CEO of the most important security conference in
Mexico, BugCON. He holds important security industry certifications, such as OSCP,
GCIA, GPEN, FireEye Specialist.

He has reviewed the following books:

* Penetration Testing with BackBox, Packt Publishing
* Django Essentials, Packt Publishing
* Penetration Testing with the Bash shell, Packt Publishing

Thanks to all my friends for supporting me. Special thanks to my
grandmother, Margarita, and my sister, Abril. I would also like
to thank Krangel, Shakeel Ali, Mada, Hector Garcia Posadas,
and Belindo.

www.it-ebooks.info

http://www.it-ebooks.info/

Jacob Walcik works as Principal Solutions Architect for Rackspace (http://
rackspace . com). Over the last 18 years, he has worked as a software developer,
systems administrator, and general technologist. In recent years, he has specialized
in helping companies design and build their OpenStack-based private clouds. In his
spare time, he enjoys hiking, playing soccer, and riding British motorcycles.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . Packt Pub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

I dedicate this book to the memory of my grandfather, a proud Aggie whose curiosity in all
things, including technology, helped form my identity and career. This book also goes to our
friend, Alejandro Martinez, a great teammate and Racker.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface

Chapter 1: Preparing the Network for OpenStack

What is OpenStack Networking?
Features of OpenStack Networking
Switching
Routing
Load balancing
Firewalling
Virtual private networks
Preparing the physical infrastructure
Types of network traffic
Management network
API network
External network
Guest network
Physical server connections
Single interface
Multiple interfaces
Bonding
Separating services across nodes
A single controller with one or more compute nodes
A single controller plus network node with one or more compute nodes

Summary

L I N e O . U UG G 3
O©C oo AP WPNMNMNOMNA 2O ©O®O©©O©owOo 0| =

Chapter 2: Installing OpenStack 21
System requirements 22
Operating system requirements 22
Initial network configuration 23
Interface configuration 25

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Before you begin 26
Permissions 26
Configuring the OpenStack repository 26
Installing OpenStack utilities 26
Setting the hostnames 27

Disabling SELinux 27
Removing iptables rules 27
Installing and configuring Network Time Protocol 28
Upgrading the system 28

Installation of OpenStack 29
Installing and configuring the MySQL database server 29
Installing the MySQL database client 30
Installing and configuring the messaging server 30
Installing and configuring the Identity service 30

Defining users, tenants, and roles in Keystone 32
Define services and API endpoints in Keystone 33
Verify the Keystone installation 34
Setting environment variables 35
Installing and configuring the image service 36
Define the Glance service and APl endpoints in Keystone 38
Verify the Glance image service installation 39
Installing and configuring the Compute service 40
Installing and configuring controller node components 40
Installing and configuring compute node components 43
Verify communication between services 45
Installing the OpenStack dashboard 46
Allowing connections to the dashboard 46
Identifying the Keystone server 47
Changing the listener address 47
Testing connectivity to the dashboard 47
Summary 50
Chapter 3: Installing Neutron 51

Basic Neutron constructs 51
Overlapping networks using network namespaces 52
Extending network functions with plugins 53

Installing and configuring Neutron services 54
Creating the Neutron database 55
Configuring the Neutron user, role, and endpoint in Keystone 55
Enabling packet forwarding 56
Configuring Neutron to use Keystone 57
Configuring Neutron to use a messaging service 59
Configuring a root helper 59
Configuring Nova to utilize Neutron networking 60

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Configuring Neutron services 61
Configuring neutron-server 61
Starting neutron-server 63
Configuring the Neutron DHCP agent 63
Starting the Neutron DHCP agent 65
Configuring the Neutron metadata agent 66
Configuring the Neutron L3 agent 69
Configuring the Neutron LBaa$S agent 69
Using the Neutron command-line interface 69

Summary 70

Chapter 4: Building a Virtual Switching Infrastructure 71

Providing layer 2 connectivity to instances 7
Virtual network interfaces 72
Bridging 72
Configuring the bridge interface 73

Types of networks in Neutron 74

Choosing a networking plugin 76
LinuxBridge 76

Internal network connections when using LinuxBridge 77
Open vSwitch 83
Internal network connections when using Open vSwitch 84
Programming flow rules 89

Configuring a layer 2 networking plugin 93

Configuring the LinuxBridge plugin 94

Configuring Nova to use LinuxBridge 94
Configuring the DHCP agent to use LinuxBridge 94
LinuxBridge plugin configuration options 95
Tenant network type 95
Physical interface mappings 95
Network VLAN ranges 96
Firewall driver 96
Restarting services 97
Configuring the Open vSwitch plugin 98
Configuring Neutron to use Open vSwitch 98
Configuring Nova to use Open vSwitch 99
Configuring the DHCP agent to use Open vSwitch 99
Open vSwitch plugin configuration options 100
Summary 108
Chapter 5: Creating Networks with Neutron 109

Network management 109
Managing networks in the CLI 111

Creating a flat network in the CLI 112
Creating a VLAN in the CLI 113

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Creating a local network in the CLI 115
Listing networks in the CLI 115
Showing network properties in the CLI 116
Updating networks in the CLI 116
Deleting networks in the CLI 117
Creating networks in the dashboard 118
Using the Admin tab as an administrator 118
Using the Project tab as a user 120
Subnets in Neutron 121
Creating subnets in the CLI 122
Creating a subnet in the CLI 124
Listing subnets in the CLI 125
Showing subnet properties in the CLI 126
Updating a subnet in the CLI 126
Creating subnets in the dashboard 128
Using the Admin tab as an administrator 128
Using the Project tab as a user 130
Neutron ports 134
Attaching instances to networks 135
Attaching instances to networks using Nova boot 135
Attaching and detaching network interfaces 136
Adding secondary addresses to interfaces 137
Exploring how instances get their addresses 138
Exploring how instances retrieve their metadata 140
Router namespace 140
The DHCP namespace 141
Adding a manual route to 169.254.169.254 142
Using DHCP to inject the route 142
Summary 143
Chapter 6: Creating Routers with Neutron 145
Configuring the Neutron L3 agent 145
Defining an interface driver 146
Setting the external network 146
Setting the external bridge 146
Enabling the metadata proxy 147
Starting the Neutron L3 agent 147
Router management in the CLI 148
Creating routers in the CLI 148
Working with router interfaces in the CLI 149
Attaching internal interfaces to routers 149
Attaching a gateway interface to a router 149
Listing interfaces attached to routers 150
Deleting internal interfaces 150

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Clearing the gateway interface 150
Listing routers in the CLI 150
Displaying router attributes in the CLI 151
Updating router attributes in the CLI 151
Deleting routers in the CLI 152
Network Address Translation 152
Floating IP addresses 152
Floating IP Management 153
Creating floating IPs in the CLI 153
Associating floating IPs to ports in the CLI 154
Listing floating IPs in the CLI 154
Displaying floating IP attributes in the CLI 155
Disassociating floating IPs in the CLI 155
Deleting floating IPs in the CLI 155
Demonstrating traffic flow from instance to Internet 155
Setting the foundation 156
Creating an external provider network 157
Creating a Neutron router 158
Attaching the router to the external network 159
Testing gateway connectivity 160
Creating an internal network 161
Attaching the router to the internal network 162
Creating instances 164
Verifying instance connectivity 165
Observing default NAT behavior 168
Assigning floating IPs 169
Reassigning floating IPs 171
Router management in the dashboard 173
Creating a router in the dashboard 174
Attaching a gateway interface in the dashboard 174
Attaching internal interfaces in the dashboard 175
Viewing the network topology in the dashboard 176
Associating floating IPs to instances in the dashboard 178
Disassociating floating IPs in the dashboard 180
Summary 181
Chapter 7: Load Balancing Traffic in Neutron 183
Fundamentals of load balancing 184
Load balancing algorithms 184
Monitoring 185
Session persistence 185

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Integrating load balancers into the network

Network namespaces
Installing LBaaS

Configuring the Neutron LBaaS agent service

Define an interface driver
Define a device driver
Change the user group

Define a service plugin
Starting the Neutron LBaaS agent service
Enabling LBaaS in Horizon

Load balancer management in the CLI

Managing pools in the CLI
Creating a pool
Deleting a pool
Listing pools
Showing pool details
Showing pool statistics
Updating a pool
Listing pools associated with an agent
Managing pool members in the CLI
Creating pool members
Deleting pool members
Listing pool members
Showing pool member details
Updating a pool member

Managing health monitors in the CLI
Creating a health monitor
Deleting a health monitor
Associating a health monitor with a pool
Disassociating a health monitor from a pool
Listing health monitors
Showing health monitor details
Updating a health monitor

Managing virtual IPs in the CLI
Creating a virtual IP
Deleting a virtual IP
Listing virtual IPs
Showing virtual IP details
Updating a virtual IP

Building a load balancer
Creating a pool
Creating pool members
Creating a health monitor
Creating a virtual IP
The LBaaS network namespace

187
189
189

190
190
190
190

191
191
192
192

192
192
193
193
194
194
194
195

195
195
196
196
196
197

197
197
199
199
199
200
200
200

200
201
202
202
202
202

203
203
204
206
207
208

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Confirming load balancer functionality 209
Observing health monitors 210
Connecting to the virtual IP externally 211

Load balancer management in the dashboard 212

Creating a pool in the dashboard 213

Creating pool members in the dashboard 214

Creating health monitors in the dashboard 216

Creating a virtual IP in the dashboard 218
Connecting to the virtual IP externally 219

Summary 220
Chapter 8: Protecting Instances on the Network 221
Security groups in OpenStack 221
Firewall-as-a-service 222
Introducing iptables 223
Working with security groups 225

Managing security groups in the CLI 225
Creating security groups in the CLI 225
Deleting security groups in the CLI 225
Listing security groups in the CLI 226
Showing the details of a security group in the CLI 226
Updating security groups in the CLI 226
Creating security group rules in the CLI 227
Deleting security group rules in the CLI 228
Listing security group rules in the CLI 228
Showing the details of a security group rule in the CLI 228
Applying security groups to instances in the CLI 228

Implementing security group rules 229
Stepping through the chains 231

Working with security groups in the dashboard 234

Working with FWaa$S 238

Preparing Neutron for FWaaS 238
Configuring the FWaaS driver 238
Defining a service plugin 238
Enabling FWaas$ in the dashboard 239

Working with firewalls in the CLI 239
Creating a firewall rule in the CLI 240
Deleting a firewall rule in the CLI 241
Listing firewall rules in the CLI 241
Showing the details of a firewall rule in the CLI 241
Updating a firewall rule in the CLI 241
Creating a firewall policy in the CLI 242
Deleting a firewall policy in the CLI 242
Listing firewall policies in the CLI 243
Showing the details of a firewall policy in the CLI 243
Updating a firewall policy in the CLI 243

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Inserting rules into firewall policies in the CLI 243
Removing rules from firewall policies in the CLI 244
Creating a firewall in the CLI 244
Deleting a firewall in the CLI 245
Listing firewalls in the CLI 245
Showing the details of a firewall in the CLI 245
Updating a firewall in the CLI 246
Working with firewalls in the dashboard 246
Firewall rules — behind the scenes 250
Stepping through the chains within the firewall 252
Summary 254
Appendix A: Additional Neutron Commands 255
Neutron extensions 255
Listing Neutron API extensions 255
Showing the details of an API extension 256
Virtual private networks 256
Per-tenant quotas 257
Listing the default quotas 259
Updating tenant quotas 259
Listing tenant quotas 260
Deleting tenant quotas 260
Cisco Nexus 1000V command reference 260
VMware/Nicera command reference 261
Appendix B: ML2 Configuration 263
Installing the ML2 plugin 263
Creating a database for ML2 264
Configuring Neutron to use ML2 264
Configuring service plugins 265
Configuring the ML2 plugin 265
Restarting Neutron services 266
Index 267

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The latest release of OpenStack, code-named Icehouse, was released in April 2014
and includes the networking service known as Neutron (formerly Quantum). First
introduced in the Folsom release of OpenStack, Neutron provides cloud operators
and users with an API to create and manage networks in the cloud. An extension
framework allows for additional network services, such as load balancing, firewalls,
and virtual private networks, to be deployed and managed.

It is important to note that OpenStack Networking in this book refers only to
Neutron and should not be confused with the legacy networking service known
as nova-network built in Nova (Compute). While nova-network has slipped its
deprecation date in the last two releases, support for the technology is limited
in the future.

What this book covers

Chapter 1, Preparing the Network for OpenStack, will provide an introduction to
OpenStack Networking that includes a description of the different supported
networking technologies, and it will explain how to architect the physical network
to support an OpenStack cloud.

Chapter 2, Installing OpenStack, will cover how to install the base components of the
Havana release of OpenStack on the CentOS 6.5 operating system.

Chapter 3, Installing Neutron, will explain how to install the Neutron networking
components of OpenStack and will help us to understand the internal architecture of
Neutron, including the use of agents and plugins to orchestrate network connectivity.

Chapter 4, Building a Virtual Switching Infrastructure, will help us to install and
configure the LinuxBridge plugin for Neutron to provide layer 2 connectivity to
instances. We will also cover the architectural differences between the LinuxBridge
and Open vSwitch plugins and how they connect instances to the network.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 5, Creating Networks with Neutron, will create networks and subnets in
Neutron, boot and attach instances to networks, and explore the process of
obtaining DHCP leases and metadata.

Chapter 6, Creating Routers with Neutron, will create Neutron routers and attach them
to networks, follow traffic from an instance through a router, and explore the process
of applying floating IPs to instances.

Chapter 7, Load Balancing Traffic in Neutron, will explore the fundamental components
of a load balancer in Neutron, including virtual IPs, pools, pool members, and
monitors. It will also help us to create and integrate a load balancer into the network.

Chapter 8, Protecting Instances on the Network, will cover the creation and management
of security-group rules to secure instance traffic. In addition, it will help us create
and integrate a firewall into the network using the firewall-as-a-service APL

Appendix A, Additional Neutron Commands, will briefly cover additional Neutron
functionality that is outside the scope of this book. It will also acquaint us with
VPN-as-a-service, Cisco 1000V integration, and VMWare/Nicera integration.

Appendix B, ML2 Configuration, will briefly cover the configuration of the ML2 plugin
as a replacement for the deprecated LinuxBridge and Open Switch plugins.

What you need for this book

This book assumes a moderate level of networking experience, including experience
with Linux networking configurations as well as physical switch and router
configurations. While this book will walk the reader through a basic installation of
OpenStack, little time will be spent on services other than Neutron. Therefore, it is
important that the reader has a basic understanding of OpenStack and its general
configuration prior to configuring OpenStack Networking.

In this book, the following software is required:
* Operating system
¢ CentOS 6.5

e Software

° OpenStack Havana

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Internet connectivity will be required to install OpenStack packages and to make
use of the example architectures in the book. While virtualization software, such
as VMware or VirtualBox, can be used to simulate the servers and the network
infrastructure, this book assumes that OpenStack will be installed on physical
hardware and that a physical network infrastructure is in place.

Who this book is for

This book is for the novice-to-intermediate OpenStack cloud administrators who

are looking to build or enhance their cloud using the networking service known as
Neutron. By laying down a basic installation of OpenStack, the reader should be able
to follow the examples laid out in the book to receive a functional understanding

of the various components of OpenStack Networking. This book is focused on the
usage of OpenStack Networking services rather than its development, and it uses
free and open source software rather than commercial solutions.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as

follows: "OpenStack services can be installed either as root or as a user with

sudo permissions."

Any command-line input or output is written as follows:
nano /etc/sysconfig/network-scripts/ifcfg-eth0

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To view
the status of Nova (Compute) services, click on the Compute Services tab."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/33080S_ColoredImages.pdf.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing the Network
for OpenStack

Enterprises, both large and small, run their clouds using OpenStack software.
While the clouds themselves may vary in complexity, one thing is common: they
are made possible by the scalability and flexibility of OpenStack Compute and
Networking services.

Modern cloud computing platforms, such as OpenStack, rely on a method of
networking known as software-defined networking, or SDN. Traditional network
administration relies heavily on the administrator to manually configure and
maintain physical network hardware and connectivity. SDN, on the other hand,
allows network administrators to manage network services in an abstract and
automated manner. Software-defined networking, and the software-defined data
center as a whole, is often regarded as a necessary foundation for scalable and
efficient cloud computing.

In this chapter, you will be introduced to the different components and features

of OpenStack Networking, codenamed Neutron, as well as various methods in
which Neutron can be deployed and configured from both software and hardware
perspectives. Throughout the book, the Neutron moniker will often be used in place
of the official name.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing the Network for OpenStack

What is OpenStack Networking?

OpenStack Networking is a standalone service that can be installed independently
of other OpenStack services. Other OpenStack services that fall under this category
include Compute (Nova), Image (Glance), Identity (Keystone), Block Storage
(Cinder), and Dashboard (Horizon). OpenStack Networking services can be split
amongst multiple hosts to provide resilience and redundancy, or can be configured
to operate on a single node.

OpenStack Networking uses a service called neutron-server to expose an
application programmable interface, or AP]I, to users and to pass requests to the
configured network plugins for additional processing. Users are able to define
network connectivity in the cloud, and cloud operators are allowed to leverage
different networking technologies to enhance and power the cloud.

Like many other OpenStack services, Networking requires access to a database for
persistent storage of the network configuration.

Features of OpenStack Networking

OpenStack Networking in Havana includes many technologies one would find in
the data center, including switching, routing, load balancing, firewalling, and virtual
private networks. These features can be configured to leverage open source or
commercial software, and provide a cloud operator with all of the tools necessary to
build a functional and self-contained cloud. OpenStack Networking also provides a
framework for third-party vendors to build on and enhance the capabilities of

the cloud.

Switching

Virtual switches are defined as software applications that connect virtual machines
to virtual networks at layer 2, or the data-link layer of the OSI model. Neutron
supports multiple virtual switching platforms, including built-in Linux bridging
and Open vSwitch. Open vSwitch, also known as OVS, is an open source virtual
switch that supports standard management interfaces and protocols, including
NetFlow, SPAN, RSPAN, LACP, and 802.1q, though many of these features are not
exposed to the user through the OpenStack API. In addition to VLAN tagging, users
can build overlay networks in software using L2-in-L3 tunneling protocols, such as
GRE or VXLAN. Open vSwitch can be used to facilitate communication between
instances and devices outside the control of OpenStack, which include hardware
switches, network firewalls, storage devices, dedicated servers, and more. Additional
information on the use of Linux bridges and Open vSwitch as switching platforms
for OpenStack can be found in Chapter 4, Building a Virtual Switching Infrastructure.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Routing

OpenStack Networking provides routing and NAT capabilities through the use of IP
forwarding, iptables, and network namespaces. A network namespace is analogous
to chroot for the network stack. Inside a network namespace, you can find sockets,
bound ports, and interfaces that were created in the namespace. Each network
namespace has its own routing table and iptables process that provide filtering

and network address translation, also known as NAT. Network namespaces are
comparable to VRFs in Cisco, routing instances in Juniper JunOS, or route domains
in F5 BIG-IP. With network namespaces, there is no concern of overlapping subnets
between networks created by tenants. Configuring a router within Neutron enables
instances to interact and communicate with outside networks. More information on
routing within OpenStack can be found in Chapter 6, Creating Routers with Neutron.

Load balancing

First introduced in the Grizzly release of OpenStack, Load-Balancing-as-a-Service,
also known as LBaa$, provides users the ability to distribute client requests across
multiple instances or servers. Havana is equipped with a plugin for LBaaS that
utilizes HAProxy as the load balancer. More information on the use of load balancers
within Neutron can be found in Chapter 7, Load Balancing Traffic in Neutron.

Firewalling

In Havana, there are two methods of providing security to instances or networks:
security groups and firewalls. Security group functionality was originally found

in nova-network in OpenStack Compute and has since migrated to OpenStack
Networking. This is a method of securing traffic to and from instances through the
use of iptables on the compute node. With the introduction of Firewall-as-a-Service,
also known as FWaa$, security is handled at the router rather than at the compute
node. In the Havana release of OpenStack, FWaaS is an experimental extension with
no guaranteed backwards compatibility in future releases. More information on
securing instances can be found in Chapter 8, Protecting Instances on the Network.

Virtual private networks

A virtual private network (VPN), extends a private network across a public network
such as the Internet. A VPN enables a computer to send and receive data across
public networks as if it were directly connected to the private network. Neutron
provides a set of APIs to allow tenants to create [PSec-based VPN tunnels to remote
gateways. In the Havana release of OpenStack, VPNaaS is an experimental extension
with no guaranteed backwards compatibility in future releases; it will not be covered
in this book.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing the Network for OpenStack

Preparing the physical infrastructure

When architecting the network, it is important to first determine the purpose of

the cloud. Is the goal to build a highly scalable environment with multiple levels of
network redundancy? Or is the goal to provide a sandbox for developers with little
thought given to the resilience of the network or compute platform? Do you want an
environment that leverages everything OpenStack Networking has to offer in terms
of routing, switching, and application networking? Is the environment intended to
be an extension of an existing physical network?

OpenStack Networking can serve many roles within different clouds but is better at
some technologies than others. The purpose of the cloud itself, along with security
requirements and available hardware, will play a big part in determining the
architecture of the network and OpenStack's role in the network.

The OpenStack portal www. openstack. org provides reference architectures for
Neutron-based clouds that involve a combination of the following nodes:

e Controller node
¢ Network node
* Compute node(s)

Prior to the installation of OpenStack, the physical network infrastructure must be
configured to support the networks needed for an operational cloud. In the following
diagram, I have highlighted the area of responsibility for the network administrator:

Hardware GREEN-Management & API(VLAN x)

: Router/Firewall W RED-External & Overlay (VLAN y) i
i Physical infrastructure 3
i to be configured |
! ethO i
i - @m N by administrator |

Virtual infrastructure |
| provided by
| [Virtual Network Switch | [virtual Network Switch | OpenStack

—— ethO ethO
| ‘ -I

| Software &FEES pHcP [| -~ -~

Router W® Server

NS Controller/Network Node VAN Computer Node J

0 1

Figure 1.1

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The physical network infrastructure must be configured to support OpenStack
Networking. In this diagram, the area marked in red is the responsibility of the
network administrator. That may include the need to configure physical switches,
firewalls, or routers, as well as interfaces on the servers themselves.

In the next few chapters, I have defined networks and VLANSs that will be used
throughout the book to demonstrate the various components of OpenStack
Networking. Generic information on the configuration of switch ports, routers,
or firewalls can be found in upcoming chapters as well.

Types of network traffic

The reference architecture for OpenStack Networking defines at least four distinct
types of network traffic:

* Management
* API
* External

e Guest

These distinct types of network traffic do not require dedicated interfaces and are
often collapsed onto single interfaces. Depending on the chosen deployment model,
the cloud architecture may spread networking services across multiple nodes. The
security requirements of the enterprise deploying the cloud will often dictate how
the cloud is built.

Management network

The management network is used for internal communication between hosts

for services, such as the messaging service and database service. All hosts will
communicate with each other over this network. The management network can be
configured as an isolated network on a dedicated interface or combined with another
network as described below.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing the Network for OpenStack

API network

The API network is used to expose OpenStack APIs to users of the cloud and services
within the cloud. Endpoint addresses for services, such as Keystone, Neutron,
Glance, and Horizon, are procured from the API network.

It is common practice to configure a single IP address on a dedicated interface
that will serve as the listener address for the various services as well as the
management address for the host itself. A diagram of this configuration is
provided later in this chapter.

External network

An external network provides Neutron routers with network access. Once a router
has been configured, this network becomes the source of floating IP addresses for
instances and load balancer VIPs. IP addresses in this network should be reachable
by any client on the Internet.

Guest network

The guest network is a network dedicated to instance traffic. Options for guest
networks include local networks restricted to a particular node, flat or VLAN
tagged networks, or the use of virtual overlay networks made possible with GRE
or VXLAN encapsulation. For more information on guest networks, please refer
to Chapter 5, Creating Networks with Neutron.

The interfaces used for the external and guest networks can be dedicated interfaces
or ones that are shared with other types of traffic. Each approach has its benefits and
caveats, and those are described in more detail as we progress in the chapter.

Physical server connections

The number of interfaces needed per host is dependent on the type of cloud being
built and the security and performance requirements of the organization.

A single interface per server that results in a combined control and data plane is all
that is needed for a fully functional OpenStack cloud. Many organizations choose
to deploy their cloud this way, especially when port density is at a premium or the
environment is simply used for testing. In production clouds, however, separate
control and data interfaces are recommended.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Single interface

For hosts using a single interface, all traffic to and from instances as well as internal
OpenStack, SSH management, and API traffic traverses the same interface. This
configuration can result in severe performance degradation, as a guest can create a
denial of service attack against its host by consuming the total available bandwidth.
Not recommended for production environments, this type of configuration should
only be used for testing or proof-of-concept.

The following diagram demonstrates the use of a single physical interface for all
traffic using the Open vSwitch plugin. A physical interface resides in the network
bridge and handles external, guest, management, and API service traffic:

I M,

(br-int)
Integration Bridge

A

4

(br-tun)
Tunnel Bridge
Used for processing
overlay traffic

(br-eth0)
Provider Bridge
Single IP address for
all services and
connecting hosts in
point-to-point overlay
mesh

> Networks

-

ethO
(1GbE)

<+—>» =\Virtual Ethernet Cable or Cross-Connect

|:| =0pen vSwitch Bridge with Flows

~
N

Overlay

MGMT & API

e External
Networks

Figure 1.2

In this diagram, all OpenStack service and management traffic traverses the same

physical interface as guest traffic.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing the Network for OpenStack

Multiple interfaces

To reduce the likelihood of guest network bandwidth consumption affecting
management of traffic and to maintain a proper security posture, segregation

of traffic between multiple physical interfaces is recommended. At a minimum,
two interfaces should be used: one that serves as the management and API
interface and another that serves as the external and guest interface. If required,
additional interfaces can be used to further segregate traffic. The following diagram
demonstrates the use of two physical interfaces using the Open vSwitch plugin:

ethO
IP address for (féhb%) ————
(br-int) MGMT/API
VM, Integration Bridge
A (br-eth1)
Provider Bridge ethl |-~
v IP address used to (1GbE) \\
(br-tun) connect hosts Networks
Tunnel Bridge in point-to-point
Used for processing overlay mesh
overlay traffic

<+—>» =\Virtual Ethernet Cable or Cross-Connect

|:| =0pen vSwitch Bridge with Flows

Figure 1.3

In this diagram, a dedicated physical interface handles all traffic directed to and from
instances or other OpenStack Networking services, such as LBaaS and FWaa$S, while
another interface handles OpenStack API and management traffic.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Bonding

NIC bonding offers users the ability to multiply available bandwidth by aggregating
links. Two or more physical interfaces can be combined to create a single virtual
interface, or bond, which can then be placed in the bridge. The physical switching
infrastructure, however, must be capable of supporting this type of bond. In addition
to aggregating links, bonding can also refer to the ability to create redundant links in
an active/passive manner. Both links are simultaneously cabled to a switch or pair
of switches, but only one interface is active at any given time. Both types of bonds
can be created within CentOS or Ubuntu when the appropriate kernel module is
installed. In lieu of built-in bonding techniques, bonding can be configured in Open
vSwitch if desired.

Bonding is an inexpensive way to provide hardware-level network redundancy to
the cloud. If you are interested in configuring NIC bonding on your hosts, please
refer to the following sites:

* CentOS 6.5: https://access.redhat.com/documentation/en-US/Red
Hat Enterprise Linux/6/html/Deployment Guide/s2-networkscripts-
interfaces-chan.html

e Ubuntu12.04 LTS: https://help.ubuntu.com/community/UbuntuBonding

Separating services across nodes

Like other OpenStack services, cloud operators can split OpenStack Networking
services across multiple nodes. Small deployments may use a single node to host
all services, including networking, compute, database, and messaging, while others
might find benefit in using a dedicated network node to handle guest traffic routed
through software routers and to offload Neutron DHCP and metadata services. The
following diagrams reflect a few common service deployment models.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing the Network for OpenStack

A single controller with one or more compute nodes

In an environment consisting of a single controller and one or more compute nodes,
the controller will likely handle all networking services and other OpenStack
services, while the compute nodes strictly provide compute resources.

The following diagram demonstrates a controller node hosting all OpenStack
management and networking services where the layer 3 agent is not utilized.
Two physical interfaces are used to provide separate control and data planes:

dashboard

database service

messaging service

nova-api

nova-scheduler

identity service neutron-plugin-agent
neutron-server nova-compute

image service

neutron-plugin-agent

neutron-dhcp-agent

Compute Node(s)

neutron-metadata-agent

Controller Node

External/Guest (including Overlay)

APl/Management

i@

Figure 1.4

This diagram reflects the use of a single controller and one or more compute nodes
where Neutron provides only layer 2 connectivity to instances. An external router is
needed to handle routing between network segments.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The following diagram demonstrates a controller node hosting all OpenStack
management and networking services, including the Neutron L3 agent. Two
physical interfaces are used to provide separate control and data planes:

dashboard

database service

messaging service

nova-api

nova-scheduler

identity service

neutron-server

image service

neutron-plugin-agent

neutron-dhcp-agent

neutron-metadata-agent

neutron-13-agent

neutron-lbass-agent

Controller Node

neutron-plugin-agent
nova-compute

Compute Node(s)

External/Guest (including Overlay)

APl/Management

=
=

Figure 1.5

This diagram reflects the use of a single controller node and one or more compute
nodes in a network configuration that utilizes the Neutron L3 agent. Software routers
created with Neutron reside on the controller node and handle routing between

connected tenant networks

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing the Network for OpenStack

A single controller plus network node with one or

more compute nodes

A network node is one that is dedicated to handling most or all OpenStack
networking services, including the L3 agent, DHCP agent, metadata agent, and more.
The use of a dedicated network node provides additional security and resilience, as
the controller node will be at less risk of network and resource saturation.

The following figure demonstrates a network node hosting all OpenStack
networking services, including the Neutron L3 agent. The Neutron API, however, is
installed on the controller node. Two physical interfaces are used to provide separate

control and data planes:

dashboard

neutron-plugin-agent

database service

neutron-I3-agent

messaging service

neutron-dhcp-agent

nova-api

neutron-metadata-agent

nova-scheduler

identity service

image service

neutron-server

Controller Node

APl/Management

neutron-lbass-agent

Network Node

External/Guest (including Overlay)

neutron-plugin-agent
nova-compute

=

Compute Node(s)

Figure 1.6

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

This diagram reflects the use of a dedicated network node in a network configuration
that utilizes the Neutron L3 agent. Software routers created with Neutron reside on
the network node and handle routing between connected tenant networks. The API
service, neutron-server, remains on the controller node.

Summary

OpenStack Networking offers the ability to leverage the different technologies

found in a data center in a virtualized and programmable manner. If the built-in
features are not enough, the plugin architecture of OpenStack Networking allows for
additional functionality to be provided by third parties, whether it be a commercial
entity or the open source community. The security requirements of the enterprise
building the cloud, as well as the use cases of the cloud, will ultimately dictate the
physical layout and separation of services across the infrastructure nodes.

Throughout this book, you will learn how to build a functional OpenStack cloud
utilizing advanced networking features available in the Havana release. In the next
chapter, you will be guided through a package-based installation of OpenStack on
the CentOS operating system. Topics covered include the installation, configuration,
and verification of database, messaging, and OpenStack Identity, Image, Compute,
and Dashboard services. The installation and configuration of OpenStack
Networking services can be found in Chapter 3, Installing Neutron.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

Installing, configuring, and maintaining OpenStack clouds can be an arduous task
when performed by hand. Many third-party vendors offer downloadable cloud
software based on OpenStack that provide deployment and management strategies
using Chef, Puppet, Fuel, Ansible, and other tools.

This chapter will guide you through a package-based installation of the following
OpenStack components on the CentOS operating system:

* Keystone

* Glance

* Nova Compute

* Horizon
The installation process documented within this chapter is based on the OpenStack

Installation Guide for Red Hat Enterprise Linux, CentOS, and Fedora, that is found at
http://docs.openstack.org/.

If you'd rather download a third-party cloud distribution based on OpenStack, try
one of the following:
* Rackspace Private Cloud: http://www.rackspace.com/cloud/private/
e RedHat RDO: http://openstack.redhat.com/
* Mirantis OpenStack: http://software.mirantis.com/
e Piston Cloud: http://www.pistoncloud.com/

Once installed, many of the concepts and examples used throughout the book should
still apply but may require extra effort to implement.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

System requirements

OpenStack components are intended to run on standard hardware that range
from desktop machines to enterprise-grade servers. The processors of the
compute nodes need to support virtualization technologies, such as Intel's VT-x
or AMD's AMD-v technologies.

This book assumes that OpenStack will be installed on physical hardware that meets
the following minimum requirements:

Server Recommended hardware | Notes
Controller node (runs Processor: 64-bit x86 While a single NIC can be
network, volume, API, Memory: 8 GB RAM used, it is not recommended,

scheduler, and image) and therefore not addressed
services) Disk space: 80 GB in this build.

Network: Two 1 Gbps
network interface cards

(NICs)
Compute node (runs virtual | Processor: 64-bit x86 While a single NIC can be
instances) Memory: 16 GB RAM used, it is not recommended
Disk space: 80 GB and therefore not addressed
Network: Two 1 Gbps in this build.
network interface cards
(NICs)

While machines that fail to meet the minimum requirements may be capable of
installation, based on the documentation included herein, these requirements are
there to ensure a successful experience.

Operating system requirements

OpenStack currently has packages for the following distributions: CentOS, Debian,
Fedora, RHEL, openSUSE, SLES, and Ubuntu. This book assumes that the CentOS
6.5 operating system has been installed on all hosts prior to the installation of
OpenStack:

¢ CentOS 6.5: http://www.centos.org/
At the time of writing, the following minimum kernel version is recommended:

e Kernel version: 2.6.32-431.20.3.e16.x86_64

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Prior kernel versions may experience a lack of support for network namespaces that
are used throughout various Neutron services.

Initial network configuration

To understand how networking should initially be configured on each host, please
refer to the following diagram:

Management/API (ACCESS VLAN 10)

e —-——— External (TRUNK VLANS 20,30-33,50)

[Physical Network Switch

Hardware
Router/Firewall

ethO ethO ethl

Figure 2.1

In the preceding diagram, two interfaces are cabled to each host. The etho interface
will serve as the management interface for OpenStack services and API access,

and eth1 will serve as the provider bridge and tunnel interface for external and
tenant traffic.

At a minimum, the management interface should be configured with an IP
address that has outbound access to the Internet. Internet access is required to
download OpenStack packages from the package repository. Inbound access to the
management address of the servers from a trusted network via SSH (TCP port 22)
is recommended.

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

Throughout the book, there will be examples on configuring and using various
OpenStack services. The following table provides the VLANSs and associated
networks used for those services:

VLAN name VLAN ID Network
MGMT_NET 10 10.254.254.0/24
OVERLAY_NET 20 172.18.0.0/24
GATEWAY_NET 50 10.50.0.0/24
TENANT_NET30 30 10.30.0.0/24
TENANT_NET31 31 10.31.0.0/24
TENANT_NET32 32 10.32.0.0/24
TENANT_NET33 33 10.33.0.0/24

The following table provides IP addresses and VLAN IDs recommended for each
host interface, should you choose to follow along with the examples:

Hostname Interface | IP address Switchport
controller. eth0 10.254.254.100 Access port
learningneutron.com (VLAN 10,
Untagged)
ethl Cabled, but unconfigured Trunk port
at this time (VLAN 20, 30-33,
50)
computeOl. eth0 10.254.254.101 Access port
learningneutron.com (VLAN 10,
untagged)
ethl Cabled, but unconfigured Trunk port
at this time (VLAN 20, 30-33,
50)

The eth1 interface of each server will be configured in Chapter 4, Building a
Virtual Switching Infrastructure. For now, the interface should be cabled and the
corresponding switch port configured as a trunk. In the event of connectivity
loss, out-of-band management access to the servers via DRAC, iLo, or some
other mechanism, is highly recommended.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Interface configuration

CentOS uses individual interface files to describe the configuration of an interface.
As the system boots, these files are used to determine which interfaces to bring up
and how they should be configured. The interface configuration files can be found
in /etc/sysconfig/network-scripts/.

Downloading the example code

purchased from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

Using a text editor, update the corresponding interface file for etho on each host
as follows:

nano /etc/sysconfig/network-scripts/ifcfg-eth0

The following is the configuration of etho on the controller node:
DEVICE=eth0

TYPE=Ethernet

ONBOOT=yes

NM_CONTROLLED=yes

BOOTPROTO=static

IPADDR=10.254.254.100

NETMASK=255.255.255.0

GATEWAY=10.254.254.1

The following is the configuration of etho on the compute node:

DEVICE=ethO
TYPE=Ethernet
ONBOOT=yes

NM CONTROLLED=yes
BOOTPROTO=static
IPADDR=10.254.254.101
NETMASK=255.255.255.0
GATEWAY=10.254.254.1

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

To activate the changes, cycle the interface using the ifdown and ifup commands on
each node:

ifdown ethO; ifup ethO

Before you begin

Before you can install OpenStack, some work must be done to prepare the system for
a successful installation.

Permissions

OpenStack services can be installed either as root or as a user with sudo permissions.
The latter may require that the user be added to the sudoers file on each host.
For tips on configuring sudoers, please visit the following URL:

http://wiki.centos.org/TipsAndTricks/BecomingRoot

For this installation, all commands should be run as root unless specified otherwise.

Configuring the OpenStack repository

Installation of OpenStack on CentOS uses packages from the RedHat RDO
repository. To enable the RDO repository, download and install the rdo-release-
havana package on all hosts:

rpm -ivh http://repos.fedorapeople.org/repos/openstack/openstack-
havana/rdo-release-havana-8.noarch.rpm

The EPEL package includes GPG keys to aid in signing packages and repository
information and should be installed on all hosts:

rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86 64/epel-
release-6-8.noarch.rpm

Installing OpenStack utilities

The crudini utility is used throughout this book to make the configuration of various
services easier and consistent. Crudini overwrites or adds individual configuration
settings without overwriting the entire file. The following command installs crudini
and another useful OpenStack configuration package, openstack-utils:

yum -y install crudini openstack-utils

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Setting the hostnames

Before installing OpenStack, be sure that each node in the environment has been
configured with its proper hostname. Using a text editor, change the HOSTNAME value
in the /etc/sysconfig/network file on each host:

¢ Controller node: HOSTNAME=controller.learningneutron.com

° Cknnpuufnode:HOSTNAME:compute01.learningneutron.com
To simplify communication between hosts, it is recommended that DNS or a local
name resolver be used to resolve hostnames. Using a text editor, update the /etc/

hosts file on each node to include the management IP address and hostname of
all nodes:

10.254.254.100 controller.learningneutron.com controller

10.254.254.101 computeOl.learningneutron.com computeOl

Disabling SELinux

To avoid issues with communication among services, it is advised that the SELinux
security policy be disabled on all nodes for the duration of this installation and
subsequent test use.

SELinux can be set to one of the following three states:

* enforcing: SELinux security policy is enforced
* permissive: SELinux prints warnings instead of enforcing
* disabled: No SELinux policy is loaded
To disable SELinux, edit the /etc/selinux/config file, and change the SELINUX

value to disabled. For your convenience, the following command will make the
appropriate change:

sed -i "/SELINUX=enforcing/c\SELINUX=disabled" /etc/selinux/config

Removing iptables rules

CentOS ships with rather restrictive iptables rules by default. Edit the iptables
firewall service to allow all incoming traffic with the following commands:

iptables -D INPUT -j REJECT --reject-with icmp-host-prohibited

iptables -D FORWARD -j REJECT --reject-with icmp-host-prohibited

service iptables save

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

\ The rule changes are meant to reduce possible issues with this installation
~ guide and are not meant for production use. Consult the OpenStack
Q security guide at http://docs.openstack.org/sec/ for more
information on securing an OpenStack environment.

Installing and configuring Network Time
Protocol

A time synchronization program, such as NTP, is a requirement, as OpenStack
services depend on consistent and synchronized time between hosts. For Nova
(Compute), having synchronized time helps to avoid problems when scheduling
VM launches on compute nodes. Other services can experience similar issues when
the time is not synchronized.

To install NTP, issue the following commands on all nodes in the environment:

yum -y install ntp

service ntpd start

Unlike Ubuntu, the RHEL and CentOS operating systems do not automatically start
services upon installation. To configure NTP to start at boot, use the chkconfig
command as follows:

chkconfig ntpd on

Additional services will be configured to start in a similar manner throughout
this book.

Upgrading the system

Before installing OpenStack, it is imperative that the kernel and other system
packages on each node be upgraded to the latest version supported by CentOS 6.5.
Issue the following yum command on each node, followed by a reboot to allow the
changes to take effect:

yum -y upgrade
reboot

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Installation of OpenStack

The steps in the later part of the chapter document the installation of OpenStack
services, including Keystone, Glance, Nova Compute, and Horizon, on a single
controller and compute node. Neutron, the OpenStack Networking service, will be
installed in the next chapter.

Installing and configuring the MySQL
database server

On the controller node, use yum to install the MySQL database server:
yum -y install mysqgl mysgl-server MySQL-python

Once installed, set the IP address that MySQL will bind to by editing the /etc/
my . cnf configuration file and adding the bind-address definition. Doing so will
allow connectivity to MySQL from other hosts in the environment. The value for
bind-address should be the management IP of the controller node:

crudini --set /etc/my.cnf mysqld bind-address 10.254.254.100

Start the mysgld process, and configure it to start at boot:

service mysqgld start

chkconfig mysqgld on

The MySQL secure installation utility is used to build the default MySQL database
and set a password for the MySQL root user. The following command will begin the
MySQL installation and configuration process:

mysql secure installation

During the MySQL installation process, you will be prompted to enter a
password and change various settings. For this installation, the chosen root
password is openstack. A more secure password suitable for your environment
is highly recommended.

Answer [Y]es to the remaining questions to exit the configuration process. At this
point, MySQL server has been successfully installed on the controller node.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

Installing the MySQL database client

The compute nodes in the environment should be configured as MySQL clients
rather than as MySQL servers. On compute01, install the MySQL client as follows:

yum -y install mysqgl MySQL-python

Installing and configuring the messaging

server

Advanced Message Queue Protocol (AMQP) is the messaging technology chosen
for use with an OpenStack-based cloud. Components such as Nova, Cinder, and
Neutron communicate internally via AMQP and to each other using API calls. The
following are instructions to install Qpid, an AMQP broker. Popular alternatives
include RabbitMQ and ZeroMQ.

On the controller node, install the messaging server:

yum -y install gpid-cpp-server memcached

To simplify this installation, disable Qpid authentication by editing the /etc/gpidd.
conf file and changing the auth option to no, as follows:

sed -i "/“auth/s/auth=yes/auth=no/" /etc/qpidd.conf

\ While disabling authentication is acceptable for this test
~ environment, authentication should be enabled on a production
Q deployment. Consult Qpid documentation for further instructions
on how to enable authentication.

Start the gpid service, and set it to automatically start at boot:

service gpidd start

chkconfig gpidd on

Installing and configuring the lIdentity service

Keystone is the Identity service for OpenStack and is used to authenticate and
authorize users and services in the OpenStack cloud. Keystone should only be
installed on the controller node along with python-keystoneclient:

yum -y install openstack-keystone python-keystoneclient

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Using crudini, configure Keystone to use MySQL as its database. In this installation,
the username and password will be keystone:

crudini --set /etc/keystone/keystone.conf sql connection mysql://
keystone:keystone@controller/keystone

R Insecure passwords are used throughout the book to simplify the
~ configuration and are not recommended for production use. Visit
Q http://www.strongpasswordgenerator.org to generate strong
passwords for your environment.

Use the openstack-db command to create the Keystone database, related tables,
and a database user named keystone that will be used by the Keystone service to
connect to the database:

openstack-db --init --service keystone --password keystone

You may be prompted to enter the password for the MySQL root user. Unless it has
been changed, this installation set the MySQL root password to openstack.

Define an authorization token to use as a shared secret between Keystone and other
OpenStack services. When defined, the authorization token, admin_token, can be
used to make changes to Keystone in the event an administrative user has not been
configured or the password has been forgotten. Clients making calls to Keystone can
pass the authorization token, which is then validated by Keystone before actions

are taken.

OpenSSL can be used to generate a random token and store it in the
configuration file:

ADMIN TOKEN=$ (openssl rand -hex 10)

crudini --set /etc/keystone/keystone.conf DEFAULT admin token $ADMIN
TOKEN

By default, Keystone uses PKI tokens for authentication. The following steps will
create the signing keys and certificates:

keystone-manage pki setup --keystone-user keystone --keystone-group
keystone

chown -R keystone:keystone /etc/keystone/* /var/log/keystone/keystone.
log

Using crudini, edit /etc/keystone/keystone. conf, and set the provider value
to PKI:

crudini --set /etc/keystone/keystone.conf token provider keystone.
token.providers.pki.Provider

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

Start the Keystone service and enable it to start at boot time by entering the
following command:

service openstack-keystone start

chkconfig openstack-keystone on

Defining users, tenants, and roles in Keystone

Once the installation of Keystone is complete, it is necessary to set up users, tenants,
roles, and endpoints that will be used by various OpenStack services.

Typically, a username and password are used to authenticate against Keystone.
But because users have not yet been created, it is necessary to use the authorization
token created earlier. The token can be passed using the --os-token option of the
keystone command or by setting the 0S_SERVICE_TOKEN environment variable.
We will use both the 0S_SERVICE TOKEN and 0S_SERVICE_ENDPOINT environment
variables to provide the authorization token and to specify where the Keystone
service is running.

Use the export command to export the variables and their values to your
environment. 0S_SERVICE_ TOKEN should be set to the $ADMIN TOKEN value
determined earlier:

export OS_SERVICE_TOKEN=$ADMIN_TOKEN
export OS SERVICE ENDPOINT=http://controller:35357/v2.0

In Keystone, a tenant represents a logical group of users to which resources are
assigned. Resources are assigned to tenants and not directly to users. Create an
admin tenant for the administrative user and a service tenant for other OpenStack
services to use as follows:

keystone tenant-create --name=admin --description="Admin Tenant"

keystone tenant-create --name=service --description="Service Tenant"

Additional tenants can be created later for other users of the cloud. Next, create an
administrative user called admin. Specify a secure password and an email address
for the admin user as follows:

keystone user-create --name=admin --pass=secrete --email=admin@
learningneutron.com

Once the admin user has been created, create a role for administrative tasks
called admin:

keystone role-create --name=admin

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Any roles that are created should map to roles specified in the policy.json files of
the corresponding OpenStack services. The default policy files use the admin role
to allow access to services. For more information on user management in Keystone,
please refer to the following URL: http://docs.openstack.org/admin-guide-
cloud/content/keystone-user-management .html.

Finally, associate the admin role to the admin user when logging in with the admin
tenant as follows:

keystone user-role-add --user=admin --tenant=admin --role=admin

Define services and APl endpoints in Keystone

Each OpenStack service that is installed should be registered with Keystone, so
its location on the network can be tracked. There are two commands involved in
registering a service:

* keystone service-create: This describes the service that is being created

* keystone endpoint-create: This associates API endpoints with the service

Keystone itself is among the services that must be registered. You can create a service
entry for Keystone with the following command:

keystone service-create --name=keystone --type=identity
--description="Keystone Identity Service"

The resulting output will be in table format and will include a unique ID that will be
used in the subsequent command:

description | Keystone Identity Service

| |
id	47b36£2684e94cfdbd78ba912e6091ec
name	keystone
type	identity
e e T R +

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

Next, you can specify an API endpoint for the Identity service using the returned ID.
When specifying an endpoint, you must provide URLSs for the public API, internal
API, and the admin APL The three URLs can potentially be on three different IP
networks depending on your network setup and if NAT is used. The short name of
the controller will be used to populate the URLs. Each host can reference the other
based on hostname via DNS or the local /etc/hosts entries created earlier. Have a
look at the following commands:

keystone endpoint-create \
--service-id="keystone service-get keystone | awk '/ id / { print $4
A
--publicurl=http://controller:5000/v2.0 \
--internalurl=http://controller:5000/v2.0 \
--adminurl=http://controller:35357/v2.0

The resulting output is as follows:

e e TR +
| Property | Value |
e e TR +
| adminurl | http://controller:35357/v2.0 |
| id | 7¢1112c14cd8494fbd8dadb09581926¢ |

internalurl	http://controller:5000/v2.0
publicurl	http://controller:5000/v2.0
region	regionOne

service id 47b36£2684e94cfdbd78ba9l2e6091ec |

Verify the Keystone installation

To verify that Keystone was installed and configured properly, use the unset
command to unset the 0S_SERVICE TOKEN and 0S_SERVICE_ ENDPOINT environment
variables. Those variables are only needed to bootstrap the administrative user and
to register the Keystone service. Have a look at the following command:

unset OS SERVICE TOKEN OS SERVICE ENDPOINT

Once the environment variables are unset, it should be possible to use username-based
authentication. You can request an authentication token using the admin user and the
password specified earlier:

keystone --os-username=admin --os-password=secrete --os-auth-
url=http://controller:35357/v2.0 token-get

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Keystone should respond with a token that is paired with the specified user ID.
This verifies that the user account is established in Keystone with the expected
credentials. The resulting output is as follows:

Hmmmmmmmmm e +
| Property | Value |
Hmmmmmmmmm e +
| expires | 2014-07-25T00:45:46%Z |
| id | <Base64-encoded Token>

| user id | 64d8b854881ff4568a22342fae7cc4df6 |
Hmmmmmmmmm e +

Next, you can verify that authorization is working as expected by requesting
authorization for a tenant:

keystone --os-username=admin --os-password=secrete --os-tenant-
name=admin --os-auth-url=http://controller:35357/v2.0 token-get

You should receive a new token in response, this time including the tenant ID of the
admin tenant. This verifies that your user account has an explicitly defined role in
the specified tenant and that the tenant exists as expected.

Setting environment variables

To avoid having to provide credentials every time you run an OpenStack command,
create a file containing environment variables that can be loaded at any time:

mkdir ~/credentials

cat >> ~/credentials/admin <<EOF

export OS_USERNAME=admin

export OS_PASSWORD=secrete

export OS_TENANT NAME=admin

export OS AUTH URL=http://controller:35357/v2.0
EOF

Use the source command to load the environment variables from the file. To test
Keystone, issue the following commands:

source ~/credentials/admin

keystone token-get

keystone user-list

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

Keystone should return the token and user list as requested as follows:

[root@controller ~]# keystone user-list
——————————————— B e L e LT
| name | enabled |

| 6d8bB54881ff4568022342fae7cc4df6 | admin | in@learningneutron.com |
et ======s m====mmas === == o mmmmmmmmmmmm——mmmmmee +

Installing and configuring the image service

Glance is the image service for OpenStack. It is responsible for storing images and
snapshots of instances and for providing images to compute nodes when instances
are created.

