
[image: Image]

TCP/IP Illustrated

The Implementation
Volume 2

W. Richard Stevens
Gary R. Wright

Addison-Wesley Professional

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and we were aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

The programs and applications presented in this book have been included for their instructional value. They have been tested with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations, nor does it accept any liabilities with respect to the programs or applications.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

(Revised for vol. 2)

Stevens, W. Richard.
 TCP/IP illustrated.

 (Addison-Wesley professional computing series)
 Vol. 2 by Gary R. Wright, W. Richard Stevens.
 Includes bibliographical references and indexes.
 Contents: v. 1. The protocols – v.2. The implementation
 1. TCP/IP (Computer network protocol) I Wright,
Gary R.., II. Title. III. Series.
TK5105.55.S74 1994 004.6’2 93–40000
ISBN 0-201-63346-9 (v.l)
ISBN 0-201-63354-X (v.2)

The BSD Daemon used on the cover of this book is reproduced with the permission of Marshall Kirk McKusick.

Copyright © 1995 by Addison-Wesley. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or other-wise, without the prior consent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Text printed on recycled and acid-free paper.
ISBN 0-201-63354-X

23 2425262728 CRW 09 08 07

23rd Printing January 2008

Addison-Wesley Professional Computing Series

Brian W. Kernighan, Consulting Editor

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Template Library

David R. Butenhof, Programming with POSIX® Threads

Brent Callaghan, NFS Illustrated

Tom Cargill, C++ Programming Style

William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security, Second Edition: Repelling the Wily Hacker

David A. Curry, UNIX® System Security: A Guide for Users and System Administrators

Stephen C. Dewhurst, C++ Gotchas: Avoiding Common Problems in Coding and Design

Dan Farmer/Wietse Venema, Forensic Discovery

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of Reusable Object-Oriented Software

Peter Haggar, Practical Java™ Programming Language Guide

David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software

Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with Tcl and Tk

Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++

Brian W. Kernighan/Rob Pike, The Practice of Programming

S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the Telephone Network

John Lakos, Large-Scale C++ Software Design

Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs

Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to Improve Your Programs and Designs

Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library

Robert B. Murray, C++ Strategies and Tactics

David R. Musser/Gillmer J. Derge/Atul Saini, STL Tutorial and Reference Guide, Second Edition: C++ Programming with the Standard Template Library

John K. Ousterhout, Tcl and the Tk Toolkit

Craig Partridge, Gigabit Networking

Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols

Stephen A. Rago, UNIX® System V Network Programming

Eric S. Raymond, The Art of UNIX Programming

Marc J. Rochkind, Advanced UNIX Programming, Second Edition

Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers

W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols

W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX® Domain Protocols

W. Richard Stevens/Bill Fenner/Andrew M. Rudoff, UNIX Network Programming Volume 1, Third Edition: The Sockets Networking API

W. Richard Stevens/Stephen A. Rago, Advanced Programming in the UNIX® Environment, Second Edition

W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set

John Viega/Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right Way

Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation

Ruixi Yuan/W. Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Visit www.awprofessional.com/series/professionalcomputing for more information about these titles.

Dedication

To my parents and my sister,

for their love and support.

—G.R.W.

To my parents, for the gift of an education,

and the example of a work ethic.

—W.R.S.

Table of Contents

Copyright

Preface

Chapter 1. Introduction

Section 1.1 Introduction

Section 1.2 Source Code Presentation

Section 1.3 History

Section 1.4 Application Programming Interfaces

Section 1.5 Example Program

Section 1.6 System Calls and Library Functions

Section 1.7 Network Implementation Overview

Section 1.8 Descriptors

Section 1.9 Mbufs (Memory Buffers) and Output Processing

Section 1.10 Input Processing

Section 1.11 Network Implementation Overview Revisited

Section 1.12 Interrupt Levels and Concurrency

Section 1.13 Source Code Organization

Section 1.14 Test Network

Section 1.15 Summary

Chapter 2. Mbufs: Memory Buffers

Section 2.1 Introduction

Section 2.2 Code Introduction

Section 2.3 Mbuf Definitions

Section 2.4 mbuf Structure

Section 2.5 Simple Mbuf Macros and Functions

Section 2.6 m_devget and m_pullup Functions

Section 2.7 Summary of Mbuf Macros and Functions

Section 2.8 Summary of Net/3 Networking Data Structures

Section 2.9 m_copy and Cluster Reference Counts

Section 2.10 Alternatives

Section 2.11 Summary

Chapter 3. Interface Layer

Section 3.1 Introduction

Section 3.2 Code Introduction

Section 3.3 ifnet Structure

Section 3.4 ifaddr Structure

Section 3.5 sockaddr Structure

Section 3.6 ifnet and ifaddr Specialization

Section 3.7 Network Initialization Overview

Section 3.8 Ethernet Initialization

Section 3.9 SLIP Initialization

Section 3.10 Loopback Initialization

Section 3.11 if_attach Function

Section 3.12 ifinit Function

Section 3.13 Summary

Chapter 4. Interfaces: Ethernet

Section 4.1 Introduction

Section 4.2 Code Introduction

Section 4.3 Ethernet Interface

Section 4.4 ioctl System Call

Section 4.5 Summary

Chapter 5. Interfaces: SLIP and Loopback

Section 5.1 Introduction

Section 5.2 Code Introduction

Section 5.3 SLIP Interface

Section 5.4 Loopback Interface

Section 5.5 Summary

Chapter 6. IP Addressing

Section 6.1 Introduction

Section 6.2 Code Introduction

Section 6.3 Interface and Address Summary

Section 6.4 sockaddr_in Structure

Section 6.5 in_ifaddr Structure

Section 6.6 Address Assignment

Section 6.7 Interface ioctl Processing

Section 6.8 Internet Utility Functions

Section 6.9 ifnet Utility Functions

Section 6.10 Summary

Chapter 7. Domains and Protocols

Section 7.1 Introduction

Section 7.2 Code Introduction

Section 7.3 domain Structure

Section 7.4 protosw Structure

Section 7.5 IP domain and protosw Structures

Section 7.6 pffindproto and pffindtype Functions

Section 7.7 pfctlinput Function

Section 7.8 IP Initialization

Section 7.9 sysctl System Call

Section 7.10 Summary

Chapter 8. IP: Internet Protocol

Section 8.1 Introduction

Section 8.2 Code Introduction

Section 8.3 IP Packets

Section 8.4 Input Processing: ipintr Function

Section 8.5 Forwarding: ip_forward Function

Section 8.6 Output Processing: ip_output Function

Section 8.7 Internet Checksum: in_cksum Function

Section 8.8 setsockopt and getsockopt System Calls

Section 8.9 ip_sysctl Function

Section 8.10 Summary

Chapter 9. IP Option Processing

Section 9.1 Introduction

Section 9.2 Code Introduction

Section 9.3 Option Format

Section 9.4 ip_dooptions Function

Section 9.5 Record Route Option

Section 9.6 Source and Record Route Options

Section 9.7 Timestamp Option

Section 9.8 ip_insertoptions Function

Section 9.9 ip_pcbopts Function

Section 9.10 Limitations

Section 9.11 Summary

Chapter 10. IP Fragmentation and Reassembly

Section 10.1 Introduction

Section 10.2 Code Introduction

Section 10.3 Fragmentation

Section 10.4 ip_optcopy Function

Section 10.5 Reassembly

Section 10.6 ip_reass Function

Section 10.7 ip_slowtimo Function

Section 10.8 Summary

Chapter 11. ICMP: Internet Control Message Protocol

Section 11.1 Introduction

Section 11.2 Code Introduction

Section 11.3 icmp Structure

Section 11.4 ICMP protosw Structure

Section 11.5 Input Processing: icmp_input Function

Section 11.6 Error Processing

Section 11.7 Request Processing

Section 11.8 Redirect Processing

Section 11.9 Reply Processing

Section 11.10 Output Processing

Section 11.11 icmp_error Function

Section 11.12 icmp_reflect Function

Section 11.13 icmp_send Function

Section 11.14 icmp_sysctl Function

Section 11.15 Summary

Chapter 12. IP Multicasting

Section 12.1 Introduction

Section 12.2 Code Introduction

Section 12.3 Ethernet Multicast Addresses

Section 12.4 ether_multi Structure

Section 12.5 Ethernet Multicast Reception

Section 12.6 in_multi Structure

Section 12.7 ip_moptions Structure

Section 12.8 Multicast Socket Options

Section 12.9 Multicast TTL Values

Section 12.10 ip_setmoptions Function

Section 12.11 Joining an IP Multicast Group

Section 12.12 Leaving an IP Multicast Group

Section 12.13 ip_getmoptions Function

Section 12.14 Multicast Input Processing: ipintr Function

Section 12.15 Multicast Output Processing: ip_output Function

Section 12.16 Performance Considerations

Section 12.17 Summary

Chapter 13. IGMP: Internet Group Management Protocol

Section 13.1 Introduction

Section 13.2 Code Introduction

Section 13.3 igmp Structure

Section 13.4 IGMP protosw Structure

Section 13.5 Joining a Group: igmp_joingroup Function

Section 13.6 igmp_fasttimo Function

Section 13.7 Input Processing: igmp_input Function

Section 13.8 Leaving a Group: igmp_leavegroup Function

Section 13.9 Summary

Chapter 14. IP Multicast Routing

Section 14.1 Introduction

Section 14.2 Code Introduction

Section 14.3 Multicast Output Processing Revisited

Section 14.4 mrouted Daemon

Section 14.5 Virtual Interfaces

Section 14.6 IGMP Revisited

Section 14.7 Multicast Routing

Section 14.8 Multicast Forwarding: ip_mforward Function

Section 14.9 Cleanup: ip_mrouter_done Function

Section 14.10 Summary

Chapter 15. Socket Layer

Section 15.1 Introduction

Section 15.2 Code Introduction

Section 15.3 socket Structure

Section 15.4 System Calls

Section 15.5 Processes, Descriptors, and Sockets

Section 15.6 socket System Call

Section 15.7 getsock and sockargs Functions

Section 15.8 bind System Call

Section 15.9 listen System Call

Section 15.10 tsleep and wakeup Functions

Section 15.11 accept System Call

Section 15.12 sonewconn and soisconnected Functions

Section 15.13 connect System call

Section 15.14 shutdown System Call

Section 15.15 close System Call

Section 15.16 Summary

Chapter 16. Socket I/O

Section 16.1 Introduction

Section 16.2 Code Introduction

Section 16.3 Socket Buffers

Section 16.4 write, writev, sendto, and sendmsg System Calls

Section 16.5 sendmsg System Call

Section 16.6 sendit Function

Section 16.7 sosend Function

Section 16.8 read, readv, recvfrom, and recvmsg System Calls

Section 16.9 recvmsg System Call

Section 16.10 recvit Function

Section 16.11 soreceive Function

Section 16.12 soreceive Code

Section 16.13 select System Call

Section 16.14 Summary

Chapter 17. Socket Options

Section 17.1 Introduction

Section 17.2 Code Introduction

Section 17.3 setsockopt System Call

Section 17.4 getsockopt System Call

Section 17.5 fcntl and ioctl System Calls

Section 17.6 getsockname System Call

Section 17.7 getpeername System Call

Section 17.8 Summary

Chapter 18. Radix Tree Routing Tables

Section 18.1 Introduction

Section 18.2 Routing Table Structure

Section 18.3 Routing Sockets

Section 18.4 Code Introduction

Section 18.5 Radix Node Data Structures

Section 18.6 Routing Structures

Section 18.7 Initialization: route_init and rtable_init Functions

Section 18.8 Initialization: rn_init and rn_inithead Functions

Section 18.9 Duplicate Keys and Mask Lists

Section 18.10 rn_match Function

Section 18.11 rn_search Function

Section 18.12 Summary

Chapter 19. Routing Requests and Routing Messages

Section 19.1 Introduction

Section 19.2 rtalloc and rtalloc1 Functions

Section 19.3 RTFREE Macro and rtfree Function

Section 19.4 rtrequest Function

Section 19.5 rt_setgate Function

Section 19.6 rtinit Function

Section 19.7 rtredirect Function

Section 19.8 Routing Message Structures

Section 19.9 rt_missmsg Function

Section 19.10 rt_ifmsg Function

Section 19.11 rt_newaddrmsg Function

Section 19.12 rt_msg1 Function

Section 19.13 rt_msg2 Function

Section 19.14 sysctl_rtable Function

Section 19.15 sysctl_dumpentry Function

Section 19.16 sysctl_iflist Function

Section 19.17 Summary

Chapter 20. Routing Sockets

Section 20.1 Introduction

Section 20.2 routedomain and protosw Structures

Section 20.3 Routing Control Blocks

Section 20.4 raw_init Function

Section 20.5 route_output Function

Section 20.6 rt_xaddrs Function

Section 20.7 rt_setmetrics Function

Section 20.8 raw_input Function

Section 20.9 route_usrreq Function

Section 20.10 raw_usrreq Function

Section 20.11 raw_attach, raw_detach, and raw_disconnect Functions

Section 20.12 Summary

Chapter 21. ARP: Address Resolution Protocol

Section 21.1 Introduction

Section 21.2 ARP and the Routing Table

Section 21.3 Code Introduction

Section 21.4 ARP Structures

Section 21.5 arpwhohas Function

Section 21.6 arprequest Function

Section 21.7 arpintr Function

Section 21.8 in_arpinput Function

Section 21.9 ARP Timer Functions

Section 21.10 arpresolve Function

Section 21.11 arplookup Function

Section 21.12 Proxy ARP

Section 21.13 arp_rtrequest Function

Section 21.14 ARP and Multicasting

Section 21.15 Summary

Chapter 22. Protocol Control Blocks

Section 22.1 Introduction

Section 22.2 Code Introduction

Section 22.3 inpcb Structure

Section 22.4 in_pcballoc and in_pcbdetach Functions

Section 22.5 Binding, Connecting, and Demultiplexing

Section 22.6 in_pcblookup Function

Section 22.7 in_pcbbind Function

Section 22.8 in_pcbconnect Function

Section 22.9 in_pcbdisconnect Function

Section 22.10 in_setsockaddr and in_setpeeraddr Functions

Section 22.11 in_pcbnotify, in_rtchange, and in_losing Functions

Section 22.12 Implementation Refinements

Section 22.13 Summary

Chapter 23. UDP: User Datagram Protocol

Section 23.1 Introduction

Section 23.2 Code Introduction

Section 23.3 UDP protosw Structure

Section 23.4 UDP Header

Section 23.5 udp_init Function

Section 23.6 udp_output Function

Section 23.7 udp_input Function

Section 23.8 udp_saveopt Function

Section 23.9 udp_ctlinput Function

Section 23.10 udp_usrreq Function

Section 23.11 udp_sysctl Function

Section 23.12 Implementation Refinements

Section 23.13 Summary

Chapter 24. TCP: Transmission Control Protocol

Section 24.1 Introduction

Section 24.2 Code Introduction

Section 24.3 TCP protosw Structure

Section 24.4 TCP Header

Section 24.5 TCP Control Block

Section 24.6 TCP State Transition Diagram

Section 24.7 TCP Sequence Numbers

Section 24.8 tcp_init Function

Section 24.9 Summary

Chapter 25. TCP Timers

Section 25.1 Introduction

Section 25.2 Code Introduction

Section 25.3 tcp_canceltimers Function

Section 25.4 tcp_fasttimo Function

Section 25.5 tcp_slowtimo Function

Section 25.6 tcp_timers Function

Section 25.7 Retransmission Timer Calculations

Section 25.8 tcp_newtcpcb Function

Section 25.9 tcp_setpersist Function

Section 25.10 tcp_xmit_timer Function

Section 25.11 Retransmission Timeout: tcp_timers Function

Section 25.12 An RTT Example

Section 25.13 Summary

Chapter 26. TCP Output

Section 26.1 Introduction

Section 26.2 tcp_output Overview

Section 26.3 Determine if a Segment Should be Sent

Section 26.4 TCP Options

Section 26.5 Window Scale Option

Section 26.6 Timestamp Option

Section 26.7 Send a Segment

Section 26.8 tcp_template Function

Section 26.9 tcp_respond Function

Section 26.10 Summary

Chapter 27. TCP Functions

Section 27.1 Introduction

Section 27.2 tcp_drain Function

Section 27.3 tcp_drop Function

Section 27.4 tcp_close Function

Section 27.5 tcp_mss Function

Section 27.6 tcp_ctlinput Function

Section 27.7 tcp_notify Function

Section 27.8 tcp_quench Function

Section 27.9 TCP_REASS Macro and tcp_reass Function

Section 27.10 tcp_trace Function

Section 27.11 Summary

Chapter 28. TCP Input

Section 28.1 Introduction

Section 28.2 Preliminary Processing

Section 28.3 tcp_dooptions Function

Section 28.4 Header Prediction

Section 28.5 TCP Input: Slow Path Processing

Section 28.6 Initiation of Passive Open, Completion of Active Open

Section 28.7 PAWS: Protection Against Wrapped Sequence Numbers

Section 28.8 Trim Segment so Data is Within Window

Section 28.9 Self-Connects and Simultaneous Opens

Section 28.10 Record Timestamp

Section 28.11 RST Processing

Section 28.12 Summary

Chapter 29. TCP Input

Section 29.1 Introduction

Section 29.2 ACK Processing Overview

Section 29.3 Completion of Passive Opens and Simultaneous Opens

Section 29.4 Fast Retransmit and Fast Recovery Algorithms

Section 29.5 ACK Processing

Section 29.6 Update Window Information

Section 29.7 Urgent Mode Processing

Section 29.8 tcp_pulloutofband Function

Section 29.9 Processing of Received Data

Section 29.10 FIN Processing

Section 29.11 Final Processing

Section 29.12 Implementation Refinements

Section 29.13 Header Compression

Section 29.14 Summary

Chapter 30. TCP User Requests

Section 30.1 Introduction

Section 30.2 tcp_usrreq Function

Section 30.3 tcp_attach Function

Section 30.4 tcp_disconnect Function

Section 30.5 tcp_usrclosed Function

Section 30.6 tcp_ctloutput Function

Section 30.7 Summary

Chapter 31. BPF: BSD Packet Filter

Section 31.1 Introduction

Section 31.2 Code Introduction

Section 31.3 bpf_if Structure

Section 31.4 bpf_d Structure

Section 31.5 BPF Input

Section 31.6 BPF Output

Section 31.7 Summary

Chapter 32. Raw IP

Section 32.1 Introduction

Section 32.2 Code Introduction

Section 32.3 Raw IP protosw Structure

Section 32.4 rip_init Function

Section 32.5 rip_input Function

Section 32.6 rip_output Function

Section 32.7 rip_usrreq Function

Section 32.8 rip_ctloutput Function

Section 32.9 Summary

Epilogue

Solutions to Selected Exercises

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

Chapter 32

Source Code Availability

URLs: Uniform Resource Locators

4.4BSD-Lite

Operating Systems that Run the 4.4BSD-Lite Networking Software

RFCs

GNU Software

PPP Software

mrouted Software

ISODE Software

C. RFC 1122 Compliance

Section C.1 Link-Layer Requirements

Section C.2 IP Requirements

Section C.3 IP Options Requirements

Section C.4 IP Fragmentation and Reassembly Requirements

Section C.5 ICMP Requirements

Section C.6 Multicasting Requirements

Section C.7 IGMP Requirements

Section C.8 Routing Requirements

Section C.9 ARP Requirements

Section C.10 UDP Requirements

Section C.11 TCP Requirements

Bibliography

Preface

Introduction

This book describes and presents the source code for the common reference implementation of TCP/IP: the implementation from the Computer Systems Research Group (CSRG) at the University of California at Berkeley. Historically this has been distributed with the 4.x BSD system (Berkeley Software Distribution). This implementation was first released in 1982 and has survived many significant changes, much fine tuning, and numerous ports to other Unix and non-Unix systems. This is not a toy implementation, but the foundation for TCP/IP implementations that are run daily on hundreds of thousands of systems worldwide. This implementation also provides router functionality, letting us show the differences between a host implementation of TCP/IP and a router.

We describe the implementation and present the entire source code for the kernel implementation of TCP/IP, approximately 15,000 lines of C code. The version of the Berkeley code described in this text is the 4.4BSD-Lite release. This code was made publicly available in April 1994, and it contains numerous networking enhancements that were added to the 4.3BSD Tahoe release in 1988, the 4.3BSD Reno release in 1990, and the 4.4BSD release in 1993. (Appendix B describes how to obtain this source code.) The 4.4BSD release provides the latest TCP/IP features, such as multicasting and long fat pipe support (for high-bandwidth, long-delay paths). Figure 1.1 (p. 4) provides additional details of the various releases of the Berkeley networking code.

This book is intended for anyone wishing to understand how the TCP/IP protocols are implemented: programmers writing network applications, system administrators responsible for maintaining computer systems and networks utilizing TCP/IP, and any programmer interested in understanding how a large body of nontrivial code fits into a real operating system.

Organization of the Book

The following figure shows the various protocols and subsystems that are covered. The italic numbers by each box indicate the chapters in which that topic is described.

[image: Organization of the Book]

We take a bottom-up approach to the TCP/IP protocol suite, starting at the data-link layer, then the network layer (IP, ICMP, IGMP, IP routing, and multicast routing), followed by the socket layer, and finishing with the transport layer (UDP, TCP, and raw IP).

Intended Audience

This book assumes a basic understanding of how the TCP/IP protocols work. Readers unfamiliar with TCP/IP should consult the first volume in this series, [Stevens 1994], for a thorough description of the TCP/IP protocol suite. This earlier volume is referred to throughout the current text as Volume 1. The current text also assumes a basic understanding of operating system principles.

We describe the implementation of the protocols using a data-structures approach. That is, in addition to the source code presentation, each chapter contains pictures and descriptions of the data structures used and maintained by the source code. We show how these data structures fit into the other data structures used by TCP/IP and the kernel. Heavy use is made of diagrams throughout the text—there are over 250 diagrams.

This data-structures approach allows readers to use the book in various ways. Those interested in all the implementation details can read the entire text from start to finish, following through all the source code. Others might want to understand how the protocols are implemented by understanding all the data structures and reading all the text, but not following through all the source code.

We anticipate that many readers are interested in specific portions of the book and will want to go directly to those chapters. Therefore many forward and backward references are provided throughout the text, along with a thorough index, to allow individual chapters to be studied by themselves. The inside back covers contain an alphabetical cross-reference of all the functions and macros described in the book and the starting page number of the description. Exercises are provided at the end of the chapters; most solutions are in Appendix A to maximize the usefulness of the text as a self-study reference.

Source Code Copyright

All of the source code presented in this book, other than Figures 1.2 and 8.27, is from the 4.4BSD-Lite distribution. This software is publicly available through many sources (Appendix B).

All of this source code contains the following copyright notice.

/*
 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
 * The Regents of the University of California. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * This product includes software developed by the University of
 * California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ″AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

Acknowledgments

We thank the technical reviewers who read the manuscript and provided important feedback on a tight timetable: Ragnvald Blindheim, Jon Crowcroft, Sally Floyd, Glen Glater, John Gulbenkian, Don Hering, Mukesh Kacker, Berry Kercheval, Brian W. Kernighan, Ulf Kieber, Mark Laubach, Steven McCanne, Craig Partridge, Vern Paxson, Steve Rago, Chakravardhi Ravi, Peter Salus, Doug Schmidt, Keith Sklower, Ian Lance Taylor, and G. N. Ananda Vardhana. A special thanks to the consulting editor, Brian Kernighan, for his rapid, thorough, and helpful reviews throughout the course of the project, and for his continued encouragement and support.

Our thanks (again) to the National Optical Astronomy Observatories (NOAO), especially Sidney Wolff, Richard Wolff, and Steve Grandi, for providing access to their networks and hosts. Our thanks also to the U.C. Berkeley CSRG: Keith Bostic and Kirk McKusick provided access to the latest 4.4BSD system, and Keith Sklower provided the modifications to the 4.4BSD-Lite software to run under BSD/386 V1.1.

G.R.W. wishes to thank John Wait, for several years of gentle prodding; Dave Schaller, for his encouragement; and Jim Hogue, for his support during the writing and production of this book.

W.R.S. thanks his family, once again, for enduring another “small” book project. Thank you Sally, Bill, Ellen, and David.

The hardwork, professionalism, and support of the team at Addison-Wesley has made the authors’ job that much easier. In particular, we wish to thank John Wait for his guidance and Kim Dawley for her creative ideas.

Camera-ready copy of the book was produced by the authors. It is only fitting that a book describing an industrial-strength software system be produced with an industrial-strength text processing system. Therefore one of the authors chose to use the Groff package written by James Clark, and the other author agreed begrudgingly.

We welcome electronic mail from any readers with comments, suggestions, or bug fixes: tcpipiv2-book@aw.com. Each author will gladly blame the other for any remaining errors.

Gary R. Wright
http://www.connix.com/~gwright
Middletown, Connecticut
November 1994

W. Richard Stevens
http://www.kohala.com/~rstevens
Tucson, Arizona

Structure Definitions

	
arpcom

	
80

	
arphdr

	
682

	
	

	
bpf_d

	
1033

	
bpf_hdr

	
1029

	
bpf_if

	
1029

	
	

	
cmsghdr

	
482

	
	

	
domain

	
187

	
	

	
ether_arp

	
682

	
ether_header

	
102

	
ether_multi

	
342

	
	

	
icmp

	
308

	
ifaddr

	
73

	
ifa_msghdr

	
622

	
ifconf

	
117

	
if_msghdr

	
622

	
ifnet

	
67

	
ifqueue

	
71

	
ifreq

	
117

	
igmp

	
384

	
in_addr

	
160

	
in_aliasreq

	
174

	
in_ifaddr

	
161

	
in_multi

	
345

	
inpcb

	
716

	
iovec

	
481

	
ip

	
211

	
ipasfrag

	
287

	
ip_moptions

	
347

	
ip_mreq

	
356

	
ipoption

	
265

	
ipovly

	
760

	
ipq

	
286

	
ip_srcrt

	
258

	
ip_timestamp

	
262

	
le_softc

	
80

	
lgrplctl

	
411

	
linger

	
542

	
llinfo_arp

	
682

	
	

	
mbuf

	
38

	
mrt

	
419

	
mrtctl

	
420

	
msghdr

	
482

	
	

	
osockaddr

	
75

	
	

	
pdevinit

	
78

	
protosw

	
188

	
	

	
radix_mask

	
578

	
radix_node

	
575

	
radix_node_head

	
574

	
rawcb

	
647

	
route

	
220

	
route_cb

	
625

	
rt_addrinfo

	
623

	
rtentry

	
579

	
rt_metrics

	
580

	
rt_msghdr

	
622

	
	

	
selinfo

	
531

	
sl_softc

	
83

	
sockaddr

	
75

	
sockaddr_dl

	
87

	
sockaddr_in

	
160

	
sockaddr_inarp

	
701

	
sockbuf

	
476

	
socket

	
438

	
socket_args

	
444

	
sockproto

	
626

	
sysent

	
443

	
	

	
tcpcb

	
804

	
tcp_debug

	
916

	
tcphdr

	
801

	
tcpiphdr

	
803

	
timeval

	
106

	
	

	
udphdr

	
759

	
udpiphdr

	
759

	
uio

	
485

	
	

	
vif

	
406

	
vifctl

	
407

	
	

	
walkarg

	
632

Function and Macro Definitions

	
accept

	
458

	
add_lgrp

	
413

	
add_mrt

	
422

	
add_vif

	
408

	
arpintr

	
687

	
arplookup

	
702

	
arprequest

	
685

	
arpresolve

	
697

	
arp_rtrequest

	
705

	
arptfree

	
696

	
arptimer

	
695

	
arpwhohas

	
683

	
	

	
bind

	
454

	
bpfattach

	
1031

	
bpf_attachd

	
1040

	
bpfioctl

	
1035

	
bpfopen

	
1034

	
bpfread

	
1044

	
bpf_setif

	
1038

	
bpf_tap

	
1041

	
bpfwrite

	
1047

	
	

	
catchpacket

	
1042

	
connect

	
466

	
	

	
del_lgrp

	
414

	
del_mrt

	
421

	
del_vif

	
410

	
domaininit

	
194

	
dtom

	
46

	
	

	
ether_addmulti

	
364

	
ether_delmulti

	
370

	
ether_ifattach

	
92

	
ether_input

	
104

	
ETHER_LOOKUP_MULTI

	
344

	
ETHER_MAP_IP_MULTICAST

	
342

	
ether_output

	
108

	
	

	
fcntl

	
550

	
	

	
getpeername

	
556

	
getsock

	
452

	
getsockname

	
555

	
getsockopt

	
545

	
grplst_member

	
415

	
	

	
icmp_error

	
325

	
icmp_input

	
311

	
icmp_reflect

	
330

	
icmp_send

	
333

	
icmp_sysctl

	
334

	
ifa_ifwithaddr

	
182

	
ifa_ifwithaf

	
182

	
ifa_ifwithdstaddr

	
182

	
ifa_ifwithnet

	
182

	
ifa_ifwithroute

	
182

	
ifaof_ifpforaddr

	
182

	
if_attach

	
88

	
ifconf

	
118

	
IF_DEQUEUE

	
72

	
if_down

	
123

	
IF_DROP

	
72

	
IF_ENQUEUE

	
72

	
ifinit

	
93

	
ifioctl

	
116

	
IF_PREPEND

	
72

	
if_qflush

	
72

	
IF_QFULL

	
72

	
if_slowtimo

	
93

	
ifunit

	
182

	
if_up

	
123

	
igmp_fasttimo

	
389

	
igmp_input

	
392

	
igmp_joingroup

	
386

	
igmp_leavegroup

	
395

	
IGMP_RANDOM_DELAY

	
387

	
igmp_sendreport

	
390

	
in_addmulti

	
359

	
in_arpinput

	
689

	
in_broadcast

	
181

	
in_canforward

	
181

	
in_cksum

	
237

	
in_control

	
165

	
in_delmulti

	
368

	
IN_FIRST_MULTI

	
388

	
in_ifinit

	
169

	
in_localaddr

	
181

	
IN_LOOKUP_MULTI

	
347

	
in_losing

	
749

	
in_netof

	
181

	
IN_NEXT_MULTI

	
388

	
in_pcballoc

	
718

	
in_pcbbind

	
729

	
in_pcbconnect

	
735

	
in_pcbdetach

	
719

	
in_pcbdisconnect

	
741

	
in_pcblookup

	
726

	
in_pcbnotify

	
745

	
in_rtchange

	
746

	
in_setpeeraddr

	
742

	
in_setsockaddr

	
742

	
insque

	
292

	
ip_ctloutput

	
241

	
ip_deq

	
292

	
ip_dooptions

	
251

	
ip_drain

	
299

	
ip_enq

	
292

	
ip_forward

	
222

	
ip_freef

	
299

	
ip_getmoptions

	
372

	
ip_init

	
200

	
ip_insertoptions

	
266

	
ipintr

	
213

	
ip_mforward

	
426

	
ip_mloopback

	
378

	
ip_mrouter_cmd

	
402

	
ip_mrouter_done

	
433

	
ip_mrouter_init

	
404

	
ip_optcopy

	
282

	
ip_output

	
229

	
ip_pcbopts

	
269

	
ip_reass

	
290

	
ip_rtaddr

	
254

	
ip_setmoptions

	
352

	
ip_slowtimo

	
299

	
ip_srcroute

	
260

	
ip_sysctl

	
244

	
iptime

	
264

	
	

	
leattach

	
82

	
leioctl

	
124

	
leread

	
102

	
lestart

	
113

	
listen

	
455

	
loioctl

	
180

	
loopattach

	
85

	
looutput

	
150

	
	

	
m_adj

	
53

	
main

	
79

	
m_cat

	
53

	
MCLGET

	
52

	
m_copy

	
53

	
m_copyback

	
53

	
m_copydata

	
53

	
m_copym

	
53

	
m_devget

	
53

	
MFREE

	
52

	
m_free

	
53

	
m_freem

	
53

	
m_get

	
41

	
MGET

	
42

	
m_getclr

	
53

	
MGETHDR

	
52

	
m_gethdr

	
53

	
MH_ALIGN

	
52

	
M_LEADINGSPACE

	
764

	
M_PREPEND

	
52

	
m_pullup

	
53

	
m_retry

	
43

	
mrtfind

	
423

	
mtod

	
46

	
	

	
nethash

	
420

	
net_sysctl

	
203

	
	

	
pfctlinput

	
198

	
pffasttimo

	
196

	
pffindproto

	
197

	
pffindtype

	
197

	
pfslowtimo

	
196

	
phyint_send

	
430

	
	

	
raw_attach

	
671

	
raw_detach

	
672

	
raw_disconnect

	
672

	
raw_init

	
648

	
raw_input

	
662

	
raw_usrreq

	
667

	
recvit

	
503

	
recvmsg

	
502

	
remque

	
292

	
rip_ctloutput

	
1064

	
rip_init

	
1053

	
rip_input

	
1054

	
rip_output

	
1057

	
rip_usrreq

	
1058

	
rn_init

	
584

	
rn_match

	
591

	
rn_search

	
599

	
route_init

	
584

	
route_output

	
652

	
route_usrreq

	
664

	
rtable_init

	
584

	
rtalloc

	
602

	
rtalloc1

	
603

	
RTFREE

	
605

	
rtfree

	
605

	
rt_ifmsg

	
627

	
rtinit

	
616

	
rt_missmsg

	
625

	
rt_msg1

	
631

	
rt_msg2

	
633

	
rt_newaddrmsg

	
628

	
rtredirect

	
618

	
rtrequest

	
607

	
rt_setgate

	
614

	
rt_setmetrics

	
662

	
rt_xaddrs

	
660

	
	

	
save_rte

	
259

	
sballoc

	
478

	
sbappend

	
479

	
sbappendaddr

	
479

	
sbappendcontrol

	
479

	
sbappendrecord

	
479

	
sbcompress

	
479

	
sbdrop

	
479

	
sbdroprecord

	
479

	
sbflush

	
479

	
sbfree

	
478

	
sbinsertoob

	
479

	
sblock

	
478

	
sbrelease

	
479

	
sbreserve

	
479

	
sbspace

	
478

	
sbunlock

	
478

	
sbwait

	
478

	
select

	
526

	
selrecord

	
532

	
selscan

	
529

	
selwakeup

	
533

	
sendit

	
488

	
sendmsg

	
484

	
SEQ_GEQ

	
810

	
SEQ_GT

	
810

	
SEQ_LEQ

	
810

	
SEQ_LT

	
810

	
setsockopt

	
540

	
shutdown

	
468

	
slattach

	
84

	
slclose

	
148

	
slinit

	
133

	
slinput

	
134

	
slioctl

	
179

	
slopen

	
132

	
sloutput

	
139

	
slstart

	
142

	
sltioctl

	
149

	
soaccept

	
460

	
sobind

	
454

	
socantrcvmore

	
442

	
socantsendmore

	
442

	
sockargs

	
452

	
socket

	
448

	
soclose

	
472

	
soconnect

	
467

	
socreate

	
449

	
sodisconnect

	
442

	
sofree

	
473

	
sogetopt

	
546

	
soisconnected

	
464

	
soisconnecting

	
442

	
soisdisconnected

	
442

	
soisdisconnecting

	
442

	
solisten

	
456

	
sonewconn

	
462

	
soo_close

	
471

	
soo_ioctl

	
553

	
soo_select

	
530

	
soqinsque

	
442

	
soqremque

	
442

	
soreadable

	
530

	
soreceive

	
512

	
soreserve

	
479

	
sorflush

	
470

	
sorwakeup

	
478

	
sosend

	
492

	
sosendallatonce

	
442

	
sosetopt

	
541

	
soshutdown

	
469

	
sowakeup

	
478

	
sowriteable

	
531

	
sowwakeup

	
478

	
sysctl_dumpentry

	
641

	
sysctl_iflist

	
642

	
sysctl_rtable

	
638

	
	

	
tcp_attach

	
1019

	
tcp_canceltimers

	
821

	
tcp_close

	
895

	
tcp_ctlinput

	
904

	
tcp_ctloutput

	
1022

	
tcp_disconnect

	
1020

	
tcp_dooptions

	
933

	
tcp_drop

	
893

	
tcp_fasttimo

	
821

	
tcp_init

	
812

	
tcp_input

	
926

	
tcp_mss

	
898

	
tcp_newtcpcb

	
833

	
tcp_notify

	
905

	
tcp_output

	
853

	
tcp_pulloutofband

	
986

	
tcp_quench

	
906

	
tcp_rcvseqinit

	
946

	
TCP_REASS

	
908

	
tcp_reass

	
911

	
tcp_respond

	
886

	
TCP_REXMTVAL

	
840

	
tcp_sendseqinit

	
946

	
tcp_setpersist

	
835

	
tcp_slowtimo

	
823

	
tcp_template

	
885

	
tcp_timers

	
824

	
tcp_trace

	
918

	
TCPT_RANGESET

	
820

	
tcp_usrclosed

	
1021

	
tcp_usrreq

	
1008

	
tcp_xmit_timer

	
838

	
tunnel_send

	
431

	
	

	
udp_ctlinput

	
783

	
udp_detach

	
786

	
udp_init

	
760

	
udp_input

	
770

	
udp_notify

	
784

	
udp_output

	
762

	
udp_saveopt

	
781

	
udp_sysctl

	
790

	
udp_usrreq

	
784

Chapter 1. Introduction

1.1. Introduction

This chapter provides an introduction to the Berkeley networking code. We start with a description of the source code presentation and the various typographical conventions used throughout the text. A quick history of the various releases of the code then lets us see where the source code shown in this book fits in. This is followed by a description of the two predominant programming interfaces used under both Unix and non-Unix systems to write programs that use the TCP/IP protocols.

We then show a simple user program that sends a UDP datagram to the daytime server on another host on the local area network, causing the server to return a UDP datagram with the current time and date on the server as a string of ASCII text. We follow the datagram sent by the process all the way down the protocol stack to the device driver, and then follow the reply received from server all the way up the protocol stack to the process. This trivial example lets us introduce many of the kernel data structures and concepts that are described in detail in later chapters.

The chapter finishes with a look at the organization of the source code that is presented in the book and a review of where the networking code fits in the overall organization.

1.2. Source Code Presentation

Presenting 15,000 lines of source code, regardless of the topic, is a challenge in itself. The following format is used for all the source code in the text:

-- tcp_subr.c
381 void
382 tcp_quench(inp, errno)
383 struct inpcb *inp;
384 int errno;
385 {
386 struct tcpcb *tp = intotcpcb(inp);

387 if (tp)
388 tp->snd_cwnd = tp->t_maxseg;
389 }
--

Set congestion window to one segment

387-388

This is the tcp_quench function from the file tcp_subr.c. These source filenames refer to files in the 4.4BSD-Lite distribution, which we describe in Section 1.13. Each nonblank line is numbered. The text describing portions of the code begins with the starting and ending line numbers in the left margin, as shown with this paragraph. Sometimes the paragraph is preceded by a short descriptive heading, providing a summary statement of the code being described.

The source code has been left as is from the 4.4BSD-Lite distribution, including occasional bugs, which we note and discuss when encountered, and occasional editorial comments from the original authors. The code has been run through the GNU Indent program to provide consistency in appearance. The tab stops have been set to four-column boundaries to allow the lines to fit on a page. Some #ifdef statements and their corresponding #endif have been removed when the constant is always defined (e.g., GATEWAY and MROUTING, since we assume the system is operating as a router and as a multicast router). All register specifiers have been removed. Sometimes a comment has been added and typographical errors in the comments have been fixed, but otherwise the code has been left alone.

The functions vary in size from a few lines tcp_quench (shown earlier) to tcp_input, which is the biggest at 1100 lines. Functions that exceed about 40 lines are normally broken into pieces, which are shown one after the other. Every attempt is made to place the code and its accompanying description on the same page or on facing pages, but this isn’t always possible without wasting a large amount of paper.

Many cross-references are provided to other functions that are described in the text. To avoid appending both a figure number and a page number to each reference, the inside back covers contain an alphabetical cross-reference of all the functions and macros described in the book, and the starting page number of the description. Since the source code in the book is taken from the publicly available 4.4BSD-Lite release, you can easily obtain a copy: Appendix B details various ways. Sometimes it helps to have an on-line copy to search through [e.g., with the Unix grep (1) program] as you follow the text.

Each chapter that describes a source code module normally begins with a listing of the source files being described, followed by the global variables, the relevant statistics maintained by the code, some sample statistics from an actual system, and finally the SNMP variables related to the protocol being described. The global variables are often defined across various source files and headers, so we collect them in one table for easy reference. Showing all the statistics at this point simplifies the later discussion of the code when the statistics are updated. Chapter 25 of Volume 1 provides all the details on SNMP. Our interest in this text is in the information maintained by the TCP/IP routines in the kernel to support an SNMP agent running on the system.

Typographical Conventions

In the figures throughout the text we use a constant-width font for variable names and the names of structure members (m_next), a slanted constant-width font for names that are defined constants (NULL) or constant values (512), and a bold constant-width font with braces for structure names (mbuf{}). Here is an example:

[image: Image]

In tables we use a constant-width font for variable names and the names of structure members, and the slanted constant-width font for the names of defined constants. Here is an example:

[image: Image]

We normally show all #define symbols this way. We show the value of the symbol if necessary (the value of M_BCAST is irrelevant) and sort the symbols alphabetically, unless some other ordering makes sense.

Throughout the text we’ll use indented, parenthetical notes such as this to describe historical points or implementation minutae.

We refer to Unix commands using the name of the command followed by a number in parentheses, as in grep (1). The number in parentheses is the section number in the 4.4BSD manual of the “manual page” for the command, where additional information can be located.

1.3. History

This book describes the common reference implementation of TCP/IP from the Computer Systems Research Group at the University of California at Berkeley. Historically this has been distributed with the 4.x BSD system (Berkeley Software Distribution) and with the “BSD Networking Releases.” This source code has been the starting point for many other implementations, both for Unix and non-Unix operating systems.

Figure 1.1 shows a chronology of the various BSD releases, indicating the important TCP/IP features. The releases shown on the left side are publicly available source code releases containing all of the networking code: the protocols themselves, the kernel routines for the networking interface, and many of the applications and utilities (such as Telnet and FTP).

Figure 1.1. Various BSD releases with important TCP/IP features.

[image: Image]

Although the official name of the software described in this text is the 4.4BSD-Lite distribution, we’ll refer to it simply as Net/3.

While the source code is distributed by U. C. Berkeley and is called the Berkeley Software Distribution, the TCP/IP code is really the merger and consolidation of the works of various researchers, both at Berkeley and at other locations.

Throughout the text we’ll use the term Berkeley-derived implementation to refer to vendor implementations such as SunOS 4.x, System V Release 4 (SVR4), and AIX 3.2, whose TCP/IP code was originally developed from the Berkeley sources. These implementations have much in common, often including the same bugs!

Not shown in Figure 1.1 is that the first release with the Berkeley networking code was actually 4.1cBSD in 1982. 4.2BSD, however, was the widely released version in 1983.

BSD releases prior to 4.1cBSD used a TCP/IP implementation developed at Bolt Beranek and Newman (BBN) by Rob Gurwitz and Jack Haverty. Chapter 18 of [Salus 1994] provides additional details on the incorporation of the BBN code into 4.2BSD. Another influence on the Berkeley TCP/IP code was the TCP/IP implementation done by Mike Muuss at the Ballistics Research Lab for the PDP-11.

Limited documentation exists on the changes in the networking code from one release to the next. [Karels and McKusick 1986] describe the changes from 4.2BSD to 4.3BSD, and [Jacobson 1990d] describes the changes from 4.3BSD Tahoe to 4.3BSD Reno.

1.4. Application Programming Interfaces

Two popular application programming interfaces (APIs) for writing programs to use the Internet protocols are sockets and TLI (Transport Layer Interface). The former is sometimes called Berkeley sockets, since it was widely released with the 4.2BSD system (Figure 1.1). It has, however, been ported to many non-BSD Unix systems and many non-Unix systems. The latter, originally developed by AT&T, is sometimes called XTI (X/Open Transport Interface) in recognition of the work done by X/Open, an international group of computer vendors who produce their own set of standards. XTI is effectively a superset of TLI.

This is not a programming text, but we describe the sockets interface since sockets are used by applications to access TCP/IP in Net/3 (and in all other BSD releases). The sockets interface has also been implemented on a wide variety of non-Unix systems. The programming details for both sockets and TLI are available in [Stevens 1990].

System V Release 4 (SVR4) also provides a sockets API for applications to use, although the implementation differs from what we present in this text. Sockets in SVR4 are based on the “streams” subsystem that is described in [Rago 1993].

1.5. Example Program

We’ll use the simple C program shown in Figure 1.2 to introduce many features of the BSD networking implementation in this chapter.

Figure 1.2. Example program: send a datagram to the UDP daytime server and read a response.

	

 1 /*
 2 * Send a UDP datagram to the daytime server on some other host,
 3 * read the reply, and print the time and date on the server.
 4 */

 5 #include <sys/types.h>
 6 #include <sys/socket.h>
 7 #include <netinet/in.h>
 8 #include <arpa/inet.h>
 9 #include <stdio.h>
 10 #include <stdlib.h>
 11 #include <string.h>

 12 #define BUFFSIZE 150 /* arbitrary size */

 13 int
 14 main()
 15 {
 16 struct sockaddr_in serv;
 17 char buff[BUFFSIZE];
 18 int sockfd, n;

 19 if ((sockfd = socket(PF_INET, SOCK_DGRAM, 0)) < 0)
 20 err_sys("socket error");

 21 bzero((char *) &serv, sizeof(serv));
 22 serv.sin_family = AF_INET;
 23 serv.sin_addr.s_addr = inet_addr("140.252.1.32");
 24 serv.sin_port = htons(13);

 25 if (sendto(sockfd, buff, BUFFSIZE, 0,
 26 (struct sockaddr *) &serv, sizeof(serv)) != BUFFSIZE)
 27 err_sys("sendto error");

 28 if ((n = recvfrom(sockfd, buff, BUFFSIZE, 0,
 29 (struct sockaddr *) NULL, (int *) NULL)) < 2)
 30 err_sys("recvfrom error");
 31 buff[n - 2] = 0; /* null terminate */
 32 printf("%s\n", buff);

 33 exit(0);
 34 }

Create a datagram socket

19-20

socket creates a UDP socket and returns a descriptor to the process, which is stored in the variable sockfd. The error-handling function err_sys is shown in Appendix B.2 of [Stevens 1992]. It accepts any number of arguments, formats them using vsprintf, prints the Unix error message corresponding to the errno value from the system call, and then terminates the process.

We’ve now used the term socket in three different ways. (1) The API developed for 4.2BSD to allow programs to access the networking protocols is normally called the sockets API or just the sockets interface. (2) socket is the name of a function in the sockets API. (3) We refer to the end point created by the call to socket as a socket, as in the comment “Create a datagram socket.”

Unfortunately, there are still more uses of the term socket. (4) The return value from the socket function is called a socket descriptor or just a socket. (5) The Berkeley implementation of the networking protocols within the kernel is called the sockets implementation, compared to the System V streams implementation, for example. (6) The combination of an IP address and a port number is often called a socket, and a pair of IP addresses and port numbers is called a socket pair. Fortunately, it is usually obvious from the discussion what the term socket refers to.

Fill in sockaddr_in structure with server’s address

21-24

An Internet socket address structure (sockaddr_in) is filled in with the IP address (140.252.1.32) and port number (13) of the daytime server. Port number 13 is the standard Internet daytime server, provided by most TCP/IP implementations [Stevens 1994, Fig. 1.9]. Our choice of the server host is arbitrary—we just picked a local host (Figure 1.17) that provides the service.

The function inet_addr takes an ASCII character string representing a dotted-decimal IP address and converts it into a 32-bit binary integer in the network byte order. (The network byte order for the Internet protocol suite is big endian. [Stevens 1990, Chap. 4] discusses host and network byte order, and little versus big endian.) The function htons takes a short integer in the host byte order (which could be little endian or big endian) and converts it into the network byte order (big endian). On a system such as a Sparc, which uses big endian format for integers, htons is typically a macro that does nothing. In BSD/386, however, on the little endian 80386, htons can be either a macro or a function that swaps the 2 bytes in a 16-bit integer.

Send datagram to server

25-27

The program then calls sendto, which sends a 150-byte datagram to the server. The contents of the 150-byte buffer are indeterminate since it is an uninitialized array allocated on the run-time stack, but that’s OK for this example because the server never looks at the contents of the datagram that it receives. When the server receives a datagram it sends a reply to the client. The reply contains the current time and date on the server in a human-readable format.

Our choice of 150 bytes for the client’s datagram is arbitrary. We purposely pick a value greater than 100 and less than 208 to show the use of an mbuf chain later in this chapter. We also want a value less than 1472 to avoid fragmentation on an Ethernet.

Read datagram returned by server

28-32

The program reads the datagram that the server sends back by calling recvfrom. Unix servers typically send back a 26-byte string of the form

Sat Dec 11 11:28:05 1993\er\n

where \er is an ASCII carriage return and \en is an ASCII linefeed. Our program overwrites the carriage return with a null byte and calls printf to output the result.

