Apache Solr High
Performance

Boost the performance of Solr instances and troubleshoot
real-time problems

Apache Solr High Performance

Boost the performance of Solr instances and
troubleshoot real-time problems

Surendra Mohan

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

Apache Solr High Performance

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014
Production Reference: 1180314

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-482-1
www . packtpub.com

Cover Image by Glain Clarrie (glen.m.carrie@gmail . com)

Credits

Author
Surendra Mohan

Reviewers
Azaz Desai

Ankit Jain
Mark Kerzner

Ruben Teijeiro

Acquisition Editor
Neha Nagwekar

Content Development Editor
Poonam Jain

Technical Editor
Krishnaveni Haridas

Copy Editors
Mradula Hegde

Alfida Paiva
Adithi Shetty

Project Coordinator
Puja Shukla

Proofreaders
Simran Bhogal

Ameesha Green
Maria Gould

Indexers
Monica Ajmera Mehta

Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

About the Author

Surendra Mohan, who has served a few top-notch software organizations in
varied roles, is currently a freelance software consultant. He has been working on
various cutting-edge technologies such as Drupal and Moodle for more than nine
years. He also delivers technical talks at various community events such as Drupal
meet-ups and Drupal camps. To know more about him, his write-ups, and technical
blOgS, and much more, log onto http://www.surendramohan.info/.

He has also authored the book Administrating Solr, Packt Publishing, and has
reviewed other technical books such as Drupal 7 Multi Sites Configuration and Drupal
Search Engine Optimization, Packt Publishing, and titles on Drupal commerce and
ElasticSearch, Drupal-related video tutorials, a title on Opsview, and many more.

I would like to thank my family and friends who supported and
encouraged me in completing this book on time with good quality.

About the Reviewers

Azaz Desai has more than three years of experience in Mule ESB, jBPM, and
Liferay technology. He is responsible for implementing, deploying, integrating, and
optimizing services and business processes using ESB and BPM tools. He was a lead
writer of Mule ESB Cookbook, Packt Publishing, and also played a vital role as a trainer
on ESB. He currently provides training on Mule ESB to global clients. He has done
various integrations of Mule ESB with Liferay, Alfresco, jBPM, and Drools. He was
part of a key project on Mule ESB integration as a messaging system. He has worked
on various web services and standards and frameworks such as CXF, AXIS, SOAP,
and REST.

Ankit Jain holds a bachelor's degree in Computer Science Engineering from
RGPV University, Bhopal, India. He has three years of experience in designing and
architecting solutions for the Big Data domain and has been involved with several
complex engagements. His technical strengths include Hadoop, Storm, 54, HBase,
Hive, Sqoop, Flume, ElasticSearch, Machine Learning, Kafka, Spring, Java, and J2EE.

He also shares his thoughts on his personal blog at http://ankitasblogger.
blogspot.in/. You can follow him on Twitter at emynameisanky. He spends most
of his time reading books and playing with different technologies. When not at work,
Ankit spends time with his family and friends, watching movies, and playing games.

I would like to thank my parents and brother for always being there
for me.

Mark Kerzner holds degrees in Law, Maths, and Computer Science. He has been
designing software for many years and Hadoop-based systems since 2008. He is the
President of SHMsoft, a provider of Hadoop applications for various verticals, and a
cofounder of the Hadoop Illuminated training and consulting, as well as the coauthor
of the Hadoop Illuminated open source book. He has authored and coauthored several
books and patents.

I would like to acknowledge the help of my colleagues, in particular
Sujee Maniyam, and last but not least, my multitalented family.

Ruben Teijeiro is an experienced frontend and backend web developer who had
worked with several PHP frameworks for over a decade. His expertise is focused now
on Drupal, with which he had collaborated in the development of several projects for
some important organizations such as UNICEF and Telefonica in Spain and Ericsson
in Sweden.

As an active member of the Drupal community, you can find him contributing to
Drupal core, helping and mentoring other contributors, and speaking at Drupal
events around the world. He also loves to share all that he has learned by writing
in his blog, http://drewpull.com.

I would like to thank my parents for supporting me since I had my

first computer when I was eight years old, and letting me dive into

the computer world. I would also like to thank my fiancée, Ana, for
her patience while I'm geeking around the world.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

®

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface

Chapter 1: Installing Solr

Prerequisites for Solr
Installing components
Summary

Chapter 2: Boost Your Search

Scoring

Query-time and index-time boosting
Index-time boosting
Query-time boosting

Troubleshoot queries and scores
The dismax query parser
Lucene DisjunctionMaxQuery

Autophrase boosting
Configuring autophrase boosting
Configuring the phrase slop
Boosting a partial phrase

Boost queries

Boost functions
Boost addition and multiplication

Function queries
Field references
Function references
Mathematical operations
The ord() and rord() functions
Other functions
Boosting the function query
Logarithm
Reciprocal

Table of Contents

Linear 34
Inverse reciprocal 34
Summary 36
Chapter 3: Performance Optimization 37
Solr performance factors 37
Solr caching 38
Document caching 38
Query result caching 39
Filter caching 41
Result pages caching 42
Using SolrCloud 44
Creating a SolrCloud cluster 45
Multiple collections within a cluster 46
Managing a SolrCloud cluster 49
Distributed indexing and searching 51
Stopping automatic document distribution 54
Near real-time search 58
Summary 59
Chapter 4: Additional Performance Optimization Techniques 61
Documents similar to those returned in the search result 62
Sorting results by function values 64
Searching for homophones 67
Ignore the defined words from being searched 69
Summary 72
Chapter 5: Troubleshooting 73
Dealing with the corrupt index 73
Reducing the file count in the index 76
Dealing with the locked index 77
Truncating the index size 77
Dealing with a huge count of open files 79
Dealing with out-of-memory issues 81
Dealing with an infinite loop exception in shards 82
Dealing with expensive garbage collection 83
Bulk updating a single field without full indexation 85
Summary 87
Chapter 6: Performance Optimization with ZooKeeper 89
Getting familiar with ZooKeeper 89
Prerequisites for a distributed server 89
Aid your distributed system using ZooKeeper 91

Setting an ideal node count for ZooKeeper 93
[ii]

Table of Contents

Setting up, configuring, and deploying ZooKeeper 93
Setting up ZooKeeper 94
Configuring ZooKeeper 94
Deploying ZooKeeper 95

Applications of ZooKeeper 929

Summary 100

Appendix: Resources 101

Index 105

[iii]

Preface

Solr is a popular and robust open source enterprise search platform from Apache
Lucene. Solr is Java based and runs as a standalone search server within a servlet
container such as Tomcat or Jetty. It is built in the Lucene Java search library as the
core, which is primarily used for full-text indexing and searching. Additionally, the
Solr core consists of REST-like HTML/XML and JSON APIs, which make it virtually
compatible with any programming and/or scripting language. Solr is extremely
scalable, and its external configuration allows you to use it efficiently without

any Java coding. Moreover, due to its extensive plugin architecture, you can even
customize it as and when required.

Solr's salient features include robust full-text search, faceted search, real-time
indexing, clustering, document (Word, PDF, and so on) handling, and geospatial
search. Reliability, scalability, and fault tolerance capabilities make Solr even more
demanding to developers, especially to SEO and DevOp professionals.

Apache Solr High Performance is a practical guide that will help you explore and take
full advantage of the robust nature of Apache Solr so as to achieve optimized Solr
instances, especially in terms of performance.

You will learn everything you need to know in order to achieve a high performing Solr
instance or a set of instances, as well as how to troubleshoot the common problems you
are prone to facing while working with a single or multiple Solr servers.

What this book covers

Chapter 1, Installing Solr, is basically meant for professionals who are new to Apache
Solr and covers the prerequisites and steps to install it.

Chapter 2, Boost Your Search, focuses on the ways to boost your search and covers
topics such as scoring, the dismax query parser, and various function queries that
help in boosting.

Preface

Chapter 3, Performance Optimization, primarily emphasizes the different ways to
optimize your Solr performance and covers advanced topics such as Solr caching
and SolrCloud (for multiserver or distributed search).

Chapter 4, Additional Performance Optimization Techniques, extends Chapter 3, Performance
Optimization, and covers additional performance optimization techniques such

as fetching similar documents to those returned in the search results, searching
homophones, geospatial search, and how to avoid a list of words (usually offensive
words) from getting searched.

Chapter 5, Troubleshooting, focuses on how to troubleshoot the common problems,
covers methods to deal with corrupted and locked indexes, thereby reducing the
number of files in the index, and how to truncate the index size. It also covers the
techniques to tackle issues caused due to expensive garbage collections, out-of-
memory, too many open files, and infinite loop exceptions while playing around
with the shards. Finally, it covers how to update a single field in all the documents
without completing a full indexation activity.

Chapter 6, Performance Optimization with ZooKeeper, is an introduction to ZooKeeper
and its architecture. It also covers steps to set up, configure, and deploy ZooKeeper
along with the applications that use ZooKeeper to perform various activities.

Appendix, Resources, lists down the important resource URLs that help aspirants
explore further and understand the topics even better. There are also links to
a few related books and video tutorials that are recommended by the author.

What you need for this book

In an intention to run most of the examples in the book, you will need a XAMPP
or any other Linux-based web server, Apache Tomcat or Jetty, Java JDK (one of the
latest versions), Apache Solr 4.x, and a Solr PHP client.

A couple of concepts covered in this book require additional software/tools such
as the Tomcat add-on and ZooKeeper.

Who this book is for

Apache Solr High Performance is for developers or DevOps who have hands-on
experience working with Apache Solr and who are targeting to optimize Solr's
performance. A basic working knowledge of Apache Lucene is desirable so that
the aspirants get the most of it.

[2]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Let us start by adding the following index structure to the fields section of our
schema .xml file."

A block of code is set as follows:

<field name="wm_id" type="string" indexed="true" stored="true"
required="true" />

<field name="wm name" type="text" indexed="true" stored="true"
termVectors="true" />

Any command-line input or output is written as follows:

http://localhost:8983/solr/select?g=sonata+string&émm=2&gf=wm name&defTy
pe=edismax&mlt=true&mlt.fl=-wm name&mlt.mintf=l&mlt.mindf=1

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on the Next button moves you to the next screen."

[% Warnings or important notes appear in a box like this.]
.

[Q Tips and tricks appear like this.]

[31]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[4]

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Installing Solr

In this chapter, we will understand the prerequisites and learn how to install Apache
Solr and the necessary components on our system. For the purpose of demonstration,
we will be using Windows-based components. We will cover the following topics:

* Prerequisites for Solr

* Installing web servers

* Installing Apache Solr

Let's get started.

Prerequisites for Solr

Before we get ready for the installation, you need to learn about the components
necessary to run Apache Solr successfully and download the following prerequisites:

* XAMPP for Windows (for example, V3.1.0 Beta 4): This can be downloaded
from http://www.apachefriends.org/en/xampp-windows.html

XAMPP comes with a package of components, which includes Apache (a
web server), MySQL (a database server), PHP, PhpMyAdmin, FileZilla
(an FTP server), Tomcat (a web server to run Solr), Strawberry Perl, and a
XAMPP control panel

¢ Tomcat add-on: This can be downloaded from http://tomcat .apache.
org/download-60.cgi

e Java JDK: This can be downloaded from http://java.sun.com/javase/
downloads/index.jsp

* Apache Solr: This can be downloaded from http://apache.tradebit.
com/pub/lucene/solr/4.6.1/

Installing Solr

e Solr PHP client: This can be downloaded from http://code.google.
com/p/solr-php-client/

Al

Q

It is recommended that you choose the latest version of the preceding
components due to the fact that the latest version has security patches
implemented, which are lacking in the older ones. Additionally, you
may use any version of these components, but keep in mind that they are
compatible with each other and are secure enough to handle intruders.

Installing components

Once you have the previously mentioned installers ready, you may proceed with the

installation by performing the following steps:

1. Install XAMPP and follow the instructions.

Install the latest Java JDK.

2
3. Install Tomcat and follow the instructions.
4

By now, there must be a folder called /xampp in your c: (by default).

Navigate to the xampp folder, find the xampp-control application, and start

it, as shown in the following screenshot:

S
~

@
%

[—r]

&

e

securiby

tomcat

catalina_service
1M5-D03 Batch File
10 KE

mysgl_stop
1M5-D03 Batch File
1KE

setup_xampp
M5-D035 Batch File
ZKE

xampp_stop
Stark and stop XAMPP
Apache Friends

/! sendmail

webday

catalina_start
1 1M5-D03 Batch File
SEKE

i
= passwords
[EJ Text Document

1EKE

el v

test_php

i‘ﬂ} M3-005 Batch File
4EKE

File Wersion: 3.1.0.0

Date Created: 92172012 3:53 AM

Size: 2.44 MB

salr

apache_start
1M5-D03 Batch File
1KE

catalina_stop
1M5-D03 Batch File
SEKE

gl [g] U

readme_de
Text Document
7KE

xampp_shell
1M5-D03 Batch File
ZkE

€]

xampp-control
onfiguration Settings
ZkE

r

[8]

Chapter 1

5. Start Apache, MySQL, and Tomcat services, and click on the Services
button present at the right-hand side of the panel, as shown in the
following screenshot:

@

B3 XAMPP Control Panel v3.1.0 Beta 4 [Compiled: September, 20th 2012] E|E|&|

XAMPP Control Panel v3.1.0 Beta 4
Help

Modules () Netstat
Service Module Pl10vs) Ports) Actions 9 hetsta
2436

Apache 1ms g0, 443 [Stop H Admin][Config][Logs]
MySGL 3916 3306 [Swop) [Admin | [Config |[Logs | Explorer
J

-~

Mercury

Torncat 330 600580098000 | Stop | [Admin | [Config || Logs

SoA6:33 AW [rmain] Executing "cixamppitomcatiiogs”
54704 AW [Tomcat] Attempting to start Tomcat app...

SAT AT AN [rnysgl] Attempting to stop MySQL (PID: 3692)
54T AT AN [rysql] Status change detected: stopped
D:47:25 AN [Apache] Attempting to stop Apache (PID: 1268)
DoA7:20 AN [Apache] Attempting to stop Apache (PID: 332)
04725 AW [Apache] Status change detected: stopped
G728 AN [Tomcat] Attempting to start Tomcat app...
54547 AW [Tomecat] Attempting to start Tomeat app
5:49:56 Al [Tomcat] Aftempting to start Tomeat app
SA0:45 AW [Tomeat] Attempting to start Tomeat app...
DO0:50 AW [Tomeat] Status change detected: running
0:00:56 AW [Apache] Attempting to start Apache app.
SA0:57 AW [Apache] Status change detected: running
SE102 AN [rysql] Attempting to start MySQL app
5:51:03 AN [mysql] Status change detected: running

6. Locate Apache Tomcat Service, right-click on it, and navigate to Properties,
as shown in the following screenshot:

i Services

File Action VYiew Help
Ed @
I@ q
siplcesCocal) # Serwices (Local)

Apache Tomcat 6.0 Tomcats Mame Description Status Starkup Type Log &n As M
% {MET Runtime Optimization ... Microsoft ..., Manual Local System
Start the service % ikamai NetSession Interface Providesn... Started Automatic Local System
%Alerter Disabled Local Service
Description: "
Apache Tomcat 6.0.37 Server - Start rovides th... Manual Local System
hittp: [ftomcat. apachie. orgf %Application rovides 5., Started Manual Lacal Service
%Application rovides 5. tanual Lacal System
%ASP.NET 5t rovides 5., Manual Netwiork 5.,
%nti Hotey Started Automatic Local System
%Autnmatic U Al Tasks » Enablesth... Started Aukomnatic Lacal System
%avast! Anti anages &.. Skarked Automatic Lacal System
%Backgmunc Refresh Transfers f... Manual Local System
%BlueSo\ewl H Manual Local Syskerm
%Bluetooth 9 Handles ins... Disabled Local System
%Ciscu Syste Help tanual Local System 4
mne ot et ciootioa et

\ Extended A Standard

Opens property sheet For the current selection.

[o]

Installing Solr

7. After the Properties window pops up, set the Startup type property to
Automatic, and close the window by clicking on OK, as shown in the
following screenshot:

Apache Tomcat 6.0 Tomcat6 Properties (Local Comput... E|E|

General |Log On || Recovery || Dependencies

Service name: Tomcats
Display name: Apache Tomecat 6.0 Tomcate

Description: Apache Tomeat B.0.37 Server -
e http: / ftomcat. apache. ongl

Path to executable:

"C:\Program Files\pache Software Foundation Tomcat B.0%Wbin'Tomcatt.

Startup type: ALtornatic “

Service statuz, TWOppeED

Y'ou can gpecify the start parameters that apply when pou start the zervice
frarn here.

Start parameters: |

[(]S H Cancel l

8. For the next few steps, we will stop Apache Tomcat in the Services window.
If this doesn't work, click on the Stop option.

9. Extract Apache Solr and navigate to the /dist folder. You will find a file
called solr-4.3.1.war, as shown in the following screenshot (we need to
copy this file):

12 E:\Softwares\apache Sol\sol-4,3,1dist

ename this file
lave this file
[zopy this file
ublish this file to the Wweh

F-mail this file

elste this file

hnd Folder Tasks #

solri-ib IJ test-framewark.
|

salr-analysis-extras-4.3.1
Executable Jar File
17KE

solr-core-4.3|
Executable J
7,140 KB

solr-clustering-4.3,1
Executable Jar File
S0KE

Twpe: WAR File
Date Modified: 6/9/2013 12:15 PM
Size: 16,3 MB

ataimporthandler-4,3,1
table Jar File
i

cJ
3 solr-cell-4.3.1
Executable Jar File
30 KB
solr-uima-4.3.1
Executable Jar Fils
39 KB

solf-dataimporthandler-extras...
Executable Jar File
3LKB

solr-solrj-4.3.1
Executable Jar File
364 KB

solr-langid-4.3. 1 -
Executable Jar File
T4IKE

salr-velocity-4,3,1
Executable Jar File
20KEB

solr-kest-framework-4.3.1
Executable Jar File
151 KB

[10]

Chapter 1
10. Navigate to C: /xampp/tomcat /webapps/ and paste the solr-4.3.1.war
file (which you copied in the previous step) into the webapps folder. Rename
solr-4.3.1.war to solr.war, as shown in the following screenshot:

(=] Crixamppitomecatiwebapps

land Folder Tasks

e P

’J docs ’J examples r hiost-manager
| |

= =
’J ROOT ’J salr
| |

manager
Makz a new Folder

Publish this Folder ko the
Wich

solrwar
Share this folder

WaR File
16,961 KB

Type: WAR File
Date Modified: 3/26/2013 8:27 AM
pr Places Size: 16.5 MB
Lomcat

11. Navigate back to <ApacheSolrFolders>/example/solr/ and copy the bin
and collectionl files, as shown in the following screenshot:

|22 E:\SoftwaresiApache Solisolr-4, 3, 1example!solr

~ README S solr
and Folder Tasks = collactio Text Document < #ML Dacument
3KE ==\ 3kB
Move the selected items
Copy the selected items = ZOD-CFID
(CFia File
E-mail the selected items LKB

Delete the selected items

u'm n

12. Create a directory in C: /xampp/ called /solr/ and paste the
ApacheSolrFolders>/example/solr/ files into this directory, that is,

c:/
xampp/solr, as shown in the following screenshot:
10 Coxampplsolr
and Folder Tasks 2 ’:‘J Bint /J collectiont = $§3D[I;ﬂchumEnt O' ;ﬁ*‘!’l’. Document
1 1 = 3KB ==| 3KB
Mzke 3 new Folder
Publish this folder to the

zoo.cfg
CFi3 File
LKE

Web
Share this Folder

[11]

Installing Solr

13. Now, navigate to C: /xampp/tomcat/bin/tomcats, click on the Java tab,
and copy the command -Dsolr.solr.home=C:\xampp\solr into the Java
Options section, as shown in the following screenshot:

‘& Apache Tomcat 6.0 Tomcatb Properties @

General | Log On | Logging | J&va | Startup | Shutdown

[] use defaul:

Jawa Wirkual Machine:

Ci\Program Files) Javaljre? bintclient) v, dll E]
Java Classpath:

Ci\Program FilesiApache Software Foundationt Tomcat 6. 04binibookstrap

Java Cplions:

-Djava.util.logging. manager=org, apache. juli. ClassLoaderLogManage A
-Drjava. util. logging. config. file=C; |\ Program Files\Apache Software Fou

w
Initial mermory pool: ME
Maxiriurn memary paal; ME
Thread stack size: KB
[O] [Cancel]

14. Now its time to navigate to the Services window. Start Apache Tomcat in the
Services window.

15. Now, you are done with installing Apache Solr in your local environment. To
confirm, type http://localhost:8080/solr/admin/ and hit the Enter key
on the keyboard. You should be able to see Apache Solr's dashboard.

Summary

In this chapter, we have learned about the prerequisites necessary to run Apache Solr
successfully and how to install and configure XAMPP, Tomcat, the Solr server, and
the Solr client. In the next chapter, we will learn the different ways to boost our search
using query parsers and various robust function queries such as field references,
function references, and function query boosting based on different criteria.

[12]

Boost Your Search

In this chapter, we will learn different ways to boost our search using query parsers
and various robust function queries such as field reference, function reference, and
function query boosting based on different criteria. We will cover the following topics:

* Scoring
* The dismax query parser

* Function queries

So, let us get started.

Scoring

You might come across scenarios where your search engine should be capable enough
to search and display appropriate search results from a large collection of documents,
especially when the visitor is not really sure of what he/she intends to search.

