Managing Windows
Servers with Chef

Harness the power of Chef to automate management of
Windows-based systems using hands-on examples

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Windows Servers
with Chef

Harness the power of Chef to automate management
of Windows-based systems using hands-on examples

John Ewart

open source

community experience distilled
PUBLISHING
BIRMINGHAM - MUMBALI

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Windows Servers with Chef

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014
Production Reference: 1160514

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-242-4

www . packtpub.com

Cover Image by Neha Rajappan (neha.rajappanli@gmail . com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
John Ewart

Reviewers
Joshua Black

Thabo Fletcher

Lauren Malhoit

Commissioning Editor
Edward Gordon

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Athira Laji

Technical Editors
Arwa Manasawala

Ankita Thakur

Copy Editor
Laxmi Subramanian

Project Coordinator
Puja Shukla

Proofreader
Paul Hindle

Indexer
Mehreen Deshmukh

Graphics
Ronak Dhruv

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

John Ewart is a system architect, software developer, and lecturer. He has designed
and taught courses at a variety of institutions including the University of California,
California State University, and local community colleges covering a wide range of
computer science topics including Java, data structures and algorithms, operating
systems fundamentals, Unix and Linux systems administration, and web application
development. In addition to working and teaching, he maintains and contributes to a
number of open source projects. He currently resides in Redmond, Washington, with
his wife, Mary, and their two children.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Joshua Black has been working with computers professionally for 20 years.

He has a broad range of experience and expertise including systems and network
administration, mobile app development, and production web applications.

He earned a BS in Computer Science with a minor in Math from California State
University, Chico, in 2005. He currently resides in Chico, California, with his wife,
Rachel, and their four children.

Thabo Fletcher is a software developer at Degreed and co-founder of Coderbits
with a background in network appliance engineering, web application development,
and JavaScript injection.

Lauren Malhoit has been in the IT field for over 10 years and has acquired

several data center certifications. She's currently a technical virtualization architect
specializing in virtualization and storage in the data center. She has been writing for
a few years for TechRepublic, TechRepublic Pro, and VirtualizationSoftware.com.
As a Cisco Champion, EMC Elect, VMware vExpert, and PernixPro; Lauren stays
involved in the community. She also hosts a bi-weekly technology podcast called
AdaptinglT (http://www.adaptingit.com/). She has been a delegate for Tech Field
Day several times as well. She recently published her first book, VMuware vCenter
Operations Manager Essentials, Packt Publishing.

www.it-ebooks.info

http://www.adaptingit.com/
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Chef and Windows 5
Working with Windows 5
Interacting with end hosts 6
Bootstrapping Windows hosts 7
Scaling with cloud providers 7
Scripting with PowerShell 8
Integrating with Linux-based systems 8
Working with Windows-specific resources 10
Supported platforms 10
Summary 10
Chapter 2: Installing the Client — an Overview of Chef Concepts 1"
Getting to know Chef better 1"
An overview of Chef's architecture 13
Installing the Chef client on Windows 14
Preparing to bootstrap Windows hosts 14
Enabling Windows Remote Management 15
Configuring firewall ports 16
Enabling basic authentication 16
Bootstrapping a Windows host 16
Installing via MSI 17
Summary 20
Chapter 3: Windows-specific Resources 21
Working with Windows-specific resources 21
Platforms supported by Chef 22
Managing roles and features 22
Installing roles using different mechanisms 24
Executing batch scripts 25

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Running scripts at startup 27
Installing software packages 28
Manipulating printers 30
Managing printer ports 31
Managing printers 32
Interacting with the Windows Registry 35
The Chef 10.x resource 36
The Chef 0.11.x resource 38
Managing the system path 39
Scheduling tasks 40
Interacting with Windows pagefiles 42
ZIP files 43
Rebooting Windows 44
Summary 46
Chapter 4: Provisioning an Application Stack 47
Examining the cookbook 47
Installing the cookbook 49
Fetching from GitHub 50
Examining the recipe 51
Installing the prerequisites 51
Preparing the IS service 52
Fetching the application 53
Configuring the application 53
Generating an IS pool and site 54
Performing the installation 54
Bootstrapping the host 55
Creating the role 55
Applying the role to the node 56
Summary 57
Chapter 5: Managing Cloud Services with Chef 59
Working with Microsoft Azure 59
Downloading the management certificate 60
Configuring knife for Azure 60
Creating a new Azure virtual machine 60
Bootstrapping your Azure node 62
Creating a reusable image 63
Managing Amazon EC2 instances 64
Installing the EC2 knife plugin 64
Setting up EC2 authentication 65
Provisioning an EC2 instance 65

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Executing custom user scripts in EC2 66
Writing the user script 66
Providing a custom user script 67

Removing the Chef node 70

Interacting with Rackspace Cloud 70

Provisioning a Rackspace instance 71
Injecting configuration into the virtual machine 72

Terminating the instance 74

Removing the Chef node 75

Summary 76
Chapter 6: Going Beyond the Basics 77
Chef's declarative language 77
Handling multiple platforms 79

Declaring support in your cookbook 79

Multiplatform recipes 80
Reducing complexity 82

Versioning and source control 83

Testing recipes 84
RSpec and ChefSpec 84

Testing basics 84
RSpec 85
ChefSpec 86

Executing tests 87
Understanding failure 88

Expanding your tests 89

Summary 90
Index 91

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Welcome to Managing Windows Servers with Chef. This book is designed to familiarize
you with the concepts, tools, and features available to help you manage Windows
hosts with Chef. Inside the book, you will learn what you can expect from Chef on
Windows, how to get started using it, and what Chef provides for managing Windows
hosts that differs from Linux systems. Included are examples of deploying a complete
NET/IIS application stack, cloud integration, and some information on developing
and testing for heterogeneous networks of Windows and Linux-based hosts.

What this book covers

Chapter 1, Chef and Windows, serves as an introduction to Chef's support for
Windows, what sort of features you can expect from Chef on the Windows platform,
and how to get started.

Chapter 2, Installing the Client — an Overview of Chef Concepts, provides coverage of
how to install the client on a Windows host as well as a quick overview of Chef's
architecture and terminology and other important information to get you started
with managing Windows.

Chapter 3, Windows-specific Resources, introduces you to the resources that are unique
to managing Windows via Chef. This chapter provides descriptions and examples
of each resource, including roles, features, package installers, batch scripts, the
Windows registry, and many more.

Chapter 4, Provisioning an Application Stack, provides a hands-on guide to provisioning
a complete application stack (the .NET framework, IIS configuration, database server
installation, and so on), including defining roles, setting up configuration data,
installing requirements, and configuring the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 5, Managing Cloud Services with Chef, covers integrating with various cloud
providers such as AWS, Rackspace Cloud, and Azure.

Chapter 6, Going Beyond the Basics, focuses on the integration of existing systems in
heterogeneous networks, how to deal with recipes and multiple platforms, testing,
organization, and publishing of recipes.

What you need for this book

This book expects that you have access to some important components in order to be
successful. In order to execute the examples in the book, the following prerequisites
are needed:

* Access to a Chef server for managing your configuration; a self-hosted
installation or a Chef-hosted account will work equally well

* A workstation where you can install software including knife
(Windows or Linux host)

* A text editor of your choice

Additionally, if you wish to try out any of the cloud-computing examples,
you will need an account with the cloud hosting providers you are trying out.

Who this book is for

This book is designed for system administrators who have had some exposure to
Chef, either casually or in-depth. It covers the Windows-specific facets of Chef and
expects that you have a working installation of the Chef server available for you to
use, either hosted or self-managed. A working knowledge of some programming
language, preferably Ruby, will be needed to get the most out of the examples

and to build your own recipes.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, cookbook names, recipe names, scripts, database table names,
folder names, filenames, file extensions, and pathnames are shown as follows:

"In the same way that you would leverage knife ssh for Linux systems, knife
winrm is available to execute commands remotely on a Windows host using the
WinRM protocol."

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

A block of code is set as follows:

search(:node, 'role:web server) .each do |node|
ip = node[:external ip]
firewall rule "#{ip}" do
source "#{ip}"
action :allow
end
end

Any command-line input or output is written as follows:
knife ssh "role:mysqgl" "chef-client" --sudo -x ubuntu

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If you
check the Chef Client Service box during the installation phase, the service will
be set to run automatically."

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text
or the code —we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking

on the errata submission form link, and entering the details of your errata.

Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under

the Errata section of that title. Any existing errata can be viewed by selecting

your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we

can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Windows

If you are reading this book, the presumption is that you are already familiar with
Chef, at least conceptually, and that you have some Windows-based systems you
need to manage. If you have used Chef to manage some Linux-based systems, or
have interacted with chef-solo to manage virtual machines, you will be ready to
hit the ground running. If not, don't worry — there are plenty of explanations and
examples to make you feel right at home.

If you need help installing the Chef server, there are a number of other resources
available to help you do that, or you can sign up for the free tier of hosted Chef
to get you started right away without managing your own server.

In this chapter, we will cover the following topics:

* Working with Chef and Microsoft Windows
* Ways to integrate Chef and Windows
* Supported platforms and technologies

Working with Windows

For those who are new to Chef, the client-side components of it are written in
Ruby, a very popular language. Due to the cross-platform nature of Ruby, support
for Windows is as straightforward as support for Linux and UNIX-like systems
and has been around for quite some time now, dating back to the release of the
knife-windows gem circa 2011.

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Windows

Chef uses Ruby as the scripting language on client systems, and because of this, it

is capable of running anywhere Ruby is supported. This alone makes Chef a very
capable tool for managing a combination of different operating systems. Chef goes
one step further by providing you with a domain-specific language (DSL) that
makes writing recipes for interacting with Windows hosts look no different than
UNIX-like platforms. With the exception of some resource names and paths and

the existence of Windows-specific resources such as the Windows Registry, recipes
are almost drop-in compatible with either platform. This means that the wide variety
of existing cookbooks and recipes available for Chef are available to use with little

or no modification.

It's also important to note that while a lot of conversations focus on server
management, cloud scaling, and so on, Chef is not reserved solely for managing
servers; it can be used to manage client workstations as well. With the available
resources, you can just as easily install and configure desktop applications, import
registry settings, manage users, set up printers, and so on.

Interacting with end hosts

Where Linux-based systems can execute commands over SSH, Windows platforms
have an additional mechanism called Windows Remote Management (WinRM).
In the same way that you would leverage knife ssh for Linux systems, knife
winrm is available to execute commands remotely on a Windows host using the
WinRM protocol.

For example, one might execute the following command for connecting to Linux hosts:

knife ssh "role:mysgl" "chef-client" --sudo -x ubuntu

The following command would connect to Windows hosts in the same role:

knife winrm "role:mysql" "chef-client" -x Administrator

As you can see, the winrm subcommand supports executing a command on
any number of hosts that match the supplied search criteria just like the ssh
subcommand. While the protocol for communicating with the hosts may be
different, the mechanism for interacting with them via knife remains consistent.

Downloading the example code
\ You can download the example code files for all Packt Publishing
Ny books you have purchased from your account at http: //www.
Q packtpub. com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

[6]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com
http://www.it-ebooks.info/

Chapter 1

Bootstrapping Windows hosts

Bootstrapping a host is intended to prepare a host for, and complete registration
with, the Chef service (be it your own Chef server or a hosted installation). Hosts
that are being bootstrapped typically contain nothing more than a bare OS
installation; however, it is also possible to bootstrap hosts that have existing
software configurations. The bootstrapping script is responsible for

performing the following functions:

* Installing Ruby 1.8.7 with RubyGems

* Installing the RubyInstaller Development Kit (DevKit)

* Installing Windows-specific gems to support Chef

* Installing Chef from RubyGems.org

* Writing out the validation key into ¢:\chef\validation.pem

* Optionally writing out an encrypted data bag secret

* Writing the default configuration file for Chef in C:\chef\client.rb
* Creating the initial run-list JSON file in C:\chef\first-boot.json

* Running chef-client for the first time to register the node with Chef

An example of bootstrapping a Windows host using the Windows Remote
Management protocol might look like the following command:

knife bootstrap windows winrm windowshost.domain.com -x Administrator

This command will connect to windowshost .domain. com as Administrator via
the Windows Remote Management protocol and then run the commands in the
Windows bootstrap script. For a complete view of the commands being run,
you can find the Windows bootstrap script at https://github.com/opscode/
knife-windows/blob/master/lib/chef/knife/bootstrap.

Scaling with cloud providers

By combining the ability to automatically bootstrap a Windows system with a
provider that supplies Windows virtual hosts, you can integrate cloud servers into
your infrastructure with ease. Chef has existing support for using Azure, AWS, and
Rackspace APIs to manage cloud infrastructure including starting, stopping, and
provisioning new instances with those services automatically. If you are using a service
that is currently unsupported, it is entirely possible to develop a plugin to provide
integration with that provider. Through Chef, you can manage a collection of on-site
and off-site hosts with a mix of physical and virtual servers with ease. This means that
you can bring up new servers in a much shorter period of time when you need them
and do away with them when they are not in use, saving you both time and money.

[71

www.it-ebooks.info

https://github.com/opscode/knife-windows/blob/master/lib/chef/knife/bootstrap
https://github.com/opscode/knife-windows/blob/master/lib/chef/knife/bootstrap
http://www.it-ebooks.info/

Chef and Windows

Scripting with PowerShell

Modern Windows systems come with the PowerShell runtime, an incredibly powerful
tool for interacting with the system. Naturally, as Chef is a developer-oriented way of
managing systems, writing scripts to execute on end hosts is a convenient and flexible
way of extending Chef's functionality. Chef provides a mechanism for executing
PowerShell scripts in Windows in the same way it supports running Bash scripts on a
Linux host. A very trivial example might be the following PowerShell script that writes
a line of text into a file:

powershell "say-hello" do
code <<-EOH
$stream = [System.IO.StreamWriter] "C:\hello.txt"
$stream.WriteLine ("Hello world!")
$stream.Close ()
EOH

end

The preceding code allows you to exercise the full power of PowerShell from within
your recipes by executing scripts you define on the managed systems. These scripts
can even be dynamically generated from configuration data and other variables in
your recipes.

Integrating with Linux-based systems

Having a heterogeneous network is becoming more common as time goes by. Certain
pieces of software either don't exist or are not as well supported on one platform as
they are on another. As a result, administrators encounter situations where they are
required to deploy and manage hosts running multiple operating systems side-by-side.
Integrating Windows and Linux-based systems comes with its own set of challenges,
and Chef helps to address these issues by providing a consistent way to interact with
both Linux and Windows-based systems.

For anyone who manages such infrastructure (specifically a collection of systems
running some combination of Windows and Linux), Chef has some amazing
features. Because it is capable of modeling both Windows and Linux systems
with the same declarative language and configuration data, you can easily
configure both your Linux and Windows systems using the same tool.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

For example, you could have a cookbook with a recipe that configures the firewalls
of your network hosts. That recipe can search Chef's configuration data for all other
hosts in your network, gather up a list of their IP addresses, and open up traffic to all
those IP addresses. If you provision a new host, all of the hosts being managed will
automatically know about the new host and add a new firewall rule. Additionally,
because Chef provides you with its own declarative language that hides the
implementation details, you can focus on what you want to achieve and not on

how to achieve it. Chef knows what platform it is running on and how to load the
system-specific implementation of your resource such as a network interface, firewall,
user, file, and more. It is also entirely possible to write recipes to install Apache or
MySQL that are capable of working on both Linux and Windows platforms.

This makes it much easier to integrate any number of Windows and Linux systems
without having to maintain multiple sets of scripts to achieve the same end goal.
For example, assuming you had a firewall cookbook for both Windows and Linux,
it would be possible to write a recipe similar to the following:

search(:node, 'role:web server) .each do |node|
ip = node[:external ip]
firewall rule "#{ip}" do
source "#{ip}"
action :allow
end
end

In the preceding code, we are searching for all nodes that have the role of web_server
and which call the firewall rule resource to allow traffic to originate from that
source. Notice that the recipe does not refer to the Windows Firewall software or
Linux's firewall tool, iptables. Rather, Chef's custom language allows us to describe
what we were doing, not how to achieve our goal. The "how" is implemented in a
provider and the "what" is described by a resource, which are both provided in our
firewall cookbook.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef and Windows

Working with Windows-specific resources

There are a handful of resources that Chef provides on a Windows system that are
specific to Windows. Chef can automatically determine which type of host a recipe
is being executed on and perform a different set of actions based on the host type.
For example, the installation of a particular software package such as MySQL may
be mostly identical between hosts but requires slightly different settings or needs to
store Registry settings on a Windows system. Some of the resources that are specific
to Windows include the following:

* Batch scripts

* PowerShell scripts

e Autorun scripts

* Software packages (MSIs, installers, and so on)

* Printers

* Windows Registry

* Network paths

* System tasks

Supported platforms

Chef for Windows supports recent versions of Windows as of the time of writing.
This includes the following (but may work on other, newer releases as well):

* Windows Server 2003 R2

* Windows Server 2008

* Windows 8

* Windows 7

e Windows Vista

Summary

As you can see, Chef has a lot to offer to Windows administrators both in
managing Windows-only infrastructure as well as heterogeneous Windows
and Linux infrastructure.

