Gmputer
Programming

A Beginner’s Course

Noel Kalicharan

Senior Lecturer, Computer Science
The University of the West Indies
St. Augustine, Trinidad

First published September 2005
© Noel Kalicharan, 2005

nkalicharan@fsa.uwi.tt

All rights reserved

The text of this publication, or any part thereof, may not
be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying,
recording, storage in an information retrieval system, the
Internet, or otherwise, without prior written permission
of the author.

Preface

This book attempts to teach computer programming to the complete beginner
using the C language. As such, it assumes you have no knowledge whatsoever
about programming. And if you are worried that you are not good at high-school
mathematics, don’t be. It is a myth that you must be good at mathematics to learn
programming. In this book, a knowledge of primary school mathematics is all that
is required—basic addition, subtraction, multiplication, division, finding the
percentage of some quantity, finding an average or the larger of two quantities.

Some of our most outstanding students over the last thirty years have been people
with little mathematics background from all walks of life—politicians, civil
servants, sports people, housewives, secretaries, clerical assistants, artists,
musicians and teachers. On the other hand, we’ve had mathematical folks who
didn’t do as well as might be expected.

What will be an asset is the ability to think logically or to follow a logical
argument. If you are good at presenting convincing arguments, you will probably
be a good programmer. Even if you aren’t, programming is the perfect vehicle for
teaching logical thinking skills. You should learn programming for these skills
even if you never intend to become a serious programmer.

The main goal of this book is to teach fundamental programming principles using
C, one of the most widely used programming languages in the world today. C is
considered a ‘modern’ language even though its roots date back to the 1970s.
Originally, C was designed for writing ‘systems’ programs—things like operating
systems, editors, compilers, assemblers and input/output utility programs. But,
today, C is used for writing all kinds of applications programs as well—
wordprocessing programs, spreadsheet programs, database management
programs, accounting programs, games, educational software—the list is endless.

However, this book is more about teaching programming basics than it is about
teaching C. We discuss only those features and statements in C that are necessary
to achieve our goal. Once you learn the principles well, they can be applied to any
language.

Chapter 1 gives an overview of the programming process. Chapter 2 describes the
basic building blocks needed to write programs. Chapter 3 explains how to write
programs with the simplest kind of logic—sequence logic. Chapter 4 shows how
to write programs which can make decisions. Chapter 5 explains the notion of
‘looping’ and how to use this powerful programming idea to solve more
interesting problems. Chapter 6 deals with the oft-neglected, but important, topic
of working with characters. Chapter 7 introduces functions—the key concept
needed for writing large programs. And Chapter 8 tackles the nemesis of many
would-be programmers—array processing.

The first step in becoming a good programmer is learning the syntax rules of the
programming language. This is the easy part and many people mistakenly believe

that this makes them a programmer. They get carried away by the cosmetics—
they learn the features of a language without learning how to use them to solve
problems. Of course, you must learn some features. But it is far better to learn a
few features and be able to use them to solve many problems rather than learn
many features but can’t use them to solve anything. For this reason, this book
introduces a feature (like an if statement, say) and then discusses many examples
to illustrate how the feature can be used to solve different problems.

This book is intended for anyone who is learning programming for the first time,
regardless of age or institution. The material has been taught successfully to
students preparing for high-school examinations in Computer Studies or
Information Technology, students at college, university and other tertiary-level
institutions.

The presentation is based on the experience that many people have difficulty in
learning programming. To try and overcome this, we use an approach which
provides clear examples, detailed explanations of very basic concepts and
numerous interesting problems (not just artificial exercises whose only use is to
illustrate some language feature).

While computer programming is essentially a mental activity and you can learn a
fair amount of programming from just reading the book, it is important that you
“get your hands dirty” by writing and running programs. One of life’s thrills is to
write your first program and get it to run successfully on a computer. Don’t miss
out on it.

But do not stop there. The only way to learn programming well is to write
programs to solve new problems. The end-of-chapter exercises are a very rich
source of problems, a result of the author’s more than 30 years in the teaching of
programming.

Thank you for taking the time to read this book. I hope your venture into
programming is a successful and enjoyable one.

Noel Kalicharan

Contents

1 Elementary Programming CONCEPLS........ccevirreereisncseesansnsssesassssssnssssssassassssosas 1
1.1 How a computer SOlvVes a Problemceevvieriieriieriiiieeie e svee e 3
1.1.1 Define the problemi.........cccccieiiieriieeiiieie et 3

1.1.2 Analyze the problemcccoiiiiiiiiiiiee e 4

1.1.3 Develop an algorithm for solving the problemcccccvveviverierieennnnns 4

1.1.4 Write the program for the algorithmcoooiiiiiiniinie, 6

1.1.5 Test and debug the program...........cccceeveerieriiiiieeiieceeee e 8

1.1.6 Document the Programi..........cccceevveevieerieerieesiiesiesreeeeeseesseesseesseesnessneens 9

1.1.7 Maintain the Programl.........cccevvveriieirieeriieiieiiesee e ere e ereesieesseesenessneens 9

1.2 How a computer €XECULES @ PIOZIAIM c....eeeuveerureerreeerireesieeenieeesneesereenseeesnseeenne 10
| B D -1 - T 74 ot USRS 10
L) 1 3 To1 3 (OSSOSO 12
1.5 Welcome to C Programming..........ccceeeueerienienieeiieieeieesieesee e 12
1.5.1 Running the programi............cccceeveeiieiieereecieereesieesieeseesveeveeveesveeseas 14

1.5.2 A word on program layoutccceeeveriieeieeiiieiierieeiesee e 14

1.6 Writing output With printf.............ccoociiiiii e 15
1.6.1 The newline character, \n (backslash n)...........cccooeiiviiiiciniiiiciie, 15

1.6.2 ESCAPE SEQUEIICES ..eeeuvvierneieeiieeiiiieaieeesieeesteeeareeasteesseeessseesnseesnseeesseens 16

1.6.3 Printing the value of a variableccccccoeeviiieiiiiiiic e 17

1.7 COMIMENLS .ttt ettt ettt ettt ettt e bt e bt st et e e bt e b eaee 18
1.8 Programming with variablesccecierierieriieiieieeeeree e 18
EXEICISES 1 ittt ettt et e sttt et e b ee 21
2 C —the bAasiCSscccocveerriniierr 22
2.1 The C alphabetcooeiiiiiiieie e et 23
B O 1) <) 1S PRSPPI 23
2.2.1 ReESEIVEd WOTMS ..coueeiiiieiieiieiieit et 25

2.2.2 TAentfIEIS .ovviiiiiiiciiicce e e 25

2.3 BaSiC data LY PES..cueeriieiiieieeiieieeitetest et e eere et e e staestaeetreerbeesreebeeteeneenes 27
2.4 Integer NUMDETS - INE......cociiiiiiieieeeee e st ee 27
2.4.1 Declaring variables..........ccceeviiiiiieiiie e 28

2.4.2 INEEEET CXPIESSIONS ..eecuvreeereeereeerireerreeatreessreeaseesssseesseesssseessseesssseensnes 28

2.4.3 Precedence 0f OPEIatorsceccvereierieriieieeieenieeseeseee e ere e e e es 29

2.4.4 Printing an integer using a “field width”..........c...ccooiriiiiniiiniie 30

2.5 Floating-point numbers — the types float and double.................c.cceevvieirennnnne. 32
2.5.1 Printing the values of double and float variablescccceovereinnenne. 33

2.5.2 Assignment between double and floatccooeviiiiiiiiiiiiici 35

2.5.3 Floating-point €XPreSSIONSccuerrerrerrrerreerreeseesseeseessseesessseesseesssenens 35

2.54 Expressions with integer and floating-point valuescccecereeneee 36

2.5.5 Assigning double/float to int.............ccoevviiviiiiiiiiiiii 36

2.0 SEIINES toevieeiieeiieeeiee et ett et e e st e e et e et e e s steeatteeebeeentaeeanbaeetaeennreeanraeenreeenraenn 37
2.7 The assigNMENt STALCTNENLeeveerrreireriierereereereereesseesseessaessresssesseesseesseesseensns 39
B T < 1 1 1 « OSSP R PR URRRPRTR 41
EXEICISES 2 ..ottt ettt ettt ettt e h ettt et nt e ee et e ne e s 42

3 Writing programs using sequence l0giCccccvieeeecciiiiiiresecmsses e eeeeeeennns 44

3.1 How to read data supplied DY @ USETcccueruierieiiieiieiieniiesee e eee e 44
3.2 SCONE Lottt ettt aeene et neeneas 47
3.2.1 Reading data into a float variablecccceevvevieniieniecieeieceeeen 48

3.2.2 Reading data into a double variable...............cccoevieriieniiniiciiieeen 49

3.3 ReAAING SIINES ..ccvvieieiieeiiieeiiieeiie et e et et e et e eteeesabeessseeetbeessseeensaeenssessnneeanes 50
3.4 EXAMPIES ..iciuiiiiieiiiciieie ettt ettt ettt e b e ba et e staeerbeerbeenbeeaeenes 52
EXEICISES 3 .ottt ettt sttt ettt b et sttt 58
4 Writing programs using selection logic 60
4.1 BOO0lan EXPIreSSIONSeeiueeieeiietieiiesiiesteereereesseesseessaessaesssesssessseasseesseesssenses 60
4.2 The if CONSIIUCT....viiitiiiiieie ettt ettt e ettt eveeeaaeens 63
Example — finding the sum of two lengthscccceevviiiiiieiiieiieieeeee 67

4.3 The ifu.els€ CONSLIUCToviuiiiieiieiieiieieeeeeeeee e 70
Example - calculating Paycocveeeiieiciieeeiieciee et 72

4.4 OnN Program tESTING....ccueeeerreerireerieeeiieesteesteeestteesreeesreessseessaeessseessseeessseesseens 75
4.5 Using symbolic constants in Ccceevieririiieiieeniienieniie e sre e seeeveesseessne e 75
The #define dir€CtiVeocuveiiieiiieie e 76

4.6 MOTE CXAMPIES ..ecvvieeieiiiieiie ettt et et et e st eeebeebeebeebeessaestaessbessseesseesseesseessennns 78
Example - printing a letter gradeccvvvvieiiieiienienie e 78

Example - classifying a triangleccceeveeeviiiieiiieciie e 81
EXEICISES 4 ...ttt ettt ettt et ettt a e et n e e et et eneenes 82
5 Writing programs using repetition logic 85
5.1 The While CONSIIUCTocuiiiiiiiiiieieiceee e 85
Example — finding the highest common factor............ccoecvevciieiierienienne, 90

5.2 KEEPING @ COUNL....uviiiiiiiiiieiiieeiieeeiieeeieeeieeesteeeteeesaseessseeetaeesssaeesaeessseeeseeenns 92
Finding the aVerage........c.ccovveriieriieiierieeieeie et 93

5.3 Increment and decrement OPETALOTScc.eerueerurerureeeeerieerieesieesieeeeeeeeeeeeneeens 94
5.4 ASSIZNMENT OPCIALOTS ...ccuvvieierieerieereteeeiieesireesreeetteessseeesseeessseessseeesseeesssesasseeanns 95
5.5 Finding the [ar@eSt.......cceevierieiieiieeieeieeieesie ettt e staestaeeneesnseenseeseenns 96
5.6 Finding the SMallestcoooiiiiiiiiiiiiei e 98
5.7 Reading data from @ filec.ccoiieriiiiiiiiiieeee e 100
5700 £SCONF ..o 101

5.8 Sending output t0 @ fleoevueeriiiiieiiiee e 104
S8.1 fPHNEE s 104

5.9 EXample - PAYTOLl......cccieiiiiiieiieiie et 106
5.10 The fOr COMSIIUCT ..viiviiiiiiiiiiie ettt ettt ettt et et eane v ens 112
The for statement N Coocoiiiieiiiieeeeee e 113

A Dit OF @EStNETICS ..vviuvieiieiiiiie e 118

5.11 Producing multiplication tables...........ccceeviieiiieiienieiiesieee e 118
5.12 Temperature conversion tablecceevvieviieriieiiesierieeieere e 122
5.13 The expressive POWET OF fOr......cciiiiiiiiiieiicieieceeeee e 124
EXCICISES 5 oottt ettt ettt e e e et e et e e e beeeaseeanbeeentneeennas 125
6 Working with characters 128
0.1 CRATACLET SELS ..eeuvitieneiiieiiete ettt ettt ettt ettt ettt ettt e b bt etesaeeneens 128
6.2 Character constants and vVallesc.ccoeouieiiiiiieniinieee e 129
6.3 The tyPe CRAN ..ottt r e e sraesaaesabe e 130
6.4 Characters in arithmetic XPreSSIONS.......ccvverviereereerierreereereerreesseesaesnesneens 130

Vi

6.5 Reading and printing CharactersS..........oceevvieriieriesierieeie et siee e ens 131

6.6 CoUNtING CRATACTETSveevieiieiiesiie ettt et sre e b e ebeesteessaesnaesnne e 138
6.7 Counting blanks in a line of data..........c.cccceieriiiiiiiiiiiice e 140
6.8 COMPAriNG CHATACLETS.....cuviirvierieriieiiieereeteereesteesteesteesreesreesseeseessaesseesssessseens 141
6.9 Reading characters from a filecccoccevviieriienienierieceee e 142
Writing characters t0 @ f1leoooviivciiieiiieeiie e 143

6.10 Converting digit characters t0 an INLEZETevvverreerrerreereereerreesreeseeseesneens 147
EXEICISES 0 ..ottt ettt ettt e h et ettt ettt ea et e b eneens 149

7 Functions 151
T1 o SRIPLINGS ..ot e et e e e e e e e e areeeeeeeas 152
7.2 A program with @ fUNCHIONcc.eeviiiiiiiiiii e 153
The function headerooeiiiiiiiiiieieee e 154

How a function gets its data...........cceeeveriierienieiie et 155

7 T 1 o OO OO PORRUPPRPP 156
7.4 Print the day ..oc.eeeouiiiiie e e 159
7.5 Highest CommOn FaCIOTc.cccuviviiiiieiieiie ettt sae e 161
7.6 FOCLOTIAL ..ottt st b e ene e s eneens 164
7.7 An example - JOD ChArgec.ooeoviieiiiiiiieeie e 170
7.8 An example - calculating PaY.......cceevveeiieiiieiieiesieree e 171
7.9 An example - finding the sum of exact diViSOTS........cevevreveieiiieriinienieeie s 172
Classifying numbers as deficient, perfect or abundant..............cccceueeeneee. 172

7.10 Some character fUNCLIONSeeoveriierieiieiietece e 173
Example - position of a letter in the alphabetccoccveiiiiiiiiniins 175

7.11 Example - fetch the NeXt INTEZETccvvvviiciieiieiiecierieeie e 176
EXEICISES 7 ettt ettt ettt ettt sb et b e et a et eae et aeeneens 179

8 Working with arrays 181
8.1 DEClaring AN AITAYccvvierreerrieriiesiesiesteereereeseesseesseesseesssessseassessseesseesssensns 182
8.2 Storing values N AN AITAYc.ceccierierierieeieeieeieesieesieeseesaessneereeseeseessaennns 184
8.3 Example - finding average and differences from average..........c...ccceeevveennen.. 186
8.4 Example - letter freqUeNnCy COUNTivviiiiiiieieeieeieesiee e eee e 189
8.5 Making better use Of fOP@Nc.cciiiiiiiiieiiceeee e 192
8.6 Passing an array as an argument to a fUnCtioncceecveeeeeierieercieeeneee e 194
8.7 A string is an array of Characters.........ccocvvvviiiiiiviieniesie e 196
8.8 Example - palindromecccveviierienieiieiie ettt 203
8.9 Array of strings - name of the day revisited.........c.ccccvvveveiiiiiiieniiieciie e 207
8.10 A flexible getString fUNCHONc.oeviiiiiiieicieee e 210
8.11 A Geography qUIZ PrOZIaM.......cceeruieruiereieeieeieeieenieesieesieeseeeaeeeeeseeseesseenees 211
8.12 Finding the largest NUMDbET N aN AITAYeeeriieriieeiie et svee e 215
8.13 Finding the smallest numMber in an arrayc.cccvevveevienieeieeie e 216
8.14 Example - @ vOting problemccccueriiiiiiiiiiieieeeesee e 217
8.15 Searching an array - sequential SEarchccceeevveeeiierciieiiiiccieecee e 222
8.16 Sorting an array - SEIECION SOTt........ccvervrriiiiieiierieestiesreeeeeneereereeseeseeees 225
EXCICISES 8 .ottt ettt ettt e et e e ta e e et e e ae e e abeeentreenanas 230
Appendix A - KEYWOrds 1N Coooviiiiiiiiiiieeiieeiee ettt e et eive e e e aeeeaaee s 233
Appendix B - The ASCII Character SEt.........ccvevveriiiciiniiiiiierieerieesee e ere e ere e seee s 234
Appendix C - Representation 0f iNtEZETS......cc.uevierireiiieriieriieriieeie e 235
Appendix D - How to get @ C COMPIIETveieviiiiiiiciieeiie et 238
TIUACX e ettt sttt sttt 239

vii

1 Elementary programming concepts

In this chapter, we will explain:

e how a computer solves a problem

e the various stages in the development of a computer program: from problem
definition to finished program

e how a computer executes a program

e whatis a ‘data type’ and its fundamental role in writing a program

e the role of characters—the basic building blocks of all programs

e the concepts of constants and variables

e the distinction between syntax and logic errors

e how to produce basic output in C using the printf statement

e what is an escape sequence

e how descriptive or explanatory comments can be included in your program

e what is an assignment statement and how to write one in C

We are all familiar with the computer’s ability to perform a wide variety of tasks.
For instance, we can use it to play games, write a letter or a book, perform
accounting functions for a company, learn a foreign language, listen to music on a
CD, send a fax or search for information on the Internet. How is this possible, all
on the same machine? The answer lies with programming—the creation of a
sequence of instructions which the computer can perform (we say “execute”) to
accomplish each task. This sequence of instructions is called a program. Each
task requires a different program:

* to play a game, we need a game-playing program,;

* to write a letter or a book, we need a word processing program,;
* to do accounts, we need an accounting program;

* to learn Spanish, we need a program that teaches Spanish;

* to listen to a CD, we need a music-playing program,;

» to send a fax, we need a fax-sending program;

* to use the Internet, we need a program called a “Web browser’;

For every task we want to perform, we need an appropriate program. And in order
for the computer to run a program, the program must be stored (we sometimes say
‘loaded’) in the computer’s memory.

C Programming — A Beginner’s Course

But what is the nature of a program? First, we need to know that computers are
built to execute instructions written in what is called machine language. In
machine language, everything is expressed in terms of the binary number system
—1’s and 0’s. Each computer has its own machine language and the computer can
execute instructions written in that language only.

The instructions themselves are very simple, for example, add or subtract two
numbers, compare one number with another or copy a number from one place to
another. How, then, can the computer perform such a wide variety of tasks,
solving such a wide variety of problems, with such simple instructions?

The answer is that no matter how complex an activity may seem, it can usually be
broken down into a series of simple steps. It is the ability to analyze a complex
problem and express its solution in terms of simple computer instructions that is
one of the hallmarks of a good programmer.

We usually think of machine language, which uses binary instructions, as a low-
level programming language. In the early days of computing (1940’s and 50’s)
programmers had to write programs in machine language, that is, express all their
instructions using 1’s and 0’s.

To make life a little easier for them, assembly language was developed. This was
closely related to machine language but it allowed the programmer to use
mnemonic' instruction codes (such as ADD) and names for storage locations (such
as sum) rather than strings of binary digits (bits). For instance, a programmer
could refer to a number by sum rather than have to remember that the number was
stored in memory location 1000011101101011.

A program called an assembler is used to convert an assembly language program
into machine language. Still, programming this way had several drawbacks:

* it was very tedious and error prone;

» it forced the programmer to think in terms of the machine rather than in terms
of his problem,;

* aprogram written in the machine language of one computer could not be run
on a computer with a different machine language. Changing your computer
could mean having to rewrite all your programs.

To overcome these problems, high-level or problem-oriented languages were
developed in the late 1950’s and 60°s. The most popular of these were FORTRAN
(FORmula TRANslation) and COBOL (COmmon Business-Oriented Language).
FORTRAN was designed for solving scientific and engineering problems which
involved a great deal of numerical computation. COBOL was designed to solve
the data-processing problems of the business community.

The idea was to allow the programmer to think about a problem in terms familiar
to him and relevant to the problem rather than have to worry about the machine.

! Meant to help to remember; e.g. DIV suggests what it means—divide

Elementary programming concepts

So, for instance, if he wanted to know the larger of two quantities, A and B, he
could write

IF AIS GREATER THAN B THEN BIGGER = A ELSE BIGGER = B

rather than have to fiddle with several machine or assembly language instructions
to get the same result. Thus high-level languages enabled the programmer to
concentrate on solving the problem at hand, without the added burden of worrying
about the idiosyncrasies” of a particular machine.

However, the computer still could only execute instructions written in machine
language. A program called a compiler is used to translate a program written in a
high-level language to machine language.

Thus we speak of a FORTRAN compiler or a COBOL compiler for translating
FORTRAN and COBOL programs, respectively. But that’s not the whole story.
Since each computer has its own machine language, we must have, say, a
FORTRAN compiler for an IBM Pentium computer and a FORTRAN compiler
for a Macintosh PowerPC computer.

1.1 How a computer solves a problem

Solving a problem on a computer involves the following activities:

(1) Define the problem.

(2) Analyze the problem.

(3) Develop an algorithm (a method) for solving the problem.

(4) Write the computer program which implements the algorithm.

(5) Test and debug (find the errors in) the program.

(6) Document the program. (Explain how the program works and how to use it).
(7) Maintain the program.

There is normally some overlap of these activities. For example, with a large
program, a portion may be written and tested before another portion is written.
Also, documentation should be done at the same time as all the other activities;
each activity produces its own items of documentation which will be part of the
final program documentation.

1.1.1 Define the problem

Suppose we want to help a child work out the areas of squares. This defines a
problem to be solved. However, a brief analysis reveals that the definition is not
complete or specific enough to proceed with developing a program. Talking with
the child might reveal that she needs a program which requests her to enter the
length of a side of the square; the program then prints the area of the square.

? Distinguishing characteristics or features

C Programming — A Beginner’s Course

1.1.2 Analyze the problem

We further analyze the problem to

(a) ensure that we have the clearest possible understanding of it;

(b) determine general requirements such as the main inputs to the program and
the main outputs from the program. For more complex programs, we would,
for instance, also need to decide on the kinds of files’ which may be needed.

If there are several ways of solving the problem, we should consider the
alternatives and choose the best or most appropriate one.

In this example, the input to the program is the length of one side of the square
and the output is the area of the square. We only need to know how to calculate
the area. If the side is s, then the area, a, is calculated by:

a=sxs

1.1.3 Develop an algorithm for solving the problem

An algorithm is a set of instructions which, if faithfully followed, will produce a
solution to a given problem or perform some specified task. When an instruction
is followed, we say it is executed. We can speak of an algorithm for finding a
word in a dictionary, for changing a punctured tyre or for playing a video game.

For any problem, there will normally be more than one algorithm to solve it. Each
algorithm will have its own advantages and disadvantages. When we are
searching for a word in the dictionary, one method would be to start at the
beginning and look at each word in turn. A second method would be to start at the
end and search backwards. Here, an advantage of the first method is that it would
find a word faster if it were at the beginning, while the second method would be
faster if the word were towards the end.

Another method for searching for the word would be one which used the fact that
the words in a dictionary are in alphabetical order—this is the method we all use
when looking up a word in a dictionary. In any situation, a programmer would
usually have a choice of algorithms, and it is one of her more important jobs to
decide which algorithm is the best, and why this is so.

In our example, we must write the instructions in our algorithm in such a way that
they can be easily converted into a form which the computer can follow.
Computer instructions fall into three main categories:

(1) Input instructions, used for supplying data from the ‘outside world’ to a
program; this is usually done via the keyboard or a file.

? Think of a file as a place in the computer used for storing things like documents, pictures,
programs, even songs and movies

4

Elementary programming concepts

(2) Processing instructions, used for manipulating data inside the computer.
These instructions allow us to add, subtract, multiply and divide; they also
allow us to compare two values, and act according to the result of the
comparison. Also, we can move data from one location in the computer’s
memory to another location.

(3) Output instructions, used for getting information out of the computer to the
outside world.

Data and variables

All computer programs, except the most trivial, are written to operate on data. For
example:

« the data for an action game might be keys pressed or the position of the cursor
when the mouse is clicked;

* the data for a word processing program are the keys pressed while you are
typing a letter;

* the data for an accounting program would include, among other things,
expenses and income;

* the data for a program that teaches Spanish could be an English word that you
type in response to a question.

Recall that a program must be stored in the computer’s memory for it to be run.
When data is supplied to a program, that data is also stored in memory. Thus we
think of memory as a place for holding programs and data. One of the nice things
about programming in a high-level language (as opposed to machine language) is
that you don’t have to worry about which memory locations are used to store your
data. But how do we refer to an item of data, given that there may be many data
items in memory?

Think of memory as a set of boxes (or storage locations). Each box can hold one
item of data, for example, one number. We can give a name to a box, and we will
be able to refer to that box by the given name. In our example, we will need two
boxes, one to hold the side of the square and one to hold the area. We will call
these boxes s and a, respectively.

S a
If we wish, we can change the value in a box at any time; since the values can
vary, s and a are called variable names, or simply variables. Thus a variable is a
name associated with a particular memory location or, if you wish, it is a /abel for
the memory location. We can speak of giving a variable a value, or setting a
variable to a specific value, 1, say. Important points to remember are:

C Programming — A Beginner’s Course

+ abox can hold only one value at a time; if we put in a new value, the old one is
lost;

* we must not assume that a box contains any value unless we specifically store
a value in the box. In particular, we must not assume that the box contains O.

Variables are a common feature of computer programs. It is very difficult to
imagine what programming would be like without them. In everyday life, we
often use variables. For example, we speak of an ‘address’. Here, ‘address’ is a
variable whose value depends on the person under consideration. Other common
variables are telephone number, name of school, subject, size of population, type
of car, television model, etc. (What are some possible values of these variables?)

Example — develop the algorithm

Using the notion of an algorithm and the concept of a variable, we develop the
following algorithm for calculating the area of a square given one side:

Algorithm for calculating area of square given one side

(1) Ask the user for the length of a side

(2) Store the value in the box s

(3) Calculate the area of the square (s x S)

(4) Store the area in the box a

(5) Print the value in box a, appropriately labelled
(6) Stop

When an algorithm is developed, it must be checked to make sure that it is doing
its intended job correctly. We can test an algorithm by ‘playing computer’, that is,
we execute the instructions by hand, using appropriate data values. This process is
called dry running or desk checking the algorithm. It is used to pinpoint any errors
in logic before the computer program is actually written. We should never start to
write programming code unless we are confident that the algorithm is correct.

1.1.4 Write the program for the algorithm

We have specified the algorithm using English statements. However, these
statements are sufficiently ‘computer-oriented’ for a computer program to be
written directly from them. Before we do this, let us see how we expect the
program to work from the user’s point of view.

First, the program will type the request for the length of a side; we say the
program prompts the user to supply data. The screen display might look like this:

[Enter Tength of side:]

Elementary programming concepts

The computer will then wait for the user to type the length. Suppose the user types
12. The display will look like this:

[Enter Tength of side: 12]

The program will then accept (we say read) the number typed, calculate the area
and print the result. The display may look like this:

Enter Tength of side: 12

Area of square 1is 144

Here we have specified what the output of the program should look like. For
instance, there is a blank line between the prompt line and the line that gives the
answer; we have also specified the exact form of the answer. This is a simple
example of output design. This is necessary since the programmer cannot write
the program unless he knows the precise output required.

In order to write the computer program from the algorithm, a suitable
programming language must be chosen. We can think of a program as a set of
instructions, written in a programming language, which, when executed, will
produce a solution to a given problem or perform some specified task.

The major difference between an algorithm and a program is that an algorithm
can be written using informal language without having to follow any special rules
(though some conventions are usually followed) whereas a program is written in a
programming language and must follow all the rules (the syntax rules) of the
language. (Similarly, if we wish to write correct English, we must follow the
syntax rules of the English language).

In this book, we will be showing you how to write programs in C, the
programming language developed by Ken Thompson and Dennis Ritchie of Bell
Laboratories, and one of the most popular and widely used today.

Here is the C program which requests the user to enter the length of a side and
prints the area of the square:

#include <stdio.h>

main() {
int q, s;
printf("Enter length of side: ");
scanf("%d", &s); //store length in's
a=s*s; //calculate area; store ina
printf("\nArea of square is %d\n", a);

C Programming — A Beginner’s Course

It is not too important that you understand anything about this program at this
time. But you can observe that a C program has something (a function) called
main followed by opening and closing brackets. Between the left brace { and the
right brace } we have what is called the body of the function. The statement

inta,s;

is called a declaration. The parts after // are comments which help to explain the
program but have no effect when the program is run. And * is used to denote

multiplication.
All of these terms will be explained in detail in due course.

Finally, a program written in a high-level language is usually referred to as a
source program or source code.

1.1.5 Test and debug the program

Having written the program, the next job is to fest it to find out whether it is doing
its intended job. Testing a program involves the following steps:

1. compile the program: recall that a computer can execute a program written in
machine language only. Before the computer can run our C program, the latter
must be converted to machine language. We say that the source code must be
converted to object code or machine code. The program which does this job is
called a compiler. Appendix D tells you how you can acquire a C compiler for
writing and running your programs.

Among other things, a compiler will check the source code for syntax
errors—errors which arise from breaking the rules for writing statements in
the language. For example, a common syntax error in writing C programs is to
omit a semicolon or to put one where it is not required.

If the program contains syntax errors, these must be corrected before
compiling it again. When the program is free from syntax errors, the compiler
will convert it to machine language and we can go on to the next step.

2. run the program: here we request the computer to execute the program and we
supply data to the program for which we know the answer. Such data is called
test data. Some values we can use for the length of a side are 3, 12 and 20.

If the program does not give us the answers 9, 144 and 400, respectively, then
we know that the program contains at least one /ogic error. A logic error is
one which causes a program to give incorrect results for valid data. A logic
error may also cause a program to crash (come to an abrupt halt).

If a program contains logic errors, we must debug the program; we must find
and correct any errors that are causing the program to produce wrong answers.

Elementary programming concepts

To illustrate, suppose the statement which calculates the area was written
(incorrectly) as:

a=s+s,

and when the program is run, 10 is entered for the length. Assume we know that
the area should be 100. But when the program is run, it prints

Enter Tength of side: 10

Area of square is 20

Since this is not the answer we expect, we know that there is an error (perhaps
more than one) in the program. Since the area is wrong, the logical place to start
looking for the error is in the statement which calculates the area. If we look
closely, we should discover that + was typed instead of *. When this correction is

made, the program works fine.

1.1.6 Document the program

The final job is to complete the documentation of the program. So far, our
documentation includes:

* the statement of the problem;

* the algorithm for solving the problem;

* the program listing;

* test data and the results produced by the program.

These are some of the items that make up the fechnical documentation of the
program. This is documentation that is useful to a programmer, perhaps for
modifying the program at a later stage.

The other kind of documentation which must be written is user documentation.
This enables a non-technical person to use the program without needing to know
about the internal workings of the program. Among other things, the user needs to
know how to load the program in the computer and how to use the various
features of the program. If appropriate, the user will also need to know how to
handle unusual situations which may arise while the program is being used.

1.1.7 Maintain the program

Except for things like class assignments, programs are normally meant to be used
over a long period of time. During this time, errors may be discovered which
previously went unnoticed. Errors may also surface because of conditions or data
that never arose before. Whatever the reason, such errors must be corrected.

C Programming — A Beginner’s Course

But a program may need to be modified for other reasons. Perhaps the
assumptions made when the program was written have now changed due to
changed company policy or even due to a change in government regulations (e.g.
changes in income tax rates). Perhaps the company is changing its computer
system and the program needs to be ‘migrated’ to the new system. We say the
program must be ‘maintained’.

Whether or not this is easy to do depends a lot on how the original program was
written. If it was well-designed and properly documented, then the job of the
maintenance programmer would be made so much easier.

1.2 How a computer executes a program

First, recall that a computer can execute a program written in machine language
only. For the computer to execute the instructions of such a program, those
instructions must be /loaded into the computer’s memory (also called primary
storage), like this:

memory

instruction 1

instruction 2

instruction 3

etc.

You can think of memory as a series of storage locations, numbered consecutively
starting at 0. Thus you can speak of memory location 27 or memory location
31548. The number associated with a memory location is called its address.

A computer runs a program by executing its first instruction, then the second,
then the third, and so on. It is possible that one instruction might say to jump over
several instructions to a particular one and continue executing from there. Another
might say to go back to a previous instruction and execute it again.

No matter what the instructions are, the computer faithfully executes them exactly
as specified. That is why it is so important that programs specify precisely and
exactly what must be done. The computer cannot know what you intend, it can
only execute what you actually write. If you give the computer the wrong
instruction, it will blindly execute it just as you specify.

1.3 Data types

Every day we meet names and numbers—at home, at work, at school or at play. A
person’s name is a type of data; so is a number. We can thus speak of the two
data types called ‘name’ and ‘number’. In the statement:

10

Elementary programming concepts

Caroline bought 3 dresses for $199.95

we can find:
* an example of a name: Caroline;

* two examples of numbers: 3 and 199.95.

Usually, we find it convenient to divide numbers into two kinds:

(1) whole numbers, or integers;
(2) numbers with a decimal point, so-called real or floating-point numbers.

In the example, 3 is an integer and 199. 95 is a real number.

Exercise: Identify the data types—mnames, integers and real numbers—in the
following:

(a) Bill’s batting average was 35.25 with a highest score of 75.

(b) Abigail, who lives at 41 Third Avenue, worked 36 hours at $11.50 per
hour.

(c) Inhis 8 subjects, Richard’s average grade was 68.75.

Generally speaking, programs are written to manipulate data of various types. We
use the term numeric to refer to numbers (integer or floating-point). We use the
term string to refer to non-numeric data such as a name, address, job description,
title of a song or vehicle number (which is not really a number as far as the
computer is concerned—it usually contains letters, e.g. PAB6052).

Programming languages in general, and C in particular, precisely define the
various types of data which can be manipulated by programs written in those
languages. Integer, real (or floating-point), character (data consisting of a single
character such as 'K' or '%') and string data types are the most common.

Each data type defines constants of that type. For example,

* some integer constants are 3, -52, 0 and 9813;
» some real (or floating-point) constants are 3.142, -5.0, 345.21 and 1.16;
e some character constants are 't', '+', '8"' and 'R';

* some string constants are ""Hi there", ""Wherefore art thou, Romeo?" and
"C World".

Note that, in C, a character constant is delimited by single quotes and a string
constant is delimited by double quotes.

When we use a variable in a program, we have to say what type of data (the kind
of constants) we intend to store in that variable—we say we must declare the
variable. It is usually an error if we try to store a type of data in a variable that is
different from the type that the variable is declared to hold. For example, it would

11

C Programming — A Beginner’s Course

be an error to attempt to store a string constant in an integer variable. C data types
are discussed in detail in Chapter 2.

1.4 Characters

In computer terminology, we use the term character to refer to any one of the
following:

+ adigit from 0 to 9;
 an uppercase letter from A to Z;
» a lowercase letter from a to z;

» aspecial symbol like (,), $,=,<,>, +, -, /, ¥, etc.

The following are commonly used terms:

letter — oneofatozorAtoZ

lowercase letter — oneofatoz

uppercase letter — oneofAtoZ

digit - oneof0,1,2,3,4,5,6,7,8,9

special character — any symbol except a letter or a digit
eg +,<>8 & */,=

alphabetic — used to refer to a letter

numeric — used to refer to a digit

alphanumeric — used to refer to a letter or a digit

Characters are the basic building blocks used in writing programs;
we put characters together to form variables and constants;
we put variables, constants and special characters to form expressions such as
(a+25)*c;
we add special words such as if, then and while to form statements such as
if (@>0)b=a+2;

and we put statements together to form programs.

1.5 Welcome to C Programming

We take a quick peek at the C programming language by writing a program to
print the message

Welcome to Trinidad & Tobago

One solution is Program P1.1.

12

Elementary programming concepts

Program P1.1

#include <stdio.h>
main() {
printf("Welcome to Trinidad & Tobago");

}

The statement
#include <stdio.h>

is called a compiler directive. This simply means that it provides information the
compiler needs to compile your program. In C, input/output instructions are
provided by means of standard functions stored in a standard library. These
functions use variable (and other) declarations stored in a special header file
called stdio.h. 4ny program which uses an input/output instruction (such as printf)
must inform the compiler to include the declarations in the file stdio.h with the
program. If this is not done, the compiler will not know how to interpret the
input/output statements used in the program.

A C program consists of one or more functions (or, subprograms), one of which
must be called main. Our solution consists of just one function so it must be
called main. The (round) brackets after main are necessary because, in C, a
function name is followed by a list of arguments, enclosed in brackets. If there are
no arguments, the brackets must still be present. Here, main has no arguments so
the brackets alone are present.

Every function has a section called the body of the function. The body is where
the work of the function is performed. The left and right braces, { and }, are used
to define the start and end, respectively, of the body. In C, one or more statements
enclosed by { and } is called a block or compound statement.

The body of main contains one statement:
printf("Welcome to Trinidad & Tobago");

printf is a standard output function which, in this example, takes one argument, a
string constant "Welcome to Trinidad & Tobago". Note that, as with all
functions, the argument is enclosed in round brackets. The semicolon is used to
indicate the end of the statement. We say the semicolon terminates the statement.
When executed, this statement will print

Welcome to Trinidad & Tobago

on the ‘standard output’. For now, take this to mean the screen.

13

C Programming — A Beginner’s Course

1.5.1 Running the program

Having written the program on paper, the next task is to get it running on a real
computer. How this is done varies somewhat from one computer system to the
next but, in general, the following steps must be performed:

(1) type the program to a file. The file could be named welcome.c; it is good
practice to use .c as the filename extension to those files which contain C
source code.

(2) invoke your C compiler to compile the program in the file welcome.c. For
instance, you may have to start up your C compiler and open the file
welcome.c from the ‘File’ menu or you may simply have to double-click on
the file welcome.c to start-up the compiler.

Once the file is open, typically there will be a menu command to ‘Compile’
or ‘Run’ the program. (Generally, ‘Run’ implies ‘Compile’ and ‘Run’). If
any (syntax) errors are detected during the compile phase, you must correct
these errors and try again.

When all errors have been corrected and the program is ‘Run’, it will print:

[Welcome to Trinidad & Tobago]

1.5.2 A word on program layout

C does not require the program to be laid out as in the example. An equivalent
program is

#include <stdio.h>
main() { printf("Welcome to Trinidad & Tobago"); }
or
#include <stdio.h>
main()
{
printf("Welcome to Trinidad & Tobago");

}

For this small program, it probably does not matter which version we use.
However, as program size increases, it becomes imperative that the /ayout of the
program highlights the logical structure of the program.

This improves its readability and makes it easier to understand. Indentation and
clearly indicating which { matches which } can help in this regard. We will see
the value of this principle as our programs become more substantial.

14

Elementary programming concepts

1.6 Writing output with printf

Suppose we want to write a program to print the lines™:

Where the mind is without fear
And the head is held high

Our initial attempt might be:

#include <stdio.h>

main() {
printf("Where the mind is without fear");
printf("And the head is held high");

}

However, when run, this program would print:
Where the mind is without fearAnd the head is held high

Note that the two strings are joined together (we say the strings are concatenated).
This happens because printf does not place output on a new line, unless this is
specified explicitly. Put another way, printf does not automatically supply a
newline character after printing its argument(s). A newline character would cause
subsequent output to begin at the left margin of the next line.

In the example, a newline character is not supplied after fear is printed so that
And the head... is printed on the same line as fear and immediately after it.

1.6.1 The newline character, |n (backslash n)

To get the desired effect, we must tell printf to supply a newline character after
printing ...without fear. We do this by using the character sequence \n (backslash

n) as in Program P1.2.

Program P1.2

#include <stdio.h>

main() {
printf("Where the mind is without fear\n");
printf("And the head is held high\n");

}

The first \n says to terminate the current output line; subsequent output will start
at the left margin of the next line. Thus, And the... will be printed on a new line.

* From The Gitanjali by Rabindranath Tagore

15

C Programming — A Beginner’s Course

The second \n has the effect of terminating the second line. If it were not present,
the output will still come out right, but only because this is the last line of output.

A program prints all pending output just before it terminates. (This is also the
reason why our first program worked without \n).

As an embellishment, suppose we want to put a blank line between our two lines
of output, like this:

Where the mind is without fear

And the head is held high

Each of the following sets of statements will accomplish this:

(1) printf("Where the mind is without fear\n\n");
printf("And the head is held high\n");

(2) printf("Where the mind is without fear\n");
printf("\nAnd the head is held high\n");

(3) printf("Where the mind is without fear\n");
printf("\n");
printf("And the head is held high\n");

We just have to make sure we print two \n’s between fear and And. The first \n
ends the first line; the second ends the second line, in effect, printing a blank line.
C gives us a lot of flexibility in how we write statements to produce a desired
effect.

Exercise: Write a program to print the lyrics of your favourite song.

1.6.2 Escape sequences

Within the string argument to printf, the backslash (\) signals that a special effect

is needed at this point. The character following the backslash specifies what to do.
This combination (\ followed by another character) is referred to as an escape

sequence. The following are some escape sequences you can use in a string in a
printf statement:

\n issue a newline character

\f issue a new page (formfeed) character
\t issue a tab character

\" print "

\\ print \

16

Elementary programming concepts

For example, using an escape sequence is the only way to print a double quote as
part of your output. Suppose we want to print the line

Use " to begin and end a string
If we typed
printf("Use " to begin and end a string\n");

then C would assume that the double quote after Use ends the string (causing a
subsequent error when it can’t figure out what to do with to). Using the escape
sequence \", we can correctly print the line with:

printf("Use \" to begin and end a string\n");

Exercise: Write a statement to print the line:
An escape sequence starts with \

1.6.3 Printing the value of a variable

So far, we have used printf to print the value of a string constant (that is, the
characters of the string excluding the quotes). We now show how we can print the
value of a variable ignoring, for the moment, sow the variable gets its value. (We
will see how in Chapter 2). Suppose the integer variable a has the value 52. The
statement:

printf("The number of students = %d\n", a);

will print:

[The number of students = 52]

This printf is a bit different from those we have seen so far. This one has fwo
arguments—a string and a variable. The string, called the format string, contains
a format specification %d. (In our previous examples, the format string contained
no format specifications). The effect, in this case, is that the format string is
printed as before, except that the %d is replaced by the value of the second
argument, a. Thus, %d is replaced by 52, giving:

[The number of students = 52]

We will explain printf and format specifications in more detail in Chapter 2 but,
for now, note that we use the specification %d if we want to print an integer value.

What if we want to print more than one value? This can be done provided that
each value has a corresponding format specification. For example, suppose that a
has the value 14 and b has the value 25. Consider,

17

C Programming — A Beginner’s Course

printf("The sum of %d and %d is %d\n", a, b, a + b);

This printf has four arguments—the format string and three values to be printed:
a, b and a + b. The format string must contain three format specifications: the first
will correspond to a, the second to b and the third to a+b. When the format
string is printed, each %d will be replaced by the value of its corresponding
argument, giving:

The sum of 14 and 25 is 39

Exercise: What is printed by the following statement?
printf("%d + %d = %d\n", a, b, a + b);

1.7 Comments

All programming languages let you include comments in your programs.
Comments can be used to remind yourself (and others) of what processing is
taking place or what a particular variable is being used for. They can be used to
explain or clarify any aspect of a program which may be difficult to understand by
just reading the programming statements. This is very important since the easier it
is to understand a program, the more confidence you will have that it is correct. It
is worth adding anything which makes a program easier to understand.

Remember that a comment (or lack of it) has absolutely no effect on how the
program runs. If you remove all the comments from a program, it will run exactly
the same way as with the comments.

Each language has its own way of specifying how a comment must be written. In
C, we write a comment by enclosing it within /* and */, for example:

/* This program prints a greeting */

A comment extends from /* to the next */ and may span one or more lines. The
following is a valid comment:

/* This program reads characters one at a time
and counts the number of letters found */

C also lets you use // to write one-line comments. The comment extends from //
to the end of the line, for example:

a=-s*s; //calculate area; store in a

In this book, we will use mainly one-line comments.

1.8 Programming with variables

To reinforce the ideas discussed so far, let us write a program which adds the
numbers 14 and 25 and prints the sum.

We would need storage locations for the two numbers and the sum. The values to

18

Elementary programming concepts

be stored in these locations are integer values. To refer to these locations, we
make up the names a, b and sum, say. (Any other names would do. In C, as in all
programming languages, there are rules to follow for making up variable names,
for instance, a name must start with a letter and cannot contain spaces. We will
see the C rules in the next chapter).

One possible algorithm might look like this:

setato 14
set b to 25

setsumtoa+b

print sum

The algorithm consists of four statements. The following explains the meaning of

each statement:

e setato14

e setbto25
e setsumtoa+b

e print sum

store the number 14 in memory location a; this is an
example of an assignment statement.

store the number 25 in memory location b.

add the numbers in memory locations a and b and store
the sum in memory location sum. The result is that 39
is stored in sum.

print (on the screen) the value in sum, i.e. 39.

Program P1.3 shows how we can write this algorithm as a C program.

main() {

a=14;
b = 25;

// This program prints the sum of 14 and 25. It shows how
// to declare variables in C and assign values to them.
#include <stdio.h>

int a, b, sum;

sum =a + b;
printf("%d + %d = %d\n", a, b, sum);

Program P1.3

When run, this program will print

[14+25=39]

In C, variables are declared as integer using the required word int. (In
programming terminology, we say that int is a reserved word). Thus, the

statement:

int a, b, sum;

19

C Programming — A Beginner’s Course

‘declares’ that a, b and sum are integer variables. In C, all variables must be
declared before they are used in a program. Note that the variables are separated
by commas, with a semicolon after the last one. If we were declaring just one
variable (a, say), we would write:

int a;

The statement
a=14;

is C’s way of writing the assignment statement
set ato 14

It is sometimes pronounced “a becomes 14”. In C, an assignment statement
consists of a variable (a in the example), followed by an equals sign (=), followed
by the value to be assigned to the variable (14 in the example), followed by a
semicolon. In general, the value can be a constant (like 14), a variable (like b) or
an expression (like a + b). Thus,

set b to 25 is written as
b = 25;
and set sum to a + b is written as

sum=a+b;

One final point: you may have gathered from page 18 that, for this problem, the
variable sum is not really necessary. We could, for instance, have omitted sum
from the program altogether and used:

int a, b;

a=14;

b = 25;

printf("%d + %d = %d\n", a, b, a + b);

to give the same result since C lets us use an expression (e.g. a+b) as an
argument to printf. However, if the program were longer and we needed to use the
sum in other places, it would be wise to calculate and store the sum once (in sum,
say). Whenever the sum is needed, we use sum rather than recalculate a + b each
time.

Now that we have a general idea of what is involved in writing a program, we are
ready to get down to the nitty-gritty of C programming.

20

Elementary programming concepts

Exercises 1

A e

~

10.
11.

12.

13.
14.

15.

16.
17.
18.

19.

20.

What makes it possible to do such a variety of things on a computer?
Computers can execute instructions written in what language?

Give two advantages of assembly language over machine language.
Give two advantages of a high-level language over assembly language.
Describe two main tasks performed by a compiler.

Describe the steps which must be performed for a problem to be solved by a
computer.

Distinguish between an algorithm and a program.

Programming instructions fall into 3 main categories; what are they?
Distinguish between a syntax error and a logic error.

What is meant by “debugging a program”?

Name 5 data types commonly used in programming and give examples of constants
of each type.

