Introducing

Vlaven

Balaji Varanasi and Sudha Belida

Apresse

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

Contents at a Glance

About the AUthors..........cccssvsmmmismmmsmss s —— Xi
About the Technical ReVIEWErcccesssmsmssssmssssmsmsmsssssssssssssassnsnss Xiii
Acknowledgments.........cccuunssssssssnnnmmmmssssssssssssnnnnssssssssssssssnnnsnsssssnns XV
Introduction........cccuccemnmmns s —————— xvii
Chapter 1: Getting Started with Mavencccennsneennnnssssnsnnnsnnns 1
Chapter 2: Setting Up Maven.........cccovnnmmmmmmnsssssnmmssssssssssssssssnssssnns 7
Chapter 3: Maven Dependency Managementccccuusseennnsssnnns 15
Chapter 4: Maven Project BasiCS.......cuuseemmmnssssnnnmsssssnnssssssssssssssnnns 23
Chapter 5: Maven Life Cycle.........cccinsssmmmmmnsssnmnnmssssssnssssssssnsssssnnns 37
Chapter 6: Maven Archetypesccccusseemmmmssssannmssssssnssssssssnsssssnnns 47
Chapter 7: Documentation and Reportingccccusseeennnssssnnnsnsssnnns 63
Chapter 8: Maven Release........cucermmmsssennmmsssssnnnmssssnsnssssssssnsssssnnns 77
111 - 99

Introduction

Introducing Maven provides a concise introduction to Maven, the de facto standard

for building, managing, and automating Java and JEE-based projects in enterprises
throughout the world. The book starts by explaining the fundamental concepts of Maven
and showing you how to set up and test Maven on your local machine. It then delves
deeply into concepts such as dependency management, life cycle phases, plug-ins, and
goals. It also discusses project structure conventions, jump-starting project creation using
archetypes, and documentation and report generation. Finally, it concludes with

a discussion of Nexus and Maven’s release process.

How This Book Is Structured

Chapter 1 starts with a gentle introduction to Maven. It discusses reasons for adopting
Maven, and it provides an overview of its two alternatives: Ant and Gradle.

Chapter 2 focuses on setting up Maven on your machine and testing the installation.
It also provides an overview of Maven’s settings.xml file, and it shows you how to run
Maven in a HTTP proxy-enabled environment.

Chapter 3 delves deeply into Maven’s dependency management. It then discusses
the GAV coordinates Maven uses for uniquely identifying its artifacts. Finally, it covers
transitive dependencies and the impact they have on builds.

Chapter 4 discusses the organization of a basic Maven project and covers the
important elements of a pom.xml file. Then you learn about testing the project using JUnit.

Chapter 5 provides detailed coverage of Maven’s life cycle, plug-ins, build phases,
and goals. It then walks you through the process of creating and using a simple Maven
plug-in.

Chapter 6 introduces archetypes’ project templates that enable you to bootstrap new
projects quickly. The built-in archetypes are used to generate a Java project, a web project,
and a multimodule project. You will then create a custom archetype from scratch and use
it to generate a new project.

Chapter 7 covers the basics of site generation using Maven. It then discusses report
generation and documentation such as Javadocs, test coverage reports, and FindBugs
reports and how to integrate them into a Maven site.

Chapter 8 begins with a discussion of the Nexus repository manager and shows you
how it can be integrated with Maven. It then provides complete coverage of Maven’s
release process and its different phases.

xvii

INTRODUCTION

Target Audience

Introducing Maven is intended for developers and automation engineers who would like
to get started quickly with Apache Maven. This book assumes basic knowledge of Java. No
prior experience with Maven is required.

Downloading the Source Code

The source code for the examples in this book can be downloaded from
www.apress.com/9781484208427. The source code is also available on GitHub at
https://github.com/bava/gswm-book.

Once downloaded, unzip the code and place the contents in the
C:\apress\gswm-book folder. The source code is organized by individual chapters. Where
applicable, the chapter folders contain the gswm project with the bare minimum files to
get you started on that chapter’s code listings. The chapter folders also contain a folder
named final, which holds the expected end state of the project(s).

Questions

We welcome reader feedback. If you have any questions or suggestions, you can contact
the authors at Balaji@inflinx.com or Sudha@inflinx.com.

xviii

www.apress.com/9781484208427.
https://github.com/bava/gswm-book.
https://Balaji@inflinx.com
https://Sudha@inflinx.com.

CHAPTER 1

Getting Started with Maven/

Like other craftsmen, software developers rely on their tools to build applications.
Developer’s integrated development environments (IDEs), bug-tracking tools, build tools,
frameworks, and debug tools, such as memory analyzers, play a vital role in day-to-day
development and maintenance of quality software. This book will discuss and explore
the features of Maven, which we know will become an important tool in your software
development arsenal.

Apache Maven is an open source, standards-based project management framework
that simplifies the building, testing, reporting, and packaging of projects. Maven’s initial
roots were in the Apache Jakarta Alexandria project that took place in early 2000. It was
subsequently used in the Apache Turbine project. Like many other Apache projects
at that time, the Turbine project had several subprojects, each with its own Ant-based
build system. Back then, there was a strong desire for developing a standard way to build
projects and to share generated artifacts easily across projects. This desire gave birth to
Maven. Maven version 1.0 was released in 2004, followed by version 2.0 in 2005. At the
time of writing this book, 3.0.5 is the current version of Maven.

Maven has become one of the most widely used open source software programs in
enterprises around the world. Let’s look at some of the reasons why Maven is so popular.

Standardized Directory Structure

Often, when we start work on a new project, a considerable amount of time is spent
deciding on the project layout and folder structure needed to store code and configuration
files. These decisions can vary vastly across projects and teams, which can make it difficult
for new developers to understand and adopt other teams’ projects. It can also make it hard
for existing developers to jump between projects and find what they are seeking.
Maven addresses the above problems by standardizing the folder structure and
organization of a project. Maven provides recommendations on where different parts
of a project, such as source code, test code, and configuration files, should reside.
For example, Maven suggests that all of the Java source code should be placed in the
src\main\java folder. This makes it easier to understand and navigate any Maven project.
Additionally, these conventions make it easy to switch to and start using a new IDE.
Historically, IDEs varied with project structure and folder names. A dynamic web project
in Eclipse might use the WebContent folder to store web assets, whereas NetBeans might
use Web Pages for the same purpose. With Maven, your projects follow a consistent
structure and become IDE agnostic.

CHAPTER 1 © GETTING STARTED WITH MAVEN

Declarative Dependency Management

Most Java projects rely on other projects and open source frameworks to function
properly. It can be cumbersome to download these dependencies manually and keep
track of their versions as you use them in your project.

Maven provides a convenient way to declare these project dependencies in a
separate, external pom. xml file. It then automatically downloads those dependencies and
allows you to use them in your project. This simplifies project dependency management
greatly. It is important to note that in the pom. xml file you specify the what and not the
how. The pom. xml file can also serve as a documentation tool, conveying your project
dependencies and their versions.

Plug-ins

Maven follows a plug-in-based architecture, making it easy to augment and customize its
functionality. These plug-ins encapsulate reusable build and task logic. Today, there are
hundreds of Maven plug-ins available that can be used to carry out tasks ranging from
code compilation to packaging to project documentation generation.

Maven also makes it easy to create your own plug-ins, thereby enabling you to
integrate tasks and workflows that are specific to your organization.

Uniform Build Abstraction

Maven provides a uniform interface for building projects. You can build a Maven project
by using just a handful of commands. Once you become familiar with Maven’s build
process, you can easily figure out how to build other Maven projects. This frees developers
from having to learn build idiosyncrasies so they can focus more on development.

Tools Support

Maven provides a powerful command-line interface to carry out different operations.
All major IDEs today provide excellent tool support for Maven. Additionally, Maven is
fully integrated with today’s continuous integration products such as Jenkins, Bamboo,
and Hudson.

Archetypes

As we already mentioned, Maven provides a standard directory layout for its projects.
When the time comes to create a new Maven project, you need to build each directory
manually, and this can easily become tedious. This is where Maven archetypes come to
rescue. Maven archetypes are predefined project templates that can be used to generate
new projects. Projects created using archetypes will contain all of the folders and files
needed to get you going.

CHAPTER 1 © GETTING STARTED WITH MAVEN

Archetypes is also a valuable tool for bundling best practices and common assets
that you will need in each of your projects. Consider a team that works heavily on Spring
framework-based web applications. All Spring-based web projects share common
dependencies and require a set of Spring configuration files. It is also highly possible that
all of these web projects have similar Log4j/Logback configuration files, CSS/Images, and
Apache Tile layouts or SiteMesh decorators. Maven lets this team bundle these common
assets into an archetype. When new projects get created using this archetype, they will
automatically have the common assets included. No more copy and pastes or drag and
drops required.

Open Source

Maven is open source and costs nothing to download and use. It comes with rich online
documentation and the support of an active community. Additionally, companies such as
Sonatype offer commercial support for the Maven ecosystem.

CONVENTION OVER CONFIGURATION

Convention over configuration (CoC) or coding by convention is one of the key
tenants of Maven. Popularized by the Ruby on Rails community, CoC emphasizes
sensible defaults, thereby reducing the number of decisions to be made. It saves
time and also results in a simpler end product, as the amount of configuration
required is drastically reduced.

As part of its CoC adherence, Maven provides several sensible defaults for its
projects. It lays out a standard directory structure and provides defaults for

the generated artifacts. Imagine looking at a Maven artifact with the name
log4j-1.4.3.jar. At a glance, you can easily see that you are looking at a log4j
JAR file, version 1.4.3.

One drawback of Maven’s CoC is the rigidness that end users experience when
using it. To address this, you can customize most of Maven’s defaults. For example,
it is possible to change the location of the Java source code in your project. As a rule
of thumb, however, such changes to defaults should be minimized.

CHAPTER 1 © GETTING STARTED WITH MAVEN

Maven Alternatives

Although the emphasis of this book is on Maven, let’s look at a couple of its alternatives:
Ant + Ivy and Gradle.

Ant + Ivy

Apache Ant (http://ant.apache.org) is a popular open source tool for scripting builds.
Ant is Java based, and it uses Extensible Markup Language (XML) for its configuration.
The default configuration file for Ant is the build.xml file.

Using Ant typically involves defining tasks and targets. As the name suggests, an
Ant task is a unit of work that needs to be completed. Typical tasks involve creating a
directory, running a test, compiling source code, building a web application archive
(WAR) file, and so forth. A target is simply a set of tasks. It is possible for a target to
depend on other targets. This dependency lets us sequence target execution. Listing 1-1
demonstrates a simple build. xml file with one target called compile. The compile target
has two echo tasks and one javac task.

Listing 1-1. Sample Ant build.xml File

<project name="Sample Build File" default="compile" basedir=".">

<target name="compile" description="Compile Source Code">
<echo message="Starting Code Compilation"/>
<javac srcdir="src" destdir="dist"/>
<echo message="Completed Code Compilation"/>

</target>

</project>

Ant doesn’t impose any conventions or restrictions on your project and it is
known to be extremely flexible. This flexibility has sometimes resulted in complex,
hard-to-understand and maintain build.xml files.

Apache Ivy (http://ant.apache.org/ivy/) provides automated dependency
management, making Ant more joyful to use. With Ivy, you declare the dependencies
in an XML file called ivy.xml, as shown in Listing 1-2. Integrating Ivy with Ant involves
declaring new targets in the build.xml file to retrieve and resolve dependencies.

Listing 1-2. Sample Ivy Listing

<ivy-module version="2.0">
<info organisation="com.apress" module="gswm-ivy" />

<dependencies>
<dependency org="org.apache.logging.log4j" name="log4j-api"
rev="2.0.2" />
</dependencies>
</ivy-module>

http://ant.apache.org/
http://ant.apache.org/ivy/

CHAPTER 1 © GETTING STARTED WITH MAVEN

Gradle

Gradle (http://gradle.org/) is the newest addition to the Java build project automation
tool family. Unlike Ant and Maven, which use XML for configuration, Gradle uses a
Groovy-based Domain Specific Language (DSL).

Gradle provides the flexibility of Ant, and it uses the same notion of tasks. It also
follows Maven’s conventions and dependency management style. Listing 1-3 shows a
default build.gradle file.

Listing 1-3. Default build.gradle File
apply plugin: 'java'
version = '1.0'

repositories {
mavenCentral()

dependencies {
testCompile group: 'junit', name: 'junit', version: '4.10'
}

Gradle’s DSL and its adherence to CoC results in compact build files. The first
line in Listing 1-3 includes a Java plug-in for build’s use. Plug-ins in Gradle provide
preconfigured tasks and dependencies to the project. The Java plug-in, for example,
provides tasks for building source files, running unit tests, and installing artifacts.

The dependencies section in the default.build file instructs Gradle to use JUnit
dependency during the compilation of test source files. Gradle’s flexibility, like that of
Ant, can be abused, which results in difficult and complex builds.

Summary

Apache Maven greatly simplifies the build process and automates project management
tasks. This chapter provided a gentle introduction to Maven and described the main
reasons for adopting it. We also looked at Maven'’s close peers: Ant + Ivy and Gradle.

In the next chapter, you will learn about the set up required to get up and running
with Maven.

http://gradle.org/

CHAPTER 2

Setting Up Maven

Maven installation is an easy and straightforward process. This chapter will explain how
to install and set up Maven using the Windows 7 operating system. You can follow the
same procedure with other operating systems.

Note Maven is a Java-based application and requires the Java Development Kit (JDK)
to function properly. Maven version 3.2 requires JDK 1.6 or above and versions 3.0/3.1 can
be run using JDK 1.5 or above. Before proceeding with Maven installation, make sure that
you have Java installed. If not, install the JDK (not just Java Runtime Environment [JRE])
from http://www.oracle.com/technetwork/java/javase/downloads/index.html.

In this book, we will be using JDK 1.7.

You will begin the installation process by downloading the latest version of Maven
from the Apache Maven web site (http://maven.apache.org/download.html). At the
time of this writing, the latest version is 3.2.3. Download the Maven 3.2.3 binary .zip file
as shown in Figure 2-1.

-IMaven 3.2.3

This is the current stable version of Maven.

Maven 3.2.3 (Binary tar.gz) apache-maven-3.2.3-bin.tar.az
Maven 3.2.3 (Binary zip) apache-maven-3.2.3-bin.zip
Maven 3.2.3 (Source tar.gz) apache-maven-3.2 tar.gz
Maven 3.2.3 (Source zip) apache-maven-3.2.3-src.zip
Release Notes 3.2.3

Release Reference Documentation 3.2.3

Figure 2-1. Maven download page

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html

CHAPTER 2 © SETTING UP MAVEN

Once the download is complete, unzip the distribution to a local directory on your
computer. It will create a folder named apache-maven-3.2.3-bin. This book assumes that
you have placed the contents of apache-maven-3.2.3-bin folder under c:\tools\maven
directory, as shown in Figure 2-2.

¥ » | Computer | ¥ | Local Disk (C:) » tools » maven » v | 3 |
- Include in library * Share with » Burn New folder
Name ’ Date modified Type Size
, bin File folder
J boot File folder
, conf File folder
, lib File folder
. LICENSE.tt Text Document 12 KB
L NOTICE.tt Text Document 2KB
__ README.bxt Text Document 3KB

Figure 2-2. Maven install location

The next step in the installation process is to add the M2_HOME environment variable
pointing to the Maven installation directory, in our case c:\tools\maven. Launch the
Start menu, and right-click the Computer option. Next select System Properties followed
by the Advanced system settings. This will launch the window shown in Figure 2-3.

CHAPTER 2 © SETTING UP MAVEN

p
System Properties | R |

| Computer Name | Hardware | Advanced | System Protection | Remote |

You must be logged on as an Administrator to make most of these changes.

Performance
Visual effects, processor scheduling, memory usage, and virtual memory

User Profiles
Desktop settings related to your logon

Startup and Recovery
System startup. system failure, and debugaing information

| Environment Variables...

L

Figure 2-3. System Properties window

Click the Environment Variables button, and then click New under System variables.
Enter the values shown in Figure 2-4 and click OK.

New System Variable |i
Variable name: M2_HOME
Variable value: c:\tools'\maven

o [concel

Figure 2-4. Maven Home system variable

CHAPTER 2 © SETTING UP MAVEN

The final step in the process is to modify the Path Environment variable so that you
can run Maven commands from the command line. Select the Path variable and click Edit.
Add %M2_HOME%/bin at the beginning of the path value, as shown in Figure 2-5. Click OK.
This completes the Maven installation. If you have any open command-line windows, close
them and reopen a new command-line window. When environment variables are added or
modified, new values are not propagated to open command-line windows automatically.

~

Edit System Variable &
Variable name: Path
Variable value: %aM2_HOME®%,bin;C:\Program Files (x86)\
[OK \[Cancel

Figure 2-5. Adding Maven Home to the path variable

MAVEN_OPTS ENVIRONMENT VARIABLE

When using Maven, especially in a complex project, chances are that you will run
into OutOfMemory errors. This may happen, for example, when you are running a
large number of JUnit tests or when you are generating a large number of reports.
To address this error, increase the heap size of the Java virtual machine (JVM)
used by Maven. This is done globally by creating a new environment variable called
MAVENiOPTS. To begin, we recommend using the value -Xmx512m.

Testing Installation

Now that Maven is installed, it’s time to test and verify the installation. Open a Command
Prompt and run the following command:

mvn -v

This command should output information similar to the following:

C:\Windows\System32>mvn -v

Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8fdf4;
2014-08-11T14:58:10-06:00)

Maven home: c:\tools\maven

Java version: 1.7.0_25, vendor: Oracle Corporation

Java home: C:\Java\jdki.7.0_25\jre

Default locale: en_US, platform encoding: Cp1252

0S name: "windows 7", version: "6.1", arch: "x86", family: "windows"

10

CHAPTER 2 © SETTING UP MAVEN

The -v command-line option tells the path where Maven is installed and what
Java version it is using. You would also get the same results by running the expanded
command mvn --version.