Now that you have got a feeling for how Chef can benefit you when managing
Windows systems, let's take a look at how to install the client and how it fits into
the overall architecture of the Chef ecosystem in the next chapter.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing the Client — an
Overview of Chef Concepts

As with all guides, the journey must begin somewhere. In this chapter, we will start
from the beginning, covering some important information about using Chef with
Windows. It contains a brief refresher of some material you may already know about
if you have used Chef before, and then we continue with getting Chef installed onto
a Windows host.

In this chapter, we will cover the following topics:

* Reviewing key Chef terminology
* Describing the overall Chef system architecture
* Installing the Chef client on a Windows system manually

* Using the bootstrap script provided as part of Chef to install the client

Getting to know Chef better

As with any other technology, Chef has its own set of terminologies which are
used to identify the various components of the Chef ecosystem. The following are
some key terms along with their definitions that are used throughout this book:

* Node: A node is a system that is managed by Chef. These can be servers,
desktop systems, routers, or anything else that is capable of running the
Chef client and has a supported operating system.

* Workstation: A workstation is a special node that is used by a system
administrator to interact with the Chef server and with nodes. This is
where the command-line tools are executed, specifically the knife
command-line tool.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing the Client - an Overview of Chef Concepts

Bootstrap: Bootstrap is the process of setting up a node to be used as a
Chef client. This involves performing any work required to install the
dependencies for Chef as well as Chef itself.

Bootstrap script: There are a number of possible ways to install Chef, Ruby,
and other core requirements as well as any additional configuration that

is needed for your specific systems. To provide this level of flexibility, the
bootstrap process is scripted; on Windows, this is a batch file.

Recipe: Recipes provide the instructions required to achieve a goal such as
installing a software package, configuring a firewall, provisioning users and
printers, or managing other system resources. These are written in Ruby and
executed on the nodes specified by the system administrator through the
Chef console.

Cookbook: A cookbook is a collection of recipes. Typically, a cookbook
provides one specific group of actions such as installing Apache or MySQL,
providing Chef resources for a specific software tool, and so on.

Attributes: Various components of the system have their own attributes;
properties that describe how the software needs to be configured. These
properties are defined at various levels, ranging from node-specific settings
to general defaults for a cookbook or a role.

Role: A role is a data structure that describes how a node that has the role
applied to it should be configured. It contains a list of recipes that are to be
run and the configuration data to be applied to nodes that are associated with
that role. Examples of roles might include MSSQL Servers, Exchange servers,
IIS servers, file servers, and so on. Note that the role itself knows nothing
about nodes; the association between the node and its role is created by the
administrator by applying roles to nodes.

Run list: A "run list" is a list of recipes to be applied to a given node in a
certain order. A run list can be composed of zero or more roles or recipes,
and the order is important as the run list's items are executed in the order
specified. Therefore, if one recipe is dependent upon the execution of
another, you need to ensure that they run in the correct order.

Resource: Resources are the way of describing what a recipe is processing.
Some examples of resources would include files, directories, printers,
users, packages, and so on. A resource is an abstraction of something that is
concretely implemented in a provider.

Provider: A provider is a concrete implementation of a resource. For example,
a user is a generic resource, but LDAP users or Active Directory users are
concrete implementations of a user resource. The type of provider being
selected will depend on factors such as the platform.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

* Data bags: Data bags contain shared data about your infrastructure.
Information that is not specific to a role or a resource such as firewall rules,
user accounts, and so on would be stored in data bags. This is a good place to
store system-wide configuration data.

* Environments: Environments provide a level of encapsulation for resources.
For example, you may have two identical environments, one for testing
and one for production. Each of these may have similar setups but different
configurations such as IP addresses and users.

An overview of Chef's architecture

Chef has three main players in its overall architecture: the nodes that are being
managed (servers, desktop clients, routers, and so on), the workstation that a system
administrator uses to run the knife command, and the Chef service that is responsible
for storing and managing all of the roles, recipes, and configuration data to be applied
to the end hosts. The following diagram represents the Chef architecture:

I TR o .

G| mm = g Chef Service
[] w0 f]

[] w0 :f]

Workstation

T oI NI
Node 1 Node 2 Node 3

The nodes communicate with the Chef service over HTTP (preferably HTTPS) using
the chef-client script provided as part of the Chef client installation. This is a Ruby
script that is responsible for connecting to the configured Chef service (self-hosted

or using hosted Chef) and downloading the run list that is configured for that node
along with any cookbooks and configuration data it needs. Once it has done that,
chef-client will evaluate the run list in order to execute the recipes in the order

in which they were specified.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing the Client - an Overview of Chef Concepts

The workstation also communicates with the Chef service using HTTP(S), but its

job is a bit different. The workstation is where a system administrator will use the
command-line utilities to interact with the data stored in the Chef service. From there,
the administrator can read and modify any of the system data as JSON, perform
searches, and interact with the nodes through the knife command-line utility.

In addition to the command-line utility, Chef also presents a web-based interface for
modifying the system data. Anything that can be performed by the web interface can
also be achieved using knife; however, there are a number of advanced operations
that cannot be performed without knife such as executing remote commands on a
group of hosts and searching through data.

Installing the Chef client on Windows

In order to install the Chef client on Windows, there are three basic options to be
performed, as follows:

1. Use the knife-windows plugin to bootstrap the host as described previously.
2. Download and manually install the client using the MSI installer.

3. Deploy the software via an in-place update tool such as WSUS (this
mechanism will not be discussed because it is outside the scope of this book).

Preparing to bootstrap Windows hosts

As discussed in the previous chapter, bootstrapping a host is the process of installing
any components required to initially incorporate a host into your infrastructure.
Typically, this will involve installing Ruby along with the Chef client and any
certificates required for authentication, as well as registering the host with your

Chef server or hosted Chef account. In order to do this, you will need to have a
workstation configured with the knife-windows gem installed. You can install the
gem easily with the following command:

gem install knife-windows

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

You may need to perform this action as an administrator on Windows or
via sudo on a Linux system if you are using the system Ruby installation.
Alternatively, you may wish to install Chef and any subsequent gems

Al with a Ruby version manager such as RVM, rbenv, or pik.

~
Q The knife-windows gem may have an issue with character encoding on
versions of Ruby greater than 1.9. If you encounter issues such as the one
outlined at https://tickets.opscode.com/browse/KNIFE-410,
try installing the chef and knife-windows gems using Ruby 1.9. (This
is where a Ruby version management tool comes in handy.)

Before proceeding to the bootstrap phase, you need to ensure that the following
things are configured on the Windows host:
* Windows Remote Management is enabled
* Any firewalls in between you and the Windows host permit WinRM traffic
* You are able to authenticate with WinRM

Enabling Windows Remote Management

Most modern Windows server OS installations enable Windows RM by default,
but if it is not already enabled (or if you are unsure), you can quickly configure it
by running the following command from a command prompt (as an Administrator):

winrm quickconfig
The preceding command performs the following tasks:

* Starts the Windows Remote Management service and sets it to autostart
on boot-up

* Defines firewall rules for the Windows Remote Management service
and opens the ports for HT'TP and HTTPS

[15]

www.it-ebooks.info

https://tickets.opscode.com/browse/KNIFE-410
http://www.it-ebooks.info/

Installing the Client - an Overview of Chef Concepts

Configuring firewall ports

In order to use WinRM, the firewall on the end host will need to be configured to
permit traffic to the ports that WinRM uses. There are two versions of WinRM, 1.0
and 2.0; each version has a different set of default ports. For version 2.0 of Windows
Remote Management, the default ports are as follows:

e HTTP: 5985
e HTTPS: 5986

For version 1.0, the default ports are as follows:

e HTTP: 80
e HTTPS: 443

Enabling basic authentication

To allow the authentication to WinRM from the outside and via basic, non-encrypted
HTTP authentication, you will need to run the following commands from the
command prompt (not via the PowerShell prompt):

winrm set winrm/config/client/auth @{Basic="true"}
winrm set winrm/config/service/auth @{Basic="true"}

winrm set winrm/config/service @{AllowUnencrypted="true"}

As this permits unencrypted basic HTTP authentication, do not do
M G
~ this for public hosts, as it could present a significant security risk.
Use an appropriately defined policy and certificates with HTTPS
for a more secure authentication mechanism.

Bootstrapping a Windows host

Once the knife-windows gem is installed on the workstation, you can proceed to
execute the bootstrapping process, such as the following bootstrapping of an EC2
Windows host:

knife bootstrap windows winrm ec2-54-204-177-250.compute-1.amazonaws.com
-x Administrator

In the preceding command, we are executing the knife utility with the bootstrap
command, specifying that we want to use the Windows bootstrap script through the
Windows Remote Management protocol on host ec2-54-204-177-250. compute-1.
amazonaws . com as the Administrator user (via the -x command-line flag).

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This will take some time, as it will need to download and install the Chef client
and then register itself with the Chef server. While it is running, the following is
an overview of what it is doing;:

1. The knife command will render a batch file from an ERB template located
on the workstation (the one initiating the bootstrapping) and write it to a
file on the target node.

2. After generating the batch file from the ERB file template, the node will
execute the newly created batch file.

3. The generated script will download the Chef client MSI installer onto the
node and perform the installation.

4. Once the installation of the client has succeeded, knife will store
any files needed to get the host registered including certificates and
configuration data.

5. The Chef client will perform an initial pass to execute any initial run lists
that were specified on the command line (in our case, none).

6. Once the Chef client has completed its initial set of work, it will print out
what it did and how long it took to complete that task.

Once the target node has completed the bootstrapping, you should validate that it
was provisioned with the following command:

[user@workstation]% knife node list

WIN-7QKOA4QQ21M

[user@workstation: ~]

Installing via MSI

An alternative, for those who already have tools in place to deploy software using
Microsoft installer packages (MSIs), is to use an MSI that is available for installing
the Chef client on a Microsoft Windows machine. To download the Chef client for
Windows systems, perform the following steps:

1. Gotohttp://www.opscode.com/chef/install.

2. Click on the Chef Client tab.

3. Click on Windows and choose an appropriate version and architecture.
4

Under Downloads, select the version of the Chef client to download,
and then click on the link that appears below the drop-down menu to
download the package.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing the Client - an Overview of Chef Concepts

The web page shown in the following screenshot appears when the
preceding steps are performed:

Uownload options

Chef Client = Chef Server

Installing the Chef Downloads
B | | ent You can install manually by downloading the package below after you havg

Select the kind of system you would about manual installation, please read the documentation

like to install the Chef Client on.

The versions listed have been tested E

and are supported.

chef-client-11.10.0-1.windows_msi

Windows
2008r2
xB6_64

5. Once the installer has downloaded successfully, launch the installer
as follows:

{i# Dpscode Chef Client Installer for Windows ¥11.10.0 Setup

Welcome to the Opscode Chef Client
Installer for Windows v11,10.0 Setup
Wyizard

The Setup Wizard will install Opscode Chef Clierk Installer Far
Windows v11.10.0 on waour corputer. Click Next bo continue
ar Cancel ko exit the Setup Wizard.

OPSCODE

Back I Mext I Cancel

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

6. Select the default options (refer to the information box after the following
screenshot for information about the service):

i'-.% Opscode Chef Client Installer for Windows ¥11.10.0 Setup

Click the icons in the tree below ko change the way Features will be installed.

Chef Client

Chef Client Service

This Feature requires OKE on vour
hard drive.

Browse, .. |

Disk Usage Back I Met I Cancel |

By default, the Chef client is only run manually —someone must execute the
command through a WinRM session or on the console. In order to run the

client periodically in the background, you must enable the service or configure a
scheduled task. If you check the Chef Client Service box during the installation
phase, the service will be set to run automatically. If you want to enable this later,
you can do so with the following command:

chef-service-manager -a install

If you choose to run the client in the background, you will not be able to see
the console output. To find the execution logs, refer to the file chef-client.log
under c:\chef.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing the Client - an Overview of Chef Concepts

. Installing the Chef client manually through the MSI download option
will not automatically register the host with the Chef service. In order
/— to do this, you will need to copy the validator key and a functional

client.rb configuration file onto the end host.

For reference, a sample client.rb file for a self-managed Chef service would look
like the following;:

log level :info

log location STDOUT

chef server url ‘'https://yourchefserver.com/'

validation_client name 'chef-validator'

validation key "C:/chef/validator.pem"

A client.rb file when using the hosted Chef service would look like the following:

log level :info

log location STDOUT

chef server url 'https://api.opscode.com/organizations/ORGNAME'
validation key "C:/chef/ORGNAME-validator.pem"

validation client name 'ORGNAME-validator'

For a self-managed Chef service, the validator.pem file will likely be located
under /etc/chef. For a hosted Chef service, you can download your validator
key from the management console.

Summary
By now, you should have a good feeling for the key components of the Chef
architecture including important terminology and how to install the Chef client
on Windows-based hosts through two different mechanisms:

* Bootstrapping the host with knife from a workstation

* Installing the client onto a node manually using the MSI package

In the next chapter, we will take a look at what Windows-specific resources
and features are available to us through Chef.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

When managing Windows with Chef, there are some Windows-specific resources
that are available to you as part of the Windows stack. This chapter covers those
resources that are specific to Windows such as the Windows Registry, roles, MSIs,
and so on; the ones that won't be available on Linux systems.

Working with Windows-specific resources

As might be expected by most systems administrators, managing Windows means
that there are resources and configuration data that are not available to non-
Windows systems. A list of those resources includes the following;:

* Roles and features

* Batch scripts

* Autorun scripts

* Software packages (MSIs, installers, and so on)

* Printers

* Registry manipulation

* Paths

* Tasks (requires Windows Server 2008)

* DPagefiles

* System reboots

o ZIP files

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

Platforms supported by Chef
Not all versions of Windows are supported by Chef, and not all functionality is

supported on all platforms. A list of Windows versions known to work with Chef
is as follows:

* Windows XP

e Windows Vista

* Windows Server 2003 R2
* Windows7

* Windows Server 2008

* Windows Server 2012

These resources are provided by the windows cookbook (https://github.com/
opscode-cookbooks/windows) and behave like any other Chef resource apart
from the fact that they are platform-specific resources and have no providers on
non-Windows systems. Let's take a look at these in detail, with examples of how
to use them.

In order to use the windows cookbook, you need to have a few dependencies
installed, specifically the chef_handler and powershell recipes.

We cannot specifically depend on Chef's powershell cookbook
M because powershell depends on this cookbook —this creates a
Q circular dependency if you are not careful. As a result, do not add
a dependency, but rather ensure that recipe [powershell]
exists in the node's expanded run list.

Managing roles and features

Similar to how Linux distributions have package management tools and a repository
of packages, Windows has long had built-in packages that come with the OS. Both
desktop and server releases of Windows have installable components out of the box,
with servers having more than desktops.

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In Windows parlance, roles are similar to Chef's notion of roles—a collection of
software packages and services that work together to provide a certain set of
functionality such as web application services or DNS. Multiple services can be
required to provide a particular role on a Windows server. However, because
these roles are managed as part of Windows, the level of control that you have
over them is somewhat limited through Chef. You can enable or disable them
through the windows_feature resource, but Windows (instead of Chef)
determines what gets installed.

Features, on the other hand, are more like packages; they provide functionality that
may not be critical to participating in a particular role, or may not even be related to
roles in general. Chef refers to both roles and features as features, and the windows_
feature resource provides a mechanism for managing both of these through Chef.

There are currently two providers for windows_feature: Deployment Image
Servicing and Management (DISM) and servermanagercmd (the server manager
command-line tool). The servermanagercmd command is deprecated in favor of
DISM as the recommended mechanism for managing roles and features. Therefore,
the default provider used by Chef is DISM if it is present on the system being
managed, falling back to using servermanagercmd if it is not.