What are the different classes into which characters can be divided? Give examples
in each class.

What is the purpose of comments in a program?
Write a program to print Welcome to C on the screen.

Write a program to print the following:

There is a tide in the affairs of men
Which, taken at the flood, leads on to fortune

Write a program to print any 4 lines of your favourite song or poem.

Same as exercise 16, but print a blank line after each line.

If ais 29 and b is 5, what is printed by each of the following statements?
printf("The product of %d and %d is %d\n", a, b, a * b);
printf("%d + %d = %d\n", a, b, a + b);
printf("%d - %d = %d\n", a, b, a - b);
printf("%d x %d = %d\n", a, b, a * b);

If ais 29 and b is 14, what is printed by the following statements?
printf("%d + \n", a);
printf("%d\n", b);
printf("--\n");
printf("%d\n", a + b);

If rate = 15, what is printed by (a) printf("rate\n")? (b) printf("%d\n", rate)?

21

2 C - the basics

In this chapter, we will explain:

e what is an alphabet, a character set and a token

e what is a syntax rule and a syntax error

e what is a reserved word

e how to create identifiers in C

e what is a symbolic constant

e the C data types—int, float and double

e how to write int and double expressions

e how to print an integer using a field width

e how to print a floating-point number to a required number of decimal places
e what happens when int and double values are mixed in the same expression
e what happens when we assign int to double and double to int

e how to declare a variable to hold a string

e how to assign a string value to a string variable

e some problems to avoid when using the assignment statement

In this chapter, we discuss some basic concepts you need to know in order to
write programs in the C programming language.

A programming language is similar to speaking languages in many respects. It has
an alphabet (more commonly referred to as a character set) from which
everything in the language is constructed. It has rules for forming words (also
called tokens), rules for forming statements and rules for forming programs.
These are called the syntax rules of the language and must be obeyed when
writing programs. If you violate a rule, your program will contain a syntax error.
When you attempt to compile the program, the compiler will inform you of the
error. You must correct it and try again.

The first step in becoming a good programmer is learning the syntax rules of the
programming language. This is the easy part and many people mistakenly believe
that this makes them a programmer. It is like saying that learning some rules of
English grammar and being able to write some correctly formed sentences makes
one a novelist. Novel-writing skills require much more than learning some rules
of grammar. Among other things, it requires insight, creativity and a knack for
using the right words in a given situation.

22

C — the basics

In the same vein, a good programmer must be able to creatively use the features
of the language to solve a wide variety of problems in an elegant and efficient
manner. This is the difficult part and can only be achieved by long, hard study of
problem-solving algorithms and writing programs to solve a wide range of
problems. But we must start with baby steps.

2.1 The C alphabet

In Section 1.4 we introduced the idea of a character. We can think of the C
alphabet as consisting of all the characters one could type on a standard English
keyboard, for example, the digits, uppercase and lowercase letters, and special
characters such as +, =, <, >, & and %.

More formally, C uses the ASCII (American Standard Code for Information
Interchange, pronounced ass-key) character set. This is a character standard
which includes the letters, digits and special characters found on a standard
keyboard. It also includes control characters such as backspace, tab, line feed,
form feed and carriage return. Each character is assigned a numeric code. The
ASCII codes run from 0 to 127.

The programs in this book will be written using the ASCII character set. The
characters in the ASCII character set are shown in Appendix B.

Character handling will be discussed in detail in Chapter 6.

2.2 C tokens

The tokens of a language are the basic building blocks which can be put together
to construct programs. A token can be a reserved word (such as int or while), an
identifier (such as b or sum), a constant (such as 25 or "Alice in Wonderland"), a
delimiter (such as { or ;) or an operator (such as + or =).

For example, consider the following portion of the program given at the end of
the last chapter:

main() {
int a, b, sum;
a=14;
b=25;
sum =a+b;
printf("%d + %d = %d\n", a, b, sum);
}
Starting from the beginning, we can list the tokens in order:
main identifier
(left bracket, delimiter

23

C Programming — A Beginner’s Course

) right bracket, delimiter
{ left brace, delimiter
int reserved word

a identifier

, comma, delimiter

b identifier

, comma, delimiter
sum identifier

; semicolon, delimiter
a identifier

= equals sign, operator
14 constant

; semicolon, delimiter

and so on. Thus we can think of a program as a ‘stream of tokens’, which is
precisely how the compiler views it. So that, as far as the compiler is concerned,
the above could have been written:

main() { int a, b, sum;
a=14;b=25,sum=a+Db;
printf("%d + %d = %d\n", a, b, sum); }

The order of the tokens is exactly the same; to the compiler, it is the same
program. To the computer, only the order of the tokens is important. However,
layout and spacing are important to make the program more readable to human
beings.

A word on spacing

Generally speaking, C programs can be written using “free format”. The language
does not require us, for instance, to write one statement on a line. Even a simple
statement like

a=14;
can be written on four separate lines, like this:

a

14

Only the order of the tokens is important. However, since 14 is one token, the 1
cannot be separated from the 4. You are not even allowed to put a space between
1 and 4.

Except within a string or character constant, spaces are not significant in C.
However, judicious use of spaces can dramatically improve the readability of your
program. A general ‘rule of thumb’ is that wherever you can put one space, you
can put any number of spaces without affecting the meaning of your program. The
statement

24

C — the basics

a=14;
can be written as
a=14;
or a = 14
or a= 14;

The statement
sum=a+b;
can be written as

sum=a+b;
or

sum= a + b
or

sum = a+b;

Note, of course, that you cannot have spaces within the variable sum. It would be
wrong to write s um or su m. In general, all the characters of a token must stay
together.

2.2.1 Reserved words

The C language uses a number of keywords such as int, char and while. A
keyword has a special meaning in the context of a C program and can be used for
that purpose only. For example, int can be used only in those places where we
need to specify that the type of some item is integer. All keywords are written in
lowercase letters only. Thus int is a keyword but Int and INT are not. Keywords
are reserved, that is, you cannot use them as your identifiers. As such, they are
usually called reserved words. A list of C keywords is given in Appendix A.

2.2.2 Identifiers

The C programmer needs to make up names for things such as variables, function
names (Chapter 7) and symbolic constants (see following page). A name that he
makes up is called a user identifier. There are a few simple rules to follow in
naming an identifier:

it must start with a letter or underscore;

« if other characters are required, they can be any combination of letters, digits or
underscore;

« the length of an identifier cannot exceed 31 characters'.

"'In €99, the latest C standard as of 2006, the limit is 63.

25

C Programming — A Beginner’s Course

Examples of valid identifiers:

r
R

sumOfRootsiand2
XYz
moaxThrowsPerTurn
TURNS_PER_GAME
R2D2

rooti

Examples of invalid identifiers:

2hotToHandle // does not start with a letter
Net Pay // contains a space
ALPHA;BETA //contains an invalid character ;

Important points to note:

» Spaces are not allowed in an identifier. If you need one which consists of two
or more words, use a combination of uppercase and lowercase letters (as in
numThrowsThisTurn) or use the underscore to separate the words (as in
num_throws_this_turn). We prefer the uppercase/lowercase combination.

* In general, C is case-sensitive (an uppercase letter is considered different from
the corresponding lowercase letter). Thus r is a different identifier from R. And
sum is different from Sum is different from SUM is different from SuM.

* You cannot use a C reserved word as one of your identifiers.

Some naming conventions

Other than the rules for creating identifiers, C imposes no restriction on what
names to use, or what format (uppercase or lowercase, for instance) to use.
However, good programming practice dictates that some common-sense rules
should be followed.

An identifier should be meaningful. For example, if it’s a variable, it should
reflect the value being stored in the variable; netPay is a much better variable
than x for storing someone’s net pay, even though both are valid. If it’s a function
(Chapter 7), it should give some indication of what the function is supposed to do;
playGame is a better identifier than plg.

It is a good idea to use upper and lower case combinations to indicate the kind of
item named by the identifier. In this book, we use the following conventions:

* A variable is normally written in lowercase, for example, sum. If we need a
variable consisting of two or more words, we start the second and subsequent
words with an uppercase letter, for example, voteCount or sumOfSeries.

26

C — the basics

* A symbolic (or named) constant is an identifier which can be used in place of a
constant such as 100. Suppose 100 represents the maximum number of items
we wish to process in some program. We would probably need to use the
number 100 in various places in the program. But suppose we change our
mind and want to cater for 500 items. We would have to change all
occurrences of 100 to 500. However, we would have to make sure that we do
not change an occurrence of 100 used for some purpose other than the
maximum number of items (in a calculation like principal*rate/100, say).

To make it easy to change our mind, we can set the identifier Maxltems to 100
and use Maxltems whenever we need to refer to the maximum number of
items. If we change our mind, we would only need to set Maxltems to the new
value. We will begin a symbolic constant with an uppercase letter. If it consists
of more than one word, we will begin each word with uppercase, as in
MaxThrowsPerTurn.

We will see how to use symbolic constants in Section 4.5 (page 75).

2.3 Basic data types

In Section 1.3 we briefly touched on the concept of a data type. For most of this
book, we will use the following data types:

int, double and char

(These, among others, are referred to as primitive data types). Each data type
defines constants of that type. When we declare a variable to be of a particular
type, we are really saying what kind of constants (values) can be stored in that
variable. For example, if we declare the variable num to be int, we are saying that

the value of num at any time can be an integer constant such as 25, -369 or
1024.

2.4 Integer numbers - int

An int variable is used to store an integer (whole number) value. An integer value
is one of 0, £1, +2, +3, +4, etc. However, on a computer, the largest and smallest
integers which can be stored are determined by the number of bits used to store an
integer. Appendix C shows how integers can be represented on a computer.

Typically, an int variable occupies 16 bits (2 bytes) and can be used to store
whole numbers in the range -32,768 to +32,767. Note, however, that on some
machines, an int could occupy 32 bits, in which case it can store whole numbers
from -2,147,483,648 to +2,147,483,647. In general, if n bits are used to store an
int, the range of numbers which can be stored is -2"" to +2"" - 1.

As an exercise, find out the largest and smallest int values on your computer.

27

C Programming — A Beginner’s Course

2.4.1 Declaring variables
In C, a variable is declared by specifying a type name followed by the variable.
For example,
int j
declares j to be a variable of type int.
You can declare several variables of the same type in one statement as in:
int a, b, ¢; // declares 3 variables of type int
The variables are separated by commas, with a semicolon after the last one.
You can declare a variable and give it an initial value in one statement, as in:
int j = 14;

This declares j to be int and gives it a value of 14.

2.4.2 Integer expressions

An integer constant is written in the manner we are all accustomed to, for
example, 354, -1, 30705 and -4802. Note that you can use only a possible sign
followed by digits from O to 9. In particular, you cannot use commas as you
might do to separate thousands; thus 32,732 is an invalid integer constant—you
must write it as 32732.

An integer expression can be written using the following arithmetic operators:

+ add

- subtract

* multiply

/ divide

% find remainder

For example, suppose we have the following declaration:
int a, b, c;
then the following are all valid expressions:

a+39

a+b-c*2

b % 10 //the remainder when b is divided by 10
c+(@a*2+b*2)/2

The operators +, - and * all give the expected results. However, / performs
integer division; if there is any remainder, it is thrown away. We say integer
division fruncates. Thus 19 div 5 gives the value 3; the remainder 4 is discarded.

28

C — the basics

But what is the value of -19 div 5? The answer here is —3. The rule is that, in C,
integer division truncates fowards zero. Since the exact value of -19 + 51s -3.8,
truncating towards zero gives —3. (In the next section, we show how to get the
precise value for the division of one integer by another).

The % operator gives the remainder when one integer is divided by another; for
example,

19 % 5 evaluates to 4;

J % 7 gives the remainder when j is divided by 7;

You can use it to test, for instance, if a number j is even or odd. If j % 2 is O then j
is even, otherwise j is odd.

2.4.3 Precedence of operators

C evaluates an expression based on the usual precedence of operators:
multiplication and division are done before addition and subtraction. We say that
multiplication and division have higher precedence than addition and subtraction.
For example, the expression

5+3*4

is evaluated by first multiplying 3 by 4 (giving 12) and then adding 5 to 12,
giving 17 as the value of the expression.

As usual, we can use brackets to force the evaluation of an expression in the order
we want. For example,

5+3)*4
first adds 5 and 3 (giving 8), and then multiplies 8 by 4, giving 32.

When two operators which have the same precedence appear in an expression,
they are evaluated from left to right, unless specified otherwise by brackets. For
example,

24/4*2
is evaluated as

(24 /4)* 2
(giving 12) and

12-7+3
is evaluated as

(12-7)+3
giving 8. However,

24 /(4% 2)

is evaluated as expected, giving 3, and

29

C Programming — A Beginner’s Course

12 - (7 +3)
is evaluated as expected, giving 2.

In C, the remainder operator % has the same precedence as multiplication (*) and
division (/).

Exercise: What is printed by the following program? Verify your answer by
typing and running the program.

#include <stdio.h>

main() {
int a=15;
int b = 24;

printf("%d %d\n",b-a+7, b-(a+7));
printf("%d %d\n",b-a-4,b - (a- 4));
printf("%d %d\n",b%a/2,b % (a/2));
printf("%d %d\n",b*a/2,b* (a/2));
printf("%d %d\n",b/2*a,b/ (2* a));

2.4.4 Printing an integer using a "field width"

We have seen that we can print an integer value by specifying the value (either by
a variable or an expression) in a printf statement. When we do so, C prints the
value using as many “print columns” as needed. For instance, if the value is 782,
it is printed using 3 print columns since 782 has 3 digits. If the value is -2345, it
is printed using 5 print columns (one for the minus sign).

While this is usually sufficient for most purposes, there are times when it is useful
to be able to tell C how many print columns to use. For example, if we want to
print the value of n in 5 print columns, we can do this by specifying a field width
of 5, as in:

printf("%5d", n):

Instead of the specification %d, we now use %5d. The field width is placed
between % and d. The value of n is printed “in a field width of 5”.

Suppose n is 279; there are 3 digits to print so 3 print columns are needed. Since
the field width is 5, the number 279 is printed with 2 spaces before it, thus:
00279 (¢ denotes a space). We also say “printed with 2 leading blanks/spaces”
and “printed padded on the left with 2 blanks/spaces”.

A more technical way of saying this is “n is printed right-justified in a field width
of 5”. “Right-justify” means that the number is placed as far right as possible in
the field and spaces added in front of it to make up the field width. If the number
is placed as far left as possible and spaces are added after it to make up the field

30

C — the basics

width, the number is /efi-justified. For example, 279¢¢ is left-justified in a field
width of 5.

The minus sign can be used to specify lefi-justification; %-wd will print a value
left-justified in a field width of w. For example, to print an integer value left-
justified in field width of 5, we use %-5d.

For another example, suppose n is -7 and the field width is 5. Printing n requires
two print columns (one for - and one for 7); since the field width is 5, it is printed
with 3 leading spaces, thus: ¢0¢-7.

You may ask, what will happen if the field width is too small? Suppose the value
to be printed is 23456 and the field width is 3. Printing this value requires 5
columns which is greater than the field width 3. In this case, C ignores the field
width and simply prints the value using as many columns as needed (5, in this
example).

In general, suppose the integer value v is printed with the format specification
%wd where w is an integer, and suppose n columns are needed to print v. There

are 2 cases to consider:

» Ifnis less than w (the field width is bigger), the value is padded on the left
with (w - n) spaces. For example, if wis 7 and v is =345 so that n is 4, the
number is padded on the left with (7-4) = 3 spaces and printed as ©©¢-345.

* If nis greater than or equal to w (field width is the same or smaller), the value
is printed using n print columns. In this case, the field width is ignored.

A field width is useful when we want to line up numbers one below the other.
Suppose we have three int variables a, b and ¢ with values 9876, -3 and 501,
respectively. The statements

printf("%d\n", a);
printf("%d\n", b);
printf("%d\n", c);

will print
9876

-3
501

Each number is printed using just the number of columns required. Since this
varies from one number to the next, they do not line up. If we want to, we could
get the numbers lined up using a field width of 5, say. The statements

printf("%5d\n", a);
printf("%5d\n", b);
printf("%5d\n", c);

will print (¢ denotes a space)

31

C Programming — A Beginner’s Course

©9876
©00-3
<0501

which will look like (without ¢)
9876
-3
501

all nicely lined up.

As a matter of interest, we don’t really need 3 printf statements. We can replace
the last 3 printf statements with

printf("%5d\n%5d\n%5d\n", a, b, c);

Each \n forces the following output onto a new line.

2.5 Floating-point numbers — the types float and double

A floating-point number is one which may have a fractional part. A floating-point
constant can be written in one of two ways:

* the normal way, with an optional sign, and including a decimal point; for
example, -3.75,0.537, 47.0;

* using scientific notation, with an optional sign, including a decimal point and
including an ‘exponent’ part; for example, -0.375E1 meaning “-0.375
multiplied by 10 to the power 17, that is, -3.75. Similarly, 0.537 can be
written as 5.37e-1, that is, “5.37 x 10" The exponent can be specified using
either e or E.

Note that there are several ways to write the same number. For example, the
following all represent the same number 27 . 96:

27.96E00 2.796E1 2.796E+1 2.796E+01 0.2796E+02 279.6E-1

In C, we can declare a floating-point variable using either float or double. A float
value is normally stored as a 32-bit floating-point number, giving about 6 or 7
significant digits. A double value is stored as a 64-bit floating-point number,
giving about 15 significant digits.

A floating-point constant is of type double unless it is followed by f or F, in
which case it is of type float. Thus 3.75 is of type double but 3.75f (or 3.75F)
is of type float. Most calculations are done using double precision. The type float
is useful if you need to store lots of floating-point numbers and you wish to use as
little storage as possible (and do not mind living with 6 or 7 digits of precision).

In this book, we will mostly use double for working with floating-point numbers.

32

C — the basics

2.5.1 Printing the values of double and float variables

We have been using the format specification %d in a printf statement to print the

value of an integer variable. If we wish to print the value of a double or float
variable, we can use the %f specification. For example, consider:

double d = 987.654321;
printf("%f \n", d);

The value of d will be printed to a pre-defined number of decimal places (usually
6, but could vary from one compiler to the next). In this case, the value printed
will be 987.654321. However, if d were assigned 987.6543215, the value
printed would be 987 .654322 (rounded to 6 decimal places).

Similarly, if x was of type float, its value could be printed using:

printf("%f \n", x);

We just saw that the specification %f prints the number to a pre-defined number
of decimal places. Most times, though, we want to say how many decimal places
to print and, sometimes, how many columns to use. For example, if we want to
print d, above, to 2 decimal places in a field width of 6, we can use:

printf("%6.2f \n", d);

Between % and f, we write 6.2, that is, the field width, followed by a . (point),
followed by the number of decimal places. The value is rounded to the stated
number of decimal places and then printed. Here, the value printed will be
987.65, which occupies exactly 6 print columns. If the field width were bigger,
the number will be padded on the left with spaces. If the field width were smaller,
it is ignored, and the number printed using as many columns as necessary.

As another example, consider

b = 245.75;
printf("%6.1f \n", d);

In the specification %6.1f, 1 says to round the number to 1 decimal place; this
gives 245 . 8, which requires 5 columns for printing.

6 says to print 245.8 in 6 columns; since only 5 columns are needed for printing
the number, one space is added at the beginning to make up 6 columns, so the
number is printed as ©245. 8 (¢ denotes a space).

Similarly,
printf("%6.0f \n", d);

will print b as ¢0¢246 (rounded to O decimal places and printed in a field width
of 6).

33

C Programming — A Beginner’s Course

If the specification were %3.1f and the value to be printed is 245. 8, it would be
printed using 5 print columns, even though the field width is 3. Again, when the
field width specified is smaller than the number of print columns required, C
ignores the field width and prints the value using as many columns as needed.

We can sometimes use this to our advantage. If we do not know how big a value
might be, we can deliberately use a small field width to ensure it is printed using
the exact number of print columns required for printing the value.

In general, suppose the float or double value v is to be printed with the
specification %w.df where w and d are integers. Firstly, the value v is rounded to
d decimal places; suppose the number of print columns required to print v,
including a possible point® and a possible sign, is n. There are 2 cases to consider:

» If nis less than w (the field width is bigger), the value is padded on the left
with (w - n) spaces. For example, if w is 7 and the value to be printed is -3.45
so that n is 5, the number is padded on the left with (7-5) = 2 spaces and
printed as ¢¢-3.45.

* Ifnis greater than or equal to w (field width is the same or smaller), the value
is printed using n print columns. In this case, the field width is ignored.

As with integers, a field width is useful when we want to line up numbers one
below the other. Assume we have three double variables a, b and ¢ with values
419.563, -8.7 and 3. 25, respectively. Suppose we want to print the values to 2
decimal places, lined up on the decimal point, like this:

419.56

-8.70
3.25

Since the biggest number requires 6 print columns, we can line them up using a
field width of at least 6. The following statements will line them up as above:

printf("%6.2f \n", a)
printf("%6.2f \n", b);
printf("%6.2f \n", c):

If we use a field width bigger than 6, the numbers will still line up but with
leading spaces.

For example, if we use a field width of 8, we will get (¢ denotes a space)

©0419.56

000-8.70

00003.25

Again, we can use one printf instead of three to achieve the same effect:
printf("%6.2f \n%6.2f \n%6.2f \n", a, b, c);

Each \n forces the following output onto a new line.

2 There will be no point if d = 0 (the value is to be rounded to a whole number)

34

C — the basics

2.5.2 Assignment between double and float

As expected, you can store a float value in a float variable and a double value in
a double variable. Since float is smaller than double, C allows you to store a
float value in a double variable without any problems. However, if you assign a
double to a float, some precision may be lost. Consider the following:

double d = 987.654321;
float x = d;
printf("%f \n", x);

Since a float variable allows only about 7 digits of precision, we should expect
that the value of d may not be assigned precisely to x. Indeed, when run using one
compiler, the value 987.654297 was printed for x. When d was changed to
987654321.12345, the value printed was 987654336.000000. In both cases,
about 6 or 7 digits of precision were retained.

As an exercise, see what values would be printed on your compiler.

2.5.3 Floating-point expressions

Floating-point expressions can be written using the following operators:

+ addition

- subtraction

* multiplication
/ division

These operate as expected; in particular, division is performed in the usual way so
that, for example, 19.0/5.0 gives the value 3. 8.

If op1 and op2 are the two operands of an operator, the following shows the type
of calculation performed:

opl op2 type of calculation
float float float

float double double

double float double

double double double

Thus float is performed only if both operands are float; otherwise double is
performed.

35

C Programming — A Beginner’s Course

2.5.4 Expressions with integer and floating-point values

It is quite common to use expressions involving both integer and floating-point
values, for example,

a/3 whereais float
n*0.25 wherenisint

In C, the rule for such expressions is:

If either operand of an arithmetic operator is floating-point, the
calculation is done in floating-point arithmetic. The calculation is
done in float unless at least one operand is double, in which case
the calculation is done in double.

In the first example above, the integer 3 is converted to float and the calculation
is done in float. In the second example, n is converted to double (since 0.25 is
double) and the calculation is done in double.

How do we get the exact value of an integer division, 19/5, say? We can force a
double precision calculation by writing one or both constants as double, thus:
19/5.0,19.0/50r 19.0/5.0. We can also use a cast, as in

(double)19/5

A cast consists of a type name enclosed in brackets and allows us to force the
conversion of one type to another. Here, 19 is cast to double, forcing 5 to be
converted to double and a double precision division is performed.

However, we must be careful with a construct like
(double) (19 / 5)

since it may not do what we think. This does NOT do a floating-point division.
Since both constants are integer, the expression inside the brackets is evaluated as
an integer division, giving 3; this value is converted to double, giving 3. 0.

2.5.5 Assigning double/float to int

Consider:

double d = 987.654321;
int n=d;
printf("%d \n", n);

The value 987 is printed. When we assign a floating-point value to an int, the
fractional part, if any, is dropped (not rounded) and the resulting integer value is
assigned. It is up to us to ensure that the integer obtained is small enough to fit in
an int. If not, the resulting value is unpredictable.

36

C — the basics

On one compiler, where the largest value of an int was 32767, when d was
changed to 987654 .321, the value printed was 4614, a far cry from what might
be expected, certainly unpredictable’. This is because the truncated value of d is
987654 which is too big to fit in an int variable.

As an exercise, see what value would be printed on your compiler.

If we want the rounded value of d stored in n, we could do this with
n=d+0.5;

If the first digit after the point in d is 5 or more, adding 0.5 would add 1 to the
whole number part. If the first digit after the point is less than 5, adding 0.5
would not change the whole number part.

For example, if d is 245.75, adding 0.5 would give 246.25 and 246 would be
assigned to n. But if d were 245.49, adding 0.5 would give 245.99 and 245
would be assigned to n.

2.6 Strings

So far, we have seen several examples of string constants in printf statements.

A string constant is any sequence of characters enclosed in double quotes.
Examples are:

"Once upon a time"
"645-2001"

"Are you OK?"
"c:\data\castle.in"

The opening and closing quotes must appear on the same line. In other words, C
does not allow a string constant to continue on to another line. However, a long
string can be broken up into pieces, with each piece on one line. When the
program is compiled, C will join the pieces, making one string. For example,

printf("Part of a long string can be placed on one line and "
“the other part placed on the next line. The pieces are "
"separated by whitespace, not commas or semicolons.\n");

The value of a string constant is the sequence of characters without the beginning
and ending quotes. Thus, the value of "Are you OK?" is Are you OK?.

If you want the double quote to be part of a string, you must write it using the
escape sequence \", as in

"\"Don’t move!\"", he commanded"

3 Not quite unpredictable; the value assigned is 987654 %32768 which is 4614. In general, if
big represents a value that is too big to be stored, the value actually stored is big % 32768 for
integers stored in 16 bits.

37

C Programming — A Beginner’s Course

The value of this string is "Don’t move!", he commanded. Each \" is replaced
by " and the beginning and ending quotes are dropped.

The C language does not have a predefined string type. This presents difficulties
for the beginning programmer since he cannot work with string variables the way
he can with numeric variables.

In C, a string is stored in an “array of characters”. Since we discuss characters in
Chapter 6 and arrays in Chapter 8, we could be patient and wait until then to
understand what is an array, how strings are stored and how we can use them to
store a name, for instance. Or, we could accept a few things on faith and reap the
benefit of being able to work with strings, in a limited way, much sooner than we
normally would. We’ll be impatient and choose the latter. Here goes.

Suppose we wish to store a person’s name in some variable name. We can
declare name as follows:

char name[50];

This declares name to be a “character array” of size 50. As we will explain in
Chapter 8, this allows us to store a maximum of 49 characters in name. If you
find this is too much (or too little) for your purposes, you can use a different
number.

If we want to, we can assign a string constant to name in the declaration, thus:
char name[50] = "Alice Wonder";

This stores the characters from A to r, including the space, in name. The quotes

are not stored. Once this is done, we could print the value of name using the
specification %s in printf, thus:

printf("Hello, %s\n", name);
This will print
Hello, Alice Wonder
The value of name replaces %s.
Unfortunately, we cannot assign a string constant to name, other than in the
declaration. C does not permit us to write an assignment statement such as
name = "Alice in Wonderland"; // this is not valid

to assign a value to name. What we can do is use the standard function strcpy (for
string copy), as in:

strcpy(name, "Alice in Wonderland"); // this is valid

But in order to use strcpy (and other string functions), we must precede our
program with the directive:

#include <string.h>

We summarize all of this in Program P2.1 (next page).

38

C — the basics

Program P2.1

#include <stdio.h> //needed for printf
#include <string.h> // needed for strcpy
main() {

char name[50];

strcpy(name, "Alice in Wonderland");

printf("Hello, %s\n", name);

}

When run, this program will print

[Hello, Alice in Wonderland]

In Sections 3.3 (page 50) and 5.9 (page 106), we will see how to read a string
value into a variable.

Joining two strings is an operation we sometimes want to perform. We say we
want to concatenate the two strings. We can do this with the standard string
function strcat (string concatenation). For example, suppose we have:

char name[30] = "Alice";
char last[15] = "Wonderland";

The statement
strcat(name, last);

will add the string in last to the one in name. It is up to us to ensure that name is
big enough to hold the joined strings. The result is that name will now hold
AliceWonderland; the value in last does not change. The two statements

strcat(name, " in"); //one space before and after 'in’
strcat(name, last);

will set name to Alice in Wonderland.

2.7 The assignment statement

In Section 1.8, we introduced the assignment statement. Recall that an assignment
statement consists of a variable followed by an equals sign (=) followed by the

value to be assigned to the variable, followed by a semicolon. We could write this
as:
<variable> = <value>;

39

C Programming — A Beginner’s Course

<value> must be compatible with <variable> otherwise we will get an error. For
example, if <variable> is int, we must be able to derive an integer from <value>.
And if <variable> is double, we must be able to derive a floating-point value from
<value>. If n is int and x is double, we cannot, for instance, write

n = "Hi there"; //cannot assign string to int
x = "Be nice"; //cannot assign string to double

It is useful to think of the assignment statement being executed as follows: the
value on the right-hand side of = is evaluated. The value obtained is stored in the

variable on the left-hand side. The old value of the variable, if any, is lost. For
example, if score had the value 25, then after the statement

score = 84;

the value of score would be 84; the old value 25 is lost. We can picture this as:

score| 25 84

A variable can take on any of several values, but only one at a time. As another
example, consider

score = score + 5;

and suppose score has the value 84 before this statement is executed. What is the
value after execution?

First, the right-hand side score +5 is evaluated using the current value of score,
84. The calculation gives 89—this value is then stored in the variable on the left-
hand side; it happens to be score. The end result is that the value of score is
increased by 5 to 89. The old value 84 is lost.

It is possible that even though an assignment statement is valid, it could produce
an error when the program is run. Consider the following (a, b, ¢, d and e are int):

a=12;
b=5;
c=(a-b)*2;
d=c+e;

Each of these is a correctly formed assignment statement. However, when these
statements are executed, an error will result. Can you see how?

The first statement assigns 12 to a; the second assigns 5 to b; the third assigns 14
to ¢; no problem so far. However, when the computer attempts to execute the
fourth statement, it runs into a problem: there is no value for e, so the expression
¢ + e cannot be evaluated. We say that e is undefined—it has no value.

40

C — the basics

Before we can use any variable in an expression, it must have been assigned a
value by some previous statement. If not, we will get an “undefined variable”
error and our program will halt.

The moral of the story is: a valid program is not necessarily a correct program.
Exercise: What is printed by the following?

a=13;

b=a+12;

printf("%d %d\n", a, b);

c=a+b;

a=a+1l;

printf("a= %d b = %d c = %d\n", a, b, ¢);

2.8 printf

We have seen several examples of the printf statement. We have used it to print
string constants, integer values and floating-point values. And we have printed
values with and without field widths. We have also seen how to use the escape
sequence \n to force output onto a new line.

It is worth emphasizing that the characters in the format string are printed exactly
as they appear except that a format specification is replaced by its corresponding
value. For example, if a is 25 and b is 847, the statement

printf("%d%d\n", a, b):
will print
25847

The numbers are stuck together and we cannot tell what is a and what is b! This is
so because the specification %d%d says to print the numbers next to each other. If
we want them separated by one space, say, we must put a space between %d and
%d, like this:

printf("%d %d\n", a, b);
This will print
25 847

If we want more spaces between the numbers, we simply put how many we want
between %d and %d.

Exercise: What is printed by the following?
printf("%d\n %d\n", a, b);

41

C Programming — A Beginner’s Course

The following are some useful things to know about format specifications.
Suppose num is int and its value is 75:

* the specification %d will print 75 using 2 print columns: 75
* the specification %5d will print 75 with 3 leading spaces: ¢0675
* the specification %-5d will print 75 with 3 trailing spaces: 7500¢
* the specification %05d will print 75 with 3 leading zeroes: 00075
For an example in which leading 0’s might be useful, the statement
printf("Pay this amount: $%04d\n", num);
will print
Pay this amount: $0075
This is better than printing
Pay this amount: $ 75
since someone can insert numbers between $ and 7.

In general, the minus sign specifies left-justification and a O in front of the field
width specifies 0 (zero, rather than a space) as the padding character.

Exercises 2

1. Inthe ASCII character set, what is the range of codes for (a) the digits (b) the
uppercase letters and (c) the lowercase letters?

N

What is a token? Give examples.

98]

Spaces are normally not significant in a program. Give an example showing where
spaces are significant.

What is a reserved word? Give examples.
Give the rules for making up an identifier.
What is a symbolic constant and why is it useful?

Give examples of integer constants, floating-point constants and string constants.

-

© N v ok

Name 5 operators which can be used for writing integer expressions and give their
precedence in relation to each other.

9. Give the value of () 39 % 7 (b) 88 % 4 (c)100 % 11 (d) -25% 9
10. Give the value of (a)39/7 (b)88/4 (c)100/11 (d)-25/9

11. Write a statement which prints the value of the int variable sum, right justified in a
field width of 6.

12. You are required to print the values of the int variables b, j and n. Write a
statement which prints b with its rightmost digit in column 10, j with its rightmost
digit in column 20 and n with its rightmost digit in column 30.

13. Write statements which print the values of b, j and n lined up one below the other
with their rightmost digits in column 8.

14. Using scientific notation, write the number 345 .72 in 4 different ways.

42

C — the basics

15.

16.

17.
18.

19.

20.

21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.

32.

Write a statement which prints the value of the double variable total to 3 decimal
places, right justified in a field width of 9.

You need to print the values of the float variables a, b and c to 1 decimal place.
Write a statement which prints a with its rightmost digit in column 12, b with its
rightmost digit in column 20 and ¢ with its rightmost digit in column 32.

What kind of variable would you use to store a telephone number? Explain.

Write statements to print the values of 3 double variables a, b and ¢, to 2 decimal
places, The values must be printed one below the other, with their rightmost digits
in column 12.

How can you print the value of a double variable, rounded to the nearest whole
number?

What happens if you try to print a number (int, float or double) with a field width
and the field width is too small? What if the field width is too big?

Name some operators which can be used for writing floating-point expressions.
Describe what happens when we attempt to assign an int value to a float variable.
Describe what happens when we attempt to assign a float value to an int variable.
Write a statement to print Use \n to end a line of output.

Write a statement to increase the value of the int variable quantity by 10.

Write a statement to decrease the value of the int variable quantity by 5.

Write a statement to double the value of the int variable quantity.

Write a statement to set a to 2 times b plus 3 times c.

The double variable price holds the price of an item. Write a statement to increase
the price by (a) $12.50 (b) 25%.

What will happen when the computer attempts to execute the following:

p=7
q=3+p.
p=p+r

printf("%d\n", p);
Suppose rate = 15. What is printed by each of the following?
(a) printf("Maria earns rate dollars an hour\n");
(b) printf("Maria earns %d dollars an hour\n", rate);
Ifmis 3770 and n is 123, what is printed by each of the following?
(a) printf("%d%d\n", n, m);
(b) printf("%d\n%d\n", n, m);

43

3 Writing programs using sequence logic

In this chapter, we will explain:

e the idea of reading data supplied by a user
e how the scanf statement works

e how to read numeric data using scanf

e how to read string data using gets

e important principles of program writing using several examples

In the last chapter, we introduced some of C’s basic data types—int, double and
float—and used simple statements to illustrate their use. We now go a step further
and introduce several programming concepts by writing programs using these

types.

The programs in this chapter will be based on sequence logic—that simply means
that the statements in the programs are executed one after the other, from the first
to the last. This is the simplest kind of logic, also called straight-line logic. In the
next chapter we will write programs which use selection logic—the ability of a
program to test some condition and take different courses of action based on
whether the condition is true or false.

3.1 How to read data supplied by a user

Consider, again, Program P1.3 from page 19.

Program P1.3

// This program prints the sum of 14 and 25. It shows how
// to declare variables in C and assign values to them.
#include <stdio.h>
main() {

int a, b, sum;

a=14;

b=25;

sum=a+b;

printf("%d + %d = %d\n", a, b, sum);

44

Writing programs using sequence logic

Since C allows us to declare a variable and give it an initial value in one
statement, we could write the program more concisely (without the comment) as
Program P3.1:

Program P3.1
#include <stdio.h>

main() {
int a = 14;
int b = 25;

int sum = a + b;
printf("%d + %d = %d\n", a, b, sum);
}

And since, as discussed on page 20, we do not really need the variable sum, this
program can be written as Program P3.2:

Program P3.2

#include <stdio.h>
main() {

int a = 14;

int b = 25;

printf("%d + %d = %d\n", a, b, a + b);
}

This program is very restrictive. If we wish to add two other numbers, we will
have to change the numbers 14 and 25 in the program to the ones required. We
would then have to re-compile the program. And each time we want to add two
different numbers, we would have to change the program. This can become very
tedious.

It would be nice if we could write the program in such a way that when we run
the program, we will have the opportunity to tell the program which numbers we
wish to add. In this way, the numbers would not be tied to the program, and the
program would be more flexible. When we ‘tell” the program the numbers, we say
we are supplying data to the program. But how do we get the program to ‘ask’ us
for the numbers and how do we ‘tell’ the program what the numbers are?

We can get the program to prompt us for a number by printing a message such as:
Enter first number:
using a printf statement. The program must then wait for us to type the number

and, when it is typed, read it. This can be done with the scanf statement'. Before
we look at this statement, let us rewrite the algorithm using these new ideas:

! Strictly speaking, printf and scanf are functions, but the distinction is not too important for us

45

C Programming — A Beginner’s Course

prompt for the first number
read the number

prompt for the second number
read the number

find the sum

print the sum

We can implement this algorithm in C as Program P3.3.

Program P3.3

//prompt for two numbers and find their sum
#include <stdio.h>
main() {
int a, b;
printf("Enter first number: ");
scanf("%d", &a);
printf("Enter second number: ");
scanf("%d", &b);
printf("%d + %d = %d\n", a, b, a + b);

When run, the first printf statement will print:
Enter first number:

The scanf statement, explained shortly, will cause the computer to wait for the
user to type a number.

Suppose she types 23; the screen will look like this:

[Enter first number: 23]

When she presses the “Enter” or “Return” key on the keyboard, scanf reads the
number and stores it in the variable a.

The next printf statement then prompts:
Enter second number:
Again, scanf causes the computer to wait for the user to enter a number. Suppose

she enters 18; scanf reads the number and stores it in the variable b. At this stage,
the number 23 is stored in a and 18 is stored in b. We can picture this as:

a| 23 b| 18

The program then executes the last printf statement and prints:
23 + 18 = 41

46

Writing programs using sequence logic

At the end, the screen will look as follows. Underlined items are typed by the
user, everything else is printed by the computer:

Enter first number: 23
Enter second number: 18
23 + 18 = 41

Since the user is free to enter any numbers, the program will work for whatever
numbers are entered”.

3.2 scanf

In Program P3.3, the statement
scanf("%d", &a);

causes the computer to wait for the user to type a number. Since a is an integer
variable, scanf expects the next item in the data to be an integer. If it is not (for
example, if it is a letter or it contains a decimal point) the program will give an
error message such as “Invalid numeric format” and stop. We say the program
will crash. If the data is valid, the number will be stored in the variable a. The
statement scanf("%d", &b); works in a similar manner.

The statement consists of:

* the word scanf

* left and right brackets

» two items (called arguments) inside the brackets, separated by a comma

As with printf, the first item is a string called the format string. In this example,

the string consists of the format specification %d only. It specifies the type of data
to be read. Here, %d is used to indicate that an integer value is to be read.

The second argument specifies where to store the value read. Even though we
want the value stored in a, scanf requires us to specify this by writing &a’. You
will need to take it on faith that in order to read a value into a variable using
scanf, the variable must be preceded by &, as in &a and &b. Note that this applies
only to the scanf statement. Other than this, the variable is used in its normal form
(without &) as in:

printf("%d + %d = %d\n", a, b, a + b);

We can use scanf to read more than one value at a time. For example, suppose we
want to read 3 integer values for variables a, b and ¢. To do so, we would need to

? Provided the numbers entered and their sum are within the range of numbers which can be
stored in an int variable. If they are not, strange results will be printed.

3 The quick explanation is that we must tell scanf the address of the memory location where the
value is to be stored; &a stands for “address of a”.

47

C Programming — A Beginner’s Course

write %d three times in the format specification, thus:
scanf("%d %d %d", &a, &b, &c):

When this statement is executed, it will look for three integers. The first one is
stored in a, the second in b and the third in c. It is up to the user to ensure that the
next three items in the data are integers. If this is not so, an “Invalid numeric
format” message will be printed and the program will crash.

When entering the data, the numbers must be separated by one or more spaces,
like this:

42 -7 18

When using scanf, data can be supplied in flexible ways. The only requirement is
that the data be supplied in the correct order. In this example, the three numbers
could be supplied as above or as

42
-7
18

or as
42 -7
18

or even with a blank line as
42
-7 18

Spaces, tabs and blank lines (so-called whitespace) do not matter; scanf will
simply keep reading data, ignoring spaces, tabs and blank lines, until it finds the
three integers. Again, we emphasize that if any invalid character is encountered,
the program will crash. For instance, if the user types

42 -7 18.0
or
42 = 18 24

the program will crash. In the first case, the decimal point is invalid since an
integer is expected and, in the second case, = is not a valid character for an

integer.

3.2.1 Reading data into a float variable

If we wish to read a floating-point number into a float variable x, we can use
scanf("%f", &x);

The specification %f is used to read a value into a float (but not double, see next)

48

Writing programs using sequence logic

variable. When executed, scanf expects to find a valid floating-point constant in
the data. For example, any of the following will be acceptable:
4.265

-707.96
2.345E+1

In the last case, there must be no spaces, for instance, between the 5 and the E or
between the E and the + or between the + and the 1. The following will all be
invalid for reading the number 23.45:

2.345 E+1

2.345E +1
2.345E+ 1

3.2.2 Reading data into a double variable

If we wish to read a floating-point number into a double variable y, we can use
scanf("%If", &y);

The specification %lIf (percent ell f) is used to read a value into a double variable.
Apart from the specification, data is entered the same way for float and double
variables. Be careful—you cannot use %f for reading data into a double variable.
If you do, your variable will contain nonsense. However, as you have seen, you
can use %f for printing the value of a double variable.

When entering data for a float/double variable, an integer is acceptable. If you
enter 42, say, it will be interpreted as 42 .0. But, as discussed above, you cannot
enter a floating-point constant for an int variable; if you do, your program will
crash or give you incorrect results.

If you need to, you can read values into more than one variable using one scanf
statement. If x and y are double variables, you can use

scanf("%If %If", &x, &y):

to read values into x and y. When executed, scanf expects to find two valid
floating-point (or integer) constants next in the data. The first is stored in x and
the second in y. Any number of spaces or blank lines can come before, between or
after the numbers.

We can also read values for int, double or float variables in the same scanf
statement. We just have to ensure that we use the correct specification for each
variable. Suppose item and quantity are int, and price is double. The statement

scanf("%d %lf %d", &item, &price, &quantity);
expects to find 3 numbers next in the data.

e The first must be an int constant which will be stored in item.

49

C Programming — A Beginner’s Course

* The second must be a double (or int) constant which will be stored in price.
e The third must be an int constant which will be stored in quantity.

The following are all valid data for this scanf statement:

4000 7.99 8

3575 10 44 price will be interpreted as 10.00
5600 25.0 1

As usual, any amount of whitespace may be used to separate the numbers.

The following are all invalid data for this scanf statement:

4000 7.99 8.5 8.5 is not an integer constant
35.75 10 44 35.75 is not an integer constant
560 25 amt = 7 a is not a valid numeric character

When scanf fetches a number, it remains poised just after the number; a
subsequent scanf will continue to read data from that point. To illustrate, suppose
some data is typed as

4000 7.99 8

and consider the statements

scanf("%d", &item);
scanf("%If", &price);
scanf("%d", &quantity);

The first scanf will store 4000 in item. On completion, it remains poised at the
space after 4000. The next scanf will continue reading from that point and will
store 7.99 in price. This scanf will stop at the space after 7.99. The third scanf
will continue reading from that point and store 8 in quantity. This scanf will stop
at the character after 8; this may be a space or the end-of-line character. Any
subsequent scanf will continue reading from that point.

It is useful to imagine a “data pointer” moving through the data as data items are
read. At any time, it marks the position in the data from which the next scanf will
start looking for the next item of data.

3.3 Reading strings

In Section 2.6 (page 37), we saw how to declare a variable to hold a string value.
For example, the declaration
char item[50];

lets us store a string value (of maximum length 49) in item. We also saw how we
can assign a string value to item using the standard string function, strcpy.

50

Writing programs using sequence logic

Now we show you how to read a value from the input into item. There are several
ways to do this in C. We will use the gets* statement (more precisely, a function),
as in:

gets(item);
This reads characters and stores them in item starting from the current position of

the data pointer until the end-of-line is reached. The end-of-line character is not
stored. The data pointer is positioned at the beginning of the next line.

For example, if the data line is
Right front headlamp

then the string Right front headlamp is stored in item. The effect is the same as if
we had written

strcpy(item, "Right front headlamp");

The alert reader will notice that we did not put an & before item, as we have been

doing for reading numbers with scanf. For now, just note that item is a “character
array” and the rule in C is that we must not put & before an array name when

reading data into it. You may understand this better after we discuss arrays in
Chapter 8. If not, just think of it as a rule that you need to follow.

Consider the following statements (assume the declaration char name[50]):

printf("Hi, what's your name? ");
gets(name);
printf("Delighted to meet you, %s\n", name);

When executed,

* the printf statement will ask for your name

* gets will wait for you to type your name. When typed, the name will be stored
in the variable name

* printf will then print a greeting using your name

Your computer screen will look as follows (assuming Birdie is typed as the
name):

Hi, what’s your name? Birdie
Delighted to meet you, Birdie

* Usually pronounced “get s”, not “gets”
> The quick explanation is that an array name denotes the “address of the first element of the
array” so there is no need for & to get the address.

51

C Programming — A Beginner’s Course

3.4 Examples

We now write programs to solve a few problems. You should try solving the
problems before looking at the solutions. In the sample runs, the underlined items
are typed by the user; everything else is printed by the computer.

Problem 1

Write a program to request 3 integers and print their average to 1 decimal place.
The program should work as follows:

Enter 3 integers: 23 7 10

Their average is 13.3

A solution is shown as Program P3.4.

Program P3.4

//request 3 integers; print their average
#include <stdio.h>
main() {

inta,b,c:

double average;

printf("Enter 3 integers: ");

scanf("%d %d %d", &a, &b, &c);

average = (a+b +c)/ 3.0;

printf("\nTheir average is %3.1f\n", average);

Points to note about Program P3.4:

52

The variable average is declared as double since the average may not be a
whole number.

If whole numbers are not entered in the data, the program will crash or, at least,
give incorrect results.

We use 3.0 instead of 3 in calculating the average. This forces a floating-point
division to be performed. If we had used 3, an integer division would be
performed, giving 13.0 as the answer for the sample data, above.

In the last printf, the first \n is used to print the blank line in the output.
We could have declared average and assigned to it in one statement, thus:
double average = (a+b +c)/ 3.0;

The variable average is not really necessary in this program. We could
calculate and print the average in the printf statement with

printf("\nTheir average is %3.1f\n", (a + b + ¢) / 3.0);

Writing programs using sequence logic

Problem 2

Write a program to request a whole number and print the number and its square.
The program should work as follows:

Enter a whole number: 6

Square of 6 is 36

A solution is shown as Program P3.5.

Program P3.5

//request a whole number; print its square
#include <stdio.h>
main() {

int num, numSq;

printf("Enter a whole number: ");

scanf("%d", &num);

numsSq = num * num;

printf("\nSquare of %d is %d\n", num, numSq);

Points to note about Program P3.5:

* To make the output readable, note the space after f and the spaces around is. If

these spaces are omitted, the sample output will be
Square of6is36

» The variable numSq is not really necessary. It can be omitted altogether and
the same output printed with

printf("\nSquare of %d is %d\n", num, num * num);

* The program assumes an integer will be entered; if anything other than an

integer is entered, the program will crash or give incorrect results. To cater for

numbers with a point, declare num (and numSgq, if used) as double.