Getting Help

You can get a list of Maven’s command-line options by using the -h or - -help options.
Running the command below will produce output similar to that shown in Figure 2-6.

mvn -h

@ Windows Command Processor - =&
C:sMindowssSystem32>nun —help

usage: mvn loptions] [{goal<{s>>] [{phase(s>>]

Options:

—am,——also-make If project list is specified, also
build projects required by the
list =

—amd ., ——also—nake—dependents If project list is specified, also
build projects that depend on
projects on the list

-B.-—batch-mode Rug in non-interactive (batch>
mode

-C,——strict—checksuns Failhthe build if checksums don’t
matc

—¢.——lax—checksums Warn if checksums don’t match

—cpu,.——check-plugin-updates Ineffective, only kept for
backward compatibility

-D.——def ine <{arg> Define a system property

—€ ,~—Errors Produce execution error messages

—emp.——encrypt-master—password {argl Encrypt master security password

—-ep,.——encrypt-password <arvg’> Encrypt server passuword

—f.-—file <{arg> Force the use of an alternate POM
file (or directory with pom.xml>.

~fae.——fail-at-end Only fail the build afterwards;
allow all non—impacted builds to
continue

—ff,——fail-fast Stop at first failure in

- reactorized builds_ .-

Figure 2-6. Results of running Maven Help command

Additional Settings

The installation steps we have provided so far are enough to get you started with

Maven. However, for most enterprise uses, you need to provide additional configuration
information. This user-specific configuration is provided in a settings.xml file located in
the c:\Users\<<user_name>>\.m2 folder.

11

CHAPTER 2 © SETTING UP MAVEN

Note The .m2 folder is important to Maven’s smooth operation. Among many things,
this folder houses a settings.xml file and a repository folder. The repository folder contains
plug-in JAR files and metadata that Maven requires. It also contains the project-dependent
JAR files that Maven downloaded from the Internet. We will take a closer look at this folder
in Chapter 3.

By default, the .m2 folder is located in your home directory. In Windows, this directory is
usually c:\Users\<<your user_name>>. Maven automatically creates the .m2 folder. If you
don’t see this folder on your computer, however, go ahead and create one.

Out of the box, the .m2 folder does not contain a settings.xml file. In the .m2 folder
on your local computer, create a settings.xml file and copy the contents of the skeleton
settings.xml file as shown in Listing 2-1. We will cover some of these elements in the
coming chapters. A brief description of the elements is provided in Table 2-1.

Listing 2-1. Skeleton Settings.xml Contents

<settings xmlns="http://maven.apache.orq/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orq/SETTINGS/1.0.0
http://maven.apache.orq/xsd/settings-1.0.0.xsd">
<localRepository/>
<interactiveMode/>
<usePluginRegistry/>
<offline/>
<pluginGroups/>
<servers/>
<mirrors/>
<proxies/>
<profiles/>
<activeProfiles/>
</settings>

12

http://maven.apache.org/SETTINGS/1.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd

CHAPTER 2 © SETTING UP MAVEN

Table 2-1. Details of the settings.xml Elements

Element Name

Description

localRepository

interactiveMode

offline

Servers

mirrors

proxies

profiles

activeProfile

Maven stores copies of plug-ins and dependencies locally in the
c:\Users\<<your_user_name>>\.m2\repository folder. This
element can be used to change the path of the local repository.

For example, <localRepository>c:\mavenrepo</localRepository>
will change the repository location to the mavenrepo folder.

As the name suggests, when this value is set to true, the default
value, Maven interacts with the user for input.

When set to true, this configuration instructs Maven to operate in
an offline mode. The default is false.

Maven can interact with a variety of servers, such as Apache
Subversion (SVN) servers, build servers, and remote repository
servers. This element allows you to specify security credentials,
such as the username and password, which you need to connect to
those servers.

As the name suggests, mirrors allow you to specify alternate
locations for your repositories.

proxies contains the HTTP proxy information needed to connect to
the Internet.

profiles allow you to group certain configuration elements, such as
repositories and pluginRepositories.

The activeProfile allows you to specify a default profile to be
active for Maven to use.

Setting Up a Proxy

As we will discuss in detail in Chapter 3, Maven requires an Internet connection to
download plug-ins and dependencies. Some companies employ HTTP proxies to
restrict access to the Internet. In those scenarios, running Maven will result in Unable to
download artifact errors. To address this, edit the settings.xml file and add the proxy
information specific to your company. A sample configuration is shown in Listing 2-2.

13

CHAPTER 2 © SETTING UP MAVEN

Listing 2-2. Settings.xml with Proxy content

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orq/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
<proxies>
<proxy>
<id>companyProxy</id>
<active>true</active>
<protocol>http</protocol>
<host>proxy.company.com</host>
<port>8080</port>
<username>proxyusername</username>
<password>proxypassword</password>
<nonProxyHosts />
</proxy>
</proxies>
</settings>

IDE Support

Throughout this book, we will be using the command line to create and build sample
applications. If you are interested in using an IDE, the good news is that all modern IDEs
come with full Maven integration without needing any further configuration.

Summary

This chapter walked you through the setup of Maven on your local computer. You learned
that Maven downloads the plug-ins and artifacts needed for its operation. These artifacts
are stored in the .m2\repository folder. The .m2 folder also contains the settings.xml
file, which can be used to configure Maven'’s behavior.

In the next chapter, we will take a deeper look at Maven’s dependency management.

14

http://maven.apache.org/SETTINGS/1.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd

CHAPTER 3

Maven Dependency
Management

Enterprise-level projects typically depend on a variety of open source libraries. Consider
the scenario where you want to use Log4J for your application logging. To accomplish
this, you would go to the Log4] download page, download the JAR file, and put it in your
project’s 1ib folder or add it to the project’s class path. As you may know already, there
are a couple of problems with this approach:

1. Youneed to check JAR files into SVN so that your projects can
be built on a computer other than your own.

2. The JAR file you downloaded might depend on a few other
libraries. You would now have to hunt down all of those
dependencies and add them to your project.

3. When the time comes to upgrade the JAR file, you need to start
the process all over again.

4. It becomes difficult to share JAR files across teams within
your organization.

To address these problems, Maven provides declarative dependency management.
With this approach, you declare your project’s dependencies in an external file called
pom.xml. Maven will automatically download those dependencies and hand them over to
your project for the purpose of building, testing, or packaging.

Figure 3-1 shows a high-level view of Maven’s dependency management. As you
can see, Maven interacts with repositories that hold artifacts and related metadata.
Repositories that are typically accessed over the web are considered remote and are
maintained by a third party. The default remote repository with which Maven interacts
is called Maven Central, and it is located at repo.maven.apache.org and uk.maven.org.
Maven places the downloaded artifacts in the local repository.

15

CHAPTER 3 MAVEN DEPENDENCY MANAGEMENT

Maven Central

Figure 3-1. Maven dependency management

Although the architecture shown in Figure 3-1 works in the majority of cases,
it poses a few problems in an enterprise environment. The first problem is that
sharing company-related artifacts between teams is not possible. Because of security
and intellectual property concerns, you wouldn’t want to publish your enterprise’s
artifacts on Maven Central. Another problem concerns legal and licensing issues. Your
company might want the teams only to use officially approved open source software,
and this architecture would not fit in that model. The final issue concerns bandwidth
and download speeds. In times of heavy load on Maven Central, the download speeds
of Maven artifacts are reduced, and this might have a negative impact on your builds.
Hence, most enterprises employ the architecture shown in Figure 3-2.

16

CHAPTER 3 MAVEN DEPENDENCY MANAGEMENT

Spring Repository Maven Central JBoss Repository

r Corporate
Network

Repository
Manager

Figure 3-2. Enterprise Maven repository architecture

The internal repository manager acts as a proxy to remote repositories. Because
you have full control over the internal repository, you can regulate the types of artifacts
allowed in your company. Additionally, you can also push your organization’s artifacts
onto the server, thereby enabling collaboration. There are several open source repository
managers. Table 3-1 lists just some of them.

17

CHAPTER 3 © MAVEN DEPENDENCY MANAGEMENT

Table 3-1. Open Source Repository Managers

Repository Manager ~ URL

Sonatype Nexus www. sonatype.com/nexus
Apache Archiva http://archiva.apache.org/
Artifactory www. jfrog.com/open-source/

Using Repositories

In order to use a new repository, you need to modify the settings.xml file. Listing 3-1
shows Spring and JBoss repositories added to the settings.xml file. In this same way,
you can add to your company’s repository manager.

Listing 3-1. Adding Repositories in settings.xml

<?xml version="1.0" encoding="UTF-8" ?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/
settings-1.0.0.xsd">

.......

<profiles>
<profile>
<id>your_company</id>
<repositories>
<repository>
<id>spring repo</id>
<url>http://repo.spring.io/release/</url>
</repository>
<repository>
<id>jboss_repo</id>
<url>https://repository.jboss.org/</url>
</repository>
</repositories>
</profile>
</profiles>
<activeProfiles>
<activeProfile>your company</activeProfile>
</activeProfiles>

.......

</settings>

18

http://maven.apache.org/SETTINGS/1.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd
http://maven.apache.org/xsd/settings-1.0.0.xsd
http://repo.spring.io/release/
https://repository.jboss.org/
www.sonatype.com/nexus
http://archiva.apache.org/
www.jfrog.com/open-source/

CHAPTER 3 © MAVEN DEPENDENCY MANAGEMENT

Note Information regarding repositories can be provided in the settings.xml or the
pom. xml file. There are pros and cons to each approach. Putting repository information in
the pom. xm1 file can make your builds portable. It enables developers to download projects
and simply build them without any further modifications to their local settings .xml file.
The problem with this approach is that when artifacts are released, the corresponding
pom.xml files will have the repository information hard coded in them. If the repository
URLs were ever to change, consumers of these artifacts will run into errors due to broken
repository paths. Putting repository information in the settings . xm1 file addresses this
problem, and because of the flexibility it provides, the settings.xml approach is typically
recommended in an enterprise setting.

Dependency ldentification

Maven dependencies are typically archives such as JAR, WAR, enterprise archive (EAR),
and ZIP. Each Maven dependency is uniquely identified using the following group,
artifact, and version (GAV) coordinates:

groupld: Identifier of the organization or group that is
responsible for this project. Examples include org.hibernate,
log4j, and org. springframework.boot.

artifactlId: Identifier of the artifact being generated by the
project. This must be unique among the projects using the
same groupId. Examples include hibernate-tools, log4j,
spring-core, and so on.

version: Indicates the version number of the project.
Examples include 1.0.0, 2.3.1-SNAPSHOT, and 4.3.6.Final.

type: Indicates the packing of the generated artifact. Examples
include JAR, WAR, and EAR.

Transitive Dependencies

Dependencies declared in your project’s pom.xml file often have their own dependencies.
Such dependencies are called transitive dependencies. Take the example of Hibernate
Core. For it to function properly, it requires JBoss Logging, dom4j, javaassist, and so forth.
The Hibernate Core declared in your pom.xml file is considered a direct dependency,

and dependencies such as dom4j and javaassist are considered your project’s transitive
dependencies. A key benefit of Maven is that it automatically deals with transitive
dependencies and includes them in your project.

19

CHAPTER 3 MAVEN DEPENDENCY MANAGEMENT

Figure 3-3 provides an example of transitive dependencies. Notice that transitive
dependencies can have their own dependencies. As you might imagine, this can quickly
get complex, especially when multiple direct dependencies pull different versions of the
same JAR file.

Project

Version: 1.0.0

Direct
Dependencies

)
\
\

Figure 3-3. Transitive dependencies

Maven uses a technique known as dependency mediation to resolve version conflicts.
Simply stated, dependency mediation allows Maven to pull the dependency that is
closest to the project in the tree. In Figure 3-3, there are two versions of dependency B:
0.0.8 and 1.0.0. In this scenario, version 0.0.8 of dependency B is included in the project,
because it is a direct dependency and closest to the tree. Now look at the three versions of
dependency F: 0.1.3, 1.0.0, and 2.2.0. All three dependencies are at the same depth. In this
scenario, Maven will use the first-found dependency, which would be 0.1.3, and not the
latest 2.2.0 version.

Note Although highly useful, transitive dependencies can cause problems and unpre-
dictable side effects, as you might end up including unwanted JAR files or older versions
of JAR files. Always analyze your dependency tree and make sure you are bundling the
dependencies you need and excluding the ones you don’t require.

20

CHAPTER 3 © MAVEN DEPENDENCY MANAGEMENT

Dependency Scope

Consider a project that uses JUnit for its unit testing. The JUnit JAR file you included in
your project is only needed during testing. You really don’t need to bundle the JUnit
JAR in your final production archive. Similarly, consider the MySQL database driver,
mysql-connector-java. jar file. You need the dependency when you are running the
application inside a container such as Tomcat. Maven uses the concept of scope, which
allows you to specify when and where you need a particular dependency.

Maven provides the following six scopes:

compile: Dependencies with the compile scope are available
in the class path in all phases on a project build, test, and run.
This is the default scope.

provided: Dependencies with the provided scope are available
in the class path during the build and test phases. They don’t get
bundled within the generated artifact. Examples of dependencies
that use this scope include Servlet api, JSP api, and so on.

runtime: Dependencies with the runtime scope are not
available in the class path during the build phase. Instead they
get bundled in the generated artifact and are available during
runtime.

test: Dependencies with the test scope are available during
the test phase. JUnit and TestNG are good examples of
dependencies with the test scope.

system: Dependencies with the system scope are similar to
dependencies with the provided scope, except that these
dependencies are not retrieved from the repository. Instead, a
hard-coded path to the file system is specified from which the
dependencies are used.

import: The import scope is applicable for . pom file
dependencies only. It allows you to include dependency
management information from a remote . pom file. The import
scope is available only in Maven 2.0.9 or later.

Manual Dependency Installation

Ideally, you will be pulling dependencies in your projects from public repositories or
your enterprise repository manager. However, there will be times where you need an
archive available in your local repository so that you can continue your development. For
example, you might be waiting on your system administrators to add the required JAR file
to your enterprise repository manager.

Maven provides a handy way of installing an archive into your local
repository with the install plug-in. Listing 3-2 installs a test. jar file located in the
c:\apress\gswm-book\chapter3 folder.

21

CHAPTER 3 © MAVEN DEPENDENCY MANAGEMENT

Listing 3-2. Installing Dependency Manually

C:\apress\gswm-book\chapter3>mvn install:install-file -DgroupId=com.apress.
gswmbook -DartifactId=test -Dversion=1.0.0 -Dfile=C:\apress\gswm-book\chapter3\
test.jar -Dpackaging=jar -DgeneratePom=true

[INFO] Scanning for projects...

INFO]

pom---

[INFO] Installing C:\apress\gswm-book\chapter3\test.jar to C:\Users\<<USER_
NAME>>\.m2\repository\com\apress\gswmbook\test\1.0.0\test-1.0.0.jar

[INFO] Installing C:\Users\<<USER_NAME>>\AppData\Local\Temp\
mvninstall2668943665146984418.pom to C:\Users\<<USER_NAME>>\.m2\repository\
com\apress\gswmbook\test\1.0.0\test-1.0.0.pom

[INFO] === === o mmmm oo o o oo e e e e
[INFO] BUILD SUCCESS

10)
[INFO] Total time: 0.470 s

[INFO] Finished at: 2014-10-24T20:23:36-06:00

[INFO] Final Memory: 4M/15M

After seeing the BUILD SUCCESS message, you can verify the installation by going to
your local Maven repository, as shown in Figure 3-4.

.m2 » repository » com b apress » gswmbook » test » 1.0.0 v|

MNew folder
Name

| _remote.repositories

& test-1.0.0.jar

|| test-1.0.0.pom

Figure 3-4. Dependency added to repository

Summary

Dependency management is at the heart of Maven. Every nontrivial Java project relies
on open source or external artifacts, and Maven’s dependency management automates
the process of retrieving those artifacts and including them at the right stages of the build
process. You also learned that Maven uses GAV coordinates to identify its artifacts.

In the next chapter, you will learn about the organization of a basic Maven project.

22

CHAPTER 4

Maven Project Basics

Maven provides conventions and a standard directory layout for all of its projects.

As discussed in Chapter 1, this standardization provides a uniform build interface and it
also makes it easy for developers to jump from one project to another. This chapter will
explain the basics of a Maven project and the pom. xml file.

Basic Project Organization

The best way to understand Maven project structure is to look at one. Figure 4-1 illustrates
a bare-bones Maven-based Java project.

gswm
—— pom.xml
—— SI'C

Figure 4-1. Maven Java project structure

Now let’s look at each of the components in the project:

e The gswmis the root folder of the project. Typically, the name of
the project matches the name of the generated artifact.

e The src folder contains project-related artifacts, which you
typically would like to manage in a source control management
(SCM) system, such as SVN or Git.

e The src/main/java folder contains the Java source code.

e The src/test/java folder contains the Java unit test code.

23

CHAPTER 4 © MAVEN PROJECT BASICS

e The target folder holds generated artifacts, such as .class files.
Generated artifacts are typically not stored in SCM, so you don’t
commit the target folder and its contents in to SCM.

e Every Maven project has a pom.xml file at the root of the
project. It holds project and configuration information, such as
dependencies and plug-ins.

In addition to the src/main and src/test directories, Maven recommends several
other directories. Table 4-1 lists those directories along with the content that goes into them.

Table 4-1. Maven Directories

Directory Name

Description

src/main/resources

src/main/config

src/main/scripts

src/test/resources
src/main/webapp
src/it

src/main/db

src/site

Holds resources, such as Spring configuration files and velocity
templates, that need to end up in the generated artifact.