For a complete list of all roles and features that are available on a node, use one of the
following mechanisms. On DISM-enabled systems, run the dism command as follows:

dism /online /Get-Features

The output of this command gives you a list of features and their current status.
The following screenshot is an excerpt from the output obtained on running this
command on a host:

P5 C:hUsershAdministrator> dism fonline /fGet-Features

Feature Mame: FaxSerwviceRole
State: Disabled

Feature Mame: Printing-Server-Role
State: Enabled

Here, the Feature Name key would be used to map to the feature_name attribute in
the windows feature resource. For hosts without DISM, use the servermanagercmd
tool as follows:

servermanagercmd -query

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

The output of this command would look like the following screenshot:

P5S C:“Users‘\Administrator= servermanagercmd -guery

Starting discovery

AD-Certificate]
ority C Authority]
pplic erver]

C Server-Core]
eb-Support]

In the preceding screenshot, the string in square brackets would be the value to
supply to the feature_name attribute to manage that component.

In order to install these, Chef provides us with the windows_feature resource,
which is described in the following table:

windows_feature

Action Description

install This installs the specified Windows role
or feature.

remove This uninstalls the specified Windows role
or feature.

Parameter Description

feature name This is the name attribute — Windows' fully

qualified name of the feature or role to be
managed. The name may vary depending
on the provider being used.

Installing roles using different mechanisms

As discussed earlier, there are multiple backends for the Windows feature
resource — DISM and servermanagercmd. Each one has a specific Ruby
class that will be used based on the determined backend as follows:

* Chef::Provider::WindowsFeature: :DISM: This uses DISM to manage
roles/features (default unless DISM is not present)

®* Chef::Provider::WindowsFeature: : ServerManagerCmd: This uses
Server Manager to manage roles/features (the fallback provider when
DISM is absent)

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Examples of using features and roles

Enable the printer service role (Printing-Server-Role) as shown in the following
example output from DISM:

windows feature "Printing-Service-Role" do
action :install
end

Since you can use arbitrary Ruby code inside your recipes, you can perform an
operation on multiple components with ease. For example, to remove both the
fax server and the printing server, you could use the following code:

to_remove = ["Printing-Service-Role", "FaxServiceRole"]

to_remove.each do |feat|
windows_feature feat do
action :remove
end
end

In order to enable IIS on a system where DISM is not available, you would need
to use the role name as output using servermanagercmd as follows:

windows feature "AS-Web-Support" do
action :install
end

Executing batch scripts

Similar to Linux script resources for bash, ruby, and so on, Chef can execute
arbitrarily-defined Windows batch scripts through the command interpreter. When
these resources are used, Chef compiles the contents of the batch script as defined in
the resource block's code attribute and then deposits it on the managed host and it is
executed from there.

Take caution when using script resources; they are unstructured and can
easily perform actions that have unintended side effects. Similar to the
_ way the software is built, two immediate subsequent runs of the Chef
& client on a node should have the same effect as only running it once in
L order to guarantee a reliable and consistent system configuration. Make

sure that you develop scripts that are idempotent in nature (that is, it
can be run multiple times and have the same effect as only running
once), or use conditionals to prevent multiple executions.

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

Since scripts are arbitrary and of a free form, you can use them to achieve anything
that you cannot model using the existing resources. However, care must be taken
to prevent repeated execution that would cause negative side effects. One way to
avoid performing potentially destructive actions is to use the not_if and only_ if
conditions to prevent multiple executions. That being said, if you find that you are
performing the same type of action repeatedly, consider writing a custom resource
and provider if possible.

M Chef 11.6.0 and upwards includes a built-in batch
Q resource; use windows_batch when implementing
an earlier Chef version.

When running a batch script on a Windows host using earlier versions of Chef,
the windows_batch resource can be used. The following table shows the available
actions and parameters when using the windows_batch resource:

windows_batch

Action Description

run This runs the batch script that is specified.

Parameter Description

code This is the batch script to be executed. It
is an arbitrary string (refer to the example
following the table).

command This is a name attribute — the name of the

block being executed. Typically, this should
have a meaningful value.

creates A file is to be used as a semaphore for this
script. If the file specified exists, this script is
not executed as it is expected to be created by
the script.

cwd Change the working directory to this before
running the batch script.

flags These are the command-line flags passed to
the cmd . exe interpreter when running this
batch script.

group This specifies the group name/ID that this
script should be executed as.

user This specifies the user name/ID that this
script should be executed as.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Example of batch scripts

In the following code, we will look at how we might build a command to execute
rsync with some parameters specified using the node attributes:

windows batch 'synchronize files' do
code <<-EOH
rsync.exe -a -v -z #{node[:rsyncserver]} #{nodel:rsyncdest]}
EOH

end

Alternatively, one might want to execute a Ruby script on the node as follows:

windows batch 'execute some ruby' do
cwd "C:/Temp"
code "C:\Ruby210\ruby.exe C:\Temp\run me.rb"
end

Running scripts at startup

This resource allows you to create an autorun entry that will execute when the
system is logged into. This is useful for anything that needs to be run when a user
logs onto the system such as accounting, setting up user profiles, paths, environment
variables, downloading patches or updates, making certain that specific programs
are running, and so on.

In the following table, we describe the windows_auto_run resource along with its
available actions and parameters:

windows_auto_run

Action Description
create This makes a new item that executes at login.
remove This removes a previously created autorun entry.
Parameter Description
args These are the arguments to pass to the autorun program.
name This is the resource name parameter used to name the
autorun script.
program This is the program to be executed.
[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

Example of creating an autorun script

Install an autorun item with the following code that executes an accounting tool at
login to track various bits of accounting data, only installing the autorun item if it
hasn't been installed:

windows_auto_run 'ACCOUNTING' do

program 'C:/MyOrg/accountingtool.exe'

args ' /NOTIFYTHEBOSS /PLAYAPRILFOOLSJOKE'

action :create

not if { Registry.value exists? (AUTO_RUN KEY, 'ACCOUNTING') }
end

Installing software packages

A large number of managed systems require configuration of software that is outside
the scope of the built-in Windows roles and features. Chef has a very handy resource
for installing arbitrary software onto a Windows host through the windows_package
resource, which behaves somewhat like the Linux-based package resource only

for Windows-specific installations. The windows_package resource is capable of
installing software through a variety of popular installation mechanisms. Currently,
that list includes the following:

* MSI packages

* InstallShield

* Wise InstallMaster

* Inno Setup

* Nullsoft Scriptable Install System
If an installer type is not provided in the resource's attributes, then Chef will try to
identify the installer by examining the package. For software that does not use one

of the supported installation mechanisms, Chef provides the ability to describe a
custom installer workflow by providing the custom installation type.

In order for Chef to manage the installation of the software, it must
M .
~ support some form of unattended or quiet mode that does not rely
on any user input to successfully install the software package. This
applies for both installation and removal.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The following table lists the available actions and parameters for the windows_

package resource:

windows_package

Action
install

remove

Parameter
package name

installer type

source

checksum

options

timeout

version

success_codes

Description

This installs a software package.

This removes the specified package.

Description

This specifies the name attribute and is the display name of
the application installation package; this is the value in the

DisplayName registry key, typically found in CurrentVersion)\
Uninstall under one of the following registry keys:

e HKLM\Software\Microsoft\Windows
e HKCU\Software\Microsoft\Windows
* HKLM\Software\Wow6464Node\Microsoft\Windows

The possible values for the installer type are :msi, :inno, :nsis,
:wise, :installshield, and : custom. Without this value, the
provider will try to guess the mechanism by examining the file.

This determines where to locate the installer; this can be a local path
or a URL. In cases where the path is a URL, the installer will be
downloaded and executed.

This is the SHA-256 checksum of the file. It is typically used in
conjunction with a download URL —if the cached file matches the
checksum, Chef will not re-download the file present at the URL.
It also prohibits unexpected packages from being installed.

This includes any command-line options to pass to the installer.

This is the download timeout (the default is 10 minutes).

This is the version of the package being installed. This can be found
in the DisplayVersion value in the application's registry settings.
If the currently installed version (value in the registry) does not
match this, the package will be installed /upgraded.

This is an array of return codes that indicates that the package was
successfully installed. Typically, this is used with custom installers,
but there are plenty of other possible cases where this is useful.

The default value is (0, 42, 127)

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

Examples of installing Windows packages

Using a locally provided file, perform an installation of Ruby 1.9.3-p448. This
package uses the Inno Setup packager and a hint is provided, but remember that
even without it, the provider will try to determine the installer type:

windows package "Ruby 1.9.3-p448" do

source File.join("C:", "temp", "rubyinstaller-1.9.3-p448.exe")
options '/dir="C:/Rubyl93" /tasks="modpath"'
installer type :inno

action :install
end

You can specify arbitrary flags to pass to an installer that does not use one of the
known packaging systems. One example of this is Firefox, which supports passing
the -ms command-line arguments to the installer in order to run in silent mode:

ff url = "http://archive.mozilla.org/pub/mozilla.org/mozilla.org/
firefox/releases/28.0b4/win32/en-US/Firefox%20Setup%2028.0b4.exe"

windows package 'Mozilla Firefox 28.0b4 (x86 en-US)' do
source ff url
action :install
installer type :custom
options '-ms'
end

The options for Firefox can be found at https://wiki.mozilla.org/
Installer:Command_ Line Arguments

In order to remove a previously installed package, such as iTunes, make use of the
: remove action as follows:

windows package "iTunes" do
action :remove
end

Manipulating printers

Chef provides two different resources for managing printers — ports and printers
themselves. The windows_printer_port resource allows you to install TCP/IP
printer ports on a Windows host to connect a printer to. The windows_printer
resource is responsible for an actual printer installation, and they are both used
in conjunction with one another.

[30]

www.it-ebooks.info

https://wiki.mozilla.org/Installer:Command_Line_Arguments
https://wiki.mozilla.org/Installer:Command_Line_Arguments
http://www.it-ebooks.info/

Chapter 3

\ The printer resources depend on PowerShell to make certain that

~ recipe [powershell] isincluded on the node's expanded run

Q list to ensure the powershell cookbook is downloaded to avoid
circular dependencies.

Managing printer ports

With the windows_printer_port resource, you can create and delete TCP/IPv4
printer ports. This resource is useful for creating printer ports with specific settings
when you need control over the port configuration. The windows_printer resource
uses the windows_printer port resource to dynamically create printer ports as
needed, so this typically comes in handy only if the default settings are insufficient.

The available actions and parameters for the windows_printer_ port resource are
described in the following table:

windows_printer_port

Action Description

create This creates a new TCP/IP printer port (default action).
delete This deletes a named TCP/IP printer port.

Parameter Description

ipv4 address This specifies the resource name attribute, that is, the IPv4

address that the port is configured for.
port_name This gives the optional port name.

The default value is IP_#{ipv4 address}

port_number This gives the optional port number. The default value is 9100.
port_ This gives the optional port description.
description
snmp_enabled This gives the optional flag that marks SNMP as enabled or
disabled. The default value is false.
port_protocol This gives the optional port protocol. The following values are
supported:
* 1(RAW)
* 2(LPR)

The default value is 1.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

Examples of managing printer ports

Create a TCP/IP printer port named 10.0.0.1 by only specifying the IP address
(everything else is set to the default value) as shown in the following code:

windows printer port '10.0.0.1' do
end

Delete the printer port we just created as follows:

windows_printer_port '10.0.0.1' do
action :delete
end

Create a port with some nondefault options such as name, port number, description,
and SNMP support as shown in the following code:

windows_printer_port '10.0.0.1' do
port name 'Remote office port'
port_number 8080
port description 'This is my newly created port'
snmp_enabled true
end

Delete the port that was previously created as follows:

windows printer port '10.0.0.1' do
port name 'Remote office port'
action :delete

end

Managing printers

In order to create a new printer, you will need to have the driver already installed
on the system. If the driver is not already on the end host, it could easily be installed
with a windows package resource and delivered from a central network location in
order to distribute your printer drivers to end hosts.

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The windows_printer resource will automatically create a TCP/
IP printer port for you using the ipv4 address property. If you
want more granular control over the printer port, create it using the
windows_printer port resource before creating the printer.

~\‘Q

The following table shows the available actions and parameters that can be used
with the windows_printer resource:

windows_printer

Action Description

create This creates a new printer resource (default action).
delete This deletes a named printer.

Parameter Description

device_id

driver name

ipv4_address

location

shared

share name

comment

default

This is the resource name attribute —set to the printer queue
name, for example, Tokyo Office HP Laser]et.

This is required to be the exact name of the printer driver. This

needs to be installed ahead of time (as mentioned previously) —
use a windows_package resource if needed to install it before
creating the printer.

This is the printer's IPv4 address, for example, 10.4.64.23. It need
not be network-accessible at creation time. We will create the port
if it does not exist.

This is the printer location used for the printer metadata.

This is the Boolean flag indicating whether this printer needs to
be shared.

The default value is false.

This is the printer's share name, if it needs to be shared.

This will contain the optional description of the printer.

This determines whether the printer is the default printer.
The default value is false.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

As outlined earlier, this resource will automatically create a printer port for this
printer if one does not exist. In its current form, the underlying printer provider
expects that the printer port has the name 1p_#{ipv4_address} —so if you have a
custom-named port, it will not be used.

Examples of managing printers

Create a new printer that is named HP LaserJet, Bldg. A Floor 20 addressed by
the 10.0.0.5 IP. This will use the default settings when constructing a printer port,
so the new port will be named 1p_10.0.0.15 and will use port 9001 and the RAW
protocol with no SNMP as follows:

windows printer 'HP LaserJet, Bldg. A Floor 20' do
driver name 'HP LaserJet 1320
ipv4 address '10.0.0.5'

end

Create a more finely grained printer and port configuration with the following code:

windows_printer_port '10.0.0.10' do
port _name 'IP 10.0.0.10'
port number 9001
port description 'Building B print server'
snmp_enabled true
end

The following code would create our port, Ip_10.0.0.10, which we could then bind
a printer to:

windows printer 'HP LaserJet 6L - Copy Room' do
driver_name 'HP LaserJet 6L'
ipv4_address '10.0.0.10'
location 'Building B, Floor 13, Copy Room'
comment 'Haunted floor, look out for ghosts.'
end

Now, when the provider constructs the printer, it will use the 1p_10.0.0.10 port,
which we built with custom settings earlier.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

To delete a printer, leverage the :delete action. Note that this does not delete
the port, as it is possible there may be other printers at that location. To delete the
port, you must use the windows_printer_port resource with the :delete action
separately as follows:

windows printer 'HP LaserJet, Bldg. A Floor 20' do
action :delete
end

Interacting with the Windows Registry

One of the most well-known differences between managing UNIX-like systems
and Windows systems is the Windows Registry. Chef has resources for creating,
modifying, and deleting Windows Registry keys. Beware that these operations are
nonreversible (there is no implicit backup of values, so it may be worth preparing a
backup before modifying values), and that they can potentially be very destructive.

Paths to registry keys must also include the registry hive. The hive can be fully
specified or we could use the following abbreviations:

* HKLM for HKEY LOCAL_MACHINE

* HKCC for HKEY CURRENT CONFIG

* HKCR for HKEY CLASSES ROOT

* HKU for HKEY_USERS

e HKCU for HKEY CURRENT USER

Chef 10.x uses a resource named windows_registry, which will
M be described here for those using an older Chef client and server. For
Q newer install versions using 11.x, the resource is registry key and is
the preferred way to interact with Registry values when using a newer
version of Chef. Use the one that corresponds with your Chef version.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

The Chef 10.x resource

The windows_registry resource allows you to control registry settings, but has
different actions and attributes than the registry key resource. Moving from
windows_registry to registry_ key should be a fairly straightforward operation
when it is time to migrate.

The following table provides a description of the actions and parameters used
with the windows registry resource:

windows_registry

Action Description

create This creates a new registry key with the provided data.

modify This updates an existing registry key with the desired
values.

force_modify This modifies an existing registry key's values but does

so insistently. This action checks the value a number
of times to make certain that the key contains your
desired value.

remove This removes a value from an existing registry key.
Parameter Description
key name This is the resource name attribute specifying which

registry key to create, modify, or remove.

values This is a hash of the values to set under the registry
key. The individual hash items will become respective
'Value name' => 'Value data' items in the registry key.

type This determines the type of key to create. The following
is a list of options:

* :binary: REG_BINARY
* :dword: REG_DWORD

¢ :dword big endian: REG_DWORD_BIG_
ENDIAN

* :expand string: REG_EXPAND_SZ
e :multi string: REG_MULTI_SZ

* :string: REG_SZ

e :gword: REG_QWORD

The default value is : string.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Examples of managing registry keys

Manage NTP servers through the registry to allow off-site NTP synchronization
with the NTP pool and update every 45 minutes until you have performed three
good syncs, and then once every 8 hours with the following code:

regkey = 'HKLM\SYSTEM\CurrentControlSet\Services\W32Time\Parameter'
windows registry regkey do
values 'AvoidTimeSyncOnWan' => 0,
'NtpServer' => "0.pool.ntp.org",

'Period' => 'SpecialSkew'
end

As shown in the following code, delete two specific key/value pairs from the registry
at a given location — setting the value to blank achieves the following result:

windows_registry 'HKCU\Software\SomeApp\SomeKey' do
values 'UnwantedValueOne' => '',
'UnwantedValueTwo' => '
action :remove

end

There are also some helper methods available for determining if keys exist and/
or fetching the data from the registry. These come in handy when writing guards
around other blocks or for extracting registry data for use in other resources.