In this section, we will learn about the basic concepts of how Solr ranks the documents
and later step into how we can tweak the way Solr ranks and renders the search results.

We must keep in mind that the score is not a term that holds an absolute value;
instead, it holds a relative value with respect to the maximum score and is normalized
to fall between 0 and 1.0. The primary objective behind implementing a score is

to narrow down the field list to a smaller set by mapping the fields together and

then inject the smaller set to the search engine. Doing so helps the search engine
understand the request better and serve the requester in a more appropriate way.

Boost Your Search

To understand the preceding objective better, let us assume we have an event that
possesses more than 50 distinct fields. Of course, it would be quite confusing for the
search engine to consider all the field values and render the search results, which
results in an inappropriate result set. To simplify these fields, we map them into five
categories or sections: who, what, where, how, and when. Now, we push the values
of these five sections of the document to the search engine and the engine throws
appropriate search results because all these fields are quite descriptive and are
enough for the search engine to process.

Lucene follows a scoring algorithm, which is also known as the tf.idf model. There
are a set of scoring factors that are associated with this model, which are as follows:

* The term frequency (tf): This denotes the count when a term is found in a
document's field, regardless of the number of times it appears in some other
field. The greater the tf value, the higher the score.

* The inverse document frequency (idf): Contrary to term frequency, in idf,
the rarer the occurrence of a term, the higher is the score. To go deeper into
idf, document frequency is the frequency of a document's occurrence on a
per-field basis, and, as the name suggests, idf is the other way round.

* The coordination factor (coord): It is the frequency of the occurrence of term
queries that match a document; the greater the occurrence, the higher is the
score. To be more specific, suppose that you have a document that matches
a multiple term query (though, it doesn't match all the terms of that query).
You may further reword documents that match even more terms using the
co-ordination factor, which is directly proportional to the matched terms;
that is, the greater the number of terms matched, the higher is its
coordination factor.

* The field length (fieldNorm): Considering the number of indexed terms, the
shorter the matching field, the greater the document score. For instance, we
have terms Surendra and Surendra Mohan (along with the other documents)
in the index, and the user searches for the term Surendra. Under scoring, the
field length would be higher in case of the former, that is, Surendra, than the
latter due to the fact that it has one word, while the other has two.

The previously discussed factors are the vital components that contribute to the score
of a document in the search results. However, these factors are not limited to that.
You have the flexibility to introduce other components of the score as well, which

is referred to as boosting. Boosting can be defined as a simple multiplier to a field's

score, either in terms of an index or the query-time or any other parameter you can
think of.

[14]

Chapter 2

By now, you might be eager to explore further about such parameters and how they
are formulated for use. For this, you may refer to http://lucene.apache.org/
core/4 0 0/core/org/apache/lucene/search/similarities/Similarity.html,
which will provide you with the additional information on their usage.

Query-time and index-time boosting

Before we actually get into the details of how to boost query-time and index-time, let
us understand these terms for a better understanding of the actual concept.

* Query-time: It is the duration (in milliseconds) a query takes to run and
process the search results. Let me remind you, this doesn't include the time
taken to stream back the response.

* Index-time: It is the duration (in milliseconds) taken by the Solr instance to
crawl] the contents of the site and create their associated indices.

Index-time boosting

During index-time, you have the feasibility to boost a specific document either at the
document level or at the field level. In document-level boosting, each field is boosted
based on a value. Since it is rarely used and is highly uncommon due to the fact that
it is not as flexible compared to query-time, we will discuss query-time in detail.

Query-time boosting

Think of a scenario wherein you would like a clause in your query string to contribute
even further to the score. As you might be aware, a value less than 0 and 1 degrades
the score, whereas a value greater than 1 enhances it. In the following example, we
will learn how to boost the score by adding a multiplier.

Let us assume, we search for authors who either have the name Surendra or have
a name that contains the word Mohan. The following is the query that suffices our
requirement:

author name: Surendra”3 OR Mohan

The preceding query will boost the search for the author name Surendra three times
more than usual; however, it will render search results with author names that contain
either Surendra or Mohan, considering results for Surendra as the prior ones.

[15]

Boost Your Search

Now, let us search for an author with the name Surendra, considering the names
Mohan and Singh as optional, wherein we are not interested much about the search
results rendered for the author name singh. The following is the query:

+Surendra Mohan Singh®0.3

In the preceding query, we have mainly concentrated on the author name Surendra,
considering the names Mohan and Singh as optional, and have degraded the score
for the term singh (as it wouldn't matter whether any record gets displayed in the
search result for the term Singh or not).

We can also use the gf parameter of the dismax query parser to boost the score.
This is because the gf parameter not only lists down the fields to search, but also
facilitates a boost for them. In the Dismax query parser section of the chapter, we
will cover how to use the dismax parser's gf parameter to boost.

Troubleshoot queries and scores

Consider a scenario wherein you have already boosted some keywords to appear
at the top of the search results, and unfortunately, you can't find it at the top. Isn't it
frustrating? Of course, it is quite frustrating, and we have a way to debug it so as to
understand why the document is missing or is not at the expected position in

the search results. You may enable the query debugging using the debugQuery
query parameter.

Let us consider an example wherein we wanted the author with the name Surendra
to get the top scores, but due to some reason, it didn't work out. Here is an example
fuzzy query:

author name: Surendra~

Now, let us execute the preceding query with debugQuery=on, and ensure that you
are monitoring the original indentation by using the View Source feature of your
browser. We assume that the top score is 3.657304, and there are two documents
that match but none of them contains Surendra. One has Surena and the other has
Urenda, as shown in the following code:

<doc>
<float name="score">3.657304</float>
<str name="author name>Surena</str>
</doc>
<doc>
<float name="score">3.657304</float>
<str name="author name">Urenda</str>
</doc>

[16]

Chapter 2

<doc>

<float name="score">2.4632481</float>

<str name="author name">Surendra Mohan</str>
</doc>

The first two documents (which are at the top of the search results) differ from
Surendra just by two characters. The third document actually matched Surendra;
however, it failed to overtake the top two due to a comparatively low score. You
might think of banging your head! Don't worry, let us debug the issue and look into
the debug output. We will skip the second document (that is, with the author name
as Urenda) as it holds the same score as the first one. The debug output is as follows:

<lst name="explain"s
<str name="Author:227132">

3.657304 = (MATCH) sum of:

3.657304 = (MATCH) weight(author_name:surenaAO.42857146 in 286945),
product of:

0.20176922 = queryWeight (author name:surena”0.42857146),

product of:

0.42857146 = boost

13.204025 = idf (docFreg=1, numDocs=399182)

0.035655525 = gqueryNorm

13.204025 = (MATCH) fieldWeight (author name:surena in 286945),
product of:

1.0 = tf(termFreq(author name:surena)=1)

13.204025 = idf (docFreg=1, numDocs=399182)

1.0 = fieldNorm(field=author name, doc=286945)

</str>

<!-- skipping 2nd document ...-->

<str name="Author:93855">

2.4632481 (MATCH) sum of:

2.4632481 (MATCH) weight(author_name:surendraAO.75 in 9796),
product of:

0.32859424 = queryWeight (author name:surendra”0.75),
product of:

0.75 = boost

12.287735 = idf (docFreg=4, numDocs=399182)
0.035655525 = gqueryNorm

7.6798344 = (MATCH) fieldWeight (author name:surendra in 9796),
product of:

1.0 = tf(termFreq(author name:surendra)=1)

12.287735 = idf (docFreg=4, numDocs=1002272)

0.625 = fieldNorm(field=author name, doc=9796)
</str>

[17]

Boost Your Search

The preceding debug output is a mathematical breakdown of the different
components of the score for us to analyze and debug the shortfalls. We can see that
surena was allocated a query-time boost of 0.43, whereas it was 0. 75 for surendra.
We would have expected this due to the fact that fuzzy matching gives a higher
weightage to stronger matches, and it happened here as well.

We shouldn't forget that there are other factors that are equally responsible for
pulling the final score in a different direction. Let us now focus on the fieldNorm
values for each one of them.

We can see that the fieldNorm value for the term surena is 1.0, whereas itis 0.625
for the term surendra. This is because the term we wanted to score higher had a
field with more indexed terms (two indexed terms in case of Surendra Mohan), and
just one for Surena on the other hand. Thus, we can say that Surena is a closer match
than Ssurendra Mohan as far as our fuzzy query Surendra~ is concerned.

By now, we are in a better position as we figured out the reason behind this behavior.
Now, it's time to find a solution that really works for us, though our expected search
is not far behind the actual one. Firstly, let us lowercase our query, that is, author_
name: surendra~ instead of author name: Surendra~ to ensure that there isn't a
case difference. If this solution doesn't work out, enable omitNorms in the schema.
Even if this solution doesn't solve the purpose, you may try out other options, such
as SweetSpotSimilarity. Please refer to http://lucene.apache.org/core/3_0_3/
api/contrib-misc/org/apache/lucene/misc/SweetSpotSimilarity.html to
explore further on this option.

The dismax query parser

Before we understand how to boost our search using the dismax query parser,
we will learn what a dismax query parser is and the features that make it more
demanding than the Lucene query parser.

While using the Lucene query parser, a very vital problem was noticed. It restricts
the query to be well formed, with certain syntax rules that have balanced quotes and
parenthesis. The Lucene query parser is not sophisticated enough to understand that
the end users might be laymen. Thus, these users might type anything for a query as
they are unaware of such restrictions and are prone to end up with either an error or
unexpected search results.

To tackle such situations, the dismax query parser came into play. It has been named
after Lucene's DisjunctionMaxQuery, which addresses the previously discussed issue
along with incorporating a number of features that enhance search relevancy (that is,
boosting or scoring).

[18]

Chapter 2

Now, let us do a comparative study of the features provided by the dismax query
parser with those provided by the Lucene query parser. Here we go:

* Search is relevant to multiple fields that have different boost scores
* The query syntax is limited to the essentiality
* Auto-boosting of phrases out of the search query

* Convenient query boosting parameters, usually used with the function
queries (we will cover this in our next section, Function queries)

* You can specify a cut-off count of words to match the query

I believe you are aware of the g parameter, how the parser for user queries is set
using the defType parameter, and the usage of gf, mm, and g.alt parameters. If not,
I recommend that you refer to the Dismax query parser documentation at https://
cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser.

Lucene DisjunctionMaxQuery

Lucene DisjunctionMaxQuery provides the capability to search across multiple fields
with different boosts.

Let us consider the following example wherein the query string is mohan; we may
configure dismax in such a way that it acts in a very similar way
to DisjunctionMaxQuery. Our Boolean query looks as follows:

fieldX:mohan”2.1 OR fieldY:mohan®”1.4 OR fieldZ:mohan”0.3

Due to the difference in the scoring of the preceding query, we may infer that the
query is not quite equivalent to what the dismax query actually does. As far as the
dismax query is concerned, in such scenarios, (in case of Boolean queries) the final
score is taken as the sum for each of the clauses, whereas DisjunctionMaxQuery
considers the highest score as the final one. To understand this practically, let us
calculate and compare the final scores in each of the following two behaviors:

Fscore_dismax=2.1+14+0.3=3.8
Fscore_disjunctionMaxQuery = 2.1 (the highest of the three)

Based on the preceding calculation, we can infer that the score produced out of the
dismax query parser is always greater than that of the DisjunctionMaxQuery query
parser; hence, there is better search relevancy provided that we are searching for the
same keyword in multiple fields.

[19]

Boost Your Search

Now, we will look into another parameter, which is known as tie, that boosts the
search relevance even further. The value of the tie parameter ranges from o to 1,

0 being the default value. Raising this value above 0 begins to favor the documents
that match multiple search keywords over those that were boosted higher. Value of
the tie parameter can go up to 1, which means that the score is very close to that
of the Boolean query. Practically speaking, a smaller value such as 0.1 is the best as
well as an effective choice we may have.

Autophrase boosting

Let us assume that a user searches for Surendra Mohan. Solr interprets this as two
different search keywords, and depending on how the request handler has been
configured, either both the terms or just one would be found in the document. There
might be a case wherein one of the matching documents Surendra is the name of an
organization and they have an employee named Mohan. It is quite obvious that Solr
will find this document and it might probably be of interest to the user due to the
fact that it contains both the terms the user typed. It is quite likely that the document
field containing the keyword surendra Mohan typed by the user represents a closer
match to the document the user is actually looking for. However, in such scenarios,
it is quite difficult to predict the relative score, though it contains the relevant
documents the user was looking for.

To tackle such situations and improve scoring, you might be tempted to quote the
user's query automatically; however, this would omit the documents that don't have
adjacent words. In such a scenario, dismax can add a phrased form of the user's
query onto the entered query as an optional clause. It rewrites the query as follows:

Surendra Mohan

This query can be rewritten as follows:

+ (Surendra Mohan) "Surendra Mohan"

The rewritten query depicts that the entered query is mandatory by using + and
shows that we have added an optional phrase. So, a document that contains the
phrase Surendra Mohan not only matches that clause in the rewritten query, but
also matches each of the terms individually (that is, Surendra and Mohan). Thus,
in totality, we have three clauses that Solr would love to play around with.

Assume that there is another document where this phrase doesn't match, but it has
both the terms available individually and scattered out in there. In this case, only
two of the clauses would match. As par Lucene's scoring algorithm, the coordination
factor for the first document (which matched the complete phrase) would be higher,
assuming that all the other factors remain the same.

[20]

Chapter 2

Configuring autophrase boosting

Let me inform you, autophrase boosting is not enabled by default. In order to avail
this feature, you have to use the pf parameter (phrase fields), whose syntax is very
much identical to that of the gf parameter. To play around with the pf value, it is
recommended that you start with the same value as that of gf and then make the
necessary adjustments.

There are a few reasons why we should vary the pf value instead of gf. They are
as follows:

* The p£ value helps us to use varied boost factors so that the impact caused
due to phrase boosting isn't overwhelming.

* Inorder to omit fields that are always a single termed, for example, identifier,
due to the fact that in such a case there is no point in searching for phrases.

* To omit some of the fields having numerous text count in order to retain the
search performance to a major extent.

* Substitute a field with the other having the same data, but are analyzed
differently. You may use different text analysis techniques to achieve this,
for example, Shingle or Common-grams. To learn more about text analysis
techniques and their usage, I would recommend you to refer to http://
wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Configuring the phrase slop

Before we learn how to configure the phrase slop, let us understand what it actually is.
Slop stands for term proximity, and is primarily used to factorize the distance between
two or more terms to a relevant calculation. As discussed earlier in this section, if

the two terms Surendra and Mohan are adjacent to each other in a document, that
document will have a better score for the search keyword Surendra Mohan compared
to the document that contains the terms Surendra and Mohan spread individually
throughout the document. On the other hand, when used in conjunction with the or
operator, the relevancy of documents returned in the search results are likely to be
improved. The following example shows the syntax of using slop, which is a phrase
(in double quotes) followed by a tilde (~) and a number:

"Surendra Mohan"~1

Dismax allows two parameters to be added so that slop can be automatically set; gs for
any input phrase queries entered by the user and ps for phrase boosting. In case the
slop is not specified, it means there is no slop and its value remains 0. The following is
the sample configuration setting for slop:

<str name="qgs" >1</str>
<str name="ps">0</str>

[21]

Boost Your Search

Boosting a partial phrase

You might come across a situation where you need to boost your search for
consecutive word pairs or even triples out of a phrase query. To tackle such

a situation, you need to use edismax, and this can be configured by setting pf2
and p£3 for word pairs and triples, respectively. The parameters pf2 and p£f3
are defined in a manner identical to that of the pf parameter. For instance,
consider the following query:

how who now cow

This query becomes:

+ (how who now cow) "how who now cow" "how who" "who now" "now cow"
"how who now" "who now cow"

This feature is unaffected by the ps parameter due to the fact that it is
only applicable to the entire phrase boost and has no impact on partial
phrase boosting.

%%‘ Moreover, you may expect better relevancy for longer queries; however,
the longer the query, the slower its execution. To handle this situation
and make the longer queries execute faster, you need to explore and use
text analysis techniques such as Shingle or Common-grams. -

Boost queries

Apart from the other boosting techniques we discussed earlier, boost queries

are another technique that impact the score of the document to a major extent.
Implementing boost queries involves specifying multiple additional queries using
the bg parameter or a set of parameters of the dismax query parser. Just like the
autophrase boost, this parameter(s) gets added to the user's query in a very similar
fashion. Let us not forget that boosting only impacts the scores of the documents that
already matched the user's query in the g parameter. So, to achieve a higher score for
a document, we need to make sure the document matches a bg query.

To understand boost queries better and learn how to work with them, let us consider
a realistic example of a music composition and a commerce product. We will
primarily be concerned about the music type and the composer's fields with the

field names wm_type and wm_composer, respectively. The wm_type field holds the
Orchestral, Chamber, and Vocal values along with others and the wm_composer
field holds the values Mohan, Webber, and so on.

[22]

Chapter 2

We don't wish to arrange the search results based on these parameters, due to the
fact that we are targeting to implement the natural scoring algorithm so that the
user's query can be considered relevant; on the other hand, we want the score to be
impacted based on these parameters. For instance, let us assume that the music type
chamber is the most relevant one, whereas vocal is the least relevant. Moreover,

we assume that the composer Mohan is more relevant than webber or others. Now,
let us see how we can express this using the following boost query, which would be
defined in the request handler section:

<str name="bg"s>wm_ type:Chamber®2 (*:* -wm_type:Vocal)” 2 wm_
composer :Mohan”*2</str>

Based on the search results for any keyword entered by the user (for instance,
Opera Simmy), we can infer that our boost query did its job successfully by
breaking a tie score, wherein the music type and composer names are the
same with varied attributes.

In practical scenarios, to achieve a better and desired relevancy boost, boosting on
each of the keywords (in our case, three keywords) can be tweaked by examining
the debugQuery output minutely. In the preceding boost query, you must have
noticed (*:* -wm_type:Vocal) *2, which actually boosts all the documents except
the vocal music type. You might think of using wm_type:Vocal”0.5 instead, but let
us understand that it would still add value to the score; hence, it wouldn't be able
to serve our purpose. We have used * : * to instruct the parser that we would like to
match all the documents. In case you don't want any document to match (that is, to
achieve 0 results), simply use - * : * instead.

Compared to function queries (covered in the next section), boost
queries are not much effective, primarily due to the fact that edismax
supports multiplied boost, which is obviously demanding compared
. toaddition. You might think of a painful situation wherein you want
& an equivalent boost for both the Chamber wm_type and Mohan

S wm_composer types. To tackle such situations, you need to execute
the query with debugQuery enabled so as to analyze the scores of
each of the terms (which is going to be different). Then, you need to
use disproportionate boosts so that when multiplied by their score
(resultant scores from debugQuery) ends up with the same value.

[23]

Boost Your Search

Boost functions

Boost functions provide a robust way to add or multiply the results of a user-specific
formula (this refers to a collection of function queries that is covered in the next section
of this chapter, Function queries) to a document's score. In order to add to the score, you
can specify the function query with the bf parameter. As mentioned earlier, dismax
adds support for multiplying the results to the score, and this can be achieved by
specifying the function query with the boost parameter. The best part of using bf and
boost parameters is that there is no limitation in terms of the number of times you can
use them.

Let us now understand how to use boost functions by taking forward our music
composition and the commerce product example. We would like to boost the
composition tracks by how frequently they were viewed (that is, how popular the
track is among users):

<str name="boost">recip (map (rord(wm track view cou
nt),0,0,99000),1,95000,95000) </str>

Note that we don't have any space within the function. The bf and boost parameters
are parsed in a different manner. You may have multiple boost functions within a
single bf parameter, each separated by space. This is an alternative to using multiple
bf parameters. You may also implement a multiplied boost factor to the function
with bf by appending *150 (or another value) at the end of the function query. It is
equivalent to using the mul () function query.

Boost addition and multiplication

If you have overcome the difficulty in additive boosting (the bf parameter), you
would probably be satisfied enough with the scoring. However, let me tell you that
multiplicative boosting (the boost parameter) is even easier to use, especially in
situations where the intended boost query is less than or equal to the user query
(normally true).

Let us assume a scenario where you want a score of 75 percent of the document to
come from the user query and the remaining 25 percent from our custom formula
(or any defined ratio). In such cases, I would recommend that you use additive
scores. The trick behind choosing an appropriate boost is that you should be aware
of the top score required for the best match on the user query with an intention to
manipulate the proportions appropriately. Just as an exercise, try an exact match on
the title, which is normally the highest boost field in a query and record the top score
rendered. Repeat this process a number of times on varied documents. For instance,
the highest score achieved in your user query lands to 1.2, and you intend the
function query to boost up half as much as the user query does on the final score.

[24]

Chapter 2

Simply adjust the function query so that its upper limit is set to 0. 6 (which is half of
the highest score) and multiply with this(assuming you already have the function
query that lies in the 0-1 range). Even if the preceding guidelines don't work out for
you, you need to tune these additive scores. This is actually tricky due to the fact

that Lucene responds to each and every change you do, especially by modifying the
queryNorm part of the score in the background which you can't control. During the
process, it is recommended to keep an eye on the overall ratio, which is a desirable
value between the user query and the boost, and not on a specific score value. This
attempt of playing around with the queries to achieve the highest score of a user query
might lead to a problem such as a change in the highest score of the user query due

to the change in data. It is highly recommended to keep this process in continuous
monitoring to avoid any such problems from occurring. If you want to explore further
and learn more about how to monitor these background activities, please refer to
Chapter 2, Monitoring Solr of Administrating Solr, Packt Publishing.