We go into lots of detail about various parts of this example in this and later chapters as we examine the implementation of the functions socket, sendto, and recvfrom.

1.6. System Calls and Library Functions

All operating systems provide service points through which programs request services from the kernel. All variants of Unix provide a well-defined, limited number of kernel entry points known as system calls. We cannot change the system calls unless we have the kernel source code. Unix Version 7 provided about 50 system calls, 4.4BSD provides about 135, and SVR4 has around 120.

The system call interface is documented in Section 2 of the Unix Programmer’s Manual. Its definition is in the C language, regardless of how system calls are invoked on any given system.

The Unix technique is for each system call to have a function of the same name in the standard C library. An application calls this function, using the standard C calling sequence. This function then invokes the appropriate kernel service, using whatever technique is required on the system. For example, the function may put one or more of the C arguments into general registers and then execute some machine instruction that generates a software interrupt into the kernel. For our purposes, we can consider the system calls to be C functions.

Section 3 of the Unix Programmer’s Manual defines the general purpose functions available to programmers. These functions are not entry points into the kernel, although they may invoke one or more of the kernel’s system calls. For example, the printf function may invoke the write system call to perform the output, but the functions strcpy (copy a string) and atoi (convert ASCII to integer) don’t involve the operating system at all.

From an implementor’s point of view, the distinction between a system call and a library function is fundamental. From a user’s perspective, however, the difference is not as critical. For example, if we run Figure 1.2 under 4.4BSD, when the program calls the three functions socket, sendto, and recvfrom, each ends up calling a function of the same name within the kernel. We show the BSD kernel implementation of these three system calls later in the text.

If we run the program under SVR4, where the socket functions are in a user library that calls the “streams” subsystem, the interaction of these three functions with the kernel is completely different. Under SVR4 the call to socket ends up invoking the kernel’s open system call for the file /dev/udp and then pushes the streams module sockmod onto the resulting stream. The call to sendto results in a putmsg system call, and the call to recvfrom results in a getmsg system call. These SVR4 details are not critical in this text. We want to point out only that the implementation can be totally different while providing the same API to the application.

This difference in implementation technique also accounts for the manual page for the socket function appearing in Section 2 of the 4.4BSD manual but in Section 3n (the letter n stands for the networking subsection of Section 3) of the SVR4 manuals.

Finally, the implementation technique can change from one release to the next. For example, in Net/1 send and sendto were implemented as separate system calls within the kernel. In Net/3, however, send is a library function that calls sendto, which is a system call:

send(int s, char *msg, int len, int flags)
{
 return(sendto(s, msg, len, flags, (struct sockaddr *) NULL, 0));
}

The advantage in implementing send as a library function that just calls sendto is a reduction in the number of system calls and in the amount of code within the kernel. The disadvantage is the additional overhead of one more function call for the process that calls send.

Since this text describes the Berkeley implementation of TCP/IP, most of the functions called by the process socket, (bind, connect, etc.) are implemented directly in the kernel as system calls.

1.7. Network Implementation Overview

Net/3 provides a general purpose infrastructure capable of simultaneously supporting multiple communication protocols. Indeed, 4.4BSD supports four distinct communication protocol families:

1. TCP/IP (the Internet protocol suite), the topic of this book.

2. XNS (Xerox Network Systems), a protocol suite that is similar to TCP/IP; it was popular in the mid-1980s for connecting Xerox hardware (such as printers and file servers), often using an Ethernet. Although the code is still distributed with Net/3, few people use this protocol suite today, and many vendors who use the Berkeley TCP/IP code remove the XNS code (so they don’t have to support it).

3. The OSI protocols [Rose 1990; Piscitello and Chapin 1993]. These protocols were designed during the 1980s as the ultimate in open-systems technology, to replace all other communication protocols. Their appeal waned during the early 1990s, and as of this writing their use in real networks is minimal. Their place in history is still to be determined.

4. The Unix domain protocols. These do not form a true protocol suite in the sense of communication protocols used to exchange information between different systems, but are provided as a form of interprocess communication (IPC).

The advantage in using the Unix domain protocols for IPC between two processes on the same host, versus other forms of IPC such as System V message queues [Stevens 1990], is that the Unix domain protocols are accessed using the same API (sockets) as are the other three communication protocols. Message queues, on the other hand, and most other forms of IPC, have an API that is completely different from both sockets and TLI. Having IPC between two processes on the same host use the networking API makes it easy to migrate a client-server application from one host to many hosts. Two different protocols are provided in the Unix domain—a reliable, connection-oriented, byte-stream protocol that looks like TCP, and an unreliable, connectionless, datagram protocol that looks like UDP.

Although the Unix domain protocols can be used as a form of IPC between two processes on the same host, these processes could also use TCP/IP to communicate with each other. There is no requirement that processes communicating using the Internet protocols reside on different hosts.

The networking code in the kernel is organized into three layers, as shown in Figure 1.3. On the right side of this figure we note where the seven layers of the OSI reference model [Piscitello and Chapin 1993] fit in the BSD organization.

Figure 1.3. The general organization of networking code in Net/3.

[image: Image]

1. The socket layer is a protocol-independent interface to the protocol-dependent layer below. All system calls start at the protocol-independent socket layer. For example, the protocol-independent code in the socket layer for the bind system call comprises a few dozen lines of code: these verify that the first argument is a valid socket descriptor and that the second argument is a valid pointer in the process. The protocol-dependent code in the layer below is then called, which might comprise hundreds of lines of code.

2. The protocol layer contains the implementation of the four protocol families that we mentioned earlier (TCP/IP, XNS, OSI, and Unix domain). Each protocol suite may have its own internal structure, which we don’t show in Figure 1.3. For example, in the Internet protocol suite, IP is the lowest layer (the network layer) with the two transport layers (TCP and UDP) above IP.

3. The interface layer contains the device drivers that communicate with the network devices.

1.8. Descriptors

Figure 1.2 begins with a call to socket, specifying the type of socket desired. The combination of the Internet protocol family (PF_INET) and a datagram socket (SOCK_DGRAM) gives a socket whose protocol is UDP.

The return value from socket is a descriptor that shares all the properties of other Unix descriptors: read and write can be called for the descriptor, you can dup it, it is shared by the parent and child after a call to fork, its properties can be modified by calling fcntl, it can be closed by calling close, and so on. We see in our example that the socket descriptor is the first argument to both the sendto and recvfrom functions. When our program terminates (by calling exit), all open descriptors including the socket descriptor are closed by the kernel.

We now introduce the data structures that are created by the kernel when the process calls socket. We describe these data structures in more detail in later chapters.

Everything starts with the process table entry for the process. One of these exists for each process during its lifetime.

A descriptor is an index into an array within the process table entry for the process. This array entry points to an open file table structure, which in turn points to an i-node or v-node structure that describes the file. Figure 1.4 summarizes this relationship.

Figure 1.4. Fundamental relationship between kernel data structures starting with a descriptor.

[image: Image]

In this figure we also show a descriptor that refers to a socket, which is the focus of this text. We place the notation proc{} above the process table entry, since its definition in C is

struct proc {
 ...
}

and we use this notation for structures in our figures throughout the text.

[Stevens 1992, Sec. 3.10] shows how the relationships between the descriptor, file table structure, and i-node or v-node change as the process calls dup and fork. The relationships between these three data structures exists in all versions of Unix, although the details change with different implementations. Our interest in this text is with the socket structure and the Internet-specific data structures that it points to. But we need to understand how a descriptor leads to a socket structure, since the socket system calls start with a descriptor.

Figure 1.5 shows more details of the Net/3 data structures for our example program, if the program is executed as

Figure 1.5. Kernel data structures after call to socket in example program.

[image: Image]

a.out

without redirecting standard input (descriptor 0), standard output (descriptor 1), or standard error (descriptor 2). In this example, descriptors 0, 1, and 2 are connected to our terminal, and the lowest-numbered unused descriptor is 3 when socket is called.

When a process executes a system call such as socket, the kernel has access to the process table structure. The entry p_fd in this structure points to the filedesc structure for the process. There are two members of this structure that interest us now: fd_ofileflags is a pointer to an array of characters (the per-descriptor flags for each descriptor), and fd_ofiles is a pointer to an array of pointers to file table structures. The per-descriptor flags are 8 bits wide since only 2 bits can be set for any descriptor: the close-on-exec flag and the mapped-from-device flag. We show all these flags as 0.

We purposely call this section “1.8 Descriptors” and not “File Descriptors” since Unix descriptors can refer to lots of things other than files: sockets, pipes, directories, devices, and so on. Nevertheless, much of Unix literature uses the adjective file when talking about descriptors, which is an unnecessary qualification. Here the kernel data structure is called filedesc{} even though we’re about to describe socket descriptors. We’ll use the unqualified term descriptor whenever possible.

The data structure pointed to by the fd_ofiles entry is shown as *file{}[] since it is an array of pointers to file structures. The index into this array and the array of descriptor flags is the nonnegative descriptor itself: 0, 1, 2, and so on. In Figure 1.5 we show the entries for descriptors 0, 1, and 2 pointing to the same file structure at the bottom of the figure (since all three descriptors refer to our terminal). The entry for descriptor 3 points to a different file structure for our socket descriptor.

The f_type member of the file structure specifies the descriptor type as either DTYPE_SOCKET or DTYPE_VNODE. V-nodes are a general mechanism that allows the kernel to support different types of filesystems—a disk filesystem, a network filesystem (such as NFS), a filesystem on a CD-ROM, a memory-based filesystem, and so on. Our interest in this text is not with v-nodes, since TCP/IP sockets always have a type of DTYPE_SOCKET.

The f_data member of the file structure points to either a socket structure or a vnode structure, depending on the type of descriptor. The f_ops member points to a vector of five function pointers. These function pointers are used by the read, readv, write, writev, ioctl, select, and close system calls, since these system calls work with either a socket descriptor or a nonsocket descriptor. Rather than look at the f_type value each time one of these system calls is invoked and then jump accordingly, the implementors chose always to jump indirectly through the corresponding entry in the fileops structure instead.

Notationally we use a fixed-width font (fo_read) to show the name of a structure member and a slanted fixed-width font (soo_read) to show the contents of a structure member. Also note that sometimes we show the pointer to a structure arriving at the top left corner (e.g., the filedesc structure) and sometimes at the top right corner (e.g., both file structures and both fileops structures). This is to simplify the figures.

Next we come to the socket structure that is pointed to by the file structure when the descriptor type is DTYPE_SOCKET. In our example, the socket type (SOCK_DGRAM for a datagram socket) is stored in the so_type member. An Internet protocol control block (PCB) is also allocated: an inpcb structure. The so_pcb member of the socket structure points to the inpcb, and the inp_socket member of the inpcb structure points to the socket structure. Each points to the other because the activity for a given socket can occur from two directions: “above” or “below.”

1. When the process executes a system call, such as sendto, the kernel starts with the descriptor value and uses fd_ofiles to index into the vector of file structure pointers, ending up with the file structure for the descriptor. The file structure points to the socket structure, which points to the inpcb structure.

2. When a UDP datagram arrives on a network interface, the kernel searches through all the UDP protocol control blocks to find the appropriate one, minimally based on the destination UDP port number and perhaps the destination IP address, source IP address, and source port numbers too. Once the inpcb structure is located, the kernel finds the corresponding socket structure through the inp_socket pointer.

The members inp_faddr and inp_laddr contain the foreign and local IP addresses, and the members inp_fport and inp_lport contain the foreign and local port numbers. The combination of the local IP address and the local port number is often called a socket, as is the combination of the foreign IP address and the foreign port number.

We show another inpcb structure with the name udb on the left in Figure 1.5. This is a global structure that is the head of a linked list of all UDP PCBs. We show the two members inp_next and inp_prev that form a doubly linked circular list of all UDP PCBs. For notational simplicity in the figure, we show two parallel horizontal arrows for the two links instead of trying to have the heads of the arrows going to the top corners of the PCBs. The inp_prev member of the inpcb structure on the right points to the udb structure, not the inp_prev member of that structure. The dotted arrows from udb.inp_prev and the inp_next member of the other PCB indicate that there may be other PCBs on the doubly linked list that we don’t show.

We’ve looked at many kernel data structures in this section, most of which are described further in later chapters. The key points to understand now are:

1. The call to socket by our process ends up allocating the lowest unused descriptor (3 in our example). This descriptor is used by the process in all subsequent system calls that refer to this socket.

2. The following kernel structures are allocated and linked together: a file structure of type DTYPE_SOCKET, a socket structure, and an inpcb structure. Lots of initialization is performed on these structures that we don’t show: the file structure is marked for read and write (since the call to socket always returns a descriptor that can be read or written), the default sizes of the input and output buffers are set in the socket structure, and so on.

3. We showed nonsocket descriptors for our standard input, output, and error to show that all descriptors end up at a file structure, and it is from that point on that differences appear between socket descriptors and other descriptors.

1.9. Mbufs (Memory Buffers) and Output Processing

A fundamental concept in the design of the Berkeley networking code is the memory buffer, called an mbuf, used throughout the networking code to hold various pieces of information. Our simple example (Figure 1.2) lets us examine some typical uses of mbufs. In Chapter 2 we describe mbufs in more detail.

Mbuf Containing Socket Address Structure

In the call to sendto, the fifth argument points to an Internet socket address structure (named serv) and the sixth argument specifies its length (which we’ll see later is 16 bytes). One of the first things done by the socket layer for this system call is to verify that these arguments are valid (i.e., the pointer points to a piece of memory in the address space of the process) and then copy the socket address structure into an mbuf. Figure 1.6 shows the resulting mbuf.

Figure 1.6. Mbuf containing destination address for sendto.

[image: Image]

The first 20 bytes of the mbuf is a header containing information about the mbuf. This 20-byte header contains four 4-byte fields and two 2-byte fields. The total size of the mbuf is 128 bytes.

Mbufs can be linked together using the m_next and m_nextpkt members, as we’ll see shortly. Both are null pointers in this example, which is a stand-alone mbuf.

The m_data member points to the data in the mbuf and the m_len member specifies its length. For this example, m_data points to the first byte of data in the mbuf (the byte immediately following the mbuf header). The final 92 bytes of the mbuf data area (108-16) are unused (the shaded portion of Figure 1.6).

The m_type member specifies the type of data contained in the mbuf, which for this example is MT_SONAME (socket name). The final member in the header, m_flags, is zero in this example.

Mbuf Containing Data

Continuing our example, the socket layer copies the data buffer specified in the call to sendto into one or more mbufs. The second argument to sendto specifies the start of the data buffer (buff), and the third argument is its size in bytes (150). Figure 1.7 shows how two mbufs hold the 150 bytes of data.

Figure 1.7. Two mbufs holding 150 bytes of data.

[image: Image]

This arrangement is called an mbuf chain. The m_next member in each mbuf links together all the mbufs in a chain.

The next change we see is the addition of two members, m_pkthdr.len and m_pkthdr.rcvif, to the mbuf header in the first mbuf of the chain. These two members comprise the packet header and are used only in the first mbuf of a chain. The m_flags member contains the value M_PKTHDR to indicate that this mbuf contains a packet header. The len member of the packet header structure contains the total length of the mbuf chain (150 in this example), and the next member, rcvif, we’ll see later contains a pointer to the received interface structure for received packets.

Since mbufs are always 128 bytes, providing 100 bytes of data storage in the first mbuf on the chain and 108 bytes of storage in all subsequent mbufs on the chain, two mbufs are needed to store 150 bytes of data. We’ll see later that when the amount of data exceeds 208 bytes, instead of using three or more mbufs, a different technique is used—a larger buffer, typically 1024 or 2048 bytes, called a cluster is used.

One reason for maintaining a packet header with the total length in the first mbuf on the chain is to avoid having to go through all the mbufs on the chain to sum their m_len members when the total length is needed.

Prepending IP and UDP Headers

After the socket layer copies the destination socket address structure into an mbuf (Figure 1.6) and the data into an mbuf chain (Figure 1.7), the protocol layer corresponding to the socket descriptor (a UDP socket) is called. Specifically, the UDP output routine is called and pointers to the mbufs that we’ve examined are passed as arguments. This routine needs to prepend an IP header and a UDP header in front of the 150 bytes of data, fill in the headers, and pass the mbufs to the IP output routine.

The way that data is prepended to the mbuf chain in Figure 1.7 is to allocate another mbuf, make it the front of the chain, and copy the packet header from the mbuf with 100 bytes of data into the new mbuf. This gives us the three mbufs shown in Figure 1.8.

Figure 1.8. Mbuf chain from Figure 1.7 with another mbuf for IP and UDP headers prepended.

[image: Image]

The IP header and UDP header are stored at the end of the new mbuf that becomes the head of the chain. This allows for any lower-layer protocols (e.g., the interface layer) to prepend its headers in front of the IP header if necessary, without having to copy the IP and UDP headers. The m_data pointer in the first mbuf points to the start of these two headers, and m_len is 28. Future headers that fit in the 72 bytes of unused space between the packet header and the IP header can be prepended before the IP header by adjusting the m_data pointer and the m_len accordingly. Shortly we’ll see that the Ethernet header is built here in this fashion.

Notice that the packet header has been moved from the mbuf with 100 bytes of data into the new mbuf. The packet header must always be in the first mbuf on the chain. To accommodate this movement of the packet header, the M_PKTHDR flag is set in the first mbuf and cleared in the second mbuf. The space previously occupied by the packet header in the second mbuf is now unused. Finally, the length member in the packet header is incremented by 28 bytes to become 178.

The UDP output routine then fills in the UDP header and as much of the IP header as it can. For example, the destination address in the IP header can be set, but the IP checksum will be left for the IP output routine to calculate and store.

The UDP checksum is calculated and stored in the UDP header. Notice that this requires a complete pass of the 150 bytes of data stored in the mbuf chain. So far the kernel has made two complete passes of the 150 bytes of user data: once to copy the data from the user’s buffer into the kernel’s mbufs, and now to calculate the UDP checksum. Extra passes over the data can degrade the protocol’s performance, and in later chapters we describe alternative implementation techniques that avoid unnecessary passes.

At this point the UDP output routine calls the IP output routine, passing a pointer to the mbuf chain for IP to output.

IP Output

The IP output routine fills in the remaining fields in the IP header including the IP checksum, determines the outgoing interface to which the datagram should be given (this is the IP routing function), fragments the IP datagram if necessary, and calls the interface output function.

Assuming the outgoing interface is an Ethernet, a general-purpose Ethernet output function is called, again with a pointer to the mbuf chain as an argument.

Ethernet Output

The first function of the Ethernet output function is to convert the 32-bit IP address into its corresponding 48-bit Ethernet address. This is done using ARP (Address Resolution Protocol) and may involve sending an ARP request on the Ethernet and waiting for an ARP reply. While this takes place, the mbuf chain to be output is held, waiting for the reply.

The Ethernet output routine then prepends a 14-byte Ethernet header to the first mbuf in the chain, immediately before the IP header (Figure 1.8). This contains the 6-byte Ethernet destination address, 6-byte Ethernet source address, and 2-byte Ethernet frame type.

The mbuf chain is then added to the end of the output queue for the interface. If the interface is not currently busy, the interface’s “start output” routine is called directly. If the interface is busy, its output routine will process the new mbuf on its queue when it is finished with the buffers already on its output queue.

When the interface processes an mbuf that’s on its output queue, it copies the data to its transmit buffer and initiates the output. In our example, 192 bytes are copied to the transmit buffer: the 14-byte Ethernet header, 20-byte IP header, 8-byte UDP header, and 150 bytes of user data. This is the third complete pass of the data by the kernel. Once the data is copied from the mbuf chain into the device’s transmit buffer, the mbuf chain is released by the Ethernet device driver. The three mbufs are put back into the kernel’s pool of free mbufs.

Summary of UDP Output

In Figure 1.9 we give an overview of the processing that takes place when a process calls sendto to transmit a single UDP datagram. The relationship of the processing that we’ve described to the three layers of kernel code (Figure 1.3) is also shown.

Figure 1.9. Processing performed by the three layers for simple UDP output.

[image: Image]

Function calls pass control from the socket layer to the UDP output routine, to the IP output routine, and then to the Ethernet output routine. Each function call passes a pointer to the mbuf chain to be output. At the lowest layer, the device driver, the mbuf chain is placed on the device’s output queue and the device is started, if necessary. The function calls return in reverse order of their call, and eventually the system call returns to the process. Notice that there is no queueing of the UDP data until it arrives at the device driver. The higher layers just prepend their header and pass the mbuf to the next lower layer.

At this point our program calls recvfrom to read the server’s reply. Since the input queue for the specified socket is empty (assuming the reply has not been received yet), the process is put to sleep.

1.10. Input Processing

Input processing is different from the output processing just described because the input is asynchronous. That is, the reception of an input packet is triggered by a receive-complete interrupt to the Ethernet device driver, not by a system call issued by the process. The kernel handles this device interrupt and schedules the device driver to run.

Ethernet Input

The Ethernet device driver processes the interrupt and, assuming it signifies a normal receive-complete condition, the data bytes are read from the device into an mbuf chain. In our example, 54 bytes of data are received and copied into a single mbuf: the 20-byte IP header, 8-byte UDP header, and 26 bytes of data (the time and date on the server). Figure 1.10 shows the format of this mbuf.

Figure 1.10. Single mbuf to hold input Ethernet data.

[image: Image]

This mbuf is a packet header (the M_PKTHDR flag is set in m_flags) since it is the first mbuf of a data record. The len member in the packet header contains the total length of data and the rcvif. member contains a pointer to the interface structure corresponding to the received interface (Chapter 3). We see that the rcvif member is used for received packets but not for output packets (Figures 1.7 and 1.8).

The first 16 bytes of the data portion of the mbuf are allocated for an interface layer header, but are not used. Since the amount of data (54 bytes) fits in the remaining 84 bytes of the mbuf, the data is stored in the mbuf itself.

The device driver passes the mbuf to a general Ethernet input routine which looks at the type field in the Ethernet frame to determine which protocol layer should receive the packet. In this example, the type field will specify an IP datagram, causing the mbuf to be added to the IP input queue. Additionally, a software interrupt is scheduled to cause the IP input process routine to be executed. The device’s interrupt handling is then complete.

IP Input

IP input is asynchronous and is scheduled to run by a software interrupt. The software interrupt is set by the interface layer when it receives an IP datagram on one of the system’s interfaces. When the IP input routine executes it loops, processing each IP datagram on its input queue and returning when the entire queue has been processed.

The IP input routine processes each IP datagram that it receives. It verifies the IP header checksum, processes any IP options, verifies that the datagram was delivered to the right host (by comparing the destination IP address of the datagram with the host’s IP addresses), and forwards the datagram if the system was configured as a router and the datagram is destined for some other IP address. If the IP datagram has reached its final destination, the protocol field in the IP header specifies which protocol’s input routine is called: ICMP, IGMP, TCP, or UDP. In our example, the UDP input routine is called to process the UDP datagram.

UDP Input

The UDP input routine verifies the fields in the UDP header (the length and optional checksum) and then determines whether or not a process should receive the datagram. In Chapter 23 we discuss exactly how this test is made. A process can receive all datagrams destined to a specified UDP port, or the process can tell the kernel to restrict the datagrams it receives based on the source and destination IP addresses and source and destination port numbers.

In our example, the UDP input routine starts at the global variable udb (Figure 1.5) and goes through the linked list of UDP protocol control blocks, looking for one with a local port number (inp_lport) that matches the destination port number of the received UDP datagram. This will be the PCB created by our call to socket, and the inp_socket member of this PCB points to the corresponding socket structure, allowing the received data to be queued for the correct socket.

In our example program we never specify the local port number for our application. We’ll see in Exercise 23.3 that a side effect of writing the first UDP datagram to a socket that has not yet bound a local port number is the automatic assignment by the kernel of a local port number (termed an ephemeral port) to that socket. That’s how the inp_lport member of the PCB for our socket gets set to some nonzero value.

Since this UDP datagram is to be delivered to our process, the sender’s IP address and UDP port number are placed into an mbuf, and this mbuf and the data (26 bytes in our example) are appended to the receive queue for the socket. Figure 1.11 shows the two mbufs that are appended to the socket’s receive queue.

Figure 1.11. Sender’s address and data.

[image: Image]

Comparing the second mbuf on this chain (the one of type MT_DATA) with the mbuf in Figure 1.10, the m_len and m_pkthdr.len members have both been decremented by 28 (20 bytes for the IP header and 8 for the UDP header) and the m_data pointer has been incremented by 28. This effectively removes the IP and UDP headers, leaving only the 26 bytes of data to be appended to the socket’s receive queue.

The first mbuf in the chain contains a 16-byte Internet socket address structure with the sender’s IP address and UDP port number. Its type is MT_SONAME, similar to the mbuf in Figure 1.6. This mbuf is created by the socket layer to return this information to the calling process through the recvfrom or recvmsg system calls. Even though there is room (16 bytes) in the second mbuf on this chain for this socket address structure, it must be stored in its own mbuf since it has a different type (MT_SONAME versus MT_DATA).

The receiving process is then awakened. If the process is asleep waiting for data to arrive (which is the scenario in our example), the process is marked as run-able for the kernel to schedule. A process can also be notified of the arrival of data on a socket by the select system call or with the SIGIO signal.

Process Input

Our process has been asleep in the kernel, blocked in its call to recvfrom, and the process now wakes up. The 26 bytes of data appended to the socket’s receive queue by the UDP layer (the received datagram) are copied by the kernel from the mbuf into our program’s buffer.

Notice that our program sets the fifth and sixth arguments to recvfrom to null pointers, telling the system call that we’re not interested in receiving the sender’s IP address and UDP port number. This causes the recvfrom system call to skip the first mbuf in the chain (Figure 1.11), returning only the 26 bytes of data in the second mbuf. The kernel’s recvfrom code then releases the two mbufs in Figure 1.11 and returns them to its pool of free mbufs.

1.11. Network Implementation Overview Revisited

Figure 1.12 summarizes the communication that takes place between the layers for both network output and network input. It repeats Figure 1.3 considering only the Internet protocols and emphasizing the communications between the layers.

Figure 1.12. Communication between the layers for network input and output.

[image: Image]

The notations splnet and splimp are discussed in the next section.

We use the plural terms socket queues and interface queues since there is one queue per socket and one queue per interface (Ethernet, loopback, SLIP, PPP, etc.), but we use the singular term protocol queue because there is a single IP input queue. If we considered other protocol layers, we would have one input queue for the XNS protocols and one for the OSI protocols.

1.12. Interrupt Levels and Concurrency

We saw in Section 1.10 that the processing of input packets by the networking code is asynchronous and interrupt driven. First, a device interrupt causes the interface layer code to execute, which posts a software interrupt that later causes the protocol layer code to execute. When the kernel is finished with these interrupt levels the socket code will execute.

There is a priority level assigned to each hardware and software interrupt. Figure 1.13 shows the normal ordering of the eight priority levels, from the lowest (no interrupts blocked) to the highest (all interrupts blocked).

Figure 1.13. Kernel functions that block selected interrupts.

[image: Image]

Table 4.5 of [Leffler et al. 1989] shows the priority levels used in the VAX implementation. The Net/3 implementation for the 386 uses the eight functions shown in Figure 1.13, but splsoftclock and splnet are at the same level, and splclock and splhigh are also at the same level.

The name imp that is used for the network interface level comes from the acronym IMP (Interface Message Processor), which was the original type of router used on the ARPANET.

The ordering of the different priority levels means that a higher-priority interrupt can preempt a lower-priority interrupt. Consider the sequence of events depicted in Figure 1.14.

Figure 1.14. Example of priority levels and kernel processing.

[image: Image]

1. While the socket layer is executing at spl0, an Ethernet device driver interrupt occurs, causing the interface layer to execute at splimp. This interrupt preempts the socket layer code. This is the asynchronous execution of the interface input routine.

2. While the Ethernet device driver is running, it places a received packet onto the IP input queue and schedules a software interrupt to occur at splnet. The software interrupt won’t take effect immediately since the kernel is currently running at a higher priority level (splimp).

3. When the Ethernet device driver completes, the protocol layer executes at splnet. This is the asynchronous execution of the IP input routine.

4. A terminal device interrupt occurs (say the completion of a SLIP packet) and it is handled immediately, preempting the protocol layer, since terminal I/O (spltty) is a higher priority than the protocol layer (splnet) in Figure 1.13. This is the asynchronous execution of the interface input routine.

5. The SLIP driver places the received packet onto the IP input queue and schedules another software interrupt for the protocol layer.

6. When the SLIP driver completes, the preempted protocol layer continues at splnet, finishes processing the packet received from the Ethernet device driver, and then processes the packet received from the SLIP driver. Only when there are no more input packets to process will it return control to whatever it preempted (the socket layer in this example).

7. The socket layer continues from where it was preempted.

One concern with these different priority levels is how to handle data structures shared between the different levels. Examples of shared data structures are the three we show between the different levels in Figure 1.12—the socket, interface, and protocol queues. For example, while the IP input routine is taking a received packet off its input queue, a device interrupt can occur, preempting the protocol layer, and that device driver can add another packet to the IP input queue. These shared data structures (the IP input queue in this example, which is shared between the protocol layer and the interface layer) can be corrupted if nothing is done to coordinate the shared access.

The Net/3 code is sprinkled with calls to the functions splimp and splnet. These two calls are always paired with a call to splx to return the processor to the previous level. For example, here is the code executed by the IP input function at the protocol layer to check if there is another packet on its input queue to process:

struct mbuf *m;
int s;

s = splimp();
IF_DEQUEUE(&ipintrq, m);
splx(s);

if (m == 0)
 return;

The call to splimp raises the CPU priority to the level used by the network device drivers, preventing any network device driver interrupt from occurring. The previous priority level is returned as the value of the function and stored in the variable s. Then the macro IF_DEQUEUE is executed to remove the next packet at the head of the IP input queue (ipintrq), placing the pointer to this mbuf chain in the variable m. Finally the CPU priority is returned to whatever it was when splimp was called, by calling splx with an argument of s (the saved value from the earlier call to splimp).

Since all network device driver interrupts are disabled between the calls to splimp and splx, the amount of code between these calls should be minimal. If interrupts are disabled for an extended period of time, additional device interrupts could be ignored, and data might be lost. For this reason the test of the variable m (to see if there is another packet to process) is performed after the call to splx, and not before the call.

The Ethernet output routine needs these spl calls when it places an outgoing packet onto an interface’s queue, tests whether the interface is currently busy, and starts the interface if it was not busy.

struct mbuf *m;
int s;

s = splimp();
/*
 * Queue message on interface, and start output if interface not active.
 */
if (IF_QFULL(&ifp->if_snd)) {
 IF_DROP(&ifp->if_snd); /* queue is full, drop packet */
 splx(s);
 error = ENOBUFS;
 goto bad;
}

IF_ENQUEUE(&ifp->if_snd, m); /* add the packet to interface queue */

if ((ifp->if_flags & IFF_OACTIVE) == 0)
 (*ifp->if_start)(ifp); /* start interface */

 splx(s);

The reason device interrupts are disabled in this example is to prevent the device driver from taking the next packet off its send queue while the protocol layer is adding a packet to that queue. The driver’s send queue is a data structure shared between the protocol layer and the interface layer.

We’ll see calls to the spl functions throughout the source code.

1.13. Source Code Organization

Figure 1.15 shows the organization of the Net/3 networking source tree, assuming it is located in the /usr/src/sys directory.

Figure 1.15. Net/3 source code organization.

[image: Image]

This text focuses on the netinet directory, which contains all the TCP/IP source code. We also look at some files in the kern and net directories. The former contains the protocol-independent socket code, and the latter contains some general networking functions used by the TCP/IP routines, such as the routing code.

Briefly, the files contained in each directory are as follows:

[image: Image] i386: the Intel 80×86-specific directories. For example, the directory i386/isa contains the device drivers specific to the ISA bus. The directory i386/stand contains the stand-alone bootstrap code.

[image: Image] kern: general kernel files that don’t belong in one of the other directories. For example, the kernel files to handle the fork and exec system calls are in this directory. We look at only a few files in this directory—the ones for the socket system calls (the socket layer in Figure 1.3).

[image: Image] net: general networking files, for example, general network interface functions, the BPF (BSD Packet Filter) code, the SLIP driver, the loopback driver, and the routing code. We look at some of the files in this directory.

[image: Image] netccitt: interface code for the OSI protocols, including the HDLC (high-level data-link control) and X.25 drivers.

[image: Image] netinet: the code for the Internet protocols: IP, ICMP, IGMP, TCP, and UDP. This text focuses on the files in this directory.

[image: Image] netiso: the OSI protocols.

[image: Image] netns: the Xerox XNS protocols.

[image: Image] nfs: code for Sun’s Network File System.

[image: Image] sys: system headers. We look at several headers in this directory. The files in this directory also appear in the directory /usr/include/sys.

[image: Image] ufs: code for the Unix filesystem, sometimes called the Berkeley fast filesystem. This is the normal disk-based filesystem.

[image: Image] vm: code for the virtual memory system.

Figure 1.16 gives another view of the source code organization, this time mapped to our three kernel layers. We ignore directories such as netimp and nfs that we don’t consider in this text.

Figure 1.16. Net/3 source code organization mapped to three kernel layers.

[image: Image]

The numbers below each box are the approximate number of lines of C code for that feature, which includes all comments in the source files.

We don’t look at all the source code shown in this figure. The netns and netiso directories are shown for comparison against the Internet protocols. We only consider the shaded boxes.

1.14. Test Network

Figure 1.17 shows the test network that is used for all the examples in the text. Other than the host vangogh at the top of the figure, all the IP addresses belong to the class B network ID 140.252, and all the hostnames belong to the .tuc.noao.edu domain. (noao stands for “National Optical Astronomy Observatories” and tuc stands for Tucson.) For example, the system in the lower right has a complete hostname of svr4.tuc.noao.edu and an IP address of 140.252.13.34. The notation at the top of each box is the operating system running on that system.

Figure 1.17. Test network used for all the examples in the text.

[image: Image]

The host at the top has a complete name of vangogh.cs.berkeley.edu and is reachable from the other hosts across the Internet.

This figure is nearly identical to the test network used in Volume 1, although some of the operating systems have been upgraded and the dialup link between sun and netb now uses PPP instead of SLIP. Additionally, we have replaced the Net/2 networking code provided with BSD/386 V1.1 with the Net/3 networking code.

1.15. Summary

This chapter provided an overview of the Net/3 networking code. Using a simple program (Figure 1.2) that sends a UDP datagram to a daytime server and receives a reply, we’ve followed the resulting output and input through the kernel. Mbufs hold the information being output and the received IP datagrams. The next chapter examines mbufs in more detail.

UDP output occurs when the process executes the sendto system call, while IP input is asynchronous. When an IP datagram is received by a device driver, the datagram is placed onto IP’s input queue and a software interrupt is scheduled to cause the IP input function to execute. We reviewed the different interrupt levels used by the networking code within the kernel. Since many of the networking data structures are shared by different layers that can execute at different interrupt priorities, the code must be careful when accessing or modifying these shared structures. We’ll encounter calls to the spl functions in almost every function that we look at.

The chapter finishes with a look at the overall organization of the source code in Net/3, focusing on the code that this text examines.

Exercises

1.1 Type in the example program (Figure 1.2) and run it on your system. If your system has a system call tracing capability, such as trace (SunOS 4.x), truss (SVR4), or ktrace (4.4BSD), use it to determine the system calls invoked by this example.

1.2 In our example that calls IF_DEQUEUE in Section 1.12, we noted that the call to splimp blocks network device drivers from interrupting. While Ethernet drivers execute at this level, what happens to SLIP drivers?

Chapter 2. Mbufs: Memory Buffers

2.1. Introduction

Networking protocols place many demands on the memory management facilities of the kernel. These demands include easily manipulating buffers of varying sizes, prepending and appending data to the buffers as the lower layers encapsulate data from higher layers, removing data from buffers (as headers are removed as data packets are passed up the protocol stack), and minimizing the amount of data copied for all these operations. The performance of the networking protocols is directly related to the memory management scheme used within the kernel.

In Chapter 1 we introduced the memory buffer used throughout the Net/3 kernel: the mbuf, which is an abbreviation for “memory buffer.” In this chapter we look in more detail at mbufs and at the functions within the kernel that are used to manipulate them, as we will encounter mbufs on almost every page of the text. Understanding mbufs is essential for understanding the rest of the text.

The main use of mbufs is to hold the user data that travels from the process to the network interface, and vice versa. But mbufs are also used to contain a variety of other miscellaneous data: source and destination addresses, socket options, and so on.

Figure 2.1 shows the four different kinds of mbufs that we’ll encounter, depending on the M_PKTHDR and M_EXT flags in the m_flags member. The differences between the four mbufs in Figure 2.1, from left to right, are as follows:

Figure 2.1. Four different types of mbufs, depending on the m_flags value.

[image: Image]

1. If m_flags equals 0, the mbuf contains only data. There is room in the mbuf for up to 108 bytes of data (the m_dat array). The m_data pointer points somewhere in this 108-byte buffer. We show it pointing to the start of the buffer, but it can point anywhere in the buffer. The m_len member specifies the number of bytes of data, starting at m_data. Figure 1.6 was an example of this type of mbuf.

In Figure 2.1 there are six members in the m_hdr structure, and its total size is 20 bytes. When we look at the C definition of this structure (Figure 2.8) we’ll see that the first four members occupy 4 bytes each and the last two occupy 2 bytes each. We don’t try to differentiate between the 4-byte members and the 2-byte members in Figure 2.1.

2. The second type of mbuf has an m_flags value of M_PKTHDR, specifying a packet header, that is, the first mbuf describing a packet of data. The data is still contained within the mbuf itself, but because of the 8 bytes taken by the packet header, only 100 bytes of data fit within this mbuf (in the m_pktdat array). Figure 1.10 was an example of this type of mbuf.

The m_pkthdr.len value is the total length of all the data in the chain mbuf for this packet: the sum of the m_len values for all the mbufs linked through the m_next pointer, as shown in Figure 1.8. The m_pkthdr.rcvif member is not used for output packets, but for received packets contains a pointer to the received interface’s ifnet structure (Figure 3.6).

3. The next type of mbuf does not contain a packet header (M_PKTHDR is not set) but contains more than 208 bytes of data, so an external buffer called a cluster is used (M_EXT is set). Room is still allocated in the mbuf itself for the packet header structure, but it is unused—we show it shaded in Figure 2.1. Instead of using multiple mbufs to contain the data (the first with 100 bytes of data, and all the rest with 108 bytes of data each), Net/3 allocates a cluster of size 1024 or 2048 bytes. The m_data pointer in the mbuf points somewhere inside this cluster.

The Net/3 release supports seven different architectures. Four define the size of a cluster as 1024 bytes (the traditional value) and three define it as 2048. The reason 1024 has been used historically is to save memory: if the cluster size is 2048, about one-quarter of each cluster is unused for Ethernet packets (1500 bytes maximum). We’ll see in Section 27.5 that the Net/3 TCP never sends more than the cluster size per TCP segment, so with a cluster size of 1024, almost one-third of each 1500-byte Ethernet frame is unused. But [Mogul 1993, Figure 15.15] shows that a sizable performance improvement occurs on an Ethernet when maximum-sized frames are sent instead of 1024-byte frames. This is a performance-versus-memory tradeoff. Older systems used 1024-byte clusters to save memory while newer systems with cheaper memory use 2048 to increase performance. Throughout this text we assume a cluster size of 2048.

Unfortunately different names have been used for what we call clusters. The constant MCLBYTES is the size of these buffers (1024 or 2048) and the names of the macros to manipulate these buffers are MCLGET, MCLALLOC, and MCLFREE. This is why we call them clusters. But we also see that the mbuf flag is M_EXT, which stands for “external” buffer. Finally, [Leffler et al. 1989] calls them mapped pages. This latter name refers to their implementation, and we’ll see in Section 2.9 that clusters can be shared when a copy is required.

We would expect the minimum value of m_len to be 209 for this type of mbuf, not 208 as we indicate in the figure. That is, a record with 208 bytes of data can be stored in two mbufs, with 100 bytes in the first and 108 in the second. The source code, however, has a bug and allocates a cluster if the size is greater than or equal to 208.

4. The final type of mbuf contains a packet header and contains more than 208 bytes of data. Both M_PKTHDR and M_EXT are set.

There are numerous additional points we need to make about Figure 2.1:

[image: Image] The size of the mbuf structure is always 128 bytes. This means the amount of unused space following the m_ext structure in the two mbufs on the right in Figure 2.1 is 88 bytes (128 – 20 – 8 –12).

[image: Image] A data buffer with an m_len of 0 bytes is OK since some protocols (e.g., UDP) allow 0-length records.

[image: Image] In each of the mbufs we show the m_data member pointing to the beginning of the corresponding buffer (either the mbuf buffer itself or a cluster). This pointer can point anywhere in the corresponding buffer, not necessarily the front.

[image: Image] Mbufs with a cluster always contain the starting address of the buffer (m_ext.ext_buf) and its size (m_ext.ext_size). We assume a size of 2048 throughout this text. The m_data and m_ext. ext_buf members are not the same (as we show) unless m_data also points to the first byte of the buffer. The third member of the m_ext structure, ext_free, is not currently used by Net/3.

[image: Image] The m_next pointer links together the mbufs forming a single packet (record) into an mbuf chain, as in Figure 1.8.

[image: Image] The m_nextpkt pointer links multiple packets (records) together to form a queue of mbufs. Each packet on the queue can be a single mbuf or an mbuf chain. The first mbuf of each packet contains a packet header. If multiple mbufs define a packet, the m_nextpkt member of the first mbuf is the only one used—the m_nextpkt member of the remaining mbufs on the chain are all null pointers.

Figure 2.2 shows an example of two packets on a queue. It is a modification of Figure 1.8. We have placed the UDP datagram onto the interface output queue (showing that the 14-byte Ethernet header has been prepended to the IP header in the first mbuf on the chain) and have added a second packet to the queue: a TCP segment containing 1460 bytes of user data. The TCP data is contained in a cluster and an mbuf has been prepended to contain its Ethernet, IP, and TCP headers. With the cluster we show that the data pointer into the cluster (m_data) need not point to the front of the cluster. We show that the queue has a head pointer and a tail pointer. This is how the interface output queues are handled in Net/3. We have also added the m_ext structure to the mbuf with the M_EXT flag set and have shaded in the unused pkthdr structure of this mbuf.

Figure 2.2. Two packets on a queue: first with 192 bytes of data and second with 1514 bytes of data.

[image: Image]

The first mbuf with the packet header for the UDP datagram has a type of MT_DATA, but the first mbuf with the packet header for the TCP segment has a type of MT_HEADER. This is a side effect of the different way UDP and TCP prepend the headers to their data, and makes no difference. Mbufs of these two types are essentially the same. It is the m_flags value of M_PKTHDR in the first mbuf on the chain that indicates a packet header.

Careful readers may note a difference between our picture of an mbuf (the Net/3 mbuf, Figure 2.1) and the picture in [Leffler et al. 1989, p. 290], a Net/1 mbuf. The changes were made in Net/2: adding the m_flags member, renaming the m_act pointer to be m_nextpkt, and moving this pointer to the front of the mbuf.

The difference in the placement of the protocol headers in the first mbuf for the UDP and TCP examples is caused by UDP calling M_PREPEND (Figure 23.15 and Exercise 23.1) while TCP calls MGETHDR (Figure 26.25).

2.2. Code Introduction

The mbuf functions are in a single C file and the mbuf macros and various mbuf definitions are in a single header, as shown in Figure 2.3.

Figure 2.3. Files discussed in this chapter.

[image: Image]

Global Variables

One global variable is introduced in this chapter, shown in Figure 2.4.

Figure 2.4. Global variables introduced in this chapter.

[image: Image]

Statistics

Various statistics are maintained in the global structure mbstat, described in Figure 2.5.

Figure 2.5. Mbuf statistics maintained in the mbstat structure.

[image: Image]

This structure can be examined with the netstat -m command; Figure 2.6 shows some sample output. The two values printed for the number of mapped pages in use are m_clusters (34) minus m_clfree (32), giving the number of clusters currently in use (2), and m_clusters (34).

Figure 2.6. Sample mbuf statistics.

[image: Image]

The number of Kbytes of memory allocated to the network is the mbuf memory (99 x 128 bytes) plus the cluster memory (34 x 2048 bytes) divided by 1024. The percentage in use is the mbuf memory (99 x 128 bytes) plus the cluster memory in use (2 x 2048 bytes) divided by the total network memory (80 Kbytes), times 100.

Kernel Statistics

The mbuf statistics show a common technique that we see throughout the Net/3 sources. The kernel keeps track of certain statistics in a global variable (the mbstat structure in this example). A process (in this case the netstat program) examines the statistics while the kernel is running.

Rather than provide system calls to fetch the statistics maintained by the kernel, the process obtains the address within the kernel of the data structure in which it is interested by reading the information saved by the link editor when the kernel was built. The process then calls the kvm(3) functions to read the corresponding location in the kernel’s memory by using the special file /dev/mem. If the kernel’s data structure changes from one release to the next, any program that reads that structure must also change.

2.3. Mbuf Definitions

There are a few constants that we encounter repeatedly when dealing with mbufs. Their values are shown in Figure 2.7. All are defined in mbuf.h except MCLBYTES, which is defined in /usr/include/machine/param.h.

Figure 2.7. Mbuf constants from mbuf.h.

[image: Image]

2.4. mbuf Structure

Figure 2.8 shows the definition of the mbuf structure.

Figure 2.8. Mbuf structures.

[image: Image]
[image: Image]

The mbuf structure is defined as an m_hdr structure, followed by a union. As the comments indicate, the contents of the union depend on the flags M_PKTHDR and M_EXT.

93-103

These 11 #define statements simplify access to the members of the structures and unions within the mbuf structure. We will see this technique used throughout the Net/3 sources whenever we encounter a structure containing other structures or unions.

We previously described the purpose of the first two members in the mbuf structure: the m_next pointer links mbufs together into an mbuf chain and the m_nextpkt pointer links mbuf chains together into a queue of mbufs.

Figure 1.8 differentiated between the m_len member of each mbuf and the m_pkthdr.len member in the packet header. The latter is the sum of all the m_len members of all the mbufs on the chain.

There are five independent values for the m_flags member, shown in Figure 2.9.

Figure 2.9. m_flags values.

[image: Image]

We have already described the M_EXT and M_PKTHDR flags. M_EOR is set in an mbuf containing the end of a record. The Internet protocols (e.g., TCP) never set this flag, since TCP provides a byte-stream service without any record boundaries. The OSI and XNS transport layers, however, do use this flag. We will encounter this flag in the socket layer, since this layer is protocol independent and handles data to and from all the transport layers.

The next two flags, M_BCAST and M_MCAST, are set in an mbuf when the packet will be sent to or was received from a link-layer broadcast address or multicast address. These two constants are flags between the protocol layer and the interface layer (Figure 1.3).

The final value, M_COPYFLAGS, specifies the flags that are copied when an mbuf containing a packet header is copied.

Figure 2.10 shows the MT_xxx constants used in the m_type member to identify the type of data stored in the mbuf. Although we tend to think of an mbuf as containing user data that is sent or received, mbufs can contain a variety of different data structures. Recall in Figure 1.6 that an mbuf was used to hold a socket address structure with the destination address for the sendto system call. Its m_type member was set to MT_SONAME.

Figure 2.10. Values for m_type member.

[image: Image]

Not all of the mbuf type values in Figure 2.10 are used in Net/3. Some are historical (MT_HTABLE), and others are not used in the TCP/IP code but are used elsewhere in the kernel. For example, MT_OOBDATA is used by the OSI and XNS protocols, but TCP handles out-of-band data differently (as we describe in Section 29.7). We describe the use of other mbuf types when we encounter them later in the text.

The final column of this figure shows the M_xxx values associated with the piece of memory allocated by the kernel for the different types of mbufs. There are about 60 possible M_xxx values assigned to the different types of memory allocated by the kernel’s malloc function and MALLOC macro. Figure 2.6 showed the mbuf allocation statistics from the netstat -m command including the counters for each MT_xxx type. The vmstat -m command shows the kernel’s memory allocation statistics including the counters for each M_xxx type.

Since mbufs have a fixed size (128 bytes) there is a limit for what an mbuf can be used for—the data contents cannot exceed 108 bytes. Net/2 used an mbuf to hold a TCP protocol control block (which we cover in Chapter 24), using the mbuf type of MT_PCB. But 4.4BSD increased the size of this structure from 108 bytes to 140 bytes, forcing the use of a different type of kernel memory allocation for the structure.

Observant readers may have noticed that in Figure 2.10 we say that mbufs of type MT_PCB are not used, yet Figure 2.6 shows a nonzero counter for this type. The Unix domain protocols use this type of mbuf, and it is important to remember that the statistics are for mbuf usage across all protocol suites, not just the Internet protocols.

2.5. Simple Mbuf Macros and Functions

There are more than two dozen macros and functions that deal with mbufs (allocate an mbuf, free an mbuf, etc.). We look at the source code for only a few of the macros and functions, to show how they’re implemented.