To install Glance, run the following command from the controller node:

yum -y install openstack-glance

You can use openstack-db to initialize the Glance database and add the glance user
to MySQL:

openstack-db --init --service glance --password glance
Use crudini to set the SQL connection string in the Glance configuration files:

crudini --set /etc/glance/glance-api.conf DEFAULT sqgl connection
mysql://glance:glance@controller/glance

crudini --set /etc/glance/glance-registry.conf DEFAULT sql connection
mysqgl://glance:glance@controller/glance

You can then add the glance user to Keystone and create the appropriate role:

keystone user-create --name=glance --pass=glance --email=glance@
learningneutron.com

keystone user-role-add --user=glance --tenant=service --role=admin

Use crudini to set Keystone attributes in the Glance configuration files:

crudini --set /etc/glance/glance-api.conf keystone authtoken auth host
controller
crudini --set /etc/glance/glance-api.conf keystone authtoken admin

user glance

crudini --set /etc/glance/glance-api.conf keystone authtoken admin
tenant name service

crudini --set /etc/glance/glance-api.conf keystone authtoken admin
password glance

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

crudini --set /etc/glance/glance-registry.conf keystone authtoken auth
host controller

crudini --set /etc/glance/glance-registry.conf keystone authtoken
admin user glance

crudini --set /etc/glance/glance-registry.conf keystone authtoken
admin tenant name service

crudini --set /etc/glance/glance-registry.conf keystone authtoken
admin password glance

Glance includes default configuration files that should be copied and modified
as follows:

cp /usr/share/glance/glance-api-dist-paste.ini /etc/glance/glance-api-
paste.ini
cp /usr/share/glance/glance-registry-dist-paste.ini /etc/glance/glance-

registry-paste.ini

Each of the files mentioned in the preceding commands must then be edited to add
the following options:

crudini --set /etc/glance/glance-api-paste.ini filter:authtoken auth
host controller

crudini --set /etc/glance/glance-api-paste.ini filter:authtoken admin
user glance

crudini --set /etc/glance/glance-api-paste.ini filter:authtoken admin
tenant name service

crudini --set /etc/glance/glance-api-paste.ini filter:authtoken admin
password glance

crudini --set /etc/glance/glance-api-paste.ini filter:authtoken flavor
keystone
crudini --set /etc/glance/glance-registry-paste.ini filter:authtoken

auth host controller

crudini --set /etc/glance/glance-registry-paste.ini filter:authtoken
admin user glance

crudini --set /etc/glance/glance-registry-paste.ini filter:authtoken
admin tenant name service

crudini --set /etc/glance/glance-registry-paste.ini filter:authtoken
admin password glance

crudini --set /etc/glance/glance-registry-paste.ini filter:authtoken
flavor keystone

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

You can start the Glance services and enable them to start at boot time with the
following command:

service openstack-glance-api start
service openstack-glance-registry start
chkconfig openstack-glance-api on

chkconfig openstack-glance-registry on

Define the Glance service and API endpoints in

Keystone

Like other OpenStack services, Glance should be added to the Keystone database
using the service-create and endpoint -create commands:

keystone service-create --name=glance --type=image
--description="Glance Image Service"

The resulting output is as follows:

Hmmmmmmm e et +
| Property | Value |
Hmmmmmmm e et +
| description | Glance Image Service |
| id | bbbacfbe630341b181659£00a2e£6a90 |

| name | glance |
| type | image |
Hmmmmmmm e et +

The id value here should be used to populate the service-id value as follows:

keystone endpoint-create \
--service-id="keystone service-get glance | awk '/ id / { print $4 }'°
\
--publicurl=http://controller:9292 \
--internalurl=http://controller:9292 \
--adminurl=http://controller:9292

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The resulting output is as follows:

Hmmmmmmm e et +
| Property | Value |
Hmmmmmmm e et +
| adminurl | http://controller:9292 |
| id | 32504596c4cc466la04adbfldfb97c08|

intermalurl	http://controller:9292
publicurl	http://controller:9292
region	regionOne

service id bbbacfbe630341b181659f00a2ef6a90 |

Verify the Glance image service installation

To verify that Glance was installed and configured properly, download a test image
from the Internet, and verify that it can be uploaded to the image server:

mkdir /var/tmp/images ; cd /var/tmp/images/

wget http://cdn.download.cirros-cloud.net/0.3.1/cirros-0.3.1-x86 64-
disk.img

Upload the image to Glance using the following command:

glance image-create --name=Cirr0OS-0.3.1 --disk-format=gcow2
--container-format=bare --is-public=true --file /var/tmp/images/cirros-
0.3.1-x86_ 64-disk.img

Verify that the image exists in Glance using the image-1ist command. Have a look
at the following screenshot:

[root@controller openstack-dashboard]# glance image-list
B e dmmmmmmmmaaaaaa pmmmmmmmmaaaaa bmmmmmmmmmmmmmmaaaa emmmmmmaaa fmmmmmaaa +
| Disk Format | Container Format | Size | Status |

R e E L LR E P e Hmmmmmmmmmmmee Hmmmmmmmmmmmee mmmmmmmmmmmmmeeeee fmmmmmmmmee fmmmmmmme +
| ed7Bedef-0884-4d2d-bc@2-cldf@9ad4cdoe | Cirr0S-0.3.1 | qcow2 g | 13147648 | active |
B e dm======mseeeae dm=====mmmmeae L LEEEEE e fmmmmmmmmee e +

The CirrOS image is very limited in functionality and is recommended only for
testing connectivity and operational Compute functionality. Multiple vendors
provide cloud-ready images for use with OpenStack as follows:

* Ubuntu cloud images: http://cloud-images.ubuntu.com/

* Red Hat-based images: http://openstack.redhat.com/Image resources

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

To install an image from a remote location, use the - -location parameter instead of
--file as follows:

glance image-create --name=Ubuntu-14.04 --disk-format=gcow2
--container-format=bare --is-public=true --location http://cloud-images.
ubuntu.com/trusty/current/trusty-server-cloudimg-amdé64-diskl.img

Another look at the image list (in the following screenshot) shows the new images
are available for use:

[root@controller openstack-dashboard]# glance image-list

| Disk Format | Container Format | Size | Status |

e fmmmmmmmmmmmae Hmmmmmmmmmmmmmmmmee fmmmmmmmmmn === mmmee +

la8afddd-4d23-4c31-873c-72abbd947501	Cent05-6.5	qcowz g	344457216	active
ed78e8ef-0884-4d2d-bcB2-cldf@Sadcdée	Cirr05-0.3.1	qoow2 g	13147648	active
f496e19d-e074-4308-a9f2-548b4880a119	Ubuntu-14.04	qcow2 g	254870016	active
e e e fmmmmmmmmmmme fmmmmmmmmmmmem e E R fmmmmmmmmmem Hmmmmm— - +

Installing and configuring the Compute
service

OpenStack Compute is a collection of services that enable cloud operators and
tenants to launch virtual machine instances. Most services run on the controller
node, with the exception of the openstack-nova-compute service, which runs on
the compute nodes and is responsible for launching the virtual machine instances.

Installing and configuring controller node
components

Install the openstack-nova package, which installs various Nova (Compute)
services that are used on the controller node, as follows:

yum -y install openstack-nova python-novaclient

Run the openstack-db command to initialize and create the Nova (Compute) service
database, related tables, and MySQL user as follows:

openstack-db --init --service nova --password nova
Use crudini to configure Nova Compute to use MySQL as its database as follows:

crudini --set /etc/nova/nova.conf database connection mysql://
nova:nova@controller/nova

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Set these configuration keys to configure Nova (Compute) to use the Qpid
message broker:

crudini --set /etc/nova/nova.conf DEFAULT rpc backend nova.openstack.
common.rpc.impl gpid

crudini --set /etc/nova/nova.conf DEFAULT gpid hostname controller

The VNC Proxy is an OpenStack component that allows users to access their
instances through VNC clients. VNC stands for Virtual Network Computing,

and is a graphical desktop sharing system that uses the Remote Frame Buffer
protocol to control another computer over a network. The controller must be able to
communicate with compute nodes for VNC services to work properly through the
Horizon dashboard or other VNC clients.

Use crudini to set themy ip, vncserver listen and vncserver proxyclient
address configuration options to the management IP address of the controller node:

crudini --set /etc/nova/nova.conf DEFAULT my ip 10.254.254.100

crudini --set /etc/nova/nova.conf DEFAULT vncserver listen
10.254.254.100

crudini --set /etc/nova/nova.conf DEFAULT vncserver proxyclient address
10.254.254.100

Create a user called nova in Keystone that the Nova (Compute) service will use for
authentication. After this, place the user in the service tenant, and give the user
the admin role:

keystone user-create --name=nova --pass=nova --email=nova@
learningneutron.com

keystone user-role-add --user=nova --tenant=service --role=admin

Configure Nova (Compute) to use the following Keystone credentials:

crudini --set /etc/nova/nova.conf DEFAULT auth strategy keystone

crudini --set /etc/nova/nova.conf keystone authtoken auth host
controller

crudini --set /etc/nova/nova.conf keystone authtoken auth protocol http
crudini --set /etc/nova/nova.conf keystone authtoken auth port 35357
crudini --set /etc/nova/nova.conf keystone authtoken admin user nova

crudini --set /etc/nova/nova.conf keystone authtoken admin tenant name
service

crudini --set /etc/nova/nova.conf keystone authtoken admin password
nova

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

Credentials must be added to the /etc/nova/api-paste.ini file that
corresponds to the details of this build. These options should be added
to the [filter:authtoken] section of the ini file:

crudini --set /etc/nova/api-paste.
controller

crudini --set /etc/nova/api-paste.
crudini --set /etc/nova/api-paste.
http

crudini --set /etc/nova/api-paste.

controller:5000/v2.0

crudini --set /etc/nova/api-paste.

name service

crudini --set /etc/nova/api-paste.
crudini --set /etc/nova/api-paste.
nova

ini

ini

ini

ini

ini

ini

ini

filter:

filter:
filter:

filter:

filter:

filter:
filter:

authtoken

authtoken
authtoken

authtoken

authtoken

authtoken
authtoken

auth host

auth port 35357

auth protocol

auth uri http://

admin tenant

admin user nova

admin password

You can ensure that the api_paste_config=/etc/nova/api-paste.ini optionis
set in the /etc/nova/nova. conf file using the following command:

crudini --set /etc/mova/nova.conf DEFAULT api paste config /etc/nova/

api-paste.ini

You should then register Nova (Compute) with the Identity service so that other
OpenStack services can locate it. Register the service and specify the endpoint:

keystone service-create --name=nova --type=compute --description="Nova

Compute service"

The resulting output should resemble the following;:

e e T R +
| Property | Value |
e e T R +
| description | Nova Compute service |
| id | a946cbd06al24ec39662622cc2d6edec |

| name | nova |
| type | compute |
e e T R +

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Use the id property that is returned to create the endpoint:

keystone endpoint-create \
--service-id="keystone service-get nova | awk '/ id / { print $4 }'~ \
--publicurl=http://controller:8774/v2/%\ (tenant id\)s \
--internalurl=http://controller:8774/v2/%\ (tenant_id\)s \
--adminurl=http://controller:8774/v2/%\ (tenant id\)s

Start the Nova (Compute) services, and configure them to start when the
system boots:

service openstack-nova-api start
service openstack-nova-cert start
service openstack-nova-consoleauth start
service openstack-nova-scheduler start
service openstack-nova-conductor start
service openstack-nova-novncproxy start
service openstack-nova-console start
chkconfig openstack-nova-api on
chkconfig openstack-nova-cert on
chkconfig openstack-nova-consoleauth on
chkconfig openstack-nova-scheduler on
chkconfig openstack-nova-conductor on

chkconfig openstack-nova-novncproxy on

H H OH H H O H O H H H O H O H OH K H

chkconfig openstack-nova-console on

\ The openstack-nova-network service will be installed as part of the
~ openstack-nova package but should not be started. The openstack-
Q nova-network service is the legacy networking service replaced by
Neutron. Neutron will be installed in Chapter 3, Installing Neutron.

Installing and configuring compute node
components

Once the Nova (Compute) services have been configured on the controller node,
another host must be configured as a compute node. The compute node receives
requests from the controller node to host virtual machine instances. Separating the
services by running dedicated compute nodes means that Nova (Compute) can be
scaled horizontally by adding additional compute nodes once all available resources
have been utilized.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

On the compute node, install the openstack-nova-compute package. This package
provides virtualization services to the compute node:

yum -y install openstack-nova-compute

Using crudini, edit the /etc/nova/nova. conf configuration file to specify
MySQL as the database and configure various Keystone authentication settings.
The nova keystone user was configured in the previous section. Have a look at
the following commands:

crudini --set /etc/nova/nova.conf database connection mysql://
nova:nova@controller/nova
crudini --set /etc/nova/nova.conf DEFAULT auth strategy keystone

crudini --set /etc/nova/nova.conf keystone authtoken auth host
controller

crudini --set /etc/nova/nova.conf keystone authtoken auth protocol http
crudini --set /etc/nova/nova.conf keystone authtoken auth port 35357
crudini --set /etc/nova/nova.conf keystone authtoken admin user nova

crudini --set /etc/nova/nova.conf keystone authtoken admin tenant name
service

crudini --set /etc/nova/nova.conf keystone authtoken admin password
nova

Next, configure Nova (Compute) to use the Qpid messaging broker configured on
the controller node:

crudini --set /etc/nova/nova.conf DEFAULT rpc backend nova.openstack.
common.rpc.impl gpid

crudini --set /etc/nova/nova.conf DEFAULT gpid hostname controller

Then configure Nova (Compute) to provide remote console access to instances
through a proxy on the controller node. The remote console is accessible through the
Horizon dashboard. The IP configured as follows should be the management IP of
the compute node:

crudini --set /etc/nova/nova.conf DEFAULT my ip 10.254.254.101
crudini --set /etc/nova/nova.conf DEFAULT vnc_ enabled True
crudini --set /etc/nova/nova.conf DEFAULT vncserver listen 0.0.0.0

crudini --set /etc/nova/nova.conf DEFAULT vncserver proxyclient address
10.254.254.101

crudini --set /etc/nova/nova.conf DEFAULT novncproxy base url http://
controller:6080/vnc_auto.html

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Specify the host that runs the Glance image service. In this installation, Glance runs
on the controller node:

crudini --set /etc/mova/nova.conf DEFAULT glance_host controller

Edit the /etc/nova/api-paste.ini configuration to add credentials to the
[filter:authtoken] section:

crudini --set /etc/nova/api-paste.ini filter:authtoken auth host
controller
crudini --set /etc/nova/api-paste.ini filter:authtoken auth port 35357

crudini --set /etc/nova/api-paste.ini filter:authtoken auth protocol
http

crudini --set /etc/mova/api-paste.ini filter:authtoken admin tenant_
name service

crudini --set /etc/nova/api-paste.ini filter:authtoken admin user nova
crudini --set /etc/nova/api-paste.ini filter:authtoken admin password

nova

Ensure that the api_paste_config=/etc/nova/api-paste.ini option is set in the
/etc/nova/nova.conf file:

crudini --set /etc/nova/nova.conf DEFAULT api paste config /etc/nova/
api-paste.ini

Start the Nova (Compute) service and configure it to start when the system boots:

service libvirtd start

service messagebus start

service openstack-nova-compute start
chkconfig libvirtd on

chkconfig messagebus on

#

chkconfig openstack-nova-compute on

Verify communication between services

To check the status of Nova services throughout the environment, use the Nova
service-1list command on the controller node as follows:

nova service-list

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

The command should return statuses on all Nova services that have checked in:

[rootBcontroller images]# nova service-list

State | Updated_at

internal
nova-cert controller.learningneutron.com | internal
nova-scheduler controller.learningneutron.com | internal
nova-conductor controller.learningneutron.com | internal
nova-console controller.learningneutron.com | internal
nova-compute computedl. learningneutron. com

|
2014-07-24701: |
2014-07-24T01: |
2014-07-24701: |
2014-07-24T01: |
2014-07-24T@1 |
———————————————————————————— dmmmmmmm e mmeeeed

- —————

In the above output, the state of the services on both the controller and compute
nodes are reflected under the Status column. The nova service-1list command
can be run on any node in the environment but will require proper authentication
credentials. If there are inconsistencies in the output among multiple nodes, it's
worth ensuring that network time (NTP) is synchronized properly on all nodes.

Installing the OpenStack dashboard

The OpenStack Dashboard, also known as Horizon, provides a web-based user
interface to OpenStack services, including Compute, Networking, Storage, and
Identity, among others.

To install Horizon, install the following packages on the controller node:

yum -y install mod wsgi openstack-dashboard

Allowing connections to the dashboard

A setting called ALLOWED_HOSTS exists in the /etc/openstack-dashboard/local _
settings file with the following defaults:

ALLOWED HOSTS = ['horizon.example.com', 'localhost']

The domain and host names in the list represent HI'TP hosts for which the Apache
web server will respond. The preceding settings would require users who wish to
access the Horizon dashboard to do so via http://horizon.example.com in their
browser. Feel free to add your own domain that references the management/ API
address of the controller. Otherwise, comment out the line using a pound sign, and
save the file to allow any host header to be used:

sed -i 's/ALLOWED HOSTS/#ALLOWED HOSTS/' /etc/openstack-dashboard/
local settings

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Identifying the Keystone server

Edit the /etc/openstack-dashboard/local settings file to set the hostname

of the Identity server. In this installation, the Keystone services are running on the
controller node. Change the OPENSTACK_HOST and OPENSTACK_KEYSTONE_URL values
using the following commands:

sed -i “/OPENSTACK_HOST/C\OPENSTACK_HOST = \"controller\"" /etc/
openstack-dashboard/local settings

sed -i -e "\$aOPENSTACK KEYSTONE URL = \"http://controller:5000/v2.0\""
/etc/openstack-dashboard/local settings

Changing the listener address

By default, the Apache web server is configured to listen for HTTP requests on port
80 and any IPv6 address. To change this behavior, edit /etc/httpd/conf /httpd.
conf, and change the Listen address to 10.254.254.100:

sed -i 's/Listen 80/Listen 10.254.254.100:80/' /etc/httpd/conf/httpd.
conf

Following this, save the file and start the dashboard services. Use chkconfig to
enable the services to start at boot:

service httpd start
chkconfig httpd on

Testing connectivity to the dashboard

From a machine that has access to the management network of the controller node,
open the following URL in a web browser:

http://controller/dashboard/

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

The /etc/hosts file of my client has been updated to include the same
hostname-to-IP mappings configured earlier in this chapter. The following
screenshot demonstrates a successful connection to the dashboard. The username
and password were created in the Defining users, tenants, and roles in Keystone section
earlier in this chapter. In this installation, the username is admin, and the password is
secrete. Have a look at the following screenshot:

openstack

Log In

User Name

admin

Password

Upon successful login, the dashboard defaults to the administrative tab. From here,
information about the environment is provided in a graphical format. In the next
screenshot, the System Info panel provides the user with information about the
environment, including Services, Compute Services, Availability Zones, and Host
Aggregates. The services listed in the following screenshot are services that were
installed earlier in this chapter:

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

System Info

Services

Name
glance
nova
keystone

Displaying 3 items

Services Compute Services

Service
image
compute

identity (native backend)

Logged in as: admin

Host
controller
controller

controller

Seftings Help

Q

Enabled
Enabled
Enabled

Enabled

Sign Out

Filter

To view the status of Nova (Compute) services, click on the Compute Services tab.
Doing so will return output similar to that of nova service-1list inthe CLL

as follows:

System Info

Compute Services Availability Zones Hos

Compute Services

Name

nova-consoleauth

nova-cert

nova-scheduler

nova-conductor

nova-console

nova-compute

Displaying & items

Host

controller.learningneutron.com
controller.learningneutron.com
controller.learningneutron.com
controller.learningneutron.com
controller.learningneutron.com

compute01.learningneutron.com

Zone

internal

internal

internal

internal

internal

nova

Logged in as: admin

Filter
Status State
enabled up
enabled up
enabled up
enabled up
enabled up
enabled up

Settings Help

Q

Updated At

0 minutes

0 minutes

0 minutes

0 minutes

0 minutes

0 minutes.

Sign Out

Filter

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack

Summary

At this point in the installation, the OpenStack Identity, Image, Dashboard,

and Compute services have been deployed across the nodes of the cloud. The
environment is not ready to host instances just yet, as OpenStack Networking
services have not been installed. If issues arise during the installation and test
procedures, log messages found in /var/log/nova/, /var/log/glance, /var/log/
httpd, and /var/log/keystone, among others, can be useful in determining and
resolving the problem.

In the next chapter, you will be guided through the installation of Neutron
networking services and provided with additional information about the
underlying architecture of OpenStack Networking.

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

In a nutshell, OpenStack Networking provides virtual networking services to
resources managed by the Nova (Compute) service. In this chapter, I will walk
you through the installation of the Neutron networking services in the OpenStack
environment installed in the previous chapter.

The services to be installed include:

* Neutron API server
* Switching plugins

* DHCP agent

* Metadata agent

By the end of this chapter, you will have a basic understanding of the functions
of various Neutron agents, as well as the foundation on which a virtual switching
infrastructure can be built.

Basic Neutron constructs

Network configuration in the Havana release of OpenStack is managed using version
2.0 of the Neutron API The Neutron API can be used to manage the following
resources, among others:

* Network: A network is an isolated layer-2 broadcast domain. Typically
reserved for the tenants that created them, networks can be shared among
tenants if configured appropriately. The network is the core of the Neutron
APIL Subnets and ports must always be associated with a network.

* Subnet: A subnet is an IPv4 or IPv6 address block from which IP addresses
can be assigned to virtual machine instances. Each subnet must have a CIDR
and must be associated with a network. Multiple subnets can be associated
with a single network and can be noncontiguous. DHCP allocation ranges
can be set for the subnet which limits the addresses provided to instances.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

* Port: A port in Neutron represents a virtual switch port on a logical virtual
switch. Virtual machine interfaces are mapped to Neutron ports, and the
ports define both the MAC and IP addresses to be assigned to the interfaces
plugged into them. Neutron port definitions are stored in the Neutron
database, which is then used by the respective plugin agent to build and
connect the virtual switching infrastructure.

Cloud operators can configure network topologies by creating and configuring
networks and subnets and then, instructing services such as Nova (Compute) to
attach virtual devices to ports on these networks. The Neutron API provides a
consistent experience to the user despite the chosen networking plugin. For more
information on interacting with the Neutron API, visit http://docs.openstack.
org/api/openstack-network/2.0/content/.

Overlapping networks using network
namespaces

OpenStack was designed with multitenancy in mind; this means that multiple
groups of users can create and manage their own set of compute and network
resources. Neutron supports the ability for each tenant to have multiple private
networks, routers, firewalls, and load balancers. Neutron is able to isolate these
objects through the use of network namespaces.

A network namespace is defined as a logical copy of the network stack, with its own
routes, firewall rules, and network interface devices. Every network, router, and load
balancer that is created by a tenant is represented by a network namespace. When
network namespaces are enabled, Neutron is able to provide isolated DHCP and
routing services to each network, allowing tenants to create overlapping networks
with other tenants and even other networks in the same tenant.

The following naming convention for network namespaces should be observed:

gdhcp-<network UUID>
grouter-<router UUID>

glbaas-<load balancer UUID>

The gdhcp namespace contains a DHCP service that provides IP addresses to
instances using the DHCP protocol. The gdhcp namespace has an interface plugged
into the virtual switch and is able to communicate with other resources in the same
network or subnet.

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The grouter namespace represents a router and routes traffic for instances in
subnets that it is connected to. Like the gdhcp namespace, the grouter namespace
is connected to one or more virtual switches, depending on the configuration.

The glbaas namespace represents a load balancer and might contain a
load-balancing service, such as HAProxy, which load balances traffic to instances.
The glbaas namespace is connected to a virtual switch and can communicate
with other resources in the same network or subnet.

Often, network namespaces will exist only on the controller or network nodes (if you
have them). The ip netns command can be used to list the available namespaces,
and commands can be executed within the namespace using the following syntax:

ip netns exec NAME <command>

Commands that can be executed in the namespace include ip, route, iptables,
and more. The output of these commands corresponds to information specific to
the namespace they are executed in.

For more information on network namespaces, see the man page for ip netns at
http://man7.org/linux/man-pages/man8/ip-netns.8.html.

Extending network functions with plugins

Prior to Neutron, the original OpenStack network implementation (nova-network)
provided basic networking through Linux bridges, VLANS, and iptables. Neutron
introduces support for third-party plugins that extend network functionality and
implementation of the Neutron APL

Plugins that use a variety of software and hardware-based technologies to
implement the network built by operators and tenants can be created. In this
book, the following networking plugins will be discussed:

* LinuxBridge

* Open vSwitch
The LinuxBridge and Open vSwitch plugins are used to provide layer 2 connectivity
to instances and other network resources through the use of VLANSs or overlay

networking technologies such as GRE or VXLAN. Both provide a layer 2 switching
infrastructure, but they do so in unique ways.

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

Both plugins are considered monolithic plugins; this means that they cannot be
used simultaneously with any other networking plugin. The LinuxBridge and
Open vSwitch plugins are deprecated in Icehouse in favor of the Modular Layer 2
(ML2) plugin, which allows for the use of multiple Layer 2 plugins simultaneously.
ML2 configuration is outside the scope of this chapter, but I have provided an ML2
plugin file and configuration details relevant to this installation in Appendix B, ML2
Configuration. For more information on how ML2 works, refer to the presentation
titled OpenStack Neutron Modular Layer 2 Plugin Deep Dive available at http: //www.

openstack.org/.

Third-party vendors, including Cisco, Brocade, VMWare, and more, have created
plugins that allow Neutron to interface with hardware switches, OpenFlow
controllers, and other network resources. The configuration and use of these plugins
is outside the scope of this book. Visit http://docs.openstack.org/admin-guide-
cloud/content/section plugin-arch.html for more information on the available
plugins for Neutron.

Installing and configuring Neutron
services

In this installation, the various services that make up OpenStack Networking
will be installed on the controller node rather than on a dedicated networking
node. However, some Neutron configuration files must exist on all nodes,
and the configuration files can only be installed via packages.

To install Neutron services, issue the following command on all nodes:

yum -y install openstack-neutron

As a result, the following services will be installed in /etc/init.d/:

neutron-server
neutron-dhcp-agent
neutron-metadata-agent
neutron-13-agent

neutron-lbaas-agent

In this installation, the services mentioned will run only on the controller node
despite them being installed across all nodes.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Creating the Neutron database

Due to an unresolved bug, it is not possible to use the openstack-db command to
properly create the Neutron database and user. Instead, use the mysql client on the
controller as follows:

mysqgl -u root -p

Enter the MySQL root password when prompted. For this installation, the root
password is openstack.

In the mysqgl> prompt, enter the following commands:

CREATE DATABASE neutron;

GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost' IDENTIFIED BY
'neutron’;

GRANT ALL PRIVILEGES ON neutron.* TO 'meutron'@'%' IDENTIFIED BY
'neutron'’;

quit;

Configure Neutron on all the nodes to use a MySQL database connection string,
based on the preceding values:

crudini --set /etc/neutron/neutron.conf database connection mysql://
neutron:neutron@controller/neutron

Configuring the Neutron user, role, and
endpoint in Keystone

Neutron requires a user, role, and endpoint to be created in Keystone in order
to function properly. When executed from the controller node, the following
commands will create a user called neutron in Keystone and add the neutron
user to the admin tenant:

keystone user-create --name=neutron --pass=neutron --email=neutron@
learningneutron.com

keystone user-role-add --user=neutron --tenant=service --role=admin

Create a service in Keystone that describes the OpenStack Networking service by
executing the following;:

keystone service-create --name=neutron --type=network
--description="0OpenStack Networking Service"

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

The preceding command will result in the following output:

Hmmmmmmm e et +
| Property | Value |
Hmmmmmmm e et +
description	OpenStack Networking Service
id	42856efal0bcd4£fd6a279e8c84b060b90
name	neutron
type	network
Hmmmmmmm e et +

To create the endpoint, use the keystone endpoint-create command:

keystone endpoint-create \

--service-id “keystone service-get neutron | awk '/ id / { print $4
FAIAN

--publicurl http://controller:9696 \

--adminurl http://controller:9696 \

--internalurl http://controller:9696

The resulting endpoint is as follows:

Hmmmmmmm e et +
| Property | Value |
Hmmmmmmm e et +
adminurl	http://controller:9696
id	627d19b745b347c0a57b0226221efl6l
intermalurl	http://controller:9696
publicurl	http://controller:9696
region	regionOne

service id 42856efalbcd4£d6a279e8c84b060b90

Enabling packet forwarding

Before the nodes can properly forward traffic for virtual machine instances, there are
three kernel parameters that must be configured on all nodes:

* net.ipv4.ip forward
® net.ipv4.conf.all.rp filter

®* net.ipv4.conf.default.rp filter

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The net.ipv4.ip_ forward kernel parameter allows the nodes to forward traffic
from the instances to the network. The default value is 0 (zero) and can be observed
with the sysct1l command:

[root@controller ~]# sysctl net.ipwv4.ip_forward

net.ipv4.ip_forward = @

The value for net .ipv4.ip_forward should be set to 1 to enable IP forwarding.
Use the following command to implement this change on all nodes:

sed -i "/net.ipv4.ip forward/c\net.ipv4.ip forward = 1" /etc/sysctl.
conf

The net.ipv4.conf.default.rp filter and net.ipv4.conf.all.rp filter
kernel parameters are related to reverse path filtering, a mechanism intended to
prevent denial of service attacks by preventing IP address spoofing at the router
level. When enabled, the Linux kernel will examine every packet to ensure that the
source address of the packet is routable back through the interface from which it
came. Without this validation, a router can be used to forward malicious packets
from a sender who has spoofed the source address to prevent the target machine
from responding properly.

In OpenStack, antispoofing rules are implemented by Neutron on each compute
node within iptables. Therefore, the preferred configuration for these two rp_filter
values is to disable them by setting them to o.

To change the value of the parameters in /etc/sysctl.conf, issue the following
commands on all nodes:

sed -i "/net.ipv4.conf.default.rp filter/c\net.ipv4.conf.default.rp
filter = 0" /etc/sysctl.conf

sed -i -e "\$anet.ipv4.conf.all.rp filter = 0" /etc/sysctl.conf

Load the changes into memory on all nodes with the sysct1 command as follows:

sysctl -p

Configuring Neutron to use Keystone

The Neutron configuration file found at /etc/neutron/neutron.conf has
dozens of settings that can be modified to meet the needs of the OpenStack cloud
administrator. A handful of these settings must be changed from their defaults as
part of this installation.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

Using the crudini utility, configure the following Neutron settings on all nodes.

To use Keystone as the authentication method for Neutron, execute the following:

crudini --set /etc/neutron/neutron.conf DEFAULT auth strategy keystone

Configure Neutron to use the proper api_paste_config middleware
configuration file:

crudini --set /etc/neutron/neutron.conf DEFAULT api paste config /etc/
neutron/api-paste.ini

Configure the proper keystone_authentication settings as follows. The username
and password for the neutron user in Keystone were set earlier in the chapter:

crudini --set /etc/neutron/neutron.conf keystone authtoken auth host
controller

crudini --set /etc/neutron/neutron.conf keystone authtoken auth port
35357

crudini --set /etc/neutron/neutron.conf keystone authtoken auth
protocol http

crudini --set /etc/neutron/neutron.conf keystone_ authtoken admin
tenant name service

crudini --set /etc/neutron/neutron.conf keystone authtoken admin user
neutron

crudini --set /etc/neutron/neutron.conf keystone_ authtoken admin
password neutron

The /etc/neutron/api-paste.ini middleware configuration file must be edited to
contain the appropriate authentication settings for the environment. Configure the
following settings to allow Neutron to access the Identity Service API:

crudini --set /etc/neutron/api-paste.ini filter:authtoken auth host
controller
crudini --set /etc/neutron/api-paste.ini filter:authtoken auth uri

http://controller:5000

crudini --set /etc/neutron/api-paste.ini filter:authtoken admin tenant
name service

crudini --set /etc/meutron/api-paste.ini filter:authtoken admin user
neutron
crudini --set /etc/neutron/api-paste.ini filter:authtoken admin

password neutron

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Configuring Neutron to use a messaging
service

Neutron communicates with various OpenStack services on the AMQP messaging
bus. Configure Neutron to use Qpid as the messaging broker on all the nodes with
the following settings:

crudini --set /etc/meutron/neutron.conf DEFAULT rpc_backend neutron.
openstack.common.rpc.impl gpid

The Qpid authentication settings should match what was previously configured for
the other OpenStack services:

crudini --set /etc/meutron/neutron.conf DEFAULT gpid hostname
controller

crudini --set /etc/meutron/neutron.conf DEFAULT gpid port 5672
crudini --set /etc/meutron/neutron.conf DEFAULT gpid username guest

crudini --set /etc/meutron/neutron.conf DEFAULT gpid password guest

Configuring a root helper

The use of a root helper is a security mechanism built into OpenStack that prevents
misuse of root privileges on the host that executes an OpenStack-related command.
Rather than run commands directly as root, OpenStack calls sudo neutron-
rootwrap /etc/neutron/rootwrap.conf <command> when Neutron-related
commands are executed. A generic sudoers entry on the host allows OpenStack

to run neutron-rootwrap as root. Neutron-rootwrap looks for filter definition
directories within the configuration file and loads command filters from them. If
the command requested matches a command defined by a filter, it executes the
command as root. Otherwise, the request is denied.

As your environment grows, you might observe performance degradation when
executing OpenStack commands that make calls to the Neutron APIL By removing
the use of the neutron-rootwrap command filter and using sudo instead, you can
increase the execution of commands on the hosts at the expense of security.

The following statement and configuration option can be found in the /etc/
neutron.conf file:

Change to "sudo" to skip the filtering and just run the command
directly

root helper = sudo neutron-rootwrap /etc/neutron/rootwrap.conf

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

To disable command filtering, change the root_helper value to sudo only. To
activate the change, uncomment the line and restart the neutron-server service.

Configuring Nova to utilize Neutron
networking

Before Neutron can be utilized as the network manager for Nova (Compute), the
appropriate configuration options must be set in the /etc/nova/nova. conf file.
Using crudini, configure Nova on all nodes to use the Neutron networking setting:
crudini --set /etc/mova/nova.conf DEFAULT network api class nova.
network.neutronv2.api.API

crudini --set /etc/mova/nova.conf DEFAULT neutron url http://
controller:9696

The following options provide Nova with the proper Neutron credentials for
Keystone:

crudini --set /etc/mova/nova.conf DEFAULT neutron auth strategy
keystone

crudini --set /etc/mova/nova.conf DEFAULT neutron admin_ tenant name
service

crudini --set /etc/nova/nova.conf DEFAULT neutron admin username
neutron

crudini --set /etc/mova/nova.conf DEFAULT neutron admin password
neutron

crudini --set /etc/mova/nova.conf DEFAULT neutron admin auth url

http://controller:35357/v2.0

Nova uses the firewall driver configuration option to determine how to
implement firewalling, and it is meant for use with the nova-network service.
When Neutron is used, this option should be set to nova.virt.firewall.
NoopFirewallDriver to instruct Nova to not implement firewalling:

crudini --set /etc/mova/nova.conf DEFAULT firewall driver nova.virt.
firewall.NoopFirewallDriver

The security group_api configuration option specifies which API Nova should
use when working with security groups. For installations using Neutron instead of
nova-network, this option should be set to neutron as follows:

crudini --set /etc/nova/nova.conf DEFAULT security group api neutron

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Nova (Compute) requires additional configuration once a networking plugin has
been determined. The LinuxBridge and Open vSwitch networking plugins and
their respective Nova configuration changes will be discussed in further detail in
Chapter 4, Building a Virtual Switching Infrastructure.

Configuring Neutron services

Once installed, the various plugins and agents of Neutron must be configured
properly before they can be started and consumed. At this point of the installation,
a decision should be made on the Neutron plugin that will be used. The neutron-
server service and the neutron-dhcp-agent service at a minimum, cannot be
started without specifying a networking plugin as part of their configuration.

Install the LinuxBridge and Open vSwitch plugins with the following commands on
all the nodes:
yum -y install openstack-neutron-linuxbridge

yum -y install openstack-neutron-openvswitch

These two switching options will be discussed in further detail in Chapter 4, Building
a Virtual Switching Infrastructure. However, for the sake of starting Neutron services
and demonstrating the Neutron CLI in this chapter, a network configuration based
on the LinuxBridge plugin will be used.

Configuring neutron-server

The neutron-server service exposes the Neutron API to users and passes all calls
to the appropriate Neutron plugin for processing.

By default, Neutron is configured to listen for API calls on all configured addresses
as seen by the default bind_hosts configuration in /etc/neutron/neutron.conf.

bind host = 0.0.0.0

To enhance security, it is recommended that the API be exposed only on the
management or API network. Using crudini, configure bind_host to use the
management address on the controller node as follows:

crudini --set /etc/neutron/neutron.conf DEFAULT bind host
10.254.254.100

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

Other configuration options that might require tweaking include:

®* core plugin
¢ dhcp lease duration

* allow overlapping ips

The core_plugin configuration option instructs Neutron to use the specified
networking plugin. Both LinuxBridge and Open vSwitch require their own
respective plugins, which are as follows:

* LinuxBridge: neutron.plugins.linuxbridge.lb neutron plugin.
LinuxBridgePluginV2

* Open vSwitch: neutron.plugins.openvswitch.ovs neutron plugin.
OVSNeutronPluginvVv2

Using crudini, set the core_plugin option in /etc/neutron/neutron.conf to use
the LinuxBridge plugin on all nodes:

crudini --set /etc/neutron/neutron.conf DEFAULT core plugin neutron.
plugins.linuxbridge.lb neutron plugin.LinuxBridgePluginV2

The dhcp_lease_duration configuration option specifies the duration of an IP
address lease by an instance. The default value is 86400 seconds, or 24 hours. The
DHCP client on the instance itself is responsible for renewing the lease, and this
operation varies between operating systems. It is not uncommon for instances to
attempt to renew their lease well before exceeding the lease duration.

However, the value set for dhcp_lease_duration does not dictate how long an IP
address stays associated to an instance. Once an IP address has been allocated to an
instance by Neutron, it remains associated with the instance until the instance or the
port is deleted, even if the instance is shut off.

The allow_overlapping ips configuration option specifies whether or not
Neutron should allow tenant-created subnets to overlap one another. This feature
requires the use of network namespaces. Not all distributions and kernels support
network namespaces; this might limit how tenant networks are built out. The kernel
recommended in Chapter 2, Installing OpenStack, does support network namespaces.
In this installation, leave the value set to its default (True).

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Starting neutron-server

Before the neutron-server service can be started on RHEL-based distributions
(such as CentOS), a symbolic link to the chosen plugin configuration file must exist
in the /etc/neutron/ directory. Each plugin has its own configuration file that can
be found in the following directories:

* LinuxBridge: /etc/neutron/plugins/linuxbridge/linuxbridge conf.
ini

* Open vSwitch: /etc/neutron/plugins/openvswitch/ovs neutron
plugin.ini

To create a symbolic link to the LinuxBridge configuration file, execute the following
command on all nodes:

1n -s /etc/neutron/plugins/linuxbridge/linuxbridge conf.ini /etc/
neutron/plugin.ini

Once the symbolic link has been created, the Neutron database must be stamped
with the version of OpenStack currently installed to allow the proper schema to be
laid down.

Use the neutron-db-manage command on the controller to stamp the database
as Havana.

neutron-db-manage --config-file /etc/neutron/plugin.ini --config-file /
etc/neutron/neutron.conf stamp havana

To start the neutron-server service on the controller and configure it to start at
boot, use the following syntax:
service neutron-server start

chkconfig neutron-server on

Configuring the Neutron DHCP agent

The neutron-dhcp-agent service is responsible for spawning and controlling
dnsmasq processes for each network that leverages DHCP. This agent also spawns
neutron-ns-metadata-proxy processes as part of the metadata system and is used
across all Neutron plugins.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

Out of the box, Neutron utilizes dnsmasg, a free, lightweight DNS forwarder and
DHCP server that is used to provide DHCP services to networks. The DHCP driver
is specified in the dhcp_agent . ini configuration file found at /etc/neutron/dhep_
agent.ini.

The agent can use other DHCP drivers. Dnsmasqg is the simplest and
requires

no additional setup of the DHCP server.
dhcp driver = neutron.agent.linux.dhcp.Dnsmasq

The default dhcp driver is neutron.agent.linux.dhcp.Dnsmasq and can be left
commented out without any issue.

Other notable configuration options found in the dhcp_agent . ini configuration
file include:

* interface driver

® use_namespaces

®* enable isolated metadata
* enable metadata network

¢ dhcp domain

The interface_driver configuration option should be configured appropriately,
based on the networking plugin chosen for your environment.

* LinuxBridge: neutron.agent.linux.interface.BridgeInterfaceDriver

* Open vSwitch: neutron.agent.linux.interface.OVSInterfaceDriver

Only one interface_driver can be configured at a single time. In this installation,
the configured interface driver should correspond to the LinuxBridge plugin.
Using crudini, set the DHCP interface_driver option to use neutron.agent.
linux.interface.BridgeInterfaceDriver on the controller node.

crudini --set /etc/neutron/dhcp agent.ini DEFAULT interface driver
neutron.agent.linux.interface.BridgeInterfaceDriver

The use_namespaces configuration option instructs Neutron to disable or enable
the use of network namespaces for DHCP. When True, every network scheduled
to a DHCP agent will have a namespace by the name of gdhcp-<Network UUID>,
where <Network UUID> is a unique UUID associated with every network. By
default, use_namespaces is set to True. When set to False, overlapping networks
between tenants are not allowed. Not all distributions and kernels support network
namespaces; this might limit how tenant networks are built out. The kernel
recommended in Chapter 2, Installing OpenStack, supports network namespaces.

For the installation of OpenStack, leave the value set to True.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The enable_isolated _metadata configuration option is useful in cases where a
physical network device (such as a firewall or router) serves as the default gateway
for instances, but Neutron is still required to provide metadata services to instances.
When the L3 agent is used, an instance reaches the metadata service through the
Neutron router that serves as its default gateway. An isolated network is assumed
to be the one in which a Neutron router is not serving as the gateway, but Neutron
handles DHCP requests for the instances. Often, this is the case when instances are
leveraging flat or VLAN networks and the L3 agent is not used. The default value
for enable_isolated _metadata is False. When set to True, Neutron can provide
instances with a static route to the metadata service via DHCP in certain cases. More
information on the use of metadata and this configuration can be found in Chapter 5,
Creating Networks with Neutron. For this installation, change the value from False to
True and uncomment the line in the configuration file:

sed -i "/# enable isolated metadata/c\enable isolated metadata = True"
/etc/neutron/dhcp agent.ini

The enable_metadata_network configuration option is useful in cases where the L3
agent might be used, but the metadata agent is not on the same host as the router.
By setting enable_metadata_network to True, Neutron networks whose subnet
CIDR is included in 169.254.0.0/16 will be regarded as metadata networks. When
connected to a Neutron router, a metadata proxy is spawned on the node that hosts
the router, granting metadata access to all the networks connected to the router.

The dhcp_domain configuration option specifies the DNS search domain that
is provided to instances via DHCP when they obtain a lease. The default value
is openstacklocal. This can be changed to whatever fits your organization.
For the purpose of this installation, change the value from openstacklocal to
learningneutron.com and uncomment the line in the configuration file:

sed -i "/# dhcp domain/c\dhcp domain = learningneutron.com" /etc/
neutron/dhcp agent.ini

Configuration options that are not mentioned here have sufficient default values and
should not be changed unless your environment requires it.

Starting the Neutron DHCP agent

Use the following commands to start the neutron-dhcp-agent service on the
controller node and configure it to start automatically at boot time:

service neutron-dhcp-agent start

chkconfig neutron-dhcp-agent on

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

Confirm the status of the neutron-dhcp-agent as shown in the following screenshot:

[root@controller ~]# service neutron-dhcp-agent status

neutron-dhcp-agent (pid 7388) is running...

The agent should be in a running status.

At the time of writing this book, the DHCP agent code expects the
. existence of the Open vSwitch plugin and associated files before it will
< properly start up. Bug 1019487 at https://bugzilla.redhat.com
Q documents this issue. If the agent is dead, install the openstack-
neutron-openvswitch package as a prerequisite for any chosen plugin
(including LinuxBridge).

Configuring the Neutron metadata agent

The Nova (Compute) service uses a special metadata service to enable virtual
machine instances to retrieve specific details about themselves. This includes
information such as hostname, public keys, and more. Instances access the metadata
service over HTTP at http://169.254.169.254 during boot.

The neutron-metadata-agent provides a proxy via the DHCP or router
namespaces to the openstack-nova-metadata-api (or openstack-nova-api)
service on the controller node. Each network has a corresponding neutron-ns-
metadata-proxy process that is spawned by the metadata agent. With Neutron,
the process of providing metadata to instances varies and is based on the use of the
Neutron routers. More information on the use of metadata and how it works can be
found in Chapter 5, Creating Networks with Neutron.

The following diagram provides a high-level overview of this process when the
controller node hosts Neutron networking services:

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

metadata proxy in DHCP or Router
Namespace listening on
169.254.169.254:80

3

neutron-metadata-agent

5

nova-metadata-api

In the preceding diagram, the following actions take place when an instance makes a
request to the metadata service:

1.
2.

An instance sends metadata request to 169.254.269.254 via HTTP at boot

The metadata request hits either the router or DHCP namespace depending
on the route

The metadata proxy sends request to the Neutron metadata agent via the
Unix socket

The Neutron metadata agent forwards request to the Nova metadata API

The Nova metadata API service responds to the request and forwards it to
the Neutron metadata agent

The Neutron metadata agent sends the response back through the
metadata proxy

The metadata proxy forwards the HTTP response to the instance

The instance processes metadata and continues the boot process

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

For proper operation of metadata, both Neutron and Nova must be configured
to communicate together with a shared secret password. On the controller node,
use the openss1 utility to create a random shared secret.

METADATA SECRET=$ (openssl rand -hex 10)

On the controller, use the crudini utility to update the /etc/nova/nova. conf file
with the shared secret and to enable the metadata proxy.

crudini --set /etc/mova/nova.conf DEFAULT neutron metadata proxy
shared secret $METADATA SECRET
crudini --set /etc/mova/nova.conf DEFAULT service neutron metadata

proxy true

Use crudini to configure the /etc/neutron/metadata_agent.ini file with the
appropriate authentication settings as well as the same shared secret.

crudini --set /etc/mneutron/metadata agent.ini DEFAULT auth url http://
controller:5000/v2.0

crudini --set /etc/neutron/metadata agent.ini DEFAULT auth region
regionOne

crudini --set /etc/meutron/metadata agent.ini DEFAULT admin_ tenant name
service

crudini --set /etc/neutron/metadata agent.ini DEFAULT admin user
neutron

crudini --set /etc/neutron/metadata agent.ini DEFAULT admin password
neutron

crudini --set /etc/meutron/metadata agent.ini DEFAULT nova metadata ip
controller

crudini --set /etc/meutron/metadata agent.ini DEFAULT metadata proxy

shared secret $METADATA SECRET

Use the following commands on the controller to start the neutron-metadata-agent
service and configure it to start automatically at boot time:

service neutron-metadata-agent start

chkconfig neutron-metadata-agent on

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Configuring the Neutron L3 agent

OpenStack Networking includes an extension that provides users with the ability
to dynamically provision and configure virtual routers using the API. These routers
interconnect L2 networks and provide floating IPs to make the ports on private
networks publically accessible. The neutron-13-agent uses the Linux IP stack

and iptables to perform both L3 forwarding and NAT. In order to support multiple
routers with potentially overlapping IP networks, the neutron-13-agent defaults
to using network namespaces to provide isolated forwarding contexts. More
information on creating and managing routers in Neutron can be found in

Chapter 6, Creating Routers with Neutron.

Configuring the Neutron LBaaS agent

OpenStack Networking includes an extension that provides users with the ability
to dynamically provision and configure virtual load balancers using the API. Both
the Havana and Icehouse releases of OpenStack leverage the open-source HAProxy
software load balancer in their reference implementations. The neutron-1baas-
agent defaults to using network namespaces to provide isolated load-balancing
contexts per virtual IP, or VIP. More information on creating and managing load
balancers in Neutron can be found in Chapter 7, Load Balancing Traffic in Neutron.

Using the Neutron command-line interface

Besides the networking services installed, the openstack-neutron package provides
a command-line client to interface with the Neutron API. The Neutron shell can be
invoked by issuing the neutron command from the Linux command line:

neutron

The neutron shell provides commands that can be used to create, read, update,

and delete the networking configuration within the OpenStack cloud. By typing a
question mark or help within the Neutron shell, a list of commands can be found.
Additionally, running neutron help from the Linux command line provides a brief
description of each command's function.

Many of the commands listed will be covered in subsequent chapters of this book.
Commands outside the scope of basic Neutron functionality, such as those relying
on third-party plugins, can be found in Appendix A, Additional Neutron Commands.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Neutron

Summary

Neutron maintains the overall network architecture in a database, and the network
plugin agent on each node is responsible for configuring the virtual network
accordingly. DHCP and metadata services that run on the controller or dedicated
network node deliver IP addresses and instance-specific data at boot time.

Now that OpenStack Networking services have been installed across all nodes in the
environment, the configuration of a Layer 2 networking plugin is all that remains
before instances can be created.

In the next chapter, you will be guided through the configuration of the LinuxBridge
and Open vSwitch monolithic networking plugins. You will also be provided

with an overview of the differences between the two plugins in terms of how they
function and provide layer 2 connectivity to instances. The use of the ML2 plugin is
not required in Havana, but for your reference, its configuration has been provided
in Appendix B, ML2 Configuration.

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching
Infrastructure

One of the core functions of OpenStack Networking is to provide connectivity to
and from instances by dynamically configuring the virtual and/or physical network
infrastructure in the cloud. Before instances can be utilized in a useful manner, an
underlying switching infrastructure must be configured.

In this chapter, you will be introduced to two networking plugins available in

the Havana release of OpenStack: LinuxBridge and Open vSwitch (OVS). Both
networking plugins are known as monolithic plugins, which means only one of them
can be active at any given time. They are deprecated in future releases in favor of
ML2, the modular layer 2 plugin for Neutron first introduced in Havana. ML2 can be
configured to use multiple layer 2 technologies simultaneously. The configuration of
ML2 is outside the scope of this chapter, but has been included in the appendix.

Each networking plugin has unique requirements and both provide connectivity
to instances and other virtual networking resources in their own particular ways.
You will be guided through the installation and configuration of both plugins in

anticipation of creating networks and instances in later chapters.

Providing layer 2 connectivity to
instances

Neutron and Nova work in tandem to configure networking on physical servers
in the cloud. The LinuxBridge and Open vSwitch plugins provide both Neutron
and Nova with the methods to provide connectivity to instances and other
network resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Virtual network interfaces

By default, OpenStack leverages KVM, a kernel-based virtual machine, to provide
a virtualization infrastructure to the Linux kernel that utilizes the hardware
virtualization features of various processors.

When an instance is booted for the first time, a virtual network interface is created on
the host that is referred to as a tap interface. The tap interface corresponds directly to
a network interface within the guest instance. This action results in the host exposing
the guest instance to the physical network.

In OpenStack, the name of the tap interface corresponds to the Neutron port
UUID, or unique identifier, that the instance is plugged in to. The correlation of
the tap interface name and Neutron port UUID is simply cosmetic, and the naming
convention means that tap interface names should persist after a reboot of the host.
An example of this behavior can be seen in later chapters.

Bridging

Neutron leverages the concept of network bridges to provide connectivity to and
from instances. Network bridging is described as the action of connecting two or
more layer 2 networks to create a single aggregate network. A Linux bridge is a
virtual interface that connects multiple network interfaces. In Neutron, a bridge
will usually include a physical interface and one or more virtual or tap interfaces.
A physical interface includes Ethernet interfaces, such as etho, and bonded
interfaces consisting of one or more Ethernet interfaces or virtual VLAN interfaces
of either type. You can connect multiple physical or virtual network interfaces to a
Linux bridge.

In normal operation, a network interface is in non-promiscuous mode, which means
that when the interface receives a frame that is not directly addressed to it or is not a
broadcast frame, then the interface drops that frame. In order to serve in a bridge, the
physical network interface must be placed in promiscuous mode. In the promiscuous
mode, the interface allows all frames through, thus allowing the host to see and
process frames intended for other machines or network devices.

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The following diagram provides a high-level view of a Linux bridge leveraged

by Neutron:
ethO \ MGMT & AP
Single IP address for ethO T Net
MGMT & API
eth0 |«
i ST Lw
Mo | =0
eth0 [«—— K P brehtl | a7 External
>] ethl
v T (Linux Bridge) Networks
My M
0 t@p2
[emo o1 | .
VM2 L
Figure 4.1

In the preceding figure, the Linux bridge br-eth1 contains a single physical interface
(eth1) and three virtual interfaces: tapo, tapl, and tap2. The three tap interfaces
correspond to a network interface within their respective guest instance. Traffic from
etho on an instance can be observed on the respective tap interfaces as well as the
bridge interface and the physical interface in the bridge.