The other angle of your thought on using the boost function is a multiplier to the
user query score (factor). The best part of using a factor is that you don't need to
worry what the best user query score is; it's got nothing to do with in this context.
Since multiplicative boost has a relative impact on what you are looking for, the
tricky part of it is weighing your boost (that is, considering the weightage of the
boost). If your function query lies in the 0-1 range, it achieves the same weight as
that of the user query. When you increase your function's values above 0, this means
you are trying to reduce the influence relative to the user query. For instance, if
you add 0.6 to your 0-1 range such that the upper end of the range shifts from 1 to
1.6, it is weighed approximately half of what you added. The following formula is
considered:

Result: (1.6-1)/2 = 0.3

Function queries

A function query can be defined as a user-specified Solr function that is usually
mathematical in nature and is supported by dismax, edismax, and other standard
query parsers. It enables you to generate a relevancy score based on the actual value
of one or more numeric fields. Since function queries are technical, they are so robust
that they can be used in instances where the queries' context comes into picture. The
instances include searching, filtering, faceting, sorting, and so on.

Now, we will understand a few of the ways by which we can incorporate a function
query into our Solr instance. They are as follows:

[25]

Boost Your Search

The dismax query parser (the bf and boost parameters): As we already
discussed earlier in this chapter, the bf and boost parameters boost the
user query score by adding or multiplying the function query. In the
upcoming section, we will learn how to derive a function query in depth
using a few examples.

The boost query parser: Unlike the boost parameter in dismax, the boost
query parser gives you an option to specify a function query that is multiplied
to the user query. On the other hand, the query is parsed by the Lucene query
parser, which is not the case with dismax. Here is a sample query:

{'boost b=log(wm _type)} wm composer:Mohan

The lucene query parser (the _val_pseudo field): The following is a
sample query:

wm_composer:Mohan && _val :"log(wm_type)"*0.02

In the preceding query, don't get an impression that _val_ is a field; instead,
it triggers the query parser to treat the quoted portion of it as a function
query rather than a field value. Since this query matches all the documents,
it is suggested to combine it with other necessary clauses to ensure more
accurate results.

The function query parser (func): The func function query parser is
primarily used in debugging a function query. You may also do some
calculations while querying, which would look something as follows:

g= {!funcl}add($vall,$val2)s$vall=max (price, 200)S$val2=2.0.

The following is an example URL snippet:

g=1log (wm_composer) &defType=func&fl=wm composer, score

The score of each document in the result set is the outcome of the
function query.

The function range query parser (frange): The frange query parser is
similar to the func query parser with an additional capability to filter out
the documents in the search results whose resulting scores fall in a specific
range (which can be defined). It takes two parameters, 1 and u, which
denote the lower and upper ends of the range, respectively. It also takes two
more parameters that are Boolean in nature and are called incl and incu

to specify whether the lower and/or upper ends are inclusive. For your
information, they are inclusive by default and can be altered as and when
required. The following is a sample URL snippet:

g={!frange 1=0 u=2.5}sum(wm_user ranking,wm composer_ ranking)

[26]

Chapter 2

Sorting: Along with sorting capabilities on field values, Solr facilitates
sorting on function queries as well. The following is an example URL snippet
wherein we sort results by distance:

g=*:*&sort=dist (2, pl, p2) asc

Field references

To use fields in a function query, we need to keep the following constraints in mind
(identical to those of sorting):

Firstly, the field must be indexed and not multivalued.

Secondly, while using text fields, you need to make sure they are analyzed
down to one token.

Additionally, just like sorting, all the field values are stored in the field cache.
This means that you need to make sure there is enough memory available

to store the field cache items, along with having an appropriate query stated
in newSearcher of solrconfig.xml so as to avoid the first search being hit
with the initialization cost.

In case the field value for a document is unavailable, the result will definitely
be 0 and numeric values for the corresponding numeric field. But did you
think what would be the scenario in case of other field types? In case of
TrieDateField, you get the ms () value. If the value is 0, can you imagine
how ambiguous this would be because 0 as the date value might mean 2000 or
blank! For historical date fields, we get the ord () value. It is unexpected, but it
is a fact that true is denoted by 2 and false by 1 in case of Boolean fields. You
also get the ord () value for text fields which is the same as that of the historical
date fields. You might come across situations wherein you need to make some
functions work with text values. In such a scenario, you need to explicitly use
the 1iteral () function. You might be wondering looking at ms () and ord ().
Don't worry! We will cover them in depth in our upcoming section.

Function references

In this section, we will cover a reference to most of the function queries in Solr.

You may have an argument to a function as a constant, probably a numeric value,

a field reference, or a function embedded into it. You can do an interesting thing

by fetching any argument into a new request parameter in the URL (you are free to
name the request parameter whatever you like) and reference it with $ prefixed to it,
which will be something as follows:

&defType=func&g=max (wm composer, $min) &min=30

[27]

Boost Your Search

You have the flexibility to either have the parameter in the request or have it
configured to the request handler configuration.

Mathematical operations
Basic mathematical operations and constants are covered in the following
listed functions:
e sum(a, b, ¢, ..):Thisfunction is an alias of add () and it adds all the
arguments stated in (a, b, ¢, ...)

* sub(a, b):This function subtracts b from a and is equivalent to the
expression a-b

* product(a, b, ¢, ..):Thisfunction is an alias of mul () and multiplies
the arguments together

* div(a, b):This function divides a by b and is equivalent to the expression a/b
* log(a): This function gives the base 10 logarithm value of a
* 1n(a): This function gives the natural logarithm value
To learn more about the other mathematical functions such as sqrt (a), cbrt (a),
ceil(a), floor(a), rint (a), pow(a,b), exp(a),and e (), I would recommend that

you visit the java.lang.Math APl at http://docs.oracle.com/javase/6/docs/
api/java/lang/Math.html.

The following are a few of the geometric and/or trigonometric functions that we
commonly use:

* rad(a): This function converts degrees to radians

* deg(a): This function converts radians to degrees

®* gin(a),cos(a),tan(a),asin(a), acos(a),atan(a), sinh(a), cosh(a),
tanh(a), hypot (a,b), atan2 (b, a), pi () : recommend that you refer to
the java.lang.Math API for the explanation of these functions

* Geospatial functions: I would recommend that you refer to the GeoSpatial
search section of Chapter 1, Searching Data of Administrating Solr, Packt Publishing

We will now look into a few more mathematical functions that are very useful and
equally straightforward to use. They are as follows:

[28]

Chapter 2

* map (a, min, max, output, ops?):If alies between min and max
(inclusive of the min and max values), then output is returned. In case ops
(the optional parameter) is passed, it is returned when a doesn't lie between
min and max inclusive; else, a itself is returned. It is more useful when you
deal with the default values or wish to bind a between some threshold
values (min and max).

* max (x, y):Thisfunction returns the value greater than x and y.

* scale (a, minTarget, maxTarget): This function returns a such that it is
scaled to be between minTarget and maxTarget. For instance, if the value of
a is found exactly at the center of the largest and smallest values of a across
all documents, a is returned as half of the distance between minTarget
and maxTarget.

* 1linear(a,b,c):Itisa macro for sum(product (b,a), c).

* recip (a,b,x,c):Itisamacrofordiv(x, linear(a,b,c)).

The ord() and rord() functions

As mentioned earlier in the Field reference section of this chapter, ord (fieldRref)
implies for references to the text fields of a function query. The following is an
overview of ord () and rord():

* ord(fieldRref): Assuming that we have an ascending sorted array for all
unique indexed values for fieldref (reference to a field), ord (fieldref)
returns the array position, that is, it returns the ordinal of a document's
indexed value. The values are in the ascending order, 1 being the first
position. In the case of position, the value returned is 0; this means that the
array doesn't exist.

* rord(fieldRef): This is the same as the value of ord (), with the difference
being that it acts in reverse order.

Let us now understand ord () or rord () using a scenario. Assuming there are

four documents that have been indexed with the holding values 60, 60, 85, and

90, respectively, for a field, say field x. In this situation, ord (x) is going to return
values ranging from 1 to 3, even though we have four documents in the index. The
reason behind this is that out of four documents, only three of them are distinct
(fields where the value 60 has been repeated). There is another difference but a tricky
one, that is, the original values are not in a linear pattern. They are more clustered
together towards the higher values. In such cases, ord () and rord () linearize the
data and end up with a loss of the distribution of the original value.

[29]

Boost Your Search

Other functions

In this section, we will learn different ways to use the ms () function (mentioned
earlier in the Field references section of this chapter) to fetch a date/time value. Please
note that its arguments are optional in nature. Also, any field reference to a time will
act ambiguously to a blank value, ending up with a zero value. The following is the
description of the ms () function:

ms (end_date?, start date?): As stated earlier in this section, these
arguments are optional in nature. So, if you don't provide any argument,

it will return the current time. If you provide one argument (say, ms (end_
date)), it will return the argument passed (in our case, it will return the
value for end_date). If you pass both the arguments (say, ms (end_date,
start_date)), the second argument (start_date) will be subtracted by the
first one (end_date) and the difference in the two values will be returned;
that is, the function returns a value for end date - start date.

There are a couple of function queries that return the score values of some other query.
It is quite a niche feature that possesses its own usage, one of them being sorted based
on whether the field has a value. The following are these function queries:

query (q, def?): This returns the document's score based on the query
supplied as the first parameter. In case it doesn't match, a second parameter
(optional) is returned if it is supplied; else it returns 0. During function
query parsing, due to the query's uncooperative location, it can't be entered
normally, or to be more specific, painlessly. You may put the query in
another parameter and reference it, which will look something like this:

query ($para) ¶=wm music attrib:3

Another thing you can do is specify it using local-params that has the
query in v, which will look something like this:

query ({!v="wm music_attrib:3"}).

boost (g, boost): This is the same as the query (q) with the top up as the
score being multiplied with the boost value (which is a constant).

The following is another function query that calculates the distance between
two strings based on a specified algorithm and the value ranges from 0 to 1:

strdist (s1, s2, alg): The first two arguments (s1 and s2) denote the
strings between which the distance needs to be computed. The alg argument
denotes the algorithm to be used, which might be replaced by jw (Jaro
Winkler), ngram, or edit (Levenshtein).

There are a couple of ways to compute the geospatial distance, one of them
being geodist (), which is described as follows:

[30]

Chapter 2

* geodist (..): It returns the geospatial distance between a pair of points on
Earth using the Haversine formula. Each point is considered based on the
first occurrence of an argument, the pt parameter, or the sfield parameter,
out of which, at least two of them shouldn't be left blank. You may specify
the point as an argument with either a field based on LatLonType or a pair
of field names/constants, which are the typically used argument sorts to
represent the latitude and the longitude. The following is an example for
your reference:

geodist (store, 39.6, -67.8)

There is a pool of other function queries that haven't been covered here. I would
recommend you refer to http://wiki.apache.org/solr/FunctionQuery to
explore more on what more is in store and how they work.

If you want to dive deeper into the Haversine formula, I recommend you refer to
http://bigdatanerd.wordpress.com/2011/11/03/java-implementation-of-
haversine-formula-for-distance-calculation-between-two-points/.

Boosting the function query
The overall process that needs to be carried out in an intention to boost a function
query is as follows:

* Select a formula whose plotted shape is desirable to you

* Input values specific to your data

* Decide and add the weight of the boost relative to the user query
(say, for example, 25 percent or a quarter)

* Decide on either of the boosts (additive or multiplicative) and apply the
relative weight based on the chosen approach (refer to the Boost addition
and multiplication section)

To understand this better, we will go through a few examples that address common
scenarios using in-built formulas.

[31]

Boost Your Search

If you wish to work on your custom formulas instead of using the in-

built ones, I recommend you use tools such as the graphing calculator or

Grapbher (this comes with Mac OS X). You might urge yourself to use a

spreadsheet, for instance, MS Excel, but this is not the appropriate tool
for this purpose.

/<>~ Moreover, in scenarios where your data keeps changing, with an impact
of manual modification of the constants in the function query, I would
recommend you implement a scheduled automated test on your Solr
data to ensure that the Solr data fits in the expected bounds. To achieve
this, you can probably configure a Continuous Integration (CI) server.

Logarithm

The logarithm formula is especially meant for inputs that grow without any bounds
and also result in an unbounded output. However, it fails while handling larger
values or numbers due to the fact that the growth of the curve gets hampered while
addressing large numbers. The use of a logarithm is appropriate and ideal when you
are looking for an output you might conclude with. It is highly recommended that
you avoid negative scores in your logarithm, which means that it can't be inverted.

The following is the formula for an example graph:
loge((c-1)mx+1)

Here, c is a number of your choice, which is greater than 1, and is responsible

for how the curve should bend, m is (c-1)/horizon (described next), and x is a
non-negative input, which is usually a field reference. The graph of the preceding
formula is as follows:

1.5| »

Chapter 2

The recommended value for c is 10 (demonstrated in our preceding graph). The
smaller the value of c, the more linear the output; on the other hand, the higher its
value, the more the curve you get as the output will lean. horizon is considered as
the inverse of m and its value results to 1. Using the logarithm, values advance the
output gradually, but in a shallow slope that slowly gets even shallower. Assuming
c as 10, here is a simplified Solr function query that is to be used:

log(linear (x,m, 1))

If you intend to verify your formula, input the value as o0 that should result in 0, and
then supply horizon, which should result in 1. If successful, you are now ready to
proceed further by boosting your other function queries.

Reciprocal

Reciprocal is the formula that is more effective when you intend to achieve a
maximum boost on an input 0 and descends as the input value increases. It is
generally used to boost the newly added content based on the document's age.

The following is a sample graph that demonstrates the curve for the following formula:

/(x+c)

53

horizon X

z1q?

This is translated very easily to a Solr function query, which is recip (x,1,c,c).

[33]

Boost Your Search

Here, x is a non-negative input, either a field or a function reference to a field, and c
is one-tenth of the horizon input value (approximately). Thus, the larger the c value,
the lesser is the boost effect.

Now, it's time to verify your formula. Input a value as 0, which should resultin 1,
and then supply horizon, which should result in a number ~0.09. If successful, you
are now ready to proceed with further boosting on your other function queries.

Linear

The linear formula is favorable and recommended in situations wherein you are sure
that the value you have in your schema or computed formula stays within a fixed
range or is bound. Then, it becomes easy to shift this to a nominal range of 0-1 quite
easily, assuming that the relationship between the input and the expected boost
effect is linear in nature.

The formula is linear (x,m,c).

Here, x is the input field, m is calculated as 1/ (maxR-minR), c is calculated as minr/
(minR-maxR), where maxR signifies the value of the range that has the maximum
boost, and minRr denotes the end of the range that has the least boost.

Suppose that you have the input value ranging from 4 to 10, and if 4 is least relevant
compared to 10, minR is 4 and maxR is the other value, that is, 10.

To verify your formula, input values, each for minr and maxr, and record whether
the output it is 0 or 1. An output as 1 denotes a higher boost. You are now ready to
proceed with further boosting on your other function queries.

Inverse reciprocal

Generally speaking, the reciprocal of a linear function is favorable due to the fact that
despite of the input growing without bounds, it results in a bounded output.

This is the sample graph that shows the curve for the following formula:
{(-max2 + max) / (mx + max-1)} + max

Here, x is a non-negative input, usually a field reference. m is 1/horizon and max is the
value that this function targets but doesn't reach (1 < max < 2, typically, 1.5).

[34]

Chapter 2

1.5| » o

Use the following Solr function query:
sum (recip(x,m,a,c), max)

Here, x, m, and max are the same as described previously; a is max (1-max) and
cismax-1.

If you intend to verify your formula, input a 0 value that should result in 0 and then
supply horizon, which should result in 1. You are now ready to proceed with further
boosting on your other function queries based on the formula you have in place.

[35]

Boost Your Search

Summary

In this chapter, we covered advanced topics associated with scoring, function queries,
and so on. We began with a background on Lucene scoring, different terminologies
and their significance, and learned query-time and index-time boosting. We also
learned how to troubleshoot your queries and scoring and headed towards more
complex and important topics such as different ways to use the dismax query parser
and how it is better than Lucene's DisjunctionMaxQuery. Apart from this, we learned
the ways of boosting our search based on varied circumstances, for instance, automatic
phrase boosting and partial phrase boosting, what are the boost queries and boost
functions and how can they be used. We also covered advanced concepts of function
queries such as field and function references, different mathematical operations,
including geometric or trigonometric operations, and how to implement formulas such
as logarithm, reciprocal, and linear in an intention to boost your function queries.

In the next chapter, we will mainly concentrate on different techniques to optimize
the Solr performance, which includes (but not limited to) various performance factors,
how to replicate an index using the master-slave architecture, Solr caching, SolrCloud,
how to scale your Solr playground horizontally (also known as how to play around
with multiple Solr servers and sharding), and learn how to implement a real-time
based search.

[36]

Performance Optimization

In this chapter, we will learn more different ways to optimize your Solr's performance,
starting from understanding the required factors that affect performance and

heading towards advanced concepts such as index replication using the master-slave
architecture. We will also learn more about playing around with multiple Solr servers,
sharding, distributed search, and much more. We will cover the following topics:

* Solr performance factors
* Solr caching
* Using SolrCloud

¢ Near real-time search

So, let us get started.

Solr performance factors

In this section, we will understand the factors and metrics that impact Solr's
performance. The following are the metrics and the parameters that you should look
into in order to see the impact of the changes you have performed:

* Transactions Per Second (TPS): This denotes the number of search queries
and document updates you are able to perform in a second. To have a
better understanding, you may navigate to the statistics page and look at
the avgTimePerRequest and avgRequestsPerSecond parameters of your
request handler.

Performance Optimization

* Memory usage: While tweaking components to manage the memory
usage, you need to ensure that the memory used by Solr doesn't increase
day-by-day, though a slight increase in this may be acceptable. However,
if this usage keeps increasing without any constraint, you will be prone to
receive out-of-memory errors. In such a situation, TPS increases significantly,
and extra care needs to be taken so as to debug and stabilize memory usage.
You need to keep an eagle's eye on this memory-usage trend; to monitor this,
you may use JConsole.

* CPU usage: It is also recommended that you keep an eye on Solr's CPU
usage, probably using JConsole. There are OS-specific tools as well, such as
PrefMon and Top, which have been designed for OS Windows and UNIX
respectively, to monitor Solr-specific Java processes. Using these tools is
helpful if you wish to monitor processes, in case it has a number of services
running on the same box, fighting for the resources.

Solr caching

In this section, we will learn about the different caching techniques and ways to
configure them appropriately so as to achieve better performance of your Solr instance.

Document caching

Document cache, one of the cache types available with us, stores Lucene's internal
documents fetched from the disk. In order to get the document caching to work at its
optimal level, you need to configure it appropriately so as to minimize I/O calls that
result in boosted deployment performance.

Let us assume that we are dealing with the deployment of Solr, where we have
approximately 100,000 documents to address. Additionally, our single Solr instance
gets a maximum of 10 concurrent queries and each query can fetch 220 documents,
which is the maximum count.

Based on the preceding parameters, our documentcache tag should look similar to the
following code snippet (add the following code to your solrconfig.xml file):

<documentCache
class="solr.LRUCache"
size="2200"
initialSize="2200"/>

[38]

Chapter 3

Note that we didn't use the autowarmCount parameter. This is because the document
cache makes use of Lucene's internal ID in order to identify documents, and

these identifiers can't be copied during index changes. Hence, this cache can't be
automatically warmed.

We will now understand the preceding code snippet and the impact of each
parameter. Firstly, we defined it in the documentcCache tag of our solrconfig.
xml configuration file and specified a couple of parameters that define and impact
the document cache's behavior. The class parameter instructs Solr about the Java
class to be used during implementation. In our case, we have used solr.LRUCache
as we have an intention to add more information into the cache than fetching from
it. If you are fetching more information than you have added, it is recommended
that you use the size parameter of solr.FastLRUCache instead of solr.LRUCache,
which denotes the upper end size of the cache. It is always recommended to set
the value of size as the product of the maximum number of results returned by

a query and the number of concurrent queries. This ensures that we have enough
cache space available and Solr doesn't need to fetch data from the index. The last
parameter, which is initialSize, denotes the initial size of the cache. We have set
the initialSize value to the same as that of the size value. This is because we
don't have Solr to invest its resources for a cache resizing activity.

Once you have set the parameters, you need to keep monitoring its behavior; if you
find your cache not meeting your expectations, you should take appropriate actions
accordingly. While you make the changes, you should keep in mind that having a
large cache with a very low hit rate can prove to be even worse than having no cache
at all.

While monitoring the cache usage, if you find expulsion, this is a signal
. that the cache might be too small. Additionally, if you get a very poor
% hit rate, it is usually recommended that you turn off the cache. As you
S already know, cache setup is dependent upon data, queries, and users;
thus, it is highly recommended that you keep an eagle's eye on your
cache and feel free to change them as and when required.

Query result caching

In the case of an enterprise web application or an e-commerce portal, multiple user
queries are fired and handled when a user attempts to search for some specific
information. We don't have any idea how many queries fired are unique in nature, and
of course, it is not suggested to even predict that. If we can figure out the unique query
count fired in a day, week, month, quarter, and year or during any specific duration,
we can optimally use a query result cache. Yes, of course, by looking into Solr logs,
you will be able to fetch the desired statistics to play around with.