53

C Programming — A Beginner’s Course

Problem 3

The following data are given for a customer in a bank: name, account number,
average balance and number of transactions made during the month. It is required
to calculate the interest earned and service charge.
The interest is calculated by

interest = 6% of average balance
and the service charge is calculated by

service charge = 50 cents per transaction

Write a program to read the data for the customer, calculate the interest and
service charge, and print the customer’s name, average balance, interest and
service charge.

The following is a sample run of the program:

/Name? Alice Wonder \

Account number? 4901119250056048
Average balance? 2500
Number of transactions? 13

Name: Alice Wonder
Average balance: $2500.00
Interest: $150.00

kService charge: $6.50 /

A solution is shown as Program P3.6 (next page).

This problem is more complicated than those we have seen so far. It involves
more data and more processing. But we can simplify its solution if we tackle it in
small steps.

Firstly, let us outline an algorithm for solving the problem. This can be:

prompt for and read each item of data
calculate interest earned

calculate service charge

print required output

The logic here is fairly straightforward and a little thought should convince us that
these are the steps required to solve the problem.

Next, we must choose variables for the data items we need to store.

 For the customer’s name, we need a string variable—we call it customer.

* We may be tempted to use an integer variable for the account number but this
is not a good idea for two reasons: an account number may contain letters (as
in CD55887700) or it may be a very long integer, too big to fit in an int
variable. For these reasons, we use a string variable which we call acctNum.

54

Writing programs using sequence logic

Program P3.6

//calculate interest and service charge for bank customer
#include <stdio.h>
main() {

char customer[30], acctNum[30];

double avgBalance, interest, service;

int numTrans;

printf("Name? ");

gets(customer);

printf("Account number? ");
gets(acctNum);

printf("Average balance? ");
scanf("%If", &avgBalance);
printf("Number of transactions? ");
scanf("%d", &numTrans);

interest = avgBalance * 0.06;
service = numTrans * 0.50;

printf("\nName: %s\n", customer);
printf("Average balance: $%3.2f\n", avgBalance);
printf("Interest: $%3.2f\n", interest);
printf("Service charge: $%3.2f\n", service);

» The average balance may contain a decimal point and must be stored in a
double variable; we call it avgBalance.

e The number of transactions is a whole number so we use an int variable,
numTrans.

Next, we need variables to store the interest and service charge. Since these may
contain a decimal point, we must use double variables—we call them interest and
service.

Prompting for and reading the data are fairly straightforward, given what we have
covered so far. We need only emphasize that when numeric data is being entered,
it must be a numeric constant. We cannot, for instance, enter the average balance
as $2500 or as 2, 500. We must enter it as 2500 or 2500.0 or 2500.00.

The calculation of the interest and service charge presents the biggest challenge.
We must specify the calculation in a form which the computer can understand and
execute.

We cannot, for instance, write
interest = 6% of avgBalance;

or €ven

55

C Programming — A Beginner’s Course

interest = 6% * avgBalance;
or
service = 50 cents per transaction;

We must express each right-hand side as a proper arithmetic expression, using
appropriate constants, variables and operators. Hence,

“6% of average balance” must be expressed as avgBalance * 0.06 or
0.06 * avgBalance and

“50 cents per transaction” must be expressed as 0.50 * numTrans or
numTrans * 0.5 or something similar, even numTrans / 2.0.

Printing the output is fairly straightforward. Even though, for example, we cannot
use $ when entering data for average balance, we can print a dollar sign in front
of it when we print its value. All we need to do is print $ as part of a string. How
this is done is shown in the program. Similarly, we print the interest and service
charge labelled with a dollar sign.

We use the specification %3 . 2T for printing avgBalance. We intentionally use a
small field width of 3 so that avgBalance is printed using only the exact number
of print columns needed for printing its value. This ensures that its value is

printed right next to the dollar sign. Similar remarks apply to interest and service.

Problem 4

At a football match, tickets are sold in 3 categories: reserved, stands and grounds.
For each of these categories, you are given the ticket price and the number of
tickets sold. Write a program to prompt for these values and print the amount of
money collected from each category of tickets. Also print the total number of
tickets sold and the total amount of money collected.

We will write the program to operate as follows when run:

///%eserved price and tickets sold? 100 500‘\\
Stands price and tickets sold? 75 4000
Grounds price and tickets sold? 40 8000

Reserved sales: $50000.00
Stands sales: $300000.00
Grounds sales: $320000.00

12500 tickets were sold
\\;Tota] money collected: $670000.00 4//

As shown, we prompt for and read two values at a time, the price and the number
of tickets sold.

For each category, the sales is calculated by multiplying the ticket price by the
number of tickets sold.

56

Writing programs using sequence logic

The total number of tickets sold is calculated by adding the number of tickets sold
for each category.

The total money collected is calculated by adding the sales for each category.
An outline of the algorithm for solving the problem is:

prompt for and read reserved price and tickets sold
calculate reserved sales

prompt for and read stands price and tickets sold
calculate stands sales

prompt for and read grounds price and tickets sold
calculate grounds sales

calculate total tickets

calculate total sales

print required output

A solution is shown as Program P3.7. The price can be entered as an integer or
double constant; the number of tickets must be entered as an integer constant.

Program P3.7

//calculate ticket sales for football match
#include <stdio.h>
main() {

double rPrice, sPrice, gPrice;

double rSales, sSales, gSales, tSales;

int rTickets, sTickets, gTickets, tTickets;

printf("Reserved price and tickets sold? ");
scanf("%If %d", &rPrice, &rTickets);
rSales = rPrice * rTickets;

printf("Stands price and tickets sold? ");
scanf("%If %d", &sPrice, &sTickets);
sSales = sPrice * sTickets;

printf("Grounds price and tickets sold? ");
scanf("%If %d", &gPrice, &gTickets);
gSales = gPrice * gTickets;

tTickets = rTickets + sTickets + gTickets;
tSales = rSales + sSales + gSales;

printf("\nReserved sales: $%3.2f\n", rSales);
printf("Stands sales: $%3.2f\n", sSales);
printf("Grounds sales: $%3.2f\n", gSales);
printf("\n%d tickets were sold\n", tTickets);
printf("Total money collected: $%3.2f\n", tSales);

57

C Programming — A Beginner’s Course

Exercises 3

1.

10.

58

For each of the following, give examples of data which will be read correctly and
examples of data which will cause the program to crash: (assume the declarations
int i, j ; double x, y;)
(a) scanf("%d %d", &i, &j);
(b) scanf("%If %If", &x, &y);
(c) scanf("%d %If %d", &i, &x, &j):
For 1(c), state what will be stored in i, x and j for each of the following sets of data:
(a) 14 11 52

(b) -7 2.3 52
() 0 6.1 7.0
(d 1.0 8 -1

Write a program which requests a user to enter a weight in kilograms, and converts
it to pounds. (1 kilogram = 2.2 pounds).

Write a program which requests a length in centimetres and converts it to inches.
(1 inch =2.54 cm).

Assuming that 12 and 5 are entered as data, identify the logic error in the
following statements (a, b, ¢, d and e are int):

scanf("%d %d", &a, &b):

c=(a-b)*2;
d=e+aq;
e=a/(b+1),

printf("%d %d %d\n", c, d, e);

When the error is corrected, what is printed?
What is printed by the following (a, b, and c are int)?

a=13;

b=a+12;

printf("%d %d\n", a, b);
c=a+b;

a=a-+1l;

printf("%d %d %d\n", a, b, c);
Write a program which requests a price and a discount percent. The program prints
the original price, the discount amount and the amount the customer must pay.
Same as 7, but assume that 15% tax must be added on to the amount the customer
must pay.
Write a program to calculate electricity charges for a customer. The program
requests a name, previous meter reading and current meter reading. The difference
in the two readings gives the number of units of electricity used. The customer
pays a fixed charge of $25 plus 20 cents for each unit used.

Print all the data, the number of units used and the amount the customer must pay,
appropriately labelled.

Modify 9 so that the program requests the fixed charge and the rate per unit.

Writing programs using sequence logic

11.

12.

13.

14.

15.

16.

Write a program to request a student’s name and marks in 4 subjects. The program
must print the name, total marks and average mark, appropriately labelled.

Write a program which requests a person’s gross salary, deductions allowed and
rate of tax (e.g. 25, meaning 25%) and calculates his net pay as follows:

tax is calculated by applying the rate of tax to the gross salary minus the
deductions;

net pay is calculated by gross salary minus tax.

Print the gross salary, tax deducted and net pay, appropriately labelled.
Also print the percentage of the gross salary that was paid in tax.
Make up appropriate sets of data for testing the program.

Write a program which, when run, works as follows:

Hi, what’s your name? Alice

Welcome to our show, Alice

How old are you? 27

Hmm, you don’t look a day over 22

Tell me, Alice, where do you live? Princes Town
Oh, I've heard Princes Town is a lovely place

A ball is thrown vertically upwards with an initial speed of U metres per second. Its
height H after time T seconds is given by

H=UT-49T?

Write a program which requests U and T and prints the height of the ball after T
seconds.

Write a program to calculate the cost of carpeting a rectangular room in a house.
The program must

 request the length and breadth of the room (assume they are in metres)
* request the cost per square metre of the carpet

« calculate the area of the room

* calculate the cost of the carpet for the room

* print the area and the cost, appropriately labelled

Write a program which, given a length in inches, converts it to yards, feet and
inches. (1 yard = 3 feet, 1 foot = 12 inches). For example, given 100 inches, the
program should print 2 yd 2 ft 4 in.

59

4 Writing programs using selection logic

In this chapter, we will explain:

e what are Boolean expressions

e how C represents Boolean values

e how to write programs using if

e how to write programs using if...else

e where semicolons are required, where they are optional and where they must
not be put

e how a program should be tested

e why symbolic constants are useful and how to use them in a C program

In the last chapter, we showed how to write programs using sequence logic—
programs whose statements are executed “in sequence” from the first to the last.

In this chapter, the programs will use selection logic—they will test some
condition and take different courses of action based on whether the condition is
true or false. In C, selection logic is implemented using the if and the if...else
statements.

4.1 Boolean expressions

A Boolean expression' is one that is either true or false. The simplest kinds of
Boolean expressions are those that compare one value with another. Examples are

Jj is equal to 999

a is greater than 100

a® + b? is equal to c?

b? is greater than or equal to 4ac
s is not equal to O

Each of these can be either true or false. These are examples of a special kind of
Boolean expression called relational expressions. Such expressions simply check
if one value is equal to, not equal to, greater than, greater than or equal to, less
than and less than or equal to another value. We write them using relational
operators.

' Named after the famous English mathematician George Boole

60

Writing programs using selection logic

The C relational operators (with examples) are:

== equal to j == 999, a*a + b*b == c*c
= notequal to sl=0,al=b+c
> greater than a>100
>= greater than or equal to b*b >= 4.0*a *c
less than n<o
<= less than or equal to score <= 65

Boolean expressions are normally used to control the flow of program execution.
For example, we may have a variable (j, say) which starts off with a value of 0.
We keep increasing it by 1 and we want to know when its value reaches 100. We
say we wish to know when the condition j==100 is true. A condition is the
common name for a Boolean expression.

The real power of programming lies in the ability of a program to test a condition
and decide whether it is true or false. If it is true, the program can perform one set
of actions and if it is false, it can perform another set, or simply do nothing at all.

For example, suppose the variable score holds the score obtained by a student in a
test, and the student passes if her score is 50 or more and fails if it is less than 50.
A program can be written to fest the condition

score >= 50

If it is true, the student passes; if it is false, the student fails. In C, this can be
written as:

if (score >= 50) printf("Pass\n");
else printf("Fail\n");

When the computer gets to this statement, it compares the current value of score
with 50. If the value is greater than or equal to 50, we say that the condition
score >= 50 is true. In this case the program prints Pass. If the value of score is
less than 50, we say that the condition score >=50 is false. In this case, the
program prints Fail.

In this chapter, we will see how Boolean expressions are used in if and if...else
statements and, in the next chapter, we will see how they are used in while
statements.

With the relational operators, we can create simple conditions. But sometimes, we
need to ask if one thing is true AND another thing is true. We may also need to
know if one of two things is true. For these situations, we need compound
conditions. To create compound conditions, we use the logical operators AND,
OR and NOT.

For example, suppose we want to know if the value of h lies between 1 and 99,
inclusive. We want to know if h is greater than or equal to 1 AND if h is less than
or equal to 99. In C, we express this as:

61

C Programming — A Beginner’s Course

(h>=1) && (h <= 99)
In C, the symbol for AND is &&.
Note the following:

* the variable h must be repeated in both conditions. It is tempting, but wrong, to
write

h>=14&&<=99 //this is wrong

» The brackets around h >=1and h <= 99 are not required, but it is not wrong to
put them. This is so since && (and | |, see next) have lower precedence than

the relational operators. Without the brackets,
h>=18& h<«=99

would be interpreted by C as
(h >=1) && (h <= 99)

the same as with the brackets.

If n is an integer representing a month of the year, we can check if n is invalid by
testing if n is less than 1 OR n is greater than 12. In C, we express this as:

(n<1) | (n>12)

In C, the symbol for OR is ||. As discussed above, the brackets are not required
and we could write the expression as

n<l]|n>12
This tests if n is invalid. Of course, we can test if n is valid by testing if
n>14&&n<=12

Which test we use depends on how we wish to express our logic. Sometimes it’s
convenient to use the valid test, sometimes the invalid one.

If p is some Boolean expression, then NOT p reverses the truth value of p. In
others words, if p is true then NOT p is false; if p is false, NOT p is true. In C, the
symbol for NOT is the exclamation mark, !. Using the above example, since

n>1&&n<=12

tests for valid n, the condition NOT (n >=1 && n <= 12) tests for invalid n. This is
written in C as

I'(n>=1&&n<=12)

This is equivalent ton<1]l n>12.

62

Writing programs using selection logic

In general, if p and g are Boolean expressions, then:

* p && q is true when both p and g are true and false, otherwise;

* p Il gis true when either p or q is true and false only when both p and q are
false;

e Ip is true when p is false and false when p is true.

Most of the programs in this book will use simple conditions. A few will use
compound conditions.

Important note

The original C standard and the later ANSI C standard did not define a Boolean
data type. Traditionally, C has used the concept of the value of an expression to
denote true/false. A numeric expression can be used in any context where a
true/false value is required. The expression is considered true if its value is non-
zero and false if its value is O.

The latest C99 standard defines the type bool. However, in this book, we will use
the traditional approach mainly because most of the easily available C compilers
do not support the C99 standard. Also, as we will see, we can easily live without
bool. The vast majority of our Boolean expressions would be relational
expressions used in if and while statements. If we ever need a ‘Boolean’ variable,
we can use an int variable with 1 representing true and 0 representing false.

4.2 The if construct

Let us write a program for the following problem:

A computer repair shop charges $100 per hour for labour plus the cost of
any parts used in the repair. However, the minimum charge for any job is
$150. Prompt for the number of hours worked and the cost of parts (which
could be $0) and print the charge for the job.

We will write the program assuming it works as follows:

Hours worked? 2.

5
Cost of parts? 20
Charge for the job: $270.00

or

Hours worked? 1
Cost of parts? 25

Charge for the job: $150.00

63

C Programming — A Beginner’s Course

The following algorithm describes the steps required to solve the problem:

prompt for and read the hours worked

prompt for and read the cost of parts

calculate charge = hours worked * 100 + cost of parts
if charge is less than 150 then set charge to 150
print charge

This is another example of an algorithm written in pseudocode—an informal way
of specifying programming logic.

The algorithm introduces a new statement—the if statement. The expression
charge is less than 150 is an example of a condition. If the condition is true, the
statement after then (called the then part) is executed,; if it is false, the statement
after then is not executed.

Program P4.1 shows how to express this algorithm as a C program.

Program P4.1

//print job charge based on hours worked and cost of parts
#include <stdio.h>
main() {
double hours, parts, jobCharge;
printf("Hours worked? ");
scanf("%If", &hours);
printf("Cost of parts? ");
scanf("%If", &parts);
jobCharge = hours * 100 + parts;
if (jobCharge < 150) jobCharge = 150;
printf("\nCharge for the job: $%3.2f\n", jobCharge);

For this program, we choose to use 3 variables—hours, parts and jobCharge, all
of type double since we may need to enter floating-point values for hours worked
and cost of parts.

It is very important that you make an extra effort to understand the if statement
since it is one of the most important statements in programming. It is the if
statement that can make a program appear to think.

The condition charge is less than 150 of the pseudocode algorithm is expressed in
our program as jobCharge < 150. When the program is executed, the job charge is
calculated in the normal way (hours * 100 + parts). The if statement then tests if
this value, jobCharge, is less than 150; if it is, then jobCharge is set to 150. If it
1s not less than 150, jobCharge remains as it is. The statement

if (jobCharge < 150) jobCharge = 150;

64

Writing programs using selection logic

is a simple example of the if construct. Observe that the word then is not used in
C. In general, the construct takes the following form in C:

if (<condition>) <statement>

The word if and the brackets around <condition> are required by C. You
must supply <condition> and <statement> where <condition> is a Boolean
expression and <statement> can be either a one-line statement or a block”.
If <condition> is true, <statement> is executed; if <condition> is false,
<statement> is not executed. In either case, the program continues with the
statement, if any, after <statement>.

In the program, <condition> is jobCharge<150 and <statement> is
jobCharge = 150;.

To give an example where <statement> is a block, suppose we want to exchange
the values of two variables a and b but only if a is bigger than b. This can be
done with (using as an example a =15, b = 8):

if (a>b)

{
c=a; //storeainatemporary variable c; c becomes 15
a=b; //storeb ina; a becomes 8
b=c; //storec, the old value of a, in b; b becomes 15

}

Here, <statement> is the part from { to }, a block containing 3 assignment
statements. If a is greater than b, the block is executed (and the values are
exchanged); if a is not greater than b, the block is not executed (and the values
remain as they are). In passing, be aware that exchanging the values of two
variables requires three assignment statements; it cannot be done with two. If you
are not convinced, try it.

In general, if there are several things that we want to do if a condition is true, we
must enclose them within { and } to create a block. This will ensure that we satisfy
C’s rule that <statement> is a single statement or a block.

It is good programming practice to indent the statements in the block. This makes
it easy to see at a glance which statements are in the block. If we had written the
above as

if (a>b)

{

c=a; //storeaina temporary variable c; c becomes 15

a=b; //storeb ina; a becomes 8

b=c; //storec, the old value of a, in b; b becomes 15

}

? One or more statements enclosed by { and }

65

C Programming — A Beginner’s Course

the structure of the block is not so easy to see.
When we are writing pseudocode, we normally use the following format:

if <condition> then
<statementl>
<statement2>
etc.

endif

The construct is terminated with endif, a convention used by many programmers.
Note, again, that we indent the statements to be executed if <condition> is true. We
emphasize that endif is not a C word but merely a convenient word used by
programmers in writing pseudocode.

The example illustrates one style of writing a block in an if statement. This style
matches { and } as follows:

if (<condition»)
{
<statementl>;
<statement2>;
etc.

}

Here, { and } line up with if and the statements are indented. This makes it easy to
recognize what’s in the body. For a small program, it probably doesn’t matter, but
as program size increases, it will become more important for the layout of the
code to reflect its structure. In this book, we will use the following style’:

if (<condition>) {

<statementl>;

<statement2>;
etc.

}

We will put { on the first line after the right bracket and let } match up with if; the
statements in the block are indented. We believe this is as clear as the first style
and it’s one less line in the program! Which style you use is a matter of personal
preference; choose one and use it consistently.

3 As you would know by now, the compiler doesn’t care which style is used.

66

Writing programs using selection logic

Example - finding the sum of two lengths

Suppose that a length is given in metres and centimetres, for example, 3m 75cm.
You are given two pairs of integers representing two lengths. Write a program to
prompt for two lengths and print their sum such that the centimetre value is less
than 100.

For example, the sum of 3m 25cm and 2m 15cm is 5m 40cm, but the sum of
3m 75cm and 5m 50cm is 9m 25cm.

Assume the program works as follows:

Enter values for m and cm: 3 75
Enter values for m and cm: 5 50

Sum is 9m 25cm

Observe that the data must be entered with digits only. If, for instance, we type
3m 75cm we will get an error since 3m is not a valid integer constant. Our program
will assume that the first number entered is the metre value and the second
number is the centimetre value.

We find the sum by adding the two metre values and adding the two centimetre
values. If the centimetre value is less than 100, there is nothing more to do. But if
it is not, we must subtract 100 from it and add 1 to the metre value. This logic is
expressed by

m = sum of metre values
cm = sum of centimetre values
if cm >= 100 then
subtract 100 from cm
addltom
endif

As a ‘boundary’ case, we must check that our program works if cm is exactly
100. As an exercise, verify that it does.

Program P4.2 (next page) solves the problem as described.

We use the variables m1 and ecm1 for the first length, m2 and em2 for the second
length, and mSum and cmSum for the sum of the two lengths.

The program assumes that the centimetre part of the given lengths is less than 100
and it works correctly if this is so. But what if the lengths were 3m 150cm and
2m 200cm?

The program will print 6m 250cm. (As an exercise, follow the logic of the
program to see why.) While this is correct, it is not in the correct format since we
require the centimetre value to be less than 100. We can modify our program to
work in these cases as well by using integer division and % (remainder operator).

67

C Programming — A Beginner’s Course

Program P4.2

//find the sum of two lengths given in metres and cm
#include <stdio.h>
main() {

int m1, cml, m2, cm2, mSum, cmSum;

printf("Enter values for m and cm: ");

scanf("%d %d", &m1l, &cml);

printf("Enter values for m and cm: ");

scanf("%d %d", &m2, &cm2);

mSum = ml + m2; //add the metres
cmSum = cml + cm2; //add the centimetres
if (cmSum >= 100) {
cmSum = cmSum - 100;
mSum = mSum + 1;
}
printf("\nSum is %dm %dcm\n", mSum, cmSum);

}

The following pseudocode shows how:

m = sum of metre values
cm = sum of centimetre values
if cm >= 100 then
add cm / 100 to m
set cm to cm % 100
endif

Using the above example, m is set to 5 and cm is set to 350. Since ¢cm is greater
than 100, we work out 350 / 100" which is 3, using integer division; this is added
to m, giving 8. The next line sets cm to 350 % 100 which is 50. So the answer we
get is 8m 50cm, which is correct and in the correct format.

Note that the statements in the ‘then part’ must be written in the order shown. We
must use the (original) value of cm to work out em /100 before changing it in the
next statement to ¢m % 100. As an exercise, work out what value will be
computed for the sum if these statements are reversed. (The answer will be 5m
50cm, which is wrong. Can you see why?)

These changes are reflected in Program P4.3 (next page).

* Essentially, this finds how many 100’s there are in cm

68

Writing programs using selection logic

Program P4.3

//find the sum of two lengths given in metres and cm
#include <stdio.h>
main() {

int m1, cml, m2, cm2, mSum, cmSum;

printf("Enter values for m and cm: ");

scanf("%d %d", &m1l, &cml);

printf("Enter values for m and cm: ");

scanf("%d %d", &m2, &cm2);

mSum = ml + m2; //add the metres
cmSum = cml + cm2; //add the centimetres
if (cmSum >= 100) {
mSum = mSum + cmSum / 100;
cmSum = cmSum % 100;
}
printf("\nSum is %dm %dcm\n", mSum, cmSum);

}

The following is a sample run of this program:

Enter values for m and cm: 3 150
Enter values for m and cm: 2 200

Sum is 8m 50cm

The astute reader may recognize that we do not even need the if statement.
Consider:

mSum = ml + m2; //add the metres
cmSum = cml + cm2; //add the centimetres
mSum = mSum + cmSum / 100;

cmSum = cmSum % 100;

where the last two statements come from the if statement.

We know therefore that this will work if emSum is greater than or equal to 100
since, when that is the case, these four statements are executed.

What if emSum is less than 100? Originally, the last two statements would not
have been executed since the if condition would have been false. Now they are
executed. Let us see what happens. Using the example of 3m 25cm and 2m 15cm,
we get mSum as 5 and cmSum as 40.

In the next statement 40 /100 is 0 so mSum does not change and in the last
statement 40 % 100 is 40 so cmSum does not change. So the answer will be

69

C Programming — A Beginner’s Course

printed correctly as
Sum is 5m 40cm
You should begin to realize by now that there is usually more than one way to

express the logic of a program. With experience and study, you will learn which
ways are better and why.

4.3 The if...else construct

Let us write a program for the following problem:

A student is given 3 tests, each marked out of 100. The student passes if
his average mark is greater than or equal to 50 and fails if his average
mark is less than 50. Prompt for the 3 marks and print Pass if the student
passes and Fail if he fails.

We will write the program assuming it works as follows:

Enter 3 marks: 60 40 56

Average 1is 52.0 Pass

or

Enter 3 marks: 40 60 36

Average 1is 45.3 Fail

The following algorithm describes the steps required to solve the problem:

prompt for the 3 marks

calculate the average

if average is greater than or equal to 50 then
print "Pass"

else
print "Fail"

endif

The part from if to endif is an example of the if...else construct.

The condition average is greater than or equal to 50 is another example of a
relational expression. If the condition is true, the statement after then (the then
part) is executed; if it is false, the statement after else (the else part) is executed.

The whole construct is terminated with endif.

When you write pseudocode, what is important is that the logic intended is
unmistakably clear. Note again how indentation can help by making it easy to
identify the then part and the else part.

70

Writing programs using selection logic

In the end, though, you must express the code in some programming language for
it to be run on a computer. Program P4.4 shows how to do this for the above
algorithm.

Program P4.4

//request 3 marks; print their average and Pass/Fail
#include <stdio.h>
main() {
int markl, mark2, mark3;
double average ;
printf("Enter 3 marks: ");
scanf("%d %d %d", &markl, &mark2, &mark3);
average = (markl + mark2 + mark3) / 3.0;
printf("\nAverage is %3.1f", average);
if (average >= 50) printf(" Pass\n");
else printf(" Fail\n");

Study carefully the if...else construct in the program. It reflects the logic expressed
on the previous page. Note, again, that the word then is omitted in C.

In general, the if...else construct in C takes the form shown below.

if (<condition>) <statementl> else <statement2>

The words if and else, and the brackets, are required by C. You must
supply <condition>, <statement1> and <statement2>. Each of <statement1>
and <statement2> can be a one-line statement or a block. If <condition> is
true, <statementt> is executed and <statement2> is skipped; if <condition>
is false, <statementt> is skipped and <statement2> is executed. Note that
when the if construct is executed, either <statementt> or <statement2> is
executed, but not both.

If <statementt> and <statement2> are one-line statements, you can use the layout

if (<condition>) <statement1>
else <statement2>

If <statementt> and <statement2> are blocks, you can use the layout

if (<conditions) {

}

else {

}

7

C Programming — A Beginner’s Course

13

In describing the various constructs in C, we normally use the phrase “where

<statement> can be a one-line statement or a block”.

It is useful to remember that, in C, for one-line statements, the semicolon is
considered part of the statement. Examples are:

a=5b;
printf("Pass\n");
scanf("%d", &n);

So, in those cases where one-line statements are used, the semicolon, being part of
the statement, must be present. In Program P4.4, in the if..else statement,
<statementt> is printf("Pass\n"); and <statement2> is printf("Fail\n"); (semicolon
included in both cases).

However, for a block or compound statement, the right brace, 3}, ends the block.
So, in those cases where a block is used, there is no need for an additional
semicolon to end the block.

It is sometimes useful to remember that the entire if...else construct (from if to
<statement2>) is considered by C to be one statement and can be used in any
place where one statement is required.

Example — calculating pay

For an example requiring blocks, suppose we have values for hours worked and
rate of pay (the amount paid per hour) and wish to calculate a person’s regular
pay , overtime pay and net pay based on the following:

if hours worked is less than or equal to 40, regular pay is calculated by
multiplying hours worked by rate of pay and overtime pay is 0. If hours
worked is greater than 40, regular pay is calculated by multiplying 40 by
the rate of pay and overtime pay is calculated by multiplying the hours in
excess of 40 by the rate of pay by 1.5. Net pay is calculated by adding
regular pay and overtime pay.

For example, if hours is 36 and rate is 20 dollars per hour, regular pay is $720
(36 times 20) and overtime pay is $0. Net pay is $720.

And if hours is 50 and rate is 12 dollars per hour, regular pay is $480 (40 times
12) and overtime pay is $180 (excess hours 10 times 12 times 1.5). Net pay is
$660 (480 + 180).

The above description could be expressed in pseudocode as:

72

Writing programs using selection logic

if hours is less than or equal to 40 then
set regular pay to hours x rate
set overtime pay to O
else
set regular pay to 40 x rate
set overtime pay to (hours - 40) x rate x 1.5
endif
set net pay to regular pay + overtime pay

We use indentation to highlight the statements to be executed if the condition
“hours is less than or equal to 40” is true and those to be executed if the condition
is false. The whole construct is terminated with endif.

The next step is to convert the pseudocode to C. When we do, we have to make
sure that we stick to C’s rules for writing an if...else statement. In this example, we
have to ensure that both the then and else parts are written as blocks since they
both consist of more than one statement.

Using the variables hours (hours worked), rate (rate of pay), regPay (regular
pay), ovtPay (overtime pay) and netPay (net pay), we write

if (hours <= 40){
regPay = hours * rate;

ovtPay = O;
} //no semicolon here; } ends the block
else {

regPay = 40 * rate;

ovtPay = (hours - 40) * rate * 1.5;
} //no semicolon here; } ends the block
netPay = regPay + ovtPay;

Note the two comments. It would be wrong to put a semicolon after the first }
since the if statement continues with an else part. If we were to put one, it
effectively ends the if statement and C assumes there is no else part. When it finds
the word else, there will be no if with which to match it and the program will give
a “misplaced else” error.

There is no need for a semicolon after the second } but putting one would do no
harm.

Problem: write a program to prompt for hours worked and rate of pay. The
program then calculates and prints regular pay, overtime pay and net pay, based
on the above description.

The following algorithm outlines the overall logic of the solution:

73

C Programming — A Beginner’s Course

prompt for hours worked and rate of pay
if hours is less than or equal to 40 then

set regular pay to hours x rate

set overtime pay to O
else

set regular pay to 40 x rate

set overtime pay to (hours - 40) x rate x 1.5
endif
set net pay to regular pay + overtime pay
print regular pay, overtime pay and net pay

This algorithm is implemented as Program P4.5. All the variables are declared as
double so that fractional values can be entered for hours worked and rate of pay.

Program P4.5

#include <stdio.h>
main() {
double hours, rate, regPay, ovtPay, netPay;
printf("Hours worked? ");
scanf("%If", &hours);
printf("Rate of pay? ");
scanf("%If", &rate);

if (hours <= 40) {
regPay = hours * rate;
ovtPay = O;
}
else {
regPay = 40 * rate;
ovtPay = (hours - 40) * rate * 1.5;
}
netPay = regPay + ovtPay;

printf("\nRegular pay: $%3.2f\n", regPay):
printf("Overtime pay: $%3.2f\n", ovtPay);
printf("Net pay: $%3.2f\n", netPay);

A sample run of this program is shown on the next page. You should verify that
the results are indeed correct.

Note that even though hours and rate are double, data for them can be supplied
in any valid numeric format—here we use the integers 50 and 12. These values
would be converted to double format before being stored in the variables. We
could, if we wished, have typed 50.0 and 12. 00, for example.

74

Writing programs using selection logic

Hours worked? 50
Rate of pay? 12

Regular pay: $480.00
Oovertime pay: $180.00
Net pay: $660.00

Sample run of P4.5

4.4 On program testing

When we write a program we should test it thoroughly to ensure that it is working
correctly. As a minimum, we should test all paths through the program. This
means that our fest data must be chosen so that each statement in the program is
executed at least once.

For Program P4.5, the sample run tests only when the hours worked is greater
than 40. Based on this test alone, we cannot be sure that our program will work
correctly if the hours worked is less than or equal to 40. To be sure, we must run
another test in which the hours worked is less than or equal to 40. The following
is such a sample run:

Hours worked? 36
Rate of pay? 20

Regular pay: $720.00
overtime pay: $0.00
Net pay: $720.00

These results are correct which gives us greater assurance that our program is
correct. We should also run a test when the hours is exactly 40; we must always
test a program at its ‘boundaries’. For this program, 40 is a boundary—it is the
value at which overtime begins to be paid.

What if the results are incorrect? For example, suppose overtime pay is wrong.
We say the program contains a bug (an error), and we must debug (remove the
error from) the program. In this case, we can look at the statement(s) which
calculate the overtime pay to see if we have specified the calculation correctly. If
this fails to uncover the error, we must painstakingly ‘execute’ the program by
hand using the test data which produced the error. If done properly, this will
usually reveal the cause of the error.

4.5 Using symbolic constants in C

In Program 4.1, we used two constants—100 and 150—denoting the labour
charge per hour and the minimum job cost, respectively. What if these values
change after the program has been written? We would have to find all occurrences
of them in the program and change them to the new values.

75

C Programming — A Beginner’s Course

This program is fairly short so this would not be too difficult to do. But imagine
what the task would be like if the program contained hundreds or even thousands
of lines of code. It would be difficult, time-consuming and error-prone to make all
the required changes.

We can make life a little easier by using symbolic constants>—identifiers which
we set to the required constants in one place. If we need to change the value of a
constant, the change would have to be made in one place only. For example, in
Program P4.1, we could use the symbolic constants ChargePerHour and
MinJobCost. We would set ChargePerHour to 100 and MinJobCost to 150.

In C, we use the #define directive to define symbolic constants, among other
uses. We show how by rewriting Program P4.1 as Program P4.6.

Program P4.6

//This program illustrates the use of symbolic constants
//Print job charge based on hours worked and cost of parts
#include <stdio.h>
#define ChargePerHour 100
#define MinJobCost 150
main() {
double hours, parts, jobCharge;
printf("Hours worked? ");
scanf("%If", &hours);
printf("Cost of parts? ");
scanf("%If", &parts);
JjobCharge = hours * ChargePerHour + parts;
if (jobCharge < MinJobCost) jobCharge = MinJobCost;
printf("\nCharge for the job: $%3.2f\n", jobCharge);

The #define directive

In general, directives in C normally come at the top of the program. For our
purposes, the #define directive takes the following form:

#define followed by an identifier, followed by the “replacement text”
In the program, we used
#define ChargePerHour 100

Note that this is not a normal statement and a semicolon is not needed to end it.
Here, the identifier is ChargePerHour and the replacement text is the constant
100. In the body of the program, we use the identifier instead of the constant.

> Some people use the term manifest constant or named constant

76

Writing programs using selection logic

When the program is compiled, C performs what is called a “pre-processing” step.
It replaces all occurrences of the identifier by its replacement text. In this case, it
replaces all occurrences of ChargePerHour by 100 and all occurrences of
MinJobCost by 150 . After this is done, the program is compiled. It is up to the
programmer to ensure that, when the identifier is replaced, the resulting statement
makes sense.

Effectively, the directives say that the identifier ChargePerHour is equivalent to
the constant 100 and the identifier MinJobCost is equivalent to 150.

For example, the pre-processing step changes

if (jobCharge < MinJobCost) jobCharge = MinJobCost;
to
if (jobCharge < 150) jobCharge = 150;

Suppose, for instance, that the minimum job cost changes from 150 to 180. We
would just need to change the value in the #define directive, thus:

#define MinJobCost 180

No other changes would be needed.

In this book, we will use the convention of starting a symbolic constant identifier
with an uppercase letter. Note, however, that C allows you to use any valid
identifier.

For a slightly bigger example, consider Program P4.5 (page 74). Here, we used
two constants—40 and 1.5—denoting the maximum regular hours and the
overtime rate factor, respectively. We rewrite Program P4.5 as Program P4.7
(next page) using the symbolic constants MaxRegularHours (set to 40) and
OvertimeFactor (set to 1. 5).

Suppose, for instance, the maximum regular hours changes from 40 to 35.
Program P4.7 would be easier to change than Program P4.5, since we would need
to change the value in the #define directive only, thus:

#define MaxRegularHours 35

No other changes would be needed.

The numbers 40 and 1.5 used in Program P4.5 are referred to as magic
numbers—they appear in the program for no apparent reason, as if by magic.
Magic numbers are a good sign that a program may be restrictive, tied to those
numbers. As far as possible, we must write our programs without magic numbers.
Using symbolic constants can help to make our programs more flexible and easier
to maintain.

77

C Programming — A Beginner’s Course

Program P4.7

#include <stdio.h>
#define MaxRegularHours 40
#define OvertimeFactor 1.5

main() {
double hours, rate, regPay, ovtPay, netPay;
printf("Hours worked? ");
scanf("%If", &hours);
printf("Rate of pay? ");
scanf("%If", &rate);

if (hours <= MaxRegularHours) {
regPay = hours * rate;
ovtPay = O;
}
else {
regPay = MaxRegularHours * rate;
ovtPay = (hours - MaxRegularHours) * rate * OvertimeFactor;
}
netPay = regPay + ovtPay;

printf("\nRegular pay: $%3.2f\n", regPay);
printf("Overtime pay: $%3.2f\n", ovtPay);
printf("Net pay: $%3.2f\n", netPay);

4.6 More examples

We now write programs to solve two more problems. Their solutions will
illustrate how to use if...else statements to determine which of several alternatives
to take. In the sample runs, the underlined items are typed by the user; everything

else is printed by the computer.

Example — printing a letter grade

Write a program to request a score in a test and print a letter grade based on the

following:
score < 50 F
50 < score < 75 B
score > 75 A

The program should work as follows:

78

Writing programs using selection logic

Enter a score: 70

Grade B

A solution is shown as Program P4.8.

Program P4.8

//request a score; print letter grade
#include <stdio.h>
main() {
int score;
printf("Enter a score: ");
scanf("%d", &score);
printf("\nGrade ");
if (score < 50) printf("F\n");
else if (score < 75) printf("B\n");
else printf("A\n");

The second printf prints a blank line followed by the word Grade followed by one
space but does not end the line. When the letter grade is determined, it will be
printed on this same line.

We saw that the if...else statement takes the form
if (<condition>) <statementl> else <statement2>

where <statement1> and <statement2> can be any statements. In particular, either
one (or both) can be an if...else statement. This allows us to write so-called nested
if statements. This is especially useful when we have several related conditions to
test, as in this example. In the program, we can think of the part:

if (score < 50) printf("F\n");
else if (score < 75) printf("B\n");
else printf("A\n");

as
if (score < 50) printf("F\n");
else <statement>

where <statement> is the if...else statement

if (score < 75) printf("B\n");
else printf("A\n");

If score is less than 50, the program prints F and ends. If not, it follows that score
must be greater than or equal to 50.

79

C Programming — A Beginner’s Course

Knowing this, the first else part checks if score is less than 75. If it is, the program
prints B and ends. If not, it follows that score must be greater than or equal to 75.

Knowing this, the second else part (which matches the second if) prints A and
ends.

To make sure the program is correct, you should run it with at least 3 different
scores (e.g. 70, 45, 83) to verify that each of the 3 grades is printed correctly.

Note the preferred style for writing else if’s. If we had followed our normal
indenting style, we would have written

if (score < 50) printf("F\n");
else
if (score < 75) printf("B\n");
else printf("A\n");

which would, of course, still be correct. However, if we had more cases, the
indentation would go too deep and would look awkward. Also, since the different
ranges for score are really alternatives (rather than one being within the other), it
is better to keep them at the same indentation level.

The statements here were all one-line printf statements so we chose to write them
on the same line as if and else. However, if they were blocks, it would be better to
write it like this:

if (score < 50) {

}

else if (score < 75){
}
else {
}
As an exercise, extend the program to print the correct grade based on:
score < 50 F
50 < score < 65 C
65 < score < 80 B
score > 80 A

80

Writing programs using selection logic

Example — classifying a triangle

Given three integer values representing the sides of a triangle, print:

» Not a triangle if the values cannot be the sides of any triangle. This is so if any
value is negative or zero, or if the length of any side is greater than or equal to
the sum of the other two;

» Scalene if the triangle is scalene (all sides different);
* Isosceles if the triangle is isosceles (two sides equal);
» Equilateral if the triangle is equilateral (three sides equal).

The program should work as follows:

Enter 3 sides of a triangle: 7 4 7

Isosceles

A solution is shown as Program P4.9.

Program P4.9

//request 3 sides; determine type of triangle
#include <stdio.h>
main() {
inta, b, c;
printf("Enter 3 sides of a triangle: ");
scanf("%d %d %d", &a, &b, &c);
if (@<= 0 || b<=0 || c <= 0) printf("\nNot a triangle\n");
elseif (a>=b+c||b>>c+allc>=a+b)
printf("\nNot a triangle\n");
else if (a == b && b == ¢) printf("\nEquilateral\n");
else if (a==b || b ==c || ¢ == a) printf("\nIsosceles\n");
else printf("\nScalene\n");

The first task is to establish that we, in fact, have a valid triangle. The first if
checks if any of the sides is negative or zero. If so, Not a triangle is printed. If

they are all positive, we go to the else part which itself consists of an if...else
statement.

Here, the if checks if any one side is greater than or equal to the sum of the other
two. If so, Not a triangle is printed. If not, then we have a valid triangle and must

determine its type by executing the else part beginning if (a==b ...

81

C Programming — A Beginner’s Course

It is easiest to do this by first checking if it is equilateral. If two different pairs of
sides are equal—if (a == b && b == ¢)—then all three are equal and we have an
equilateral triangle.

If it is not equilateral, then we check if it is isosceles. If any two sides are equal—
if (a==b || b == c || ¢ == a)—we have an isosceles triangle.

If it is not isosceles, then it must be scalene.

As an exercise, extend the program to determine if the triangle is right-angled. It
is right-angled if the sum of the squares of two sides is equal to the square of the
third side.

Exercises 4

1.

82

An auto repair shop charges as follows. Inspecting the vehicle costs $75. If no
work needs to be done, there is no further charge. Otherwise, the charge is $75 per
hour for labour plus the cost of parts, with a minimum charge of $120. If any work
is done, there is no charge for inspecting the vehicle.

Write a program to read values for hours worked and cost of parts (either of which
could be 0) and print the charge for the job.

Write a program which requests two weights in kilograms and grams and prints the
sum of the weights. For example, if the weights are 3kg 500g and 4kg 700g, your
program should print 8kg 200g.

Write a program which requests two lengths in feet and inches and prints the sum
of the lengths. For example, if the lengths are 5 ft. 4 in. and 8 ft. 11 in., your
program should print 14ft. 3 in. (1 ft. =12 in.)

A variety store give a 15% discount on sales totalling $300 or more. Write a
program to request the cost of 3 items and print the amount the customer must pay.

Write a program to read two pairs of integers. Each pair represents a fraction. For
example, the pair 3 5 represents the fraction 3/5. Your program should print the
sum of the given fractions. For example, give the pairs 3 5 and 2 3, your program
should print 19/15, since

3.2 19

5 3 15

Modify the program so that it prints the sum with the fraction reduced to a proper
fraction; for this example, your program should print 1 4/15.

Write a program to read a person’s name, hours worked, hourly rate of pay and tax
rate (a number representing a percentage, e.g. 25 meaning 25%). The program must
print the name, gross pay, tax deducted and net pay.

Gross pay is calculated as described for net pay on page 72. The tax deducted is
calculated by applying the tax rate to 80% of gross pay. And the net pay is
calculated by subtracting the tax deducted from the gross pay.

For example, if the person works 50 hours at $20/hour and the tax rate is 25%, his
gross pay would be (40 x 20) + (10 x 20 x 1.5) = $1100. He pays 25% tax on 80%
of $1100, that is, 25% of $880 = $220. His net pay is 1100 - 220 = $880.

Writing programs using selection logic

7.

10.

In an English class, a student is given 3 term tests (marked out of 25) and an end-
of-term test (marked out of 100). The end-of-term test counts the same as the 3
term tests in determining the final mark (out of 100). Write a program to read
marks for the 3 term tests followed by the mark for the end-of-term test. The
program then prints the final mark and an indication of whether the student passes
or fails. To pass, the final mark must be 50 or more.

For example, given the data 20 10 15 56, the final mark is calculated by

(20 +10+15) 56
x50+ —x50=58
75 100

Write a program to read integer values for month and year and print the number of
days in the month. For example, 4 2005 (April 2005) should print 30; 2 2004
(February 2004) should print 29 and 2 1900 (February 1900) should print 28.

A leap year, n, is divisible by 4; however, if n is divisible by 100 then it is a leap
year only if it is also divisible by 400. So 1900 is not a leap year but 2000 is.

Write a program to request two times given in 24-hour clock format and find the
time (in hours and minutes) that has elapsed between the first time and the second
time. You may assume that the second time is later than the first time. Each time is
represented by two numbers: e.g. 16 45 means the time 16: 45, that is 4:45 p.m.

For example, if the two given times are 16 45 and 23 25 your answer should be
6 hours 40 minutes.

Modify the program so that it works as follows: if the second time is sooner than
the first time, take it to mean a time for the next day. For example, given the times
20:30 and 6: 15, take this to mean 8.30 p.m. to 6.15 a.m. of the next day. Your
answer should be 9 hours 45 minutes.

For any year between 1900 and 2099, inclusive, the month and day on which
Easter Sunday falls can be determined by the following algorithm:
set a to year minus 1900
set b to the remainder when a is divided by 19
set ¢ to the integer quotient when 7b + 1 is divided by 19
set d to the remainder when 11b + 4 - ¢ is divided by 29
set e to the integer quotient when a is divided by 4
set f to the remainder whena + e + 31 - d is divided by 7
set g to 25 minus the sum of d and f
if g is less than or equal to O then
set month to ‘March’
set day to31+g
else
set month to 'April’
sef day to g
endif

Write a program which requests a year between 1900 and 2099, inclusive, and

checks if the year is valid. If it is, print the day on which Easter Sunday falls in that
year. For example, if the year is 1999, your program should print April 4.

83

C Programming — A Beginner’s Course

11.

12.

13.

A bank pays interest based on the amount of money deposited. If the amount is less
than $5,000, the interest is 4% per annum. If the amount is $5,000 or more but less
than $10,000, the interest is 5% per annum. If the amount is $10,000 or more but
less than $20,000, the interest is 6% per annum. If the amount is $20,000 or more,
the interest is 7% per annum.

Write a program to request the amount deposited and print the interest earned for
one year.

Write a program to prompt for the name of an item, its previous price and its
current price. Print the percentage increase or decrease in the price. For example, if
the previous price is $80 and the current price is $100, you should print increase
of 25%; if the previous price is $100 and the current price is $80, you should print
decrease of 20%.

A country charges income tax as follows based on one’s gross salary. No tax is
charged on the first 20% of salary. The remaining 80% is called taxable income.
Tax is paid as follows:

* 10% on the first $15,000 of taxable income;
* 20% on the next $20,000 of taxable income;
e 25% on all taxable income in excess of $35,000;

84

Write a program to read a value for a person’s salary and print the amount of tax to
be paid. Also print the average tax rate, that is, the percentage of salary that is paid
in tax. For example, on a salary of $20,000, a person pays $1700 in tax. The
average tax rate is 1700/20000%100 = 8.5%.

5 Writing programs using repetition logic

In this chapter, we will explain:

e how to use the while construct to perform ‘looping’ in a program
e how to find the sum and average of an arbitrary set of numbers

e how to get a program to ‘count’

e how to find the largest and smallest of an arbitrary set of numbers
e how to read data from a file

e how to write output to a file

e how to use the for construct to perform ‘looping’ in a program

e how to produce tables using for

In Chapter 3, we showed you how to write programs using sequence logic—
programs whose statements are executed “in sequence” from the first to the last.
In Chapter 4, we showed you how to write programs for problems which require
selection logic. These programs used the if and the if...else statements.