Some operations are provided as both a macro and function. The macro version has an uppercase name that begins with M, and the function has a lowercase name that begins with m_. The difference in the two is the standard time-versus-space tradeoff. The macro version is expanded inline by the C preprocessor each time it is used (requiring more code space), but it executes faster since it doesn’t require a function call (which can be expensive on some architectures). The function version, on the other hand, becomes a few instructions each time it is invoked (push the arguments onto the stack, call the function, etc.), taking less code space but more execution time.

m_get Function

We’ll look first at the function that allocates an mbuf: m_get, shown in Figure 2.11. This function merely expands the macro MGET.

Figure 2.11. m_get function: allocate an mbuf.

	

-- uipc_mbuf.c
134 struct mbuf *
135 m_get(nowait, type)
136 int nowait, type;
137 {
138 struct mbuf *m;

139 MGET(m, nowait, type);
140 return (m);
141 }
-- uipc_mbuf.c

Notice that the Net/3 code does not use ANSI C argument declarations. All the Net/3 system headers, however, do provide ANSI C function prototypes for all kernel functions, if an ANSI C compiler is being used. For example, the <sys/mbuf.h> header includes the line

struct mbuf *m_get (int, int);

These function prototypes provide compile-time checking of the arguments and return values whenever a kernel function is called.

The caller specifies the nowait argument as either M_WAIT or M_DONTWAIT, depending whether it wants to wait if the memory is not available. As an example of the difference, when the socket layer asks for an mbuf to store the destination address of the sendto system call (Figure 1.6) it specifies M_WAIT, since blocking at this point is OK. But when the Ethernet device driver asks for an mbuf to store a received frame (Figure 1.10) it specifies M_DONTWAIT, since it is executing as a device interrupt handler and cannot be put to sleep waiting for an mbuf. In this case it is better for the device driver to discard the Ethernet frame if the memory is not available.

MGET Macro

Figure 2.12 shows the MGET macro. A call to MGET to allocate the mbuf to hold the destination address for the sendto system call (Figure 1.6) might look like

Figure 2.12. MGET macro.

	

-- mbuf.h
154 #define MGET(m, how, type) { \
155 MALLOC((m), struct mbuf *, MSIZE, mbtypes[type], (how)); \
156 if (m) { \
157 (m)->m_type = (type); \
158 MBUFLOCK(mbstat.m_mtypes[type]++;) \
159 (m)->m_next = (struct mbuf *)NULL; \
160 (m)->m_nextpkt = (struct mbuf *)NULL; \
161 (m)->m_data = (m)->m_dat; \
162 (m)->m_flags = 0; \
163 } else \
164 (m) = m_retry((how), (type)); \
165 }
-- mbuf.h

MGET(m, M__WAIT, MT_SONAME);
if (m == NULL)
 return(ENOBUFS);

Even though the caller specifies M_WAIT, the return value must still be checked, since, as we’ll see in Figure 2.13, waiting for an mbuf does not guarantee that one will be available.

Figure 2.13. m_retry function.

	

-- uipc_mbuf.c
 92 struct mbuf *
 93 m_retry(i, t)
 94 int i, t;
 95 {
 96 struct mbuf *m;

 97 m_reclaim();
 98 #define m_retry(i, t) (struct mbuf *)0
 99 MGET(m, i, t);
100 #undef m_retry
101 return (m);
102 }
-- uipc_mbuf.c

154-157

MGET first calls the kernel’s MALLOC macro, which is the general-purpose kernel memory allocator. The array mbtypes converts the mbuf MT_xxx value into the corresponding M_xxx value (Figure 2.10). If the memory can be allocated, the m_type member is set to the argument’s value.

158

The kernel structure that keeps mbuf statistics for each type of mbuf is incremented (mbstat). The macro MBUFLOCK changes the processor priority (Figure 1.13) while executing the statement specified as its argument, and then resets the priority to its previous value. This prevents network device interrupts from occurring while the statement mbstat.m_mtypes [type]++; is executing, because mbufs can be allocated at various layers within the kernel. Consider a system that implements the ++ operator in C using three steps: (1) load the current value into a register, (2) increment the register, and (3) store the register into memory. Assume the counter’s value is 77 and MGET is executing at the socket layer. Assume steps 1 and 2 are executed (the register’s value is 78) and a device interrupt occurs. If the device driver also executes MGET for the same type of mbuf, the value in memory is fetched (77), incremented (78), and stored back into memory. When step 3 of the interrupted execution of MGET resumes, it stores its register (78) into memory. But the counter should be 79, not 78, so the counter has been corrupted.

159-160

The two mbuf pointers, m_next and m_nextpkt, are set to null pointers. It is the caller’s responsibility to add the mbuf to a chain or queue, if necessary.

161-162

Finally the data pointer is set to point to the beginning of the 108-byte mbuf buffer and the flags are set to 0.

163-164

If the call to the kernel’s memory allocator fails, m_retry is called (Figure 2.13). The first argument is either M_WAIT or M_DONTWAIT.

m_retry Function

Figure 2.13 shows the m_retry function.

92-97

The first function called by m_retry is m_reclaim. We’ll see in Section 7.4 that each protocol can define a “drain” function to be called by m_reclaim when the system gets low on available memory. We’ll also see in Figure 10.32 that when IP’s drain function is called, all IP fragments waiting to be reassembled into IP datagrams are discarded. TCP’s drain function does nothing and UDP doesn’t even define a drain function.

98-102

Since there’s a chance that more memory might be available after the call to m_reclaim, the MGET macro is called again, to try to obtain the mbuf. Before expanding the MGET macro (Figure 2.12), m_retry is defined to be a null pointer. This prevents an infinite loop if the memory still isn’t available: the expansion of MGET will set m to this null pointer instead of calling the m_retry function. After the expansion of MGET, this temporary definition of m_retry is undefined, in case there is another reference to MGET later in the source file.

Mbuf Locking

In the functions and macros that we’ve looked at in this section, other than the call to MBUFLOCK in Figure 2.12, there are no calls to the spl functions to protect these functions and macros from being interrupted. What we haven’t shown, however, is that the macro MALLOC contains an splimp at the beginning and an splx at the end. The macro MFREE contains the same protection. Mbufs are allocated and released at all layers within the kernel, so the kernel must protect the data structures that it uses for memory allocation.

Additionally, the macros MCLALLOC and MCLFREE, which allocate and release an mbuf cluster, are surrounded by an splimp and an splx, since they modify a linked list of available clusters.

Since the memory allocation and release macros along with the cluster allocation and release macros are protected from interrupts, we normally do not encounter calls to the spl functions around macros and functions such as MGET and m_get.

2.6. m_devget and m_pullup Functions

We encounter the m_pullup function when we show the code for IP, ICMP, IGMP, UDP, and TCP. It is called to guarantee that the specified number of bytes (the size of the corresponding protocol header) are contiguous in the first mbuf of a chain; otherwise the specified number of bytes are copied to a new mbuf and made contiguous. To understand the usage of m_pullup we must describe its implementation and its interaction with both the m_devget function and the mtod and dtom macros. This description also provides additional insight into the usage of mbufs in Net/3.

m_devget Function

When an Ethernet frame is received, the device driver calls the function m_devget to create an mbuf chain and copy the frame from the device into the chain. Depending on the length of the received frame (excluding the Ethernet header), there are four different possibilities for the resulting mbuf chain. The first two possibilities are shown in Figure 2.14.

Figure 2.14. First two types of mbufs created by m_devget.

[image: Image]

1. The left mbuf in Figure 2.14 is used when the amount of data is between 0 and 84 bytes. In this figure we assume there are 52 bytes of data: a 20-byte IP header and a 32-byte TCP header (the standard 20-byte TCP header plus 12 bytes of TCP options) but no TCP data. Since the data in the mbuf returned by m_devget starts with the IP header, the realistic minimum value for m_len is 28: 20 bytes for an IP header, 8 bytes for a UDP header, and a 0-length UDP datagram.

m_devget leaves 16 bytes unused at the beginning of the mbuf. Although the 14-byte Ethernet header is not stored here, room is allocated for a 14-byte Ethernet header on output, should the same mbuf be used for output. We’ll encounter two functions that generate a response by using the received mbuf as the outgoing mbuf: icmp_reflect and tcp_respond. In both cases the size of the received datagram is normally less than 84 bytes, so it costs nothing to leave room for 16 bytes at the front, which saves time when building the outgoing datagram. The reason 16 bytes are allocated, and not 14, is to have the IP header longword aligned in the mbuf.

2. If the amount of data is between 85 and 100 bytes, the data still fits in a packet header mbuf, but there is no room for the 16 bytes at the beginning. The data starts at the beginning of the m_pktdat array and any unused space is at the end of this array. The mbuf on the right in Figure 2.14 shows this example, assuming 85 bytes of data.

3. Figure 2.15 shows the third type of mbuf created by m_devget. Two mbufs are required when the amount of data is between 101 and 207 bytes. The first 100 bytes are stored in the first mbuf (the one with the packet header), and the remainder are stored in the second mbuf. In this example we show a 104-byte datagram. No attempt is made to leave 16 bytes at the beginning of the first mbuf.

Figure 2.15. Third type of mbuf created by m_devget.

[image: Image]

4. Figure 2.16 shows the fourth type of mbuf created by m_devget. If the amount of data is greater than or equal to 208 (MINCLBYTES), one or more clusters are used. The example in the figure assumes a 1500-byte Ethernet frame with 2048-byte clusters. If 1024-byte clusters are in use, this example would require two mbufs, each with the M_EXT flag set, and each pointing to a cluster.

Figure 2.16. Fourth type of mbuf created by m_devget.

[image: Image]

mtod and dtom Macros

The two macros mtod and dtom are also defined in mbuf.h. They simplify complex mbuf structure expressions.

 #define mtod(m,t) ((t)((m)->m_data))
 #define dtom(x) ((struct mbuf *)((int)(x) & ~(MSIZE-1)))

mtod (“mbuf-to-data”) returns a pointer to the data associated with an mbuf, and casts the pointer to a specified type. For example, the code

struct mbuf *m;

struct ip *ip;

ip = mtod(m, struct ip *);
ip->ip_v = IPVERSION;

stores in ip the data pointer of the mbuf (m_data). The type cast is required by the C compiler and the code then references the IP header using the pointer ip. We see this macro used when a C structure (often a protocol header) is stored in an mbuf. This macro works if the data is stored in the mbuf itself (Figures 2.14 and 2.15) or if the data is stored in a cluster (Figure 2.16).

The macro dtom (“data-to-mbuf”) takes a pointer to data anywhere within the data portion of the mbuf and returns a pointer to the mbuf structure itself. For example, if we know that ip points within the data area of an mbuf, the sequence

struct mbuf *m;
struct ip *ip;

m = dtom(ip);

stores the pointer to the beginning of the mbuf in m. By knowing that MSIZE (128) is a power of 2, and that mbufs are always aligned by the kernel’s memory allocator on MSIZE byte blocks of memory, dtom just clears the appropriate low-order bits in its argument pointer to find the beginning of the mbuf.

There is a problem with dtom: it doesn’t work if its argument points to a cluster, or within a cluster, as in Figure 2.16. Since there is no pointer from the cluster back to the mbuf structure, dtom cannot be used. This leads to the next function, m_pullup.

m_pullup Function and Contiguous Protocol Headers

The m_pullup function has two purposes. The first is when one of the protocols (IP, ICMP, IGMP, UDP, or TCP) finds that the amount of data in the first mbuf (m_len) is less than the size of the minimum protocol header (e.g., 20 for IP, 8 for UDP, 20 for TCP). m_pullup is called on the assumption that the remaining part of the header is in the next mbuf on the chain. m_pullup rearranges the mbuf chain so that the first N bytes of data are contiguous in the first mbuf on the chain. N is an argument to the function that must be less than or equal to 100 (MHLEN). If the first N bytes are contiguous in the first mbuf, then both of the macros mtod and dtom will work.

For example, we’ll encounter the following code in the IP input routine:

 if (m->m_len < sizeof(struct ip) &&
 (m = m_pullup(m, sizeof(struct ip))) == 0) {
 ipstat.ips_toosmall++;
 goto next;
 }
 ip = mtod(m, struct ip *);

If the amount of data in the first mbuf is less than 20 (the size of the standard IP header), m__pullup is called. m_pullup can fail for two reasons: (1) if it needs another mbuf and its call to MGET fails, or (2) if the total amount of data in the mbuf chain is less than the requested number of contiguous bytes (what we called N, which in this case is 20). The second reason is the most common cause of failure. In this example, if m__pullup fails, an IP counter is incremented and the IP datagram is discarded. Notice that this code assumes the reason for failure is that the amount of data in the mbuf chain is less than 20 bytes.

In actuality, m_pullup is rarely called in this scenario (notice that C’s && operator only calls it when the mbuf length is smaller than expected) and when it is called, it normally fails. The reason can be seen by looking at Figure 2.14 through Figure 2.16: there is room in the first mbuf, or in the cluster, for at least 100 contiguous bytes, starting with the IP header. This allows for the maximum IP header of 60 bytes followed by 40 bytes of TCP header. (The other protocols—ICMP, IGMP, and UDP—have headers smaller than 40 bytes.) If the data bytes are available in the mbuf chain (the packet is not smaller than the minimum required by the protocol), then the required number of bytes should always be contiguous in the first mbuf. But if the received packet is too short (m_len is less than the expected minimum), then m_pullup is called and it returns an error, since the required amount of data is not available in the mbuf chain.

Berkeley-derived kernels maintain a variable named MPFail that is incremented each time m_pullup fails. On a Net/3 system that had received over 27 million IP datagrams, MPFail was 9. The counter ipstat.ips_toosmall was also 9 and all the other protocol counters (i.e., ICMP, IGMP, UDP, and TCP) following a failure of m_pullup were 0. This confirms our statement that most failures of m_pullup are because the received IP datagram was too small.

m_pullup and IP Fragmentation and Reassembly

The second use of m_pullup concerns IP reassembly and TCP reassembly. Assume IP receives a packet of length 296, which is a fragment of a larger IP datagram. The mbuf passed from the device driver to IP input looks like the one we showed in Figure 2.16: the 296 bytes of data are stored in a cluster. We show this in Figure 2.17.

Figure 2.17. An IP fragment of length 296.

[image: Image]

The problem is that the IP fragmentation algorithm keeps the individual fragments on a doubly linked list, using the source and destination IP address fields in the IP header to hold the forward and backward list pointers. (These two IP addresses are saved, of course, in the head of the list, since they must be put back into the reassembled datagram. We describe this in Chapter 10.) But if the IP header is in a cluster, as shown in Figure 2.17, these linked list pointers would be in the cluster, and when the list is traversed at some later time, the pointer to the IP header (i.e., the pointer to the beginning of the cluster) could not be converted into the pointer to the mbuf. This is the problem we mentioned earlier in this section: the dtom macro cannot be used if m_data points into a cluster, because there is no back pointer from the cluster to the mbuf. IP fragmentation cannot store the links in the cluster as shown in Figure 2.17.

To solve this problem the IP fragmentation routine always calls m__pullup when a fragment is received, if the fragment is contained in a cluster. This forces the 20-byte IP header into its own mbuf. The code looks like

if (m->m_flags & M_EXT) {
 if ((m = m_pullup (m, sizeof (struct ip))) == 0) {
 ipstat.ips_toosmall++;
 goto next;
 }
 ip = mtod(m, struct ip *);
}

Figure 2.18 shows the resulting mbuf chain, after m__pullup is called. m_pullup allocates a new mbuf, prepends it to the chain, and moves the first 40 bytes of data from the cluster into the new mbuf. The reason it moves 40 bytes, and not just the requested 20, is to try to save an additional call at a later time when IP passes the datagram to a higher-layer protocol (e.g., ICMP, IGMP, UDP, or TCP). The magic number 40 (max_protohdr in Figure 7.17) is because the largest protocol header normally encountered is the combination of a 20-byte IP header and a 20-byte TCP header. (This assumes that other protocol suites, such as the OSI protocols, are not compiled into the kernel.)

Figure 2.18. An IP fragment of length 296, after calling m_pullup.

[image: Image]

In Figure 2.18 the IP fragmentation algorithm can save a pointer to the IP header contained in the mbuf on the left, and this pointer can be converted into a pointer to the mbuf itself using dtom at a later time.

Avoidance of m_pullup by TCP Reassembly

The reassembly of TCP segments uses a different technique to avoid calling m_pullup. This is because m_pullup is expensive: memory is allocated and data is copied from a cluster to an mbuf.TCP tries to avoid data copying whenever possible.

Chapter 19 of Volume 1 mentions that about one-half of TCP data is bulk data (often 512 or more bytes of data per segment) and the other half is interactive data (of which about 90% of the segments contain less than 10 bytes of data). Hence, when TCP receives segments from IP they are usually in the format shown on the left of Figure 2.14 (a small amount of interactive data, stored in the mbuf itself) or in the format shown in Figure 2.16 (bulk data, stored in a cluster). When TCP segments arrive out of order, they are stored on a doubly linked list by TCP. As with IP fragmentation, fields in the IP header are used to hold the list pointers, which is OK since these fields are no longer needed once the IP datagram is accepted by TCP. But the same problem arises with the conversion of a list pointer into the corresponding mbuf pointer, when the IP header is stored in a cluster (Figure 2.17).

To solve the problem, we’ll see in Section 27.9 that TCP stores the mbuf pointer in some unused fields in the TCP header, providing a back pointer of its own from the cluster to the mbuf, just to avoid calling m_pullup for every out-of-order segment. If the IP header is contained in the data portion of the mbuf (Figure 2.18), then this back pointer is superfluous, since the dtom macro would work on the list pointer. But if the IP header is contained in a cluster, this back pointer is required. We’ll examine the source code that implements this technique when we describe tcp_reass in Section 27.9.

Summary of m_pullup Usage

We’ve described three main points about m_pullup.

[image: Image] Most device drivers do not split the first portion of an IP datagram between mbufs. Therefore the possible calls to m_pullup that we’ll encounter in every protocol (IP, ICMP, IGMP, UDP, and TCP), just to assure that the protocol header is stored contiguously, rarely take place. When these calls to m_pullup do occur, it is normally because the IP datagram is too small, in which case m_pullup returns an error, the datagram is discarded, and an error counter is incremented.

[image: Image] m_pullup is called for every received IP fragment, when the IP fragment is stored in a cluster. This means that m_pullup is called for almost every received fragment, since the length of most fragments is greater than 208 bytes.

[image: Image] As long as TCP segments are not fragmented by IP, the receipt of a TCP segment, whether it be in order or out of order, should not invoke m_pullup. This is one reason to avoid IP fragmentation with TCP.

2.7. Summary of Mbuf Macros and Functions

Figure 2.19 lists the macros and Figure 2.20 lists the functions that we’ll encounter in the code that operates on mbufs. The macros in Figure 2.19 are shown as function prototypes, not as #define statements, to show the data types of the arguments. We will not go through the source code implementation of these routines since they are concerned primarily with manipulating the mbuf data structures and involve no networking issues. Also, there are additional mbuf macros and functions used elsewhere in the Net/3 sources that we don’t show in these two figures since we won’t encounter them in the text.

Figure 2.19. Mbuf macros that we’ll encounter in the text.

[image: Image]

Figure 2.20. Mbuf functions that we’ll encounter in the text.

[image: Image]

In all the prototypes the argument nowait is either M_WAIT or M_DONTWAIT, and the argument type is one of the MT_xxx constants shown in Figure 2.10.

As an example of M_PREPEND, this macro was called when the IP and UDP headers were prepended to the user’s data in the transition from Figure 1.7 to Figure 1.8, causing another mbuf to be allocated. But when this macro was called again (in the transition from Figure 1.8 to Figure 2.2) to prepend the Ethernet header, room already existed in the mbuf for the headers.

The data type of the last argument for m_copydata is caddr_t, which stands for “core address.” This data type is normally defined in <sys/types.h> to be a char *. It was originally used internally by the kernel, but got externalized when used by certain system calls. For example, the mmap system call, in both 4.4BSD and SVR4, uses caddr_t as the type of the first argument and as the return value type.

2.8. Summary of Net/3 Networking Data Structures

This section summarizes the types of data structures we’ll encounter in the Net/3 networking code. Other data structures are used in the Net/3 kernel (interested readers should examine the <sys/queue.h> header), but the following are the ones we’ll encounter in this text.

1. An mbuf chain: a list of mbufs, linked through the m_next pointer. We’ve seen numerous examples of these already.

2. A linked list of mbuf chains with a head pointer only. The mbuf chains are linked using the m_nextpkt pointer in the first mbuf of each chain.

Figure 2.21 shows this type of list. Examples of this data structure are a socket’s send buffer and receive buffer.

Figure 2.21. Linked list of mbuf chains with head pointer only.

[image: Image]

The top two mbufs form the first record on the queue, and the three mbufs on the bottom form the second record on the queue. For a record-based protocol, such as UDP, we can encounter multiple records per queue, but for a protocol such as TCP that has no record boundaries, we’ll find only a single record (one mbuf chain possibly consisting of multiple mbufs) per queue.

To append an mbuf to the first record on the queue requires going through all the mbufs comprising the first record, until the one with a null m_next pointer is encountered. To append an mbuf chain comprising a new record to the queue requires going through all the records until the one with a null m_nextpkt pointer is encountered.

3. A linked list of mbuf chains with head and tail pointers.

Figure 2.22 shows this type of list. We encounter this with the interface queues (Figure 3.13), and showed an earlier example in Figure 2.2.

Figure 2.22. Linked list with head and tail pointers.

[image: Image]

The only change in this figure from Figure 2.21 is the addition of a tail pointer, to simplify the addition of new records.

4. A doubly linked, circular list.

Figure 2.23 shows this type of list, which we encounter with IP fragmentation and reassembly (Chapter 10), protocol control blocks (Chapter 22), and TCP’s out-of-order segment queue (Section 27.9).

Figure 2.23. Doubly linked, circular list.

[image: Image]

The elements in the list are not mbufs—they are structures of some type that are defined with two consecutive pointers: a next pointer followed by a previous pointer. Both pointers must appear at the beginning of the structure. If the list is empty, both the next and previous pointers of the head entry point to the head entry.

For simplicity in the figure we show the back pointers pointing at another back pointer. Obviously all the pointers contain the address of the structure pointed to, that is the address of a forward pointer (since the forward and backward pointer are always at the beginning of the structure).

This type of data structure allows easy traversal either forward or backward, and allows easy insertion or deletion at any point in the list.

The functions insque and remque (Figure 10.20) are called to insert and delete elements in the list.

2.9. m_copy and Cluster Reference Counts

One obvious advantage with clusters is being able to reduce the number of mbufs required to contain large amounts of data. For example, if clusters were not used, it would require 10 mbufs to contain 1024 bytes of data: the first one with 100 bytes of data, the next eight with 108 bytes of data each, and the final one with 60 bytes of data. There is more overhead involved in allocating and linking 10 mbufs, than there is in allocating a single mbuf containing the 1024 bytes in a cluster. A disadvantage with clusters is the potential for wasted space. In our example it takes 2176 bytes using a cluster (2048+128), versus 1280 bytes without a cluster (10 x 128).

An additional advantage with clusters is being able to share a cluster between multiple mbufs. We encounter this with TCP output and the m_copy function, but describe it in more detail now.

As an example, assume the application performs a write of 4096 bytes to a TCP socket. Assuming the socket’s send buffer was previously empty, and that the receiver’s window is at least 4096, the following operations take place. One cluster is filled with the first 2048 bytes by the socket layer and the protocol’s send routine is called. The TCP send routine appends the mbuf to its send buffer, as shown in Figure 2.24, and calls tcp_output.

Figure 2.24. TCP socket send buffer containing 2048 bytes of data.

[image: Image]

The socket structure contains the sockbuf structure, which holds the head of the list of mbufs on the send buffer: so_snd.sb_mb.

Assuming a TCP maximum segment size (MSS) of 1460 for this connection (typical for an Ethernet), tcp_output builds a segment to send containing the first 1460 bytes of data. It also builds an mbuf containing the IP and TCP headers, leaves room for a link-layer header (16 bytes), and passes this mbuf chain to IP output. The mbuf chain ends up on the interface’s output queue, which we show in Figure 2.25.

Figure 2.25. TCP socket send buffer and resulting segment on interface’s output queue.

[image: Image]

In our UDP example in Section 1.9, UDP took the mbuf chain containing the datagram, prepended an mbuf for the protocol headers, and passed the chain to IP output. UDP did not keep the mbuf in its send buffer. TCP cannot do this since TCP is a reliable protocol and it must maintain a copy of the data that it sends, until the data is acknowledged by the other end.

In this example tcp_output calls the function m_copy, requesting a copy be made of 1460 bytes, starting at offset 0 from the start of its send buffer. But since the data is in a cluster, m_copy creates an mbuf (the one on the lower right of Figure 2.25) and initializes it to point to the correct place in the existing cluster (the beginning of the cluster in this example). The length of this mbuf is 1460, even though an additional 588 bytes of data are in the cluster. We show the length of the mbuf chain as 1514, accounting for the Ethernet, IP, and TCP headers.

We also show this mbuf on the lower right of Figure 2.25 containing a packet header, yet this isn’t the first mbuf in the chain. When m_copy makes a copy of an mbuf that contains a packet header and the copy starts from offset 0 in the original mbuf, the packet header is also copied verbatim. Since this mbuf is not the first mbuf in the chain, this extraneous packet header is just ignored. The m_pkthdr.len value of 2048 in this extraneous packet header is also ignored.

This sharing of clusters prevents the kernel from copying the data from one mbuf into another—a big savings. It is implemented by providing a reference count for each cluster that is incremented each time another mbuf points to the cluster, and decremented each time a cluster is released. Only when the reference count reaches 0 is the memory used by the cluster available for some other use. (See Exercise 2.4.)

For example, when the bottom mbuf chain in Figure 2.25 reaches the Ethernet device driver and its contents have been copied to the device, the driver calls m_freem. This function releases the first mbuf with the protocol headers and then notices that the second mbuf in the chain points to a cluster. The cluster reference count is decremented, but since its value becomes 1, it is left alone. It cannot be released since it is still in the TCP send buffer.

Continuing our example, tcp_output returns after passing the 1460-byte segment to IP, since the remaining 588 bytes in the send buffer don’t comprise a full-sized segment. (In Chapter 26 we describe in detail the conditions under which tcp_output sends data.) The socket layer continues processing the data from the application: the remaining 2048 bytes are placed into an mbuf with a cluster, TCP’s send routine is called again, and this new mbuf is appended to the socket’s send buffer. Since a full-sized segment can be sent, tcp_output builds another mbuf chain with the protocol headers and the next 1460 bytes of data. The arguments to m_copy specify a starting offset of 1460 bytes from the start of the send buffer and a length of 1460 bytes. This is shown in Figure 2.26, assuming the mbuf chain is again on the interface output queue (so the length of the first mbuf in the chain reflects the Ethernet, IP, and TCP headers).

Figure 2.26. Mbuf chain to send next 1460-byte TCP segment.

[image: Image]

This time the 1460 bytes of data come from two clusters: the first 588 bytes are from the first cluster in the send buffer and the next 872 bytes are from the second cluster in the send buffer. It takes two mbufs to describe these 1460 bytes, but again m_copy does not copy the 1460 bytes of data—it references the existing clusters.

This time we do not show a packet header with either of the mbufs on the bottom right of Figure 2.26. The reason is that the starting offset in the call to m_copy is nonzero. Also, we show the second mbuf in the socket send buffer containing a packet header, even though it is not the first mbuf in the chain. This is a property of the sosend function, and this extraneous packet header is just ignored.

We encounter the m_copy function about a dozen times throughout the text. Although the name implies that a physical copy is made of the data, if the data is contained in a cluster, an additional reference is made to the cluster instead.

2.10. Alternatives

Mbufs are far from perfect and they are berated regularly. Nevertheless, they form the basis for all the Berkeley-derived networking code in use today.

A research implementation of the Internet protocols by Van Jacobson [Partridge 1993] has done away with the complex mbuf data structures in favor of large contiguous buffers. [Jacobson 1993] claims a speed improvement of one to two orders of magnitude, although many other changes were made besides getting rid of mbufs.

The complexity of mbufs is a tradeoff that avoids allocating large fixed buffers that are rarely filled to capacity. At the time mbufs were being designed, a VAX-11/780 with 4 megabytes of memory was a big system, and memory was an expensive resource that needed to be carefully allocated. Today memory is inexpensive, and the focus has shifted toward higher performance and simplicity of code.

The performance of mbufs is also dependent on the amount of data stored in the mbuf. [Hutchinson and Peterson 1991] show that the amount of time required for mbuf processing is nonlinear with respect to the amount of data.

2.11. Summary

We’ll encounter mbufs in almost every function in the text. Their main purpose is to hold the user data that travels from the process to the network interface, and vice versa, but mbufs are also used to contain a variety of other miscellaneous data: source and destination addresses, socket options, and so on.

There are four types of mbufs, depending whether the M_PKTHDR and M_EXT flags are on or off:

[image: Image] no packet header, with 0 to 108 bytes of data in mbuf itself,

[image: Image] packet header, with 0 to 100 bytes of data in mbuf itself,

[image: Image] no packet header, with data in cluster (external buffer), and

[image: Image] packet header, with data in cluster (external buffer).

We looked at the source code for a few of the mbuf macros and functions, but did not present the source code for all the mbuf routines. Figures 2.19 and 2.20 provide the function prototypes and descriptions of all the mbuf routines that we encounter in the text.

We looked at the operation of two functions that we’ll encounter: m_devget, which is called by many network device drivers to store a received frame; and m_pullup, which is called by all the input routines to place the required protocol headers into contiguous storage in an mbuf.

The clusters (external buffers) pointed to by an mbuf can be shared by m_copy. This is used, for example, by TCP output, because a copy of the data being transmitted must be maintained by the sender until that data is acknowledged by the other end. Sharing clusters through reference counts is a performance improvement over making a physical copy of the data.

Exercises

2.1 In Figure 2.9 the M_COPYFLAGS value was defined. Why was the M_EXT flag not copied?

2.2 In Section 2.6 we listed two reasons that m_pullup can fail. There are really three reasons. Obtain the source code for this function (Appendix B) and discover the additional reason.

2.3 To avoid the problems we described in Section 2.6 with the dtom macro when the data is in a cluster, why not just add a back pointer to the mbuf for each cluster?

2.4 Since the size of an mbuf cluster is a power of 2 (typically 1024 or 2048), space cannot be taken within the cluster for the reference count. Obtain the Net/3 sources (Appendix B) and determine where these reference counts are stored.

2.5 In Figure 2.5 we noted that the two counters m_drops and m_wait are not currently implemented. Modify the mbuf routines to increment these counters when appropriate.

Chapter 3. Interface Layer

3.1. Introduction

This chapter starts our discussion of Net/3 at the bottom of the protocol stack with the interface layer, which includes the hardware and software that sends and receives packets on locally attached networks.

We use the term device driver to refer to the software that communicates with the hardware and network interface (or just interface) for the hardware and device driver for a particular network.

The Net/3 interface layer attempts to provide a hardware-independent programming interface between the network protocols and the drivers for the network devices connected to a system. The interface layer supports provides for all devices:

[image: Image] a well-defined set of interface functions,

[image: Image] a standard set of statistics and control flags,

[image: Image] a device-independent method of storing protocol addresses, and

[image: Image] a standard queueing method for outgoing packets.

There is no requirement that the interface layer provide reliable delivery of packets, only a best-effort service is required. Higher protocol layers must compensate for this lack of reliability. This chapter describes the generic data structures maintained for all network interfaces. To illustrate the relevant data structures and algorithms, we refer to three particular network interfaces from Net/3:

1. An AMD 7990 LANCE Ethernet interface: an example of a broadcast-capable local area network.

2. A Serial Line IP (SLIP) interface: an example of a point-to-point network running over asynchronous serial lines.

3. A loopback interface: a logical network that returns all outgoing packets as input packets.

3.2. Code Introduction

The generic interface structures and initialization code are found in three headers and two C files. The device-specific initialization code described in this chapter is found in three different C files. All eight files are listed in Figure 3.1.

Figure 3.1. Files discussed in this chapter.

[image: Image]

Global Variables

The global variables introduced in this chapter are described in Figure 3.2.

Figure 3.2. Global variables introduced in this chapter.

[image: Image]

SNMP Variables

The Net/3 kernel collects a wide variety of networking statistics. In most chapters we summarize the statistics and show how they relate to the standard TCP/IP information and statistics defined in the Simple Network Management Protocol Management Information Base (SNMP MIB-II). RFC 1213 [McCloghrie and Rose 1991] describe SNMP MIB-II, which is organized into 10 distinct information groups shown in Figure 3.3.

Figure 3.3. SNMP groups in MIB-II.

[image: Image]

Net/3 does not include an SNMP agent. Instead, an SNMP agent for Net/3 is implemented as a process that accesses the kernel statistics in response to SNMP queries through the mechanism described in Section 2.2.

While most of the MIB-II variables are collected by Net/3 and may be accessed directly by an SNMP agent, others must be derived indirectly. MIB-II variables fall into three categories: (1) simple variables such an integer value, a timestamp, or a byte string; (2) lists of simple variables such as an individual routing entry or an interface description entry; and (3) lists of lists such as the entire routing table and the list of all interface entries.

The ISODE package includes a sample SNMP agent for Net/3. See Appendix B for information about ISODE.

Figure 3.4 shows the one simple variable maintained for the SNMP interface group. We describe the SNMP interface table later in Figure 4.7.

Figure 3.4. Simple SNMP variable in the interface group.

[image: Image]

3.3. ifnet Structure

The ifnet structure contains information common to all interfaces. During system initialization, a separate ifnet structure is allocated for each network device. Every ifnet structure has a list of one or more protocol addresses associated with it. Figure 3.5 illustrates the relationship between an interface and its addresses.

Figure 3.5. Each ifnet structure has a list of associated ifaddr structures.

[image: Image]

The interface in Figure 3.5 is shown with three protocol addresses stored in ifaddr structures. Although some network interfaces, such as SLIP, support only a single protocol, others, such as Ethernet, support multiple protocols and need multiple addresses. For example, a system may use a single Ethernet interface for both Internet and OSI protocols. A type field identifies the contents of each Ethernet frame, and since the Internet and OSI protocols employ different addressing schemes, the Ethernet interface must have an Internet address and an OSI address. All the addresses are connected by a linked list (the arrows on the right of Figure 3.5), and each contains a back pointer to the related ifnet structure (the arrows on the left of Figure 3.5).

It is also possible for a single network interface to support multiple addresses within a single protocol. For example, two Internet addresses may be assigned to a single Ethernet interface in Net/3.

This feature first appeared in Net/2. Having two IP addresses for an interface is useful when renumbering a network. During a transition period, the interface can accept packets addressed to the old and new addresses.

The ifnet structure is large so we describe it in five sections:

[image: Image] implementation information,

[image: Image] hardware information,

[image: Image] interface statistics,

[image: Image] function pointers, and

[image: Image] the output queue.

Figure 3.6 shows the implementation information contained in the ifnet structure.

Figure 3.6. ifnet structure: implementation information.

[image: Image]

80-82

if_next joins the ifnet structures for all the interfaces into a linked list. The if_attach function constructs the list during system initialization. if_addrlist points to the list of ifaddr structures for the interface (Figure 3.16). Each ifaddr structure holds addressing information for a protocol that expects to communicate through the interface.

Common interface information

83-86

if_name is a short string that identifies the interface type, and if_unit identifies multiple instances of the same type. For example, if a system had two SLIP interfaces, both would have an if_name consisting of the 2 bytes "s1" and an if_unit of 0 for the first interface and 1 for the second. if_index uniquely identifies the interface within the kernel and is used by the sysctl system call (Section 19.14) as well as in the routing domain.

Sometimes an interface is not uniquely identified by a protocol address. For example, several SLIP connections can have the same local IP address. In these cases, if_index specifies the interface explicitly.

if_flags specifies the operational state and properties of the interface. A process can examine all the flags but cannot change the flags marked in the “Kernel only” column in Figure 3.7. The flags are accessed with the SIOCGIFFLAGS and SIOCSIFFLAGS commands described in Section 4.4.

Figure 3.7. if_flags values.

[image: Image]

The IFF_BROADCAST and IFF_POINTOPOINT flags are mutually exclusive.

The macro IFF_CANTCHANGE is a bitwise OR of all the flags in the “Kernel only” column.

The device-specific flags (IFF_LINKx) may or may not be modifiable by a process depending on the device. For example, Figure 3.29 shows how these flags are defined by the SLIP driver.

Interface timer

87

if_timer is the time in seconds until the kernel calls the if_watchdog function for the interface. This function may be used by the device driver to collect interface statistics at regular intervals or to reset hardware that isn’t operating correctly.

BSD Packet Filter

88-89

The next two members, if_pcount and if_bpf, support the BSD Packet Filter (BPF). Through BPF, a process can receive copies of packets transmitted or received by an interface. As we discuss the device drivers, we also describe how packets are passed to BPF. BPF itself is described in Chapter 31.

The next section of the ifnet structure, shown in Figure 3.8, describes the hardware characteristics of the interface.

Figure 3.8. ifnet structure: interface characteristics.

[image: Image]

Net/3 and this text use the short names provided by the #define statements on lines 138 through 143 to specify the ifnet members.

Interface characteristics

90-92

if_type specifies the hardware address type supported by the interface. Figure 3.9 lists several common values from net/if_types.h.

Figure 3.9. if_type: data-link types.

[image: Image]

93-94

if_addrlen is the length of the datalink address and if_hdrlen is the length of the header attached to any outgoing packet by the hardware. An Ethernet network, for example, has an address length of 6 bytes and a header length of 14 bytes (Figure 4.8).

95

if_mtu is the maximum transmission unit of the interface: the size in bytes of the largest unit of data that the interface can transmit in a single output operation. This is an important parameter that controls the size of packets created by the network and transport protocols. For Ethernet, the value is 1500.

96-97

if_metric is usually 0; a higher value makes routes through the interface less favorable. if_baudrate specifies the transmission speed of the interface. It is set only by the SLIP interface.

Interface statistics are collected by the next group of members in the ifnet structure shown in Figure 3.10.

Figure 3.10. ifnet structure: interface statistics.

[image: Image]

Once again, Net/3 and this text use the short names provided by the #define statements on lines 144 through 155 to specify the ifnet members.

Interface statistics

98-111

Most of these statistics are self-explanatory. if_collisions is incremented when packet transmission is interrupted by another transmission on shared media such as Ethernet. if_noproto counts the number of packets that can’t be processed because the protocol is not supported by the system or the interface (e.g., an OSI packet that arrives at a system that supports only IP). The SLIP interface increments if_noproto if a non-IP packet is placed on its output queue.

These statistics were not part of the ifnet structure in Net/1. They were added to support the standard SNMP MIB-II variables for interfaces.

if_iqdrops is accessed only by the SLIP device driver. SLIP and the other network drivers increment if_snd.ifq_drops (Figure 3.13) when IF_DROP is called. ifq_drops was already in the BSD software when the SNMP statistics were added. The ISODE SNMP agent ignores if_iqdrops and uses ifsnd.ifq_drops.

Change timestamp

112-113

if_lastchange records the last time any of the statistics were changed.

The next section of the ifnet structure, shown in Figure 3.11, contains pointers to the standard interface-layer functions, which isolate device-specific details from the network layer. Each network interface implements these functions as appropriate for the particular device.

Figure 3.11. ifnet structure: interface procedures.

	
--- if.h
114 /* procedure handles */
115 int (*if_init) /* init routine */
116 (int);
117 int (*if_output) /* output routine (enqueue) */
118 (struct ifnet *, struct mbuf *, struct sockaddr *,
119 struct rtentry *);
120 int (*if_start) /* initiate output routine */
121 (struct ifnet *);
122 int (*if_done) /* output complete routine */
123 (struct ifnet *); /* (XXX not used; fake prototype) */
124 int (*if_ioctl) /* ioctl routine */
125 (struct ifnet *, int, caddr_t);
126 int (*if_reset)
127 (int); /* new autoconfig will permit removal */
128 int (*if_watchdog) /* timer routine */
129 (int);
--- if.h

Interface functions

114-129

Each device driver initializes its own ifnet structure, including the seven function pointers, at system initialization time. Figure 3.12 describes the generic functions.

Figure 3.12. ifnet structure: function pointers.

[image: Image]

We will see the comment /* XXX */ throughout Net/3. It is a warning to the reader that the code is obscure, contains nonobvious side effects, or is quick solution to a more difficult problem. In this case, it indicates that if_done is not used in Net/3.

In Chapter 4 we look at the device-specific functions for the Ethernet, SLIP, and loopback interfaces, which the kernel calls indirectly through the pointers in the ifnet structure. For example, if ifp points to an ifnet structure,

(*ifp->if_start)(ifp)

calls the if_start function of the device driver associated with the interface.

The remaining member of the ifnet structure is the output queue for the interface and is shown in Figure 3.13.

Figure 3.13. ifnet structure: the output queue.

	
-- if.h
130 struct ifqueue {
131 struct mbuf *ifq_head;
132 struct mbuf *ifq_tail;
133 int ifq_len; /* current length of queue */
134 int ifq_maxlen; /* maximum length of queue */
135 int ifq_drops; /* packets dropped because of full queue */
136 } if_snd; /* output queue */
137 };
-- if.h

130-137

if_snd is the queue of outgoing packets for the interface. Each interface has its own ifnet structure and therefore its own output queue. ifq_head points to the first packet on the queue (the next one to be output), ifq_tail points to the last packet on the queue, if_len is the number of packets currently on the queue, and ifq_maxlen is the maximum number of buffers allowed on the queue. This maximum is set to 50 (from the global integer ifqmaxlen, which is initialized at compile time from IFQ_MAXLEN) unless the driver changes it. The queue is implemented as a linked list of mbuf chains. ifq_drops counts the number of packets discarded because the queue was full. Figure 3.14 lists the macros and functions that access a queue.

Figure 3.14. ifqueue routines.

[image: Image]

The first five routines are macros defined in net/if.h and the last routine, if_qflush, is a function defined in net/if.c. The macros often appear in sequences such as:

s = splimp();
if (IF_QFULL(inq)) {
 IF_DROP(inq); /* queue is full, drop new packet */
 m_freem(m);
} else
 IF_ENQUEUE(inq, m); /* there is room, add to end of queue */
splx(s);

This code fragment attempts to add a packet to the queue. If the queue is full, IF_DROP increments ifq_drops and the packet is discarded. Reliable protocols such as TCP will retransmit discarded packets. Applications using an unreliable protocol such as UDP must detect and handle the retransmission on their own.

Access to the queue is bracketed by splimp and splx to block network interrupts and to prevent the network interrupt service routines from accessing the queue while it is in an indeterminate state.

m_freem is called before splx because the mbuf code has a critical section that runs at splimp. It would be wasted effort to call splx before m_freem only to enter another critical section during m_freem (Section 2.5).

3.4. ifaddr Structure

The next structure we look at is the interface address structure, ifaddr, shown in Figure 3.15. Each interface maintains a linked list of ifaddr structures because some data links, such as Ethernet, support more than one protocol. A separate ifaddr structure describes each address assigned to the interface, usually one address per protocol. Another reason to support multiple addresses is that many protocols, including TCP/IP, support multiple addresses assigned to a single physical interface. Although Net/3 supports this feature, many implementations of TCP/IP do not.

Figure 3.15. ifaddr structure.

	

-- if.h
217 struct ifaddr {
218 struct ifaddr *ifa_next; /* next address for interface */
219 struct ifnet *ifa_ifp; /* back-pointer to interface */
220 struct sockaddr *ifa_addr; /* address of interface */
221 struct sockaddr *ifa_dstaddr; /* other end of p-to-p link */
222 #define ifa_broadaddr ifa_dstaddr /* broadcast address interface */
223 struct sockaddr *ifa_netmask; /* used to determine subnet */
224 void (*ifa_rtrequest)(); /* check or clean routes */
225 u_short ifa_flags; /* mostly rt_flags for cloning */
226 short ifa_refcnt; /* references to this structure */
227 int ifa_metric; /* cost for this interface */
228 };
-- if.h

217-219

The ifaddr structure links all addresses assigned to an interface together by ifa_next and contains a pointer, ifa_ifp, back to the interface’s ifnet structure. Figure 3.16 shows the relationship between the ifnet structures and the ifaddr structures.

Figure 3.16. ifnet and ifaddr structures.

[image: Image]

220

ifa_addr points to a protocol address for the interface and ifa_netmask points to a bit mask that selects the network portion of ifa_addr. Bits that represent the network portion of the address are set to 1 in the mask, and the host portion of the address is set to all 0 bits. Both addresses are stored as sockaddr structures (Section 3.5). Figure 3.38 shows an address and its related mask structure. For IP addresses, the mask selects the network and subnet portions of the IP address.

221-223

ifa_dstaddr (or its alias ifa_broadaddr) points to the protocol address of the interface at the other end of a point-to-point link or to the broadcast address assigned to the interface on a broadcast network such as Ethernet. The mutually exclusive flags IFF_BROADCAST and IFF_POINTOPOINT (Figure 3.7) in the interface’s ifnet structure specify the applicable name.

224-228

ifa_rtrequest, ifa_flags, and ifa_metric support routing lookups for the interface.

ifa_refcnt counts references to the ifaddr structure. The macro IFAFREE only releases the structure when the reference count drops to 0, such as when addresses are deleted with the SIOCDIFADDR ioctl command. The ifaddr structures are reference-counted because they are shared by the interface and routing data structures.

IFAFREE decrements the counter and returns if there are other references. This is the common case and avoids a function call overhead for all but the last reference. If this is the last reference, IFAFREE calls the function ifafree, which releases the structure.

3.5. sockaddr Structure

Addressing information for an interface consists of more than a single host address. Net/3 maintains host, broadcast, and network masks in structures derived from a generic sockaddr structure. By using a generic structure, hardware and protocol-specific addressing details are hidden from the interface layer.

Figure 3.17 shows the current definition of the structure as well as the definition from earlier BSD releases—an osockaddr structure.

Figure 3.17. sockaddr and osockaddr structures.

	
--- socket.h
120 struct sockaddr {
121 u_char sa_len; /* total length */
122 u_char sa_family; /* address family (Figure 3.19) */
123 char sa_data[14]; /* actually longer; address value */
124 };

271 struct osockaddr {
272 u_short sa_family; /* address family (Figure 3.19) */
273 char sa_data[14]; /* up to 14 bytes of direct address */
274 };
--- socket.h

Figure 3.18 illustrates the organization of these structures.

Figure 3.18. sockaddr and osockaddr structures (sa_ prefix dropped).

[image: Image]

In many figures, we omit the common prefix in member names. In this case, we’ve dropped the sa_ prefix.

sockaddr structure

120-124

Every protocol has its own address format. Net/3 handles generic addresses in a sockaddr structure. sa_len specifies the length of the address (OSI and Unix domain protocols have variable-length addresses) and sa_family specifies the type of address. Figure 3.19 lists the address family constants that we encounter.

Figure 3.19. sa_family constants.

[image: Image]

The contents of a sockaddr when AF_UNSPEC is specified depends on the context. In most cases, it contains an Ethernet hardware address.

The sa_len and sa_family members allow protocol-independent code to manipulate variable-length sockaddr structures from multiple protocol families. The remaining member, sa_data, contains the address in a protocol-dependent format. sa_data is defined to be an array of 14 bytes, but when the sockaddr structure overlays a larger area of memory sa_data may be up to 253 bytes long. sa_len is only a single byte, so the size of the entire address including sa_len and sa_family must be less than 256 bytes.

This is a common C technique that allows the programmer to consider the last member in a structure to have a variable length.

Each protocol defines a specialized sockaddr structure that duplicates the sa_len and sa_family members but defines the sa_data member as required for that protocol. The address stored in sa_data is a transport address; it contains enough information to identify multiple communication end points on the same host. In Chapter 6 we look at the Internet address structure sockaddr_in, which consists of an IP address and a port number.

osockaddr structure

271-274

The osockaddr structure is the definition of a sockaddr before the 4.3BSD Reno release. Since the length of an address was not explicitly available in this definition, it was not possible to write protocol-independent code to handle variable-length addresses. The desire to include the OSI protocols, which utilize variable-length addresses, motivated the change in the sockaddr definition seen in Net/3. The osockaddr structure is supported for binary compatibility with previously compiled programs.

We have omitted the binary compatibility code from this text.

3.6. ifnet and ifaddr Specialization

The ifnet and ifaddr structures contain general information applicable to all network interfaces and protocol addresses. To accommodate additional device and protocol-specific information, each driver defines and each protocol allocates a specialized version of the ifnet and ifaddr structures. These specialized structures always contain an ifnet or ifaddr structure as their first member so that the common information can be accessed without consideration for the additional specialized information.

Most device drivers handle multiple interfaces of the same type by allocating an array of its specialized ifnet structures, but others (such as the loopback driver) handle only one interface. Figure 3.20 shows the arrangement of specialized ifnet structures for our sample interfaces.