[39]

Performance Optimization

Let us think of a scenario where you own an e-commerce web portal and your Solr
instance handles 15 to 20 queries per second. Each query can be sorted based on
three different fields (chosen by the user). Additionally, a user can also choose the
sort order. Upon analyzing the logs for the previous quarter, we found that there
are approximately three thousand unique queries that users have typed in the
search box.

Based on the preceding statistics, it's now time to configure our query result cache,
which is as follows. It should be added to our solrconfig.xml file:

<queryResultCache
class="solr.LRUCache"
size="18000"
initialSize="18000"
autowarmCount="4500"/>

The parameters such as class, size, and initialSize denote the same as we
discussed in the Document caching section of this chapter.

However, it is good to understand the equation responsible for having the size
parameter as 18000. The lowest value that the size parameter can hold is as follows:

size = 3000 * 3 * 2
The formula for calculating the size parameter is as follows:
Size=(x*y) *2

Here, x is the total number of unique queries fired by the users in the recorded
duration and y = field count per user query.

Thus, size = 18000 (in our case).

Additionally, we have set the initialsize parameter to the maximum size of 18000
so as to avoid wastage of resources while resizing the cache.

We will now understand the autowarmCount parameter, which we didn't cover
earlier in this chapter. This parameter denotes the number of entries that should

be copied when Solr invalidates the caches, for instance, after a commit operation
has been performed. In our case, we have set this parameter as one fourth of the
maximum size of the cache (18000 /4), which is 4500. This is because we don't
want the caches to keep warming for a longer duration. Moreover, you are open to
adjusting its value as and when required so as to achieve optimal Solr performance.

[40]

Chapter 3

Like document caching, you need to keep an eye on how the cache
. is being used while your Solr instance performs its activities. If you
a find expulsion, there are chances that your cache is too small. If you
L analyze a very poor hit rate, it is wise to disable or turn off the query
result caching. If the caching doesn't seem to perform its job as per your
expectations, you may adjust the parameters as and when required.

Filter caching

In general scenarios, Solr developers are inclined to add an additional clause with a
suitable logical operator to the main query, forgetting that Solr also provides filters
to tackle such situations and is highly robust if it is used in a wise manner. These
filter queries are capable enough to handle the scenarios that are practically solved
by adding clauses through logical operators (which adds complexity to the queries).
While using filter queries, an added advantage is that we can cache the filter results
so as to minimize the resource usage overheads, resulting in better performance; the
filter cache is the one for you to do the same.

Let us assume that in our same e-commerce web application (as discussed in the
Document caching section), which is a single Solr slave instance handling all the
queries coming out of the application. We also analyzed the log records for the
previous quarter and found that we have approximately 3000 unique filter queries
fired during this time span. We will now set up a filter cache based on the current
statistics we have in hand. Add the following code snippet to your solrconfig.xml
configuration file:

<filterCache
class="gsolr.FastLRUCache"
size="3000"
initialSize="3000"

autowarmCount="750"/>

First of all, let me remind you, parameters such as class, size, initialSize, and
autowarmCount signify the same as we discussed earlier in the Document caching and
Query result caching sections.

Here, as the class parameter, we have used solr.FastLRUCache instead of solr.
LRUCache, because as per our investigation, we get more information that we added.
Instead, you may use solr.LRUCache if it is the other way round, that is, you add
more information than you fetch.

For the initialSize parameter, we have set the same value as that of size, as we
want to avoid the overhead of cache resizing.

[41]

Performance Optimization

In the case of the last parameter, which is autowarmCount, we have again set this
as one fourth of the maximum cache size because we don't want the cache to be
warmed for a longer duration.

Like document and query result caching, you need to keep an eye on how the cache
is being used while your Solr instance performs its activities. If you find expulsion,
there are chances that your cache is too small. If you analyze a very poor hit rate, it is
wise to disable or turn off the query result caching.

Result pages caching

Imagine a situation where you have an e-commerce online library and you know that
your data hardly changes. You might be wondering how to make your search server
a stress-free one! You might think of setting up caching, probably HTTP caching,
which is of course a good idea. At this point, you will have an unanswered question
on your mind, wondering whether you have to set up an external cache prior to

Solr or whether you can instruct Solr to use its own cache mechanism that probably
serves your purpose? The answer is yes, Solr has such mechanisms that can cache

all the result pages, and we will learn how to implement them in this section.

We assume that you have basic knowledge of HTTP cache headers. If not, there
is nothing to worry about; you may refer to the RFC document at http://www.
w3.org/Protocols/rfc2616/rfc2616-secl3.html before you proceed further
with this section.

Now it's time to configure the HTTP cache. We assume that our index changes every
two hours. Let us perform the following steps, starting from configuring our Solr
request dispatcher:

1. Replace the request dispatcher definition in solrconfig.xml with the
following content:
<requestDispatcher handleSelect="true">
<httpCaching lastModifiedFrom="openTime" etagSeed="Solr"s
<cacheControl>max-age=7200, public</cacheControl>
</httpCaching>
</requestDispatchers>

2. Send a query very similar to the following ones so as to look into the
HTTP headers:

http://localhost:8080/solr/select?g=author

[42]

Chapter 3

3. Here we go with the HTTP headers:

HTTP/1.1 200 OK

Cache-Control: max-age=7200, public
Expires: Fri, 27 Dec 2013 18:45:55 GMT
Last-Modified: Fri, 27 Dec 2013 16:45:23 GMT
ETag: "XzEwNDEwNDEwWNDEwWNDEwWNFOVLHC="
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked

If you get a response as shown in the preceding code, this indicates that your cache
configuration worked.

Now, let us go through the parameters and their respective values and understand
them better. We have defined a cache inside the requestDispatcher tag.

The handlesSelect="true" attribute states that error handling is enabled (by
default, it is set to false). Within the httpCaching tag, which is responsible

for the configuration of HTTP caching in Solr, you must have noticed that

the <httpCaching never304="true" > taghas been disabled as we are

using lastModifiedFrom="openTime" and etagSeed="Solr" instead of
httpCachingnever304 (either httpCachingnever304 or lastModifiedFrom and
etagSeed can work together). This means that when you use httpCachingnever304
="true", the other two parameters are ignored.

The lastModifiedFrom="openTime" parameter denotes the last modified HTTP
header that will be relative to the timestamp in which the current searcher was
opened, which is relative to the previous replication execution timestamp. If you
wish to make it relative to the timestamp when the physical index was last modified,
you may use dirLastMod instead of openTime. Next, the etagseed attribute is
responsible for generating ETag HTTP cache header.

The cacheControl tag is used to specify the generation of the cache control HTTP
headers. For instance, in our case, we have used max-age=7200, which denotes

the maximum life span of the cache (2 hours) and instructs Solr to set the cache as
invalid once this maximum life span has been elapsed. The public directive instructs
Solr that the response is open to be cached by any cache type.

[43]

Performance Optimization

Using SolrCloud

As you might be aware, a new feature named SolrCloud was introduced in Apache
Solr 4.0, and it enables us to perform searching and distributed indexing at a full
scale. Prior to SolrCloud, the sharding concept was heavily used as far as managing
a Solr distributed cluster was concerned. However, managing it was a challenge,
which allowed the SolrCloud concept to come into play and made the activity even
easier and more robust. Let us go through the challenges faced using sharding, the
cons of which made SolrCloud exhale. They are as follows:

Maintenance of the index view: Sharding restricts updations and deletions
to be forwarded to the appropriate shard, to ensure there is only one version
of each document.

Auto-failure recovery: If a shard goes down, that portion of the index goes
offline and you need to bring it up and run it manually with a backup.

Cluster configuration: Using sharding in a distributed environment and
managing schema.xml and solrconfig.xml can be quite painful and would
require additional skills in terms of configuration deployment utilities to
handle files in a cluster.

Durability: Think of a situation where a document that has been indexed to a
shard never writes to the disk when the shard goes down. Custom solutions
need to be implemented to enforce durability.

Querying a cluster: In case a shard goes down, this is an overhead to notify
each and every application that queries Solr so that the shard lists can be
changed. SolrCloud handles the preceding activities very efficiently, adding
value to it with the following top-up list of incorporated features:

o

Built-in partitioning: You just need to define a number of shards for
the cluster, and it is left to Solr to manage the shard's partitioning
schema. It is guaranteed that updation and deletion activities are sent
to the correct shard.

Transaction log: A transaction log is written to the disk, thereby
providing durability.

Centralized configuration: Cluster configuration is managed by
ZooKeeper, which enables you to point to a configuration when you
wish to start a shard in the cluster.

Auto-failover and replication: This supports shard replication and
auto-failover for the nodes of a cluster.

Let us now discuss in detail the various activities we can do using SolrCloud.

[44]

Chapter 3

Creating a SolrCloud cluster

Imagine a situation where you find that the amount of data is too high to be handled
by a single Solr server, and you need to set up a distributed environment. Yes, of
course, you can set up another server or go for another master database that holds

a unique set of data. While creating a SolrCloud cluster, you need to set up
replication, address duplicate data, and other activities. We will discuss these
activities in this section.

Before you go deeper into how to create a SolrCloud cluster, it is recommended that
you understand how to set up, configure, and deploy ZooKeeper, all of which was
covered in Chapter 6, Performance Optimization with ZooKeeper of this book.

Let us assume that we would like to create a SolrCloud cluster that has four Solr
servers, and our data gets distributed among the Solr servers in such a way that we
have the original data sharded in two machines. Additionally, we would like to have
a copy of each shard available with us, which will act as a disaster recovery data in
case any of our Solr instances go down. We also assume that we have our ZooKeeper
cluster up and running at 192.168.1.4 (IP address) using the port 2181. Let us get
started with the following steps:

1. Populate the cluster configuration into the ZooKeeper cluster. To do so, run
the following command:
java -Dbootstrap confdir=./solr/collectionl/conf -Dcollection.

configName=twoShardsTwoReplicasConf -DnumShards=2
-DzkHost=192.168.1.4:2181 -jar start.jar

2. Once our configuration has been populated, start another node (the shard) by
running the following command:

java -DzkHost=192.168.1.4:2181 -jar start.jar

3. By now, we have two shards created and we will replicate these shards. We
simply need two additional servers for running the following command in
order to get each replica (in our case, run the command twice):

java -DzkHost=192.168.1.4:2181 -jar start.jar

We are now done with creating a SolrCloud cluster consisting of two nodes

(shards) and their respective replicas. Wasn't it simple! To cross-check whether

you have actually succeeded in creating the SolrCloud cluster, navigate to the cloud
configuration of your Solr administration panel and you will find that your cluster
has four nodes, the first two of them acting as leaders for the shards and the other
two as their replicas. Now, you are in a position to get-set-go to start indexing data
on one of the servers. From there, it's Solr's responsibility to handle data distribution
and autoreplication of the corresponding data. Let us now understand what we did
and why.

[45]

Performance Optimization

Firstly, we sent all our configuration files to ZooKeeper so that our Solr servers

are capable enough to fetch it from there. That's the reason we added the
Dboostrap_confdir and -Dcollection.configName parameters at the initial
stage, that is, while running our first server. The first parameter signifies the
directory location where we want our configuration files to be placed in ZooKeeper,
and the second parameter contains the nomenclature of your configuration. The
-DnumShards=2 parameter states the number of shards we want to have in our
cluster (in our case, it's 2). The -DzkHost parameter instructs Solr where to look

for our ZooKeeper cluster (the IP address along with the port).

While setting up the SolrCloud cluster, you need to be sure about
M the number of shards you want due to the fact that you can't
Q modify the count once the cluster has been created. However, you
can add replicas even after the cluster has been created, without
touching the existing shard count.

It is feasible for you to run the ZooKeeper server while it is being embedded into
your Solr instance. Let us learn how to do this.

To start your ZooKeeper server while it is being embedded into Solr, you need
to pass the -DzkRun parameter instead of -DzkHost=192.168.1.4:2181. So, our
command would look as follows:

java -Dbootstrap confdir=./solr/collectionl/conf -Dcollection.configName=
twoShardsTwoReplicasConf -DnumShards=2 -DzkRun -jar start.jar

Multiple collections within a cluster

Think of a situation where we want more than one collection within a single Solr
cluster. For instance, we want to store books in one collection and authors in the
other. Let us learn how to do it using SolrCloud.

Before we go deeper into the actual concept that we intend to cover, we again
recommend that you understand how to set up, configure, and deploy ZooKeeper.
This is covered in Chapter 6, Performance Optimization with ZooKeeper of this book. We
assume that our ZooKeeper is running on the localhost and is listening on port 2181.
Let us now get started with the following steps:

1. Since we don't have any collections defined so far in our new SolrCloud
cluster that we wish to start, we have to start with the solr.xml file. Your
solr.xml file on both the instances should look like the following code
snippet:

<?xml version="1.0" encoding="UTF-8"?>
<solr persistent="true">

[46]

Chapter 3

<cores adminPath="/admin/cores"
defaultCoreName="collectionl" host="${host:}"
hostPort="${jetty.port:}"
hostContext="${hostContext:}"
zkClientTimeout="${zkClientTimeout:15000}">
</cores>
</solr>

Next, let us assume that our SolrCloud cluster constitutes of two SolrCloud
instances, both running on the same physical server on ports 8983 and 9999
respectively. Start these two instances using the following commands:

java -Djetty.port=8983 -DzkHost=localhost:2181 -jar start.jar
java -Djetty.port=9999 -DzkHost=localhost:2181 -jar start.jar

Now, it's time to add the configuration files for both the collections to
ZooKeeper. Let us assume that we want the configuration files to be stored
for both collections at /usr/share/config/books/conf and /usr/share/
config/authors/conf respectively. In order to send these files to their
respective locations in ZooKeeper, let us run the following commands from
our $SOLR_HOME directory:

cloud-scripts/zkcli.sh -cmdupconfig -zkhost localhost:2181
-confdir /usr/share/config/books/conf -confnamebookscollection

cloud-scripts/zkcli.sh -cmdupconfig -zkhost
localhost:2181 -confdir /usr/share/config/authors/conf
-confnameauthorscollection

By now, we have the configuration files pushed to ZooKeeper and they are
now in place. It's time to create our collections for books and authors. To do
so, run the following commands:

curl 'http://localhost:8983/solr/admin/collections?action=CREATE&N
ame=bookscollection&numShards=2&

replicationFactor=0"

curl 'http://localhost:8983/solr/admin/collections?action=CREATE&n
ame=authorscollection&numShards=2&replicationFactor=0"

Finally, we are done with our procedure and it's time to test whether
everything went well. Let us query one of the newly created collections.
Here we go:

curl

'http://localhost:8983/solr/authorscollection/select?qg=*:*"

[47]

Performance Optimization

6. The response to the preceding command is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<responsex
<lst name="responseHeader'"s>
<int name="status">0</ints>
<int name="QTime">39</int>
<lst name="params">
<str name="qg">*:*</str>
</lst>
</lst>
<result name="response" numFound="0" start="0" maxScore="0.0">
</result>
</response>

As you can see, the response works correctly; however, you might have noticed that
we get 0 documents due to the fact that we don't have any data indexed. Additionally,
while querying the other collection, that is, books, you can expect the same response.

Let us now walk through what we did and what exactly happened. As you might
have noticed, we used the same solr.xml file on both the instances and none of them
contained any information associated to the core. We have done this purposely as

we want a clean and tidy cluster without any collection created. Please keep in mind,
before the configuration files are sent to ZooKeeper, our configuration directories
should consist of solrconfig.xml, schema.xml, and stopwords . txt so as to facilitate
our Solr instance work.

Now, let us understand the zkc1i . sh script, which is an interesting and important
script that we used to push the configuration files to ZooKeeper. This can be found in
the cloud-scripts directory of our Solr distribution. The cmd parameter specifies that
we intend to do. In our case, we used upconfig, which states that we wish to upload
the configuration files. The zkhost parameter defines the IP address and the port of
our ZooKeeper instance. The confdir parameter is one of the most important and
crucial parameters and specifies the path to the directory (in our case, /usr/share/
config/books/conf and /usr/share/config/authors/conf) holding the Solr
configuration files. The last parameter, confname, states the name of the collection

we are going to use along with our configuration.

[48]

Chapter 3

Once the configuration files are pushed into ZooKeeper, we run the command to
create the actual collection in the cluster. To do this, we send a request to the /
admin/collections handler, which is based on the collections API. We instruct Solr
to create a new collection using the action=CREATE parameter and collection name
by using name=bookscollection and name=authorscollection. The last

two parameters we use are numshards and replicationFactor, which signify

the number of shards and replicas respectively that we intend to have.

Managing a SolrCloud cluster

On the top of creating new collections using the API facilitated by SolrCloud, we
can also attempt additional operations with the intention to manage our SolrCloud
cluster dynamically. They are the delete and reload operations, where the delete
operation helps you delete your existing collection and the reload operation helps
you reload the whole collection. Let us learn them in this section.

We assume that you have already referred to the preceding section, Multiple
collections within a cluster. We will continue with the previous example where we
created two collections with the names bookscollection and authorscollection.

1. Let us delete one of the collections, for instance, authorscollection. To do
so, run the following command:

curl 'http://localhost:8983/solr/admin/collections?action=DELETE&n
ame=authorscollection'

2. To verify whether the preceding command did its job, you may navigate to the
cloud section of your Solr administration panel. In our case, we found that the
collection authorscollection was missing, that is, it was deleted successfully.

3. Now, let us understand how collection reload works. Prior to the actual
activity, we will update the spellings. txt file that is found in the conf
directory in /usr/share/config/books/. The original file consists of the
following text:
pizza
history

4. Once the spellings.txt file is updated, it should contain the following text:
fiction

comedy

5. Inorder to reload the collection, we need to update the collection configuration
in ZooKeeper and later carry on with the actual reload command. So, to update
the collection configuration in ZooKeeper, we will run the following command
from our Solr home directory:

[49]

Performance Optimization

cloud-scripts/zkcli.sh -cmdupconfig -zkhost localhost:2181
-confdir /usr/share/config/books/conf -confnamebookscollection

6. By now, we have the latest version of the configuration files associated with
bookscollection in ZooKeeper. To perform the actual reload activity, we
will run the following command:

curl 'http://localhost:8983/solr/admin/collections?action=RELOAD&nN
ame=bookscollection'

7. To ensure that our preceding activities impacted ZooKeeper positively, we
will run the following command:

curl 'http://localhost:8983/solr/bookscollection/admin/
file?file=spellings.txt'

8. We come up with a response that looks as follows:
fiction
comedy

By looking at the preceding response, we ensured that our reload activity
worked appropriately.

Let us understand how it worked. We initiated our activity on a cluster that contained
two collections (authorscollection and bookscollection). Our intention was to
delete one of the collections (authorscollection) and update and reload the other
one (bookscollection). To do so, we used Solr's collections API.

In order to delete the collection, we triggered the delete action (act ion=DELETE)
on the collections API address (thatis, /solr/admin/collections), and used the
name parameter to specify the name of the collection we intend to delete. Once the
command did its job, we cross-checked it in Solr's administration panel and found
that the authorscollection collection was missing; hence, it was proved that the
intended collection had been deleted successfully.

Later, we proceeded to update the other collection (bookscollection). In order to
see how it works, we modified the content of the spellings.txt file and uploaded it
to ZooKeeper by running the script, zkc1i. sh (one of the scripts shipped with Solr).
Then, we instructed Solr to reload our targeted collection by triggering the reload
action (action=RELOAD) to the collection API along with the name parameter, which
specifies the collection name we targeted to reload.

After the reload activity, we even cross-checked the effect by running a command
that reads the content of spellings.txt using the /admin/file handler. To do so,
we passed the file=spellings.txt parameter to this handler, which ensures that
the content returned is the updated one.

[50]

Chapter 3

Distributed indexing and searching

Imagine a situation where you have a distributed SolrCloud cluster, that is, you have

a number of shards and their respective replicas. In such a scenario, the data will

be automatically distributed among all the shards, will get replicated between the
replicas, and will be spread throughout the shards. Additionally, you would definitely
want them to be capable enough to be queried when a user attempts to search for a
keyword or a set of keywords. It looks a bit tough to handle, but let me inform you
that Solr 4.0 and higher versions can do this job without much complexity involved
compared to the Solr versions below 4.0, where in the latter case, you have to manually
specify the list of shards to be queried. In this section, we will learn how to execute
queries, which are distributed in nature.

We assume that by now, you are familiar with how to create a SolrCloud cluster.
In case you are not familiar with this, I recommend that you refer to the Creating a
SolrCloud cluster section of this chapter.

Before we start with the actual steps to follow, let us assume that we have a
SolrCloud cluster consisting of three nodes and a single cluster deployed to this
cluster; it is the same as that of one collection with three shards. For demonstration
purposes, we will use the example configuration files and the XML files as
documents that are shipped with Solr and are placed in the exampledocs directory.