In this chapter, we discuss problems which require repetition logic. The idea is to
write statements once and get the computer to execute them repeatedly as long as
some condition is true. We will see how to express repetition logic using the while
and for statements.

5.1 The while construct

Consider the problem of writing a program to find the sum of some numbers
which the user enters one at a time. The program will prompt the user to enter
numbers as follows:

Enter a number:

13
Enter a number: 8
Enter a number: 16

and so on. We want to let the user enter as many number as he wishes. Since we
can have no idea how many that will be, and the amount could vary from one run
of the program to the next, we must let the user ‘tell” us when he wishes to stop
entering numbers.

How does he ‘tell’ us? Well, the only time the user ‘talks’ to the program is when
he types a number in response to the prompt. If he wishes to stop entering

85

C Programming — A Beginner's Course

numbers, he can enter some ‘agreed upon’ value; when the program reads this
value, it will know that the user wishes to stop.

In this example, we can use 0 as the value which tells the program that the user
wishes to stop. When a value is used this way, it is referred to as a sentinel or end-
of-data value. It is sometimes called a rogue value—the value is not to be taken as
one of the actual data values.

What can we use as a sentinel value? Any value that cannot be confused with an
actual data value would be okay. For example, if the data values are all positive
numbers, we can use 0 or -1 as the sentinel value. When we prompt the user, it is
a good idea to remind him what value to use as the sentinel value.

Assume we want the program to run as follows:

/Enter

o

a number (0 to end): 24
Enter a number (0 to end): 13
Enter a number (0 to end): 55
Enter a number (0 to end): 32
Enter a number (0 to end): 19
Enter a number (0 to end): O

kThe sum is 143 /

How do we get the program to run like that? We want to be able to express the
following logic

As long as the user does not enter 0, keep prompting him for another
number and add it to the sum

It seems obvious that we must, at least, prompt him for the first number. If this
number is 0, we must print the sum (which, of course, would be O at this time). If
the number is not 0, we must add it to the sum and prompt for another number. If
this number is 0, we must print the sum. If this number is not 0, we must add it to
the sum and prompt for another number. If t4is number is O..., and so on.

The process will come to an end when the user enters 0.

This logic is expressed quite neatly using a while construct' shown on the next
page.
Note, particularly, that we get a number before we enter the while loop. This is to

ensure that the while condition makes sense the first time. (It would not make
sense if num had no value).

" Informally, we say the while statement or the while loop

86

Writing programs using repetition logic

//Algorithm for finding sum
set sum to O
get a number, num
while num is not O do

add num to sum

get another number, num
endwhile
print sum

To find the sum, we need to:

* Choose a variable to hold the sum; we will use sum.
* Initialize sum to O (before the while loop).

* Add a number to sum (inside the while loop). One number is added each time
through the loop.

On exit from the loop, sum contains the sum of all the numbers entered.

The while construct lets us execute one or more statements repeatedly as long as
some condition is true. Here, the two statements

add num to sum
get another number, num

are executed repeatedly as long as the condition num is not O is true.
In pseudocode, the while construct is usually written as follows:

while <condition> do
statements o be executed repeatedly
endwhile

The statements to be executed repeatedly are called the body of the while
construct. The construct is executed as follows:

(1) <condition> is tested;

(2) if true, the body is executed and we go back to step (1);
if false, we continue with the statement, if any, after endwhile.

On the next page, we show how the algorithm is executed using the sample data
entered above. For easy reference, the data was entered in the order:

24 13 55 32 19 O

When a while construct is being executed, we say the program is looping or the
while loop is being executed.

It remains to show how to express this algorithm in C. Program P5.1 (page 89)
shows how.

87

C Programming — A Beginner's Course

Execution of algorithm for finding sum with data: 24 13 55 32 19 0

Initially, num is undefined and sum is 0. We show this as:

num sum 0

24 is entered and stored in num;
num is not 0 so we enter the while loop;
num (24) is added to sum (0), giving:

num| 24 sum| 24

13 is entered and stored in num;
num is not 0 so we enter the while loop;
num (13) is added to sum (24), giving:

num| 13 sum| 37

55 is entered and stored in num;
num is not 0 so we enter the while loop;
num (55) is added to sum (37), giving:

num| 55 sum| 92

32 is entered and stored in num;
num is not 0 so we enter the while loop;
num (32) is added to sum (92), giving:

num| 32 sum| 124

19 is entered and stored in num;
num is not 0 so we enter the while loop;
num (19) is added to sum (124), giving:

num| 19 sum| 143

0 is entered and stored in num;
num is 0 so we exit the while loop and go to print sum with

num 0 sum| 143

sum is now 143 so the algorithm prints 14 3.

88

Writing programs using repetition logic

Program P5.1

//print the sum of several numbers entered by a user
#include <stdio.h>
main() {
int num, sum = O;
printf("Enter a number (O to end): ");
scanf("%d", &num);
while (hum 1= 0) {
sum = sum + hum;
printf("Enter a number (O to end): ");
scanf("%d", &num);
}
printf("\nThe sum is %d\n", sum);
}

Of particular interest is the while statement. The pseudocode

while num is not O do

add num to sum

get another number, num
endwhile

is expressed in C as

while (num != 0) {
sum = sum + num;
printf("Enter a number (O to end): ");
scanf("%d", &num);

}

When the program is run, what would happen if the very first number entered was
0? Since num is 0, the while condition is immediately false so we drop out of the
while loop and continue with the printf statement. The program will print the
correct answer:

The sum is 0

In general, if the while condition is false the first time it is tested, the body is not
executed at all.

Formally, the while construct in C is defined as follows:

89

C Programming — A Beginner's Course

while (<condition>) <statement>

The word while and the brackets are required; you must supply <condition>
and <statement>; <statement> must be a single statement or a block”.
First, <condition> is tested; if true, <statement> is executed and
<condition> is tested again. This is repeated until <condition> becomes
false. When <condition> becomes false, execution continues with the
statement, if any, after <statement>. If <condition> is false the first time,
<statement> is not executed and execution continues with the following
statement, if any.

In Program P5.1, <condition> is num != O and <statement> is the block

{
sum = sum + hum;
printf("Enter a number (O to end): "):
scanf("%d", &num);

}

Whenever we want to execute several statements if <condition> is true, we must
enclose the statements by { and }; effectively, this makes them into one statement,
a compound statement, satisfying C’s syntax rule which requires one statement as

the body.

Example - finding the highest common factor

Let us write a program to find the highest common factor’ (HCF) of two numbers.
The program will run as follows:

Enter two numbers: 42 24

Their HCF is 6

We will use Euclid’s algorithm for finding the HCF of two integers, m and n. The
algorithm is as follows:

if nis 0, the HCF is m—stop

set r to the remainder when m is divided by n
setmton

setntor

go to step 1

oOrwnN=

2 Recall that a block, also called a compound statement, is one or more statements enclosed by {
and }.
3 Also known as the greatest common divisor (GCD)

90

Writing programs using repetition logic

Using m as 42 and n as 24, step through the algorithm and verify that it gives the
correct answer, 6.

Steps 2, 3 and 4 are executed as long as n is not 0. Hence, this algorithm can be
expressed using a while loop as follows:

while n is not O do
setrtom%n
setmton
setntfor

endwhile

HCF is m

We can now write Program P5.2 which finds the highest common factor of two
numbers entered.

Program P5.2

//find the HCF of two numbers entered by a user
#include <stdio.h>
main() {
intm, n, r;
printf("Enter two numbers: ");
scanf("%d %d", &m, &n);
while (n 1= 0) {
r=m%n;
m = n;
n=r;
}
printf("\nTheir HCF is %d\n", m);
}

Note that the while condition is n != 0 and the while body is the block
{

r=m%n;
ms=n;
n=r,

}

The algorithm and, hence, the program, works whether m is bigger than n or not.
Using the example above, if m is 24 and n is 42, when the loop is executed the
first time, it will set m to 42 and n to 24. In general, if m is smaller than n, the
first thing the algorithm does is swap their values.

91

C Programming — A Beginner's Course

5.2 Keeping a count

Program P5.1 finds the sum of a set of numbers entered. Suppose we want to
count how many numbers were entered, not counting the end-of-data 0. We could
use an integer variable n to hold the count. To get the program to keep a count, we

need to do the following:

e Choose a variable to hold the count; we choose n.
* Initialize n to 0.
* Add 1 to n in the appropriate place. Here, we need to add 1 to n each time the

user enters a non-zero number.

e Print the count.

Program P5.3 is the modified program for counting the numbers.

}

}

Program P5.3

//print the sum and count of several numbers entered by a user
#include <stdio.h>
main() {
int num, sum=0,n=0;
printf("Enter a number (O to end): ");
scanf("%d", &num);
while (num != 0) {
n=n+1;
sum = sum + num;
printf("Enter a number (O to end): ");
scanf("%d", &num);

printf("\n%d numbers were entered\n", n);
printf("The sum is %d\n", sum);

The following is a sample run of the program:

/Enter

Enter
Enter
Enter
Enter
Enter

SURN S RN DN J S D o)

number
number
number
number
number
number

5 numbers were
\The sum is 143

(0 to
(0 to
(0 to
(0 to
(0 to
(0 to

end):
end):
end):
end):
end):
end):

entered

D

SRR
OIN|U1|Ww

92

Writing programs using repetition logic

Comments on Program P5.3

» We declare and initialize n and sum to O before the while loop.
* The statement
n=n+1;

adds 1 to n. We say that n is incremented by 1. Suppose n has the value 3.
When the right hand side is evaluated, the value obtained is 3 + 1 = 4. This
value is stored in the variable on the left hand side, i.e. n. The net result is that
4 is stored in n.
This statement is placed inside the loop so that n is incremented each time the
loop body is executed. Since the loop body is executed when num is not 0, the
value of n is always the amount of numbers entered so far.

* When we exit the while loop, the value in n will be the amount of numbers
entered, not counting 0. This value is then printed.

* Observe that if the first number entered were 0, the while condition would be
immediately false and control will go directly to the first printf statement with
n and sum both having the value 0. The program will print, correctly:

0 numbers were entered
The sum is 0

Finding the average

Program P5.3 can be easily modified to find the average of the numbers entered.
As we saw above, on exit from the while loop, we know the sum (sum) and how
many numbers were entered (n). We can add a printf statement to print the
average to 2 decimal places, thus:

printf("The average is %3.2f\n", (double) sum/n);
For the data in the sample run, the output will be

5 numbers were entered
The sum is 143
The average is 28.60

As explained on page 36, note the use of the cast (double) to force a floating-
point calculation. Without it, since sum and n are int, an integer division would be
performed, giving 28. Alternatively, we could declare sum as double, and print
the sum and average with:

printf("The sum is %3.0f\n", sum):
printf("The average is %3.2f\n", sum/n);

However, there is still a problem. If the user enters O as the first number,
execution will reach the last printf statement with sum having the value 0 and n
having the value 0. The program will attempt to divide O by 0, giving the error
“Attempt to divide by 0. This is an example of a run-time (or execution) error.

93

C Programming — A Beginner's Course

To cater for this situation, we could use the following after the while loop:

if (n == 0) printf("\nNo numbers entered\n");
else {
printf("\n%d numbers were entered\n", n);
printf("The sum is %d\n", sum);
printf("The average is %3.2f\n", (double) sum/n);
}

The moral of the story is that, whenever possible, you should try to anticipate the
ways in which your program might fail and cater for them. This is an example of
what is called defensive programming.

5.3 Increment and decrement operators

There are a number of operators that originated with C and give C its unique
flavour. The best known of these is the increment operator, ++. In the last

program, we used
n=n+1;

to add 1 to n. The statement
n++;

does the same thing. The operator ++ adds 1 to its argument, which must be a
variable. It can be written as a prefix (++n) or as a suffix (n++).

Even though ++n and n++ both add 1 to n, in certain situations, the side-effect of
++n is different from n++. This is so because ++n increments n before using its
value, whereas n++ increments n after using its value. As an example, suppose n
has the value 7. The statement

a = ++n,
first increments n and then assigns the value (8) to a. But the statement
a = N+

first assigns the value 7 to a and then increments n to 8. In both cases, though, the
end result is that n is assigned the value 8.

As an exercise, what is printed by the following?

n=D5;
printf("Suffix: %d\n", n++);
printf("Prefix: %d\n", ++n);

The decrement operator -- is similar to ++ except that it subtracts 1 from its
variable argument. For example, --n and n-- are both equivalent to

n=n-1;

94

Writing programs using repetition logic

As explained above, --n subtracts 1 and then uses the value of n; n-- uses the
value of n and then subtracts 1 from it. It would be useful to do the above
exercise with -- replaced by ++.

5.4 Assignment operators

So far, we have used the assignment operator, =, to assign the value of an
expression to a variable, as in:

c=a+b
The entire construct consisting of the variable, = and the expression is referred to
as an assignment expression. When the expression is followed by a semicolon, it
becomes an assignment statement. The value of an assignment expression is
simply the value assigned to the variable. For example, if a is 15 and b is 20, then
the assignment expression

c=a+b

assigns the value 35 to c¢. The value of the (entire) assignment expression is also
35.

Multiple assignments are possible, as in

a=b=c=13
The operator = evaluates from right to left, so the above is equivalent to
a=(b=(c=13))

The rightmost assignment is done first, followed by the one to the left, and so on.

C provides other assignment operators, of which += is the most widely used. In
Program P5.3, above, we used the statement

sum = sum + num;
to add the value of num to sum. This can be written more neatly using += as:
sum += num; //add num to sum

To add 3 to n, we could write n += 3, which is the same asn=n + 3.

Other assignment operators include -=, *=, /= and %=. If op represents any of +,
-, *,/ or %, then

variable op= expression
is equivalent to
variable = variable op expression

We point out that we could write all our programs without using increment,
decrement or the special assignment operators. However, sometimes, they permit
us to express certain operations more concisely or more conveniently.

95

C Programming — A Beginner's Course

5.5 Finding the largest

Suppose we want to write a program which works as follows: the user will type
some numbers and the program will find the largest number typed. The following
is a sample run of the program (underlined items are typed by the user):

Enter a number (0 to end): 36
Enter a number (0 to end): 17
Enter a number (0 to end): 43
Enter a number (0 to end): 52
Enter a number (0 to end): 50
Enter a number (0 to end): 0

The Targest is 52

The user will be prompted to enter numbers, one at a time. We will assume that
the numbers entered are all positive integers. We will let the user enter as many
numbers as she likes. However, in this case, she will need to tell the program
when she wishes to stop entering numbers. To do so, she will type 0.

Finding the largest number involves the following steps:

* Choose a variable to hold the largest number; we choose bigNum.

* Initialize bigNum to a very small value. The value chosen should be such that
no matter what number is entered, its value would be greater than this initial
value. Since we are assuming that the numbers entered would be positive, we
can initialize bigNum to 0.

* As each number (num, say) is entered, it is compared with bigNum; if num is
greater than bigNum, then we have a bigger number and bigNum is set to this
new number.

* When all the numbers have been entered and checked, bigNum will contain the
largest one.

These ideas are expressed in the following algorithm:

set bigNum to O

get a humber, num

while num is not O do
if num is bigger than bigNum, set bigNum to num
get a number, num

endwhile

print bigNum

Like before, we get the first number before we enter the while loop. This is to
ensure that the while condition makes sense (is defined) the first time. It would
not make sense if num had no value. If it is not 0, we enter the loop. Inside the
loop, we process the number (compare it with bigNum, etc.) after which we get
another number. 7This number is then used in the next test of the while condition.

96

Writing programs using repetition logic

When the while condition is false (num is 0), the program continues with the

print statement affer the loop.

This algorithm is implemented as shown in Program P5.4.

Program P5.4

//find the largest of a set of numbers entered
#include <stdio.h>
main() {
int num, bigNum = O;
printf("Enter a number (O to end): ");
scanf("%d", &num);
while (hum 1= 0) {

printf("Enter a number (O to end): ");
scanf("%d", &num);
}
printf("\nThe largest is %d\n", bigNum);
}

if (num > bigNum) bigNum = num; //is this number bigger?

Let us ‘step through’ this program using the sample data entered at the beginning

of this section. For easy reference, the data was entered in the order:

36 17 43 52 50 O

Initially, num is undefined and bigNum is 0. We show this as:

num bigNum| 0

36 is entered and stored in num;

num is not 0 so we enter the while loop;
num (36) is compared with bigNum (0);

36 1is bigger so bigNum is set to 36, giving:

num| 36 bigNum| 36

17 is entered and stored in num;

num is not 0 so we enter the while loop;

num (17) is compared with bigNum (36);

17 is not bigger so bigNum remains at 36, giving:

num| 17 bigNum| 36

43 is entered and stored in num,;

num is not 0 so we enter the while loop;
num (43) is compared with bigNum (36);
43 is bigger so bigNum is set to 43, giving:

97

C Programming — A Beginner's Course

num| 43 bigNum| 43

52 is entered and stored in num;

num is not 0 so we enter the while loop;
num (52) is compared with bigNum (43);
52 is bigger so bigNum is set to 52, giving:

num| 52 bigNum| 52

50 is entered and stored in num;

num is not 0 so we enter the while loop;

num (50) is compared with bigNum (52);

50 is not bigger so bigNum remains at 52, giving:

num| 50 bigNum| 52

0 is entered and stored in num;
num is 0 so we exit the while loop and go to printf with

num| O bigNum| 52

bigNum is now 52 and the printf statement prints

The largest is 52

5.6 Finding the smallest

In addition to finding the largest of a set of items, we are sometimes interested in
finding the smallest. We will find the smallest of a set of integers. To do so
involves the following steps:

* Choose a variable to hold the smallest number; we choose smallNum.

* Initialize smallNum to a very big value. The value chosen should be such that
no matter what number is entered, its value would be smaller than this initial
value. If we have an idea of the numbers we will get, we can choose an
appropriate value.

For instance, if we know that the numbers will contain at most 4 digits, we can
use an initial value such as 10000. If we do not know this, we can set
smallNum to the largest integer value defined by the compiler (32767 for 16-
bit integers). Similarly, when we are finding the largest, we can initialize
bigNum (say) to a very small number like -32767.

Another possibility is to read the first number and set smallNum (or bigNum)
to it. For our program, we will set smallNum to 32767.

98

Writing programs using repetition logic

* As each number (num, say) is entered, it is compared with smallNum; if num
is smaller than smallNum, then we have a smaller number and smallNum is set

to this new number.

* When all the numbers have been entered and checked, smallNum will contain

the smallest one.

These ideas are expressed in the following algorithm:

set smallNum to 32767
get a number, num
while num is not O do

if num is smaller than smallNum, set smallNum to hum

get a number, num
endwhile
print smallNum

This algorithm is implemented as shown in Program P5.5.

Program P5.5

//find the smallest of a set of numbers entered
#include <stdio.h>
main() {
int num, smallNum = 32767;
printf("Enter a number (O to end): ");
scanf("%d", &num);
while (hum |= 0) {
if (num < smallNum) smallNum = num;
printf("Enter a number (O to end): ");
scanf("%d", &num);
}

printf("\nThe smallest is %d\n", smallNum);

}

When run, if numbers are entered in the following order:

36 17 43 52 50 O
the program will print

The smallest is 17
and if the numbers entered are

36 -17 43 -52 50 O
the program will print

The smallest is -52

99

C Programming — A Beginner's Course

5.7 Reading data from a file

So far, we have written our programs assuming that data to be supplied is typed at
the keyboard. We have fetched the data using scanf for reading numbers and gets
for reading strings. Typically, the program prompts the user for the data and waits
for the user to type the data. When the data is typed, the program reads it, stores it
in a variable (or variables) and continues with its execution. This mode of
supplying data is called interactive since the user is interacting with the program.

We say we have been reading data from the “standard input”. C uses the
predefined identifier stdin to refer to the standard input. When your program starts
up, C assumes that stdin refers to the keyboard. Similarly, the predefined
identifier stdout refers to the standard output, the screen. So far, our programs
have written output to the screen.

We can also supply data to a program by storing the data in a file. When the
program needs data, it fetches it directly from the file, without user intervention.
Of course, we have to ensure that the appropriate data has been stored in the file
in the correct order and format. This mode of supplying data is normally referred
to as batch® mode.

For example, suppose we need to supply an item number (int) and a price
(double) for several items. If the program is written assuming that the data file
contains several pairs of numbers (an int constant followed by a double constant)
then we must ensure that the data in the file conforms to this.

Suppose we create a file called input.txt and type data in it. This file is a file of
characters or a text file. Depending on the programming environment provided by
your C compiler, it may be possible to assign stdin to input.txt—we say redirect
the standard input to input.txt. Once this is done, your program will read data
from the file rather than the keyboard. Similarly, it may be possible to redirect the
standard output to a file, output.txt, say. If done, your printf’s will write output to
the file, rather than the screen.

We will take a slightly different approach, which is a bit more general since it will
work with any C program and does not depend on the particular compiler or
operating system you happen to be using.

Suppose we want to be able to read data from the file input.txt. The first thing we
need to do is declare an identifier called a “file pointer”. This can be done with
the statement

FILE * in; // read as "file pointer in"

* The term is historical and comes from the old days when data had to be ‘batched’ before being
submitted for processing.

100

Writing programs using repetition logic

The word FILE must be spelt as shown, with all uppercase letters. The spaces
before and after * may be omitted. So you could write FILE* in, FILE *in or even

FILE*in. We have used the identifier in; any other will do, such as inf, infile,
inputFile, payData.

The second thing we must do is associate the file pointer in with the file input.txt
and tell C we will be reading data from the file. This is done using the function
fopen, as follows:

in = fopen("input.txt", "r");

,’: "rll

This tells C to “open the file input.txt for reading indicates reading. We will
use "w" if we want the file to be opened for “writing”, that is, to receive output. If
we wish, we could accomplish both things with one statement, thus:

FILE * in = fopen("input.txt", "r");

Once this is done, the “data pointer” (see page 50) will be positioned at the
beginning of the file. We can now write statements which will read data from the
file. We will see how shortly.

It is up to us to ensure that the file exists and contains the appropriate data. If not,
we will get an error message such as “File not found”. If we need to, we can
specify the path to the file.

Suppose the file is located at: C:\testdata\input.txt.

We can tell C we will be reading data from the file with:
FILE * in = fopen("C:\\testdata\\input.txt", "r");

Recall that the escape sequence \\ is used to represent \ within a string. If the file
is on a diskette, we can use:

FILE * in = fopen("A:\\input.txt", "r");

5.7.1 fscanf

We use the statement (more precisely, the function) fscanf to read data from the
file. It is used in exactly the same way as scanf except that the first argument is
the file pointer in. For example, if num is int, the statement

fscanf(in, "%d", &num);

will read an integer from the file input.txt (the one associated with in) and store it
in num. Note that the argument is the file pointer and not the name of the file.

When we have finished reading data from the file, we should close it. This is done
with fclose, as follows:

fclose(in);

101

C Programming — A Beginner's Course

There is one argument, the file pointer (not the name of the file). This statement
breaks the association of the file pointer in with the file input.txt. If we need to,
we could now link the identifier in with another file (paydata.txt, say) using:

in = fopen("paydata.txt", "r");

Note that we do not repeat the FILE * part of the declaration, since in has already
been declared as FILE *. Subsequent fscanf(in, ...) statements will read data from
the file paydata.txt.

Finding the average of some numbers in a file

To illustrate the use of fscanf, let us re-write Program P5.3 to read several
numbers from a file and find their average. On page 93, we discussed how to find
the average. We just need to make the changes to read the numbers from a file.
Suppose the file is called input.txt and contains several positive integers with 0
indicating the end, for example,

24 13 55 32190

Program P5.6 shows how to define the file as the place from which the data will
be read and how to find the average.

Program P5.6

//read numbers from a file and find their average; O ends the data
#include <stdio.h>
main() {
FILE * in = fopen("input.txt", "r");
int num, sum=0,n=0;
fscanf(in, "%d", &num);
while (num != 0) {
n=n+1;
sum = sum + num;
fscanf(in, "%d", &num);
}
if (n == 0) printf("\nNo numbers entered\n");
else {
printf("\n%d numbers were entered\n", n);
printf("The sum is %d\n", sum);
printf("The average is %3.2f\n", (double) sum/n);
}
fclose(in);

}

102

Writing programs using repetition logic

Comments on Program P5.6

e FILE * and fopen have been added so that the fscanf statement would fetch data
from the file input.txt.

* Since the data is being read directly from the file, the question of prompting for
data does not arise. We have removed the printf statements which prompted for
data.

* The program makes sure that n is not 0 before attempting to find the average.

* When run, the program reads the data from the file and prints the results
without any user intervention.

e [f the data file contains
24 13 55 32 19 0

the output will be

5 numbers were supplied
The sum 1is 143
The average is 28.60

* The numbers in the file could be supplied in “free format”—any amount could
be put on a line. For example, the sample data could have been typed on one
line as above or as follows:

24 13
55 32
19 0

or
24 13

55
32 19

or

» As an exercise, add statements to the program so that it also prints the largest
and smallest numbers in the file.

A word of advice: when you try to run this program, it may not run properly
because it cannot find the file input.txt. This may be because the compiler is
looking for the file in the wrong place. Some compilers expect to find the file in
the same folder/directory as the program file. Others expect to find it in the same
folder/directory as the compiler. Try placing input.txt in each of these folders, in
turn, and run the program. If this does not work then you will need to specify the
complete path to the file in the fopen statement. For example, if the file is in the
folder data which is in the folder CS10E which is on the C: drive, you will need
to use the statement:

FILE * in = fopen("C:\\CS10E\\data\\input.txt", "r");

103

C Programming — A Beginner's Course

5.8 Sending output to a file

So far, our programs have read data from the standard input (the keyboard) and
sent output to the standard output (the screen). We have just seen how to read data
from a file. We now show you how you can send output to a file.

This is important because when we send output to the screen, it is lost when we
exit the program or when we switch off the computer. If we need to save our
output, we must write it to a file. Then the output is available as long as we wish
to keep the file.

The process is similar to reading from a file. We must declare a “file pointer” (we
will use out) and associate it with the actual file (output.txt, say) using fopen.
This can be done with

FILE * out = fopen("output.txt", "w");

M.

This tells C to “open the file output.txt for writing”; "w" indicates writing. When
this statement is executed, the file output.txt is created if it does not already exist.
If it exists, its contents are destroyed. In other words, whatever you write to the
file will replace its original contents. Be careful that you do not open for writing a
file whose contents you wish to keep.

5.8.1 fprintf

We use the statement (more precisely, the function) fprintf to send output to the
file. It is used in exactly the same way as printf except that the first argument is
the file pointer out. For example, if sum is int with value 143, the statement

fprintf(out, "The sum is %d\n", sum);

will write
The sum is 143

to the file output.txt.
Note that the argument is the file pointer and not the name of the file.

When we have finished writing output to the file, we must close it. This is
especially important for output files since, the way some compilers operate’, this
is the only way to ensure that all output is sent to the file. We close the file with
fclose, as follows:

fclose(out);

> For instance, they send output to a temporary buffer in memory and only when the buffer is full
is it sent to the file. If you do not close the file, some output may be left in the buffer and never
sent to the file.

104

Writing programs using repetition logic

There is one argument, the file pointer (not the name of the file). This statement
breaks the association of the file pointer out with the file output.txt. If we need
to, we could now link the identifier out with another file (payroll.txt, say) using:

out = fopen("payroll.txt", "w");

Note that we do not repeat the FILE * part of the declaration, since out has already
been declared as FILE *. Subsequent fprintf(out, ...) statements will send output to
the file payroll.txt.

For an example, we re-write Program P5.6 as Program P5.7 by adding the fopen
and fprintf statements. The only difference is that P5.6 sends its output to the
screen while P5.7 sends its output to the file output.txt.

Program P5.7

//read numbers from a file and find their average; O ends the data
#include <stdio.h>
main() {
FILE * in = fopen("input.txt", "r");
FILE * out = fopen("output.txt", "w");
int num, sum=0,n=0;
fscanf(in, "%d", &num);
while (hum != 0) {
n=n+1;
sum = sum + num;
fscanf(in, "%d", &num);
}
if (n == 0) fprintf(out, "No numbers entered\n");
else {
fprintf(out, "%d numbers were entered\n", n);
fprintf(out, "The sum is %d\n", sum);
fprintf(out, "The average is %3.2f\n", (double) sum/n);
}
fclose(in);
fclose(out);

}

As explained on page 101, you can, if you wish, specify the complete path to your
file in the fopen statement. For instance, if you want to send the output to a
diskette, you can use

FILE * out = fopen("a:\\output.txt", "w");

When you run Program P5.7, it will appear as if nothing has happened. However,
if you check your file system you will find the file output.txt. Open it to view
your results.

105

C Programming — A Beginner's Course

5.9 Example — payroll

We expand our ‘calculating pay’ example from page 72 to illustrate many of the
ideas discussed so far in this chapter. Specifically, we will write a program to
process pay data for several employees.

The data for each employee consists of a first name, a last name, the number of
hours worked and the rate of pay. The data will be stored in a file paydata.txt
and output will be sent to the file payroll.txt.

In order to show you another way to read a string, we will assume that the data is
stored in the file as follows:

Maggie May 50 12.00

Akira Kanda 40 15.00

Richard singh 48 20.00

Jamie Khan 30 18.00
END

We use the “first name” END as the end-of-data marker.

Regular pay, overtime pay and net pay will be calculated as described on page 72.
The employee name, hours worked, rate of pay, regular pay, overtime pay and net
pay are printed under a suitable heading. In addition, we will write the program to
do the following:

* count how many employees are processed
 calculate the total wage bill (total net pay for all employees)

 determine which employee earned the highest pay and how much. We will
ignore the possibility of a tie.

For the sample data, the output should look like this:

~

Name Hours Rate Regular oOvertime Net
Maggie May 50.0 12.00 480.00 180.00 660.00
Akira Kanda 40.0 15.00 600.00 0.00 600.00
Richard Singh 48.0 20.00 800.00 240.00 1040.00
Jamie Khan 30.0 18.00 540.00 0.00 540.00

Number of employees: 4
Total wage bil1: $2840.00
Richard Singh earned the most pay of $1040.00

-

/

106

Writing programs using repetition logic

An outline of the algorithm for reading the data is:

read firstName

while firstName is not "END" do
read lastName, hours, rate
do the calculations
print results for this employee
read firstName

endwhile

We will use the specification %s in fscanf for reading the names. Suppose we
have declared firstName as

char firstName[20];
We can read a string into firstName with the statement
fscanf(in, "%s", firstName);

The specification %s must be matched with a character array, like firstName. As

mentioned on page 51, when an array name is an argument to scanf (or fscanf),
we must not write & before it.

%s is used for reading a string of characters not containing any whitespace
characters. Beginning with the next non-whitespace character, characters are
stored in firstName until the next whitespace character is encountered. It is up to
us to make sure that the array is big enough to hold the string.

Because a whitespace character ends the reading of a string, %s cannot be used to
read a string containing blanks. For this reason, we will use separate variables for
first name and last name. We will use firstName and lastName.

For example, suppose the next piece of data contains (¢ denotes a space):
OOGORObT1NOGGOCHO0dOO

fscanf(in, "%s", firstName) will skip over spaces until it reaches the first non-
whitespace character R. Starting with R, it stores characters in firstName until it
reaches the next space, the one after n. Reading stops and Robin is stored in

firstName. The data pointer is positioned at the space after n. If we now execute
fscanf(in, "%s", lastName);

fscanf will skip over spaces until it reaches H. Starting with H, it stores characters
in lastName until it reaches the space after d. Reading stops and Hood is stored in
lastName. If d were the last character on the line, the end-of-line character
(which is whitespace) would have stopped the reading.

Because of the way %s works, we will need to read the first and last names
separately. However, in order to get the output to line up neatly as shown on the
previous page, it would be more convenient to have the entire name stored in one

107

C Programming — A Beginner's Course

variable (name, say). Suppose Robin is stored in firstName and Hood is stored in
lastName. We will copy firstName to name with

strcpy(name, firstName);
We will then add a space with
strcat(name, " ");

strcat is a predefined string function which allows us to join (concatenate) two
strings. It stands for “string concatenation”. If s1 and s2 are strings, strcat(s, s2)
will add s2 to the end of s1. It assumes that s1 is big enough to hold the joined
strings.

We will then add lastName with
strcat(name, lastName);

Using our example, at the end of all this, name will contain Robin Hood.

In our program, we will use the specification %-15s to print name. This will print
name left-justified in a field width of 15. In other words, all names will be
printed using 15 print columns. This is necessary for the output to line up neatly.
To cater for longer names, you can increase the field width.

As discussed on page 38, we must write the directive
#include <string.h>

at the head of our program if we want to use the string functions supplied by C.

Our program will need to check if the value in firstName is the string "END".
Ideally, we would like to say something like

while (firstName |= "END") { //cannot write this in C

but we cannot do so since C does not allow us to compare strings using the
relational operators. What we can do is use the predefined string function stremp
(string compare).

If s1 and s2 are strings, the expression stremp(sl, s2) is

» 0ifs1is identical to s2

* < 0ifstis less than s2 (in alphabetical order)

* > 0if's1is greater than s2 (in alphabetical order)

For example, strcemp("hello”, "hi") is < 0; stremp("hi", "hello") is > 0O;
strcemp("allo”, "allo") is 0.

Using stremp, we can write the while condition as
while (strcmp(firstName, "END") I= 0)

108

Writing programs using repetition logic

If stremp(firstName, "END") is not 0, it means that firstName does not contain the
word END so we have not reached the end of the data; the while loop is entered to

process that employee.

When faced with a program which requires so many things to be done, it is best to
start by working on part of the problem, getting it right and then tackling the other
parts. For this problem, we can start by getting the program to read and process
the data without counting, finding the total or finding the highest-paid employee.

Program P5.8 is based on P4.7 (page 78).

Program P5.8

#include <stdio.h>
#include <string.h>
#define MaxRegularHours 40
#define OvertimeFactor 1.5
main() {
FILE * in = fopen("paydata.txt", "r");
FILE * out = fopen("payroll.txt", "w");
char firstName[20], lastName[20], name[40];
double hours, rate, regPay, ovtPay, netPay;

fprintf(out,"Name Hours Rate Regular Overtime Net\n\n");
fscanf(in, "%s", firstName);
while (strcmp(firstName, "END") I= 0) {
fscanf(in, "%s %If %If", lastName, &hours, &rate);
if (hours <= MaxRegularHours) {
regPay = hours * rate;
ovtPay = O;
}
else {
regPay = MaxRegularHours * rate;
ovtPay = (hours - MaxRegularHours) * rate * OvertimeFactor;

}
netPay = regPay + ovtPay;

//make one name out of firstName and lastName
strcpy(name,firstName); strcat(name," "); strcat(name,lastName);

fprintf(out, "%-15s %5.1f %6.2f", name, hours, rate);
fprintf(out, "%9.2f %9.2f %7.2f\n", regPay, ovtPay, netPay);
fscanf(in, "%s", firstName);

}

fclose(in);

fclose(out);

}

109

C Programming — A Beginner's Course

Comments on Program P5.8:

* We use the “file pointers” in and out for reading data from paydata.txt and
sending output to payroll.txt.

 Since data is being read from a file, prompts are not required.
* We use fscanf for reading data and fprintf for writing output.
» We use fclose to close the files.

* We print a heading with the statement

fprintf(out,"Name Hours Rate Regular Overtime Net\n\n");

To get the output to line up nicely, you will need to fiddle with the spaces
between the words and the field widths in the statements which print the
results. For example, there are 12 spaces between e and H, 3 spaces between s
and R, 2 between e and R, 2 between r and O and 5 between e and N.

You should experiment with the field widths in the fprintf statements (which
write one line of output) to see what effect it has on your output.
* We use a while loop to process several employees. When the “first name” END

is read, the program knows it has reached the end of the data. It closes the files
and stops.

Now that we’ve got the basic processing right, we can add the statements to
perform the other tasks. Program P5.9 (next page) is the complete program which
counts the employees, calculates the total wage bill and determines the employee
who earned the highest salary.

Counting the employees and finding the total wage bill are fairly straightforward.
We use the variables numEmp and wageBill which are initialized to O before the
loop. They are incremented inside the loop and their final values are printed after
the loop. If you have difficulty following the code, you need to re-read Sections
5.1 and 5.2. We use numEmp++ to add 1 to numEmp and wageBill += netPay to
add netPay to wageBill.

The variable mostPay holds the most pay earned by any employee. It is initialized
to 0. Each time we calculate netPay for the current employee, we compare it with
mostPay. If it is bigger, we set mostPay to the new amount and save the name of
the employee (name) in bestPaid.

110

Writing programs using repetition logic

Program P5.9

#include <stdio.h>

#include <string.h>

#define MaxRegularHours 40

#define OvertimeFactor 1.5

main() {
FILE * in = fopen("paydata.txt", "r");
FILE * out = fopen("payroll.txt", "w");
char firstName[20], lastName[20], name[40], bestPaid[40];
double hours, rate, regPay, ovtPay, netPay;
double wageBill = 0, mostPay = O;
int numEmp = 0;

fprintf(out,"Name Hours Rate Regular Overtime Net\n\n");

fscanf(in, "%s", firstName);
while (strcmp(firstName, "END") I= 0) {
numEmp++;
fscanf(in, "%s %If %If", lastName, &hours, &rate);
if (hours <= MaxRegularHours) {
regPay = hours * rate;
ovtPay = O;
}
else {
regPay = MaxRegularHours * rate;

ovtPay = (hours - MaxRegularHours) * rate * OvertimeFactor;

}

netPay = regPay + ovtPay;
//make one name out of firstName and lastName
strcpy(name,firstName); strcat(name," "

fprintf(out, "%-15s %5.1f %6.2f", name, hours, rate);
fprintf(out, "%9.2f %9.2f %7.2f\n", regPay, ovtPay, netPay);

if (netPay > mostPay) {
mostPay = netPay;
strcpy(bestPaid, name);
}
wageBill += netPay;
fscanf(in, "%s", firstName);
}
fprintf(out, "\nNumber of employees: %d\n", numEmp);
fprintf(out, "Total wage bill: $%3.2f\n", wageBill);

fprintf(out,"%s earned the most pay of $%3.2f\n" bestPaid, mostPay);

fclose(in);
fclose(out);

). strcat(name lastName);

111

C Programming — A Beginner's Course

5.10 The for construct

In Chapters 3, 4 and 5 we showed you three kinds of logic which can be used for
writing programs—sequence, selection and repetition. Believe it or not, with these
three, you have all the logic control structures you need to express the logic of any
program. It has been proven that these three structures are all you need to
formulate the logic to solve any problem that can be solved on a computer.

It follows that all you need are if and while statements to write the logic of any
program. However, many programming languages provide additional statements
because they allow you to express some kinds of logic more conveniently than
using if and while. The for statement is a good example.

Whereas while lets you repeat statements as long as some condition is true, for
lets you repeat statements a specified number of times (25 times, say). Consider
the following pseudocode example of the for construct (more commonly called
the for loop):

for j=1t05do
print "I must not sleep in class"
endfor

This says to execute the print statement 5 times, with j assuming the values 1, 2,
3, 4 and 5, one value for each of the 5 times. The effect is to print:

must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class

HHHHH

The construct consists of:

* the word for

* the loop variable (j, in the example)
* the initial value (1, in the example)
* the word to

* the final value (5, in the example)
 the word do

* one or more statements to be executed each time through the loop; these
statements make up the body of the loop

* the word endfor, indicating the end of the construct

112

Writing programs using repetition logic

We emphasize that endfor is not a C word and does not appear in any C program.
It is just a convenient word used by programmers when writing pseudocode to
indicate the end of a for loop.

In order to highlight the structure of the loop and make it more readable, we line
up for and endfor, and indent the statements in the body.

The part of the construct between for and do is called the control part of the loop.
This is what determines how many times the body is executed. In the example, the
control part is j = 1to 5. This works as follows:

» jissetto 1 and the body (print) is executed
 jissetto 2 and the body (print) is executed
+ jis setto 3 and the body (print) is executed
 jis set to 4 and the body (print) is executed
* jissetto 5 and the body (print) is executed

The net effect is that, in this case, the body is executed 5 times.
In general, if the control part is j = first to last, it is executed as follows:

« iffirst > last, the body is not executed at all; execution continues with the
statement, if any, after endfor; otherwise

* jis set to first and the body is executed

* 1isadded to j; if the value of j is less than or equal to last, the body is executed
again

» 1lisadded to j; if the value ofj is less than or equal to last, the body is executed
again

* andsoon

When the value of j reaches last, the body is executed for the last time and control
goes to the statement, if any, after endfor.

The net effect is that the body is executed for each value of j between first and
last, inclusive.

The for statement in C

The pseudocode construct

for j=1to5do
print ‘T must not sleep in class'’
endfor

is implemented in C as
for (j=1 j<= 5 j++)

printf("I must not sleep in class\n");

113

C Programming — A Beginner's Course

assuming that j is declared as int.

In C, the body must be a single statement or a block. In the example, it is the
single printf statement. If it were a block, it would be written in the form

for (j=1 j<«=5; j++){
<statementl>
<statement2>
etc.

}

Program P5.10 illustrates how the for statement is used to print
I must not sleep in class

5 times. As you could probably figure out, if you want to print 100 lines, say, all
you have to do is change 5 to 100 in the for statement.

Program P5.10

#include <stdio.h>
main() {
int j;
for (j=1, j<=5; j++)
printf("I must not sleep in class\n");

The general form of the for statement in C is

for (<exprl>; <expr2>; <expr3>)
<statement>

The word for, the brackets and the semicolons are required by C. You
must supply <expri>, <expr2>, <expr3> and <statement>.

In detail, the for statement consists of

* the word for
 a left bracket, (

» <expr?>, called the initialization step; this is the first step performed when the
for is executed.

* asemicolon, ;

» <expr2>, the condition which controls whether or not <statement> is executed.
e asemicolon, ;

» <expr3>, called the re-initialization step

114

Writing programs using repetition logic

 aright bracket,)

+ <statement>, called the hody of the loop. This can be a simple statement or a
block.

When a for statement is encountered, it is executed as follows:

(1) <expr1> is evaluated.

(2) <expr2>is evaluated. If it is false, execution continues with the statement, if
any, after <statement>. If it is true, <statement> is executed, followed by
<expr3>, and this step (2) is repeated.

This can be expressed more concisely as follows:

<exprl>;

while (<expr2>) {
<statement>;
<expr3>;

}

In the following
for (j=1; j<=5; j++)
printf("I must not sleep in class\n");
e j=11s <expri>
* j<=51is <expr2>
e j+ 1S <expr3>
» <statement> is printf(...);

This code is executed as follows:

(1) jissettol

(2) the testj <=5 is performed. It is true, so the body of the loop is executed (one
line is printed). The re-initialization step j++ is then performed, so j is now 2.

(3) the test j <=5 is again performed. It is true, so the body of the loop is
executed (a second line is printed); j++ is performed, so j is now 3.

(4) the testj <=5 is again performed. It is true, so the body of the loop is
executed (a third line is printed); j++ is performed, so j is now 4.

(5) the testj <=5 is again performed. It is true, so the body of the loop is
executed (a fourth line is printed); j++ is performed, so j is now 5.

(6) the testj <=5 is again performed. It is true, so the body of the loop is
executed (a fifth line is printed); j++ is performed, so j is now 6.

(7) the testj <=5 is again performed. It is now false, so execution of the for loop
ends and the program continues with the statement, if any, after printf(...).

On exit from the for loop, the value of j (6, in this case) is available and may be
used by the programmer if required.

115

C Programming — A Beginner's Course

C allows you to declare and initialize the loop variable in the for statement itself®,
So we could have written

for (int j=1; j <= 5; j++)
If we do this, j is “known” and available after the loop, until the end of the
function.
If we need a loop to count backwards (from 5 down to 1, say), we can write

for (int j=5; j>=1; j--)
The loop body is executed with j taking on the values 5, 4, 3, 2 and 1. After the
loop, the value of j is 0.
We can also count upwards in steps other than 1. For example, the statement

for (int j = 10; j <= 20: j += 3)
will execute the body with j taking on the values 10, 13, 16 and 19. After the
loop, the value of'j is 22.

In general, we can use whatever expressions we need to get the effect that we
want.

In Program P5.10, j takes on the values 1, 2, 3, 4 and 5 inside the loop. We have
not used j in the body but it is available, if needed. We show a simple use in
Program P5.11 in which we number the lines by printing the value of j.

Program P5.11

#include <stdio.h>
main() {
for (int j = 1; j <= 5; j++)
printf("%d. I must not sleep in class\n", j);

When run, this program will print

must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class

VR WN R
HHHHH

The initial and final values in the for statement do not have to be constants; they
can be variables or expressions. For example, consider

for (j=1 j<=n; j++) ..

% Some older compilers may not allow this. If yours doesn’t, just declare j before the loop.

116

Writing programs using repetition logic

How many times would the body of this loop be executed? We cannot answer
unless we know the value of n when this statement is encountered. If n has the
value 7, then the body would be executed 7 times.

This means that before the computer gets to the for statement, n must have been
assigned some value and it is this value which determines how many times the
loop is executed. If a value has not been assigned to n, the for statement would not
make sense and the program will crash (or, at best, give some nonsensical output).

To illustrate, we can modify Program P5.11 to ask the user how many lines she
wants to print. The number entered is then used to control how many times the
loop is executed and, hence, how many lines are printed.

The changes are shown in Program P5.12.

Program P5.12

#include <stdio.h>
main() {
int n;
printf("How many lines to print? ");
scanf("%d", &n);
for (int j = 1; j <= n; j++)
printf("%d. I must not sleep in class\n", j);

A sample run is shown below. We will show shortly how to neaten the output.

/How many lines to print? Q\

must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
I must not sleep in class

11. I must not sleep in class
Klz. I must not sleep in c'Iasj
Note that we do not (and cannot) know beforehand what number the user will
type. However, that is not a problem. We simply store the number in a variable (n

is used) and use n as the “final value” in the for statement. Thus, the number the
user types will determine how many times the body is executed.

OoONOUTAWN R
HHHHHHHHH

=
[@X] . -

Now the user can change the number of lines printed simply by entering the
desired value in response to the prompt. No change is needed in the program.
Program P5.12 is much more flexible than P5.11.

117

C Programming — A Beginner's Course

A bit of aesthetics’

In the above run, while the output is correct, the numbers do not line up very
nicely with the result that the I’s do not line up properly. We can get things to
line up by using a field width when printing j. For this example, 2 will do.
However, if the number could run into the hundreds, we must use at least 3 and
for thousands at least 4, and so on.

In Program P5.12, if we change the printf statement to
printf("%2d. I must not sleep in class\n", j);

the following output would be much nicer to look at:

///’How many lines to print? ;;‘\\\

must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in class
must not sleep in

in class
must not sleep in c1aii//

HHHHHHHHHHHH

5.11 Producing multiplication tables

The for statement is quite handy for producing multiplication tables. To illustrate,
let us write a program to produce a “2 times” table from 1 to 12. The following
should be printed by the program:

4 2)
4

6

8
10
12
14
16
18
20
22

24 4//

A look at the output reveals that each line consists of 3 parts:

OooNOUVIRAWN R

=
O
NNNNNNNNNNDNDN

XX XX XXX XX XXX

@

7 aesthetic - showing good taste or appreciation of beauty

118

Writing programs using repetition logic

1. anumber on the left which increases by 1 for each new line;

2. afixedpart" x 2 = " (note the spaces) which is the same for each line;
3. anumber on the right, which is derived by multiplying the number on the
left by 2.

We can produce the numbers on the left by using
for (m = 1; m<= 12; m++)

and printing m each time through the loop. And we can produce the number on
the right by multiplying m by 2.

Program P5.13 shows how to write it. When run, it will produce the table above.