Figure 3.20. Arrangement of ifnet structures within device-dependent structures.

[image: Image]

Notice that each device’s structure begins with an ifnet structure, followed by all the device-dependent data. The loopback interface declares only an ifnet structure, since it doesn’t require any device-dependent data. We show the Ethernet and SLIP driver’s softc structures with the array index of 0 in Figure 3.20 since both drivers support multiple interfaces. The maximum number of interfaces of any given type is limited by a configuration parameter when the kernel is built.

The arpcom structure (Figure 3.26) is common to all Ethernet drivers and contains information for the Address Resolution Protocol (ARP) and Ethernet multicasting. The le_softc structure (Figure 3.25) contains additional information unique to the LANCE Ethernet device driver.

Each protocol stores addressing information for each interface in a list of specialized ifaddr structures. The Internet protocols use an in_ifaddr structure (Section 6.5) and the OSI protocols an iso_ifaddr structure. In addition to protocol addresses, the kernel assigns each interface a link-level address when the interface is initialized, which identifies the interface within the kernel.

The kernel constructs the link-level address by allocating memory for an ifaddr structure and two sockaddr_dl structures—one for the link-level address itself and one for the link-level address mask. The sockaddr_dl structures are accessed by OSI, ARP, and the routing algorithms. Figure 3.21 shows an Ethernet interface with a link-level address, an Internet address, and an OSI address. The construction and initialization of the link-level address (the ifaddr and the two sockaddr_dl structures) is described in Section 3.11.

Figure 3.21. An interface address list containing link-level, Internet, and OSI addresses.

[image: Image]

3.7. Network Initialization Overview

All the structures we have described are allocated and attached to each other during kernel initialization. In this section we give a broad overview of the initialization steps. In later sections we describe the specific device- and protocol-initialization steps.

Some devices, such as the SLIP and loopback interfaces, are implemented entirely in software. These pseudo-devices are represented by a pdevinit structure (Figure 3.22) stored in the global pdevinit array. The array is constructed during kernel configuration. For example:

Figure 3.22. pdevinit structure.

	

 struct pdevinit pdevinit[] = {
 { slattach, 1 },
 { loopattach, 1 },
 { 0, 0 }
 };

--- device.h
120 struct pdevinit {
121 void (*pdev_attach) (int); /* attach function */
122 int pdev_count; /* number of devices */
123 };
--- device.h

120-123

In the pdevinit structures for the SLIP and the loopback interface, pdev_attach is set to slattach and loopattach respectively. When the attach function is called, pdev_count is passed as the only argument and specifies the number of devices to create. Only one loopback device is created but multiple SLIP devices may be created if the administrator configures the SLIP entry accordingly.

The network initialization functions from main are shown in Figure 3.23.

Figure 3.23. main function: network initialization.

[image: Image]

70-96

cpu_startup locates and initializes all the hardware devices connected to the system, including any network interfaces.

97-174

After the kernel initializes the hardware devices, it calls each of the pdev_attach functions contained within the pdevinit array.

175-234

ifinit and domaininit finish the initialization of the network interfaces and protocols and scheduler begins the kernel process scheduler. ifinit and domaininit are described in Chapter 7.

In the following sections we describe the initialization of the Ethernet, SLIP, and loopback interfaces.

3.8. Ethernet Initialization

As part of cpu_startup, the kernel locates any attached network devices. The details of this process are beyond the scope of this text. Once a device is identified, a device-specific initialization function is called. Figure 3.24 shows the initialization functions for our three sample interfaces.

Figure 3.24. Network interface initialization functions.

[image: Image]

Each device driver for a network interface initializes a specialized ifnet structure and calls if_attach to insert the structure into the linked list of interfaces. The le_softc structure shown in Figure 3.25 is the specialized ifnet structure for our sample Ethernet driver (Figure 3.20).

Figure 3.25. le_softc structure.

[image: Image]

le_softc structure

69-95

An array of le_softc structures (with NLE elements) is declared in if_le.c. Each structure starts with sc_ac, an arpcom structure common to all Ethernet interfaces, followed by device-specific members. The sc_if and sc_addr macros simplify access to the ifnet structure and Ethernet address within the arpcom structure, sc_ac, shown in Figure 3.26.

Figure 3.26. arpcom structure.

	
-- if_ether.h
 95 struct arpcom {
 96 struct ifnet ac_if; /* network-visible interface */
 97 u_char ac_enaddr[6]; /* ethernet hardware address */
 98 struct in_addr ac_ipaddr; /* copy of ip address - XXX */
 99 struct ether_multi *ac_multiaddrs; /* list of ether multicast addrs */
100 int ac_multicnt; /* length of ac_multiaddrs list */
101 };
-- if_ether.h

arpcom structure

95-101

The first member of the arpcom structure, ac_if, is an ifnet structure as shown in Figure 3.20. ac_enaddr is the Ethernet hardware address copied by the LANCE device driver from the hardware when the kernel locates the device during cpu_startup. For our sample driver, this occurs in the leattach function (Figure 3.27). ac_ipaddr is the last IP address assigned to the device. We discuss address assignment in Section 6.6, where we’ll see that an interface can have several IP addresses. See also Exercise 6.3. ac_multiaddrs is a list of Ethernet multicast addresses represented by ether_multi structures. ac_multicnt counts the entries in the list. The multicast list is discussed in Chapter 12.

Figure 3.27. leattach function.

[image: Image]

106-115

Figure 3.27 shows the initialization code for the LANCE Ethernet driver.

The kernel calls leattach once for each LANCE card it finds in the system.

The single argument points to an hp_device structure, which contains HP-specific information since this driver is written for an HP workstation.

le points to the specialized ifnet structure for the card (Figure 3.20) and ifp points to the first member of that structure, sc_if, a generic ifnet structure. The device-specific initializations are not included in Figure 3.27 and are not discussed in this text.

Copy the hardware address from the device

126-137

For the LANCE device, the Ethernet address assigned by the manufacturer is copied from the device to sc_addr (which is sc_ac.ac_enaddr—see Figure 3.26) one nibble (4 bits) at a time in this for loop.

lestd is a device-specific table of offsets to locate information relative to hp_addr, which points to LANCE-specific information.

The complete address is output to the console by the printf statement to indicate that the device exists and is is operational.

Initialize the ifnet structure

150-157

leattach copies the device unit number from the hp_device structure into if_unit to identify multiple interfaces of the same type. if_name is "le" for this device; if_mtu is 1500 bytes (ETHERMTU), the maximum transmission unit for Ethernet; if_init, if_reset, if_ioctl, if_output, and if_start all point to device-specific implementations of the generic functions that control the network interface. Section 4.1 describes these functions.

158

All Ethernet devices support IFF_BROADCAST. The LANCE device does not receive its own transmissions, so IFF_SIMPLEX is set. The driver and hardware supports multicasting so IFF_MULTICAST is also set.

159-162

bpfattach registers the interface with BPF and is described with Figure 31.8. The if_attach function inserts the initialized ifnet structure into the linked list of interfaces (Section 3.11).

3.9. SLIP Initialization

The SLIP interface relies on a standard asynchronous serial device initialized within the call to cpu_startup. The SLIP pseudo-device is initialized when main calls slattach indirectly through the pdev_attach pointer in SLIP’s pdevinit structure.

Each SLIP interface is described by an sl_softc structure shown in Figure 3.28.

Figure 3.28. sl_softc structure.

	
--- if_slvar.h
 43 struct sl_softc {
 44 struct ifnet sc_if; /* network-visible interface */
 45 struct ifqueue sc_fastq; /* interactive output queue */
 46 struct tty *sc_ttyp; /* pointer to tty structure */
 47 u_char *sc_mp; /* pointer to next available buf char */
 48 u_char *sc_ep; /* pointer to last available buf char */
 49 u_char *sc_buf; /* input buffer */
 50 u_int sc_flags; /* Figure 3.29 */
 51 u_int sc_escape; /* =1 if last char input was FRAME_ESCAPE */
 52 struct slcompress sc_comp; /* tcp compression data */
 53 caddr_t sc_bpf; /* BPF data */
 54 };
--- if_slvar.h

43-54

As with all interface structures, sl_softc starts with an ifnet structure followed by device-specific information.

In addition to the output queue found in the ifnet structure, a SLIP device maintains a separate queue, sc_fastq, for packets requesting low-delay service—typically generated by interactive applications.

sc_ttyp points to the associated terminal device. The two pointers sc_buf and sc_ep point to the first and last bytes of the buffer for an incoming SLIP packet. sc_mp points to the location for the next incoming byte and is advanced as additional bytes arrive.

The four flags defined by the SLIP driver are shown in Figure 3.29.

Figure 3.29. SLIP if_flags and sc_flags values.

[image: Image]

SLIP defines the three interface flags reserved for the device driver in the ifnet structure and one additional flag defined in the sl_softc structure.

sc_escape is used by the IP encapsulation mechanism for serial lines (Section 5.3), while TCP header compression (Section 29.13) information is kept in sc_comp.

The BPF information for the SLIP device is pointed to by sc_bpf.

The sl_softc structure is initialized by slattach, shown in Figure 3.30.

Figure 3.30. slattach function.

	
--- if_sl.c
135 void
136 slattach()
137 {
138 struct sl_softc *sc;
139 int i = 0;

140 for (sc = sl_softc; i < NSL; sc++) {
141 sc->sc_if.if_name = "sl";
142 sc->sc_if.if_next = NULL;
143 sc->sc_if.if_unit = i++;
144 sc->sc_if.if_mtu = SLMTU;
145 sc->sc_if.if_flags =
146 IFF_POINTOPOINT | SC_AUTOCOMP | IFF_MULTICAST;
147 sc->sc_if.if_type = IFT_SLIP;
148 sc->sc_if.if_ioctl = slioctl;
149 sc->sc_if.if_output = sloutput;
150 sc->sc_if.if_snd.ifq_maxlen = 50;
151 sc->sc_fastq.ifq_maxlen = 32;
152 if_attach(&sc->sc_if);
153 bpfattach(&sc->sc_bpf, &sc->sc_if, DLT_SLIP, SLIP_HDRLEN);
154 }
155 }
--- if_sl.c

135-152

Unlike leattach, which initializes only one interface at a time, the kernel calls slattach once and slattach initializes all the SLIP interfaces. Hardware devices are initialized as they are discovered by the kernel during cpu_startup, while pseudo-devices are initialized all at once when main calls the pdev_attach function for the device. if_mtu for a SLIP device is 296 bytes (SLMTU). This accommodates the standard 20-byte IP header, the standard 20-byte TCP header, and 256 bytes of user data (Section 5.3).

A SLIP network consists of two interfaces at each end of a serial communication line. slattach turns on IFF_POINTOPOINT, SC_AUTOCOMP, and IFF_MULTICAST in if_flags.

The SLIP interface limits the length of its output packet queue, if_snd, to 50 and its own internal queue, sc_fastq, to 32. Figure 3.42 shows that the length of the if_snd queue defaults to 50 (ifqmaxlen) if the driver does not select a length, so the initialization here is redundant.

The Ethernet driver doesn’t set its output queue length explicitly and relies on ifinit (Figure 3.42) to set it to the system default.

if_attach expects a pointer to an ifnet structure so slattach passes the address of sc_if, an ifnet structure and the first member of the sl_softc structure.

A special program, slattach, is run (from the /etc/netstart initialization file) after the kernel has been initialized and joins the SLIP interface and an asynchronous serial device by opening the serial device and issuing ioctl commands (Section 5.3).

153-155

For each SLIP device, slattach calls bpfattach to register the interface with BPF.

3.10. Loopback Initialization

Finally, we show the initialization for the single loopback interface. The loopback interface places any outgoing packets back on an appropriate input queue. There is no hardware device associated with the interface. The loopback pseudo-device is initialized when main calls loopattach indirectly through the pdev_attach pointer in the loopback’s pdevinit structure. Figure 3.31 shows the loopattach function.

Figure 3.31. Loopback interface initialization.

	
--- if_loop.c
 41 void
 42 loopattach(n)
 43 int n;
 44 {
 45 struct ifnet *ifp = &loif;

 46 ifp->if_name = "lo";
 47 ifp->if_mtu = LOMTU;
 48 ifp->if_flags = IFF_LOOPBACK | IFF_MULTICAST;
 49 ifp->if_ioctl = loioctl;
 50 ifp->if_output = looutput;
 51 ifp->if_type = IFT_LOOP;
 52 ifp->if_hdrlen = 0;
 53 ifp->if_addrlen = 0;
 54 if_attach(ifp);
 55 bpfattach(&ifp->if_bpf, ifp, DLT_NULL, sizeof(u_int));
 56 }
--- if_loop.c

41-56

The loopback if_mtu is set to 1536 bytes (LOMTU). In if_flags, IFF_LOOPBACK and IFF_MULTICAST are set. A loopback interface has no link header or hardware address, so if_hdrlen and if_addrlen are set to 0. if_attach finishes the initialization of the ifnet structure and bpfattach registers the loopback interface with BPF.

The loopback MTU should be at least 1576 (40 + 3 x 512) to leave room for a standard TCP/IP header. Solaris 2.3, for example, sets the loopback MTU to 8232 (40 + 8 x 1024). These calculations are biased toward the Internet protocols; other protocols may have default headers larger than 40 bytes.

3.11. if_attach Function

The three interface initialization functions shown earlier each call if_attach to complete initialization of the interface’s ifnet structure and to insert the structure on the list of previously configured interfaces. Also, in if_attach, the kernel initializes and assigns each interface a link-level address. Figure 3.32 illustrates the data structures constructed by if_attach.

Figure 3.32. ifnet list.

[image: Image]

In Figure 3.32, if_attach has been called three times: from leattach with an le_softc structure, from slattach with an sl_softc structure, and from loopattach with a generic ifnet structure. Each time it is called it adds another ifnet structure to the ifnet list, creates a link-level ifaddr structure for the interface (which contains two sockaddr_d1 structures, Figure 3.33), and initializes an entry in the ifnet_addrs array.

Figure 3.33. sockaddr_dl structure.

	
--- if_dl.h
 55 struct sockaddr_dl {
 56 u_char sdl_len; /* Total length of sockaddr */
 57 u_char sdl_family; /* AF_LINK */
 58 u_short sdl_index; /* if != 0, system given index for
 59 interface */
 60 u_char sdl_type; /* interface type (Figure 3.9) */
 61 u_char sdl_nlen; /* interface name length, no trailing 0
 62 reqd. */
 63 u_char sdl_alen; /* link level address length */
 64 u_char sdl_slen; /* link layer selector length */
 65 char sdl_data[12]; /* minimum work area, can be larger;
 66 contains both if name and ll address */
 67 };

 68 #define LLADDR(s) ((caddr_t)((s)->sdl_data + (s)->sdl_nlen))
--- if_dl.h

The structures contained within le_softc[0] and sl_softc[0] are nested as shown in Figure 3.20.

After this initialization, the interfaces are configured only with link-level addresses. IP addresses, for example, are not configured until much later by the ifconfig program (Section 6.6).

The link-level address contains a logical address for the interface and a hardware address if supported by the network (e.g., a 48-bit Ethernet address for le0). The hardware address is used by ARP and the OSI protocols, while the logical address within a sockaddr_dl contains a name and numeric index for the interface within the kernel, which supports a table lookup for converting between an interface index and the associated ifaddr structure (ifa_ifwithnet, Figure 6.32).

The sockaddr_dl structure is shown in Figure 3.33.

55-57

Recall from Figure 3.18 that sdl_len specifies the length of the entire address and sdl_family specifies the address family, in this case AF_LINK.

58

sdl_index identifies the interface within the kernel. In Figure 3.32 the Ethernet interface would have an index of 1, the SLIP interface an index of 2, and the loopback interface an index of 3. The global integer if_index contains the last index assigned by the kernel.

60

sdl_type is initialized from the if_type member of the ifnet structure associated with this datalink address.

61-68

In addition to a numeric index, each interface has a text name formed from the if_name and if_unit members of the ifnet structure. For example, the first SLIP interface is called "sl0" and the second is called "sl1". The text name is stored at the front of the sdl_data array, and sdl_nlen is the length of this name in bytes (3 in our SLIP example).

The datalink address is also stored in the structure. The macro LLADDR converts a pointer to a sockaddr_dl structure into a pointer to the first byte beyond the text name. sdl_alen is the length of the hardware address. For an Ethernet device, the 48-bit hardware address appears in the sockaddr_dl structure beyond the text name. Figure 3.38 shows an initialized sockaddr_dl structure.

Net/3 does not use sdl_slen.

if_attach updates two global variables. The first, if_index, holds the index of the last interface in the system and the second, ifnet_addrs, points to an array of ifaddr pointers. Each entry in the array points to the link-level address of an interface. The array provides quick access to the link-level address for every interface in the system.

The if_attach function is long and consists of several tricky assignment statements. We describe it in four parts, starting with Figure 3.34.

Figure 3.34. if_attach function: assign interface index.

	
-- if.c
 59 void
 60 if_attach(ifp)
 61 struct ifnet *ifp;
 62 {
 63 unsigned socksize, ifasize;
 64 int namelen, unitlen, masklen, ether_output();
 65 char workbuf[12], *unitname;
 66 struct ifnet **p = &ifnet; /* head of interface list */
 67 struct sockaddr_dl *sdl;
 68 struct ifaddr *ifa;
 69 static int if_indexlim = 8; /* size of ifnet_addrs array */
 70 extern void link_rtrequest();

 71 while (*p) /* find end of interface list */
 72 p = &((*p)->if_next);
 73 *p = ifp;
 74 ifp->if_index = ++if_index; /* assign next index */

 75 /* resize ifnet_addrs array if necessary */
 76 if (ifnet_addrs == 0 || if_index >= if_indexlim) {
 77 unsigned n = (if_indexlim <<= 1) * sizeof(ifa);
 78 struct ifaddr **q = (struct ifaddr **)
 79 malloc(n, M_IFADDR, M_WAITOK);

 80 if (ifnet_addrs) {
 81 bcopy((caddr_t) ifnet_addrs, (caddr_t) q, n / 2);
 82 free((caddr_t) ifnet_addrs, M_IFADDR);
 83 }
 84 ifnet_addrs = q;
 85 }
-- if.c

59-74

if_attach has a single argument, ifp, a pointer to the ifnet structure that has been initialized by a network device driver. Net/3 keeps all the ifnet structures on a linked list headed by the global pointer ifnet. The while loop locates the end of the list and saves the address of the null pointer at the end of the list in p. After the loop, the new ifnet structure is attached to the end of the ifnet list, if_index is incremented, and the new index is assigned to ifp>if_index.

C Language Note: Notice that the same name, ifnet, is used for the variable and the type (in this case a structure name) of the variable. This is legal C and we’ll see it a lot in Net/3.

Resize ifnet_addrs array if necessary

75-85

The first time through if_attach, the ifnet_addrs array doesn’t exist so space for 16 entries (16 = 8 << 1) is allocated. When the array becomes full, a new array of twice the size is allocated and the entries from the old array are copied to the new array.

if_indexlim is a static variable private to if_attach.
if_indexlim is updated by the <<= operator.

The malloc and free functions in Figure 3.34 are not the standard C library functions of the same name. The second argument in the kernel versions specifies a type, which is used by optional diagnostic code in the kernel to detect programming errors. If the third argument to malloc is M_WAITOK, the function blocks the calling process if it needs to wait for free memory to become available. If the third argument is M_DONTWAIT, the function does not block and returns a null pointer when no memory is available.

The next section of if_attach, shown in Figure 3.35, prepares a text name for the interface and computes the size of the link-level address.

Figure 3.35. if_attach function: compute size of link-level address.

	
--- if.c
 86 /* create a Link Level name for this device */
 87 unitname = sprint_d((u_int) ifp->if_unit, workbuf, sizeof(workbuf));
 88 namelen = strlen(ifp->if_name);
 89 unitlen = strlen(unitname);

 90 /* compute size of sockaddr_dl structure for this device */
 91 #define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
 92 masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) +
 93 unitlen + namelen;
 94 socksize = masklen + ifp->if_addrlen;
 95 #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
 96 socksize = ROUNDUP(socksize);
 97 if (socksize < sizeof(*sdl))
 98 socksize = sizeof(*sdl);
 99 ifasize = sizeof(*ifa) + 2 * socksize;
--- if.c

Create link-level name and compute size of link-level address

86-99

if_attach constructs the name of the interface from if_unit and if_name. The function sprint_d converts the numeric value of if_unit to a string stored in workbuf. masklen is the number of bytes occupied by the information before sdl_data in the sockaddr_dl array plus the size of the text name for the interface (namelen + unitlen). The function rounds socksize, which is masklen plus the hardware address length (if_addrlen), up to the boundary of a long integer (ROUNDUP). If this is less than the size of a sockaddr_dl structure, the standard sockaddr_dl structure is used, ifasize is the size of an ifaddr structure plus two times socksize, so it can hold the sockaddr_dl structures.

In the next section, if_attach allocates and links the structures together, as shown in Figure 3.36.

Figure 3.36. The link-level address and mask assigned during if_attach.

[image: Image]

In Figure 3.36 there is a gap between the ifaddr structure and the two sockaddr_dl structures to illustrate that they are allocated in a contiguous area of memory but that they are not defined by a single C structure.

The organization shown in Figure 3.36 is repeated in the in_ifaddr structure; the pointers in the generic ifaddr portion of the structure point to specialized sockaddr structures allocated in the device-specific portion of the structure, in this case, sockaddr_dl structures. Figure 3.37 shows the initialization of these structures.

Figure 3.37. if_attach function: allocate and initialize link-level address.

	
--- if.c
100 if (ifa = (struct ifaddr *) malloc(ifasize, M_IFADDR, M_WAITOK)) {
101 bzero((caddr_t) ifa, ifasize);

102 /* First: initialize the sockaddr_dl address */
103 sdl = (struct sockaddr_dl *) (ifa + 1);
104 sdl->sdl_len = socksize;
105 sdl->sdl_family = AF_LINK;
106 bcopy(ifp->if_name, sdl->sdl_data, namelen);
107 bcopy(unitname, namelen + (caddr_t) sdl->sdl_data, unitlen);
108 sdl->sdl_nlen = (namelen += unitlen);
109 sdl->sdl_index = ifp->if_index;
110 sdl->sdl_type = ifp->if_type;
111 ifnet_addrs[if_index - 1] = ifa;
112 ifa->ifa_ifp = ifp;
113 ifa->ifa_next = ifp->if_addrlist;
114 ifa->ifa_rtrequest = link_rtrequest;
115 ifp->if_addrlist = ifa;
116 ifa->ifa_addr = (struct sockaddr *) sdl;

117 /* Second: initialize the sockaddr_dl mask */
118 sdl = (struct sockaddr_dl *) (socksize + (caddr_t) sdl);
119 ifa->ifa_netmask = (struct sockaddr *) sdl;
120 sdl->sdl_len = masklen;
121 while (namelen != 0)
122 sdl->sdl_data[--namelen] = 0xff;
123 }
--- if.c

The address

100-116

If enough memory is available, bzero fills the new structure with 0s and sdl points to the first sockaddr_dl just after the ifnet structure. If no memory is available, the code is skipped.

sdl_len is set to the length of the sockaddr_dl structure, and sdl_family is set to AF_LINK. A text name is constructed within sdl_data from if_name and unitname, and the length is saved in sdl_nlen. The interface’s index is copied into sdl_index as well as the interface type into sdl_type. The allocated structure is inserted into the ifnet_addrs array and linked to the ifnet structure by ifa_ifp and ifa_addrlist. Finally, the sockaddr_dl structure is connected to the ifnet structure with ifa_addr. Ethernet interfaces replace the default function, link_rtrequest with arp_rtrequest. The loopback interface installs loop_rtrequest. We describe ifa_rtrequest and arp_rtrequest in Chapters 19 and 21. link_rtrequest and loop_rtrequest are left for readers to investigate on their own and link_rtrequest in Chapter 18. This completes the initialization of the first sockaddr_dl structure.

The mask

117-123

The second sockaddr_dl structure is a bit mask that selects the text name that appears in the first structure. ifa_netmask from the ifaddr structure points to the mask structure (which in this case selects the interface text name and not a network mask). The while loop turns on the bits in the bytes corresponding to the name.

Figure 3.38 shows the two initialized sockaddr_dl structures for our example Ethernet interface, where if_name is "le", if_unit is 0, and if_index is 1.

Figure 3.38. The initialized Ethernet sockaddr_dl structures (sdl_ prefix omitted).

[image: Image]

In Figure 3.38, the address is shown after ether_ifattach has done additional initialization of the structure (Figure 3.41).

Figure 3.39 shows the structures after the first interface has been attached by if_attach.

Figure 3.39. The ifnet and sockaddr_dl structures after if_attach is called for the first time.

[image: Image]

At the end of if_attach, the ether_ifattach function is called for Ethernet devices, as shown in Figure 3.40.

Figure 3.40. if_attach function: Ethernet initialization.

	
--- if.c
124 /* XXX -- Temporary fix before changing 10 ethernet drivers */
125 if (ifp->if_output == ether_output)
126 ether_ifattach(ifp);
127 }
--- if.c

124-127

ether_ifattach isn’t called earlier (from leattach, for example) because it copies the Ethernet hardware address into the sockaddr_dl allocated by if_attach.

The XXX comment indicates that the author found it easier to insert the code here once than to modify all the Ethernet drivers.

ether_ifattach function

The ether_ifattach function performs the ifnet structure initialization common to all Ethernet devices.

Figure 3.41. ether_ifattach function.

	
--- if_ethersubr.c
338 void
339 ether_ifattach(ifp)
340 struct ifnet *ifp;
341 {
342 struct ifaddr *ifa;
343 struct sockaddr_dl *sdl;

344 ifp->if_type = IFT_ETHER;
345 ifp->if_addrlen = 6;
346 ifp->if_hdrlen = 14;
347 ifp->if_mtu = ETHERMTU;
348 for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next)
349 if ((sdl = (struct sockaddr_dl *) ifa->ifa_addr) &&
350 sdl->sdl_family == AF_LINK) {
351 sdl->sdl_type = IFT_ETHER;
352 sdl->sdl_alen = ifp->if_addrlen;
353 bcopy((caddr_t) ((struct arpcom *) ifp)->ac_enaddr,
354 LLADDR(sdl), ifp->if_addrlen);
355 break;
356 }
357 }
--- if_ethersubr.c

338-357

For an Ethernet device, if_type is IFT_ETHER, the hardware address is 6 bytes long, the entire Ethernet header is 14 bytes in length, and the Ethernet MTU is 1500 (ETHERMTU).

The MTU was already assigned by leattach, but other Ethernet device drivers may not have performed this initialization.

Section 4.3 discusses the Ethernet frame organization in more detail. The for loop locates the link-level address for the interface and then initializes the Ethernet hardware address information in the sockaddr_dl structure. The Ethernet address that was copied into the arpcom structure during system initialization is now copied into the link-level address.

3.12. ifinit Function

After the interface structures are initialized and linked together, main (Figure 3.23) calls ifinit, shown in Figure 3.42.

Figure 3.42. ifinit function.

	
--- if.c
 43 void
 44 ifinit()
 45 {
 46 struct ifnet *ifp;

 47 for (ifp = ifnet; ifp; ifp = ifp->if_next)
 48 if (ifp->if_snd.ifq_maxlen == 0)
 49 ifp->if_snd.ifq_maxlen = ifqmaxlen; /* set default length */
 50 if_slowtimo(0);
 51 }
--- if.c

43-51

The for loop traverses the interface list and sets the maximum size of each interface output queue to 50 (ifqmaxlen) if it hasn’t already been set by the interface’s attach function.

An important consideration for the size of the output queue is the number of packets required to send a maximum-sized datagram. For Ethernet, if a process calls sendto with 65,507 bytes of data, it is fragmented into 45 fragments and each fragment is put onto the interface output queue. If the queue were much smaller, the process could never send that large a datagram, as the queue wouldn’t have room.

if_slowtimo starts the interface watchdog timers. When an interface timer expires, the kernel calls the watchdog function for the interface. An interface can reset the timer periodically to prevent the watchdog function from being called, or set if_timer to 0 if the watchdog function is not needed. Figure 3.43 shows the if_slowtimo function.

Figure 3.43. if_slowtimo function.

	
--- if.c
338 void
339 if_slowtimo(arg)
340 void *arg;
341 {
342 struct ifnet *ifp;
343 int s = splimp();

344 for (ifp = ifnet; ifp; ifp = ifp->if_next) {
345 if (ifp->if_timer == 0 || --ifp->if_timer)
346 continue;
347 if (ifp->if_watchdog)
348 (*ifp->if_watchdog) (ifp->if_unit);
349 }
350 splx(s);
351 timeout(if_slowtimo, (void *) 0, hz / IFNET_SLOWHZ);
352 }
--- if.c

338-343

The single argument, arg, is not used but is required by the prototype for the slow timeout functions (Section 7.4).

344-352

if_slowtimo ignores interfaces with if_timer equal to 0; if if_timer does not equal 0, if_slowtimo decrements if_timer and calls the if_watchdog function associated with the interface when the timer reaches 0. Packet processing is blocked by splimp during if_slowtimo. Before returning, ip_slowtimo calls timeout to schedule a call to itself in hz/IFNET_SLOWHZ clock ticks, hz is the number of clock ticks that occur in 1 second (often 100). It is set at system initialization and remains constant thereafter. Since IFNET_SLOWHZ is defined to be 1, the kernel calls if_slowtimo once every hz clock ticks, which is once per second.

The functions scheduled by the timeout function are called back by the kernel’s callout function. See [Leffler et al. 1989] for additional details.

3.13 Summary

In this chapter we have examined the ifnet and ifaddr structures that are allocated for each network interface found at system initialization time. The ifnet structures are linked into the ifnet list. The link-level address for each interface is initialized, attached to the ifnet structure’s address list, and entered into the if_addrs array.

We discussed the generic sockaddr structure and its sa_family, and sa_len members, which specify the type and length of every address. We also looked at the initialization of the sockaddr_dl structure for a link-level address.

In this chapter, we introduced the three example network interfaces that we use throughout the book.

Exercises

3.1 The netstat program on many Unix systems lists network interfaces and their configuration. Try netstat -i on a system you have access to. What are the names (if_name) and maximum transmission units (if_mtu) of the network interfaces?

3.2 In if_slowtimo (Figure 3.43) the splimp and splx calls appear outside the loop. What are the advantages and disadvantages of this arrangement compared with placing the calls within the loop?

3.3 Why is SLIP’s interactive queue shorter than SLIP’s standard output queue?

3.4 Why aren’t if_hdrlen and if_addrlen initialized in slattach?

3.5 Draw a picture similar to Figure 3.38 for the SLIP and loopback devices.

Chapter 4. Interfaces: Ethernet

4.1. Introduction

In Chapter 3 we discussed the data structures used by all interfaces and the initialization of those data structures. In this chapter we show how the Ethernet device driver operates once it has been initialized and is receiving and transmitting frames. The second half of this chapter covers the generic ioctl commands for configuring network devices. Chapter 5 covers the SLIP and loopback drivers.

We won’t go through the entire source code for the Ethernet driver, since it is around 1,000 lines of C code (half of which is concerned with the hardware details of one particular interface card), but we do look at the device-independent Ethernet code and how the driver interfaces with the rest of the kernel.

If the reader is interested in going through the source code for a driver, the Net/3 release contains the source code for many different interfaces. Access to the interface’s technical specifications is required to understand the device-specific commands. Figure 4.1 shows the various drivers provided with Net/3, including the LANCE driver, which we discuss in this text.

Figure 4.1. Ethernet drivers available in Net/3.

[image: Image]

Network device drivers are accessed through the seven function pointers in the ifnet structure (Figure 3.6). Figure 4.2 lists the entry points to our three example drivers.

Figure 4.2. Interface functions for the example drivers.

[image: Image]

Input functions are not included in Figure 4.2 as they are interrupt-driven for network devices. The configuration of interrupt service routines is hardware-dependent and beyond the scope of this book. We’ll identify the functions that handle device interrupts, but not the mechanism by which these functions are invoked.

Only the if_output and if_ioctl functions are called with any consistency. if_init, if_done, and if_reset are never called or only called from device-specific code (e.g., leinit is called directly by leioctl). if_start is called only by the ether_output function.

4.2. Code Introduction

The code for the Ethernet device driver and the generic interface ioctls resides in two headers and three C files, which are listed in Figure 4.3.

Figure 4.3. Files discussed in this chapter.

[image: Image]

Global Variables

The global variables shown in Figure 4.4 include the protocol input queues, the LANCE interface structure, and the Ethernet broadcast address.

Figure 4.4. Global variables introduced in this chapter.

[image: Image]

le_softc is an array, since there can be several Ethernet interfaces.

Statistics

The statistics collected in the ifnet structure for each interface are described in Figure 4.5.

Figure 4.5. Statistics maintained in the ifnet structure.

[image: Image]

Figure 4.6 shows some sample output from the netstat command, which includes statistics from the ifnet structure.

Figure 4.6. Sample interface statistics.

[image: Image]

The first column contains if_name and if_unit displayed as a string. If the interface is shut down (IFF_UP is not set), an asterisk appears next to the name. In Figure 4.6, s10, s12, and s13 are shut down.

The second column shows if_mtu. The output under the “Network” and “Address” headings depends on the type of address. For link-level addresses, the contents of sdl_data from the sockaddr_dl structure are displayed. For IP addresses, the subnet and unicast addresses are displayed. The remaining columns are if_ipackets, if_ierrors, if_opackets, if_oerrors, and if_collisions.

[image: Image] Approximately 3% of the packets collide on output (942,798/29,234,729 = 3%).

[image: Image] The SLIP output queues are never full on this machine since there are no output errors for the SLIP interfaces.

[image: Image] The 12 Ethernet output errors are problems detected by the LANCE hardware during transmission. Some of these errors may also be counted as collisions.

[image: Image] The 814 Ethernet input errors are also problems detected by the hardware, such as packets that are too short or that have invalid checksums.

SNMP Variables

Figure 4.7 shows a single interface entry object (ifEntry) from the SNMP interface table (ifTable), which is constructed from the ifnet structures for each interface.

Figure 4.7. Variables in interface table: ifTable.

[image: Image]

The ISODE SNMP agent derives ifSpeed from if_type and maintains an internal variable for ifAdminStatus. The agent reports ifLastChange based on if_lastchange in the ifnet structure but relative to the agent’s boot time, not the boot time of the system. The agent returns a null variable for ifSpecific.

4.3. Ethernet Interface

Net/3 Ethernet device drivers all follow the same general design. This is common for most Unix device drivers because the writer of a driver for a new interface card often starts with a working driver for another card and modifies it. In this section we’ll provide a brief overview of the Ethernet standard and outline the design of an Ethernet driver. We’ll refer to the LANCE driver to illustrate the design.

Figure 4.8 illustrates Ethernet encapsulation of an IP packet.

Figure 4.8. Ethernet encapsulation of an IP packet.

[image: Image]

Ethernet frames consist of 48-bit destination and source addresses followed by a 16-bit type field that identifies the format of the data carried by the frame. For IP packets, the type is 0x0800 (2048). The frame is terminated with a 32-bit CRC (cyclic redundancy check), which detects errors in the frame.

We are describing the original Ethernet framing standard published in 1982 by Digital Equipment Corp., Intel Corp., and Xerox Corp., as it is the most common form used today in TCP/IP networks. An alternative form is specified by the IEEE (Institute of Electrical and Electronics Engineers) 802.2 and 802.3 standards. Section 2.2 in Volume 1 describes the differences between the two forms. See [Stallings 1987] for more information on the IEEE standards.

Encapsulation of IP packets for Ethernet is specified by RFC 894 [Hornig 1984] and for 802.3 networks by RFC 1042 [Postel and Reynolds 1988].

We will refer to the 48-bit Ethernet addresses as hardware addresses. The translation from IP to hardware addresses is done by the ARP protocol described in Chapter 21 (RFC 826 [Plummer 1982]) and from hardware to IP addresses by the RARP protocol (RFC 903 [Finlayson et al. 1984]). Ethernet addresses come in two types, unicast and multicast. A unicast address specifies a single Ethernet interface, and a multicast address specifies a group of Ethernet interfaces. An Ethernet broadcast is a multicast received by all interfaces. Ethernet unicast addresses are assigned by the device’s manufacturer, although some devices allow the address to be changed by software.

Some DECNET protocols require the hardware addresses of a multihomed host to be identical, so DECNET must be able to change the Ethernet unicast address of a device.

Figure 4.9 illustrates the data structures and functions that are part of the Ethernet interface.

Figure 4.9. Ethernet device driver.

[image: Image]

In figures, a function is identified by an ellipse (leintr), data structures by a box (le_softc[0]), and a group of functions by a rounded box (ARP protocol).

In the top left corner of Figure 4.9 we show the input queues for the OSI Connectionless Network Layer (clnl) protocol, IP, and ARP. We won’t say anything more about clnlintrq, but include it to emphasize that ether_input demultiplexes Ethernet frames into multiple protocol queues.

Technically, OSI uses the term Connectionless Network Protocol (CLNP versus CLNL) but we show the terminology used by the Net/3 code. The official standard for CLNP is ISO 8473. [Stallings 1993] summarizes the standard.

The le_softc interface structure is in the center of Figure 4.9. We are interested only in the ifnet and arpcom portions of the structure. The remaining portions are specific to the LANCE hardware. We showed the ifnet structure in Figure 3.6 and the arpcom structure in Figure 3.26.

leintr Function

We start with the reception of Ethernet frames. For now, we assume that the hardware has been initialized and the system has been configured so that leintr is called when the interface generates an interrupt. In normal operation, an Ethernet interface receives frames destined for its unicast hardware address and for the Ethernet broadcast address. When a complete frame is available, the interface generates an interrupt and the kernel calls leintr.

In Chapter 12, we’ll see that many Ethernet interfaces may be configured to receive Ethernet multicast frames (other than broadcasts).

Some interfaces can be configured to run in promiscuous mode in which the interface receives all frames that appear on the network. The tcpdump program described in Volume 1 can take advantage of this feature using BPF.

leintr examines the hardware and, if a frame has arrived, calls leread to transfer the frame from the interface to a chain of mbufs (with m_devget). If the hardware reports that a frame transmission has completed or an error has been detected (such as a bad checksum), leintr updates the appropriate interface statistics, resets the hardware, and calls lestart, which attempts to transmit another frame.

All Ethernet device drivers deliver their received frames to ether_input for further processing. The mbuf chain constructed by the device driver does not include the Ethernet header, so it is passed as a separate argument to ether_input. The ether_header structure is shown in Figure 4.10.

Figure 4.10. The ether_header structure.

	

-- if_ether.h
 38 struct ether_header {
 39 u_char ether_dhost[6]; /* Ethernet destination address */
 40 u_char ether_shost[6]; /* Ethernet source address */
 41 u_short ether_type; /* Ethernet frame type */
 42 };
-- if_ether.h

38-42

The Ethernet CRC is not generally available. It is computed and checked by the interface hardware, which discards frames that arrive with an invalid CRC. The Ethernet device driver is responsible for converting ether_type between network and host byte order. Outside of the driver, it is always in host byte order.

leread Function

The leread function (Figure 4.11) starts with a contiguous buffer of memory passed to it by leintr and constructs an ether_header structure and a chain of mbufs. The chain contains the data from the Ethernet frame. leread also passes the incoming frame to BPF.

Figure 4.11. leread function.

[image: Image]

[image: Image]

528-539

The leintr function passes three arguments to leread:unit, which identifies the particular interface card that received a frame; buf, which points to the received frame; and len, the number of bytes in the frame (including the header and the CRC).

The function constructs the ether_header structure by pointing et to the front of the buffer and converting the Ethernet type value to host byte order.

540-551

The number of data bytes is computed by subtracting the sizes of the Ethernet header and the CRC from len. Runt packets, which are too short to be a valid Ethernet frame, are logged, counted, and discarded.

552-557

Next, the destination address is examined to determine if it is the Ethernet broadcast or an Ethernet multicast address. The Ethernet broadcast address is a special case of an Ethernet multicast address; it has every bit set. etherbroadcastaddr is an array defined as

 u_char etherbroadcastaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };

This is a convenient way to define a 48-bit value in C. This technique works only if we assume that characters are 8-bit values something that isn’t guaranteed by ANSI C.

If bcmp reports that etherbroadcastaddr and ether_dhost are the same, the M_BCAST flag is set.

An Ethernet multicast addresses is identified by the low-order bit of the most significant byte of the address. Figure 4.12 illustrates this.

Figure 4.12. Testing for an Ethernet multicast address.

[image: Image]

In Chapter 12 we’ll see that not all Ethernet multicast frames are IP multicast datagrams and that IP must examine the packet further.

If the multicast bit is on in the address, M_MCAST is set in the mbuf header. The order of the tests is important: first ether_input compares the entire 48-bit address to the Ethernet broadcast address, and if they are different it checks the low-order bit of the most significant byte to identify an Ethernet multicast address (Exercise 4.1).

558-573

If the interface is tapped by BPF, the frame is passed directly to BPF by calling bpf_tap. We’ll see that for SLIP and the loopback interfaces, a special BPF frame is constructed since those networks do not have a link-level header (unlike Ethernet).

When an interface is tapped by BPF, it can be configured to run in promiscuous mode and receive all Ethernet frames that appear on the network instead of the subset of frames normally received by the hardware. The packet is discarded by leread if it was sent to a unicast address that does not match the interface’s address.

574-585

m_devget (Section 2.6) copies the data from the buffer passed to leread to an mbuf chain it allocates. The first argument to m_devget points to the first byte after the Ethernet header, which is the first data byte in the frame. If m_devget runs out of memory, leread returns immediately. Otherwise the broadcast and multicast flags are set in the first mbuf in the chain, and ether_input processes the packet.

ether_input Function

ether_input, shown in Figure 4.13, examines the ether_header structure to determine the type of data that has been received and then queues the received packet for processing.

Figure 4.13. ether_input function.

[image: Image]
[image: Image]

Broadcast and multicast recognition

196-209

The arguments to ether_input are ifp, a pointer to the receiving interface’s ifnet structure; eh, a pointer to the Ethernet header of the received packet; and m, a pointer to the received packet (excluding the Ethernet header).

Any packets that arrive on an inoperative interface are silently discarded. The interface may not have been configured with a protocol address, or may have been disabled by an explicit request from the ifconfig(8) program (Section 6.6).

210-218

The variable time is a global timeval structure that the kernel maintains with the current time and date, as the number of seconds and microseconds past the Unix Epoch (00:00:00 January 1, 1970, Coordinated Universal Time [UTC]). A brief discussion of UTC can be found in [Itano and Ramsey 1993]. We’ll encounter the timeval structure throughout the Net/3 sources:

struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* and microseconds */
};

ether_input updates if_lastchange with the current time and increments if_ibytes by the size of the incoming packet (the packet length plus the 14-byte Ethernet header).

Next, ether_input repeats the tests done by leread to determine if the packet is a broadcast or multicast packet.

Some kernels may not have been compiled with the BPF code, so the test must also be done in ether_input.

Link-level demultiplexing

219-227

ether_input jumps according to the Ethernet type field. For an IP packet, schednetisr schedules an IP software interrupt and the IP input queue, ipintrq, is selected. For an ARP packet, the ARP software interrupt is scheduled and arpintrq is selected.

An isr is an interrupt service routine.

In previous BSD releases, ARP packets were processed immediately while at the network interrupt level by calling arpinput directly. By queueing the packets, they can be processed at the software interrupt level.

If other Ethernet types are to be handled, a kernel programmer would add additional cases here. Alternately, a process can receive other Ethernet types using BPF. For example, RARP servers are normally implemented using BPF under Net/3.

228-307

The default case processes unrecognized Ethernet types or packets that are encapsulated according to the 802.3 standard (such as the OSI connectionless transport). The Ethernet type field and the 802.3 length field occupy the same position in an Ethernet frame. The two encapsulations can be distinguished because the range of types in an Ethernet encapsulation is distinct from the range of lengths in the 802.3 encapsulation (Figure 4.14). We have omitted the OSI code. [Stallings 1993] contains a description of the OSI link-level protocols.

Figure 4.14. Ethernet type and 802.3 length fields.

[image: Image]

There are many additional Ethernet type values that are assigned to various protocols; we don’t show them in Figure 4.14. RFC 1700 [Reynolds and Postel 1994] contains a list of the more common types.

Queue the packet

308-315

Finally, ether_input places the packet on the selected queue or discards the packet if the queue is full. We’ll see in Figures 7.23 and 21.16 that the default limit for the IP and ARP input queues is 50 (ipqmaxlen) packets each.

When ether_input returns, the device driver tells the hardware that it is ready to receive the next packet, which may already be present in the device. The packet input queues are processed when the software interrupt scheduled by schednetisr occurs (Section 1.12). Specifically, ipintr is called to process the packets on the IP input queue, and arpintr is called to process the packets on the ARP input queue.

ether_output Function

We now examine the output of Ethernet frames, which starts when a network-level protocol such as IP calls the if_output function, specified in the interface’s ifnet structure. The if_output function for all Ethernet devices is ether_output (Figure 4.2). ether_output takes the data portion of an Ethernet frame, encapsulates it with the 14-byte Ethernet header, and places it on the interface’s send queue. This is a large function so we describe it in four parts:

[image: Image] verification,

[image: Image] protocol-specific processing,

[image: Image] frame construction, and

[image: Image] interface queueing.

Figure 4.15 includes the first part of the function.

Figure 4.15. ether_output function: verification.

[image: Image]

[image: Image]

49-64

The arguments to ether_output are ifp, which points to the outgoing interface’s ifnet structure; m0, the packet to send; dst, the destination address of the packet; and rt0, routing information.

65-67

The macro senderr is called throughout ether_output.

#define senderr(e) { error = (e); goto bad;}

senderr saves the error code and jumps to bad at the end of the function, where the packet is discarded and ether_output returns error.

If the interface is up and running, ether_output updates the last change time for the interface. Otherwise, it returns ENETDOWN.

Host route

68-74

rt0 points to the routing entry located by ip_output and passed to ether_output. If ether_output is called from BPF, rt0 can be null, in which case control passes to the code in Figure 4.16. Otherwise, the route is verified. If the route is not valid, the routing tables are consulted and EHOSTUNREACH is returned if a route cannot be located. At this point, rt0 and rt point to a valid route for the next-hop destination.

Figure 4.16. ether_output function: network protocol processing.

[image: Image]

Gateway route

75-85

If the next hop for the packet is a gateway (versus a final destination), a route to the gateway is located and pointed to by rt. If a gateway route cannot be found, EHOSTUNREACH is returned. At this point, rt points to the route for the next-hop destination. The next hop may be a gateway or the final destination.

Avoid ARP flooding

86-90

The RTF_REJECT flag is enabled by the ARP code to discard packets to the destination when the destination is not responding to ARP requests. This is described with Figure 21.24.

ether_output processing continues according to the destination address of the packet. Since Ethernet devices respond only to Ethernet addresses, to send a packet, ether_output must find the Ethernet address that corresponds to the IP address of the next-hop destination. The ARP protocol (Chapter 21) implements this translation. Figure 4.16 shows how the driver accesses the ARP protocol.

IP output

91-101

ether_output jumps according to sa_family in the destination address. We show only the AF_INET, AF_ISO, and AF_UNSPEC cases in Figure 4.16 and have omitted the code for AF_ISO.

The AF_INET case calls arpresolve to determine the Ethernet address corresponding to the destination IP address. If the Ethernet address is already in the ARP cache, arpresolve returns 1 and ether_output proceeds. Otherwise this IP packet is held by ARP, and when ARP determines the address, it calls ether_output from the function in_arpinput.

Assuming the ARP cache contains the hardware address, ether_output checks if the packet is going to be broadcast and if the interface is simplex (i.e., it can’t receive its own transmissions). If both tests are true, m_copy makes a copy of the packet. After the switch, the copy is queued as if it had arrived on the Ethernet interface. This is required by the definition of broadcasting; the sending host must receive a copy of the packet.

We’ll see in Chapter 12 that multicast packets may also be looped back to be received on the output interface.

Explicit Ethernet output

142-146

Some protocols, such as ARP, need to specify the Ethernet destination and type explicitly. The address family constant AF_UNSPEC indicates that dst points to an Ethernet header. bcopy duplicates the destination address in edst and assigns the Ethernet type to type. It isn’t necessary to call arpresolve (as for AF_INET) because the Ethernet destination address has been provided explicitly by the caller.

Unrecognized address families

147-151

Unrecognized address families generate a console message and ether_output returns EAFNOSUPPORT.

In the next section of ether_output, shown in Figure 4.17, the Ethernet frame is constructed.

Figure 4.17. ether_output function: Ethernet frame construction.