Holds configuration files, such as Tomcat context files, James
Server configuration files, and so on. These files will not end
up in the generated artifact.

Holds any scripts that system administrators and developers
need for the application.

Holds configuration files needed for testing.

Holds web assets such as . jsp files, style sheets, and images.
Holds integration tests for the application.

Holds database files, such as SQL scripts.

Holds files required during the generation of the project site.

Maven provides for the notion of archetypes (as discussed in Chapter 6) to bootstrap
projects quickly. However, in this chapter, you will manually assemble the project. Use
the instructions that follow to create the project:

1. Using a command line, go to the folder where you would like
to create the project. In this book, we assume that directory to
be c:\apress\gswm-book\chapters.

2. Runthe command mkdir gswm.

3. cdinto the newly created directory, and create an empty

pom. xml file.

4. Create the directory stc/main/java. Create the src directory
under gswm, then create the main directory in src, and finally
create the java directory under main, as shown in Figure 4-2.

The starting project structure should resemble that shown in Figure 4-2.

24

CHAPTER 4 © MAVEN PROJECT BASICS

gswm
pom.xml
src
L— main
L— java

Figure 4-2. Maven project structure

Understanding the pom.xml/ File

The pom.xml file is the only required artifact in a Maven project. As we have discussed so
far in the book, the pom.xml file holds the configuration information needed by Maven.
Listing 4-1 shows the pom.xml file with the basic project information. We start the pom.xml
file with the project element. Then we provide the groupId, artifactId, and version
coordinates. The packaging element tells Maven that it needs to create a JAR archive

for this project. Finally, we add information about the developers who are working on
this project.

Listing 4-1. pom.xml File Configuration

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.apress.gswmbook</groupId>
<artifactId>gswm</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>jar</packaging>

<name>Getting Started with Maven</name>
<url>http://apress.com</url>

<developers>

<developer>
<id>balaji</id>
<name>Balaji Varanasi</name>
<email>balaji@inflinx.com</email>
<properties>

<active>true</active>

</properties>

</developer>

25

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://apress.com</url
http://balaji@inflinx.com/

CHAPTER 4 © MAVEN PROJECT BASICS

<developer>
<id>sudha</id>
<name>Sudha Belida</name>
<email>sudha@inflinx.com</email>
<properties>

<active>true</active>

</properties>

</developer>

</developers>
</project>

We will be looking at other elements in the pom.xml file later in this chapter and

throughout the rest of the book.

MAVEN VERSIONING

It is recommended that Maven projects use the following conventions for versioning:
<major-version>.<minor-version>.<incremental-version>-qualifier

The major, minor, and incremental values are numeric, and the qualifier can have
values such as RC, alpha, beta, and SNAPSHOT. Some examples that follow this
convention are 1.0.0, 2.4.5-SNAPSHOT, 3.1.1-RC1, and so forth.

The SNAPSHOT qualifier in the project’s version carries a special meaning. It
indicates that the project is in a development stage. When a project uses a
SNAPSHOT dependency, every time the project is built, Maven will fetch and use the
latest SNAPSHOT artifact.

Most repository managers accept release builds only once. However, when you

are developing an application in a continuous integration environment, you want to
build often and push your latest build to the repository manager. Thus, it is the best
practice to suffix your version with SNAPSHOT during development.

26

http://sudha@inflinx.com/

CHAPTER 4 © MAVEN PROJECT BASICS

Building a Project

Before we look at building a project, let’s add the HelloWorld Java class under
src/main/java folder. Listing 4-2 shows the code for the HelloWorld class.

Listing 4-2. Code for HelloWorld Java Class

public class HelloWorld {
public void sayHello() {
System.out.print("Hello World");

}
}
Figure 4-3 shows the project structure after adding the class.

gswm

pom, xml

src

L— main

L— java

L— Helloworld.java

Figure 4-3. Project structure with Java class added

Now you're ready to build the application, so let’s run themvn package from gswm.
You should see output similar to that shown in Listing 4-3.

Listing 4-3. Output for Maven Package Command for Building the Application

C:\apress\gswm-book\chapter4\gswm>mvn package

[

[INFO]

1
[INFO] Building Getting Started with Maven 1.0.0-SNAPSHOT

[INFO] - - -
[INFO]

[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ gswm

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered
resources,i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory C:\apress\gswm-book\chapters\
gswm\src\main\resources

[INFO]

27

CHAPTER 4 © MAVEN PROJECT BASICS

[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @ gswm ---
[WARNING] File encoding has not been set, using platform encoding Cp1252,
i.e. build is platform dependent!

[INFO] Compiling 1 source file to C:\apress\gswm-book\chapter4\gswm\target\
classes

[INFO]

[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources)
@ gswm ---

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered
resources,i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory C:\apress\gswm-book\chapters\
gswm\src\test\resources

[INFO]

[INFO] --- maven-compiler-plugin:2.5.1:testCompile (default-testCompile)
@ gswm---

INFO] No sources to compile

[

[

[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ gswm ---
[INFO] No tests to run.
[
[
[

INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ gswm ---
INFO] Building jar: C:\apress\gswm-book\chapter4\gswm\target\gswm-1.0.0-
SNAPSHOT. jar

INFO] Final Memory: 9M/23M
10

Note If this is your first time running Maven, it will download the plug-ins and dependencies
required for it to run. Thus, your first build might take longer than you would expect.

The package suffix after the mvn command is a Maven phase that compiles Java code
and packages it into the JAR file. The packaged JAR file ends up in the gswm\target folder,
as shown in Figure 4-4.

28

CHAPTER 4 © MAVEN PROJECT BASICS

Disk (C:) » apress » gswm-book » chapterd » gswm » target » -
Share with Burn MNew folder
-
Name Date modified v Type Size
classes File folder
maven-archiver File folder
maven-status File folder

& gswm-1.0.0-SNAPSHOT jar

Figure 4-4. Packaged JAR located under the target folder

Testing the Project

Now that you have completed the project build, let’s add a JUnit test that tests the
sayHello() method. Let's start this process by adding JUnit dependency to the
pom.xml file. You accomplish this by using the dependencies element. Listing 4-4 shows
the updated pom.xml file with JUnit dependency.

Listing 4-4. Updated POM with JUnit Dependency

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupIld>com.apress.gswmbook</groupld>
<artifactId>gswm</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>jar</packaging>

<name>Getting Started with Maven</name>
<url>http://apress.com</url>

<developers>

<developer>
<id>balaji</id>
<name>Balaji Varanasi</name>
<email>balaji@inflinx.com</email>
<properties>

<active>true</active>

</properties>

</developer>

29

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://apress.com</url
http://balaji@inflinx.com/

CHAPTER 4 © MAVEN PROJECT BASICS

<developer>
<id>sudha</id>
<name>Sudha Belida</name>
<email>sudha@inflinx.com</email>
<properties>
<active>true</active>
</properties>
</developer>
</developers>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
</dependencies>

</project>

Notice that you have used the scope test, indicating that the JUnit .jaris needed
only during the testing phase. Let’s make sure that this dependency has been successfully
added by runningmvn dependency:tree in the command line. Listing 4-5 shows the
output of this operation.

Listing 4-5. Maven Tree Command Output

C:\apress\gswm-book\chapter4\gswm>mvn dependency:tree

[

[

[

[

[

[

[INFO] --- maven-dependency-plugin:2.8:tree (default-cli) @ gswm ---
[INFO] com.apress.gswmbook:gswm:jar:1.0.0-SNAPSHOT

[INFO] \- junit:junit:jar:4.11:test

[INFO] \- org.hamcrest:hamcrest-core:jar:1.3:test

[
[
[
[
[
[
[

INFO] Total time: 1.646s
INFO] Finished at: Mon Oct 13 21:54:24 MDT 2014
INFO] Final Memory: 7M/19M

30

http://sudha@inflinx.com/

CHAPTER 4 © MAVEN PROJECT BASICS

The tree goal in the dependency plug-in displays the project’s dependencies as tree.

Notice that the JUnit dependency pulled in a transitive dependency named hamcrest,
which is an open source project that makes it easy to write matcher objects.

Now that you have the JUnit dependency in the class path, let’s add a unit test
HelloWorldTest. java to the project. Create the folders test/java under src and add

HelloWorldTest.java beneath it. The updated project structure is shown in Figure 4-5.

gswm
—— pom.xml
—— src

L— HelloWorldTest.java

L— target

Figure 4-5. Maven structure with test class

The source code for HelloWorldTest is shown in Listing 4-6.

Listing 4-6. Code for HelloWorldTest Java Class

import java.io.ByteArrayOutputStream;
import java.io.PrintStream;

import org.junit.After;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

public class HelloWorldTest {

private final ByteArrayOutputStream outStream = new
ByteArrayOutputStream();

@Before
public void setUp() {

System.setOut(new PrintStream(outStream));
}

@Test

public void testSayHello() {
HelloWorld hw = new HelloWorld();
hw.sayHello();

Assert.assertEquals("Hello World", outStream.toString());

31

CHAPTER 4 © MAVEN PROJECT BASICS

@After

public void cleanUp() {
System.setOut(null);

}

You now have everything set up in this project, so you can run the mvn package one
more time. After you run it, you will see output similar to that shown in Listing 4-7.

Listing 4-7. Output for Maven Command for Building the Project

C:\apress\gswm-book\chapter4\gswm>mvn package
INFO] Scanning for projects...

[
[
[
[INFO] Building Getting Started with Maven 1.0.0-SNAPSHOT
[
[
[

INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ gswm ---
[WARNING] Using platform encoding (Cp1252 actually) to copy filtered
resources,i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory C:\apress\gswm-book\chapters\
gswm\src\main\resources

[INFO]

[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @ gswm ---
[INFO] Nothing to compile - all classes are up to date

[INFO]

[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources)
@ gswm ---

[INFO] Surefire report directory: C:\apress\gswm-book\chapter4\gswm\target\
surefire-reports

Running HelloWorldTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.038 sec
Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ gswm ---

[INFO] Building jar: C:\apress\gswmbook\chapter4\gswm\target\gswm-1.0.0-
SNAPSHOT. jar

32

CHAPTER 4 © MAVEN PROJECT BASICS

INFO] Final Memory: 9M/22M
1

Note the Tests section in Listing 4-7. It shows that Maven has run the test and that it
has successfully completed.

(C:) » apress » gswm-book » chapterd » gswm » target »

Share with » Burn MNew folder
Name Date modified Type Size
classes 10/13/2014 9:50 PM File folder
. maven-archiver 10/13/2014 9:50 PM File folder
surefire-reports 10/13/2014 9:59 PM File folder
test-classes 10/13/2014 9:59 PM File folder
|| gswm-1,0,0-SNAPSHOT jar 10/13/2014 9:59 PM File 3 KB

Figure 4-6. Target folder with test classes

Figure 4-6 shows the updated target folder. You can see that you now have a
test-classes folder with their associated reports in that folder.

Properties in pom.xml

Maven allows you to declare properties in the pom.xml file using the <properties />
element. These properties are highly useful for declaring dependency versions.

Listing 4-8 shows the updated pom.xml file with the JUnit version declared as a property.
Notice the use of ${} syntax in the version element of JUnit dependency. This is
especially useful when pom.xml has a lot of dependencies and you need to know or
change a version of a particular dependency.

Listing 4-8. pom.xml File with Properties

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

33

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/xsd/maven-4.0.0.xsd

CHAPTER 4 © MAVEN PROJECT BASICS

<groupIld>com.apress.gswmbook</groupld>
<artifactId>gswm</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>jar</packaging>

<name>Getting Started with Maven</name>
<url>http://apress.com</url>

<properties>
<junit.version>4.11</junit.version>
</properties>

<developers>
<developer>
<id>balaji</id>
<name>Balaji Varanasi</name>
<email>balaji@inflinx.com</email>
<properties>
<active>true</active>
</properties>
</developer>
<developer>
<id>sudha</id>
<name>Sudha Belida</name>
<email>sudha@inflinx.com</email>
<properties>
<active>true</active>
</properties>
</developer>
</developers>
<dependencies>
<dependency>
<groupld>junit</groupld>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

34

http://apress.com/
http://balaji@inflinx.com/
http://sudha@inflinx.com/

CHAPTER 4 © MAVEN PROJECT BASICS

Excluding Dependencies

Chapter 3 discussed transitive dependencies and the occasional need to exclude a particular
transitive dependency. The exclusions element in the pom.xml file allows you to exclude
a dependency.

Listing 4-9 shows the updated dependencies element for JUnit where the hamcrest
transitive dependency is excluded. As you can see, the exclusion element takes the
groupId and artifactId coordinates of the dependency that you would like to exclude.

Listing 4-9. JUnit Dependency with Exclusion

<dependencies>
<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
<scope>test</scope>
<exclusions>
<exclusion>
<groupld> org.hamcrest</groupId>
<artifactId>hamcrest</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>

Summary

Maven'’s CoC prescribes a standard directory layout for all of its projects. It provides
several sensible directories such as src\main\java and src\it, along with
recommendations on the content that goes into each one of them. You learned about
the mandatory pom. xml file and some of its elements, which are used to configure Maven
project’s behavior.

In the next chapter, you will look at Maven’s life cycle, plug-ins, build phases, goals,
and how to leverage them effectively.

35

CHAPTER 5

Maven Life Cycle

Goals and Plug-ins

Build processes generating artifacts typically require several steps and tasks to be
completed successfully. Examples of such tasks include compiling source code, running
a unit test, and packaging of artifacts. Maven uses the concept of goals to represent such
granular tasks.

To better understand what a goal is, let’s look at an example. Listing 5-1 shows the
compile goal executed on gswm project code under C: \apress\gswm-book\chapter5\gswm
As the name suggests, the compile goal compiles source code. The compile goal identifies
the Java class HelloWorld. java under src/main/java, compiles it, and places the compiled
class file under the target\classes folder.

Listing 5-1. Maven compile Goal

C:\apress\gswm-book\chapter5\gswm>mvn compiler:compile

[INFO] Scanning for projects...

[INFO]
1510
[INFO] Building Getting Started with Maven 1.0.0-SNAPSHOT

[INFO] === = - == oo o mmmm oo o o e oo e e o e
[INFO]

[INFO] --- maven-compiler-plugin:2.5.1:compile (default-cli) @ gswm ---
[WARNING] File encoding has not been set, using platform encoding Cpi1252,

i.e. build is platform dependent!

[INFO] Compiling 1 source file to C:\apress\gswm-book\chapter5\gswm\target\

classes

[INFO] === m o o mmm o mm o o oo e e e
INFO] BUILD SUCCESS

37

CHAPTER 5 © MAVEN LIFE CYCLE

Goals in Maven are packaged in plug-ins, which are essentially a collection of one
or more goals. In Listing 5-1, the compiler is the plug-in that provides the goal compile.
Listing 5-2 introduces a pretty nifty goal called clean. As mentioned earlier, the target
folder holds Maven-generated temporary files and artifacts. There are times when the
target folder becomes huge or when certain files that have been cached need to be
cleaned out of the folder. The clean goal accomplishes exactly that, as it attempts to
delete the target folder and all its contents.

Listing 5-2. Maven clean Goal

C:\apress\gswm-book\chapter5\gswm>mvn clean:clean
INFO] Scanning for projects...
INFO]

INFO] --- maven-clean-plugin:2.5:clean (default-cli) @ gswm ---
Deleting C:\apress\gswm-book\chapter5\gswm\target

INFO] Total time: 0.233s
INFO] Finished at: Mon Oct 13 22:14:49 MDT 2014
INFO] Final Memory: 3M/15M

— s L e e —
=
=
m
[

Notice, the clean:clean suffix of the command in Listing 5-2. The clean before the
colon (:) represents the clean plug-in, and the clean following the colon represents the
clean goal. By now it should be obvious that running a goal in the command line requires
the following syntax:

mvn plugin_identifier:goal identifier

Plug-ins and their behavior can be configured using the plug-in section of pom. xml.
Consider the case where you want to enforce that your project must be compiled with
Java 1.6. As of version 3.0, the Maven Compiler Plug-in compiles the code against Java 1.5.
Thus, you will need to modify the behavior of this plug-in in the pom.xml file, as shown in
Listing 5-3.

Listing 5-3. Plug-in Element in the pom.xml File

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.
org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

38

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/xsd/maven-4.0.0.xsd

CHAPTER 5 © MAVEN LIFE CYCLE

<!-- Project details omitted for brevity -->

<dependencies>
<!-- Dependency details omitted for brevity -->
</dependencies>

<build>
<plugins>
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
</plugins>
</build>
</project>

Now if you were to run the mvn compiler:compile command, the generated class
files will be of Java version 1.6.

Note The <build /> elementin pom.xml has a very useful child element
called finalName. By default, the name of the Maven-generated artifact follows the
<«project_artifiact id>>-<<project version>> format. However,
sometimes you might want to change the name of the generated artifact without
changing the artifactId. You can accomplish this by declaring the finalName element
as <finalName>new _name</finalName>.

Life Cycle and Phases

Maven follows a well-defined build life cycle when it builds, tests, and distributes an
artifact. The life cycle constitutes a series of stages or steps that get executed in the same
order, independent of the artifact being produced. Maven refers to the steps in a life cycle
as phases. Maven has the following three built-in life cycles:

Default: This life cycle handles the compiling, packaging, and
deployment of a Maven project.

Clean: This life cycle handles the deletion of temporary files
and generated artifacts from the target directory.

Site: This life cycle handles the generation of documentation
and site generation.

39

CHAPTER 5 © MAVEN LIFE CYCLE

Note Now that you are aware of the clean life cycle, you can clean the target folder
simply by running the clean phase using the command mvn clean.

To better understand the build life cycle and its phases, let’s look at the some of the
phases associated with the default life cycle:

Validate: Runs checks to ensure that the project is correct and
that all dependencies are downloaded and available.