As far as distributed indexing and searching activity is concerned, the best part of
working on Solr Version 4.0 and higher versions is that you simply need to send
the appropriate index and search requests to one of the shards (no need to send to
all the shards individually). To index the document files (that is, all XML files) of
the exampledocs directory, we run the following command from the exampledocs
directory of our Solr instance that is running on port 8983:

java -jar post.jar *.xml

To make sure the documents have been really sent to all the shards, we will use both
non-distributed as well as distributed queries. Starting with the non-distributed
queries, we will run three queries individually for each shard and record the
respective response we get. We will do this by performing the following steps:

1. Run the following query for the first shard:
curl 'http://localhost:8983/solr/select?qg=*:*&rows=0&distrib=false’

2. We get the following response:

<?xml version="1.0" encoding="UTF-8"?>
<responsex
<lst name="responseHeader'"s>
<int name="status">0</int>

[51]

Performance Optimization

<int name="QTime">0</ints>
<lst name="params">
<str name="distrib"s>false</str>
<str name="g">*:*</str>
<str name="rows">0</str>
</1lst>
</1lst>
<result name="response" numFound="3" start="0">
</results>
</response>

3. Now, we run the following query for the second shard:

curl 'http://localhost:5983/solr/select?g=*:*&rows=0&distrib=false’

4. We get the following response for the preceding query:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">0</ints>
<lst name="params">
<str name="distrib"sfalse</str>
<str name="q">*:*</str>
<str name="rows">0</str>
</1lst>
</1lst>
<result name="response" numFound="7" start="0">
</results>
</response>

5. Next, we run the following query to our last, that is, the third shard:
curl 'http://localhost:3983/solr/select?g=*:*&rows=0&distrib=false’

6. We get the following response for the preceding query:

<?xml version="1.0" encoding="UTF-8"?>
<response>

<lst name="responseHeader"s>

<int name="status">0</ints>

<int name="QTime">0</int>

<lst name="params">
<str name="distrib"sfalse</str>
<str name="q">*:*</str>
<str name="rows">0</str>

</lst>

[52]

Chapter 3

</lst>
<result name="response" numFound="4" start="0">
</results>

</response>

You might have noticed that the total number of documents returned as
a result of the preceding three queries is 14. So far, everything seems to
work perfectly.

Now, let us run the following distributed query (provided by Solr) to check
whether all three shards have been queried or not:

curl 'http://localhost:8983/solr/select?q=*:*&fl=id, [shard] &rows=70"

We get the following response for the same (as the response was huge, I have
considered one document per shard):

<?xml versgion="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">66</int>
<lst name="params">
<str name="f1l">id, [shard]</str>
<str name="qQ">*:*</str>
<str name="rows">70</str>
</lst>
</lst>
<result name="response" numFound="14" start="0"
maxScore="1.0">
<doc>
<str name="id">SM6371N</str>
<str name="[shard] ">gr0-vaio:3983/solr/collectionl/ </str>
</doc>

<str name="id">MS15020P</str>
<str name="[shard] ">gr0-vaio:5983/solr/collectionl/ </str>

<str name="id">AI-01l</str>
<str name="[shard] ">gr0-vaio:8983/solr/collectionl/ </str>

</result>
</response>

[53]

Performance Optimization

On looking at the response, we are assured that our distributed query worked as we
intended to, by fetching the documents from all the three shards.

Let us now understand how it worked. We indexed the documents to the Solr
instance running on port 8983. However, when we queried the shards individually
with the distrib=false parameter, we noticed that each of the shards holds a
different number of documents, which is totally expected. By now, you must have
understood that the distrib=false parameter forced the query to run on the Solr
server it was sent to and behave in a non-distributed manner.

Let us concentrate on the distributed query we had run. The g=*: * parameter was
used to fetch all the documents and returned a maximum of 70 documents (row=70).
Additionally, we specified the £1 parameter in such a way that we instructed Solr to
return the document with the id field and information about the shard from which the
document was fetched (£1=id, [shard]). As you must have noticed, we received the
response that fetched documents from all the shards associated with that collection.
This is because when using SolrCloud deployment, Solr automatically queried all the
shards in the cluster that were associated with a specific collection. As information
about the shards and replicas (if any) are fetched from ZooKeeper anyway, we don't
need to bother about passing such information explicitly in the query.

Stopping automatic document distribution

Imagine a situation where you want your users to search for the document they have
indexed. In such a scenario, the standard distribution among SolrCloud instances
cannot be a good solution; instead, you would like your document distribution to be
controlled within the application (that is, outside Solr). Possibly, you might think of
storing the documents on a per-user-per-shard basis. This means that you need to
turn off automatic document distribution. We will learn how to do it in this section
by performing the following steps:

1. We assume that you know how to create a SolrCloud cluster and play around
with the £1 parameter to modify the returned document.

2. Additionally, we assume that you have the following index structure defined
in the schema . xml configuration file, and ZooKeeper already holds this file,
which is up to date:

<fields>

<field name="id" type="string" indexed="true" stored="true"
required="true" />

<field name="usrName" type="string" indexed="true"
stored="true" />

<field name="record" type="text" indexed="true" stored="true" />

[54]

Chapter 3

<field name="_ version " type="long" indexed="true"
stored="true"/>
</fields>

We consider two files recordUsera.xml and recordUserB.xml, each
holding user data of users usera and userB, respectively. These files
are as follows:

° The recordUsera.xml file is as follows:

<add>
<doc>
<field name="id">1l</field>
<field name="usrName">userA</field>
<field name="record"suserA record</fields>
</doc>
</add>
° The recorduserB.xml file is as follows:

<add>
<doc>
<field name="id">2</field>
<field name="usrName">userB</field>
<field name="record"suserB record</fields>
</doc>
<doc>
<field name="id">3</field>
<field name="usrName">userB</field>
<field name="record"sAnother record of userB</field>
</doc>
</adds>

Now it's time to stop automatic distribution of documents among shards. In
order to do so, we need to define the UpdateRequestProcessorChain tag in
the solrconfig.xml file as follows:
<updateRequestProcessorChain>

<processor class="solr.LogUpdateProcessorFactory" />

<processor class="solr.RunUpdateProcessorFactory" />

<processor class="solr.NoOpDistributingUpdateProcessorFactory" />
</updateRequestProcessorChain>

We also assume that you already have a cluster constituting at least two
nodes that are up and running, and have a collection with the name
collectionl in place. Just so you know, we have one of our nodes running
on the IP address 192.168.0.100 and the second one running on the IP
address 192.168.0.101; both on the same port, that is, 8983.

[55]

Performance Optimization

5.

We intend to manually distribute data to the respective Solr instances. In
our example, we want the data of recordUsera.xml to be indexed to the
Solr instance running at 192.168.0.100 and the data of recorduserB.xml
to the one running at 192.168.0.101. So, we will index the data using the
following commands:

java -Durl=http://192.168.0.100:8983/solr/collectionl/update -jar
post.jar recordUserA.xml

java -Durl=http://192.168.0.101:8983/solr/collectionl/update -jar
post.jar recordUserB.xml

By now, we have indexed the respective data to their corresponding Solr
instances (as per our knowledge). However, it is better to test this by running
the following Solr query, which distinguishes the indexed documents based
on the shards on which they are stored:

curl http://localhost:5983/solr/select?g=*:*&fl=*, [shard]

The following is the response of the preceding command:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader'"s>
<int name="status">0</int>
<int name="QTime">20</int>
<lst name="params">
<str name="qg">*:*</str>
<str name="f1l">*, [shard]</str>
</1lst>
</1lst>
<result name="response" numFound="3" start="0" maxScore="1.0">
<doc>
<str name="id">2</str>
<str name="usrName">userB</str>
<str name="record"s>userB record</str>
<str name="[shard]"> 192.168.0.101:8983/solr/collectionl/ </str>
</doc>
<doc>
<str name="id">3</str>
<str name="usrName"s>userB</str>
<str name="record"s>Another record of userB</str>
<str name="[shard]"> 192.168.0.101:8983/solr/collectionl/ </str>
</doc>
<doc>
<str name="id">1l</str>

<str name="usrName"s>userA</str>

[56]

Chapter 3

<str name="record"suserA record</str>

<str name="[shard]"> 192.168.0.100:8983/solr/collectionl/ </str>
</doc>
</results>
</response>

Manually validating the preceding response, we can conclude that we have achieved
what we intended to. So now, let us proceed further to understand what we did.

We defined the index structure consisting of three fields in the schema .xm1l file
where the _version_ field is internally used by Solr. Since our schema . xml file is
quite simple to understand, let us skip it and proceed to the next one.

Let us look into a very interesting part of our activity, that is, the
UpdateRequestProcessorChain tag's definition. Apart from the standard solr.
LogUpdateProcessorFactory and solr. RunUpdateProcessorFactory processors,
we have used solr.NoOpDistributingUpdateProcessorFactory, which restricts
Solr from distributing the documents automatically; instead, it forces the update
command to be indexed on the specific node it has been sent to.

We have used the post . jar library in order to index the data, and the -Dur1l
parameter to specify on which server the data needs to be indexed. We used two
servers (which were up and running) with their IP addresses as 192.168.0.100
and 192.168.0.101 to index data associated with the users usera and userB
respectively. Once the indexing process was complete, we cross-checked it by
running a query that returns all documents (g=*: *).

Additionally, we specified the £1 parameter so that the response that was returned
also contains the corresponding shards from where the documents were fetched
along with the other three field values (£1=*, [shard]).

If you analyze the response, you will find that the data that belongs to usera has
been fetched from the server running at 192.168.0.100 (<str name="[shard] ">
192.168.0.100:8983/solr/collectionl/ </str>), and the remaining data that
belongs to userB has been fetched from the other server running at 192.168.0.101
(<str name="[shard]"> 192.168.0.101:8983/solr/collectionl/ </strs>).

Once you turn off the automatic document distribution among the
. shards, you need to remember that the shards might be created
% unevenly. This is because the data is being pushed manually and the
L shard size will completely depend on the number of documents you
push to each shard. Thus, it is recommended that you intelligently plan
this manual distribution before you actually implement it.

[57]

Performance Optimization

Near real-time search

Before we learn about near real-time search (NRT), let us first understand what
real-time search is. It is the ability to search for the appropriate content immediately
after the content has been added or modified. This means that if you add or modify
content, the system should be capable enough to process the content at such a high
speed (one second or even less) such that if a user searches using an appropriate
keyword, they will be able to see the search results with the updated information.

Near real-time search is the same as that of real-time search, with the difference
being the time taken to process the added or modified content. Unlike real-time
search, NRT search takes around 30 seconds to process the content, which is even
less than one second in case of real-time search. This time period is also called index
latency, which is one second or even less for real-time search and approximately 30
seconds in case of NRT.

We will now discuss a few additional information that will definitely help you
with its implementation along with handling any challenges you face while
implementing. They are as follows:

* Follow guidance for performance tuning especially in terms of schema
handling and bulk data-loading in multiple threads.

* Itis recommended that you avoid virtualization and implement SSDs if you
can afford.

* Adjust the commit rate so that it is prompt enough to satisfy the desired
index latency, ensuring that Solr's warming from the previous commit has
been accomplished successfully. Usage of autoCommit and/or commitWithin
is recommended.

* Try to keep warming at a minimum as possible. To do so, you may reduce
the autowarmCount value of your caches and reduce the workload of your
queries in the newSearcher listener as and when required.

* Try setting useColdSearcher to true and maxWarmingSearchers to 1.

* In the case of a huge document count, increase the number of shards so that
each shard is small, resulting in faster querying. It also helps NRT search due
to the fact that smaller shards help balance the effects of slow searches raised
by a number of configuration choices.

* Reduce the ratio of the shard count in a machine per CPU cores, enabling
a greater number of machines to be available for frequency commits and
warming activities.

[58]

Chapter 3

* Use replication only for backup or disaster-recovery purposes. As you
want the indexing and searching to be performed on the same index, it is
not recommended to use replication to split the indexing master and the
searching slave.

* If you need NRT search only for the added documents and not for the
modified ones, I suggest that you index such documents in a small shard
(only meant to hold new documents). Due to its light weight (the selected
documents are only indexed), it will definitely perform well and will have
lower index latency. You might need to merge this into a larger shard
occasionally; you may use the mergeIndexes core command.

Summary

In this chapter, we mainly concentrated on different techniques to optimize

Solr's performance. We started with understanding the various performance
factors responsible for Solr's performance and covered vital concepts such as

how to replicate an index in a master-slave architecture, and learned more about
implementing different Solr-caching techniques such as document caching, query
result caching, filter caching, and finally how to cache the whole result page. We also
understood SolrCloud and how to perform various activities based on performance
optimization, such as creating a SolrCloud cluster, having more than one collection
in a SolrCloud cluster, and managing the SolrCloud cluster that you have created
or those that already exist. Additionally, we learned how to play around with
distributed indexing and searching, which are automated activities carried out

on the documents, and how to stop automatic document distribution based on the
certain scenarios. By the end of the chapter, we also learned how to get an instance
result set using the near real-time search.

In the next chapter, we will scale our performance-optimization techniques and learn
more about how to get similar documents based on the rendered result set, and sorting
results using function values. We will also learn how to search words based on how
they sound, ignoring the predefined words from a search.

[59]

Additional Performance
Optimization Techniques

In the previous chapter, we learned different ways to optimize our Solr's performance,
starting from understanding the required factors affecting performance, leading on to
advanced concepts such as index replication using the master-slave architecture, Solr
caching, SolrCloud, and how to scale your Solr instance horizontally. This means that
we learned by playing around with multiple Solr servers and sharding, distributed
search, and many more.

In this chapter, we will learn how to optimize performance for a few more activities
that are rarely used, such as searching for documents that are similar to the ones
returned in the search's result set, sorting results based on a function value

(the geospatial search), searching for words that sound alike (that is, searching

for homophones), and restricting a word or a list of predefined words (say for
example, offensive words) from getting displayed to the end user in the search
results. We will cover the following topics:

¢ Documents similar to those returned in the search result
* Sorting results by function values
* Searching for homophones

* Ignoring the defined words from being searched

So, let us get started.

Additional Performance Optimization Technigues

Documents similar to those returned in
the search result

Imagine a situation where you need to search for documents that are similar to those
you have searched before using some keywords and have been rendered by Solr as a
search result. We will continue with our music composition e-commerce portal that
we have been using for demonstration purposes. In this section, we will understand
how to get similar documents (in our case, music composition) in the search result
along with the result set rendered by the user while searching for a keyword.

Let us start by adding the following index structure to the £ields section of our
schema.xml file

<field name="wm_id" type="string" indexed="true" stored="true"
required="true" />

<field name="wm name" type="text" indexed="true" stored="true"
termVectors="true" />

We will use the following example data to work with:

<add>
<doc>
<field name="wm_ id">wml</field>
<field name="wm name">Sonata solo flute</field>
</doc>
<doc>
<field name="wm_id">wm2</field>
<field name="wm name">Sonata for string</field>
</doc>
<doc>
<field name="wm_ id">wm3</field>
<field name="wm name">Quartet for flute</field>
</doc>
<doc>
<field name="wm_id">wmé4</field>
<field name="wm name">Quartet for string</field>
</doc>
</add>

Let us consider that a user wishes to search for compositions that have sonata and
string in their names. Moreover, we want the search results to contain compositions
not exactly matching but similar to the ones that are returned and exactly match the
search criteria. To achieve this, we have sent the following query to our Solr server:

http://localhost:8983/solr/select?g=sonata+string&mm=2&gf=wm name&def
Type=edismax&mlt=true&mlt.fl=wm name&mlt.mintf=1&mlt.mindf=1

[62]

Chapter 4

The result set returned by our Solr instance for the preceding query is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<responsex
<lst name="responseHeader'"s>
<int name="status">0</ints>
<int name="QTime">3</int>
<lst name="params">
<str name="mm">2</str>
<str name="mlt.mindf">1l</str>
<str name="mlt.fl"s>name</str>
<str name="g">sonata string</str>
<str name="mlt.mintf">1l</str>
<str name="gf">wm name</str>
<str name="mlt"s>true</str>
<str name="defType">edismax</str>
</lst>
</lst>
<result name="response" numFound="1" start="0">
<doc>
<str name="wm_id"s>wm2</str>
<str name="wm_name">Sonata for string</strs>
<long name="_version ">1234566105364386482</long>
</doc>
</result>
<lst name="moreLikeThis">
<result name="wm3" numFound="3" start="0">
<doc>
<str name="wm_id"s>wml</str>
<str name="wm_name">Sonata solo flute</str>
<long name="_version ">1234566105364387641</long>
</doc>
<doc>
<str name="wm_id">wmé</str>
<str name="wm name">Quartet for string</str>
<long name="_version ">1234566105364390120</long>
</doc>
<doc>
<str name="wm_id"s>wm3</str>
<str name="wm_name">Quartet for flute</str>
<long name="_version ">1234566105364396659</long>
</doc>
</result>
</lst>
</response>

[63]

Additional Performance Optimization Technigues

Let us now understand how it worked!

Firstly, we defined the index structure in the schema.xm1 file with the field values
as wm_id and wm_name. You must have noticed that we also used an attribute named
termVectors and set it as true for the wm_name field. It is a good practice to use this
so as to allow more components similar to this to do their job.

If you look at the query, you will find that we used a few additional parameters with
the standard g parameter (that is, mm and defType) to instruct Solr how to handle

the query. The mlt=true parameter indicates that we would like to consider more
components similar to this while processing the result. The m1t. £1 parameter denotes
the field name where we want more components like this to be imposed (in our

case, the wm_name field). The ml1t .mindf parameter instructs Solr to ignore the terms
from the documents found in the original result set with a term frequency below the
specified value. In our case, we don't want the terms that have a frequency less than
1. The last parameter m1t .mindf instructs Solr to ignore the documents where the
words that appear are less than the defined value. In our case, we considered words
that appear in at least one of the documents.

Let us now understand the result set. We can see that we have received an additional
line in the response (<1st name="moreLikeThis">), which is responsible for showing
up the search results associated with more components like this. One more component
like this is added to the response for each document found in the search result. In

this case, Solr added a section for the document that possesses the unique identifier
wm3 (<result name="wm3" numFound="3" start="0">), and the total number of
documents found and categorized in this section were 3. You must have also noticed
that the value of the wm_id attribute has been assigned the value of the unique
identifier for the document based on which similar documents have been computed.

Sorting results by function values

Consider a situation where you have an application that stores the list of publishing
houses in the index and allows users to search it. Added to the situation, you are
more concerned about the publishers that are located near the point where you
reside and where you are currently searching the information. In this case, you need
some feature that you need to sort your search result based on the distance from a
geographical point. Can Solr help you achieve this? The answer is yes, and we will
demonstrate how we can achieve it in this section.

This section uses geospatial search. Thus, if you are not familiar with geospatial
search, we recommend that you refer to the Geospatial Search section covered in
Chapter 1, Searching Data, Administrating Solr, Packt Publishing.

[64]

Chapter 4

Let us now start with the actual activity by adding the following index structure
in the fields section of our schema.xml file:

<field name="p id" type="string" indexed="true" stored="true"
required="true" />

<field name="p name" type="text" indexed="true" stored="true" />

<field name="p geo" type="location" indexed="true" stored="true" />

<dynamicField p_name="*_coordinate" type="tdouble" indexed="true"
stored="false" />

The following is the data we want to index to our Solr instance:

<add>
<doc>
<field
<field
<field
</doc>
<doc>
<field
<field
<field
</doc>
<doc>
<field
<field
<field
</doc>
</add>

name="p_ id"s>1l</field>
name="p name">Publisher one</fields>
name="p geo">12.5,12.5</field>

name="p_ id">2</field>
name="p name">Publisher two</fields>
name="p geo">15.2,15.2</field>

name="p_ id">3</field>
name="p name">Publisher three</fields>
name="p geo">18.6,18.6</field>

In order to have geospatial search in action, we need to define the following
fieldtype tag in the types section of our schema. xml file:

<fieldType

p_name="location" class="solr.LatLonType" subFieldSuffix="

coordinate"/>

Let us assume that one of the users is accessing their system from a geographical
point (20, 20) and searching for the term publisher. In order to render the search
results that are sorted based on the distance from a given point, we send the
following query to our Solr instance:

http://localhost:8983/solr/select?g=p name:company&sort=geodist (geo, 2

0,20) +asc

[65]

Additional Performance Optimization Technigues

The rendered search result set is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<responsex

<lst name="responseHeader'"s>

<int name="status">0</ints>

<int name="QTime">3</int>

<lst name="params">

<str name="qg">p name:publisher</str>
<str name="sort">geodist (geo,20,20) asc</str>
</lst>

</lst>

<result name="response" numFound="3" start="0">
<doc>

<str name="p id">3</str>

<str name="p name">Publisher three</str>
<str name="p geo">18.6,18.6</str>

</doc>

<doc>

<str name="p id">2</str>

<str name="p name">Publisher two</str>
<str name="p geo">15.2,15.2</str>

</doc>

<doc>

<str name="p id">1l</str>

<str name="p name">Publisher one</str>
<str name="p geo">12.5,12.5</str>

</doc>

</result>

</response>

As you can see in the preceding response, our query worked perfectly! So, let us now
understand what we did and why.

We started by defining the index structure in schema .xml. We defined four fields,

the p_id field to hold the unique identifier, the p_name field to hold the name of the
publishing house, the p_geo field to hold the geographical location of each publishing
house, and the last field, which is dynamic in nature and needs the location field
type to function. We will skip the discussion about our example data as it is very
simple to understand.

[66]

Chapter 4

Apart from the standard g parameter, we have also used the sort parameter, which
functions a bit different from the one you probably might be used to. We have used
the geodist function with the sort parameter because this function calculates

the distance from a given geographical point and queues the result for the sorting
activity. The first argument that we used with the geodist function is geo, which
specifies the field to be used to compute the distance. The next two arguments (in our
case, 20, 20) denote the geographical point that the distance needs to be calculated
from. To instruct the sort order, we have used the asc value to get the result list
sorted in ascending order. If you want to have the sort order based on the larger
distance first, you need to use desc instead of asc.