	

-- if_ethersubr.c
152 if (mcopy)
153 (void) looutput(ifp, mcopy, dst, rt);
154 /*
155 * Add local net header. If no space in first mbuf,
156 * allocate another.
157 */
158 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
159 if (m == 0)
160 senderr(ENOBUFS);
161 eh = mtod(m, struct ether_header *);
162 type = htons((u_short) type);
163 bcopy((caddr_t) &type, (caddr_t) &eh->ether_type,
164 sizeof(eh->ether_type));
165 bcopy((caddr_t)edst, (caddr_t)eh->ether_dhost, sizeof (edst));
166 bcopy((caddr_t)ac->ac_enaddr, (caddr_t)eh->ether_shost,
167 sizeof(eh->ether_shost));
-- if_ethersubr.c

Ethernet header

152-167

If the code in the switch made a copy of the packet, the copy is processed as if it had been received on the output interface by calling looutput. The loopback interface and looutput are described in Section 5.4.

M_PREPEND ensures that there is room for 14 bytes at the front of the packet.

Most protocols arrange to leave room at the front of the mbuf chain so that M_PREPEND needs only to adjust some pointers (e.g., sosend for UDP output in Section 16.7 and igmp_sendreport in Section 13.6).

ether_output forms the Ethernet header from type, edst, and ac_enaddr (Figure 3.26). ac_enaddr is the unicast Ethernet address associated with the output interface and is the source Ethernet address for all frames transmitted on the interface. ether_output overwrites the source address the caller may have specified in the ether_header structure with ac_enaddr. This makes it more difficult to forge the source address of an Ethernet frame.

At this point, the mbuf contains a complete Ethernet frame except for the 32-bit CRC, which is computed by the Ethernet hardware during transmission. The code shown in Figure 4.18 queues the frame for transmission by the device.

Figure 4.18. ether_output function: output queueing.

	

--- if_ethersubr.c
168 s = splimp();
169 /*
170 * Queue message on interface, and start output if interface
171 * not yet active.
172 */
173 if (IF_QFULL(&ifp->if_snd)) {
174 IF_DROP(&ifp->if_snd);
175 splx(s);
176 senderr(ENOBUFS);
177 }
178 IF_ENQUEUE(&ifp->if_snd, m);
179 if ((ifp->if_flags & IFF_OACTIVE) == 0)
180 (*ifp->if_start) (ifp);
181 splx(s);
182 ifp->if_obytes += len + sizeof(struct ether_header);
183 if (m->m_flags & M_MCAST)
184 ifp->if_omcasts++;
185 return (error);

186 bad:
187 if (m)
188 m_freem(m);
189 return (error);
190 }
--- if_ethersubr.c

168-185

If the output queue is full, ether_output discards the frame and returns ENOBUFS. If the output queue is not full, the frame is placed on the interface’s send queue, and the interface’s if_start function transmits the next frame if the interface is not already active.

186-190

The senderr macro jumps to bad where the frame is discarded and an error code is returned.

lestart Function

The lestart function dequeues frames from the interface output queue and arranges for them to be transmitted by the LANCE Ethernet card. If the device is idle, the function is called to begin transmitting frames. An example appears at the end of ether_output (Figure 4.18), where lestart is called indirectly through the interface’s if_start function.

If the device is busy, it generates an interrupt when it completes transmission of the current frame. The driver calls lestart to dequeue and transmit the next frame. Once started, the protocol layer can queue frames without calling lestart since the driver dequeues and transmits frames until the queue is empty.

Figure 4.19 shows the lestart function. lestart assumes splimp has been called to block any device interrupts.

Figure 4.19. lestart function.

[image: Image]

Interface must be initialized

325-333

If the interface is not initialized, lestart returns immediately.

Dequeue frame from output queue

335-342

If the interface is initialized, the next frame is removed from the queue. If the interface output queue is empty, lestart returns.

Transmit frame and pass to BPF

343-350

leput copies the frame in m to the hardware buffer pointed to by the first argument to leput. If the interface is tapped by BPF, the frame is passed to bpf_tap. We have omitted the device-specific code that initiates the transmission of the frame from the hardware buffer.

Repeat if device is ready for more frames

359

lestart stops passing frames to the device when le->sc_txcnt equals LETBUF. Some Ethernet interfaces can queue more than one outgoing Ethernet frame. For the LANCE driver, LETBUF is the number of hardware transmit buffers available to the driver, and le->sc_txcnt keeps track of how many of the buffers are in use.

Mark device as busy

360-362

Finally, lestart turns on IFF_OACTIVE in the ifnet structure to indicate the device is busy transmitting frames.

There is an unfortunate side effect to queueing multiple frames in the device for transmission. According to [Jacobson 1988a], the LANCE chip is able to transmit queued frames with very little delay between frames. Unfortunately, some [broken] Ethernet devices drop the frames because they can’t process the incoming data fast enough.

This interacts badly with an application such as NFS that sends large UDP datagrams (often greater than 8192 bytes) that are fragmented by IP and queued in the LANCE device as multiple Ethernet frames. Fragments are lost on the receiving side, resulting in many incomplete datagrams and high delays as NFS retransmits the entire UDP datagram.

Jacobson noted that Sun’s LANCE driver only queued one frame at a time, perhaps to avoid this problem.

4.4. ioctl System Call

The ioctl system call supports a generic command interface used by a process to access features of a device that aren’t supported by the standard system calls. The prototype for ioctl is:

int ioctl (int fd, unsigned long com, ...);

fd is a descriptor, usually a device or network connection. Each type of descriptor supports its own set of ioctl commands specified by the second argument, com. A third argument is shown as “ ” in the prot otype, since it is a pointer of some type that depends on the ioctl command being invoked. If the command is retrieving information, the third argument must point to a buffer large enough to hold the data. In this text, we discuss only the ioctl commands applicable to socket descriptors.

The prototype we show for system calls is the one used by a process to issue the system call. We’ll see in Chapter 15 that the function within the kernel that implements a system call has a different prototype.

We describe the implementation of the ioctl system call in Chapter 17 but we discuss the implementation of individual ioctl commands throughout the text.

The first ioctl commands we discuss provide access to the network interface structures that we have described. Throughout the text we summarize ioctl commands as shown in Figure 4.20.

Figure 4.20. Interface ioctl commands.

[image: Image]

The first column shows the symbolic constant that identifies the ioctl command (the second argument, com). The second column shows the type of the third argument passed to the ioctl system call for the command shown in the first column. The third column names the function that implements the command.

Figure 4.21 shows the organization of the various functions that process ioctl commands. The shaded functions are the ones we describe in this chapter. The remaining functions are described in other chapters.

Figure 4.21. ioctl functions described in this chapter.

[image: Image]

ifioctl Function

The ioctl system call routes the five commands shown in Figure 4.20 to the ifioctl function shown in Figure 4.22.

Figure 4.22. ifioctl function: overview and SIOCGIFCONF.

[image: Image]

394-405

For the SIOCGIFCONF command, ifioctl calls ifconf to construct a table of variable-length ifreq structures.

406-410

For the remaining ioctl commands, the data argument is a pointer to an ifreq structure. ifunit searches the ifnet list for an interface with the text name provided by the process in ifr->ifr_name (e.g., "sl0","le1", or "lo0"). If there is no matching interface, ifioctl returns ENXIO. The remaining code depends on cmd and is described with Figure 4.29.

447-454

If the interface ioctl command is not recognized, ifioctl forwards the command to the user-request function of the protocol associated with the socket on which the request was made. For IP, these commands are issued on a UDP socket and udp_usrreq is called. The commands that fall into this category are described in Figure 6.10. Section 23.10 describes the udp_usrreq function in detail.

If control falls out of the switch, 0 is returned.

ifconf Function

ifconf provides a standard way for a process to discover the interfaces present and the addresses configured on a system. Interface information is represented by ifreq and ifconf structures shown in Figures 4.23 and 4.24.

Figure 4.23. ifreq structure.

	

-- if.h
262 struct ifreq {
263 #define IFNAMSIZ 16
264 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
265 union {
266 struct sockaddr ifru_addr;
267 struct sockaddr ifru_dstaddr;
268 struct sockaddr ifru_broadaddr;
269 short ifru_flags;
270 int ifru_metric;
271 caddr_t ifru_data;
272 } ifr_ifru;
273 #define ifr_addr ifr_ifru.ifru_addr /* address */
274 #define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */
275 #define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
276 #define ifr_flags ifr_ifru.ifru_flags /* flags */
277 #define ifr_metric ifr_ifru.ifru_metric /* metric */
278 #define ifr_data ifr_ifru.ifru_data /* for use by interface */
279 };
-- if.h

Figure 4.24. ifconf structure.

	

--- if.h
292 struct ifconf {
293 int ifc_len; /* size of associated buffer */
294 union {
295 caddr_t ifcu_buf;
296 struct ifreq *ifcu_req;
297 } ifc_ifcu;
298 #define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
299 #define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */
300 };

--- if.h

262-279

An ifreq structure contains the name of an interface in ifr_name. The remaining members in the union are accessed by the various ioctl commands. As usual, macros simplify the syntax required to access the members of the union.

292-300

In the ifconf structure, ifc_len is the size in bytes of the buffer pointed to by ifc_buf. The buffer is allocated by a process but filled in by ifconf with an array of variable-length ifreq structures. For the ifconf function, ifr_addr is the relevant member of the union in the ifreq structure. Each ifreq structure has a variable length because the length of ifr_addr (a sockaddr structure) varies according to the type of address. The sa_len member from the sockaddr structure must be used to locate the end of each entry. Figure 4.25 illustrates the data structures manipulated by ifconf.

Figure 4.25. ifconf data structures.

[image: Image]

In Figure 4.25, the data on the left is in the kernel and the data on the right is in a process. We’ll refer to this figure as we discuss the ifconf function listed in Figure 4.26.

Figure 4.26. ifconf function.

[image: Image]

[image: Image]

462-474

The two arguments to ifconf are: cmd, which is ignored; and data, which points to a copy of the ifconf structure specified by the process.

ifc is data cast to a ifconf structure pointer. ifp traverses the interface list starting at ifnet (the head of the list), and ifa traverses the address list for each interface. cp and ep control the construction of the text interface name within ifr, which is the ifreq structure that holds an interface name and address before they are copied to the process’s buffer. ifrp points to this buffer and is advanced after each address is copied. space is the number of bytes remaining in the process’s buffer, cp is used to search for the end of the name, and ep marks the last possible location for the numeric portion of the interface name.

475-488

The for loop traverses the list of interfaces. For each interface, the text name is copied to ifr_name followed by the text representation of the if_unit number. If no addresses have been assigned to the interface, an address of all 0s is constructed, the resulting ifreq structure is copied to the process, space is decreased, and ifrp is advanced.

489-515

If the interface has one or more addresses, the for loop processes each one. The address is added to the interface name in ifr and then ifr is copied to the process. Addresses longer than a standard sockaddr structure don’t fit in ifr and are copied directly out to the process. After each address, space and ifrp are adjusted. After all the interfaces are processed, the length of the buffer is updated (ifc->ifc_len) and ifconf returns. The ioctl system call takes care of copying the new contents of the ifconf structure back to the ifconf structure in the process.

Example

Figure 4.27 shows the configuration of the interface structures after the Ethernet, SLIP, and loopback interfaces have been initialized.

Figure 4.27. Interface and address data structures.

[image: Image]

Figure 4.28 shows the contents of ifc and buffer after the following code is executed.

Figure 4.28. Data returned by the SIOCGIFCONF command.

[image: Image]

Code View: Scroll / Show All

 struct ifconf ifc; /* SIOCGIFCONF adjusts this */
 char buffer[144]; /* contains interface addresses
when ioctl returns */
 int s; /* any socket */

 ifc.ifc_len = 144;
 ifc.ifc_buf = buffer;
 if (ioctl(s, SIOCGIFCONF, &ifc) < 0) {
 perror("ioctl failed");
 exit(1);
}

There are no restrictions on the type of socket specified with the SIOCGIFCONF command, which, as we have seen, returns the addresses for all protocol families.

In Figure 4.28, ifc_len has been changed from 144 to 108 by ioctl since the three addresses returned in the buffer only occupy 108 (3×36) bytes. Three sockaddr_dl addresses are returned and the last 36 bytes of the buffer are unused. The first 16 bytes of each entry contain the text name of the interface. In this case only 3 of the 16 bytes are used.

ifr_addr has the form of a sockaddr structure, so the first value is the length (20 bytes) and the second value is the type of address (18, AF_LINK). The next value is sdl_index, which is different for each interface as is sdl_type (6, 28, and 24 correspond to IFT_ETHER, IFT_SLIP, and IFT_LOOP).

The next three values are sa_nlen (the length of the text name), sa_alen (the length of the hardware address), and sa_slen (unused). sa_nlen is 3 for all three entries. sa_alen is 6 for the Ethernet address and 0 for both the SLIP and loopback interfaces. sa_slen is always 0.

Finally, the text interface name appears, followed by the hardware address (Ethernet only). Neither the SLIP nor the loopback interface store a hardware-level address in the sockaddr_dl structure.

In the example, only sockaddr_dl addresses are returned (because no other address types were configured in Figure 4.27), so each entry in the buffer is the same size. If other addresses (e.g., IP or OSI addresses) were configured for an interface, they would be returned along with the sockaddr_dl addresses, and the size of each entry would vary according to the type of address returned.

Generic Interface ioctl commands

The four remaining interface commands from Figure 4.20 (SIOCGIFFLAGS, SIOCGIFMETRIC, SIOCSIFFLAGS, and SIOCSIFMETRIC) are handled by the ifioctl function. Figure 4.29 shows the case statements for these commands.

Figure 4.29. ifioctl function: flags and metrics.

	

--- if.c
410 switch (cmd) {
411 case SIOCGIFFLAGS:
412 ifr->ifr_flags = ifp->if_flags;
413 break;

414 case SIOCGIFMETRIC:
415 ifr->ifr_metric = ifp->if_metric;
416 break;

417 case SIOCSIFFLAGS:
418 if (error = suser(p->p_ucred, &p->p_acflag))
419 return (error);
420 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
421 int s = splimp();
422 if_down(ifp);
423 splx(s);
424 }
425 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
426 int s = splimp();
427 if_up(ifp);
428 splx(s);
429 }
430 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
431 (ifr->ifr_flags & ~IFF_CANTCHANGE);
432 if (ifp->if_ioctl)
433 (void) (*ifp->if_ioctl) (ifp, cmd, data);
434 break;

435 case SIOCSIFMETRIC:
436 if (error = suser(p->p_ucred, &p->p_acflag))
437 return (error);
438 ifp->if_metric = ifr->ifr_metric;
439 break;
--- if.c

SIOCGIFFLAGS and SIOCGIFMETRIC

410-416

For the two SIOCGxxx commands, ifioctl copies the if_flags or if_metric value for the interface into the ifreq structure. For the flags, the ifr_flags member of the union is used and for the metric, the ifr_metric member is used (Figure 4.23).

SIOCSIFFLAGS

417-429

To change the interface flags, the calling process must have superuser privileges. If the process is shutting down a running interface or bringing up an interface that isn’t running, if_down or if_up are called respectively.

Ignore IFF_CANTCHANGE flags

430-434

Recall from Figure 3.7 that some interface flags cannot be changed by a process. The expression (ifp->if_flags & IFF_CANTCHANGE) clears the interface flags that can be changed by the process, and the expression (ifr->ifr_flags &~IFF_CANTCHANGE) clears the flags in the request that may not be changed by the process. The two expressions are ORed together and saved as the new value for ifp>if_flags. Before returning, the request is passed to the if_ioctl function associated with the device (e.g., leioctl for the LANCE driver Figure 4.31).

SIOCSIFMETRIC

435-439

Changing the interface metric is easier; as long as the process has superuser privileges, ifioctl copies the new metric into if_metric for the interface.

if_down and if_up Functions

With the ifconfig program, an administrator can enable and disable an interface by setting or clearing the IFF_UP flag through the SIOCSIFFLAGS command. Figure 4.30 shows the code for the if_down and if_up functions.

Figure 4.30. if_down and if_up functions.

	

--- if.c
292 void
293 if_down(ifp)
294 struct ifnet *ifp;
295 {
296 struct ifaddr *ifa;

297 ifp->if_flags &= ~IFF_UP;
298 for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next)
299 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
300 if_qflush(&ifp->if_snd);
301 rt_ifmsg(ifp);
302 }

308 void
309 if_up(ifp)
310 struct ifnet *ifp;
311 {
312 struct ifaddr *ifa;

313 ifp->if_flags |= IFF_UP;
314 rt_ifmsg(ifp);
315 }
--- if.c

292-302

When an interface is shut down, the IFF_UP flag is cleared and the PRC_IFDOWN command is issued by pfctlinput (Section 7.7) for each address associated with the interface. This gives each protocol an opportunity to respond to the interface being shut down. Some protocols, such as OSI, terminate connections using the interface. IP attempts to reroute connections through other interfaces if possible. TCP and UDP ignore failing interfaces and rely on the routing protocols to find alternate paths for the packets.

if_qflush discards any packets queued for the interface. The routing system is notified of the change by rt_ifmsg. TCP retransmits the lost packets automatically; UDP applications must explicitly detect and respond to this condition on their own.

308-315

When an interface is enabled, the IFF_UP flag is set and rt_ifmsg notifies the routing system that the interface status has changed.

Ethernet, SLIP, and Loopback

We saw in Figure 4.29 that for the SIOCSIFFLAGS command, ifioctl calls the if_ioctl function for the interface. In our three sample interfaces, the slioctl and loioctl functions return EINVAL for this command, which is ignored by ifioctl. Figure 4.31 shows the leioctl function and SIOCSIFFLAGS processing of the LANCE Ethernet driver.

Figure 4.31. leioctl function: SIOCSIFFLAGS.

[image: Image]

614-623

leioctl casts the third argument, data, to an ifaddr structure pointer and saves the value in ifa. The le pointer references the le_softc structure indexed by ifp->if_unit. The switch statement, based on cmd, makes up the main body of the function.

638-656

Only the SIOCSIFFLAGS case is shown in Figure 4.31. By the time ifioctl calls leioctl, the interface flags have been changed. The code shown here forces the physical interface into a state that matches the configuration of the flags. If the interface is going down (IFF_UP is not set), but the interface is operating, the interface is shut down. If the interface is going up but is not operating, the interface is initialized and restarted.

If the promiscuous bit has been changed, the interface is shut down, reset, and restarted to implement the change.

The expression including the exclusive OR and IFF_PROMISC is true only if the request changes the IFF_PROMISC bit.

672-677

The default case for unrecognized commands posts EINVAL, which is returned at the end of the function.

4.5. Summary

In this chapter we described the implementation of the LANCE Ethernet device driver, which we refer to throughout the text. We saw how the Ethernet driver detects broadcast and multicast addresses on input, how the Ethernet and 802.3 encapsulations are detected, and how incoming frames are demultiplexed to the appropriate protocol queue. In Chapter 21 we’ll see how IP addresses (unicast, broadcast, and multicast) are converted into the correct Ethernet addresses on output.

Finally, we discussed the protocol-specific ioctl commands that access the interface-layer data structures.

Exercises

4.1 In leread, the M_MCAST flag (in addition to M_BCAST) is always set when a broadcast packet is received. Compare this behavior to the code in ether_input. Why are the flags set in leread and ether_input? Does it matter? Which is correct?

4.2 In ether_input (Figure 4.13), what would happen if the test for the broadcast address and the test for a multicast address were swapped? What would happen if the if on the test for a multicast address were not preceded by an else?

Chapter 5. Interfaces: SLIP and Loopback

5.1. Introduction

In Chapter 4 we looked at the Ethernet interface. In this chapter we describe the SLIP and loopback interfaces, as well as the ioctl commands used to configure all network interfaces. The TCP compression algorithm used by the SLIP driver is described in Section 29.13. The loopback driver is straightforward and we discuss it here in its entirety.

Figure 5.1, which also appeared as Figure 4.2, lists the entry points to our three example drivers.

Figure 5.1. Interface functions for the example drivers.

[image: Image]

5.2. Code Introduction

The files containing code for SLIP and loopback drivers are listed in Figure 5.2.

Figure 5.2. Files discussed in this chapter.

[image: Image]

Global Variables

The SLIP and loopback interface structures are described in this chapter.

Figure 5.3. Global variables introduced in this chapter.

[image: Image]

sl_softc is an array, since there can be many SLIP interfaces. loif is not an array, since there can be only one loopback interface.

Statistics

The statistics from the ifnet structure described in Chapter 4 are also updated by the SLIP and loopback drivers. One other variable (which is not in the ifnet structure) collects statistics; it is shown in Figure 5.4.

Figure 5.4. tk_nin variable.

[image: Image]

5.3. SLIP Interface

A SLIP interface communicates with a remote system across a standard asynchronous serial line. As with Ethernet, SLIP defines a standard way to frame IP packets as they are transmitted on the serial line. Figure 5.5 shows the encapsulation of an IP packet into a SLIP frame when the IP packet contains SLIP’s reserved characters.

Figure 5.5. SLIP encapsulation of an IP packet.

[image: Image]

Packets are separated by the SLIP END character 0xc0. If the END character appears in the IP packet, it is prefixed with the SLIP ESC character 0xdb and transmitted as 0xdc instead. When the ESC character appears in the IP packet, it is prefixed with the ESC character 0xdb and transmitted as 0xdd.

Since there is no type field in SLIP frames (as there is with Ethernet), SLIP is suitable only for carrying IP packets.

SLIP is described in RFC 1055 [Romkey 1988], where its many weaknesses and nonstandard status are also stated. Volume 1 contains a more detailed description of SLIP encapsulation.

The Point-to-Point Protocol (PPP) was designed to address SLIP’s problems and to provide a standard method for transmitting frames across a serial link. PPP is defined in RFC 1332 [McGregor 1992] and RFC 1548 [Simpson 1993]. Net/3 does not contain an implementation of PPP, so we do not discuss it in this text. See Section 2.6 of Volume 1 for more information regarding PPP. Appendix B describes where to obtain a reference implementation of PPP.

The SLIP Line Discipline: SLIPDISC

In Net/3 the SLIP interface relies on an asynchronous serial device driver to send and receive the data. Traditionally these device drivers have been called TTYs (teletypes). The Net/3 TTY subsystem includes the notion of a line discipline that acts as a filter between the physical device and I/O system calls such as read and write. A line discipline implements features such as line editing, newline and carriage-return processing, tab expansion, and more. The SLIP interface appears as a line discipline to the TTY subsystem, but it does not pass incoming data to a process reading from the device and does not accept outgoing data from a process writing to the device. Instead, the SLIP interface passes incoming packets to the IP input queue and accepts outgoing packets through the if_output function in SLIP’s ifnet structure. The kernel identifies line disciplines by an integer constant, which for SLIP is SLIPDISC.

Figure 5.6 shows a traditional line discipline on the left and the SLIP discipline on the right. We show the process on the right as slattach since it is the program that initializes a SLIP interface. The details of the TTY subsystem and line disciplines are outside the scope of this text. We present only the information required to understand the workings of the SLIP code. For more information about the TTY subsystem see [Leffler et al. 1989]. Figure 5.7 lists the functions that implement the SLIP driver. The middle columns indicate whether the function implements line discipline features, network interface features, or both.

Figure 5.6. The SLIP interface as a line discipline.

[image: Image]

Figure 5.7. The functions in the SLIP device driver.

[image: Image]

The SLIP driver in Net/3 supports compression of TCP packet headers for better throughput. We discuss header compression in Section 29.13, so Figure 5.7 omits the functions that implement this feature.

The Net/3 SLIP interface also supports an escape sequence. When detected by the receiver, the sequence shuts down SLIP processing and returns the device to the standard line discipline. We omit this processing from our discussion.

Figure 5.8 shows the complex relationship between SLIP as a line discipline and SLIP as a network interface.

Figure 5.8. SLIP device driver.

[image: Image]

In Net/3 sc_ttyp and t_sc point to the tty structure and the sl_softc[0] structure. Instead of cluttering the figure with two arrows, we use a double-ended arrow positioned at each pointer to illustrated the two links between the structures.

Figure 5.8 contains a lot of information:

[image: Image] The network interface is represented by the sl_softc structure and the TTY device by the tty structure.

[image: Image] Incoming bytes are stored in the cluster (shown behind the tty structure). When a complete SLIP frame is received, the enclosed IP packet is put on the ipintrq by slinput.

[image: Image] Outgoing packets are dequeued from if_snd or sc_fastq, converted to SLIP frames, and passed to the TTY device by slstart. The TTY buffers outgoing bytes in the clist structure. The t_oproc function drains and transmits the bytes held in the clist structure.

SLIP Initialization: slopen and slinit

We discussed in Section 3.7 how slattach initializes the sl_softc structures. The interface remains initialized but inoperative until a program (usually slattach) opens a TTY device (e.g., /dev/tty01) and issues an ioctl command to replace the standard line discipline with the SLIP discipline. At this point the TTY subsystem calls the line discipline’s open function (in this case slopen), which establishes the association between a particular TTY device and a particular SLIP interface. slopen is shown in Figure 5.9.

Figure 5.9. The slopen function.

	

-- if_sl.c
181 int
182 slopen(dev, tp)
183 dev_t dev;
184 struct tty *tp;
185 {
186 struct proc *p = curproc; /* XXX */
187 struct sl_softc *sc;
188 int nsl;
189 int error;

190 if (error = suser(p->p_ucred, &p->p_acflag))
191 return (error);

192 if (tp->t_line == SLIPDISC)
193 return (0);

194 for (nsl = NSL, sc = sl_softc; --nsl >= 0; sc++)
195 if (sc->sc_ttyp == NULL) {
196 if (slinit(sc) == 0)
197 return (ENOBUFS);
198 tp->t_sc = (caddr_t) sc;
199 sc->sc_ttyp = tp;
200 sc->sc_if.if_baudrate = tp->t_ospeed;
201 ttyflush(tp, FREAD | FWRITE);
202 return (0);
203 }
204 return (ENXIO);
205 }
-- if_sl.c

181-193

Two arguments are passed to slopen:dev, a kernel device identifier that slopen does not use; and tp, a pointer to the tty structure associated with the TTY device. First some precautions: if the process does not have superuser privileges, or if the TTY’s line discipline is set to SLIPDISC already, slopen returns immediately.

194-205

The for loop searches the array of sl_softc structures for the first unused entry, calls slinit (Figure 5.10), joins the tty and sl_softc structures by t_sc and sc_ttyp, and copies the TTY output speed (t_ospeed) into the SLIP interface. ttyflush discards any pending input or output data in the TTY queues. slopen returns ENXIO if a SLIP interface structure is not available, or 0 if it was successful.

Figure 5.10. The slinit function.

	

-- if_sl.c
156 static int
157 slinit(sc)
158 struct sl_softc *sc;
159 {
160 caddr_t p;

161 if (sc->sc_ep == (u_char *) 0) {
162 MCLALLOC(p, M_WAIT);
163 if (p)
164 sc->sc_ep = (u_char *) p + SLBUFSIZE;
165 else {
166 printf("sl%d: can't allocate buffer\en", sc - sl_softc);
167 sc->sc_if.if_flags &= ~IFF_UP;
168 return (0);
169 }
170 }
171 sc->sc_buf = sc->sc_ep - SLMAX;
172 sc->sc_mp = sc->sc_buf;
173 sl_compress_init(&sc->sc_comp);
174 return (1);
175 }
-- if_sl.c

Notice that the first available sl_softc structure is associated with the TTY device. There need not be a fixed mapping between TTY devices and SLIP interfaces if the system has more than one SLIP line. In fact, the mapping depends on the order in which slattach opens and closes the TTY devices.

The slinit function shown in Figure 5.10 initializes the sl_softc structure.

156-175

The slinit function allocates an mbuf cluster and attaches it to the sl_softc structure with three pointers. Incoming bytes are stored in the cluster until an entire SLIP frame has been received. sc_buf always points to the start of the packet in the cluster, sc_mp points to the location of the next byte to be received, and sc_ep points to the end of the cluster. sl_compress_init initializes the TCP header compression state for this link (Section 29.13).

In Figure 5.8 we see that sc_buf does not point to the first byte in the cluster. slinit leaves room for 148 bytes (BUFOFFSET), as the incoming packet may have a compressed header that will expand to fill this space. The bytes that have already been received are shaded in the cluster. We see that sc_mp points to the byte just after the last byte received and sc_ep points to the end of the cluster. Figure 5.11 shows the relationships between several SLIP constants.

Figure 5.11. SLIP constants.

[image: Image]

All that remains to make the interface operational is to assign it an IP address. As with the Ethernet driver, we postpone the discussion of address assignment until Section 6.6.

SLIP Input Processing: slinput

The TTY device driver delivers incoming characters to the SLIP line discipline one at a time by calling slinput. Figure 5.12 shows the slinput function but omits the end-of-frame processing, which is discussed separately.

Figure 5.12. slinput function.

[image: Image]

[image: Image]

527-545

The arguments to slinput are c, the next input character; and tp, a pointer to the device’s tty structure. The global integer tk_nin counts the incoming characters for all TTY devices. slinput converts tp->t_sc to sc, a pointer to an sl_softc structure. If there is no interface associated with the TTY device, slinput returns immediately.

The first argument to slinput is an integer. In addition to the received character, c contains control information sent from the TTY device driver in the high-order bits. If an error is indicated in c or the modem-control lines are not enabled and should not be ignored, SC_ERROR is set and slinput returns. Later, when slinput processes the END character, the frame is discarded. The CLOCAL flag indicates that the system should treat the line as a local line (i.e., not a dialup line) and should not expect to see modem-control signals.

546-636

slinput discards the control bits in c by masking it with TTY_CHARMASK, updates the count of bytes received on the interface, and jumps based on the received character:

[image: Image] If c is an escaped ESC character and the previous character was an ESC, slinput replaces c with an ESC character.

[image: Image] If c is an escaped END character and the previous character was an ESC, slinput replaces c with an END character.

[image: Image] If c is the SLIP ESC character, sc_escape is set and slinput returns immediately (i.e., the ESC character is discarded).

[image: Image] If c is the SLIP END character, the packet is put on the IP input queue. The processing for the SLIP frame end character is shown in Figure 5.13.

Figure 5.13. slinput function: end-of-frame processing.

[image: Image]

[image: Image]

[image: Image]

The common flow of control through this switch statement is to fall through (there is no default case). Most bytes are data and don’t match any of the four cases. Control also falls through the switch in the first two cases.

637-649

If control falls through the switch, the received character is part of the IP packet. The character is stored in the cluster (if there is room), the pointers are advanced, sc_escape is cleared, and slinput returns.

If the cluster is full, the character is discarded and slinput sets SC_ERROR. Control reaches error when the cluster is full or when an error is detected in the end-of-frame processing. At newpack the cluster pointers are reset for a new packet, sc_escape is cleared, and slinput returns.

Figure 5.13 shows the FRAME_END code omitted from Figure 5.12.

560-579

slinput discards an incoming SLIP packet immediately if SC_ERROR was set while the packet was being received or if the packet is less than 3 bytes in length (remember that the packet may be compressed).

If the SLIP interface is tapped by BPF, slinput saves a copy of the (possibly compressed) header in the chdr array.

580-606

By examining the first byte of the packet, slinput determines if it is an uncompressed IP packet, a compressed TCP segment, or an uncompressed TCP segment. The type is saved in c and the type information is removed from the first byte of data (Section 29.13). If the packet appears to be compressed and compression is enabled, sl_uncompress_tcp attempts to uncompress the packet. If compression is not enabled, auto-enable compression is on, and if the packet is large enough sl_uncompress_tcp is also called. If it is a compressed TCP packet, the compression flag is set.

slinput discards packets it does not recognize by jumping to error. Section 29.13 discusses the header compression techniques in more detail. The cluster now contains a complete uncompressed packet.

607-618

After SLIP has decompressed the packet, the header and data are passed to BPF. Figure 5.14 shows the layout of the buffer constructed by slinput.

Figure 5.14. SLIP packet in BPF format.

[image: Image]

The first byte of the BPF header encodes the direction of the packet, in this case incoming (SLIPDIR_IN). The next 15 bytes contain the compressed header. The entire packet is passed to bpf_tap.

619-635

sl_btom converts the cluster to an mbuf chain. If the packet is small enough to fit in a single mbuf, sl_btom copies the packet from the cluster to a newly allocated mbuf packet header; otherwise sl_btom attaches the cluster to an mbuf and allocates a new cluster for the interface. This is faster than copying from one cluster to another. We do not show sl_btom in this text.

Since only IP packets are transmitted on a SLIP interface, slinput does not have to select a protocol queue (as it does in the Ethernet driver). The packet is queued on ipintrq, an IP software interrupt is scheduled, and slinput jumps to newpack, where it updates the cluster packet pointers and clears sc_escape.

While the SLIP driver increments if_ierrors if the packet cannot be queued on ipintrq, neither the Ethernet nor loopback drivers increment this statistic in the same situation.

Access to the IP input queue must be protected by splimp even though slinput is called at spltty. Recall from Figure 1.14 that an splimp interrupt can preempt spltty processing.

SLIP Output Processing: sloutput

As with all network interfaces, output processing begins when a network-level protocol calls the interface’s if_output function. For the Ethernet driver, the function is ether_output. For SLIP, the function is sloutput (Figure 5.15).

Figure 5.15. sloutput function.

[image: Image]
[image: Image]

259-289

The four arguments to sloutput are: ifp, a pointer to the SLIP ifnet structure (in this case an sl_softc structure); m, a pointer to the packet to be queued for output; dst, the next-hop destination for the packet; and rtp, a pointer to a route entry. The fourth argument is not used by sloutput, but it is required since sloutput must match the prototype for the if_output function in the ifnet structure.

sloutput ensures that dst is an IP address, that the interface is connected to a TTY device, and that the TTY device is operating (i.e., the carrier is on or should be ignored). An error is returned immediately if any of these tests fail.

290-291

The SLIP interface maintains two queues of outgoing packets. The standard queue, if_snd, is selected by default.

292-295

If the outgoing packet contains an ICMP message and SC_NOICMP is set for the interface, the packet is discarded. This prevents a SLIP link from being overwhelmed by extraneous ICMP packets (e.g., ECHO packets) sent by a malicious user (Chapter 11).

The error code ENETRESET indicates that the packet was discarded because of a policy decision (versus a network failure). We’ll see in Chapter 11 that the error is silently discarded unless the ICMP message was generated locally, in which case an error is returned to the process that tried to send the message.

Net/2 returned a 0 in this case. To a diagnostic tool such as ping or traceroute it would appear as if the packet disappeared since the output operation would report a successful completion.

In general, ICMP messages can be discarded. They are not required for correct operation, but discarding them makes troubleshooting more difficult and may lead to less than optimal routing decisions, poorer performance, and wasted network resources.

296-297

If the TOS field in the outgoing packet specifies low-delay service (IPTOS_LOWDELAY), the output queue is changed to sc_fastq.

RFC 1700 and RFC 1349 [Almquist 1992] specify the TOS settings for the standard protocols. Low-delay service is specified for Telnet, Rlogin, FTP (control), TFTP, SMTP (command phase), and DNS (UDP query). See Section 3.2 of Volume 1 for more details.

In previous BSD releases, the ip_tos was not set correctly by applications. The SLIP driver implemented TOS queueing by examining the transport headers contained within the IP packet. If it found TCP packets for the FTP (command), Telnet, or Rlogin ports, the packet was queued as if IPTOS_LOWDELAY was specified. Many routers continue this practice, since many implementations of these interactive services still do not set ip_tos.

298-312

The packet is now placed on the selected queue, the interface statistics are updated, and (if the TTY output queue is empty) sloutput calls slstart to initiate transmission of the packet.

SLIP increments if_oerrors if the interface queue is full; ether_output does not.

Unlike the Ethernet output function (ether_output), sloutput does not construct a data-link header for the outgoing packet. Since the only other system on a SLIP network is at the other end of the serial link, there is no need for hardware addresses or a protocol, such as ARP, to convert between IP addresses and hardware addresses. Protocol identifiers (such as the Ethernet type field) are also superfluous, since a SLIP link carries only IP packets.

slstart Function

In addition to the call by sloutput, the TTY device driver calls slstart when it drains its output queue and needs more bytes to transmit. The TTY subsystem manages its queues through a clist structure. In Figure 5.8 the output clist t_outq is shown below slstart and above the device’s t_oproc function. slstart adds bytes to the queue, while t_oproc drains the queue and transmits the bytes.

The slstart function is shown in Figure 5.16.

Figure 5.16. slstart function: packet dequeueing.

[image: Image]
[image: Image]

318-358

When slstart is called, tp points to the device’s tty structure. The body of slstart consists of a single for loop. If the output queue t_outq is not empty, slstart calls the output function for the device, t_oproc, which transmits as many bytes as the device will accept. If more than 100 bytes (SLIP_HIWAT) remain in the TTY output queue, slstart returns instead of adding another packet’s worth of bytes to the queue. The output device generates an interrupt when it has transmitted all the bytes, and the TTY subsystem calls slstart when the output list is empty.

If the TTY output queue is empty, a packet is dequeued from sc_fastq or, if sc_fastq is empty, from the if_snd queue, thus transmitting all interactive packets before any other packets.

There are no standard SNMP variables to count packets queued according to the TOS fields. The XXX comment in line 353 indicates that the SLIP driver is counting low-delay packets in if_omcasts, not multicast packets.

359-383

If the SLIP interface is tapped by BPF, slstart makes a copy of the output packet before any header compression occurs. The copy is saved on the stack in the bpfbuf array.

384-388

If compression is enabled and the packet contains a TCP segment, sloutput calls sl_compress_tcp, which attempts to compress the packet. The resulting packet type is returned and logically ORed with the first byte in IP header (Section 29.13).

389-398

The compressed header is now copied into the BPF header, and the direction recorded as SLIPDIR_OUT. The completed BPF packet is passed to bpf_tap.

483-484

slstart returns if the for loop terminates.

The next section of slstart (Figure 5.17) discards packets if the system is low on memory, and implements a simple technique for discarding data generated by noise on the serial line. This is the code omitted from Figure 5.16.

Figure 5.17. slstart function: resource shortages and line noise.

	

-- if_sl.c
399 sc->sc_if.if_lastchange = time;
400 /*
401 * If system is getting low on clists, just flush our
402 * output queue (if the stuff was important, it'll get
403 * retransmitted).
404 */
405 if (cfreecount < CLISTRESERVE + SLMTU) {
406 m_freem(m);
407 sc->sc_if.if_collisions++;
408 continue;
409 }
410 /*
411 * The extra FRAME_END will start up a new packet, and thus
412 * will flush any accumulated garbage. We do this whenever
413 * the line may have been idle for some time.
414 */
415 if (tp->t_outq.c_cc == 0) {
416 ++sc->sc_if.if_obytes;
417 (void) putc(FRAME_END, &tp->t_outq);
418 }
-- if_sl.c

399-409

If the system is low on clist structures, the packet is discarded and counted as a collision. By continuing the loop instead of returning, slstart quickly discards all remaining packets queued for output. Each iteration discards a packet, since the device still has too many bytes queued for output. Higher-level protocols must detect the lost packets and retransmit them.

410-418

If the TTY output queue is empty, the communication line may have been idle for a period of time and the receiver at the other end may have received extraneous data created by line noise. slstart places an extra SLIP END character in the output queue. A 0-length frame or a frame created by noise on the line should be discarded by the SLIP interface or IP protocol at the receiver.

Figure 5.18 illustrates this technique for discarding line noise and is attributed to Phil Karn in RFC 1055. In Figure 5.18, the second end-of-frame (END) is transmitted because the line was idle for a period of time. The invalid frame created by the noise and the END byte is discarded by the receiving system.

Figure 5.18. Karn’s method for discarding noise on a SLIP line.

[image: Image]

In Figure 5.19 there is no noise on the line and the 0-length frame is discarded by the receiving system.

Figure 5.19. Karn’s method with no noise.

[image: Image]

The next section of slstart (Figure 5.20) transfers the data from an mbuf to the output queue for the TTY device.

Figure 5.20. s1start function: packet transmission.

[image: Image]
[image: Image]

419-467

The outer while loop in this section is executed once for each mbuf in the chain. The middle while loop transfers the data from each mbuf to the output device. The inner while loop advances cp until it finds an END or ESC character. b_to_q transfers the bytes between bp and cp. END and ESC characters are escaped and queued with two calls to putc. This middle loop is repeated until all the bytes in the mbuf are passed to the TTY device’s output queue. Figure 5.21 illustrates this process with an mbuf containing a SLIP END character and a SLIP ESC character.

Figure 5.21. SLIP transmission of a single mbuf.

[image: Image]

bp marks the beginning of the first section of the mbuf to transfer with b_to_q, and cp marks the end of the first section. ep marks the end of the data in the mbuf.

If b_to_q or putc fail (i.e., data cannot be queued on the TTY device), the break causes slstart to fall out of the middle while loop. The failure indicates that the kernel has run out of clist resources. After each mbuf is copied to the TTY device, or when an error occurs, the mbuf is released, m is advanced to the next mbuf in the chain, and the outer while loop continues until all the mbufs in the chain have been processed.

Figure 5.22 shows the processing done by slstart to complete the outgoing frame.

Figure 5.22. slstart function: end-of-frame processing.

	

--- if_sl.c
468 if (putc(FRAME_END, &tp->t_outq)) {
469 /*
470 * Not enough room. Remove a char to make room
471 * and end the packet normally.
472 * If you get many collisions (more than one or two
473 * a day) you probably do not have enough clists
474 * and you should increase "nclist" in param.c.
475 */
476 (void) unputc(&tp->t_outq);
477 (void) putc(FRAME_END, &tp->t_outq);
478 sc->sc_if.if_collisions++;
479 } else {
480 ++sc->sc_if.if_obytes;
481 sc->sc_if.if_opackets++;
482 }
--- if_sl.c

468-482

Control reaches this code when the outer while loop has finished queueing the bytes on the output queue. The driver sends a SLIP END character, which terminates the frame.

If an error occurred while queueing the bytes, the outgoing frame is invalid and is detected by the receiving system because of an invalid checksum or length.

Whether or not the frame is terminated because of an error, if the END character does not fit on the output queue, the last character on the queue is discarded and slstart ends the frame. This guarantees that an END character is transmitted. The invalid frame is discarded at the destination.

SLIP Packet Loss

The SLIP interface provides a good example of a best-effort service. SLIP discards packets if the TTY is overloaded; it truncates packets if resources are unavailable after the packet transmission has started, and it inserts extraneous null packets to detect and discard line noise. In each of these cases, no error message is generated. SLIP depends on IP and the transport layers to detect damaged and missing packets.

On a router forwarding packets from a fast interface such as Ethernet to a low-speed SLIP line, a large percentage of packets are discarded if the sender does not recognize the bottleneck and respond by throttling back the data rate. In Section 25.11 we’ll see how TCP detects and responds to this condition. Applications using a protocol without flow control, such as UDP, must recognize and respond to this condition on their own (Exercise 5.8).

SLIP Performance Considerations

The MTU of a SLIP frame (SLMTU), the clist high-water mark (SLIP_HIWAT), and SLIP’s TOS queueing strategies are all designed to minimize the delay inherent in a slow serial link for interactive traffic.

1. A small MTU improves the delay for interactive data (such as keystrokes and echoes), but hurts the throughput for bulk data transfer. A large MTU improves bulk data throughput, but increases interactive delays. Another problem with SLIP links is that a single typed character is burdened with 40 bytes of TCP and IP header information, which increases the communication delay.

The solution is to pick an MTU large enough to provide good interactive response time and decent bulk data throughput, and to compress TCP/IP headers to reduce the per-packet overhead. RFC 1144 [Jacobson 1990a] describes a compression scheme and the timing calculations that result in selecting an MTU of 296 for a typical 9600 bits/sec asynchronous SLIP link. We describe Compressed SLIP (CSLIP) in Section 29.13. Sections 2.10 and 7.2 of Volume 1 summarize the timing considerations and illustrate the delay on SLIP links.

2. If too many bytes are buffered in the clist (because SLIP_HIWAT is set too high), the TOS queueing will be thwarted as new interactive traffic waits behind the large amount of buffered data. If SLIP passes 1 byte at a time to the TTY driver (because SLIP_HIWAT is set too low), the device calls slstart for each byte and the line is idle for a brief period of time after each byte is transferred. Setting SLIP_HIWAT to 100 minimizes the amount of data queued at the device and reduces the frequency at which the TTY subsystem must call slstart to approximately once every 100 characters.

3. As described, the SLIP driver provides TOS queueing by transmitting interactive traffic from the sc_fastq queue before other traffic on the standard interface queue, if_snd.

slclose Function

For completeness, we show the slclose function, which is called when the slattach program closes SLIP’s TTY device and terminates the connection to the remote system.

Figure 5.23. slclose function.

	

-- if_sl.c
210 void
211 slclose(tp)
212 struct tty *tp;
213 {
214 struct sl_softc *sc;
215 int s;

216 ttywflush(tp);
217 s = splimp(); /* actually, max(spltty, splnet) */
218 tp->t_line = 0;
219 sc = (struct sl_softc *) tp->t_sc;
220 if (sc != NULL) {
221 if_down(&sc->sc_if);
222 sc->sc_ttyp = NULL;
223 tp->t_sc = NULL;
224 MCLFREE((caddr_t) (sc->sc_ep - SLBUFSIZE));
225 sc->sc_ep = 0;
226 sc->sc_mp = 0;
227 sc->sc_buf = 0;
228 }
229 splx(s);
230 }
-- if_sl.c

210-230

tp points to the TTY device to be closed. slclose flushes any remaining data out to the serial device, blocks TTY and network processing, and resets the TTY to the default line discipline. If the TTY device is attached to a SLIP interface, the interface is shut down, the links between the two structures are severed, the mbuf cluster associated with the interface is released, and the pointers into the now-discarded cluster are reset. Finally, splx reenables the TTY and network interrupts.

sltioctl Function

Recall that a SLIP interface has two roles to play in the kernel:

[image: Image] as a network interface, and

[image: Image] as a TTY line discipline.

Figure 5.7 indicated that slioctl processes ioctl commands issued for a SLIP interface through a socket descriptor. In Section 4.4 we showed how ifioctl calls slioctl. We’ll see a similar pattern for ioctl commands that we cover in later chapters.

Figure 5.7 also indicated that sltioctl processes ioctl commands issued for the TTY device associated with a SLIP network interface. The one command recognized by sltioctl is shown in Figure 5.24.

Figure 5.24. sltioctl commands.

[image: Image]

The sltioctl function is shown in Figure 5.25.

Figure 5.25. sltioctl function.

	

-- if_sl.c
236 int
237 sltioctl(tp, cmd, data, flag)
238 struct tty *tp;
239 int cmd;
240 caddr_t data;
241 int flag;
242 {
243 struct sl_softc *sc = (struct sl_softc *) tp->t_sc;

244 switch (cmd) {
245 case SLIOCGUNIT:
246 *(int *) data = sc->sc_if.if_unit;
247 break;

248 default:
249 return (-1);
250 }
251 return (0);
252 }
-- if_sl.c

236-252

The t_sc pointer in the tty structure points to the associated sl_softc structure. The unit number of the SLIP interface is copied from if_unit to *data, which is eventually returned to the process (Section 17.5).

if_unit is initialized by slattach when the system is initialized, and t_sc is initialized by slopen when the slattach program selects the SLIP line discipline for the TTY device. Since the mapping between a TTY device and a SLIP sl_softc structure is established at run time, a process can discover the interface structure selected by the SLIOCGUNIT command.

5.4. Loopback Interface

Any packets sent to the loopback interface (Figure 5.26) are immediately queued for input. The interface is implemented entirely in software.

Figure 5.26. Loopback device driver.

[image: Image]

looutput, the if_output function for the loopback interface, places outgoing packets on the input queue for the protocol specified by the packet’s destination address.

We already saw that ether_output may call looutput to queue a copy of an outgoing broadcast packet when the device has set IFF_SIMPLEX. In Chapter 12, we’ll see that multicast packets may be also be looped back in this way. looutput is shown in Figure 5.27.

Figure 5.27. The looutput function.

[image: Image]

[image: Image]

57-68

The arguments to looutput are the same as those to ether_output since both are called indirectly through the if_output pointer in their ifnet structures: ifp, a pointer to the outgoing interface’s ifnet structure; m, the packet to send; dst, the destination address of the packet; and rt, routing information. If the first mbuf on the chain does not contain a packet, looutput calls panic.

Figure 5.28 shows the logical layout for a BPF loopback packet.

Figure 5.28. BPF loopback packet: logical format.

[image: Image]

69-83

The driver constructs the BPF loopback packet header in m0 on the stack and connects m0 to the mbuf chain containing the original packet. Note the unusual declaration of m0. It is an mbuf, not a pointer to an mbuf. m_data in m0 points to af, which is also allocated on the stack. Figure 5.29 shows this arrangement.

Figure 5.29. BPF loopback packet: mbuf format.

[image: Image]

looutput copies the destination’s address family into af and passes the new mbuf chain to bpf_mtap, which processes the packet. Contrast this to bpf_tap, which accepts the packet in a single contiguous buffer not in an mbuf chain. As the comment indicates, BPF never releases mbufs in a chain, so it is safe to pass m0 (which points to an mbuf on the stack) to bpf_mtap.