Configuring the bridge interface

In this installation, the physical network interface eth1 will be utilized for bridging
purposes. On both the controller and compute nodes, configure the eth1 interface
configuration file at /etc/sysconfig/network-scripts/ifcfg-ethl as follows:

nano /etc/sysconfig/network-scripts/ifcfg-ethl

DEVICE=ethl
TYPE=Ethernet
ONBOOT=yes

NM CONTROLLED=yes
BOOTPROTO=none

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Save the file and cycle the interface with the following command:

ifdown ethl; ifup ethl

If all goes well, the interface should be up and ready for use with either LinuxBridge
or Open vSwitch plugins:

3: ethl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP glen 1008
link/ether 00:1d:89:66:54:b9 brd ff:Ff:ff:ff:ff:FF

inett fed0::21d:9ff:febb:54b9/64 scope link
valid_1ft forever preferred_lft forever

Because the interface will be used in a bridge, it is important that an IP address not
be directly applied. If there is an IP applied to eth1, it will become inaccessible once
the interface is placed in a bridge.

Types of networks in Neutron

In Neutron, there are two categories used to describe networks that provide
connectivity to instances:

¢ Provider networks

¢ Tenant networks

Provider networks are networks, created by the OpenStack administrator, that
map directly to a physical network in the data center. Useful network types in this
category include flat (untagged) and VLAN (802.1q tagged). Other network types,
such as local and GRE, are configurable options but are rarely implemented as
provider networks.

Tenant networks are networks created by users to provide connectivity between
instances within a tenant. By default, tenant networks are fully isolated from each
other, including other networks within the same tenant.

Neutron supports a range of networking types, including:

e Local
e Flat
e VLAN

e VXLAN and GRE

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

A local network is one that is isolated from other networks and nodes. Instances
connected to a local network may communicate with other instances in the same
network on the same compute node, but are unable to communicate with instances
in the same network that reside on another host. Because of this designed limitation,
local networks are recommended for testing purposes only.

In a flat network, no VLAN tagging or other network segregation takes place. In
some configurations, instances can reside in the same network as host machines.

VLAN networks are networks that utilize 802.1q tagging to segregate network traffic.
Instances in the same VLAN are considered part of the same network and are in the
same layer 2 broadcast domain. Inter-VLAN routing, or routing between VLANEs, is
only possible through the use of a router.

Using the Open vSwitch plugin, GRE and VXLAN networks can be created that
leverage the concept of overlay networks. An overlay network is defined as a
computer network that is built on top of another network. Peer-to-peer tunnels are
built between all hosts in the cloud. These peer-to-peer tunnels create what is called a
mesh network, where every host is connected to every other host. A cloud consisting
of one controller and three compute nodes would have a fully meshed overlay
network that resembles the following diagram:

Controller ComputeO1

Compute02 Compute03

Figure 4.2

In the preceding diagram, a fully meshed GRE or VXLAN overlay network is built
between all hosts.

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

When GRE or VXLAN networks are created, a unique ID is specified that is
used to encapsulate the traffic. Network traffic between instances in the same
network, but on different hosts, is encapsulated on one host and sent to another
through the point-to-point GRE or VXLAN tunnel, where it is decapsulated and
forwarded accordingly.

Because GRE and VXLAN network traffic is encapsulated, many physical network
devices cannot communicate on these networks. As a result, GRE and VXLAN
networks are effectively isolated from other networks in the cloud without the use
of a Neutron router. More information on creating Neutron routers can be found in
Chapter 6, Creating Routers with Neutron.

Choosing a networking plugin

Neutron networking plugins are responsible for implementing features that provide
network connectivity to and from instances. The two plugins discussed in this book,
LinuxBridge and Open vSwitch, implement those features in different ways.

LinuxBridge
When configured to utilize the LinuxBridge networking plugin, Neutron relies

on the bridge and 8021q kernel modules to properly connect instances and other
network resources to the virtual switch and forward traffic.

In a LinuxBridge-based network implementation, there are three distinct types of
virtual networking devices:

* Tap devices
* VLAN interfaces

* Linux bridges

A tap device is how a hypervisor such as KVM implements a virtual network
interface card. These virtual interfaces on the host correspond to an interface inside
the guest instance. An Ethernet frame sent to the tap device is received by the guest
operating system.

Linux supports 802.1q VLAN tagging through the use of virtual VLAN interfaces.
The kernel can send and receive VLAN-tagged packets when a VLAN interface
named ethX.<vlan> has been created and properly configured. The VLAN
interface is associated with its physical interface, ethx.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

A Linux bridge is a virtual interface that connects multiple network interfaces. In
Neutron, a bridge will usually include a physical interface and one or more virtual or
tap interfaces. A physical interface includes Ethernet interfaces, such as etho, ethi,
and so on; bonded interfaces consisting of one or more Ethernet interfaces; or VLAN
interfaces of either type.

Internal network connections when using
LinuxBridge
For an Ethernet frame to travel from the virtual machine instance to a remote
physical network, it will pass through three or four devices inside the host:

* Tap interface: tapXxxx

* Linux bridge: brqyyyy

* VLAN interface: ethx. zzz (only when VLAN tagging is used)

* Physical interface: ethx

To help conceptualize how Neutron uses Linux bridges, a few examples of
LinuxBridge architectures have been provided.

VLAN

Imagine a basic OpenStack cloud that consists of a single network, VLAN 100,
for use with instances. The network architecture within the compute node would

resemble the following diagram:
ethO MGMT & API
Single IP address for etho [77¢(Net
MGMT/ API

ethO —

T~ |
o | ehbess
eth0 f—— K SR [------ . brayyyy Gethl| o[- External
L : brg ; ethl
v L 1aPDOX % Linux Bridge) | 100 Networks
VM, M [------ -
L tap2oox
eth0 [«— RSt —
VM, L

Figure 4.3

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

In the preceding diagram, three guest instances are connected to a Linux bridge,
named brqgYYYY, via their tap interfaces. A virtual interface named eth1.100 was
automatically created and placed in the bridge by Neutron. Eth1.100 is bound to
physical interface ethi. As traffic from instances traverses the Linux bridge and out
towards the physical interface, the eth1.100 interface tags that traffic as VLAN 100
and drops it on ethl. Ingress traffic towards the instances through ethi is inversely
untagged by eth1.100 and sent to the appropriate instance through the bridge.

Using the brctl show command, the preceding diagram can be realized in the Linux
CLI as the following:

brctl show

bridge name bridge id 5TP enabled interfaces
brgy Y Y <based on NIC> no ethl.1066

tap@000(
tap OO
tap X000

The bridge idin the output is dynamically generated based on the parent NIC of
the virtual VLAN interface. In this bridge, the parent interface is ethi.

The bridge name, beginning with the brq prefix, is generated based on the UUID
of the corresponding Neutron network it is associated with. Each network uses its
own bridge.

In the event that more than one VLAN network is needed, another Linux bridge will
be created which contains a separate virtual VLAN interface. The new virtual interface,
ethl.101, is placed on a new bridge, brqwwww, as seen in the following diagram:

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

tho MGMT & API
Single IP address for eth0 [~(Net
MGMT/ API

ethO —
>

eth0 [¢—— "— brgYYYY ;ethl.
(Linux Bridge) | 100

VM1
< Lo - External
9 ethl Networks
M
L
3 X brgWWWW eth1.
ethO [« 1 (Linux Bridge) : 101
VM, [

Figure 4.4

On the compute node, the preceding diagram can be realized as follows:

brctl show

bridge name bridge id STP enabled interfaces
brgY Y <based on NIC> no ethl.100

tap@XOXx
tapX00X
brgiWiviviv <based on NIC> ethl.101
tap2X00XX

Flat

A flat network in Neutron is meant to describe a network in which vlan tagging
does not take place. All instances in a flat network are effectively in the same layer 2

broadcast domain.

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Unlike VLAN-tagged networks, flat networks require that virtual VLAN interfaces
are not created. Instead, the physical interface of the host associated with the
network is placed directly in the bridge. This means that only a single flat network
can exist per bridge and physical interface.

The following diagram demonstrates a physical (untagged) interface residing in the
bridge in a flat network scenario:

ethO \ MGMT & API
Single IP address for eth0 [~ Net
MGMT/ API
eth0 [e—_
~
VMO
ethO |« K braYyYyYy - - External
— N ethl Networks
V (Linux Bridge)
VM, M
eth0 [«—|
VM2 L

Figure 4.5

In the preceding diagram, eth1 resides on the bridge named brqyvYy, along with
three tap interfaces that correspond to guest instances. The Linux kernel does not
perform any VLAN tagging on the host.

On the compute node, the preceding diagram can be realized as follows:

brctl show

bridge name bridge id STP enabled interfaces
brg¥YYY <based on NIC> no ethl

tap@00oo
tap 100K
tap2X00KK

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

When multiple flat networks are created, a separate physical interface must be
associated with each flat network. The following diagram demonstrates the use
of a second physical interface used for flat networks:

ethO
Single IP address for ethO " MGMJef‘ AP
MGMT & API
eth0 e—_
~
VMO
brgYYYY
(Linux Bridge)

eth0 ¢—— ethl ko

=z <=

External
Networks

o
T

braWWWwW. e
eth0 # (Linux Bridge) eth2
VM,

Figure 4.6

A

On the compute node, the use of two physical interfaces for separate flat networks
can be realized as follows:

brctl show

bridge name bridge id STP enabled interfaces
bra¥y Yy <based on NIC> no ethl

tap@XXXX
tapOOX

broiViviviv <based on NIC> eth2
tapZXXXX

With the two flat networks, the host does not perform any VLAN tagging on the
traffic traversing those bridges. Instances connected to the two bridges require a
router to communicate with one another.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Local

When creating a local network in Neutron, it is not possible to specify a VLAN

ID or physical interface. The LinuxBridge plugin agent will create a bridge and
place only the tap interface of the instance in the bridge. Instances in the same local
network will be placed in the same bridge and are free to communicate amongst one
another. Because the host does not have a physical or virtual VLAN interface in the
bridge, traffic between instances is limited to the host on which the instances reside.
Instances in the same local network that reside on different hosts will be unable to
communicate with one another.

The following diagram demonstrates the lack of physical or virtual VLAN interfaces
in the bridge:

Object Width ethO
Single IP address for ethO F-- MGMNT f‘ AP
MGMT/ API €
eth0 [e—_

.
brqYYyy
(Linux Bridge)
00 o

VM, K
v
M
L, brgWWWWwW
eth0 < (Linux Bridge)
VM,

Figure 4.7

In the preceding diagram, two local networks exist that utilize their respective
bridges, brqvyvy and brqwwww. Instances connected to the same bridge can
communicate with one another but with nothing else outside of the bridge.
There is no mechanism to permit traffic between instances on different bridges
or hosts when using local networks.

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Open vSwitch

Within OpenStack Networking, Open vSwitch operates as a software-based switch
that uses virtual network bridges and flow rules to forward packets between hosts.
Although it is capable of supporting many technologies and protocols, only a subset
of Open vSwitch features are leveraged by Neutron.

There are three main components of Open vSwitch that you should be aware of:

* Kernel module: The Open vSwitch kernel module is the equivalent of ASICs
on a hardware switch. It is the data plane of the switch where all packet
processing takes place.

* vSwitch daemon: The Open vSwitch daemon, ovs-vswitchd, is a Linux
process that runs in user space on every physical host and dictates how the
kernel module will be programmed.

* Database server: Open vSwitch uses a local database on every physical host
called the Open vSwitch Database Server (OVSDB) that maintains the
configuration of the virtual switches.

When configured to utilize the Open vSwitch networking plugin, Neutron relies on
the bridge and openvswitch kernel modules, along with user-space utilities, such

as ovs-vsctl and ovs-ofctl, to properly manage the Open vSwitch database and

connect instances and other network resources to virtual switches.

In an Open vSwitch-based network implementation, there are five distinct types of
virtual networking devices:

* Tap devices

* Linux bridges

* Virtual Ethernet cables

* OVS bridges

* OVS patch ports
Tap devices and Linux bridges were described briefly in the previous section, and
their use in an Open vSwitch-based network remains the same. Virtual Ethernet
(veth) cables are virtual interfaces that mimic network patch cables. An Ethernet
frame sent to one end of the veth cable is received by the other end, much like a real

network patch cable. Neutron makes use of veth cables to make connections between
various network resources, including namespaces and bridges.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

An OVS bridge behaves like a physical switch, only virtualized. Network interface
devices, including interfaces used by DHCP or router namespaces and instance tap
interfaces, connect to OVS bridge ports. The ports themselves can be configured
much like a physical switch port. Open vSwitch maintains information about
connected devices, including MAC addresses and interface statistics.

Open vSwitch has a built-in port type that mimics the behavior of a Linux veth cable
but is optimized for use with OVS bridges. When connecting two Open vSwitch
bridges, a port on each switch is reserved as a patch port. Patch ports are configured
with a peer name that corresponds to the patch port on the other switch. Graphically,
it looks something like the following diagram:

Virtual Patch Cable

port "
peer "patch-ovs-1"

ovs-br0 ovs-brli
(OVS Bridge) (OVS Bridge)

Figure 4.8

In the preceding diagram, two OVS bridges are cross-connected via a patch port on
each switch.

Open vSwitch patch ports are used to connect Open vSwitch bridges to each other,
while Linux veth cables are used to connect Open vSwitch bridges to Linux bridges,
or Linux bridges to other Linux bridges.

Internal network connections when using Open
vSwitch

For an Ethernet frame to travel from the virtual machine instance out through the
physical server interface, it will pass through nine devices inside the host:

* Tap interface: tapxxxx

* Linux bridge: gbryyyy

* Veth pair: gvbyYYY, qvoYyYy

* OVSintegration bridge: br-int

* OVS patch ports: int-br-ethX, phy-br-ethX
* OVS provider bridge: br-ethx

* Physical interface: ethx

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The Open vSwitch bridge br-int is known as the integration bridge. The
integration bridge is the central virtual switch that many network resources are
connected to, including instances, DHCP servers, routers, and more. When Neutron
security groups are enabled, however, instances are not directly connected to the
integration bridge. Instead, instances are connected to a Linux bridge that is cross-
connected to the integration bridge. The reliance on Linux bridges in an Open
vSwitch-based network implementation stems from the current inability to place
iptables rules on tap interfaces connected to Open vSwitch bridge ports, a core
function of Neutron security groups. To work around this limitation, tap interfaces
are placed on Linux bridges, which, in turn, are connected to the integration bridge.
More information on security group rules and how they are applied to interfaces can
be found in Chapter 8, Protecting Instances on the Network.

The Open vSwitch bridge br-ethx is known as the provider bridge. The provider
bridge provides connectivity to the physical network interface ethx, where X
represents the enumerated physical NIC, and is connected to the integration bridge
by a virtual patch cable provided by patch ports int-br-ethx and phy-br-ethX.

A visual representation of the architecture described can be seen in the
following diagram:

VM,

ethO

qbrOxxxx qbrixxxx qbr2xxxx
(Linux Bridge) (Linux Bridge) (Linux Bridge)

eehO0 | I
Single IP i phy-br-ethX :
address for

MGMT/API

ethO

MGMT & API External
Net Networks

Figure 4.9

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

In the preceding diagram, instances are connected to a Linux bridge via their
respective tap interfaces. The Linux bridges are connected to the OVS integration
bridge via a veth cable. OpenFlow rules on the integration bridge dictate how traffic
is forwarded through the virtual switch. The integration bridge is connected to the
provider bridge via an OVS patch cable. Lastly, the provider bridge contains the
physical network interface, which allows traffic to enter and exit the host onto the
physical network infrastructure.

When using the Open vSwitch plugin, each controller, network, or compute node

in the environment has its own integration bridge and provider bridge. The virtual
switches across nodes are effectively cross-connected to one another through the
physical network. More than one provider bridge can be configured on a host, but it
requires the use of a dedicated physical interface, or virtual VLAN interface in some
cases, per provider bridge.

Identifying ports on the virtual switch

Using the ovs-ofctl show <bridge> command, you can see a logical representation
of the specified virtual switch. The following screenshot demonstrates the use of this
command to show the switch ports of the integration bridge on compute01:

[root@compute@dl ~]# ovs-ofctl show br-int
OFPT_FEATURES_REPLY (xid=8x2): dpid:0000f6606ec02545
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actions: OUTPUT SET_VLAN_VID SET_VLAN_PCP STRIP_VLAN SET_DL_SRC SET_DL_DST SET_NW_SRC SET_NW_DST SET_NW_TOS SET_TP_SRC SET_TP_DST ENQUEUE
1(patch=-tun): addr:aa:93:5d:8b:bc:68
config:]
state:]
speed: @ Mbps now, @ Mbps max
2Cint-br-ethl): addr:02:7e:02:f9:9b:5e
config: ("]
stat: [*]
current: 1@GB-FD COPPER
speed: 10000 Mbps now, O Mbps max

S(qvoB4ca9eda-ab): addr:3a:39:e2:e2:df:ca
config: [*]
state: 0
current: 10GE-FD COPPER
speed: 10000 Mbps now, @ Mbps max
6(qvofeZdd48e-bc): addr:e6:98:c5:04:c7:85

1@GB-FD COPPER
9000 Mbps now, @ Mbps max
: addr:f6:60:6e:00:25:45

']
speed: @ Mbps now, @ Mbps max
OFPT_GET_CONFIG_REPLY (xid=0x4): frags=normal miss_send_len=0

The following are the components demonstrated in the preceding screenshot:

* Port number 1 is named patch-tun, and is one end of an OVS patch cable.
The other end connects to the tunnel bridge (not pictured).

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

* Port number 2 is named int-br-ethl and is one end of a Linux veth cable.
The other end connects to the provider bridge, br-ethi (not pictured).

* Port number 5 is named gvo04c49e4a-a6 and corresponds to a Neutron port
UUID starting with 04c49e4a-as.

* Port number 6 is named gvofe2do48e-bc and corresponds to a Neutron port
UUID starting with gvofe2do48e-bc.

* The LOCAL port is named br-int, and is used for management traffic to and
from the virtual switch.

The following screenshot demonstrates the switch configuration in a
graphical manner:

VMg VM,
etho | LeTthi
| KVM |

qbrixxxx
(Linux Bridge)

qbrfxxxx
(Linux Bridge)

eth0 .
Single IP : phy-br-eth1l
address for
MGMT/API
ethx 1 Lol
ethO
MGMT & API External
Net Networks

Figure 4.10

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Identifying the local VLANs associated with ports

Every port on the integration bridge connected to an instance or other network
resource is placed in a VLAN that is local to that host. Every Open vSwitch database
is independent of another and manages its own VLAN database that is not related
to the physical network infrastructure. Instances in the same Neutron network on a
particular host are placed in the same VLAN on the integration bridge.

Using the ovs-vsctl show command, you can identify the internal VLAN tag of all
ports on all virtual switches on the host. The following screenshot demonstrates this
command in action on compute01:

[root@computedl ~]1# ovs-vsctl show
f3b5fa36-6459-4000-b823-468e7dofedr
Bridge "br-ethl"
Port "br-ethl"
Interface “br-ethl”
type: internal
Port "ethl"
Interface “ethl”
Port “"phy-br-ethl”
Interface “phy-br-ethl"
Bridge br-tun
Port "gre-1"
Interface "gre-1"
type: gre
options: {in_key=flow, local_ip="172.18.0.101", out_key=flow, remote_ip="172.18.0.100"}
Port patch-int
Interface patch-int
type: patch
options: {peer=patch-tun}
Port br-tun
Interface br-tun
type: internal
Bridge br-int
Port "int-br-ethl"
Interface "int-br-ethl”
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port "quofeZd@48e-bc"
tag: 1
Interface "qgvofezdd48e-bc"
Port br-int
Interface br-int
type: internal
Port "qvo@4c4Seda-a6”
tag: 2
Interface "qvoB4c49eda-ab"
ovs_version: "1.11.8'

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Inside the integration bridge sit two ports, gvo04c49e4a-a6 and gvofe2do4se-

be, each assigned their own VLAN tag. These ports correspond to two instances in
two different Neutron networks as evidenced by their difference in VLAN IDs. The
VLAN IDs are arbitrarily assigned by Open vSwitch and may change upon restart of
the openvswitch service or after a reboot.

Programming flow rules

Unlike the LinuxBridge plugin architecture, the Open vSwitch plugin does not use
virtual VLAN interfaces on the host to tag traffic. Instead, the Open vSwitch plugin
agent programs flow rules on the virtual switches that dictate how traffic traversing
the switch should be manipulated before forwarding. When traffic traverses a virtual
switch, flow rules on the switch can transform, add, or strip the VLAN tags before
forwarding the traffic. In addition, flow rules can be added that drop traffic if it
matches certain characteristics. Open vSwitch is capable of performing other types of
actions on traffic, but those are outside the scope of this book.

By using the ovs-ofctl dump-flows <bridge>command, you can observe the
flows currently programmed on the specified bridge. The Open vSwitch plugin agent
is responsible for converting information about the network in the Neutron database
to Open vSwitch flows, and it constantly maintains the flows as changes are being
made to the network.

Flow rules for VLAN networks

In the following example, VLAN 30 represents a network in the data center and is
trunked down to both the controller and compute nodes. Traffic that enters physical
interface ethi in the provider bridge is processed by the flow rules on that bridge.
Have a look at the following screenshot:

[root@computedl ~]# ovs-ofctl dump-flows br-ethl

NXST_FLOW reply (xid=@x4):

cookie=0x0@, duration=6114.377s, table=@, n_packets=101, n_bytes=5984, idle_age=723, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:3@,NORMAL
cookie=@x@, duration=6120.067s, table=d, n_packets=31, n_bytes=2300, idle_age=830, priority=2,in_port=2 actions=drop

cookie=0x@, duration=6121.345s, table=0, n_packets=27866, n_bytes=1816978, idle_age=1, priority=1 actions=NORMAL

Flow rules are processed in order from top to bottom. The first two rules specify a
particular inbound port:

in_port=2

According to the diagram in Figure 4.10, traffic entering the bridge br-eth1 from
physical interface eth1 does so through port 1, not port 2, so the first two rules do
not apply. The traffic is forwarded to the integration bridge via the third rule:

cookie=0x0, duration=6121.345s, table=0, n packets=27866, n
bytes=1816978, idle age=1, priority=1 actions=NORMAL

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Flows with an action of NORMAL instruct Open vSwitch to act as a learning switch,
which means traffic will be forwarded out all ports until the switch learns and
updates its FDB table, or forwarding database. The FDB table is the equivalent of a
CAM or MAC address table. This behavior is similar to that of a hardware switch
that floods traffic out to all ports until it learns the proper path.

As the traffic exits port 2 on the provider bridge and enters port 2 on the integration
bridge, it is evaluated, in order, by the flow rules as follows:
[root@compute@l ~J# ovs-ofctl dump-flows br-int

NXST_FLOW reply (xid=0x4):
cookie=0x®, duration=6100.376s, table=0, n_packets=15, n_bytes=1904, idle_age=7@9, priority=3,in_port=2,dl_vlan=3@ actions=mod_vlan_vid:1,NORMAL

cookie=0x®, duration=6106.342s, table=0, n_packets=7, n_bytes=532, idle_age=6079, priority=2,in_port=2 actions=drop
cookie=0x@, duration=6107.76s, table=0, n_packets=126, n_bytes=7680, idle_age=7@9, priority=1 actions=NORMAL

The first rule performs the action of modifying the VLAN ID from the original VLAN
to a VLAN that is local to the integration bridge on the compute node when the
original VLAN ID is 30:

cookie=0x0, duration=6100.376s, table=0, n packets=15, n bytes=1904,
idle_age=709, priority=3,in port=2,dl vlan=30 actions=mod vlan_
vid:1,NORMAL

When traffic tagged as VLAN 30 is sent to an instance and forwarded through the
provider bridge to the integration bridge, the VLAN tag is stripped and replaced
with local VLAN 1. It is then forwarded to a port that corresponds to the appropriate
instance based on the MAC address. The second rule states that if traffic entering
port number 2 from the provider bridge is anything but VLAN 30, it is dropped:

cookie=0x0, duration=6106.342s, table=0, n packets=7, n bytes=532, idle_
age=6079, priority=2,in port=2 actions=drop

Return traffic from the instance through the integration bridge is tagged as VLAN 1
and is forwarded to the provider bridge by the third rule, as follows:

cookie=0x0, duration=6107.76s, table=0, n packets=126, n bytes=7680,
idle age=709, priority=1 actions=NORMAL

Once traffic hits the provider bridge, it is processed by the flow rules, as follows:

[root@compute@l ~J# ovs-ofctl dump-flows br-ethl
NXST_FLOW reply (xid=0x4):
cookie=0x@, duration=6114.377s, table=@, n_packets=101, n_bytes=5984, idle_age=723, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:30,NORMAL

cookie=0x@, duration=6120.067s, table=@, n_packets=31, n_bytes=2300, idle_age=83@, prio n_port=2 actions=drop
cookie=0x@, duration=6121.345s, table=d, n_packets=27866, n_bytes=1816978, idle_age=1, priority=1 actions=NORMAL

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

These rules should look familiar as they are the same flow rules on the provider
bridge shown earlier. This time, however, traffic from the integration bridge
connected to port 2 is processed by the first two rules:

cookie=0x0, duration=6114.377s, table=0, n packets=101, n bytes=5984,
idle age=723, priority=4,in port=2,dl vlan=1l actions=mod vlan
vid:30, NORMAL

cookie=0x0, duration=6120.067s, table=0, n packets=31l, n bytes=2300,
idle age=830, priority=2,in port=2 actions=drop

The first flow rule on the provider bridge checks the VLAN ID in the Ethernet
header, and if it is 1, modifies it to 30 before forwarding the traffic to the physical
interface. All other traffic from the integration bridge on port 2 that is not tagged as
VLAN 1 is dropped.

Flow rules for a particular network will not exist on a bridge if there are no instances
or resources scheduled to that node in that network. The neutron-openvswitch-
agent service on each node is responsible for creating the appropriate flow rules for
virtual switches on that node.

Flow rules for flat networks

Flat networks in Neutron are untagged networks, which means that there is

no 802.1q VLAN tag associated with the network when it is created. Internally,
however, Neutron treats flat networks like it does VLAN networks when
programming the virtual switches. Flat networks are assigned a local VLAN ID in
the Open vSwitch database just like a VLAN network, and instances in the same
flat network connected to the same integration bridge are placed in the same local
VLAN. However, there is a difference between VLAN and flat networks that can be
observed in the flow rules that are created on the integration and provider bridges.
Instead of mapping the local VLAN ID to a physical VLAN ID, and vice-versa, as
traffic traverses the bridges, the local VLAN ID is added to or stripped from the
Ethernet header by flow rules.

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

In another example, a flat network has been added in Neutron that has no VLAN tag,
as follows:

Created a new network:

admin_state_up

id Beec5d14-4d67-448d-abbd-81d7e9931217

name FLAT1

provider:network_type flat

provider:physical_network | physnetl

provider:segmentation_id

shared False

status ACTIVE

subnets

tenant_id bleSde8dlcfc45dbalsd9cbcb442alab
+ ___________________________

On the physical switch, this network is configured as the native VLAN (untagged)
on the switch port connected to ethl of compute01. An instance has been spun up on
the FLAT1 network that results in the following virtual switch configuration:

Bridge br-int
Port "int-br-ethl”
Interface “int-br-ethl"
Port “gvofeZdd48e-bc"
tag: 1
Interface "qvofe2dd48e-bc"
Part br-int
Interface br-int
type: internal
Port "gqvod4c4deda-ab”
tag: 3
Interface "qvoB4cd9eda-ab"”
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port “qvob7f563c@-cB"
tag: 2
Interface "gvob7f563c@-c@"

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Notice that the port associated with the instance has been assigned a local VLAN ID
of 2 even though it is a flat network. On the integration bridge exists a flow rule that
modifies the VLAN header of an incoming Ethernet frame when it has no VLAN ID
set. Have a look at the following screenshot:

[root@compute@l ~]# ovs-ofctl dump-flows br-int
NXST FIOW ranlv (vid-fva):

cookie=0x@, duration=558.978s, table=@, n_packets=1, n_bytes=70, idle_age=555, priority=3,in_port=2,vian_tci-0x0000 actions=mod_vlan_vid:2, NORMAL

AUratlon=o0Y.0r75, TdDLe=Y, N_pAackels=d, N_DyLes=Y, Ldie_age=o04, priori N_poi AL_VLAM=3¥ dACTLoNS=Moad_VLian_vid. 1, MrMAL
duration=565.53s, table=@, n_packets=5, n_bytes=398, idle_age=559, priority n_port=2 actions=drop
duration=566.935s, table=@, n_packets=31, n_bytes=2252, idle_age=342, priority=1 actions=NORMAL

The result is that incoming traffic is tagged as VLAN 2 and forwarded to instances
connected to the integration bridge that reside in VLAN 2.

As return traffic from the instance is processed by flow rules on the provider bridge,
the local VLAN ID is stripped and the traffic becomes untagged:
[root@compute@l ~J# ovs-ofctl dump-flows br-ethl

NXST_FLOW reply (xid=08x4):
ronki amfivit duratian—RA7 82Qc $+ohla-d n nnckatc—4d n mitac-?8R idla nna-fdl nrinrifu—d in nart=? Al vioan-1 ackionc-mad wlan wid-30 NNRMAL

cookie=0x0, duration=647.129s, table=@, n_packets n_bytes=686, idle_age=43@, prio _port=Z,dl_vlan=2 actions=strip_vlan,NORMAL

COUKLE=UXY, GUMUTLOM=032.4£5, TUDLE=0, N_PUCKETS=C0, (_OYTES=LD0%, LULE_Uge=04d, Priort L_POrt=c GCTLONS=urop

cookie=0x0, duration=654.687s, table=@, n_packets=2983, n_bytes=196849, idle_age=1, priority=1 actions=NORMAL

The untagged traffic is then forwarded out physical interface eth1 and processed by
the physical switch.

Flow rules for local networks

Local networks in an Open vSwitch implementation behave like those of a
LinuxBridge implementation: instances are connected to the integration bridge and
can communicate with other instances in the same network or local VLAN. There
are no flow rules created for local networks. Traffic between instances in the same
network remains local to the virtual switch, and by definition, local to the compute
node on which they reside. This means that DHCP and metadata services will be
unavailable to any instances not on the same host as those services.

Configuring a layer 2 networking plugin

Before you can start the neutron-server service and consume the Neutron API, a
networking plugin must be defined. The remainder of this chapter is dedicated to
providing instructions on installing and configuring the monolithic LinuxBridge and
Open vSwitch networking plugins.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Switching between the plugins is not a trivial operation and can result

in a complete loss of Neutron network configurations. For simplicity, I
recommend sticking with the LinuxBridge plugin.

Configuring the LinuxBridge plugin

Neutron was configured to use the LinuxBridge plugin at the end of the preceding
chapter to allow you to access the Neutron command-line interface. Other services,
such as Nova (Compute) and the DHCP agent, require that a plugin be specified
before they can be started as well.

Configuring Nova to use LinuxBridge

In order to properly connect instances to the network, Nova (Compute) must be
aware that LinuxBridge is the networking plugin. The 1inuxnet_interface_driver
and libvirt_vif driver configuration options in /etc/nova/nova.conf instruct
Nova (Compute) how to properly connect instances to the network.

Using crudini, update the values in nova. conf, and use the appropriate
LinuxBridge drivers on all nodes, as follows:

crudini --set /etc/nova/nova.conf DEFAULT linuxnet interface
driver linuxnet_ interface driver=nova.network.linux net.
LinuxBridgeInterfaceDriver

crudini --set /etc/nova/nova.conf DEFAULT libvirt vif driver nova.virt.
libvirt.vif.NeutronLinuxBridgeVIFDriver

Configuring the DHCP agent to use
LinuxBridge

For Neutron to properly connect DHCP namespace interfaces to the appropriate

network bridge, the DHCP agent must be configured to use the LinuxBridge
interface driver.

Using crudini, set the Neutron DHCP agent interface_driver configuration
option to use the LinuxBridge driver on the controller node:

crudini --set /etc/neutron/dhcp agent.ini DEFAULT interface driver
neutron.agent.linux.interface.BridgeInterfaceDriver

Additional DHCP agent configuration options can be found in the preceding chapter.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

LinuxBridge plugin configuration options
Once installed, the configuration file for the LinuxBridge plugin can be found at
/etc/neutron/plugins/linuxbridge/linuxbridge conf.ini.

The linuxbridge conf.ini file contains the following configuration options:

* tenant network_ type
®* physical interface mappings
* network vlan ranges

* firewall driver

Tenant network type

The tenant_network_type configuration option describes the type of network that
a tenant can create. When using the monolithic LinuxBridge plugin, the supported
tenant network types are flat, vlan, and local.

The ML2 plugin with LinuxBridge introduced support for VXLAN
overlay networking and the use of a vxlan tenant network. At the time of
’ writing, however, VXLAN is not supported by the CentOS 6.5 kernel.

The crudini utility can be used to update the plugin configuration file. Use the
following command to set tenant_network_type to vlan on all nodes:

crudini --set /etc/neutron/plugins/linuxbridge/linuxbridge conf.ini
vlans tenant network type vlan

If, at any time, you wish to change tenant_network_type, edit the plugin
configuration file appropriately on all nodes, and restart the LinuxBridge
plugin agent.

Physical interface mappings

The physical_interface mappings configuration option describes the mapping
of an artificial interface name or label to a physical interface in the server. When
networks are created, they are associated with an interface label, such as physnet1.
The label physnet1 is then mapped to a physical interface, such as ethi, by the
physical_interface_mappings option. This mapping can be observed as follows:

physical interface mappings = physnetl:ethl

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

The chosen label must be consistent between all nodes in the environment.
However, the physical interface mapped to the label may be different. A difference
in mappings is often observed when one node maps physnet1 to a 1 Gbit interface,
and another maps physnet1 to a 10 Gbit interface.

More than one interface mapping is allowed, and can be added to the list using a
comma as the separator:

physical interface mappings = physnetl:ethl,physnet2:eth2

In this installation, the eth1 interface will be utilized as the physical network
interface, which means that any VLANSs provided for use by tenants must traverse
ethil. The physical switch port connected to eth1 must support 802.1q VLAN
tagging if VLAN networks are to be created by tenants.

Using crudini, configure the LinuxBridge plugin to use physnet1 as the physical
interface label and eth1 as the physical network interface on all hosts:

crudini --set /etc/neutron/plugins/linuxbridge/linuxbridge conf.ini
linux bridge physical interface mappings physnetl:ethl

Network VLAN ranges

The network_vlan_ranges configuration option defines a range of VLANSs that
tenant networks will be associated with upon their creation. When the number of
available VLANSs reaches zero, tenants will no longer be able to create networks. This
configuration option is only useful when tenant_network_type is set to vlan. If left
blank, only local networks can be created, as the virtual VLAN interfaces will not be
created on the host.

Using crudini, associate a range of VLANs with physnetl for use with tenant
networks on all hosts:

crudini --set /etc/neutron/plugins/linuxbridge/linuxbridge conf.ini
vlans network vlan ranges physnetl:30:33

Firewall driver

The firewall driver configuration option instructs Neutron to use a particular
firewall driver for security group functionality. The two available options are:

® neutron.agent.firewall.NoopFirewallDriver

® neutron.agent.linux.iptables firewall.IptablesFirewallDriver

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

If you do not want to use a firewall and want to disable the application of

security group rules, set firewall driver toneutron.agent.firewall.
NoopFirewallDriver. If you do want to use an iptables-based firewall for security
groups, set firewall driver toneutron.agent.linux.iptables_firewall.
IptablesFirewallDriver. By default, the LinuxBridge plugin is configured to use
NoopFirewallDriver

In this installation, the iptables-based firewall will be used, and Neutron will handle
the configuration of the rules on the hosts. Using crudini, set the firewall driver
option on all hosts as follows:

crudini --set /etc/meutron/plugins/linuxbridge/linuxbridge conf.ini

securitygroup firewall driver neutron.agent.linux.iptables firewall.
IptablesFirewallDriver

Restarting services

Now that the OpenStack configuration files have been modified to use LinuxBridge
as the networking plugin, certain services must be started or restarted for the
changes to take effect.

The following services should be started on all hosts in the environment and
configured to start at boot:

service neutron-linuxbridge-agent start

chkconfig neutron-linuxbridge-agent on

The following services should be restarted on the controller node:

service openstack-nova-api restart
service neutron-server restart

service neutron-dhcp-agent restart

The following service should be restarted on the compute node:

service openstack-nova-compute restart

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Configuring the Open vSwitch plugin

The LinuxBridge and Open vSwitch monolithic plugins use different database
schemas, making sharing the database between them impossible. The use of ML2
solves this issue by creating a common schema for use by all plugins, not just
LinuxBridge and Open vSwitch:

1. On the controller node, create a new database specifically for use with the
Open vSwitch plugin using the MySQL client:
mysgl -u root -p

2. Use the password set earlier in the OpenStack installation. In this guide, the
password was set to openstack.

3. At the mysql> prompt, execute the following commands to create a database
named ovs_neutron and to grant permissions to the neutron user:

CREATE DATABASE ovs_neutron;

GRANT ALL PRIVILEGES ON ovs neutron.* TO 'neutron'@'localhost'
IDENTIFIED BY 'neutron';

GRANT ALL PRIVILEGES ON ovs_neutron.* TO 'neutron'@'s%';

QUIT;

Configuring Neutron to use Open vSwitch

Before the Open vSwitch plugin can be used, changes must be made to the
Neutron configuration on all hosts that include specifying the core plugin
and database options.

Configure Neutron to use the following MySQL database connection string using
values previously configured earlier in the chapter:

crudini --set /etc/neutron/neutron.conf database connection mysql://
neutron:neutron@controller/ovs_neutron

The core_plugin configuration must be set to use the Open vSwitch plugin
neutron.plugins.openvswitch.ovs neutron plugin.OVSNeutronPluginv2
as follows:

crudini --set /etc/neutron/neutron.conf DEFAULT core plugin neutron.
plugins.openvswitch.ovs neutron plugin.OVSNeutronPluginV2

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In addition to configuration file changes, a symbolic link named plugin.ini must
be created in the /etc/neutron/ directory that points to the appropriate plugin
configuration file before neutron-server will start. For Open vSwitch, the link can
be created with the following command:

1n -s /etc/neutron/plugins/openvswitch/ovs neutron plugin.ini /etec/
neutron/plugin.ini

The Neutron database must be stamped as the havana release before neutron-
server will start. Use the neutron-db-manage command to accomplish this task on
the controller only using the following command:

neutron-db-manage --config-file /etc/neutron/plugin.ini --config-file /
etc/neutron/neutron.conf stamp havana

If you previously used LinuxBridge and are switching to Open vSwitch, be sure to
remove the symbolic link pointing to the LinuxBridge plugin configuration file prior
to creating a new one for Open vSwitch.

Configuring Nova to use Open vSwitch

Nova must be aware that Open vSwitch is the networking plugin for instances
to be properly connected to the network. The 1inuxnet_interface_driver and
libvirt vif driver conﬁguration options in /etc/nova/nova.conf are two
settings that must be modified.

Using crudini, set the linuxnet_interface_driver and libvirt vif driver
options to their proper values on all hosts as follows:

crudini --set /etc/mova/nova.conf DEFAULT linuxnet interface driver
nova.network.linux net.LinuxOVSInterfaceDriver

crudini --set /etc/nova/nova.conf DEFAULT libvirt vif driver nova.virt.
libvirt.vif.LibvirtHybridOVSBridgeDriver

Configuring the DHCP agent to use Open vSwitch

To properly connect DHCP namespace tap interfaces to the integration bridge, the
DHCP agent must be configured to use the Open vSwitch interface driver.

Using crudini, set the DHCP interface_driver configuration option on the
controller to use the proper driver:

crudini --set /etc/neutron/dhcp agent.ini DEFAULT interface driver
neutron.agent.linux.interface.OVSInterfaceDriver

Additional DHCP agent configuration options can be found in the preceding chapter.

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Open vSwitch plugin configuration options

Once installed, the configuration file for the Open vSwitch plugin can be found at
/etc/neutron/plugins/openvswitch/ovs neutron plugin.ini

The ovs_neutron plugin.ini file contains the following commonly used
configuration options:
®* tenant network type
®* network vlan ranges
®* enable tunneling
®* tunnel type
® tunnel id ranges
® integration bridge
®* tunnel bridge
¢ local ip
®* bridge mappings
¢ firewall driver

® database

Bridge mappings

The bridge_mappings configuration option describes the mapping of an artificial
interface name or label to a network bridge configured on the server. Unlike

the LinuxBridge plugin that configures multiple bridges containing individual
virtual VLAN interfaces, the Open vSwitch plugin uses a single-bridge interface
containing a single physical interface and uses flow rules to add or remove VLAN
tags if necessary.

When networks are created they are associated with an interface label, such as
physnetl. The label physnet1 is then mapped to a bridge, such as br-eth1, that
contains a physical interface, such as eth1. The mapping of the label to the bridge
interface is handled by the bridge_mappings option. This mapping can be observed
as follows:

bridge mappings = physnetl:br-ethl

The label itself must be consistent between all nodes in the environment. However,
the bridge interface mapped to the label may be different. A difference in mappings
is often observed when one node maps physnet1 to a 1 Gbit bridge interface, and
another maps physnet1 to a 10 Gbit bridge interface.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

More than one interface mapping is allowed and can be added to the list using a
comma as the separator as seen in the following example:

bridge mappings = physnetl:br-ethl,physnet2:br-eth2

In this installation, physnet1 will map to br-ethil. Use crudini to add the bridge
mapping to the Open vSwitch plugin configuration file on all hosts as follows:

crudini --set /etc/neutron/plugins/openvswitch/ovs neutron plugin.ini
OVS bridge mappings physnetl:br-ethl

Configuring the bridges

Before the Open vSwitch plugin agent can be started, any bridge referenced in the
bridge_mappings configuration must exist on the host. Start the openvswitch
service on all hosts to proceed with the bridge configuration and configure it to
start at boot:

service openvswitch start

chkconfig openvswitch on

On all hosts, use the Open vSwitch utility ovs-vsctl to create bridge br-eth1 as
follows:

ovs-vsctl add-br br-ethl

Use the same command to add the physical interface eth1 to the bridge:

ovs-vsctl add-port br-ethl ethl

The physical switch port connected to eth1 must support 802.1q VLAN tagging if
VLAN networks of any type are to be created.

Tenant network type

As with the LinuxBridge plugin, the tenant_network_type configuration option
describes the type of network that a tenant can create. When using the Open vSwitch
plugin, the supported tenant network types are flat, vlan, local, gre, vxlan, and
none. Administrators are free to create any or all of the five networks at any time as
long as the proper configuration and architecture is in place.

Using crudini, set the tenant_network_type option to vlan on all hosts:

crudini --set /etc/neutron/plugins/openvswitch/ovs neutron plugin.ini
OVS tenant network type vlan

If at any time you wish to change tenant_network_type to something other than
vlan, edit the plugin configuration file appropriately on all nodes, and restart the
Open vSwitch plugin agent.

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Network VLAN ranges

The network_vlan_ranges configuration option defines a range of VLANSs that
tenant networks will be associated with upon their creation when tenant network_
type is set to vlan. When the number of available VLANSs reaches zero, tenants

will no longer be able to create networks. If left blank, only GRE, VXLAN, and local
networks can be created.

In the following example, VLANSs 30 through 33 are available for tenant
network allocation:

network vlan ranges = physnetl:30:33

Non-contiguous VLANSs can be allocated by using a comma-separated list as follows:

network vlan ranges = physnetl:30:33,physnetl:50:55,physnetl:66:70

The network_vlan_ranges configuration option must be configured for the Neutron
plugin agent to load properly. At a minimum, you must specify an interface label.

In this installation, physnet1 will be used with VLANs 30 through 33 available for
tenant allocation. Use crudini to set a value for network vlan ranges on all hosts
as follows:

crudini --set /etc/neutron/plugins/openvswitch/ovs neutron plugin.ini
OVS network vlan ranges physnetl:30:33

If at any time this configuration option is updated, you must restart the neutron-
server service for the changes to take effect.

Enable tunneling

To enable support for GRE or VXLAN, the enable_tunneling configuration option
must be set to true. Open vSwitch releases newer than Version 1.10 should support
both technologies. To determine the version of Open vSwitch you have installed, run
ovs-vsctl -V as follows:

[root@controller ~]# ovs-vsctl =V

ovs-vsctl (Open vSwitch) 1.11.9
Compiled Jul 3@ 2013 18:14:53

To enable GRE or VXLAN tunneling, set the configuration option manually, or use
crudini to set the option to true on all hosts:

crudini --set /etc/neutron/plugins/openvswitch/ovs neutron plugin.ini
OVS enable tunneling true

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Tunnel type

The tunnel_type configuration option specifies the type of tunnel supported by the
plugin. The two available options are gre and vxlan. If left unconfigured, the default
value is gre when enable_tunneling is set to true. If using vxlan, set this option
to vxlan.

As of this writing, both the Havana and Icehouse releases of OpenStack
have a bug that does not allow Neutron to properly determine the version
- of the installed Open vSwitch module in the CentOS and RHEL operating
systems. As a result, Neutron is unable to enable VXLAN support using
=" the Open vSwitch kernel module. For more information, please refer to
the following bug report:

https://bugs.launchpad.net/neutron/+bug/1322139

Tunnel ID ranges

When GRE- or VXLAN-based networks are created, each network is assigned a
unique ID, or segmentation ID, that is used to encapsulate traffic. As traffic traverses
the Open vSwitch tunnel bridge, the segmentation ID is used to populate a field in
the encapsulation header of the packet. For VXLAN encapsulation, the VXLAN ID
header field is used. For GRE packets, the KEY header field is used.

The tunnel_id_ranges configuration option is a comma-separated list of ID ranges
that are available for tenant network allocation when tunnel type is set to gre
or vxlan.

In the following example, segmentation IDs 1 through 1,000 are to be allocated to
tenant networks upon creation:

tunnel id ranges = 1:1000

This tunnel_id_ranges option supports non-contiguous IDs as well using a comma
separated list as follows:

tunnel id ranges = 1:1000,2000:2500

When all segmentation IDs have been exhausted, tenants will be unable to create
new networks. The OpenStack administrator is not bound to the ranges specified in
tunnel_id ranges and is free to create networks using any ID.

For this installation, set the value to 1:1000 using crudini on all hosts:

crudini --set /etc/neutron/plugins/openvswitch/ovs neutron plugin.ini
OVS tunnel id ranges 1:1000

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Integration bridge

The integration_bridge configuration option specifies the name of the integration
bridge used on each node. There is a single integration bridge per node. As
mentioned earlier, the integration bridge is the virtual switch where all virtual
machine VIFs, otherwise known as virtual network interfaces, are connected. The
default name of the integration bridge is br-int and should not be modified.

Before the Open vSwitch plugin agent can be started, the integration bridge must
exist on the host. On all hosts, use the Open vSwitch utility ovs-vsctl to create
bridge br-int as follows:

ovs-vsctl add-br br-int

You do not need to add an interface to the integration bridge, as Neutron is
responsible for connecting network resources to this virtual switch.

Tunnel bridge

The tunnel bridge is a virtual switch, similar to the integration and provider bridge,
and is used to connect GRE and VXLAN tunnel endpoints. Flow rules exist on this
bridge that are responsible for properly encapsulating and decapsulating tenant
traffic as it traverses the bridge.

The tunnel_bridge configuration option specifies the name of the tunnel bridge.
The default value is br-tun and should not be modified. It is not necessary to create
this bridge, as Neutron does it automatically.

Local IP

The local_ip configuration option specifies the local IP address on the node that
will be used to build the GRE or VXLAN overlay network between hosts when
enable_tunneling is set to true. Refer to Chapter 1, Preparing the Network for
OpenStack, for ideas on how the overlay network should be architected. In this
installation, all guest traffic through overlay networks will traverse VLAN 20
using a virtual VLAN interface off eth1.

The following table provides the IP address and virtual interface name to be created
on each host:

Hostname Interface IP Address
Controller ethl.20 172.18.0.100
Compute01 ethl.20 172.18.0.101

Using crudini, set the local_ip configuration option accordingly.

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

On the controller node, run the following command:

crudini --set /etc/meutron/plugins/openvswitch/ovs neutron plugin.ini
OVS local ip 172.18.0.100

On the compute node, run the following command:

crudini --set /etc/neutron/plugins/openvswitch/ovs neutron plugin.ini
OVS local ip 172.18.0.101

Configuring a virtual VLAN interface for overlay traffic

In CentOS, virtual VLAN interfaces (often called subinterfaces) are configured like
physical interfaces are. An interface file should be created in /etc/sysconfig/
network-scripts/ for both the physical interface and the subinterface you are
attempting to create.

Using a text editor, create the file /etc/sysconfig/network-scripts/ifcfg-
ethl.20 on each host. The following is the recommended configuration for eth1.20
on the controller node:

DEVICE=ethl.20

BOOTPROTO=none

ONBOOT=yes

IPADDR=172.18.0.100

NETMASK=255.255.255.0

VLAN=yes

The following is the recommended configuration for eth1.20 on the compute node:

DEVICE=ethl.20
BOOTPROTO=none
ONBOOT=yes
IPADDR=172.18.0.101
NETMASK=255.255.255.0

VLAN=yes

To activate the changes, cycle the interfaces using the ifdown and ifup commands
on each node:

ifdown ethl; ifdown ethl.20; ifup ethl; ifup ethl.20

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Issue a ping from the controller to the compute node using the 172.18.0.x IP address
to confirm connectivity:

[rootBcontroller ~]# ping 172.13.0.101

PING 172.18.8.101 (172.18.0.181) 56(84) bytes of data.

64 bytes from 172.18.0.101: icmp_seq=1 ttl=64 time=1.13 ms
64 bytes from 172.18.0.101: icmp_seg=2 ttl=64 time=0.168 ms

AC

=== 172.18.0.101 ping statistics ---

Z packets transmitted, Z received, @% packet loss, time 1488ms
rtt min/avg/max/mdev = 0.168/0.650/1.133/0.483 ms

Troubleshoot any issues before proceeding with the creation of overlay networks.

Firewall driver

The firewall_driver configuration option instructs Neutron to use a particular
firewall driver for the security group functionality. The two available options when
using OpenvSwitch are:

® neutron.agent.firewall .NoopFirewallDriver

®* neutron.agent.linux.iptables firewall.
OVSHybridIptablesFirewallDriver

If you do not want to use a firewall and want to disable the application of

security group rules, set firewall driver to use neutron.agent.firewall.
NoopFirewallDriver. If you do want to use an iptables-based firewall for security
groups, set firewall driver to neutron.agent.linux.iptables_ firewall.
OVSHybridIptablesFirewallDriver.

In this installation, the iptables-based firewall will be used, and Neutron will handle
the configuration of the rules on the hosts. You can set the configuration option
manually or use crudini to set the firewall driver option on all hosts as follows:

crudini --set /etc/meutron/plugins/openvswitch/ovs neutron
plugin.ini securitygroup neutron.agent.linux.iptables firewall.
OVSHybridIptablesFirewallDriver

Database

The Open vSwitch plugin configuration file must also be configured to use the
proper database before the plugin will operate.

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

On all hosts, configure the plugin to use the following MySQL database connection
string using the new database and values previously configured earlier in
the chapter:

crudini --set /etc/meutron/plugins/openvswitch/ovs neutron plugin.ini
database connection mysql://neutron:neutron@controller/ovs neutron

Restarting services to enable the Open vSwitch plugin

Now that the OpenStack configuration files have been modified to use Open vSwitch
as the networking plugin, certain services must be started or restarted for the
changes to take effect.