Program P5.13

#include <stdio.h>
main() {
for (int m = 1; m <= 12; m++)
printf("%2d x 2 = %2d\n", m, m * 2);

Note the use of the field width 2 for printing m and m * 2. This is to ensure that
the numbers line up as shown in the output. Without the field width, the table
would not look neat—try it and see.

What if we want to print a “7 times” table? What changes would be needed? We
would just need to change the printf statement to

printf("%2d x 7 = %2d\n", m, m * 7);

Similarly, if we want a “9 times” table, we would have to change the 7’s to 9’s.
And we would have to keep changing the program for each table that we want.

A better approach is to let the user tell the computer which table he wants. The
program will then use this information to produce the table requested. Now when
the program is run, it will prompt:

Enter type of table:
If the user wants a “7 times” table, he will enter 7. The program will then go
ahead and produce a “7 times” table. Program P5.14 (next page) shows how.

Since we do not know beforehand what type of table would be requested, we
cannot use 7, say, in the format string, since the user may want a “9 times” table.

We must print the variable factor which holds the type of table.

119

C Programming — A Beginner's Course

Program P5.14

#include <stdio.h>
main() {
int factor;
printf("Type of table? ");
scanf("%d", &factor);
for (int m = 1; m<= 12; m++)
printf("%2d x %d = %2d\n", m, factor, m * factor);

The following is a sample run:

I
<
o
(0]
(@]
—h
+
Q
e n
J—
(0]
~J
Y,

|_l
QUOOONOUVIARWNRE
XXX X XXX XX XXX
OOV DWNNRE
WOHONUVIOR AN

~
o

11

Qz

NNNNNNNNNNNN
~N
~N

oo
IS

/

We now have a program which can produce any multiplication table from 1 to 12.
But there is nothing sacred® about the range 1 to 12. How can we generalize the
program to produce any table in any range? We must let the user tell the program
what type of table and what range he wants. And in the program, we will need to
replace the numbers 1 and 12 by variables, (start and finish, say).

All these changes are reflected in Program P5.15 (next page). The following
sample run shows how to produce a “6 times” table from 10 to 16.

/Type of table? ﬁ\

From? 10

To? 16

10 x 6 = 60

11 x 6 = 66

12 x 6 = 72

13 x 6 = 78

14 x 6 = 84

15 x 6 = 90
K16x6=96 /

8 special, maybe, since that’s what we all learnt in school

120

Writing programs using repetition logic

Program P5.15

#include <stdio.h>

main() {
int factor, start, finish;
printf("Type of table? ");
scanf("%d", &factor);
printf("From? ");
scanf("%d", &start);
printf("To? ");
scanf("%d", &finish);
printf("\n");
for (int m = start; m <= finish; m++)

printf("%2d x %d = %2d\n", m, factor, m * factor);

To cater for bigger numbers, we would need to increase the field width of 2 in the
printf statement if we want the numbers to line up neatly.

Comment on Program P5.15

The program assumes that start is less than or equal to finish. What if this is not
so? For example, suppose the user enters 20 for start and 15 for finish. The for
statement becomes

for (int m = 20; m <= 15; m++)

m is set to 20; since this value is immediately bigger than the final value 15, the
body is not executed at all and the program ends with nothing printed.

To cater for this possibility, we can let the program validate the values of start
and finish to ensure that the ‘From’ value is less than or equal to the ‘To’ value.
One way of doing this is:

if (start > finish)
printf("Invalid data: From value is bigger than To value\n");
else {
printf("\n");
for (int m = start; m <= finish; m++)
printf("%2d x %d = %2d\n", m, factor, m * factor);
}

Validating data entered is yet another example of defensive programming. Also, it
is better to print a message informing the user of the error rather than have the
program do nothing. This makes the program more user-friendly.

121

C Programming — A Beginner's Course

5.12 Temperature conversion table

Some countries use the Celsius scale for measuring temperature while others use
the Fahrenheit scale. Suppose we want to print a table of temperature conversions
from Celsius to Fahrenheit. The table runs from 0°C to 100°C in steps of 10, thus:

/Ce'l sius Fahrenheit\

0 32
10 50
20 68
30 86
40 104
50 122
60 140
70 158
80 176
90 194

klOO 212 j

For a Celsius temperature, C, the Fahrenheit equivalent is 32 + 9C/5.

If we use ¢ to hold the Celsius temperature, we can write a for statement to let ¢
take on the values 0, 10, 20, ..., up to 100, with

for (c = 0; ¢ <= 100; ¢ += 10)

Each time the loop is executed, ¢ is incremented by 10. Using this, we write
Program P5.16 to produce the table.

Program P5.16

#include <stdio.h>
main() {
double ¢, f;
printf("Celsius Fahrenheit\n\n");
for (c = 0; ¢ <= 100; ¢ += 10) {
f=32+9*c/5;
printf("%5.0f %9.0f\n", c,)
}
}

An interesting part of the program are the printf statements. In order to get the
temperatures centred under the heading, we need to do some counting. Consider
the heading

Celsius Fahrenheit

with the C in column 1 and 2 spaces between s and F.

122

Writing programs using repetition logic

Assume we want the Celsius temperatures lined up under i and the Fahrenheit
temperatures lined up under n (see output above).

By counting, we find that i is in column 5 and n is in column 15.

From this, we can figure out that the value of ¢ must be printed in a field width of
5 (the first 5 columns) and the value of f must be printed in the next 10 columns.
We use a field width of 9 for f since there is already one space between f and %.

We print ¢ and f without a decimal point using 0 as the number of decimal places
in the format specification. If any temperature is not a whole number, the 0
specification will print it rounded to the nearest whole number, as in the table
below.

As an exercise, re-write Program P5.16 so that it requests threes values for start,
finish and incr and produces a conversion table with Celsius temperatures going
from start to finish in steps of incr. Follow the ideas of the previous section for
producing any multiplication table. For example, if start is 20, finish is 40 and
incr is 2, the program should produce (with Fahrenheit temperatures rounded to
the nearest whole number):

ﬁe'l sius Fahrenheih

20 68
22 72
24 75
26 79
28 82
30 86
32 90
34 93
36 97
38 100

k 40 104 /

As another exercise, write a program which produces a table from Fahrenheit to
Celsius. For a Fahrenheit temperature, F, the Celsius equivalent is 5(F - 32) /9.

5.13 The expressive power of for

In C, the for statement can be used for a lot more than just counting the number of
times a loop is executed. This is possible because <expr1>, <expr2> and <expr3> can
be any expressions; they are not even required to be related in any way. So, for
instance, <expr1> can be j = 1, <expr2> can test if a is equal to b and <expr3> can be
k++ or any other expression the programmer desires. The following is perfectly
valid:

for (j = 1, a == b; k++) <statement>

123

C Programming — A Beginner's Course

It is also possible to omit any of <expri>, <expr2> or <expr3>. However, the
semicolons must be included. Thus, to omit <expr3>, one can write

for (<exprl>; <expr2>;) <statement>
In this case,

(1) <expri> is evaluated; then

(2) <expr2> is evaluated. If it is false, execution continues after <statement>.
If it is true, <statement> is executed and this step (2) is repeated.

This is equivalent to

<exprl>;
while (<expr2>) <statement>

If, in addition, we omit <expri>, we will have

for (; expr2 ;) <statement> // note the semicolons

Now, <expr2> is evaluated. If it is false, execution continues after <statement>. If
it is true, <statement> is executed, followed by another evaluation of <expr2>, and
so on. The net effect is that <statement> is executed as long as <expr2> is true—
the same effect achieved by

while (<expr2>) <statement>

Most times, <expri> will initialize some variable, <expr2> will test it and <expr3>
will change it. But more is possible. For instance, the following is valid:

for (lo = 1, hi = n; lo <= hi; lo++, hi--) <statement>

Here, <expr1> consists of fwo assignment statements separated by a comma;
<expr3> consists of two expressions separated by a comma. This is very useful
when two variables are related and we want to highlight the relationship. In this
case, the relationship is captured in one place, the for statement. We can easily see
how the variables are initialized and how they are changed.

This feature comes in very handy when dealing with arrays. We will see examples
on pages 191 and 201. For now, we leave you with a simple example of printing
all pairs of integers which add up to a given integer, n.

The code is:

for (lo =1, hi=n-1; lo <= hi; lo++, hi--)
printf("%2d %2d\n", lo, hi);

If n is 10, this code will print

VTR WN R
V1O N 00 ©

124

Writing programs using repetition logic

The variables lo and hi are initialized to the first pair. After a pair is printed, lo is
incremented by 1 and hi is decremented by 1 to get the next pair. When lo passes
hi, all pairs have been printed.

Exercises 5

1. What is an end-of-data marker? Give the other names for it.

2. On page 58, problem 7, write the program to read several sets of prices and
discounts from a file. Choose an appropriate end-of-data marker. Also, print the
number of items and the total amount the customer must pay.

3. On page 58, problem 9, write the program to process data for several customers

from a file. Assume that the fixed charge and the rate per unit are the same for all
customers and are given on the first line. This is followed by the data for the
customers. Each set of data consists of two lines: a name on the first line and the
meter readings on the second line. The ‘name’ xxxx ends the data. Print the

information for the customers under a suitable heading. Also,

count how many customers were processed

print the total due to the electricity company

find the customer whose bill was the highest

4. On page 59, problem 12, write the program to process several sets of data from a

file. Each set of data consists of two lines: a name on the first line and gross salary,
deductions allowed and rate of tax on the second line. The ‘name’ xxxx ends the

data. Also,

count how many persons were processed

print totals for gross salary, tax deducted and net pay

find the person who earned the highest net pay

5.

On page 59, problem 16, write the program to convert several lengths. Choose an
appropriate end-of-data marker.

On page 82, problem 1, write the program to read several sets of hours worked and
cost of parts and, for each, print the charge for the job. Choose an appropriate end-
of-data marker. (You cannot choose O since either hours or parts could be 0). Also,
print the total charge for all jobs.

On pages 82-83, for problems 2, 3 and 9, write the programs to process several
pairs of weights, lengths and times.

A contest was held for the promotion of SuperMarbles. Each contestant was
required to guess the number of marbles in a jar. Write a program to determine the
Grand Prize winner (ignoring the possibility of a tie) based on the following:

The first line of data contains a single integer (answer, say) representing the actual
number of marbles in the jar. Each subsequent line contains a contestant’s ID
number (an integer) and an integer representing that contestant’s guess. The data is
terminated by a line containing O only.

The Grand Prize winner is that contestant who guesses closest to answer without
exceeding it. There is no winner if all guesses are too big.

Assume all data are valid. Print the number of contestants and the ID number of the
winner, if any.

125

C Programming — A Beginner's Course

The manager of a hotel wants to calculate the cost of carpeting the rooms in the
hotel. All the rooms are rectangular in shape. He has a file, rooms.txt, which
contains data for the rooms. Each line of data consists of the room number, the
length and breadth of the room (in metres), and the cost per square metre of the
carpet for that room. For example, the data line:

325 3.0 4.5 40.00
means that room 325 is 3.0 metres by 4. 5 metres, and the cost of the carpet for

that room is $40. 00 per square metre. The last line of the file contains O only,
indicating the end of the data.

Write a program to do the following, sending output to the file rooms.out:

* print a suitable heading and under it, for each room, print the room number, the
area of the room and the cost of the carpet for the room,;

* print the number of rooms processed;

* print the total cost of carpeting all the rooms;

* print the number of the room which will cost the most to carpet (ignore ties).

10.

11.

The price of an item is p dollars. Due to inflation, the price of the item is expected
to increase by r% each year. For example, the price might be $79.50 and inflation
might be 7.5%. Write a program which reads values for p and r, and, starting with
year 1, prints a table consisting of year and year-end price. The table ends when the
year-end price is at least twice the original price.

A fixed percentage of water is taken from a well each day. Request values for W
and P where

* W is the amount (in litres) of water in the well at the start of the first day

+ P is the percentage of the water in the well taken out each day

12.

13.

126

Write a program to print the number of the day, the amount taken for that day and
the amount remaining at the end of the day. The output should be terminated when
30 days have been printed or the amount remaining is less than 100 litres,
whichever comes first. For example, if W = 1000 and P = 10, the output should
start as follows:

Day Amount Amount

Taken Remaining
1 100 900
2 90 810
3 81 729

You are given a file containing an unknown amount of numbers. Each number is
one of the numbers 1 to 9. A number can appear zero or more times and can
appear anywhere in the file. The number O indicates the end of the data. Some
sample data are:

537774332226747722966666855379990

Write a program to read the data once and print the number which appears the most
in consecutive positions and the number of times it appears. Ignore the possibility
of a tie. For the above data, output should be 6 5.

Write a program to print the following 99 times:

When you have nothing to say, it is a time to be silent

Writing programs using repetition logic

14.
15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

Write a program to print 8 copies of your favourite song.

Write a program to print a table of squares from 1 to 10. Each line of the table
consists of a number and the square of that number.

Write a program to request a value for n and print a table of squares from 1 to n.

Write a program to request values for first and last, and print a table of squares
from first to last.

Write a program to print 100 mailing labels for

The Computer Store
57 First Avenue
San Fernando

Write a program to print a conversion table from miles to kilometres. The table
ranges from 5 to 100 miles in steps of 5. (1 mile = 1.61 km).

Write a program which requests a user to enter an amount of money. The program
prints the interest payable per year for rates of interest from 5% to 12% in steps of

0. 5%.

Write a program to request a value for n; the user is then asked to enter n numbers,
one at a time. The program calculates and prints the sum of the numbers. The
following is a sample run:

How many numbers? 3
Enter a number? 12
Enter a number? 25
Enter a number? 18

The sum of the 3 numbers is 55

Write a program to request an integer n from 1 to 9 and print a line of output
consisting of ascending digits from 1 to n followed by descending digits fromn - 1
to 1. For example, if n = 5, print the line

123454321

Solve problem 9, above, assuming that the first line of data contains the number of
rooms (7, say) to carpet. This is followed by 7 lines of data, one line for each room.

Solve problem 11, above, but this time print the table for exactly 30 days. In other
words, do not stop if the amount of water falls below 100 litres.

127

6 Working with characters

In this chapter, we will explain:

e some important features of character sets

e how to work with character constants and values

e how to declare character variables in C

e how you can use characters in arithmetic expressions
e how to read, manipulate and print characters

e how to test for end-of-line using \n

e how to test for end-of-file using EOF

e how to compare characters

e how to read characters from a file

e how to convert a number from character form to integer form

6.1 Character sets

Most of us are familiar with a computer or typewriter keyboard (called the
standard English keyboard). On it, we can type the letters of the alphabet (both
uppercase and lowercase), the digits and other ‘special’ characters like +, =, <, >,
& and %—these are the so-called printable characters.

On a computer, each character is assigned a unique integer value, called its code.
This code may be different from one computer to another depending on the
character set being used. For example, the code for A might be 33 on one
computer but 65 on another.

Inside the computer, this integer code is stored as a sequence of bits; for example,
the 6-bit code for 33 is 100001 and the 7-bit code for 65 is 1000001.

Nowadays, most computers use the ASCII (American Standard Code for
Information Interchange) character set for representing characters. This is a 7-bit
character standard which includes the letters, digits and special characters found
on a standard keyboard. It also includes control characters such as backspace, tab,
line feed, form feed and carriage return.

The ASCII codes run from 0 to 127 (the range of numbers which can be stored
using 7 bits). The ASCII character set is shown in Appendix B. Interesting
features to note are:

+ the digits 0 to 9 occupy codes 48 to 57
* the uppercase letters A to Z occupy codes 65 to 90

128

Working with characters

* the lowercase letters a to z occupy codes 97 to 122

Note, however, that even though the ASCII set is defined using a 7-bit code, it is
stored on most computers in 8-bit bytes—a 0 is added at the front of the 7-bit
code. For example, the 7-bit ASCII code for A is 1000001; on a computer, it is
stored as 01000001, occupying one byte.

In this book, as far as is possible, we will write our programs making no
assumptions about the underlying character set. Where it is unavoidable, we will
assume that the ASCII character set is used. For instance, we may need to assume
that the uppercase letters are assigned consecutive codes; similarly for lowercase
letters. This may not necessarily be true for another character set. Even so, we
will not rely on the specific values of the codes, only that they are consecutive.

6.2 Character constants and values

A character constant is a single character enclosed in single quotes such as 'A', '+'
and '5'. Some characters cannot be represented like this because we cannot type
them or because they play a special role in C (e.g. ', \). For these, we use an
escape sequence (page 16) enclosed in single quotes. For example,

"\n' newline character, code 10

"\f' new page (formfeed) character, code 12

\t' tab character, code 9

\" single quote (quote, backslash, quote, quote), code 39
"\ backslash, code 92

The character constant "\O' is special in C; it is the character whose code is 0,
normally referred to as the null character. One of its special uses is to indicate the
end of a string in memory (see page 196).

The character value of a character constant is the character represented, without
the single quotes. Thus, the character value of 'T' is T and the character value of

"\ is \.

A character constant has an integer value associated with it—the numeric code of
the character represented. Thus, the integer value of 'T' is 84 since the ASCII code
for T is 84. The integer value of "\\' is 92 since the ASCII code for \ is 92. And
the integer value of "\n' is 10 since the ASCII code for the newline character is

10.

We could print the character value using the specification %c in printf and we
could print the integer value using %d. For example, the statement

printf("Character: %c, Integer: %d\n", 'T', 'T");
will print
Character: T, Integer: 84

129

C Programming — A Beginner’s Course

6.3 The type char

In C, we use the keyword char to declare a variable in which we wish to store a
character. For example:

char ch;

declares ch as a character variable. We could, for instance, assign a character
constant to ch, as in:

ch="R"; //assign the letter R to ch
ch ="'\n'; //assign the newline character, code 10, to ch

We could print the character value of a character variable using %c in printf. And
we could print the integer value of a character variable using %d. For instance,

ch="T"
printf("Mr. %c\n", ch);
printf("Mr. %d\n", ch);

will print

Mr. T
Mr. 84

6.4 Characters in arithmetic expressions

C allows us to use variables and constants of type char directly in arithmetic
expressions. When we do, it uses the integer value of the character. For example,
the statement

intn="A"+3;
assigns 68 to n since the code for 'A' is 65.
Similarly, we can assign an integer value to a char variable. For example,
char ch = 68;
.IS.this case, “the character whose code is 68 is assigned to ch; this character is
For a more useful example, consider the following:
intd="'5"-"0";
5 is assigned to d since the code for '5' is 53 and the code for '0' is 48.

Take note that the code for a digit in character form is not the same as the value
of the digit; for instance, the code for the character '5"' is 53 but the value of the
digit 5 is 5. Sometimes we know that a character variable contains a digit and we
want to get the (integer) value of the digit.

130

Working with characters

The above statements show how we can get the value of the digit—we simply
subtract the code for '0' from the code for the digit. It does not matter what the

actual codes for the digits are; it matters only that the codes for 0 to 9 are
consecutive. (Exercise: check this for yourself assuming a different set of code
values for the digits).

In general, if ch contains a digit character ('0' to '9'), we can obtain the integer
value of the digit with the statement

d=ch-'0";

Suppose ch contains an uppercase letter and we want to convert it to its equivalent
lowercase letter. For example, assume ch contains 'H' and we want to change it to
'h'. First we observe that the ASCII codes for 'A' to 'Z' range from 65 to 90 and
the codes for 'a' to 'z' range from 97 to 122. We further observe that the
difference between the codes for the two cases of a letter is always 32; for
example,

‘r'-'R'=114-82=32
Hence we can convert a letter from uppercase to lowercase by adding 32 to the
uppercase code. This can be done with

ch=ch+32;

If ch contains 'H' (code 72), the above statement adds 32 to 72 giving 104; the
“character whose code is 104” is assigned to ch, that is, 'h'. We have changed the
value of ch from 'H' to 'h'. Conversely, to convert a letter from lowercase to
uppercase, we subtract 32 from the lowercase code.

By the way, we do not really need to know the codes for the letters. All we need is
the difference between the uppercase and lowercase codes. We can let C tell us
what the difference is by using 'a’ - 'A’, like this:

ch=ch+'a"-'A";
This works no matter what the actual codes for the letters are. It assumes, of

course, that ch contains an uppercase letter and the difference between the
uppercase and lowercase codes is the same for all letters.

6.5 Reading and printing characters

Many programs revolve around the idea of reading and writing one character at a
time and developing the skill of writing such programs is a very important aspect
of programming. We can use scanf to read a single character from the standard
input (the keyboard) into a char variable (ch, say) with:

scanf("%c", &ch);

131

C Programming — A Beginner’s Course

The next character in the data is stored in ch. It is very important to note a big
difference between reading a number and reading a character. When reading a
number, scanf will skip over any amount of whitespace until it finds the number.
When reading a character, the very next character (whatever it is, even a space) is
stored in the variable.

While we can use scanf, reading a character is important enough that C provides a
special function' getchar for reading characters from the standard input. For the
most part, we can think that getchar returns the next character in the data.
However, strictly speaking, it returns the numeric code of the next character. For
this reason, it is usually assigned to an int variable, as in:

int ¢ = getchar(); // the brackets are required
However, it can also be assigned to a char variable, as in:
char ch = getchar(); // the brackets are required

To be precise, getchar returns the next byte in the data—to all intents and
purposes, this is the next character. If we call getchar when there is no more data,
it returns the value -1.

To be more precise, it returns the value designated by the symbolic constant EOF
(all uppercase) defined in stdio.h. This value is usually, though not always, -1.
The actual value is system-dependent but EOF will always denote the value
returned on the system on which the program is run. We can, of course, always
find out what value is returned by printing EOF, thus:

printf("Value of EOF is %d \n", EOF);
To give an example, consider the statement:
char ch = getchar();

and suppose the data typed by the user is:
Hello

When ch = getchar() is executed, the first character H is read and stored in ch. We
can then use ch in whatever way we like. Suppose we just want to print the first
character read. We could use:

printf("%c \n", ch);

This would print:
H

on a line by itself. We could, of course, label our output with:
printf("The first character is %c \n", ch);

which would print:
The first character is H

'Strictly speaking, getchar is what’s called a macro, but the distinction is not important for our
purposes

132

Working with characters

Finally, we don’t even need ch. If all we want to do is print the first character in
the data, we could do so with:

printf("The first character is %c \n", getchar());

If we want to print the numeric code of the first character, we could do so by
using the specification %d instead of %c. These ideas are incorporated in Program

P6.1.

Program P6.1

//read the first character in the data, print it,
//its code and the value of EOF
#include <stdio.h>
main() {
printf("Type some data and press 'Enter' \n");
char ch = getchar();
printf("\nThe first character is %c \n", ch);
printf("Its code is %d \n", ch);
printf("Value of EOF is %d \n", EOF);
}

The following is a sample run:

Type some data and press 'Enter'
Hello

The first character is H
Its code is 72
value of EOF is -1

A word of caution: we might be tempted to write

printf("The first character is %c \n", getchar());
printf("Its code is %d \n", getchar()); // wrong

But if we did, and assuming that Hello is typed as input, these statements will
print:

The first character is H

Its code 1is 101
Why? In the first printf, getchar returns H which is printed. In the second printf,
getchar returns the next character which is e; it is €’s code (101) that is printed.

In Program P6.1, we could use an int variable (n, say) instead of ch and the
program would work in an identical manner. If an int variable is printed using %c,

the last (rightmost) 8 bits of the variable are interpreted as a character and this
character is printed. For example, the code for H is 72 which is 01001000 in

133

C Programming — A Beginner’s Course

binary, using 8 bits. Assuming n is a 16-bit int, when H is read, the value assigned
to n will be

00000000 01001000

If n is now printed with %c, the last 8 bits will be interpreted as a character which,
of course, is H.

Similarly, if an int value n is assigned to a char variable (ch, say), the last 8 bits of
n will be assigned to ch.

As mentioned, getchar returns the integer value of the character read. What does
it return when the user presses “Enter” or “Return” on the keyboard? It returns
the newline character \n, whose code is 10. This can be seen using Program P6.1.

When the program is waiting for you to type data, if you press the “Enter” or
“Return” key only , the first lines of output would be:

The first character is
Its code 1is 10

Why the blank line? Since ch contains \n, the statement
printf("\nThe first character is %c \n", ch);

is effectively the same as (%c replaced by the value of ch)
printf("\nThe first character is \n \n");

The \n after is ends the first line and the last \n ends the second line, effectively
printing a blank line. Note, however, that the code for \n is printed correctly.

In Program P6.1, we read just the first character. If we want to read and print the
first 3 characters, we could do this with Program P6.2.

Program P6.2

//read and print the first 3 characters in the data
#include <stdio.h>
main() {
printf("Type some data and press 'Enter' \n");
for (int j=1; j<=3; j++) {
char ch = getchar();
printf("Character %d is %c \n", j, ch);
}
}

The following is a sample run of the program:

134

Working with characters

Type some data and press 'Enter'
Hi, how are you?
Character 1 is H
Character 2 is i
Character 3 is ,

If we want to read and print the first 20 characters, all we have to do is change 3
to 20 in the for statement.

Suppose the first part of the data line contains an arbitrary number of blanks. How
do we find and print the first non-blank character? Since we do not know how
many blanks to read, we cannot say something like “read 7 blanks, then the next
character”.

More likely, we need to say something like “as long as the character read is a
blank, keep reading”. We have the notion of doing something (reading a
character) as long as some ‘condition’ is true; the condition here is whether the
character is a blank. This can be expressed more concisely as follows:

read a character
while the character read is a blank
read the next character

Program P6.3 shows how to read the data and print the first non-blank character.
(This code will be written more concisely later in this section).

Program P6.3

//read and print the first non-blank character in the data
#include <stdio.h>
main() {
printf("Type some data and press 'Enter' \n");
char ch = getchar(); // get the first character
while (ch=="") // as long as ch is a blank
ch = getchar(); // get another character

printf("The first non-blank is %c \n", ch);
}

The following is a sample run of the program (¢ denotes a blank):

Type some data and press 'Enter'
oooHello)
The first non-blank is H

The program will locate the first non-blank character regardless of how many
blanks precede it.

135

C Programming — A Beginner’s Course

As a reminder of how the while statement works, consider the following portion
of code from Program P6.3 with different comments:

char ch = getchar(); //executed once; gives ch a value
// to be tested in the while condition
while (ch=="")
ch = getchar(); //executed as long as chis ' '

and suppose the data entered is (¢ denotes a space):
oooHello

The code will execute as follows:

1. the first character is read and stored in ch; it is a blank
the while condition is tested; it is true

3. the while body ch = getchar(); is executed and the second character is read
and stored in ch; it is a blank

the while condition is tested; it is true

5. the while body ch = getchar(); is executed and the third character is read
and stored in ch; it is a blank

6. the while condition is tested; it is true

7. the while body ch = getchar(); is executed and the fourth character is read
and stored in ch; it is H

8. the while condition is tested; it is false
9. control goes to the printf which prints
The first non-blank is H

What if H was the first character in the data? The code will execute as follows:

1. the first character is read and stored in ch; it is H
2. the while condition is tested; it is false
3. control goes to the printf which prints

The first non-blank is H

It still works! If the while condition is false the first time it is tested, the body is
not executed at all.

As another example, suppose we want to print all characters up to, but not
including, the first blank. To do this, we could use Program P6.4 (next page).

The following is a sample run of the program:

Type some data and press 'Enter'

wWay to go
W
a
y

136

Working with characters

Program P6.4

//print all characters before the first blank in the data
#include <stdio.h>
main() {
printf("Type some data and press 'Enter' \n");
char ch = getchar(); // get the first character
while (ch 1= "' ") { // as long as ch is NOT a blank
printf("%c \n", ch); // print it
ch = getchar(); // and get another character
}
}

The body of the while consists of two statements. These are enclosed by { and } to
satisfy C’s rule that the while body must be a single statement or a block. Here,
the body is executed as long as the character read is not a blank—we write the
condition using != (not equal to).

If the character is not a blank, it is printed and the next character read. If that is
not a blank, it is printed and the next character read. If that is not a blank, it is
printed and the next character read. And so on, until a blank character is read,
making the while condition false, causing an exit from the loop.

We would be amiss if we didn’t enlighten you about some of the expressive
power in C. For instance, in Program P6.3, we could have read the character and
tested it in the while condition. We could have rewritten the following three lines:

ch = getchar(); // get the first character
while (ch=="") // as long as ch is a blank
ch = getchar(); // get another character
as one line
while ((ch = getchar()) ==""); // get a character and test it

ch = getchar() is an assignment expression whose value is the character assigned
to ch, that is, the character read. This value is then tested to see if it is a blank. The
brackets around ch = getchar() are required since == has higher precedence than
=, Without them, the condition would be interpreted as ch = (getchar() =="'"). This
would assign the value of a condition (which, in C, is O for false or 1 for true) to
the variable ch; this is not what we want.

Now that we have moved the statement in the body into the condition, the body is
empty; this is permitted in C. The condition would now be executed repeatedly
until it becomes false.

To give another example, in Program 6.4, the code

137

C Programming — A Beginner’s Course

char ch = getchar(); // get the first character

while (ch =" ") { // as long as ch is NOT a blank
printf("%c \n", ch); // print it
ch = getchar(); // and get another character
}

could be re-coded as (assuming ch is declared before the loop)

while ((ch = getchar()) != ' ') // get a character
printf("%c \n", ch); // print it if non-blank; repeat

Now that the body consists of just one statement, the braces are no longer
required. Five lines have been reduced to two.

6.6 Counting characters

Program P6.3 prints the first non-blank character. Suppose we want to count how
many blanks there were before the first non-blank. We could use an integer
variable numBlanks to hold the count. Program P6.5 is the modified program for
counting the leading blanks.

Program P6.5

//find and print the first non-blank character in the data;
// count the number of blanks before the first non-blank
#include <stdio.h>
main() {
char ch;
int numBlanks = O;
printf("Type some data and press 'Enter’ \n");
while ((ch = getchar())==""') // repeat as long as ch is blank
numBlanks++; // add 1 to humBlanks
printf("The number of leading blanks is %d \n", numBlanks);
printf("The first non-blank is %c \n", ch);

The following is a sample run of the program (¢ denotes a space):

Type some data and press 'Enter'
ooooHel 1o

The number of leading blanks is 4
The first non-blank is H

Comments on Program P6.5:

* numBlanks is initialized to 0 before the while loop.

138

Working with characters

* numBlanks is incremented by 1 inside the loop so that numBlanks is
incremented each time the loop body is executed. Since the loop body is
executed when ch contains a blank, the value of numBlanks is always the

number of blanks read so far.

* When we exit the while loop, the value in numBlanks will be the number of

blanks read. This value is then printed.

* Observe that if the first character in the data were non-blank, the while
condition would be immediately false and control will go directly to the first

printf statement with numBlanks having the value 0. The program will print,

correctly:

The number of Teading blanks is 0

Counting characters in a line

Suppose we want to count the number of characters in a line of input. Now we
must read characters until the end of the line. How does our program test for end-
of-line? Recall that when the “Enter” or “Return” key is pressed by the user, the
newline character, \n, is returned by getchar. The following while condition

reads a character and tests for \n.

while ((ch = getchar()) = "\n")

Program P6.6 reads a line of input and counts the number of characters in it, not

counting the “end-of-line” character.

Program P6.6

//count the number of characters in the input line
#include <stdio.h>
main() {

char ch;

int numChars = 0O;

printf("Type some data and press 'Enter' \n");

numChars++; // add 1 to humChars
printf("The number of characters is %d \n", numChars);

while ((ch = getchar()) != '\n") // repeat as long as ch is not \n

The main difference between this and Program P6.5 is that this one reads

characters until the end of the line rather than until the first non-blank. A sample

run is:

Type some data and press 'Enter'
One moment in time _
The number of characters is 18

139

C Programming — A Beginner’s Course

6.7 Counting blanks in a line of data

Suppose we want to count all the blanks in a line of data. We must still read
characters until the end of the line is encountered. But now, for each character
read, we must check whether it is a blank. If it is, the count is incremented. We
would need two counters—one to count the number of characters in the line and
the other to count the number of blanks. The logic could be expressed as:

set number of characters and number of blanks to O
while we are not at the end-of-line

read a character

add 1 to number of characters

if character is a blank then add 1 to nhumber of blanks
endwhile

This logic is implemented as shown in Program P6.7.

Program P6.7

//count the number of characters and blanks in the input line
#include <stdio.h>
main() {
char ch;
int numChars = O;
int numBlanks = O;
printf("Type some data and press 'Enter' \n");
while ((ch = getchar()) = ‘\n'){ // repeat as long as ch is not \n
numChars++; // add 1 o numChars
if (ch=="")numBlanks++, // add 1 if ch is blank
}
printf("The number of characters is %d \n", numChars);
printf("The number of blanks is %d \n", numBlanks);

}

A sample run is:

Type some data and press 'Enter'
One moment in time

The number of characters is 18
The number of blanks is 3

The if statement tests the condition ch==""; if it is true (that is, ch contains a
blank), numBlanks is incremented by 1. If it is false, numBlanks is not
incremented; control would normally go to the next statement within the loop but
there is none (the if is the last statement). Therefore, control goes back to the top
of the while loop, where another character is read and tested for \n.

140

Working with characters

6.8 Comparing characters

Characters can be compared using the relational operators ==, I=, <, <=, > and
>=. We’ve compared the char variable ch with a blank using ch==""and ch!="".

Let us now write a program to read a line of data and print the ‘largest’ character,
that is, the character with the highest code. For instance, if the line consisted of
English words, the letter which comes latest in the alphabet would be printed.
(Recall, though, that lowercase letters have higher codes than uppercase letters so
that, for instance, 'g' is greater than 'T").

‘Finding the largest character’ involves the following steps:

» Choose a variable to hold the largest value; we choose bigChar.

* Initialize bigChar to a very small value. The value chosen should be such that
no matter what character is read, its value would be greater than this initial
value. For characters, we normally use "\O'—the null character, the ‘character’
with a code of 0.

* As each character (ch, say) is read, it is compared with bigChar; if ch is greater
than bigChar, then we have a ‘larger’ character and bigChar is set to this new
character.

e When all the characters have been read and checked, bigChar will contain the
largest one.

These ideas are expressed in Program P6.8.

Program P6.8

//read a line of data and find the 'largest’ character
#include <stdio.h>
main() {
char ch, bigChar = '\0";
printf("Type some data and press 'Enter' \n");
while ((ch = getchar()) = "\n")
if (ch > bigChar) bigChar = ch; // is this character bigger?

printf("\nThe largest character is %c \n", bigChar);
}

The following is a sample run; u is printed since its code is the highest of all the
characters typed.

Type some data and press 'Enter’
Where The Mind Is Without Fear

The largest character is u

141

C Programming — A Beginner’s Course

6.9 Reading characters from a file

In our examples so far, we have read characters typed at the keyboard. If we want
to read characters from a file, input.txt, say, we must declare a file pointer (in,
say) and associate it with the file using

FILE * in = fopen("input.txt", "r");

If you need to refresh your memory, see page 100. Once this is done, we could
read the next character from the file into a char variable (ch, say) with

fscanf(in, "%c", &ch);

However, C provides the more convenient function getc (get a character) for
reading a character from a file. It is used as follows:

ch = getc(in);

getc takes one argument, the file pointer (not the name of the file). It reads and
returns the next character in the file. If there are no more characters to read, getc
returns EOF. Thus, getc works exactly like getchar except that getchar reads
from the keyboard while getc reads from a file.

To illustrate, let us write a program which reads one line of data from a file,
input.txt, and prints it on the screen. This is shown as Program P6.9.

Program P6.9

#include <stdio.h>
main() {
char ch;
FILE *in = fopen("input.txt", "r");
while ((ch = getc(in)) != "\n")
putchar(ch);
putchar('\n");
fclose(in);

This program uses the standard function® putchar to write a single character to
the standard output. It takes a character value as its only argument and writes the
character in the next position in the output. However, if the character is a control
character, the effect of the character is produced. For example, putchar(\n") will
end the current output line, the same effect as if “Enter” or “Return” is pressed.

The program reads one character at a time from the file and prints it on the screen
using putchar. It does this until \n is read, indicating that the entire line has been
read. On exit from the while loop, it uses putchar('\n’) to terminate the line on the
screen.

? Like getchar, putchar is a macro but the distinction is not important for our purposes

142

Working with characters

Be careful, though. This program assumes that the line of data is terminated by an
end-of-line character, \n (generated when you press “Enter” or “Return”).
However, if the line is not terminated by \n, the program will ‘hang’—it will be
caught in a loop from which it cannot get out (we say it will be caught in an
infinite loop). Why?

Because the while condition ((ch = getc(in)) !="\n") will never become false (this
happens when ch is '\n') since there is no \n to be read. But, as discussed on page

132, when we reach the end-of-file, the value returned by getchar, and now also
by getc, is the symbolic constant EOF defined in stdio.h. Knowing this, we could
easily fix our problem by testing for \n and EOF in the while condition, thus:

while ((ch = getc(in)) = "\n' && ch |= EOF)

Even if \n is not present, getc(in) will return EOF when the end of the file is
reached, and the condition ch != EOF would be false, causing an exit from the
loop.

Writing characters to a file
Suppose we want to write characters to a file, output.txt, say. As always, we must
declare a file pointer (out, say) and associate it with the file using
FILE * out = fopen("output.txt", "w");
If ch is a char variable, we can write the value of ch to the file with
fprintf(out, "%c", ch);

C also provides the function putc (put a character) to do the same job. To write
the value of ch to the file associated with out, we must write:

putc(ch, out);

Note that the file pointer is the second argument to putc.

Example — echo the input, number the lines

Let us expand the example on the previous page to read data from a file and write
back the same data (echo the data) to the screen with the lines numbered starting
from 1.

The program would read the data from the file and write it to the screen, thus:

1. First Tine of data
2. Second line of data
etc.

This problem is a bit more difficult than those we have met so far. When faced
with such a problem, it is best to tackle it a bit at a time, solving easier versions of
the problem and working your way up to solving the complete problem.

143

C Programming — A Beginner’s Course

For this problem, we can first write a program which simply echoes the input
without numbering the lines. When we get this right, we can tackle the job of
numbering the lines.

An outline of the algorithm for this first version is:

read a character, ch

while ch is not the end-of-file character
print ch
read a character, ch

endwhile

This will maintain the line structure of the data file since, for instance, when \n is

read from the file, it is immediately printed to the screen, forcing the current line
to end.

Program P6.10 implements the above algorithm for reading the data from a file
and printing an exact copy on the screen.

Program P6.10

#include <stdio.h>
main() {
char ch;
FILE *in = fopen("input.txt", "r");
while ((ch = getc(in)) |= EOF)
putchar(ch);

fclose(in);

}

Now that we can echo the input, we need only figure out how to print the line
numbers. A simplistic approach is based on the following outline:

set lineNo to 1
print lineNo
read a character, ch
while ch is not the end-of-file character
print ch
read a character, ch
if chis \n
add 1 to lineNo
print lineNo
endif
endwhile

We have simply added the statements which deal with the line numbers to the
algorithm above. We can easily add the code that deal with the line numbers to

144

Working with characters

Program P6.10 to get Program P6.11. Note that when we print the line number,
we do not terminate the line with \n since the data must be written on the same

line as the line number.

Program P6.11

#include <stdio.h>

main() {
char ch;
FILE *in = fopen("input.txt", "r");
int lineNo = 1;

printf("%d. ", lineNo);
while ((ch = getc(in)) != EOF) {
putchar(ch);
if (ch=="\n"){
lineNo++;
printf("%d. ", lineNo);
}
}
fclose(in);

}

//This program prints the data from a file numbering the lines

Assuming that the input file contains

There was a little girl
who had a Tittle curl
Right in the middle of her forehead

Program P6.11 will print:

. There was a Tittle girl
who had a 1ittle curl

DAWN R

Right in the middle of her forehead

Almost, but not quite, correct! The little glitch is that we print an extra line
number at the end. To see why, look at the if statement. When \n of the third data
line is read, 1 would be added to lineNo, making it 4, which is printed by the next
statement. This printing of an extra line number also holds if the input file is
empty, since line number 1 would be printed in this case, but there is no such line.

To get around this problem, we must delay printing the line number until we are
sure that there is at least one character on the line. We will use an int variable
writeLineNo, initially set to 1. If we have a character to print and writeLineNo is
1, the line number is printed and writeLineNo is set to 0. When writeLineNo is O,

all that happens is that the character just read is printed.

145

C Programming — A Beginner’s Course

When \n is printed to end a line of output, writeLineNo is set to 1. If it turns out
that there is a character to print on the next line, the line number will be printed
first since writeLineNo is 1. If there are no more characters to print, nothing
further is printed; in particular, the line number is not printed.

Program P6.12 contains all the details. When run, it will number the lines without
printing an extra line number.

Program P6.12

//This program prints the data from a file numbering the lines
#include <stdio.h>
main() {
char ch;
FILE *in = fopen("input.txt", "r");
int lineNo = O, writeLineNo = 1;
while ((ch = getc(in)) I= EOF) {
if (writelLineNo) {
printf("%d. ", ++lineNo);
writeLineNo = O;
}
putchar(ch);
if (ch == "\n") writeLineNo = 1;
}

fclose(in);

We wrote the if condition as if (writeLineNo). If writeLineNo is 1 the condition
evaluates to 1 and is, therefore, true; if it is 0, the condition is false. We could
also have written the condition as if (writeLineNo ==1).

In the statement
printf("%d. ", ++lineNo);

the expression ++lineNo means that lineNo is incremented first before being
printed. By comparison, if we had used lineNo++, then lineNo would be printed
first and then incremented.

Exercise: Modify Program P6.12 to send the output to a file, linecopy.txt.

Exercise: Write a program to copy the contents of a file, input.txt, to a file,
copy.txt. Hint: you just need to make minor changes to Program P6.10.

146

Working with characters

6.10 Converting digit characters to an integer

Let us consider how we can convert a sequence of digits into an integer. When we
type the number 385, we are actually typing three individual characters — '3
then '8"' then '5'. Inside the computer, the integer 385 is completely different
from the three characters '3"' '8"' '5'. So when we type 385 and try to read it
into an int variable, the computer has to convert this sequence of three characters
into the integer 385.

To illustrate, the 8-bit ASCII codes for the characters '3', '8' and '5' are
00110011, 00111000 and 00110101, respectively. When typed to the screen or
a file, the digits 385 are represented by

00110011 00111000 00110101

Assuming an integer is stored using 16 bits, the integer 385 is represented by its
binary equivalent
0000000110000001

Observe that the character representation is quite different from the integer
representation. When we ask scanf (or fscanf) to read an integer that we type, it
must convert the character representation to the integer representation. We now
show how this is done.

The basic step requires us to convert a digit character into its equivalent integer
value; for example, we must convert the character '5' (represented by
00110101) into the integer 5 (represented by 0000000000000101).

Assuming that the codes for the digits O to 9 are consecutive (as they are in ASCII
and other character sets), this can be done as follows:

integer value of digit = code for digit character - code for character 'O’

For example, in ASCII, the code for '5"' is 53 and the code for '0' is 48.
Subtracting 48 from 53 gives us the integer value (5) of the character '5"'. Once
we can convert individual digits, we can construct the value of the number as we
read it from left to right, using the following algorithm:

set num to O

get a character, ch

while ch is a digit character
convert ch to the digit value, d = ch - 'O
set num to num*10 + d
get a character, ch

endwhile

num now contains the integer value

The sequence of characters 385 is converted as follows:

num = 0
get '3"; convert to 3
num = hum*10 + 3 = 0*10 + 3; num is now 3

147

C Programming — A Beginner’s Course

get '8'; convert to 8

num = hum*10 + 8 = 3*10 + 8; num is now 38
get 'B'; convert to 5

num = num*10 + 5 = 38*10 + 5; num is now 385

There are no more digits and the final value of num is 385.

Let us use this idea to write a program which reads data character by character
until it finds an integer. It constructs and then prints the integer.

The program will have to read characters until it finds a digit, the first of the
integer. Having found the first digit, it must construct the integer by reading
characters as long as it keeps getting a digit. For example, if the data was

Number of items: 385, all in good condition

the program will read characters until it finds the first digit, 3. It will construct the
integer using the 3 and then reading 8 and 5. When it reads the comma, it knows
the integer has ended.

This outline can be expressed in pseudocode by

read a character, ch
while ch is not a digit do
read a character, ch
endwhile
//at this point, ch contains a digit
while ch is a digit do
use ch to build the integer
read a character, ch
endwhile
print the integer

How do we test if the character in ch is a digit? We must test if
ch>='0" && ch«= "9’

If this is true, we know that the character is between 'O' and '9', inclusive.
Conversely, to test if ch is not a digit, we can test if

ch<'0" || ch>"9'
Putting all these ideas together gives us Program P6.13 (next page).

A sample run is shown below:

Type data including a number and press "Enter"
hide the number &(%%)7085&* (& here
Number is 7085

This program will find the number, no matter where it is hidden in the line.

148

Working with characters

Program P6.13

#include <stdio.h>
main() {
char ch = getchar();
// as long as the character is not a digit, keep reading
while (ch<'0" || ch>'9") ch = getchar() ;
// at this point, ch contains the first digit of the number
int num = O;
while (ch >= '0" && ch <= '9") { // as long as we get a digit
num = num * 10 + ch - '0"; // update num
ch = getchar();
}
printf("Number is %d\n", num);
}

Exercises 6

1.

e S B A

10.

11.
12.
13.

14.

15.
16.

Give the range of ASCII codes for (a) the digits (b) the uppercase letters (c¢) the
lowercase letters.

How is the single quote represented as a character constant?
What is the character value of a character constant?

What is the numeric value of a character constant?

How is the expression 5 + 'T' evaluated? What is its value?
What value is assigned ton by n =7 + 't'?

What character is stored in ch by ch =4 + 'n'?

Ifch="8", what value is assigned to d by d = ch - '0'?

If ch contains any uppercase letter, explain how to change ch to the equivalent
lowercase letter.

If ch contains any lowercase letter, explain how to change ch to the equivalent
uppercase letter.

Write a program to request a line of data and print the first digit on the line.
Write a program to request a line of data and print the first letter on the line.

Write a program to request a line of data and print the number of digits and letters
on the line.

Write a program to read a passage from a file and print how many times each
vowel appears.

Modify Program P6.13 so that it will find negative integers as well.

Write a program which reads a file containing a C program and outputs the
program to another file with all the // comments removed.

149

C Programming — A Beginner’s Course

17.

18.

19.
20.

150

Write a program to read the data, character by character, and store the next number
(with or without a decimal point) in a double variable (dv, say). For example,
given the data

Mary works for $43.75 per hour

your program should store 43.75 in dv.

In the programming language Pascal, comments can be enclosed by { and } or by (*
and *). Write a program which reads a data file input.pas containing Pascal code
and writes the code to a file output.pas, replacing each { with (* and each } with
*). For example, the statements

read(ch); {get the first character}
whilech="'"do {as long as ch is a blank}
read(ch); {get another character}

writeln(' The first non-blank is ', ch);

should be converted to

read(ch); (*get the first character™)
whilech=""do (*as long as ch is a blank*)
read(ch); (*get another character™)

writeln(' The first non-blank is ', ch);

As in 18, but remove the comments altogether.
Someone has typed a letter in a file letter.txt, but does not always start the word

after a period with a capital letter. Write a program to copy the file to another file
format.txt so that all words after a period now begin with a capital letter. For

example, the text

Things are fine. we can see you now. let us know when is a good time.
bye for now.

must be re-written as

Things are fine. We can see you now. Let us know when is a good time.
Bye for now.

7 Functions

In this chapter, we will explain:

e why functions are important in programming
e how to write functions

e what happens when a function is called

e where functions are placed in a program

e some important concepts relating to functions using several examples

So far, all our programs have consisted of a single function called main.
However, we have made use of predefined C functions such as printf, scanf,
strcpy and fopen. When we run a program, it starts executing with the first
statement in main and ends when it reaches the last statement.