Use the following code to determine if a value exists:
Windows: :RegistryHelper.value exists? (path, value)

Use the following code to check to see if a key exists:
Windows: :RegistryHelper.key exists? (path)

Use the following code to get the value from a registry key:

result = Windows::RegistryHelper.get value (path, value)

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

The Chef 0.11.x resource

In the newer versions of Chef, the registry key resource is used for setting values
in the Windows Registry, as described in the following table:

registry_key
Action Description
create This creates a new registry key with the provided data.

create_if missing
delete
delete key

Parameter
key

architecture

provider

recursive

values

This creates a key or value if it does not exist.

This deletes the specified values for a specified registry key.
This deletes a specific key and all subkeys.

Description

This is the resource name attribute specifying which registry key
to create, modify, or remove.

This specifies the architecture for which the keys will be created.
The possible values are as follows:

* :x86: Force 32-bit registry
* :x86_64: Force 64-bit registry

¢ :machine: Allow the client to determine

The default value is :machine.

This determines which provider to use for manipulating the
registry. Currently, there is only one (Chef: : Provider: :Wind
ows: :Registry) whose short name is registry key, butitis
possible that this could change in the future.

The default value is registry key.

This determines whether this operation should be performed
recursively. When creating a new registry key, create any
required path components; when deleting, delete all subkeys.

This is an array of hashes that contain the values to be set under
the specified registry key. Each hash is composed of three keys
which are as follows:

¢ :name: The value's name
e :type: The type of value stored
¢ :data: The data to store

The : type key has the same options as the type for the
windows_ registry entries and defaults to : string.

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Examples of managing Registry values

To set the NTP configuration the same way that would have been done with the
windows_registry resource, a matching registry_key resource would look like
the following code:

regkey = 'HKLM\SYSTEM\CurrentControlSet\Services\W32Time\Parameter'

registry key regkey do
values [{
:name => 'AvoidTimeSyncOnWan',
:type => :reg_dword,
:data => 0
b A
:name => 'NtpServer',
:data => "0.pool.ntp.org",
b A
:name => 'Period',
:type => :reg string,
:data => 'SpecialSkew'
|
action :create
end

Managing the system path

Chef has resources to support manipulating the system path. This is useful
when installing new software or configuration that needs to make changes
to the system path.

The following table illustrates the available actions and parameters when using
the windows_path resource:

windows_path

Action Description

add This adds a new entry to the system path.

remove This removes an entry from the system path.

Parameter Description

path This is the resource name attribute specifying the directory to
add to the system path.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

Examples of modifying the path
Add Ruby 2.1.0's binaries to the system path as follows:

windows_path 'C:\Ruby\2.1.0\bin do
action :add
end

Remove Ruby 1.9.3 from the system path as follows:

windows path 'C:\Ruby\1.9.3\bin' do
action :remove
end

Scheduling tasks

The windows_task resource allows you to create, delete, or execute a Windows
scheduled task. These are tasks that execute at regular intervals and are useful for
things such as running the Chef client regularly, checking for updates, cleaning up
temporary files, downloading cache data, or anything else that needs to be scheduled.

\J
‘Q This resource provider requires Windows Server

2008 because of the API that it uses.

The following table lists the available actions and parameters when creating
scheduled tasks through the windows_task resource:

windows_task

Action Description

create This creates a new scheduled task.

delete This deletes a task.

run This runs the named task.

change This updates the properties of a specified task.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

windows_task

Parameter Description
name This is the resource name attribute specifying the name of
the task (arbitrary name).
command This is the command to execute on an interval.
cwd This specifies the directory to run the command from.
user This is the user to execute the command as.
password This is the user's password.
run_level The level of privileges to run with are listed as follows:
* :highest

e :limited

The default value is : 1imited.

frequency This is the unit of time for which this command executes;
the options are as follows:

* :minute

e :hourly
* :daily
e :weekly

e :monthly
* :once

* :on login
* :onstart

e :on_idle

The default value is : hourly

frequency modifier This is the frequency interval such as 15, 2, 30, and so on.
This is multiplied by the unit of time, so a modifier of 15
combined with :minute as the frequency would cause the
command to repeat every 15 minutes.

The default value is 1.

start_day This is an optional date to start the interval, formatted
as MM/DD/YYYY. This is the first date on which the
command is first executed and then runs on the specified
frequency interval. The command runs immediately if this
parameter is not specified.

start_time This determines the time of the day to perform the first
execution (immediately if nil). The format is HH:MM.

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

Examples of managing Windows tasks

Run Chef every 15 minutes with the following code:

windows_task 'Chef client' do
user 'Administrator'
password 'SecR3t'
cwd 'C:\chef\bin'
command 'chef-client -L C:\tmp\'
run_level :highest
frequency :minute
frequency modifier 15
end

Delete the Chef client task as follows:

windows task 'Chef client' do
action :delete
end

Interacting with Windows pagefiles

This resource allows you to set the default (and create if it does not exist) or
delete a Windows pagefile. Chef can designate the initial size, maximum size, and
management pattern for the newly created pagefile.

The following table illustrates the actions and parameters that can be used with the
windows_ pagefile resource:

windows_pagefile

Action Description

set This sets the default system pagefile to the specified pagefile. If the
pagefile does not exist, the provider will create it automatically.

delete This deletes the specified pagefile.

Parameter Description

name This is the resource name attribute specifying the path to the pagefile.

system _managed This allows the system to manage this pagefile (initial size = 0,
maximum size = 0).

automatic_ Should the size of the pagefile be automatically managed? If so, the
managed initial size and maximum size are ignored.

The default value is false.

initial_size This is the initial size of the pagefile in bytes.
maximum_size This is the maximum size of the pagefile in bytes.
[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Examples of how to manage the pagefile

Set the default pagefile to D: \pagefile.sys with an initial size of 8 GB and a
maximum size of 16 GB (creating it, if need be) with the following code:

one gb = 1024 * 1024 * 1024
windows pagefile 'D:\pagefile.sys' do
initial size (8 * one gb)
maximum sze (16 * one_ gb)
system managed false
automatic_managed false
action :set
end

Delete the pagefile at X: \pagefile.sys as shown in the following code:

windows pagefile 'X:\pagefile.sys' do
action :delete
end

ZIP files

There is not a consistent way to natively manage packing or unpacking of ZIP files on
all Windows platforms. To work around this, the windows_zipfile resource provides
a pure Ruby implementation for manipulating ZIP files on the Windows platform.

The following table lists the actions and parameters available for the
windows_ zipfile resource:

windows_zipfile

Action Description

unzip This decompresses a specified ZIP file at the source into the destination.
zip This creates a ZIP file at the destination from the source.

Parameter Description

path This is the resource name attribute specifying the path—unzipping this

designates where the unzipped files go, while zipping the path specifies
where the ZIP file is to be created.

source This indicates the ZIP file location to uncompress when unzipping,
or the directory containing files to be compressed when zipping.
checksum This is the optional checksum that verifies whether the ZIP file is the

expected one before decompressing it.
overwrite This determines whether this operation should overwrite files.

The default value is false.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

Examples of interacting with ZIP files

The following code compresses a ZIP file located at D: \backups\ named as per the
current date, containing the files at : \development\webapp\:

require 'date'
today = Date.today.strftime('$Y-%m-%d')
windows zipfile 'D:\backups\#{today}.zip' do
source 'C:\development\webapp'
action :zip
end

The following code decompresses a ZIP file located at D: \dist\ruby-1.9.3.zip to
C:\ruby, overwriting files only if the checksum matches the specified one:

windows zipfile 'C:\ruby' do
source 'D:\dist\ruby-1.9.3.zip"
checksum 'bfed985c4f0e44cd6b97£939440940335313384 "
overwrite true

end

Rebooting Windows

Often times, Windows needs to be rebooted to update system settings that have

been changed during the course of an installation or reconfiguration. The windows
cookbook provides the windows_reboot resource to notify windowsRebootHandler
that a reboot is required. If windowsRebootHandler is registered as a report handler, a
reboot will be requested upon a complete and successful execution of the Chef client.

Typically, this resource is notified by other resource blocks when a reboot is
required, often after installing new software or changing system settings.

Your recipe will need to make sure that the reboot handler is included with the
following command:

include_recipe 'windows::reboot handler'

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The following table outlines the actions and parameters that can be associated with
the windows reboot resource:

windows_reboot

Action

request

cancel

Parameter

reason

timeout

Description

This requests a reboot to be scheduled once the Chef client has
completed execution. This requires WindowsRebootHandler
to be registered as a report handler.

This cancels any pending reboot requests by changing the node.
run_state setting.

Description
This is a textual reason that the system is being rebooted.
The default value is Chef initiated reboot.

This is the name attribute that specifies how long the command will
wait in seconds until rebooting.

The default value is 60.

Examples of scheduling a reboot

The following example shows you how to schedule a reboot with a three-minute
timeout at the end of a Chef client run by notifying the reboot block when a package
is successfully installed via windows_package:

windows_reboot 180 do
reason "Installed a new package"
action :nothing

end

windows_package 'sgl server' do

action
notifies

end

:install
:request, 'windows_ reboot [180]'

If you need to cancel a reboot, you can do so from a resource block using the

following code:

windows_reboot do

action

end

:cancel

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Windows-specific Resources

Summary

This chapter has exposed you to the various Windows-specific resources that are
provided when using Chef. As you can see, these resources are very similar to those
you may have encountered when managing Linux-based systems, only tailored to
the Windows environment.

In the next chapter, we will take a look at how to use the resources that are available
for Windows management in order to provision an application stack using IIS, the
NET framework, and a database server.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning an
Application Stack

Now that you have learned about the Windows-specific resources and some
background information on using Chef with Windows, let's take a look at how to
provision a full-stack application. In this chapter, we will dissect a cookbook that
is responsible for installing an open source CMS application, Umbraco. Note that
the recipe in this cookbook requires Windows Server 2012 as the target platform,
and plan accordingly if you are going to run it yourself.

In this chapter, we will cover the following topics:

* Bootstrapping a new Windows host

* Installing the dependencies for the Umbraco CMS

* Installing the Umbraco CMS on the Windows host

* Configuring a site in the IIS to run the Umbraco CMS

Examining the cookbook

We will dive into a cookbook that has been written specifically to address the
installation of the Umbraco CMS along with its requirements. The source code
for this cookbook is available on GitHub at http://github.com/johnewart/
umbraco-cookbook.

www.it-ebooks.info

http://github.com/johnewart/umbraco-cookbook
http://github.com/johnewart/umbraco-cookbook
http://www.it-ebooks.info/

Provisioning an Application Stack

Chef cookbooks share the same layout and structure whether they target Windows
or other platforms. The primary difference in a cookbook that supports Windows
will be that its metadata. rb file declares that the cookbook supports Windows
and the recipes contained within the cookbook will support Windows through a
combination of Windows-specific resources and conditional logic that may behave
differently on the Windows platform. The following screenshot shows the layout
of the umbraco cookbook:

FOLDERS
¥ umbraco
¥ attributes
default.rb
¥ files
¥ recipes
default.rb
CHANGELOG.md
metadata.rb
README.md

Here, you will notice that the cookbook looks just like any other cookbook; it can
contain folders for recipes, attributes, templates, resources, providers, and any other
Chef resources. In this case, the cookbook only contains some default attributes and
recipes as it is designed to be a compact example for Windows.

If you look at the metadata. rb file for this cookbook, you will see the
following contents:

name 'umbraco'
maintainer 'John Ewart'
maintainer email 'john@johnewart.net'

license 'Apache 2.0'

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

description 'Installs and configures umbraco, an open source CMS for
ASP.NET (http://www.umbraco.com) '

long description 'Install and configure the Umbraco CMS'

version 1.0

Cookbook dependencies (IIS and Windows)
depends iis

depends windows

Supported platforms

supports 'windows'
For those who are still somewhat new to Chef, the metadata. rb file describes who

the maintainer of the cookbook is, what license it adheres to, the version number,
any cookbooks that it is dependent upon, and what platforms are supported.

In this case, we can see that the cookbook supports the Windows platform and
requires the iis and windows cookbooks in order to function. These are going to
be required for just about any IIS web application you want to install via Chef.

Installing the cookbook

As mentioned, this cookbook has two direct dependencies, windows and iis,
which in turn are required in a third dependency, chef_handler. All of these
cookbooks can be found at the following locations:

® https://github.com/opscode-cookbooks/windows

® https://github.com/opscode-cookbooks/iis

®* https://github.com/opscode-cookbooks/chef handler

®* https://github.com/johnewart/umbraco-cookbook

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning an Application Stack

Fetching from GitHub

In order to use these resources, you will want to either download them from GitHub
or use Git to clone them to a local system. If you are not interested in working with
them as Git repositories (that is, version controlled source code), downloading them
will be the simplest way to get them. If you go to the previous URLs, you will see

a link titted Download ZIP on the right-hand side of the screen, as shown in the
following screenshot:

Cookbook windows hitp:fcommunity.opscode.com/cookbooks/windows
4? Code
5 23 A
— Pull Requests
s/
Pulse
Graphs
latest commit clfbcd4e86 @- .
llow overriding of the default reboot timeout In windows... 8 months ago Network
llow overriding of the default reboot timeout In windows... 8 months ago
HTTPS
14 added ChefSpec matchers a month ago B
leplace 'powershell' with ‘powershell_script' resource 2 months ago “You can clone with HTTPS or
Subversion. ®
Update for changes in Chef 0.10.10 2 years ago
[& Clone in Desktop
owershell features provider and delete support. 4 months ago
<> Download ZIP
Changelog 15 days ago
pdate the CONTRIBUTING file to fix a minor typo 2 years ago

If you opt to download them as ZIP files rather than clone them with Git, you will
want to ensure the directories are named to match the proper name of the cookbook
(chef_handler, windows, iis, and umbraco). For example, if you clone the umbraco
cookbook, it will be put in an umbraco-cookbook directory, whereas decompressing
the ZIP files may result in an umbraco-cookbook-master directory. Once you have
them downloaded and renamed, install them on your Chef server by running the
following command from the directory where all four cookbooks are located:

knife cookbook upload -o . chef handler windows iis umbraco

Chef will validate that each cookbook's dependencies are satisfied (or are in the
process of being uploaded) as you upload them. The chef handler cookbook must
be installed in order for the windows cookbook to work, which is needed to support
the iis cookbook, and then finally the umbraco cookbook can be installed as its
dependencies have been met.

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Examining the recipe

Now that you have the source for the umbraco cookbook downloaded to your local
machine, let's take a look at what it's doing. Umbraco is a very easy-to-install ASP.net
CMS application that will give you a good feeling for how to install and configure an
IIS application using Chef. Umbraco was chosen for this example cookbook because
it does not require a database, although it supports one, and its single ZIP file
installation makes it easy to follow along.

Let's take an in-depth look at the default . rb recipe that is contained within
the umbraco cookbook. The code snippets in the upcoming section are contained
within umbraco/recipes/default.rb.

Installing the prerequisites

Before we can set up the IIS application, our recipe will need to ensure that the IIS
web server Windows role is installed on the host. As we have seen in the previous
chapter, Chef has a resource, windows_feature, that allows us to ensure that it is
either already available or gets installed as part of the recipe execution. Let's look
at the recipe's components piece by piece:

1. First, install the role using the 11S-WebServerRole role as follows:

windows_feature 'IIS-WebServerRole' do
action :install
end

2. Once that has been installed, install the ASP.net feature inside of IIS; however,
that has some other prerequisites, namely the ISAPI filter, ISAPI extensions,
the .NET 3 server features, ASP.net 4.5 support, and the .NET 4.5 extensibility
libraries. These are the required roles on Windows Server 2012; discovering the
names of the roles can be accomplished by using command-line tools such as
dism or servermanagercmd. The following code snippet shows the installation
of the ASP.net feature of IIS:
features = %$w{IIS-ISAPIFilter IIS-ISAPIExtensions

NetFx3ServerFeatures NetFx4Extended-ASPNET45 IIS-
NetFxExtensibility45}

features.each do |f|
windows feature f do
action :install
end
end

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning an Application Stack

3. After installing the dependencies, install the IIS ASP.net 4.5 feature
on the Windows host as follows (note that this is required to run the
Umbraco application):

windows feature 'IIS-ASPNET45' do
action :install
end

Preparing the IIS service

By now, our recipe has completed the installation of the required roles and features
in order to manage an IIS application. Let's see how it prepares the IIS service by
removing the default IIS site and application pool from our server.