If you previously configured the LinuxBridge plugin and are switching to the Open
vSwitch plugin, be sure to stop the LinuxBridge plugin agent, and disable it from
starting at boot:

service neutron-linuxbridge-agent stop

chkconfig neutron-linuxbridge-agent off

The Open vSwitch plugin agent should be started on all nodes and configured to
start at boot:

service neutron-openvswitch-agent start

chkconfig neutron-openvswitch-agent on

The following services should be restarted on the controller node:

service neutron-server restart

service neutron-dhcp-agent restart

The following services should be restarted on the compute node:

service openstack-nova-compute restart

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Switching Infrastructure

Summary

Both the LinuxBridge and Open vSwitch networking plugins for Neutron provide
unique solutions to the same problem of connecting virtual machine instances to the
network. While Open vSwitch provides features not available with the monolithic
LinuxBridge plugin, including the use of overlay networks, its configuration,
administration, and troubleshooting methods are more complex. Open vSwitch
relies on flow rules to determine how traffic in and out of the environment should be
processed and requires both user-space utilities and kernel modules to perform such
actions. The LinuxBridge plugin requires the 8021q and bridge kernel modules, and
relies on the use of virtual VLAN interfaces on the host to provide VLAN tagging of
traffic. The advent of the ML2 plugin pairs VXLAN overlay networking technology
with the simplicity of Linux bridges. For most environments, I recommend the
LinuxBridge approach unless integration with OpenFlow controllers or the use

of a third-party solution or plugin is required.

In the next chapter, you will be guided through the process of creating different
types of networks to provide connectivity to instances. The process of creating
networks is agnostic across plugins, but the underlying network implementation
may vary based on the plugin in use.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks
with Neutron

In the previous chapter, you laid down the virtual switching infrastructure that
will support cloud networking features moving forward. In this chapter, you will
build OpenStack resources on top of this foundation. I will guide you through the
following tasks:

* Creating networks and subnets
* Attaching instances to networks
* Demonstrating DHCP and metadata services
Three major Neutron resources, networks, subnets, and ports were introduced in

Chapter 3, Installing Neutron. The relationship between these resources and instances,
DHCP, and metadata services can be seen in the following sections.

Network management

Neutron provides users with the ability to execute commands from the CLI that
interface with the Neutron API. To enter the Neutron client, type neutron in the
command prompt on the controller node:

[root@controller ~]# neutron

(neutron)

From the prompt, a number of commands that deal with the creation, modification,
and deletion of networks, subnets, and ports in the cloud can be executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

The primary commands associated with network management are:

®* net-create

®* net-delete

® net-list

®* net-update

® subnet-create
® subnet-delete
® subnet-list

® subnet-show

® subnet-update
® port-list

® port-show

® port-update

Whether you've chosen the LinuxBridge or Open vSwitch networking plugin, the
process to create, modify, and delete networks and subnets is the same. Behind
the scenes, however, the process of connecting instances and other resources to the
network differs between the two plugins.

In the previous chapter, I introduced two categories of networks that provide
connectivity to instances:

e Provider networks
¢ Tenant networks

While there are no real technical differences between a provider and a tenant
network, there are differences in how they are utilised by users of the cloud. Provider
networks are created by the OpenStack administrator and have attributes that

allow them to be connected to the external interfaces of routers, thereby providing
external network access to the instances behind them. When provider networks are
used as the gateway to the Internet and other external networks, they will often be
configured as flat networks or VLANSs and utilize an external router to properly
route traffic in and out of the cloud. Tenants are prevented from attaching instances
directly to external provider networks.

Tenant networks, on the other hand, are created by users and are isolated from
other networks in the cloud by default. The inability to configure the physical
infrastructure means that tenants should connect their networks to Neutron routers
when external connectivity is required. More information on the configuration and
use of Neutron routers can be found in Chapter 6, Creating Routers with Neutron.

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Managing networks in the CLI

To view the syntax necessary to create a network using the Neutron client,
type net-create -hatthe (neutron) prompt:

(neutron) net-create -h

usage: net-create [-h] [-f {shell,table}] [-c COLUMN]
[--variable VARIABLE] [--prefix PREFIX]

[--request-format {json,xml}]
[--tenant-id TENANT_ID]
[--admin-state-down] [--shared]
MAME

The usage syntax here fails to list all of the configurable properties of a provider
network. For reference, the following are the three provider attributes that can
be defined:

®* provider:network type

®* provider:physical network

® provider:segmentation id
Other attributes that can be set for provider networks include:

® router:external

* shared
Options that can be set for both provider and tenant networks include:

® admin-state-down

® tenant-id

The network_type provider attribute defines the type of network being created.
Available options include f£1at, vlan, local, gre, and vxlan, depending on the
networking plugin in use. As a provider network, an overlay network type such as
GRE or VXLAN would be a rare choice. However, the OpenStack administrator can
create GRE or VXLAN networks on behalf of tenants by specifying a tenant ID.

The physical_network provider attribute defines the physical interface that will be

used to forward traffic through the host. The value specified here corresponds to the
bridge mappings or physical_interface_mappings option set in the LinuxBridge
or Open vSwitch plugin configuration file.

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

The segmentation_id provider attribute specifies the unique ID for the network.

If you are creating a VLAN, the value used for segmentation_id should be the
802.1q VLAN ID trunked to the host. If you are creating a GRE or VXLAN network,
the segmentation_id value should be an arbitrary, but unique, integer not used by
any other network of the same type. This ID is used to provide network isolation
via the GRE key or VXLAN VNI header field, depending on the network. When
segmentation_id is not specified, one is automatically allocated from the tenant
range specified in the plugin configuration file. Users have no visibility or option to
specify an ID when creating networks. When all available IDs in the range available
to tenants are exhausted, users will no longer be able to create networks of this type.

The router:external attribute is a Boolean value that, when set to true, allows
the network to be utilized as a gateway network for Neutron routers. For more
information on Neutron routers, refer to Chapter 6, Creating Routers with Neutron.

The shared switch is a Boolean value that, when set to true, allows the network to
be utilized amongst all tenants. This attribute is available only for networks created
by administrators and is not available for networks created by users.

The admin-state-down switch is a Boolean value that, when set to true, means that
the network is not available upon creation.

Finally, the tenant-id option allows the administrator to create networks on behalf
of the tenants.

Creating a flat network in the CLI

If you recall from Chapter 4, Building a Virtual Switching Infrastructure, a flat network
is a network in which no 802.1q VLAN tagging takes place.

The syntax to create a flat network can be seen here:

Syntax: net-create --provider:network_type=flat
--provider:physical_network=<provider_bridge_label>
[--router:external=true] [--tenant-id TENANT_ID]

[--admin-state-down] [--shared]
MAME

A\l

~ Attributes in the [] brackets are considered optional and are
not required to create the network.

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The following is an example of using the Neutron net-create command to create
a flat network with the name MyFlatNetwork. The network will utilize a bridge
labeled physnet1 and can be shared by all tenants. The command is as follows:

(neutron) net-create --provider:network type=flat --provider:physical
network=physnetl --shared MyFlatNetwork

The output from the net-create command is as follows:

(neutron) net-create --provider:network_type=flat --provider:physical_network=physnetl --shared MyFlatNetwork
Created a new network:
S crrrr e cermeree s
| Field
ScCcococoocococoocococoocooo
admin_state_up
id

______________________________________ +
Value |
______________________________________ +

3b56346d-9f9a-4447-98f1-4ebar7dcdadbd

flat
physnetl

provider:network_type

provider:physical_network

provider:segmentation_id

shared

status

subnets

tenant_id
O Y R RO

|
|
|
|
|
|
True |
ACTIVE |
|
ble5Sde8dlcfc45d6al5d9clcb442a8ab
______________________________________ +

+
|
+
|
|
name | MyFlatNetwork
|
|
|
|
|
|
|
+

In the preceding output, the tenant ID corresponds to the admin tenant where the
net-create command was executed. As the network is shared, all tenants can create
instances and network resources that utilize the MyFlatNetwork network.

& You can only create one flat network per provider bridge, as there is
=" no mechanism to segment traffic.

Creating a VLAN in the CLI

A VLAN is one in which Neutron will tag traffic based on an 802.1q VLAN ID.
The syntax used to create a VLAN is provided in the net-create command:
net-create --provider:network_type=vlian

--provider:physical_network=<provider_bridge_label>
--provider:segmentation_id=<vlan_id>

[--router:external=true] [--tenant-id TEMANT_ID]
[--admin-state-down] [--shared]
NAME

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

A\l

~ Attributes in the [] brackets are considered optional and are
not required to create the network.

The following is an example of using the Neutron net-create command to create

a VLAN by the name of MyvLANNetwork. The network will utilize the same bridge

labeled physnet1, and the traffic will be tagged as VLAN ID 200. By specifying the
- -shared flag, the network can be shared by all tenants:

(neutron) net-create --provider:network type=vlan --provider:physical
network=physnetl --provider:segmentation id=200 --shared MyVLANNetwork

The resulting output is as follows:
(neutron) net-create rovider:network_type=vlan --provider:physical_network=physnetl --provider:segmentation_id=28@ --shared MyVLANNetwork

c4272cBb-4430-427a-a53
MyVLANNetwork

provider:network_type vlan

provider:physical_network | physnetl
provider:segmentation_id | 208

shared True

status ACTIVE

subnets

tenant_id bleSde8dlcfc45d6al5dIc@ch442aBab

* You can create more than one VLAN per provider bridge.
%‘\ Additional networks on the same bridge must have a unique
’ segmentation ID.

To create an additional network on the same physnet1 bridge, simply specify
another segmentation ID. In the following example, VLAN 201 is used for the new
network, MyVLANNetwork2:

(neutron) net-create --provider:network type=vlan --provider:physical
network=physnetl --provider:segmentation id=201 --shared MyVLANNetwork2

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The resulting output is as follows:

(neutron) net-create --provider:network_type=vlan --provider:physical_network=physnetl --provider:segmentation_id=201 --shared MyVLANNetwork2
Created a new network:

admin_state_up
id cb88384c-ebdl-4277-b@le-6f707170004f
name MyVLANNetwork2

provider:network_type vlan

provider:physical_network | physnetl
provider:segmentation_id 201

shared True

status ACTIVE

subnets

tenant_id bleSde8dl1cfc45d6al5dIc@cba4ZaBab

Creating a local network in the CLI

When an instance sends traffic on a local network, the traffic remains local to the
network bridge connected to the instance. Services such as DHCP and metadata
might not be available to instances on local networks, especially if they are located
on a different node.

To create a local network, use the following syntax:

Syntax: net-create --provider:network type=local
[--tenant-id TENANT ID] [--admin-state-down] [--shared]
NAME

When using the LinuxBridge plugin, a bridge is created for the local network, but no
physical or virtual VLAN interface is added. Traffic is kept local to this bridge. Using
the Open vSwitch plugin, instances are attached to the integration bridge, and can
only communicate with other instances in the same local VLAN.

Listing networks in the CLI

To list the existing networks in Neutron, use the net-1ist command as follows:

(neutron) net-list

3b56346d-9f9a-4447-98f1-4eb470cdadbd | MyFlatNetwork
c4272clb-4430-427a-a537-81bd733c2266 | MyVLANNetwork
cb88384c-ebd1-4277-b@1e-6f707170004f | MyVLANNetwork2

The list output provides the network ID, network name, and any associated subnets.
The OpenStack administrator can see all networks, while tenants can see shared
networks or networks that they have created.

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

Showing network properties in the CLI

To list the properties of a network, use the Neutron net - show command as follows:

Syntax:

net-show <network uuid or name>

The output of the command can be seen in the following screenshot:

(neutron) net-show c4Z272cOb-4430-427a-a537-81bd733cZ266

admin_state_up
id
name
provider:network_type
provider:physical_network
provider:segmentation_id
router:external
shared
status
subnets
tenant_id

+ ___________________________

True
c4272cBbb-4430-427a-a537-81bd7.
MyVLANNetwork

vlan

physnetl

208

False

True

ACTIVE

bleSde8dlcfc45d6alSd9cBcb442a8ab

Information about the specified network, including the network type, provider
bridge, segmentation ID, and more, can be observed in the net -show output.

Updating networks in the CLI

At times, it might be necessary to update the attributes of a network after it has been
created. To update a network, use the Neutron net -update command as follows:

Syntax: net-update <network uuid or name>

[--router:external] [--shared] [--admin-state-up]

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Provider attributes are among those that cannot be changed once a network has been
created. The following attributes, however, can be modified:

® router:external
®* shared

® admin-state-up

The router:external attribute is a Boolean value that, when set to true, allows
the network to be utilized as a gateway network for Neutron routers. For more
information on Neutron routers, refer to Chapter 6, Creating Routers with Neutron.

The shared switch is a Boolean value that, when set to true, allows the network to
be used by all tenants.

The admin-state-up switch is a Boolean value. When this is set to false, DHCP

and metadata services are no longer available in the network. The network interfaces
within the DHCP namespace are destroyed, and any instance that attempts to obtain
or renew a lease will fail. When set to true, DHCP and metadata services are restored.

Deleting networks in the CLI

To delete a network, use the Neutron net -delete command and specify the UUID
or name of the network:

Syntax: net-delete <network uuid or name>

To delete a network named MyFlatNetwork, you can enter the following command:
(neutron) net-delete MyFlatNetwork

Alternatively, you can use the network's UUID:

(neutron) net-delete 3b56346d-9f9a-4447-98f1l-4eb470cdad6d

Neutron will successfully delete the network as long as there are no instances or
other network resources, including floating IPs or load balancer VIPs, utilizing it.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

Creating networks in the dashboard

Networks can be created in the dashboard either as an administrator or user.
Both have their own methods, which are described in the upcoming sections.

Using the Admin tab as an administrator

In order to create a network in the dashboard as the cloud administrator, perform the
following steps:

1. Navigate to Admin | System Panel | Networks:

n Networks

openstack Networks

| Project Network Name Subnets Associated Shared Status Admin State Actions
Admin] | admin MyFlatNetwork Yes ACTIVE UP Edit Network | More
nel
admin MyVLANNetwork Yes ACTIVE UP Edit Network | More
| admin MyVLANNetwork2 Yes ACTIVE up Edit Network = More

Displaying 3 items

2. Click on Create Network in the upper right-hand corner of the screen.
A window that lets us create a network will pop up:

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Create Network
Name Description:

Select a name for your network.
Project *

Select a project

Admin State
c]

Shared

External Network

Cancel Create Network

The available options include associating the network with a project (or tenant),
setting the admin state on or off, enabling sharing, and enabling the network to be
used as an external network for Neutron routers.

Notice that there is no option to specify either the type of network to be created or a
segmentation ID. Networks created via the dashboard are limited to network types
specified by the tenant_network_type configuration option defined in the Neutron
plugin configuration file. This limitation means most provider networks will need to
be created within the CLI.

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

Using the Project tab as a user

As a normal user, networks are created under the Project tab in the dashboard. To
create a network as a user, perform the following steps:

1. Navigate to Project | Manage Network | Networks:

n NetWOI‘kS Logged in as: user Settings Help Sign Out

openstack Networks

) Name Subnets Associated Shared Status Admin State Actions
O | MyFlatNetwork Yes ACTIVE UP
O | MyVLANNetwork Yes ACTIVE UP
TEST ' O | MyVLANNetwork2 Yes ACTIVE UP

Displaying 3 items.

From here, notice that there are no actions available next to the networks
currently defined. Even though the networks are shared, they are not
editable by users and must be edited by an administrator.

2. Click on Create Network in the upper right-hand corner of the screen.
A window that lets us create a network will pop up:

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Create Network

Network Name
From here you can create a new netwark.

MyUserMetwork In addition a subnet associated with the network can be
created in the next panel.

Admin State

]

Cancel Create

From the Network tab, you can define Network Name and Admin State (on or off).
Marking a network as Shared or External, as seen in the admin panel earlier, is only
available to networks created by an administrator.

Users creating networks within the dashboard are required to create a subnet at the
time the network is created. The process to create subnets will be explained later in
this chapter.

Subnets in Neutron

Once a network has been created, the next step is to create a subnet within the
network. A subnet in Neutron is a layer 3 resource, and can be an IPv4 or IPv6 network
defined by the classless inter-domain routing (CIDR) notation. CIDR is a method

of allocating IP addresses and routing IP packets, and it is based on variable-length
subnet masking (VLSM). VLSM allows a network to be divided into various sized
subnets, providing the opportunity to size a network more appropriately for local
needs. More information on CIDR and VLSM can be found on Wikipedia at

http://en.wikipedia.org/wiki/Classless Inter-Domain Routing.
A few examples of subnets in the CIDR notation are described as follows:

e 192.168.100.50/24 represents the IP address 192.168.100.50, its associated
routing prefix 192.168.100.0, and the subnet mask 255.255.255.0 (that is,
24 "1" bits)

e 172.16.1.200/23 represents the IP address 172.16.0.200, its associated routing
prefix 172.16.0.0, and the subnet mask 255.255.254.0 (that is, 23 "1" bits)

* 10.0.10.4/22 represents the IP address 10.0.10.4, its associated routing prefix
10.0.8.0, and the subnet mask 255.255.252.0 (that is, 22 "1" bits)

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

The CIDR notation can be used to quickly identify the total number of IP addresses
in a subnet. For example, the subnet mask 255.255.255.0 in the CIDR notation is /24.
To determine the number of host IP addresses available in /24, subtract 24 from 32 or
from the total number of bits in an IPv4 address. Take the remainder, which is 8, and
use it as x in the following formula:

2* = number of addresses in a subnet

Using the following formula, it can be determined that there are 256 IP addresses

in /24 (2° = 256). One great thing about dealing with powers of two is that every
incremental increase of the exponent doubles the number of available host addresses.
The /23 subnet can be written as 2%, resulting in 512 addresses, and /22 can be
written as 2', resulting in 1024 addresses. On the other hand, every incremental
decrease of the exponent halves the number of available addresses. The /25 subnet
can be written as 27, resulting in 128 addresses, /26 can be written as 2°, resulting in
64 host addresses, and so on.

Not every address in the subnet might be useable, however, as the first and last
addresses are usually reserved as the network and broadcast addresses, respectively.
Neutron will not assign the first or last address of a subnet to resources, including
instances. Use the following formula to determine the total number of useable
addresses in a subnet when sizing your network. The x variable represents the
number of host bits available in the subnet mask:

2*-2 = number of useable addresses in a subnet

When creating a subnet, it is important to plan ahead, as neither the CIDR nor the
DHCP allocation pool is a currently updateable attribute. When instances and other
resources consume all of the available IP addresses in a subnet, devices can no
longer be added to the network. A new subnet will need to be created and added to
the network. Depending on your network infrastructure, this might not be an easy
change to implement.

Creating subnets in the CLI

To view the syntax necessary to create a subnet using the Neutron client, type
subnet-create -hinthe (neutron) prompt:

(neutron) subnet-create -h

usage: subnet-create [-h] [-f {shell,table}] [-c COLUMN]
[--variable VARIABLE][--prefix PREFIX]
[--reguest-format {json,xml}][--tenant-id TENANT_ID]

[--name NAME][--ip-version {4,6}] [--gateway GATEWAY_IP]
[-=no-gateway][--allocation-pool start=IP_ADDR,end=IP_ADDR]
[==host-route destination=CIDR,nexthop=IP_ADDR]
[--dns-nameserver DNS_NAMESERVER] [--disable-dhcp]

NETWORK CIDR

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The prefix attribute is not defined in the v2 API and can be safely ignored.

The tenant -id attribute specifies the tenant ID the subnet should be associated with.
This should be the same tenant associated with the parent network.

The name attribute specifies the name of the subnet. While you can create multiple
subnets with the same name, it is recommended that subnet names remain unique
for easy identification.

The ip-version attribute defines the version of the Internet protocol in use by the
subnet. Possible options include 4 for IPv4 and 6 for IPv6. IPv4 is the default when
the version is not specified.

The gateway attribute defines the gateway address for the subnet. When the subnet
is attached to the instance side of a Neutron router, the router's interface will be
configured with the address specified here. The address is then used as the default
gateway for instances in the subnet. If the subnet is attached to the external side of a
Neutron router, the address is used as the default gateway for the router itself. To see
this behavior in action, refer to Chapter 6, Creating Routers with Neutron.

The no-gateway attribute is a Boolean value that, when set to true, instructs
Neutron not to automatically reserve an IP for use as the gateway for the subnet. It
also triggers the injection of a metadata route via DHCP when enable_isolated
metadata is set to true in the DHCP configuration file.

The allocation-pool attribute defines the range of IP addresses within the subnet
that can be assigned to instances. Depending on the type of network in use, it is
possible for devices outside of OpenStack to utilize the same subnet. Instances can
be limited to a subset of addresses in the subnet so that they can coexist with devices
outside of the OpenStack cloud.

The host -route attribute defines one or more static routes to be injected via DHCP.
Multiple routes listed as destination and nexthop pairs can be separated by a
space. The default maximum number of routes per subnet is 20 and can be modified
in the /etc/neutron/neutron. conf file.

The dns-nameserver attribute sets the nameservers for the subnet. The default
maximum number of nameservers is five per subnet; this can be modified in the
/etc/neutron/neutron. conf file.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

The disable-dhcp attribute is a Boolean value that, when set to true, disables
DHCEP services for the subnet. Instances that rely on DHCP to procure or renew
a lease might lose IP connectivity when DHCP is disabled.

The NETWORK argument defines the network the subnet should be associated with.
Multiple subnets can be associated with a single network as long as the subnet does
not overlap with another in the same network. NETWORK can be the UUID or the name
of a network.

The cIDR argument defines the CIDR notation of the subnet being created.

M Despite the syntax output here, both the NETWORK and CIDR arguments
Q are positional arguments and should be placed at the beginning of the
subnet -create command, before any other options.

Creating a subnet in the CLI

A subnet can be created from within the Neutron client using the subnet-create
command, as follows:

Syntax: subnet-create NETWORK CIDR --name <name> --ip-version=4
--gateway=<gateway ip> --allocation-pool start=<start addr>,end=<end
addr> --dns-nameservers <dns serverl> <dns server2>

To demonstrate this command in action, a request has been made to create a subnet
within the MyFlatNetwork network with the following characteristics:

* Internet Protocol: [Pv4

* Subnet: 192.168.100.0/24

* Subnet mask: 255.255.255.0

* External gateway: 192.168.100.1

e DNS servers: 8.8.8.8,8.8.4.4

To create the subnet and associate it with MyFlatNetwork, the following syntax can
be used:

(neutron) subnet-create MyFlatNetwork 192.168.100.0/24 --name
MyFlatSubnet --ip-version=4 --gateway=192.168.100.1 --allocation-pool sta
rt=192.168.100.2,end=192.168.100.254 --dns-nameservers 8.8.8.8 8.8.4.4

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

M Using - -dns-nameservers rather than - -dns-nameserver
Q allows you to specify more than one nameserver address using a
space-separated list.

The output of the preceding command is seen in the following screenshot:

(neutron) subnet-create MyFlatNetwork 192.168.100.8/24 --name MyFlat5ubnet --ip-version=4 --gateway=192.168.100.1
==allocation-pool start=192.168.100.2,end=192.168.100.254 --dns-nameservers 5.8.8.8 8.8.4.4
Created a new subnet

| Value

P
allocation_pools {"start '192.168.100. 2
cidr 192.168.100.0./24
dns_nameservers 8.8.4.4

8.8.8.8

enable_dhcp True

gateway_ip 192.168.100.1

host_routes

id 739b5bfd-d224-45bc-89b3-b29147bed?5d

ip_version 4

name MyFlatSubnet

network_id 3b56346d-9f9a-4447-98f1-4eb470cdadbd

tenant_id bleSdeddlcfc45d6al5d9c@ch442a8ab
mmmmmmmmmmm——————

Listing subnets in the CLI

To list existing subnets in Neutron, use the subnet-1ist command, as shown in the
following screenshot:

(neutron) subnet-list

| allocation_pools

4o mmmm oo e
39b5bfd-d224-45bc-89b3-b29147be@75d | MyFlatSubnet | 192.168.100.8/24 | {"start": "192.168.1008.2 end": "192.168.100.254"} |
o o o Hmmmmmmmmmoeee Hmmmmmmmmmmmemeoo e +

The list output provides the subnet ID, subnet name, CIDR notation, and the
DHCP allocation range of all subnets when executed as an administrator. As a user,
the command returns subnets within the tenant or subnets associated with shared
networks.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

Showing subnet properties in the CLI

To list the properties of a subnet, use the Neutron subnet - show command, as shown
in the following screenshot:

(neutron) subnet-show 739bSbfd-d224-45bc-89b3-b29147be@75d

| Value
__ +
allocation_pools | {"start": "192.168.108.2", "end": "192.168.100.254"}

|
cidr 192.168.100.0/24 |
dns_nameservers 8.8.4.4 |

8.85.8.8 |
enable_dhcp True |
gateway_ip 192.168.108.1 |
host_routes |
id 739b5bfd-d224-45bc-89b3-b29147be@75d |
ip_version 4 |
name MyFlatSubnet |
network_id 3b56346d-9f9a-4447-98f1-4ebd 7@cdadoed |
tenant_id ble5de8dlcfc45dbalSdIcdch4d2aiab |
e +

Updating a subnet in the CLI

To update a subnet in the CLI, use the Neutron subnet -update command:

(neutron) subnet-update -h

usage: subnet-update [-h] [--request-format {json,xml}] SUBNET

Not all the attributes of a subnet can be updated after it has been created. The
following attributes can be updated:

®* dns nameservers

* enable dhcp

* gateway ip

®* host routes

Attempting to update an attribute not listed here might result
s in a 400 Bad Request error being returned.

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The dns-nameservers attribute sets the nameservers for the subnet. To update the
nameservers in a subnet, use the Neutron subnet-update command and specify
the new nameservers in a space-separated list with the dns_nameservers option,
as seen in the following command:

(neutron) subnet-update <subnet uuid or name> --dns-nameservers <dns
serverl> <dns server2>

The enable-dhcp attribute is a Boolean value that, when set to true, enables DHCP
services in the subnet. To enable or disable DHCP in a subnet, use the Neutron
subnet -update command and specify true or false as follows:

(neutron) subnet-update <subnet uuid or name> --enable-dhcp=<true|false>

The gateway_ip attribute sets the default gateway for the subnet. To overwrite an
existing gateway address, use the Neutron subnet -update command and specify
a new value for gateway_ip, as shown in the following command:

(neutron) subnet-update <subnet uuid or name> --gateway ip=<gateway
address>

To completely remove a gateway address from the subnet, use the action=clear
directive as follows:

(neutron) subnet-update <subnet uuid or name> --gateway ip action=clear

Not all commands support the action=clear directive to
L destroy option values.

The host-routes attribute defines one or more routes to be injected via DHCP.
To update a subnet to provide additional routes, use the Neutron subnet-update
command with the host -routes option, as demonstrated in the following command:

(neutron) subnet-update <subnet uuid or name> --host-routes type=dict
list=true destination=10.0.0.0/24,nexthop=192.168.100.5 destination=172.1
6.0.0/24,nexthop=192.168.100.10

The type=dict and list=true attributes are required to help

Python interpret the data being passed in the form of destination
’ and nexthop key/value pairs.

Using subnet-update to update the existing dns_nameservers or host_routes
value will result in the overwriting of existing values. To avoid possible network-
related downtime, care should be taken to ensure that workloads are not affected by
changes made to subnet attributes such as enable dhcp, gateway_ip, and others.
Changes made to these options can affect the running instances.

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

Creating subnets in the dashboard

Subnets can be created in the dashboard either as an administrator or user. Both have
their own methods, which are described in the upcoming sections.

Using the Admin tab as an administrator

To create a subnet as the cloud administrator, perform the following steps:

1. Navigate to Admin | System Panel | Networks, and click on the name of
the network you wish to add a subnet to, as in the following screenshot:

N EtWOTkS Logged in as: admin Settings Help Sign Out
Netwarks + Groato Network
[Project Network Name Subnets Associated Shared Status Admin State Actions
admin MyFlatNetwork MyFlatSubnet 192.168.100.0/24 Yes ACTIVE upP Edit Network | More
admin yVLAI\Ih#etworK Yes ACTIVE up Edit Network | More
admin MyVLANNetwork2 Yes ACTIVE up Edit Network | More

Displaying 3 items

2. Clicking on MyVLANNetwork provides a list of details of the network,
including the associated subnets and ports:

Network Detail: MyVLANNetwork

Network Overview

Name
MyVLANNetwork
D
c4272c0b-4430-4273-a537-81bd733c2266
Project ID
biebdeBd1cfc45d6a15d9c0cb442aBab
Status
ACTIVE
Admin State
up
Shared
Yes
External Network
Na
Provider Network
Network Type: vlan
Physical Network: physnet1
Segmentation 1D: 200

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. To add a subnet to the network, click on the Create Subnet button on the

right-hand side:
Subnets + Create Subnet
Name CIDR IP Version Gateway IP Actions

No items to display.

Displaying 0 itams

4. A window will appear that will allow you to define the properties of
the subnet:

| . |
Create Subnet

Subnet *

Subnet Name You can create a subnet associated with the network.

MyVLANSubnet Advanced configuration are available at "Subnet Detail®
tab.

Network Address

10.200.0.0/24

IP Version *

IPv4

A

Gateway IP

Disable Gateway

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

5. Each option pictured here corresponds to an option available with the
Neutron subnet -create command. Clicking on Subnet Detail reveals
additional configuration options:

Create Subnet

= Subnet Detail

Enable DHCP

o

Allocation Pools

You can specify additional attributes for the subnet.

DNS Name Servers

8.8.8.8

Host Routes

6. To complete the creation of the subnet, click on the blue Create button.

Using the Project tab as a user

In the dashboard, users are required to create networks and subnets at the same time.
To create a network and subnet as a user, perform the following steps:

1. Navigate to Project | Networks, and click on the Create Network button,
as shown in the following screenshot:

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

n Networks

openstack Networks

Name Subnets Associated
Project MyFlatNetwork MyFlatSubnet 192.168.100.0/24
MyVLANNetwork
TEST MyVLANNetwork2

Displaying 3 items

Status

ACTIVE

ACTIVE

ACTIVE

Logged in as: test Sefttings Help Sign Out
Admin State Actions

up

upP

up

2. Clicking on Create Network will open a window where you can specify the

network and subnet details:

Create Network

MNetwork et *

Network Name

Admin State

o

From here you can create a new network.
MyUserNetwork In addition a subnet associated with the network can be
created in the next panel.

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

3. Asauser, you cannot create shared networks. This ability is reserved for
administrators. Clicking on the Subnet tab allows you to specify information
on the subnet, including the network address, CIDR, and gateway information:

Create Network

Subnet *

Tgreate Sunriet You can create a subnet associated with the new network,

in which case "MNetwork Address” must be specified. If
Subnet Name you wish to create a network WITHOUT a subnet,

uncheck the "Create Subnet" checkbox.
MyUserSubnet

Network Address

192.168.204.0/24

IP Version *

IPv4

Gateway IP

Disable Gateway

4. Finally, clicking on Subnet Detail allows you to specify details such as the
DHCP allocation pool, DNS nameservers, and static routes. Click on the blue
Create button to complete the creation of the network and subnet:

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

- =1
Create Network

= Subnet Detail

Enable DHCP

o

Allocation Pools

You can specify additional attributes for the subnet.

DNS Name Servers

8.8.8.8]

Host Routes

The ability to add additional subnets or delete the network entirely is
provided within the More menu, pictured in the following screenshot:

Networks + Create Network
] Name Subnets Associated Shared Status Admin State Actions
[| MyUserNetwork MyUserSubnet 192.168.204.0/24 No ACTIVE up Edit Network
| Add Subnet
[0 | MyFlatNetwork MyFlatSubnet 192.168.100.0/24 Yes ACTIVE upP
| Delete Network
O MyVLANNetwork Yes ACTIVE UpP
@] MyVLANNetwork2 Yes ACTIVE upP
Displaying 4 items

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

Neutron ports

As mentioned earlier in this chapter, a port in Neutron is a logical connection of

a cloud resource to a subnet. By storing the state of cloud networks in a database,
OpenStack is aware of every cloud resource or device connected to a Neutron subnet.
The information in the Neutron database is used to build the switching connections
at the physical or virtual switch layer through the networking plugin and agent.
Resources that utilize Neutron ports include virtual interfaces associated with
instances and interfaces associated with DHCP, router, and vip namespaces,

among others.

To retrieve a list of all Neutron ports, use the Neutron port-1ist command,
as shown in the following screenshot:

(neutron) port-list
mesesssssssssssossoossooooooooooooooo 4=mmmm messssssssssssoooos
| name | mac_address

| 8e955573-bdaz-4ed5-99f2-3aaa699fc804 | | fa:16:3e:ea "subnet_id" 5bfd-d224-45bc-89b3-b29147bed7 5 ip_address": "192.168.100.2"} |
| dc5145c1-8ca3-4354-94b2-998495899708 | | fa: “subnet_: ac2b42-942b-41d6-9e47-d11fcad8512 ip_address 92.168.204.2"} |

Using the Neutron port - show command, it is possible to determine the details of a
particular port:

(neutron) port-show 8e955573-bdaz-4ed5-99f2-3aaa699f cBo4
e e +
| Field Value |
== ———
admin_state_up
allowed_address_pairs
binding:capabilities
binding:host_id
binding:vif_type
device_id
device_owner
extra_dhcp_opts
fixed_ips
id
mac_address
name
network_id
security_groups
status
tenant_id
fmmmmmm e mmmmm e ——————

{"port_filter": true}

controller.learningneutron. com

oVS

dhcpl58b3bbb-2cad-58ba-a72c-55cecB69f f7f-3b56346d-919a-4447-98f1-4eb4 7@ cdadbd
network:dhcp

{"subnet_id": "739b5bfd-d224-45bc-89b3-b29147bed?5d", "ip_address": "192.168.100.2"}
8e955573-bda2-4ed5-99f2-3aaa699f c804
fa:16:3e:ea:69:72

3b56346d-99a-4447-98f 1-4eba7@cdadbd

DOWN
bleSde8dlcfc45dbal5d9c@ch442alab

o o e -

[
i
I
i
[
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
[
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
[
i
[
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
[
I
i
I
i
I
i
I
i
I
i
I
i
I
i
I
i
[
I
i
I
i
I
i
I
i
I
i
I

+

The port here is owned by an interface used by a DHCP namespace. The network_id
field reveals the network to be 3b563463-9£9a-4447-98f1-4eb470cdaded, otherwise
known as MyFlatNetwork. The interface's MAC address corresponds to the mentioned
mac_address field, while the name of the interface corresponds to the Neutron

port UUID.

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[root@controller ~7# ip netns exec qdhcp-3b56346d-9f9a-4447-98f1-4eb47@cdadbd ip a
15: tap8e955573-bd: <BROADCAST,UP,LOWER_UP> mtu 1568 gdisc nogqueue state UNKNOWN
link/ether fa:16:3e:ea:69:72 brd ff:ff:ff:ff:ff:ff
inet 192.168.100.2/24 brd 192.168.100.255 scope global tapB8e955573-bd
inet 169.254.169.254/16 brd 169.254.255.255 scope global tap8e955573-bd
inett fe80::f816:3eff:feea:6972/64 scope link

valid_lft forever preferred_lft forever
: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 gdisc nogueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host
valid_1ft foregev preferred_lft forever

Attaching instances to networks

Instances can be attached to networks in a variety of ways. At the first boot,

an instance can be attached to a network using the nova boot command.

Running instances can be attached to networks using the nova interface-attach
command. Both methods are explained in the upcoming sections.

Attaching instances to networks using
Nova boot

Instances are attached to networks at the first boot through the nova boot command,
the dashboard, or the Nova API. The following nova boot flag provides a network
interface to an instance:

--nic net-id=<UUID of Neutron network>

By passing the - -nic flag multiple times, it is possible to attach an instance to more
than one Neutron network. The following nova boot command demonstrates the
procedure of connecting an instance to multiple networks at the first boot:

nova boot --flavor <flavor-id> --image <image-id> --nic net-id=<network-
uuidl> --nic net-id=<network-uuid2> --nic net-id=<network-uuid3>
InstanceName

Nova attaches instances to networks with a virtual interface or VIF. Each VIF

has a corresponding Neutron port in the database. In the preceding example, the
InstanceName instance was connected to three different Neutron networks. When
using Open vSwitch, each VIF will have its own corresponding veth pair (gqvo, gva)
and Linux bridge (gbr). When using the LinuxBridge plugin, each VIF resides in
the Linux bridge associated with the attached network. Attaching multiple network
interfaces to an instance is referred to as multihoming.

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

- [
When multihoming an instance, neither Neutron nor the instance itself is
_aware of which network takes precedence over another. When attached
networks and subnets have their own respective gateway address set, an
K= instance's routing table can be populated with multiple default routes.
This scenario can wreak havoc on the connectivity and routing behavior of
an instance.

Attaching and detaching network interfaces

When an instance is first booted, Neutron creates a port that maps the MAC address
of the VIF and the allocated IP address to the instance.

There are times when it might be necessary to add an additional NIC to a running
instance and have it connected to a network. Using the nova interface-attach
command, you can specify an existing port or create a new port based on specific
network or IP requirements.

The nova interface-attach command syntax is as follows:

nova interface-attach [--port-id <port id>] [--net-id <net id>]
[--fixed-ip <fixed ip>]

<server>

The --port-id option allows users to attach an existing Neutron port to an
instance. The port must be one that is not currently associated with any other
instance or resource.

The - -net-id option allows users to attach a new interface to an instance from the
specified network. A new port that has a unique MAC address and an IP from the
specified network is created in Neutron. It is possible to attach an instance to the
same network multiple times using multiple nova interface-attach commands.

The --fixed-ip option can be used in conjunction with the - -net-id options and
allows users to specify a particular IP address for use rather than the next available
address in the subnet.

To detach an interface from an instance, use the nova interface-detach command
as follows:

nova interface-detach <server> <port id>

Interfaces detached from instances are removed completely from
s the Neutron port database.

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Adding secondary addresses to interfaces

The default behavior of Neutron is to associate a single IP address with a port.
Iptables rules are programmed by Neutron on the compute node that hosts the
instance that permits traffic from the instance matching the IP and MAC address of
the associated Neutron port. The purpose of this feature is to prevent IP and MAC
address spoofing. For more information on source address filtering and security
groups, see Chapter 8, Protecting Instances on the Network.

There are cases, however, when multiple IP addresses must exist on a single interface
in the guest OS. Common scenarios include web hosting with SSL certificates and
database clustering. A not-so-common scenario will be one in which an instance is
used to route traffic between multiple networks. In this case, additional IP addresses
will not be necessary, but the instance will be expected to route traffic from addresses
it does not own.

A feature was added to the Havana release of Neutron that addresses the need

to have multiple IP or MAC addresses on a single interface within an instance. A
Neutron extension called allowed-address-pairs provides the ability to update a
Neutron port with a set of allowed IP addresses and MAC addresses, other than the
IP address initially assigned to the port. When addresses are allowed through the
port via the allowed-address-pairs extension, iptables rules on the compute node
that hosts the instance are updated appropriately.

The allowed-address-pairs Neutron extension is currently only supported
= by the ML2, Open vSwitch, and VMware NSX plugins.

To get a better understanding of how this feature works, observe the standard iptables
rules on a compute node that disallows traffic from a particular instance if it is not
sourced appropriately. The following example is based on an instance whose interface
corresponds to the b67c75e5-4£9£-4770-ae72-dd6al144ddd26 Neutron port:

-A neutron-openvswi-sb67c75e5-4 -s 192.168.100.3/32 -m mac --mac-source
fa:16:3e:02:55:34 -j RETURN
-A neutron-openvswi-sb67c75e5-4 -j DROP

Based on the preceding example, traffic from the instance must be sourced from
192.168.100.3 and the source MAC address of fa:16:3e:02:55:34. Otherwise,
the traffic will be dropped.

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

To allow traffic to source from an additional IP or MAC address, use the Neutron
port-update as follows:

Syntax: port-update <port uuid> --allowed-address-pairs

type=dict list=true ip address=<ip addr w/ CIDR>, mac_address=<source mac
addr>

In the following example, I allowed traffic to be sourced from 192.168.100.253 in
addition to the instance's interface IP:

[root@controller ~J# neutron port-update 9369date-bbea-4317-9ffb-587a10f6eddb \

> --allowed-address-pairs type=dict list=true ip_oddress=192.168.108.253/32
Updated port: 9369date-bbea-4317-9ffb-587a1@f6eddb

The type=dict and 1list=true options are required to help Python
interpret the data being passed in the form of ip_address and
’ mac_address key/value pairs.

The changes to iptables on the compute host can be seen as follows:

=A neutron-openvswi-s9369dabe-b -s 192.168.100.253/32 -m mac --mac-source FA:16:3E:7@:95:FB -j RETURN
-A neutron-openvswi-s9369dabe-b -s 192.168.100.3/32 -m mac --mac-source FA:16:3E:7@:95:FB -j RETURN

-A neutron-openvswi-s9369date-b -j DROP

When a MAC address is not defined in the port -update command,
L the existing MAC address of the port is automatically used.

By defining the appropriate CIDR notation, it is possible to permit entire subnets
rather than an individual host IP. The iptables rules on the compute node will be
updated accordingly.

Exploring how instances get their
addresses

When DHCP is enabled on a subnet, a dnsmasq process is spawned in a network
namespace whose name corresponds to the network UUID. In the event that a
process already exists, the dnsmasqg process is updated to support the additional
subnet in the network.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Most instances rely on DHCP to obtain their associated IP address. DHCP goes
through the following stages:

* A DHCP client sends a DHCPDISCOVERY packet using a broadcast address.
This is usually 255.255.255.255.

* A DHCP server responds to the request with a DHCPOFFER packet. The
packet contains the MAC address of the instance that makes the request,
the IP address, the subnet mask, lease duration, and the IP address of the
DHCP server.

* Inresponse to the offer, the DHCP client sends a DHCPREQUEST packet back to
the DHCP server, requesting the offered address. Clients can receive multiple
offers but will only accept one offer.

* Inresponse to the request, the DHCP server will issue a DHCPACK packet or
acknowledgement packet to the instance. At this point, the IP configuration is
complete. The DHCP server sends other DHCP options such as nameservers,
routes, and so on to the instance.

Network namespaces associated with DHCP servers begin with gdhcp in their
names, followed by the network UUID. To view a list of namespaces on a controller,
type ip netns in the host prompt:

[root@controller ~]# ip netns
gdhcp-3b56346d-91f9%a-4447-98f1-4eb47@cdaded

qdhcp-e123e990-88af -4267-8c9b-4a37f5dd4a9¢c

The two namespaces correspond to two networks for which DHCP is enabled:

neutron net-list
| na

| MyFlatNetwork
5 | MyVLANNetwork
| MyVLANNetwork?
| MyUserNetwork
i e e e i

Within the gdhcp namespace, there exists a tap device that is used to connect
the namespace to the network. The following example demonstrates a network
namespace connected to the integration bridge when using the Open vSwitch plugin:

[root@controller ~]# ip netns exec qdhcp-3b56346d-9f9a-4447-98f1-4eb47@cdadbd ip a
15: tapB8e955573-bd ROADCAST,UP, LONER_UP> mtu 1508 qdisc nogueue state UNKNOWN
link/ether fa:16 ;ea:69:72 brd ff:ff:ff:ff:ff:ff
inet 192.168.108.2/24 brd 192.168.108.255 scope global tap8e955573-bd

inet 169.254.169.254/16 brd 169.254.255.255 scope global tapB8e955573-bd
inet6 feBO::f816:3eff:feeq:6972/64 scope link
valid_1ft forever preferred_lft forever

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

The interface can be found in the integration bridge, as shown in the
following screenshot:

[root@controller ~]# ovs-vsctl show
6f2f8f4e-86ec-4e7f-acdc-9128fcaZ23bda
Bridge br-int
Port "int-br-ethl"
Interface "int-br-ethl"

Port 'tapBe955573-bd’
tag: 2
Interface "tap8e955573-bd"
type: internal

When DHCP is not enabled on a subnet, an IP address is still associated with the
Neutron port of the instance, but a dnsmasg process is not spawned. It is then up to
the user to manually configure the IP address of the instance within the guest OS.

Exploring how instances retrieve their
metadata

In Chapter 3, Installing Neutron, I briefly discussed the process of how metadata is
provided to instances through the Neutron metadata proxy. There are two ways
in which an instance can get its metadata over the network: through the router
namespace or through the DHCP namespace. Both methods are described in the
upcoming sections.

Router namespace

Although routers will be described and configured in the next chapter, it is important
to know their function with regard to metadata. Neutron assumes that when a
gateway IP is set on a subnet, one of the following two things is true:

* The gateway IP belongs to a Neutron router

* The specified gateway will handle all the routing requests from instances,
including those to the metadata server

When a subnet is connected to a Neutron router that is serving as the gateway for

that subnet, the router is responsible for routing all traffic from the subnet, including
traffic to the metadata service. When instances make an HTTP request to the metadata
service at http://169.254.169.254, the Neutron router makes a routing decision
that involves examining iptables' chains and rules.

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Within the grouter namespace, there exists a PREROUTING rule that redirects the
HTTP request to a local listener at port 9697:

[root@controller ~]# ip netns exec qrouter-cZb8c@d3-0f9b-43b9-b993-72d04b8B6738 \

> iptables-save | grep 169.254.169.254
=A neutron-13-agent-PREROUTING -d 169.254.169.254/3Z -p tcp -m tcp --dport 80 -J REDIRECT --to-ports 9697

Using netstat within the namespace, you can see that there is a process that listens
on port 9697:

[root@controller ~]# ip netns exec grouter-cZb8c@93-8f9b-43b3-b293-72d04bBB6T3E \

> netstat -tlp

Active Internet connections (only servers)

Proto Recv-Q) Send-(Local Address Foreign Address State PID/Program name
tcp ("] 97 bt LISTEN 17550/python

The listener in the preceding example is the Neutron metadata proxy service that,
in turn, proxies the metadata request to the Nova metadata service:
[root@controller ~]# ip netns exec qrouter-c2b8c®33-0f9b-43b3-b993-72d04b886738 ps 17550

PID TTY STAT TIME COMMAND
17550 7 5 0:00 /usr/bin/python /usr/bin/neutron-ns-metadata-proxy --pid_file=/var/lib/neutron/external/pids/c2b8c@93-0f9b-43b9-b993-72d04b886738.pid --metada

ta_proxy_socket=/var/1lib/neutron/metadata_proxy --router_id=cZb8c@93-8f3b-43b9-b993-72d04b886738 --state_path=/var/lib/neutron --metadata_port=9697 --verbose --log-file=
neutron-ns-metadata-proxy-c2b8c@93-0fob-43b9-b993-72d04bBA6738. log --log-dir=/var/log/neutron

The DHCP namespace

When instances are connected to a network that is not connected to a Neutron router,
the instance must learn how to reach the metadata service. This can be done in a few
different ways, including:

* Setting a route manually on the instance

* Allowing DHCP to provide a route

When enable isolated metadata is setto True in the /etc/neutron/dhcp
agent.ini configuration file, each DHCP namespace provides a proxy to the
metadata service, much like the router namespace did earlier. Rather than use a
PREROUTING iptables rule to redirect the request to another port, the proxy service
listens directly on port 80, as shown in the following screenshot:

[root@controller ~]# ip netns exec qdhcp-el123e990-88af-4267-8c9b-4a37f5dd4a%¢c N\

> netstat -tlnp

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

top @ 192.168.204.2:53 0.0.0.0:* LISTEN 11425/dnsmasq
tcp 169.254.169.254:53 0.0.0.0:* LISTEN 11425/dnsmasq
tcp ? 9.0.90.0:80 0.0.0.0:* LISTEN 9335/python

tcp] fsS@: 1f816:3eff:fe98:450:53 :::* LISTEN 11425/dnsmasq

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Networks with Neutron

The process associated with this listener is the Neutron metadata proxy:

[root@controller ~J# ip netns exec qdhcp-el23e990-88af-4267-8c3b-4a37f5dd4a9c ps 9335
PID TTY STAT TIME COMMAND
9335 7 S 0:00 /usr/bin/python /usr/bin/neutron-ns-metadata-proxy --pid_file=/var/lib/neutron/external/pids/e123e990-88af-4267-8c9b-4a37f5dd4adc.pid

--METAGATA_ProXY_SOCKET=/var/ Lo/ NEUTron/METaaata_proxy --network_La-eicsessd-88af-4267-8c9b-4a37f5dd4ad¢ --state_path=/var/lib/neutron --metadata_port-80 --verb
ose --log-file=neutron-ns-metadata-proxy-el23e990-88af-4267-8c9b-4a37f5dd4adc. log --log-dir=/var/log/neutron

Adding a manual route to 169.254.169.254

Before an instance can reach the metadata service in the DHCP namespace at
169.254.169.254, a route must be configured to use the DHCP namespace interface
as the next hop rather than default gateway of the instance.

Observe the IP addresses within the following DHCP namespace:

[root@controller ~J# ip netns exec gqdhcp-el23e990-88af-4267-8c9b-4a37f5dd4a%c ip a
16: tapdc5145cl-0 BROADCAST,UP, LONER_UP> mtu 1500 gdisc noqueue state UNKNOWN
link/ether fa:16:3e:98:45:85 brd ff:ff:ff:ff:ff:ff
inet 192.168.204.2/24 brd 192.168.204.255 scope global tapdc5145cl-8c
inet 169.254.169.254/16 brd 169.254.255.255 scope global tapdc5145cl-@c
inetb feB@::f816:3eff:fed98:4505/64 scope link

valid_lft forever preferred_lft forever
: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 gqdisc noqueue state UNKNOWN
link/loopback ©0:00:00:00:090:00 brd 00:00:00:00:00:00
inet 127.0.08.1/8 scope host lo
inet6 ::1/128 scope host
valid_1ft forever preferred_lLft forever

To reach 169.254.169.254 from an instance in the 192.168.204.0/24 network,
the following ip route command could be issued that uses 192.168.204.2 as
the next hop:

ip route add 169.254.169.254/32 via 192.168.204.2

The process of adding a route to each instance does not scale well, especially when
multiple DHCP agents exist in the environment. A single network can be scheduled to
multiple agents that, in turn, have their own namespaces and I’ addresses in the same
subnet. Users will need prior knowledge of the IP to use in their route statement, and
the address is subject to change. Allowing DHCP to inject the route automatically is the
recommended method; this will be discussed in the following section.

Using DHCP to inject the route

When enable_isolated metadata is set to true and a gateway is not set in the
subnet, the DHCP service is capable of injecting a route to the metadata service via
the classless-static-route DHCP option, otherwise known as option 121.

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Once an instance connected to a subnet with the mentioned characteristics has been
created, observe the following routes passed to the instance via DHCP:

user@instance:~$ ip r
10.200.0.0/24 dev eth0 proto kernel scope link src 10.200.0.5
169.254.169.254 via 10.200.0.3 dev ethO

The next hop address for the highlighted metadata route is the IP address of the
DHCP server that responded to the DHCP request from the client. If there were
multiple DHCP agents in the environment and the same network was scheduled to
all of them, it is possible that the next hop address would vary between instances,
as any of the DHCP servers could respond to the request.

\ As - -no-gateway was specified as a way to force DHCP to pass the
~ metadata route, the instance has no default gateway. To work around
Q this, a 0.0.0.0/0 host route can either be added to the subnet at creation
or the subnet can be updated after it has been created.

Summary

This chapter laid the foundation for creating networks and subnets that can be
leveraged by routers, instances, and other cloud resources. The Neutron command-line
client can be used to manage networks, subnets, and ports and is highly recommended
over the limited Horizon dashboard for most administrative tasks.

For more information on network, subnet, and port attributes, as well as for guidance
on how to use the Neutron AP], refer to the OpenStack wiki at https://wiki.
openstack.org/wiki/Neutron/APIv2-specification. In addition, OpenStack
operations guides can be found at http://docs.openstack.org/openstack-ops/
content/.

In the next chapter, I will expand on the concept of Neutron routers and their
involvement in the network, including the configuration and use of floating IPs
to provide external connectivity to instances.