84-89

The remainder of looutput contains input processing for the packet. Even though this is an output function, the packet is being looped back to appear as input. First, m->m_pkthdr.rcvif is set to point to the receiving interface. If the caller provided a routing entry, looutput checks to see if it indicates that the packet should be rejected (RTF_REJECT) or silently discarded (RTF_BLACKHOLE). A black hole is implemented by discarding the mbuf and returning 0. It appears to the caller as if the packet has been transmitted. To reject a packet, looutput returns EHOSTUNREACH if the route is for a host and ENETUNREACH if the route is for a network.

The various RTF_xxx flags are described in Figure 18.25.

90-120

looutput then selects the appropriate protocol input queue and software interrupt by examining sa_family in the packet’s destination address. It then queues recognized packets and schedules a software interrupt with schednetisr.

5.5. Summary

We described the two remaining interfaces to which we refer throughout the text: sl0, a SLIP interface, and lo0, the standard loopback interface.

We showed the relationship between the SLIP interface and the SLIP line discipline, described the SLIP encapsulation method, and discussed TOS processing for interactive traffic and other performance considerations for the SLIP driver.

We showed how the loopback interface demultiplexes outgoing packets based on their destination address family and places the packet on the appropriate input queue.

Exercises

5.1 Why does the loopback interface not have an input function?

5.2 Why do you think mo is allocated on the stack in Figure 5.27?

5.3 Perform an analysis of SLIP characteristics for a 19,200 bps serial line. Should the SLIP MTU be changed for this line?

5.4 Derive a formula to select a SLIP MTU based on the speed of the serial line.

5.5 What happens if a packet is too large to fit in SLIP’S input buffer?

5.6 An earlier version of slinput did not set SC_ERROR when a packet overflowed the input buffer. How would the error be detected in this case?

5.7 In Figure 4.31 le is initialized by indexing the le_softc array with ifp>if_unit. Can you think of another method for initializing le?

5.8 How can a UDP application recognize when its packets are being discarded because of a bottleneck in the network?

Chapter 6. IP Addressing

6.1. Introduction

This chapter describes how Net/3 manages IP addressing information. We start with the in_ifaddr and sockaddr_in structures, which are based on the generic ifaddr and sockaddr structures.

The remainder of the chapter covers IP address assignment and several utility functions that search the interface data structures and manipulate IP addresses.

IP Addresses

Although we assume that readers are familiar with the basic Internet addressing system, several issues are worth pointing out.

In the IP model, it is the network interfaces on a system (a host or a router) that are assigned addresses, not the system itself. In the case of a system with multiple interfaces, the system is multihomed and has more than one IP address. A router is, by definition, multihomed. As we’ll see, this architectural feature has several subtle ramifications.

Five classes of IP addresses are defined. Class A, B, and C addresses support unicast communication. Class D addresses support IP multicasting. In a multicast communication, a single source sends a datagram to multiple destinations. Class D addresses and multicasting protocols are described in Chapter 12. Class E addresses are experimental. Packets received with class E addresses are discarded by hosts that aren’t participating in the experiment.

It is important that we emphasize the difference between IP multicasting and hardware multicasting. Hardware multicasting is a feature of the data-link hardware used to transmit packets to multiple hardware interfaces. Some network hardware, such as Ethernet, supports data-link multicasting. Other hardware may not.

IP multicasting is a software feature implemented in IP systems to transmit packets to multiple IP addresses that may be located throughout the internet.

We assume that the reader is familiar with subnetting of IP networks (RFC 950 [Mogul and Postel 1985] and Chapter 3 of Volume 1). We’ll see that each network interface has an associated subnet mask, which is critical in determining if a packet has reached its final destination or if it needs to be forwarded. In general, when we refer to the network portion of an IP address we are including any subnet that may defined. When we need to differentiate between the network and the subnet, we do so explicitly.

The loopback network, 127.0.0.0, is a special class A network. Addresses of this form must never appear outside of a host. Packets sent to this network are looped back and received by the host.

RFC 1122 requires that all addresses within the loopback network be handled correctly. Since the loopback interface must be assigned an address, many systems select 127.0.0.1 as the loopback address. If the system is not configured correctly, addresses such as 127.0.0.2 may not be routed to the loopback interface but instead may be transmitted on an attached network, which is prohibited. Some systems may correctly route the packet to the loopback interface where it is dropped since the destination address does not match the configured address: 127.0.0.1.

Figure 18.2 shows a Net/3 system configured to reject packets sent to a loopback address other than 127.0.0.1.

Typographical Conventions for IP Addresses

We usually display IP addresses in dotted-decimal notation. Figure 6.1 lists the range of IP address for each address class.

Figure 6.1. Ranges for different classes of IP addresses.

[image: Image]

For some of our examples, the subnet field is not aligned with a byte boundary (i.e., a network/subnet/host division of 16/11/5 in a class B network). It can be difficult to identify the portions of such address from the dotted-decimal notation so we’ll also use block diagrams to illustrate the contents of IP addresses. We’ll show each address with three parts: network, subnet, and host. The shading of each part indicates its contents. Figure 6.2 illustrates both the block notation and the dotted-decimal notation using the Ethernet interface of the host sun from our sample network (Section 1.14).

Figure 6.2. Alternate IP address notations.

[image: Image]

When a portion of the address is not all 0s or all 1s, we use the two intermediate shades. We have two types of intermediate shades so we can distinguish network and subnet portions or to show combinations of address as in Figure 6.31.

Hosts and Routers

Systems on an internet can generally be divided into two types: hosts and routers. A host usually has a single network interface and is either the source or destination for an IP packet. A router has multiple network interfaces and forwards packets from one network to the next as the packet moves toward its destination. To perform this function, routers exchange information about the network topology using a variety of specialized routing protocols. IP routing issues are complex, and they are discussed starting in Chapter 18.

A system with multiple network interfaces is still called a host if it does not route packets between its network interfaces. A system may be both a host and a router. This is often the case when a router provides transport-level services such as Telnet access for configuration, or SNMP for network management. When the distinction between a host and router is unimportant, we use the term system.

Careless configuration of a router can disrupt the normal operation of a network, so RFC 1122 states that a system must default to operate as a host and must be explicitly configured by an administrator to operate as a router. This purposely discourages administrators from operating general-purpose host computers as routers without careful consideration. In Net/3, a system acts as a router if the global integer ipforwarding is nonzero and as a host if ipforwarding is 0 (the default).

A router is often called a gateway in Net/3, although the term gateway is now more often associated with a system that provides application-level routing, such as an electronic mail gateway, and not one that forwards IP packets. We use the term router and assume that ipforwarding is nonzero in this book. We have also included all code conditionally included when GATEWAY is defined during compilation of the Net/3 kernel, which defines ipforwarding to be 1.

6.2. Code Introduction

The two headers and two C files listed in Figure 6.3 contain the structure definitions and utility functions described in this chapter.

Figure 6.3. Files discussed in this chapter.

[image: Image]

Global Variables

The two global variables introduced in this chapter are listed in Figure 6.4.

Figure 6.4. Global variables introduced in this chapter.

[image: Image]

6.3. Interface and Address Summary

A sample configuration of all the interface and address structures described in this chapter is illustrated in Figure 6.5.

Figure 6.5. Interface and address data structures.

[image: Image]

Figure 6.5 shows our three example interfaces: the Ethernet interface, the SLIP interface, and the loopback interface. All have a link-level address as the first node in their address list. The Ethernet interface is shown with two IP addresses, the SLIP interface with one IP address, and the loopback interface has an IP address and an OSI address.

Note that all the IP addresses are linked into the in_ifaddr list and all the link-level addresses can be accessed from the ifnet_addrs array.

The ifa_ifp pointers within each ifaddr structure have been omitted from Figure 6.5 for clarity. The pointers refer back to the ifnet structure that heads the list containing the ifaddr structure.

The following sections describe the data structures contained in Figure 6.5 and the IP-specific ioctl commands that examine and modify the structures.

6.4. sockaddr_in Structure

We discussed the generic sockaddr and ifaddr structures in Chapter 3. Now we show the structures specialized for IP: sockaddr_in and in_ifaddr. Addresses in the Internet domain are held in a sockaddr_in structure:

68-70

Net/3 stores 32-bit Internet addresses in network byte order in an in_addr structure for historical reasons. The structure has a single member, s_addr, which contains the address. That organization is kept in Net/3 even though it is superfluous and clutters the code.

106-112

sin_len is always 16 (the size of the sockaddr_in structure) and sin_family is AF_INET. sin_port is a 16-bit value in network (not host) byte order used to demultiplex transport-level messages. sin_addr specifies a 32-bit Internet address.

Figure 6.6 shows that the sin_port, sin_addr, and sin_zero members of sockaddr_in overlay the sa_data member of sockaddr. sin_zero is unused in the Internet domain but must consist of all 0 bytes (Section 22.7). It pads the sockaddr_in structure to the length of a sockaddr structure.

Figure 6.6. sockaddr_in structure.

	

--- in.h
 68 struct in_addr {
 69 u_long s_addr; /* 32-bit IP address, net byte order */
 70 };

106 struct sockaddr_in {
107 u_char sin_len; /* sizeof (struct sockaddr_in) = 16 */
108 u_char sin_family; /* AF_INET */
109 u_short sin_port; /* 16-bit port number, net byte order */
110 struct in_addr sin_addr;
111 char sin_zero[8]; /* unused */
112 };
--- in.h

Usually, when an Internet addresses is stored in a u_long it is in host byte order to facilitate comparisons and bit operations on the address. s_addr within the in_addr structure (Figure 6.7) is a notable exception.

Figure 6.7. The organization of a sockaddr_in structure (sin_omitted).

[image: Image]

6.5. in_ifaddr Structure

Figure 6.8 shows the interface address structure defined for the Internet protocols. For each IP address assigned to an interface, an in_ifaddr structure is allocated and added to the interface address list and to the global list of IP addresses (Figure 6.5).

Figure 6.8. The in_ifaddr structure.

	

-- in_var.h
 41 struct in_ifaddr {
 42 struct ifaddr ia_ifa; /* protocol-independent info */
 43 #define ia_ifp ia_ifa.ifa_ifp
 44 #define ia_flags ia_ifa.ifa_flags
 45 struct in_ifaddr *ia_next; /* next internet addresses list */
 46 u_long ia_net; /* network number of interface */
 47 u_long ia_netmask; /* mask of net part */
 48 u_long ia_subnet; /* subnet number, including net */
 49 u_long ia_subnetmask; /* mask of subnet part */
 50 struct in_addr ia_netbroadcast; /* to recognize net broadcasts */
 51 struct sockaddr_in ia_addr; /* space for interface name */
 52 struct sockaddr_in ia_dstaddr; /* space for broadcast addr */
 53 #define ia_broadaddr ia_dstaddr
 54 struct sockaddr_in ia_sockmask; /* space for general netmask */
 55 struct in_multi *ia_multiaddrs; /* list of multicast addresses */
 56 };
-- in_var.h

41-45

in_ifaddr starts with the generic interface address structure, ia_ifa, followed by the IP-specific members. The ifaddr structure was shown in Figure 3.15. The two macros, ia_ifp and ia_flags, simplify access to the interface pointer and interface address flags stored in the generic ifaddr structure. ia_next maintains a linked list of all Internet addresses that have been assigned to any interface. This list is independent of the list of link-level ifaddr structures associated with each interface and is accessed through the global list in_ifaddr.

46-54

The remaining members (other than ia_multiaddrs) are included in Figure 6.9, which shows the values for the three interfaces on sun from our example class B network. The addresses stored as u_long variables are kept in host byte order; the in_addr and sockaddr_in variables are in network byte order. sun has a PPP interface, but the information shown in this table is the same for a PPP interface or for a SLIP interface.

Figure 6.9. Ethernet, PPP, and loopback in_ifaddr structures on sun.

[image: Image]

55-56

The last member of the in_ifaddr structure points to a list of in_multi structures (Section 12.6), each of which contains an IP multicast address associated with the interface.

6.6. Address Assignment

In Chapter 4 we showed the initialization of the interface structures when they are recognized at system initialization time. Before the Internet protocols can communicate through the interfaces, they must be assigned an IP address. Once the Net/3 kernel is running, the interfaces are configured by the ifconfig program, which issues configuration commands through the ioctl system call on a socket. This is normally done by the /etc/netstart shell script, which is executed when the system is bootstrapped.

Figure 6.10 shows the ioctl commands discussed in this chapter. The addresses associated with the commands must be from the same address family supported by the socket on which the commands are issued (i.e., you can’t configure an OSI address through a UDP socket). For IP addresses, the ioctl commands are issued on a UDP socket.

Figure 6.10. Interface ioctl commands.

[image: Image]

The commands that get address information start with SIOCG, and the commands that set address information start with SIOCS. SIOC stands for socket ioctl, the G for get, and the S for set.

In Chapter 4 we looked at five protocol-independent ioctl commands. The commands in Figure 6.10 modify the addressing information associated with an interface. Since addresses are protocol-specific, the command processing is protocol-dependent. Figure 6.11 highlights the ioctl-related functions associated with these commands.

Figure 6.11. ioct1 functions described in this chapter.

[image: Image]

ifioctl Function

As shown in Figure 6.11, ifioctl passes protocol-dependent ioctl commands to the pr_usrreq function of the protocol associated with the socket. Control is passed to udp_usrreq and immediately to in_control where most of the processing occurs. If the same commands are issued on a TCP socket, control would also end up at in_control. Figure 6.12 repeats the default code from ifioctl, first shown in Figure 4.22.

Figure 6.12. ifioctl function: protocol-specific commands.

	

--- if.c
447 default:
448 if (so->so_proto == 0)
449 return (EOPNOTSUPP);
450 return ((*so->so_proto->pr_usrreq) (so, PRU_CONTROL,
451 cmd, data, ifp));
452 }
453 return (0);
454 }
--- if.c

447-454

The function passes all the relevant data for the ioctl commands listed in Figure 6.10 to the user-request function of the protocol associated with the socket on which the request was made. For a UDP socket, udp_usrreq is called. Section 23.10 describes the udp_usrreq function in detail. For now, we need to look only at the PRU_CONTROL code from udp_usrreq:

if (req == PRU_CONTROL)
 return (in_control(so, (int)m, (caddr_t)addr, (struct ifnet *)control));

in_control Function

Figure 6.11 shows that control can reach in_control through the default case in soo_ioctl or through the protocol-dependent case in ifioctl. In both cases, udp_usrreq calls in_control and returns whatever in_control returns. Figure 6.13 shows in_control.

Figure 6.13. in_control function.

[image: Image]

[image: Image]

132-145

so points to the socket on which the ioctl (specified by the second argument, cmd) was issued. The third argument, data, points to the data (second column of Figure 6.10) to be used or returned by the command. The last argument, ifp, is null (non-interface ioctl from soo_ioctl) or points to the interface named in the ifreq or in_aliasreq structures (interface ioctl from ifioctl). in_control initializes ifa and ifra to access data as an ifreq or as an in_aliasreq structure.

146-152

If ifp points to an ifnet structure, the for loop locates the first address on the Internet address list associated with the interface. If an address is found, ia points to its in_ifaddr structure, otherwise, ia is null.

If ifp is null, cmd will not match any of the cases in the first switch or any of the nondefault cases in the second switch. The default case in the second switch returns EOPNOTSUPP when ifp is null.

153-330

The first switch in in_control makes sure all the preconditions for each command are met before the second switch processes the command. The individual cases are described in the following sections.

If the default case is executed in the second switch, ifp points to an interface structure, and the interface has an if_ioctl function, then in_control passes the ioctl command to the interface for device-specific processing.

Net/3 does not define any interface commands that would be processed by the default case. But the driver for a particular device might define its own interface ioctl commands and they would be processed by this case.

331-332

We’ll see that many of the cases within the switch statements return directly. If control falls through both switch statements, in_control returns 0. Several of the cases do break out of the second switch.

We look at the interface ioctl commands in the following order:

[image: Image] assigning an address, network mask, or destination address;

[image: Image] assigning a broadcast address;

[image: Image] retrieving an address, network mask, destination address, or broadcast address;

[image: Image] assigning multiple addresses to an interface; or

[image: Image] deleting an address.

For each group of commands, we describe the precondition processing done in the first switch statement and then the command processing done in the second switch statement.

Preconditions: SIOCSIFADDR, SIOCSIFNETMASK, and SIOCSIFDSTADDR

Figure 6.14 shows the precondition testing for SIOCSIFADDR, SIOCSIFNETMASK, and SIOCSIFDSTADDR.

Figure 6.14. in_control function: address assignment.

[image: Image]

Superuser only

166-172

If the socket was not created by a superuser process, these commands are prohibited and in_control returns EPERM. If no interface is associated with the request, the kernel panics. The panic should never happen since ifioctl returns if it can’t locate an interface (Figure 4.22).

The SS_PRIV flag is set by socreate (Figure 15.16) when a superuser process creates a socket. Because the test here is against the flag and not the effective user ID of the process, a set-user-ID root process can create a socket, and give up its superuser privileges, but still issue privileged ioctl commands.

Allocate structure

173-191

If ia is null, the command is requesting a new address. in_control allocates an in_ifaddr structure, clears it with bzero, and links it into the in_ifaddr list for the system and into the if_addrlist list for the interface.

Initialize structure

192-206

The next portion of code initializes the in_ifaddr structure. First the generic pointers in the ifaddr portion of the structure are initialized to point to the sockaddr_in structures in the in_ifaddr structure. The function also initializes the ia_sockmask and ia_broadaddr structures as necessary. Figure 6.15 illustrates the in_ifaddr structure after this initialization.

Figure 6.15. An in_ifaddr structure after initialization by in_control.

[image: Image]

202-206

Finally, in_control establishes the back pointer from the in_ifaddr to the interface’s ifnet structure.

Net/3 counts only nonloopback interfaces in in_interfaces.

Address Assignment: SIOCSIFADDR

The precondition code has ensured that ia points to an in_ifaddr structure to be modified by the SIOCSIFADDR command. Figure 6.16 shows the code executed by in_control in the second switch for this command.

Figure 6.16. in_control function: address assignment.

	

--- in.c
259 case SIOCSIFADDR:
260 return (in_ifinit(ifp, ia,
261 (struct sockaddr_in *) &ifr->ifr_addr, 1));
--- in.c

259-261

in_ifinit does all the work. The IP address included within the ifreq structure (ifr_addr) is passed to in_ifinit.

in_ifinit Function

The major steps in in_ifinit are:

[image: Image] copy the address into the structure and inform the hardware of the change,

[image: Image] discard any routes configured with the previous address,

[image: Image] establish a subnet mask for the address,

[image: Image] establish a default route to the attached network (or host), and

[image: Image] join the all-hosts group on the interface.

The code is described in three parts, starting with Figure 6.17.

Figure 6.17. in_ifinit function: address assignment and route initialization.

	

--- in.c
353 in_ifinit(ifp, ia, sin, scrub)
354 struct ifnet *ifp;
355 struct in_ifaddr *ia;
356 struct sockaddr_in *sin;
357 int scrub;
358 {
359 u_long i = ntohl(sin->sin_addr.s_addr);
360 struct sockaddr_in oldaddr;
361 int s = splimp(), flags = RTF_UP, error, ether_output();

362 oldaddr = ia->ia_addr;
363 ia->ia_addr = *sin;
364 /*
365 * Give the interface a chance to initialize
366 * if this is its first address,
367 * and to validate the address if necessary.
368 */
369 if (ifp->if_ioctl &&
370 (error = (*ifp->if_ioctl) (ifp, SIOCSIFADDR, (caddr_t) ia))) {
371 splx(s);
372 ia->ia_addr = oldaddr;
373 return (error);
374 }
375 if (ifp->if_output == ether_output) { /* XXX: Another Kludge */
376 ia->ia_ifa.ifa_rtrequest = arp_rtrequest;
377 ia->ia_ifa.ifa_flags |= RTF_CLONING;
378 }
379 splx(s);
380 if (scrub) {
381 ia->ia_ifa.ifa_addr = (struct sockaddr *) &oldaddr;
382 in_ifscrub(ifp, ia);
383 ia->ia_ifa.ifa_addr = (struct sockaddr *) &ia->ia_addr;
384 }
--- in.c

353-357

The four arguments to in_ifinit are: ifp, a pointer to the interface structure; ia, a pointer to the in_ifaddr structure to be changed; sin, a pointer to the requested IP address; and scrub, which indicates if existing routes for this interface should be discarded, i holds the IP address in host byte order.

Assign address and notify hardware

358-374

in_ifinit saves the previous address in oldaddr in case it must be restored when an error occurs. If the interface has an if_ioctl function defined, in_control calls it. The three functions leioctl, slioctl, and loioctl for the sample interfaces are described in the next section. The previous address is restored and in_control returns if an error occurs.

Ethernet configuration

375-378

For Ethernet devices, arp_rtrequest is selected as the link-level routing function and the RTF_CLONING flag is set. arp_rtrequest is described in Section 21.13 and RTF_CLONING is described at the end of Section 19.4. As the XXX comment suggests, putting the code here avoids changing all the Ethernet drivers.

Discard previous routes

379-384

If the caller requests that existing routes be scrubbed, the previous address is reattached to ifa_addr while in_ifscrub locates and invalidates any routes based on the old address. After in_ifscrub returns, the new address is restored.

The section of in_ifinit shown in Figure 6.18 constructs the network and subnet masks.

Figure 6.18. in_ifinit function: network and subnet masks.

	

-- in.c
385 if (IN_CLASSA(i))
386 ia->ia_netmask = IN_CLASSA_NET;
387 else if (IN_CLASSB(i))
388 ia->ia_netmask = IN_CLASSB_NET;
389 else
390 ia->ia_netmask = IN_CLASSC_NET;
391 /*
392 * The subnet mask usually includes at least the standard network part,
393 * but may be smaller in the case of supernetting.
394 * If it is set, we believe it.
395 */
396 if (ia->ia_subnetmask == 0) {
397 ia->ia_subnetmask = ia->ia_netmask;
398 ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask);
399 } else
400 ia->ia_netmask &= ia->ia_subnetmask;
401 ia->ia_net = i & ia->ia_netmask;
402 ia->ia_subnet = i & ia->ia_subnetmask;
403 in_socktrim(&ia->ia_sockmask);
-- in.c

Construct network mask and default subnetmask

385-400

A tentative network mask is constructed in ia_netmask based on whether the address is a class A, class B, or class C address. If no subnetwork mask is associated with the address yet, ia_subnetmask and ia_sockmask are initialized to the tentative mask in ia_netmask.

If a subnet has been specified, in_ifinit logically ANDs the tentative netmask and the existing submask together to get a new network mask. This operation may clear some of the 1 bits in the tentative netmask (it can never set the 0 bits, since 0 logically ANDed with anything is 0). In this case, the network mask has fewer 1 bits than would be expected by considering the class of the address.

This is called supernetting and is described in RFC 1519 [Fuller et al. 1993]. A supernet is a grouping of several class A, class B, or class C networks. Supernetting is also discussed in Section 10.8 of Volume 1.

An interface is configured by default without subnetting (i.e., the network and subnetwork masks are the same). An explicit request (with SIOCSIFNETMASK or SIOCAIFADDR) is required to enable subnetting (or supernetting).

Construct network and subnetwork numbers

401-403

The network and subnetwork numbers are extracted from the new address by the network and subnet masks. The function in_socktrim sets the length of in_sockmask (which is a sockaddr_in structure) by locating the last byte that contains a 1 bit in the mask.

Figure 6.19 shows the last section of in_ifinit, which adds a route for the interface and joins the all-hosts multicast group.

Figure 6.19. in_ifinit function: routing and multicast groups.

	

--- in.c
404 /*
405 * Add route for the network.
406 */
407 ia->ia_ifa.ifa_metric = ifp->if_metric;
408 if (ifp->if_flags & IFF_BROADCAST) {
409 ia->ia_broadaddr.sin_addr.s_addr =
410 htonl(ia->ia_subnet | ~ia->ia_subnetmask);
411 ia->ia_netbroadcast.s_addr =
412 htonl(ia->ia_net | ~ia->ia_netmask);
413 } else if (ifp->if_flags & IFF_LOOPBACK) {
414 ia->ia_ifa.ifa_dstaddr = ia->ia_ifa.ifa_addr;
415 flags |= RTF_HOST;
416 } else if (ifp->if_flags & IFF_POINTOPOINT) {
417 if (ia->ia_dstaddr.sin_family != AF_INET)
418 return (0);
419 flags |= RTF_HOST;
420 }
421 if ((error = rtinit(&(ia->ia_ifa), (int) RTM_ADD, flags)) == 0)
422 ia->ia_flags |= IFA_ROUTE;
423 /*
424 * If the interface supports multicast, join the "all hosts"
425 * multicast group on that interface.
426 */
427 if (ifp->if_flags & IFF_MULTICAST) {
428 struct in_addr addr;

429 addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP);
430 in_addmulti(&addr, ifp);
431 }
432 return (error);
433 }
--- in.c

Establish route for host or network

404-422

The next step is to create a route for the network specified by the new address. in_ifinit copies the routing metric from the interface to the in_ifaddr structure, constructs the broadcast addresses if the interface supports broadcasts, and forces the destination address to be the same as the assigned address for loopback interfaces. If a point-to-point interface does not yet have an IP address assigned to the other end of the link, in_ifinit returns before trying to establish a route for the invalid address.

in_ifinit initializes flags to RTF_UP and logically ORs in RTF_HOST for loopback and point-to-point interfaces. rtinit installs a route to the network (RTF_HOST not set) or host (RTF_HOST set) for the interface. If rtinit succeeds, the IFA_ROUTE flag in ia_flags is set to indicate that a route is installed for this address.

Join all-hosts group

423-433

Finally, a multicast capable interface must join the all-hosts multicast group when it is initialized. in_addmulti does the work and is described in Section 12.11.

Network Mask Assignment: SIOCSIFNETMASK

Figure 6.20 shows the processing for the network mask command.

Figure 6.20. in_control function: network mask assignment.

	

-- in.c
262 case SIOCSIFNETMASK:
263 i = ifra->ifra_addr.sin_addr.s_addr;
264 ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr = i);
265 break;
--- in.c

262-265

in_control extracts the requested netmask from the ifreq structure and stores it in ia_sockmask in network byte order and in ia_subnetmask in host byte order.

Destination Address Assignment: SIOCSIFDSTADDR

For point-to-point interfaces, the address of the system on the other end of the link is specified by the SIOCSIFDSTADDR command. Figure 6.14 showed the precondition processing for the code shown in Figure 6.21.

Figure 6.21. in_control function: destination address assignment.

	

--- in.c
236 case SIOCSIFDSTADDR:
237 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
238 return (EINVAL);
239 oldaddr = ia->ia_dstaddr;
240 ia->ia_dstaddr = *(struct sockaddr_in *) &ifr->ifr_dstaddr;
241 if (ifp->if_ioctl && (error = (*ifp->if_ioctl)
242 (ifp, SIOCSIFDSTADDR, (caddr_t) ia))) {
243 ia->ia_dstaddr = oldaddr;
244 return (error);
245 }
246 if (ia->ia_flags & IFA_ROUTE) {
247 ia->ia_ifa.ifa_dstaddr = (struct sockaddr *) &oldaddr;
248 rtinit(&(ia->ia_ifa), (int) RTM_DELETE, RTF_HOST);
249 ia->ia_ifa.ifa_dstaddr =
250 (struct sockaddr *) &ia->ia_dstaddr;
251 rtinit(&(ia->ia_ifa), (int) RTM_ADD, RTF_HOST | RTF_UP);
252 }
253 break;
--- in.c

236-245

Only point-to-point networks have destination addresses, so in_control returns EINVAL for other networks. After saving the current destination address in oldaddr, the code sets the new address and informs the interface through the if_ioctl function. If an error occurs, the old address is restored.

246-253

If the address has a route previously associated with it, that route is deleted by the first call to rtinit and a new route to the new destination is installed by the second call to rtinit.

Retrieving Interface Information

Figure 6.22 shows the precondition processing for the SIOCSIFBRDADDR command as well as the ioctl commands that return interface information to the calling process.

Figure 6.22. in_control function: preconditions.

	

--- in.c
207 case SIOCSIFBRDADDR:
208 if ((so->so_state & SS_PRIV) == 0)
209 return (EPERM);
210 /* FALLTHROUGH */

211 case SIOCGIFADDR:
212 case SIOCGIFNETMASK:
213 case SIOCGIFDSTADDR:
214 case SIOCGIFBRDADDR:
215 if (ia == (struct in_ifaddr *) 0)
216 return (EADDRNOTAVAIL);
217 break;
--- in.c

207-217

The broadcast address may only be set through a socket created by a superuser process. The SIOCSIFBRDADDR command and the four SIOCGxxx commands work only when an address is already defined for the interface, in which case ia won’t be null (ia was set by in_control, Figure 6.13). If ia is null, EADDRNOTAVAIL is returned.

The processing of these five commands (four get commands and one set command) is shown in Figure 6.23.

Figure 6.23. in_control function: processing.

[image: Image]

220-235

The unicast address, broadcast address, destination address, or netmask are copied into the ifreq structure. A broadcast address is available only from a network interface that supports broadcasts, and a destination address is available only from a point-to-point interface.

254-258

The broadcast address is copied from the ifreq structure only when the interface supports broadcasts.

Multiple IP Addresses per Interface

The SIOCGxxx and SIOCSxxx commands operate only on the first IP address associated with an interfacet he first address located by the loop at the start of in_control (Figure 6.25). To support multiple IP addresses per interface, the additional addresses must be assigned and configured with the SIOCAIFADDR command. In fact, SIOCAIFADDR can do everything the SIOCGxxx and SIOCSxxx commands do. The ifconfig program uses SIOCAIFADDR to configure all of the address information for an interface.

As noted earlier, having multiple addresses per interface can ease the transition when hosts or networks are renumbered. A fault-tolerant software system might use this feature to allow a backup system to assume the IP address of a failed system.

The -alias option to Net/3’s ifconfig program passes information about the additional addresses to the kernel in an in_aliasreq structure, shown in Figure 6.24.

Figure 6.24. in_aliasreq structure.

	

-- in_var.h
 59 struct in_aliasreq {
 60 char ifra_name[IFNAMSIZ]; /* interface name, e.g. "en0" */
 61 struct sockaddr_in ifra_addr;
 62 struct sockaddr_in ifra_broadaddr;
 63 #define ifra_dstaddr ifra_broadaddr
 64 struct sockaddr_in ifra_mask;
 65 };
-- in_var.h

59-65

Notice that unlike the ifreq structure, there is no union defined within the in_aliasreq structure. With SIOCAIFADDR, the address, broadcast address, and mask can be specified in a single ioctl call.

SIOCAIFADDR adds a new address or changes the information associated with an existing address. SIOCDIFADDR deletes the in_ifaddr structure for the matching IP address. Figure 6.25 shows the precondition processing for the SIOCAIFADDR and SIOCDIFADDR commands, which assumes that the loop at the start of in_control (Figure 6.13) has set ia to point to the first IP address associated with the interface specified in ifra_name (if it exists).

Figure 6.25. in_control function: adding and deleting addresses.

	

--- in.c
154 case SIOCAIFADDR:
155 case SIOCDIFADDR:
156 if (ifra->ifra_addr.sin_family == AF_INET)
157 for (oia = ia; ia; ia = ia->ia_next) {
158 if (ia->ia_ifp == ifp &&
159 ia->ia_addr.sin_addr.s_addr ==
160 ifra->ifra_addr.sin_addr.s_addr)
161 break;
162 }
163 if (cmd == SIOCDIFADDR && ia == 0)
164 return (EADDRNOTAVAIL);
165 /* FALLTHROUGH to Figure 6.14 */
--- in.c

154-165

Because the SIOCDIFADDR code looks only at the first two members of *ifra, the code shown in Figure 6.25 works for SIOCAIFADDR (when ifra points to an in_aliasreq structure) and for SIOCDIFADDR (when ifra points to an ifreq structure). The first two members of the in_aliasreq and ifreq structures are identical.

For both commands, the for loop continues the search started by the loop at the start of in_control by looking for the in_ifaddr structure with the same IP address specified by ifra->ifra_addr. For the delete command, EADDRNOTAVAIL is returned if the address isn’t found.

After the loop and the test for the delete command, control falls through to the code we described in Figure 6.14. For the add command, the code in Figure 6.14 allocates a new in_ifaddr structure if one was not found that matched the address in the in_aliasreq structure.

Additional IP Addresses: SIOCAIFADDR

At this point ia points to a new in_ifaddr structure or to an old in_ifaddr structure with an IP address that matched the address in the request. The SIOCAIFADDR processing is shown in Figure 6.26.

Figure 6.26. in_control function: SIOCAIFADDR processing.

	

--- in.c
266 case SIOCAIFADDR:
267 maskIsNew = 0;
268 hostIsNew = 1;
269 error = 0;
270 if (ia->ia_addr.sin_family == AF_INET) {
271 if (ifra->ifra_addr.sin_len == 0) {
272 ifra->ifra_addr = ia->ia_addr;
273 hostIsNew = 0;
274 } else if (ifra->ifra_addr.sin_addr.s_addr ==
275 ia->ia_addr.sin_addr.s_addr)
276 hostIsNew = 0;
277 }
278 if (ifra->ifra_mask.sin_len) {
279 in_ifscrub(ifp, ia);
280 ia->ia_sockmask = ifra->ifra_mask;
281 ia->ia_subnetmask =
282 ntohl(ia->ia_sockmask.sin_addr.s_addr);
283 maskIsNew = 1;
284 }
285 if ((ifp->if_flags & IFF_POINTOPOINT) &&
286 (ifra->ifra_dstaddr.sin_family == AF_INET)) {
287 in_ifscrub(ifp, ia);
288 ia->ia_dstaddr = ifra->ifra_dstaddr;
289 maskIsNew = 1; /* We lie; but the effect's the same */
290 }
291 if (ifra->ifra_addr.sin_family == AF_INET &&
292 (hostIsNew || maskIsNew))
293 error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0);
294 if ((ifp->if_flags & IFF_BROADCAST) &&
295 (ifra->ifra_broadaddr.sin_family == AF_INET))
296 ia->ia_broadaddr = ifra->ifra_broadaddr;
297 return (error);
--- in.c

266-277

Since SIOCAIFADDR can create a new address or change the information associated with an existing address, the maskIsNew and hostIsNew flags keep track of what has changed so that routes can be updated if necessary at the end of the function.

By default, the code assumes that a new IP address is being assigned to the interface (hostIsNew starts at 1). If the length of the new address is 0, in_control copies the current address into the request and changes hostIsNew to 0. If the length is not 0 and the new address matches the old address, this request does not contain a new address and hostIsNew is set to 0.

278-284

If a netmask is specified in the request, any routes using the current address are discarded and in_control installs the new mask.

285-290

If the interface is a point-to-point interface and the request includes a new destination address, in_scrub discards any routes using the address, the new destination address is installed, and maskIsNew is set to 1 to force the call to in_ifinit, which reconfigures the interface.

291-297

If a new address has been configured or a new mask has been assigned, in_ifinit makes all the appropriate changes to support the new configuration (Figure 6.17). Note that the last argument to in_ifinit is 0. This indicates that it isn’t necessary to scrub any routes since that has already been taken care of. Finally, the broadcast address is copied from the in_aliasreq structure if the interface supports broadcasts.

Deleting IP Addresses: SIOCDIFADDR

The SIOCDIFADDR command, which deletes IP addresses from an interface, is shown in Figure 6.27. Remember that ia points to the in_ifaddr structure to be deleted (i.e., the one that matched the request).

Figure 6.27. in_control function: deleting addresses.

	

--- in.c
298 case SIOCDIFADDR:
299 in_ifscrub(ifp, ia);
300 if ((ifa = ifp->if_addrlist) == (struct ifaddr *) ia)
301 /* ia is the first address in the list */
302 ifp->if_addrlist = ifa->ifa_next;
303 else {
304 /* ia is *not* the first address in the list */
305 while (ifa->ifa_next &&
306 (ifa->ifa_next != (struct ifaddr *) ia))
307 ifa = ifa->ifa_next;
308 if (ifa->ifa_next)
309 ifa->ifa_next = ((struct ifaddr *) ia)->ifa_next;
310 else
311 printf("Couldn't unlink inifaddr from ifp\n");
312 }
313 oia = ia;
314 if (oia == (ia = in_ifaddr))
315 in_ifaddr = ia->ia_next;
316 else {
317 while (ia->ia_next && (ia->ia_next != oia))
318 ia = ia->ia_next;
319 if (ia->ia_next)
320 ia->ia_next = oia->ia_next;
321 else
322 printf("Didn't unlink inifadr from list\n");
323 }
324 IFAFREE((&oia->ia_ifa));
325 break;
--- in.c

298-323

The precondition code arranged for ia to point to the address to be deleted. in_ifscrub deletes any routes associated with the address. The first if deletes the structure for the interface address list. The second if deletes the structure from the Internet address list (in_ifaddr).

324-325

IFAFREE only releases the structure when the reference count drops to 0.

The additional references would be from entries in the routing table.

6.7. Interface ioctl Processing

We now look at the specific ioctl processing done by each of our sample interfaces in the leioctl, slioctl, and loioctl functions when an address is assigned to the interface.

in_ifinit is called by the SIOCSIFADDR code in Figure 6.16 and by the SIOCAIFADDR code in Figure 6.26. in_ifinit always issues the SIOCSIFADDR command through the interface’s if_ioctl function (Figure 6.17).

leioctl Function

Figure 4.31 showed SIOCSIFFLAGS command processing of the LANCE driver. Figure 6.28 shows the SIOCSIFADDR command processing.

Figure 6.28. leioctl function.

[image: Image]

614-637

Before processing the command, data is converted to an ifaddr structure pointer and ifp->if_unit selects the appropriate le_softc structure for this request.

The interface is marked as up and the hardware is initialized by leinit. For Internet addresses, the IP address is stored in the arpcom structure and a gratuitous ARP for the address is issued. Gratuitous ARP is discussed in Section 21.5 and in Section 4.7 of Volume 1.

Unrecognized commands

672-677

EINVAL is returned for unrecognized commands.

slioctl Function

The slioctl function (Figure 6.29) processes the SIOCSIFADDR and SIOCSIFDSTADDR command for the SLIP device driver.

Figure 6.29. slioctl function: SIOCSIFADDR and SIOCSIFDSTADDR commands.

[image: Image]

663-672

For both commands, EAFNOSUPPORT is returned if the address is not an IP address. The SIOCSIFADDR command enables IFF_UP.

Unrecognized commands

688-693

EINVAL is returned for unrecognized commands.

loioctl Function

The loioctl function and its implementation of the SIOCSIFADDR command is shown in Figure 6.30.

Figure 6.30. loioctl function: SIOCSIFADDR command.

[image: Image]

135-151

For Internet addresses, loioctl sets IFF_UP and returns immediately.

Unrecognized commands

167-171

EINVAL is returned for unrecognized commands.

Notice that for all three example drivers, assigning an address causes the interface to be marked as up (IFF_UP).

6.8. Internet Utility Functions

Figure 6.31 lists several functions that manipulate Internet addresses or that rely on the ifnet structures shown in Figure 6.5, usually to discover subnetting information that cannot be obtained from the 32-bit IP address alone. The implementation of these functions consists primarily of traversing data structures and manipulating bit masks. The reader can find these functions in netinet/in.c.

Net/2 had a bug in in_canforward that permitted loopback addresses to be forwarded. Since most Net/2 systems are configured to recognize only a single loopback address, such as 127.0.0.1, Net/2 systems often forward other addresses in the loopback network (e.g., 127.0.0.2) along the default route.

Figure 6.31. Internet address functions.

[image: Image]

A telnet to 127.0.0.2 may not do what you expect! (Exercise 6.6)

6.9. ifnet Utility Functions

Several functions search the data structures shown in Figure 6.5. The functions listed in Figure 6.32 accept addresses for any protocol family, since their argument is a pointer to a sockaddr structure, which contains the address family. Contrast this to the functions in Figure 6.31, each of which takes a 32-bit IP address as an argument. These functions are defined in net/if.c.

Figure 6.32. ifnet utility functions.

[image: Image]

6.10. Summary

In this chapter we presented an overview of the IP addressing mechanisms and described interface address structures and protocol address structures that are specialized for IP: the in_ifaddr and sockaddr_in structures.

We described how interfaces are configured with IP-specific information through the ifconfig program and the ioctl interface commands.

Finally, we summarized several utility functions that manipulate IP addresses and search the interface data structures.

Exercises

6.1 Why do you think sin_addr in the sockaddr_in structure was originally defined as a structure?

6.2 ifunit ("sl0") returns a pointer to which structure in Figure 6.5?

6.3 Why is the IP address duplicated in ac_ipaddr when it is already contained in an ifaddr structure on the interface’s address list?

6.4 Why do you think IP interface addresses are accessed through a UDP socket and not a raw IP socket?

6.5 Why does in_socktrim change sin_len to match the length of the mask instead of using the standard length of a sockaddr_in structure?

6.6 What happens when the connection request segment from a telnet 127.0.0.2 command is erroneously forwarded by a Net/2 system and is eventually recognized and accepted by a system along the default route?

Chapter 7. Domains and Protocols

7.1. Introduction

In this chapter we describe the Net/3 data structures that support the concurrent operation of multiple network protocols. We’ll use the Internet protocols to illustrate the construction and initialization of these data structures at system initialization time. This chapter presents the necessary background material for our discussion of the IP protocol processing layer, which begins in Chapter 8.

Net/3 groups related protocols into a domain, and identifies each domain with a protocol family constant. Net/3 also groups protocols by the addressing method they employ. Recall from Figure 3.19 that address families also have identifying constants. Currently every protocol within a domain uses the same type of address and every address type is used by a single domain. As a result, a domain can be uniquely identified by its protocol family or address family constant. Figure 7.1 lists the protocols and constants that we discuss.

Figure 7.1. Common protocol and address family constants.

[image: Image]

PF_LOCAL and AF_LOCAL are the primary identifiers for protocols that support communication between processes on the same host and are part of the POSIX.12 standard. Before Net/3, PF_UNIX and AF_UNIX identified these protocols. The UNIX constants remain for backward compatibility and are used by Net/3 and in this text.

The PF_UNIX domain supports interprocess communication on a single Unix host. See [Stevens 1990] for details. The PF_ROUTE domain supports communication between a process and the routing facilities in the kernel (Chapter 18). We reference the PF_OSI protocols occasionally, as some features of Net/3 exist only to support the OSI protocols, but do not discuss them in any detail. Most of our discussions are about the PF_INET protocols.

7.2. Code Introduction

Two headers and two C files are covered in this chapter. Figure 7.2 describes the four files.

Figure 7.2. Files discussed in this chapter.

[image: Image]

Global Variables

Figure 7.3 describes several important global data structures and system parameters that are described in this chapter and referenced throughout Net/3.

Figure 7.3. Global variables introduced in this chapter.

[image: Image]

Statistics

No statistics are collected by the code described in this chapter, but Figure 7.4 shows the statistics table allocated and initialized by the ip_init function. The only way to look at this table is with a kernel debugger.

Figure 7.4. Statistics collected in this chapter.

[image: Image]

7.3. domain Structure

A protocol domain is represented by a domain structure shown in Figure 7.5.

Figure 7.5. The domain structure definition.

	

--- domain.h
 42 struct domain {
 43 int dom_family; /* AF_xxx */
 44 char *dom_name;
 45 void (*dom_init) /* initialize domain data structures */
 46 (void);
 47 int (*dom_externalize) /* externalize access rights */
 48 (struct mbuf *);
 49 int (*dom_dispose) /* dispose of internalized rights */
 50 (struct mbuf *);
 51 struct protosw *dom_protosw, *dom_protoswNPROTOSW;
 52 struct domain *dom_next;
 53 int (*dom_rtattach) /* initialize routing table */
 54 (void **, int);
 55 int dom_rtoffset; /* an arg to rtattach, in bits */
 56 int dom_maxrtkey; /* for routing layer */
 57 };
--- domain.h

42-57

dom_family is one of the address family constants (e.g., AF_INET) and specifies the addressing employed by the protocols in the domain. dom_name is a text name for the domain (e.g., "internet").

The dom_name member is not accessed by any part of the Net/3 kernel, but the fstat(1) program uses dom_name when it formats socket information.

dom_init points to the function that initializes the domain. dom_externalize and dom_dispose point to functions that manage access rights sent across a communication path within the domain. The Unix domain implements this feature to pass file descriptors between processes. The Internet domain does not implement access rights.

dom_protosw and dom_protoswNPROTOSW point to the start and end of an array of protosw structures. dom_next points to the next domain in a linked list of domains supported by the kernel. The linked list of all domains is accessed through the global pointer domains.

The next three members, dom_rtattach, dom_rtoffset, and dom_maxrtkey, hold routing information for the domain. They are described in Chapter 18.

Figure 7.6 shows an example domains list.

Figure 7.6. domains list.

[image: Image]

7.4. protosw Structure

At compile time, Net/3 allocates and initializes a protosw structure for each protocol in the kernel and groups the structures for all protocols within a single domain into an array. Each domain structure references the appropriate array of protosw structures. A kernel may provide multiple interfaces to the same protocol by providing multiple protosw entries. For example, in Section 7.5 we describe three different entries for the IP protocol.

Figure 7.7. The protosw structure definition.

	

-- protosw.h
 57 struct protosw {
 58 short pr_type; /* see (Figure 7.8) */
 59 struct domain *pr_domain; /* domain protocol a member of */
 60 short pr_protocol; /* protocol number */
 61 short pr_flags; /* see Figure 7.9 */
 62 /* protocol-protocol hooks */
 63 void (*pr_input) (); /* input to protocol (from below) */
 64 int (*pr_output) (); /* output to protocol (from above) */
 65 void (*pr_ctlinput) (); /* control input (from below) */
 66 int (*pr_ctloutput) (); /* control output (from above) */
 67 /* user-protocol hook */
 68 int (*pr_usrreq) (); /* user request from process */
 69 /* utility hooks */
 70 void (*pr_init) (); /* initialization hook */
 71 void (*pr_fasttimo) (); /* fast timeout (200ms) */
 72 void (*pr_slowtimo) (); /* slow timeout (500ms) */
 73 void (*pr_drain) (); /* flush any excess space possible */
 74 int (*pr_sysctl) (); /* sysctl for protocol */
 75 };
--- protosw.h

57-61

The first four members in the structure identify and characterize the protocol. pr_type specifies the communication semantics of the protocol. Figure 7.8 lists the possible values for pr_type and the corresponding Internet protocols.

Figure 7.8. pr_type specifies the protocol’s semantics.

[image: Image]

pr_domain points to the associated domain structure, pr_protocol numbers the protocol within the domain, and pr_flags specifies additional characteristics of the protocol. Figure 7.9 lists the possible values for pr_flags.

Figure 7.9. pr_flags values.

[image: Image]

If PR_ADDR is supported by a protocol, PR_ATOMIC must also be supported. PR_ADDR and PR_CONNREQUIRED are mutually exclusive.

When PR_WANTRCVD is set, the socket layer notifies the protocol layer when it has passed data from the socket receive buffer to a process (i.e., when more space becomes available in the receive buffer).

PR_RIGHTS indicates that access right control messages can be passed across the connection. Access rights require additional support within the kernel to ensure proper cleanup if the receiving process does not consume the messages. Only the Unix domain supports access rights, where they are used to pass descriptors between processes.

Figure 7.10 shows the relationship between the protocol type, the protocol flags, and the protocol semantics.

Figure 7.10. Protocol characteristics and examples.

[image: Image]

Figure 7.10 does not include the PR_WANTRCVD or PR_RIGHTS flags. PR_WANTRCVD is always set for reliable connection-oriented protocols.

To understand communication semantics of a protosw entry in Net/3, we must consider the PR_xxx flags and pr_type together. In Figure 7.10 we have included two columns (“Record boundaries?” and “Reliable?”) to describe the additional semantics that are implicitly specified by pr_type. Figure 7.10 shows three types of reliable protocols:

[image: Image] Connection-oriented byte stream protocols such as TCP and SPP (from the XNS protocol family). These protocols are identified by SOCK_STREAM.

[image: Image] Connection-oriented stream protocols with record boundaries are specified by SOCK_SEQPACKET. Within this type of protocol, PR_ATOMIC indicates whether records are implicitly specified by each output request or are explicitly specified by setting the MSG_EOR flag on output. TP4 from the OSI protocol family requires explicit record boundaries, and SPP assumes implicit record boundaries.

SPP supports both SOCK_STREAM and SOCK_SEQPACKET semantics.

[image: Image] The third type of reliable protocol provides a connection-oriented service with implicit record boundaries and is specified by SOCK_RDM. RDP does not guarantee that records are received in the order that they are sent. RDP is described in [Partridge 1987] and specified by RFC 1151 [Partridge and Hinden 1990].

Two types of unreliable protocols are shown in Figure 7.10:

[image: Image] A transport-level datagram protocol, such as UDP, which includes multiplexing and checksums, is specified by SOCK_DGRAM.

[image: Image] A network-level datagram protocol, such as ICMP, which is specified by SOCK_RAW. In Net/3, only superuser processes may create a SOCK_RAW socket (Figure 15.18).