Compile: Compiles the source code.

Test: Runs unit tests using frameworks. This step doesn’t
require that the application be packaged.

Package: Assembles compiled code into a distributable format,
such as JAR or WAR.

Install: Installs the packaged archive into a local repository.
The archive is now available for use by any project running on
that machine.

Deploy: Pushes the built archive into a remote repository for
use by other teams and team members.

Because the default life cycle clearly defines the ordering of the phases, you
can generate an artifact simply by running the command mvn package. Maven will
automatically execute all of the phases prior to the requested phase. In the provided
example, Maven will run phases, such as compile and test, prior to running the package
phase. This means developers and configuration managers only have to learn and use a
handful of commands.

A number of tasks need to be performed in each phase. For that to happen, each
phase is associated with one or more goals. The phase simply delegates those tasks to its
associated goals. Figure 5-1 shows the association between life cycle, phases, goals, and
plug-ins.

40

(LIFE CYCLE

PHASE 1

PHASE 2

PHASE 3

PHASE 4

PHASE 5

PHASE 6

AN

N

CHAPTER 5 ' MAVEN LIFE CYCLE

PLUGIN 1

PLUGIN 2

PLUGIN 3

4

Figure 5-1. Association between life cycle, phases, goals, and plug-ins

The <packaging /> element in the pom.xml file will automatically assign the right
goals for each of the phases without any additional configuration. Remember that this is
a benefit of CoC. If the packaging element contains the value jar, then the package phase
will be bound to the jar goal in the jar plug-in. Similarly, for a WAR artifact, pom.xml will
bind the package to a war goal in the war plug-in.

41

CHAPTER 5 © MAVEN LIFE CYCLE

SKIPPING TESTS

As discussed earlier, when you run the package phase, the test phase is also run
and all of the unit tests get executed. If there are any failures in the test phase, the
build fails. This is the desired behavior. However, there are times, for example, when
dealing with a legacy project, where you would like to skip running the tests so you
can build a project successfully. You can achieve this using the maven.test.skip
property. Here is an example of using this property:

mvn package -Dmaven.test.skip=true

Plug-in Development

Developing plug-ins for Maven is very straightforward. This section explains how to
develop an example HelloPlugin that will give you a taste of plug-in development.

As discussed earlier, a plug-in is simply a collection of goals. Thus, when we talk
about plug-in development, we are essentially talking about developing goals. In Java,
these goals are implemented using MOJOs, which stands for Maven Old Java Object and
itis similar to Java’s Plain Old Java Object (POJO).

Let’s start this plug-in development by creating a Maven Java project, named
gswm-plugin, as shown in Figure 5-2. We are creating this project under a starter
gswm-plugin project available in the C: \apress\gswm-book\chapters folder.

gswm-plugin

pom.xml
src
L— main
L— java
com
L— apress
L— plugins

L— HelloMojo.java

Figure 5-2. Maven project for plug-in development

Note In this chapter we are manually creating the plug-in project. Maven provides a
mavan-archetype-mojo, which would jumpstart your plug-in development. We will learn
about Maven archetypes in Chapter 6.

42

CHAPTER 5 © MAVEN LIFE CYCLE

The content of the pom. xml file is shown in Listing 5-4. Notice that the packaging type
ismaven-plugin. We added the maven-plugin-api dependency, because it is needed for
plug-in development.

Listing 5-4. The pom.xml with plug-in api dependency

<?xml version="1.0" encoding="UTF-8"?><project>
<modelVersion>4.0.0</modelVersion>
<groupId>com.apress.plugins</groupld>
<artifactId>gswm-plugin</artifactId>
<version>1.0.0</version>
<packaging>maven-plugin</packaging>
<name>Simple Hello Plugin</name>
<dependencies>
<dependency>
<groupIld>org.apache.maven</groupld>
<artifactId>maven-plugin-api</artifactId>
<version>3.2.3</version>
</dependency>
</dependencies>
</project>

The next step in the development process is creating the MOJO. Listing 5-5 shows the
code for HelloMojo. As you can see, the implementation is straightforward. We are using
the Log instance to log output to the console. The most important part of this code is
actually inside the Java comment section: @goal hello. Using the Javadoc tag @goal,
we are declaring the name of this goal as hello. It is also possible to use Java 5
annotations such has @Mo7jo to provide this metadata. However, it requires the pom.xml
file changes discussed on the Apache Maven web site (http://maven.apache.org/
plugin-tools/maven-plugin-plugin/examples/using-annotations.html).

Listing 5-5. HelloMojo Java Class
package com.apress.plugins;

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;
import org.apache.maven.plugin.MojoFailureException;

/¥
*
* @goal hello
*/

public class HelloMojo extends AbstractMojo{

public void execute() throws MojoExecutionException,
MojoFailureException {
getLog().info("Hello Maven Plugin");

43

http://maven.apache.org/plugin-tools/maven-plugin-plugin/examples/using-annotations.html
http://maven.apache.org/plugin-tools/maven-plugin-plugin/examples/using-annotations.html

CHAPTER 5 © MAVEN LIFE CYCLE

The final step in this process is installing the plug-in in the Maven repository. Run
themvn install command at the root of the directory and you should get the output
shown in Listing 5-6.

Listing 5-6. Maven install Command

C:\apress\gswm-book\chapter5\gswm-plugin>mvn install

INFO] --- maven-plugin-plugin:3.2:descriptor (default-descriptor)
@ gswm-plugin ---

[INFO] Applying mojo extractor for language: java-annotations
[INFO] Mojo extractor for language: java-annotations found 0 mojo
descriptors.

[INFO] Applying mojo extractor for language: java
[INFO] Mojo extractor for language: java found 1 mojo descriptors.
[INFO] Applying mojo extractor for language: bsh
[INFO] Mojo extractor for language: bsh found 0 mojo descriptors.
[

[INFO] --- maven-resources-plugin:2.6:resources (default-resources)

@ gswm-plugin ---

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered
resources,

i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory C:\apress\gswm-book\chapter5\
gswm-plugin\src\main\resources

[INFO]

[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile)

@ gswm-plugin ---

[INFO] Building jar: C:\apress\gswm-book\chapter5\gswm-plugin\target\gswm-
plugin-1.0.0.jar

[INFO]

[INFO] --- maven-plugin-plugin:3.2:addPluginArtifactMetadata (default-
addPluginA

rtifactMetadata) @ gswm-plugin ---

[INFO]

[INFO] --- maven-install-plugin:2.4:install (default-install)

@ gswm-plugin ---

44

CHAPTER 5 © MAVEN LIFE CYCLE

[INFO] Installing C:\apress\gswm-book\chapter5\gswm-plugin\target\gswm-
plugin-1.0.0.jar to C:\Users\<<USER_NAME>>\.m2\repository\com\apress\
plugins\gswm-plugin\1.0.0\gswm-plugin-1.0.0.jar

[INFO] Installing C:\apress\gswm-book\chapter5\gswm-plugin\pom.xml to C:\
Users\<<USER_NAME>>\.m2\repository\com\apress\plugins\gswm-plugin\1.0.0\
gswm-plugin-1.0.0.pom

[INFO] === - oo oo m oo o oo
[INFO] BUILD SUCCESS

[INFO] -
[INFO] Total time: 2.788s

[INFO] Finished at: Mon Oct 13 22:29:55 MDT 2014

[INFO] Final Memory: 13M/32M

[INFO] == - oo oo o o o oo

Now you're ready to start using this plug-in. Remember that the syntax to run any
goalismvn pluginId:goalld. Listing 5-7 shows this plug-in in action. Notice the Hello
Maven Plugin text on the console.

Listing 5-7. Running the Hello Plug-in

C:\apress\gswm-book\chapter5\gswm-plugin>mvn com.apress.plugins:gswm-
plugin:hello
[INFO] Scanning for projects...

INFO] --- gswm-plugin:1.0.0:hello (default-cli) @ gswm-plugin ---
INFO] Hello Maven Plugin

INFO] Total time: 0.583s
INFO] Finished at: Mon Oct 13 22:32:55 MDT 2014
INFO] Final Memory: 4M/15M

Summary

Maven uses plug-in-based architecture that allows its functionality to be extended easily.
Each plug-in is a collection of one or more goals that can be used to execute tasks, such as
compiling source code or running tests. Maven ties goals to phases. Phases are typically
executed in a sequence as part of a build life cycle. You also learned the basics of creating
a plug-in.

In the next chapter, you will be introduced to archetypes and learn about
multimodule projects.

45

CHAPTER 6

Maven Archetypes

Up to this point, you have created a Maven project manually, generating the folders and
creating the pom. xml files from scratch. This can become tedious, especially when you
frequently have to create projects. To address this issue, Maven provides archetypes.
Maven archetypes are project templates that allow users to generate new projects easily.

Maven archetypes also provide a great platform to share best practices and enforce
consistency beyond Maven’s standard directory structure. For example, an enterprise can
create an archetype with the company’s branded cascading style sheet (CSS), approved
JavaScript libraries, and reusable components. Developers using this archetype to
generate projects will automaticaly conform to the company’s standards.

Built-in Archetypes

Maven provides hundreds of out-of-the-box archetypes for developers to use.
Additionally, a lot of open source projects provide additional archetypes that you can
download and use. Maven also provides an archetype plug-in with goals to create
archetypes and generate projects from archetypes.

The archetype plug-in’s generate goal allows you to view and select an archetype
for use. Listing 6-1 shows the results of running the generate goal at the command line.
Asyou can see, there are 491 archetypes to choose from. This chapter will look at using a
few of these archetypes.

Listing 6-1. Maven generate Goal

$mvn archetype:generate
[INFO] Scanning for projects...

[
[
[INFO] Building Maven Stub Project (No POM) 1

[INFO] === m oo e m o o o oo e e e e e e e e e e
[

[

INFO] >>> maven-archetype-plugin:2.2:generate (default-cli) @ standalone-
pom >>>

[INFO]

[INFO] <<< maven-archetype-plugin:2.2:generate (default-cli) @ standalone-
pom <<<

47

CHAPTER 6 © MAVEN ARCHETYPES

[INFO]

[INFO] --- maven-archetype-plugin:2.2:generate (default-cli) @ standalone-
pom

[INFO] Generating project in Interactive mode

[INFO] No archetype defined. Using maven-archetype-quickstart (org.apache.
maven.archetypes:maven-archetype-quickstart:1.0)

...........................

...........................

1176: remote -> ru.yandex.gatools.camelot:camelot-plugin (-)

1177: remote -> se.vgregion.javg.maven.archetypes:javg-minimal-archetype (-)
1178: remote -> sk.seges.sesam:sesam-annotation-archetype (-)

1179: remote -> tk.skuro:clojure-maven-archetype (A simple Maven archetype
for Clojure)

1180: remote -> tr.com.lucidcode:kite-archetype (A Maven Archetype that
allows users to create a Fresh Kite project)

1181: remote -> uk.ac.rdg.resc:edal-ncwms-based-webapp (-)

1182: local -> com.inflinx.book.ldap:practical-1ldap-empty-archetype (-)
1183: local -> com.inflinx.book.ldap:practical-ldap-archetype (-)

Choose a number or apply filter (format: [groupIld:]artifactId, case
sensitive contains): 491:

Generating a Web Project

Maven provides the maven-archetype-webapp archetype for generating a web
application. Let’s generate the application by running the following command in the
C:\apress\gswm-book\chapter6 folder:

mvn archetype:generate -DarchetypeArtifactId=maven-archetype-webapp

The command runs in interactive mode. Enter the following information for the
requested inputs:

Define value for property 'groupId': : com.apress.gswmbook
Define value for property 'artifactId': : gswm-web
Define value for property 'version': 1.0-SNAPSHOT: : <<Hit Enter>>

Define value for property 'package': com.apress.gswmbook: : war

Confirm the properties configuration:
groupId: com.apress.gswmbook
artifactId: gswm-web

version: 1.0-SNAPSHOT

package: war

Y: <<Hit Enter>>

The generated directory structure should resemble the one shown in Figure 6-1.

48

http://tr.com/

CHAPTER 6 © MAVEN ARCHETYPES

gswm-web

pom.xml

src

L— main

I: resources
webapp

WEB-INF
L— web.xml
index.jsp

Figure 6-1. Maven web project structure

The pom.xml file is minimal and only has a JUnit dependency. Maven makes it easier
to run your web application using embedded web servers, such as Tomcat and Jetty.
Listing 6-2 shows the modified pom. xml file with a Tomcat plug-in added.

Listing 6-2. Modified pom.xml with Embedded Tomcat Plug-in

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>com.apress.gswmbook</groupld>
<artifactId>gswm-web</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>
<name>gswm-web Maven Webapp</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupIld>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<finalName>gswm-web</finalName>
<plugins>
<plugin>
<groupId>org.apache.tomcat.maven</groupId>
<artifactId>tomcat7-maven-plugin</artifactId>
<version>2.2</version>
</plugin>
</plugins>
</build>
</project>

49

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org

CHAPTER 6 © MAVEN ARCHETYPES

In order to launch the web application inside the Tomcat server, run the following
command at the root directory of the project:

mvn tomcat7:run
You will see the project deployed and view output similar to that shown in Listing 6-3.

Listing 6-3. Output from the Tomcat run Command

Oct 11, 2014 12:08:43 PM org.apache.catalina.core.StandardService
startInternal

INFO: Starting service Tomcat

Oct 11, 2014 12:08:43 PM org.apache.catalina.core.StandardEngine startInternal
INFO: Starting Servlet Engine: Apache Tomcat/7.0.47

Oct 11, 2014 12:08:45 PM org.apache.catalina.util.SessionIdGenerator
createSecureRandom

INFO: Creation of SecureRandom instance for session ID generation using
[SHA1PRNG] took [334] milliseconds.

Oct 11, 2014 12:08:45 PM org.apache.coyote.AbstractProtocol start

INFO: Starting ProtocolHandler ["http-bio-8080"]

Now launch the browser and navigate to http://localhost:8080/gswm-web/.
You should see the web page as shown in Figure 6-2.

® OO _ | localhost:8080/gswm-we X

L

& C' | localhost:8080/gswm-web/

Hello World!

Figure 6-2. Web project launched in browser

Multimodule Project

Java Enterpise Edition (JEE) projects are often split into several modules to ease
development and maintainability. Each of these modules produces artifacts such as
Enterprise JavaBeans (EJBs), web services, web projects, and client jars. Maven supports
development of such large JEE projects by allowing multiple Maven projects to be nested
under a single Maven project. The layout of such a multimodule project is shown in
Figure 6-3. The parent project has a pom.xml file and individual Maven projects inside it.

50

Parent Project
|-- Module 1
| |
| *-- pom.xml
I
|-- Module 2
| I
| “-- pom.xml
|-- Module 3
| |

| *-- pom.xml
|
|

*-- pom.xml

Figure 6-3. Multimodule project structure

CHAPTER 6

MAVEN ARCHETYPES

In the rest of this section, we will explain how to build a multimodule project for the
scenario where you have to split your large project into a web application (WAR artifact)
that provides a user interface, a service project (JAR artifact) that holds service layer code,
and a persistence project that holds your repository layer code. Figure 6-4 provides a

visual representation of this scenario.

Web
Application

Service

Persistence

Figure 6-4. Maven multimodule project

51

CHAPTER 6 © MAVEN ARCHETYPES

Let’s start the process by generating the parent project. To do this, run the following
command at the command line under C:\apress\gswm-book\chapter6:

mvn archetype:generate -DgroupId=com.apress.gswmbook -DartifactId=gswm-
parent -Dversion=1.0.0-SNAPSHOT -DarchetypeGroupId=org.codehaus.mojo.
archetypes -DarchetypeArtifactId=pom-root

The archetype pom-root creates the gswm-parent folder and a pom.xm1 file
underneath it. As you can see in Listing 6-4, the generated pom. xml file has minimal
content. Notice that the packaging of the parent project is set to type pom.

Listing 6-4. Parent pom.xml File

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.apress.gswmbook</groupld>
<artifactId>gswm-parent</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>pom</packaging>
<name>gswm-parent</name>

</project>

Then create the web project by running the following command in the
C:\apress\gswm-book\chapter6\gswm-parent folder:

mvn archetype:generate -DgroupId=com.apress.gswmbook -DartifactId=gswm-
web -Dversion=1.0.0-SNAPSHOT -Dpackage=war -DarchetypeArtifactId=maven-
archetype-webapp

During this web project generation, you are providing Maven coordinates,
such as groupld, version, and so on, as parameters to the generate goal. This created the
gswm-web project.

The next step is to create the service project. Run the following command under
C:\apress\gswm-book\chapter6\gswm-parent:

mvn archetype:generate -DgroupId=com.apress.gswmbook -DartifactId=gswm-service
-Dversion=1.0.0-SNAPSHOT -DarchetypeArtifactId=maven-archetype-quickstart
-DinteractiveMode=false

Notice that you didn’t provide the package parameter, as the maven-
archetype-quickstart produces a JAR project by default. Also, notice the use of the
interactiveMode parameter. This instructs Maven to simply run the command without
prompting the user for input.

52

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd

CHAPTER 6 © MAVEN ARCHETYPES

Similar to the previous step, create another Java project gswm-repository by running
the following command under C:\apress\gswm-book\chapter6\gswm-parent:

mvn archetype:generate -DgroupId=com.apress.gswmbook -DartifactId=gswm-
repository -Dversion=1.0.0-SNAPSHOT -DarchetypeArtifactId=maven-archetype-
quickstart -DinteractiveMode=false

Now that you have all of the projects generated, let’s look at the pom. xml file under
gswm-parent. Listing 6-5 shows the pom.xml file.