The iis cookbook has a default recipe that turns on a service named w3svc. We do
not want to do this, instead we want to add our own IIS service. We can accomplish
this by" overriding the action attribute to :nothing. This will prevent the default
W3SVC service from being installed, as shown in the following code snippet:

service "iis" do
service name "W3SVC"
action :nothing

end

We don't want the default IIS application to be serving traffic, so we will remove
it using the remove_default_site recipe from the iis cookbook as follows:

include recipe "iis::remove default site"

If you dig into the iis cookbook, you will find that this is just a convenient way
of performing the following operations, and either mechanism would achieve
the same goal:

iis site 'Default Web Site' do
action [:stop, :delete]
end

iis pool 'DefaultAppPool' do
action [:stop, :delete]
end

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Fetching the application

Umbraco's distribution comes as a ZIP file, which we need to download and then
decompress. Here, the resource name (the argument passed to the resource) is the
directory that we are targeting for expansion of the ZIP file. The destination is found
in the hash element node ['umbraco'] ['approot '], which if not overridden will
be defined as "#{ENV ['SYSTEMDRIVE'] }\\inetpub\\apps" as specified in the
attributes/default.rb file. If you are using a simple server setup such as EC2
or a vanilla install, this will likely map to C:\inetpub\apps on your target host.
The file being downloaded is specified by the source attribute and by default will
point to http://our.umbraco.org/ReleaseDownload?id=92348. If the package
has already been downloaded and uncompressed, this resource will be skipped
due to the not_1if check, as shown in the following code snippet:

windows_zipfile node['umbraco'] ['app_root'] do

source node ['umbraco'] ['dist']

action :unzip

not if {::File.exists?(::File.join(node['umbraco']['app_root'],
"umbraco")) }
end

Configuring the application

Umbraco has some directories that the IIS user will need to have access to.
The following code block will make sure that we grant the IIS user permission
to modify the required directories:

$w{App Data Views css config media masterpages xslt usercontrols bin
umbraco scripts images macroscripts}.each do |d]

directory win friendly path(::File.join(node['umbraco'] ['app root'],
d)) do
rights [:read, :modify], 'IIS IUSRS'
end
end

Similarly, the IIS user needs to be able to update the web. config file to update
it with some settings when you run the web-based installation utility. We need
to grant the modify permission for the web. config file to the IIS user using the
following code snippet:

file win friendly path(::File.join(node['umbraco'] ['app root'], "web.
config")) do
rights :modify, 'IIS IUSRS'
end
[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning an Application Stack

Generating an IIS pool and site

Once the IIS services have been installed and the application code has been
downloaded, we need to configure an IIS pool for the application to run in,
specifying the .NET runtime version to use (4.0 in this case) as follows:

iis _pool node['umbraco'] ['pool name'] do
runtime_version "4.0"
action :add

end

Once we have the pool configured and the files deployed, instruct IIS to define a site
that uses the application pool with the path pointed to our site root on port 80. Once
it's been added, we want to start it (as indicated by providing the action attribute
with an array containing :add and :start). The path is pointed at the unzipped
Umbraco installation directory #{node ['umbraco'] ['approot '] }\\umbraco,
which will be expanded as C:\inetpub\apps\umbraco by default, as shown

in the following code snippet:

iis site 'umbraco' do
protocol :http

port 80
path node['umbraco'] ['app root']
application pool node['umbraco'] ['pool name']

action [:add, :start]
end

Performing the installation

Now that you know what the cookbook and its recipe are doing, let's go ahead and
apply the recipe to our Windows host. Here, we will install the Umbraco CMS onto
a Windows host through the following steps:

* Bootstrapping the Windows server with the Chef client

* Creating a role for the Umbraco CMS application

* Adding the umbraco recipe to the Umbraco role's run_list

* Applying the newly created role to the host

* Completing the configuration of the CMS through a web browser

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Bootstrapping the host

In the following example, we are using a Windows Server 2012 host with a fresh
installation of Windows. As usual, we will bootstrap our host using knife as follows:

knife bootstrap windows winrm HOSTIP -x Administrator -d windows-chef-
client-msi

This will execute the contents of the windows-chef-client-msi.rb bootstrapping

template on the host located at HOSTIP, installing the Chef client and registering the
host with the Chef service. Once it has completed, you will see an output similar to

the following screenshot:

WARN: Node WIN-CJIDQSDEQJFK has an empty run Llist.

INFO: Chef Run complete 1in 1.985377 seconds

INFO: Running report handlers

INFO: Report handlers complete

INFO: Sending resource update report (run-id: 2b9196968-3496-447a-a764-08aae2c7B5b9)

You can see from the preceding screenshot that the host is WIN-CIJDQ9IDEOJFK,
and it had no run lists assigned to it. This makes sense, as we have not given

it any Chef roles yet, so there is nothing to run. In order to assign a role for our
new host, we must create a role for our new CMS application; here, we will
create a role named umbraco.

Creating the role

Once the cookbook is uploaded (as performed earlier in the chapter), create a role
from the following JSON in a file, umbraco. json:

{

"name": "umbraco",
"description": "Umbraco CMS",
"json_class": "Chef::Role",

"default attributes": {

b

"override attributes": {
b

"chef type": "role",
"run list": [

"recipe [umbraco] "

] I
"env_run lists": {

}

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Provisioning an Application Stack

Create the role from the JSON file with the following knife command:

knife role from file umbraco.json

As you can see, the preceding JSON file defines a role (as specified by "chef type":
"role") which declares that the role's run_1list contains one entry, the umbraco
recipe, as shown in the following code snippet:

"run list": [
"recipe [umbraco] "

1,

Applying the role to the node

In order to apply the role to our newly bootstrapped node, we will need to get a
list of the hosts and then edit its configuration and apply the new role to the host's
configuration as follows:

1. First, get a list of nodes with knife node list as follows (in our case,
we have a list of one host, the newly created host):

knife node list

WIN-CJDQSDEOJFK

2. Edit the node configuration for the host you want to install Umbraco
on with knife node edit HOSTNAME, for example:

knife node edit WIN-CJDQ9DEOJFK

This will open the node's configuration JSON in your editor as follows
(in our case, the default configuration for the host that was just created):

{
"name": "WIN-CJDQ9DEOJFK",
"chef environment": " default",
"normal": {
"tags": [
1
b
"run list": [
1
}
[s6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Notice that the run_1ist property is currently empty (this may look a bit
different if you are using an existing host and not a newly provisioned one).
Add the umbraco role to the node's JSON under the run_1list property

as follows:

"run list": [
"role [umbraco] "

1

3. Apply the role to the desired nodes with knife using a simple search for
all hosts with the umbraco role as follows:

knife winrm 'role:umbraco' 'chef-client' -x Administrator

4. You will see the output of the Chef client pass by on the screen. Once it
has finished, and assuming that everything went well, you can visit the
newly installed Umbraco CMS by browsing to the /install URL at the
default HTTP service on your host (in this example scenario, it would be
http://WIN-CJDQIDEOJFK/install). You will be guided through the steps
required to finalize your Umbraco installation such as selecting the database,
creating an administrative user, and selecting any starter kit and themes.

Summary

At this point, you should have a fully functioning installation of Umbraco on your
Windows server without having to manually configure anything. As you can see,
you could now repeat this across one, tens, or hundreds of hosts if needed by simply
bootstrapping and configuring the roles for those hosts.

In the next chapter, let's take a look at how to automate the provisioning of hosts
when they need custom configuration during the bootstrapping phase, and how
we can use Chef to manage cloud hosts.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services
with Chef

One of the very powerful uses of Chef is leveraging it to extend your infrastructure
into the cloud as seamlessly as onsite hardware. Chef has a number of mechanisms
for integrating with popular cloud service providers. In this chapter, we find out
how to use Chef to manage and deploy our software to a variety of popular cloud
service providers.

In this chapter, we will cover the following topics:

* Microsoft Azure
* AWSEC2
* Rackspace Cloud

Working with Microsoft Azure

Azure is Microsoft's competitor to EC2 and Rackspace Cloud. Any of the three
will provide you with Windows virtualization, so included in this chapter is
the information on how to integrate Azure with Chef.

The knife-azure gem provides the functionality needed to control your
Azure account via the knife utility. Chef uses plugins to provide the extended
functionality, including managing cloud services. Support for Azure is present
in a Ruby gem named knife-azure and is installed via the gem command-line
utility as follows:

gem install knife-azure

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services with Chef

This command will install all the gems that knife-azure is dependent upon,
not just Chef alone.

As of this writing, the knife-azure gem has a dependency on an
M older version of bundler, which can cause issues and may require
Q that you manually downgrade the version of bundler that is installed.
Using RVM or another Ruby manager will help isolate these issues and
allow you to manage your gems.

Downloading the management certificate

In order to use the Azure API, you need to have a management certificate
that identifies you with the service. You can create and download a generated
management certificate from https://manage.windowsazure.com/
publishsettings/index?client=xplat.

Configuring knife for Azure

Now that you have your management certificate inside your .publishsettings file,
knife needs to know about it. This is done, as you might expect, through the knife.
rb configuration file. To let knife know where to find your newly downloaded
.publishsettings file, first move it to somewhere (such as your home directory

or $HOME/ . chef) and then add the following line to your knife.rb file:

knife[:azure publish settings file] = "/path/to/publishsettings file"

Now that knife has all the information it needs, we will be able to make API calls
to Azure.

Creating a new Azure virtual machine

In order to create a new server, you need to know what image to use; you can view
a list of available images using the image 1ist subcommand of the azure plugin
as follows:

knife azure image list

Windows-Server-2012-Essentials Windows East Asia, Southeast Asia

Ubuntu-12 04 _2-LTS-amd64-server Linux East Asia, Southeast Asia
Windows-Server-2008-R2 Windows West US, East Asia
[60]

www.it-ebooks.info

https://manage.windowsazure.com/publishsettings/index?client=xplat
https://manage.windowsazure.com/publishsettings/index?client=xplat
http://www.it-ebooks.info/

Chapter 5

As you can see, the output will list the image identifiers (shortened for print), the
platform that they provide, and the regions that they are available in. The list of
available images will be quite long and changes over time as Azure adds more base
images to its growing list; thus, this command will come in handy later on any time
you provision a new virtual machine. This list provides you with two pieces of
information that you will need in order to construct a new host: the image identifier
followed by the regions that the image is available in.

Using this information, let's take a look at the following commands to see how we
could provision a new Windows Server 2012 Datacenter edition host with 127 GB
of storage in the Western US datacenter with a DNS name of 00c0££3300:

knife azure server create --azure-dns-name "00cO££3300" \
--azure-service-location "West US" \

--azure-source-image a699494373¢c04£fc0bc8£f2bb1389d6106_Windows-
Server-2012-Datacenter-201401.0l-en.us-127GB.vhd \

--winrm-user 'azure' --winrm-password '+0ps3kr3+' \

--distro 'windows-chef-client-msi'

After issuing this command, you will see the status of the host provisioning as it
progresses. Chef will wait until the virtual machine has been provisioned and is

marked as ready. During this phase, you can see the status and how long it takes
for Azure to reach that state using the following command:

Waiting for virtual machine to reach status 'provisioning'...... vmm state
'provisioning' reached after 2.67 minutes

Once the host is in the ready state, Chef will be able to tell you a little more about
the host, including the IP addresses and WinRM port. You should expect an output
similar to the following command:

DNS Name: 0c0£f£f330.cloudapp.net
VM Name: 0cO0f£330
Size: Small

Azure Source Image: a699494373c04£fc0bc8£f2bb1389d6106 Windows-Server-
2012-Datacenter-201401.01-en.us-127GB.vhd

Azure Service Location: West US
Public Ip Address: 138.91.227.224
Private Ip Address: 100.82.76.57
WinRM Port: 5985

Environment: default

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services with Chef

The provisioning process may take a while, depending on the location and

base image that you selected. During the provisioning process, it will create the
WinRM user specified on the command line, azure in this case, with the specified
password. However, WinRM's basic authentication will not be turned on by default;
authentication via Kerberos will be enabled by default, but Kerberos support is
outside the scope of this book. As a result, you will encounter errors here about
being unable to bootstrap the host, which we will fix by enabling WinRM's basic
HTTP authentication mechanism in the next set of steps.

Bootstrapping your Azure node

Your initial virtual machine (VM) will need to have basic authentication enabled for
WinRM; once this is done, you can save your newly created image as a reusable Azure
image with your administrative credentials and WinRM basic authentication enabled.

To turn on WinRM support for basic authentication, you will need to perform the
following steps:

1. Enable RDP on your Azure instance.

2. Use Remote Desktop to connect to your new virtual machine and log in with
the credentials specified during the provisioning phase (here, the account
was azure and the password was +0ps3kr3+).

3. Allow WinRM to accept basic HTTP authentication by opening the Windows
command prompt and running the following command:

winrm set winrm/config/client/auth @{Basic="true"}

At this point, you can return to your workstation and bootstrap your new host with
the knife bootstrap command as follows:
knife bootstrap windows winrm 00c0£f£3300.cloudapp.net \

--winrm-user azure \

--winrm-transport ssl

The preceding command will prompt you for your administrator password. After
entering the correct credentials, you can proceed to bootstrap the Chef client on your
new Azure host and register it with your Chef server. Once it has completed, you can
verify that it was properly registered with the node 1list command as follows:

$ knife node list
00cO0££3300
i-49117415

Notice that among our registered nodes, our new virtual machine is now displayed.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Creating a reusable image

In order to create a reusable image from your newly created cloud server,
use the following instructions:

1.
2.
3.

O X N U

11.

12.

Connect to the virtual machine via RDP.
Open the Command Prompt window as an administrative user.

Change the directory to windows\system32\sysprep and then
run sysprep.

In System Cleanup Action, click on Enter System Out-of-Box Experience
(OOBE) and make sure that Generalize is checked.

In Shutdown Options, select Shutdown.

Clicking on OK will prepare the host and shut down the virtual machine.
Go to the Azure management portal and click on Virtual Machines.
Select the virtual machine you want to capture.

On the command bar at the bottom of the page, click on Capture.

. Type a name for the new image in the dialog box that is provided;

as an example, we will call it windows2012winrm.

Click on the check mark to capture the image.

When you capture an image of a virtual machine, the original
machine is deleted.

The new image is now available on the web control panel (under Images),
or can be found via the knife azure image list command.

Now that you have saved the image, you can use it to generate new hosts that will be
preconfigured with WinRM's basic authentication enabled. If you run the command
after the imaging is complete, you will see something similar to the following output:

$ knife azure image list |grep winrm

windows201l2winrm Windows West US

Here, we have filtered out only images with the word winrm in them, showing us
only our newly created image, windows2012winrm. You will also want to notice
that images are locked to the region you created them in.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services with Chef

You can use this at a later time to provision a host using the - -azure-source-image
value of the image name, which is windows2012winrm in our example:

knife azure server create --azure-dns-name "OcOf£f330" \
--azure-service-location "West US" \
--azure-source-image windows20l2winrm \
--winrm-user 'azure' --winrm-password '+0ps3kr3+' \

--distro 'windows-chef-client-msi'

Check whether it has been created in Azure with knife azure server list as
shown in the following code:

knife azure server list
DNS Name VM Name Status IP Address SSH Port WinRM Port
0c0ff330.cloudapp.net 0c0f£f330 ready 138.91.227.224 5985

As you can see, once you have a base image with the features you need, you can use
this to quickly provision new hosts for your infrastructure in a consistent manner.

Managing Amazon EC2 instances

Amazon EC2 is a very popular cloud-computing platform, and knife has support
for managing EC2 instances from the command line through the knife-ec2 plugin.
In this section, we will demonstrate the following steps for working with EC2:

* Installing the EC2 knife plugin

* Configuring knife with your AWS credentials

* Finding the desired Amazon Machine Image (AMI), a pre-built
system image

* Provisioning a new host with knife
* Bootstrapping the newly created host

* Configuring the new host with a role

Installing the EC2 knife plugin

As of Chef 0.10, the ec2 subcommands have been moved from being built-in to
knife into an external gem, knife-ec2. In order to use EC2 commands, you will
need to install the gem, which can be done with the help of the following command:

gem install knife-ec2

This will install all of the gem dependencies that the EC2 plugin requires.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Setting up EC2 authentication

In order to manage your EC2 hosts, you will need your SSH key pair and your
AWS access keys set in your knife configuration file. Download your SSH key
pair somewhere on your host ($HOME/ . ssh on UNIX-like systems) and add the
following commands to your knife.rb configuration file:

knife[:aws access key id] = "YOUR ACCESS KEY"

knife[:aws secret access key] = "SECRET KEY"

These tell knife which AWS credentials to use when making API calls to perform
actions such as provision new hosts and terminate instances. Without this, knife
will be unable to make API calls to EC2. With these required changes made, let's
look at how to create a new EC2 instance with knife.