62-68

The next five members are function pointers providing access to the protocol from other protocols. pr_input handles incoming data from a lower-level protocol, pr_output handles outgoing data from a higher-level protocol, pr_ctlinput handles control information from below, and pr_ctloutput handles control information from above. pr_usrreq handles all communication requests from a process.

Figure 7.11. The five main entry points to a protocol.

[image: Image]

69-75

The remaining five members are utility functions for the protocol. pr_init handles initialization. pr_fasttimo and pr_slowtimo are called every 200 ms and 500 ms respectively to perform periodic protocol functions, such as updating retransmission timers. pr_drain is called by m_reclaim when memory is in short supply (Figure 2.13). It is a request that the protocol release as much memory as possible. pr_sysctl provides an interface for the sysctl(8) command, a way to modify system-wide parameters, such as enabling packet forwarding or UDP checksum calculations.

7.5. IP domain and protosw Structures

The domain and protosw structures for all protocols are declared and initialized statically. For the Internet protocols, the inetsw array contains the protosw structures. Figure 7.12 summarizes the protocol information in the inetsw array. Figure 7.13 shows the definition of the array and the definition of the domain structure for the Internet protocols.

Figure 7.12. Internet domain protocols.

[image: Image]

Figure 7.13. The Internet domain and protosw structures.

[image: Image]

39-77

Three protosw structures in the inetsw array provide access to IP. The first, inetsw[0], specifies administrative functions for IP and is accessed only by the kernel. The other two entries, inetsw[3] and inetsw[6], are identical except for their pr_protocol values and provide a raw interface to IP. inetsw[3] processes any packets that are received for unrecognized protocols. inetsw[6] is the default raw protocol, which the pffindproto function (Section 7.6) returns when no other match is found.

In releases before Net/3, packets transmitted through inetsw[3] did not have an IP header prepended. It was the responsibility of the process to construct the correct header. Packets transmitted through inetsw[6] had an IP header prepended by the kernel. 4.3BSD Reno introduced the IP_HDRINCL socket option (Section 32.8), so the distinction between inetsw[3] and inetsw[6] is no longer relevant.

The raw interface allows a process to send and receive IP packets without an intervening transport protocol. One use of the raw interface is to implement a transport protocol outside the kernel. Once the protocol has stablized, it can be moved into the kernel to improve its performance and availability to other processes. Another use is for diagnostic tools such as traceroute, which uses the raw IP interface to access IP directly. Chapter 32 discusses the raw IP interface. Figure 7.14 summarizes the IP protosw structures.

Figure 7.14. The IP inetsw entries.

[image: Image]

78-81

The domain structure for the Internet protocols is shown at the end of Figure 7.13. The Internet domain uses AF_INET style addressing, has a text name of "internet", has no initialization or control-message functions, and has its protosw structures in the inetsw array.

The routing initialization function for the Internet protocols is rn_inithead . The maximum number of significant bits for an IP address is 32, and the size of an Internet routing key is the size of a sockaddr_in structure (16 bytes).

domaininit Function

At system initialization time (Figure 3.23), the kernel calls domaininit to link the domain and protosw structures. domaininit is shown in Figure 7.15.

Figure 7.15. domaininit function.

	

--- uipc_domain.c
 37 /* simplifies code in domaininit */

 38 #define ADDDOMAIN(x) { \
 39 extern struct domain __CONCAT(x,domain); \
 40 __CONCAT(x,domain.dom_next) = domains; \
 41 domains = &__CONCAT(x,domain); \
 42 }

 43 domaininit()
 44 {
 45 struct domain *dp;
 46 struct protosw *pr;
 47 /* The C compiler usually defines unix. We don't want to get
 48 * confused with the unix argument to ADDDOMAIN
 49 */

 50 #undef unix
 51 ADDDOMAIN(unix);
 52 ADDDOMAIN(route);
 53 ADDDOMAIN(inet);
 54 ADDDOMAIN(iso);

 55 for (dp = domains; dp; dp = dp->dom_next) {
 56 if (dp->dom_init)
 57 (*dp->dom_init) ();
 58 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
 59 if (pr->pr_init)
 60 (*pr->pr_init) ();
 61 }

 62 if (max_linkhdr < 16) /* XXX */
 63 max_linkhdr = 16;
 64 max_hdr = max_linkhdr + max_protohdr;
 65 max_datalen = MHLEN - max_hdr;
 66 timeout(pffasttimo, (void *) 0, 1);
 67 timeout(pfslowtimo, (void *) 0, 1);
 68 }
--- uipc_domain.c

37-42

The ADDDOMAIN macro declares and links a single domain structure. For example, ADDDOMAIN (unix) expands to

extern struct domain unixdomain;
unixdomain.dom_next = domains;
domains = &unixdomain;

The __CONCAT macro is defined in sys/defs.h and concatenates two symbols. For example, __CONCAT (unix, domain) produces unixdomain.

43-54

domaininit constructs the list of domains by calling ADDDOMAIN for each supported domain.

Since the symbol unix is often predefined by the C preprocessor, Net/3 explicitly undefines it here so ADDDOMAIN works correctly.

Figure 7.16 shows the linked domain and protosw structures in a kernel configured to support the Internet, Unix, and OSI protocol families.

Figure 7.16. The domain list and protosw arrays after initialization.

[image: Image]

55-61

The two nested for loops locate every domain and protocol in the kernel and call the initialization functions dom_init and pr_init if they are defined. For the Internet protocols, the following functions are called (Figure 7.13): ip_init, udp_init, tcp_init, igmp_init, and rip_init.

62-65

The parameters computed in domaininit control the layout of packets in the mbufs to avoid extraneous copying of data. max_linkhdr and max_protohdr are set during protocol initialization. domaininit enforces a lower bound of 16 for max_linkhdr. The value of 16 leaves room for a 14-byte Ethernet header ending on a 4-byte boundary. Figures 7.17 and 7.18 list the parameters and typical values.

Figure 7.17. Parameters used to minimize copying of protocol data.

[image: Image]

Figure 7.18. Mbuf and associated maximum header lengths.

[image: Image]

max_protohdr is a soft limit that measures the expected protocol header size. In the Internet domain, the IP and TCP headers are usually 20 bytes in length but both can be up to 60 bytes. The penalty for exceeding max_protohdr is the time required to push back the data to make room for the larger than expected protocol header.

66-68

domaininit initiates pfslowtimo and pffasttimo by calling timeout. The third argument specifies when the kernel should call the functions, in this case in 1 clock tick. Both functions are shown in Figure 7.19.

Figure 7.19. pfslowtimo and pffasttimo functions.

	

--- uipc_domain.c
153 void
154 pfslowtimo(arg)
155 void *arg;
156 {
157 struct domain *dp;
158 struct protosw *pr;

159 for (dp = domains; dp; dp = dp->dom_next)
160 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
161 if (pr->pr_slowtimo)
162 (*pr->pr_slowtimo) ();
163 timeout(pfslowtimo, (void *) 0, hz / 2);
164 }

165 void
166 pffasttimo(arg)
167 void *arg;
168 {
169 struct domain *dp;
170 struct protosw *pr;

171 for (dp = domains; dp; dp = dp->dom_next)
172 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
173 if (pr->pr_fasttimo)
174 (*pr->pr_fasttimo) ();
175 timeout(pffasttimo, (void *) 0, hz / 5);
176 }
--- uipc_domain.c

153-176

These nearly identical functions use two for loops to call the pr_slowtimo or pr_fasttimo function for each protocol, if they are defined. The functions schedule themselves to be called 500 and 200 ms later by calling timeout, which we described with Figure 3.43.

7.6. pffindproto and pffindtype Functions

The pffindproto and pffindtype functions look up a protocol by number (e.g., IPPROTO_TCP) or by type (e.g., SOCK_STREAM). As we’ll see in Chapter 15, these functions are called to locate the appropriate protosw entry when a process creates a socket.

69-84

pffindtype performs a linear search of domains for the specified family and then searches the protocols within the domain for the first one of the specified type.

85-107

pffindproto searches domains exactly as pffindtype does but looks for the family, type, and protocol specified by the caller. If pffindproto does not find a (protocol, type) match within the specified protocol family, and type is SOCK_RAW, and the domain has a default raw protocol (pr_protocol equals 0), then pffindproto selects the default raw protocol instead of failing completely. For example, a call such as

Figure 7.20. pffindproto and pffindtype functions.

[image: Image]
[image: Image]

pffindproto(PF_INET, 27, SOCK_RAW);

returns a pointer to inetsw[6], the default raw IP protocol, since Net/3 does not include support for protocol 27. With access to raw IP, a process could implement protocol 27 services on its own using the kernel to manage the sending and receiving of the IP packets.

Protocol 27 is reserved for the Reliable Datagram Protocol (RFC 1151).

Both functions return a pointer to the protosw structure for the selected protocol, or a null pointer if they don’t find a match.

Example

We’ll see in Section 15.6 that when an application calls

socket(PF_INET, SOCK_STREAM, 0); /* TCP socket */

pffindtype gets called as

pffindtype(PF_INET, SOCK_STREAM);

Figure 7.12 shows that pffindtype will return a pointer to inetsw[2], since TCP is the first SOCK_STREAM protocol in the array. Similarly,

socket(PF_INET, SOCK_DGRAM, 0); /* UDP socket */

leads to

pffindtype(PF_INET, SOCK_DGRAM);

which returns a pointer to UDP in inetsw[1].

7.7. pfctlinput Function

The pfctlinput function issues a control request to every protocol in every domain. It is used when an event that may affect every protocol occurs, such as an interface shutdown or routing table change. ICMP calls pfctlinput when an ICMP redirect message arrives (Figure 11.14), since the redirect can affect all the Internet protocols (e.g., UDP and TCP).

Figure 7.21. pfctlinput function.

	

-- uipc_domain.c
142 pfctlinput(cmd, sa)
143 int cmd;
144 struct sockaddr *sa;
145 {
146 struct domain *dp;
147 struct protosw *pr;

148 for (dp = domains; dp; dp = dp->dom_next)
149 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
150 if (pr->pr_ctlinput)
151 (*pr->pr_ctlinput) (cmd, sa, (caddr_t) 0);
152 }
--- uipc_domain.c

142-152

The two nested for loops locate every protocol in every domain. pfctlinput issues the protocol control command specified by cmd by calling each protocol’s pr_ctlinput function. For UDP, udp_ctlinput is called and for TCP, tcp_ctlinput is called.

7.8. IP Initialization

As shown in Figure 7.13, the Internet domain does not have an initialization function but the individual Internet protocols do. For now, we look only at ip_init, the IP initialization function. In Chapters 23 and 24 we discuss the UDP and TCP initialization functions. Before we can discuss the code, we need to describe the ip_protox array.

Internet Transport Demultiplexing

A network-level protocol like IP must demultiplex incoming datagrams and deliver them to the appropriate transport-level protocols. To do this, the appropriate protosw structure must be derived from a protocol number present in the datagram. For the Internet protocols, this is done by the ip_protox array.

The index into the ip_protox array is the protocol value from the IP header (ip_p, Figure 8.8). The entry selected is the index of the protocol in the inetsw array that processes the datagram. For example, a datagram with a protocol number of 6 is processed by inetsw[2], the TCP protocol. The kernel constructs ip_protox during protocol initialization, described in Figure 7.23.

ip_init Function

The ip_init function is called by domaininit (Figure 7.15) at system initialization time.

71-78

pffindproto returns a pointer to the raw protocol (inetsw[3], Figure 7.14). Net/3 panics if the raw protocol cannot be located, since it is a required part of the kernel. If it is missing, the kernel has been misconfigured. IP delivers packets that arrive for an unknown transport protocol to this protocol where they may be handled by a process outside the kernel.

79-85

The next two loops initialize the ip_protox array. The first loop sets each entry in the array to pr, the index of the default protocol (3 from Figure 7.22). The second loop examines each protocol in inetsw (other than the entries with protocol numbers of 0 or IPPROTO_RAW) and sets the matching entry in ip_protox to refer to the appropriate inetsw entry. Therefore, pr_protocol in each protosw structure must be the protocol number expected to appear in the incoming datagram.

Figure 7.22. The ip_protox array maps the protocol number to an entry in the inetsw array.

[image: Image]

86-92

ip_init initializes the IP reassembly queue, ipq (Section 10.6), seeds ip_id from the system clock, and sets the maximum size of the IP input queue (ipintrq) to 50 (ipqmaxlen). ip_id is set from the system clock to provide a random starting point for datagram identifiers (Section 10.6). Finally, ip_init allocates a two-dimensional array, ip_ifmatrix, to count packets routed between the interfaces in the system.

There are many variables within Net/3 that may be modified by a system administrator. To allow these variables to be changed at run time and without recompiling the kernel, the default value represented by a constant (IFQ_MAXLEN in this case) is assigned to a variable (ipqmaxlen) at compile time. A system administrator can use a kernel debugger such as adb to change ipqmaxlen and reboot the kernel with the new value. If Figure 7.23 used IFQ_MAXLEN directly, it would require a recompile of the kernel to change the limit.

Figure 7.23. ip_init function.

	

--- ip_input.c
 71 void
 72 ip_init()
 73 {
 74 struct protosw *pr;
 75 int i;

 76 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 77 if (pr == 0)
 78 panic("ip_init");
 79 for (i = 0; i < IPPROTO_MAX; i++)
 80 ip_protox[i] = pr - inetsw;
 81 for (pr = inetdomain.dom_protosw;
 82 pr < inetdomain.dom_protoswNPROTOSW; pr++)
 83 if (pr->pr_domain->dom_family == PF_INET &&
 84 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
 85 ip_protox[pr->pr_protocol] = pr - inetsw;
 86 ipq.next = ipq.prev = &ipq;
 87 ip_id = time.tv_sec & 0xffff;
 88 ipintrq.ifq_maxlen = ipqmaxlen;
 89 i = (if_index + 1) * (if_index + 1) * sizeof(u_long);
 90 ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK);
 91 bzero((char *) ip_ifmatrix, i);
 92 }
--- ip_input.c

7.9. sysctl System Call

The sysctl system call accesses and modifies Net/3 systemwide parameters. The system administrator can modify the parameters through the sysctl(8) program. Each parameter is identified by a hierarchical list of integers and has an associated type. The prototype for the system call is:

 int sysctl (int *name, u_int namelen, void *old, size_t *oldlenp, void *new, size_t newlen);

name points to an array containing namelen integers. The old value is returned in the area pointed to by oldp, and the new value is passed in the area pointed to by newp.

Figure 7.24 summarizes the organization of the names related to networking.

Figure 7.24. sysctl names.

[image: Image]

In Figure 7.24, the full name for the IP forwarding flag would be

CTL_NET, PF_INET, 0, IPCTL_FORWARDING

with the four integers stored in an array.

net_sysctl Function

Each level of the sysctl naming scheme is handled by a different function. Figure 7.25 shows the functions that handle the Internet parameters.

Figure 7.25. sysctl functions for Internet parameters.

[image: Image]

The top-level names are processed by sysctl. The network-level names are processed by net_sysctl, which dispatches control based on the family and protocol to the pr_sysctl function specified in the protocol’s protosw entry.

sysctl is implemented in the kernel by the _sysctl function, which we do not discuss in this text. It contains code to move the sysctl arguments to and from the kernel and a switch statement to select the appropriate function to process the arguments, in this case net_sysctl.

Figure 7.26 shows the net_sysctl function.

Figure 7.26. net_sysctl function.

	

-- uipc_domain.c
108 net_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
109 int *name;
110 u_int namelen;
111 void *oldp;
112 size_t *oldlenp;
113 void *newp;
114 size_t newlen;
115 struct proc *p;
116 {
117 struct domain *dp;
118 struct protosw *pr;
119 int family, protocol;

120 /*
121 * All sysctl names at this level are nonterminal;
122 * next two components are protocol family and protocol number,
123 * then at least one additional component.
124 */
125 if (namelen < 3)
126 return (EISDIR); /* overloaded */
127 family = name[0];
128 protocol = name[1];

129 if (family == 0)
130 return (0);
131 for (dp = domains; dp; dp = dp->dom_next)
132 if (dp->dom_family == family)
133 goto found;
134 return (ENOPROTOOPT);
135 found:
136 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
137 if (pr->pr_protocol == protocol && pr->pr_sysctl)
138 return ((*pr->pr_sysctl) (name + 2, namelen - 2,
139 oldp, oldlenp, newp, newlen));
140 return (ENOPROTOOPT);
141 }
-- uipc_domain.c

108-119

The arguments to net_sysctl are the same as those to the sysctl system call with the addition of p, which points to the current process structure.

120-134

The next two integers in the name are taken to be the protocol family and protocol numbers as specified in the domain and protosw structures. If no family is specified, 0 is returned. If a family is specified, the for loop searches the domain list for a matching family. ENOPROTOOPT is returned if a match is not found.

135-141

Within a matching domain, the second for loop locates the first matching protocol that has the pr_sysctl function defined. When a match is found, the request is passed to the pr_sysctl function for the protocol. Notice that name is advanced to pass the remaining integers down to the next level. If no matching protocol is found, ENOPROTOOPT is returned.

Figure 7.27 shows the pr_sysctl functions defined for the Internet protocols.

Figure 7.27. pr_sysctl functions for the Internet protocol family.

[image: Image]

In the routing domain, pr_sysctl points to the sysctl_rtable function, which is described in Chapter 19.

7.10. Summary

We started this chapter by describing the domain and protosw structures that describe and group protocols within the Net/3 kernel. We saw that all the protosw structures for a domain are allocated in an array at compile time and that inetdomain and the inetsw array describe the Internet protocols. We took a closer look at the three inetsw entries that describe the IP protocol: one for the kernel’s use and the other two for access to IP by a process.

At system initialization time domaininit links the domains into the domains list, calls the domain and protocol initialization functions, and calls the fast and slow timeout functions.

The two functions pffindproto and pffindtype search the domain and protocol lists by protocol number or type. pfctlinput sends a control command to every protocol.

Finally we described the IP initialization procedure including transport demultiplexing by the ip_protox array.

Exercises

7.1 What call to the pffindproto returns a pointer to inetsw[6] ?

Chapter 8. IP: Internet Protocol

8.1. Introduction

In this chapter we describe the structure of an IP packet and the basic IP processing including input, forwarding, and output. We assume that the reader is familiar with the basic operation of the IP protocol. For more background on IP, see Chapters 3, 9 and 12 of Volume 1. RFC 791 [Postel 1981a] is the official specification for IP. RFC 1122 [Braden 1989a] contains clarifications of RFC 791.

In Chapter 9 we discuss option processing and in Chapter 10 we discuss fragmentation and reassembly. Figure 8.1 illustrates the general organization of the IP layer.

Figure 8.1. IP layer processing.

[image: Image]

We saw in Chapter 4 how network interfaces place incoming IP packets on the IP input queue, ipintrq, and how they schedule a software interrupt. Since hardware interrupts have a higher priority than software interrupts, several packets may be placed on the queue before a software interrupt occurs. During software interrupt processing, the ipintr function removes and processes packets from ipintrq until the queue is empty. At the final destination, IP reassembles packets into datagrams and passes the datagrams directly to the appropriate transport-level protocol by a function call. If the packets haven’t reached their final destination, IP passes them to ip_forward if the host is configured to act as a router. The transport protocols and ip_forward pass outgoing packets to ip_output, which completes the IP header, selects an output interface, and fragments the outgoing packet if necessary. The resulting packets are passed to the appropriate network interface output function.

When an error occurs, IP discards the packet and under certain conditions may send an error message to the source of the original packet. These messages are part of ICMP (Chapter 11). Net/3 sends ICMP error messages by calling icmp_error, which accepts an mbuf containing the erroneous packet, the type of error found, and an option code that provides additional information depending on the type of error. In this chapter, we describe why and when IP sends ICMP messages, but we postpone a detailed discussion of ICMP itself until Chapter 11.

8.2. Code Introduction

Two headers and three C files are discussed in this chapter.

Figure 8.2. Files discussed in this chapter.

[image: Image]

Global Variables

Several global variables appear in the IP processing code. They are described in Figure 8.3.

Figure 8.3. Global variables introduced in this chapter.

[image: Image]

Statistics

All the statistics collected by IP are found in the ipstat structure described by Figure 8.4. Figure 8.4 shows some sample output of these statistics, from the netstat -s command. These statistics were collected after the host had been up for 30 days.

Figure 8.4. Statistics collected in this chapter.

[image: Image]

Figure 8.5. Sample IP statistics.

[image: Image]

The value for ips_noproto is high because it can count ICMP host unreachable messages when there is no process ready to receive the messages. See Section 32.5 for more details.

SNMP Variables

Figure 8.6 shows the relationship between the SNMP variables in the IP group and the statistics collected by Net/3.

Figure 8.6. Simple SNMP variables in IP group.

[image: Image]

8.3. IP Packets

To be accurate while discussing Internet protocol processing, we must define a few terms. Figure 8.7 illustrates the terms that describe data as it passes through the various Internet layers.

Figure 8.7. Frames, packets, fragments, datagrams, and messages.

[image: Image]

We call the data passed to IP by a transport protocol a message. A message typically contains a transport header and application data. UDP is the transport protocol illustrated in Figure 8.7. IP prepends its own header to the message to form a datagram. If the datagram is too large for transmission on the selected network, IP splits the datagram into several fragments, each of which contains its own IP header and a portion of the original datagram. Figure 8.7 shows a datagram split into three fragments.

An IP fragment or an IP datagram small enough to not require fragmentation are called packets when presented to the data-link layer for transmission. The data-link layer prepends its own header and transmits the resulting frame.

IP concerns itself only with the IP header and does not examine or modify the message itself (other than to perform fragmentation). Figure 8.8 shows the structure of the IP header.

Figure 8.8. IP datagram, including the ip structure names.

[image: Image]

Figure 8.8 includes the member names of the ip structure (shown in Figure 8.9) through which Net/3 accesses the IP header.

Figure 8.9. ip structure.

	

-- ip.h
 40 /*
 41 * Structure of an internet header, naked of options.
 42 *
 43 * We declare ip_len and ip_off to be short, rather than u_short
 44 * pragmatically since otherwise unsigned comparisons can result
 45 * against negative integers quite easily, and fail in subtle ways.
 46 */
 47 struct ip {
 48 #if BYTE_ORDER == LITTLE_ENDIAN
 49 u_char ip_hl:4, /* header length */
 50 ip_v:4; /* version */
 51 #endif
 52 #if BYTE_ORDER == BIG_ENDIAN
 53 u_char ip_v:4, /* version */
 54 ip_hl:4; /* header length */
 55 #endif
 56 u_char ip_tos; /* type of service */
 57 short ip_len; /* total length */
 58 u_short ip_id; /* identification */
 59 short ip_off; /* fragment offset field */
 60 #define IP_DF 0x4000 /* dont fragment flag */
 61 #define IP_MF 0x2000 /* more fragments flag */
 62 #define IP_OFFMASK 0x1fff /* mask for fragmenting bits */
 63 u_char ip_ttl; /* time to live */
 64 u_char ip_p; /* protocol */
 65 u_short ip_sum; /* checksum */
 66 struct in_addr ip_src, ip_dst; /* source and dest address */
 67 };
-- ip.h

47-67

Since the physical order of bit fields in memory is machine and compiler dependent, the #ifs ensure that the compiler lays out the structure members in the order specified by the IP standard. In this way, when Net/3 overlays an ip structure on an IP packet in memory, the structure members access the correct bits in the packet.

The IP header contains the format of the IP packet and its contents along with addressing, routing, and fragmentation information.

The format of an IP packet is specified by ip_v, the version, which is always 4; ip_hl, the header length measured in 4-byte units; ip_len, the packet length measured in bytes; ip_p, the transport protocol that created the data within the packet; and ip_sum, the checksum that detects changes to the header while in transit.

A standard IP header is 20 bytes long, so ip_hl must be greater than or equal to 5. A value greater than 5 indicates that IP options appear just after the standard header. The maximum value of ip_hl is 15 (24—1), which allows for up to 40 bytes of options (20+40=60). The maximum length of an IP datagram is 65535 (216—1) bytes since ip_len is a 16-bit field. Figure 8.10 illustrates this organization.

Figure 8.10. Organization of an IP packet with options.

[image: Image]

Because ip_hl is measured in 4-byte units, IP options must always be padded to a 4-byte boundary.

8.4. Input Processing: ipintr Function

In Chapters 3, 4, and 5 we described how our example network interfaces queue incoming datagrams for protocol processing:

1. The Ethernet interface demultiplexes incoming frames with the type field found in the Ethernet header (Section 4.3).

2. The SLIP interface handles only IP packets, so demultiplexing is unnecessary (Section 5.3).

3. The loopback interface combines output and input processing in the function looutput and demultiplexes datagrams with the sa_family member of the destination address (Section 5.4).

In each case, after the interface queues the packet on ipintrq, it schedules a software interrupt through schednetisr. When the software interrupt occurs, the kernel calls ipintr if IP processing has been scheduled by schednetisr. Before the call to ipintr, the CPU priority is changed to splnet.

ipintr Overview

ipintr is a large function that we discuss in four parts:

(1) verification of incoming packets,

(2) option processing and forwarding,

(3) packet reassembly, and

(4) demultiplexing.

Packet reassembly occurs in ipintr, but it is complex enough that we discuss it separately in Chapter 10. Figure 8.11 shows the overall organization of ipintr.

Figure 8.11. ipintr function.

[image: Image]

100-117

The label next marks the start of the main packet processing loop. ipintr removes packets from ipintrq and processes them until the queue is empty. If control falls through to the end of the function, the goto passes control back to the top of the function at next. ipintr blocks incoming packets with splimp so that the network interrupt routines (such as slinput and ether_input) don’t run while it accesses the queue.

332-336

The label bad marks the code that silently discards packets by freeing the associated mbuf and returning to the top of the processing loop at next. Throughout ipintr, errors are handled by jumping to bad.

Verification

We start with Figure 8.12: dequeueing packets from ipintrq and verifying their contents. Damaged or erroneous packets are silently discarded.

Figure 8.12. ipintr function.

[image: Image]
[image: Image]

IP version

118-134

If the in_ifaddr list (Section 6.5) is empty, no IP addresses have been assigned to the network interfaces, and ipintr must discard all IP packets; without addresses, ipintr can’t determine whether the packet is addressed to the system. Normally this is a transient condition occurring during system initialization when the interfaces are operating but have not yet been configured. We described address assignment in Section 6.6.

Before ipintr accesses any IP header fields, it must verify that ip_v is 4 (IPVERSION). RFC 1122 requires an implementation to silently discard packets with unrecognized version numbers.

Net/2 didn’t check ip_v. Most IP implementations in use today, including Net/2, were created after IP version 4 was standardized and have never needed to distinguish between packets from different IP versions. Since revisions to IP are now in progress, implementations in the near future will have to check ip_v.

IEN 119 [Forgie 1979] and RFC 1190 [Topolcic 1990] describe experimental protocols using IP versions 5 and 6. Version 6 has also been selected as the version for the next revision to the official IP standard (IPv6). Versions 0 and 15 are reserved, and the remaining versions are unassigned.

In C, the easiest way to process data located in an untyped area of memory is to overlay a structure on the area of memory and process the structure members instead of the raw bytes. As described in Chapter 2, an mbuf chain stores a logical sequence of bytes, such as an IP packet, into many physical mbufs connected to each other on a linked list. Before the overlay technique can be applied to the IP packet headers, the header must reside in a contiguous area of memory (i.e., it isn’t split between two mbufs).

135-146

The following steps ensure that the IP header (including options) is in a contiguous area of memory:

[image: Image] If the data within the first mbuf is smaller than a standard IP header (20 bytes), m_pullup relocates the standard header into a contiguous area of memory.

It is improbable that the link layer would split even the largest (60 bytes) IP header into two mbufs necessitating the use of m_pullup as described.

[image: Image] ip_hl is multiplied by 4 to get the header length in bytes, which is saved in hlen.

[image: Image] If hlen, the length of the IP packet header in bytes, is less than the length of a standard header (20 bytes), it is invalid and the packet is discarded.

[image: Image] If the entire header is still not in the first mbuf (i.e., the packet contains IP options), m_pullup finishes the job.

Again, this should not be necessary.

Checksum processing is an important part of all the Internet protocols. Each protocol uses the same algorithm (implemented by the function in_cksum) but on different parts of the packet. For IP, the checksum protects only the IP header (and options if present). For transport protocols, such as UDP or TCP, the checksum covers the data portion of the packet and the transport header.

IP checksum

147-150

ipintr stores the checksum computed by in_cksum in the ip_sum field of the header. An undamaged header should have a checksum of 0.

As we’ll see in Section 8.7, ip_sum must be cleared before the checksum on an outgoing packet is computed. By storing the result from in_cksum in ip_sum, the packet is prepared for forwarding (although the TTL has not been decremented yet). The ip_output function does not depend on this behavior; it recomputes the checksum for the forwarded packet.

If the result is nonzero the packet is silently discarded. We discuss in_cksum in more detail in Section 8.7.

Byte ordering

151-160

The Internet standards are careful to specify the byte ordering of multibyte integer values in protocol headers. NTOHS converts all the 16-bit values in the IP header from network byte order to host byte order: the packet length (ip_len), the datagram identifier (ip_id), and the fragment offset (ip_off). NTOHS is a null macro if the two formats are the same. Conversion to host byte order here obviates the need to perform a conversion every time Net/3 examines the fields.

Packet length

161-177

If the logical size of the packet (ip_len) is greater than the amount of data stored in the mbuf chain (m_pkthdr.len), some bytes are missing and the packet is dropped. If the mbuf chain is larger than the packet, the extra bytes are trimmed.

A common cause for lost bytes is data arriving on a serial device with little or no buffering, such as on many personal computers. The incoming bytes are discarded by the device and IP discards the resulting packet.

These extra bytes may arise, for example, on an Ethernet device when an IP packet is smaller than the minimum size required by Ethernet. The frame is transmitted with extra bytes that are discarded here. This is one reason why the length of the IP packet is stored in the header; IP allows the link layer to pad packets.

At this point, the complete IP header is available, the logical size and the physical size of the packet are the same, and the checksum indicates that the header arrived undamaged.

To Forward or Not To Forward?

The next section of ipintr, shown in Figure 8.13, calls ip_dooptions (Chapter 9) to process IP options and then determines whether or not the packet has reached its final destination. If it hasn’t reached its final destination, Net/3 may attempt to forward the packet (if the system is configured as a router). If it has reached its final destination, it is passed to the appropriate transport-level protocol.

Figure 8.13. ipintr.

[image: Image]
[image: Image]

Option processing

178-186

The source route from the previous packet is discarded by clearing ip_nhops (Section 9.6). If the packet header is larger than a default header, it must include options that are processed by ip_dooptions. If ip_dooptions returns 0, ipintr should continue processing the packet; otherwise ip_dooptions has completed processing of the packet by forwarding or discarding it, and ipintr can process the next packet on the input queue. We postpone further discussion of option processing until Chapter 9.

After option processing, ipintr decides whether the packet has reached its final destination by comparing ip_dst in the IP header with the IP addresses configured for all the local interfaces. ipintr must consider several broadcast addresses, one or more unicast addresses, and any multicast addresses that are associated with the interface.

Final destination?

187-261

ipintr starts by traversing in_ifaddr (Figure 6.5), the list of configured Internet addresses, to see if there is a match with the destination address of the packet. A series of comparisons are made for each in_ifaddr structure found in the list. There are four general cases to consider:

[image: Image] an exact match with one of the interface addresses (first row of Figure 8.14),

Figure 8.14. Comparisons to determine whether or not a packet has reached its final destination.

[image: Image]

[image: Image] a match with the one of the broadcast addresses associated with the receiving interface (middle four rows of Figure 8.14),

[image: Image] a match with one of the multicast groups associated with the receiving interface (Figure 12.39), or

[image: Image] a match with one of the two limited broadcast addresses (last row of Figure 8.14).

Figure 8.14 illustrates the addresses that would be tested for a packet arriving on the Ethernet interface of the host sun in our sample network, excluding multicast addresses, which we discuss in Chapter 12.

The tests with ia_subnet, ia_net, and INADDR_ANY are not required as they represent obsolete broadcast addresses used by 4.2BSD. Unfortunately, many TCP/IP implementations have been derived from 4.2BSD, so it may be important to recognize these old broadcast addresses on some networks.

Forwarding

262-271

If ip_dst does not match any of the addresses, the packet has not reached its final destination. If ipforwarding is not set, the packet is discarded. Otherwise, ip_forward attempts to route the packet toward its final destination.

A host may discard packets that arrive on an interface other than the one specified by the destination address of the packet. In this case, Net/3 would not search the entire in_ifaddr list; only addresses assigned to the receiving interface would be considered. RFC 1122 calls this a strong end system model.

For a multihomed host, it is uncommon for a packet to arrive at an interface that does not correspond to the packet’s destination address, unless specific host routes have been configured. The host routes force neighboring routers to consider the multihomed host as the next-hop router for the packets. The weak end system model requires that the host accept these packets. An implementor is free to choose either model. Net/3 implements the weak end system model.

Reassembly and Demultiplexing

Finally, we look at the last section of ipintr (Figure 8.15) where reassembly and demultiplexing occur. We have omitted the reassembly code and postpone its discussion until Chapter 10. The omitted code sets the pointer ip to null if it could not reassemble a complete datagram. Otherwise, ip points to a complete datagram that has reached its final destination.

Figure 8.15. ipintr.

[image: Image]

Transport demultiplexing

325-332

The protocol specified in the datagram is mapped by ip_p with the ip_protox array (Figure 7.22) to an index into the inetsw array. ipintr calls the pr_input function from the selected protosw structure to process the transport message contained within the datagram. When pr_input returns, ipintr proceeds with the next packet on ipintrq.

It is important to notice that transport-level processing for each packet occurs within the processing loop of ipintr. There is no queueing of incoming packets between IP and the transport protocols, unlike the queueing in SVR4 streams implementations of TCP/IP.

8.5. Forwarding: ip_forward Function

A packet arriving at a system other than its final destination needs to be forwarded. ipintr calls the function ip_forward, which implements the forwarding algorithm, only when ipforwarding is nonzero (Section 6.1) or when the packet includes a source route (Section 9.6). When the packet includes a source route, ip_dooptions calls ip_forward with the second argument, srcrt, set to 1.

ip_forward interfaces with the routing tables through a route structure shown in Figure 8.16

Figure 8.16. route structure.

	

-- route.h
 46 struct route {
 47 struct rtentry *ro_rt; /* pointer to struct with information */
 48 struct sockaddr ro_dst; /* destination of this route */
 49 };
-- route.h

46-49

There are only two members in a route structure: ro_rt, a pointer to an rtentry structure; and ro_dst, a sockaddr structure, which specifies the destination associated with the route entry pointed to by ro_rt. The destination is the key used to find route information in the kernel’s routing tables. Chapter 18 has a detailed description of the rtentry structure and the routing tables.

We show ip_forward in two parts. The first part makes sure the system is permitted to forward the packet, updates the IP header, and selects a route for the packet. The second part handles ICMP redirect messages and passes the packet to ip_output for transmission.

Is packet eligible for forwarding?

867-871

The first argument to ip_forward is a pointer to an mbuf chain containing the packet to be forwarded. If the second argument, srcrt, is nonzero, the packet is being forwarded because of a source route option (Section 9.6).

879-884

The if statement identifies and discards the following packets:

[image: Image] link-level broadcasts

Any network interface driver that supports broadcasts must set the M_BCAST flag for a packet received as a broadcast. ether_input (Figure 4.13) sets M_BCAST if the packet was addressed to the Ethernet broadcast address. Link-level broadcast packets are never forwarded.

Packets addressed to a unicast IP address but sent as a link-level broadcast are prohibited by RFC 1122 and are discarded here.

[image: Image] loopback packets

in_canforward returns 0 for packets addressed to the loopback network. These packets may have been passed to ip_forward by ipintr because the loopback interface was not configured correctly.

[image: Image] network 0 and class E addresses

in_canforward returns 0 for these packets. These destination addresses are invalid and packets addressed to them should not be circulating in the network since no host will accept them.

[image: Image] class D addresses

Packets addressed to a class D address should be processed by the multicast forwarding function, ip_mforward, not by ip_forward. in_canforward rejects class D (multicast) addresses.

RFC 791 specifies that every system that processes a packet must decrement the time-to-live (TTL) field by at least 1 even though TTL is measured in seconds. Because of this requirement, TTL is usually considered a bound on the number of hops an IP packet may traverse before being discarded. Technically, a router that held a packet for more than 1 second could decrement ip_ttl by more than 1.

Figure 8.17. ip_forward function: route selection.

[image: Image]
[image: Image]

The question arises: How long is the longest path in the Internet? This metric is called the diameter of a network. There is no way to discover the diameter other than through empirical methods. A 37-hop path was posted in [Olivier 1994].

Decrement TTL

885-890

The packet identifier is converted back to network byte order since it isn’t needed for forwarding and it should be in the correct order if ip_forward sends an ICMP error message, which includes the invalid IP header.

Net/3 neglects to convert ip_len, which ipintr converted to host byte order. The authors noted that on big endian machines this does not cause a problem since the bytes are never swapped. On little endian machines, such as a 386, this bug allows the byte-swapped value to be returned in the IP header within the ICMP error. This bug was observed in ICMP packets returned from SVR4 (probably Net/1 code) running on a 386 and from AIX 3.2 (4.3BSD Reno code).

If ip_ttl has reached 1 (IPTTLDEC), an ICMP time exceeded message is returned to the sender and the packet is discarded. Otherwise, ip_forward decrements ip_ttl by IPTTLDEC.

A system should never receive an IP datagram with a TTL of 0, but Net/3 generates the correct ICMP error if this happens since ip_ttl is examined after the packet is considered for local delivery and before it is forwarded.

Locate next hop

891-907

The IP forwarding algorithm caches the most recent route, in the global route structure ipforward_rt, and applies it to the current packet if possible. Research has shown that consecutive packets tend to have the same destination address ([Jain and Routhier 1986] and [Mogul 1991]), so this one-behind cache minimizes the number of routing lookups. If the cache (ipforward_rt) is empty or the current packet is to a different destination than the route entry in ipforward_rt, the previous route is discarded, ro_dst is initialized to the new destination, and rtalloc finds a route to the current packet’s destination. If no route can be found for the destination, an ICMP host unreachable error is returned and the packed discarded.

908-914

Since ip_output discards the packet when an error occurs, m_copy makes a copy of the first 64 bytes in case ip_forward sends an ICMP error message. ip_forward does not abort if the call to m_copy fails. In this case, the error message is not sent. ip_ifmatrix records the number of packets routed between interfaces. The counter with the indexes of the receiving and sending interfaces is incremented.

Redirect Messages

A first-hop router returns an ICMP redirect message to the source host when the host incorrectly selects the router as the packet’s first-hop destination. The IP networking model assumes that hosts are relatively ignorant of the overall internet topology and assigns the responsibility of maintaining correct routing tables to routers. A redirect message from a router informs a host that it has selected an incorrect route for a packet. We use Figure 8.18 to illustrate redirect messages.

Figure 8.18. Router R1 is redirecting host HS to use router R2 to reach HD.

[image: Image]

Generally, an administrator configures a host to send packets for remote networks to a default router. In Figure 8.18, host HS has R1 configured as its default router. When it first attempts to send a packet to HD it sends the packet to R1, not knowing that R2 is the appropriate choice. R1 recognizes the mistake, forwards the packet to R2, and sends a redirect message back to HS. After receiving the redirect, HS updates its routing tables so that the next packet to HD is sent directly to R2.

RFC 1122 recommends that only routers send redirect messages and that hosts must update their routing tables when receiving ICMP redirect messages (Section 11.8). Since Net/3 calls ip_forward only when the system is configured as a router, Net/3 follows RFC 1122’s recommendations.

In Figure 8.19, ip_forward determines whether or not it should send a redirect message.

Figure 8.19. ip_forward.

	

--- ip_input.c
915 /*
916 * If forwarding packet is using same interface that it came in on,
917 * perhaps should send a redirect to sender to shortcut a hop.
918 * Only send redirect if source is sending directly to us,
919 * and if packet was not source routed (or has any options).
920 * Also, don't send redirect if forwarding using a default route
921 * or a route modified by a redirect.
922 */
923 #define satosin(sa) ((struct sockaddr_in *)(sa))
924 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
925 (rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) == 0 &&
926 satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
927 ipsendredirects && !srcrt) {
928 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
929 u_long src = ntohl(ip->ip_src.s_addr);

930 if (RTA(rt) &&
931 (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
932 if (rt->rt_flags & RTF_GATEWAY)
933 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
934 else
935 dest = ip->ip_dst.s_addr;
936 /* Router requirements says to only send host redirects */
937 type = ICMP_REDIRECT;
938 code = ICMP_REDIRECT_HOST;
939 }
940 }
--- ip_input.c

Leaving on receiving interface?

915-929

The rules by which a router recognizes redirect situations are complicated. First, redirects are applicable only when a packet is received and resent on the same interface (rt_ifp and rcvif). Next, the selected route must not have been itself created or modified by an ICMP redirect message (RTF_DYNAMIC | RTF_MODIFIED), nor can the route be to the default destination (0.0.0.0). This ensures that the system does not propagate routing information for which it is not an authoritative source, and that it does not share its default route with other systems.

Generally, routing protocols use the special destination 0.0.0.0 to locate a default route. When a specific route to a destination is not available, the route associated with destination 0.0.0.0 directs the packet toward a default router.

Chapter 18 has more information about default routes.

The global integer ipsendredirects specifies whether the system has administrative authority to send redirects (Section 8.9). By default, ipsendredirects is 1. Redirects are suppressed when the system is source routing a packet as indicated by the srcrt argument passed to ip_forward, since presumably the source host wanted to override the decisions of the intermediate routers.

Send redirect?

930-931

This test determines if the packet originated on the local subnet. If the subnet mask bits of the source address and the outgoing interface’s address are the same, the addresses are on the same IP network. If the source and the outgoing interface are on the same network, then this system should not have received the packet, since the source could have sent the packet directly to the correct first-hop router. The ICMP redirect message informs the host of the correct first-hop destination. If the packet originated on some other subnet, then the previous system was a router and this system does not send a redirect; the mistake will be corrected by a routing protocol.

In any case, routers are required to ignore redirect messages. Despite the requirement, Net/3 does not discard redirect messages when ipforwarding is set (i.e., when it is configured to be a router).

Select appropriate router

932-940

The ICMP redirect message contains the address of the correct next system, which is a router’s address if the destination host is not on the directly connected network or the host address if the destination host is on the directly connected network.

RFC 792 describes four types of redirect messages:

(1) network,

(2) host,

(3) TOS and network, and

(4) TOS and host.

RFC 1009 recommends against sending network redirects at any time because of the impossibility of guaranteeing that the host receiving the redirect can determine the appropriate subnet mask for the destination network. RFC 1122 recommends that hosts treat network redirects as host redirects to avoid this ambiguity. Net/3 sends only host redirects and ignores any TOS considerations. In Figure 8.20, ipintr passes the packet and any ICMP messages to the link layer.

Figure 8.20. ip_forward.

[image: Image]
[image: Image]

The redirect messages were standardized before subnetting. In a nonsubnetted internet, network redirects are useful but in a subnetted internet they are ambiguous since they do not include a subnet mask.

Forward packet

941-954

At this point, ip_forward has a route for the packet and has determined if an ICMP redirect is warranted. ip_output sends the packet to the next hop as specified in the route ipforward_rt. The IP_ALLOWBROADCAST flag allows the packet being forwarded to be a directed broadcast to a local network. If ip_output succeeds and no redirect message needs to be sent, the copy of the first 64 bytes of the packet is discarded and ip_forward returns.

Send ICMP error?

955-983

ip_forward may need to send an ICMP message because ip_output failed or a redirect is pending. If there is no copy of the original packet (there might have been a buffer shortage at the time the copy was attempted), the message can’t be sent and ip_forward returns. If a redirect is pending, type and code have been previously set, but if ip_output failed, the switch statement sets up the new ICMP type and code values based on the return value from ip_output. icmp_error sends the message. The ICMP message from a failed ip_output overrides any pending redirect message.

It is important to recognize the significance of the switch statement that handles errors from ip_output. It translates local system errors into the appropriate ICMP error message, which is returned to the packet’s source. Figure 8.21 summarizes the errors. Chapter 11 describes the ICMP messages in more detail.

Figure 8.21. Errors from ip_output.

[image: Image]

Net/3 always generates the ICMP source quench when ip_output returns ENOBUFS. The Router Requirements RFC [Almquist and Kastenholz 1994] deprecate the source quench and state that a router should not generate them.

8.6. Output Processing: ip_output Function

The IP output code receives packets from two sources: ip_forward and the transport protocols (Figure 8.1). It would seem reasonable to expect IP output operations to be accessed by inetsw[0]. pr_output, but this is not the case. The standard Internet transport protocols (ICMP, IGMP, UDP, and TCP) call ip_output directly instead of going through the inetsw table. For the standard Internet transport protocols, the generality of the protosw structure is not necessary, since the calling functions are not accessing IP in a protocol-independent context. In Chapter 20 we’ll see that the protocol-independent routing sockets call pr_output to access IP.

We describe ip_output in three sections:

[image: Image] header initialization,

[image: Image] route selection, and

[image: Image] source address selection and fragmentation.

Header Initialization

The first section of ip_output, shown in Figure 8.22, merges options into the outgoing packet and completes the IP header for packets that are passed from the transport protocols (not those from ip_forward).

Figure 8.22. ip_output function.

	

-- ip_output.c
 44 int
 45 ip_output(m0, opt, ro, flags, imo)
 46 struct mbuf *m0;
 47 struct mbuf *opt;
 48 struct route *ro;
 49 int flags;
 50 struct ip_moptions *imo;
 51 {
 52 struct ip *ip, *mhip;
 53 struct ifnet *ifp;
 54 struct mbuf *m = m0;
 55 int hlen = sizeof(struct ip);
 56 int len, off, error = 0;
 57 struct route iproute;
 58 struct sockaddr_in *dst;
 59 struct in_ifaddr *ia;

 60 if (opt) {
 61 m = ip_insertoptions(m, opt, &len);
 62 hlen = len;
 63 }
 64 ip = mtod(m, struct ip *);
 65 /*
 66 * Fill in IP header.
 67 */
 68 if ((flags & (IP_FORWARDING | IP_RAWOUTPUT)) == 0) {
 69 ip->ip_v = IPVERSION;
 70 ip->ip_off &= IP_DF;
 71 ip->ip_id = htons(ip_id++);
 72 ip->ip_hl = hlen >> 2;
 73 ipstat.ips_localout++;
 74 } else {
 75 hlen = ip->ip_hl << 2;
 76 }
-- ip_output.c

44-59

The arguments to ip_output are: m0, the packet to send; opt, the IP options to include; ro, a cached route to the destination; flags, described in Figure 8.23; and imo, a pointer to multicast options described in Chapter 12.

Figure 8.23. ip_output:flags values.

[image: Image]

IP_FORWARDING is set by ip_forward and ip_mforward (multicast packet forwarding) and prevents ip_output from resetting any of the IP header fields.

The MSG_DONTROUTE flag to send, sendto, and sendmsg enables IP_ROUTETOIF for a single write (Section 16.4) while the SO_DONTROUTE socket option enables IP_ROUTETOIF for all writes on a particular socket (Section 8.8). The flag is passed by each of the transport protocols to ip_output.

The IP_ALLOWBROADCAST flag can be set by the SO_BROADCAST socket option (Section 8.8) but is passed only by UDP. The raw IP protocol sets IP_ALLOWBROADCAST by default. TCP does not support broadcasts, so IP_ALLOWBROADCAST is not passed by TCP to ip_output. There is no per-request flag for broadcasting.

Construct IP header

60-73

If the caller provides any IP options they are merged with the packet by ip_insertoptions (Section 9.8), which returns the new header length.

We’ll see in Section 8.8 that a process can set the IP_OPTIONS socket option to specify the IP options for a socket. The transport layer for the socket (TCP or UDP) always passes these options to ip_output.

The IP header of a forwarded packet (IP_FORWARDING) or a packet with a preconstructed header (IP_RAWOUTPUT) should not be modified by ip_output. Any other packet (e.g., a UDP or TCP packet that originates at this host) needs to have several IP header fields initialized. ip_output sets ip_v to 4 (IPVERSION), clears ip_off except for the DF bit, which is left as provided by the caller (Chapter 10), and assigns a unique identifier to ip->ip_id from the global integer ip_id, which is immediately incremented. Remember that ip_id was seeded from the system clock during protocol initialization (Section 7.8). ip_hl is set to the header length measured in 32-bit words.

Most of the remaining fields in the IP header length, offset, TTL, protocol, TOS, and the destination address have already been initialized by the transport protocol. The source address may not be set, in which case it is selected after a route to the destination has been located (Figure 8.25).

Packet already includes header

74-76

For a forwarded packet (or a raw IP packet with a header), the header length (in bytes) is saved in hlen for use by the fragmentation algorithm.

Route Selection

After completing the IP header, the next task for ip_output is to locate a route to the destination. This is shown in Figure 8.24.