As we have seen, it is possible to write reasonably useful programs with only
main. However, there are many limitations to this approach. The problem to be
solved may be too complex to be solved with one function. We may need to break
it up into subproblems and try to solve each of these individually. It would be
impractical to solve all the subproblems in one function. It might be better to
write a separate function to solve each subproblem.

Also, we may want to reuse the solution to common problems. It would be
difficult to reuse a solution if it is part of the solution to a bigger problem. For
example, if we need the highest common factor (HCF) of two numbers in several
places, it would be best to write a routine which works out the HCF of two given
numbers; we call this routine whenever we need to find the HCF of two numbers.

A well-written function performs some well-defined task; for example, skip a
specified number of lines in the output or arrange some numbers in ascending
order. However, quite often, a function also returns a value; for example,
calculate the salary of a person and return the answer or play one turn of a game
and return the score for that turn. The value returned is normally used at the point
from which the function was called.

On page 108, we used the string function stremp which returns a value which tells
us the result of comparing two strings. And we have used getchar and getc to
return the next character in the input.

We are now ready to learn how to write our own functions (called user-defined
functions) and we will see several examples in the rest of this book.

151

C Programming — A Beginner’s Course

7.1 skipLines

We have seen that we can use \n in a printf statement to print a blank line. For
example, the statement

printf("%d\n\n%d\n", a, b);

will print a on one line, skip one line and print b on the next line. We can usually
skip any number of lines by writing the appropriate number of \n’s in the printf

statement.

Sometimes we may want to skip 3 lines, sometimes 2 lines, sometimes 5 lines,
and so on. It would be nice if there was a statement we could use to skip any
number of lines we want. For instance, to skip 3 lines, we should be able to write:

skipLines(3);
and to skip 5 lines, we write:
skipLines(b);

What we want is a function called skipLines which takes an integer argument (n,
say) and skips n lines. In C, we write this function as follows:

void skipLines(int n) {
for (int j = 1; j <= n; j++)
printf("\n");

Observe that the structure of the function is similar to the structure of main. It
consists of a header (the first line, except {) followed by the body enclosed in
braces. The word void indicates that the function does not return a value and
(int n) defines n as an integer parameter. When the function is called, we must
supply it with an integer value to match the parameter n.

This is the definition of the function skipLines. We use the function by calling it
when we write a statement such as:

skipLines(3);

in main®. We say that we call (or invoke) the function with the argument” 3. The
“call” is executed as follows:

* The value of the argument is determined. In this case, it is just the constant 3
but, in general, it could be an expression.

* A function can normally be called from any other function but, to focus our discussion, we will
assume it is called from main.

% In this book, we use the term ‘parameter’ when referring to the definition of the function and the
term ‘argument’ when the function is called. Others use the terms interchangeably

152

Functions

* The value is copied to a temporary memory location. This location is passed to
the function where it is labelled with the name of the parameter, n. In effect,
the parameter variable n is set to the value of the argument. We can picture this
as:

n 3

* The body of the function is executed. In this case, since n is 3, the for loop
becomes for (int j = 1; j <= 3; j++) and it prints \n three times.

* When the function is finished, the location containing the argument is
discarded and control returns to main to the statement following skipLines(3).

Note that we can get skipLines to print a different number of blank lines by
supplying a different argument when we call it.

When the value of an argument is passed to a function, we say the argument is
passed “by value”. In C, arguments are passed “by value”.

7.2 A program with a function

We write Program P7.1 to show how sRipLines fits into a complete program.

Program P7.1

#include <stdio.h>
main() {
void skipLines(int);
printf("Sing a song of sixpence\n");
skipLines(2);
printf("A pocket full of rye\n");
}

void skipLines(int n) {
for (int j = 1; j<= n; j++)
printf("\n");

When we wish to use a variable in main, we must declare the variable in main.
Similarly, if we want to use skipLines in main, we must tell C about it using what
is called a function prototype. A function prototype is a declaration pretty much
like the function header. In the program, we use the prototype:

void skipLines(int);

The prototype describes the function by stating the return type of the function
(void, in this case), the name of the function (skipLines) and the type(s) of any

153

C Programming — A Beginner’s Course

argument(s) (int, in this example). If you wish, you can write a variable after the
type, as in:
void skipLines(int a);

This variable will be used by the compiler only if it needs to generate an error
message. In this book, we will write our prototypes using the type only.

Note that the function prototype is followed by a semicolon whereas the function
header is followed by a left brace.

As another example, the prototype
int max(int, int);

says that max is a function which takes two integer arguments and returns an
integer value.

A common mistake made by beginners is to forget to write the function prototype.
However, that is not a big problem. If you forget, the compiler will remind you of
it. It is like forgetting to declare a variable—the compiler will tell you about it.
You just fix it and move on.

In terms of layout, the functions, including main, which make up a C program can
appear in any order. However, it is customary to place main first where the
overall logic of the program can be easily seen.

We emphasize that this program is for illustrative purposes only since the output
could be produced more easily with:

printf("Sing a song of sixpence\n\n\n");
printf("A pocket full of rye\n");

The function header

In our example, we used the function header
void skipLines(int n)
In general, the function header consists of:

 atype (such as void, int, double, char), which specifies the type of value
returned by the function. If no value is returned, we use the word void. The
function skipLines does not return a value so we use void.

+ the name we make up for the function, skipLines in the example.

 one or more parameters, called the parameter list, enclosed in brackets®’; one
parameter n of type int is used in the example.

The function header is followed by the left brace of the body.

391t is allowed to write a function without any parameters; in this case, the brackets alone are
present, for example, void printHeading().

154

Functions

Parameters are specified in the same way variables are declared. In fact, they
really are declarations. The following are all valid examples of headers of void
functions:

void samplel(int m, int n) // 2 parameters
void sample2(double a, int n, char ¢) // 3 parameters
void sample3(double a, double b, int j, int k) // 4 parameters

Each parameter must be declared individually and two consecutive declarations
are separated by a comma. For example, it is invalid to write

void samplel(int m, n) // not valid; must write (int m, int n)

We will see examples of functions which return a value from page 156.

How a function gets its data

A function is like a mini program. In the programs we have written, we have
stated what data must be supplied to the program, what processing must take
place and what the output (results) should be. We must do the same when we
write a function.

When we write a function header, we use the parameter list to specify what data
must be supplied to the function when it is called. The list specifies how many
data items, the #ype of the each item and the order in which they must be supplied.

For example, we wrote skipLines with an integer parameter n; this says that an
integer value must be supplied to skipLines when it is called. When skipLines is
called, the argument supplied becomes the specific value of n and the function is
executed assuming that n has this value. In the call skipLines(3), the argument 3 is
the data that skipLines needs to perform its job.

It is worth emphasizing that main gets its data by using scanf, among other
functions, to read and store the data in variables. On the other hand, a function
gets its data when it is called. The variables in the parameter list are set to the
values of the corresponding arguments used in the call. For example, when we
write the header

void sample(int n, char ¢, double b)

we are saying that, when we call sample, we must do so with 3 arguments: the
first must be an int value, the second a char value and the third a double value.

Assuming that num is int, ch is char and x is double, the following are all valid
calls to sample:

sample(25, 'T', 7.5);

sample(hum, ‘A", x);

sample(num, ch, 7); //an int argument can match a double parameter
sample(num + 1, ch, x / 2.0);

155

C Programming — A Beginner’s Course

If, when a function is called, the type of an argument is not the same as the
corresponding parameter, C tries to convert the argument to the required type. For
example, in the call

sample(hum, 72, 'E");

the value 72 is converted to char and the parameter c is set to 'H' (since the code
for H is 72); the numeric value of 'E' (which is 69) is converted to the double
value 69.0 and the parameter b is set to 69.0.

If it is not possible to convert the argument to the required type, you will get a
“type mismatch” error, as in the call

sample(num, ch, "hi"); // error - cannot convert string to double

You will also get an error if you do not supply the required number of arguments,
as in
sample(hum, x); // error - must have 3 arguments

7.3 max

Finding the larger of two values is something we need to do sometimes. If a and b
are two numbers, we can set the variable max to the larger of the two with:

if (a>b)max = a;
else max = b;

If the numbers are equal, max will be set to b (the else part will be executed). We
can, of course, write this statement every time we want to get the larger of two
values. But this will become clumsy and awkward. It will be more convenient and
readable if we can simply write something like

big = max(a, b);
or even
printf("The bigger is %d\n", max(a, b));

We can, if we write the function max as follows:

int max(int a, int b) {
if (a>b) return a;
return b;

}

The first line (except {)is the function header. It consists of

 the word int, indicating that the function returns an integer value
» the name we make up for the function, max in the example

156

Functions

» one or more parameters, called the parameter list, enclosed in brackets; two
parameters a and b of type int are used in the example

The body of the function is the part from { to }. Here, we use the if statement to
determine the larger of a and b. If a is bigger, the function “returns” a; if not, it
returns b.

In C, a function “returns a value” by using the return statement. It consists of the
word return followed by the value to be returned. The value is returned to the
place at which the function was called.

To show how max fits into an overall program and how it can be used, we write
Program P7.2 which reads pairs of integers and, for each pair, prints the larger of
the two. The program ends when the user types 0 0.

Program P7.2

#include <stdio.h>
main() {
int nl, n2;
int max(int, int);
printf("Enter two whole numbers: ");
scanf("%d %d", &nl, &n2);
while (n11=0 || n2 1= 0) {
printf("The bigger is %d\n", max(nl, n2));
printf("Enter two whole numbers: ");
scanf("%d %d", &nl, &n2);
}
}

int max(int a, int b) {
if (a>b) return a;
return b;

}

The following is a sample run:

The bigger is 33
Enter two whole numbers: 10 -1
The bigger is 10
Enter two whole numbers: -5 -8
The bigger is -5
Enter two whole numbers: 0 7

0

/Enter two whole numbers: 24 33\
3

7
The bigger is 7
kEnter two whole numbers: 0 0 /

157

C Programming — A Beginner’s Course

In order to call max from main, we must “declare” max in main using the
function prototype

int max(int, int);
This says that max takes two integer arguments and returns an integer value.
The variables n1 and n2, declared in main, are considered as belonging to main.

When the program is run, suppose ni is 24 and n2 is 33. When the function is
called with max(n1, n2) from within printf, the following occurs:

* The values of the arguments n1 and n2 are determined. These are 24 and 33,
respectively.

» Each value is copied to a temporary memory location. These locations are
passed to the function max where 24 is labelled with a, the first parameter, and
33 is labelled with b, the second parameter. We can picture this as:

a| 24 b| 33

» The if statement is executed; since a (24) is not greater than b (33), control
goes to the statement return b; and 33 is returned as the value of the function.
This value is returned to the place from which max was called (the printf
statement).

+ Just before the function returns, the locations containing the arguments are
thrown away. The value returned by max (33, in our example) replaces the call
to max. Thus, max(n1, n2) is replaced by 33 and printf prints

The bigger 1is 33

When a function returns a value, it makes sense for this value to be used in a
situation where a value is required. Above, we printed the value. We could also
assign the value to a variable, as in

big = max(n1, n2);

or use it as part of an expression, as in
ans = 2 * max(nl, n2);

What does not make sense is to use it in a statement by itself, thus:
max(nl, n2); //a useless statement

Here, the value is not being used in any way, so the statement makes no sense at
all. It is the same as if we had written a number on a line by itself, like this

33; //a useless statement

Think carefully when you call a function which returns a value. Be very clear in
your mind what you intend to use the value for.

158

Functions

As written, max returns the larger of two integers. What if we want to find the
larger of two double numbers? Could we use max? Unfortunately, no. If we
called max with double values as arguments, we may get strange results when a
double number is assigned to an int parameter.

On the other hand, if we wrote max with double parameters and double return
type, it would work for both double and int arguments, since we can assign an int
value to a double parameter without losing any information.

Note, however, that if we call max with two character arguments, it would work
by returning the larger of the two codes. For example, max('A', 'C") will return 67,
the code for C.

Exercise: Write functions to return the smaller of two integers and two floating-
point numbers.

7.4 Print the day

Let us write a program which requests a number from 1 to 7 and prints the name
of the day of the week. For example, if the user enters 5, the program prints
Thursday. Program P7.3 does the job using a series of if...else statements.

Program P7.3

#include <stdio.h>

main() {
int d;
printf("Enter a day from 1 to 7: ");
scanf("%d", &d);
if (d == 1) printf("Sunday\n");
else if (d == 2) printf("Monday\n");
else if (d == 3) printf("Tuesday\n");
else if (d == 4) printf("Wednesday\n");
else if (d == 5) printf("Thursday\n");
else if (d == 6) printf("Friday\n");
else if (d == 7) printf("Saturday\n");
else printf(“Invalid day\n");

Now suppose that printing the name of a day of the week was a small part of a
much larger program. We wouldn’t want to clutter up main with this code nor
would we want to re-write this code every time we needed to print the name of a
day. It would be much nicer if we could write printDay(n) and get the appropriate
name printed. We would be able to do this if we write a function printDay to do
the job.

The first thing to ask is what information does printDay need to do its job. The

159

C Programming — A Beginner’s Course

answer is that it needs the number of the day. This immediately suggests that
printDay must be written with the number of the day as a parameter. Apart from
this, the body of the function will contain essentially the same code as Program
P7.3. Also, printDay does not return a value so its “return type” is void.

void printDay(int d) {
if (d == 1) printf("Sunday\n");
else if (d == 2) printf("Monday\n");
else if (d == 3) printf("Tuesday\n");
else if (d == 4) printf("Wednesday\n");
else if (d == 5) printf("Thursday\n");
else if (d == 6) printf("Friday\n");
else if (d == 7) printf("Saturday\n");
else printf(“Invalid day\n");

When we write the function, we can use any variable name we want for the
parameter. We never have to worry about #ow the function will be called. Many
beginners mistakenly believe that if the function is called with printDay(n), the
parameter in the header must be n. But that cannot be true since it could be called
with printDay(4) or printDay(n) or printDay(j)) or even printDay(n +1). The
choice is up to the calling function.

All we need to know is that whatever the value of the argument, that value will be
assigned to d (or whatever variable we happen to use as the parameter) and the
function will be executed assuming the parameter (d, in our case) has that value.

We now re-write Program P7.3 as P7.4 (next page) to illustrate how the function
fits into an overall program and how it can be used.

Now that we have delegated the printing to a function, notice how main is much
less cluttered. However, we do have to write the function prototype for printDay
in main so that printDay can be called from main. This is done with

void printDay(int);

As with all C programs, execution begins with the first statement in main. This
prompts the user for a number and the program goes on to print the name of the
day by calling the function printDay.

A sample run is:

Enter a day from 1 to 7: 4
wednesday

In main, suppose n has the value 4. The call printDay(n) is executed as follows:

* The value of the argument n is determined. It is 4.

160

Functions

Program P7.4

#include <stdio.h>
main() {
int n;
void printDay(int);
printf("Enter a day from 1 to 7: ");
scanf("%d", &n);
printDay(n);
}

void printDay(int d) {
if (d == 1) printf("Sunday\n");
else if (d == 2) printf("Monday\n");
else if (d == 3) printf("Tuesday\n");
else if (d == 4) printf("Wednesday\n");
else if (d == 5) printf("Thursday\n");
else if (d == 6) printf("Friday\n");
else if (d == 7) printf("Saturday\n");
else printf(“Invalid day\n");

» The value 4 is copied to a temporary memory location. This location is passed
to the function printDay where it is labelled with the name of the parameter,
d. In effect, d is set to the value of the argument.

» The body of the function is executed. In this case, since d is 4, the statement
printf("Wednesday\n") will be executed.

» After printing Wednesday, the function is finished. The location containing
the argument is discarded and control returns to main to the statement
following the call printDay(n). In this case, there are no more statements so the
program ends.

7.5 Highest Common Factor

In Chapter 5, we wrote Program P5.2 (page 91) which read two numbers and
found their highest common factor (HCF). You should refresh your memory by
taking a look at the program.

It would be nice if, whenever we want to find the HCF of two numbers (m and n,
say), we could make a function call hcf(m, n) to get the answer. For instance, the
call hcf(42, 24) would return the answer 6. To be able to do this, we write the
function as shown on the next page.

The logic for finding the HCF is the same as used in P5.2. The difference here is
that values for m and n will be passed to the function when it is called. In P5.2,
we prompted the user to enter values for m and n and fetched them using scanf.

161

C Programming — A Beginner’s Course

//returns the hcf of m and n
int hcf(int m, int n) {
int r;
while (n 1= 0) {
r=m%n;
m=n;
n=r;
}

refurn m;

}

Suppose the function is called with hcf(42, 24). The following occurs:

* FEach of the arguments is copied to a temporary memory location. These
locations are passed to the function hcf where 42 is labelled with m, the first
parameter, and 24 is labelled with n, the second parameter.

We can picture this as:

m| 42 n| 24

* The while loop is executed, working out the HCF. On exit from the loop, the
HCEF is stored in m, which will contain 6 at this time. This is the value returned
by the function to the place from where it was called.

» Just before the function returns, the locations containing the arguments are
thrown away; control then returns to the place from where the call was made.

Program P7.5 (next page) tests the function by reading pairs of numbers and
printing the HCF of each pair. The call to hcf is made in the printf statement. The
program stops if either number is less than or equal to 0. A sample run is:

//knter two positive numbers: 42 24 ‘\\
The HCF 1is 6
Enter two positive numbers: 32 512
The HCF 1is 32
Enter two positive numbers: 100 31
The HCF 1is 1
Enter two positive numbers: 84 36
The HCF 1is 12

\\Fnter two positive numbers: 0 0 4//

We emphasize again that even though the function is written with parameters
called m and n, it can be called with any two integer values—constants, variables
or expressions. In particular, it does not have to be called with variables named m
and n. In our program, we called it with a and b.

162

Functions

Program P7.5

#include <stdio.h>
main() {
int a, b;
int hcf(int, int);
printf("Enter two positive numbers: ");
scanf("%d %d", &a, &b);
while (a>0 && b > 0) {
printf("The HCF is %d\n", hcf(a, b));
printf("Enter two positive humbers: ");
scanf("%d %d", &a, &b);
}
}

//returns the hcf of m and n
int hcf(int m, int n) {
int r;
while (n 1= 0) {
r=m%n;
m=n;
n=r;
}

refurn m;

}

We remind you that in order to use hcf in main, we must “declare” it using the
function prototype

int hef(int, int);
If we wish, the two int declarations in main can be written in one statement, thus:

int a, b, hcf(int, int);

Using HCF to find LCM

A common task in arithmetic is to find the lowest common multiple (LCM) of
two numbers. For example, the LCM of 8 and 6 is 24 since 24 is the smallest
number which can divide both 8 and 6 exactly.

If we know the HCF of the two numbers, we can find the LCM by multiplying the
numbers and dividing by their HCF. Given that the HCF of 8 and 6 is 2, we can

find their LCM by working out X6 =24, In general,
2

LCM(m, n) = (m x n) / HCF(m, n)

163

C Programming — A Beginner’s Course

Knowing this, we can easily write a function lem which, given two arguments m
and n, returns the LCM of m and n.

//returns the lcm of m and n
int lem(int m, int n) {

int hef(int, int);

return (m * n) / hcf(m, n);

}

Since lem uses hcf, we must declare hcf by writing its prototype. We leave it as an
exercise for you to write a program to test lem. Remember to include the function
hcf in your program. You may place hcf before or after lem.

7.6 factorial

So far, we have written several functions which illustrate various concepts you
need to know in writing and using functions. We now write another one and
discuss it in detail, reinforcing some of the concepts we have met thus far and
introducing new ones.

Before we write the function, let us first write a program which reads an integer n
and prints n! (n factorial) where

0'=1
n!l=nn-1)n-2)..1 forn>0

For example, 5! =5.4.3.2.1 = 120.

The program will be based on the following algorithm:

set nfac to 1

read a number, n

for j=2tondo
nfac = nfac *

endfor

print nfac

Dry run the algorithm with a value of 3 for n and convince yourself that it will
print 6, the value of 3!. Check also that it produces the correct answer when n is
0 or 1 (hint: the for loop is not executed when n is O or 1).

The algorithm does not validate the value of n. For instance, n should not be
negative since factorial is not defined for negative numbers. As a matter of
interest, what would the algorithm print if n is negative? (Hint: the for loop is not
executed). To keep matters simple, our Program P7.6 does not validate n.

164

Functions

Program P7.6

#include <stdio.h>
main() {
int nfac = 1, n;
printf("Enter a positive whole number: ");
scanf("%d", &n);
for (int j = 2; j <= n; j++)
nfac = nfac * j;
printf("%d! = %d\n", n, nfac);

A sample run of this program is:

Enter a positive whole number: 4
41 = 24

We now consider the problem of writing a function (which we will call factorial)
which, given an integer n, calculates and returns the value of n!. Since n! is an
integer, the “return type” of the function is int.

We first write the function header. It is
int factorial(int n)

It is interesting to note that the function header is all the information we need in
order to use the function correctly. Ignoring for the moment what the rest of
factorial might look like, we can use it as follows:

printf("5! = %d\n", factorial(5));

or
scanf("%d", &num);
printf("%d! = %d\n", num,factorial(num));

In the latter case, if num is 4, printf prints:
41 = 24
The call factorial(num) returns the value 24 directly to the printf statement.

Following the logic of Program P7.6, we write the function factorial as follows:

int factorial(int n) {
int nfac = 1;
for (int j = 2; j <= n; j++)
nfac = nfac *
return nfac;

}

165

C Programming — A Beginner’s Course

It is worthwhile comparing Program P7.6 and the function:

The program prompts for and reads a value for n; the function gets a value for
n when the function is called, as in factorial(4). It is wrong to attempt to read a
value for n in this function.

In addition to n, both the program and the function need the variables nfac and
j to express their logic.

The logic for calculating the factorial is the same for both program and
function.
The program prints the answer (in nfac); the function returns the answer (in

nfac) to the calling function. The answer is returned to the point at which
factorial was called.

Other comments on factorial

Variables declared within a function are said to be local to the function. Thus,
nfac and j are local variables; nfac is used to hold the factorial and j is used as
the for loop variable which takes on the values from 2 to n. When factorial is
called, storage is allocated to nfac and j. These variables are used to work out
the factorial. Just before the function returns, nfac and j are discarded.

You should verify that the function works properly if n is O or 1 (that is, it
returns 1).

We now take a detailed look at what happens when factorial is called (from main,
say). Consider the statements (m and fac are int):

m=3;
fac = factorial(m);

The second statement is executed as follows:

The value of the argument m is determined; it is 3.

This value is copied to a temporary memory location and ¢his location is passed
to the function. The function labels it with the name of the parameter, n. The
net effect is as if execution of the function began with the statement

n=3;

In programming terminology, we say that the argument m is passed “by
value”. The value of the argument is copied to a temporary location and it is
this temporary location that is passed to the function. The function has no
access whatsoever to the original argument. In this example, factorial has no
access to m and, hence, cannot affect it in any way.

After n is assigned the value 3, execution of factorial proceeds as described
above. Just before the function returns, the storage location occupied by n is
discarded. In effect, the parameter n is treated like a local variable except that it
is initialized to the value of the argument supplied.

166

Functions

 The value returned by the function is the last value stored in nfac. In this
example, the last value assigned to nfac is 6. Therefore, the value 6 is returned
to the place from which the call factorial(3) was made.

* The value 6 returned by factorial is assigned to fac.
» Execution continues with the next statement, if any.

Using factorial

We illustrate how factorial can be used by writing a complete Program P7.7
which prints n! forn=0, 1,2,3,4,5,6 and 7.

Program P7.7

#include <stdio.h>
main() {
int factorial(int);
printf(* n nl\n\n");
for (int n=0; n<=7; n++)
printf("%2d %5d\n", n, factorial(n));
}

int factorial(int n) {
int nfac = 1;
for (int j = 2; j <= n; j++)
nfac = nfac * j;
return nfac;

}

When run, this program prints the following:

n n! \

120
720

7 5040

0
1
2
3 6
4
5
6

As you can see, the value of factorial increases very quickly. Even 8! = 40320,
which is too big to fit in a 16-bit integer (largest value which can be stored is
32767). As an exercise, write the loop from 0 to 8 and see what happens.

167

C Programming — A Beginner’s Course

Let us take a closer look at main. The first statement is the function prototype for
factorial. This is needed since factorial will be called from main.

When main is executed,

* printf prints a heading

» The for loop is executed with n assuming the values 0, 1, 2, 3, 4, 5, 6, 7. For
each value of n, factorial is called with n as its argument. The factorial is
calculated and returned to the place in printf from where it was called.

We have deliberately used a variable called n in main to illustrate that this n does
not (and cannot) conflict with the parameter n of factorial. Suppose n in main is
stored in memory location 865 and has the value 3. The call factorial(n) stores
the value of n, i.e. 3, in a temporary location (472, say) and this temporary
location is passed to factorial where it is known as n. This is illustrated by:

3 3
865 472

n in main n in factorial

We now have two locations called n. While in factorial, n refers to location 472;
when in main, n refers to location 865; factorial has no access whatsoever to
location 865.

It does not happen here, but if factorial were to change the value of n, it is the
value in location 472 that would be changed; the value in location 865 would not
be affected. When factorial finishes, location 472 is discarded—that n no longer
exists.

From another point of view, factorial is oblivious to the actual argument that was
used to call it since it sees only the argument’s value, not how it was derived.

We used n in main as a loop variable to illustrate the point above. However, we
could have used any variable. In particular, we could have used j and there would
be no conflict with the local variable j of the function factorial. While in factorial,
j refers to the local variable; when in main, j refers to the j declared in main.

An example — combinations

Suppose there are 7 people on a committee. How many subcommittees of 3
people can be formed? The answer is denoted by 'Cs where
7!

'Cy = — =35
413!

We say there are 35 combinations of 7 objects taken 3 at a time. In general, "C,
denotes the number of combinations of n objects taken r at a time and is given by
the formula:

168

Functions

n!
nCr = ———————
(n—r)r!

Using factorial, we can write a function, combinations, which, given n and r,
returns the number of combinations of n objects taken r at a time. Here it is:

int combinations(int n, int r) {
int factorial(int);
return factorial(n) / (factorial(n-r) * factorial(r));

}

The body consists of the function prototype for factorial and one return statement
with 3 calls to factorial.

We note, in passing, that this is perhaps the easiest, but not the most efficient, way
to evaluate "C,. For instance, if we were calculating C, by hand, we would use:

7.6.5 7.6.5.43.2.1
rather than ————
43.2.13.2.1

that the function uses. As an exercise, write an efficient function for evaluating
combinations.

To show the functions factorial and combinations in a complete program and to
show how they may be used, we write a program to read values for n and r and
print the number of combinations we can get from n objects taken r at a time.

Program P7.8 (next page) shows how it’s done.

The program reads values for n and r and prints the number of combinations. This
is done until a value of O is entered for n. The following is a sample run:

//Ehter values for n and r: 7 3)]
There are 35 combinations of 7 objects taken 3 at a time

Enter values for n and r: 5 2))
There are 10 combinations of 5 objects taken 2 at a time

Enter values for n and r: 6 6)
There is 1 combination of 6 objects taken 6 at a time

Enter values for n and r: 3 5))
There are 0 combinations o objects taken 5 at a time

f 3
Qnter values for n and r: 0 0 /

Observe the use of if..else to get the program to “speak™ correct English. In the
statement, also note how a long string is broken into two pieces and each piece is
put on one line. Recall that, in C, the opening and closing quotes of a string
constant must be on the same line. When the program is compiled, the pieces will
be joined together and stored in memory as one string.

169

C Programming — A Beginner’s Course

Program P7.8

#include <stdio.h>
main() {
int n, r, nCr, factorial(int), combinations(int, int);
printf("Enter values for nand r: ");
scanf("%d %d", &n, &r);
while (n 1= 0) {
nCr = combinations(n, r);
if (nCr==1)
printf("There is 1 combination of %d objects taken"
"%d at a time\n", n, r);
else
printf("There are %d combinations of %d objects taken "
"%d at a time\n", nCr, n, r);
printf("Enter values for nand r: ");
scanf("%d %d", &n, &r);
}
}

int factorial(int n) {
int nfac = 1;
for (int j = 2; j <= n; j++)
nfac = nfac *
return nfac;

}

int combinations(int n, int r) {
int factorial(int);
return factorial(n) / (factorial(n-r) * factorial(r));

}

7.7 An example - job charge

In Program 4.6 (page 76), we read the number of hours worked and the cost of
parts and calculated the cost for a job. Let us write a function which, given the
hours worked and cost of parts, returns the cost for the job. When we say that a
function is given some data, that immediately implies that such data should be
defined as parameters of the function. The function is shown on the next page.

The logic of the function is the same as that of the program. Here, the parameter
list indicates what data would be given to the function when it is called. Also, we
must specify the return type of the function; it is double since the job cost is a
double value.

170

Functions

#define ChargePerHour 100

#define MinJobCost 150

double calcJobCost(double hours, double parts) {
double jobCharge;
JjobCharge = hours * ChargePerHour + parts;
if (jobCharge < MinJobCost) return MinJobCost;
return jobCharge;

}

When the function is called, as in
jobCost = calcJobCost(1.5, 87.50);

the parameter hours is set to 1.5 and parts is set to 87.50; the body of the
function is then executed using these values for hours and parts.

As an exercise, write a complete program to read several values for hours worked
and cost of parts and, for each pair, print the cost of the job.

7.8 An example — calculating pay

In Program P4.7 (page 78), we read values for hours and rate, and calculated net
pay. All the code was written in main. We now write a function which, given
values for hours and rate, returns the value of net pay calculated as described on
page 72. The function is shown below.

#define MaxRegularHours 40
#define OvertimeFactor 1.5
double calcNetPay(double hours, double rate) {
if (hours <= MaxRegularHours) return hours * rate;
return MaxRegularHours * rate +
(hours - MaxRegularHours) * rate * OvertimeFactor;

If the condition is true, the first return is executed; if it is false, the second return
is executed. Note that there is no need for else. If the first return is taken, we exit
the function and the second return cannot be executed.

If we want to find out the net pay of someone who worked for 50 hours at $12.00
per hour, all we have to do is call calcNetPay(50, 12.00).

As an exercise, write a complete program to read several values for a name, hours
worked and rate of pay and, for each person, print the net pay received. Hint:
study Program P5.8 on page 109.

171

C Programming — A Beginner’s Course

7.9 An example - finding the sum of exact divisors

Let us write a function to return the sum of the exact divisors of a given integer.
We assume the divisors include 1 but not the given number. For example, the
exact divisors of 50 are 1, 2, 5, 10 and 25. Their sum is 43. The function is shown
below:

//returns the sum of the exact divisors of n
int sumDivisors(int n) {
int sumDiv = 1;
for (int j=2; j<=n/ 2; j++)
if (n % j == 0) sumDiv += j;
return sumDiv;

}

e sumDiv is used to hold the sum of the exact divisors; it is set to 1 since 1 is
always an exact divisor.

 Other possible divisors are 2, 3, 4 and so on up to n/2. The for loop checks
each of these in turn.

 Ifj is an exact divisor of n then the remainder when n is divided by j is 0, that
1S, n % j is 0. If this is so, j is added to sumDiv.

* The last statement returns the value of sumDiv to the place from which
sumDivisors is called.

In the next example, we will see how sumDivisors may be used.

Classifying numbers as deficient, perfect or abundant

Positive integers can be classified based on the sum of their exact divisors. If n is
an integer and s is the sum of its exact divisors (including 1 but not including 7)
then:

* ifs<n, nisdeficient; e.g. 15 (divisors 1, 3, 5; sum 9)
* ifs=n, nis perfect; e.g. 28 (divisors 1, 2, 4, 7, 14; sum 28)
* ifs>n, nisabundant; e.g. 12 (divisors 1, 2, 3, 4, 6; sum 16)

Let us write Program P7.9 (next page) to read several numbers and, for each, print
whether it is deficient, perfect or abundant.

Note that we call sumDivisors once (for each number) and store the result in sum.
We use sum when we need the “sum of divisors” rather than re-calculating it each
time.

As an exercise, write a program to find all the perfect numbers less than 10,000.

172

Functions

Program P7.9

#include <stdio.h>
main() {
int num, sumDivisors(int);
printf("Enter a number: ");
scanf("%d", &num);
while (hum 1= 0) {
int sum = sumDivisors(num);
if (sum < num) printf("Deficient\n\n");
else if (sum == num) printf("Perfect\n\n");
else printf("Abundant\n\n");
printf("Enter a number: ");
scanf("%d", &num);
}
}

//returns the sum of the exact divisors of n
int sumDivisors(int n) {
int sumDiv = 1;
for (int j=2; j<=n/2; j++)
if (n % j == 0) sumDiv += j;
return sumDiv;

}

The following is a sample run of Program P7.9:

/Enter a number: Q\

Deficient

Enter a number: 12
Abundant

Enter a number: 28
Perfect

Gnter a number: Q/

7.10 Some character functions

In this Section, we write several functions relating to characters.

Perhaps the simplest is a function which takes a character as argument; it returns
1 if the character is a digit and O, if it is not. (Recall that, in C, a zero value is
interpreted as false and a non-zero value is interpreted as true.) This description
suggests that we must write a function which takes a char argument and returns
an int value. We will call it isDigit. Here it is:

173

C Programming — A Beginner’s Course

int isDigit(char ch) {
return ch>= '0' && ch <= '9";
}

The Boolean expression (ch >='0' && ch <='9") is true if ch lies between '0" and
'9', inclusive; that is, if ch contains a digit. Hence, if ch contains a digit, the
function returns 1 (for true); if ch does not contain a digit, it returns O (for false).

We could have written the body of the function as

if (ch>="'0" && ch<="'9") return 1;
return O;

but the single return statement used above is the preferred way.

Similarly, we can write the function isUpperCase which returns 1 if its argument
is an uppercase letter and 0 if it’s not, thus:

int isUpperCase(char ch) {
returnch>='A' && ch <= 'Z";
}

and the function isLowerCase which returns 1 if its argument is a lowercase letter
and O if it’s not, thus:

int isLowerCase(char ch) {
return ch >= 'a’ && ch<«="z';

}

If we wish to know if the character is a letter (either uppercase or lowercase), we
can write isLetter which uses isUpperCase and isLowerCase, thus:

int isLetter(char ch) {
int isUpperCase(char), isLowerCase(char);
return isUpperCase(ch) || isLowerCase(ch);

}

We need to include the function prototypes for isUpperCase and isLowerCase.

174

Functions

Example — position of a letter in the alphabet

Let us write a function which, given a character, returns O if it is not a letter of the
English alphabet; otherwise, it returns the position—an integer value—of the
letter in the alphabet. The function should work if the character is either an
uppercase or a lowercase letter. For example, given 'Y' or 'y', the function should

return 25.

The function takes a char argument and returns an int value. Using the functions
isUpperCase and isLowerCase, we write the function (which we call position) as
follows:

int position(char ch) {
int isUpperCase(char), isLowerCase(char);
if (isUpperCase(ch)) returnch - 'A' +1;
if (isLowerCase(ch)) return ch - 'a' +1;
return O;

}

We use isUpperCase and isLowerCase to establish what kind of character we
have. If it is neither, control goes to the last statement and we return O.

If we have an uppercase letter, we find the distance between the letter and A by
subtracting the code for A from the code for the letter. For example, the distance
between A and A is 0 and the distance between A and F is 5. Adding 1 gives the
position of the letter in the alphabet. Here, adding 1 gives us 1 for A and 6 for F.

If we have a lowercase letter, we find the distance between the letter and a by
subtracting the code for a from the code for the letter. For example, the distance
between a and b is 1 and the distance between a and z is 25. Adding 1 gives the
position of the letter in the alphabet. Here, adding 1 gives us 2 for b and 26 for z.

To illustrate how the function may be used, we write Program P7.10 (next page)
which reads a line of input; for each character on the line, it prints O if it is not a
letter and its position in the alphabet if it is a letter.

A sample run is:

/Type some letters and non-Tetters and press "EnterN
FaT($hy&n

= o

20

OO

25

14 /

o

CQ°-< Sea~— o9 T

175

C Programming — A Beginner’s Course

Program P7.10

#include <stdio.h>
main() {
char c;
int position(char);
printf("Type some letters and non-letters and press 'Enter' ");
while ((c = getchar()) != "\n")
printf("%c %d\n", c, position(c));
}

int isUpperCase(char ch) {
returnch>= 'A' && ch<«="'Z";
}

int isLowerCase(char ch) {
return ch>= 'a' && ch<="'z";

}

int position(char ch) {
int isUpperCase(char), isLowerCase(char);
if (isUpperCase(ch)) returnch - 'A' +1;
if (isLowerCase(ch)) returnch - 'a' +1;
return O;

}

We have written the functions isDigit, isUpperCase, isLowerCase and isLetter to
illustrate basic concepts about character functions. However, C provides a number
of predefined functions (actually, macros, but the distinction is not important for
us) for working with characters. Among these are isdigit (test for a digit), isupper
(test for an uppercase letter), islower (test for a lowercase letter) and isalpha (test
for a letter). To use these functions, you need to place the directive

#include <ctype.h>

at the head of your program. As an exercise, rewrite P7.10 using isupper and
islower. Without isUpperCase, isLowerCase and their prototypes, your program
would be much shorter.

7.11 Example — fetch the next integer

On page 149, we wrote Program P6.13 which read the data character by character,
constructed and stored the next integer found in a variable, and finally printed the
integer.

Let us now write a function, getint, which reads the data character by character
and returns the next integer found. The function does not take any arguments but

176

Functions

the brackets must still be written after the name. The code is essentially the same
as in P6.13, except that we use the predefined function isdigit. Here is getint:

int getInt() {
char ch = getchar();
// as long as the character is not a digit, keep reading
while (lisdigit(ch)) ch = getchar() ;
// at this point, ch contains the first digit of the number
int num = O;
while (isdigit(ch)) { // as long as we get a digit
num = num * 10 + ch - '0"; // update num
ch = getchar();
}

return num;

}

Note that

while (ch<'0' || ch>'9")
of P6.13 is replaced by

while (lisdigit(ch))
and

while (ch>= '0' && ch<«='9")
is replaced by

while (isdigit(ch))
We believe this makes the program a little more readable.
The function needs the variables ch and num to do its job; ch holds the next
character in the data and num holds the number constructed so far. We declare
them within the function, making them local variables. This way, they will not
conflict with any variables with the same names declared anywhere else in the

program. This makes the function self-contained—it does not depend on variables
declared elsewhere.

The function can be used as in
id = getInt();

This fetches the next positive integer from the input, regardless of how many and
what kind of characters come before it, and stores it in id. Recall that
scanf("%d", &id) works only if the next integer is preceded by zero or more
whitespace characters. Our getInt is more general.

We test it by rewriting Program P4.2 (page 68) which requests two lengths given
in metres and centimetres and finds the sum. We observed then that the data must
be entered with digits only. If, for instance, we had typed 3m 75cm we would have

177

C Programming — A Beginner’s Course

gotten an error since 3m is not a valid integer constant. With getint, we will be
able to enter the data in the form 3m 75cm.

The new program is shown as Program P7.11.

Program P7.11

//find the sum of two lengths given in metres and cm
#include <stdio.h>
#include <ctype.h>
main() {
int m1, cml, m2, cm2, mSum, cmSum, getInt();
printf("Enter first length: ");
ml = getInt();
cml = getInt();
printf("Enter second length: ");
m2 = getInt();
cm2 = getInt();

mSum = ml + m2; //add the metres
cmSum = cml + cm2; //add the centimetres
if (cmSum >= 100) {
cmSum = cmSum - 100;
mSum = mSum + 1;
}

printf("\nSum is %dm %dcm\n", mSum, cmSum);

}

int getInt() {
char ch = getchar();
// as long as the character is not a digit, keep reading
while (lisdigit(ch)) ch = getchar() ;
// at this point, ch contains the first digit of the number
int num = O;
while (isdigit(ch)) { // as long as we get a digit
num = num * 10 + ch - '0"; // update num
ch = getchar();
}

refurn num;

}

A sample run is

Enter first length: 3m 75cm
Enter second Tength: 5m 50cm

Sum is 9m 25cm

178

Functions

You are encouraged to:

» modify getint so that it works for negative integers;
» write a function getDouble which returns the next floating-point number in the
input. It should work even if the next number does not contain a decimal point.

Exercises 7
1. Explain why functions are important in writing a program.
2. Given the function header
void test(int n)
explain carefully what happens when the call test(5) is made.
3. Given the function header
double fun(int n)
explain carefully what happens when the following statement is executed:
printf("The answer is %f\n", fun(9));
4. Given the function header
void test(int m, int n, double x)
say whether each of the following calls is valid or invalid. If invalid, state why.
test(l, 2, 3);
test(-1, 0.0, 3.5);
test(7, 2);
test(14, '7', 3.14);

5. Write a function sqr which, given an integer n, returns n’.

6. Write a function isEven which, given an integer n, returns 1if nis even and O if n is
odd.

7. Write a function isOdd which, given an integer n, returns 1if n is odd and O if n is
even.

8. Write a function isPerfectSquare which, given an integer n, returns1ifnisa
perfect square (e.g. 25, 81) and O if it is not. Use only elementary arithmetic
operations. Hint: try numbers starting at 1. Compare the number times itself with n.

9. Write a function isMowel which, given a character ¢, returns 1if c is a vowel and O
if it is not.

10. Write a function which, given an integer n, returns the sum 1+ 2 +..+ n.
11. Write a function which, given an integer n, returns the sum 1> + 2% +..+ n’,
12. Using Program P4.9 (page 81) as a guide, write a function which, given three

integer values representing the sides of a triangle, returns:

0 if the values cannot be the sides of any triangle. This is so if any value is
negative or zero, or if the length of any side is greater than or equal to the sum
of the other two;

» 1 if the triangle is scalene (all sides different);

» 2 if'the triangle is isosceles (two sides equal).

» 3 if the triangle is equilateral (three sides equal);

179

C Programming — A Beginner’s Course

13.

14.
15.

16.

17.

18.
19.

20.

21.

180

Write a function which, given three integer values representing the sides of a
triangle, returns 1 if the triangle is right-angled and 0O if it is not. The sides are given
in any order.

Write a function power which, given a double value x and an integer n, returns x".

Using the algorithm of problem 10 on page 83, write a function which, given a year
between 1900 and 2099, returns an integer value indicating the day on which
Easter Sunday falls in that year. If d is the day of the month, return d if the month
is March and -d if the month is April. For example, if the year is 1999, return -4
since Easter Sunday fell on April 4 in 1999. Assume that the given year is valid.

Write a program which reads two years, y1 and y2, and, using the function above,
prints the day on which Easter Sunday falls for each year between y1 and y2.

Write a function which, given integer values for month and year, returns the
number of days in the month. See problem 8 on page 83.

Write a function numLength which, given an integer n, returns the number of
digits in the integer. For example, given 309, the function returns 3.

Write a function max3 which, given 3 integers, returns the biggest.

Write a function isPrime which, given an integer n, returns 1if n is a prime number
and O if it is not. A prime number is an integer > 1 which is divisible only by 1 and
itself.

Using isPrime, write a program to prompt for an even number n greater than 4 and
print all pairs of prime numbers which add up to n. Print an appropriate message if
n is not valid. For example, if n is 22, your program should print

3 19
5 17
11 11

You are required to generate a sequence of integers from a given positive integer n,
as follows. If n is even, divide it by 2. If n is odd, multiply it by 3 and add 1.
Repeat this process with the new value of n, stopping when n = 1. For example, if n
is 13, the following sequence will be generated:

13 40 20 10 5 16 8 4 2 1

Write a function which, given n, returns the length of the sequence generated,
including n and 1. For n = 13, your function should return 10.

Using the function, write a program to read two integers m and n (m < n), and print
the maximum sequence length for the numbers between m and #, inclusive. Also
print the number which gives the maximum length. For example, if m =1 and n =
10, your program should print

9 generates the longest sequence of length 20

We can code the 52 playing cards using the numbers 1 to 52. We can assign 1 to
the Ace of Spades, 2 to the Two of Spades and so on, up to 13 to the King of
Spades. We can then assign 14 to the Ace of Hearts, 15 to the Two of Hearts and so
on, up to 26 to the King of Hearts. Similarly, we can assign the numbers 27-39 to
Diamonds and 40-52 to Clubs.

Write a function which, given integers rank and suit, returns the code for that card.
Assume rank is a number from 1 to 13 with 1 meaning Ace and 13 meaning
King; suit is 1, 2, 3 or 4 representing Spades, Hearts, Diamonds and Clubs,
respectively.

8 Working with arrays

In this chapter, we will explain:

e what is an array and how to declare one

e how to store values in an array

e how to read a known number of values into an array using a for loop
e how to process elements of an array using a for loop

e how to read an unknown number of values into an array using a while loop
e how to extract a required element from an array with a subscript

e how to find the sum of numbers stored in an array

e how to find the average of numbers stored in an array

e how to use an array to keep several counts

e how to work with a string as an array of characters

e how to reverse the elements in an array

e how to write a function to tell if a phrase is a palindrome

e how to pass an array as an argument to a function

¢ how to find the largest and smallest values in an array

e how to search an array using sequential search

e how to sort an array using selection sort

The variables we have been using so far (such as ch, n, sum) are normally called
simple variables. At any given time, a simple variable can be used to store one
item of data, for instance, one number or one character. Of course, the value
stored in the variable can be changed, if we wish. However, there are many
situations in which we wish to store a group of related items and to be able to
refer to them by a common name. The array variable allows us to do this.

For example, suppose we wish to store a list of 60 scores made by students in a
test. We can do this by inventing 60 different int variables and storing one score
in one variable. But it would be quite tedious, cumbersome, unwieldy and time-
consuming to write code to manipulate these 60 variables. (Think of how you
would assign values to these 60 variables). And what if we needed to deal with
200 scores?

A better way is to use an array to store the 60 scores. We can think of this array
as having 60 ‘locations’—we use one location to store one element, in this case,
one score. To refer to a particular score, we use a subscript. For example, if score

181

C Programming — A Beginner’s Course

is the name of the array, then score[5] refers to the score in position 5—here 5 is
used as a subscript. It is written inside the square brackets, [and].

In general, an array can be used to store a list of values of the same type; for
instance, we speak of an array of integers, an array of characters, an array of
strings or an array of floating-point numbers. As you will see, using an array
allows us to work with a list in a simple, systematic way, regardless of its size.
We can process all or some items using a simple loop. We can also do things like
search for an item in the list or sort the list in ascending or descending order.

8.1 Declaring an array

Before an array is used, it must be declared. For example, the statement
int score[60];

declares that score is an ‘integer array’ or an ‘array of ints’ with subscripts
ranging from O to 59. An array declaration consists of

* the type (int, in this example)

* the name of the array (score, in this example)
* aleft square bracket, [

* the size of the array (60, in this example)
 aright square bracket,]

In C, array subscripts start at 0 and go up to n-1, if n is the size of the array.

We can think of the declaration as creating 60 int variables which can be referred
to collectively by the array variable score. To refer to a specific one of these
scores, we use a subscript written in square brackets after the array name. In this
example,

score[0] refers to the 1st score;
score[1] refers to the 2nd score;
score[2] refers to the 3rd score;

score[58] refers to the 59th score;
score[59] refers to the 60th score;

As you can see, array subscripting is a bit awkward in C; it would be much nicer
(and logical) if score[j] were to refer to the jth score. We will see how to get
around this shortly.

It is an error to try to refer to an element that is outside the range of subscripts
allowed. If you do, you will get an “array subscript” error. For example, you
cannot refer to score[-1], score[60] and score[99] since they do not exist.

182

Working with arrays

A subscript can be written using a constant (like 25), a variable (like n) or an
expression (like j+1). The value of the subscript determines which element is
being referred to.

In our example, each element of the array is an int and can be used in any way
that an ordinary int variable can. In particular, a value can be stored in it, its value
can be printed and it can be compared with another int.