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with
Neutron

The Neutron L3 agent enables IP routing and NAT support for instances within
the cloud by utilizing network namespaces to provide isolated routing instances.
By creating networks and attaching them to routers, tenants can expose connected
instances and their applications to the Internet.

In the previous chapter, I explained the difference between provider and tenant
networks and demonstrated the process of booting and providing connectivity to
instances. In this chapter, I will guide you through the following;:

* Creating an external provider network

* Creating a router in the CLI and Horizon dashboard

* Attaching a router to both external and tenant networks

* Booting instances

* Demonstrating instance and namespace connectivity using LinuxBridge

* Demonstrating SNAT and NAT functionality provided by floating IPs

The neutron-13-agent service was installed on the controller node as part of the
overall Neutron installation process documented in Chapter 3, Installing Neutron.

Configuring the Neutron L3 agent

Before the neutron-13-agent service can be started, it must be configured. Neutron
stores the L3 agent configuration in the /etc/neutron/13_agent. ini file. The most
common configuration options will be covered here.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Defining an interface driver

Like previously installed agents, the Neutron L3 agent must be configured to use an
interface driver that corresponds to the chosen networking plugin.

Using crudini, configure the Neutron L3 agent to use one of the following drivers:

* For LinuxBridge:

crudini --set /etc/neutron/13 agent.ini DEFAULT interface driver
neutron.agent.linux.interface.BridgeInterfaceDriver

* For Open vSwitch:

crudini --set /etc/neutron/13_agent.ini DEFAULT interface_driver
neutron.agent.linux.interface.OVSInterfaceDriver

Setting the external network

The external network connected to a router is one that not only provides external
connectivity to the router and the instances behind it, but also serves as the network
from which floating IPs are derived. In Havana, each L3 agent in the cloud can be
associated with only one external network. In Icehouse, L3 agents are capable of
supporting multiple external networks.

To be eligible to serve as an external network, a provider network must have been
configured with its router:external attribute set to t rue. In Havana, if more than
one provider network has the attribute set to true, then the gateway external
network_id configuration option must be used to associate an external network to
the agent.

To define a specific external network, configure the gateway external network id
option as follows:

gateway external network id = <UUID of eligible provider network>

In Havana, if this option is left empty, the agent will enforce that only a single
external networks exists. The agent will automatically use the network for which
the router:external attribute is set to true. The default configuration contains
an empty or unset value and is sufficient for now.

Setting the external bridge

The L3 agent must be aware of how to connect the external interface of a router to
the network. The external network_bridge configuration option defines a bridge
on the host in which the external interface will be connected.

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In earlier releases of Havana, the default value of external network bridge was
br-ex, a bridge expected to be configured manually outside of OpenStack and
intended to be dedicated to the external network. As a result of the bridge not being
fully managed by OpenStack, provider attributes of the network created within
Neutron, including the segmentation ID, network type, and the provider bridge
itself, are ignored.

To fully utilize a provider network and its attributes, the external network_
bridge configuration option should be set to an empty, or blank, value. By doing

so, Neutron will adhere to the attributes of the network and place the external
interface of routers into a bridge that it creates, along with a physical or virtual
VLAN interface used to provide external connectivity. When using Open vSwitch,
the external interface of the router is placed in the integration bridge and assigned to
the appropriate local VLAN. With the LinuxBridge plugin, the external interface of
routers is placed into a Linux bridge that corresponds to the external network.

Using crudini, set the external network_bridge configuration option to an empty
value as follows:

crudini --set /etc/neutron/13 agent.ini DEFAULT external network bridge

Enabling the metadata proxy

When Neutron routers are used as the gateway for instances, requests for metadata
are proxied by the router and forwarded to the Nova metadata service. This feature
is enabled by default and can be disabled by setting the enable_metadata_proxy
value to false in the 13_agent . ini configuration file.

Starting the Neutron L3 agent

To start the neutron-13-agent service and configure it to start at boot, issue the
following commands on the controller node:

service neutron-13-agent start

chkconfig neutron-13-agent on

Verify the agent is running;:

service neutron-13-agent status

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

The service should return an output similar to the following:

[root@controller neutronl # service neutron-13-agent status

neutron-13-agent (pid 13501) is running...

If the service remains stopped, troubleshoot any issues that may be found in the
/var/log/neutron/13-agent.log log file.

Router management in the CLI

Neutron offers a number of commands that can be used to create and manage
routers. The primary commands associated with router management include:

® router-create

® router-delete

® router-gateway-clear

® router-gateway-set

® router-interface-add

® router-interface-delete

® router-list

® router-list-on-13-agent

® router-port-list

® router-show

® router-update

Creating routers in the CLI

Routers in Neutron are associated with tenants and are available for use only by
users within the tenant that created them. As an administrator, you can create
routers on behalf of tenants during the creation process.

To create a router, use the router-create command as follows:

Syntax: router-create [--tenant-id TENANT ID]

[--admin-state-down] NAME

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Working with router interfaces in the CLI

Neutron routers have two types of interfaces: gateway and internal. The gateway
interface of a Neutron router is analogous to the WAN interface of a hardware
router. It is the interface connected to an upstream device that provides connectivity
to external resources. The internal interfaces of Neutron routers are analogous to
the LAN interfaces of hardware routers. Internal interfaces are connected to tenant
networks and often serve as the gateway for connected instances.

Attaching internal interfaces to routers

To create an interface in the router and attach it to a subnet, use the router-
interface-add command as follows:

Syntax: router-interface-add <router-id> <INTERFACE>

In this case, INTERFACE is the ID of the subnet to be attached to the router.

In Neutron, a network may contain multiple subnets. It is
%“ important to attach the router to each subnet so that it properly
’ serves as the gateway for those subnets.

Once the command is executed, Neutron creates a port in the database that is
associated with the router interface. The L3 agent is responsible for connecting
interfaces within the router namespace to the proper bridge.

Attaching a gateway interface to a router

The external interface of a Neutron router is referred to as the gateway interface. A
router is limited to a single gateway interface. To be eligible for use as an external
network that can be used for gateway interfaces, a provider network must have its
router:external attribute set to true.

To attach a gateway interface to a router, use the router-gateway-set command
as follows:

Syntax: router-gateway-set <router-id> <external-network-id> [--disable-
snat]

The default behavior of a Neutron router is to source NAT all outbound traffic from
instances that do not have a corresponding floating IP. To disable this functionality,
append --disable-snat to the router-gateway-set command.

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Listing interfaces attached to routers

To list the interfaces attached to routers, use the router-port-1list command
as follows:

Syntax: router-port-1list <router-id>

The returned output includes the Neutron port ID, MAC address, IP address, and
associated subnet of attached interfaces.

Deleting internal interfaces

To delete an internal interface from a router, use the router-interface-delete
command as follows:

Syntax: router-interface-delete <router-id> <INTERFACE>

Here, INTERFACE is the ID of the subnet to be removed from the router. Deleting an
interface from a router results in the associated Neutron port being removed from
the database.

Clearing the gateway interface

Gateway interfaces cannot be removed from a router using the router-interface-
delete command. Instead, the router-gateway-clear command must be used.

To clear the gateway of a router, use the router-gateway-clear command
as follows:

Syntax: router-gateway-clear <router-id>

Neutron includes checks that will prohibit the clearing of a gateway interface in
the event that floating IPs or other resources from the network are associated with
the router.

Listing routers in the CLI

To display a list of existing routers, use the Neutron router-1list command
as follows:

Syntax: router-list [--tenant-id TENANT ID]

The returned output includes the router ID, name, external gateway network, and
the SNAT state.

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Users will only see routers that exist in their tenant or project. When
executed by an administrator, Neutron will return a listing of all
’ routers across all tenants unless, the tenant ID is specified.

Displaying router attributes in the CLI

To display the attributes of a router, use the Neutron router-show command
as follows:

Syntax: router-show <router id>

Among the output returned is the admin state, the external network, the SNAT state,
and the tenant ID associated with the router.

Updating router attributes in the CLI

To update the attributes of a router, use the Neutron router-update command
as follows:

Syntax: router-update <router id> [--admin-state-up]

[--routes destination=<network/cidr>,nexthop=<gateway ip>]

The admin-state-up attribute is a Boolean, which when set to false, does not allow
Neutron to update interfaces within the router. This includes not adding floating IPs
or additional internal interfaces to the router. Setting the value to true will allow
queued changes to be applied.

The routes option allows you to add static routes to the routing table of a Neutron
router. To add static routes, use the following syntax:

Syntax: neutron router-update <router id> --routes type=dict list=true
destination=<network/cidr>,nexthop=<gateway ip>

Adding static routes to a router is an undocumented and broken feature in Havana.
In Havana, the command results in the route being added to the database and
router show output, while not being added to the routing table. To resolve this,
add the following line to the [DEFAULT] block of the /etc/neutron/13_agent.ini
configuration file:

root _helper = sudo neutron-rootwrap /etc/neutron/rootwrap.conf

Restart the neutron-13-agent service for changes to take effect.

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Deleting routers in the CLI

To delete a router, use the Neutron router-delete command as follows:

Syntax: router-delete <router id>

Before a router can be deleted, all floating IPs and internal interfaces associated with
the router must be unassociated or deleted. This may require deleting instances or
detaching connected interfaces from instances.

Network Address Translation

Network Address Translation (NAT) is a networking concept that was developed
in the early 1990s in response to the rapid depletion of IP addresses throughout the
world. Prior to NAT, every host connected to the Internet had a unique IP address.

OpenStack routers support two types of NAT:

* one-to-one

* many-to-one

A one-to-one NAT is a method in which one IP address is directly mapped to
another. Commonly referred to as a static NAT, a one-to-one NAT is often used
to map a unique public address to a privately addressed host. Floating IPs utilize
one-to-one NAT concepts.

A many-to-one NAT is a method in which multiple addresses are mapped to a single
address. A many-to-one NAT employs the use of port address translation (PAT).
Neutron uses PAT to provide external access to instances behind the router when
floating IPs are not assigned.

For more information on network address translation, please visit Wikipedia at
http://en.wikipedia.org/wiki/Network address translation.

Floating IP addresses

Tenant networks, when attached to a Neutron router, are meant to utilize the router
as their default gateway. By default, when a router receives traffic from an instance
and routes it upstream, the router performs a port address translation and modifies
the source address of the packet to appear as its own external interface address. This
ensures that the packet can be routed upstream and returned to the router, where

it will modify the destination address to be that of the instance that initiated the
connection. Neutron refers to this type of behavior as Source NAT.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

When users require direct inbound access to instances, a floating IP address can be
utilized. A floating IP address in OpenStack is a static NAT that maps an external
address to an internal address. This method of NAT allows instances to be reachable
from external networks, such as the Internet. Floating IP addresses are configured on
the external interface of the router that serves as the gateway for the instance, which
is then responsible for modifying the source and/or destination address of packets
depending on their direction.

Floating IP Management
Neutron offers a number of commands that can be used to create and manage
floating IPs. The primary commands associated with floating IPs include:

* floatingip-associate

¢ floatingip-create

* floatingip-delete

¢ floatingip-disassociate

* floatingip-list

¢ floatingip-show

Creating floating IPs in the CLI
If you recall from previous chapters, IP addresses are not assigned directly to

instances. Instead, an IP address is associated with a Neutron port, and that port is
logically mapped to the virtual tap interface that connects instances to the network.

A floating IP, when used, is associated with a Neutron port. To create a floating IP
from within the CLI, use the Neutron floatingip-create command as follows:

Syntax: floatingip-create [--tenant-id TENANT ID]

[--port-id PORT ID] [--fixed-ip-address FIXED IP ADDRESS] FLOATING
NETWORK

Floating IP addresses are usable only within the tenant that created them.
An administrator is able to create floating IPs on behalf of tenants. Use the
- -tenant-id option to specify the tenant associated with the floating IP.

By specifying a port ID with the --port-id option, it is possible to immediately
associate a floating IP with a Neutron port upon creation.

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Because a port might have multiple IP addresses associated with it, it may be
necessary to define a specific fixed IP to associate the floating IP with. Use the
--fixed-ip-address option to specify the IP address you wish to associate the
floating IP with.

Associating floating IPs to ports in the CLI

Once a floating IP has been created, it is available for use by any user within the
tenant that created it. To associate a floating IP with an instance, it is necessary
to determine the Neutron port that is associated with the instance.

Use the neutron port-1list command to determine the port ID associated with the
MAC or IP.

For example, the port ID of an instance whose IP address is 192.168.200.2 can be
determined in the following way:

neutron port-list | grep 192.168.200.2 | awk '{print $2}'

b8e3a646-9c25-4957-a299-dd05e56d309d

Once the port ID has been determined, use the Neutron floatingip-associate
command to associate the floating IP with the port:

Syntax: neutron floatingip-associate [--fixed-ip-address

FIXED IP ADDRESS] FLOATINGIP ID PORT

Using the mentioned port ID and a floating IP whose ID is 0995863d-577d-46e2-
bc29-1d5ad9a29b4d, the floatingip-associate command can be used to associate
the floating IP with the port:

(neutron) floatingip-associate 0995863d-577d-46e2-bc29-1d5ad9%9a29b4d
b8e3a646-9c25-4957-a299-dd05e56d309d

Floating IPs are automatically created on the router connected
. to the subnet that is associated with the port.

Listing floating IPs in the CLI

To determine the association of floating IPs to Neutron ports and addresses, use the
Neutron floatingip-1ist command as follows:

Syntax: floatingip-list

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The output returned includes the floating IP ID, fixed IP address, floating IP address,
and associated port ID.

Displaying floating IP attributes in the CLI

To display the attributes of a floating IP in the CLI, use the Neutron
floatingip-show command as follows:

Syntax: floatingip-show <floating-ip-id>

The output returned includes the floating IP address, the external network, and the
associated fixed IP address, port, and tenant and router IDs.

Disassociating floating IPs in the CLI

To disassociate a floating IP from a port, use the Neutron floatingip-disassociate
command as follows:

Syntax: floatingip-disassociate <floating-ip-id>

Disassociating a floating IP from a port makes the floating IP available for use by
other users within the tenant.

Deleting floating IPs in the CLI

To delete a floating IP, use the Neutron floatingip-delete command as follows:
Syntax: floatingip-delete <floating-ip-id>

Deleting a floating IP returns the IP address to the allocation pool, where it can be
allocated to other network resources including routers, instances, or floating IPs.

Demonstrating traffic flow from instance
to Internet

To fully drive home the concept of Neutron routers, floating IPs, and connectivity
through the bridges, this section of the chapter is dedicated to a walkthrough that
leverages the network foundation that has been laid so far. A VLAN provider
network will be used as the external gateway network and a VLAN tenant network
will be used for instances. A Neutron router will be used to route traffic from

the tenant network to the Internet, and floating IPs will be used to provide direct
connectivity to instances.

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Setting the foundation

In this example, a Cisco ASA serves as the upstream network gateway and is
connected to the Internet. The inside interface of the Cisco ASA has a configured IP

address of 10.50.0.1/24 and will serve as the gateway for an external VLAN provider
network created here.

The following diagram is the logical diagram of the network to be built as part of
this demonstration:

€0/0 Interface

X.X.XX/24
Hardware

Router/Firewall

e0/1 Interface
10.50.0.1/24
qr Interface

10.50.0.100/24

{ Network)
Neutrgn Stoftware . Namespace <,
outer ’ (grouter) o
T “w-——"" tapInterface I/"_/ e S
or Interface | 10.300.324 | Network)
10.30.0.4/24 | T > amespace
| : (adhcp) S
e [\ S - T
ethO Interface ! lethO Interface
10.30.0.2/24 i 110.30.0.4/24
ethO ethO
— Provider Network (VLAN 50)
VMO VM .| T Tenant Network (VLAN 30)
Figure 6.1

In the preceding diagram, a Cisco ASA serves as the lead network device in front of
the OpenStack cloud.

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Creating an external provider network

In order to provide instances with external connectivity, a Neutron router must be

connected to a provider network eligible for use as an external network.

Using the Neutron net-create command, create a provider network with the
following attributes:

* Name: GATEWAY NET

* Type: VLAN

* Segmentation ID: 50

* Bridge: physnet1

¢ External: True

e Shared: True

The following screenshot displays the resulting output of the net-create command:

[root@controller ~]# neutron net-create --provider:network_type=vlian --provider:segmentation_id=5@ \

> --prov

ider:physical_network=physnetl --router:external=true --shared GATEWAY_NET

Created a new network:

admin_
id
name
provid

provider:physical _network
provider:segmentation_id
router:external

shared

status

subnets
tenant_id

[}
[}
[}
[}
[}
]
]
1
]
]
[}
[}
[}
[}
1
]
]
1
]
[}
[}
[}
[}
[}
1
]
1
]
]
[}
[}
[}
[}
1
]
]
1
[}
-+

Value

i
i
0
0
[l
I
I
I
i
i
i
i
0
[l
I
I
I
I
i
i
i
0
0
[l
I
I
I
i
i
i
i
0
[l
I
I
I
I
i
+

True
b116a938-9876-4848-99ad-0ce78aabdBad
GATEWAY_NET

vlan

physnetl

5@

True

True

ACTIVE

state_up

er:network_type

bleSde8dlcfc45dbal5d9c@cbaszalab

+
|
+
|
|
|
|
|
|
|
|
|
|
|
+

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+

Using the Neutron subnet-create command, create a subnet with the
following attributes:

Name: GATEWAY SUBNET

Network: 10.50.0.0

Subnet mask: 255.255.255.0

Gateway: 10.50.0.1

DHCP range: 10.50.0.100 - 10.50.0.254

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

The following screenshot displays the resulting output of the subnet -create
command:

[root@controller ~J# neutron subnet-create GATEWAY_NET 10.50.0.0/24 --name GATEWAY_SUBNET
> --allocation-pool start=10.50.0.100,end=10.50.0.254 --gateway 10.50.0.1
Created a new subnet:
e e e e e +
| Value
e +
allocation_pools "10.50.09.100", "end": "10.50.0.254"}

|
cidr 10.50.0.0/24 |
dns_nameservers

enable_dhcp True |
gateway_ip 10.50.0.1 I
host_routes

id 43pecec3-32b3-4629-97a6-82a3c9fb33d2 |
ip_version 4

name GATEWAY_SUBNET |
network_id b1160938-9876-4048-99ad-0ce7BaabdBad |
tenant_id

Creating a Neutron router

Create a router using the Neutron router-create command with the
following attribute:

¢ Name: MyRouter

The following screenshot displays the resulting output of the router-create
command:

[root@controller ~]# neutron router-create MyRouter
Created a new route

admin_state_up True

external_gateway_info
id

1267aae4-6568-48cf-acef-5dbcf7echSdb
MyRouter

ACTIVE
bleSde8dlcfc45d6al5d9c@ch442aBab
______________________________________ +

name
status
tenant_id

+ _______________________

+ - = === =4 — %

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Attaching the router to the external network

When attaching a Neutron router to a provider network, the network must have the
router:external attribute set to True to be eligible for use as an external network.

Using the Neutron router-gateway-set command, attach the router MyRouter to
the GATEWAY NET network as shown in the following screenshot:

[root@controller ~]# neutron router-gateway-set MyRouter GATEWAY_NET

Set gateway for router MyRouter

Using the Neutron router-port-1list command, determine the external IP of the
router as shown in the following screenshot:
[root@controller ~]# neutron router-port-list MyRouter

e L LR R L L L s Hmmmmmmmmm—m e e e e e e e e e e e e e e +
| name | mac_address | fixed_ips

The IP address assigned to the router is procured from the DHCP

allocation range of the subnet. In Havana, there is no way to specify
’ the external address of the router.

Once the gateway interface has been added, the router will be scheduled to an
eligible L3 agent. Using the Neutron 13-agent-1list-hosting-router command,
you can determine which L3 agent the router was scheduled to, as shown in the
following screenshot:

[root@controller ~]# neutron 13-agent-list-hosting-router MyRouter

| admin_state_up | alive |
e e e e Hmmmmmmmmmmmeeeee tmmmmmee +
| 9c5b9bd5-03f4-4506-acbc-169435003541 | controller.learningneutron.com | True I =) |
e e Hmmmmmmmmmmmeeeee tmmmmmee +

On the node hosting the L3 agent, a network namespace is created that corresponds
to the router. Observe that the name of the namespace incorporates the router's
UUID. Have a look at the following screenshot:

[root@controller ~J# ip netns

grouter-1267aaed-6568-48cf-acef-5dbcf7echS5db

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Inside the namespace, an interface exists with a preface, gg. The gg interface is the
gateway, or external, interface of the router. Neutron automatically provisions an IP
address to the gg interface from the DHCP allocation pool of the external network's
subnet. Have a look at the following screenshot:

[root@controller ~]# ip netns exec grouter-1267ace4-6568-48cf-acef-5dbcf7echSdb ip a
8: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc nogueue state UNKNOWN

link/loopback 08:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

inet6 ::1/128 scope host

valid_l1ft forever preferred_lft forever
9: gqg-9eeBlBab-1c: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gqdisc pfifo_fast state UP qlen 1008
link/ether fa:16:3e:b3:c5:aa brd ff:ff:ff:ff:ff:ff
inet 10.50.0.100/24 brd 10.50.0.255 scope global qg-9ee8l8ab-1c
inete fe80::f816:3eff:feb3:c5aa/64 scope link
valid_1ft forever preferred_lft forever

The gg interface is one end of a veth pair whose other end is connected to a bridge
on the host. When using the LinuxBridge plugin, the interface is placed into a bridge
that corresponds to the external network. Have a look at the following screenshot:

[root@controller ~]# brctl show
bridge name bridge id STP enabled interfaces

brgbll6a938-98 2000 . 601d@96654b9 no ethl.5@
tap9eellBab-1c

The namespace is able to communicate with other devices in the same subnet
through the bridge. The other interface in the bridge, eth1.50, tags traffic as VLAN
50 as it exits the bridge and out of the physical interface ethi.

Observe the route table within the namespace. The default gateway address
corresponds to the address defined in the subnet's gateway_ip attribute. In
this case, 10.50.0.1, as shown in the following screenshot:

[root@controller ~]# ip netns exec qrouter-1267aae4-6568-48cf-acef-5dbcf7ech5db ip r

190.50.0.0/24 dev gg-9eeB8lB8ab-1c proto kernel scope link src 19.50.0.109
default via 10.50.0.1 dev gg-9ee8l8ab-1c

Testing gateway connectivity

To test external connectivity from the Neutron router, ping the edge gateway device
from within the router namespace:

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[root@controller ~]# ip netns exec qrouter-1267aae4-6568-48cf-acef-5dbcf7ecb5db ping 10.50.0.1
PING 10.50.0.1 (10.50.8.1) 56(84) bytes of data.

64 bytes
64 bytes
o4 bytes

from 10.50.0.1:
from 10.50.0.1:
from 10.50.0.1:
from 10.50.0.1:

icmp_seg=1 tt1=255 time=0.683 ms
icmp_seg=2 ttl=255 time=0.619 ms
iamp_seg=3 ttl=255 time=0.614 ms
64 bytes icmp_seg=4 ttl1=255 time=0.589 ms

AC

--- 19.50.0.1 ping statistics ---

4 packets transmitted, 4 received, @% packet loss, time 3397ms
rtt min/avg/max/mdev = @.589/0.626/90.683/0.038 ms

Successful ping attempts from the router namespace demonstrate proper external
VLAN configuration of both hardware- and software-based networking components.

Creating an internal network

Within the admin tenant, create an internal network for instances. In this
demonstration, a VLAN-based network will be created with the following attributes:

* Name: TENANT NET1
* Type: VLAN
* VLAN ID: (Auto assigned)

The following screenshot displays the resulting output of the net-create command:

[root@controller ~]# neutron net-create TENANT_NET1
Created a new network:
+ ___________________________
| Field
+ ___________________________
admin_state_up

id
name
provider:network_type
provider:physical_network
provider:segmentation_id
shared
status
subnets
tenant_id

+ ___________________________

21b04852 -d4cl-48f4-al3a-bioad? f7b07e
TEMANT_NET1

vlan

physnetl

30

False

ACTIVE

ble5de8dlcfc45d6al5d9c@cb442a8ab

In the preceding example, Neutron has automatically assigned a segmentation ID
(VLAN) from the range specified in the plugin configuration file that was set in
Chapter 4, Building a Virtual Switching Infrastructure. Have a look at the following code:

network vlan ranges =

physnetl:30:33

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Using the Neutron subnet-create command, create a subnet with the following
attributes:

* Name: TENANT SUBNET1

* Network: 10.30.0.0

* Subnet mask: 255.255.255.0

* Gateway: <auto>

* DHCP range: <auto>

* DNSnameserver: 8.8.8.8

The following screenshot displays the resulting output of the subnet -create
command:

[root@controller ~]# neutron subnet-create TENANT_NET1 10.30.0.0/24 \
> ==-name TEMANT_SUBNET1 --dns-nameserver 8.8.8.8
Created a new subnet:

allocation_pools {"start": "10.30.9.2", "end": "10.30.0.254"}
cidr 18.30.0.0/24
dns_nameservers 5.8.8.8

enable_dhcp True

gateway_ip 19.30.0.1

host_routes

id e47deced-a%e4-4486-9443-509e763019d

ip_version 4

name TENANT_SUBMNET1

network_id 21b@4852-d4cl-48f4-a83a-b4bad? F7b@7e

tenant_id ble5de8dlcfc45dbal5d9c@cha42a8ab
e

Attaching the router to the internal network

Using the Neutron router-interface-add command, attach the TENANT SUBNET1
subnet to MyRouter, as shown in the following screenshot:

[root@controller ~]# neutron router-interface-add MyRouter TENANT_SUBNET1

Added interface 5ea2d15f-8a5b-46f5-9cbb-f89179bd9f8a to router MyRouter.

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Using the Neutron router-port-1list command, determine the internal IP of the
router, as shown in the following screenshot:

neutron router-port-list MyRouter
—————————————————— === B
| name | mac_address | fixed_ips

| SeaZd15f-8aSb-46f5-9c6b-f89179bd9f8a | "ip_address W 0.1
| 9ee818ab-1c94-4ffe-9db8-20f7dcf1db68 | L 3 3 “ip_address "10.50.0.100"} |
== e = +-

The IP address assigned to the internal router interface corresponds to the address
set in the gateway_ip attribute of the subnet. Neutron will not allow you to attach a
subnet to a router as an internal interface without the gateway ip attribute set.

% It is not possible to connect a subnet to more than one router at a time. In
8 addition, it is not possible to attach multiple interfaces to a single subnet.

Inside the router namespace, a new interface has been added with a preface of
gr. The gr interface is the internal interface of the router that corresponds to the
connected subnet as shown in the following screenshot:

[root@controller ~]# ip netns exec qrouter-1267aae4-6568-48cf-acef-Sdbcf7ech5db ip a
8: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
link/loopback 98:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.9.0.1/8 scope host lo
inet6 ::1/128 scope host
valid_l1ft forever preferred_lft forever
9: gg-9eeBl8ab-1c ROADCAST ,MULTICAST,UP,LONER_UP> mtu 1500 qdisc pfifo_fast state UP glen 1000
link/ether fa: e:b3:c5:aa brd ff:ff:ff:ff:ff:ff
inet 10.50.0.100/24 brd 10.50.0.255 scope global qg-9ee818ab-1c
inett feB0::f816:3eff:feb3:c5aa0/64 scope link
valid_1ft forever preferred_lft forever
1 qr-5eaz2d1Sf-8a: ROADCAST ,MULTICAST,UP,LONER_UP> mtu 150@ gqdisc pfifo_fast state UP qlen 1000
link/ether fa e:fd:d8:90 brd ff:ff:ff:ff:ff:ff
inet 10.30.0.1/24 brd 10.30.0.255 scope global gr-5ea2d15f-8a
inett feB0::f816:3eff:fefd:d890/64 scope link
valid_1ft forever preferred_lft forever

The gr interface is one end of a veth pair whose other end is connected to a bridge on
the host. When using the LinuxBridge plugin, the interface is placed in a bridge that
corresponds to the internal network as shown in the following screenshot:

[root@controller ~1# brctl show
bridge name bridge id STP enabled interfaces
brg2lb@4852-d4 2000 . 001d@9665409 no ethl.38

tapSeazdl15f-8a
brgbl16a938-98 8000 . 001d@9665409 no ethl.58
tap9eeB1Bab-1c

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

The namespace is able to communicate with other devices in the same subnet
through the bridge. The other interface in the bridge, eth1.30, tags traffic as
VLAN 30 as it exits the bridge and out of the physical interface ethi.

Creating instances

Using the nova boot command, create two instances with the following
characteristics:

¢ Name: MyInstancel, MyInstance?2

* Network: TENANT NET1

* Image: cirros

* Flavor:mil.tiny

The nova image-1list command can be used to determine the images available for
use, as shown in the following screenshot:

[root®controller ~]# nova image-list

———————— +
Server |

| ACTIVE
| ed78e8ef-0884-4d2d-bcd2-cldf@dadcdée | Cirr05-@.3.1 | ACTIVE
| f496e19d-e@74-4308-a9f2-548b4888a119 | Ubuntu-14.84 | ACTIVE
e == mm e fmmmmmm -

Using the UUID of the CirrOS image, boot the instances on the TENANT NET1
network as shown in the following screenshot:

[root@controller ~J# for i in {1..2}; do nova boot --flavor ml.tiny --image ed78e8ef-0884-4d2d-bc@2-cldf@dadcdbe \
ic net-id=21b@4852-d4cl-48f4-a83a-b46ad7f7b@7e MyInstance$i; done

The nova 1list command can be used to return a list of instances and their IP
addresses as follows:

[root@controller ~]# nova list

| 9eBeebc5-3656-4514-aa9@-da%a55552d1l | MyInstancel | ACTIVE | - | Running | TENANT_NET1=10.30.0.2
| laadd3@f-2851-4355-af@e-cd424fc38158 | MyInstance2 | ACTIVE | - | Running | TENANT_NET1=10.30.0.4
L CE LR TS Hmmmmmmmmmmmas Hmmmmmmee Hmmmmmmmmmmen Hmmmmmmmmmmmas e T +

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

On the compute node, a Linux bridge has been created that corresponds to the
TENANT NET1 network. Inside the bridge is a VLAN interface and two tap interfaces
that correspond to the instances. Have a look at the following screenshot:

[root@computedl init.dJ# brctl show
bridge name bridge id STP enabled interfaces
brg2lb®4852-d4 8000 . 01de929cE9c no

Verifying instance connectivity

Upon spinning up the first instance, a DHCP namespace was created by Neutron
that services DHCP requests from the instance in the TENANT NET1 network, as
shown in the following screenshot:

[root@controller ~]# ip netns
qrouter-1267aae4-6568-48cf-acef-5dbcf7ech5db
qdhcp-21b@4852 -d4cl-48f4-a83a-b4bad7? f7b@7e

The name of the DHCP namespace corresponds to the UUID of the TENANT NET1
network. An IP listing within the namespace reveals that 10.30.0.3 has been assigned
to an interface as shown in the following screenshot:

[root@controller ~J# ip netns exec qdhcp-21b@4852-d4cl-48f4-al83a-b4bad7f7bd7e ip a
17: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
link/loopback 99:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.9.1/8 scope host lo
ineté : 128 scope host
valid_lft forever preferred_lft forever

: ns-4dd99827-91: <BROADCAST ,MULTICAST,UP,LOWER_UP> mtu 1508 qdisc pfifo_fast state UP glen 1008
link/ether fa:16:3e:c7:ec:81 brd ff:ff:ff:ff:ff:ff
inet 19.30.9.3/24 brd 10.30.0.255 scope global ns-4dd99827-91
inet 169.254.169.254/16 brd 169.254.255.255 scope global ns-4dd39827-91
inetb fedd::f816:3eff:fec?:ec8l/64 scope link
valid_lft forever preferred_lft forever

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

The ns interface is one end of a veth pair whose other end is connected to a bridge
on the host. The namespace is able to communicate with other devices in the same
subnet through the bridge. When using the LinuxBridge plugin, the interface is
placed into a bridge that corresponds to the TENANT_NET1 network:

[root@controller ~]# brctl show
bridge name bridge id STP enabled interfaces
brqZlb84852-d4 E000. 001409665409 no ethl.3@

tap4dd99827-91
tapSea2dl5f-8a
brgbl16a938-98 8000 . 0091d026654b9 ethl.5@
tap9ee8l8ab-1c

As the instances came online, they sent a DHCP request that was served by the
dnsmasgq process in the DHCP namespace. A populated ARP table within the
namespace confirms instances are functioning at layer 2 as shown in the following
screenshot:

[root@controller ~]# ip netns exec grouter-1267acae4-6568-48cf-acef-5dbcf7echSdb arp -an
7 (10.30.0.2) at fa:16:3e:d7:6d:%e [ether] on gr-Sea2dl15f-8a

7 (10.30.0.4) at fa:16:3e:de:fb:3d [ether] on gr-5eazdl15f-8a
7 (10.50.0.1) ot 08:18:b9:88:bc:f1 [ether] on gg-9ee8l8ab-1c

Before you can connect to the instances, however, security group rules must be
updated to allow ICMP and SSH. Chapter 8, Protecting Instances on the Network,
focuses on the implementation and administration of security group rules in more
detail. For now, add ICMP and SSH access to the default security group rules with
the following command:

for SECID in $(neutron security-group-list | grep default | awk '{print
$2}9): \
do neutron security-group-rule-create --protocol icmp $SECID; \

neutron security-group-rule-create --protocol tcp --port-range-min 22
--port-range-max 22 S$SECID; \

done;

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Using an SSH client, connect to the instances from either the router or DHCP
namespace. The CirrOS image has a built-in user named cirros with a password,
cubswin:):

[root&controller ~J# ip netns exec grouter-1267aae4-6568-48cf-acef-5dbcf7echSdb ssh cirros£10.30.0.2
The authenticity of host '10.30.0.2 (10.30.0.2)"' can't be established.
RSA key fingerprint is de:4b:62:58:10:d7:73:41:8a:65:70:5a:48:e5:89:11.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.30.0.2° (RSA) to the list of known hosts.
cirros®19.30.9.2's password:

$ipr

default via 10.30.0.1 dev eth@

10.30.0.9/24 dev eth® src 10.30.0.2

$ exit

Connection to 10.38.0.2 closed.

[root&controller ~J# ip netns exec grouter-1267aae4-6568-48cf-acef-5dbcf7echSdb ssh cirros@10.30.0.4
The authenticity of host '10.30.0.4 (10.30.0.4)"' can't be established.
RSA key fingerprint is 2a0:83:06:34:6c:9d:87:dc:7c:dc:9d:a4:3f:6a:5d:7d.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.30.8.4" (RSA) to the list of known hosts.
cirros219.30.9.4's password:

$ipr

default via 10.30.0.1 dev eth@

10.30.0.8/24 dev eth® src 10.30.0.4

$ exit

Connection to 10.30.0.4 closed.

Observe the routing table of each instance. The default gateway of each instance

is the Neutron router interface created earlier. Pinging an external resource from
an instance should be successful, provided external connectivity from the Neutron
router exists. Have a look at the following screenshot:

[root@controller ~]# ip netns exec grouter-1267aae4-6568-48cf-acef-5dbcf7echSdb ssh cirros£10.30.0.2
cirros@10.30.0.2's password:

$ ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8): 56 data bytes

64 bytes from 8.8.8.8: seq=0 ttl=46 time=38.457

64 bytes from 8.8.8.8: seg=1 ttl=46 time=39.243

64 bytes from 8.8.8.8: seg=2 ttl=46 time=38.735

.NC

--- 8.8.8.8 ping statistics ---

3 packets transmitted, 3 packets received, @% packet loss
round-trip min/avg/max = 38.457/38.811/39.243 ms

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Observing default NAT behavior

The default behavior of the Neutron router is to source NAT traffic from instances
without floating IPs when traffic egresses the gateway interface. From the external
network gateway device, in this case a Cisco ASA, observe ICMP traffic from the
instances appearing as the external gateway address of the router. Have a look at
the following screenshot:

pixfirewall# debug icmp trace
debug icmp trace enabled at level 1
pixfirewall# ICMP echo request from GATEWAY_NET:10.50.0.100 to outside:8.8.8.8 ID=38429 seq=10 len=56

IMP echo request from GATEWAY_NET:10.50.08.100 to outside:8.8.8.8 ID=38429 seg=11 len=56
IMP echo request from GATEWAY_NET:10.50.0.108 to outside:8.8.8.8 ID=38479 seg=1Z len=56
IMP echo request from GATEWAY_NET:10.50.0.100 to outside:8.8.8.8 ID=38429 seg=13 len=56

In the following screenshot, a look at the iptables rules within the router namespace
reveals the NAT rules responsible for this behavior:

[root@controller ~]# ip netns exec qrouter-1267aae4-6568-48cf-acef-5dbcf7ech5db iptables-save
Generated by iptables-save v1.4.7 on Wed Aug 13 23:36:21 2014
*nat
:PREROUTING ACCEPT [19:263@]
:POSTROUTING ACCEPT [31:2252]
:OUTPUT ACCEPT [44:3152]
:neutron-13-agent-QUTPUT - [0:0]
:neutron-13-agent-POSTROUTING - [@:0]
:neutron-13-agent-PREROUTING - [0:@]
:neutron-13-agent-float-snat - [0:0]
:neutron-13-agent-snat - [i
:neutron-postrouting-bottom - [0:@]
PREROUTING -j neutron-13-agent-PREROUTING
POSTROUTING -j neutron-13-agent-POSTROUTING
POSTROUTING -j neutron-postrouting-bottom
QUTPUT -j neutron-13-agent-0UTPUT
neutron-13-agent-POSTROUTING ! -i qg-9ee818ab-1c ! -o qg-9ee818ab-1c -m conntrack ! --ctstate DNAT -j ACCEPT
neutron-13-agent-PREROUTING -d 169.254.169.254/32 -p tcp -m tcp --dport 8@ -j REDIRECT --to-ports 9697
neutron-13-agent-snat -j neutron-13-agent-float-snat
neutron-13-agent-snat -s 10.30.0.8/24 -j SNAT --to-source 10.50.0.100
neutron-postrouting-bottom -j neutron-13-agent-snat
COMMIT
Completed on Wed Aug 13 23:36:21 2014
Generated by iptables-save v1.4.7 on Wed Aug 13 23:36:21 2014

In this configuration, instances can communicate with outside resources as long
as the instances initiate the traffic. Outside resources cannot communicate with
instances directly without the use of floating IPs.

M While it is possible to disable SNAT on the Neutron router and add routes
Q to tenant networks on upstream devices, this type of configuration is not
recommended as it cannot be fully managed by OpenStack.

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Assigning floating IPs
To reach instances directly from outside networks, you must configure a floating IP
address and associate it with the instance's port.

Using the Neutron port-1list command, determine the port ID of each instance
recently booted, as shown in the following screenshot:

Using the Neutron floatingip-create command, create a single floating IP
address and associate it with the port of MyInstancel:

[root@controller ~]# neutron floatingip-create --port-id=3547dbf@-58e8-4645-bled-6f61747b77ba GATEWAY_NET

Created a new floatingip:

R R e L E e e P PP PP E P PP e +

| Field Value

et +
fixed_ip_address |
floating_ip_address 18.50.0.101 |
floating_network_id | bll6a938-9876-4048-9%ad-0ce78aabdda?
id ab@d44fd-ddcf-4804-a24f-c59bd94d5c2@ |
port_id 3547dbf@-58e8-4645-bOed-6f61747b77ba |
router_id 1267aae4-6568-48cf-acef-5dbcf7ecbSdb
tenant_id bleSde8dlcfc45d6al5dIc@cbd4Zadab |

T +

Verify that the instance can still communicate with outside resources, as shown in
the following screenshot:

$ ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8): 56 data bytes

64 bytes from 8.8.8.8: seqg=0 ttl=46 time=41.843 ms
64 bytes from 8.8.8.8: seg=1 ttl=46 time=39.590 ms
64 bytes from 8.8.8.8: seqg=2 ttl=46 time=38.306 ms

From the external gateway device, the ICMP requests should now appear as the
floating IP, as shown in the following screenshot:

pixfirewall# debug icmp trace

debug icmp trace enabled at level 1
pixfirewnall# ICMP echo request from GATEWAY_NET:10.50.0.101 to outside:8.8.8.8 ID=16641 seq=0 len=56

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

A look at the gqg interface within the router namespace reveals the floating IP address
configured as a secondary network address as shown in the following screenshot:

[root@controller ~]# ip netns exec grouter-1267aae4-6568-48cf-acef-5dbcf7ech5db ip a
8: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 gdisc noqueue state UNKNOWN
link/loopback 90:90:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
9: qg-9eeBlBab-1c: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP glen 1000
link/ether fa:16:3e:b3:c5:aa brd ff:ff:ff:ff:ff:ff
inet 10.50.0.108/24 brd 10.50.0.255 scope global qg-9ee8lBab-1c
inet 10.50.0.101/32 brd 10.50.0.101 scope global qg-9ee8l8ab-1c
inetb fed0::f816:3eff:feb3:c5aa/64 scope link
valid_lft forever preferred_lft forever
: gr-5ea2dl5f-8a: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
link/ether fa:16:3e:fd:d8:9@ brd ff:ff:ff:ff:ff:ff
inet 10.30.0.1/24 brd 10.30.0.255 scope global qr-Seazd15f-8a
inetb feB::f816:3eff:fefd:d8%90./64 scope link
valid_1ft forever preferred_lft forever

When the floating IP is configured as a secondary network address on the gg
interface, the router is able to respond to ARP requests to the floating IP.

A look at the iptables rules within the router namespace shows that rules have been
added to perform the 1:1 NAT translation as follows:

[root@controller ~]# ip netns exec grouter-1267aae4-6568-48cf-acef-5dbcf7echSdb iptables-save

Generated by iptables-save v1.4.7 on Wed Aug 13 23:49:32 2014

*nat

:PREROUTING ACCEPT [20:2714]
OSTROUTING ACCEPT [31:2252]
UTPUT ACCEPT [45:3212]

:neutron-13-agent-0UTPUT - [0:0]

: neutron-13-agent-POSTROUTING - [@:0]

:neutron-13-agent-PREROUTING - [0:0]

:neutron-13-agent-float-snat - [0:0]

:neutron-13-agent-snat - [0:8]

:neutron-postrouting-bottom - [@:0]
PREROUTING -j neutron-13-agent-PREROUTING
POSTROUTING -j neutron-13-agent-POSTROUTING
POSTROUTING -j neutron-postrouting-bottom
OUTPUT -j neutron-13-agent-OUTPUT
neutron-13-agent-0UTPUT -d 10.50.0.101/32 -j DNAT --to-destination 10.30.0.2
neutron-13-agent-POSTROUTING ! -1 qg-9ee818ab-1c ! -o qg-9ee818ab-1c -m conntrack ! --ctstate DNAT -j ACCEPT
neutron-13-agent-PREROUTING -d 169.254.169.254/32 -p tcp -m tcp --dport 8@ -i REDIRECT --to-ports 9697
neutron- agent-PREROUTING -d 10.50.8.101/32 -j DNAT --to-destination 10.30.8.2
neutron-13-agent-float-snat -s 10.38.0.2/32 -j SNAT --to-source 10.50.0.101
neutron-13-agent-snat -j neutron-l3-agent-float-snat
neutron-13-agent-snat -s 10.30.0.0/24 -j SNAT --to-source 10.50.0.100
neutron-postrouting-bottom -j neutron-13-agent-snat

COMMIT

Completed on Wed Aug 13 23:49:32 2014

Generated by iptables-save v1.4.7 on Wed Aug 13 23:49:32 2014

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

With the proper routes in place on the client machine, traffic can be initiated directly
to the instance via the floating IP as follows:

jamess-mbp:~ jdenton$ ssh cirros@1@.50.0.101

The authenticity of host "10.50.0.101 (10.50.0.1 can't be established.
RSA key fingerprint is de:4b:62:58:f0:d7:73:41:8a:65:70:5a:48:e5:89:11.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.50.0.101° (R5A) to the list of known hosts.
cirros210.50.0.101's password:
s 1

Reassigning floating IPs

The idea behind a floating IP is that it is a NAT that can be quickly disassociated
from an instance or other network resource and associated with another.

A listing of floating IPs shows the current association as follows:

[root@controller ~]# neutron floatingip-list

e E LR E P R P e e T e Hmmmmmmmmae
| ab@d44fd-ddcf-4804-a24f-c59bd94d5c20 | 10.30.0.2 | 16.50.6.101

Using the Neutron floatingip-disassociate and floatingip-associate
commands, disassociate the floating IP from MyInstancel and associate it with
MyInstance2. The disassociation can be seen as follows:

[root@controller ~]# neutron floatingip-disassociate ab@d44fd-ddcf-4804-a24f-c59bd94d5c20
Disassociated floatingip ab@dd44fd-ddcf-4884-a24f-c59bd34d5c20

The following screenshot using floatingip-1list shows that the floating IP is no
longer associated with any network resource:

[root@controller ~]# neutron floatingip-list

e T e Hmmmmmmmmm oo Hmmmmmm oo Hmmmmmmm +
| fixed_ip_address | floating_ip_address | port_id |

e T o= mmmm e memaae o= mmmm e memmam e Hmmmmmmmen +

| ab@d44fd-ddcf-4804-a24f-c59bd4d5c2@ | | 10.50.98.181 | |

e T e Hmmmmmmmmm oo Hmmmmmm oo Hmmmmmmm +

Using the Neutron floatingip-associate command, associate the floating IP with
the port of MyInstance2 as follows:

[root@controller ~]# neutron floatingip-associate ab@d44fd-ddcf-4884-a24f-c59bd94d5c2@

> %$(neutron port-list | grep 10.30.0.4 | awk '{print $2}')
Associated floatingip ab@d44fd-ddcf-4804-a24f-c59bd94d5c20

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

In the following screenshot, observe the iptables rules within the grouter
namespace. The NAT relationship has been modified, and traffic from MyInstance2
will now appear as the floating IP:

[root@controller ~]# ip netns exec qrouter-1267aae4-6568-48cf-acef-5dbcf7ech5db iptables-save

Generated by iptables-save v1.4.7 on Thu Aug 14 90:04:00 2014

*nat

:PREROUTING ACCEPT [21:2798]

:POSTROUTING ACCEPT [33:2380]

:OUTPUT ACCEPT [45:3212]

:neutron-13-agent-QUTPUT - [0:0]

:neutron-13-agent-POSTROUTING - [@:0]

:neutron-13-agent-PREROUTING - [0:@]

:neutron-13-agent-float-snat - [0:@]

:neutron-13-agent-snat - [0:0]

:neutron-postrouting-bottom - [0:8]
PREROUTING -j neutron-13-agent-PREROUTING
POSTROUTING -j neutron-13-agent-POSTROUTING
POSTROUTING -j neutron-postrouting-bottom
OUTPUT -1 neutron-13-agent-OUTPUT
neutron-13-agent-0UTPUT -d 10.50.8.101/32 -j DNAT --to-destination 10.30.0.4
neutron-13-agent-POSTROUTING ! -1 gg-9ee8l8ab-1c ! -0 qg-9eeBl8ab-1c -m conntrack ! --ctstate DNAT -j ACCEPT
neutron-13-agent-PREROUTING -d 169.254.169.254/32 -p tcp -m tcp --dport 8@ -j REDIRECT --to-ports 9697
neutron-13-agent-PREROUTING -d 10.50.8.101/32 -i DNAT --to-destination 10.30.0.4
neutron-13-agent-float-snat -s 10.30.0.4/32 -j SNAT --to-source 10.50.0.101
neutron-13-agent-snat -J neutron-13-agent-float-snat
neutron-13-agent-snat -s 10.30.0.8/24 -j SNAT --to-source 10.50.0.100
neutron-postrouting-bottom -j neutron-13-agent-snat

COMMIT

Completed on Thu Aug 14 00:04:00 2014

Generated by iptables-save v1.4.7 on Thu Aug 14 90:04:00 2014

As a result of the new association, attempting an SSH connection to the floating IP
results in the following message:

jamess-mbp:~ jdenton$ ssh cirros219.50.0
REMOTE HOST IDENTIFICATION HAS CHANGED!

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING MASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.

The fingerprint for the RSA key sent by the remote host is
20:83:06:34:6c:9d:87:dc:7c:dc:9d:ad4:3f:6a:5d:7d.

Please contact your system administrator.

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The preceding message indicates that traffic is being sent to a different host. Clearing
the key and logging into the instance reveals it to be MyInstance2 the following

screenshot:

$ipa

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc nogueue
link/loopback ©0:00:00:00:00:00 brd 0d:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
ineté ::1/128 scope host

valid_1ft forever preferred_lft forever
2: eth@: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
link/ether fa:16:3e:de:fb:3d brd ff:ff:ff:ff:ff:ff
inet 10.30.0.4/24 brd 10.30.0.255 scope global eth@
inet6 feB@::f816:3eff:fede:fb3d/64 scope link
valid_lft forever preferred_lft forever

Router management in the dashboard

From the Horizon dashboard, routers can be created and managed within the Project
tab, as shown in the following screenshot:

n RUUterS Logged in as: admin Ssttings Help Sign Out
openstack Routers
. Name Status External Network Actions
No items to display.
Displaying 0 items
edmin

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Creating a router in the dashboard

In order to create a router in the dashboard, perform the following steps:

1. From the Routers page, click on Create Router in the upper-right corner of
the page. A window will pop up where the name of the router to be created
should be specified as follows:

Create router

Router Name *

MyRouter

Cancel Create router

2. Enter the name of the router, and click on the blue Create Router button to
complete the operation.

Attaching a gateway interface in the dashboard

In order to attach a gateway interface in the dashboard, perform the following steps:

1. From the Routers page, click on the Set Gateway button found in the
Actions column that corresponds to the router. A window will open that
allows you to set the external gateway network:

Set Gateway

External Network * Description:

GATEWAY _MNET - You can connect a specified external network to the
router. The external network is regarded as a default
route of the router and the router acts as a gateway
for external connectivity.

Router Name *

MyRouter

Router ID *

2025b2e3-cb16-4b26-9220-4441124ed45f

GCancel Set Gateway

2. To confirm the gateway network selection, click on the blue Set
Gateway button.

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Attaching internal interfaces in the dashboard

In order to attach internal interfaces in the dashboard, perform the following steps:

1. To attach internal interfaces to routers in the dashboard, click on the router to
reveal the Router Details page as follows:

Help SignOut

Logged in as: admin Settings

Router Details

Router Overview: MyRouter

Name
MyRouter
D
e025b2e3-cb16-4b26-9220-4441124ed45f
Status
ACTIVE
External Gateway Information
Connected External Network: GATEWAY_NET

Interfaces + Aad mmertace

(] Name Fixed IPs Status Type Admin State Actions
(dfa70770) 10.50.0.51 ACTIVE External Gateway up

Displaying 1 item

2. Clicking on the Add Interface button will open a window that allows you to
select details of the interface to be added as follows:

Add Interface

Subnet™ Description:
TEMANT_NET: 192.168.0.0/24 (TENANT_SUBNI | 5 You can connect a specified subnet to the router.

The default IP address of the interface created isa
IP Address (optional) gateway of the selected subnet. You can specify

another |IP address of the interface here. You must

select a subnet to which the specified |P address

belongs to from the above list.
Router Name *

MyRouter

Router ID *

2025b2e3-cb16-4b26-9220-44411242d45f

Cancel Add interface

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

3. Select a tenant subnet you wish to attach to the router from the Subnet menu,
and click on the blue Add Interface button to attach the interface:

Logged in as: admin Settings Help Sign Out

Router Details

Router Overview: MyRouter

Name
MyRouter
D
e025b2e3-cb16-4b26-9220-4441124ed45f
Status
ACTIVE
External Gateway Information
Connected External Network: GATEWAY_NET

Interfaces + Add Interface
Name Fixed IPs Status Type Admin State Actions
(65584213) 192.168.0.1 ACTIVE Internal Interface upP
(dfa70770) 10.50.0.51 ACTIVE External Gateway up

Displaying 2 itams

Viewing the network topology in the
dashboard

From within the dashboard, users can view a logical topology of the network based
on the network configuration managed by Neutron. In order to view the network
topology in the dashboard, perform the following steps:

1. Click on Network Topology under the Project tab to find a logical diagram
based on the networks, router, and instances created earlier. Have a look at

the following screenshot:

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

n NBtWOfk TO pology Logged in as: admin Settings Help Sign Out

& Small B8 Normal Launch Instance Create Netwark Create Router

openstack

Project Admin

CURRENT PROJECT
admin

Router
Manage Compute

Koy

Instance

Overview
Instances

lyinstane..