Provisioning an EC2 instance

Initially, we will look at provisioning an instance using one of the Windows 2012
Server AMlIs. With knife, we specify the AMI to use, which availability zone to target,
and what size instance to create. For example, to create m1.large in the us-east-1e
availability zone with Windows Server 2012, we would need to use the AMI with
ami-2a80bdé6f as its identifier. The AMI ID can be found through the AWS EC2
dashboard or a variety of other websites that vend this information. Remember when
deciding which AMI to use that some of the EC2 instances are 32-bit and some are
64-bit; choose the appropriate AMI based on the instance type, region, and storage
method you want to use.

The act of provisioning a new host can be achieved simply by providing knife
with the AMI, region, flavor, and SSH keys, as shown in the following command:
[user]% knife ec2 server create -I ami-2a80bd6f \

-f ml.large -Z us-west-la \

-S jewartec2

When you run this command, knife will interactively show you the progress of
provisioning a new host. The following is an example of what you can expect to
see during this process:

Instance ID: i-3c5385d60

Flavor: ml.large

Image: ami-2a80bdé6f

Region: us-west-1

Availability Zone: us-west-1la

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services with Chef

Security Groups: default
Tags: Name: i1-3c5385d60
SSH Key: jewartec2

Waiting for instance.......iiiieieeeecnnn

Public DNS Name: ec2-54-219-245-213.us-west-1l.compute.amazonaws.com
Public IP Address: 54.219.245.213

Private DNS Name: ip-10-168-109-170.us-west-1l.compute.internal
Private IP Address: 10.168.109.170

Waiting for winrm.........

If you were to execute this, you would find that it would sit at this point and
eventually timeout trying to connect to the new EC2 instance using WinRM.
Unfortunately, as with Azure instances, WinRM does not allow HTTP basic
authentication by default, making it a bit tricky to bootstrap the host. However,
unlike Azure, EC2 allows you to provision a system and provide an initial script
that is executed during the setup of the system. We can leverage this to enable
the features we need in Windows during the provisioning step so that Chef

can bootstrap the host, and it can be managed as a one-step process.

Executing custom user scripts in EC2

Provisioning an EC2 instance with a custom initialization script using knife is a
two-step process. The first thing to be done is to create the script as a text file on
your workstation containing the instructions to execute. Once you have that, you
can provide the script to your newly created EC2 instance by using a command-line
argument when provisioning a host with knife.

Writing the user script

The script we will be writing for our EC2 instance will be responsible for performing
the following actions:
* Turn on basic HTTP authentication for WinRM

* Enable WinRM over plaintext (you will likely want to adjust this in a
production environment)

* Increase the maximum memory per shell instance

¢ Increase the WinRM timeout to 30 minutes

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

* Add firewall rules to the host to enable WinRM on port 5985 and 5986

* Restart WinRM to ensure that it picks up the changes and is set to start
on boot

In the following code, we designate that we are running a powershell script
and provide the contents inside of a <powershells. . .</powershell> block:

<powershell>

winrm quickconfig -g

winrm set winrm/config/winrs '@{MaxMemoryPerShellMB="300"}"'
winrm set winrm/config '@{MaxTimeoutms="1800000"}"

winrm set winrm/config/service '@{AllowUnencrypted="true"}'

winrm set winrm/config/service/auth '@{Basic="true"}'

netsh advfirewall firewall add rule name="WinRM 5985" protocol=TCP dir=in
localport=5985 action=allow

netsh advfirewall firewall add rule name="WinRM 5986" protocol=TCP dir=in
localport=5986 action=allow

net stop winrm
sc config winrm start=auto
net start winrm

</powershell>

Providing a custom user script

Now that we have a custom user script, knife can be informed to load the script
using the - -user-data command-line option. In order to acquire the randomly
generated administrator password on EC2, we also need to pass the --identity-
file option, pointing knife to the downloaded copy of your SSH key pair (in this
case, SHOME/ . ssh/jewartec2.pem):

$ knife ec2 server create -I ami-5eccf3lb -f ml.large \
-Z us-west-la -S jewartec2 \
--user-data ec2userdata.txt \

--identity-file $HOME/.ssh/jewartec2.pem

o Make certain that your default security group allows for connections
~ to WinRM (ports 5985 and 5986 for non-SSL and SSL respectively) or
Q that you specify a security group that does. You will not be able to
bootstrap the newly provisioned host without access to these ports.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services with Chef

Now, this time you will see that the instance is provisioned and bootstrapped;
our custom script has enabled knife to connect via WinRM and install the Chef
client onto the host. However, here you will see something different; WinRM

will be preconfigured and working, so the bootstrapping will succeed during the
provisioning stage. You will see that the bootstrap script is rendered and executed
on the new virtual machine. A shortened example of the output is as follows:

Waiting for winrm...... done

Waiting for Windows Admin password to be available...
Bootstrapping Chef on ec2-54-193-161-138.us-west-1.compute.amazonaws.com

Rendering "C:\Users\ADMINI~1l\AppData\Local\Temp\bootstrap-293489-123904.
bat chunk 1

Rendering "C:\Users\ADMINI~1l\AppData\Local\Temp\bootstrap-293489-123904.
bat chunk 2

Starting chef to bootstrap the node...

C:\Users\Administrator>chef-client -c c:/chef/client.rb -j c:/chef/first-
boot.json -E _default

[2014-03-19T08:11:30+00:00] INFO: *** Chef 11.10.4 ***
[2014-03-19T08:11:30+00:00] INFO: Chef-client pid: 8754

Once bootstrapping is complete, you will be presented with the instance details a
second time, including some more information such as the type, ID, and local device
name of the EC2 instance's root volume (whether it is using EBS or instance storage).

. Occasionally, EC2 instances don't properly configure the
< administrator password. If this happens, the bootstrap step will fail
Q to authenticate after WinRM is available; try discarding the instance
and provisioning a new one.

Once the host is provisioned and the bootstrap step is finished, assuming that there
are no errors, you can verify that your newly provisioned host is listed in your Chef
service as follows:

$ knife node list
0c0££3300
i-49117415

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The output will contain your newly bootstrapped node ID as specified by you on the
command line, or the default EC2 instance name if you did not specify a node name.
You will also see the Azure instance name if you provisioned an Azure instance in the
previous section. Congratulations, you have now provisioned a new Windows Server
EC2 instance and registered it with your Chef service with only two commands!

Terminating an EC2 instance

Once you are done with testing, you may not want to leave the EC2 instance
running, as it will incur costs while idle. To do this, perform the following steps:

1. List your EC2 instances.

2. Delete the server from EC2.

3. Remove the server from Chef.
4

Verify that the instance no longer exists in Chef or EC2.

To list our EC2 instances, use the server list subcommand of the ec2 command,
which will list all of the EC2 instances in the specified region. If you do not specify
aregion, us-east-1 is the default region. As an example, executing this command
after provisioning the first host will show a list of one instance. The output is too wide
for printing, but you will also see in the list information such as the security groups,
SSH key, AMI used, IAM profile, and current state of the virtual host as follows:

$ knife ec2 server list

Instance ID Name Public IP Private IP Flavor

i-49117415 i-49117415 54.219.201.136 10.168.93.149 ml.large

Deleting an instance is just as easy as creating or listing them. Here, the server
delete subcommand is invoked with the instance identifier to be terminated.
This will use the EC2 API to issue a terminate command — this is not reversible
and so the command will prompt you to ensure whether you really do want

to delete the instance:

$ knife ec2 server delete i-49117415
Instance ID: 1-49117415

Flavor: ml.large

Image: ami-5eccf3lb

Region: us-west-1

Availability Zone: us-west-1la

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services with Chef

Security Groups: default

SSH Key: jewartec2

Root Device Type: ebs

Public DNS Name: ec2-54-219-201-136.us-west-1l.compute.amazonaws.com
Public IP Address: 54.219.201.136

Private DNS Name: ip-10-168-93-149.us-west-l.compute.internal
Private IP Address: 10.168.93.149

Do you really want to delete this server? (Y/N) y
WARNING: Deleted server 1-49117415
WARNING: Corresponding node and client for the i-49117415 server were not

deleted and remain registered with the Chef server

This command is deliberately verbose. The last thing you want to do is destroy a
critical running instance because you made a typo. Make sure to double-check the
attributes to ensure that the node being terminated is the one you expect.

Removing the Chef node

At this point, the EC2 instance is being terminated and removed from your account.
However, it is not removed from the Chef service, which needs to be done separately
with the node delete command. In the following code, the Chef node name is
specified, not the instance identifier:

$ knife node delete 1-49117415
Do you really want to delete 1-49117415? (Y/N) y
Deleted node[i-49117415]

Verify that the node was removed from Chef with node 1list as follows:

$ knife node list
00c0££3300

The output should show you that your EC2 instance is no longer registered with Chef.

Interacting with Rackspace Cloud

Rackspace Cloud is another popular cloud computing provider that is well supported
by Chef. Similar to EC2, there is a knife plugin for Rackspace Cloud as follows:

gem install knife-rackspace

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the same way that AWS requires a set of credentials to interact with the API for
creating and terminating instances, Rackspace Cloud has its own configuration.
However, the Rackspace Cloud APl is a little simpler; you will need to provide
knife with your Rackspace Cloud username and API key. For those who do not
already know their API key, it can be found in your Rackspace Cloud control panel.
The appropriate configuration to add to your knife.rb file is as follows:

knife[:rackspace_api username] = "Your Rackspace API username"
knife[:rackspace api key] = "Your Rackspace API Key"

This data can be hardcoded into your configuration file; since the knife configuration
file is just Ruby, the data could be generated by evaluating environment variables or
by looking at a local file. This is useful if you are submitting your knife.rb file into a
source repository so that credentials are not leaked.

Provisioning a Rackspace instance

Rackspace Cloud server provisioning is just as straightforward as it is with EC2.
There is some variation in the command-line options passed to knife because of the
way Rackspace provides images for systems. Instead of using the instance size and
an AMYI, you specify the flavor of the system to provision (the node's CPU, memory,
and disk allocation) and the operating system to image the instance with. In order
to determine what flavors are available, the knife rackspace plugin provides the
rackspace flavor list subcommand as follows:

$ knife rackspace flavor list --rackspace-region=IAD

Because it is possible that there are different capacities in different regions, it is

a good idea to check what is available in the region you want to provision a node.
This will result in a list of flavors and their specifications; as of now, some of the
current offerings in IAD are as follows:

$ knife rackspace flavor list --rackspace-region=IAD
ID Name VCPUs RAM Disk

2 512MB Standard Instance 1 512 20 GB

3 1GB Standard Instance 1 1024 40 GB

4 2GB Standard Instance 2 2048 80 GB

5 4GB Standard Instance 2 4096 160 GB

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services with Chef

In addition to knowing what flavor host to use, you need an image identifier (similar
to an AMI identifier) to install onto the new host. Again, this list may vary with

the region and change over time, so there is a command to list the various images,
rackspace image list, which is given as follows:

$ knife rackspace image list --rackspace-region=IAD | grep -i windows
db7692f7-3cfa-4a9f-a072-99b21bd126da Windows Server 2008 R2 SP1

a2139adc-df9b-98dc-aall0-5dcdff8a982b Windows Server 2012 + SQL Server
7el06eaa-c863-49cb-bf5a-0cb7c7fc9bal Windows Server 2012 + SharePoint

As you can see, there are a number of Windows distributions available to configure.
In order to provision a new host, you will use the server create command, similar
to the EC2 command. The following knife command would provision a 1 GB host
running Windows Server 2012 in the IAD datacenter:

$ knife rackspace server create \
-I db7692f7-3cfa-4a9f-a072-99b21bdl26da \
--flavor 3 --rackspace-region=IAD \

--server-create-timeout 1800

Injecting configuration into the virtual machine

Similar to EC2, we need to inject some commands when the host is provisioned
to open up the firewall and perform a few other tasks. Save the following to a file,
bootstrap.cmd:

net start w32time

w32tm /config /manualpeerlist:"0.pool.ntp.org 1l.pool.ntp.org 2.pool.
ntp.org 3.pool.ntp.org" /syncfromflags:manual /reliable:yes /update
w32tm /resync

netsh advfirewall firewall set rule group="remote administration" new
enable=yes

netsh advfirewall firewall add rule name="WinRM Port" dir=in
action=allow protocol=TCP localport=5985

This script will start the time service, sync the clock, and open the firewall on port
5985 to allow WinRM to connect. Once we have created this file, we need to inject it
into the Rackspace virtual machine as a special file named C:\cloud-automation\
bootstrap.cmd when it gets provisioned, and tell knife to use WinRM instead of
SSH to bootstrap the host:

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

$ knife rackspace server create \
-I db7692f7-3cfa-4a9f-a072-99b21bdl26da \
--flavor 3 --rackspace-region=IAD \
--server-create-timeout 1800 \
--file "C:\\cloud-automation\\bootstrap.cmd=bootstrap.cmd" \
--bootstrap-protocol winrm \

-x Administrator

As soon as the API responds to the request to provision a new host, you will see the
Rackspace metadata for the host such as the instance ID, name, flavor, and image.
After that, you will see a series of dots printed to the terminal while Rackspace
Cloud spins up the new instance. It is worth noting that this can take around 20 to 30
minutes depending on the image, instance size, and so on. As a result, it may make
sense to alter the value of the - -server-create-timeout argument. After it has
completed, you will see an output similar to the following commands:

Instance ID: alad2318-28c4-47b7-a353-b6a%%a7cc574
Name: rs-5889646228538071

Flavor: 1GB Standard Instance

Image: Windows Server 2012

Metadata: []

RackConnect Wait: no

ServiceLevel Wait: no

Public DNS Name: mail.drizzlelabs.com

Public IP Address: 162.209.101.233

Private IP Address: 10.176.13.30

Waiting for winrm....

Bootstrapping Chef on 162.209.101.233

Once the bootstrap step is complete, assuming that there are no errors, you will see
that the Chef client has run, similar to previous executions, and you will be provided
with the image data all over again. There will be only one slight difference; that is,
the administrator password will be provided to you in the output as follows:

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services with Chef

Public IP Address: 162.209.101.233
Private IP Address: 10.176.13.30
Password: Pl23atLaMNbd

Environment: default

You can now verify that your newly provisioned host is listed in your Chef service
with knife node list:

$ knife node list
0c0££3300
rs-5889646228538071

The output will contain your newly bootstrapped node ID as specified by you on the
command line (via -N) or the name generated by Rackspace (in this example, it will
be rs-5889646228538071). Congratulations, you have provisioned a new Rackspace
instance with a single command!

Terminating the instance

Once you are done with testing, you may not want to leave the Rackspace instance
running, as it will incur costs while idle. To do this, perform the following steps:

1. List your Rackspace servers.

2. Delete the server from Rackspace.

3. Remove the server from Chef.

4. Verify that the instance no longer exists in Chef or Rackspace.
To list your Rackspace instances, use the server list subcommand of the
rackspace command, which will list all of the Rackspace instances in the specified

region. Similar to the output from the EC2 server 1list command, the rackspace
server list output will look like the following commands:

$ knife rackspace server list --rackspace-region=IAD
Instance ID Name Public IP Private IP Flavor

alad2318-28c4 rs-5889646228538071 162.209.10 10.176.13.30 3

As with the other server list output, this is too wide for printing, but you will see the
image ID and the state of the servers in the results. Here, our newly created virtual
host should be in the active state.

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Deleting the instance is just a single command — the rackspace server delete
subcommand is invoked with the Rackspace instance identifier to be terminated.
Remember that this is not reversible and so the command will prompt you to
ensure whether you really do want to delete the instance:

$ knife rackspace server delete alad2318-28c4-47b7-a353-b6a%99%a7cc574
Instance ID: alad2318-28c4-47b7-a353-b6a9%%a7cc574

Name: rs-5889646228538071

Flavor: 1GB Standard Instance

Image: Windows Server 2012

Public IP Address: 162.209.101.233

Private IP Address: 10.176.13.30

Do you really want to delete this server? (Y/N) y
WARNING: Deleted server alad2318-28c4-47b7-a353-b6a99%9a7cc574

WARNING: Corresponding node and client for the alad2318-28c4-47b7-a353-
b6a99a7cc574 server were not deleted and remain registered with the Chef
server

Removing the Chef node

At this point, the Rackspace instance is being terminated and removed from your
account. However, it is not removed from the Chef service; that needs to be done
separately with the node delete command. In the following code, the Chef node
name is specified, not the instance identifier:

$ knife node delete rs-5889646228538071

Verify that the node was removed from Chef with knife node list using the
following command:

$ knife node list

0c0££3300

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Cloud Services with Chef

Summary

As you have seen, Chef has powerful support for managing cloud servers from the
command line. You can combine cloud hosts with physical infrastructure to make
your systems scalable and elastic with Chef in ways that may not have been possible
before. These are just three of the most popular cloud services on the market today;
Chef has a growing level of support for a variety of other infrastructure providers

as well, and this list will grow as time passes.