Listing 6-5. Parent pom.xml File with Modules

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"” xsi:schemalocation=
"http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupIld>com.apress.gswmbook</groupld>
<artifactId>gswm-parent</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>pom</packaging>
<name>gswm-parent</name>
<modules>
<module>gswm-web</module>
<module>gswm-service</module>
<module>gswm-repository</module>
</modules>
</project>

The modules element allows you to declare child modules in a multimodule project.
Asyou generated each module, Maven intelligently registered them as a child module.
Additionally, it modified the individual module’s pom. xml file and added the parent pom
information. Listing 6-6 shows gswm-web project’s pom. xml file with the parent pom elements.

Listing 6-6. The pom.xml File for the Web Module

<?xml version="1.0"?>
<project xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.apress.gswmbook</groupIds
<artifactId>gsum-parent</artifactId>
<version>1.0.0-SNAPSHOT</version>
</parent>

53

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance

CHAPTER 6 © MAVEN ARCHETYPES

</

<groupIld>com.apress.gswmbook</groupld>
<artifactId>gswm-web</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>war</packaging>
<name>gswm-web Maven Webapp</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<finalName>gswm-web</finalName>
</build>
project>

With the entire infrastructure set up, you are ready to build the next project. To

accomplish this, simply run the mvn package command under gswm-project, as shown

in

Listing 6-7.

Listing 6-7. Maven Package Run on the Parent Project

C:

\apress\gswm-book\chapter6\gswm-parent>mvn package

INFO] Scanning for projects...

INFO] Reactor Build Order:

INFO] gswm-parent

INFO] gswm-web Maven Webapp
INFO] gswm-service

INFO] gswm-repository

INFO] Reactor Summary:

INFO] gswm-web Maven Webappoevvireiiiiiiiieninnnnn. SUCCESS [1.033s]
INFO] @SWM-SETVICE wvvvuervnnernnnernneernneeenneeennenns SUCCESS [0.552s]
INFO] gswWm-TepoSitory v.eeveieeivneernneerineennneeennenns SUCCESS [0.261s]

INFO] Total time: 1.949s
INFO] Finished at: Mon Oct 13 23:09:21 MDT 2014
INFO] Final Memory: 6M/15M

[
[
[
[
[
[
[
[
[
|
[INFO] gswm-pazent ...ceeeeeinneennnerinneenneeennceennens SUCCESS [0.001s]
[
[
[
[
[
[
[
[
[
[

http://maven.apache.org

CHAPTER 6 © MAVEN ARCHETYPES

Creating an Archetype

Maven provides several ways to create a new archetype. Here we will use an existing
project to generate an archetype.

Let’s start by creating a prototype project that you will use as the seed for archetype
creation. This project will be Servlet 3.0 compatible, and it has a Status Servlet that
returns a HTTP status code 200. Instead of creating a web project from scratch, copy the
previously generated gswm-web project code and create gswm-web-prototype under
C:\apress\gswm-book\chapter6. Make the following changes to the newly copied project:

1. Remove all other resources, such as Integrated Development
Environment (IDE) specific files (. project, .classpath, and
so forth) that you don’t want to end up in the archetype.

2. Replace the contents of the web.xml file under the webapp/
WEB-INF folder. This will upgrade the web application to use
Servlet 3.0:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3 0.xsd"
version="3.0">
<display-name>Archetype Created Web Application</display-name>
</web-app>

3. Add the Servlet 3.0 dependency to the pom. xml file. The
updated pom.xml is shown in Listing 6-8.

Listing 6-8. The pom.xml with Servlet Dependency

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance"”
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.
org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupIld>com.apress.gswmbook</groupld>
<artifactId>gswm-web</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>
<name>gswm-web Maven Webapp</name>
<url>http://maven.apache.org</url>

55

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org

CHAPTER 6 © MAVEN ARCHETYPES

<dependencies>
<dependency>
<groupld>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>
<version>3.0.1</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<finalName>gswm-web</finalName>
<plugins>
<plugin>
<groupId>org.apache.tomcat.maven</groupId>
<artifactId>tomcat7-maven-plugin</artifactId>
<version>2.2</version>
</plugin>
</plugins>
</build>
</project>

4. Because you will be doing Java web development, create a
folder named java under src/main. Similarly, create test/
java and test/resources folders under src.

5. Create the AppStatusServlet.java file in the com.apress.
gswmbook.web.servlet package under src/main/java.
The package com.apress.gswmbook.web.servlet translates
to folder structure com\apress\gswmbook\web\servlet. The
source code for AppStatusServlet.java is shown in Listing 6-9.

Listing 6-9. AppStatusServlet Java Class Source Code

package com.apress.gswmbook.web.servlet;

import javax.servlet.annotation.WebServlet;
import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

56

CHAPTER 6 © MAVEN ARCHETYPES

@hWebServlet("/status")
public class AppStatusServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse
response) throws IOException {

PrintWriter writer = response.getWriter();
writer.println("0K");
response.setStatus(response.SC_0K);

The prototype project will be similar to the structure shown in Figure 6-5.

gswm—web-prototype

com
L— apress

L— gswmbook

L— web
L— servlet
L— AppStatusServlet.java

L— resources
—— webapp
WEB-INF
L— web.xml
index. jsp

L— test
—— java
L— com
L— apress
L— gswmbook
L— web
L— servlet

—— resources

Figure 6-5. Generated prototype project

57

CHAPTER 6 © MAVEN ARCHETYPES

Using the command line, navigate to the project folder gswm-web-prototype and run
the following command:

mvn archetype:create-from-project

Upon completion of the command, you should see the message Archetype created
in target/generated-sources/archetype. The newly created archetype is now under
gswm-web-prototype/target/generated-sources/archetype.

The next step is to move the newly created archetype into a separate folder
gswm-web-archetype so that it can be tweaked before it is published. To accomplish this,
follow these steps:

1. Create folder gswm-web-archetype in the C: \apress\gswm-
book\chapter6 folder.

2. Copy subdirectories and files in the C: \apress\gswm-book\
chapter6\gswm-web-prototype\target\generated-
sources\archetype folder to the gswm-web-archetype folder.

3. Delete the target subdirectory from the C: \apress\gswm-
book\chapter6\gswm-web-archetype folder.

The directory structure for gswm-web-archetype should be similar to that shown in
Figure 6-6.

58

CHAPTER 6 © MAVEN ARCHETYPES

gswm-web-archetype

pom.xml
src
—— main
L— resources
META-INF
L— maven
L— archetype-metadata.xml
archetype-resources
pom.xml
src
L— main
java
L— AppStatusServlet.java
webapp
WEB-INF
L— web.xml
index. jsp
—— test
L— resources
L— projects
L— basic
t:: archetype.properties
goal.txt

Figure 6-6. Web archetype project structure

Let’s start the modification process with the pom.xml file located at gswm-web-
archetype\src\main\resources\archetype-resources. Change the final name in
the pom. xml file from gswm-web to ${artifactId}. During project creation, Maven will
replace the ${artifactId} expression with the user-supplied artifactId value.

When a project is created from an archetype, Maven prompts the user for a package
name. It will create the directories corresponding to the package under the src/main/java
folder of the newly created project. It then moves all of the contents under the archetype’s
archetype-resources/src/main/java folder into that package. Because you would like
the AppStatusServlet under the subpackage web.servlet, create the folder web/servlet
and move AppStatusServlet. java under the newly created folder. The new location of
the AppStatusServlet. java is shown in Figure 6-7.

59

CHAPTER 6 © MAVEN ARCHETYPES

archetype-resources

——— pom.xml
L— src
L— main
java
L— web
L— servlet
L— AppStatusServlet.java
webapp
WEB-INF
L— web.xml
index.jsp

Figure 6-7. AppStatusServlet under theweb. servlet package

Open AppStatusServlet. java and change the package name from
package ${package}; to package ${package}.web.servlet;.

The final step in creating the archetype is to run the following at the command line
inside the folder gswm-web-archetype:

mvn clean install

Using the Archetype

Once the archetype is installed, the easiest way to create a project from it is to run the
following command under C:\apress\gswm-book\chapter6:

mvn archetype:generate -DarchetypeCatalog=local

Enter the values shown in Listing 6-10 for the Maven prompts, and you will see a
test-project created.

Listing 6-10. Creating a New Project Using Archetype

C:\apress\gswm-book\chapter6>mvn archetype:generate -DarchetypeCatalog=local

[INFO] Scanning for projects...

[INFO]

[INFO] === = - === s s mmmm oo o oo oo e e o e
[INFO] Building Maven Stub Project (No POM) 1

[INFO] === oo oo m s o o o oo e oo oo e oo oo
[INFO] Generating project in Interactive mode

[INFO] No archetype defined. Using maven-archetype-quickstart (org.apache.

60

CHAPTER 6 © MAVEN ARCHETYPES

maven.archetypes:maven-archetype-quickstart:1.0)

Choose archetype:1: local -> com.apress.gswmbook:gswm-web-archetype
(gswm-web-archetype)

Choose a number or apply filter (format: [groupld:]artifactId, case
sensitive contains): : 1

Define value for property 'groupId': : com.apress.gswmbook

Define value for property 'artifactId': : test-project

Define value for property 'version': 1.0-SNAPSHOT: :

Define value for property 'package': com.apress.gswmbook: :
Confirm properties configuration:

groupld: com.apress.gswmbook

artifactId: test-project

version: 1.0-SNAPSHOT

package: com.apress.gswmbook

Yo

INFO] Total time: 1:27.635s

INFO] Finished at: Mon Oct 13 23:36:01 MDT 2014

INFO] Final Memory: 9M/22M

10

Lo K B M W W |

Because the pom.xml file for the test-project already has the embedded Tomcat
plug-in, run mvn tomcat7:runin the command line under the folder C: \apress\gswm-
book\chapter6\test-project to launch the project. Open a browser and navigate to
http://localhost:8080/test-project/status. You will see OK displayed, as shown in
Figure 6-8.

® OO . Apache Tomcat/6.0.29 - = X b
(& localhost:8080/test-project/status
OK

Figure 6-8. Output of the generated test project

61

CHAPTER 6 © MAVEN ARCHETYPES

Summary

Maven archetypes are project templates that allow you to bootstrap new projects quickly.
This chapter used built-in archetypes for generating advanced Maven projects, such as
web projects and multimodule projects. You also looked at creating and using a custom
archetype.

In the next chapter, you will learn the basics of site generation and creating
documentation and reports using Maven.

62

CHAPTER 7

Documentation and Reporting/

Documentation and reporting are key aspects of any project. This is especially true for
enterprise and open source projects, where many people collaborate to build the project.
This chapter looks at some of Maven'’s tools and plug-ins, which make publishing and
maintenance of online documentation a breeze.

This chapter will once again be working with the gswm Java project you built in earlier
chapters. The gswm project is also available in the C:\apress\gswm-book\chapter7 folder.

Using the Site Life Cycle

As discussed in Chapter 5, Maven provides the site life cycle that can be used to generate a
project’s documentation. Let’s run the following command from the gswm directory:

mvn site
The site life cycle uses Maven'’s site plug-in to generate the site for a single project.

Once this command completes, a site folder gets created under the project’s target.
Figure 7-1 shows the contents of the site folder.

63

CHAPTER 7 = DOCUMENTATION AND REPORTING

c(C:) » apress » gswm-book » chapter7 » gswm » target » site »

Share with » Burn New folder
Name £ Date modified Typ
& css 10/13/201411:46 ... File
|, images 10/13/201411:46 ... File
£ | dependencies.html 10/13/201411:46 ... HT!
£ | dependency-info.html 10/13/201411:46 ... HTI
£ | distribution-management.html 10/13/2014 11:46 ... HT!
£ | index.html 10/13/201411:46 ... HT!
£ | integration.html 10/13/201411:46... HT!
£ | issue-tracking.html 10/13/201411:46... HT!
£ | license.html 10/13/201411:46 ... HT!
£ | mail-lists.html 10/13/2014 11:46 ... HT!
£ | plugin-management.html 10/13/201411:46 ... HT!
£ | plugins.html 10/13/201411:46 ... HT!
€ | project-info.html 10/13/2014 11:46 ... HT!
£ | project-summary.html 10/13/201411:46 ... HTI
& | source-repository.html 10/13/201411:46 ... HTI
£ | team-list.html 10/13/2014 11:46 ... HT!

Figure 7-1. Generated site folder

Open the index.html file to browse the generated site. You will notice that Maven
used the information provided in the pom.xml file to generate most of the documentation.
It also automatically applied the default skin and generated the corresponding images
and CSS files. Figure 7-2 shows the generated index.html file.

64

CHAPTER 7 = DOCUMENTATION AND REPORTING

Getting Started with Maven

Last Published: 2014-10-11 | Version: 1.0.0-SNAPSHOT

Project Documentation

- Proie;;lllrt\furrnation About Getting Started With Maven

Plugin Management

Distribution i . . .))
Management There is currently no description associated with this project.

Dependency
Information

Source Repository

Mailing Lists

Issue Tracking

Continuous Integration

Project Plugins

Project License

Project Team

Project Summary

Dependencies

Buill by. ™
Mmaven

Figure 7-2. Generated index page

The Project Dependencies page provides valuable information regarding the
project’s direct and transitive dependencies. It also provides the licensing information
associated with those dependencies, as shown in Figure 7-3.

65

CHAPTER 7 = DOCUMENTATION AND REPORTING

' Project Dependencies

test

The following is a list of test dependencies for this project. These dependencies
are only required to compile and run unit tests for the application:

junit junit &> 4.11 jar Common Public License Version 1.0 &

EProject Transitive Dependencies

The following is a list of transitive dependencies for this project. Transitive
dependencies are the dependencies of the project dependencies.

test

The following is a list of test dependencies for this project. These dependencies
are only required to compile and run unit tests for the application:

org.hamcrest hamcrest-core & 153 jar New BSD License &>

'Praniect Dependency Graph
Figure 7-3. Project dependencies page

As you browse the generated site, you will notice that pages such as About, Mailing

Lists, and Project License are missing information. Let’s modify the pom.xml file and add

the missing information, as provided in Listing 7-1.

Listing 7-1. The pom.xml File with Project Information

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

66

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/xsd/maven-4.0.0.xsd

CHAPTER 7 = DOCUMENTATION AND REPORTING

<groupIld>com.apress.gswmbook</groupld>
<artifactId>gswm</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>jar</packaging>

<name>Getting Started with Maven</name>
<url>http://apress.com</url>

<description>
This project acts as a starter project for the Introducing Maven book
(http://www.apress.com/9781484208427) published by Apress.
</description>

<mailinglists>
<mailinglist>
<name>GSWM Developer List</name>
<subscribe>gswm-dev-subscribe@apress.com</subscribe>
<unsubscribe>gswm-dev-unsubscribe@apress.com</unsubscribe>
<post>developer@apress.com</post>
</mailinglist>
</mailinglists>

<licenses>
<license>
<name>Apache License, Version 2.0</name>
<url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
</license>
</licenses>

<!--- Developer, Dependency and Build information removed for brevity --->

</project>

Looking at the code for the pom.xml file in Listing 7-1, it is obvious that the
description element is used to provide the project description. The mailinglList
element holds the mailing list information, and the 1icense element includes the
project’s license. Let’s regenerate the site by running the following command:
mvn clean site

Launch the index. html file under the newly generated target\site folder. Figure 7-4A
and Figure 7-4B shows the new About and Project License pages, respectively. Notice that

Maven uses the URL declared in the 1icense element to download the license text and
include it in the generated web site.

67

http://apress.com</url
http://www.apress.com/9781484208427
http://gswm-dev-subscribe@apress.com/
http://gswm-dev-unsubscribe@apress.com/
http://developer@apress.com/
http://www.apache.org/licenses/LICENSE-2.0.txt%3C/url

CHAPTER 7 © DOCUMENTATION AND REPORTING

Getting Started with Maven

Last Published: 2014-11-07 | Version: 1.0.0-SNAPSHOT Getting Started with Maven

Project Documentation

¥ Broject Information About Getting Started with Maven

Flugin

This project acts as a starter project for the Introducing Maven book
(http://www.apress.com/9781484208427) published by Apress.,

Copyright © 2014. All Rights Reserved.

Figure 7-4A. Generated About page

Project Documentation
* Project Information Ov'erview
About
Plugin Management
Distribution

Typically the licenses listed for the project are that of the project itself, and not of dependencies.

acking Project License

Continuous Integration
Project Plugins
Project License
Project Team

aiect S

Apache License, Version 2.0

Apache License
Version 2.0, January 2004
nttp://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. pefiniticns.

"License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common

Figure 7-4B. Generated Project License page

Advanced Site Configuration

In the preceding section, project information was specified in the pom. xml file for Maven
to use during site generation. For medium to complex projects, this approach would result in
bloated and hard-to-maintain pom.xml files. Also, enterprises typically prefer to use their
branding and logos in the generated site rather than the default Maven skin. To address these
concerns, Maven allows you to specify content and configuration for site generation under the
aptly named src/site folder. Figure 7-5 shows the directory structure for a simple site folder.

68

CHAPTER 7 = DOCUMENTATION AND REPORTING

site
— apt

L— index.apt
—— site.xml

Figure 7-5. Site folder directory structure

The site.xml file, also known as the sife descriptor, is used to customize the
generated site. We will look at this element in just a second.

The apt folder contains site content written in Almost Plain Text (APT) format.
The APT format allows documentation to be created in a syntax that resembles plain text.
More information about the APT format can be found on the Maven web site
(http://maven.apache.org/doxia/references/apt-format.html). In addition
to APT, Maven supports other formats, such as FML, Xdoc, and Markdown.

Maven provides several archetypes that allow you to generate site structure
automatically. Because you will be updating the existing gswm project, you will use the
create goal instead of generate, as shown in the following code. Run the command in
the C:\apress\gswm-book\chapter7\gswm folder:

mvn archetype:create -DarchetypeArtifactId=maven-archetype-site-simple
Upon successful completion, you will see the site folder created under gswm\src with
the site.xml and apt folders. Let’s start by adding the project description to index.apt.