Images & Snapshots instance

Access & Security

Manage Network

Netwark Topology

Networks

Routers

$e/000E 08

$E000508

2. Hovering over the router icon reveals a window displaying details of
the router such as connected ports, IPs, and port status as shown in the
following screenshot:

@ MyRouter x
MyRouter 1D 1267aaed-65688-48cf-acef-5dbef7ecbsdb

S ACTIVE
Houter STATUS @

Interfaces
5ea2d156f-8a... 10.30.0.1 router_interface ACTIVE [RECECE G Fle Y

Oee8iBab-1c... 10.50.0.100 router_gateway ACTIVE

» view router details Delete Router

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

Associating floating IPs to instances in the
dashboard

Floating IPs in the dashboard are managed on the Instances page under the Project

tab. In order to associate floating IPs to instances in the dashboard, perform the

following steps:

1. Click on the More button under the Actions tab next to the instance you wish

to assign a floating IP to, as shown in the following screenshot:

Instances
Instance Image
[Name Name

Mylnstance2 Cirr0S-
ISEEEE 6.8
Mylinstance1 g';r?s

Displaying 2 items

IP Address

10.30.0.4
10.560.0.101

10.30.0.2

Size

mi.tiny | 512MB
RAM | 1 VCPU |
1.0GB Disk

m1.tiny | 512MB
RAM | 1 VCPU |
1.0GB Disk

Q Filter + Launch Instance Saft Aeboot Instances:

Power
Keypair Status Task State Uptime Actions

2
hours,

= Active None Running Create Snapshot | More
minutes

2
hours,

= Active None Running 12 Create Snapshot ~ More ™

minutes. Associate Floating IP

Disassociate Floating IP
Edit Instance

Edit Security Groups

2. (Clicking on Associate Floating IP will open a window that allows you to
manage floating IP allocations:

IP Address *

IP Address *

No IP addresses available

Port to be associated *

Mylnstance1: 10.30.0.2

Manage Floating IP Associations

Select the IP address you wish to associate with the
+ selected instance.

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

3. If there are no floating IP addresses available for allocation, click the plus
+ sign to create one. A new window will open that lists eligible floating IP
pools, as shown in the following screenshot:

Allocate Floating IP

Pool *

¥ GATEWAY_NET 1

Description:
Allocate a floating IP from a given floating IP pool.

Project Quotas
Floating IP (1)

Cancel Allocate IP

4. Since floating IPs are procured from provider networks, only provider
networks whose router:external attribute is set to True will appear in the
list. Click on the blue Allocate IP button to allow Neutron to procure the next

available IP address:

Manage Floating IP Associations

IP Address *

LT S T

Mo IP addresses available -

¥ 10.50.0.102 i

Port to be associated *

Mylnstance1: 10.30.0.2

a“

Select the IP address you wish to associate with the
selected instance.

Cancel

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Routers with Neutron

5. Once a floating IP has been selected, click on the blue Associate button
to associate the floating IP with the instance as shown in the following

screenshot:
Instances Filter Q Filter = Launch Instance
Instance Image Power
(] Name Name IP Address Size Keypair Status Task State Uptime Actions
mi.tiny | 512MB 2
[| Mylnstance2 SrOs-41 10300 RAM | 1 VCPU | - Active MNone Running s, Create Snapshot | More
0.3.1 10.50.0.101 18
1.0GE Disk £
minutes
Ciros _— m1.tiny | 512M8B iours
[| Mylnstancel e RAM | 1 VCPU | - Active Mone Running ! Create Snapshot | More
o 1068 Disk :nsinutes

Displaying 2 items

Disassociating floating IPs in the dashboard

To disassociate a floating IP from an instance in the dashboard, perform the
following steps:

1. Click on the More button under the Actions column that corresponds to the
instance as shown in the following screenshot:

Instances Filter Q, Fiter |+ Launchinstance
Instance Image Power
[Name Name IP Address Size Keypair Status Task State Uptime Actions
Cit0S- 103004 | MMtny]S12MB ﬁou:s
) Mylnstance? B RAM | 1 VCPU | - Active None Running z Create Snapshot More ™
0.3.1 10.50.0.101 ¥
1.0GB Disk :
minutes
m1.tiny | 512MB 2
J Mylnstance1 Cresay 09002 AAM |1 VCPU | - Active None Running hotks; Create Snapshot More ™
0.3.1 10.50.0.102 ! 18
1.0GB Disk :
minutes

Associate Floating IP

Displaying 2 items Disassociate Floating IP

Edit Instance

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

A window will open that warns you of the pending action as shown in the
following screenshot:

Confirm Disassociate Floating IP

You have selected "Mylinstance1”. Please confirm your selection. This action cannot be undone.

Cancel Disassociate Floating IP

2. Click on the blue Disassociate Floating IP button to proceed with the action
as shown in the preceding screenshot.

In Horizon, disassociating the floating IP from an instance has the
/> unintended action of deleting the floating IP altogether.

Summary

Neutron routers are a core component of networking in OpenStack and provide
tenants the flexibility to design the network to best suit their application. Floating
IPs allow tenants to quickly and programmatically provide direct connectivity

to applications through the use of network address translation. Icehouse offers
improvements over Havana, including the ability to schedule multiple external
networks to a single L3 agent or configure static routes on a router, but limitations
still remain. The lack of a high-availability solution for Neutron routers is an issue
that persists in Icehouse but is actively being worked on by the community.

In the next chapter, I will discuss OpenStack's load-balancing-as-a-service (LBaaS)
solution that allows tenants to quickly scale their application while providing
resiliency and availability.

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic
iIn Neutron

The Neutron load balancing as a service extension, known as LBaa$S, provides
the ability to load balance traffic to applications running on virtual instances in
the cloud. Neutron provides an API to manage virtual IPs, pools, pool members,
and health monitors. First introduced in Grizzly, the Havana release of LBaaS
offers numerous bug fixes and features over its predecessor but is not as polished
as other Neutron services.

In this chapter, I will discuss fundamental load balancer concepts, including:

* Virtual IPs, pools, and pool members
* Load balancing algorithms
* Monitors
* Persistence
* Integrating load balancers in the network
LBaaS uses drivers to interact with hardware and software load balancers.
In Havana, the default driver uses haproxy. Haproxy is a free, open source load

balancer that is available for most Unix-based operating systems. Third-party
drivers are supported by LBaaS but are outside the scope of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

Fundamentals of load balancing

There are three major components to a load balancer in Neutron:

* Pool member(s)
* Pool(s)
* Virtual IP(s)
A pool member is a layer 4 object and is composed of the IP address of a service and

the listening port of the service. For example, a pool member might be a web server
with a configured IP address, 10.30.0.2, listening on TCP port 80.

A pool is a group of pool members that typically serve identical content. A pool
composed of web servers, for example, may resemble the following membership:

¢ Server A:10.30.0.2:80

* Server B: 10.30.0.4:80

¢ Server C: 10.30.0.6:80
A virtual IP, or VIP, is an IP address that resides on the load balancer and listens for
incoming connections. The load balancer then balances client connections among the

members of the associated pool. A virtual IP is usually exposed to the Internet and is
often mapped to a domain name.

Load balancing algorithms

In Havana, the following load balancing algorithms can be applied to a pool:

e Round robin
e Least connections

e Source IP

With the round robin algorithm, the load balancer passes each new connection to

the next server in line. Over time, all connections will be distributed evenly across all
machines being load balanced. Round robin is the least resource-intensive algorithm
and has no mechanism to determine when a machine is overwhelmed by connections.
To avoid overwhelming a pool member, all members should be equal in terms of
processing speed, connection speed, and memory.

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

With the least-connections algorithm, the load balancer passes a new connection to
a server that has the least number of current connections. It is considered a dynamic
algorithm, as the system keeps track of the number of connections attached to each
server and balances traffic accordingly. Pool members with higher specifications
will likely receive more traffic, as they will be able to process connections quicker.

With the source IP algorithm, all connections originating from the same source IP
address are sent to the same pool member. Connections are initially balanced using
the round robin algorithm and are then tracked in a table for future lookup with
subsequent connections from the same IP address. This algorithm is useful in cases
where the application requires clients to use a particular server for all requests, such
as an online shopping cart that stores session information on the local web server.

Monitoring

In Havana, LBaaS supports multiple monitor types, including TCP, HTTP, and
HTTPS. The TCP monitor tests connectivity to pool members at layer 4, while
the HTTP and HTTPS monitors test the health of pool members based on layer 7
HTTP status codes.

Session persistence

LBaaS supports session persistence on virtual IPs. Session persistence is a method of
load balancing that forces multiple client requests of the same protocol to be directed
to the same node. This feature is commonly used with many web applications that
do not share application state between pool members.

The types of session persistence supported with the haproxy driver include
the following:

* SOURCE_IP

* HTTP_COOKIE

* APP_COOKIE

Using the SOURCE_IP persistence type configures haproxy with the following
settings within the backend pool configuration:

stick-table type ip size 10k
stick on src

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

The first time a client connects to the virtual IP, haproxy creates an entry in a sticky
table based on the client's IP address and sends subsequent connections from the
same IP address to the same backend pool member. Based on the configuration,

up to 10,000 sticky entries can exist in the sticky table. This persistence method can
cause a load imbalance between pool members if users connect from behind a proxy
server that misidentifies multiple clients as a single address.

Using the HTTP_COOKIE persistence type configures haproxy with the following
settings within the backend pool configuration:

cookie SRV insert indirect nocache

The first time a client connects to the virtual IP, haproxy balances the connection to
the next pool member in line. When the pool member sends its response, haproxy
injects a cookie named SRV into the response before sending it to the client.

The value of the SRV cookie is a unique server identifier. When the client sends
subsequent requests to the virtual IP, haproxy strips the cookie from the request
header and sends the traffic directly to the pool member identified in the cookie.
This persistence method is recommended over source IP persistence, as it is not
reliant on the IP address of the client.

Using the APP_COOKIE persistence type configures haproxy with the following
settings within the backend pool configuration:

appsession <CookieName> len 56 timeout 3h

When an application cookie is defined in a backend, haproxy will check when the
server sets such a cookie, stores its value in a table, and associates it with the server's
identifier. Up to 56 characters from the value will be retained. On subsequent client
connections, haproxy will look for the cookie. If a known value is found, the client is
directed to the pool member associated with the value. Otherwise, the load balancing
algorithm is applied. Cookies are automatically removed from memory when they
have gone unused for more than three hours.

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Integrating load balancers into the
network

When using the haproxy driver, load balancers are implemented in one-arm mode.
In one-arm mode, the load balancer is not in the path of normal traffic to the pool
members. The load balancer has a single interface for ingress and egress traffic

to and from clients and pool members.

A logical diagram of a load balancer in one-arm mode can be seen in the
following diagram:

Neutron Router
gg: 10.50.0.100
gr: 10.30.0.1
Float: 10.50.0.102 <-> 10.30.0.5

d
e

Load Balancer
Virtual IP
10.30.0.5:80 WEB1 WEB2

10.30.0.2:80 10.30.0.4:80

In the preceding diagram, a load balancer is configured in one-arm mode and resides
on the same subnet as the servers it is balancing traffic to.

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

Because a load balancer in one-arm mode is not the gateway for pool members it is
sending traffic to, it must rely on the use of source NAT to ensure that return traffic
from the members to the client is sent back through the load balancer. An example

of the traffic flow can be seen in the following diagram:

Neutron Router
gg: 10.50.0.100
qr: 10.30.0.1
Float: 10.50.0.102 <-> 10.30.0.5

——— Client Request
---------------- Server Response

Load Balancer
Virtual IP
10.30.0.5:80 WEB1 WEB2

10.30.0.2:80 10.30.0.4:80

In the preceding diagram, the load balancer receives a request from the client and
forwards it to Web1. The load balancer will modify the source IP of the request to its
own address, 10.30.0.5, before forwarding the request to the server. This ensures the
server sends the response to the load balancer, which will then rewrite the destination
IP as the client address. If the server were to send the response directly to the client,
the client would reject the packet.

Neutron configures haproxy to send an HTTP X-Forwarded-For header to the pool
member, which allows the pool member to see the original client address. Without
this header, all traffic will be identified as coming from the load balancer.

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Alternatives to one-arm mode include routed mode and transparent mode. In routed
mode, the load balancer acts as a gateway between the client and the pool member.
The source addresses of packets do not need to be manipulated in most cases, as the
load balancer serves as the gateway for pool members.

In transparent mode, the load balancer acts as a network bridge between two VLANS
configured with the same subnet(s). Using this mode allows users to introduce a load
balancer to the network with minimal disruption, as pool members do not need to
change their gateway.

There is currently no way to change the way a haproxy-based

load balancer is integrated into the network. Some third-party
s drivers, however, may not be limited to the one-arm mode and

can function in any mode.

Network namespaces

Neutron relies on network namespaces to provide individual load balancers when
using the haproxy plugin. Load balancers are scheduled to LBaaS agents in the
environment that are responsible for creating a corresponding network namespace
and appropriate configuration. Namespaces used for load balancers are prefaced
with glbaas-* in the ip netns output.

Installing LBaaS

The neutron-1baas-agent service was installed as part of the overall Neutron
installation process documented in Chapter 3, Installing Neutron, and is typically
installed on a dedicated network node or a controller node.

In Havana, haproxy is used as the default load balancer. To install haproxy,
issue the following command on the controller node:

yum -y install haproxy

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

Configuring the Neutron LBaaS agent service

Before the neutron-1baas-agent service can be started, it must be configured.
Neutron stores the LBaaS agent configuration in the /etc/neutron/lbaas_agent.ini
file. The most common configuration options will be covered in the upcoming sections.

Define an interface driver

Like the previously installed agents, the Neutron LBaaS agent must be configured
to use an interface driver that corresponds to the chosen networking plugin. In this
configuration, there are two options:

* LinuxBridge
* Open vSwitch

Using crudini, configure the Neutron LBaaS agent to use one of the drivers.

For LinuxBridge, use the following command:

crudini --set /etc/neutron/lbaas_agent.ini DEFAULT interface driver
neutron.agent.linux.interface.BridgeInterfaceDriver

For Open vSwitch, use the following command:

crudini --set /etc/neutron/lbaas_agent.ini DEFAULT interface_driver
neutron.agent.linux.interface.OVSInterfaceDriver

Define a device driver

To manage a load balancer, the Neutron LBaaS agent must be configured to use
a device driver that provides the interface between the Neutron API and the
programming of the load balancer itself.

Using crudini, define the haproxy device driver as follows:

crudini --set /etc/neutron/lbaas_agent.ini DEFAULT device_driver
neutron.services.loadbalancer.drivers.haproxy.namespace driver.
HaproxyNSDriver

Change the user group

On CentOS, Fedora, and RHEL-based systems, it is necessary to change the
user group value from its default of nogroup to nobody, as nogroup does
not exist as a group on those systems.

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Using crudini, set the user group to nobody:

crudini --set /etc/neutron/lbaas_agent.ini DEFAULT user_ group nobody

All other configuration options can be left to their defaults or can be modified
directly if the default values are not sufficient for your installation.

Define a service plugin

In addition to configuring the LBaaS agent, Neutron must be configured to use an
LBaaS service plugin before the API can be utilized to create LBaaS objects.

Using a text editor, add the following service plugin to the service plugins
configuration option found in the /etc/neutron/neutron. conf file on the controller:

neutron.services.loadbalancer.plugin.LoadBalancerPlugin

Consider the following example:

service plugins = neutron.services.loadbalancer.plugin.LoadBalancerPlugin
Close the file, and restart the neutron-server service as follows:

service neutron-server restart

Starting the Neutron LBaaS agent service

To start the neutron-1baas-agent service and configure it to start at boot, issue the
following commands on the controller node:

service neutron-lbaas-agent start
chkconfig neutron-lbaas-agent on

Verify that the agent is running:
service neutron-lbaas-agent status
The service should return output similar to the following;:

[root@controller neutronl# service neutron-lbaas-agent status neutron-
lbaas-agent (pid 16496) is running...

If you encounter any issues, be sure to check the LBaaS agent log found at
/var/log/neutron/lbaas-agent.log before proceeding.

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

Enabling LBaas$S in Horizon

Before load balancers can be managed in the dashboard, the enable_1b setting in
/etc/openstack-dashboard/local settings file must be set to True. Use the
following commands to change enable_1b from false to true and to restart the
Apache web service:

sed -i "/'enable 1b': False,/c\'enable 1b': True," /etc/openstack-
dashboard/local_ settings

service httpd restart

Load balancer management in the CLI

Neutron offers a number of commands that can be used to create and manage virtual
IPs, pools, pool members, and health monitors for load balancing purposes.

In the Havana implementation of LBaaS, the pool is the root object with which all
other load balancer resources are associated. The workflow to create a functional
load balancer starts with creating a pool and then continues with creating and
associating pool members, health monitors, and a virtual IP.

Managing pools in the CLI

The following commands are used to manage pools in the CLI:

® 1lb-pool-create

¢ 1lb-pool-delete

¢ lb-pool-list

® 1b-pool-list-on-agent
®* 1lb-pool-show

®¢ lb-pool-stats

®* 1lb-pool-update

Creating a pool

A pool is a set of devices, such as web servers, that are grouped together to receive
and process traffic. When traffic is sent to a virtual IP, the load balancer sends the
request to any of the servers that are members of that pool.

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

To create a pool, use the Neutron 1b-pool-create command as follows:

Syntax: lb-pool-create [--tenant-id TENANT ID]
[--admin-state-down] [--description DESCRIPTION]
--1lb-method {ROUN‘D_ROBIN, LEAST CONNECTIONS, SOURCE_IP}
--name NAME --protocol {HTTP,HTTPS,TCP}

--subnet-id SUBNET

The - -tenant-id flag is optional; it allows you to associate the pool with the
specified tenant.

The - -admin-state-down attribute, when set, does not have any effect on the state
of the pool. This is likely a bug or unimplemented feature.

The - -1b-method attribute is used to specify the load balancing algorithm, which is
used to distribute traffic amongst the pool members. The possible options include
ROUND_ROBIN, LEAST CONNECTIONS, and SOURCE_IP.

The - -name attribute is used to specify a name for the pool.

The - -protocol attribute is used to specify the type of traffic the pool will balance.
HTTP and HTTPS are used to balance non-secure and secure web traffic, respectively.
Use TP for all other TCP traffic.

The subnet specified using the - -subnet-id attribute should match the subnet of
the pool members to be added to the pool.

Deleting a pool

To delete a load balancer pool, use the Neutron 1b-pool-delete command as follows:

Syntax: lb-pool-delete POOL

The keyword pooL represents the ID of the pool that you want to delete.

1
v Before a pool can be deleted, any associated virtual IP

must be disassociated.

Listing pools

To obtain a list of configured load balancer pools, use the Neutron 1b-pool-1list
as follows:

Syntax: lb-pool-list

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

The returned list includes details of pools in the running tenant, such as ID, name,
load balancing method, protocol, admin state, and status.

Showing pool details

To show the details of a pool, use the Neutron 1b-pool-show command as follows:

Syntax: lb-pool-show POOL

The keyword pooL represents the ID of the pool. Details returned include the admin
state, description, ID, load balancing method, members, protocol, provider, status,
subnet ID, tenant ID, VIP ID, and health monitors associated with the pool.

Showing pool statistics
To display the statistics of a pool, use the Neutron 1b-pool-stats command

as follows:

Syntax: lb-pool-stats POOL

The keyword pooL represents the ID of the pool. Statistics returned include the
number of active connections, total bytes in, total bytes out, and total connections.

A pool must be in the ACTIVE state before statistics are collected,

and even then, connection counters may be inaccurate. Attempting
T to return statistics on a pool in any other state may result in an error.

Updating a pool
To update the attributes of a pool, use the Neutron 1b-pool-update command
as follows:

Syntax: lb-pool-update POOL [--description DESCRIPTION]
[--1b-method {ROUND_ROBIN, LEAST CONNECTIONS, SOURCE_IP}]

The - -1b-method attribute is used to specify the load balancing algorithm used to
distribute traffic among the pool members. The possible options are ROUND_ROBIN,
LEAST CONNECTIONS, and SOURCE_IP.

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Listing pools associated with an agent

When a pool is created, it is scheduled to a load balancer agent. The idea is that
multiple LBaaS agents can exist in an environment to provide high availability.
To list the pools associated with an agent, use the Neutron 1b-pool-list-on-
agent command as follows:

Syntax: lb-pool-list-on-agent LBAAS AGENT

The keyword LBAAS_AGENT represents the ID or name of an LBaaS agent.
To determine the ID or name of load balancing agents known to Neutron,
use the Neutron agent-1ist command.

Managing pool members in the CLI

The following commands are used to manage pool members in the CLI:

®* lb-member-create
®* lb-member-delete
* lb-member-list
* lb-member-show

®* lb-member-update

Creating pool members

To create a pool member, use the Neutron 1b-member-create command as follows:

Syntax: lb-member-create [--tenant-id TENANT ID]
[--admin-state-down] [--weight WEIGHT]

--address <IP addr of member>

--protocol-port <application port number>

POOL

The --tenant-id flag is optional; it allows you to associate the pool member with
the specified tenant.

The - -admin-state-down attribute is a Boolean that, when set to true, places the
pool member administratively down. In the down state, the pool member is not
eligible to receive traffic. Pool members default to an administrative up state.

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

The - -weight attribute allows you to associate a weight with the pool member.
When set, a pool member may receive more or less traffic than other members in
the same pool. For example, a pool member with a weight of 2 will receive twice
the traffic as a pool member with a weight of 1, a pool member with a weight of 3
will receive three times the traffic as a pool member with a weight of 1, and so on.

The - -address attribute is required; it is used to specify the IP address of the
pool member.

The - -protocol-port attribute is required; it is used to specify the listening port
of the application being balanced. For example, if you are balancing HTTP traffic,
the listening port specified would be 80. For SSL traffic, the port specified would be
443. In most cases, the VIP associated with the pool will utilize the same application
port number.

Deleting pool members

To delete a pool member, use the Neutron 1b-member-delete command as follows:

Syntax: lb-member-delete MEMBER

The keyword MEMBER represents the ID of the pool member to be deleted.

Listing pool members

To obtain a list of pool members, use the Neutron 1b-member-1ist command
as follows:

Syntax: lb-member-list [--pool-id=<POOL ID>]

The returned list of pool members includes member details, such as the ID, address,
protocol port, admin state, and status. Use --pool-id to return pool members in the
specified pool only.

Showing pool member details

To show the details of a pool member, use the Neutron 1b-member-show command
as follows:

Syntax: lb-member-show MEMBER

The keyword MEMBER represents the ID of the member to be shown. Returned details
include the address, admin state, ID, pool ID, protocol port, status, description,
tenant ID, and weight of the member.

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Updating a pool member

To update the attributes of a pool member, use the Neutron 1b-member-update
command as follows:

Syntax: lb-member-update MEMBER [--weight WEIGHT]

The keyword MEMBER represents the ID of the pool member. In Havana, the only
attribute of a pool member that can be updated is the weight. All other attributes
are read-only.

Managing health monitors in the CLI

LBaaS in Neutron provides the ability to monitor the health of pool members as
a method of ensuring the availability of an application. If a pool member is not in
a healthy state, Neutron can pull a member out of rotation, limiting the impact of
issues between the client and the application.

The following commands are used to manage health monitors in the CLI:

® lb-healthmonitor-create

® 1b-healthmonitor-delete

® 1lb-healthmonitor-associate

® 1b-healthmonitor-disassociate
® 1b-healthmonitor-list

® 1b-healthmonitor-show

® 1b-healthmonitor-update

Creating a health monitor

To create a health monitor, use the Neutron 1b-healthmonitor-create command
as follows:

Syntax: lb-healthmonitor-create [--tenant-id TENANT ID]

[--admin-state-down] [--expected-codes EXPECTED_CODES]
[--http-method HTTP METHOD] [--url-path URL_PATH]

--delay DELAY --max-retries MAX RETRIES
--timeout TIMEOUT --type {PING,TCP,HTTP,HTTPS}

The --tenant-id flag is optional; it allows you to associate the monitor with the
specified tenant.

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

The - -expected-codes attribute is optional; it allows you to specify the HTTP status
code(s) that indicate that a pool member is working as expected when the monitor
sends an HTTP request to the pool member for the specified URL. For example, if a
GET request for a URL is sent to a pool member, the server is expected to return a 200
OK status upon successful retrieval of the page. If 200 is listed as expected code, the
monitor would mark the pool member as UPp. As a result, the pool member would be
eligible to receive connections. If a 500 status code were returned, it could indicate
that the server is not properly processing connections. The health monitor would
mark the pool member as DowN and temporarily remove it from the pool. The default
value is 200.

The --http-method attribute is optional; it is used in conjunction with

- -expected-codes and --url-path. It is used to specify the type of HTTP
request being made. Common types include GET and posT. There is no validation
of this attribute, which may allow users to create monitors that don't work as
expected. The default value is GET.

The - -url-path attribute is optional; it is used in conjunction with --expected-
codes and - -http-method. When specified, the system will perform an HTTP request
defined by - -http-method for the URL against the pool member. The default value is
root or /.

The - -delay attribute is required; it is used to specify the period between each
health check (in seconds). A common starting value is 5 seconds.

The - -max-retries attribute is required; it is used to specify the maximum number
of consecutive failures before a pool member is marked as DOWN. A common starting
value is 3 retries.

The - -timeout attribute is required; it is used to specify the number of seconds for
a monitor to wait for a reply. A common value for this attribute is (delay * max-
retries) + 1 toensure thata pool member is given adequate time to respond.

The - -type attribute is required; it is used to specify the type of monitor being
configured. The four types are as follows:

* PING: The simplest of all monitor types, PING uses ICMP to confirm
connectivity to pool members.

The PING type is not properly supported in the
haproxy driver and results in the same behavior
as the TCP type.

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

* TCP: This instructs the load balancer to send a TCP SYN packet to the pool
member. Upon receiving a SYN ACK back, the load balancer resets the
connection. This type of monitor is commonly referred to as a half-open
TCP monitor.

* HTTP: This instructs the monitor to initiate an HTTP request to a pool
member based on the expected codes, url path, and http method
attributes described here.

* HTTPS: This instructs the monitor to initiate an HTTPS request to a pool
member based on the expected codes, url path, and http method
attributes described here.

Deleting a health monitor

To delete a health monitor, use the Neutron 1b-healthmonitor-delete command
as follows:

Syntax: lb-healthmonitor-delete HEALTH MONITOR

The keyword HEALTH MONITOR represents the ID of the health monitor to be deleted.

Associating a health monitor with a pool

To associate a health monitor with a pool, use the Neutron 1b-healthmonitor-
associate command as follows:

Syntax: lb-healthmonitor-associate HEALTH MONITOR ID POOL

The keyword pooL represents the ID of the pool to be associated with the monitor.

More than one health monitor can be associated with a single pool.
A Also, a single monitor can be leveraged by multiple pools.

Disassociating a health monitor from a pool

To disassociate a health monitor from a pool, use the Neutron 1b-healthmonitor-
disassociate command as follows:

Syntax: lb-healthmonitor-disassociate HEALTH MONITOR ID POOL

The keyword poOL represents the ID of the pool to be disassociated from the monitor.

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

Listing health monitors

To obtain a list of health monitors, use the Neutron 1b-healthmonitor-1list
command as follows:

Syntax: lb-healthmonitor-list

The list returned includes the ID, type, and admin status of all health monitors.

Showing health monitor details

To show the details of a health monitor, use the Neutron 1b-healthmonitor-show
command as shown below:

Syntax: lb-healthmonitor-show HEALTH MONITOR

The details returned include delay, expected codes, HTTP method, ID, max retries,
pools, tenant ID, timeout, type, and URL path.

Updating a health monitor

To update the attributes of a health monitor, use the Neutron 1b-healthmonitor-
update command as follows:

Syntax: lb-healthmonitor-update HEALTH MONITOR_ID

Updateable attributes include delay, expected codes, HTTP method, max retries,
timeout, and URL path.

Managing virtual IPs in the CLI

The following commands are used to manage virtual IPs in the CLI:

® 1b-vip-create
®* lb-vip-delete
* 1b-vip-list
¢ lb-vip-show
® 1b-vip-update

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Creating a virtual IP

To create a virtual IP, use the Neutron 1b-vip-create command as follows:

Syntax: lb-vip-create [--tenant-id TENANT ID]
[--address ADDRESS] [--admin-state-down]
[--connection-limit CONNECTION LIMIT]
[--description DESCRIPTION] --name NAME
--protocol-port PROTOCOL PORT

--protocol {TCP,HTTP,HTTPS}

--subnet-id SUBNET

POOL

The --tenant-id flag is optional; it allows you to associate the monitor with the
specified tenant.

The - -admin-state-down attribute, when set, does not have any effect on the state
of the load balancer.

The - -address attribute is optional; it allows you to specify the IP address of the
listener. A Neutron port will be created to reserve the address specified here.

The - -connection-1limit attribute is optional; it allows you to define a connection
limit on the virtual IP. Once the limit has been reached, new client traffic will not
be balanced.

The - -name attribute is required; it is used to define the name of the virtual IP.

The - -protocol-port attribute is required; it is used to specify the listening port of
the application being balanced. For example, if you were balancing HTTP traffic, the
port specified would be 80. For SSL traffic, this port specified would be 443.

In most cases, the pool associated with the virtual IP would utilize the same
application port number.

The --protocol attribute is required; it is used to specify the type of traffic
being load balanced. The options are TCP, HTTP, and HTTPS. This value must
match the protocol of the associated pool.

The - -subnet-1id attribute is required; it is used to provide the proper network
configuration of the load balancer. Every load balancer exists in its own network
namespace, and the subnet specified here is what is used to configure networking
within the namespace, including the IP address and default route.

The keyword POOL represents the pool to be balanced by this virtual IP.

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

Deleting a virtual IP

To delete a virtual IP, use the Neutron 1b-vip-delete command as follows:

Syntax: lb-vip-delete VIP

The keyword vip represents the ID of the virtual IP to be deleted.

Listing virtual IPs

To obtain a list of virtual IPs, use the Neutron 1b-vip-1ist command as follows:
Syntax: lb-vip-list

The output returned includes a list of virtual IPs and details, such as ID, name,
address, protocol, and state.

Showing virtual IP details
To show the details of a virtual IP, use the Neutron 1b-vip-show command

as follows:

Syntax: lb-vip-show VIP

The keyword vip represents the ID of the virtual IP. The details returned include
the address, connection limit, description, ID, name, pool ID, port ID, protocol,
protocol port, status, subnet ID, and tenant ID.

Updating a virtual IP

To update the attributes of a virtual IP, use the Neutron 1b-vip-update command
as follows:

Syntax: lb-vip-update VIP [--connection-limit CONNECTION LIMIT]
[--pool-id POOL] [--session-persistence
type={HTTP COOKIE, SOURCE IP,APP COOKIE}]

Session persistence is an attribute that is not directly exposed within the CLI but
is available in the dashboard. You can, however, update this attribute with the
1b-vip-update command in the following ways:

To enable SOURCE_IP or HTTP_COOKIE persistence, use the following syntax:

Syntax: lb-vip-update VIP --session-persistence type=dict type={HTTP
COOKIE, SOURCE IP}

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

To enable APP_COOKIE persistence, use the following syntax:

Syntax: lb-vip-update VIP --session-persistence type=dict type=APP
COOKIE, cookie name=<application cookie name>

APP_COOKIE persistence requires the use of a specified cookie name unique to
your application. A common example is the use of a JSESSIONID cookie in a
JSP application.

The type=dict mapping is needed for Python to properly
K= process the subsequent key/value pairs.

Building a load balancer

To demonstrate the creation and use of load balancers in Neutron, this next section
is dedicated to building a functional load balancer based on certain requirements.

A tenant has a simple Neutron network set up with a router attached to both an
external provider network and an internal tenant network. The tenant would like to
load balance HTTP traffic between two instances running a web server. Each instance
has been configured with an index.html page containing a unique server identifier.

To eliminate the installation and configuration of a web server for this example,
you can mimic the behavior of one by using the SimpleHTTPServer Python
module on the instances as follows:

ubuntu@webl:~$ echo "This is Webl" > ~/index.html
ubuntu@webl:~$ sudo python -m SimpleHTTPServer 80
Serving HTTP on 0.0.0.0 port 80 ..

Repeat the aforementioned commands for the second instance, substituting web2 for
Webl in the index.html file.

Creating a pool
The first step to building a functional load balancer is to create the pool. Using the
Neutron 1b-pool-create command, create a pool with the following attributes:

* Name: WEB_POOL

* Load balancing method: Round robin

* Protocol: HTTP

* Subnet ID: <Subnet ID of the pool members>

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

Have a look at the following screenshot:

[root@controller ~]# neutron lb-pool-create --description “The Web Pool" --1b-method ROUND_ROBIN ™
= —-name WEB_POOL --protocol HTTP --subnet-id 9e7f@7bc-el94-4632-8558-4d81laa5@efl6
Created a new pool:

admin_state_up True

description The Web Pool

health_monitors

health_monitors_status

id 393b994c-bb7c-4331-aedd-af1df196f133
1b_method ROUND_ROBIN

members

name WEB_POOL

protocol HTTP

provider haproxy

status PENDING_CREATE

status_description

subnet_id 9e7f@7bc-e194-4632-8558-4d81aa50ef16
tenant_id bleSde8dlcfc45dbal5d9c@cba42a8ab

% The state of the pool will remain in PENDING CREATE until
= a virtual IP has been associated with it.

Creating pool members

The next step to building a functional load balancer is to create the pool members
that are to be balanced.

In this environment, there are two instances eligible for use in the pool, as shown in
the following screenshot:

nova list
——————————————————— e e e m e e e m e m e mm - ————————
| Mame | Status | Task State | Power State | Metworks

| azbSc8fe-e3a@-4cfl-93ee-86ad4fb@ff35 | Webl | ACTIVE | - | Running | TENANT_NET1=
| eaclf201-76ca-488f-aaa8-d5c50d57c8f4 | Web2 | ACTIVE | - | Running | TENANT_NET1=
o e e e Hmmmmm Fommmmme fmmmmmmmm e fmmmmmmmmmmeee o e e -

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Using the Neutron 1b-member-create command, create two pool members with the
following attributes:

e Member 1:
° Name: Webl
° Address: 10.30.0.2

° Protocol Port: 80
° Pool: wEB_POOL

e Member 2:
° Name: Web2
° Address: 10.30.0.4

° Protocol Port: 80
° Pool: wEB_POOL

The following screenshot demonstrates the process of creating the first pool member:

[root@controller ~]# neutron lb-member-create --address 10.30.0.2 --protocol-port 8@ WEB_POOL
Created a new member:

| Field

+ ____________________
address 10.30.0.2
admin_state_up True

|
|
| id d55b787e-5cab-4dcb-ab7b-e58930988dba
| pool_id 393b994c-bb7c-4331-aedd-af1df196133
| protocol_port 80
| status PENDING_CREATE
| status_description

| tenant_id ble5de8dlcfc45deal5d9cOchb442alab

| weight

+ ____________________

Repeat the process shown in the preceding screenshot to create the second
pool member.

The Neutron command 1b-member-1ist returns a list showing the two pool members
but does not list their associated pool(s). Have a look at the following screenshot:

[root@controller ~1# neutron lb-member-list

B8 | True | PENDING_CREATE |
80 | True | PENDING_CREATE |

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

As a workaround, you can include certain columns to be returned as shown in the
following screenshot:

[root@controller ~]# neutron lb-member-list -c pool_id -c id -c address -c protocol_port

Creating a health monitor

To provide high availability of an application to clients, it is recommended that you
create and apply a health monitor to a pool. Without a monitor, the load balancer
will continue to send traffic to members that may not be available.

Using the Neutron 1b-healthmonitor-create command, create a health monitor
with the following attributes. This is shown in the screenshot following the attributes:

* Delay: 5
* Max retries: 3
e Timeout: 16 ((Delay * Max Retries) + 1)

* Type: TCP

[root@controller ~]# neutron lb-healthmonitor-create --delay 5 --max-retries 3 --timeout 16 --type TCP
Created a new health_monitor:
fmmmm———————————
| Field
A ccccrcooees
admin_state_up | True
delay 5

id 28cfd185-5cdb-48b@-ba@5-9bba%edaddB3
max_retries]

pools

tenant_id bleSde8dlcfc45d6al5dIc@cbadZadab
timeout

To associate the newly created health monitor with the pool, use the
1b-healthmonitor-associate command as follows:

Syntax: lb-healthmonitor-associate HEALTH MONITOR_ ID POOL

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Consider the following screenshot:

[root@controller ~]# neutron lb-healthmonitor-associate 28cfd185-5cdb-48b8-ba@5-9bba9efad@s3 WEB_POOL

Associated health monitor 28cfdl185-5cdb-48b@-ba@5-9bbadeBadds3

Creating a virtual IP

The last step in creating a functional load balancer is to create the virtual IP, or VIP,
which acts as a listener and balances traffic across pool members. Using the Neutron
1b-vip-create command, create a virtual IP with the following attributes:

* Name: WEB_VIP

* Protocol Port: 80

* Protocol: HTTP

* Subnet ID: <Subnet ID of Pool>

e Pool: WEB POOL

Have a look at the following screenshot:

[root@controller ~]# neutron lb-vip-create --description "The Web VIP" --name WEB_VIP \
> -=-protocol-port 8@ --protocol HTTP --subnet-id 9e7f@7bc-el194-4632-8558-4d81aa50eflo WEB_POOL
Created a new vip:

Field
+ ____________________

e

address
admin_state_up
connection_limit
description

id

name

pool_id

port_id

protocol
protocol_port
status
status_description
subnet_id
tenant_id

10.30.0.5

True

=1

The Web VIP
cfdl84cc-398d-4da5-alZe-6e3031e2ccdd
WEB_VIP
393b994c-bb7c-4331-aedd-af1df196f133
4cdS53215-3188-4e2b-a77b-4cB83c4a7128b
HTTP

80

PENDING_CREATE

9e7f@7bc-2194-4632-8558-4d81aa50ef16
ble5de8dlcfc45d6al5d9c@ch4d2asab

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

Once the virtual IP has been created, the state of the VIP and the pool will change to
ACTIVE as shown in the following screenshot:

[root@controller ~J# neutron lb-vip-list
e e Hmmmmmmoee Hmmmmmmmooos
| name | address protocol | admin_state_up | status
____________________________ e S S —— ,

398d-4da5-alZe-6e3031e2ccO4 | WEB_VIP | 10.30.0.5

1b_method | protocol | admin_state_up | status
————————————— e !
ROUND_ROBIN | HTTP | True | ACTIVE
------------- e

The LBaaS network namespace

A listing of the network namespaces on the host running the LBaaS agent reveals a
network namespace that corresponds to the load balancer just created as shown in
the following screenshot:

[root@controller ~]J# ip netns
grouter-@f720e65-13b9-45f3-b750-d8a3albl8672
qdhcp-a9fa@92a-a412-4097 -bbd4-7f@8fa5ebse3
qlbaas-393b994c-bb7c-4331-aedd-afldf196f133
qdhcp-f92e9357-5070-42e1-916a-32bcllfd4cye

The IP configuration within the namespace reveals a tap interface that corresponds to
the subnet of the virtual IP as follows:

[root@controller ~]# ip netns exec glbaas-393b9%4c-bb7c-4331-aedd-af1df196f133 ip a
22: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 gdisc nogqueue state UNKNOWN

link/loopback 90:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.08.1/8 scope host lo

inet6 ::1/128 scope host

valid_l1ft forever preferred_lft forever
» ns-4cd532f5-31: <BROADCAST,MULTICAST,UP,LONER_UP> mtu 1500 gdisc pfifo_fast state UP glen 1000
link/ether fa:;16:3e:92:92:72 brd ff:ff:ff;ff:ff:ff
inet 10.30.0.5/24 brd 10.30.0.255 scope global ns-4cd532f5-31
inett feB@::f816:3eff:fe92:9272/64 scope link
valid_lft forever preferred_lLft forever

Neutron creates a haproxy configuration file specific to every load balancer that is
created by users. The load balancer configuration files can be found in the /var/1ib/
neutron/lbaas/ directory of the host running the LBaaS agent.

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The configuration file for this load balancer built by Neutron can be seen in the
following screenshot:

[root@controller ~]# cat /var/1lib/neutron/lbaas/393b994c-bb7c-4331-aedd-af1df196f133/conf
global

daemon

user nobody

group nobody

log /dev/log local®

log /dev/log locall notice

stats socket /var/lib/neutron/lbaas/393b984c-bb7c-4331-0edd-afldf196f133/sock mode @666 level user
defaults

log global

retries 3

option redispatch

timeout connect 5000

timeout client 50000

timeout server 50000
frontend cfd1@4cc-398d-4da5-al2e-6e3031e2cci4
option tcplog
bind 10.30.0.5:80
mode http
default_backend 393b994c-bb7c-4331-aedd-afl1df196f133
option forwardfor
backend 393b994c-bb7c-4331-aedd-af1df196f133
mode http
balance roundrobin
option forwardfor
timeout check 16s 1] !
server 728c2508-6b43-403d-a32e-03041a85b8ec 10.30.0.4:80 weight 1 check inter 5s fal
server d55b787e-5cab-4dcb-ab7b-e58930988dba 10.30.0.2:80 weight 1 check inter 5s fal

3

1
1

Confirming load balancer functionality

From within the router namespace, confirm connectivity to Web1 and Web2 over
port 80 using curl as follows:

[root@controller ~]# ip netns exec grouter-@f720e65-13b9-45f3-b750-d8a3albl18672 curl http://10.
This is Webl
[root@controller ~]# ip netns exec gqrouter-@f720e65-13b9-45f3-b750-d8a3alb18672 curl http://10.
This is WebZ

By opening multiple connections to the virtual IP 10.30.0.5 within the router
namespace, you can observe round robin load balancing in effect:

[root@controller ~]# ip netns exec grouter-@f720e65-13b9-45f3-b750-d8a3albl8672 curl http:
This is Webl
[root@controller ~]# ip netns exec grouter-8f720e65-13b9-45f3-b750-d8a3albl8672 curl http:
This is WebZ

[root@controller ~]# ip netns exec grouter-@f720e65-13b9-45f3-b750-d8a3albl8672 curl http:

This is Webl

[root@controller ~]# ip netns exec grouter-@f720e65-13b9-45f3-b750-d8a3albl18672 curl http://10@.
This is WebZ

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

With round robin load balancing, every connection is evenly distributed among the
two pool members.

Observing health monitors

A packet capture on Web1 reveals the load balancer is performing TCP health checks
every 5 seconds. Have a look at the following screenshot:

root@webl:~# tcpdump -1 any port 8@ -n
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on any, link-type LINUX_SLL (Linux cooked), capture size ©5535 bytes

e1:
e1:
e1:

(53]

:20.547583 IP 10.
120.547613 IP 1@.
:20.547854 IP 10.

=

.5.4953. .30.0.2.80: Flags [S], seq 3636217985, win 14600,
.2.80 > 10.30.0.5.49533: Flags [S5.], seq 3716667043, ack 36362
1 .30.0.2.80: Flags [R.], seq 1, ack 1, win 115, op

[TE R T
o

(53]

L Ll
=]

=

e1:
e1:
e1:

(53]

:25.549500 1@.
:25,549586 1@.
.549816 1@.

=

.30.0.2.80: Flags [S], seq 1691059124, win 14600,
.8.5.49535: Flags [S.], seq 1448956896, ack 16910
.30.0.2.80: Flags [R.], seq 1, ack 1, win 115, op

(TR
o On
L L
& &

e1:
e1:
e1:

(53]
=

551589 1@.
.551613 1@.
.551847 1@.

=

.30.0.2.80: Flags [S], seq 3689515567, win 14600,
.8.5.49537: Flags [S.], seq 2737257391, ack 36895
.30.0.2.80: Flags [R.], seq 1, ack 1, win 115, op

L L
=]

(53]
=

o W
on
W W
=]

=

In the preceding screenshot, the load balancer is sending a TCP SYN packet every
5 seconds and immediately sends an RST upon receiving the SYN ACK from the
pool member.

To observe the monitor removing a pool member from eligibility, stop the web
service on Web1, and observe the packet captures and logs as follows:

:39 604726 IP 10.30.8.5.49 .30.0.2.80: Flags [5], seq 246239507, win 14608, op
139 604741 IP 10.30.0.Z2. .30.8.5.49604: Flags [R.], seq @, ack 246239588, win @

606646 IP 10.30.0.5.49 .30.0.2.80: Flags [5], seq 1018504608, win 14600, o

606672 IP 10.30.0.2. .30.8.5.49606: Flags [R.], seq @, ack 10185846@9, win

608178 IP 10. .30.9.2.80: Flags [5], seq 4134644631, win 14600, o
.30.8.5.49608: Flags [R.], seq @, ack 4134644632, win

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In the preceding output, the web service is stopped, and connections to port 80 are
refused. Immediately following the third failure, the load balancer marks the pool
member as DOWN, as follows:

Aug 18 21:39:1@ controller haproxy[9106]: Server 393b994c-bb7c-4331-aedd-afldf196f133/d55b787e-5cab-4dcb-ab7b-e58930988dba

is DOWN, reason: Layer4 connection prob , info: "Connection refused", chec P @ms. 1 active and @ backup servers
left. @ sessions active, @ requeued, @ remaining in queue.

Subsequent connections to the VIP are sent to WweB2 as follows

[root@controller ~]# ip netns exec grouter-@f720e65-13b9-45f3-b750-d8a3albl8672 curl http://10.
This is Web2Z
[root@controller ~]# ip netns exec qrouter-@f720e65-13b9-45f3-b750-d8a3albl8672 curl http://10.
This is WebZ
[rootBcontroller ~]# ip netns exec grouter-8f720e65-13b9-45f3-b750-d8a3albl8672 curl http://1@.
This is Web2Z

After restarting the web service on web1, the load balancer places the server back in
the pool upon the next successful health check as follows:

Aug 18 21:44:35 controller hapro 5 c -aedd-af1df196f1 55b787e-5cab-4dcb-ab7b-e58930988dba
is UP, reason: Layer4 check passed, check duration: @ms. 2 active and @ backup servers online. @ sessions requeued, @ total
in queue.

Connecting to the virtual IP externally

To connect to a virtual IP externally, a floating IP must be associated with the
Neutron port associated with the VIP, as the virtual IP exists within a subnet
behind the router and is not reachable directly.

Using the Neutron floatingip-create command, assign a floating IP to be
used with the virtual IP as follows:

[root@controller ~]# neutron floatingip-create GATEWAY_NET --port-id=$(neutron port-list | grep 10.30.0.5 | awk '{print $2}')
Created a new floatingip:

Hmmmmmmmmm——— e ———— Hmmm e e m—— e e —————— +

| Field Value |

fixed_ip_address

floating_ip_address

floating_network_id

id

port_id

router_id

tenant_id
Ne—roorc—rrrreoroe e

a9fa@92a-a412-4097-bbd4-7f08fa5eb8e3
10781e7e-7ec@-4f fb-8544-ded427da0d016
4cd532f5-3188-4e2b-a77b-4c83c4a7128b
Bf720e65-13b9-4513-b750-d8a3albl8672
bleSde8dlcfc45dbal5dIc@cb442a8ab

e = =

1
[
[
[
i
i
i
i
I
[
[
[
[
[
[
[
[
[
[
[
[
[
[
i
i
i
i
I
[
[
[
[
[
[
[
[
[
1

[

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

A test from a workstation to the floating IP confirms external connectivity to the load
balancer and its pool members. Have a look at the following screenshot:

jamess-mbp:~ jdenton$ curl http://19.50.0.102
This is Webl
Jjamess-mbp:~ jdenton® curl http://10.50.0.102
This is WebZ

jamess-mbp:~ jdenton® curl http://10.50.0.182
This is Webl
jamess-mbp:~ jdenton$ curl http://10.50.0.102
This is Web2

Load balancer management in the
dashboard

In the Horizon dashboard, load balancers can be managed from the Project panel
by clicking on Load Balancers in the menu on the left-hand side of the screen.
Have a look at the following screenshot:

Logged in as: admin Settings Help Sign Out
n Load Balancer
Pool lembers Monitors
openstack
P
Admir Name Description Provider Subnet Protocol VIP Actions
No items to display.
adm‘;-' . Displaying 0 items

Manage Compute

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

From the Load Balancers screen, pools, members, and monitors can be managed
from their respective tabs.

Creating a pool in the dashboard

To create a pool, perform the following steps:

1. Click on the Add Pool button within the Pools section. A window will pop
up that resembles the one shown in the following screenshot:

Add Pool

Add New Pool *

Name Create Pool for current project.

A
WEB_POOL Assign a name and description for the pool. Choose ane

subnet where all members of this pool must be on. Select
Description the protocel and load balancing method for this pool.
Admin State is UP (checked) by default.

Provider

haproxy (default)

ik

Subnet *

10.30.0.0/24

b

Protocol *

HTTP

Ak

Load Balancing Method *

ROUND_ROEBIN

Ak

Admin State

o

Cancel Add

2. From the Add Pool window, you can specify a name for the pool and choose
the subnet, protocol, and load balancing method.

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

3. To create the pool, click on the blue button labeled Add. Once created, the
pool will be listed in the Pools section as follows:

Pools
Pools + AddPool | [L
] Name Description Provider Subnet Protocol VIP Actions
WEB_PQOL haproxy — 10.30.0.0/24 HTTP - Edit Pool | More

Displaying 1 item

Creating pool members in the dashboard

To create a pool member, perform the following steps:

1. Click on the Add Member button within the Members section. A window
will pop up that resembles the one shown in the following screenshot:

[=]
Add Member
Add New Member *

Pool Add member to selected pool.

Sz lie s - Choose one or more listed instances to be added to the

pool as member(s). Assign a numeric weight for this

Member(s) * member Specify the port number the member(s) operate
Web1 on; e.g., 80.
@ web2
Weight

Protocol Port *

80

Admin State

v

Cancel Add

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

2. From the Add Member window, you can add multiple members to a pool
simultaneously and set a common weight and protocol port for the chosen
pool members.

3. To create pool members, click on the blue button labeled Add:

Pools Members Monitors
Members + Add Member
[IP Address Protocol Port Pool Actions
O [10.30.0.4 80 WEB_POOL Edit Member = More
O 10.30.0.2 BO WEB_POOL Edit Member = More
Displaying 2 items

4. To edit a particular pool member, click on the Edit Member button under the
Actions column next to the pool member:

Edit Member

o Description:
bcd3a2ba-c99c-4c1b-8937-08ade20115fc You may update member attributes here: edit pool,
weight or admin state.

Pool *

k-

WEB_POOL

Weight *
1

Admin State

o

Cancel Save Changes

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

5. From the Edit Member screen, you can move the member to another pool,
change the weight, or mark the member as administratively down. To save
your changes, click on the blue Save Changes button.

Creating health monitors in the dashboard

To create a health monitor, perform the following steps:

1. Click on Add Monitor from the Monitors tab on the Load Balancers screen.
A window will pop up similar to the one shown in the following screenshot:

Add Monitor

Add New Monitor *

Type Create a monitor template.
TCP v o))
Select type of monitoring. Specify delay, timeout, and
retry limits required by the monitor. Specify method, URL
Delay * path, and expected HTTP codes upon success.
5
Timeout *

16

Max Retries (1-10) *

3

Admin State

o

Cancel Add

2. From the Add Monitor window, you can choose the type of monitor to be
created as well as specify the delay, timeout, and max retries for the monitor.
To add the monitor, click on the blue Add button.