Now that you have learned how to write recipes and expand your infrastructure
using popular cloud services, let's take a look at some advanced topics including
testing recipes and multiplatform support in Chef in the next chapter.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Going Beyond the Basics

Now that you have seen how you can integrate Chef into your Windows
environment, let's take a look at some advanced topics, which are as follows:

* Managing heterogeneous networks
* Handling multiple platforms
* Versioning and source control

* Testing recipes for a variety of platforms using Chefspec

Chef's declarative language

Chef recipes are declarative, which means that it provides a high-level language for
describing what to do to accomplish the task at hand without requiring that you
provide a specific implementation or procedure. This means that you can focus on
building recipes and modeling infrastructure using abstract resources so that it is
clear what is happening without having to know how it is happening. Take, as an
example, a portion of the recipes we looked at earlier for deploying an IIS application
that is responsible for installing some Windows features:

features = $w{IIS-ISAPIFilter IIS-ISAPIExtensions
NetFx3ServerFeatures NetFx4Extended-ASPNET45
IIS-NetFxExtensibility45}

features.each do |f|
windows feature f do
action :install
end
end

Because of Chef's declarative language, the preceding section of code reads in a
natural way. We have a list of features. For each of those features, which we know
to be Windows features, install them.

www.it-ebooks.info

http://www.it-ebooks.info/

Going Beyond the Basics

Because of this high-level abstraction, your recipe can describe what is going on
without containing all of the logic necessary to do the actual work. If you were
to look into the windows cookbook, you would see that there are a number of
implementations using DISM, PowerShell, and ServerManagerCmd. Rather than
worrying about that in the recipe itself, the logic is deferred to the provider that
is selected for the given resource. The feature resource knows that if a host has
DISM, it will use the DISM provider; otherwise, it will look for the existence of
servermanagercmd.exe and, if it is present, use that as the installation provider.
This makes recipes more expressive and much less cluttered.

If Chef did not provide this high-level abstraction, your recipe would look more
like the following code snippet:

features = $w{IIS-ISAPIFilter IIS-ISAPIExtensions
NetFx3ServerFeatures NetFx4Extended-ASPNET45
IIS-NetFxExtensibility45}

features.each do |f|
if ::File.exists? (locate cmd('dism.exe'))
install via dism(f)
elsif ::File.exists?(locate cmd('servermanagercmd.exe'))
install via servermgrcmd (f)
else
fail
end
end

def install via dism(feature name)
some code here to execute DISM
end

def install via servermgrcmd (feature name)
some code here to execute servermgrcmd.exe
end

This, while understandable, significantly increases the overall complexity of your
recipes and reduces readability. Now, rather than simply focusing on installing the
features, the recipe contains a lot of logic about how to perform the installation. Now,
imagine writing a recipe that needs to create files and set ownership on those files and
be usable across multiple platforms. Without abstractions, the recipe would contain
implementation details of how to determine if a platform is Windows or Linux, how to
determine user or group IDs from a string representation, what file permissions look
like on different platforms, and so on. However, with the level of abstraction that Chef
provides, that recipe would look like the following code snippet:

file names = %w{hello.txt goodbye.txt README.md myfile.txt}

file names.each do |file name|

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

file file name
action :create
owner "someuser"
mode 0660
end
end

Behind the scenes, when the recipe is executed, the underlying providers know
how to convert these declarations into system-level commands. Let's take a look at
how we could build a single recipe that is capable of installing something on both
Windows and Linux.

Handling multiple platforms

One of Chef's strengths is the ability to integrate Windows hosts with non-Windows
hosts. It is important to not only develop recipes and cookbooks that are capable

of supporting both Linux and Windows hosts, but also to be able to thoroughly

test them before rolling them out into your infrastructure. Let's take a look at how
you can support multiple platforms in your recipes as well as use a popular testing
framework, chefSpec, to write tests to test your recipes and validate platform-
specific behaviors.

Declaring support in your cookbook

All Chef cookbooks have a metadata. rb file; this file outlines dependencies,
ownership, version data, and compatibility. Compatibility in a homogeneous
environment is a less important property —all the hosts run the same operating
system. When you are modeling a heterogeneous environment, the ability to describe
compatibility is more important; without it, you might try to apply a Windows-only
recipe to a Linux host or the other way around. In order to indicate the platforms
that are supported by your cookbook, you will want to add one or more supports
stanzas to the metadata. rb file. For example, a cookbook that supports Debian and
Windows would have two supports statements as follows:

supports "windows"
supports "debian"

However, if you were to support a lot of different platforms, you can always script
your configuration. For example, you could use something similar to the following
code snippet:

$w (windows debian ubuntu redhat fedora).each |os|
supports os
end

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Going Beyond the Basics

Multiplatform recipes

In the following code example, we will look at how we could install Apache, a popular
web server, on both a Windows and a Debian system inside of a single recipe:

if platform family? 'debian'
package 'apache2!'
elsif platform family? 'windows'
windows package node['apache'] ['windows'] ['service name'] do
source node['apache'] ['windows'] ['msi url"']
installer type :msi
The last four options keep the service from failing
before the httpd.conf file is created
options $WI[

/quiet
INSTALLDIR="#{node['apache'] ['install dir']}"
ALLUSERS=1
SERVERADMIN=#{node ['apache'] ['serveradmin'] }

SERVERDOMAIN=#{node['fgdn']}
SERVERNAME=#{node ['fqgdn']}
].join(" ')
end
end

template node['apache'] ['config file'] do
source "httpd.conf.erb"
action :create
notifies :restart, "service[apache2]™"
end

The apache service
service "apache2" do
if platform family? 'windows'

service name "Apache#{node['apache'] ['version']}"
end
action [:enable, :start]
end

In this example, we perform a very basic installation of the Apache 2.x service on the
host. There are no modules enabled, no virtual hosts, or anything else. However, it
does allow us to define a recipe that will install Apache, generate an httpd. conf file,
and then enable and start the Apache 2 service. You will notice that there is a little bit
of platform-specific configuration going on here, first with how to install the package
and second with how to enable the service.

Because the package resource does not support Windows, the installation of the
package on Windows will use the windows_package resource and the package
resource on a Debian host.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

To make this work, we will need some configuration data to apply during installation;
skimming over the recipe, we find that we would need a configuration hash similar to
the following code snippet:

'config': {
'apache': {
'version': '2.2.48"',
'config file': '/opt/apache2/conf/httpd.conf’,
'install dir': '/opt/apache2',
'serveradmin': 'admin@domain.com',
'windows':
'service name': 'Apache 2.x',
'msi url': 'http://some.url/apache2.msi’

}
}
}

This recipe allows our configuration to remain consistent across all nodes; we don't
need to override any configuration values to make this work on a Linux or Windows
host. You may be saying to yourself "but, /opt/apache2 won't work on Windows".
It will, but it is interpreted as \opt\apache2 on the same drive as the Chef client's
current working directory; thus, if you ran Chef from c:, it would become
c:\opt\apache2. By making our configuration consistent, we do not need

to construct any special roles to store our Windows configuration separate

from our Linux configuration.

If you do not like installing Apache in the same directory on both Linux and Windows
hosts, you could easily modify the recipe to have some conditional logic as follows:

apache config file = if platform family? 'windows'
node ['apache'] ['windows'] ['config file']

else
node ['apache'] ['linux'] ['config file']

end

template apache config file do

source "httpd.conf.erb"

action :create

notifies :restart, "service[apache2]™"
end

Here, the recipe is made slightly more complicated in order to accommodate
the two platforms, but at the benefit of one consistent cross-platform
configuration specification.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Going Beyond the Basics

Alternatively, you could use the recipe as it is defined and create two roles, one
for Windows Apache servers and the other for Linux Apache servers, each with
their own configuration. An apache_windows role may have the following
override configuration:

'config': {

'apache': {
'config file': "C:\\Apps\\Apache2\\Config\\httpd.conf",
'install dir': "C:\\Apps\\Apache2"

}
}

In contrast, an apache_1linux role might have a configuration that looks like the
following code snippet:

'config': {

'apache': {
'config file': "/usr/local/apache2/conf/httpd.conf",
'install dir': "/usr/local/apache2"

}
}

The impact of this approach is that now you have to maintain separate platform-
specific roles. When a host is provisioned or being configured (either through the
control panel or via knife), you need to remember that it is a Windows host and
therefore has a specific Chef role associated with it. This leads to potential mistakes
in host configuration as a result of increased complexity.

Reducing complexity

Some of the key goals of using a tool such as Chef are as follows:

* Minimizing complexity of your configuration
* Increasing automation

* Guaranteeing repeatability

To achieve these goals, it is important to make sure that you do not introduce
needless complexity. While Chef provides you with the mechanism to create an
incredibly complex set of configurations by using its multilevel configuration
overlays, that will likely end in trouble. As a popular quote that is attributed to
Eric Allman goes:

"Unix gives you just enough rope to hang yourself -- and then a couple more feet,
just to be sure."

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The same can be said for any complicated system around, be it a software package,
a tool, or your infrastructure configuration. It is important to see where you can
simplify your components so that they are easily understood not only now, but in
the future by other engineers and possibly even yourself at 3 A.M. when you are
trying desperately to fix something.

Where possible, it is a good idea to keep your configuration consistent and rely
on your recipes to make the distinction in how the application gets configured.
Remember that keeping a mental model of disparate pieces of configuration is
quite often more complicated than reading code.

Versioning and source control

Chef's job is to store cookbooks and configuration data, and then give the correct
combination to hosts that it knows about. Cookbooks maintain their own notion of
a version as well as their dependencies' versions. For this reason, it is important to
treat them as artifacts of a source-controlled project and version them appropriately
the same way you might version any other software library. Maintaining a
predictable versioning scheme helps to ensure compatibility with other cookbooks
and reduce conflict and errors when adding new features or refactoring code.

As with any other software project, cookbook versions are typically denoted in

the form of MAJOR . MINOR . PATCH. Major version number changes indicate that the
public API is not backwards compatible. For example, deprecation or removal

of public functionality or inconsistent behavior of public APIs would be good
reasons to make a major version update. In contrast, minor version numbers are
incremented when new features are added but existing public APIs are backwards
compatible. Implementing a new method or adding support for a different service
manager would be good reasons for increasing the minor version. Patch levels that
are incremented as bugs are fixed, so these should be very minor changes to public
APIs, if any. For some more information on good versioning practices, take a look at
http://semver.org.

Additionally, you will likely find that you are downloading cookbooks from public
repositories. It would probably make sense to commit these to an internal repository,
public or private, so that if you make your own changes or the public repository goes
away, you have a version of your cookbook's code available to you.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Going Beyond the Basics

Some organizations keep all of their cookbooks inside of one repository; some keep
multiple repositories, one for each cookbook. Regardless of what version control
system and repository strategy you choose, keeping your cookbooks in a source
control system is a critical part of ensuring consistent deployment of recipes. It is
very easy to make changes locally, issue a knife cookbook upload command,
and then forget to commit your changes only to have them wiped out by someone
else at a later date. Additionally, make sure that you increment version numbers

as you modify your cookbooks, even if they are only for internal use, to clearly
identify changes in cookbooks.

If you plan to release your recipes to the public, you will likely take a one-cookbook-
per-repository approach that makes the cookbook a complete and standalone entity.
Also, it is a good idea to make sure that you include some sort of license information
(often in the form of a LICENSE file) and some sort of README file to go along with

it that contains useful information about the cookbook, example usage, how to
contribute, and so on.

Testing recipes

There are a number of ways to test your recipes; the simplest of which is to install
them onto your Chef server and run them against a test host. This is a viable
approach as long as your client runs do not take exceedingly long times to complete.
However, there are, perhaps unsurprisingly, better options out there. One of those
options is to use a library called Chefspec, which provides functionalities similar to
RSpec for testing your cookbooks.

RSpec and ChefSpec

For those who have not used rRspec, it is a framework for testing Ruby code that
allows you to use a domain-specific language to provide tests. This is similar in
concept to Chef's domain-specific language for managing infrastructure. RSpec and
ChefSpec provide a number of language primitives for expressing execution of code,
expectations, and mocking of external components.

Testing basics

If you are new to testing software, and in particular testing Ruby code, this is a brief
introduction to some of the concepts that we will be covering. Testing can happen at
many different levels of the software lifecycle as follows:

* Single-module level (called unit tests)
* Multimodule level (known as functional tests)
* System-level testing (also referred to as integration testing)

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In the test-driven-development (TDD) philosophy, tests are written and executed
early and often, even before code is written. This guarantees that, assuming your
tests are accurate, your code conforms to your expectations from the beginning and
does not regress to a previous state of nonconformity. This section will not delve
deep into the TDD philosophy and continuous testing, but rather provide you with
enough knowledge to begin testing the recipes that you write and feel confident that
they will do the correct thing when deployed into your production environment.

RSpec

As mentioned earlier, RSpec is designed to provide a more expressive testing
language. What this means is that the methods and primitives provided intentionally
work together to build a higher-level language that feels more like a natural language
such as English. For example, using RSpec, one could write the following code:

factorial (4) .should eq 24

This, if you read it, feels like "The factorial of four should equal 24". This is the goal
of RSpec's DSL, to feel natural as you read your tests. Compare this to a similar
JUnit test (for Java) as follows:

assertEquals (24, factorial (4));

While this is readable by most programmers, it does not feel as natural. In addition
to this, RSpec's DSL has contexts and activity blocks that make tests easier to read.
For example, we can use RSpec as follows:

describe Array do
it "should be empty when created" do
Array.new.should == []
end
end
Again, compared to a similar NUnit (.NET example) :
namespace MyTest
using System.Collection
using NUnit.Framework;
[TestFixture]
public class ArrayTest
[Test]
public void NewArray() {
ArrayList list = new ArrayList();
Assert.AreEqual (0, list.size());

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Going Beyond the Basics

Clearly, the rspec test is much more concise and easier to read, which is the goal

of Rspec. The Chefspec test brings the expressiveness of Rspec to Chef cookbooks
and recipes by providing Chef-specific primitives and mechanisms on top of RSpec's
simple testing language.

ChefSpec

ChefsSpec, for those who have not used it, is a fantastic addition to any Chef
developer's collection of tools. It is easy to use and provides a convenient way
to add tests to your cookbooks and recipes.