Replace the contents of the index.apt file with the code from Listing 7-2.

Listing 7-2. The index.apt File Contents

This project acts as a starter project for the Introducing Maven book published by
Apress. For more information check out the Apress Site https://www.apress.com.
Runningmvn clean site results in a new About page, as shown in Figure 7-6.

Getting Started with Maven

Last Published: 2014-11-07 | Version: 1.0.0-SNAPSHOT Maven @

Docamentation This project acts as a starter project for the Introducing Maven book published by Apress.

Buill by For more information check out Apress o Site.
maven

Copyright & 2014. All Rights Reserved.
Figure 7-6. About page with new content

69

http://maven.apache.org/doxia/references/apt-format.html
https://www.apress.com/

CHAPTER 7 © DOCUMENTATION AND REPORTING

Notice that the left navigation pane for the page has completely disappeared. This is
because Maven constructs this navigation using the site.xml file, and this site.xml file
currently lacks navigation information.

Before we look at the information in the site.xml file, let’s add an image that will
serve as the site logo. Static assets, such as images and HTML files, are placed in the
site/resources folder. When Maven builds the site, it copies the assets in the resources
folder to the root of the generated site. Copy the company logo company . png from the
C:\apress\gswm-book\chapter7 folder and place it in the gswm/src/site/resources/
images folder.

Now you are ready to modify the site.xml file so that the logo and navigation show
up. Replace the site.xml file with the contents of Listing 7-3. Notice that the src element
for the logo includes the relative path images/company.png. The menu element is used to
create different navigation links to be displayed on the site.

Listing 7-3. The site.xml File Contents

<?xml version="1.0" encoding="IS0-8859-1"?>

<project xmlns="http://maven.apache.org/DECORATION/1.6.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/DECORATION/1.6.0
http://maven.apache.org/xsd/decoration-1.6.0.xsd"
name="Getting Started With Maven" >

<bannerLeft>

<name>Apress</name>

<src>images/company.png</src>

<href>http://apress.com</href>

</bannerLeft>

<body>

<links>
<item name="Maven" href="http://maven.apache.org/"/>

</links>
<menu name="Project Information">
<item name="Introduction" href="index.html"/>
<item name="Plugin Management" href="plugin-management.html"/>
<item name="Dependency Information" href="dependency-info.html"/>
<item name="Source Repository" href="source-repository.html"/>
<item name="Mailing Lists" href="mail-lists.html"/>
<item name="Issue Tracking" href="issue-tracking.html"/>
<item name="Continuous Integration" href="integration.html"/>
<item name="Project Plugins" href="plugins.html"/>
<item name="Project License" href="license.html"/>
<item name="Project Team" href="team-list.html"/>
<item name="Project Summary" href="project-summary.html"/>
<item name="Dependencies" href="dependencies.html"/>

</menu>

70

http://maven.apache.org/DECORATION/1.6.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/DECORATION/1.6.0
http://maven.apache.org/xsd/decoration-1.6.0.xsd
http://maven.apache.org/xsd/decoration-1.6.0.xsd
http://apress.com</href
http://maven.apache.org/

CHAPTER 7 = DOCUMENTATION AND REPORTING

<menu name="Reports">
</menu>
</body>

</project>

Runningmvn clean site generates the site with the new logo and navigation, as
shown in Figure 7-7.

e

Last Published: 2014-11-07 | Version: 1.0.0-SKAPSHOT Maven

Project Information This project acts as a starter project for the Introducing Maven book published by Apress.

In

For more information check out Apress = Site.

Reports
B! Dy, ™ —
maven

Copyright @ 2014. All Rights Reserved.

Figure 7-7. About page with the new logo

Generating Javadoc Reports

Javadoc is the de facto standard for documenting Java code. It helps developers
understand what a class or a method does. Javadoc also highlights deprecated classes,
methods, or fields.

Maven provides a Javadoc plug-in, which uses the Javadoc tool for generating
Javadocs. Integrating the Javadoc plug-in simply involves declaring it in the reporting
element of pom. xml file, as shown in Listing 7-4. Plug-ins declared in the pom reporting
element are executed during site generation.

Listing 7-4. The pom.xml Snippet with Javadoc Plug-in

<project>
<!-Content removed for brevity-->
<reporting>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
<version>2.10.1</version>
</plugin>
</plugins>
</reporting>
</project>

71

CHAPTER 7 © DOCUMENTATION AND REPORTING

Now that you have the Javadoc plug-in configured, let's run mvn clean siteto
generate the Javadoc. After the command successfully runs, you will notice the apidocs
folder created under gswm /target/site. Double-click the index.html file under
apidocs, and you will be able to browse the Javadoc. Figure 7-8 shows the Javadoc
generated for the gswm project.

I [T ———
HalloWorld

Prov Class Naxi Class Frames N Framos

Summary: Nesiod | Fisld | Constr | Method Detad: Fieid | Cons® | Msthod

Class HelloWorld
java lang Object

HaloWord

public class melloworld
oxtends Object
Author:

Sudha Belida

Constructor Summary

Constrctor and Description
HelloWarld}

Figure 7-8. Generated Javadoc page

Generating Unit Test Reports

Test-driven development has become the norm in enterprises today. Unit tests provide
immediate feedback to developers and allow them to build quality code. Considering
how important tests are, Maven executes all of the tests for each build. Any test failures
result in a failed build.

Maven offers the Surefire plug-in that provides a uniform interface for running tests
created by frameworks such as JUnit or TestNG. It also generates execution results in
various formats such as XML and HTML. These published results enable developers to
find and fix broken tests quickly.

The Surefire plug-in is configured in the same way as the Javadoc plug-in in the
reporting section of the pom file. Listing 7-5 shows the Surefire plug-in configuration.

Listing 7-5. The pom.xml Snippet with Surefire Plug-in

<project>
<!-Content removed for brevity--»
<reporting>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-report-plugin</artifactId>

72

CHAPTER 7 = DOCUMENTATION AND REPORTING

<version>2.17</version>
</plugin>
</plugins>
</reporting>
</project>

Now that Surefire is configured, let’s generate a Maven site by running mvn clean site
command. Upon successful execution of the command, you will see a Surefire Reports
folder generated under gswm\target. It contains the test execution results in XML and
TXT formats. The same information will be available in HTML format in the
surefire-report.html file under site folder. Figure 7-9 shows Surefire Report for the
gswm project.

‘l

Last Published: 2014-11-07 | Version: 1.0.0-SNAPSHOT Maven &

Project Information

Surefire Report

Summary

[Summary] [

Package List] [Test Cases]

1 llo o llo 100% l0.100

Note: failures are anticipated and checked for with assertions while errors are
unanticipated.

Figure 7-9. Generated Surefire Report

Generating Code Coverage Reports

Code coverage is a measurement of how much source code is being exercised by
automated tests. Essentially, it provides an indication of the quality of your tests. Emma
and Cobertura are two popular open source code coverage tools for Java.

In this section, you will use Cobertura for measuring this project’s code coverage.
Configuring Cobertura is similar to other plug-ins, as shown in Listing 7-6.

73

CHAPTER 7 © DOCUMENTATION AND REPORTING

Listing 7-6. The pom.xml Snippet with the Cobertura Plug-in

<project>
<!-Content removed for brevity-->
<reporting>
<plugins>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>cobertura-maven-plugin</artifactId>
<version>2.6</version>
</plugin>
</plugins>
</reporting>
</project>

Now that the plug-in is configured, let’s generate the site using themvn clean
site command. Upon successful completion of the command, Cobertura will create a
cobertura folder under gswm \target\site. Launch the report by double-clicking the
index.html file. The report should be similar to the one shown in Figure 7-10.

Packages Coverage Report - All Packages
Al
o Package B Classes Line Caverage Branch Coverage Complaxity
e {default} 1 100 IS WA L0} 1
All Packages 1 0o R s A 1
Classes in this Package Line Coverage Branch Coverage Complexity
HelioWorid 100% A WA 1
Rsport generated by Cobertura 2.0.3 on 10/11/14 8:35 Pr.
All Packages
Classes
HelioWosid (100%)

Figure 7-10. Generated Cobertura report

Generating the FindBugs Report

FindBugs is a tool for detecting defects in Java code. It uses static analysis to detect bug

patterns, such as infinite recursive loops and null pointer dereferences. Listing 7-7 shows
the FindBugs configuration.

Listing 7-7. The pom.xml Snippet with FindBugs Plug-in

<project>
<!-Content removed for brevity-->
<reporting>
<plugins>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>findbugs-maven-plugin</artifactId>

4

CHAPTER 7 = DOCUMENTATION AND REPORTING

<version>3.0.0</version>
</plugin>
</plugins>
</reporting>
</project>

Once the Maven site gets generated, open the findbugs.html file under
C:\apress\gswm-book\chapter7\gswm\target\site to launch the FindBugs report.
It should be similar to the one shown in Figure 7-11.

e L e . - B .
o

Last Publiched: 2014-11-07 | Version: 1.0.0-SNAPSHOT Maven @

Project Information

FindBugs Bug Detector Report

The following document contains the results of FindBugs @
FindBugs Version is 3.0.0
Threshold is medium

Effort is min

Summary

Files

Figure 7-11. Generated FindBugs Bug Detector Report

Summary

The documentation and reporting capabilities provided by Maven play an important role
in creating maintainable quality software. This chapter explained the basics of using the
site life cycle and the configuration needed to produce documentation. You also looked at
generating Javadocs, test coverage, and FindBugs reports.

In the next chapter, we will explain how to integrate Maven with Nexus and SVN. You
will also learn about Maven’s release process.

75

CHAPTER 8

Maven Release

Integration with Nexus

Repository managers are a key part of Maven deployment in enterprises. Repository
managers act as a proxy of public repositories, facilitate artifact sharing and team
collaboration, ensure build stability, and enable the governance of artifacts used in
the enterprise.

Nexus is a popular open source repository manager from Sonatype. It is a web
application that allows you to maintain internal repositories and access external
repositories. It allows repositories to be grouped and accessed via a single URL. This
enables the repository administrator to add and remove new repositories behind the
scenes without requiring developers to change the configuration on their computers.
Additionally, it provides hosting capabilities for sites generated using Maven site and
artifact search capabilities.

Before we look at integrating Maven with Nexus, you will need to install Nexus on
your local machine. Nexus is distributed as an archive, and it comes bundled with a Jetty
instance. Download the Nexus distribution (. zip version for Windows) from Sonatype’s
web site at www. sonatype.org/nexus/go/. At the time of this writing, version 2.10.0-02 of
Nexus is available. Unzip the file, and place the contents on your machine. In this book,
we assume the contents to be in the C:\tools\nexus folder.

Note Most enterprises typically have repository managers installed and available
on a central server. If you already have access to a repository manager, skip this part of
the installation.

Launch your command line in administrator mode and navigate to the bin folder
located under C:\tools\nexus\nexus-2.10.0-02. Then run the command nexus
install. You will see the success message as illustrated in Figure 8-1. This installs the
native service wrapper that enables Jetty to run.

7l

http://www.sonatype.org/nexus/go/

CHAPTER 8 © MAVEN RELEASE

C:\tools\nexus\nexus—2.18.8-82\bin>nexus install
srapper | nexus installed.

Figure 8-1. Success message when installing Nexus

Note Nexus 2.10 requires JRE 1.7 to function properly. Make sure you have version 1.7
of JDK/JRE installed on your local machine. Also, make sure that JAVA_HOME is pointing to
version 1.7 of the JDK.

On the same command line, run the command nexus start tolaunch Nexus.
Figure 8-2 shows the result of running this command.

k:\tools\nexus\nexus—z.1@.—2\hin)ne>(us start
srapper 1 Starting the nexus service...
srapper | Waiting to start...

srapper | Waiting to start...

srapper 1 Waiting to start...

Jrapper | nexus started.

Figure 8-2. Starting Nexus

By default, Nexus runs on port 8081. Launch a web browser and navigate to Nexus at
http://localhost:8081/nexus. Figure 8-3 shows the Nexus launch screen. Log in and
browse Nexus with the username admin and password admin123.

Sonatype Nexus

Sonatype™ Welcome
Peacuas

Artifact Search -

S— N/ Nexus

M/ Raposhurien = Type in the name of a project, class, or artifact into the text box below,
Repositorkes and click 5earch. Use “Advanced Search” on the left for more options.

Help ™ 5

Sonatype Nexus Resources

Sonatype Support

Figure 8-3. Nexus launch screen

78

CHAPTER 8 © MAVEN RELEASE

Now that Nexus is installed, let’s modify the gwsm project located under C: \apress\
gswm-book\chapter8. You will start by adding a distributionManagement element in the
pom.xml file, as shown in Listing 8-1. This element is used to declare the location where the
project’s artifacts will be when deployed. The repository element indicates the location
where released artifacts will be deployed. Similarly, the snapshotRepository element
identifies the location where the SNAPSHOT versions of the project will be stored.

Listing 8-1. The pom.xml with distributionManagement

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=http://www.
w3.0rg/2001/XMLSchema-instance” xsi:schemalocation="http://maven.apache.org/
POM/4.0.0 http://maven.apache.org/maven-v4 0 0.xsd"> <modelVersion>4.0.0</
modelVersion>

<!-- Content removed for brevity -->
<distributionManagement>
<repository>
<id>nexusReleases</id>
<name>Releases</name>
<url>http://localhost:8081/nexus/content/repositories/releases</url>
</repository>
<snapshotRepository>
<id>nexusSnapshots</id>
<name>Snapshots</name>
<url>http://localhost:8081/nexus/content/repositories/
snapshots</url>
</snapshotRepository>
</distributionManagement>
<!-- Content removed for brevity -->
</project>

Note Out of the box, Nexus comes with Releases and Snapshots repositories.
By default, SNAPSHOT artifacts will be stored in the Snapshots Repository, and release
artifacts will be stored in the Releases repository.

Like most repository managers, deployment to Nexus is a protected operation. You
provide the credentials needed to interact with Nexus in the settings.xml file.

Listing 8-2 shows the settings.xml file with the server information. The Nexus
deployment user with password deployment123 is provided out of the box. Notice that
the IDs declared in the server tag — nexusReleases and nexusSnapshots must match the
IDs of the repository and snapshotRepository declared in the pom.xml file. Replace the
contents of the settings.xml file in the C: \Users\<<USER_NAME>>\ .m2 folder with the
code in Listing 8-2.

79

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd

CHAPTER 8 © MAVEN RELEASE

Listing 8-2. Settings.xml File with Server Information

<?xml version="1.0" encoding="UTF-8" 2>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/
settings-1.0.0.xsd">
<servers>
<server>
<id>nexusReleases</id>
<username>deployment</username>
<password>deployment123</password>
</server>
<server>
<id>nexusSnapshots</id>
<username>deployment</username>
<password>deployment123</password>
</server>
</servers>
</settings>

This concludes the configuration steps for interacting with Nexus. At the command
line, run the command mvn deploy under the directory C:\apress\gswm-book\
chapter8\gswm. Upon successful execution of the command, you will see the SNAPSHOT
artifact under Nexus at http://localhost:8081/nexus/content/repositories/
snapshots/com/apress/gswmbook/gswm/1.0.0-SNAPSHOT/, as shown in Figure 8-4.

Index of /repositories/snapshots/com/apress/gswmbook/gswm/1.0.0-SNAPSHOT

Mame Last Modified Size Description
Parent Directory

gswm-1.0.0-20141015.001443-1. jar Tue Oct 14 18:14:43 MDT 2014 2382
gswm-1.0.0-20141015.001443-1. jar.md5 Tue Oct 14 18:14:43 MDT 2014 32

gewm-1.0.0-20141015.001443-1 . jar.shal Tue Oct 14 18:14:43 MDT 2014 40

gowm-1.0.0-20141015.001443-1. pom Tue Oct 14 18:14:43 MDT 2014 2108
gawm-1,0.0-20141015.001443-1.pom.md5 Tue Oct 14 18:14:43 MDT 2014 32
gowm-1,0.0-20141015.001443-1.pom.shal Tue Oct 14 18:14:43 MDT 2014 40

maven-matadats. xml Tue Oct 14 18:14:44 MDT 2014 773
maven-metadata, xml,mds Tue Oct 14 18:14:44 MDT 2014 32
maven-metadata, xml.shal Tue Oct 14 18:14:44 MDT 2014 40

Figure 8-4. SNAPSHOT artifact under Nexus

80

http://maven.apache.org/SETTINGS/1.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd
http://maven.apache.org/xsd/settings-1.0.0.xsd

Project Release

Releasing a project is a complex process, and it typically involves the following steps:

CHAPTER 8 © MAVEN RELEASE

Verify that there are no uncommitted changes on the local machine.

Remove SNAPSHOT from the version in the pom. xml file.

Make sure that project is not using any SNAPSHOT dependencies.

Check in the modified pom. xml file to your source control.

Create a source control tag of the source code.

Build a new version of the artifact, and deploy it to a

repository manager.

Increment the version in the trunk’s pom. xml file, and prepare for
the next development cycle.

Maven has a release plug-in that provides a standard mechanism for executing the
above steps and releasing project artifacts. As you can see, as part of its release process,
Maven heavily interacts with the source control system. In this section, you will be using
Subversion (SVN) as the source control system. A typical interaction between Maven
and SVN is shown in Figure 8-5. The SVN server houses repositories containing an
enterprise’s projects. Maven releases are typically performed on a developer or build
machine. Maven requires SVN command line tools to be installed on such machines. The
SVN command line tools allow Maven to interact with SVN and perform operations such

as checking out code, creating tags, and so forth.

Developer Build

Machine

Maven |

HTTP(S)

Subversion SCM

<

SVN
Command
line tools

Figure 8-5. Interaction between Maven and Subversion

Server

Before we delve deeper into the Maven release process, you need to get your local

machine ready by completing the following steps:

1.