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

3. To associate a monitor with a pool, navigate to the list of pools by clicking
on the Pools tab in the Load Balancers section. Choose Add a Health
Monitor from the More menu under Actions next to the pool as shown
in the following screenshot:

Pools

Pools + Add Pool
[l Name Description Provider Subnet Protocol VIP Actions
O WEB_POOL haproxy 10.30.0.0/24 HTTR - Edit Pool More
Add VIP
Displaying 1 item
Add Health Monitor
| Delete Pool

4. Choose a monitor from the menu, and click the blue Add button to associate
it with the pool. Have a look at the following screenshot:

. |
Add Association
Association Details *
Select a monitor template for WEB_POOL * Associate a health monitor with target pool.
TCP delay:5 retries:3 timeout:16 v
Cancel Add
|

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

Creating a virtual IP in the dashboard

To create a virtual IP, perform the following steps:

1. Navigate to the list of pools by clicking on the Pools tab in the Load
Balancers section. Choose Add VIP from the More menu next to the
pool as shown in the following screenshot:

Pools
Pools + Add Pool
] Name Description Provider Subnet Protocol VIP Actions
O | WEB_POOL haproxy 10.30.0.0/24 HTTP - Edit Pool |~ More ™

Add VIP

Displaying 1 item

Delete Health Monitor

Delete Pool

A window will pop up similar to the following screenshot:

Add VIP
Specify VIP *
Name Create a VIP for this pool. Assign a name and description
WEB_VIP for the VIF. Specify an IP address and port for the VIF.
Choose the protocol and session persistence method for
Description the VIP.Specify the max connections allowed. Admin State

is UP (checked) by default.
Additional information here..

VIP Address from Floating IPs

Currently Mot Supported

e

Specify a free IP address from 10.30.0.0/24
10.30.0.5

Protocol Port *

80

Protocol *

HTTP

e

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

2. From the Add VIP window, you can assign a name to the VIP, specify an
IP address, specify the protocol and listener port, define a type of session
persistence, and set the connection limit. Information on session persistence
types can be found earlier in this chapter.

3. Once configured, click on the blue Add button to associate the VIP with
the pool.

One limitation found in the dashboard is the inability to have
Neutron automatically assign an IP address from the subnet
% for use as the virtual IP. You must specify a free IP address
T~ from the subnet associated with the pool, otherwise the VIP
creation process will fail.

Connecting to the virtual IP externally

In Havana and Icehouse, the ability to assign a floating IP to the virtual IP from the
Add VIP window is not functional. Instead, you must perform the following steps:

1. Navigate to the Instances pane, and choose Associate Floating IP from any
of the instances listed as follows:

Instances Q| Filter + Launch Instance
Instance Image IP Power
Name Name Address Size Keypair Status Task State Uptime Actions
3
mi.small | 2GB ——
Web2 Ubuntu 10.30.04 RAM|1VCPU KEY Active None Running P ! Create Snapshot More
| 20.0GB Disk :
minutes
3
m1i.small | 2GB Bt
Web1 Ubuntu = 10.30.0.2 RAM|1VCPU KEY Active MNone Running 2 ! Create Snapshot ~ More ™
| 20.0GB Disk :
minutes Associate Floating IP
Displaying 2 items [Disassociate Floating IP
Edit Instance
Edit Security Groups
[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Load Balancing Traffic in Neutron

A window will pop up similar to the one pictured below:

Manage Floating IP Associations

IP Address *

IF Aodress Select the |P address you wish to associate with the

10.50.0.102 + selected instance.

elect A part
¥ None: 10.30.0.5
Web1: 10.30.0.2
Web2: 10.30.0.4

Cancel Associate

2. From the Manage Floating IP Associations window, select a floating IP
from the IP Address menu, and choose the address utilized by the virtual
IP from the Port To Be Associated menu. Click on the blue Associate
button to associate the floating IP with the virtual IP.

Summary

Load balancing as a service provides tenants with the ability to scale their
application programmatically through the Neutron API. Users can balance
traffic to pools consisting of multiple application servers and can provide high
availability of their application through the use of intelligent health monitors.

The user experience varies greatly between the CLI and the dashboard with regard
to LBaa$S, and there is not much difference in the Icehouse release either. A major
limitation to LBaaS can be seen in the inability to create multiple virtual servers
using the same IP address and different layer 4 ports. This limits the ability to send
SSL and non-SSL traffic to the same pool of servers. Advanced features, such as
SSL offloading and layer 7 load balancing, are not available in either the Havana
or the Icehouse release. The community is looking to address many functional and
performance concerns in the Juno release of OpenStack, and beyond.

In the next chapter, I will discuss the two methods of securing instances in an
OpenStack cloud: Neutron security groups and firewall as a service.

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on
the Network

Neutron includes two methods of providing network-level security to instances.
The first method is using security groups that leverage iptables rules to filter traffic
on the compute node hosting the instance. The second method is a feature known
as Firewall-as-a-Service (FWaaS) that provides filtering at the perimeter of the
network on a Neutron router. First introduced in the Havana release of OpenStack
as a technical preview, FWaaS serves as a complement to Neutron security groups,
not a replacement.

In this chapter, we will discuss some fundamental security features of Neutron,
such as:

* Managing security groups

* Demonstrating how security groups leverage iptables

* Managing Neutron firewalls

* Demonstrating how Neutron firewalls leverage iptables

Security groups in OpenStack

Prior to Neutron, the Nova (Compute) service handled the securing of network
traffic to and from instances through the use of security groups. A security group is
a collection of network access rules that limit the types of traffic an instance can send
or receive. Neutron provides an API to create, modify, apply, and delete security
group rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

When a port is created in Neutron, it is associated with a default security group
unless a specific security group is specified. The default security group drops all
ingress traffic and allows all egress traffic from instances. In addition, standard rules
are applied to every instance that prohibit IP, DHCP, and MAC address spoofing.
Rules can be added to the default security group to change its behavior. Once a
security group has been applied to a Neutron port, the corresponding security
group rules are translated by Neutron into iptables rules that are then applied

to the respective compute node hosting the instances.

Firewall-as-a-service

FWaasS is an extension for Neutron that provides users with the ability to deploy
perimeter firewalls to protect their networks. The FWaaS extension enables you
to do the following things:

* Apply firewall rules on traffic entering and leaving tenant networks attached
to Neutron routers

* Create and share firewall policies that hold an ordered collection of the
firewall rules

* Audit firewall rules and policies
The FWaaS extension introduces the following network resources:

* Firewall: This represents a logical firewall resource that a tenant can
instantiate and manage. A firewall is associated with one firewall policy.

* Firewall policy: This is an ordered collection of firewall rules that can be
shared across tenants.

* Firewall rule: This represents a collection of attributes, such as layer 4 ports
and IP addresses, that define match criteria and perform an action to be taken
on the matched data traffic.

Like security group rules, firewalls in Neutron utilize iptables to perform traffic
filtering. Rather than being configured on every compute node, however, firewall
rules are implemented using iptables within a Neutron router namespace. Future
improvements may allow the use of third-party drivers and plugins that allow
Neutron to interact with other hardware or software firewalls.

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Introducing iptables

Both security groups and Neutron firewalls leverage iptables rules to perform traffic
filtering. Iptables is a built-in firewall in Linux that allows a system administrator to
define tables containing chains of rules that determine how network packets should
be treated. Packets are processed by sequentially traversing rules in chains within the
following tables:

* Raw: This is a default table that filters packets before any other table. It is
mainly used to configure exemptions from connection tracking and is not
used by security groups or FWaaS.

* Filter: This is a default table used to filter packets.
e NAT: This is a default table used for network address translation.

* Mangle: This is a default table used for specialized packet alteration and is
not used by security groups or FWaaS.

A rule in a chain can cause a jump to another chain, and this behavior can be
repeated to whatever level of nesting is required. The system recalls the point at
which a jump occurs and can return to that point for further processing. When
iptables is enabled, every network packet arriving at or leaving from the computer
traverses at least one chain.

There are five default chains, and the origin of the packet determines which chain it
will initially traverse. The five default chains are as follows:

* PREROUTING: Packets will enter this chain before a routing decision is made.
This chain is not used for security group rules, but instead for floating IP
functionality within a router namespace. The PREROUTING chain is used by
the raw, mangle, and NAT tables.

* 1INPUT: This is used when a packet is going to be locally delivered (that is,
meant for the host machine). The INPUT chain is used by the mangle and
filter tables.

* FORWARD: All packets that have been routed and were not for local delivery
will traverse this chain. The FORWARD chain is used by the mangle and
filter tables.

e ouTPUT: Packets sent from the host machine itself will traverse this chain.
The ouTpUT chain is used by the raw, mangle, NAT, and filter tables.

* POSTROUTING: Packets will enter this chain when a routing decision has been
made. This chain is not used for security group rules, but is used for floating
IP functionality within a router namespace. The POSTROUTING chain is used
by the mangle and NAT tables.

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Each rule in a chain contains criteria that packets can be matched against. The rule
may also contain a target (another chain) or a verdict, like DROP or ACCEPT. As a
packet traverses a chain, each rule is examined. If a rule does not match the packet,
the packet is passed to the next rule. If a rule does match the packet, the rule takes
the action indicated by the target or verdict. Possible verdicts include the following:

accepT: This indicates that the packet is accepted and sent to the application
for processing

DROP: This indicates that the packet is dropped silently

REJECT: This indicates that the packet is dropped and an error message is
sent to the sender

Loa: This indicates that the packet details are logged
DNAT: This indicates that the destination IP of the packet is rewritten
SNAT: This indicates that the source IP of the packet is rewritten

RETURN: This indicates that the processing returns to the calling chain

The AcCcEPT, DROP, and REJECT verdicts are often used by the filter table. Common
rule criteria include the following;:

-p <protocols: This matches protocols such as TCP, UDP, ICMP, and more
-s <ip_addr>: This matches the source IP address

-d <ip_addrs>: This matches the destination I address

- -sport: This matches the source port

- -dport: This matches the destination port

-i <interfaces: This matches the interface from which the packet entered

-o <interfaces: This matches the interface from which the packet exits

The difference in the application of iptables rules between security groups and
FWaa$S will be discussed later in this chapter.

For more information on iptables, please visit the following resources:

https://access.redhat.com/documentation/en-US/Red Hat
Enterprise Linux/6/html/Security Guide/sect-Security Guide-
IPTables.html

http://rlworkman.net/howtos/iptables/iptables-tutorial.html

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Working with security groups

Security groups can be managed in either the Neutron CLI or the Horizon
dashboard. Both offer a pretty complete experience and are broken down
in the following sections.

Managing security groups in the CLI

From within the Neutron command-line client, a number of commands can be used
to manage security groups, such as:

® security-group-create

® security-group-delete

® security-group-list

® security-group-rule-create

® security-group-rule-delete

® security-group-rule-list

® security-group-rule-show

® security-group-show

® security-group-update

Creating security groups in the CLI

To create a security group within the CLI, use the Neutron security-group-create
command as follows:

Syntax: security-group-create [--tenant-id TENANT ID]
[--description DESCRIPTION] NAME

By default, security groups in Neutron are prepopulated with two egress
rules that allow all outbound traffic over IPv4 and IPv6. Inbound traffic is
g not permitted by default.

Deleting security groups in the CLI

To delete a security group within the CLI, use the Neutron security-group-delete
command as follows:

Syntax: security-group-delete SECURITY GROUP

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

The keyword SECURITY GROUP can be the ID or name of the security group to
be deleted.

A security group must be removed from all ports before it can
4= be deleted.

Listing security groups in the CLI

To obtain a listing of security groups within the CLI, use the Neutron
security-group-1list command as follows:

Syntax: security-group-list

The output returned includes the ID, name, and description of all security groups
within the tenant where the command was run. If run as an administrator, all
security groups across all tenants will be listed.

Showing the details of a security group in the CLI

To display the details of a security group, use the Neutron security-group-show
command as follows:

Syntax: security-group-show SECURITY GROUP

The keyword SECURITY GROUP can be the ID or name of the security group to show.
The output returned includes the description, ID, name, associated tenant ID, and
individual rules within the security group.

Updating security groups in the CLI

To update the attributes of a security group, use the Neutron security-group-
update command as follows:

Syntax: security-group-update [--description DESCRIPTION]
[--name NAME]

It is not possible to change the name of the default security groups
=" provided by Neutron.

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Creating security group rules in the CLI

To create a security group rule, use the Neutron security-group-rule-create
command as follows:

Syntax: security-group-rule-create [--tenant-id TENANT_ID][--direction {ingress,egress}]
[--ethertype ETHERTYPE][--protocol PROTOCOL][--port-range-min PORT_RANGE_MIN]

[--port-range-max PORT_RANGE_MAX][--remote-ip-prefix REMOTE_IP_PREFIX]
[--remote-group-id REMOTE_GROUP] SECURITY_GROUP

The - -direction flag is optional; it allows you to specify the direction of traffic that
should be affected. Specifying ingress means the rule applies to incoming traffic,
while specifying egress means the rule applies to outgoing traffic from the instance.
The default value is ingress.

The - -ethertype flag is optional; it allows you to specify whether the rule applies
to IPv4 or IPv6 traffic. The default value is 1pva4.

The - -protocol flag is optional; it allows you to specify the type of traffic the rule
applies to. Possible options include ICMP, TCP, UDP, or an IP number.

The - -port-range-min flag is optional; it allows you to specify the starting port
of a range of ports. If this option is specified, a protocol must also be defined.

The - -port-range-max flag is optional; it allows you to specify the ending port
of a range of ports. If this option is specified, a protocol must also be defined.

The - -remote-ip-prefix flag is optional; it allows you to specify the source
address or network the rule applies to. The address or network should be defined
in CIDR format.

The - -remote-group-id flag is optional; it allows you to specify the ID of a security
group the rule should apply to rather than individual IP addresses or networks.

For example, when creating a rule to allow inbound SQL traffic to database servers,
you can specify the ID of a security group that application servers are a member of
without having to specify their individual IP addresses.

The sEcURITY GROUP keyword is used to specify the ID of the security group the rule
should be placed in.

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Deleting security group rules in the CLI

To delete a security group rule, use the Neutron security-group-rule-delete
command as follows:

Syntax: security-group-rule-delete SECURITY GROUP RULE ID

While it is possible to delete the rules within the default security
K= group, it is not possible to delete the group itself.

Listing security group rules in the CLI
To list the security group rules within a security group, use the Neutron security-
group-rule-1list command as follows:

Syntax: security-group-rule-list

The output returned includes details of individual security group rules such as
their ID, associated security group, direction, protocol, remote IP prefix, and
remote group name.

Showing the details of a security group rule in
the CLI

To display the details of a particular security group rule, use the Neutron security-
group-rule-show command as follows:

Syntax: security-group-rule-show SECURITY GROUP_ RULE ID

The output returned includes the ID, direction, ethertype, port range, protocol,
remote group IP, remote IP prefix, tenant ID, and associated security group ID
of the specified security group rule.

Applying security groups to instances in the CLI

Applying security groups to instances within the CLI can be accomplished in one of
two ways. The first method involves specifying the security group when creating
an instance:

Example: nova boot --flavor <flavor id> --image <image id> --nic net-
id=<network id> --security-group <SECURITY GROUP_ ID> INSTANCE NAME

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The second method involves updating the security group attribute of the Neutron
port associated with the instance:

Example: (neutron) port-update <neutron port id> --security-group
<SECURITY GROUP_ ID>

Using port -update to assign security groups to a port will
e overwrite the existing security group associations.

Multiple security groups can be associated with a Neutron port simultaneously. To
apply multiple security groups to a port, use the - -security-group flag before each
security group:

Example: (neutron) port-update <neutron port id> --security-group
<SECURITY GROUP IDl> --security-group <SECURITY GROUP ID2>

To remove all security groups from a port, use the - -no-security-groups flag as
shown in the following command:

Example: (neutron) port-update <neutron port id> --no-security-groups

_ InHavana, it is not possible to remove single security groups
% from a port using the port -update command. All security
s groups should be removed from the port and then selected
groups can be added back.

Implementing security group rules

To demonstrate how security group rules are implemented on a compute node,
check out the following WEB_SERVERS security group:

[root@controller ~]# neutron security-group-list

s m - —————————— +

| description I

o e - +

39chbec?-561a-4257-8b19-d4124b483cfl | default | default |

3a69c841-59d-4be7-bc4d-5d247923e86f | WEB_SERVERS | Allows access to web services |

©6b555da5-da47-4563-985e-78f1bdcabffs | default | default |
763d3dc3-775c-4e11-a37b-4254b7901d4a | default | default

A e o —————— o e - +

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

In the following screenshot, you can see that two security group rules are being
added that allow inbound connections on ports 80 and 443 from any host:

[root@controller ~J# neutron security-group-rule-create --protocol tcp --port-range-min 8@ \
> --port-range-max 8@ --remote-ip-prefix 0.0.0.0/0 3a69c841-5f9d-4be7-bcad-5d247923e86f
Created a new security_group_rule:

direction ingress
ethertype IPv4
id deZ4e92b-7601-4aZ0-9611-39f60a@92d4f

port_range_max 80
port_range_min 88
protocol tcp
remote_group_id
remote_ip_prefix 0.0.0.0/0
security_group_id | 3a69c841-5f9d-4be7-bcad-5d247923e86f
tenant_id ble5de8dlcfc45d6al5dac@cb44ZzaBab
+

reate --protocol tcp --port-range-min 443 \
> --port-range-max 443 --remote-ip-prefix 0.0.0.0/0 3a69c841-5f9d-4be7?-bcad-5d247923e86f
Created a new security_group_rule:

______________________________________ +
Value |
______________________________________ +
direction ingress |
ethertype IPv4 |
id 690eb7aa- fdf f-4fbb-ba27-806cea37cl7?f |
port_range_max 443 |
port_range_min 443 |
protocol tcp |
remote_group_id |
remote_ip_prefix 0.0.0.0/0 |
security_group_id | 3a69c841-5f9d-4be7-bcad-5d247923e86f |
bleSde8dlcfc45d6al5d9cBcbad4za8ab |
______________________________________ +

Using the Neutron port -update command, I applied the WEB_SERVERS security
group to the Neutron port of the web1 instance, as shown in the following screenshot:

[root@controller ~J# neutron port-update c2a46367-100c-4d87-bZa5-elad7aal2324 \

> ==-security-group WEB_SERVERS
Updated port: cZ2a46367-100c-4dB87-bZa5-elad7aalZ3Z4

Alternatively, the Nova client can be used to associate security groups to running
instances using the following syntax:

nova add-secgroup <server> <securitygroup>

The Nova client proxies security group commands to Neutron when
e security group_ api is equal to neutron in the nova. conf file.

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Once a security group has been applied to the corresponding Neutron port of an
instance, a series of iptables rules and chains are implemented on the compute
node hosting the instance.

Stepping through the chains

On compute01, the iptables rules can be observed using the iptables-save
command as follows:

[root@computel0l ~]# iptables-save
For readability, only the filter table is shown in the following screenshot:

*filter
:INPUT ACCEPT [@:@]
ORNARD ACCEPT [@:@]
UTPUT ACCEPT [17:2586]
eutron-filter-top - [@:@]
eutron-1linuxbri-FORWARD - [@:@]
:neutron-linuxbri-INPUT -
:neutron-1inuxbri-OUTPUT - [@
:neutron-linuxbri-ic2a46367-1 - [0:0]
eutron-linuxbri-local - [@:@]
eutron-linuxbri-oc2o46367-1 - [@:0]
eutron-linuxbri-sc2a46367-1 - [@:0]
eutron-linuxbri-sg-chain - [@:@]
:neutron-1linuxbri-sg-fallback - [@:@]
INPUT -j neutron-linuxbri-INPUT
INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
INPUT -p icmp -j ACCEPT
INPUT -i lo -j ACCEPT
INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT
FORWARD -j neutron-filter-top
FORWARD -j neutron-1inuxbri-FORWARD
QUTPUT -j neutron-filter-top
OUTPUT -j neutron-linuxbri-QUTPUT
neutron-filter-top -j neutron-linuxbri-local
neutron-1linuxbri-FORWARD -m physdev --physdev-out tapc2a46367-10 --physdev-is-bridged -j neutron-linuxbri-sg-chain
neutron-11inuxbri-FORNARD -m physdev --physdev-in tapcza46367-10 --physdev-is-bridged -j neutron-linuxbri-sg-chain
neutron-linuxbri-INPUT -m physdev --physdev-in tapc2a46367-1@ --physdev-is-bridged -j neutron-linuxbri-ocZa46367-1
neutron-linuxbri-ic2a46367-1 -m state --state INVALID -j DROP
neutron-11i 'a46367-1 state --state RELATED,ESTABLISHED -j RETURN
neutron-11i c2a46367-1 top -m top --dport 443 RETURN
neutron-11i c2ad46367-1 tcp -m tcp --dport 8@ -j RETURN
neutron-11i c2a46367-1 10.30.9.3/32 -p udp -m udp --sport 67 --dport 68 -j RETURN
neutron-1inuxbri-ic2a46367-1 neutron-1linuxbri-sg-fallback
neutron-1linuxbri-oc2a46367-1 udp -m udp --sport 68 --dport 67 -j RETURN
neutron-1inuxbri-oc2a46367-1 neutron-1linuxbri-sc2046367-1
neutron-1linuxbri-oc2a46367-1 udp -m udp --sport 67 --dport 68 -j DROP
neutron-1inuxbri-ocZa46367-1 state --state INVALID -j DROP
neutron-linuxbri-oc2o46367-1 state --state RELATED,ESTABLISHED -j RETURN
neutron-1linuxbri-ocZa46367-1 -j RETURN
neutron-linuxbri-oc2a46367-1 -j neutron-linuxbri-sg-fallback
neutron-linuxbri-sc2a46367-1 -s 10.30.0.2/32 -m mac --mac-source FA:16:3E:BC:9A:A@ -j RETURN
neutron-linuxbri-sc2a46367-1 -j DROP
neutron-linuxbri-sg-chain -m physdev --physdev-out tapc2a46367-1@0 --physdev-is-bridged -j neutron-linuxbri-icZa46367-1
neutron-linuxbri-sg-chain -m physdev --physdev-in tapc2046367-10 --physdev-is-bridged -j neutron-linuxbri-oc2a46367-1
neutron-linuxbri-sg-chain -j ACCEPT
neutron-11inuxbri-sg-fallback -j DROP
COMMIT
Completed on Fri Aug 22 19:25:47 2014

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Network traffic to or from an instance will first traverse the FORWARD chain,
as follows:

-A FORWARD -j neutron-filter-top

-A FORWARD -j neutron-linuxbri-FORWARD

The first rule causes iptables to jump to the neutron-filter-top chain for further
processing:

-A neutron-filter-top -j neutron-linuxbri-local

Iptables then jumps to the neutron-1linuxbri-1local chain for further processing.
Because there are no rules defined in that chain, iptables returns to the calling chain,
neutron-filter-top. Once all rules have been processed, iptables returns to the
previous calling chain, FORWARD.

Then there is the next rule in the FORWARD chain that is processed:

-A FORWARD -j neutron-linuxbri-FORWARD

This rule causes iptables to jump to the neutron-1inuxbri-FORWARD chain
as follows:

=A neutron-linuxbri-FORNARD -m physdev --physdev-out tapcZa46367-10 --physdev-is-bridged -j neutron-linuxbri-sg-chain

-A neutron-linuxbri-FORNARD -m physdev --physdev-in tapcZa46367-10 --physdev-is-bridged -j neutron-linuxbri-sg-chain

The -m flag followed by physdev is a directive to iptables to use an extended
packet-matching module that supports devices enslaved to a bridge device. When
the LinuxBridge plugin is used, tap devices for instances are members of network
bridges prefaced with brg-+*. The packet will match one of the two rules based on
the direction the packet is headed through the interface. In both cases, iptables jumps
to the neutron-1linuxbri-sg-chain chain as follows:

-A neutron-linuxbri-sg-chain -m physdev --physdev-out tapc2a46367-10 --physdev-is-bridged -j neutron-linuxbri-ic2a46367-1

-A neutron-linuxbri-sg-chain -m physdev --physdev-in tapcZa46367-1@0 --physdev-is-bridged -j neutron-linuxbri-ocZa46367-1
-A neutron-linuxbri-sg-chain -j ACCEPT

The direction of the packet will again dictate which rule is matched. Traffic entering
the tapc2a46367-10 interface from an outside network will be processed by the
neutron-linuxbri-ic2a46367-1 chain as follows:

neutron-1inuxbri-icZa4636
neutron-1inuxbri-ic2a4636
neutron-1inuxbri-icZa463/
neutron-1inuxbri-icZa463
neutron-1inuxbri-ic2a4636
neutron-1inuxbri-ic2a4636

-m state --state INVALID -j DROP

state --state RELATED,ESTABLISHED -j RETURN

tcp -m tcp --dport 443 -j RETURN

tcp -m tcp --dport 8@ -j RETURN

10.30.9.3/32 -p udp -m udp --sport 67 --dport 68 -j RETURN
j neutron-linuxbri-sg-fallback

mm

W.I *J ‘.I W.I *J ‘.I

-1
=il =
=i, =
=1, =
=il =
=il =

I_um'U'UEI

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The name of a security group chain corresponds to the first nine characters
= of the UUID of the Neutron port to which it is associated.

In this rule, iptables uses the state module to determine the state of the packet.
Combined with connection tracking, iptables is able to track the connection

and determine the following states of the packet: INVALID, NEW, RELATED, Or
ESTABLISHED. The state of the packet results in an appropriate action being taken.
The -s flag instructs iptables to match the source address of the packet against the
address defined in the rule. The UDP rule allows inbound DHCP response traffic
from the DHCP server at 10.30.0.3/32. Traffic not matched by any rule is dropped
by the neutron-1linuxbri-sg-fallback chain:

-A neutron-linuxbri-sg-fallback -j DROP

Traffic exiting the tapc2a46367-10 interface and headed towards an outside
network is processed by the neutron-linuxbri-oc2a46367-1 chain as follows:

neutron-linuxbri-oc2a46367-1
neutron-linuxbri-oc2a46367-1 -j neutron-linuxbri-scZa46367-1

neutron-linuxbri-oc2ad46367-1 udp -m udp --sport 67 --dport 68 -j DROP
neutron-linuxbri-oc2a46367-1 state --state INVALID -j DROP
7-1
7-1
7-1

udp -m udp --sport 68 --dport 67 -j RETURN

neutron-linuxbri-oc2a4636 state --state RELATED,ESTABLISHED -j RETURN
neutron-1linuxbri-oc2a4636 j RETURN
neutron-linuxbri-ocZa4636 j neutron-linuxbri-sg-fallback

The first UDP rule allows the instance to send DHCP Discover and DHCP Request
broadcast packets. All other traffic is then processed by the neutron-linuxbri-s
c2a46367-1 chain as follows:

-A neutron-linuxbri-sc2a46367-1 -5 10.30.0.2/32 -m mac --mac-source FA:16:3E:BC:9A:A@ -j RETURN

-A neutron-linuxbri-sc2o46367-1 -j DROP

The rule above prevents an instance from performing IP and MAC address spoofing.
Any traffic exiting the tapc2a46367-10 interface must be sourced from 10.30.0.2/32
and the MAC address FA:16:3E:BC: 9A:A0. To permit traffic from additional IP or
MAC addresses, use the Neutron allowed-address-pairs extension, as discussed
in Chapter 5, Creating Networks with Neutron.

When traffic is returned to the calling chain, the next UDP rule prohibits the instance
from acting as a rogue DHCP server. Further processing includes verifying the state
of the packet and performing the appropriate action. Traffic eventually returns to the
neutron-linuxbri-sg-chain calling chain and is allowed through:

-A neutron-linuxbri-sg-chain -j ACCEPT

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Working with security groups in the
dashboard

Within the Horizon dashboard, security groups are managed in the Access &
Security section under the Project tab:

n ACCESS & SECUTIty Logged in as: admin Settings Help

Opensta(k Security Groups
Security Groups i o
C Name Description Actions
= default default Edit Rules
admiﬁ

Displaying 1 item

To create a security group, perform the following steps:

1. Click on the Create Security Group button in the upper right-hand
corner of the screen. A window will appear that will allow you to create
a security group:

F]
Create Security Group

Namie™ Description:
WEB_SERVERS From here you can create a new security group
Description *

Allows access to web services

Cancel Create Security Group

2. Both the Name and Description fields are required. When you are ready
to proceed, click on the blue Create Security Group button to create the
security group.

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

3. Once it is created, you will be directed to the Access & Security section
again, where you can add rules to the security group:

Security Groups Keypairs Floating IPs AP| Access
Security Groups + Create Security Group | || et e
] Name Description Actions
(] WEB_SERVERS Allows access to web services Edit Rules || More
(| default default Edit Rules
Displaying 2 items

4. To add rules, click on the Edit Rules button next to the security group. You
will be directed to a page where you can add or delete rules within the
security group:

Edit SECUI‘ity Gr0up RUIBS. Logged in as: admin Settings Help Sign Cut
WEB_SERVERS
Security Group Rules + adarue | [T
|| Direction Ether Type IP Protocol Port Range Remote Actions

O Egress Pv4 Any . 0.0.0.0/0 (CIDR)
Pve Any ; /0 (CIDR)

() Egress

Displaying 2 items

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

5. Toadd arule, click on the Add Rule button in the upper right-hand corner.
A window will appear that will allow you to create rules:

Add Rule

Fis= Description:

¥ Custom TCP Rule | Rules define which traffic is allowed to instances
Custom UDP Rule assigned to the security group. A security group rule

Customn ICMP Rule consists of three main parts:

Other Protocol E Rule: You can specify the desired rule template or
ALL ICMP £ use custom rules, the options are Custom TCP Rule,
ALL TCP Custom UDP Rule, or Custom ICMP Rule.

ALL UDP

Open Port/Port Range: For TCP and UDP rules you

DS i may choose to open either a single port or a range of
HTTP ports. Selecting the "Port Range" option will provide
HTTPS you with space to provide both the starting and
IMAP ending ports for the range. For ICMP rules you
IMAPS instead specify an ICMP type and code in the
LDAP spaces provided.
MS SQL
MYSQL i Remote: You rr.lust f;peclfy the source of ‘tm.a tra?tlc
POP3 i to be allowed via this rule. You may do so either in

the form of an IP address block (CIDR) or via a
Popas source group (Security Group). Selecting a security
RO group as the source will allow any other instance in
SMIp that security group access to any other instance via
SMTPS this rule.
SSH

GCancel
[|

6. From the list of rules, you can choose from a predefined list of protocols or
create a custom rule, as follows:

Add Rule
Rula™ Description:
Custom TCP Rule - Rules define which traffic is allowed to instances
assigned to the security group. A security group rule
Direction consists of three main parts:
Ingress N Rule: You can specify the desired rule template or
use custom rules, the options are Custom TCP Rule.
Custom UDP Rule, or Custom ICMP Rule.
Open Port *
Port . Open Port/Port Range: For TGP and UDP rules you

may choose to open either a single port or a range of
ports. Selecting the "Port Range" option will provide
Port you with space to provide both the starting and
ending ports for the range. For ICMP rules you

443
instead specify an ICMP type and code in the
spaces provided.
Remote *
Remote: You must specify the source of the traffic
CIDR v

to be allowed via this rule. You may do so either in
the form of an IP address block (CIDR) or via a
CIDR source group (Security Group). Selecting a security
group as the source will allow any other instance in
that security group access to any other instance via
this rule.

0.0.0.0/0

Cancel

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

To complete the rule creation, click on the blue Add button.

To apply the security group to an instance, return to the Instances section of
the Project tab. Click on the More menu next to the instance and choose Edit

Security Groups:
Instances Filter Q Filter = Launch Instance
Instance Image P Power
O Name Name Address Size Keypair Status Task State Uptime Actions
. Cirr0Ss- m.tiny | 512MB RAM | 1 day,
Ve N Create Snapshot | M
O | Web4 0.3.1 10.31.0.2 1VCPU | 1.0GB Disk Active | None Running 1 i e ap: lore
. 3 days,
" Cirr0s- mi.tiny | 512MB RAM | T e
(] Web3 0.3 10.30.06 1 VGPU | 1.0GB Disk Shutoff MNone Shutdown 12
hours
O | Web2 Ubuntu 10.30.0.4 ;"é;&"laggggg Ef:: " key Shutoff MNone Shutdown 5days | Statinstance More
= Web1 Ubuntu 10.30.0.2 ?é:;lagolfg: :’;tw I KEY Active None Running 5 days Greate Snapshot | More ™
Associate Floating IP
Displaying 4 items soss et
Disassociate Floating P
Edit Instance
Conscle

9. A window will appear that allows you to apply or remove security groups
from an instance:

Edit Instance

Security Groups

From here you can add and remove security groups to this project from the list of available security groups.

All Security Groups ter Q Instance Security Groups Filter Q

default 'WEB_SERVERS .

Gancel

10. Click on the blue Save button to apply the changes.

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Working with FWaa$S

Like LBaaS, FWaaS requires a specific workflow to properly implement firewall
policies. First, firewall rules are created and inserted into policies. Then, a firewall
is created and associated with a firewall policy. Once a firewall policy has been
applied, the rules are immediately put in place on all routers that exist within the
tenant. In Havana, a hard-set quota exists that allows only one active firewall policy
per tenant.

Firewall policies can be shared amongst tenants, which means that whenever

a policy is updated, it results in the immediate updating of any firewall that is
associated with the policy. The FWaaS API is considered experimental in Havana
and Icehouse, and it may exhibit unexpected behavior. Therefore, it cannot be
recommended for production use.

Preparing Neutron for FWaaS

To properly implement FWaaS, some changes must be made to the Neutron
configuration files on the controller node. There is no dedicated agent required to
implement FWaaS; all firewall rules are implemented by the Neutron L3 agent.

Configuring the FWaas$S driver

To enable FWaa$, the FWaaS driver configuration file must be configured
appropriately. Using crudini, update the /etc/neutron/fwaas_driver.ini
file on the controller node to specify the iptables FWaaS driver:

crudini --set /etc/neutron/fwaas driver.ini fwaas driver neutron.
services.firewall.drivers.linux.iptables_fwaas.IptablesFwaasDriver

crudini --set /etc/neutron/fwaas driver.ini fwaas enabled true

Defining a service plugin
Before Neutron firewall-+* commands will work, the FWaaS plugin must be

defined in the /etc/neutron/neutron. conf configuration file of the controller
node. Edit the file to specify the following service plugin:

neutron.services.firewall.fwaas plugin.FirewallPlugin
Service plugins should be comma separated if there are more than one:

Example: service plugins = neutron.services.loadbalancer.plugin.
LoadBalancerPlugin,neutron.services.firewall.fwaas plugin.FirewallPlugin

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Save your changes and restart neutron-server and neutron-13-agent:

service neutron-server restart

service neutron-13-agent restart

Enabling FWaaSs in the dashboard

To enable the management of firewall resources in the Horizon dashboard,
the enable_firewall parameter must be set to True in the /etc/openstack-
dashboard/local_settings configuration file. Use the following commands
to set the parameter and restart the Apache web service:

sed -i "/'enable firewall': False,/c\'enable firewall': True," /etc/
openstack-dashboard/local settings

service httpd restart

Working with firewalls in the CLI

The primary commands associated with FWaaS in the Neutron CLI are as follows:

¢ firewall-create

* firewall-delete

¢ firewall-list

¢ firewall-policy-create

¢ firewall-policy-delete

e firewall-policy-insert-rule
¢ firewall-policy-list

e firewall-policy-remove-rule
¢ firewall-policy-show

e firewall-policy-update

¢ firewall-rule-create

e firewall-rule-delete

¢ firewall-rule-list

e firewall-rule-show

¢ firewall-rule-update

e firewall-show

¢ firewall-update

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Creating a firewall rule in the CLI

The first step in creating a firewall is to create a firewall rule and apply it to a policy.
To create a firewall rule in the CLI, use the Neutron firewall-create command
as follows:

Syntax: firewall-rule-create [--tenant-id TEMANT_ID][--name NAME] [--description DESCRIPTION]
[--shared] [--source-ip-address SOURCE_IP_ADDRESS] [--destination-ip-address DESTINATION_IP_ADDRESS]

[--source-port SOURCE_PORT] [--destination-port DESTINATION_PORT] [--disabled] --protocol {tcp,udp,icmp,any}
--action {allow,deny}

The --tenant-id flag is optional; it allows you to associate the firewall rule with the
specified tenant.

The - -name flag is optional; it allows you to provide a name to the rule. If a name
isn't specified, Neutron uses the first eight characters of the rule's UUID as its name.

The --description flag is optional; it allows you to provide a description of the
firewall rule.

The - -shared flag is optional; it allows the rule to be shared amongst other tenants.

The --source-ip-address flag is optional; it allows you to specify the source
host or network the rule should apply to.

The --destination-ip-address flag is optional; it allows you to specify the
destination host or network the rule should apply to.

The - -source-port flag is optional; it allows you to specify a source port or range of
ports the rule should apply to. If specifying a range of ports, use a colon between the
start and end port (a:Db).

The --destination-port flag is optional; it allows you to specify a destination port
or range of ports the rule should apply to. If specifying a range of ports, use a colon
between the start and end port (a:b).

The --disabled flag is optional; it allows you to specify whether or not the rule is
inserted into the firewall.

The - -protocol flag is required; it is used to specify the type of traffic the rule
applies to; possible options include tcp, udp, icmp, and so on.

The --action flag is required; it allows you to specify the action that takes place
when traffic matches the rule's criteria; possible options include allow or deny.

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Deleting a firewall rule in the CLI

To delete a firewall rule in the CLI, use the Neutron firewall-rule-delete
command as follows:

Syntax: firewall-rule-delete FIREWALL RULE ID

The keyword FIREWALL RULE_ID is used to represent the ID of the firewall rule
to be deleted.

Listing firewall rules in the CLI

To list all firewall rules within the CLI, use the Neutron firewall-rule-list
command as follows:

Syntax: firewall-rule-list

The returned output includes the ID, name, summary, and associated firewall policy
of firewall rules within the tenant.

Showing the details of a firewall rule in the CLI
To show the details of a firewall rule within the CLI, use the Neutron firewall-
rule-show command as follows:

Syntax: firewall-rule-show FIREWALL RULE ID

The returned output includes the name, description, action, destination IP address,
destination port, source IP address, source port, associated firewall policy, position,
protocol, and tenant ID of the specified firewall rule.

Updating a firewall rule in the CLI

Many of the attributes of a firewall rule can be edited at any time. To update an
attribute of a firewall rule in the CLI, use the Neutron firewall-rule-update
command as follows:

Syntax: firewall-rule-update
[-=-source-ip-address SOURCE_IP_ADDRESS] [--destination-ip-address DESTINATION_IP_ADDRESS]
[--source-port SOURCE_PORT] [--destination-port DESTINATION_PORT] [--protocol {tcp,udp,icmp,any}]

[--action {allow,deny}] [--name NAME] [--description DESCRIPTION] [--shared]
FIREWALL_RULE_ID

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Creating a firewall policy in the CLI

The next step in creating a firewall is to create a firewall policy that contains one or
more firewall rules. To create a firewall policy, use the Neutron firewall-policy-
create command as follows:

Syntax: firewall-policy-create [--tenant-id TENANT_ID] [--description DESCRIPTION]

[--shared] [--firewall-rules FIREWALL_RULES] [--audited] MAME

The - -tenant-id flag is optional; it allows you to associate the firewall rule with the
specified tenant.

The --description flag is optional; it allows you to provide a description of the
tirewall policy.

The - -shared flag is optional; it allows the policy to be shared amongst other tenants.

[Shared policies are not supported within Horizon.]
s

The --firewall-rules flagis optional; it is used to add firewall rules to the policy
during creation. If multiple rules are specified, they should be enclosed in quotes and
separated by spaces. In the following example, two firewall rules are added to the
policy named EXAMPLE_POLICY during creation:

Example: firewall-policy-create --firewall-rules "a7a03a5f-ecda-4471-
92db-7alc708e20el a9ddl195-£6d9-4942-b76a-06f£f3bac32e8" EXAMPLE POLICY

Neutron always adds a default deny-all rule at the lowest precedence of

each policy. As a result, a firewall policy with no rules blocks all traffic
g by default.

The - -audited flag is optional; it is used to reflect whether or not a policy has been
audited by an external resource. There are no audit logs or auditing mechanisms
within Neutron.

Deleting a firewall policy in the CLI

To delete a firewall policy within the CLI, use the Neutron firewall-policy-delete
command as follows:

Syntax: firewall-policy-delete FIREWALL POLICY ID

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Listing firewall policies in the CLI
To list all firewall policies within a tenant in the CLI, use the Neutron firewall-
policy-1list command as follows:

Syntax: firewall-policy-list

The returned output includes the ID, name, and associated firewall rules of
firewall policies.

Showing the details of a firewall policy in the CLI
To show the details of a firewall policy in the CLI, use the Neutron firewall-
policy-show command as follows:

Syntax: firewall-policy-show FIREWALL POLICY ID

The returned output includes the ID, name, description, tenant ID, audited status
and associated firewall rules of the specified tenant.

Updating a firewall policy in the CLI

To update the attributes of a firewall policy, use the Neutron firewall-policy-
update command as follows:

Syntax: firewall-policy-update FIREWALL POLICY ID
[--name NAME] [--description DESCRIPTION] [--shared]
[--firewall-rules list=true RULES]

Multiple rules should be separated by a space. The 1ist=true
attribute is required to help Python interpret the data being passed as
"~ multiple entries.

Inserting rules into firewall policies in the CLI

Using the Neutron firewall-policy-insert-rule command, it is possible to insert
firewall rules into an existing policy before or after the existing rules. The syntax to
insert a rule into a policy is as follows:

Syntax: firewall-policy-insert-rule [--insert-before FIREWALL_RULE]

[--insert-after FIREWALL_RULE] FIREWALL_POLICY_ID MNEW_FIREWALL_RULE_ID

The - -insert-before flag is optional; it allows you to insert a new firewall rule
before the specified firewall rule.

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

The --insert-after flag is optional; it allows you to insert a new firewall rule after
the specified firewall rule.

The --insert-before and --insert-after flags are
/" mutually exclusive and cannot be used at the same time.

The keyword FIREWALL POLICY_ID is used to represent the ID of the firewall policy
to be updated.

The keyword NEW_FIREWALL RULE_ID is used to represent the ID of the firewall rule
to be added to the policy.

Removing rules from firewall policies in the CLI

Using the Neutron firewall-policy-remove-rule command, it is possible to
remove firewall rules from a firewall policy. The syntax to remove a rule from a
policy is as follows:

Syntax: firewall-policy-remove-rule FIREWALL POLICY ID
FIREWALL RULE ID

The keyword FIREWALL POLICY_ID is used to represent the ID of the firewall policy
to be updated.

The keyword NEW_FIREWALL RULE_ID is used to represent the ID of the firewall rule
to be removed from the policy.

Creating a firewall in the CLI

To create a firewall within the CLI, use the Neutron firewall-create command
as follows:

Syntax: firewall-create [--tenant-id TENANT ID] [--name NAME]
[--description DESCRIPTION] [--admin-state-down] POLICY

The - -tenant-id flag is optional; it allows you to associate the firewall with the
specified tenant.

The - -name flag is optional; it allows you to provide a name to the firewall. If a name
is not specified, the default value is blank or null.

The - -description flag is optional; it allows you to provide a description of
the firewall.

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The --admin-state-down flag is optional; it allows you to create the firewall in a
DOWN state. In a DOWN state, the firewall rules are not applied.

The poLICY keyword is used to represent the ID of the policy that should be applied
to the firewall. Only one policy can be associated with a firewall at a time, and a
policy cannot be associated with multiple firewalls simultaneously.

Due to a bug in the Havana release of OpenStack, firewalls cannot be
created in the admin tenant if another tenant already has a firewall. If
% the admin user attempts to create a firewall an error will occur. For more
=" information on this bug, please refer to the following URL:

https://bugs.launchpad.net/neutron/+bug/1258438

Deleting a firewall in the CLI

To delete a firewall within the CLI, use the Neutron firewall-delete command
as follows:

Syntax: firewall-delete FIREWALL ID

Listing firewalls in the CLI

To list all firewalls within a tenant in the CLI, use the Neutron firewall-list
command as follows:

Syntax: firewall-list

The returned output includes a list of firewalls containing the ID, name, and
associated firewall policy for each firewall within the tenant.

Showing the details of a firewall in the CLI

To show the details of a firewall within the CLI, use the Neutron firewall-show
command as follows:

Syntax: firewall-show FIREWALL ID

The output returned includes the ID, admin state, name, description, status, tenant
ID, and associated firewall policy ID of the specified firewall.

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Updating a firewall in the CLI

To update the attributes of a firewall within the CLI, use the Neutron firewall-
update command as follows:

Syntax: firewall-update FIREWALL ID [--name NAME]
[--firewall-policy-id FIREWALL POLICY ID]
[--admin-state-up]

The - -name flag is optional; it allows you to update the name of the firewall.

The --firewall-policy-id flag is optional; it allows you to associate a different
policy with the firewall.

The --admin-state-up flag is a Boolean that when set to FALSE, puts the firewall
in a DOWN state. When a firewall is in a DOWN state, all rules are removed from the
Neutron router.

Working with firewalls in the dashboard

Within the Horizon dashboard, firewalls are managed within the Firewalls section
under the Project tab. In the dashboard, the workflow to create functional firewalls
is similar to the CLI. First the firewall rules must be created, and then a firewall
policy and the firewall itself should be created. To create a firewall rule, perform the
following steps:

1. Click on the Add Rule button under the Firewall Rules tab:

H Logged in as: admin Settings Help Sign Out
Firewalls
Firewall Rules
Rules + Add Rule
Mame Protocol SourcelP SourcePort Destination|P Destination Port Action Enabled InPolicy Actions

No items to display.

Displaying O items

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

A window will appear that will allow you to specify the details of the
firewall rule:

Add Rule

AddRule *

Name .
Create a firewall rule.

HTTP_PERMIT Protocol and action must be specified. Other fields are

optional.
Description

iditional inf atior

Protocol *

TCP s

Action *

ALLOW

ar

Source IP Address/Subnet

Destination IP Address/Subnet

Source Port/Port Range

Destination Port/Port Range
80

Shared

Enabled

o

Cancel Add

2. In this window, you can specify the source and destination addresses, source
and destination ports, protocol, and the desired action: ALLOW or DENY.
To create the rule, click on the blue Add button.

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

3. To create a firewall policy that will contain the rule(s), click on the Add
Policy button under the Firewall Policies tab:

Policies

Name Rules Audited Actions

Mo items to display.

Displaying O items.

A window will appear that will allow you to specify the details of the
firewall policy:

-1
Add Policy

AddPolicy *
Name * Create a firewall policy with an ordered list of firewall

MyFirewallPolicy rules.
A name must be given. Firewall rules are added in the
Description order placed under the Rules tab.
Shared
Audited
Gancel Add

4. In the Add Policy window, the Name field has to be filled. Then, click on the
Rules tab to insert rules into the policy:

Add Policy
,
Selected Rules Choose rule(s) from Available Rules to Selected Rule by
push button or drag and drop, you may change their order
WIERE HTTP_PERMIT by drag and drop as well.
Available Rules
Ganeel Add
[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

5. Once the desired rules have been moved from the Available Rules section
to the Selected Rules section, click on the blue Add button to complete the
policy creation process.

6. Lastly, click on the Create Firewall button under the Firewalls tab to create
the firewall:

Firewalls

Firewalls Create Firewall

Name Policy Status Actions
No items to display.

Displaying 0 items

7. A window will appear, allowing you to specify the details of the firewall,
including the name, description, and associated policy:

Add Firewall

AddFirewall *

Name Create a firewall based on a policy.

MyFirewal A policy must be selected. Other fields are optional.
Description

Policy *

ar

MyFirewallPolicy

Shared

Admin State

o~

Cancel Add

[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

8. Click on the blue Add button to complete the firewall creation process. The
firewall status will remain in PENDING_CREATE until the rules have been
applied to the Neutron routers within the tenant, at which time the status

will turn to ACTIVE:
Firewalls
Firewalls Greate Firewall
[l Name Palicy Status Actions

O | MyFirewall

Displaying 1 item

MyFirewallPolicy ACTIVE

Edit Firewall =~ More

Al

Q A change in status may require the page to be refreshed.

Firewall rules — behind the scenes

To demonstrate how firewall policies are applied to a Neutron router, check out the
following firewall rule that allows HTTP traffic from any remote host to any instance

on TCP port 80:

[root@controller ~]# neutron firewall-rule-create --name HTTP_PERMIT --destination-port 8@ --protocol tcp --action allow

Created a new firewall_rule:

description
destination_ip_address
destination_port
enabled
firenall_policy_id
id

ip_version

name

position

protocol

shared
source_ip_address
source_port
tenant_id

44cb545a-adZc-43ed-b@9c- 5689289371
4
HTTP_PERMIT

tep

ble5de8dlcfc45deal5dIc@cb442a8ab

| firewall_policy_id | summary
fmmmmm—————— Hmmmmmmmmmmm—e—————— fmmmmmmmmme——————— fmmmm———— +

| HTTP_PERMIT

| True
source: none(none),
dest: none(8@),

| enabled

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Using the Neutron firewall-policy-create command, I have created a policy that
contains the preceding rule:

[root@controller ~]# neutron firew -policy-create --firewall-rules \
> 44cb545a-ad2c-43ed-b@9c-ff5689e89371 MyFirewallPolicy
Created a new firewall_poli
Hmmmmmmmmmmmmaaaa Hommmmmaan
Field | Value
Hmmmmmmmmmmmmaaaa e +
audited | False
description |
firewall_rules | 44chb545a-ad2c-43ed-b@9c-f15689e89371
id | a49c8@73-fbc8-4bbc-8621-d27969173dd2
name | MyFirewallPolicy
shared | False
| bleSde8dlcfc45d6al5dIc

| a49c8073-fbcB-4bbe-8621-d27969f73dd2 | MyFirewallPolicy | [44cb545a-ad2c-43ed-b@9c-ff5689e89371] |
R - IE: Hmmmmmmmmmmemeeee- e R e +

Using the Neutron firewall-create command, I have created a firewall using the
policy MyFirewallPolicy:

[root@controller ~]# neutron firewall-create --name MyFirewall \
> 049c8073-fbcB-4bbc-8621-d27969F73dd2
Created a new firewall:
e e L L e L e L P L E L et +
| Field | Value
e e e L e L P ELE L E e +
admin_state_up | True |
description |
firewall_policy_id | a49cB@73-fbc8-4bbc-8621-dZ7969f73dd2
id | @leaSb3a-e265-4cBa-9103-9200ed80bsba
name | MyFirewall
status | PENDING_CREATE
tenant_id | bleSde8dlcfc45d6alsdd

The firewall status will remain in PENDING CREATE until the rules have been applied
to the Neutron routers within the tenant, at which time the status will turn to ACTIVE:

[root@controller ~]# neutron firewall-show @leaSb3a-e265-4c8a-9103-9200ed30b46a
e G EE L L PP L P PP PR R P PP PP +
| Value |
e G EE L L PP L P PP PR R P PP PP +
admin_state_up True
description |

firewall_policy_id | a49c8073-fbc8-4bbc-8621-d27969f73dd2 |

id @lea5b3a-ez265-4c8a-9103-9200ed8@b4aba |

name MyFirewall

status ACTIVE

tenant_id bleSdeddlcfc45d6al5d9c@cb4aZasab
fmmmmmmmmmmmmmmm—————

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Stepping through the chains within the firewall

As a result of creating the firewall, the rules within the firewall policy have been
implemented on all routers within the tenant. This is not a desired behavior; rather,
it is a limitation of FWaaS.