We could picture score as in Figure 8.1.

score

score[0]

score[1]
score[2]

score(3]

score[4]

score[55]

score[56]

score[57]

score[58]

score[59]

Figure 8.1: The declaration int score[60]

Like a simple variable, when an array is declared, the values of its elements
remain undefined until we execute statements which store values in them, as
discussed in Section 8.2, next.

To give another example, suppose we need to store the item numbers (integers)
and prices (floating-point numbers) of 100 items. We can use one array (item,
say) to hold the item numbers and another array (price, say) to hold the prices.
These can be declared with:

int item[100];
double price[100];

The elements of item range from item[0] to item[99] and the elements of price
range from price[0] to price[99]. When we store values in these arrays (see next),
we will ensure that

price[0] holds the price of item[O];
price[1] holds the price of item[1];

and, in general,

price[j] holds the price of item([j].

183

C Programming — A Beginner’s Course

8.2 Storing values in an array

Consider the array score. If we wish, we could set selected elements to specific
values, as follows:

score[3] = 56;
score[7] = 81;

But what if we wish to set the 60 locations to 60 scores? Would we have to write
60 statements such as:

score[0] = 45;
score[l] = 63;
score[2] = 39;

score[b9]=78;

This is certainly one way of doing the job, but it is very tedious, time-consuming
and inflexible. A neater way is to let the subscript be a variable rather than a
constant. For example, score[j] can be used to refer to the score in location j;
which score is meant depends on the value of'j. If the value of j is 47, then score[j]
refers to score[47], the score in location 47.

Note that score[j] can be used to refer to another score simply by changing the
value of j, but, at any one time, score[j] refers to one specific score, determined by
the current value ofj.

Suppose the 60 scores are stored in a file scores.txt. The following code will read
the 60 scores and store them in the array score:

FILE * in = fopen("scores.txt", "r");
for (int j=0; j < 60; j++)
fscanf(in, "%d", &score[j]):
Suppose the file scores.txt begins with the following data:
45 63 39 ...

The for loop is executed with the value of j ranging from O to 59:

* whenjis 0, the first score, 45, is read and stored in score[O];
e whenjis 1, the second score, 63, is read and stored in score[1];
* when j is 2, the third score, 39, is read and stored in score[2];

and so on, up to

e whenjis 59, the 60th score is read and stored in score[59].

Note that this method is much more concise than writing 60 assignment
statements. We are using one statement

184

Working with arrays

fscanf(in, "%d", &score[j]);

to store the scores in 60 different locations. This is achieved by varying the value
of the subscript, j. This method is also more flexible. If we had to deal with 200
scores, say, we only need to change 60 to 200 in the declaration of score and in
the for statement (and supply the 200 scores in the data file). The previous method
would require us to write 200 assignment statements.

If we wish to print the scores as they are read, we could write the for loop as:

for (int j=0; j < 60; j++) {
fscanf(in, "%d", &score[j]);
printf("%d\n", score[j]);
}

On the other hand, if we wish to print the scores affer they are read and stored in
the array, we could write another for loop:

for (j=0: j<60; j++)
printf("%d\n", score[j]).

We have used the same loop variable j that was used to read the scores. But it is
not required that we do so. Any other loop variable would have the same effect.
For instance, we could have written:

for (int x = 0; x < 60; x++)
printf("%d\n", score[x]):

What is important is the value of the subscript, not the variable that is used as the
subscript.

We often need to set all elements of a numeric array to 0. This may be necessary,
for instance, if we are going to use them to hold totals, or as counters. For
example, to set the 60 elements of score to 0, we could write:

for (int j = 0; j < 60; j++)
score[j]=0;

The for loop is executed 60 times, with j taking on the values 0 to 59:

* the first time through the loop, j is 0, so score[O] is set to O;

* the second time through the loop, j is 1, so score[1] is set to O;
and so on, until

* the 60th time through the loop, j is 59, so score[59] is set to O.

If we want to set the elements to a different value (-1, say), we could write:

for (int j = 0; j < 60; j++)
score[j] = -1

185

C Programming — A Beginner’s Course

It should be noted that even though we have declared score to be of size 60, it is
not required that we use all the elements. For example, suppose we want to set
just the first 20 elements of score to 0, we could do this with:

for (int j = 0; j < 20; j++)
score[j] = 0;

This sets elements score[0], score[1], score[2], up to score[19] to 0. Elements
score[20] to score[59] remain undefined.

About not using element 0

As we have seen, starting from element O can be a bit awkward and unnatural
when we have to say things like “the third element is stored in location 2”; the
subscript is “out of sync” with the position of the element. It would be much more
sensible and logical to say “the first element is stored in location 1” or “the fifth
element is stored in location 5.

For situations like these, it is better to ignore element O and pretend that the
subscripts start from 1. However, you will have to declare the size of your array to
be one more than you actually need. For instance, if we want to cater for 60
scores, we will have to declare score as

int score[61];

This creates elements score[O] to score[60]. We can ignore score[O] and use only
score[1] to score[60]. Having to declare an extra element is a small price to pay
for being able to work with our problem in a more natural and logical manner.

There are times when it is better to work with an array from position 0. But, for
those times when it is not, we will declare our array size to be one more than
required and ignore the element in position 0.

Suppose we want to cater for 60 scores. A good way to do this is as follows:

#define MaxScores 60

int score[MaxScores + 1];

We can now work with elements score[1] to score[MaxScores].

8.3 Example - finding average and differences from average

Consider the problem of finding the average of a set of numbers (integers) and
the amount by which each number differs from the average. In order to find the
average, we need to know all the numbers. We saw in Section 5.2, page 93, how
to find the average by reading and storing one number at a time. Each new

186

Working with arrays

number read replaced the previous one. At the end, we could calculate the average
but we’ve lost all the numbers.

Now, if we also want to know how much each number differs from the average,
we would need to store the original numbers so that they are available after the
average is calculated. We will store them in an array. The program will be based
on the following assumptions:

no more than 100 numbers will be supplied; this information is needed to
declare the size of the array;

the numbers will be terminated by 0; it is assumed that O is not one of the
numbers.

The following shows how we want the program to work:

ﬂnter up to 100 numbers (end with ON

27530

Numbers entered: 4
sum of numbers: 17

The average 1is 4.25
Numbers and differences from average

2 -2.25
7 2.75

5 0.75
k 3 -1.25 /

Program P8.2 (next page) shows how to write the program to work like this.

Points to note about Program P8.2:

Using #define, we set the symbolic constant MaxNum to 100; we use it to
declare the array and in the prompt for numbers. This makes the program easy
to modify if we change our mind and wish to cater for a different amount of
numbers.

We enter the while loop when the number read is not 0. Inside the loop, we add
it to the sum, store it in the array and count it. Each time we reach the end of
the loop, the value of n is the amount of numbers stored in the array so far.

On exit from the while loop, we test n. If it is still 0, then no numbers were
supplied and there’s nothing else to do. The program does not make the
mistake of trying to divide by n ifit is 0. If n is positive, we confidently divide
the sum by it to find the average.

The for loop ‘steps through’ the array, printing the numbers and their
differences from the average. Here, n is the number of elements of the array
that were actually used, not necessarily the entire array. The elements used are
num[0] to num[n-1].

187

C Programming — A Beginner’s Course

Program P8.2

//find average and difference from average
#include <stdio.h>
#define MaxNum 100
main() {
int a, num[MaxNum];
intfn=0;
double sum = O;
printf("Enter up to %d numbers (end with 0)\n", MaxNum);
scanf("%d", &a);
while (a = 0){
sum += a;
num[n++] = a; //store in location n, thenadd 1 to n
scanf("%d", &a);
}

if (n == 0) printf("No numbers entered\n");
else {
printf("\nNumbers entered: %d\n", n);
printf("Sum of numbers: %1.0f\n\n", sum);
double average = sum / n;
printf("The average is %3.2f\n", average);
printf("\nNumbers and differences from average\n"):
for (a=0; a<n; a++)
printf("%4d %6.2f\n", num[a], num[a] - average);

* The program works out the sum of the numbers as they are read. If we need to
find the sum of the first n elements affer they have been stored in the array, we
can do this with:

sum = 0;
for(int j = 0; j < n; j++) sum += num[j].

Program P8.2 does the basics. But what if the user entered more than 100
numbers? Recall that, as declared, the elements of num range from num[O] to
num[99].

Now suppose that n is 100, meaning that 100 numbers have already been stored
in the array. If another one is entered, and it is not O, the program will enter the
while loop and attempt to execute the statement

num[n++] = q;

188

Working with arrays

Since n is 100, this is now the same as num[100] = a. But there is no element
num[100]—you will get an “array subscript” error. When you start working with
arrays, you must be very careful that your program logic does not take you
outside the range of subscripts. If it does, your program will crash.

To cater for this possibility, we could write the while condition as
while (a!= 0 && n < MaxNum){ ...

If n is equal to MaxNum (100), it means we have already stored 100 values in the
array and there is no room for any more. In this case, the loop condition will be
false, the loop will not be entered and the program will not try to store another
value in the array.

This is another example of defensive programming, of trying to make our
programs immune to outside forces. Now there is no way for a user action to
cause our program to crash by exceeding the bounds of the array.

8.4 Example — letter frequency count

Let us write a program which counts the frequency of each letter in the input. The
program will treat an uppercase letter and its lowercase equivalent as the same
letter; for example, E and e increment the same counter.

In Program P7.10 on page 176, we wrote a function, position, which, given a
character, returns O if the character is not a letter; if it is a letter, it returns its
position in the alphabet. We will use position to solve this problem. However, we
will rewrite it using the predefined character functions isupper and islower.

To solve this problem, we need to keep 26 counters, one for each letter of the
alphabet. We need a counter for a’s and A’s, one for b’s and B’s, one for ¢’s and
C’s, and so on. We could declare 26 variables called a, b, c, ..., up to z; a holds
the count for a’s and A’s, b holds the count for b’s and B’s, and so on. And, in our
program, we could write statements of the form (assuming ch contains the next
character):

if (ch=="a"[| ch=="A") a++;
else if (ch=="b" || ch == "B') b++;
elseif (ch=="c' || ch=="C") c++;
else if ...

This gets tiresome very quickly. And we will have similar problems when we
have to print the results. Having to work with 26 variables for such a small
problem is neither suitable nor convenient. As we will see, an array lets us solve
this problem much more easily.

We will need an int array with 26 elements to hold the count for each letter of the
alphabet. Since it is more natural to use element 1 (rather than element 0) to hold

189

C Programming — A Beginner’s Course

the count for a’s and A’s, element 2 (rather than element 1) to hold the count for
b’s and B’s, and so on, we will declare the array letterCount as

int letterCount[27];
We will ignore letterCount[0] and use

 letterCount[1] to hold the count for a’s and A’s
 letterCount[2] to hold the count for b’s and B’s
 letterCount[3] to hold the count for ¢’s and C’s

etc.
e letterCount[26] to hold the count for z’s and Z’s

When a character ch is read, we will call the function position, as in
n = position(ch);

If n is greater than 0, we know that ch contains a letter and n is the position in the
alphabet of that letter. For example, if ch contains Y, then n is 25, since Y is the

25" letter of the alphabet. If we add 1 to letterCount[n], we are adding 1 to the

count for the letter that ch contains. Here, if we add 1 to letterCount[25], we are
adding 1 to the count for Y. This is accomplished by

if (n>0) ++letterCount[n];

The complete program is shown as Program P8.3 (next page). It reads data from
the file passage.txt and sends output to the file output.txt. You may wish to

remind yourself how this is done by looking at page 142.

Take a look at the fprintf statement that prints one line of the output:
fprintf(out, "%4c %8d\n", 'a’ + n - 1, letterCount[n]);

This prints a (lowercase) letter followed by its count. Let us see how. The code
for'a'is 97. Whennis 1,

‘a'+n-1

is evaluated as 97+1-1, which is 97; when 97 is printed with %c, it is interpreted
as a character, so a is printed. When n is 2,

‘a'+n-1

is evaluated as 97+2-1, which is 98; when 98 is printed with %c, it is interpreted
as a character, so b is printed. When n is 3,

‘a'+n-1

is evaluated as 97+3-1, which is 99; when 99 is printed with %c, it is interpreted
as a character, so ¢ is printed.. And so on. As n takes on the values from 1 to 26,

‘a' +n-1

will take on the codes for the letters from 'a' to 'z'.

190

Working with arrays

Program P8.3

#include <stdio.h>

#include <ctype.h>

main() {
char ch;
int n, letterCount[27], position(char);
FILE * in = fopen("passage.txt", "r");
FILE * out = fopen("output.txt", "w");

for (n = 1; n<= 26; n++) letterCount[n] = 0; //set counts to O

while ((ch = getc(in)) I= EOF) {
n = position(ch);
if (n>0) ++letterCount[n];

}

//print the results
fprintf(out, "Letter Frequency\n\n");
for (n=1; n<= 26; n++)
fprintf(out, "%4c %8d\n", 'a’ + n - 1, letterCount[n]);
fclose(in);
fclose(out);

}

int position(char ch) {
if (isupper(ch)) returnch - ‘A" +1;
if (islower(ch)) return ch - ‘a’ + 1;
return O;

}

As a matter of interest, we could have used the special form of the for statement
described on page 124 to achieve the same result. Here it is:

for (ch="'a', n=1; n<= 26; ch++, n++)
fprintf(out, "%4c %8d\n", ch, letterCount[n]);

The loop is still executed with n going from 1 to 26. But, in sync with n, it is also
executed with ch going from 'a' to 'z'. Note the use of ch++ to move on to the next

character.
If passage.txt contains

The quick brown fox jumps over the lazy dog.
If the quick brown fox jumped over the lazy dog then
Why did the quick brown fox jump over the lazy dog?

the program sends the following output to the file output.txt:

191

C Programming — A Beginner’s Course

ﬂette r Frequencﬁ

NKX=E<CSCAAWVWTSTOQTOSS—-RU-TQ-HhDQOANTW
WAWAWOANRFOWWNRWWWWUIOOWRROOWWW

_

.

8.5 Making better use of fopen

When we write a statement such as
FILE * in = fopen("passage.txt", "r");

we are saying “open the file passage.txt for reading”. It assumes that the file has
been created and the appropriate data stored in it. But what if the user forgot to
create the file or has put it in the wrong place (the wrong folder, for instance)? We

can use fopen to check for this. If fopen cannot find the file, it returns the
predefined value NULL (defined in stdio.h). We can test for this, as in:

FILE * in = fopen("passage.txt", "r");
if (in == NULL) {
printf("File cannot be found\n");
exit(1);
}

If in is NULL, the program prints a message and stops. If in is not NULL, the
program proceeds as before.

The predefined function exit is used to terminate execution of a program and
return control to the operating system. It is conventional to use exit(0) to indicate
normal temination; other arguments are used to indicate some sort of error.

192

Working with arrays

To use exit, we must write the directive
#include <stdlib.h>

at the head of our program, since exit is defined in the “standard library”, stdlib.h.
Among other things, this library contains functions for working with random
numbers, functions for searching and functions for sorting.

As usual, we can assign a value to in and test it for NULL, using
FILE * in;
if ((in = fopen("passage.txt", "r")) == NULL) {
printf("File cannot be found\n");
exit(1);
}

Note that we cannot use FILE * in in the if condition, since a declaration is not
permitted there.

Similarly, when we write
FILE * out = fopen("output.txt", "w");

we are assuming that the file output.txt exists or can be created. If it does not
exist and cannot be created (the disk may be write-protected, for instance), fopen
will return NULL. We can test for this, as in:

FILE * out;

if ((out = fopen("output.txt", "w")) == NULL) {
printf("File cannot be found or created\n");
exit(1);

}

So far, we have written the name of our file in the fopen statement. To use a
different file, we would have to change the name in the statement, and we would
have to re-compile the program. Our program would be more flexible if we let the
user tell us the name of the file when the program is run.

We can declare dataFile to hold the name of the file with
char dataFile[40];

You can change 40 to any size you wish. If in has been declared as FILE *, we can
prompt the user for the file name and test if everything is okay with:

printf("Enter name of file: ");

scanf("%s", dataFile);

if ((in = fopen(dataFile, "r")) == NULL) {
printf("File cannot be found\n");
exit(1);

}

193

C Programming — A Beginner’s Course

Since we are using %s to read the name of the file, the name may not contain a
space. If your file name may contain a space, you can use gets (page 51).

8.6 Passing an array as an argument to a function

In Chapter 7, we saw how arguments are passed to functions. In C, arguments are
passed “by value”. When an argument is passed “by value”, a temporary location
is created with the value of the argument, and this temporary location is passed to
the function. The function never has access to the original argument.

We also saw on page 51 that when we use gets(item) to read a string into the
character array item, the function is able to put the string into the argument item.
This implies that the function has access to the actual argument—no copy is
involved.

In C, an array name denotes the address of its first element. When we use an
array name as an argument to a function, the address of the first element is passed
to the function which, therefore, has access to the array.

We now take a closer look at some issues involved in writing functions with array
arguments.

We will write a function, sumList, which returns the sum of the integers in an
array passed to the function. For example, if the array contains

(3fsfals]7]
o 1 2 3

the function should return 24.

We could write the function header like this:
int sumList(int hum[])

The array argument is written just like an array declaration but with no size
specified. However, the square brackets must be present to distinguish it from a
simple argument. For instance, if we had written int num, this would mean that
num is an ordinary int variable.

You can specity a size, if you wish, using a constant, a symbolic constant or any
integer expression which can be evaluated at the time the program is compiled.
However, your program will be more flexible if you do not.

Now, suppose score is declared in main as
int score[10];

and we make the call sumList(score). We can simply think that, in the function,
score is known by the name num; any reference to num is a reference to the
original argument score.

194

Working with arrays

The more precise explanation is this: since the name score denotes the address of
score[0], this address is passed to the function where it becomes the address of the
first element of num, num[0]. In fact, any address can be passed to the function
where it will be taken to be the address of num[O].

The function is free to to assume any size it wishes for num. Obviously, this can
land us in trouble if we attempt to process array elements which do not exist. For
this reason, it is good programming practice to ‘tell’ the function how many
elements to process. We do this using another argument, as in:

int sumList(int hum[], int n)

Now the calling function can tell sumList how many elements to process by
supplying a value for n. Using the declaration of score, above, the call
sumList(score, 10) tells the function to process the first 10 elements of score (the
whole array). But, and herein lies the advantage of this approach, we could also
make a call such as sumList(score, 5) to get the function to process the first 5
elements of score.

Using this function header, we write sumList as follows:

int sumList(int num[], int n) {
int sum = O;
for (int j = O; j < n; j++) sum += num[j];
return sum;

}

The function ‘steps through’ the array, from num[O] to num[n - 1], using a for
loop. Each time through the loop, it adds one element to sum. On exit from the
loop, the value of sum is returned as the value of the function.

The construct

for (j=0; j<n; j++)
is typical for processing the first n elements of an array.
To use the function, consider the following code in main:

int sumList(int [], int), score[10];
for (int j = 0; j < 5; j++) scanf("%d", &score[]):
printf("Sum of scores is %d\n", sumList(score, 5));

As usual, any function that wants to use sumList must declare it using a function
prototype. Note the use of int [] to indicate that the first argument is an integer
array. If we wish, we could use an identifier in declaring the prototype, as in:

int sumList(int s[], int);

The actual identifier used is not important. We could replace s by any valid
identifier.

195

C Programming — A Beginner’s Course

The for loop reads 5 values into the array. Note that since an array element is just
like an ordinary variable, we must write &score[j] in scanf to read a value into
score[j].

Suppose the values read into score are:

score
3 8 1 5 7
o 1 2 3 4

In printf, the call sumList(score, 5) will get the function to return the sum of the
first 5 elements of score, that is, 24. You should gather by now that, to find the
sum of the first 3 elements, say, we can write sumList(score, 3).

8.7 A string is an array of characters

In Section 2.6 (page 37), we showed you how to store a string in a “character
array”. Now that we know a bit about arrays, we can explain how strings are
actually stored.

In C, a string is stored in an array of characters. Each character in the string is
stored in one position in the array, starting at position 0. The null character, \O, is

put after the last character. This is done so that programs can tell when the end of
a string has been reached. For example, the string

"Enter rate:"

is stored as follows (¢ denotes a space):

Lefnftfefrfofrfajtfe]:]| 0]
o 1 2 3 4 5 6 7 8 9 10 1

(Of course, inside the computer, each character is represented by its numeric
code, in binary.)

The null string, a string with no characters, is written as """ (two consecutive
double quotes) and stored as

(o}

The string constant "a" is stored as:

a\0|
o 1

This should not be confused with the character constant 'a', which has a numeric

value (its integer code value) associated with it and can be used in arithmetic
expressions. There is no numeric value associated with "a".

196

Working with arrays

We can compare two characters using the relational operators ==, I=, <, <=, >
and >=, but we cannot compare two strings, even single-character strings like "a"
and "h", this way. To compare two strings, we use a function like strcemp (p. 108).

Suppose we intend to store a name in the variable name declared as
char name[25];

If we read a string into name using gets(name) or scanf("%s", name), C will put
\O after the last character stored. (This is called properly terminating the string
with \0). We must ensure that there is enough room in the array to store \0. So if

we declare an array of size 25, we can store a string of at most 24 characters in it
since we must reserve one location for \0.

For example, suppose Alice Wonder is typed in response to gets(name). The
array name will look like this (only the used positions are shown):

(alitfifelelofwlofnfafe]r[ro |
o1 2 3 4 5 6 7 8 9 10 1 12

Since name is an array, we can work with individual characters, if we so desire.
For instance, name[0] refers to the first character, name[1] refers to the second,
and so on. In general, we can use namel[j] to refer to the character in position j.
And, as we have seen, we can use name, by itself, to refer to the string stored in
the array.

The length of a string is defined as the number of characters in it, not counting
\O. The predefined string function strlen takes an array of characters as its

argument and returns the length of the string stored in it. In this example,
strlen(name) would return 12, the number of characters in “Alice Wonder”. As a

matter of interest, strlen starts counting characters from the beginning of the array
until it finds \O.

In fact, all the standard string functions (like strlen, strcpy, strcat and stremp)
assume that the strings we give them are properly terminated with \O. If they are

not, unpredictable results will occur. Imagine what will happen, for instance, if we
give strlen an array of characters but there was no \0 to indicate the end of the
string. It will go on forever looking for \O.

When we write statements like
char name[25] = "Alice Wonder";
or strcpy(name, "Alice Wonder");

C will store \O after the last character so we do not have to worry about it.

However, if we store characters in an array ourselves, we must be careful and add
\O at the end. This is very important if we intend to use any of the standard string
functions with the string or if we intend to print it with %s. For example, consider
the code:

197

C Programming — A Beginner’s Course

char word[10];
intfn=0;
char ch = getchar();
while (lisalpha(ch)) ch = getchar(); //read and ignore non-letters
while (isalpha(ch)) {
word[n++] = ch;
ch = getchar();
}
word[n] = '\0";

This code reads characters from the input and stores the first word found in the
array word. Here, a word is defined as any consecutive string of alphabetic
characters. The first while loop reads over any non-alphabetic characters. It exits
when it finds the first alphabetic character. The second while loop is executed as
long as the character read is alphabetic. It uses n to step through the positions in
the array, starting at position 0. On exit from this loop, \O is stored in position n,

since, at this time, n indicates the position affer which the last letter was stored.

To illustrate, suppose the data was:
123%$#%&First Knight7890

The first while loop will read characters until it reaches F, since F is the first
alphabetic character in the data. The second loop will store

F in word[O];
i in word[1];
r in word[2];
s in word[3];
t in word[4];

Since n is incremented affer each character is stored, the value of n at this stage is
5. When the space after t is read, the while loop exits and \0 is stored in word[5],

properly terminating the string. The array word will look like this:

[Flilrfsftlvo] |
o1 2 3 4 5 6.

We can now use word with any of the standard string functions and can print it
using %s, as in:

printf("%s", word);
%s will stop printing characters when it reaches \0.
The above code is not perfect—we used it mainly for illustrative purposes. Since
word is of size 10, we can store a maximum of 9 letters (plus \0) in it. If the next
word is longer than 9 letters (for example, serendipity), the code will attempt to
access word[10], which does not exist, giving an “array subscript” error.

As an exercise, consider how you would handle words which are longer than what
you have catered for. (Check that n is valid before storing anything in word[n].)

198

Working with arrays

To illustrate how we can work with individual characters in a string, we write a
function, numSpaces, to count and return the number of spaces in a string str:

int numSpaces(char str[]) {
int j = 0, spaces = O;
while (str[j]!= "\0") {
if (str[jl=="") spaces++;
j++;
}

return spaces;

}

Consider the code:

char phrase[] = "How we live and how we die";
printf("Number of spaces is %d\n", numSpaces(phrase));

The first statement creates an array of just the right size to hold the characters of
the string plus \0. Since the phrase contains 26 characters (letters and spaces), the
array phrase will be of size 27, with phrase[O] containing H, phrase[25]
containing e and phrase[26] containing \0.

In printf, the call numSpaces(phrase) will transfer control to the function, where
phrase will be known as str. In the function, the while loop will step through the
array until it reaches \O. For each character, it will check if it is a space. If it is, 1

is added to spaces. On exit from the loop, the value of spaces is returned as the
value of the function. For the sample phrase, the value returned will be 6.

As a matter of interest, the body of the while loop could be written as:
if (str[j++]=="") spaces++;
Here, j is incremented after we test if str[j] contains a space.
Exercises: (a) Write a function to return the number of digits in a string str.

(b) Write a function to return how many vowels there are in a string str. Hint:
it would be useful to write a function isMowel which, given a character ch,
returns 1 if ch is a vowel and O if it is not.

As another example, we write code to reverse the characters in a string str. For
example, if str contains lived, we must change it to devil. To illustrate how the
code will work, we picture str as (\O is not shown)

199

C Programming — A Beginner’s Course

We will first exchange str[0O], I, and str[4], d, giving

Next, we will exchange str[1], i, and str[3], e, giving

Lafelv]|
o 1 2 3 4

str[2] is already in place (the middle letter does not move), so there is nothing
more to do and the method ends with str reversed.

It appears that we will need two variables: one will take on subscript values
starting from O and increasing, while the other will take on subscript values
starting from length(str) - 1 and decreasing. We will call them lo and hi. Initially,
we will set lo to 0 and hi to length(str) - 1.

The basic idea of the algorithm is as follows:

setloto O

set hi to length(str) - 1

exchange the characters in positions lo and hi
add 1 to lo

subtract 1 from hi

repeat from step 3

ook wn=

When do we stop? Well, we can stop when there are no more characters to
exchange. This will happen when lo becomes greater than or equal to hi. Or, put
another way, we must keep exchanging characters as long as lo is less than hi. We
can now write the algorithm as follows:

setloto O

set hi to length(str) - 1

while lo < hi do
exchange the characters in positions lo and hi
add 1tolo
subtract 1 from hi

endwhile

In this form, it is easily converted to C as follows (assume ¢ is char):

lo=0;
hi = strlen(str) - 1;
while (lo < hi) do begin
c = str[lo];
str[lo] = str[hil;
strlhil=c;
lo++;

hi--;

200

Working with arrays

However, we can use the expressive power of the for statement to write this more
concisely and, perhaps, more readable, as:

for (lo = 0, hi = strlen(str) - 1; lo < hi; lo++, hi--) {
c = str[lo];
str[lo] = str[hil;
strlhil=c;

}

Swapping two characters in a string is something we may want to do from time to
time. It would be convenient to write a function (swap, say) to do this task. When
we call swap, we will give it the string and the subscripts of the characters we
want to exchange. For example, if word is a char array, the call

swap(word, i, j);

will exchange characters word[i] and word[j]. Since word is an array, the original
array (not a copy) is passed to swap. When the function swaps two characters, it
is swapping them in the actual argument, word.

The function can be written as:

void swap(char str[], int i, int j) {
char ¢ = str[i];
str[i] = str[jl.
strijl=c:

}

In the function, the actual argument (word, say) is known by the name str.

Using swap, we can reverse the characters with another function, reverse, written
as:

void reverse(char str[]) {
void swap(char [], int, int);
int lo, hi;
for (lo = 0, hi = strlen(str) - 1; lo < hi; lo++, hi--)
swap(str, lo, hi);

Since reverse uses swap, we must declare the prototype for swap in reverse.
Note, again, that the prototype is similar to the function header, except that we
omit the variable names. However, if you wish, you may include the names—any
names will do.

Using these functions, we write Program P8.4 (next page) which reads a string,
reverses it and prints it.

201

C Programming — A Beginner’s Course

Program P8.4

#include <stdio.h>
#include <string.h>
main() {
char sample[100];
void reverse(char s[]);
printf("Type some data and I will reverse it\n");
gets(sample);
reverse(sample);
printf("%s\n", sample);
}

void reverse(char str[]) {
void swap(char [], int, int);
int lo, hi;
for (lo = 0, hi = strlen(str) - 1; lo < hi; lo++, hi--)
swap(str, lo, hi);

}

void swap(char str[], int i, int j) {
char ¢ = str[i];
str[i] = str[jl;
strijl=c:

}

The following is a sample run:

Type some data and | will reverse it
Once upon a time
emit a nopu echO

Reversing a string may not seem too important in its own right but there are times
when we need to reverse the elements of an array. For example, we may have a
list of student marks stored in an array and sorted in ascending order, like this:

| 32 | 45 | 59 | 67 | 81 |
(o] 1 2 3 4

If we want the marks in descending order, all we have to do is reverse the array:

| 81 | 67 | 50 | 45 | 32 |
o 1 2 3 4

202

Working with arrays

8.8 Example — palindrome

Consider the problem of determining if a given string is a palindrome (the same
when spelt forwards or backwards). Examples of palindromes (ignoring case,
punctuation and spaces) are:

civic

Racecar

Madam, I'm Adam.
A man, a plan, a canal, Panama.

If all the letters were of the same case (upper or lower) and the string (word, say)
contained no spaces or punctuation marks, we could solve the problem as follows:

assign word to another string, temp
reverse the letters in temp

if femp = word then word is a palindrome
else word is not a palindrome

In other words, if the reverse of a word is the same as the word, it is a palindrome.
Sounds logical and correct. However, it is not efficient. Let us see why.

Suppose the word was thermostat. This method would reverse thermostat to get
tatsomreht. Comparing the two tells us that thermostat is not a palindrome. But
we can get the answer more quickly as follows:

compare the first and last letters, t+ and t

they are the same, so

compare the second and second to last letters, h and a
these are different so the word is not a palindrome

We will write a function called palindrome which, given a string word, returns 1
if word is a palindrome and O if it is not. For the moment, we will assume that
word is all uppercase or lowercase and does not contain spaces or punctuation.
The function will be based on the following idea:

compare the first and last letters

if they are different, the string is not a palindrome

if they are the same, compare the second and second to last letters
if they are different, the string is not a palindrome

if they are the same, compare the third and third to last letters

and so on; we continue until we find a non-matching pair (and it’s not a
palindrome) or there are no more pairs to compare (and it is a palindrome). We
can express this logic in pseudocode as follows:

203

C Programming — A Beginner’s Course

set loto O

set hi to length(word) - 1

while lo < hi do //while there are more pairs to compare
if word[lo] = word[hi] then return O // not a palindrome
//the letters match, move on to the next pair

lo=lo+1
hi=hi-1
endwhile

return 1// all pairs match, it is a palindrome

The while loop compares pairs of letters; if it finds a non-matching pair, it
immediately returns 0. If all pairs match, it will exit in the normal way when lo is
no longer less than hi. In this case, it returns 1.

The function palindrome is shown in Program P8.5 which tests it by reading
several words and printing whether or not each is a palindrome.

Program P8.5

#include <stdio.h>
#include <string.h>
main() {
char aWord[100];
int palindrome(char str[]);
printf("Type a word. (To stop, press 'Enter’ only): ");
gets(aWord);
while (strcmp(aWord, ") 1= 0) {
if (palindrome(aWord)) printf("is a palindrome\n");
else printf("is not a palindrome\n");
printf("Type a word. (To stop, press 'Enter’ only): ");
gets(aWord);
}
}

int palindrome(char word[]) {
int lo=0;
int hi = strlen(word) - 1;
while (lo < hi)
if (word[lo++] != word[hi--]) return O;
return 1;

}

In the function, we use the single statement

if (word[lo++] != word[hi--1) return O;

204

Working with arrays

to express all the logic of the body of the while loop in the above algorithm. Since
we use ++ and -- as suffixes, lo and hi are changed affer word[lo] is compared
with word[hi]. We could, of course, have expressed it as:

if (word[lo] != word[hi]) return O;
lo++;

hi--;

The program prompts the user to type a word and tells her if it is a palindrome. It
then prompts for another word. To stop, the user must press “Enter” only. When
she does this, the empty string is stored in aWord. The while condition checks for
this by comparing aWord with "" (two consecutive double quotes denote the
empty string). The following is a sample run of Program P8.5:

/Type a word. (To stop, press "Enter" only): raceg
is a palindrome

Type a word. (To stop, press "Enter" only): race car
is not a palindrome

Type a word. (To stop, press "Enter" only): Racecar
is not a palindrome

Type a word. (To stop, press "Enter" only): DEIFIED
is a palindrome

lee a word. (To stop, press "Enter" only): /

Note that race car is not a palindrome because 'e' is not the same as '' and
Racecar is not a palindrome because 'R' is not the same as 'r'. We will fix this
shortly.

A better palindrome function

The function we wrote works for one-word palindromes with all uppercase or all
lowercase letters. We now tackle the more difficult problem of checking words or
phrases which may contain uppercase letters, lowercase letters, spaces and
punctuation marks. To illustrate our approach, consider the phrase:

Madam, I'm Adam

We will convert all the letters to one case (lower, say) and remove all spaces and
non-letters, giving

madamimadam

We can now use the function we wrote above to test if ¢his is a palindrome.

Let us write a function lettersOnlyLower which, given a string phrase, converts
all letters to lowercase and removes all spaces and non-letters. The function stores
the converted string in the second argument. Here it is:

205

C Programming — A Beginner’s Course

void lettersOnlyLower(char phrase[], char word[]) {
intj=0,n=0;
char c;
while ((c = phrase[j++]) = "\0")
if (isalpha(c)) word[n++] = tolower(c);
word[n] = '\O";
}

Comments on the function lettersOnlyLower

» jisused to index the given phrase, stored in phrase;
* nis used to index the converted phrase, stored in word;

* the while loop looks at each character of phrase, in turn. If it is a letter, it is
converted to lowercase using the predefined function tolower and stored in the
next position in word; to use tolower, your program must be preceded by the
directive

#include <ctype.h>
* on exit from the while, word is properly terminated with \0.

Putting everything together, we get Program P8.6 (next page) which tests our new
function, letterOnlyLower. The program prompts the user for a phrase and tells
her whether or not it is a palindrome. We also print the converted phrase to show
you how the function works.

A sample run is:

@ a phrase. (To stop, press "Enter" only): Madam I'm Adﬁ
Converted to: madamimadam

is a palindrome

Type a phrase. (To stop, press "Enter" only): Flo, gin is a sin. | golf.
Converted to: floginisasinigolf

is a palindrome

Type a phrase. (To stop, press "Enter" only): Never odd or even.
Converted to: neveroddoreven

is a palindrome

Type a phrase. (To stop, press "Enter" only): Thermostat
Converted to: thermostat

is not a palindrome

Type a phrase. (To stop, press "Enter" only): Pull up if | pull up.
Converted to: pullupifipullup

is a palindrome
Wa phrase. (To stop, press "Enter" only): /

206

Working with arrays

Program P8.6

#include <stdio.h>
#include <string.h>
#include <ctype.h>
main() {
char aPhrase[100], aWord[100];
void lettersOnlyLower(char p[], char w[]);
int palindrome(char str[]);
printf("Type a phrase. (To stop, press 'Enter' only): ");
gets(aPhrase);
while (strcmp(aPhrase, "") 1= 0) {
lettersOnlyLower(aPhrase, aWord);
printf("Converted to: %s\n", aWord);
if (palindrome(aWord)) printf("is a palindrome\n");
else printf("is not a palindrome\n");
printf("Type a word. (To stop, press 'Enter’ only): ");
gets(aPhrase);
}
}

void lettersOnlyLower(char phrase[], char word[]) {
intj=0,n=0;
char c;
while ((c = phrase[j++]) = '\0")
if (isalpha(c)) word[n++] = tolower(c);

word[n] = '\0";
}
int palindrome(char word[]) {
int lo = 0;
int hi = strlen(word) - 1;
while (lo < hi)
if (word[lo++] != word[hi--]) return O;
return 1;
}

8.9 Array of strings — name of the day revisited

In Program P7.4 (page 161), we wrote a function printDay which printed the
name of a day, given the number of the day. We will now write a function
nameOfDay which will be given two arguments: the first is the number of a day
and the second is a character array. The function will store, in the array, the name
of the day corresponding to the number of the day. For example, the call

207

C Programming — A Beginner’s Course

nameOfDay(6, dayName);

will store Friday in dayName, assuming dayName is a character array.

We show how to write nameOfDay using an array to store the names of the days.
Suppose we have an array day as follows (day[0] is not used and is not shown):

day
Sunday day[1]
Monday day[2]
Tuesday day[3]

Wednesday day[4]

Thursday day[5]
Friday day[6]
Saturday day[7]

If d contains a value from 1 to 7, then day[d] contains the name of the day
corresponding to d. For instance, if d is 3, day[d] contains Tuesday. But how can

we store the names of the days in an array? What kind of array would we need?

We will need an array where each element can hold a string—an array of strings.
But a string itself is stored in an array of characters. So we need an array of “array
of characters”—we need a two-dimensional array. Consider the declaration

char day[8][10];

We can think of day as having 8 rows and 10 columns. If we store the name of a
day in each row, then we can store 8§ names. Each name is stored in an array of 10
characters. The rows are numbered from 0 to 7 and the columns are numbered
from O to 9. As hinted in the above diagram, we will not use row 0. We will store
the names in rows 1 to 7. If we store the names of the days in this array, it will
look like this (we put the null string "" in day[O0]):

0O |1]2 |3 |4 |5 |6 |7 |8 |9
0 [\0
1 [S |u |n |d|a |y |\O
2 |[M|o |n |d|a |y |\0
3 |T |uje |s |d|a |y |\0
4 |'Wile |d |n |e |s |d |a |y |\0
5 |T |h |u|r |s |d|a |y |\0
6 |[F |r |1 |d|a |y |\O
7 |S |a |t Ju|r |d]a |y [\0

C allows us to refer to the jth row with day[j]. If we need to, we can use day[jl[R]
to refer to the character in row j and column k. For example, day[3][2] is e and
day[7][4] is r.

208

Working with arrays

We can declare the array day and initialize it with the names of the days using:

char day[8][10] = {"", "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};

This declaration will create the array shown on the previous page. The strings to
be placed in the array are enclosed by { and } and separated by commas with no
comma after the last one. The first string, the null string, is placed in day[O], the
second in day[1], the third in day[2], and so on.

The complete function, nameOfDay, is shown in Program P8.7 in which main is
used simply to test the function.

Program P8.7

#include <stdio.h>

#include <string.h>

main() {
void nameOfDay(int, char[]);
int n;
char dayName[12];
printf("Enter a day from 1 to 7: ");
scanf("%d", &n);
nameOfDay(n, dayName);
printf("%s\n", dayName);

}

void hameOfDay(int n, char name[]) {
char day[8][10] = {"", "Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};
if (n<1|| n>7)strcpy(name, "Invalid day");
else strcpy(name, day[n]);

}

In the function, the statement

if (n<1[| n>7)strcpy(name, "Invalid day");
else strcpy(name, day[n]);

checks the value of n; if it is not a value from 1 to 7, the function stores
Invalid day in name. If it is a valid day number, it stores the value of day[n] in
name. For example, if n is 6, the function stores day[6], that is, Friday, in name.

In main, dayName is declared to be of size 12 since it needs to hold the string
"Invalid day" if the day number is invalid.

209

C Programming — A Beginner’s Course

8.10 A flexible getString function

So far, we have used the format specification %s to read a string containing no
whitespace characters and the function gets to read a string up to the end-of-line.
However, neither of these allows us to read a string delimited by double quotes,
for instance. For example, if we had data in the following format:

"Denise Richards Clerical Assistant"

we would not be able to use %s or gets to read this data easily.

We will write a function, getString, which lets us read a string enclosed within
‘delimiter’ characters. For example, we could specify a string as $John Smith$ or
"John Smith". This is a very flexible way of specifying a string. Each string can
be specified with its own delimiters which could be different for the next string. It
is particularly useful for specifying strings which may include special characters
such as the double quotes without having to use an escape sequenc like \".
For instance, in order to to specify the string:

"Don't move!" he commanded.
in C, we must write:

"\"Don't move!\" he commanded."

With getString, this string could be supplied as

$"Don't move!" he commanded.$
or
%"Don't move!" he commanded.%

or using any other character as a delimiter, provided it is not one of the characters
in the string. We could even use:

7"Don't move!" he commanded."7
but would normally use special characters like ", $, % or # as delimiters.

We will write getString with two parameters: a file designated by in and a
character array str. The function will read the next string from in and store it in str.

The function assumes that the first non-whitespace character met (delim, say) is
the delimiter. Characters are read and stored until delim is met again, indicating
the end of the string. The delimiter characters are not stored since they are not part
of the string.

Suppose we have the following declarations in main, say:

FILE * input = fopen("quizdata.txt", "r");
char country[50];

and the file quizdata.txt contains strings delimited as described above. We would
be able to read the next string from the file and store it in country with:

210

Working with arrays

getString(input, country);

It is up to us to ensure that country is big enough to hold the next string. If not,
the program may crash or nonsense results will occur.

Here is getString:

void getString(FILE * in, char str[]) {

//stores, in str, the next string within delimiters

// the first non-whitespace character is the delimiter
// the string is read from the file 'in’

char ch, delim;

intn=0;

str[0] = "\O';

// read over white space

while (isspace(ch = getc(in))) ; //empty while body
if (ch == EOF) return;

delim = ch;
while (((ch = getc(in)) = delim) && (ch |= EOF))
strln++] = ch;
str[n] = '\O";
} // end getString

Comments on getString

* The predefined function isspace returns 1 (true) if its char argument is a space,
tab or newline character and O (false), otherwise.

* If getString encounters end-of-file before finding a non-whitespace character
(the delimiter), the empty string is returned in str. Otherwise, it builds the
string by reading one character at a time; the string is terminated by the next
occurrence of the delimiter or end-of-file, whichever comes first.

» We can read a string from the standard input (the keyboard) by calling
getString with stdin as the first argument.

8.11 A Geography quiz program

Let us write a program which quizzes a user on countries and their capitals. The
program will illustrate some useful programming concepts like reading from the
keyboard and a file and being very flexible in terms of user input. The following
is a sample run of the program, indicating how we want the finished program to
work. The user is given two tries at a question. If she gets it wrong both times, the
program tells her the correct answer.

211

C Programming — A Beginner’s Course

that is the capital of Trinidad? Tobago \

Wrong. Try again.
What is the capital of Trinidad? Port of Spain
Correct!

What is the capital of Jamaica? Kingston
Correct!

What is the capital of Grenada? Georgetown
Wrong. Try again.

What is the capital of Grenada? Castries
QVrong. Answer is St. George's J

We will store the names of the countries and their capitals in a file (quizdata.txt,
say). For each country, we will store its name, its capital and a special string
consisting only of the letters in the capital, all converted to uppercase. This last
string will be used to enable users to type their answers with a lot of flexibility. It
is not absolutely necessary to store this last string but it will enable us to write a
more efficient program. The string "*" is used to indicate the end of the data. The
following shows some sample data:

"Trinidad" "Port of Spain" "PORTOFSPAIN"
"Jamaica" "Kingston" "KINGSTON"
"Grenada" "St. George's" "STGEORGES"

Ngn

We show 3 strings per line but this is not necessary. The only requirement is that
they are supplied in the right order. If you wish, you can have 1 string per line or
6 strings per line or different numbers of strings per line. Also, you can use any
character to delimit a string, provided it is not a character in the string. And you
can use different delimiters for different strings. It is perfectly okay to supply the
above data as:

"Trinidad" $Port of Spain$ *PORTOFSPAIN*

%Jamaica% "Kingston" &KINGSTON&

$Grenada$ %St. George's% "STGEORGES"

#*#
We can do this because of the versatility of getString. We will use getString to
read the (delimited) strings from the file and gets to get the user’s answers typed
at the keyboard.

Suppose a country’s data are read into the variables country, capital and
CAPITAL, respectively. (Remember that capital is a different variable from
CAPITAL). When the user types an answer (answer, say), it must be compared
with capital. If we use a straightforward comparison like

if (strcmp(answer, capital) == 0) ...

to check if answer is the same as capital, then answers like "Portof Spain",
"port of spain”, " Port ofSpain" and "st georges" would all be considered
wrong. If we want these answers to be correct (and we probably should) we must
convert all user answers to a common format before comparing.

212

Working with arrays

We take the view that as long as all the letters are there, in the correct order,
regardless of case, the answer is considered correct. When the user types an
answer, we ignore spaces and punctuation and convert the letters only to
uppercase. This is then compared with CAPITAL. For example, the answers above
would be converted to "PORTOFSPAIN" and "STGEORGES" and would elicit a
"Correct!" response.

In the palindrome program (page 207), we wrote a function lettersOnlyLower
which kept the letters only from a string and converted them to lowercase. Here,
we want the same function but we convert to uppercase instead. We call the
function lettersOnlyUpper. The code is identical to lettersOnlyLower except that
tolower is replaced by toupper. Our test for correctness now becomes:

lettersOnlyUpper(answer, ANSWER);
if (strcmp(ANSWER, CAPITAL) == 0) printf("Correct\n");

All the details are captured in Program P8.8.

As mentioned earlier, it is not absolutely necessary to store CAPITAL in the file.
We can store country and capital only, and when these are read, convert capital
with

lettersOnlyUpper(capital, CAPITAL);

Program P8.8

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#define MaxLength 50
main() {
void getString(FILE *, char[]);
void askOneQuestion(char[], char[], char[]);
char EndOfDatq[] = "*", country[MaxLength+1] ;
char capital[MaxLength+1], CAPITAL[MaxLength+1];
FILE * in = fopen("quizdata.txt", "r");
if (in == NULLYX
printf("Cannot find file\n");
exit(1);
}
getString(in, country);
while (strcmp(country, EndOfData) = 0) {
getString(in, capital);
getString(in, CAPITAL);
askOneQuestion(country, capital, CAPITAL);
getString(in, country);
}

}// end main

213

C Programming — A Beginner’s Course

void askOneQuestion(char country[], char capital[], char CAPITAL[]) {
void lettersOnlyUpper(char [], char[]);
char answer[MaxLength+1], ANSWER[MaxLength+1];

printf("\nWhat is the capital of %s?", country);
gets(answer);
lettersOnlyUpper(answer, ANSWER);
if (strcmp(ANSWER, CAPITAL) == 0) printf("Correct!\n");
else {
printf("Wrong. Try again\n");
printf("\nWhat is the capital of %s?", country);
gets(answer);
lettersOnlyUpper(answer, ANSWER);
if (strcmp(ANSWER, CAPITAL) == 0) printf("Correct\n");
else printf("Wrong. Answer is %s\n", capital);
}
} // end askOneQuestion

void lettersOnlyUpper(char word[], char WORDI]) {
// stores the letters in word (converted to uppercase) in WORD
intj=0,n=0;
char c;
while ((c = word[j++]) = '\O")
if (isalpha(c)) WORD[n++] = toupper(c);
WORD[n] = '\O";
} // end lettersOnlyUpper

// getString can go here

You can use the idea of this program to write many similar ones. On the
Geography theme, you can ask about mountains and heights, rivers and lengths,
countries and population, countries and prime ministers, and so on. For a different
application, you can use it to drill a user in English-Spanish (or any other
combination of languages) vocabulary. Your questions could take the form:

What is the Spanish word for water?
or, if you prefer,
What is the English word for agua?
Better yet, let the user choose whether she is given English or Spanish words.