Getting started with ChefSpec

In order to get started with chefspec, you will need to install a gem that contains the
ChefsSpec libraries and all the supporting components. Not surprisingly, that gem is
named chefspec, and can be installed simply by running the following command:

gem install chefspec

However, as there are a number of other dependencies being installed, here is a
Gemfile being used to lock the gems to the versions used when writing these examples:

source 'https://rubygems.org'

gem 'chef', '11.10.0"
gem 'chefspec', '3.2.0"
gem 'colorize', '0.6.0"

In order to use a Gemfile, you will need to have bundler installed; if you are using
RVM, bundler should be installed with every gem set you create. If you are not, you
will need to install it on your own by typing the following line of code:

gem install bundler

Once bundler is installed, and a Gemfile containing the preceding code lines
is placed in the root directory of your cookbook, you can execute the following
command from inside your cookbook's directory:

bundle install

Bundler will parse the Gemfile in order to download and install chefspec, chef,
and colorize, along with any dependencies you do not already have. Once these are
installed, you will want to create a spec directory inside of your cookbook and create
adefault spec.rb file. The name of the spec file should match the name of the
recipe files, so if you have a recipe file named default.rb (which most cookbooks
will), you would name your spec file default_spec.rb. Let's take a look at a very
simple recipe and matching Chefspec test.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The recipe, as defined here, will simply create a file at /tmp/myfile.txt on the end
host as follows:

file "/tmp/myfile.txt" do
owner "root"
group "root"
mode "Q0755"
action :create
end

The matching test, shown in the following code snippet, will verify that our
cookbook would do what we expected it to:

require 'chefspec'

describe 'demo cookbook::default' do
let (:chef run) {
ChefSpec: :Runner.new.converge (described recipe)
}

it 'creates a file' do
expect (chef run) .to create file('/tmp/myfile.txt"')
end
end

Executing tests

Now, in order to run it, we use the rspec command, which will run the test as a Ruby
script using the Rspec language. Here, it will also use the Chefspec extensions because
in our spec test we have the line require 'chefspec' at the top to include ChefSpec.
The following example runs RSpec using bundler in order to load all the required
Ruby gems before execution:

bundle exec rspec spec/default spec.rb

This will run RSpec using bundler, which will make sure that the correct versions
of the gems specified in the Gemfile are loaded and process the default_spec.
rb file. Once it runs, you should see the results of your tests, and they should look
something like the following output:

Finished in 0.17367 seconds

1 example, 0 failures
This is Rspec telling you that it completed and that you had one test with zero

failures. However, the results would be quite different if we had a test that failed;
rspec would tell us which test failed and why.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Going Beyond the Basics

Understanding failure

RSpec is very good at telling you what went wrong with your tests; it doesn't do
you any good to have failing tests if it's impossible to determine what went wrong,.
When an expectation in your test is not met, RSpec will tell you which expectation
was unmet and what the unexpected value was. For example, let's take our
demonstration recipe file resource from the following code:

file "/tmp/myfile.txt" do

Let's replace it with a different filename, such as myfile2. txt instead of myfile.
txt, as shown in the following code:

file "/tmp/myfile2.txt" do

Now, if we re-run our spec tests, we would see that our test is now failing
because Chef did something that was not expected by our spec test, as shown
in the following example:

[user@host] $ bundle exec rspec spec/default spec.rb
F

Failures:

1) demo cookbook::default creates a file
Failure/Error: expect(chef run).to create file('/tmp/myfile.txt')

expected "file[/tmp/myfile.txt]" with action :create to be in Chef
run. Other file resources:

file[/tmp/myfile2.txt]
./spec/default spec.rb:9:in “block (2 levels) in <top (required)>'

Finished in 0.18071 seconds

1 example, 1 failure

In the preceding example, you can see that RSpec (in conjunction with ChefSpec) is
telling us that the test 'creates a file' inthe 'demo_cookbook: :default' test
suite failed. It also tells us that it failed on line 9 of default_spec.rb (as indicated
by the line containing . /spec/default_spec.rb:9) because it expected that the file
resource /tmp/myfile.txt be interacted with by the : create action, but instead the
recipe interacted with a file resource, /tmp/myfile2.txt.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Expanding your tests

ChefSpec provides a comprehensive suite of tools for testing your recipes; you
can stub and mock resources (replace their real behavior with some artificial
behavior), simulate different platforms, and more. Let's take a look at some more
complex examples to see what other things we can do with chefspec. Let's look at
a hypothetical example for simulating the installation of MySQL on Windows 2012
and some things we might want to validate during such a run. The following code
example demonstrates testing our recipe when executed on a Windows 2012 host:

context 'when run on Windows 2012' do
let (:chef run) do
construct a 'runner' (simulate chef-client) running
on a Windows 2012 host
runner = ChefSpec::ChefRunner.new /(
'platform' => 'windows',
'version' => '2012'
)

set a configuration variable

runner.node.set ['mysqgl'] ['install path'] = 'C:\\temp'
runner.node.set ['mysqgl'] ['service user'] = 'SysAppUser'
runner.converge ('mysqgl: :server')

end

it 'should include the correct Windows server recipe' do
chef run.should include_recipe 'mysql::server windows'
end

it 'should create an INI file in the right directory' do

ini file = "C:\\temp\\mysgl\\mysqgl.ini"
expect (chef run) .to create template ini file
end
end

By constructing the runner with the platform and version options, the test will
exercise running the mysql : : server recipe and pretend as though it were running
on a Windows 2012 host. This allows us to set up expectations about the templates
that would be created, recipes that are being executed, and more on that particular
platform. Presuming that the mysql : : server recipe was to delegate to the
OS-specific recipe on a given platform, we could write another test as follows:

context 'when run on Debian' do
let (:chef run) do
runner = ChefSpec::ChefRunner.new/(
'platform' => 'debian'

)

runner.node.set ['mysqgl'] ['install path'] = '/usr/local'
runner.node.set ['mysqgl'] ['service user'] = 'mysqgl’
[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Going Beyond the Basics

runner.converge ('mysqgl: :server')
end

it 'should include the correct Linux server recipe' do
chef run.should include recipe 'mysqgl::server linux'

end

it 'should create an INI file in the right directory' do

ini file = "/usr/local/mysqgl/mysqgl.ini"
expect (chef run).to create template ini file
end

it 'should install the Debian MySQL package' do
expect (chef run).to install package('mysgl-server')
end
end

In this way, we can write our tests to validate the expected behavior on platforms
that we may not have direct access to in order to ensure that they will be performing
the expected actions for a collection of platforms. The RSpec with Chefspec
extensions provide us with really powerful tools for testing our cookbooks and
recipes, which is a critical step towards automating management.

Summary

By this point, you have seen how to manage Windows hosts, automate deployment
and configuration of IIS apps, extend your infrastructure into the cloud, and test
your recipes and cookbooks. From this, you can take what you have learned to begin
developing advanced Windows-specific recipes and cross-platform ones that support
multiple platforms, as well as test them using RSpec and Chefspec. With Chef, you
can easily manage your heterogeneous Windows and Linux environments, scaling
your systems across physical hosts and cloud servers to meet your infrastructure's
growth needs.

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A Chef architecture
overview 13
Amazon EC2 Chef client
custom user scripts, executing in 66 installing, on Windows 14
Amazon EC2 instances installing, on Windows with MSI 17-20
authentication, setting up 65 Chef client installation, Windows
Chef node, removing 70 hosts, bootstrapping 14-17
custom user script, providing 67, 68 MSI used 17-19
knife plugin, installing 64 Chef components
managing 64 attributes 12
provisioning 65, 66 bootstrap 12
terminating 69 cookbook 12
user script, writing 66, 67 data bags 13
attributes 12 environments 13
autorun script node 11
about 27 provider 12
example 28 recipes 12
Azure virtual machine resources 12
creating 60, 61 role 12
run list 12
B workstation 11
Chef node
batch scripts

removing, from EC2 70

example 27 removing, from Rackspace 75
executing 25, 26 ChefSpec
bootstrap 12 used, for testing 84-87

bootstrap script 12 cloud providers

scaling with 7
C code parameter 26
command parameter 26

Chef 0.11.x resource. See registry_key cookbook 12

resource
. . creates parameter 26
Chef 10.x resource. See windows_registry .
custom user scripts
resource

executing, in EC2 66-69
cwd parameter 26

www.it-ebooks.info

http://www.it-ebooks.info/

D

data bags 13
declarative language
about 77
benefits 77-79
Deployment Image Servicing and
Management. See DISM
DISM 23
domain-specific language (DSL) 6

E

EC2 authentication
setting up 65

EC2 knife plugin
installing 64

end hosts
interacting with 6

environments 13

F

feature_name parameter 24

features, Windows
managing 22-24

flags parameter 26

G

GitHub

Umbraco cookbook, downloading from 50

group parameter 26

IIS pool
generating 54

IIS service
preparing 52

IIS site
generating 54

K

knife
configuring, for Azure 60

L

Linux-based systems
interacting with 8,9

management certificate, Azure
downloading, URL 60
Microsoft Azure
knife, configuring for 60
management certificate, downloading 60
new virtual machine, creating 60, 61
node, bootstrapping 62
working with 59
Microsoft Azure node
bootstrapping 62
reusable image, creating 63, 64
Microsoft installer package. See MSI
MSI
about 17
used, for installing Chef client on
Windows 17-19
multiple platform recipes
complexity, reducing 82, 83
multiple platforms
handling 79
recipes 80-82
support, declaring in cookbook 79

N

node
about 11
role, applying to 56, 57

P

PowerShell
scripting with 8
prerequisites, Umbraco recipe
installing 51, 52
printer ports
managing 31
managing, examples 32
printers
actions and parameters 33, 34

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

managing 32
managing, examples 34, 35
manipulating 30

provider 12

R

Rackspace Cloud
Chef node, removing 75

configuration, injecting into virtual

machine 72-74
instance, provisioning 71, 72
interacting with 70

Rackspace Cloud instance
provisioning 71-74
terminating 74, 75

recipes
about 12
testing, ChefSpec used 84
testing, RSpec used 84

recipe, Umbraco
application, configuring 53
application, fetching 53
IIS pool, generating 54
IIS service, preparing 52
IIS site, generating 54
prerequisites, installing 51, 52

registry_key resource 38

registry_key resource actions
create 38
create_if_missing 38
delete 38
delete_key 38
registry_key resource parameters
architecture 38
key 38
provider 38
recursive 38
values 38
registry keys
managing, examples 37
registry values

managing, examples 39
remove action 24
resources 12

role
about 12
applying, to node 56, 57
creating 55, 56
roles
installing, different mechanisms
used 24, 25
managing 22-24
RSpec
used, for testing 84, 85
run action 26
run list 12

S

scripts
running, at startup 27
software packages
installing 28, 29
installing, examples 30
source control 83
system path
managing 39
managing, examples 40

T

tasks
managing, example 42
scheduling 40, 41
tests
executing 87
expanding 89, 90
failure, understanding 88

U

Umbraco CMS
configuring 53
downloading 53
installing 54
role, applying, to node 56, 57
role, creating 55, 56
Umbraco CMS installation
host, bootstrapping 55

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Umbraco cookbook
about 47
downloading, from GitHub 50
examining 48, 49
installing 49
recipe, examining 51
URL 47
user parameter 26

Vv

versioning
about 83, 84
and source control 83, 84
basics, testing 84, 85
recipes, testing 84
test expansion 89, 90
test failure 88
tests execution 87
URL 83

virtual machine (VM) 62

w

Windows
interacting, with end hosts 6
rebooting 44
rebooting, examples 45
supported platforms, for Chef 10
working with 5, 6
windows_auto_run resource actions
create 27
remove 27
windows_auto_run resource parameters
args 27
name 27
program 27
windows_batch resource parameters
code 26
command 26
creates 26
cwd 26
flags 26
group 26
user 26
windows_feature resource actions
install 24
remove 24

windows_feature resource parameters
feature_name 24
Windows hosts
bootstrapping 7, 16, 17
scaling, with cloud providers 7
scripting, with PowerShell 8
Windows hosts, bootstrapping
basic authentication, enabling 16
firewall ports, configuring 16
WinRM, enabling 15
windows_package resource actions
install 29
remove 29
windows_package resource parameters
checksum 29
installer_type 29
options 29
package_name 29
source 29
success_codes 29
timeout 29
version 29
windows_pagefile resource actions
delete 42
set 42
windows_pagefile resource parameters
automatic_managed 42
initial_size 42
maximum_size 42
name 42
system_managed 42
Windows pagefiles
interacting with 42
managing, examples 43
windows_path resource actions
add 39
remove 39
windows_path resource parameters
path 39
windows_printer_port resource
about 31
actions 31
parameters 31
windows_printer_port resource actions
create 31
delete 31

windows_printer_port resource parameters

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

ipv4_address 31
port_description 31

port_name 31

port_number 31

port_protocol 31

snmp_enabled 31
windows_printer resource 30, 33
windows_printer resource actions
create 33

delete 33

windows_printer resource parameters
comment 33

default 33

device_id 33

driver_name 33

ipv4_address 33

location 33

shared 33

share_name 33
windows_reboot resource actions
cancel 45

request 45

windows_reboot resource parameters
reason 45

timeout 45

Windows Registry

Chef 0.11.x resource 38, 39

Chef 10.x resource 36, 37
interacting with 35
windows_registry resource 36
windows_registry resource actions
create 36

force_modify 36

modify 36

remove 36

windows_registry resource parameters

key_name 36

type 36

values 36

Windows Remote Management. See
WinRM

Windows Server 2012 host
bootstrapping 55
Windows-specific resources
Chef supported platforms 22
list 21

working with 10, 21

windows_task resource actions
change 40
create 40
delete 40
run 40
windows_task resource parameters
command 41
cwd 41
frequency 41
frequency_modifier 41
name 41
password 41
run_level 41
start_day 41
start_time 41
user 41
windows_zipfile resource actions
unzip 43
zip 43
windows_zipfile resource parameters
checksum 43
overwrite 43
path 43
source 43
WinRM 6
workstation 11

Y4

ZIP files
managing 43
managing, examples 44

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Managing Windows Servers with Chef

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Chef Infrastructure
Automation Cookbook

Chef Infrastructure

Automation Cookbook
ISBN: 978-1-84951-922-9 Paperback: 276 pages

Over 80 delicious recipes to automate your cloud and
server infrastructure with Chef

1. Configure, deploy, and scale your applications.

2. Automate error prone and tedious manual
tasks.

3. Manage your servers on-site or in the cloud.

4. Solve real world automation challenges with
task-based recipes.

| Fas

Chef Starte

John Ewart

Instant Chef Starter
ISBN: 978-1-78216-346-6 Paperback: 70 pages

A practical guide to getting started with Chef, an
indispensable tool for provisioning and managing
your system's infrastructure

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Learn the core capabilities of Chef and how
it integrates with your infrastructure.

3. Set up your own Chef server for managing
your infrastructure.

4. Provision new servers with ease and develop
your own recipes for use with Chef.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

"PUBLISHING

Learning Windows Azure Mobile
Services for Windows 8 and

Windows Phone 8
ISBN: 978-1-78217-192-8 Paperback: 124 pages

A short, fast and focused guide to enhance your
Windows 8 applications by leveraging the power
of Windows Azure Mobile Services

Learning Windows Azure 1

Mobile Services for Windows 8
and Windows Phone 8

Dive deep into Azure Mobile Services with
a practical XAML-based case study game.

2. Enhance your applications with Push
Notifications and Notifications Hub.

Geoff Webber-Cross

3. Follow step-by-step instructions for
result-oriented examples.

Creating Development

Environments with Vagrant
ISBN: 978-1-84951-918-2 Paperback: 118 pages
Create and manage virtual development

environments with Puppet, Chef, and VirtualBox
using Vagrant

1. Provision virtual machines using Puppet
and Chef.

Creating Development
Environments with Vagrant 2. Replicate multi-server environments locally.

3. Setup a virtual LAMP development server.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Chef and Windows
	Working with Windows
	Interacting with end hosts
	Bootstrapping Windows hosts
	Scaling with cloud providers
	Scripting with PowerShell

	Integrating with Linux-based systems
	Working with Windows-specific resources
	Supported platforms

	Summary

	Chapter 2: Installing the Client – an Overview of Chef Concepts
	Getting to know Chef better
	Overview of Chef's architecture
	Installing the Chef client on Windows
	Preparing to bootstrap Windows hosts
	Enabling Windows Remote Management
	Configuring firewall ports
	Enabling basic authentication
	Bootstrapping a Windows host

	Installing via MSI

	Summary

	Chapter 3: Windows-specific Resources
	Working with Windows-specific resources
	Platforms supported by Chef

	Managing roles and features
	Installing roles using different mechanisms

	Executing batch scripts
	Running scripts at startup
	Installing software packages
	Manipulating printers
	Managing printer ports
	Managing printers

	Interacting with the Windows Registry
	The Chef 10.x resource
	The Chef 0.11.x resource

	Managing the system path
	Scheduling tasks
	Interacting with Windows pagefiles
	ZIP files
	Rebooting Windows
	Summary

	Chapter 4: Provisioning an
Application Stack
	Examining the cookbook
	Installing the cookbook
	Fetching from GitHub

	Examining the recipe
	Installing the prerequisites
	Preparing the IIS service
	Fetching the application
	Configuring the application
	Generating an IIS pool and site

	Performing the installation
	Bootstrapping the host
	Creating the role
	Applying the role to the node

	Summary

	Chapter 5: Managing Cloud Services with Chef
	Working with Microsoft Azure
	Downloading the management certificate
	Configuring knife for Azure
	Creating a new Azure virtual machine
	Bootstrapping your Azure node
	Creating a reusable image

	Managing Amazon EC2 instances
	Installing the EC2 knife plugin
	Setting up EC2 authentication
	Provisioning an EC2 instance
	Executing custom user scripts in EC2
	Writing the user script
	Providing a custom user script

	Removing the Chef node

	Interacting with Rackspace cloud
	Provisioning a Rackspace instance
	Injecting configuration into the virtual machine

	Terminating the instance
	Removing the Chef node

	Summary

	Chapter 6: Going Beyond the Basics
	Chef's declarative language
	Handling multiple platforms
	Declaring support in your cookbook
	Multiplatform recipes
	Reducing complexity

	Versioning and source control
	Testing recipes
	RSpec and ChefSpec

	Testing basics
	RSpec
	ChefSpec

	Executing tests
	Understanding failure

	Expanding your tests

	Summary

	Index