Running iptables-save within a router namespace reveals the iptables rules in
place. For readability, only the filter table is shown in the following screenshot:

[root@controller init.d]# ip netns exec grouter-8f720e65-13b9-45f3-b750-d8a3albl8e72 \

> iptables-save | sed -e "1,/*filter/d"

:INPUT ACCEPT [@:8]

:FORWARD ACCEPT [13466:1222587@]

:0UTPUT ACCEPT [@:0]

:neutron-filter-top - [8:0]

:neutron-13-agent-FORWARD - [@

:neutron-13-agent-INPUT - [0:0]

:neutron-13-agent-OUTPUT - [0:8]

:neutron-13-agent-fwaoas-defau - [0:0]

:neutron-13-agent-iv4@leaSb3a - [@:0]

:neutron-13-agent-local - [0:0]

:neutron-13-agent-ov4@leaSb3a - [0:0]

-A INPUT -j neutron-l13-agent-INPUT

-A FORWARD -j neutron-filter-top

-A FORWARD -j neutron-13-agent-FORWARD

-A OUTPUT -j neutron-filter-top

-A QUTPUT -j neutron-13-agent-OUTPUT

=A neutron-filter-top -j neutron-13-agent-local

-A neutron-l3-agent-FORWARD -o gqr-+ -j neutron-13-agent-iv4@leaSb3a
neutron-13-agent-FORWARD -i gr-+ -3j "0 agent-ov4@leasb3a
neutron-13-agent-FORWARD -0 qr-+ -j neutr agent-fwaas-defau
neutron-13-agent-FORWARD -i gr-+ -j neutron-13-agent-fwaas-defau
neutron-13-agent-INPUT -d 127.0.0.1/32 -p tcp -m tcp --dport 9697 -j ACCEPT
neutron-13-agent-fwaas-defau -j DROP
neutron-13-agent-iv4@leasb3a -m state --state INVALID -j DROP
neutron-13-agent-iv4@leaSb3a -m state --state RELATED,ESTABLISHED -j ACCEPT
neutron-13-agent-iv4@leasb3a -p tcp -m top --dport 8@ -j ACCEPT
neutron-13-agent-ov4@leaSb3a -m state --state INVALID -j DROP
neutron-13-agent-ov4@leaSb3a -m state --stote RELATED,ESTABLISHED -j ACCEPT
neutron-13-agent-ov4@leash3a -p tcp -m tcp --dport 80 -j ACCEPT

COMMIT

Completed on Sat Aug 23 2Z2:27:41 2014

Like security groups, the FORWARD chain is used since traffic is being forwarded
through the namespace rather than directed at the namespace itself:

-A FORWARD -j neutron-filter-top
-A FORWARD -j neutron-13-agent-FORWARD

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

A neutron-filter-top chain does not exist, so traffic moves to the neutron-13-
agent - FORWARD chain as follows:

-A neutron-13-agent-FORWARD -o qr-+ -j neutron-13-agent-iv4@leaSb3a
-A neutron-13-agent-FORWARD -i gr-+ -j neutron-13-agent-ov4@leaSb3a

-A neutron-13-agent-FORWARD -o qr-+ -j neutron-l3-agent-fwaas-defau
-A neutron-13-agent-FORWARD -i qr-+ -j neutron-13-agent-fwoas-defau

The first rule matches all traffic exiting any gr-* interface attached to the router and
sends it to the neutron-13-agent-iv40lea5b3a chain:

-A neutron-13-agent-iv4@leaSb3a -m state --state INVALID -j DROP
-A neutron-l13-agent-iv4@leaSb3a -m state --state RELATED,ESTABLISHED -j ACCEPT

-A neutron-l3-agent-iv4@leaSb3a -p tcp -m tcp --dport 8@ -3j ACCEPT

Packets that are invalid are dropped, while established connections are accepted
without further processing. New connections destined to any instance on port 80
are allowed.

The next rule in the neutron-13-agent-FORWARD chain matches all traffic entering
any gr-* interface attached to the router and sends it to the neutron-13-agent-
ov40lea5b3a chain:

=A neutron-13-agent-ov4@leaSb3a -m state --state INVALID -j DROP
=A neutron-13-agent-ov4@leaSb3a -m state --state RELATED,ESTABLISHED -j ACCEPT

-A neutron-13-agent-ov4@leaSb3a -p tcp -m tcp --dport 80 -j ACCEPT

Like the previous chain, packets that are invalid are dropped, while established
connections are accepted without further processing. New connections destined to
any outside network on port 80 are allowed.

Traffic that does not match rules in either of the mentioned chains is dropped by the
neutron-13-agent-fwaas-defau chain:

-A neutron-13-agent-fwaas-defau -j DROP

Unlike security group rules, there is no way to differentiate the direction of traffic
when creating firewall rules with FWaaS. As a result, firewall rules are unnecessarily
applied to both incoming and outgoing traffic in an identical manner.

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting Instances on the Network

Summary

It is important to know the differences between the two methods of securing
network traffic to instances. Where security group rules are implemented at the
network bridge connected to an instance on a compute node, firewall rules created
with FWaaS are implemented on a Neutron router at the edge of the tenant network.
FWaaS is not intended to replace security group functionality, and it serves more as
a complement to security groups, especially in its current state. FWaaS is currently
lacking functionality that security groups provide, including the inability to specify
the direction of traffic that should be filtered. The opposite can said for security
groups, too, as they lack the ability to create specific deny rules as all traffic is denied
by default.

FWaaS is considered experimental in the Icehouse release of OpenStack and possibly
beyond, and it lacks features and functionalities that could make it useable and
reliable in a production setting. Like other OpenStack projects, FWaaS will become
more mature in future releases.

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Neutron
Commands

In the book, we covered core Neutron commands related to building networks,
routers, firewalls, and load balancers. Neutron is capable of much more, provided
the appropriate extension or plugin is installed. In this appendix, you will find
Neutron commands that didn't quite have a home in other chapters or are used in
network solutions outside the scope of this book. Commands used to manage the
following are discussed in this appendix:

* VPNe-as-a-service

* Quotas

* (Cisco 1000V

* VMware NSX / Nicira NVP

Neutron extensions

Neutron extensions allow a plugin to extend the Neutron API to provide advanced
functionality or to expose a capability before it has been incorporated into an official
Neutron APL

Listing Neutron API extensions

To list the extensions available in Neutron, use the Neutron ext-1ist command
as follows:

Syntax: ext-list

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Neutron Commands

The returned output includes the alias and name of the available extensions:

[root@controller ~]# neutron ext-list

security-group security-group

13_agent_scheduler L3 Agent Scheduler

external-net Neutron external network

ext-gw-mode Neutron L3 Configurable external gateway mode

binding Port Binding
quotas Quota management support
agent agent
dhcp_agent_scheduler | DHCP Agent Scheduler
provider Provider Network
router Neutron L3 Router
extraroute Neutron Extra Route

+ ______________________

Showing the details of an APl extension

To show the details of an API extension, use the Neutron ext - show command
as follows:

Syntax: ext-show EXTENSION ALIAS

The EXTENSION_ALIAS keyword represents alias of the extension provided in
the ext-1ist output. The returned output includes the alias, description, name,
namespace, and updated date of the specified extension.

To find more information on creating Neutron API extensions, please visit
the Neutron development wiki at https://wiki.openstack.org/wiki/
NeutronDevelopment.

Virtual private networks

Using methods of encryption and authentication, a virtual private network provides
secure access to a remote computer or network over the Internet. In Havana, Neutron
supports the creation and use of virtual private networks based on IPSec. In both the
Havana and Icehouse releases of OpenStack, Virtual Private Network as a Service
(VPNaaS) is considered experimental.

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

For your reference, the following Neutron commands are used to manage VPN
connections in OpenStack:

® ipsec-site-connection-create

® ipsec-site-connection-delete

® ipsec-site-connection-list

® ipsec-site-connection-show

® ipsec-site-connection-update

® vpn-ikepolicy-create

* vpn-ikepolicy-delete

® vpn-ikepolicy-list

* vpn-ikepolicy-show

® vpn-ikepolicy-update

® vpn-ipsecpolicy-create

® vpn-ipsecpolicy-delete

® vpn-ipsecpolicy-list

® vpn-ipsecpolicy-show

* vpn-ipsecpolicy-update

® vpn-service-create

® vpn-service-delete

® vpn-service-list

® vpn-service-show

® vpn-service-update
The installation and configuration of VPNaa$S is outside the scope of this book.
For more information on the service, please refer to the official OpenStack

documentation at http://docs.openstack.org/api/openstack-network/2.0/
content/vpnaas_ext.html.

Per-tenant quotas

To prevent system resources from being exhausted, Neutron supports per-tenant
quota limits via the quotas extension. Every tenant is bound to a default quota that
is set by the administrator in the Neutron configuration file:

[quotas]
resource name(s) that are supported in quota features

quota items = network, subnet,port

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Neutron Commands

number of networks allowed per tenant, and minus means unlimited

*

quota network = 10

number of subnets allowed per tenant, and minus means unlimited

quota subnet = 10

number of ports allowed per tenant, and minus means unlimited

quota port = 50

number of security groups allowed per tenant, and minus means unlimited

quota security group = 10

number of security group rules allowed per tenant, and minus means
unlimited

quota security group rule = 100

To change the default settings, change the value and uncomment the line associated
with the quota you want to change. Restarting neutron-server is necessary for
changes to take effect.

You can also set a quota to limit the number of routers and floating IPs per tenant by
adding the following to the [quotas] section:

[quotas]
number of routers allowed per tenant, and minus means unlimited

quota router = 10

number of floating IPs allowed per tenant, and minus means unlimited

quota floatingip = 50

The following Neutron commands can be used to manage per-tenant quotas:
® quota-delete
® quota-list

® quota-show

® qguota-update

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Listing the default quotas

To see a list of the default quotas, use the Neutron quota-show command as follows:
Syntax: quota-show

The listed output will contain the default per-tenant Neutron quotas:

[root@controller ~J# neutron quota-show
——————— +
Value

floatingip
network

port
router
security_group
security_group_rule
subnet

+ _____________________

Updating tenant quotas

To update a quota for a specified tenant, use the Neutron quota-update command
as follows:

Syntax: quota-update --tenant-id <ID of tenant> [--network NUM OF
NETWORKS] [--port NUM OF PORTS] [--subnet NUM OF SUBNETS] [--floatingip
NUM OF FLOATIP] [--security group NUM OF SECGROUPS] [--security group
rule NUM OF_ SECGRP_RULES] [--router NUM OF_ROUTERS]

The attributes in brackets are optional and allow you to specify new values for the
respective quota. You can update multiple attributes simultaneously, as shown in
the following screenshot:

[root@controller ~]# neutron quota-update --tenant-id bleSde8dlcfc45d6alSd9c@ch442a8ab
> --floatingip & --network 12 --port 23 --router 2 --subnet 5

——————— +

value |

floatingip

network

port

router

security_group

security_group_rule

subnet
s s s ———

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Neutron Commands

Listing tenant quotas

To list the quotas of a tenant, use the Neutron quota-1list command as follows:

Syntax: quota-list --tenant-id <ID of tenant>

If a tenant is using default quotas, no output will be provided. If the quotas have
been modified, the output will resemble the following screenshot:

[root@controller ~]# neutron quota-list --tenant-id bleSde8dlcfc45d6al5d9c@chadzaldab

| floatingip | network | port | router | secu _ y_group_rule | subnet | tenant_id

mmmmmmmmmee EECEEETE et bmmmmm e e fmmmmmmmm e bmmmmm e e et EE L e LR e e e P e +
23 | 5 | bleSde8dlcfc45doal5d9c@ch442adab |

Deleting tenant quotas

To revert tenant quotas to their default values, use the Neutron quota-delete
command as follows:

Syntax: quota-delete --tenant-id <ID of tenant>

The quota-delete command results in all per-tenant quotas being
= reverted to default values. It is not possible to revert a single quota.

Cisco Nexus 1000V command reference

OpenStack Networking supports the Cisco Nexus 1000V switch through the use
of an API extension and plugin. The following commands enable you to manage
network profiles, policy profiles, profile binding, and credentials:

® cisco-credential-create

® cisco-credential-delete

® cisco-credential-list

® cisco-credential-show

® cisco-network-profile-create

® cisco-network-profile-delete

® cisco-network-profile-list

® cisco-network-profile-show

® cisco-network-profile-update

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

® cisco-policy-profile-list
® cisco-policy-profile-show
® cisco-policy-profile-update

The cisco-network-profile commands enable you to create, modify, list, delete,
and show details of Cisco Nexus 1000V network profiles.

The cisco-policy-profile commands enable you to list and show details of Cisco
Nexus 1000V policy profiles, as well as associate or disassociate profiles with tenants.

The cisco-credential commands enable you to create, update, delete, and show
details of Cisco Nexus 1000V credentials.

For more information on configuring a Cisco Nexus 1000V with KVM in OpenStack,
please refer to the official Cisco release guide at http://www.cisco.com/c/en/us/td/
docs/switches/datacenter/nexusl1000/kvm/config guide/network/521sk122/
b-Cisco-N1KV-KVM-Virtual -Network-Config-521SK122.html.

VMware/Nicera command reference
OpenStack Networking supports VMware NSX and Nicera NVP through the use of
API extensions and plugins. These plugins leverage standard and extended Neutron
commands to manage networks. The following Neutron commands are specific to
the NSX extension:

®* net-gateway-connect

®* net-gateway-create

®* net-gateway-delete

®* net-gateway-disconnect

®* net-gateway-list

®* net-gateway-show

®* net-gateway-update

® Jgueue-create

® queue-delete

® qgueue-list

® queue-show
For more information on configuring Neutron with the NSX/NVP plugin, please

refer to the OpenStack Cloud administrator guide at http://docs.openstack.org/
admin-guide-cloud/content/nsx_plugin.html.

[261]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ML2 Configuration

The Modular Layer 2 (ML2) plugin is a framework that allows OpenStack
Networking to simultaneously utilize a variety of layer 2 networking technologies
that are found in data centers. The ML2 plugin works with existing Open vSwitch
and LinuxBridge agents and is intended to replace the monolithic plugins associated
with those agents. The ML2 framework greatly simplifies adding support for new L2
networking technologies, as less effort is required to add functionality compared to
creating a new monolithic core plugin.

In Havana, ML2 can be configured to support the following network types:

* Flat

e VLAN

* Local

* GRE

e VXLAN

The ML2 plugin has its own configuration file that must be used in conjunction with
the Open vSwitch or LinuxBridge configuration file. The configuration of ML2 is
documented in the upcoming sections.

Installing the ML2 plugin

RHEL-based distributions, such as CentOS, require the installation of the
openstack-neutron-ml2 package on all nodes as follows:

yum install openstack-neutron-ml2

www.it-ebooks.info

http://www.it-ebooks.info/

ML2 Configuration

Creating a database for ML2

The ML2 plugin attempts to use a common database and schema that can be shared
amongst multiple layer 2 agents. On the controller node, create a new database
specifically for use with the ML2 plugin using the MySQL client:

mysqgl -u root -p

Use the password set earlier in the OpenStack installation. In this guide, the
password was set to openstack.

At the mysgl> prompt, execute the following commands to create a database named
neutron_ml2 and to grant permissions to the existing neutron user:

CREATE DATABASE neutron ml2;

GRANT ALL PRIVILEGES ON neutron ml2.* TO 'neutron'@'localhost'
IDENTIFIED BY 'neutron';

GRANT ALL PRIVILEGES ON neutron ml2.* TO 'neutron'@'%';

QUIT;

Use crudini to overwrite the existing database connection string in the Neutron
configuration file with the new string on all hosts as follows:

crudini --set /etc/neutron/neutron.conf database connection mysql://
neutron:neutron@controller/neutron ml2

Configuring Neutron to use ML2

Before the ML2 plugin can be used, changes, which include specifying the core
plugin and database options, must be made to the Neutron configuration on
all hosts.

The core_plugin configuration must be set to use the ML2 plugin. Use the following
crudini command to make this change on all hosts:

crudini --set /etc/meutron/mneutron.conf DEFAULT core plugin neutron.
plugins.ml2.plugin.M12Plugin

In addition to configuration file changes, a symbolic link named plugin.ini must
be created in the /etc/neutron/ directory that points to the appropriate plugin
configuration file before neutron-server will start. For ML2, the link can be created
with the following command:

1n -s /etc/neutron/plugins/ml2/ml2 conf.ini /etc/meutron/plugin.ini

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

If you previously used the LinuxBridge or Open vSwitch plugin and are switching to
ML2, be sure to remove the corresponding symbolic link prior to creating a new one
for ML2.

The Neutron database must be stamped as the havana release before neutron-
server starts. Use the neutron-db-manage command to accomplish this task only
on the controller:

neutron-db-manage --config-file /etc/neutron/plugin.ini --config-file /
etc/neutron/neutron.conf stamp havana

Configuring service plugins
When the ML2 plugin is used, the L3 router plugin must be defined as a service

plugin in the neutron. conf configuration file in addition to the FWaaS and LBaaS
service plugins. The following are the service plugins for each of the services:

* Routing: neutron.services.1l3_router.1l3_ router plugin.
L3RouterPlugin

* Load balancing: neutron.services.loadbalancer.plugin.
LoadBalancerPlugin

* Firewalling: neutron.services.firewall.fwaas plugin.
FirewallPlugin

To add support for the aforementioned services, add them to the service plugins
configuration option in /etc/neutron/neutron. conf using a text editor as follows:

service plugins= neutron.services.l3 router.1l3 router plugin.
L3RouterPlugin, neutron.services.loadbalancer.plugin.LoadBalancerPlugin,
neutron.services.firewall.fwaas plugin.FirewallPlugin

Configuring the ML2 plugin

The ML2 plugin has its own configuration file, which can be found at /etc/
neutron/plugins/ml2/ml2_conf.ini. The LinuxBridge and Open vSwitch
agents continue to rely on their respective configuration files, which were
configured previously in this book.

To implement ML2 with the LinuxBridge agent based on prior configuration
documented in earlier chapters, use the following configuration in /etc/neutron/
plugins/ml2/ml2 conf.ini:

[m12]

type drivers = local, flat,vlan

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

ML2 Configuration

tenant network types = vlan

mechanism drivers = linuxbridge

[ml2 type flat]
flat networks = physnetl

[ml2 type vlanl]

network vlan ranges = physnetl:30:33

[database]

connection = mysql://neutron:neutron@controller/neutron ml2

[securitygroupl]

firewall driver = dummyValue

The firewall driver parameter must be defined in the ML2 configuration to
enable the securitygroup extension. However, the actual value set for firewall
driver in theml2_conf.ini file is irrelevant. Each L2 agent configuration file, such
as ovs_neutron plugin.ini or linuxbridge conf.ini, should set the actual value
for the firewall driver parameter for that agent. Those values were set previously
in this book.

For information on configuring ML2 with the Open vSwitch agent, please refer to the
following URL:

http://openstack.redhat.com/ML2 plugin

Restarting Neutron services

Neutron services must be restarted before the aforementioned changes can take
effect.

On the controller node, restart the Neutron server API:
service neutron-server restart

On all nodes, restart the LinuxBridge agent:

service neutron-linuxbridge-agent restart

Any networks previously created under a monolithic plugin will need to be
recreated, as a new database has been built for use with ML2. Instances connected to
those networks will need to be deleted and recreated as well.

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

--type attribute
HTTP 199
HTTPS 199
PING 198
TCP 199

A

admin-state-down switch 112
admin-state-up attribute 151
admin-state-up switch 117
Advanced Message Queue Protocol
(AMQP) 30

allocation-pool attribute 123
allowed-address-pairs extension 137
API endpoints

defining 33, 38
API network 12
APP_COOKIE persistence type 186

B

brctl show command 78

bridge mappings, Open vSwitch plugin
bridges, configuring 101

bug
URL 245

C

CentOS 6.5

URL 22
CIDR argument 124
cisco-credential commands 261

Index

cisco-network-profile commands 261
Cisco Nexus 1000V
command reference 260, 261
cisco-policy-profile commands 261
classless inter-domain routing
(CIDR) 121
CLI
load balancer management 192
components, load balancer
pool 184
pool member 184
virtual IP 184
components, Open vSwitch
database server 83
kernel module 83
vSwitch daemon 83
compute node components
configuring 43-45
installing 43-45
Compute service
communication, verifying 45, 46
compute node components,
configuring 43-45
compute node components,
installing 43-45
controller node components,
configuring 40-43
controller node components,
installing 40-43
configuration, Neutron LBaaS agent service
about 190
device driver, defining 190
interface driver, defining 190
user group, modifying 190
configuration, NIC bonding on hosts
references 15

www.it-ebooks.info

http://www.it-ebooks.info/

configuration options, inuxbridge_conf.ini
file
firewall_driver 96
network_vlan_ranges 96
physical_interface_mappings 95, 96
tenant_network_type 95
connectivity
to dashboard, allowing 46
to dashboard, testing 48, 49
controller node components
configuring 40-43
installing 40-43
crudini utility
about 26
using 58

D

dashboard

FWaas$, enabling in 239
database, for ML2 plugin 264
database, Open vSwitch plugin 106
default chains

FORWARD 223

INPUT 223

OUTPUT 223

POSTROUTING 223

PREROUTING 223
DHCP

about 139

enabling 138
DHCP agent

configuring, for LinuxBridge usage 94

configuring, for Open vSwitch usage 99
DHCP namespace

about 141

manual route, adding

t0 169.254.169.254 142

used, for injecting route 142, 143
disable-dhcp attribute 124
dns-nameserver attribute 123
dns-nameservers attribute 127

E

enable-dhcp attribute 127
environment variables
setting 35

EXTENSION_ALIAS keyword 256

external network 12

external_network_bridge configuration
option 146

ext-list command 255

F

features, OpenStack Networking

firewalling 9

load balancing 9

routing 9

switching 8

Virtual Private Networks (VPN) 9
firewall

about 222

stepping, through chains 252, 253
Firewall-as-a-Service. See FWaa$S
firewall-create command

--action flag 240

--admin-state-down flag 245

--description flag 240, 244

--destination-ip-address flag 240

--destination-port flag 240

--disabled flag 240

--name flag 240, 244

--protocol flag 240

--shared flag 240

--source-ip-address flag 240

--source-port flag 240

--tenant-id flag 240, 244

about 240, 244, 251
firewall-delete command 245
firewall driver 106
firewalling 9
firewall-list command 245
firewall policy

about 222

rules, inserting into 243

rules, removing from 244
firewall policy, CLI

creating 242

deleting 242

details, displaying 243

listing 243

updating 243

[268]

www.it-ebooks.info

http://www.it-ebooks.info/

firewall-policy-create command
--audited flag 242
--description flag 242
-firewall-rules flag 242
--shared flag 242
--tenant-id flag 242
about 242, 251
firewall-policy-delete command 242
firewall-policy-insert-rule command
--insert-after flag 244
--insert-before flag 243
about 243
firewall-policy-list command 243

firewall-policy-remove-rule command 244

firewall-policy-show command 243
firewall-policy-update command 243
firewall rule 222,250, 251
firewall rule, CLI

creating 240

deleting 241

details, displaying 241

listing 241

updating 241
firewall rule criteria, verdict

-d <ip_addr> 224

--dport 224

-i <interface> 224

-0 <interface> 224

-p <protocol> 224

-s <ip_addr> 224

--sport 224
firewall-rule-delete command 241
firewall-rule-list command 241
firewall-rule-show command 241
firewall-rule-update command 241
firewall rule, verdict

ACCEPT 224

DNAT 224

DROP 224

LOG 224

REJECT 224

RETURN 224

SNAT 224
firewalls, CLI

commands 239

creating 244

deleting 245

details, displaying 245

listing 245

updating 246

working with 239
firewalls, dashboard

working with 246-250
firewall-update command

--admin-state-up flag 246

--firewall-policy-id flag 246

--name flag 246

about 246
flat network 75,79, 81
floating IP address 152
floatingip-associate command 154, 171
floatingip-create command 153, 169, 211
floatingip-delete command 155

floatingip-disassociate command 155,171

floatingip-list command 154, 171
floating IP management, in CLI
about 153
floating IP attributes, displaying 155
floating IPs, associating to ports 154
floating IPs, creating 153
floating IPs, deleting 155
floating IPs, disassociating 155
floating IPs, listing 154
primary commands 153
floatingip-show command 155
fundamentals, load balancing
algorithms 184, 185
components 184
monitoring 185
session persistence 185
FWaa$
about 9, 222
enabling, in dashboard 239
Neutron, preparing for 238
working with 238
FWaa$ driver
configuring 238
FWaaS extension
functionality 222
network resources 222
FWaas$ service plugin
defining 238

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

G

gateway attribute 123

gateway_external_network_id option
configuring 146

gateway_ip attribute 127

Glance 36

Glance image service installation
verifying 39, 40

Glance service
defining 38

GRE network 75, 76

guest network 12

H

haproxy 189
health monitors, CLI
associating, with pool 199
commands 197
creating 197-199
deleting 199
details, displaying 200
disassociating, from pool 199
listing 200
managing 197
updating 200
Horizon
LBaaS, enabling in 192
Horizon dashboard
URL 46
hostnames
setting 27
host-route attribute 123
host-routes attribute 127
HTTP_COOKIE persistence type 186

Identity service
configuring 30-32
installing 30-32
image service
configuring 36-38
Glance image service installation,
verifying 39, 40

Glance service, defining 38
installing 36-38
installation, LBaaS 189
installation, OpenStack
about 29
Compute service, installing 40
Identity service, installing 30, 31
image service, installing 36-38
messaging server, installing 30
MySQL database client, installing 30
MySQL database server, installing 29
OpenStack dashboard, installing 46
URL 21
instances
associated IP address, obtaining 138-140
attaching, to networks 135
attaching, to networks with nova boot 135
layer 2 connectivity, providing to 71
metadata, retrieving 140
network interfaces, attaching 136
network interfaces, detaching 136
secondary addresses, adding to
interfaces 137, 138
integration bridge 85,104
interface
configuration 25
internal network connections, LinuxBridge
about 77
flat network 79-81
local network 82
VLAN 77,78
internal network connections,
Open vSwitch
about 84-86
local VLANS, identifying 88, 89
ports, identifying on virtual switch 86, 87
ip netns command 53
iptables
about 223
filter 223
mangle 223
NAT 223
raw 223
references 224
iptables rules
removing 27

[270]

www.it-ebooks.info

http://www.it-ebooks.info/

iptables-save command 231
ip-version attribute 123

K

kernel version 23
Keystone
API endpoints, defining 33, 38
Glance service, defining 38
installation, verifying 34, 35
roles, defining 32
services, defining 33
tenants, defining 32
users, defining 32
Keystone server
identifying 47

L

13-agent-list-hosting-router command 159

layer 2 connectivity
providing, to instances 71
layer 2 networking plugin
configuring 93
LBaaS
about 9
enabling, in Horizon 192
installing 189
LBaaS network namespace 208
LBaaS service plugin
defining 191
1b-healthmonitor-associate
command 199, 206
1b-healthmonitor-create command
--delay attribute 198
--expected-codes attribute 198
--http-method attribute 198
--max-retries attribute 198
--tenant-id flag 197
--timeout attribute 198
--type attribute 198
--url-path attribute 198
about 197, 206
1b-healthmonitor-delete command 199
1b-healthmonitor-disassociate
command 199

Ib-healthmonitor-list command 200
Ib-healthmonitor-show command 200
Ib-healthmonitor-update command 200
Ib-member-create command

--address attribute 196

--admin-state-down attribute 195

--protocol-port attribute 196

--tenant-id flag 195

--weight attribute 196

about 195, 205
Ib-member-delete command 196
Ib-member-list command 196
Ib-member-show command 196
Ib-member-update command 197
Ib-pool-create command

--admin-state-down attribute 193

--Ib-method attribute 193

--name attribute 193

--protocol attribute 193

--subnet-id attribute 193

--tenant-id flag 193

about 193, 203
Ib-pool-delete command 193
Ib-pool-list command 193
Ib-pool-list-on-agent command 195
Ib-pool-show command 194
Ib-pool-stats command 194
Ib-pool-update command 194
Ib-vip-create command

--address attribute 201

--admin-state-down attribute 201

--connection-limit attribute 201

--name attribute 201

--protocol attribute 201

--protocol-port attribute 201

--subnet-id attribute 201

--tenant-id flag 201

about 201, 207
Ib-vip-delete command 202
Ib-vip-list command 202
Ib-vip-show command 202
Ib-vip-update command 202
least-connections algorithm 185
Linux bridge

high-level view 73

interface, configuring 73, 74

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

LinuxBridge
about 71,76
internal network connections 77
linuxbridge_conf.ini file
about 95
configuration options
LinuxBridge plugin
about 53
configuring 94
LinuxBridge plugin configuration options
about 95
firewall driver 96
network VLAN ranges 96
physical interface mappings 95, 96
services, restarting 97
tenant network type 95
listener address
changing 47
load balancer
components 184
integrating, into network 187-189
load balancer creation
about 203
health monitor, creating 206
pool, creating 203, 204
pool members, creating 204-206
virtual IP, creating 207, 208
load balancer functionality
confirming 209, 210
health monitors, observing 210, 211
virtual IP, connecting externally 211, 212
load balancer management, CLI
about 192
commands 192
health monitors, managing 197
pool members, managing 195
pools, managing 192
virtual IPs, managing 200
load balancer management, dashboard
about 212, 213
health monitors, creating 216, 217
pool, creating 213, 214
pool members, creating 214, 215
virtual IP, connecting externally 219, 220
virtual IP, creating 218, 219

load balancing

about 9

fundamentals 184
load balancing algorithms

about 184

least-connections algorithm 185

round robin algorithm 184

source IP algorithm 185
Load-Balancing-as-a-Service. See LBaaS
local IP, Open vSwitch plugin

about 104

virtual VLAN interface, configuring for

overlay traffic 105, 106

local network 75, 82

management network 11
many-to-one NAT 152
mesh network 75
messaging server
configuring 30
installing 30
metadata retrieving, instances
DHCP namespace 141, 142
DHCP, used for injecting route 142, 143
manual route, adding
to 169.254.169.254 142
router namespace 140, 141
Mirantis OpenStack
URL 21
ML2 configuration 54
Modular Layer 2 (ML2 plugin)
about 263
configuring 265, 266
database, creating 264
installing 263
Neutron, configuring 264, 265
Neutron services, restarting 266
service plugins, configuring 265
monitoring 185
multihoming 135
multiple interfaces, physical server
connections 14
MyFlatNetwork network
characteristics 124

[272]

www.it-ebooks.info

http://www.it-ebooks.info/

MySQL database client
installing 30

MySQL database server
configuring 29
installing 29

N

NAT

about 152

floating IP address 152

many-to-one NAT 152

one-to-one NAT 152
net-create command 157
net.ipv4.conf.all.rp_filter kernel

parameter 57
net.ipv4.conf.default.rp_filter kernel
parameter 57

net.ipv4.ip_forward kernel parameter 57
network

about 51

configuration 23

instances, attaching to 135

load balancers, integrating into 187-189
network bridges 72
network functions

extending, with plugins 53
networking plugin

LinuxBridge 76, 77

Open vSwitch (OVS) 83, 84

selecting 76
network management

about 109, 110

networks, creating in dashboard 118

Neutron ports 134

primary commands 110

subnets 121

subnets, creating in dashboard 128
network management, CLI

about 111,112

flat network, creating 112,113

local network, creating 115

network properties, displaying 116

networks, deleting 117

networks, listing 115

networks, updating 116, 117

VLAN network, creating 113, 114

network namespaces

about 9, 52,189

naming convention 52

URL 53

used, for overlapping networks 52
network resources, FWaaS extension

firewall 222

firewall policy 222

firewall rule 222
networks, in dashboard

creating, via Admin tab as

administrator 118,119

creating, via Project tab as user 120, 121
networks types, Neutron

flat network 75

GRE 75,76

local networks 75

provider networks 74

tenant networks 74

VLAN networks 75

VXLAN 75,76
Network Time Protocol. See NTP
network traffic, types

about 11

API network 12

external network 12

guest network 12

management network 11
network_type provider attribute 111
network VLAN ranges, Open vSwitch

plugin 102

Neutron

configuring, for Open vSwitch usage 98, 99

configuring, for using Keystone 57

configuring, for using messaging service 59

configuring, to use ML2 plugin 264, 265
network management 109
preparing, for FWaaS 238

Neutron agents
configuring 61
Neutron command-line interface, using 69
Neutron DHCP agent, configuring 63-65
Neutron DHCP agent, starting 65
Neutron L3 agent, configuring 69
Neutron LBaaS agent, configuring 69

Neutron metadata agent, configuring 66-68

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

neutron-server, configuring 61, 62
neutron-server, starting 63
Neutron API
about 51, 52
network 51
network functions, extending with
plugins 53, 54
networks overlapping, network
namespaces used 52, 53
port 52
subnet 51
URL 52
Neutron API extensions
details, displaying 256
listing 255
reference link 256
Neutron command-line interface
using 69
Neutron DHCP agent
configuring 63, 64
starting 65
neutron-dhcp-agent service 63
Neutron extensions 255
neutron-filter-top chain 253
Neutron L3 agent
configuring 69, 145
external bridge, setting 146
external network, setting 146
interface driver, defining 146
metadata proxy, enabling 147
starting 147, 148
neutron-13-agent service 145
Neutron LBaa$ agent
configuring 69
neutron-lbaas-agent service 189,190
Neutron LBaaS agent service
configuring 190
device driver, defining 190
interface driver, defining 190
starting 191
user group, modifying 190
Neutron metadata agent
configuring 66-68
neutron port-list command 154
Neutron ports 134

neutron-server
configuring 61, 62
starting 63

Neutron services
configuring 54
database, creating 55

endpoint, configuring in Keystone 55, 56

installing 54
packet forwarding, enabling 56
restarting 266
role, configuring in Keystone 55, 56
root helper, configuring 59, 60
user, configuring in Keystone 55, 56
NIC bonding, physical server
connections 15
Nicera
command reference 261
no-gateway attribute 123
Nova
configuring, for LinuxBridge usage 94
configuring, for Open vSwitch usage 99
configuring, for utilizing Neutron
networking 60, 61
nova boot command 135
nova image-list command 164

nova interface-attach command syntax 136

nova list command 164
ns interface 166
NTP
about 28
configuring 28
installing 28

(0

one-arm mode 187

one-to-one NAT 152

OpenStack
installing 29
operating system requisites 22
system requisites 22
URL 54

OpenStack Cloud administrator guide
reference link 261

OpenStack dashboard
connections, allowing 46
connectivity, testing 47-49

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

installing 46

Keystone server, identifying 47

listener address, changing 47
openstack-db command 55

per-tenant quotas
about 257
default quotas, listing 259
tenant quotas, deleting 260

OpenStack Networking tenant quotas, listing 260
about 8 tenant quotas, updating 259
features 8 physical infrastructure
OpenStack portal 10 preparing 10,11
OpenStack repository physical_network provider attribute 111
configuring 26 physical server connections
OpenStack security guide about 12
URL 28 multiple interfaces 14
OpenStack utilities NIC bonding 15

installing 26
Open vSwitch Database Server

services, separating across nodes 15
single interface 13

(OVSDB) 83 Piston Cloud
Open vSwitch (OVS) URL 21
about 8,71, 83 plugins
components 83 about 53

used, for extending network 53, 54
pool members 184
pool members, CLI
creating 195, 196
deleting 196
details, displaying 196
listing 196
managing 195
updating 197
pools
about 184
Server A 184
Server B 184
Server C 184
pools, CLI
creating 192, 193
deleting 193
details, displaying 194
listing 193
P listing, associated with agent 195
statistics, displaying 194
updating 194
port 52
prefix attribute 123
programming flow rules, Open vSwitch
about 89
for flat networks 91-93

internal network connections 84-86
Open vSwitch plugin
about 53
configuring 98
services, restarting 107
Open vSwitch plugin configuration options
about 100
bridge_mappings 100, 101
enable_tunneling 102
firewall_driver 106
integration_bridge 104
local_ip 104
network_vlan_ranges 102
tenant_network_type 101
tunnel_bridge 104
tunnel_id_ranges 103
tunnel_type 103
operating system requisites 22

packet forwarding
enabling 56
passwords
URL 31
patch port 84
permissions 26

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

for local networks 93

for VLAN networks 89-91
provider bridge 85
provider networks 74,110

Q

qdhcp namespace 52

qg interface 160

qlbaas namespace 53

qr interface 163

qrouter namespace 53
quota-delete command 260
quota-list command 260
quota-show command 259
quota-update command 259

R

Rackspace Private Cloud

URL 21
Red Hat-based images

URL 39
RedHat RDO

URL 21
roles 33
root helper

configuring 59, 60
round robin algorithm 184
routed mode 189
router-create command

about 158

using 148
router:external attribute 112,117
router-gateway-clear command 150
router-gateway-set command 149, 159
router-interface-add command 162
router-interface-delete command 150
router management, CLI

about 148

gateway interface, attaching to router 149

gateway interface, clearing 150

interfaces attached to routers, listing 150
internal interfaces, attaching to routers 149

internal interfaces, deleting 150
primary commands 148
router attributes, displaying 151

router attributes, updating 151
router interfaces, working with 149
routers, creating 148
routers, deleting 152
routers, listing 150
router management, dashboard
about 173
floating IPs, associating to
instances 178-180
floating IPs, disassociating 180, 181
gateway interface, attaching 174
internal interfaces, attaching 175, 176
network topology, viewing 176
router, creating 174
router namespace 140, 141
router-port-list command 150, 159
routing 9
rules
inserting, into firewall policies 243
removing, from firewall policies 244

S

security-group-create command 225
security-group-delete command 225
security-group-list command 226
security-group-rule-create command
--direction flag 227
--ethertype flag 227
--port-range-max flag 227
--port-range-min flag 227
--protocol flag 227
--remote-group-id flag 227
--remote-ip-prefix flag 227
about 227

security-group-rule-delete command 228

security-group-rule-list command 228
security group rules
implementing 229-231
stepping, through chains 231-233
security group rules, CLI
applying, to instances 228
creating 227
deleting 228
details, displaying 228
listing 228
security groups 221, 225

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

security groups, CLI
commands 225
creating 225
deleting 225
details, displaying 226
listing 226
managing 225
updating 226
security groups, dashboard
creating 234-237
working with 234
security-group-show command 226
security-group-update command 226
segmentation_id provider attribute 112
SELinux
disabling 27
service plugins
configuring 265
services
defining 33
services, separating across nodes
about 15
single controller plus network node with
one or more compute nodes 18, 19
single controller, with one or more compute
nodes 16,17
session persistence 185
session persistence, types
APP_COOKIE 186
HTTP_COOKIE 186
SOURCE_IP 185
shared switch 112,117
single interface, physical server
connections 13
source IP algorithm 185
SOURCE_IP persistence type 185
Source NAT 152
subnet 51
subnet-create command 157, 162
subnet-list command 125
subnets, dashboard
creating, via Admin tab as
administrator 128-130
creating, via Project tab as user 130-133

subnets, Neutron
about 121
creating, in CLI 122-124
examples 121
listing, in CLI 125
subnet properties, displaying in CLI 126
updating, in CLI 126, 127
subnet-update command 126
switching 8
system
upgrading 28

T

tenant 32
tenant-id attribute 123
tenant networks 74,110
traffic flow demonstration, from instance
to internet
about 155
default NAT behavior, observing 168
external provider network, creating 157
floating IPs, assigning 169-171
floating IPs, reassigning 171, 172
foundation, setting 156
gateway connectivity, testing 160
instance connectivity, verifying 165-167
instances, creating 164, 165
internal network, creating 161, 162
Neutron router, creating 158
router, attaching to external
network 159, 160
router, attaching to internal
network 162-164
transparent mode 189
tunnel bridge, Open vSwitch plugin 104
tunnel ID ranges, Open vSwitch plugin 103
tunneling, Open vSwitch plugin
enabling 102
tunnel type, Open vSwitch plugin 103

U

Ubuntu cloud images
URL 39
users 32

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

VvV Virtual Private Network as a
Service (VPNaaS)

variable-length subnet masking about 256
(VLSM) 121 reference link 257
Virtual Ethernet (veth) 83 virtual switches 8
virtual IP 184 virtual VLAN interface
virtual IPs, CLI about 76
commands 200 configuring, for overlay traffic 105
creating 201 VLAN 24,77,78
deleting 202 VLAN networks 75
displaying 202 VMware
listing 202 command reference 261
managing 200 VXLAN network 75, 76
updating 202
Virtual Network Computing (VNC) 41 X
virtual network interfaces 72,104
virtual private network 9, 256 X-Forwarded-For header 188
[278]

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning OpenStack Networking (Neutron)

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

OpenStack Cloud Computing

Cookbook
Second Edition
ISBN: 978-1-78216-758-7 Paperback: 396 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
10 common probiems coverage of Nova, Swift, Keystone, Glance, Horizon,
OpenStack Cloud Neutron, and Cinder

Computing Cookbook 1. Learn how to install, configure, and manage
Second Edition

all of the OpenStack core projects, including
new topics such as block storage and software
defined networking.

2. Learn how to build your Private Cloud utilizing

DevOps and Continuous Integration tools and
techniques.

Implementing Cloud Storage with

OpenStack Swift
ISBN: 978-1-78216-805-8 Paperback: 140 pages

) Design, implement, and successfully manage
- your own cloud storage cluster using the popular
.‘\" _ OpenStack Swift software

=R R R R e LR L]
. 1. Learn about the fundamentals of cloud storage
Implementing Cloud Storage using OpenStack Swift.
with OpenStack Swift
Ao Riocs e Y TR JouT o 2. Explore how to install and manage OpenStack
Swift along with various hardware and
tuning options.

3. Perform data transfer and management using
REST APIs.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Apache CloudStack
Cloud Computing

Apache CloudStack Cloud
Computing
ISBN: 978-1-78216-010-6 Paperback: 294 pages

Leverage the power of CloudStack and learn to extend
the CloudStack environment

1. Install, deploy, and manage a cloud service
using CloudStack.

2. Step-by-step instructions on setting up and
running the leading open source cloud
platform, CloudStack.

3. Setup an IaaS cloud environment
using CloudStack.

Cloud Development and
Deployment with CloudBees

Cloud Development and

Deployment with CloudBees
ISBN: 978-1-78328-163-3 Paperback: 114 pages

Develop and deploy your Java application onto the
Cloud using CloudBees

1. Create, deploy, and develop applications
using CloudBees.

2. Impress your colleagues and become a pro by
using different tools to integrate CloudBees
with SDK.

3. A step-by-step tutorial guide which will
help you explore and maintain real-world
applications with CloudBees.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Preparing the Network
for OpenStack
	What is OpenStack Networking?
	Features of OpenStack Networking
	Switching
	Routing
	Load balancing
	Firewalling
	Virtual private networks

	Preparing the physical infrastructure
	Types of network traffic
	Management network
	API network
	External network
	Guest network

	Physical server connections
	Single interface
	Multiple interfaces
	Bonding
	Separating services across nodes
	A single controller with one or more compute nodes
	A single controller plus network node with one or more compute nodes

	Summary

	Chapter 2: Installing OpenStack
	System requirements
	Operating system requirements
	Initial network configuration
	Interface configuration

	Before you begin
	Permissions
	Configuring the OpenStack repository
	Installing OpenStack utilities
	Setting the hostnames
	Disabling SELinux
	Removing iptables rules

	Installing and configuring Network Time Protocol
	Upgrading the system

	Installation of OpenStack
	Installing and configuring the MySQL database server
	Installing the MySQL database client
	Installing and configuring the messaging server
	Installing and configuring the Identity service
	Defining users, tenants, and roles in Keystone
	Define services and API endpoints in Keystone
	Verify the Keystone installation
	Setting environment variables

	Installing and configuring the image service
	Define the Glance service and API endpoints in Keystone
	Verify the Glance image service installation

	Installing and configuring the Compute service
	Installing and configuring controller node components
	Installing and configuring compute node components
	Verify communication between services

	Installing the OpenStack dashboard
	Allowing connections to the dashboard
	Identifying the Keystone server
	Changing the listener address
	Testing connectivity to the dashboard

	Summary

	Chapter 3: Installing Neutron
	Basic Neutron constructs
	Overlapping networks using network namespaces
	Extending network functions with plugins

	Installing and configuring Neutron services
	Creating the Neutron database
	Configuring the Neutron user, role, and endpoint in Keystone
	Enabling packet forwarding
	Configuring Neutron to use Keystone
	Configuring Neutron to use a messaging service
	Configuring a root helper
	Configuring Nova to utilize Neutron networking

	Configuring Neutron services
	Configuring neutron-server
	Starting neutron-server
	Configuring the Neutron DHCP agent
	Starting the Neutron DHCP agent
	Configuring the Neutron metadata agent
	Configuring the Neutron L3 agent
	Configuring the Neutron LBaaS agent
	Using the Neutron command-line interface

	Summary

	Chapter 4: Building a Virtual Switching Infrastructure
	Providing layer 2 connectivity to instances
	Virtual network interfaces
	Bridging
	Configuring the bridge interface

	Types of networks in Neutron
	Choosing a networking plugin
	LinuxBridge
	Internal network connections when using LinuxBridge

	Open vSwitch
	Internal network connections when using Open vSwitch
	Programming flow rules

	Configuring a layer 2 networking plugin
	Configuring the LinuxBridge plugin
	Configuring Nova to use LinuxBridge

	Configuring the DHCP agent to use LinuxBridge
	LinuxBridge plugin configuration options
	Tenant network type
	Physical interface mappings
	Network VLAN ranges
	Firewall driver
	Restarting services

	Configuring the Open vSwitch plugin
	Configuring Neutron to use Open vSwitch
	Configuring Nova to use Open vSwitch
	Configuring the DHCP agent to use Open vSwitch
	Open vSwitch plugin configuration options

	Summary

	Chapter 5: Creating Networks
with Neutron
	Network management
	Managing networks in the CLI
	Creating a flat network in the CLI
	Creating a VLAN in the CLI
	Creating a local network in the CLI
	Listing networks in the CLI
	Showing network properties in the CLI
	Updating networks in the CLI
	Deleting networks in the CLI

	Creating networks in the dashboard
	Using the Admin tab as an administrator
	Using the Project tab as a user

	Subnets in Neutron
	Creating subnets in the CLI
	Creating a subnet in the CLI
	Listing subnets in the CLI
	Showing subnet properties in the CLI
	Updating a subnet in the CLI

	Creating subnets in the dashboard
	Using the Admin tab as an administrator
	Using the Project tab as a user

	Neutron ports

	Attaching instances to networks
	Attaching instances to networks using
Nova boot
	Attaching and detaching network interfaces
	Adding secondary addresses to interfaces

	Exploring how instances get their addresses
	Exploring how instances retrieve their metadata
	Router namespace
	The DHCP namespace
	Adding a manual route to 169.254.169.254
	Using DHCP to inject the route

	Summary

	Chapter 6: Creating Routers with Neutron
	Configuring the Neutron L3 agent
	Defining an interface driver
	Setting the external network
	Setting the external bridge
	Enabling the metadata proxy
	Starting the Neutron L3 agent

	Router management in the CLI
	Creating routers in the CLI
	Working with router interfaces in the CLI
	Attaching internal interfaces to routers
	Attaching a gateway interface to a router
	Listing interfaces attached to routers
	Deleting internal interfaces
	Clearing the gateway interface
	Listing routers in the CLI
	Displaying router attributes in the CLI
	Updating router attributes in the CLI
	Deleting routers in the CLI

	Network Address Translation
	Floating IP addresses

	Floating IP Management
	Creating floating IPs in the CLI
	Associating floating IPs to ports in the CLI
	Listing floating IPs in the CLI
	Displaying floating IP attributes in the CLI
	Disassociating floating IPs in the CLI
	Deleting floating IPs in the CLI

	Demonstrating traffic flow from instance to Internet
	Setting the foundation
	Creating an external provider network
	Creating a Neutron router
	Attaching the router to the external network
	Testing gateway connectivity
	Creating an internal network
	Attaching the router to the internal network
	Creating instances
	Verifying instance connectivity
	Observing default NAT behavior
	Assigning floating IPs
	Reassigning floating IPs

	Router management in the dashboard
	Creating a router in the dashboard
	Attaching a gateway interface in the dashboard
	Attaching internal interfaces in the dashboard
	Viewing the network topology in the dashboard
	Associating floating IPs to instances in the dashboard
	Disassociating floating IPs in the dashboard

	Summary

	Chapter 7: Load Balancing Traffic
in Neutron
	Fundamentals of load balancing
	Load balancing algorithms
	Monitoring
	Session persistence

	Integrating load balancers into the network
	Network namespaces

	Installing LBaaS
	Configuring the Neutron LBaaS agent service
	Define an interface driver
	Define a device driver
	Change the user group

	Define a service plugin
	Starting the Neutron LBaaS agent service
	Enabling LBaaS in Horizon

	Load balancer management in the CLI
	Managing pools in the CLI
	Creating a pool
	Deleting a pool
	Listing pools
	Showing pool details
	Showing pool statistics
	Updating a pool
	Listing pools associated with an agent

	Managing pool members in the CLI
	Creating pool members
	Deleting pool members
	Listing pool members
	Showing pool member details
	Updating a pool member

	Managing health monitors in the CLI
	Creating a health monitor
	Deleting a health monitor
	Associating a health monitor with a pool
	Disassociating a health monitor from a pool
	Listing health monitors
	Showing health monitor details
	Updating a health monitor

	Managing virtual IPs in the CLI
	Creating a virtual IP
	Deleting a virtual IP
	Listing virtual IPs
	Showing virtual IP details
	Updating a virtual IP

	Building a load balancer
	Creating a pool
	Creating pool members
	Creating a health monitor
	Creating a virtual IP
	The LBaaS network namespace
	Confirming load balancer functionality
	Observing health monitors
	Connecting to the virtual IP externally

	Load balancer management in the dashboard
	Creating a pool in the dashboard
	Creating pool members in the dashboard
	Creating health monitors in the dashboard
	Creating a virtual IP in the dashboard
	Connecting to the virtual IP externally

	Summary

	Chapter 8: Protecting Instances on
the Network
	Security groups in OpenStack
	Firewall-as-a-service
	Introducing iptables
	Working with security groups
	Managing security groups in the CLI
	Creating security groups in the CLI
	Deleting security groups in the CLI
	Listing security groups in the CLI
	Showing the details of a security group in the CLI
	Updating security groups in the CLI
	Creating security group rules in the CLI
	Deleting security group rules in the CLI
	Listing security group rules in the CLI
	Showing the details of a security group rule in
the CLI
	Applying security groups to instances in the CLI

	Implementing security group rules
	Stepping through the chains

	Working with security groups in the dashboard

	Working with FWaaS
	Preparing Neutron for FWaaS
	Configuring the FWaaS driver
	Defining a service plugin
	Enabling FWaaS in the dashboard

	Working with firewalls in the CLI
	Creating a firewall rule in the CLI
	Deleting a firewall rule in the CLI
	Listing firewall rules in the CLI
	Showing the details of a firewall rule in the CLI
	Updating a firewall rule in the CLI
	Creating a firewall policy in the CLI
	Deleting a firewall policy in the CLI
	Listing firewall policies in the CLI
	Showing the details of a firewall policy in the CLI
	Updating a firewall policy in the CLI
	Inserting rules into firewall policies in the CLI
	Removing rules from firewall policies in the CLI
	Creating a firewall in the CLI
	Deleting a firewall in the CLI
	Listing firewalls in the CLI
	Showing the details of a firewall in the CLI
	Updating a firewall in the CLI

	Working with firewalls in the dashboard

	Firewall rules – behind the scenes
	Stepping through the chains within the firewall

	Summary

	Appendix A: Additional Neutron Commands
	Neutron extensions
	Listing Neutron API extensions
	Showing the details of an API extension

	Virtual private networks
	Per-tenant quotas
	Listing the default quotas
	Updating tenant quotas
	Listing tenant quotas
	Deleting tenant quotas

	Cisco Nexus 1000V command reference
	VMware/Nicera command reference

	Appendix B: ML2 Configuration
	Installing the ML2 plugin
	Creating a database for ML2
	Configuring Neutron to use ML2

	Configuring service plugins

	Configuring the ML2 plugin
	Restarting Neutron services

	Index