You can ask about books and authors, songs and performers, movies and stars. As
an exercise, think of five other areas in which the idea of this program can be used
to quiz a user.

214

Working with arrays

8.12 Finding the largest number in an array

Let us consider the problem of finding the largest of a set of values stored in an
array. The principle of finding the largest is the same as we discussed in Section
5.5. Suppose the integer array num contains the following values:

num

25 | 72 17 | 43 | 84 14 | 61
0 1 2 3 4 5 6

We can easily see that the largest number is 84 and that it is in location 4. But
how does a program determine this? One approach is as follows:

» Assume that the first element (the one in position 0) is the largest; we do this
by setting big to 0. As we step through the array, we will use big to hold the
position of the largest number encountered so far and num[big] to refer to the
actual number.

» Next, starting at position 1, we look at the number in each successive position,
up to 6, and compare the number with the one in position big.

 The first time, we compare num[1] with num[O]; since num([1], 72, is larger
than num[0], 25, we update big to 1. This means that the largest number so far
is in position 1.

* Next, we compare num[2], 17, with num[big] (that is, num[1]), 72; since
num[2] is smaller than num[1], we go on to the next number, leaving big at 1.

* Next, we compare num[3], 43, with num[big] (that is, num[1]), 72; since
num[3] is smaller than num[1], we go on to the next number, leaving big at 1.

* Next, we compare num[4], 84, with num[big] (that is, num[1]), 72; since
num[4] is larger than num[1], we update big to 4. This means that the largest
number so far is in position 4.

* Next, we compare num[5], 14, with num[big](that is, num[4]), 84; since
num[5] is smaller than num[4], we go on to the next number, leaving big at 4.

* Next, we compare num[6], 61, with num[big](that is, num[4]), 84; since
num[6] is smaller than num[4], we go on to the next number, leaving big at 4.

* Since there is no next number, the process ends with the value of big being 4,
the position of the largest number. The actual number is denoted by num[big];
since big is 4, this is num[4], which is 84.

We can express the process just described by the following pseudocode:

big=0
forj=1t06
if num[j]> num[big] then big = j
endfor
print "Largest is ", num[big], " in position ", big

215

C Programming — A Beginner’s Course

We will now write a function, getLargest, to find the largest value in an array. To
be general, we will specify which portion of the array to search for the value. This
is important since, most times, we declare an array to be of some maximum size
(100, say) but do not always put 100 values in the array.

When we declare the array to be of size 100, we are catering for 100 values. But,
at any time, the array may have less than this amount. We use another variable (n,
say) to tell us how many values are currently stored in the array. For example, if n
is 36, it means that values are stored in elements O to 35 of the array.

So when we are finding the largest, we must specify which elements of the array
to search. We will write the function such that it takes three arguments—the array
num, and two integers lo and hi—and returns the position of the largest number
from num[lo] to num[hi], inclusive. It is up to the caller to ensure that lo and hi
are within the range of subscripts declared for the array. For instance, the call

* getLargest(score, O, 6) will return the position of the largest number from
score[0] to score[6]; and the call

 getLargest(mark, 10, 20) will return the position of the largest number from
mark[10] to mark[20].

Here is the function, getLargest:

int getLargest(int num[], int lo, int hi) {
int big = lo;
for (int j = lo + 1; j <= hi; j++)
if (num[j] > num[big]) big = j:
return big;

}

The function assumes the largest number is in position lo, the first one, by setting
big to lo. In turn, it compares the numbers in locations lo + 1 up to hi with the one
in location big. If a bigger one is found, big is updated to izs location.

8.13 Finding the smallest number in an array

The function, getLargest, could be easily modified to find the smallest value in an
array. Simply change big to small, say, and replace > by <, giving:

int getSmallest(int num[], int lo, int hi) {
int small = lo;
for (int j = lo + 1; j <= hi; j++)
if (num[j] < num[small]) small = ;
return small;

}

216

Working with arrays

This function returns the location of the smallest element from num[lo] to
num[hi], inclusive. On page 227, we will show you how to use this function to
arrange a set of numbers in ascending order.

We have shown how to find the largest and smallest values in an integer array.
The procedure is exactly the same for arrays of other types such as double, char
or float. The only change which has to be made is in the declaration of the arrays.
Keep in mind that when we compare two characters, the ‘larger’ one is the one
with the higher numeric code.

8.14 Example — a voting problem

We now illustrate how to use some of the ideas just discussed to solve the
following problem.

Problem: In an election, there are seven candidates. Each voter is allowed one
vote for the candidate of his/her choice. The vote is recorded as a number from
1 to 7. The number of voters is unknown beforehand but the votes are
terminated by a vote of 0. Any vote which is not a number from 1 to 7 is an
invalid (spoilt) vote. A file, votes.txt, contains the names of the candidates.
The first name is considered as candidate 1, the second as candidate 2, and so
on. The names are followed by the votes. Write a program to read the data and
evaluate the results of the election. Print all output to the file, results.txt.

Your output should specify the total number of votes, the number of valid votes
and the number of spoilt votes. This is followed by the votes obtained by each
candidate and the winner(s) of the election.

Given the following data:

Victor Taylor
Denise Duncan
Kamal Ramdhan
Michael Ali
Anisa Sawh

Carol Khan

Gary owen

312543535328167735
6934712455140

your program should send the following output to results.txt:

Inva1jd vote: 8
Invalid vote: 9

Number of voters: 30

Number of valid votes: 28
Number of spoilt votes: 2

217

C Programming — A Beginner’s Course

Candidate Score

victor Taylor
Denise Duncan
Kamal Ramdhan
Michael Ali
Anisa Sawh
Carol Khan
Gary owen

WO PhOoOWh

The winner(s):
Kamal Ramdhan
Anisa Sawh

We need to store the names of the 7 candidates and the votes obtained by each.
We will use an int array for the votes. In order to work naturally with candidates 1
to 7, we will write the declaration

int vote[8];

and use vote[1] to vote[7] for counting the votes for the candidates; vote[j] will
hold the count for candidate j. We will not use vote[O].

But what kind of array can we use for the names, since a name itself is stored in a
char array? We will need an “array of arrays™—a two-dimensional array.
Consider the declaration

char name[8][15];

We can think of name as having 8 rows and 15 columns. If we store one name in
each row, then we can store 8 names. Each name is stored in an array of 15
characters. The rows are numbered from O to 7 and the columns are numbered
from O to 14. In our program, we will not use row 0. We will store the names in
rows 1 to 7. If we store the sample names in this array, it will look like this:

0 1 2 |3 |4 |5 |6 |7 |8 |9 10 |11 |12 | 13 | 14
0
1 | VI]i |[c |t |o Tla [y [l o |r |\0
2 ' Dje |n |i |s D|u |n |c [a |n [\
3 | K|a |ml|a |l Rla m|d |h |a [n |\O
4 ' M|i |[c |h |a |e |l All |i |\0
5 |A|n |i |s |a S la |w|h |[\O
6 |Cla |r |o |l K a [n |[\0
7 |Gla |r |y O|lwile |n |\0

To cater for longer names, we will use the declaration
char name[8][31];

to store the names of the candidates. We will store the name of candidate j in
name[j]; name[0] will not be used.

218

Working with arrays

To make the program flexible, we will define symbolic constants with:

#define MaxCandidates 7
#define MaxNamelLength 30

and, in main, use the declarations

char name[MaxCandidates + 1][MaxNamelLength + 1];
int vote[MaxCandidates + 1];

The #define directives will be placed at the top of the program, before main.
When we do this, the symbolic constants will be available to any function that
needs to use them.

In general, variables and identifiers declared outside of any function are said to be
external and are available to any function that comes after it in the same file®'. So
if the declarations are placed at the top of the program, the variables and
identifiers would be available to all functions in the program, assuming the entire
program is stored in one file (as is the case with our programs).

One of the first things the program must do is read the names and set the vote
counts to 0. We will write a function initialize to do this. This will also let us
show you how to pass a 2-dimensional array to a function.

As explained on page 107, we will read a candidate’s name in two parts (first
name and last name) and then join them together to create a single name which
we will store in name[j]. Here is the function:

void initialize(char name[]J[MaxNameLength + 1], int vote[]) {
char lastName[MaxNameLength];
for (int j = 1. j <= MaxCandidates; j++) {
fscanf(in, "%s %s", name[j], lastName);
strcat(name[j], " ");
strcat(namelj], lastName);
vote[j]=0;
}
}

As we see in the case of the parameter vote, we just need the square brackets to
signify that vote is a one-dimensional array. However, in the case of the two-
dimensional array name, we must specify the size of the second dimension and
we must use a constant or an expression whose value can be determined when the
program is compiled. The size of the first dimension may remain unspecified as

3! The rules are a bit more complicated than this, but this will suffice for our purposes.

219

C Programming — A Beginner’s Course

indicated by empty square brackets. This holds for any two-dimensional array
used as a parameter.

Next, we must read and process the votes. Processing vote v involves checking
that it is valid. If it is, we want to add 1 to the score for candidate v. We will read
and process the votes with the following:

fscanf(in, "%d", &v):
while (v 1= 0) {
if (v<1]||v>MaxCandidates) {
fprintf(out, "Invalid vote: %d\n", v);
++spoiltVotes;
}
else {
++vote[v];
++validVotes;
}
fscanf(in, "%d", &v);
}

The key statement here is
++vote[v];

This is a clever way of using the vote v as a subscript to add 1 for the right
candidate. For example, if v is 3, we have a vote for candidate 3, Kamal
Ramdhan. We wish to add 1 to the vote count for candidate 3. This count is
stored in vote[3]. When v is 3, the statement becomes

++vote[3];

which adds 1 to vote[3]. The beauty is that the same statement will add 1 for any
of the candidates, depending on the value of v. This illustrates some of the power
of using arrays. It doesn’t matter whether there are 7 candidates or 700; the one
statement will work for all.

Now that we know how to read and process the votes, it remains only to
determine the winner(s) and print the results. We will delegate this task to the
function printResults.

Using the sample data, the array vote will contain the following values after all
the votes have been tallied (remember we are not using vote[O]).

vote
4 3 6 4 6 2 3
1 2 3 4 5 6 7

To find the winner, we must first find the largest value in the array. To do this, we
will call getLargest (page 216) with

220

Working with arrays

int win = getLargest(vote, 1, MaxCandidates);

which will set win to the subscript of the largest value from vote[1] to vote[7]
(since MaxCandidates is 7). In our example, win will be set to 3 since the largest
value, 6, is in position 3. (6 is also in position 5 but we just need the largest value
which we can get from either position).

Now that we know the largest value is in vote[win], we can ‘step through’ the
array, looking for those candidates with that value. This way, we will find all the
candidates (1 or more) with the highest vote and declare them as winners.

The details are given in the function printResults shown as part of Program P8.9,
our solution to the voting problem posed at the beginning of this section.

Program P8.9

#include <stdio.h>

#include <string.h>

#define MaxCandidates 7

#define MaxNameLength 30

FILE *in, *out;

main() {
char name[MaxCandidates + 1][MaxNamelLength + 1];
int vote[MaxCandidates + 1];
int v, validVotes = 0, spoiltVotes = O;
void initialize(char n[J]MaxNamelLength + 1], int v[]);
void printResults(char n[J[MaxNameLength + 1], int v[], int, int);
in = fopen("votes.txt", "r");
out = fopen("results.txt", "w");

initialize(name, vote);
fscanf(in, "%d", &v):
while (v 1= 0) {
if (v<1]||v>MaxCandidates) {
fprintf(out, "Invalid vote: %d\n", v);
++spoiltVotes;
}
else {
++vote[v];
++validVotes;
}
fscanf(in, "%d", &v);
}

printResults(name, vote, validVotes, spoiltVotes);

fclose(in);
fclose(out);
}// end main

221

C Programming — A Beginner’s Course

void initialize(char name[]J[MaxNamelLength + 1], int vote[]) {
char lastName[MaxNameLength];
for (int j = 1. j <= MaxCandidates; j++) {
fscanf(in, "%s %s", name[j], lastName);
strcat(name[j], " ");
strcat(namel[j], lastName);
vote[j]=0;
}
}

int getLargest(int num[], int lo, int hi) {
int big = lo;
for (int j = lo + 1; j <= hi; j++)
if (num[j] > num[big]) big = j;
return big;

}

void printResults(char name[J[MaxNameLength + 1], int vote[],
int valid, int spoilt) {
int j, getLargest(int v[], int, int);
fprintf(out, "\nNumber of voters: %d\n", valid + spoilt);
fprintf(out, "Number of valid votes: %d\n", valid);
fprintf(out, "Number of spoilt votes: %d\n", spoilt);
fprintf(out, "\nCandidate ~ Score\n\n");

for (j = 1. j <= MaxCandidates; j++)
fprintf(out, "%-15s %3d\n", name[j], vote[j]);

fprintf(out, "\nThe winner(s)\n");
int win = getLargest(vote, 1, MaxCandidates);
int winningVote = vote[win];
for (j = 1; j <= MaxCandidates; j++)
if (vote[j] == winningVote) fprintf(out, "%s\n", name[j]);
} //printResults

8.15 Searching an array - sequential search

In many cases, an array is used for storing a list of information. Having stored the
information, it may be required to find a given item in the list. For example, an
array may be used to store a list of the names of 50 people. It may then be
required to find the position in the list at which a given name (Pamela, say) is
stored.

We need to develop a technique for searching the elements of an array for a given
one. Since it is possible that the given item is not in the array, our technique must
also be able to determine this. The fechnique for searching for an item is the same

222

Working with arrays

regardless of the #fype of elements in the array. We will use an integer array to
illustrate the technique called sequential search.

Consider the array num of 7 integers:

num
35 17 | 48 | 256 | 61 | 12 42
(o] 1 2 3 4 5 6

We wish to determine if the number 61 is stored. In search terminology, 61 is
called the search key or, simply, the key. The search proceeds as follows:

» compare 61 with the 1*" number, num[0], which is 35; they do not match so
we move on to the next number;

» compare 61 with the ond number, num[1], which is 17; they do not match so
we move on to the next number;

» compare 61 with the 31 number, num[2], which is 48; they do not match so
we move on to the next number;

» compare 61 with the 4t number, num[3], which is 25; they do not match so
we move on to the next number;

» compare 61 with the 5t number, num[4], which is 61; they match, so the
search stops and we conclude that the key is in position 4.

But what if we were looking for 327 In this case, we will compare 32 with all the

numbers in the array and none of them will match. We conclude that 32 is not in

the array.

Assuming the array contains n numbers, we can express the above logic as
follows:

forj=0ton-1
if (key == num[j]) then key found, exit the loop
endfor

if j < n then key found in position j
else key not found

This is a situation where we may want to exit the loop before we have looked at
all elements in the array. On the other hand, we may have to look at all the
elements before we can conclude that the key is not there.

If we find the key, we exit the loop and j will be less than n. If we exit the loop
because j becomes n, then the key is not in the array.

Let us express this technique in a function search which, given an int array num,
an integer kRey, and two integers lo and hi, searches for key from numl[lo] to
numl[hi]. If found, the function returns the position in the array. If not found, it
returns -1. For example, the statement

n = search(num, 61, 0, 6);

223

C Programming — A Beginner’s Course

will search num[O] to num[6] for 61. It will find it in position 4 and return 4,
which is stored in n. The call search(num, 32, O, 6) will return -1 since 32 is not
stored in the array. Here is the function, search:

int search(int num[], int key, int lo, int hi) {
for (int j = lo; j <= hi; j++)
if (key == num[j]) return j;
return -1;

}

We first set j to lo to start the search from that position. The for loop ‘steps
through’ the elements of the array until it finds the key or j passes hi.

To give an example of how a search may be used, consider the voting problem of
the last section. After the votes have been tallied, our arrays name and vote look
like this (remember we are not using name[0] and vote[0]):

name vote
1 | Victor Taylor 4
2 | Denise Duncan 3
3 | Kamal Ramdhan 6
4 | Michael Ali 4
5 | Anisa Sawh 6
6 | Carol Khan 2
7 | Gary Owen 3

Suppose we want to know how many votes Carol Khan received. We would have
to search for her name in the name array. When we find it (in position 6), we can
retrieve her votes from vote[6]. In general, if a name is in position n, the number
of votes received will be in vote[n].

We can modify our search function to look for a name in the name array. Here it
is:

//search for key from name[lo] to name[hi]
int search(char name[]J[MaxNamelLength+1], char key[], int lo, int hi) {
for (int j = lo; j <= hi; j++)
if (strcmp(key, name[j]) == O) return j;
return -1;

}

Recall that we compare two strings using stremp. And, in order to use a pre-
defined string function, we must use the directive

224

Working with arrays

#include <string.h>

at the head of our program.

We can use this function as follows:

n = search(name, "Carol Khan", 1, 7);
if (n>0) printf("%s received %d vote(s)\n", name[n], vote[n]);
else printf("Name not found\n");

Using our sample data, search will return 6 which will be stored in n. Since 6 > 0,
the code will print

Carol Khan received 2 vote(s)

8.16 Sorting an array - selection sort

Consider the voting program again. On page 218, we printed the results in the
order in which the names were given. But suppose we want to print the results in
alphabetical order by name or in order by votes received, with the winner(s) first.
We would have to rearrange the names or the votes in the order we want. We say
we would have to sort the names in ascending order or sort the votes in
descending order.

Sorting 1is the process by which a set of values are arranged in ascending or
descending order. There are many reasons to sort. Sometimes we sort in order to
produce more readable output (for example, to produce an alphabetical listing). A
teacher may need to sort her students in order by name or by average score. If we
have a large set of values and we want to identify duplicates, we can do so by
sorting; the repeated values will come together in the sorted list. There are many
ways to sort. We will discuss a method known as selection sort.

Consider the following array:

num
57 48 79 65 15 | 33 52
(o) 1 2 3 4 5 6

Sorting num in ascending order using selection sort proceeds as follows:

1* pass
* Find the smallest number in positions O to 6; the smallest is 15, found in
position 4.

 Interchange the numbers in positions O and 4. This gives us:

num
15 | 48 79 65 57 33 52
o 1 2 3 4 5 6

225

C Programming — A Beginner’s Course

2" pass
* Find the smallest number in positions 1 to 6; the smallest is 33, found in
position 5.

* Interchange the numbers in positions 1 and 5. This gives us:

num
| 15 | 33 | 79 | 65 | 57 | 48 | 52 |
o) 1 2 3 4 5 6
3" pass
* Find the smallest number in positions 2 to 6; the smallest is 48, found in
position 5.

* Interchange the numbers in positions 2 and 5. This gives us:

num
15 33 48 65 57 79 52
(o) 1 2 3 4 5 6
4th
pass
* Find the smallest number in positions 3 to 6; the smallest is 52, found in
position 6.

* Interchange the numbers in positions 3 and 6. This gives us:

num
15 33 48 52 57 79 65
o) 1 2 3 4 5 6
5t pass
* Find the smallest number in positions 4 to 6; the smallest is 57, found in
position 4.

 Interchange the numbers in positions 4 and 4. This gives us:

num
15 33 48 52 57 79 65
0 1 2 3 4 5 6
6™ pass
* Find the smallest number in positions 5 to 6; the smallest is 65, found in
position 6.

 Interchange the numbers in positions 5 and 6. This gives us:

num
15 | 33 48 52 57 65 79
(o) 1 2 3 4 5 6

and the array is now completely sorted.

226

Working with arrays

If we let j go from O to 5, on each pass, we find the smallest number from
positions j to 6. If the smallest number is in position s, we interchange the
numbers in positions j and s. For an array of size n, we make n -1 passes. In our
example, we sorted 7 numbers in 6 passes. The following is an outline of the
algorithm:

forj=0ton-2
s = position of smallest number from num[j] to num[n-1]
swap num[j] and num[s]

endfor

On page 216, we wrote a function to return the position of the smallest number in
an integer array. Here it is for easy reference:

//find position of smallest from num[lo] to num[hi]
int getSmallest(int num[], int lo, int hi) {
int small = lo;
for (int j = lo + 1; j <= hi; j++)
if (num[j] < num[small]) small = j;
return small;

}

And on page 201, we wrote a function swap which swapped two elements in a a
character array. We now re-write swap to swap two elements in an integer array:

//swap elements num[i] and num[j]
void swap(int num[], int i, int j) {
int hold = num[i];
numl[i] = num[jl;
num[j] = hold:;
}

With getSmallest and swap, we can code the algorithm, above, as a function
selectionSort (next page). To emphasize that we can use any names for our
parameters, we write the function to sort an integer array called list. To make it
general, we also tell the function which portion of the array to sort by specifying
subscripts lo and hi. Instead of the loop going from O to n - 2 as in the algorithm,
it now goes from lo to hi - 1, just a minor change for greater flexibility.

We write Program P8.10 to test whether selectionSort works properly. Only main
is shown in the box on the next page. To complete the program, you just add the
functions selectionSort, getSmallest and swap.

227

C Programming — A Beginner’s Course

//sort list[lo] to list[hi] in ascending order
void selectionSort(int list[], int lo, int hi) {
int getSmallest(int [], int, int);
void swap(int [], int, int);
for (int j = lo; j < hi; j++){
int s = getSmallest(list, j, hi);
swap(list, j, s):;
}
}

The program requests up to 10 numbers (since the array is declared to be of size
10), stores them in the array num, calls selectionSort, then prints the sorted list.

Program P8.10

#include <stdio.h>
main() {
void selectionSort(int [], int, int);
int n, v, num[10];
printf("Type up to 10 numbers followed by 0\n");
n=20;
scanf("%d", &v);
while (v 1= 0) {
num[n++] = v;
scanf("%d", &v);
}
//n numbers are stored from num[0] to num[n-1]
selectionSort(num, O, n-1);
printf("\nThe sorted numbers are\n");
for (v = 0; v < n; v++) printf("%d ", num[v]);
printf("\n");

The following is a sample run of the program:

Type up to 10 numbers followed by 0
57 48 79 65 15 33 52 0

The sorted numbers are
15 33 48 52 57 65 79

Comments on Program P8.10:

The program illustrates how to read and store an unknown amount of values in an
array. The program caters for up to 10 numbers but must work if fewer numbers

228

Working with arrays

are supplied. We use n to subscript the array and to count the numbers. Initially, n
is 0. The following describes what happens with the sample data:

« the 1* number, 57, is read; it is not 0 so we enter the while loop. We store 57
in num[0] then add 1 to n, making it 1; 1 number has been read and n is 1.

o the 2™ number, 48, is read; it is not 0 so we enter the while loop. We store 48
in num[1] then add 1 to n, making it 2; 2 numbers have been read and n is 2.

o the 3™ number, 79, is read; it is not 0 so we enter the while loop. We store 79
in num[2] then add 1 to n, making it 3; 3 numbers have been read and n is 3.

o the 4" number, 65, is read; it is not O so we enter the while loop. We store 65
in num[3] then add 1 to n, making it 4; 4 numbers have been read and n is 4.

o the 5™ number, 15, is read; it is not 0 so we enter the while loop. We store 15
in num[4] then add 1 to n, making it 5; 5 numbers have been read and n is 5.

« the 6™ number, 33, is read; it is not 0 so we enter the while loop. We store 33
in num[5] then add 1 to n, making it 6; 6 numbers have been read and n is 6.

o the 7™ number, 52, is read; it is not 0 so we enter the while loop. We store 52
in num[6] then add 1 to n, making it 7; 7 numbers have been read and nis 7.

« the 8™ number, 0, is read; it is 0 so we exit the while loop and the array looks
like this:

num
57 | 48 | 79 | 65 | 15 | 33 | 52
(o] 1 2 3 4 5 6

At any stage, the value of n indicates how many numbers have been stored up to
that point. At the end, n is 7 and 7 numbers have been stored in the array. The rest
of the program can assume that n gives the number of values actually stored in the
array.

For example, the call
selectionSort(num, 0, n-1);
is a request to sort num[O] to num[n-1] but, since n is 7, it is a request to sort
num[O] to num[6].
We use v to hold the numbers as they are read. Later, we use it as the for loop

variable.

As written, the program will crash if the user enters more than 10 numbers before
typing 0. When the 11™ number is read, an attempt will be made to store it in
num[10], which does not exist, giving an “array subscript” error.

We can handle this by changing the while condition to
while (v != 0 && n < 10)

229

C Programming — A Beginner’s Course

Now, if n reaches 10, the loop is not entered (since 10 is not less than 10) and no
attempt will be made to store the 11" number. Indeed, all numbers after the 10"
one will be ignored.

As usual, it is best to use a symbolic constant (MaxNum, say) set to 10, and use
MaxNum, rather than the constant 10, throughout the program.

We have sorted an array in ascending order. We can sort num[0] to num[n-1] in
descending order with the following algorithm:

forj=0ton-2
b = position of biggest humber from num[j] to num[n-1]
swap num[j] and num[b]

endfor

We urge you to try Exercises 16 and 17 to print the results of the voting problem
(page 218) in ascending order by name and descending order by votes received.

Exercises 8

1. Explain the difference between a simple variable and an array variable.

2. Write array declarations for each of the following: (a) a floating-point array of size
25 (b) an integer array of size 50 (c) a character array of size 32.

3. What is a subscript? Name 3 ways in which we can write a subscript.

4. What values are stored in an array when it is first declared?

5. Name 2 ways in which we can store a value in an array element.

6. Write a function which, given a number from 1 to 12 and a character array,

stores the name of the month in the array. For example, given 8, it stores August in
the array. Store the empty string if the number given is not valid.

7. You have declared an array of size 500. Is it required that you store values in all
elements of the array?

Write code to read 200 names from a file and store them in an array.

An array num is of size 100. You are given two values i and j, with 0 <i<j < 99.
Write code to find the average of the numbers from num[i] to num[j].

10. Write a function which, given a string of arbitrary characters, returns the number of
consonants in the string.

11. Modify the letter frequency count program (page 191) to count the number of non-
letters as well. Make sure you do not count the end-of-line characters.

12. Write a function indexOf which, given a string s and a character ¢, returns the
position of the first occurrence of ¢ in s. If ¢ is not in s, return -1. For example,
indexOf("brother”, 'r') returns 1 but indexOf("brother", 'a") returns -1.

13. Write a function substring which, given two strings s1 and s2, returns the starting
position of the first occurrence of st in s2. If s1 is not in s2, return - 1. For example,

substring("mom”, "thermometer") returns 4 but substring("dad", "thermometer")
returns - 1.

14. Write a function which, given an array of integers and an integer n, reverses the
first n elements of the array.

230

Working with arrays

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Write a function remove which, given a string str and a character ¢, removes all
occurrences of ¢ from str. For example, if str contains "brother", remove(str, 'r')
should change str to "bothe".

In the voting problem of Section 8.14, print the results in alphabetical order by
candidate name. Hint: in sorting the name array, when you move a name, make
sure and move the corresponding item in the vote array.

In the voting problem of Section 8.14, print the results in descending order by
candidate score.

Write a program to read names and phone numbers into two arrays. Request a
name and print the person’s phone number. Use at least one function.

Write a program to read English words and their equivalent Spanish words into two
arrays. Request the user to type several English words. For each, print the
equivalent Spanish word. Choose a suitable end-of-data marker. Modify the
program so that the user types Spanish words instead.

Write a function to sort a double array in ascending order using selection sort. Do
the sort by finding the /argest number on each pass.

The number 27472 is said to be palindromic since it reads the same forwards or
backwards. Write a function which, given an integer n, returns 1 if n is palindromic
and O if it is not.

Write a program to find out, for a class of students, the number of families with 1,
2,3, ... up to 8 or more children. The data consists of the number of children in
each pupil’s family, terminated by a 0. (Why is 0 a good value to use?)

A survey of 10 pop artists is made. Each person votes for an artist by specifying the
number of the artist (a value from 1 to 10). Write a program to read the names of
the artists, followed by the votes, and find out which artist is the most popular.
Choose a suitable end-of-data marker.

The median of a set of n numbers (not necessarily distinct) is obtained by arranging
the numbers in order and taking the number in the middle. If » is odd, there is a
unique middle number. If n is even, then the average of the two middle values is
the median. Write a program to read a set of n positive integers (assume 7 < 100)
and print their median; # is not given but O indicates the end of the data.

The mode of a set of n numbers is the number which appears most frequently. For
example, the mode of 7 38 57 3134 8 9is 3. Write a program to read a set of
n positive integers (assume n < 100) and print their mode; 7 is not given but O
indicates the end of the data.

A multiple-choice examination consists of twenty questions. Each question has five
choices, labelled A, B, C, D and E. The first line of data contains the correct
answers to the twenty questions in the first 20 consecutive character positions, for
example:

BECDCBAADEBACBAEDDBE

Each subsequent line contains the answers for a candidate. Data on a line consists
of a candidate number (an integer), followed by one or more spaces, followed by
the twenty answers given by the candidate in the next twenty consecutive character
positions. An X is used if a candidate did not answer a particular question. You
may assume all data are valid and stored in a file exam.dat. A sample line is:

4325 BECDCBAXDEBACCAEDXBE

231

C Programming — A Beginner’s Course

27.

28.

29.

30.

31.

There are at most 100 candidates. A line containing a “candidate number” O only
indicates the end of the data.

Points for a question are awarded as follows:— correct answer: 4 points; wrong
answer: -1 point; no answer: 0 points

Write a program to process the data and print a report consisting of candidate
number and the total points obtained by the candidate, in ascending order by
candidate number. At the end, print the average number of points gained by the
candidates.

The children’s game of ‘count-out’ is played as follows. n children (numbered 1 to
n) are arranged in a circle. A sentence consisting of m words™” is used to eliminate
one child at a time until one child is left. Starting at child 1, the children are
counted from 1 to m and the mth child is eliminated. Starting with the child after
the one just eliminated, the children are again counted from 1 to m and the mth
child eliminated. This is repeated until one child is left. Counting is done circularly
and eliminated children are not counted. Write a program to read values for n
(assumed <= 100) and m (> 0) and print the number of the last remaining child.

The prime numbers from 1 to 2500 can be obtained as follows. From a list of the
numbers 1 to 2500, cross out all multiples of 2 (but not 2 itself). Then, find the next
number (n, say) that is not crossed out and cross out all multiples of n (but not
including n). Repeat this last step provided that n has not exceeded 50 (the square
root of 2500). The numbers remaining in the list (except 1) are prime. Write a
program which uses this method to print all primes from 1 to 2500. Store your
output in a file called primes.out. This method is called the Sieve of Eratosthenes,
named after the Greek mathematician, geographer and philosopher.

There are 500 light bulbs (numbered 1 to 500) arranged in a row. Initially, they are
all OFF. Starting with bulb 2, all even numbered bulbs are turned ON. Next,
starting with bulb 3, and visiting every third bulb, it is turned ON if it is OFF, and
it is turned OFF if it is ON. This procedure is repeated for every fourth bulb, then
every fifth bulb, and so on up to the 500th bulb. Write a program to determine
which bulbs are OFF at the end of the above exercise. Is there anything special
about the bulbs that are OFF? Can you explain why?

An array num contains kR numbers in num[0O] to num[k-1], sorted in ascending
order. Write a function insertinPlace which, given num, k and another number X,

inserts x in its proper position such that num[0] to num[R] are sorted in ascending
order. Assume the array has room for x.

Using insertInPlace, write a function called insertionSort to sort elements num[0]
to num[n-1] of the array num using the following idea:
forj=1ton-1do
insert num[j] among the previous numbers so that
num[O] to num[j] are sorted
endfor

2
32 For example, “eenie meenie mynie mo, sorry, child, you’ve got to go”; m = 10

232

Appendix A - Keywords in C

The following is a list of C keywords. Keywords are always written in lowercase.

auto break case char
const continue default do
double else enum extern
float for goto if

int long register return
short sighed sizeof static
struct switch typedef union
unsigned void volatile while

233

Appendix B - The ASCII character set

The ASCII character set

The following are the character codes used in the ASCII character set. Codes 0 to
31, and 127, are used for control characters. Some common ones are:

0 NULL
8 backspace (BS)
10 line feed (LF)
12 form feed (FF)
13 carriage return (CR)

The characters from codes 32 to 127 are:

Dec Binary Char Dec Binary Char Dec Binary Char
32 0100000 space 64 1000000 @ 96 1100000

33 0100001 ! 65 1000001 A 97 1100001 a
34 0100010 " 66 1000010 B 98 1100010 b
35 0100011 # 67 1000011 C 99 1100011 <c
36 0100100 $ 68 1000100 D 100 1100100 d
37 0100101 % 69 1000101 E 101 1100101 e
38 0100110 & 70 1000110 F 102 1100110 f
39 0100111 ! 71 1000111 G 103 1100111 g
40 0101000 (72 1001000 H 104 1101000 h
41 0101001) 73 1001001 I 105 1101001 i
42 0101010 * 74 1001010 J 106 1101010 j
43 0101011 + 75 1001011 K 107 1101011 Kk
44 0101100 76 1001100 L 108 1101100 1
45 0101101 - 77 1001101 M 109 1101101 m
46 0101110 . 78 1001110 N 110 1101110 n
47 0101111 / 79 1001111 0 111 1101111 o
48 0110000 0 80 1010000 P 112 1110000 p
49 0110001 1 81 1010001 Q 113 1110001 ¢
50 0110010 2 82 1010010 R 114 1110010 r
51 0110011 3 83 1010011 S 115 1110011 s
52 0110100 4 84 1010100 T 116 1110100 t
53 0110101 5 85 1010101 u 117 1110101 wu
54 0110110 6 86 1010110 \% 118 1110110 v
55 0110111 7 87 1010111 w 119 1110111 w
56 0111000 8 88 1011000 X 120 1111000 x
57 0111001 9 89 1011001 Y 121 1111001 vy
58 0111010 : 90 1011010 z 122 1111010 =z
59 0111011 ; 91 1011011 [123 1111011 {
60 0111100 < 92 1011100 \ 124 1111100 |
61 0111101 = 93 1011101] 125 1111101 3}
62 0111110 > 94 1011110 A 126 1111110 ~
63 0111111 ? 95 1011111 127 1111111 DEL

234

Appendix C - Representation of integers

Conversion of decimal numbers to binary

We know from ordinary arithmetic that the decimal (base 10) number 356 stands
for 6 ones, 5 tens and 3 hundreds. As we go left, the value of each digit is
increased by 10; we say the number is written in base 10. Also, to write a number
in base 10, we must use the digits 0 to 9 (1 less than the base).

Similarly, to write a number in binary (base 2), we must use the digits O and 1.
And, as we go left, the value of each digit is increased by 2. For example, the
value of the binary number 10011 is given by (reading from the right)

1 one, 1 two, 0 fours, 0 eights and 1 sixteen
ie.1+2+0+0+16=19

As another example, consider the binary number 110101. We can work out the
decimal equivalent using:

Binary digit 1 1. 01 0 1
Value 3216 8 4 2 1

Adding the values where the binary digits are 1’s gives us
32+16+4+1=53
Thus, the decimal equivalent of 110101 is 53.

How do we do the reverse? Given the decimal number, 43, say, what is the binary
equivalent?

One method is to write 43 as a sum of powers of 2 (1, 2, 4, 8, etc.), thus:
43=32+8+2+1

So 43 consists of: 1 one, 1 two, 0 fours, 1 eight, 0 sixteens and 1 thirty-two.
Hence the binary equivalent of 43 is 101011.

Note that we must be careful to put a 0 in those positions where a power of 2 is
absent. In this example, these are the positions corresponding to 4 and 16.

Another method is to perform repeated divisions by 2 and save the remainders.
The remainders, in order, form the binary equivalent from right to left. For
example,

43/2 = 21 remainder 1

21/2 = 10 remainder 1
10/2 = 5 remainder 0
5/2 = 2 remainder 1
2/2 = 1 remainder O
172 0 remainder 1

235

C Programming — A Beginner’s Course

The remainders, from top to bottom, form the binary equivalent from right to left,
thus: 101011.

Representation of integers

An integer is a whole number — positive, negative or zero — for example, 25, -16,
0, 32767, -1. We have just seen how to convert a positive integer from decimal to
binary. Also, the bigger the number, the more bits we need to represent it. For
instance, we needed 5 bits for 19 but 6 bits for 43.

A computer uses a fixed number of bits (short for binary digits) for storing
integers. So we use terms such as 8-bit integers, 16-bit integers and 32-bit
integers. Whatever the size, the principles remain the same; the only difference is
that with more bits we can store a wider range of numbers. In order to keep things
simple, we will consider 4-bit integers. The problem, therefore, is:

Using 4 bits, how can we store positive and negative integers?

The most common method for storing integers on a computer is called two'’s
complement. Before we look at this method, let us say what is meant by one’s
complement.

The one’s complement of a binary number is obtained by changing 1’s to 0’s and
0’s to 1’s (this is called inverting the bits). For example, the 4-bit one’s
complement of 0110 is 1001.

Note that if we were asked for the 4-bit one’s complement of 11, we would need
to write 11 as 0011 and then invert the bits, giving 1100.

Also note that it is wrong to simply say “the one’s complement of 011”; we must
specify how many bits are involved by saying, for instance, “the 4-bit one’s
complement of 011”. As a matter of interest, observe that:

* the 3-bit one’s complement of 011 is 100, and
* the 4-bit one’s complement of 011 is 1100.

Two’s complement

The two’s complement of a binary number is obtained by adding 1 to its one’s
complement. Above, we saw that the 4-bit one’s complement of 0110 is 1001.

Therefore, the 4-bit two’s complement of 0110 is:
1001 +
1

1010

As another example, the 4-bit two’s complement of 011 is 1100 + 1 =1101.

236

Representation of integers

Suppose we want to store integers on a computer using 4 bits. With 4 bits, we can
have 16 different bit patterns - from 0000 to 1111. Therefore, we can represent
16 different integers using 4 bits. We just need to decide which integer to
represent by which bit pattern.

Of the 16 bit patterns, 8 begin with 0 and 8 begin with 1. We will let those which
begin with O represent the equivalent positive integer; for example, 0101 will
represent +5. The full list is:

0000 represents
0001 represents
0010 represents
0011 represents
0100 represents
0101 represents
0110 represents
0111 represents

Nouvihdh wiNhREO

Note that the largest positive integer we can represent using 4 bits is 7. In general,
the largest positive integer we can represent using 7 bits is 2" - 1.

Next, we need to decide which negative integers to represent by the bit patterns
beginning with 1. In two’s complement representation, we represent a negative
integer by the two’s complement of the bit pattern representing the corresponding
positive integer. For example, to represent -5, we take the bit pattern for +5, that
is, 0101, and find the two’s complement, that is, 1011. So -5 is represented by
1011. Using this procedure, we find that:

-1 isrepresented by 1111
-2 isrepresented by 1110
-3 isrepresented by 1101
-4 isrepresented by 1100
-5 1isrepresented by 1011
-6 isrepresented by 1010
-7 isrepresented by 1001

There is still one bit pattern, 1000, which has not been used. Since the 4-bit two’s
complement of 1000 is, indeed, 1000, we can let 1000 represent either +8 or -8.
But since, in all other cases, positive numbers begin with 0 and negative numbers
begin with 1, we let 1000 represent - 8.

Hence, using two’s complement, the largest negative number we can represent is
1 more than the largest positive number. In general, the range of integers we can
store with n bits, using two’s complement, is

_21’1-1 tO +2}’l—l _ 1
For example, using 16 bits, the range of integers we can store is

2P t0 42" - 1, that is, -32768 to +32767

237

Appendix D — How to get a C compiler

There are many C compilers available for free on the Internet. Our favourite is the
Tiny C compiler available at

http://www.tinycc.org

Tiny C is a blazingly fast compiler. The complete compiler with support files is
about 1 megabyte. You can also obtain a copy by sending an email to
nkalicharan@fsa.uwi.tt.

The following are also recommended:

» Miracle C compiler: http://www.c-compiler.com

* Borland Turbo C compiler: go to
http://bdn.borland.com/museum

Click on Articles if it is not already selected. A list of articles will be
displayed. The two of interest are:

Antique Software: Turbo C++ version 1.01

Antique Software: Turbo C version 2.01

Click on the one you prefer. You can use either one.

* You can also go to http://www.google.com or your favourite search engine
and type “c compiler” in the Search Box. Many options will be made available
to you. Choose the ones you prefer.

The sites listed above all come with full instructions on how to download and set
up your compiler. If you have difficulty acquiring a compiler or setting up one
you have downloaded, please ask your teacher for advice.

238

Index

abundant number 172
account number, string 54
address 6, 10
aesthetics 118
algorithm 4
algorithm development 6
program for 6
alphabet 22
alphabetic character 12
and, && 61
argument 152
array as 194
arithmetic operators 28
array as argument 194
array 181
declaration 182
element, undefined 183
largest in 215
of characters 196
of strings 207
search 222
smallest in 216
storing values 184
subscript error 198, 229
variable 181
ASCII 23,128
assembler 2
assembly language 2
assignment
double to float 35
float to double 35
operator 95
statement 19, 39
average 102
differences from 186
finding 93

batch mode 100

block 13, 90,91

block style 66

boolean constant 11
boolean data type 11
Boolean expressions 60
Boole, George 60

bug 75

calculating pay 72
function 171

Celsius 122

character 12
alphabetic 12
constant 11, 129

239

count 138

data type 11

digit 12

function isDigit 174

function isLetter 174

function isLowerCase 174

function isUpperCase 174

in expressions 130

lowercase 12

numeric 12

printable 128

read and print 131

read from file 142

compare 141

set 22, 128

special 12

test for digit 148

uppercase 12

value 129

vs numbers 147

write to file 143
char data type 130
children’s game 232
classifying a triangle 81
closing files 104
COBOL 2
combinations 168
comment 8, 18
compare characters 141
comparing strings 108
compiler 3, 8

directive 13
compiling a program 8
compound statement 13, 90
concatenate 39
condition 61

compound 61

simple 61
constant, boolean 11

character 11

floating point 32

integer 11

real 11

string 11
control character 23, 128

convert characters to integer 147

copy a string 38

copy file 144

counting 92

counting blanks 140
counting characters 138

C Programming - A Beginner’s Course

crash 8,48
ctype.h 206

data 5
data pointer 50
data type, boolean 11
character 11
floating-point 11
integer 11
numeric 11
real 11
string 11
data types 10
debug 8, 75
declaration 8
declare variables 28
decrement operator, -- 94

defensive programming 94, 121, 189

deficient number 172
#define directive 76
desk checking 6

digit character 12
digit test 148
directive, compiler 13
directive, #define 76
diskette 101, 105
documenting a program 9
double 32
double/float to int 36
double, printing 33
dry running 6

Easter Sunday 83
echo input 143
element 181
else part 64
endfor 112
endif 66
end-of-data value 86
English-Spanish vocabulary 214
equilateral triangle 81
Eratosthenes 232
error, execution 94

run-time 94
escape sequence 16
Euclid's algorithm 90
exact divisors, sum of 172
executing a program 10
execution error 94
exit function 192
expression, relational 60
expressions, floating-point 35

factorial 164
Fahrenheit 122
fclose 101

240

field width, integer 30
file, closing 104
input 100
of characters 100
output 104
path 101,103
reading from 100
FILE pointer 100
float 32
floating-point constant 32
data type 11
expressions 35
float, printing 33
fopen 192
for
body of 112
construct 112
control part 113
expressive power 123
final value 112
initial value 112
loop variable 112
for statement in C 113
format specification 17, 47
format string 17, 47
FORTRAN 2
fprintf 104
fscanf 101
function 151
body 152
definition 152
header 152, 154
how it gets data 155
invoking 152
prototype 153
self-contained 177

GCD 90

Geography quiz program 211
George Boole 60

getchar 132

getlnt 176

gets (get string) 51

getString function 210
Gitanjali 15

greatest common divisor 90

HCF 161

Euclid's algorithm 90
header file 13
highest common factor 90, 161
high-level language 2

identifier 25
if construct 63
if...else construct 70

Index

increment operator, ++ 94
indent 65
indexOf function 230
input instructions 5
insertion sort 232
instruction code 2
int 27

declaration 19
integer constant 11

data type 11

expressions 28

range 27
interactive mode 100
invalid numeric format 48
isDigit 174
isLetter 174
isLowerCase 174
isosceles triangle 81
isUpperCase 174

job charge function 170

keeping a count 92
keyword 25

largest character 141

largest, finding 96

largest in array 215

LCM 163

leading 0’s 42

left-justify 31

letter frequency count 189
letter grade, printing 78

letter position in alphabet 175
lettersOnlyLower function 205
lettersOnlyUpper function 213
library 13

logical operator 61

logic error 8

lowercase character 12
lowercase to uppercase 131
low-level language 2

machine code 8
machine language 1, 2
magic numbers 77

main 13

maintaining a program 9
maintenance programmer 10
manifest constant 76
max 156

median 231

memory 10

memory locations 5
mixed expressions 36
mode 231
multiple-choice 231

multiplication tables 118

named constant 76
name of day 207
function 209
newline 134
newline character 15
not, ! 61
null character 129
numeric character 12
data type 11

object code 8

operator, assignment 95
decrement -- 94
increment ++ 94
logical 61
relational 60
precedence 29

or, || 61

output 7
design 7
instructions 5

palindrome 203
palindromic numbers 231
parameter 154
pass by value 153
payroll program 106
perfect number 172
playing cards 180
precedence of operators 29
primary storage 10
prime numbers 180, 232
primitive data type 27
printable character 128
printf 15, 41
printing characters 132
print the day 159
problem, algorithm for 4

analysis 4

definition 3
processing instructions 5
program 1,7

body 13

compiling 8

documenting 9

executing 10

layout 14

maintaining 9
programming language 7
program, running 10, 14

testing 75
prompt 7, 45
pseudocode 64, 113
putchar 142

241

C Programming - A Beginner’s Course

Rabindranath Tagore 15
read 7
an integer 176
characters vs numbers 147
reading a string, gets 51
a string with %s 107
characters 131
data, double 49
data, float 48
data from a file 100
strings 50
real constant 11
data type 11
relational expression 60
operator 60
remainder operator, % 28
remove function 231
repetition logic 85
reserved word 25
reverse a string 199
right-angled triangle 82
right-justify 30
Ritchie, Dennis 7
rounding 33
running a program 8, 10, 14
run-time error 94

scalene triangle 81
scanf 45, 47
scientific notation 32
searching an array 222
selection logic 60
selection sort 225
semicolon 72
sentinel value 86
sequence logic 44
sequential search 222
Sieve of Eratosthenes 232
simple variable 181
skipLines 152
smallest, finding 98

in array 216
solving a problem on a computer 3
sorting an array 225
source code 8
source program 8§
spacing 24
Spanish-English vocabulary 214
special character 12
standard input, stdin 100
standard output 13

stdout 100
statement, assignment 19
stdin 100
stdio.h 13
stdlib.h 193

242

stdout 100
strcat 39, 197
strcmp 108, 197
strepy 38, 197
string 37, 196
compare 108
constant 11
data type 11
properly terminating 197
reading 50
reverse 199
string.h 38
strlen 197
subscript 181, 184
substring function 230
sum, finding 87
sum of exact divisors 172
sum of numbers 85
sum of two lengths 67
SuperMarbles 125
symbolic constant 27, 76
syntax error 8, 22
syntax rule 7, 22

technical documentation 9

temperature conversion 122

test data 75

testing a program 75

text file 100

then part 64

Thompson, Ken 7

token 22,23

triangle, equilateral 81
isosceles 81
right-angled 82
scalene 81

true/false in C 63

two-dimensional array 208, 218

type, char 130

undefined error 40
uppercase character 12
uppercase to lowercase 131
user documentation 9
user-friendly 121

validating data 121
valid statement 40
variable 5, 6, 18
printing 17
voting problem 217

while 90

while construct 85
whitespace 48