Install Subversion server and SVN command line tools on

your local machine.

Create a Subversion repository.

Check the project you will be using into the repository.

81

CHAPTER 8 © MAVEN RELEASE

Subversion Server Command Line Tools
Installation

There are several open source projects or commercial companies that provide SVN
servers. In this project, you'll be using a Subversion server from VisualSVN.

Start the installation process by downloading the 64-bit VisualSVN Server executable
from www.visualsvn.com/downloads/. As you can see from Figure 8-6, the server
executable comes bundled with SVN command line tools.

Visual SVH Server Dovenload 32-big
Includes Apache Subversion 1.8 10 command fine fools Download 64-bit
The most favored way Lo selup and mairtain an enterprise level Apache Version. 3.0.0
Subversion sener on the Microsol ndows platform. VisualSVN Server Size: ~5 MB

is usetul aither for home, small business o MeTprise users

Leam more about VisuatSyH ndows

Figure 8-6. Download for VisualSVN Server

Note Enterprises typically have Subversion installed on a centralized server and
available for use. If you already have read/write access to a Subversion server, you can skip
the Subversion server installation steps. However, you need to have SVN command line tools
installed on the machine where you are performing the Maven release. We recommend
VisualSVN’s “Apache Subversion command line tools,” which you can download and install
from www.visualsvn.com/downloads/.

Once downloaded, double-click the VisualSVN-Server-3.0.0-x64.exe install file to
launch the install screen. Accept the End-User Licensing Agreement and, on the ensuing
screen, make sure that “VisualSVN Server and Management Console” is selected and
the “Add Subversion command-line tools to the PATH environment variable” option is
checked, as shown in Figure 8-7.

82

http://www.visualsvn.com/downloads/
http://www.visualsvn.com/downloads/

CHAPTER 8 © MAVEN RELEASE

Select Components

Please select components you would like to install.

VisualSVN Server and Management Console can be installed together or separately.
Please select components you want to be installed on this machine.

@) VisualSVN Server and Management Console
Install VisualSVN Server and management console to administer it.

() Management Console Only
Install only Microsoft management console snap-in to administer VisualSVN Server
installed on another computer.

[¥] Add Subversion command-ine tools to the PATH environment variable

Update the PATH environment variable to enable direct access to the Subversion
command-line tools (such as 'svn.exe’ and 'svnadmin.exe’) from the Command Line.

| cancel

Figure 8-7. VisualSVN server set up

VisualSVN Server comes in two flavors: Standard Edition and Enterprise Edition.
The features provided by the Standard Edition will satisfy your needs in this chapter.
Click the Standard Edition button on VisualSVN Server Editions screen. On the following
screen, uncheck the Use secure connection check box as shown in Figure 8-8.

83

CHAPTER 8 © MAVEN RELEASE

%) VisualSVN Server 3.0.0 Setup s =i
[T T —_——— el s, “‘ —

Initial Server Configuration
Please adjust the default configuration settings if necessary.

|
| Location: I
Repositories: IC: \apress\Repositories',
l Server Port: 80 v [[]Use secure connection (https://)

B = — —

Figure 8-8. Install and Repository Locations

On the next screen, click the Install button to start the installation. After successful
installation of SVN Server, make sure that the SVN command line tools are properly
installed. To do so, open a new command line and run the command svn help.

You should see output similar to that shown in Figure 8-9.

84

CHAPTER 8 © MAVEN RELEASE

Bl Windows Command Processor =|@ =

C:\»svn help

usage: svn <subcommand> [options] [argsl

Subversion command-line client, version 1.8.10.

Type "sun help <subcommand?®’ for help on a specific subcommand.

Tupe "sun —-version’ to see the program version and RA modules
or 'svn --version —-quiet’ to see just the version number.

Most subcommands take file and/or directory arguments, recursing
on the directories. If no arguments are supplied to such a
command, it recurses on the current directory (inclusive) by default.

Available subcommands: [
add
blame {(praise, annotate, ann)
cat
changelist (cl)
checkout (co)
cleanup
commit (ci)
copy (cp
delete (del, remove, rm)

Figure 8-9. Output after running the svn help command

Creating a Repository

Subversion repositories are used to manage files and folders and track any modifications
made to those files and folders. VisualSVN provides a great graphical user interface tool
called VisualSVN Server Manager, which makes creation and management of repositories
a breeze. On your Windows machine, go to All Programs » VisualSVN and launch
VisualSVN Server Manager. Follow the steps below to create a new repository:

1. Under the Repositories section of Server Manager, click the
Create a new repository link.

2. Leave the Regular FSFES repository option selected in the
Repository Type screen. Click Next.

3. On the Figure 8-10, enter gswm as the repository name.
Click Next.

85

CHAPTER 8 © MAVEN RELEASE

_ —

e

E‘C-reate New Repository

Repository Name
Spedfy the name for the new repository.

Repository Name:

gswm-book|

< Back][Next >][Cancel

Figure 8-10. Repository creation

86

4. Select the Single-project repository option in the Repository
Structure screen, as shown in Figure 8-11. Click Next.

CHAPTER 8 © MAVEN RELEASE

Create New Repository o ﬂ
Repository Structure §
Choose the initial layout for the new repository. | j

Select the preferred initial repository structure.
") Empty repository (recommended option)
@ Single-project repository (with the top-evel 'trunk’, ‘branches’ and "tags’ folders)

You can create the desired repository structure later using the Create Folder or Create Project
Structure context menu commands for the created repository.

Learn more about the recommended repository lavout

<Back || Next> | [cancel

Figure 8-11. New repository structure

5. Inthe Repository Access Permissions screen, accept the
default “All Subversion users have Read/Write access.” Click
Create. A Repository Created Successfully message should be
displayed. Click Finish.

The final step in getting the repository ready is to create a new user that has read/
write access on the gwsm-book repository. Follow the steps below to create a new user:

1. Onthe VisualSVN Service Manager home screen, click the
Create a new user link in the Subversion Authentication
section, as shown in Figure 8-12.

87

CHAPTER 8 © MAVEN RELEASE

Subversion Authentication

There are 0 users and 0 groups.
Create new user...

Create new group...

Configure authentication options...

Figure 8-12. Subversion authentication section

2. Inthe Create New User window, enter gswm as the username
and gswm as the password, as shown in Figure 8-13. Click OK.

Create New User g

User name: gswm
Password: 088
Confirm password: ®®e® of
! =
| @ User name and password are case sensitive,
|
|
, o) (Cconea]

Figure 8-13. New Subversion User

88

CHAPTER 8 © MAVEN RELEASE

Checking in Source Code

The final step in getting your machine ready for Maven release is checking in the gswm
project under C: \apress\gswm-book\chapter8\gswm to the newly created repository.
Using your command line, navigate to the C: \apress\gswm-book\chapter8\gswm folder
and run the following commands sequentially:

svn checkout http://localhost/svn/gswm/trunk/
C:/apress/gswm-book/chapter8/gswm --username gswm
--password gswm

svn add src
svn add pom.xml
svn commit -m "Inital commit"

The output of running the above commands is shown in Figure 8-14.

o B8 =B’

[B Administrator: Windows Command Processor
b:\anress\gswn~book\chapter8\gswm>sun checkout http://localhost/sun/gsun/trunk/

\C: /apress/gswm-book/chapter8/gswm --username gsum --password gswm £
Checked out revision 1.

Eg:\apress\gswn—book\chaplerS\gswm)svn add sre

| src
A srci\test

A srchtest\java

A src\test\java\HelloWorldTest. java

A src\main

A src\main\java

A src\main\java‘\Hellollorld. java
[C:\apress\gsum-book\chapter8\gswm>svn add pom.xml

| pom. ¥ml

ﬁ:\apress\gswm—book\chapler8\gswm>sun commit -m "Initial commit™
Rdding pom. %ml

Adding src

Adding src\main

Adding srci\main\java

Adding srcimainyjavatHelloWorld. java

Adding srehtest

Rdding srehvtest\java

Adding srehvtesthjava\HelloWorldTest. java

Transmitting file data ...
Committed revision 2.
I

Figure 8-14. Output from the svn initial commit

Using your browser, navigate to http://localhost/svn/gswm/trunk. When prompted,
enter the username gswm and password gswm, and you will see the checked-in code.
Figure 8-15 shows the expected browser screen.

89

CHAPTER 8 © MAVEN RELEASE

| &

o I

o VISUALSVNSERVER

[gswm — Revision 2: /trunk

i3 sre/

o gswm: /trunk - VisualSVIN %

C A | [localhost/svn/gswm/trunk; T ¢ ©

Help

|_] pom.xml

VisualSVN Server powered by Subversion

Figure 8-15. Project checked into SVN

Maven Release

Releasing an artifact using Maven's release process requires using two important goals:
prepare and perform. Additionally, the release plug-in provides a clean goal that comes
in handy when things go wrong.

Prepare Goal

The prepare goal, as the name suggest, prepares a project for release. As part of this stage,
Maven performs the following operations:

90

check-poms: Checks that the version in the pom.xml file has
SNAPSHOT in it.

scm-check-modifications: Checks if there are any uncommitted
changes.

check-dependency-snapshots: Checks the pom file to see if there are
any SNAPSHOT dependencies. It is a best practice for your project
to use released dependencies. Any SNAPSHOT dependencies
found in the pom. xml file will result in release failure.

map-release-versions: When prepare is run in an interactive
mode, the user is prompted for a release version.

map-development-versions: When prepare is run in an interactive
model, the user is prompted for the next development version.

generate-release-poms: Generates the release ponm file.

scm-commit-release: Commits the release of the pom file to the SCM.

CHAPTER 8 © MAVEN RELEASE

e scm-tag: Creates a release tag for the code in the SCM.

e rewrite-poms-for-development: The pom file is updated for the new
development cycle.

e remove-release-poms: Deletes the pom file generated for the release.

e scm-commit-development: Submits the pom.xml file with the
development version.

e end-release: Completes the prepare phase of the release.

To facilitate this, you would provide the SCM information in the project’s pom.xml
file. Listing 8-3 shows the pom. xml file snippet with the SCM information.

Listing 8-3. The pom.xml with SCM Information

<project>
<modelVersion>4.0.0</modelVersion>
<!-- Content removed for brevity -->

<scm>
<connection>scm:svn:http://localhost/svn/gswm/trunk</connection>
<developerConnection>scm:svn:http://localhost/svn/gswm/trunk</
developerConnection>
<url>http://localhost/svn/gswm/trunk</url>
</scm>
<!-- Content removed for brevity -->
</project>

Once you have updated the pom.xml file on your local machine, commit the modified
file to SVN by running the following command:

svn commit -m "Added SVN Information"

The output of running this command is shown in Figure 8-16.

C:\apress\gswmn-book\chapter8\gswm>svn commit -m "Added SYN Information”
Sending pom. xml

Transmitting file data .

Committed revision 3.

Figure 8-16. Output from running the svn commit
In order for Maven to communicate successfully with the SVN server, it needs
credentials with write access on the server. You provide that information in the

settings.xml file, as shown in Listing 8-4. The ID for the server element is declared as
localhost, as it must match the SVN host name.

91

CHAPTER 8 © MAVEN RELEASE

Listing 8-4. The pom.xml with SVN Server Details

<?xml version="1.0" encoding="UTF-8" 2>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"” xsi:schemalocation=
"http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/
settings-1.0.0.xsd">

<servers>
<server>
<id>nexusReleases</id>
<username>deployment</username>
<password>deployment123</password>
</server>
<server>
<id>nexusSnapshots</id>
<username>deployment</username>
<password>deployment123</password>
</server>
<server>
<id>localhost</id>
<username>gswm</username>
<password>gswm</password>
</server>
</servers>
</settings>

You now have the entire configuration required for Maven’s prepare goal. Listing 8-5
shows the results of running the prepare goal. Because the prepare goal was run in
interactive mode, Maven will prompt you for the release version, release tag or label, and
the new development version. Accept Maven’s proposed default values by pressing Enter
for each prompt.

Listing 8-5. Maven prepare Command

C:\apress\gswm-book\chapter8\gswm>mvn release:prepare
INFO] Scanning for projects...
INFO]

INFO] --- maven-release-plugin:2.3.2:prepare (default-cli) @ gswm ---
INFO] Verifying that there are no local modifications...
[INFO] ignoring changes on: **\release.properties, **\pom.xml.next, **\
pom.xml.releaseBackup, **\pom.xml.backup, **\pom.xml.branch, **\pom.xml.tag
[INFO] Executing: cmd.exe /X /C "sun --username gswm --password ***** __no-
auth-cache --non-interactive status"

92

http://maven.apache.org/SETTINGS/1.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd
http://maven.apache.org/xsd/settings-1.0.0.xsd

CHAPTER 8 © MAVEN RELEASE

[INFO] Working directory: C:\apress\gswm-book\chapter8\gswm

[INFO] Checking dependencies and plugins for snapshots .

What is the release version for "Getting Started with Maven"? (com.apress.
gswmbook:gswm) 1.0.0: :

What is SCM release tag or label for "Getting Started with Maven"? (com.
apress.gswmbook:gswm) gswm-1.0.0: :

What is the new development version for "Getting Started with Maven"? (com.
apress.gswmbook:gswm) 1.0.1-SNAPSHOT: :

[INFO] Transforming 'Getting Started with Maven'...

[INFO] [INFO] Building jar: C:\apress\gswm-book\chapter8\gswm\target\gswm-
1.0.0.jar

[INFO] [INFO] ======m === oo o o o o o e
[INFO] [INFO] BUILD SUCCESS

) =
[INFO] [INFO] Total time: 1.654 s

[INFO] [INFO] Finished at: 2014-10-22T23:10:44-06:00

[INFO] [INFO] Final Memory: 11M/27M

[INFO] [INFO] ======= == o o o o e
[INFO] Checking in modified POMs...

[INFO] Executing: cmd.exe /X /C "swn --username gswm --password ***** _._no-
auth-cache --non-interactive commit --file C:\Users\<<USER_NAME>>\AppData\
Local\Temp\maven-scm-203076178.commit --targets C:\Users\<<USER_NAME>>\
AppData\Local\Temp\maven-scm-5496549062663519106-targets"

[INFO] Working directory: C:\apress\gswm-book\chapter8\gswm

[INFO] Tagging release with the label gswm-1.0.0...

[INFO] Executing: cmd.exe /X /C "sun --username gswm --password ***** __no-
auth-cache --non-interactive copy --file C:\Users\<<USER_NAME>>\AppData\
Local\Temp\maven-scm-85876759.commit --revision 6 http://localhost/svn/gswm/
trunk http://localhost/svn/gswm/tags/gswm-1.0.0"

[INFO] Working directory: C:\apress\gswm-book\chapter8\gswm

[INFO] Transforming 'Getting Started with Maven'...

[INFO] Not removing release POMs

[INFO] Checking in modified POMs...

[INFO] Executing: cmd.exe /X /C "svn --username gswm --password ***** -_no-auth-
cache --non-interactive commit --file C:\Users\<<USER_NAME>>\AppData\lLocal\
Temp\maven-scm-112170711.commit --targets C:\Users\<<USER_NAME>>\AppData\
Local\Temp\maven-scm-244

0605286339680080-targets"”

[INFO] Working directory: C:\apress\gswm-book\chapter8\gswm

[INFO] Release preparation complete.

[INFO] === = === s mmmmim oo o o oo oo e e e e
[INFO] BUILD SUCCESS

[INFO] === = - == oo mmmmm oo o oo oo e e e
[INFO] Total time: 33.711 s

93

CHAPTER 8 © MAVEN RELEASE

[INFO] Finished at: 2014-10-22T23:10:44-06:00
[INFO] Final Memory: 7M/17M
150

Notice the svn commands getting executed as part of the prepare goal. Successful
completion of the prepare goal will result in the creation of an SVN tag, as shown in
Figure 8-17. The pom. xml file in the gswm project will now have version 1.0.1-SNAPSHOT.

= B X

o gswm: [tags/gswm-1.0.0 x
- C | [} localhost/svn/gswm/tags/gswm-1.0.0/ % O =
Help

o VISUALSVNSERVER

gswm — Revision 8: /tags/gswm-1.0.0
= ..

| s/
|_] pom.xml

VisualSVN Server powered by Subversion

Figure 8-17. SVN tag created upon prepare execution

Clean Goal

The prepare goal performs a lot of activities and generates temporary files, such as
release.properties and pom.xml.releaseBackup, as part of its execution. Upon
successful completion, it cleans up those temporary files. Sometimes the prepare goal
might fail (is unable to connect to SVN, for example) and leave the project in a dirty
state. This is where the release plug-in’s clean goal comes into the picture. As the name
suggests, it deletes any temporary files generated as part of release execution.

Note The clean goal must be used only when the prepare goal fails.

94

CHAPTER 8 © MAVEN RELEASE

Perform Goal

The perform goal is responsible for checking out code from the newly created tag and
builds and deploys the released code into the remote repository.
The following phases are executed as part of perform goal:

e verify-completed-prepare-phases: This validates that a prepare
phase has been executed prior to running the perform goal.

e checkout-project-from-scm: Checks out the released code from the
SCM tag.

e run-perform-goal: Executes the goals associated with perform.
The default goal is deploy.

The output of running the perform goal on gswm project is shown in Listing 8-6.

Listing 8-6. Maven perform Command

C:\apress\gswm-book\chapter8\gswm>mvn release:perform

INFO] Checking out the project to perform the release ..