Searching for homophones

You might encounter end users whose English is not that good, so they type the search
keywords either as they sound or the way they are pronounced. For instance, words
such as break and brake, meat and meet, tale and tail, and phone and fone sound the
same when pronounced. There might be situations where the end user might intend
to search for phone, and due to certain reasons, they type fone. In such a scenario, by
default, Solr considers fone (the word actually typed by the user) instead of phone
(what the user actually meant), and the relevant documents are prone to be missed in
the rendered result set. To avoid missing the relevant documents in the search results,
we need to handle this in such a way that our Solr should be capable of rendering the
results for the keywords that sound similar to the typed ones. Can such scenarios be
handled by our Solr? The answer is yes; we can make our Solr capable of performing
well, and we will learn how to do it in this section.

In our demonstration, we will consider the word pair phone and fone.

Let us start by defining the following index structure in the fields section of our
schema . xml file:

<field name="h id" type="string" indexed="true" stored="true"
required="true" />
<field name="h name" type="phonetic" indexed="true" stored="true" />

Now, we will define the phonetic field type in the types section of our schema .xml
file by adding the following code snippet:

<fieldType name="phonetic" stored="false" indexed="true" class="solr.
TextField" >
<analyzers>
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.DoubleMetaphoneFilterFactory" inject="false"/>
</analyzers>
</fieldType>

[67]

Additional Performance Optimization Technigues

We have the following example data that we will need to index:

<add>
<doc>
<field name="h id">1</field>
<field name="h name">Fone</field>
</doc>
<doc>
<field name="h id">2</field>
<field name="h name">Phone</field>
</doc>
<doc>
<field name="h id">3</field>
<field name="h name">Mohan</field>
</doc>
</add>

Assuming that our end user is interested in finding the documents that sounds like
fon, we send the following query:

http://localhost:8983/solr/select?g=h name:fon

We get the following response:

<?xml version="1.0" encoding="UTF-8"?>
<responsex
<lst name="responseHeader'"s>
<int name="status">0</ints>
<int name="QTime">2</int>
<lst name="params">
<str name="qg">h name:fon</str>
</lst>
</lst>
<result name="response" numFound="2" start="0">
<doc>
<str name="h id">1l</str>
<str name="h name">Fone</str>
</doc>
<doc>
<str name="h id">2</str>
<str name="h name">Phone</str>
</doc>
</result>
</response>

[68]

Chapter 4

If you notice the preceding response, you will find that two documents have been
rendered that sound like fon, and one of the documents that sounds far different
from fon has been omitted. Now, let us understand how it worked.

We defined the index structure in our schema.xml file with h_id as the unique
identifier field and the h_name field to hold the name, which looked quite simple.
Thus, we will skip its explanation.

In our example, the h_name field is the one based on which the phonetic search has
been applied to. In order to apply phonetic search, we have defined a new field type
as phonetic. Apart from the standard class and others, we have also defined a new
filter DoubleMetaphoneFilterFactory, which is responsible for investigating how
the word or a set of words sound using double metaphone to do its job. We have
used the inject="false" attribute to instruct Solr to replace the original tokens
with the ones produced by the filter.

As you can see in our query and data, the fon word matched two words (that is,
phone and fone), and the left one word unmatched (that is, Mohan). This means that
our algorithm and the filter worked perfectly!

If you are keen to learn other phonetic algorithms, I recommend that
% you refer to the Solr Wiki page at http: //wiki.apache.org/
e solr/AnalyzersTokenizersTokenFilters.

Ignore the defined words from being
searched

Imagine a situation where you wish to filter out offensive words from the indexed
data. Such words need to be ignored and shouldn't be searchable. Can we provide
such a capability to Solr? Yes, of course; we can do that and we will understand
how to do it in this section.

In order to avoid using offensive words in the demonstration, we will use the
term of fensive, which denotes any offensive word we would like to filter out
from being searched.

In order to start, we will define the following index structure in the fields section
of our schema . xml file:

<field name="o id" type="string" indexed="true" stored="true"
required="true" />

<field name="o name" type="text offensive" indexed="true"
stored="true" />

[69]

Additional Performance Optimization Technigues

Now, let us define the text_offensive field type in the types section of our
schema.xml file as follows:

<fieldType name="text offensive" class="solr.TextField"
positionIncrementGap="100">
<analyzer>
<tokenizer class="solr.WhitespaceTokenizerFactory"/>

<filter class="solr.StopFilterFactory" ignoreCase="true"
words="offensive.txt" enablePositionIncrements="true" />

</analyzers>

</fieldType>

We have now created the of fensive. txt file (mentioned in the preceding code
snippet), and placed it in the same directory as that of schema.xml with the
following content that you want to filter out from the search results:

offensive

offensivel
offensive2
offensive3
offensive4d

Let us index our example data as follows:

<add>
<doc>
<field name="o_id">1l</field>
<field name="o_name">Surendra</field>
</doc>
<doc>
<field name="o_id">2</field>
<field name="o_name">Mohan</field>
</doc>
</add>

Let us assume that the user wishes to find the documents that consist of the words
Mohan and of fensive. Thus, the query that we send to Solr looks as follows:

http://localhost:8983/solr/select?g=0_name: (Mohan+AND+offensive)

Based on the data that we indexed, in a standard situation we won't expect any
document to be rendered due to the fact that we don't have any indexed document
that matches both the keywords Mohan and offensive. Some magic happened and
Solr returns the following response:

[70]

Chapter 4

<?xml version="1.0" encoding="UTF-8"?>
<responsex

<lst name="responseHeader"s>

<int name="status">0</ints>

<int name="QTime">2</int>

<lst name="params">

<str name="g">o name: (Mohan AND offensive)</str>
</lst>

</lst>

<result name="response" numFound="1" start="0">
<doc>

<str name="o_ id">2</str>

<str name="o name">Mohan</str>

</doc>

</results>

</response>

It was able to find a document instead of none; we can infer that our query worked
perfectly by ignoring the term we wanted to filter out from our search results. Let us
now understand how it worked.

We defined the o_id and o_name fields in the schema . xml file that holds a unique
identifier and name, respectively. Since it is a simple definition, we will skip the
explanation and proceed to the next one.

We have applied Solr's StopFilterFactory filter on the o_name field in order to
ignore the offensive words. We also defined the text_of fensive field type, and it is
analyzed in the default manner. Let us concentrate on the StopFilterFactory filter
that we have used here. We used the words attribute for this filter, which states

the name of the encoded UTE-8 file, which holds the list of words (one word per line)
that need to be ignored while searching and should be placed in the same directory
as that of our schema.xml file. The ignoreCase="true" parameter instructs the
filter to process the offensive words and tokens irrespective of the case used to
define in the file (of fensive.txt), that is, process it in a case-insensitive manner.
The enablePositionIncrements="true" parameter enables Solr to increment the
position of the tokens in the token stream.

As you can see from the query, we instructed Solr to search for the documents
that contain both the Mohan and of fensive words (using the AND operator); this
means that we expect both the words to be present in the documents that have
been rendered in the result set. However, this is not the case as we didn't get any
document containing the word of fensive. This is because we instructed Solr to
ignore all the words listed in the offensive. txt file, resulting in the documents
we expected.

[71]

Additional Performance Optimization Technigues

Summary

In this chapter, we covered rarely used but important techniques to optimize the
performance of our Solr instance, learned more about how to get similar documents
based on the rendered result set, what is the geospatial search (search documents
with respect to a specific geographical point), how to search for words based on
how they sound, and how to ignore the predefined words from getting searched.

In the next chapter, we will learn how to troubleshoot common problems that are not
limited to dealing with corrupted and locked indexes, how to truncate the index size
and tackle issues caused due to expensive garbage collections, out-of-memory, and
infinite loop execution while playing around with shards.

[72]

Troubleshooting

You must have faced a number of problems while playing around with Solr's
deployment, irrespective of whether the deployment is simple or complex, or
whether you are working on a single Solr instance or multiple servers or shards.

In this chapter, we will learn how to troubleshoot a list of the most common problems
you are prone to facing while you are still in the Solr playground, and will cover the
following topics:

* Dealing with the corrupt index

* Reducing the file count in the index

* Dealing with the locked index

* Truncating the index size

* Dealing with a huge count of open files

e Dealing with out-of-memory issues

* Dealing with an infinite loop exception in shards

* Dealing with expensive garbage collection

* Bulk updating a single field without full indexation

So, let us get started.

Dealing with the corrupt index

Assume that you are maintaining a Solr instance, and suddenly, probably at late
midnight, you are informed that the index is corrupted and you need to investigate
and fix the issue at the earliest. Imagine how frustrating it is to address such priority
issues, that too at midnight! You might be wondering whether there is an alternative
to full indexation or restoring the working index from the backup. Yes, we do have
alternatives to full indexation and/ or restoring to the backup that won't consume
excess time compared to the preceding options, and we will learn how to do it in
this section.

Troubleshooting

Assuming that we have a corrupt index that we need to investigate and fix, we will
have to switch the working directory to the one holding Lucene libraries in order
to use the checkIndex tool. On switching to the appropriate directory, run the
following command:

java -cp JAR PATH LUCENE -ea:org.apache.lucene...org.apache.lucene.index.
CheckIndex PATH INDEX -fix

In the preceding command, JAR_PATH_LUCENE is the path to Lucene libraries (in our
case, /solr/lucene), and PATH INDEX is the path to the index (in our case, /usr/
share/solr/data/index).

Thus, in our case, the actual command would be as follows:

java -cp /solr/lucene/lucene-core-4.6-SNAPSHOT.jar -ea:org.apache.
lucene... org.apache.lucene.index.CheckIndex /usr/share/solr/data/
index -fix

As a response to the command, we find the list of processes associated to the index
repair, as shown in the following screenshot:

lOpening index @ C:Solrsolrdataindex

segments file=segments_1 numSegments=1 version=FORMAT_DIAGNOSTICS [Lucene
4.6]

1 of 1: name=_0 docCount=39

compound=false

hasProx=true

numrFiles=39

size (MB)=0,917

diagnostics = {os.version=6.1, os=Windows 7, lucene.version=4.6.0

- 2014-01-06 12:58:52, source=flush, os.arch=x86, java.version=1.7.0_45,
java.vendor=5un Microsystems Inc.}

no deletions

test: open reader......... FAILED

WARNING: fixIndex() would remove reference to this segment; full
exception:

org.apache. Tucene. index.CorruptIndexException: did not read all bytes
from file "_0.fnm": read 154 vs size 158

at org.apache. lucene. index.FieldInfos.read(FieldInfos. java:370)

at org.apache. lucene.index.FieldInfos.<init>(FieldInfos.java:71)

at org.apache.lucene. index.SegmentReader$CoreReaders. <init>(SegmentRead
er.java:119)

at org.apache. Tucene. index.SegmentReader. get(SegmentReader. java:652)

at org.apache. lucene. index.SegmentReader. get(SegmentReader. java:605)

at org.apache. lucene. index.CheckIndex.checkIndex(CheckIndex. java:491)

at org.apache. Tucene. index.CheckIndex.main(CheckIndex. java:903)

WARNING: 1 broken segment (containing 39 documents) detected

WARNING: 39 documents will be Tost

NOTE: will write new segments file in 8 seconds; this will remove 39 docs
from the index. THIS IS YOUR LAST CHANCE TO CTRL+C!

5...

T

...

2. ..

1...
Writing...

0K

Wrote new segments file "segments_2"

[74]

Chapter 5

This is how we investigated the corrupt index and proceeded to its repair activity.
Now, let us understand how we achieved our purpose.

If you refer to the command, you will find that we have executed the CheckIndex
class shipped with the apache.lucene. index bundle and passed parameters
such as the absolute path to the directory holding the index files, the path to
Lucene containing the required library files, and the -fix parameter that instructs
CheckIndex to attempt fixing any bugs found in the index structure. Additionally,
we passed the ea parameter in order to activate assertion, which helps the testing
process to be more accurate.

As a response, we can see the information about the segments, document count,
the Lucene version used to build the index, OS information, and so on. Since this
information is not crucial to us, we may skip to the following piece of response:

WARNING: 1 broken segment (containing 39 documents) detected

WARNING: 39 documents will be lost

The preceding piece of response denotes that we have found one broken segment
containing 39 documents, with a warning that all these documents will be lost
during the repair process. Though, this is not always the case; however, it is always
recommended to be alert to handle the repair in case the documents are really lost.

As soon as the broken segment and the associated documents were found, the
CheckIndex tool started writing new segment files, which are the repaired ones.
That's all! In case of a larger index, it is highly expected that the CheckIndex
response you receive is a huge one that contains information about all the segments.
Since we have considered a simple example, we got a handful of responses, but this
is usually not the case.

You might come across situations where you are not able to repair the
index using the CheckIndex tool that resulted in index deletion while
attempting to repair that index. Thus, it is always recommended that you
take the latest index backup before you attempt to repair it.

% Moreover, if you are interested in checking the errors in the index without
being interested in fixing them, you may still run the CheckIndex tool,
but without the -fix option. Your command would be as follows:
java -ea:org.apache.lucene... org.apache.lucene.index.
CheckIndex /usr/share/solr/data/index

[75]

Troubleshooting

Reducing the file count in the index

Consider a situation where you have a Solr instance running for a long duration and
the index is split into multiple files (which is quite natural and expected). Did you
imagine how time-consuming it is for Solr to keep connecting all the files of an index
to fetch the desired result set, resulting in a performance drop? Don't get hassled; we
can figure this out and we will learn how to overcome the issue in this section.

Since the root cause behind this performance drop is the segment's file count (which
is huge) that is associated to an index, the solution we can think of is to find a way to
merge these split off segment files into one. To do so, we run the optimize command
as follows:

curl 'http://localhost:8983/solr/update' --data-binary '<optimize/>' -H
'Content-type:text/xml; charset=utf-8'

After a couple of minutes or probably hours (this primarily depends on the index
size), you will get the following response:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader'"s>
<int name="status">0</int>
<int name="QTime">95387</int>
</lst>
<str name="WARNING">This response format is experimental. It is
likely to change in the future.</str>
</response>

Our motive behind using the optimize command is that we wanted to create a new
segment file with the contents of all the older segment files and then delete them.
During the execution of this command, you might notice that the size of the index gets
doubled. This is because while the segment files are merged into the newly created
one, the older segment files are not removed, thus increasing the index size. Let the
command run, and by the end of its execution, you will notice that the size of the index
is back to normal or even smaller.

We have used the curl command to trigger the optimize command as we are using
a Unix-based environment. Since we have used the curl command for the purpose of
sending requests, you may achieve this even by using HTTP POST or the SolrJ library
based on the environment (in terms of the operating system) that you use.

[76]

Chapter 5

It is a good practice to trigger the opt imize command once a day or
probably once every alternate day. But before you set the time period,

M keep in mind that the opt imize command extensively uses I/O
operations when in action. Thus, it is recommended that you trigger
optimize only in off-peak hours, on the master server too. Moreover,
don't forget to trigger this command on each and every core you have
in your Solr server.

Dealing with the locked index

Imagine a situation where, while the indexing process was active, something went
wrong, probably your machine crashed or a problem occurred in your virtual machine,
resulting in index locking. Let me remind you that when indexing is in progress,

it locks the current file in the index directory. When this process aborts abruptly

due to certain reasons, the file that is already locked remains as it is, restricting the
modification of the index. Our motive would be to sort out this locking issue, and

we will learn how to do it in this section.

Let us assume that during the commit operation, our Java Virtual Machine crashed
and an intern killed our Solr master instance while the indexing was in progress. The
Jetty servlet container normally throws an exception, which looks as follows:

SEVERE: Exception during commit/optimize:java.io.IOException: Lock obtain
timed out: SimpleFSLock@/usr/share/solr/data/index/lucenefflfe872c2cbfeb4
4091b36c2la97cl4-write.lock

If you are sure that there is no indexing process currently running, navigate to the /
usr/share/solr/data/index directory, and here you will find the culprit with the
name lucenefflfe872c2cbfeb44091b36c21a97cl4-write. lock. Delete this file
and restart Jetty, and the problem is solved!

Let us understand how it worked. During the commit operation, we found that our
virtual machine crashed, resulting in an exception. This exception stated that a lock has
occurred and it shares a filename along with its location (a file in the lucene-*-write.
lock format) for us to take the appropriate action. Since this file was the locked one,
we were not able to modify our index. Thus, we decided to delete this file so that our
index is unlocked. We then restarted Jetty, which triggers this unlock activity to action.

Truncating the index size

You might come across situations where you need to truncate the index size to such
an extent that it fits into your system's RAM. We will learn how to truncate the index
size to a desirable level in this section.

[77]

Troubleshooting

Let us consider our music composition eStore for the demonstration purposes.
Assuming that we have four fields that describe the document, we will add the
following index structure to the fields section of our schema.xm1 file:

<field name="wm_id" type="string" indexed="true" stored="true"
required="true" />

<field name="wm name" type="text" indexed="true" stored="true" />
<field name="wm details" type="text" indexed="true" stored="true" />
<field name="wm price" type="string" indexed="true" stored="true" />

We will also assume the following points:

* Search is to be carried out in the wm_name and wm_details fields
* We show the wm_id and wm_price fields
* We restrict Solr from using spellchecker and highlighting

We indexed 2,000,000 example documents based on the preceding index structure
and recorded the index size as 769,344,201 bytes.

Now, we will make the following changes to our index structure:

* Set the stored attribute to false for the wm_name and wm_details fields,
which was set as true earlier

* Set the indexed attribute to false for the wm price field, which was
true earlier

* Add the options termvectors="false", termPositions="false",
and termOffsets="false" to the fields wm name and wm details

On following the preceding guidelines, our modified index structure would look
as follows:

<field name="wm id" type="string" indexed="true" stored="true"
required="true" />

<field name="wm name" type="text" indexed="true" stored="false"
termVectors="false" termPositions="false" termOffsets="false"/>
<field name="wm details" type="text" indexed="true" stored="false"
termvVectors="false" termPositions="false" termOffsets="false"/>
<field name="wm price" type="string" indexed="false" stored="true" />

Then we indexed the same documents using this modified index structure and found
that the index size has been reduced to 219,812,629 bytes. Doesn't the new index size
look amazing!

Let us now understand how it worked.

We defined our index structure for our sample document in schema . xml that consists
of four fields. Since the definition is a basic one, we will not cover this in detail.

[78]

Chapter 5

Since our intention was to search only based on the wm_name and wm_details fields,
we don't want the wm_price field to be indexed. Thus, we set the indexed attribute

as false for the wm_price field, thus saving the index size. The indexed="false"
attribute instructs Solr not to index the specific field(s) that are associated with this
attribute. The stored attribute needs to be set as true only when we are obliged

to show the specific field(s) in the search results, else it is a good practice to set it as
false, which helps reducing the index size to a marginal extent. The stored="false"
attribute instructs Solr not to store this field's original value. Doing this also excludes
this field from being present in the search results.

Since one of our requirements was to avoid the use of the spellchecker and
highlighting features, we were able to reduce the index size even further by
appending termVector="false", termPositions="false", and termOoffsets
="false" to the wm_name and wm_details fields. These attributes instruct Solr to
not store any information that is associated with these terms, thereby saving another
slot of index size.

In order to reduce the index size, first go for the optimization and then
* look into your schema . xml file to understand whether you really need
all the fields. Then list down the fields you don't want to be stored and/
"~ orindexed along with whether you need the term information, and
apply the preceding steps accordingly.

Dealing with a huge count of open files

In this section, we will learn how to get rid of exceptions thrown due to a huge
number of files that are open. Before you get into this section, it is recommended that
you refer to one of the preceding sections called Reducing the file count in the index.

1. For the purpose of demonstration, let us assume that Solr (running on a Unix
environment) throws the exception whose header looks as follows:

java.io.FileNotFoundException: /use/share/solr/data/index/ 8.tii
This shows that there are too many open files.

2. We will increase the opened files' limit from 1000 (this was earlier set in
my case, and is prone to differ) to 3000. To do so, we will use the ulimit
command-line utility as follows:

ulimit -n 3000

[79]

Troubleshooting

3.

6.

Stopping at this stage would just prove to be a workaround. The primary cause
behind this exception is the huge number of segment files that constitute an
index. So, the immediate activity proceeding with the ulimit utility should be
to optimize the index. We recommend that you follow the guidelines discussed
in the Reducing the file count in the index section.

Now, let us set the mergeFactor section to a lower value, say 2. We choose a
lower value for mergeFactor because the lower its value, the fewer files will be
used to build the index, and vice versa. So, we alter the mergeFactor section in
our solrconfig.xml file and set it as 2 (as shown in the following code):

<mergeFactor>2</mergeFactors>

If doing so doesn't serve our purpose, we will activate the compound index
structure. In order to enable this, we add the following line of code to our
solrconfig.xml file:

<useCompoundFile>true</useCompoundFile>

Once it's done, we run the index optimization, and that's it!

Now let us understand what we did.

is, the longer the indexing time will be. Hence, it enhances the search
s

We used the ulimit command-line utility to set the maximum number of
files we want to be opened concurrently.

Next, we used the mergeFactor configuration utility that defines the segment
file count. In our case, we have set mergeFactor as 2, which is quite a low
value compared to the default one (which is 10).

Moving to the last component, that is, useCompoundFile, which we have set
as true. This setting activates the compound index structure and instructs
Solr to use this structure to the maximum extent, thus reducing the number
of files that contribute in creating an index.

While altering the mergeFactor value, we recommend that you keep a
couple of things in mind. Firstly, the lower the value of mergeFactor

speed to a greater extent. On the contrary, the higher the value is,
the quicker the indexing process is. However, search time is prone to
degrade due to the fact that the index is built of a larger number of files.