INFO] Executing: cmd.exe /X /C "svn --username gswm --password **¥** _.no-
auth-cache --non-interactive checkout http://localhost/svn/gswm/tags/gswm-
1.0.0 C:\apress\gswm-book\chapter8\gswm\target\checkout"

[INFO] Working directory: C:\apress\gswm-book\chapter8\gswm\target

[INFO] [INFO] Installing C:\apress\gswm-book\chapter8\gswm\target\checkout\
target\gswm-1.0.0.jar to C:\Users\<<USER_NAME>>\.m2\repository\com\apress\
gswmbook\gswm\1.0.0\gswm-1.0.0. jar

[INFO] [INFO] Installing C:\apress\gswm-book\chapter8\gswm\target\checkout\
pom.xml to C:\Users\<<USER_NAME>>\.m2\repository\com\apress\gswmbook\
gswm\1.0.0\gswm-1.0.0.pom

[INFO] [INFO] Installing C:\apress\gswm-book\chapter8\gswm\target\checkout\
target\gswm-1.0.0-sources.jar to C:\Users\<<USER_NAME>>\.m2\repository\com\
apress\gswmbook\

gswm\1.0.0\gswm-1.0.0-sources.jar

[INFO] [INFO] Installing C:\apress\gswm-book\chapter8\gswm\target\checkout\
target\gswm-1.0.0-javadoc.jar to C:\Users\<<USER_NAME>>\.m2\repository\com\
apress\gswmbook\gswm\1.0.0\gswm-1.0.0-javadoc. jar

[INFO] [INFO]

[INFO] [INFO] --- maven-deploy-plugin:2.7:deploy (default-deploy) @ gswm ---
[INFO] Uploading: http://localhost:8081/nexus/content/repositories/releases/

[

[INFO]

[INFO] === - == oo oo oo e
[INFO] Building Getting Started with Maven 1.0.1-SNAPSHOT

[INFO] === - mmmm e o oo e e e e e e
[INFO]

[INFO] --- maven-release-plugin:2.3.2:perform (default-cli) @ gswm ---
[

[

95

CHAPTER 8 © MAVEN RELEASE

com/apress/gswmbook/gswm/1.0.0/gswm-1.0.0.jar

[INFO] 2/3 KB

[INFO] 3/3 KB

[INFO]

[INFO] Uploaded: http://localhost:8081/nexus/content/repositories/releases/
com/apress/gswmbook/gswm/1.0.0/gswm-1.0.0.jax (3 KB at 13.4 KB/sec)

[INFO] Uploading: http://localhost:8081/nexus/content/repositories/releases/
com/apress/gswmbook/gswm/1.0.0/gswm-1.0.0.pom

[INFO] 2/3 KB

[INFO] 3/3 KB

[INFO]

[INFO] Uploaded: http://localhost:8081/nexus/content/repositories/releases/
com/apress/gsuwmbook/gswm/1.0.0/gswm-1.0.0.pom (3 KB at 14.5 KB/sec)

[INFO] Downloading: http://localhost:8081/nexus/content/repositories/
releases/com/apress/gswmbook/gswm/maven-metadata.xml

[INFO]

[INFO] Uploaded: http://localhost:8081/nexus/content/repositories/releases/
com/apress/gswmbook/gswm/1.0.0/gswm-1.0.0-javadoc.jar (35 KB at 368.5 KB/sec)
[INFO] [INFO] BUILD SUCCESS

INFO] [INFO] = -mmmmmmmmmmmmm oo

INFO] [INFO] Total time: 3.807 s

INFO] [INFO] Finished at: 2014-10-22T23:26:36-06:00

INFO] [INFO] Final Memory: 17M/42M

INFO] [INFO] === mm oo s s d o d ot

INFO] Cleaning up after release...

This completes the release of the 1.0.0 version of the gswm project. The artifact ends
up in the Nexus repository manager, as shown in Figure 8-18.

96

CHAPTER 8 © MAVEN RELEASE

Index of /repositories/releases/com/apress/gswmbook/gswm/1.0.0

Hame

Parent Directory
gswm-1.0.0-javadoc. jar
gswm-1.0.0-javadoc. jar.md5
gswm-1.0.0-javadec. jar.shal
gswm-1.0.0-sources. jar
gswm-1.0.0-sources. jar.md5
gswm-1.0.0-sources. jar.shal

gswm-1.0.0.jar
gswm-1.0.0.jar.md5
gswm-1.0.0.jar.shal
gswm-1.0.0.pom

wm-1.0. m.

gswm-1.0.0.pom.shat

Figure 8-18. Nexus with released artifact

Summary

Last Modified

Size Description

Tue Oct 14 18:22:41 MDT 2014 35456

Tue Oct 14 18:22:41 MDT 2014
Tue Oct 14 18:22:41 MDT 2014
Tue Oct 14 18:22:40 MDT 2014
Tue Oct 14 18:22:40 MDT 2014
Tue Oct 14 18:22:40 MDT 2014
Tue Oct 14 18:22:40 MDT 2014
Tue Oct 14 18:22:40 MDT 2014
Tue Oct 14 18:22:40 MDT 2014
Tue Oct 14 18:22:40 MDT 2014
Tue Oct 14 18:22:40 MDT 2014
Tue Oct 14 18:22:40 MDT 2014

32
40
559
32
40
2362
32
40
2129
32
40

Internal repository managers such as Nexus allow enterprises to adopt Maven
completely. In addition to serving as public repository proxies, they enable component
sharing and governance. This chapter looked at integrating Maven with Nexus and
walked you through the process of deploying an artifact to Nexus. You also learned
Maven'’s release process and its different phases.
This discussion brings us to the end of our journey. Throughout the book, you have

learned the key concepts behind Maven. We hope you will use your newly found Maven
knowledge to automate and improve your existing build and project management processes.

97

Index

A, B
Apache Maven
Apache Ant, 4
Apache Ivy, 4
archetypes, 3 (see also Archetypes)
command-line interface, 2
dependency management, 2
Gradle, 5
open source, 3
plug-in-based architecture, 2
setting up
c:\tools\maven directory, 8
help command, 11
IDE support, 14
installation, 10-11
Maven 3.2.3 binary zip file, 7
new system variable, 9
path variable, 10
Proxy, 13-14
settings.xml file, 12
system properties window, 8-9
standardized directory structure, 1
uniform interface, 2
Archetypes
built-in, 47-48
creation
AppStatusServlet.java, 60
gswm-web-archetype, 58
Java Class Source Code, 56
project generation, 57
Servlet Dependency, 55
Embedded Tomcat Plug-in
modification, 49
generation, 47
maven-archetype-webapp, 48
multimodule project, 50
Tomcat run Command, 50

uses, 60
web project launch, 50
web project structure, 49

C

Cascading style sheet (CSS), 47
Code coverage reports, 73
Convention over configuration (CoC), 3

D, E

Dependency management
definition, 15
enterprise architecture, 17
high-level view, 15
identification, 19
installation, 21
scope, 21
security and intellectual property, 16
settings.xml file, 18
transitive dependencies, 19-20
Domain Specific Language (DSL), 5

FGH,I

FindBugs report, 74

J, K

Javadoc reports, 71
Java Enterpise Edition (JEE) projects, 50

L

Life cycle
About page ganaration, 68
index.html file generation, 64

99

INDEX

Life cycle (cont.)

pom.xml File with Project
information, 66
project dependencies page, 66
Project License page ganaration, 68
site folder contents, 63
site generation, 68
index.apt File Contents, 69
new About page, 69
new logo and navigation, 71
site folder directory structure, 69
site.xml File Contents, 70

Maven release

operations, 90
checkout-project-from-scm, 95
interactive mode, 92
pom.xml file, 91
release.properties and

pom.xml.releaseBackup, 94
run-perform-goal, 95
SVN, 94
tag/label, 92
verify-completed-
prepare-phases, 95

N,O

Nexus

command line tools, 82
installation and repository, 84
VisualSVN Server, 82
VisualSVN server set up, 83

definition, 77

installation, 78

maven release (see Maven release)

pom.xml with

distributionManagement, 79

repository, 85
authenticate user, 88
creation, 86
source code, 89
structure, 87

screen launch, 78

SNAPSHOT, 80

Subversion, 81

xml file with server information, 80

P QR

Plug-ins
clean goal, 38
compile goal, 37
development, 42
api dependency, 43
HelloMojo Java Class, 43
installation command, 44
life cycle and phases
<packaging /> element, 41
maven.test.skip
property, 42
mvn clean command, 40
mvn package command, 40
<build /> element, 39
mvn plugin_identifier:
goal_identifier, 38
pom.xml file, 38
pom.xml file
coding, 27
configuration, 25
HelloWorldTest
Java Class, 31
JUnit Dependency, 29
mvn command, 28
package command, 27-28
properties, 33-34
sayHello() method, 29
SNAPSHOT qualifier, 26
test class, 31, 33
transitive dependencies, 35
Tree Command, 30
with Java class, 27
Project organization
components, 23
directories, 24
pom.xml file (see pom.xml file)
structure, 25

S, T

SNAPSHOT qualifier, 26
Source control
management (SCM), 23

UVWXYZ

Unit test reports, 72

Introducing Maven

Balaji Varanasi
Sudha Belida

Apress’

Introducing Maven
Copyright © 2014 by Balaji Varanasi and Sudha Belida

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0842-7
ISBN-13 (electronic): 978-1-4842-0841-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Deepak Vohra

Developmental Editor: Gary Schwartz

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade

Coordinating Editor: Mark Powers

Copy Editor: Mary Bearden

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available
to readers at www.apress.com/9781484208427. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com/9781484208427
http://www.apress.com/source-code/

To Our Parents

Contents

About the AUthoOrsS.........cccccmmisemmmmsmsmmsssmmsssmsa s xi
About the Technical ReVIEWErcusssssesssnsssasssssssssnsssassssnsssassssass Xiii
Acknowledgments........ccceermsssssssssnnnnmmssssssssssssssssssssssssssssssnnsssssssssnns XV
Introduction.........cccinvmmmnnmmmmnesmnnns s —————— xvii
Chapter 1: Getting Started with Mavenccceinineennnnsssnnnnnnsnnns 1
Standardized Directory Structure........ccccoceervrevrccresnse s 1
Declarative Dependency Management............cccoevvrvercersensensessessensnnsenns 2
0T T SRS 2
Uniform Build AbStraction ... 2
TOOIS SUPPOM ...ttt 2
ArCREIYPES ..t 2
OPEBN SOUICE....cueeerereerererre e et sa s e a e n s e 3
Maven AIREINALIVES.........coocerrmrerrrerssr s 4
ANE A VY e 4

CT o [TSSO 5
1111] 1P 7S 5
Chapter 2: Setting Up Maven.........cccccunmemmmmmssssnmmmssssssmmssssssssnssssnns 7
Testing Installationcccvvvvrvrrrrrrr s 10
Getting Help.....cocoeveeeecrer e 11
Additional SEttiNgSccceeeeerererere e ———— 11
Setting UP @ ProXY......cccvcevverrerrerrerser e e e e s e s e e sessnssenns 13

vii

CONTENTS

10 1T o 0] 14
SUMMAIY ...t nn s 14
Chapter 3: Maven Dependency Managementccccuussamnnnsssnnns 15
USiNG REPOSILOFIBS ...vcvieerereerresrreresessesssse s sse e sse e snssnssesnssesnes 18
Dependency Identification..........cccocceevrrerinrnin s 19
Transitive Dependenciesccvvrverrersnsessenses s 19
Dependency SCOPE.......cccuvererererreree s see e sas s sa s saesns e sn s sa e s 21
Manual Dependency Installationcccccoeeeeererssessssse e 21
SUMMANY ..ottt sn e n e sr s r s sr e snssn e sn e sn s nnnsn e nnnnnenan 22
Chapter 4: Maven Project BasiCS......ccuuseermmssssnnnssssssnssssssssnsssssssnns 23
Basic Project Organizationcccceeeeeeeneesesesess s 23
Understanding the pom.xml File ..o 25
Building @ Project ... 27
Testing the Project.........ocvvrcrcrsr e 29
Properties in POM.XMIccccccevervmvverrsvrensssresssssessssssessssesssssssssssssssses 33
Excluding Dependenciescoveerrerrersersessessessesssssesssssessessessssssssssssnnes 35
1111] 11 P2 2SSOSR 35
Chapter 5: Maven Life CYClecccurmrrssemmmsssmsssssnsssssnsssssssssssanssssanas 37
GOAIS AN PIUG-INScveceeceececceerre s sn e 37
Life Cycle and PRASEScccevereereereererresren s ssessssessss s sesssssassesssssesses 39
Plug-in Development............coeeeeecececere s 42
SUMMANY ...t 45
Chapter 6: Maven Archetypesccccssssesnssssssnsnssssssssnsssssssnsssssnnns 47
BUIlt-in ArChetypes.......cccceierrnirerire s 47
Generating @ Web Project.........coceveveevrvnnnnesnes s ses s e sessessenns 48
Multimodule Projectcoceeeeeeece s 50

viii

CONTENTS

Creating an Archetype ... 55
Using the ArChetypeccoccveeierncnesse e 60
SUMMANY ... e nnsne s 62
Chapter 7: Documentation and Reportingcccusesmsssesssssasssssanss 63
Using the Site Life CYCIe.......cererererererrrreereeree s sessessessesssssessasssssesses 63
Advanced Site Configurationcccceceeeeenenesresese e 68
Generating Javadoc REPOItScccvceeeerrserrenmssessssessessssesessessesessessnsennes 71
Generating Unit Test REPOIS........ccocceveenierennnsers e sns e 72
Generating Code Coverage Reports.........cceeeeeereresesesnessessesssssesnens 73
Generating the FindBugs Reportcococvevevrrenese e 74
SUMMAIY ...ttt r e 75
Chapter 8: Maven Release.......uuusemmmesnnmmsmssssssssssssssssssssssssnssnnnnns 77
Integration With NeXusc.coceererercre e 77
Project REIEASEccccvcevcercircir et 81
Subversion Server Command Line Tools Installationc.c.ccccvunnee. 82
Creating @ REPOSITOrY......ccccceieeriererirerr e 85
Checking in SOUrce COdecccceererererieserese e sse e ssesnens 89
Maven RelBase ... 90
Lo £ 0 LT T O 90
ClEAN GOAL.......cererrrreeeresreeererrse e sesa s s e se s s e s e re e nennnns 94
Perform GOAL..........cceoeeererreeerrsrse e nnns 95
31111] 1P 7S 97
INA@X.ueeiiieminiensrin s ———————— 99

ix

About the Authors

Balaji Varanasi is a software development manager,
author, speaker, and technology entrepreneur. He has
over 14 years of experience architecting and developing
high-performance, scalable Java and .NET mobile
applications. During this period, he has worked in the
areas of security, web accessibility, search, and enterprise
portals. He has a master’s degree in computer science
from Utah State University and serves as adjunct faculty
at the University of Phoenix, teaching programming and
information system courses. He shares his insights and
experiments at http://blog.inflinx.com.

Sudha Belida is a senior software engineer and
technology enthusiast. She has more than seven years
of experience working with Java and JEE technologies
and frameworks, such as Spring, Hibernate, Struts, and
Angular]S. Her interests lie in entrepreneurship and agile
methodologies for software design and development.
She has a master’s degree in computational science
from the University of Utah. In her free time, she likes

to travel and enjoy the outdoor environment that Utah
has to offer.

xi

http://blog.inflinx.com.

About the Technical
Reviewer

Deepak Vohra is a consultant and a principal member
of the NuBean.com software company. Deepak is a
Sun-certified Java programmer and web component
developer, and he has worked in the fields of XML,
Java programming, and Java EE for over five years.
Deepak is the coauthor of Pro XML Development with
Java Technology (Apress, 2006). Deepak is also the
author of the JDBC 4.0 and Oracle JDeveloper for J2EE
Development, Processing XML Documents with Oracle
JDeveloper 11g, EJB 3.0 Database Persistence with Oracle
Fusion Middleware 11g, and Java EE Development in
Eclipse IDE (Packt Publishing). He also served as the
technical reviewer on WebLogic: The Definitive Guide
(O’Reilly Media, 2004) and Ruby Programming for the
Absolute Beginner (Cengage Learning PTR, 2007).

xiii

Acknowledgments

This book would not have been possible without the support of several people, and we
take this opportunity to sincerely thank them.

Thanks to the amazing folks at Apress: Steve Anglin, Mark Powers, Matthew Moodie,
and many others. We also owe a huge thank you to Deepak Vohra for his technical review
and for the valuable feedback he provided.

Finally, we would thank our parents for their constant support and encouragement.
Without them, this book wouldn’t have been possible.

XV

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Maven
	Standardized Directory Structure
	Declarative Dependency Management
	Plug-ins
	Uniform Build Abstraction
	Tools Support
	Archetypes
	Open Source
	Maven Alternatives
	Ant + Ivy
	Gradle

	Summary

	Chapter 2: Setting Up Maven
	Testing Installation
	Getting Help
	Additional Settings
	Setting Up a Proxy
	IDE Support
	Summary

	Chapter 3: Maven Dependency Management
	Using Repositories
	Dependency Identification
	Transitive Dependencies
	Dependency Scope
	Manual Dependency Installation
	Summary

	Chapter 4: Maven Project Basics
	Basic Project Organization
	Understanding the pom.xml File
	Building a Project
	Testing the Project
	Properties in pom. xml
	Excluding Dependencies
	Summary

	Chapter 5: Maven Life Cycle
	Goals and Plug-ins
	Life Cycle and Phases
	Plug-in Development
	Summary

	Chapter 6: Maven Archetypes
	Built-in Archetypes
	Generating a Web Project
	Multimodule Project
	Creating an Archetype
	Using the Archetype
	Summary

	Chapter 7: Documentation and Reporting
	Using the Site Life Cycle
	Advanced Site Configuration
	Generating Javadoc Reports
	Generating Unit Test Reports
	Generating Code Coverage Reports
	Generating the FindBugs Report
	Summary

	Chapter 8: Maven Release
	Integration with Nexus
	Project Release
	Subversion Server Command Line Tools Installation
	Creating a Repository
	Checking in Source Code
	Maven Release
	Prepare Goal
	Clean Goal
	Perform Goal

	Summary

	Index