[80]

Chapter 5

Dealing with out-of-memory issues

You might be aware that every application written in Java is well known for
out-of-memory problems. Before we learn how to deal with the out-of-memory
problems, let us define out-of-memory in Java terms and briefly understand why
such problems occur. It is defined as the state of a Java machine where no additional
memory can be allocated to run a process that is in progress. This results in the
denial of transferring additional data into the memory, which is essential to run

a process appropriately, thereby leading to a cease of the process. We recommend
that you refer to the out-of-memory Wiki page at http://en.wikipedia.org/wiki/
out_of_memory if you want to know more about it.

As far as Solr is concerned, these problems are usually associated with a low heap
size. We will learn how to avoid and resolve such problems in this section.

You might come across an exception that looks similar to the following one:

SEVERE: java.lang.OutOfMemoryError: Java heap space

The first thing that comes in our mind is to allocate additional memory to our
Java-based virtual machine. In order to do so, we add the Xmx parameter and set
the Xms parameter to run during the start of our servlet container (Tomcat, Jetty,
and so on). To do so, run the following command:

java -Xmx2048M -Xms512m -jar start.jar

Since this is just the initial step, by the end of the day you will probably have
figured out the expensive documents and tried to reduce Solr's memory usage.
Firstly, investigate your index to see if all the files are there in place. Also, ensure
that each and every field that builds the documents has been dwelt in the memory.

Now, it is time to look at our queries to investigate how they have been built, how
the faceting mechanism is being executed, and so on and so forth. For example,
facet.method=fc consumes less memory when a field has a number of distinct
terms associated to it in the index.

Out-of-heap memory may also occur when you attempt to fetch too many
documents at a time. This situation is very similar to setting a larger value for the
query result window. Additionally, you may run out of memory when you attempt
calculating too many faceting results. Thus, it is always recommended that you have
a comparatively lower value for the query result window and avoid complex faceted
calculations. You may also investigate the cache size as this may also be one of the
culprits of the out-of-memory exception.

[81]

Troubleshooting

Now, let us understand what we did. Basically, we used the xmx and Xms parameters
to achieve our purpose. The xms parameter denotes the heap memory size, which we
want the virtual machine to use at the start. Hence, this value is the minimum heap
memory size that the virtual machine will use. On the other hand, the xmx parameter
denotes the maximum heap memory size that a virtual machine can use.

To summarize, Xms and Xmx are limits to the heap memory size that can be used by
our virtual machine.

Sometimes, it is good to set the same value for the Xms and Xmx
% parameters. This will ensure that our virtual machine doesn't invest
its precious time and resources in resizing the heap size.

The preceding guidelines are capable enough to resolve the out-of-memory issue.
Despite following the preceding steps if the issue crops up again, we recommend
that you start monitoring your heap. The most convenient way we can think of to
monitor our heap is to use the most appropriate virtual machine parameters. They
are XX : +HeapDumpOnOutOfMemory and XX : HeapDumpPath. These two parameters
instruct Solr to dump the heap on the out-of-memory exception and write a log

to a file created in a specific directory. To apply this, we will run the default Solr
deployment start command, which is as follows:

java -jar -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/logs/
Memorylog/ start.jar

Dealing with an infinite loop exception in
shards

As you might be aware that while working with shards, we need to add the IP address
of the shards to every query we shoot. To avoid including the IP address of the shards
on every query, something might come to mind and you suddenly think of writing
them to solrconfig.xml and leave the task of adding the shards' addresses to Solr.
So, you added them to the default request handler of your solrconfig.xml file and
executed your example query that landed in an infinite loop exception. You might be
wondering how to prevent such exceptions from occurring, despite adding the shard
addresses to the handler. In this section, we will learn how to overcome infinite loop
exception in shards.

We define the following request handler in our solrconfig.xml file, assuming that
the IP address of the Solr server we are going to query is 192.168.0.100:

<requestHandler name="standard" class="solr.SearchHandler"
default="true">

[82]

Chapter 5

<lst name="defaults">

<str name="shards">192.168.0.100:8983/s0lr,192.168.0.101:8983/
solr,192.168.0.102:8983</str>

</lst>
</requestHandler>

Now, we sent our example query to this handler, and on executing the query, we
landed in an infinite loop exception. With the motive of avoiding such an exception,
we added a new handler instead of adding the shards to the default one. Our new
request handler's definition in solrconfig.xml is as follows:

<requestHandler name="excshards" class="solr.SearchHandler">
<lst name="defaults">

<str name="shards">192.168.0.100:8983/s0lr,192.168.0.101:8983/
solr,192.168.0.102:8983</str>

</lst>
</requestHandler>

Now, we want to send the queries that should use shards; we use the new search
handler with the name excshards instead of the default one. Let us now understand
how it worked.

Before we get into the actuals, let us understand what caused this exception. We
queried the shards, and Solr considered the default request handler (the default
behavior). So when the shard tried to fetch the results, it used the handler containing
the shard's definition (in our case, the default request handler got triggered). Thus, it
tried to query the shards again and again, resulting in an infinite loop exception.

Later, we defined our shards in a new request handler (excshards), which is
non-default in nature. We sent our example query to this new handler. Then,

the shard mechanism used the default handler to fetch us the results. This time,
we didn't face any infinite loop exception, due to the fact that this time we didn't
have any shard-related information in the default search handler, which prevented
it to get into the infinite loop exception again.

Dealing with expensive garbage
collection

You might encounter situations where you have a number of applications running
in the Java Virtual Machine and the garbage collection process takes too long to run.
Even though this issue occurs, probably you might not be aware of what exactly is
happening. In this section, we will learn how to deal with such garbage collections
that take too long to execute.

[83]

Troubleshooting

We start by running the following command:
java -Xmx2048M -Xms512m -jar start.jar

After a certain time period, we noticed that Solr starts to hang frequently for a
shorter time period and doesn't even respond during this time span, and it is the
same with Jetty. This abnormal behavior of responding and not responding is an
indication that our garbage collection is taking too long to execute. How are we
going to overcome this issue?

Let us modify our Solr start command and see what happens. Now our command
looks as follows:

java -Xmx2048M -Xms512m -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:ParallelGCThreads=6 -XX:SurvivorRatio=3 -jar start.jar

Later, we ran a test and noticed that this worked! Now, let us understand how
it worked.

We included some magical parameters to our start command that helped us
overcome this issue. They are as follows:

* -XX:+UseConcMarkSweepGC: This parameter instructs our Java Virtual
Machine to concurrently run the old generation garbage collections. This also
means that the concurrent mark-sweep collection for the old generation will
be activated.

* -XX:+UseParNewGC: This parameter activates parallel garbage collection for
the young generation.

* -XX:ParallelGCThreads: This parameter defines the number of threads
we want to be used to perform the garbage-collection activity on the young
generation. In our case, we wanted six such threads to be available for
this job.

* -XX:SurvivorRatio: This parameter defines the ratio of survivor heap space
out of the total heap space that we want Solr to use before the objects are
pushed to the old generation. In our case, we want one-third of the space
to be allocated to the survivor heap space.

Tuning a Java Virtual Machine is not always useful. Sometimes, adding
= memory using the Xmx parameter solves our purpose.

[84]

Chapter 5

Our magical parameters did their jobs appropriately. But it is recommended that

we cross-check whether it was really the garbage collector causing problems or if it
was something else. To monitor this, we will use -Xxloggc:gc.log added in the start
command. This parameter will log the output coming out of the garbage collector

to the gc.1og file. Now, our initial start command is as follows:

java -Xmx2048M -Xms512m -Xloggc:gc.log -jar start.jar

Bulk updating a single field without full
indexation

You might be aware that if you wish to update a field in a document that is written
in the index, in the standard manner, Solr won't allow you. Instead, you need to
remove the complete document from the index and add a new version to it. For a
smaller index, the standard approach is quite fine. But think of a situation where you
have a huge index and you need to update a field that tracks the visitor count hitting
the product.

As a standard approach, it is as good as a full indexation of all the documents
(probably millions of documents on a daily basis). Do you think full indexation

in such a scenario is an optimal approach? Of course not, due to the fact that it is
going to utilize ample resources and is better to be avoided. So, how does one
handle such a situation? Don't worry! In this section, we will learn how to update

a single field in a document without any need for an expensive, complete indexation.

We will refer to our music composition estore example for demonstration purposes.
Let us assume that our document constitutes of three fields and the index structure
looks as follows (added to our schema .xml file):

<field name="wm id" type="string" indexed="true" stored="true"
required="true" />

<field name="wm name" type="text" indexed="true" stored="true" />
<field name="wm visits" type="visitswWwM" />

Now, let us define the two field types by adding the following code in the types
section of our schema .xml file:

<fieldType name="floatWM" class="solr.FloatField" omitNorms="true"/>
<fieldType name="visitsWM" keyField="wm_ id" defval="0"
stored="false" indexed="false" class="solr.ExternalFileField"
valType="floatWM" />

[85]

Troubleshooting

Our test data looks as follows:

<add>
<doc>
<field name="wm id">1l</field>
<field name="wm name">Symphony in C major</fields>
</doc>
<doc>
<field name="wm id">2</field>
<field name="wm name">Symphony no 1l</field>
</doc>
<doc>
<field name="wm id">3</field>
<field name="wm name">Three owl songs</field>
</doc>
</add>

As you might have noticed, we didn't include the wm_visits field data. Now, let us
create a file named external_wm_visits that holds the following information, and
place it in the same directory where your index directory resides:

1=300
2= 170
3=180

Once we start Solr, in order to use the data that we have included in the external wm
visits file in the boost function, we run the following query that works perfectly:

http://localhost:8983/solr/select?qg=wmusic&bf=1log(wm visits)>=dismax
Now, let us understand how it worked.

We defined the index structure with three fields, wm_id, wm name, and wm visits.
We will not go into more detail as the structure is quite simple.

You must have noticed that we have not defined the wm_visits field as the standard
field type. Instead, it is based on the visitswM field type, which is in turn based on
solr.ExternalFieldType. This field type permits Solr to fetch records from an
external file source, and needs to satisfy the following criteria:

* The external file needs to reside in the same directory as that of the index. For
instance, if the path to the index is ~/data/index, then this external file must
be placed in the ~/data directory.

* The nomenclature of the file should be in the external FIELDNAME format.
Thus, in our case, the filename is external wm visits.

* The data in the file is limited to be used in function queries only.

[86]

Chapter 5

Now, let us understand the additional attributes we used with the visitswM field
type. The keyField attribute stated that the field in the index should hold the unique
identifier of the document. The defval attribute is denoted by the default value that
the field should hold. The last attribute, that is, valType, stated the type of data that
resides in the external field. In our case, we defined the £1oatwM field type, which is
based on solr.FloatField, accepted by Solr for solr.ExternalFieldType.

As you can see in our example data, we didn't include the visits-related information
in the standard file; instead, we stated this information in the external wm visits
file. The structure of the file is quite simple. We stated each entry in a specific pattern,
that is, a unique identifier, a = character, and an associated field value. In our case,
say for example, 1=300, the unique identifier is 1 and will hold the field value of 300.

There are a couple of more things you should understand while playing
around with external fields. Firstly, you can't play around with the
» data from the external file for searching, sorting, displaying, and other
activities. It can be only used as a value to the function query. Secondly,
g in case there is any kind of modification done on the file, you need to
run the commit command and then Solr will reload the file content for
further use.

Summary

In this chapter, we learned how to troubleshoot common problems and also covered
how to deal with corrupted and locked indexes, reducing the number of files in the
index, and how to truncate the index size. We also learned how to tackle issues caused
due to expensive garbage collections, out-of-memory, too many opened files, infinite
loop execution while playing around with shards, and how to update a single field in
all documents without full indexation activity.

In the next chapter, we will learn how to use ZooKeeper for performance-optimization
purposes and will cover how to set up, configure, and deploy ZooKeeper. We will also
understand the different applications of ZooKeeper that can help us optimize

our Solr's performance.

[87]

Performance Optimization
with ZooKeeper

In this chapter, we will learn about ZooKeeper and will discuss how to set up,
configure, and deploy ZooKeeper in an intention to optimize our Solr's performance.
We will also discuss the various applications of ZooKeeper. We will cover the
following topics:

* Introduction to ZooKeeper

* Setting up, configuring, and deploying ZooKeeper

* Applications of ZooKeeper

So, let us get started.

Getting familiar with ZooKeeper

Let us start with understanding the background of ZooKeeper. When you think
of implementing a distributed system across Solr servers and shards, ZooKeeper
becomes a mandatory tool.

Prerequisites for a distributed server

In order to design a distributed system, you basically think of designing and
developing the following coordination services:

Performance Optimization with ZooKeeper

Name service: It is a service that maps an entity to some other information
associated to that entity. Assuming that we have an e-commerce online
portal named estore consisting of Piano XYZ as one of the products, the
name service estore will map Piano XYZ with its other information such

as its SKU. In terms of infrastructure management, it is as good as a domain
name being mapped to its respective IP’ address using the DNS service. Since
you are going to play around with multiple servers while implementing

the distributed system, you should be keeping an eye on which servers and
services are currently running and monitor the status based on their names.
ZooKeeper will help you facilitate with an interface

to do so. It may also extend your name service to be implemented at a group
level. This means that you can even associate a specific product category,

for instance, to the product information such as product name and SKU.

Locking: It is used to permit serialized access to shared resources in a
distributed environment. This may lead to the implementation of distributed
mutex (mutual exclusion) so as to ensure that no two or more processes

or threads are simultaneously in their critical zone. ZooKeeper facilitates
implementing this in a more convenient way.

Synchronization: When you implement a distributed mutex, synchronizing
access to the shared resources is a must. To handle synchronization,
ZooKeeper provides an easy-to-use interface.

Leader election: You might come across scenarios where the nodes might

go offline abruptly and your distribution environment would demand an
automated disaster recovery plan. You may achieve this using ZooKeeper
through leader election. If you wish to explore more about leader election, you
may refer to its Wiki page at http:/ /en.wikipedia.org/wiki/Leader_election.

Configuration management: You can also use ZooKeeper to handle
configuration management activities by centralizing and managing the
configuration of your distributed system. This also means that if you have
created a new node, it will inherit the configuration of the centralized system
itself with the help of ZooKeeper.

You have enough flexibility to design and implement all the preceding services from
scratch. However, doing so proves to be quite expensive in terms of the overhead

of performing extra work, and you might struggle to debug problems, deadlocks,
and/or race conditions. Moreover, if you go for hacking a simple group membership
service, you may commence it quite easily. But when it comes to writing for
reliability, scalability, replication, and other features, it might lead to frustration

as it needs a lot more work. To overcome such frustrating workload and provide
ease to the developers, Apache ZooKeeper comes into play, which was developed
and declared as open source and acts as a scalable, reliable, and high-performance
coordination service to the distributed system.

[90]

Chapter 6

Aid your distributed system using ZooKeeper

The following are a few properties that ZooKeeper possesses:

ZooKeeper, being a coordination service, also acts as a distributed
application on its own.

ZooKeeper follows a client-server architecture where clients are the nodes
that avail the service and servers are the service providers.

You might have heard about the ZooKeeper ensemble, which is just a group
of ZooKeeper servers.

In a specific timestamp, one ZooKeeper client can connect to only one
ZooKeeper server.

In a specific timestamp, a single ZooKeeper server is capable enough to
tackle a huge number of clients connecting to it.

Each ZooKeeper client pings the ZooKeeper server intermittently to ensure
that it is alive and running healthily. In return, the server acknowledges the
client's ping to communicate that it is still alive and healthy. In case the client
doesn't receive the acknowledgments from the server within a specific time
frame, it assumes that the server has gone for a toss and it silently connects
to another server from the server pool (ensemble). Thus, the client session is
quietly switched over to a new ZooKeeper server.

Now, let us have a glance at the following diagram that depicts the client-server
architecture that ZooKeeper possesses:

ZooKeeper Service

Loader

GRRSNR

(o) () (] (o) (o) (0] (ome) (o)

[91]

Performance Optimization with ZooKeeper

ZooKeeper has a filesystem-based data model that constitutes of ZooKeeper data
nodes (znodes). We can consider znodes as files in a Unix-based system, with the
difference being that they can have child nodes. To understand this better, let us look
at the following diagram that represents the hierarchy of software organizations

operational in two cities.
‘.'. ‘ ’ .'.‘
(Companyl) <Company2> <Company3> (Company4>

Each of the ZooKeeper servers stores the znode hierarchy within its memory, which
enables the server to scale and respond to the client's read requests promptly. All write
requests to each ZooKeeper server is logged in a transaction log that resides on the
disk and is maintained by the respective server. This transaction log also plays a vital
role in terms of performance, due to the fact that it is mandatory for the ZooKeeper
server to synchronize transactions to the disk before it returns the success response.
The maximum size of data that is permitted to be stored in a znode is 1 MB. Thus,

it should only be used to store a small amount of data that is necessary to facilitate
availability, reliability, and coordination to the distributed application.

When a client requests for a znode, the read operation takes place on the server that
the client is connected to. Since only one server from the pool of servers is connected

to a client, the read operations are quite fast. On the contrary, quite a number of servers
from the ensembles are required to commence a write operation successfully. One of
the nodes from the ensemble is elected as the leader. When a write request comes up

to a server, this server passes the request to the leader to take appropriate action. The
leader then broadcasts the request to all the servers available in the ensemble. If a strict
majority of the nodes (also termed as the quorum) respond successfully to this write
request, only then will the request be considered as successful, and the returned code
is triggered back to the client who initiated this request.

[92]

Chapter 6

Setting an ideal node count for ZooKeeper

Let us now understand a few facts about ZooKeeper in an intention to know what
the ideal node count (server count) is that one should implement and why. You may
have only one node in the ensemble; however, it wouldn't be considered a reliable
and available system. If you have two nodes in the ensemble, you should have both
the nodes always up and running due to the fact that one of the two nodes can't be
considered as a quorum. Assume that you have three nodes in your ensemble and
one of them went for a toss. Despite this, we still have two nodes that are quorum
and they will keep the services up and running. This is why the ZooKeeper ensemble
constitutes of an odd number of nodes. Moreover, having four nodes doesn't provide
you extra benefit in terms of fault tolerance as compared to that of having three.

To figure out how to decide the node count, let us keep a few things in mind. Firstly,
in the case of the read operation, the node count doesn't matter due to the fact that
the client and server have a one-on-one connection, and its performance doesn't have
any impact based on the total number of nodes available in the ensemble. Secondly,
when it comes to the write operation, it can only be successful when it is written to
the quorum of nodes. The write operation's performance is inversely proportional

to the number of nodes in the ensemble. This also means that when you increase the
node count in your ensemble, the write performance will degrade because the write
operation would require more servers to interact with each other to serve the request.

Setting up, configuring, and deploying
ZooKeeper

By now, we know what ZooKeeper is, its architecture, and how it works. It's time
to learn how to set up, configure, and deploy our ZooKeeper ensemble, and we will
learn how to do it in this section.

For demonstration purposes, we will use ZooKeeper Version 3.4.5, which is the latest
version of ZooKeeper at the time of writing. Moreover, we have considered using
three ZooKeeper nodes with the names znodel. smohan.dom, znode2 . smohan.dom,
and znode3.smohan.dom. So let us get started by following the proceeding steps on
each node.

[93]

Performance Optimization with ZooKeeper

Setting up ZooKeeper

If you don't have JDK installed, download and install it. We recommend that
you refer to Chapter 1, Installing Solr, to learn how to install it. Additionally, JDK
is required as the ZooKeeper server runs on JVM. We can set up ZooKeeper by
performing the following steps:

1. Download ZooKeeper-3.4.5.tar.gz and untar it to an appropriate location
using the following command:

wget http://supergsego.com/apache/zookeeper/stable/
zookeeper3.4.5.tar.gz tar xzvf zookeeper3.4.5.tar.gz

2. We create a directory as a root so as to store state associated to the
ZooKeeper server. To do so, we run the following command:

mkdir /var/lib/zookeeper

Configuring ZooKeeper

Now, we will configure ZooKeeper. To do so, perform the following steps:

1. Navigate to zookeeper3.4.5/conf/ and create or edit (whichever is
applicable) the file with the name zoo. cfg, and populate it with the
following information:

tickTime=1800
dataDir=/var/lib/zookeeper
clientPort=2080

initLimit=5

syncLimit=2
server.l=znodel.smohan.dom:2999:3999
server.2=znode2.smohan.dom:2999:3999
server.3=znode3.smohan.dom:2999:3999

The explanation of the preceding information is as follows:

o

port 2080: This is used as the ZooKeeper client

° port 2999: This is used by peer ZooKeeper servers to communicate

among themselves
port 3999: This is used for leader election

We need to make sure that all the preceding ports are open on all the
machines to ensure uninterrupted communication.

[94]

Chapter 6

We now create a ZID file and place it in the /var/1ib/zookeeper directory.
The contents of this file will vary based on the server it resides on. For
instance, the ZID file at znodel . smohan.dom would contain 1 (a numerical
number), znode2 . smohan .dom will contain 2, and so on. For demo purposes,
let us run the following cat command on this ZID file while we are in
znode2 . smohan.dom:

surendra@znode2.smohan.dom: ~# cat /var/lib/zookeeper/zid

The output of the preceding command is as follows:
2

Deploying ZooKeeper
Now, it's time to start the ZooKeeper servers on each of the machines. To do so, we
need to perform the following steps:

1.

We need to run the following script:

zookeeper3.4.5/bin/zkServer.sh start

We are now ready to start a CLI client from one of our machines that run
the ZooKeeper server. Here, we want the client to supply the list of servers
so that in case one of them goes for a toss, the other server from this list is
chosen and the client's session gets transferred to that server. To do so, we
run the following script:

Zookeeper3.4.5/bin/zkCli.sh server znodel.smohan.dom:2080, znode2.
smohan.dom:2080, znode3.smohan.dom:2080

Once the client has started, we can now create, edit, and delete znodes. Let
us start with creating a znode /firstnode with some dummy data (for
instance, FirstNodeContent) associated with it. To do so, we run the create
command as follows along with its output:

[zk: 127.0.0.1:2080 (CONNECTED) 3] create /firstnode
FirstNodeContent

Created /firstnode

[95]

Performance Optimization with ZooKeeper

4. Asyou can see, our znode has been created. It's now time to verify and
retrieve the data associated with this znode. To do so, we run the get
command, as shown in the following screenshot along with its output:

[zk: 127.0.0.1:2080 (CONNECTED) 5] get /firstnode
FirstNodeContent

cZxid = 0x200000003

ctime = Fri Jan 17 15:51:36 IST 2014
mZxid = 0=x200000003

mtime = Fri Jan 17 15:51:36 IST 2014
pZxid = 0x200000003

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeral Cwner = 0x0

dataLength = 16

numChildren = 0

In the preceding output, you must have noticed that along with the data
associated with the znode, the client also returned some associated metadata.
The ctime and mtime parameters denote the created and last modified
timestamps of the znode respectively. The dataversion parameter denotes
the version of the data and it changes every time the data is modified. The
dataLength parameter states the length of the data and numChildren
denotes the number of children this znode has.

5. Now, let us remove our znode /firstnode. To do so, we run the
following command:

[zk: 127.0.0.1:2080 (CONNECTED) 2] rmr /firstnode

6. Since we have already deleted the znode, let us create another one and learn
how to use a different parameter. To do so, we will create another znode
/secondnode with the SecondNodeContent content and explore further. To
do so, we will run the create command as follows (the command with its
output is shown):

[zk: 127.0.0.1:2080(CONNECTED) 9] create /secondnode
SecondNodeContent

Created /secondnode

[96]

Chapter 6

Now, let us verify and fetch the data at /secondnode. However, this time, the
difference would be that we will be appending an optional parameter 1 at the
end of the command. This parameter sets a one-time trigger (also known as
watch) for the content at /secondnode. In case some other client modifies the
content at /secondnode, a one-time notification will be sent to the first client
for the modification made by the other client. Since it is a one-time notification,
you will receive it only for the first instance of the modification, and later, it
will be ignored. If you want the notification to be triggered again, the watch
needs to be set again. The following screenshot shows the get command that
we run along with the output that sets the watch:

[zk: 127.0.0.1:2080 (CONNECTED)} 13] get /secondnode
1
SecondNodeContent

cZxid = 0x200000005

ctime = Fri Jan 17 15:55:21 I3T 2014
mZxid = 0x200000005

mtime = Fri Jan 17 15:55:21 IST 2014
pZxid = 0x200000005

cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralCwner = 0x0
datalength = 17
numChildren = 0

[97]

Performance Optimization with ZooKeeper

8. Now, we will change the data associated to /secondnode from some other
client. The following screenshot shows the command and the output chunk
demonstrating this:

[zk: 127.0.0.2:2080(CONMECTED) 2] set /secondnode
SecondNodeContentRevisionl

cEZxid = 0x200000005

ctime = Fri Jan 17 15:55:21 IsST 2014
mZxid = 0x200000008

mtime = Fri Jan 17 16:20:35 IST 2014
pZxid = 0x200000005

cversion = 0

dataVersion = 1

aclVersion = 0

ephemeralCwner = 0x0

dataLength = 26

numChildren = 0

9. On execution of the preceding command, we received the following watch
notification on the first client:

[zk: 127.0.0.1:2080 (CONNECTED) 11]
WATCHER: :

WatchedEvent state:SyncConnected type:NodeDataChanged path:/
secondnode

10. Since znodes form a hierarchical structure, we may also create their children,
that is, subnodes. Let us now create a child node as follows:

[zk: 127.0.0.1:2080 (CONNECTED) 1] create /secondnode/
subnode 123
Created /secondnode/

Subnode

11. Finally, let us learn how to fetch additional stat-related metadata about any
znode. We fetch it by running the stat command as follows:

[98]

Chapter 6

[zk: 127.0.0.1:2080(CONNECTED) &] s=stat /=secondnode
cZ2xid = 0x200000005

ctime = Fri Jan 17 15:55:21 IST 2014
mfxid = 0x200000008

mtime = Fri Jan 17 16:20:35 IST 2014
pZxid = 0x20000001

acversion = 1

dataVersion = 1

aclVersion = 0

ephemeral Cwner = 0x0
dataLength = 26

numChildren = 1

Applications of ZooKeeper

Due to its versatile role in a distributed system, ZooKeeper has a huge set of practical
applications already in the market. We will list a few of them here in this section
as follows:

* Apache Solr: It uses ZooKeeper to elect the leader (that is, the leader election
process) and centralize the configuration

* Apache Hadoop: It seeks the help of ZooKeeper to automatically recover
from Hadoop HDFS Namenode failure, thereby providing high availability
of YARN ResourceManager

* Apache Accumulo: It is a sorted distributed key-value store that is built on
top of Apache ZooKeeper and Apache Hadoop

* Apache HBase: It is a distributed database that is built on Hadoop, ZooKeeper
facilitates it with master election, lease management, and communication
among servers

* Apache Mesos: It is used to manage clusters and provides effective resource
sharing and isolation across distributed applications. ZooKeeper helps Mesos
in facilitating a replicating master that is fault tolerant

* Cloudera Search: It uses ZooKeeper for centralized configuration
management purposes and is used to integrate search features with Apache
Hadoop

* Neo4j: It is a graph database for distributed systems and uses ZooKeeper to
write master selection and read slave coordination

[99]

Performance Optimization with ZooKeeper

Summary

In this chapter, we learned how to use ZooKeeper for performance optimization
purposes, and we covered how to set up, configure, and deploy ZooKeeper. We
also learned about the different applications of ZooKeeper that can help us optimize
Solr's performance.

In the next chapter, we will list down some useful and necessary references to

the official and documentation pages that will help you to explore the topics and
concepts even further. It also covers the recommended books and video tutorials that
will facilitate you to enhance your learning curve.

[100]

Resources

The following list consists of important resource links that will help you explore
further and understand the topics covered in the preceding chapters better:

XAMPP for Windows at http://www.apachefriends.org/en/xampp-
windows.html, with reference to Chapter 1, Installing Solr. You may visit this
link if you want to download the latest XAMPP installer for Windows.

The Tomcat add-on at http://tomcat . apache.org/download-60.cgi, as
discussed in Chapter 1, Installing Solr. In order to run Apache Solr, you need
an application server (Tomcat, Jetty, and so on). This link will help you find
and download the necessary add-on for Tomcat.

JavaJDK at http://java.sun.com/javase/downloads/index. jsp, with
reference to Chapter 1, Installing Solr. Since Apache Solr is Java based, it
requires Java JDK to function appropriately. This link will help you find
and download the latest version of Java JDK.

Apache Solr at http://lucene.apache.org/solr/, as discussed in Chapter
1, Installing Solr. You need to set up Apache Solr on your machine to avail
its benefits. This link will help you with the latest version of Apache Solr.
Additionally, it provides you with a documentation to understand more
about Solr.

The Solr PHP client at http://code.google.com/p/solr-php-client/,
with reference to Chapter 1, Installing Solr. This link helps you with the
client-side code and is used only when you wish to implement Solr for

a PHP-based application.

The Solr Wiki page at http://en.wikipedia.org/wiki/Apache_Solr.
To know more about Apache Solr, you may also visit this link, which is
its Wiki page.

Resources

The similarity class at http://lucene.apache.org/core/4_0_0/core/org/
apache/lucene/search/similarities/Similarity.html, as discussed in
Chapter 2, Boost Your Search. If you are eager to explore further the parameters
affecting the scores, this link is for you.

The SweetSpotSimilarity class athttp://lucene.apache.org/
core/3 0 _3/api/contrib-misc/org/apache/lucene/misc/SweetSpot
Similarity.html, with reference to Chapter 2, Boost Your Search. In case none
of the setups work out for you while troubleshooting your queries and scoring,
you may try out using the sweetSpotSimilarity class and this link will help
you learn even further.

The Haversine formula at http://bigdatanerd.wordpress.
com/2011/11/03/java-implementation-of-haversine-formula-for-
distance-calculation-between-two-points/, as discussed in Chapter 2,
Boost Your Search. You may need to use the Haversine formula in order to
calculate distance between two geographical points. You may refer this link
to explore it further.

The HTTP cache header at http://www.w3.org/Protocols/rfc2616/
rfc2616-sec13.html, with reference to Chapter 3, Performance Optimization.
You need to understand the HTTP cache header before you learn how to
cache the result pages. This link contains the HTTP Cache Header RFC
document, which will help you keep pace with the topics covered in

the chapter.

Apache's ZooKeeper installer at http: //supergsego.com/apache/
zookeeper/stable/, as discussed in Chapter 6, Performance Optimization with
ZooKeeper. This link will help you find the appropriate stable version of the
ZooKeeper installer for your machine.

Apache ZooKeeper documentation at http: //zookeeper.apache.org/,
with reference to Chapter 6, Performance Optimization with ZooKeeper. This link
will help you with the documentation of ZooKeeper.

Apache Hadoop at http://hadoop.apache.org/, as discussed in Chapter 6,
Performance Optimization with ZooKeeper. With the help of this link, you
should be able to know more about Apache Hadoop.

Apache Accumulo at http://accumulo.apache.org/, with reference to
Chapter 6, Performance Optimization with ZooKeeper. You may learn about
Apache Accumulo by navigating to this link.

Apache HBase at http://hbase.apache.org/, as discussed in Chapter 6,
Performance Optimization with ZooKeeper. This link will guide you to understand
Apache HBase in depth.

Apache Mesos at http://mesos.apache.org/, with reference to
Chapter 6, Performance Optimization with ZooKeeper. You may find
the official documentation of Apache Mesos in this link.

[102]

Appendix

Cloudera search at https://github.com/cloudera/search, as referenced
in Chapter 6, Performance Optimization with ZooKeeper. You may visit this link
to learn about Cloudera Search and get the code base to practice.

Neo4j at http://www.neo4j.org/, with respect to Chapter 6, Performance
Optimization with ZooKeeper. This link will provide you the documentation
to learn about Neo4j.

The following is the list of a few books and video tutorials from Packt Publishing,
which might interest you and help you understand Apache Solr and its features better:

Administrating Solr found at http://www.packtpub.com/administrate-
monitor-and-optimize-solr-using-drupal-associated-scripts/book

Apache Solr 3.1 Cookbook found at http://www.packtpub.com/solr-3-1-
enterprise-search-server-cookbook/book

Apache Solr 4 Cookbook found at http://www.packtpub.com/apache-solr-
4 - cookbook /book

Apache Solr 3 Enterprise Search Server found at http: //www.packtpub.com/
apache-solr-3-enterprise-search-server/book

Getting Started with Apache Solr Search Server found at http://www.packtpub.
com/content/getting-started-apache-solr-search-server/video

[103]

Index

A Apache Solr installation
components, installing 8-12
Accumulo. See Apache Accumulo prerequisites 7, 8
Administrating Solr Apache ZooKeeper
URL 103 about 45, 89
Apache Accumulo applications 99
about 99 client-server architecture 91
URL 102 configuring 94, 95
Apache Hadoop deploying 95-98
about 99 distributed server, prerequisites 89, 90
URL 102 documentation, URL 102
Apache HBase ideal node count, setting 93
about 99 installer, URL 102
URL 102 properties 91, 92
Apache Mesos setting up 94
about 99 automatic document distribution
URL 102 stopping 54-57
Apache Solr autophrase boosting
about 99 about 20
function query 25 configuring 21
performance optimization techniques 61 partial phrase boosting 22
scoring 13-15 slop phrase, configuring 21
SolrCloud, using 44
troubleshooting 73 B
URL 101
URL, for downloading 7 books
Apache Solr 3.1 Cookbook URL 103
URL 103 boost addition 24, 25
Apache Solr 3 Enterprise Search Serve boost functions
URL 103 about 24
Apache Solr 4.0 44 boost addition 24, 25
Apache Solr 4 Cookbook boost multiplication 24, 25

URL 103

boosting
about 14
function query 31, 32
query time 15, 16
boost multiplication 24, 25
boost (q, boost) function 30
boost queries 22, 23
boost query parser 26

C

client-server architecture, ZooKeeper 91
Cloudera

URL 103
Cloudera Search 99
components, Apache Solr

installing 8-12
configuration, autophrase boosting 21
configuration, slop phrase 21
Continuous Integration (CI) 32
coordination factor (coord) 14
corrupt index

dealing with 73-75
CPU usage 38
curl command 76

D

dismax query parser

about 18, 26

autophrase boosting 20

boost functions 24

boost queries 22, 23

URL, for documentation 19

versus, Lucene DisjunctionMaxQuery 19,

20

versus, Lucene query parser 18,19
distributed indexing 51-54
distributed searching 51-54
distributed server

prerequisites 90
document caching 38, 39

E

expensive garbage collection
dealing with 83, 85

F
field

updating in document, without full
indexation 85-87

field length (fieldNorm) 14
field references, function query 27
file count

reducing, in index 76

filter caching 41
function query

about 25

boosting 31, 32

field references 27

function references 27

incorporating, with boost query parser 26

incorporating, with dismax query parser 26

incorporating, with function query parser
26

incorporating, with function range query
parser 26

incorporating, with lucene query parser 26

incorporating, with sorting 27

inverse reciprocal 34, 35

linear 34

logarithm 32, 33

mathematical operations 28, 29

ord() function 29

reciprocal 33, 34

rord() function 29

URL 31

function query parser 26
function range query parser 26
function references, function query 27

G

geodist() function 31
Geospatial function 28
geospatial search

used, for sorting search result 64-66

Getting started with Apache Solr Search

Server 103

H

Hadoop. See Apache Hadoop
Haversine formula

URL 31,102
HBase. See Apache HBase
homophones

searching for 67, 68
HTTP cache header

URL 102

ideal node count
setting, for ZooKeeper 93
implementation, near real-time search
(NRT)
challenges 58, 59
index size
truncating 77-79
index-time 15
index-time boosting 15, 16
infinite loop exception
dealing with, in shards 82, 83
installation, Apache Solr
prerequisites 7, 8

installation, Apache Solr components 8-12

inverse document frequency (idf) 14
inverse reciprocal, function query 34, 35

J

Java JDK
URL 101
URL, for downloading 7

L

linear, function query 34
locked index
dealing with 77
logarithm, function query 32, 33
Lucene DisjunctionMaxQuery
about 19
versus, dismax query parser 19, 20
lucene query parser 26
Lucene query parser
versus, dismax query parser 18,19

mathematical operations, function query
28,29
memory usage 38
Mesos. See Apache Mesos
ms() function 30
mul() function 24
multiple opened files
dealing with 79, 80

N

near real-time search (NRT)
about 58
implementing 58, 59
versus, real-time search 58
Neo4j
about 99
URL 103

(0

optimize command 76

ord() function 29

out-of-memory
dealing with 81
Wiki reference 81

P

partial phrase boosting 22
performance optimization, Apache Solr 61
predefined words

filtering out, from being searched 69-71

Q

query

troubleshooting 16-18
query (q, def?) function 30
query result caching 39, 40
query-time

about 15

boosting 15, 16
quorum 92

[107]

R

real-time search
versus, near real-time search (NRT) 58
reciprocal, function query 33, 34
result pages caching 42, 43
RFC document
URL 42
rord() function 29

S

scoring
about 13-15
coordination factor (coord) 14
field length (fieldNorm) 14
index-time boosting 15
inverse document frequency (idf) 14
query-time boosting 15
query troubleshooting 16-18
term frequency (tf) 14
sharding
challenges 44
similar document
getting, based on rendered result set 62, 64
similarity class
URL 102
slop phrase
configuring 21
Solr caching
about 38
document caching 38, 39
filter caching 41
query result caching 39, 40
result pages caching 42, 43
SolrCloud
about 44
benefits 44
SolrCloud cluster, creating 45, 46
SolrCloud cluster
automatic document distribution,
stopping 54-57
creating 45, 46
distributed indexing 51-54
distributed searching 51-54
managing 49, 50
using, with multiple collections 46-48

Solr performance factors
CPU usage 38
memory usage 38
Transactions Per Second (TPS) 37
Solr PHP client
URL 101
URL, for downloading 8
Solr Wiki
URL 69, 101
sorting 27
start command
parameters 84
strdist(s1, s2, alg) function 30
SweetSpotSimilarity class
URL 102

T

term frequency (tf) 14
tf.idf model. See scoring
Tomcat add-on
URL 101
URL, for downloading 7
Transactions Per Second (TPS) 37
troubleshooting
corrupt index 73-75
expensive garbage collection 83, 85
index file count, reducing 76
index size 77-79

infinite loop exception, in shards 82, 83

locked index 77
out-of-memory 81
single field, updating without full
indexation 85-87
too many opened files 79, 80
troubleshooting, query 16-18

X

XAMPP
URL, for downloading 7
URL, for Windows 101

Y4

znodes 92
ZooKeeper. See Apache ZooKeeper
ZooKeeper data nodes. See znodes

[108]

open source

community experience distilled

PUBLISHING

Thank you for buying
Apache Solr High Performance

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

[open source

community experience distilled

PUBLISHING

Instant Apache Wicket 6
ISBN: 978-1-78328-001-8 eBook: 54 pages

Learn how to get started with Apache Wicket 6

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Learn to build a Wicket application.
3. Get to grips with the core concepts of Wicket.

4. Understand the lifecycle of Wicket.

Apache Solr Beginner's Guide
ISBN: 978-1-78216-252-0 Paperback: 324 pages

Configure your own search engine experience
with real-world data with this practical guide
to Apache Solr

1. Learn to use Solr in real-world contexts, even
if you are not a programmer, using simple
configuration examples.

Apache Solr

2. Define simple configurations for searching data
in several ways in your specific context, from
suggestions to advanced faceted navigation.

3. Teaches you in an easy-to-follow style, full
of examples, illustrations, and tips to suit
the demands of beginners.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Apache Soir 4
Cookbook

Apache Solr 4 Cookbook
ISBN: 978-1-78216-132-5 Paperback: 328 pages

Over 100 recipes to make Apache Solr faster, more
reliable, and return better results

1. Learn how to make Apache Solr search faster,
more complete, and comprehensively scalable.

2. Solve performance, setup, configuration,
analysis, and query problems in no time.

3. Get to grips with, and master, the new exciting
features of Apache Solr 4.

Apache Solr PHP Integration

Apache Solr PHP Integration
ISBN: 978-1-78216-492-0 Paperback: 118 pages

Build a fully-featured and scalable search application
using PHP to unlock the search functions provided
by Solr

1. Understand the tools that can be used to
communicate between PHP and Solr, and
how they work internally.

2. Explore the essential search functions
of Solr such as sorting, boosting, faceting,
and highlighting using your PHP code.

3. Take alook at some advanced features of Solr
such as spell checking, grouping, and auto
complete with implementations using PHP code.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Solr
	Prerequisites
	Installing components

	Summary

	Chapter 2: Boost Your Search
	Scoring
	Boosting query-time and index-time
	Index-time boosting
	Query-time boosting

	Troubleshoot queries and scores

	The dismax query parser
	Lucene DisjunctionMaxQuery
	Autophrase boosting
	Configuring autophrase boosting
	Configuring the phrase slop
	Boosting a partial phrase

	Boost queries
	Boost functions
	Boost addition and multiplication

	Function queries
	Field references
	Function references
	Mathematical operations
	The ord() and rord() functions
	Other functions
	Boosting the function query
	Logarithm
	Reciprocal
	Linear
	Inverse reciprocal

	Summary

	Chapter 3: Performance Optimization
	Solr performance factors
	Solr caching
	Document caching
	Query result caching
	Filter caching
	Result pages caching

	Using SolrCloud
	Creating a SolrCloud cluster
	Multiple collections within a cluster
	Managing a SolrCloud cluster
	Distributed indexing and searching
	Stopping automatic document distribution

	Near real-time search
	Summary

	Chapter 4: Additional Performance Optimization Techniques
	Documents similar to those returned in the search result
	Sorting results by function values
	Searching for homophones
	Ignore the defined words from being searched
	Summary

	Chapter 5: Troubleshooting
	Dealing with the corrupt index
	Reducing the file count in the index
	Dealing with the locked index
	Truncating the index size
	Dealing with a huge count of open files
	Dealing with out-of-memory issues
	Dealing with an infinite loop exception in shards
	Dealing with expensive garbage collection
	Bulk updating a single field without full indexation
	Summary

	Chapter 6: Performance Optimization with ZooKeeper
	Getting familiar with ZooKeeper
	Prerequisites for a distributed server
	Aid your distributed system using ZooKeeper
	Setting an ideal node count for ZooKeeper

	Setting up, configuring, and deploying ZooKeeper
	Setting up ZooKeeper
	Configuring Zookeeper
	Deploying ZooKeeper

	Applications of ZooKeeper
	Summary

	Appendix
	Index