Figure 8.24. ip_output.

[image: Image]
[image: Image]

Verify cached route

77-99

A cached route may be provided to ip_output as the ro argument. In Chapter 24 we’ll see that UDP and TCP maintain a route cache associated with each socket. If a route has not been provided, ip_output sets ro to point to the temporary route structure iproute.

If the cached destination is not to the current packet’s destination, the route is discarded and the new destination address placed in dst.

Bypass routing

100-114

A caller can prevent packet routing by setting the IP_ROUTETOIF flag (Section 8.8). If this flag is set, ip_output must locate an interface directly connected to the destination network specified in the packet. ifa_ifwithdstaddr searches point-to-point interfaces, while in_ifwithnet searches all the others. If neither function finds an interface connected to the destination network, ENETUNREACH is returned; otherwise, ifp points to the selected interface.

This option allows routing protocols to bypass the local routing tables and force the packets to exit the system by a particular interface. In this way, routing information can be exchanged with other routers even when the local routing tables are incorrect.

Locate route

115-122

If the packet is being routed (IP_ROUTETOIF is off) and there is no cached route, rtalloc locates a route to the address specified by dst. ip_output returns EHOSTUNREACH if rtalloc fails to find a route. If ip_forward called ip_output, EHOSTUNREACH is converted to an ICMP error. If a transport protocol called ip_output, the error is passed back to the process (Figure 8.21).

123-128

ia is set to point to an address (the ifaddr structure) of the selected interface and ifp points to the interface’s ifnet structure. If the next hop is not the packet’s final destination, dst is changed to point to the next-hop router instead of the packet’s final destination. The destination address within the IP header remains unchanged, but the interface layer must deliver the packet to dst, the next-hop router.

Source Address Selection and Fragmentation

The final section of ip_output, shown in Figure 8.25, ensures that the IP header has a valid source address and then passes the packet to the interface associated with the route. If the packet is larger than the interface’s MTU, it must be fragmented and transmitted in pieces. As we did with the reassembly code, we omit the fragmentation code here and postpone discussion of it until Chapter 10.

Figure 8.25. ip_output.

[image: Image]
[image: Image]

Select source address

212-239

If ip_src has not been specified, then ip_output selects ia, the IP address of the outgoing interface, as the source address. This couldn’t be done earlier when the other IP header fields were filled in because a route hadn’t been selected yet. Forwarded packets always have a source address, but packets that originate at the local host may not if the sending process has not explicitly selected one.

If the destination IP address is a broadcast address, the interface must support broadcasting (IFF_BROADCAST, Figure 3.7), the caller must explicitly enable broadcasting (IP_ALLOWBROADCAST, Figure 8.23), and the packet must be small enough to be sent without fragmentation.

This last test is a policy decision. Nothing in the IP protocol specification explicitly prohibits the fragmentation of broadcast packets. By requiring the packet to fit within the MTU of the interface, however, there is an increased chance that the broadcast packet will be received at every interface, because there is a better chance of receiving one undamaged packet than of receiving two or more undamaged packets.

If any of these conditions are not met, the packet is dropped and EADDRNOTAVAIL, EACCES, or EMSGSIZE is returned to the caller. Otherwise, M_BCAST is set on the outgoing packet, which tells the interface output function to send the packet as a link-level broadcast. In Section 21.10 we’ll see that arpresolve translates the IP broadcast address to the Ethernet broadcast address.

If the destination address is not a broadcast address, ip_output clears M_BCAST.

If M_BCAST were not cleared, the reply to a request packet that arrived as a broadcast might be accidentally returned as a broadcast. We’ll see in Chapter 11 that ICMP replies are constructed within the request packet in this way as are TCP RST packets (Section 26.9).

Send packet

240-252

If the packet is small enough for the selected interface, ip_len and ip_off are converted to network byte order, the IP checksum is computed with in_cksum (Section 8.7), and the packet is passed to the if_output function of the selected interface.

Fragment packet

253-338

Larger packets must be fragmented before they can be sent. We have omitted that code here and describe it in Chapter 10 instead.

Cleanup

339-346

A reference count is maintained for the route entries. Recall that ip_output may use a temporary route structure (iproute) if the argument ro is null. If necessary, RTFREE releases the route entry within iproute and decrements the reference count. The code at bad discards the current packet before returning.

Reference counting is a memory management technique. The programmer must count the number of external references to a data structure; when the count returns to 0, the memory can be safely returned to the free pool. Reference counting requires some discipline by the programmer, who must explicitly increase and decrease the reference count when appropriate.

8.7. Internet Checksum: in_cksum Function

Two operations dominate the time required to process packets: copying the data and computing checksums ([Kay and Pasquale 1993]). The flexible nature of the mbuf data structure is the primary method of reducing copy operations in Net/3. Efficient computing of checksums is harder since it is very hardware dependent. Net/3 contains several implementations of in_cksum.

Figure 8.26. in_cksum versions in Net/3.

[image: Image]

Even the portable C implementation has been optimized considerably. RFC 1071 [Braden, Borman, and Partridge 1988] and RFC 1141 [Mallory and Kullberg 1990] discuss the design and implementation of the Internet checksum function. RFC 1141 has been updated by RFC 1624 [Rijsinghani 1994]. From RFC 1071:

1. Adjacent bytes to be checksummed are paired to form 16-bit integers, and the one’s complement sum of these 16-bit integers is formed.

2. To generate a checksum, the checksum field itself is cleared, the 16-bit one’s complement sum is computed over the bytes concerned, and the one’s complement of this sum is placed in the checksum field.

3. To verify a checksum, the one’s complement sum is computed over the same set of bytes, including the checksum field. If the result is all 1 bits (-0 in one’s complement arithmetic, as explained below), the check succeeds.

Briefly, when addition is performed on integers in one’s complement representation, the result is obtained by summing the two integers and adding any carry bit to the result to obtain the final sum. In one’s complement arithmetic the negative of a number is formed by complementing each bit. There are two representations of 0 in one’s complement arithmetic: all 0 bits, and all 1 bits. A more detailed discussion of one’s complement representations and arithmetic can be found in [Mano 1982].

The checksum algorithm computes the value to place in the checksum field of the IP header before sending the packet. To compute this value, the checksum field in the header is set to 0 and the one’s complement sum on the entire header (including options) is computed. The header is processed as an array of 16-bit integers. Let’s call the result of this computation a. Since the checksum field is explicitly set to 0, a is also the sum of all the IP header fields except the checksum. The one’s complement of a, denoted -a, is placed in the checksum field and the packet is sent.

If no bits are altered in transit, the computed checksum at the destination should be the complement of (a+-a). The sum (a+-a) in one’s complement arithmetic is -0 (all 1 bits) and its complement is 0 (all 0 bits). So the computed checksum of an undamaged packet at the destination should always be 0. This is what we saw in Figure 8.12. The following C code (which is not part of Net/3) is a naive implementation of this algorithm:

Figure 8.27. A naive implementation of the IP checksum calculation.

 1 unsigned short
 2 cksum(struct ip *ip, int len)
 3 {
 4 long sum = 0; /* assume 32 bit long, 16 bit short */

 5 while (len > 1) {
 6 sum += *((unsigned short *) ip)++;
 7 if (sum & 0x80000000) /* if high-order bit set, fold */
 8 sum = (sum & 0xFFFF) + (sum >> 16);
 9 len -= 2;
 10 }

 11 if (len) /* take care of left over byte */
 12 sum += (unsigned short) *(unsigned char *) ip;

 13 while (sum >> 16)
 14 sum = (sum & 0xFFFF) + (sum >> 16);

 15 return ~sum;
 16 }

1-16

The only performance enhancement here is to accumulate the carry bits in the high-order 16 bits of sum. The accumulated carries are added to the low-order 16 bits when the loop terminates, until no more carries occur. RFC 1071 calls this deferred carries. This technique is useful on machines that don’t have an add-with-carry instruction or when detecting a carry is expensive.

Now we show the portable C version from Net/3. It utilizes the deferred carry technique and works with packets stored in an mbuf chain.

42-140

Our naive checksum implementation assumed that all the bytes to be checksummed were in a contiguous buffer instead of in mbuf chains. This version of the checksum calculation handles the mbufs correctly using the same underlying algorithm: 16-bit words are summed in a 32-bit integer with the carries deferred. For mbufs with an odd number of bytes, the extra byte is saved and paired with the first byte of the next mbuf. Since unaligned access to 16-bit words is invalid or incurs a severe performance penalty on most architectures, a misaligned byte is saved and in_cksum continues adding with the next aligned word. in_cksum is careful to byte swap the sum when this occurs to ensure that even-numbered and odd-numbered data bytes are collected in separate sum bytes as required by the checksum algorithm.

Loop unrolling

93-115

The three while loops in the function add 16 words, 4 words, and 1 word to the sum during each iteration. The unrolled loops reduce the loop overhead and can be considerably faster than a straightforward loop on some architectures. The price is increased code size and complexity.

Figure 8.28. An optimized portable C implementation of the IP checksum calculation.

[image: Image]
[image: Image]
[image: Image]
[image: Image]

More Optimizations

RFC 1071 mentions two optimizations that don’t appear in Net/3: a combined copy-with-checksum operation and incremental checksum updates. Merging the copy and checksum operations is not as important for the IP header checksum as it is for the TCP and UDP checksums, which cover many more bytes. This merged operation is discussed in Section 23.12. [Partridge and Pink 1993] report that an inline version of the IP header checksum is faster than calling the more general in_cksum function and can be done in six to eight assembler instructions (for the standard 20-byte IP header).

The design of the checksum algorithm allows a packet to be changed and the checksum updated without reexamining all the bytes. RFC 1071 contains a brief discussion of this topic. RFCs 1141 and 1624 contain more detailed discussions. A typical use of this technique occurs during packet forwarding. In the common case, when a packet has no options, only the TTL field changes during forwarding. The checksum in this case can be recomputed by a single addition with an end-around carry.

In addition to being more efficient, an incremental checksum can help detect headers corrupted by buggy software. A corrupted header is detected by the next system if the checksum is computed incrementally, but if it is recomputed from scratch, the checksum incorporates the erroneous bytes and the corrupted header is not detected by the next system. The end-to-end checksum used by UDP or TCP detects the error at the final destination. We’ll see in Chapters 23 and 25 that the UDP and TCP checksums incorporate several parts of the IP header.

For an example of the checksum function that utilizes hardware add-with-carry instructions to compute the checksum 32 bits at a time, see the VAX implementation of in_cksum in the file sys/vax/vax/in_cksum.c.

8.8. setsockopt and getsockopt System Calls

Net/3 provides access to several networking features through the setsockopt and getsockopt system calls. These system calls support a generic interface used by a process to access features of a networking protocol that aren’t supported by the standard system calls. The prototypes for these two calls are:

int setsockopt (int s, int level, int optname, const void *optval, int optlen);

int getsockopt (int s, int level, int optname, void *optval, int *optlen);

Most socket options affect only the socket on which they are issued. Compare this to sysctl parameters, which affect the entire system. The socket options associated with multicasting are a notable exception and are described in Chapter 12.

setsockopt and getsockopt set and get options at all levels of the communication stack. Net/3 processes options according to the protocol associated with s and the identifier specified by level. Figure 8.29 lists possible values for level within the protocols that we discuss.

Figure 8.29. setsockopt and getsockopt arguments.

[image: Image]

We describe the implementation of the setsockopt and getsockopt system calls in Chapter 17, but we discuss the implementation of individual options within the appropriate chapters. In this chapter, we cover the options that provide access to IP features.

Throughout the text we summarize socket options as shown in Figure 8.30. This figure shows the options for the IPPROTO_IP level. The option appears in the first column, the data type of the variable pointed to by optval appears in the second column, and the third column shows the function that processes the option.

Figure 8.30. Socket options: IPPROTO_IP level for SOCK_RAW, SOCK_DGRAM, or SOCK_STREAM sockets.

[image: Image]

Figure 8.31 shows the overall organization of the ip_ctloutput function, which handles most of the IPPROTO_IP options. In Section 32.8 we show the additional IPPROTO_IP options that work with SOCK_RAW sockets.

Figure 8.31. ip_ctloutput function: overview.

[image: Image]
[image: Image]
431-447

ip_ctloutput's first argument, op, is either PRCO_SETOPT or PRCO_GETOPT. The second argument, so, points to the socket on which the request was issued. level must be IPPROTO_IP. optname is the option to change or to retrieve, and mp points indirectly to an mbuf that contains the related data for the option. m is initialized to point to the mbuf referenced by *mp.

448-500

If an unrecognized option is specified in the call to setsockopt (and therefore to the PRCO_SETOPT case of the switch), ip_ctloutput releases any mbuf passed by the caller and returns EINVAL.

501-553

Unrecognized options passed to getsockopt result in ip_ctloutput returning ENOPROTOOPT. In this case, the caller releases the mbuf.

PRCO_SETOPT Processing

The processing for PRCO_SETOPT is shown in Figure 8.32.

Figure 8.32. ip_ctloutput function: PRCO_SETOPT processing.

	

-- ip_output.c
450 case IP_OPTIONS:
451 return (ip_pcbopts(&inp->inp_options, m));

452 case IP_TOS:
453 case IP_TTL:
454 case IP_RECVOPTS:
455 case IP_RECVRETOPTS:
456 case IP_RECVDSTADDR:
457 if (m->m_len != sizeof(int))
458 error = EINVAL;
459 else {
460 optval = *mtod(m, int *);
461 switch (optname) {

462 case IP_TOS:
463 inp->inp_ip.ip_tos = optval;
464 break;

465 case IP_TTL:
466 inp->inp_ip.ip_ttl = optval;
467 break;
468 #define OPTSET(bit) \
469 if (optval) \
470 inp->inp_flags |= bit; \
471 else \
472 inp->inp_flags &= ~bit;

473 case IP_RECVOPTS:
474 OPTSET(INP_RECVOPTS);
475 break;

476 case IP_RECVRETOPTS:
477 OPTSET(INP_RECVRETOPTS);
478 break;

479 case IP_RECVDSTADDR:
480 OPTSET(INP_RECVDSTADDR);
481 break;
482 }
483 }
484 break;
-- ip_output.c

450-451

IP_OPTIONS is processed by ip_pcbopts (Figure 9.32).

452-484

The IP_TOS, IP_TTL, IP_RECVOPTS, IP_RECVRETOPTS, and IP_RECVDSTADDR options all expect an integer to be available in the mbuf pointed to by m. The integer is stored in optval and then used to change the ip_tos or ip_ttl values associated with the socket or to set or clear the INP_RECVOPTS, INP_RECVRETOPTS, or INP_RECVDSTADDR flags associated with the socket. The macro OPTSET sets (or clears) the specified bit if optval is nonzero (or 0).

Figure 8.30 showed that IP_RECVOPTS and IP_RECVRETOPTS were not implemented. In Chapter 23, we’ll see that the settings of these options are ignored by UDP.

PRCO_GETOPT Processing

Figure 8.33 shows the code that retrieves the IP options when PRCO_GETOPT is specified.

Figure 8.33. ip_ctloutput function: PRCO_GETOPT processing.

[image: Image]

503-538

For IP_OPTIONS, ip_ctloutput returns an mbuf containing a copy of the options associated with the socket. For the remaining options, ip_ctloutput returns the value of ip_tos, ip_ttl, or the state of the flag associated with the option. The value is returned in the mbuf pointed to by m. The macro OPTBIT returns 1 (or 0) if bit is on (or off) in inp_flags.

Notice that the IP options are stored in the protocol control block (inp, Chapter 22) associated with the socket.

8.9. ip_sysctl Function

Figure 7.27 showed that the ip_sysctl function is called when the protocol and family identifiers are 0 in a call to sysctl. Figure 8.34 shows the three parameters supported by ip_sysctl.

Figure 8.34. ip_sysctl parameters.

[image: Image]

Figure 8.35 shows the ip_sysctl function.

Figure 8.35. ip_sysctl function.

	

-- ip_input.c
 984 int
 985 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
 986 int *name;
 987 u_int namelen;
 988 void *oldp;
 989 size_t *oldlenp;
 990 void *newp;
 991 size_t newlen;
 992 {
 993 /* All sysctl names at this level are terminal. */
 994 if (namelen != 1)
 995 return (ENOTDIR);

 996 switch (name[0]) {
 997 case IPCTL_FORWARDING:
 998 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
 999 case IPCTL_SENDREDIRECTS:
1000 return (sysctl_int(oldp, oldlenp, newp, newlen,
1001 &ipsendredirects));
1002 case IPCTL_DEFTTL:
1003 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1004 default:
1005 return (EOPNOTSUPP);
1006 }
1007 /* NOTREACHED */
1008 }
-- ip_input.c

984-995

Since ip_sysctl does not forward sysctl requests to any other functions, there can be only one remaining component in name. If not, ENOTDIR is returned.

996-1008

The switch statement selects the appropriate call to sysctl_int, which accesses or modifies ipforwarding, ipsendredirects, or ip_defttl. EOPNOTSUPP is returned for unrecognized options.

8.10. Summary

IP is a best-effort datagram service that provides the delivery mechanism for all other Internet protocols. The standard IP header is 20 bytes long, but may be followed by up to 40 bytes of options. IP can split large datagrams into fragments to be transmitted and reassembles the fragments at the final destination. Option processing is discussed in Chapter 9, and fragmentation and reassembly is discussed in Chapter 10.

ipintr ensures that IP headers have arrived undamaged and determines if they have arrived at their final destination by comparing the destination address to the IP addresses of the system’s interfaces and to several broadcast addresses. ipintr passes datagrams that have reached their final destination to the transport protocol specified within the packet. If the system is configured as a router, datagrams that have not reached their final destination are sent to ip_forward for routing toward their final destination. Packets have a limited lifetime. If the TTL field drops to 0, the packet is dropped by ip_forward.

The Internet checksum function is used by many of the Internet protocols and implemented by in_cksum in Net/3. The IP checksum covers only the header (and options), not the data, which must be protected by checksums at the transport protocol level. As one of the most time-consuming operations in IP, the checksum function is often optimized for each platform.

Exercises

8.1 Should IP accept broadcast packets when there are no IP addresses assigned to any interfaces?

8.2 Modify ip_forward and ip_output to do an incremental update of the IP checksum when a packet without options is being forwarded.

8.3 Why is it necessary to check for a link-level broadcast (M_BCAST flag in an mbuf) and for an IP-level broadcast (in_canforward) when rejecting packets for forwarding? When would a packet arrive as a link-level broadcast but with an IP unicast destination?

8.4 Why isn’t an error message returned to the sender when an IP packet arrives with checksum errors?

8.5 Assume that a process on a multihomed host has selected an explicit source address for its outgoing packets. Furthermore, assume that the packet’s destination is reached through an interface other than the one selected as the packet’s source address. What happens when the first-hop router discovers that the packets should be going through a different router? Is a redirect message sent to the host?

8.6 A new host is attached to a subnetted network and is configured to perform routing (ipforwarding equals 1) but its network interface has not been assigned a subnet mask. What happens when this host receives a subnet broadcast packet?

8.7 Why is it necessary to decrement ip_ttl after testing it (versus before) in Figure 8.17?

8.8 What would happen if two routers each considered the other the best next-hop destination for a packet?

8.9 Which addresses would not be checked in Figure 8.14 for a packet arriving at the SLIP interface? Would any additional addresses be checked that aren’t listed in Figure 8.14?

8.10 ip_forward converts the fragment id from host byte order to network byte order before calling icmp_error. Why does it not also convert the fragment offset?

Chapter 9. IP Option Processing

9.1. Introduction

Recall from Chapter 8 that the IP input function (ipintr) processes options after it verifies the packet’s format (checksum, length, etc.) and before it determines whether the packet has reached its final destination. This implies that a packet’s options are processed by every router it encounters and by the final destination host.

RFCs 791 and 1122 specify the IP options and processing rules. This chapter describes the format and processing of most IP options. We’ll also show how a transport protocol can specify the IP options to be included in an IP datagram.

An IP packet can include optional fields that are processed before the packet is forwarded or accepted by a system. An IP implementation can handle options in any order; for Net/3, it is the order in which the options appear in the packet. Figure 9.1 shows that up to 40 bytes of options may follow the standard IP header.

Figure 9.1. An IP header may contain 0 to 40 bytes of IP options.

[image: Image]

9.2. Code Introduction

Two headers describe the data structures for IP options. Option processing code is found in two C files. Figure 9.2 lists the relevant files.

Figure 9.2. Files discussed in this chapter.

[image: Image]

Global Variables

The two global variables described in Figure 9.3 support the reversal of source routes.

Figure 9.3. Global variables introduced in this chapter.

[image: Image]

Statistics

The only statistic updated by the options processing code is ips_badoptions from the ipstat structure, which Figure 8.4 described.

9.3. Option Format

The IP option field may contain 0 or more individual options. The two types of options, single-byte and multibyte, are illustrated in Figure 9.4.

Figure 9.4. The organization of single-byte and multibyte IP options.

[image: Image]

All options start with a 1-byte type field. In multibyte options, the type field is followed immediately by a len field, and the remaining bytes are the data. The first byte of the data field for many options is a 1-byte offset field, which points to a byte within the data field. The len byte covers the type, len, and data fields in its count. The type is further divided into three internal fields: a 1-bit copied flag, a 2-bit class field, and a 5-bit number field. Figure 9.5 lists the currently defined IP options. The first two options are single-byte options; the remainder are multibyte options.

Figure 9.5. IP options defined by RFC 791.

[image: Image]

The first column shows the Net/3 constant for the option, followed by the decimal and binary values of the type in columns 2 and 3, and the expected length of the option in column 4. The Net/3 column shows those options that are implemented in Net/3 by ip_dooptions. IP must silently ignore any option it does not understand. We don’t describe the options that are not implemented in Net/3: security and stream ID. The stream ID option is obsolete and the security options are used primarily by the U.S. military. See RFC 791 for more information.

Net/3 examines the copied flag when it fragments a packet with options (Section 10.4). The flag indicates whether the individual option should be copied into the IP header of the fragments. The class field groups related options as described in Figure 9.6. All the options in Figure 9.5 have a class of 0 except for the timestamp option, which has a class of 2.

Figure 9.6. The class field within an IP option.

[image: Image]

9.4. ip_dooptions Function

In Figure 8.13 we saw that ipintr calls ip_dooptions just before it checks the destination address of the packet. ip_dooptions is passed a pointer, m, to a packet and processes the options it knows about. If ip_dooptions forwards the packet, as can happen with the LSRR and SSRR options, or discards the packet because of an error, it returns 1. If it doesn’t forward the packet, ip_dooptions returns 0 and ipintr continues processing the packet.

ip_dooptions is a long function, so we show it in parts. The first part initializes a for loop to process each option in the header.

When processing an individual option, cp points to the first byte of the option. Figure 9.7 illustrates how the type, length, and, when applicable, the offset fields are accessed with constant offsets from cp.

Figure 9.7. Access to IP option fields is by constant offsets.

[image: Image]

The RFCs refer to the offset field as a pointer, which is slightly more descriptive than the term offset. The value of offset is the index (starting with type at index 1) of a byte within the option, and not a 0-based offset from type. The minimum value for offset is 4 (IPOPT_MINOFF), which points to the first byte of the data field in a multibyte option.

Figure 9.8 shows the overall organization of the ip_dooptions function.

Figure 9.8. ip_dooptions function.

[image: Image]
[image: Image]

553-566

ip_dooptions initializes the ICMP error type, type, to ICMP_PARAMPROB, which is a generic value for any error that does not have a specific error type of its own. For ICMP_PARAMPROB, code is the offset within the packet of the erroneous byte. This is the default ICMP error message; some options change these values.

C Language Note: Line 565 contains another example of pointer arithmetic. When a constant is added to a pointer, the constant is first multiplied by the size of the object pointed to. In this case, ip points to an ip structure with a size of 20 bytes, so ip+1 points to the next ip structure following the IP header. Since ip_dooptions wants the address of the byte after the IP header, the cast converts the resulting pointer to a pointer to an unsigned byte (u_char). Therefore cp points to the first byte beyond the standard IP header, which is the first byte of the IP options.

EOL and NOP processing

567-582

The for loop processes each option in the order it appears in the packet. An EOL option terminates the loop, as does an invalid option length (i.e., the option length indicates that the option data extends beyond the IP header). A NOP option is skipped when it appears. The default case for the switch statement implements the requirement that a system ignore unknown options.

The following sections describe each of the options handled within the switch statement. If ip_dooptions processes all the options in the packet without finding an error, control falls through to the code after the switch.

Source route forwarding

719-724

If the packet needs to be forwarded, forward is set by the SSRR or LSRR option processing code. The packet is passed to ip_forward with a 1 as the second argument to specify that the packet is source routed.

Recall from Section 8.5 that ICMP redirects are not generated for source-routed packets this is the reason for the second argument to ip_forward.

ip_dooptions returns 1 if the packet has been forwarded. If the packet does not include a source route, 0 is returned to ipintr to indicate that the datagram needs further processing. Note that source route forwarding occurs whether the system is configured as a router (ipforwarding equals 1) or not.

This is a somewhat controversial policy, but is mandated by RFC 1122. RFC 1127 [Braden 1989c] describes this as an open issue.

Error handling

725-730

If an error occurs within the switch, ip_dooptions jumps to bad. The IP header length is subtracted from the packet length since icmp_error assumes the header length is not included in the packet length. icmp_error sends the appropriate error message, and ip_dooptions returns 1 to prevent ipintr from processing the discarded packet.

The following sections describe each of the options that are processed by Net/3.

9.5. Record Route Option

The record route option causes the route taken by a packet to be recorded within the packet as it traverses an internet. The size of the option is fixed by the source host when it constructs the option and must be large enough to hold all the expected addresses. Recall that only 40 bytes of options may appear in an IP packet. The record route option has 3 bytes of overhead followed by a list of addresses (4 bytes each). If it is the only option, up to 9 (3 + 4 x 9 = 39) addresses may appear. Once the allocated space in the option has been filled, the packet is forwarded as usual but no more addresses are recorded by the intermediate systems.

Figure 9.9 illustrates the format of a record route option and Figure 9.10 shows the source code.

Figure 9.9. The record route option. n must be ≤ 9.

[image: Image]

Figure 9.10. ip_dooptions function: record route option processing.

	

--- ip_input.c
647 case IPOPT_RR:
648 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
649 code = &cp[IPOPT_OFFSET] - (u_char *) ip;
650 goto bad;
651 }
652 /*
653 * If no space remains, ignore.
654 */
655 off--; /* 0 origin */
656 if (off > optlen - sizeof(struct in_addr))
657 break;
658 bcopy((caddr_t) (&ip->ip_dst), (caddr_t) & ipaddr.sin_addr,
659 sizeof(ipaddr.sin_addr));
660 /*
661 * locate outgoing interface; if we're the destination,
662 * use the incoming interface (should be same).
663 */
664 if ((ia = (INA) ifa_ifwithaddr((SA) & ipaddr)) == 0 &&
665 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
666 type = ICMP_UNREACH;
667 code = ICMP_UNREACH_HOST;
668 goto bad;
669 }
670 bcopy((caddr_t) & (IA_SIN(ia)->sin_addr),
671 (caddr_t) (cp + off), sizeof(struct in_addr));
672 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
673 break;
--- ip_input.c

647-657

If the option offset is too small, ip_dooptions sends an ICMP parameter problem error. The variable code is set to the byte offset of the invalid option offset within the packet, and the ICMP parameter problem error has this code value when the error is generated at the label bad (Figure 9.8). If there is no space in the option for additional addresses, the option is ignored and processing continues with the next option.

Record address

658-673

If ip_dst is one of the systems addresses (the packet has arrived at its destination), the address of the receiving interface is recorded in the option; otherwise the address of the outgoing interface as provided by ip_rtaddr is recorded. (The INA and SA macros are defined in Figure 9.15.) The offset is updated to point to the next available address position in the option. If ip_rtaddr can’t find a route to the destination, an ICMP host unreachable error is sent.

Section 7.3 of Volume 1 contains examples of the record route option.

ip_rtaddr Function

The ip_rtaddr function consults a route cache and, if necessary, the complete routing tables to locate a route to a given IP address. It returns a pointer to the in_ifaddr structure associated with the outgoing interface for the route. The function is shown in Figure 9.11.

Figure 9.11. ip_rtaddr function: locate outgoing interface.

	

--- ip_input.c
735 struct in_ifaddr *
736 ip_rtaddr(dst)
737 struct in_addr dst;
738 {
739 struct sockaddr_in *sin;

740 sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;

741 if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
742 if (ipforward_rt.ro_rt) {
743 RTFREE(ipforward_rt.ro_rt);
744 ipforward_rt.ro_rt = 0;
745 }
746 sin->sin_family = AF_INET;
747 sin->sin_len = sizeof(*sin);
748 sin->sin_addr = dst;

749 rtalloc(&ipforward_rt);
750 }
751 if (ipforward_rt.ro_rt == 0)
752 return ((struct in_ifaddr *) 0);
753 return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
754 }
--- ip_input.c

Check IP forwarding cache

735-741

If the route cache is empty, or if dest, the only argument to ip_rtaddr, does not match the destination in the route cache, the routing tables must be consulted to select an outgoing interface.

Locate route

742-750

The old route (if any) is discarded and the new destination address is stored in *sin (which is the ro_dst member of the forwarding cache), rtalloc searches the routing tables for a route to the destination.

Return route information

751-754

If no route is available, a null pointer is returned. Otherwise, a pointer to the interface address structure associated with the selected route is returned.

9.6. Source and Record Route Options

Normally a packet is forwarded along a path chosen by the intermediate routers. The source and record route options allow the source host to specify an explicit path to the destination that overrides routing decisions of the intermediate routers. Furthermore, the route is recorded as the packet travels toward its destination.

A strict route includes the address of every intermediate router between the source and destination; a loose route specifies only some of the intermediate routers. Routers are free to choose any path between two systems listed in a loose route, whereas no intermediate routers are allowed between the systems listed in a strict route. We’ll use Figure 9.12 to illustrate source route processing.

Figure 9.12. Source route example.

[image: Image]

A, B, and C are routers and HS and HD are the source and destination hosts. Since each interface has its own IP address, we see that router A has three addresses: A1, A2, and A3. Similarly, routers B and C have multiple addresses. Figure 9.13 shows the format of the source and record route options.

Figure 9.13. The loose and strict source routing options.

[image: Image]

The source and destination addresses in the IP header and the offset and address list in the option specify the route and the packet’s current location within the route. Figure 9.14 shows how this information changes as the packet follows the loose source route from HS to A to B to C to HD. The loose source route specified by the process are the four IP addresses: A3, B1, C1, and HD. Each row represents the state of the packet when sent by the system shown in the first column. The last line shows the packet as received by HD. Figure 9.15 shows the relevant code.

Figure 9.14. The source route option is modified as a packet traverses the route.

[image: Image]

Figure 9.15. ip_dooptions function: LSRR and SSRR option processing.

[image: Image]
[image: Image]

The ¥ marks the position of offset relative to the addresses within the route. Notice that the address of the outgoing interface is placed in the option by each system. In particular, the original route specified A3 as the first-hop destination but the output interface, A2, was recorded in the route. In this way, the route taken by the packet is recorded in the option. This recorded route should be reversed by the destination system and attached to any reply packets so that they follow the same path as the initial packet but in the reverse direction.

Except for UDP, Net/3 reverses a received source route when responding.

583-612

Net/3 sends an ICMP parameter problem error with the appropriate value of code if the option offset is smaller than 4 (IPOPT_MINOFF). If the destination address of the packet does not match one of the local addresses and the option is a strict source route (IPOPT_SSRR), an ICMP source route failure error is sent. If a local address isn’t listed in the route, the previous system sent the packet to the wrong host. This isn’t an error for a loose source route (IPOPT_LSRR); it means IP must forward the packet toward the destination.

End of source route

613-620

Decrementing off converts it to a byte offset from the start of the option. If ip_dst in the IP header is one of the local addresses and off points beyond the end of the source route, there are no more addresses in the source route and the packet has reached its final destination. save_rte makes a copy of the route in the static structure ip_srcrt and saves the number of addresses in the route in the global ip_nhops (Figure 9.18).

ip_srcrt is declared as an external static structure since it is only accessed by the functions declared in ip_input.c.

Update packet for next hop

621-637

If ip_dst is one of the local addresses and offset points to an address within the option, this system is an intermediate system specified in the source route and the packet has not reached its final destination. During strict routing, the next system must be on a directly connected network. ifa_ifwithdst and ifa_ifwithnet locate a route to the next system by searching the configured interfaces for a matching destination address (a point-to-point interface) or a matching network address (a broadcast interface). During loose routing, ip_rtaddr (Figure 9.11) locates the route to the next system by querying the routing tables. If no interface or route is found for the next system, an ICMP source route failure error is sent.

638-644

If an interface or a route is located, ip_dooptions sets ip_dst to the IP address pointed to by off. Within the source route option, the intermediate address is replaced with the address of the outgoing interface, and the offset is incremented to point to the next address in the route.

Multicast destinations

645-646

If the new destination address is not a multicast address, setting forward to 1 indicates that the packet should be forwarded after ip_dooptions processes all the options instead of returning the packet to ipintr.

Multicast addresses within a source route enable two multicast routers to communicate through intermediate routers that don’t support multicasting. Chapter 14 describes this technique in more detail.

Section 8.5 of Volume 1 contains more examples of the source route options.

save_rte Function

RFC 1122 requires that the route recorded in a packet be made available to the transport protocol at the final destination. The transport protocols must reverse the route and attach it to any reply packets. The function save_rte, shown in Figure 9.18, saves source routes in an ip_srcrt structure, shown in Figure 9.16

Figure 9.16. ip_srcrt structure.

	

--- ip_input.c
 57 int ip_nhops = 0;
 58 static struct ip_srcrt {
 59 struct in_addr dst; /* final destination */
 60 char nop; /* one NOP to align */
 61 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
 62 struct in_addr route[MAX_IPOPTLEN / sizeof(struct in_addr)];
 63 } ip_srcrt;
--- ip_input.c

The declaration of route is incorrect, though the error is benign. It should be

struct in_addr route[(MAX_IPOPTLEN - 3)/ sizeof (struct in_addr)];

The discussion with Figures 9.26 and 9.27 covers this in more detail.

57-63

This code defines the ip_srcrt structure and declares the static variable ip_srcrt. Only two functions access ip_srcrt: save_rte, which copies the source route from an incoming packet into ip_srcrt; and ip_srcroute, which creates a reversed source route from ip_srcrt. Figure 9.17 illustrates source route processing.

Figure 9.17. Processing of reversed source routes.

[image: Image]

Figure 9.18. save_rte function.

	

-- ip_input.c
759 void
760 save_rte(option, dst)
761 u_char *option;
762 struct in_addr dst;
763 {
764 unsigned olen;

765 olen = option[IPOPT_OLEN];
766 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
767 return;
768 bcopy((caddr_t) option, (caddr_t) ip_srcrt.srcopt, olen);
769 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
770 ip_srcrt.dst = dst;
771 }
-- ip_input.c

759-771

ip_dooptions calls save_rte when a source routed packet has reached its final destination, option is a pointer to a packet’s source route option, and dst is ip_src from the packet’s header (i.e., the destination of the return route, HS from Figure 9.12). If the option length is larger than the ip_srcrt structure, save_rte returns immediately.

This would never happen, as the ip_srcrt structure is larger than the largest option length (40 bytes).

save_rte copies the option into ip_srcrt, computes and saves the number of hops in the source route in ip_nhops, and saves the destination of the return route in dst.

ip_srcroute Function

When responding to a packet, ICMP and the standard transport protocols must reverse any source route that the packet carried. The reversed source route is constructed from the saved route by ip_srcroute, which is shown in Figure 9.19.

Figure 9.19. ip_srcroute function.

[image: Image]
[image: Image]

777-783

ip_srcroute reverses the route saved in the ip_srcrt structure and returns the result formatted as an ipoption structure (Figure 9.26). If ip_nhops is 0, there is no saved route, so ip_srcroute returns a null pointer.

Recall that in Figure 8.13, ipintr cleared ip_nhops when a valid packet arrives. The transport protocols must call ip_srcroute and save the reversed route themselves before the next packet arrives. As noted earlier, this is OK since the transport layer (TCP or UDP) is called by ipintr for each packet, before the next packet on IP’s input queue is processed.

Allocate mbuf for source route

784-790

If ip_nhops is nonzero, ip_srcroute allocates an mbuf and sets m_len large enough to include the first-hop destination, the option header information (OPTSIZ), and the reversed route. If the allocation fails, a null pointer is returned as if there were no source route available.

791-804

p is initialized to point to the end of the incoming route, and ip_srcroute copies the last recorded address to the front of the mbuf where it becomes the outgoing first-hop destination for the reversed route. Then the function copies a NOP option (Exercise 9.4) and the source route information into the mbuf.

805-818

The while loop copies the remaining IP addresses from the source route into the mbuf in reverse order. The last address in the route is set to the source address from the incoming packet, which save_rte placed in ip_srcrt.dst. A pointer to the mbuf is returned. Figure 9.20 illustrates the construction of the reversed route with the route from Figure 9.12.

Figure 9.20. ip_srcroute reverses the route in ip_srcrt.

[image: Image]

9.7. Timestamp Option

The timestamp option causes each system to record its notion of the current time within the option as the packet traverses an internet. The time is expected to be in milliseconds since midnight UTC, and is recorded in a 32-bit field.

If the system does not keep accurate UTC (within a few minutes) or the time is not updated at least 15 times per second, it is not considered a standard time. A nonstandard time must have the high-order bit of the timestamp field set.

There are three types of timestamp options, which Net/3 accesses through the ip_timestamp structure shown in Figure 9.22.

114-133

As in the ip structure (Figure 8.10), #ifs ensure that the bit fields access the correct bits in the option. Figure 9.21 lists the three types of timestamp options specified by ipt_flg.

Figure 9.21. Possible values for ipt_flg.

[image: Image]

The originating host must construct the timestamp option with a data area large enough to hold all expected timestamps and addresses. For a timestamp option with an ipt_flg of 3, the originating host fills in the addresses of the systems at which a timestamp should be recorded when it constructs the option. Figure 9.23 shows the organization of the three timestamp options.

Figure 9.22. ip_timestamp structure and constants.

	

-- ip.h
114 struct ip_timestamp {
115 u_char ipt_code; /* IPOPT_TS */
116 u_char ipt_len; /* size of structure (variable) */
117 u_char ipt_ptr; /* index of current entry */
118 #if BYTE_ORDER == LITTLE_ENDIAN
119 u_char ipt_flg:4, /* flags, see below */
120 ipt_oflw:4; /* overflow counter */
121 #endif
122 #if BYTE_ORDER == BIG_ENDIAN
123 u_char ipt_oflw:4, /* overflow counter */
124 ipt_flg:4; /* flags, see below */
125 #endif
126 union ipt_timestamp {
127 n_long ipt_time[1];
128 struct ipt_ta {
129 struct in_addr ipt_addr;
130 n_long ipt_time;
131 } ipt_ta[1];
132 } ipt_timestamp;
133 };
-- ip.h

Figure 9.23. The three timestamp options (ipt_omitted).

[image: Image]

Because only 40 bytes are available for IP options, the timestamp options are limited to nine timestamps (ipt_flg equals 0) or four pairs of addresses and timestamps (ipt_flg equals 1 or 3). Figure 9.24 shows the processing for the three different timestamp option types.

Figure 9.24. ip_dooptions function: timestamp option processing.

[image: Image]
[image: Image]

674-684

ip_dooptions sends an ICMP parameter problem error if the option length is less than 5 bytes (the minimum size of a timestamp option). The oflw field counts the number of systems unable to register timestamps because the data area of the option was full, oflw is incremented if the data area is full, and when it itself overflows at 16 (it is a 4-bit field), an ICMP parameter problem error is sent.

Timestamp only

685-687

For a timestamp option with an ipt_flg of 0 (IPOPT_TS_TSONLY), all the work is done after the switch.

Timestamp and address

688-700

For a timestamp option with an ipt_flg of 1 (IPOPT_TS_TSANDADDR), the address of the receiving interface is recorded (if room remains in the data area), and the option pointer is advanced. Because Net/3 supports multiple IP addresses on a single interface, ip_dooptions calls ifaof_ifpforaddr to select the address that best matches the original destination address of the packet (i.e., the destination before any source routing has occurred). If there is no match, the timestamp option is skipped. (INA and SA were defined in Figure 9.15.)

Timestamp at prespecified addresses

701-710

If ipt_flg is 3 (IPOPT_TS_PRESPEC), ifa_ifwithaddr determines if the next address specified in the option matches one of the system’s addresses. If not, this option requires no processing at this system; the continue forces ip_dooptions to proceed to the next option. If the next address matches one of the system’s addresses, the option pointer is advanced to the next position and control continues after the switch.

Insert timestamp

711-713

Invalid ipt_flg values are caught at default where control jumps to bad.

714-719

The timestamps are placed in the option by the code that follows the switch statement, iptime returns the number of milliseconds since midnight UTC. ip_dooptions records the timestamp and increments the option offset to the next position.

iptime Function

Figure 9.25 shows the implementation of iptime.

Figure 9.25. iptime function.

	

--- ip_icmp.c
458 n_time
459 iptime()
460 {
461 struct timeval atv;
462 u_long t;

463 microtime(&atv);
464 t = (atv.tv_sec % (24 * 60 * 60)) * 1000 + atv.tv_usec / 1000;
465 return (htonl(t));
466 }
--- ip_icmp.c

458-466

microtime returns the time since midnight January 1, 1970, UTC, in a timeval structure. The number of milliseconds since midnight is computed using atv and returned in network byte order.

Section 7.4 of Volume 1 provides several timestamp option examples.

9.8. ip_insertoptions Function

We saw in Section 8.6 that the ip_output function accepts a packet and options. When the function is called from ip_forward, the options are already part of the packet so ip_forward always passes a null option pointer to ip_output. The transport protocols, however, may pass options to ip_output where they are merged with the packet by ip_insertoptions (called by ip_output in Figure 8.22).

ip_insertoptions expects the options to be formatted in an ipoption structure, shown in Figure 9.26.

Figure 9.26. ipoption structure.

	

--- ip_var.h
 92 struct ipoption {
 93 struct in_addr ipopt_dst; /* first-hop dst if source routed */
 94 char ipopt_list[MAX_IPOPTLEN]; /* options proper */
 95 };
--- ip_var.h

92-95

The structure has only two members: ipopt_dst, which contains the first-hop destination if the option list contains a source route, and ipopt_list, which is an array of at most 40 (MAX_IPOPTLEN) bytes of options formatted as we have described in this chapter. If the option list does not include a source route, ipopt_dst is all 0s.

Note that the ip_srcrt structure (Figure 9.16) and the mbuf returned by ip_srcroute (Figure 9.19) both conform to the format specified by the ipoption structure. Figure 9.27 compares the ip_srcrt and ipoption structures.

Figure 9.27. The ip_srcrt and ipoption structures.

[image: Image]

The ip_srcrt structure is 4 bytes larger than the ipoption structure. The last entry in the route array (route[9]) is never filled because it would make the source route option 44 bytes long, larger than the IP header can accommodate (Figure 9.16).

The ip_insertoptions function is shown in Figure 9.28.

Figure 9.28. ip_insertoptions function.

	

-- ip_output.c
352 static struct mbuf *
353 ip_insertoptions(m, opt, phlen)
354 struct mbuf *m;
355 struct mbuf *opt;
356 int *phlen;
357 {
358 struct ipoption *p = mtod(opt, struct ipoption *);
359 struct mbuf *n;
360 struct ip *ip = mtod(m, struct ip *);
361 unsigned optlen;

362 optlen = opt->m_len - sizeof(p->ipopt_dst);
363 if (optlen + (u_short) ip->ip_len > IP_MAXPACKET)
364 return (m); /* XXX should fail */
365 if (p->ipopt_dst.s_addr)
366 ip->ip_dst = p->ipopt_dst;
367 if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
368 MGETHDR(n, M_DONTWAIT, MT_HEADER);
369 if (n == 0)
370 return (m);
371 n->m_pkthdr.len = m->m_pkthdr.len + optlen;
372 m->m_len -= sizeof(struct ip);
373 m->m_data += sizeof(struct ip);
374 n->m_next = m;
375 m = n;
376 m->m_len = optlen + sizeof(struct ip);
377 m->m_data += max_linkhdr;
378 bcopy((caddr_t) ip, mtod(m, caddr_t), sizeof(struct ip));
379 } else {
380 m->m_data -= optlen;
381 m->m_len += optlen;
382 m->m_pkthdr.len += optlen;
383 ovbcopy((caddr_t) ip, mtod(m, caddr_t), sizeof(struct ip));
384 }
385 ip = mtod(m, struct ip *);
386 bcopy((caddr_t) p->ipopt_list, (caddr_t) (ip + 1), (unsigned) optlen);
387 *phlen = sizeof(struct ip) + optlen;
388 ip->ip_len += optlen;
389 return (m);
390 }
-- ip_output.c

352-364

ip_insertoptions has three arguments: m, the outgoing packet; opt, the options formatted in an ipoption structure; and phlen, a pointer to an integer where the new header length (after options are inserted) is returned. If the size of packet with the options exceeds the maximum packet size of 65,535 (IP_MAXPACKET) bytes, the options are silently discarded. ip_output does not expect ip_insertoptions ever to fail, so there is no way to report the error. Fortunately, few applications attempt to send a maximally sized datagram, let alone one with options.

365-366

If ipopt_dst.s_addr specifies a nonzero address, then the options include a source route and ip_dst in the packet’s header is replaced with the first-hop destination from the source route.

In Section 26.2 we’ll see that TCP calls MGETHDR to allocate a separate mbuf for the IP and TCP headers. Figure 9.29 shows the mbuf organization for a TCP segment before the code in lines 367 to 378 is executed.

Figure 9.29. ip_insertoptions function: TCP segment.

[image: Image]

If the options to be inserted occupy more than 16 bytes, the test on line 367 is true and MGETHDR is called to allocate an additional mbuf. Figure 9.30 shows the organization of the mbufs after the options have been copied into the new mbuf.

Figure 9.30. ip_insertoptions function: TCP segment, after options have been copied.

[image: Image]

367-378

If the packet header is stored in a cluster, or the first mbuf does not have room for the options, ip_insertoptions allocates a new packet header mbuf, initializes its length, trims the IP header from the old mbuf, and moves the header from the old mbuf to the new mbuf.

As described in Section 23.6, UDP uses M_PREPEND to place the UDP and IP headers at the end of an mbuf, separate from the data. This is illustrated in Figure 9.31.

Figure 9.31. ip_insertoptions function: UDP datagram.

[image: Image]

Because the headers are located at the end of the mbuf, there is always room for IP options in the mbuf and the condition on line 367 is always false for UDP.

379-384

If the packet has room at the beginning of the mbuf’s data area for the options, m_data and m_len are adjusted to contain optlen more bytes, and the current IP header is moved by ovbcopy (which can handle overlapping source and destinations) to leave room for the options.

385-390

ip_insertoptions can now copy the ipopt_list member of the ipoption structure directly into the mbuf just after the IP header. ip_insertoptions stores the new header length in *phlen, adjusts the datagram length (ip_len), and returns a pointer to the packet header mbuf.

9.9. ip_pcbopts Function

The ip_pcbopts function converts the list of IP options provided with the IP_OPTIONS socket option into the form expected by ip_output: an ipoption structure.

Figure 9.32. ip_pcbopts function.

[image: Image]
[image: Image]

[image: Image]
[image: Image]

559-562

The first argument, pcbopt, references the pointer to the current list of options. The function replaces this pointer with a pointer to the new list of options constructed from options specified in the mbuf chain pointed to by the second argument, m. The option list prepared by the process to be included with the IP_OPTIONS socket option looks like a standard list of IP options except for the format of the LSRR and SSRR options. For these options, the first-hop destination is included as the first address in the route. Figure 9.14 shows that the first-hop destination appears as the destination address in the outgoing packet, not as the first address in the route.

Discard previous options

563-580

Any previous options are discarded by m_free and *pcbopt is cleared. If the process passed an empty mbuf or didn’t pass an mbuf at all, the function returns immediately without installing any new options.

If the new list of options is not padded to a 4-byte boundary, ip_pcbopts jumps to bad, discards the list and returns EINVAL.

The remainder of the function rearranges the list to look like an ipoption structure. Figure 9.33 illustrates this process.

Figure 9.33. ip_pcbopts option list processing.

[image: Image]

Make room for first-hop destination

581-592

If there is room in the mbuf, all the data is shifted by 4 bytes (the size of an in_addr structure) toward the end of the mbuf. ovbcopy performs the copy. bzero clears the 4 bytes at the start of the mbuf.

Scan option list

593-606

The for loop scans the option list looking for LSRR and SSRR options. For multibyte options, the loop also verifies that the length of the option is reasonable.

Rearrange LSRR or SSRR option

607-638

When the loop locates a LSRR or SSRR option, it decrements the mbuf size, the loop index, and the option length by 4, since the first address in the option will be removed and shifted to the front of the mbuf.

bcopy moves the first address and ovbcopy shifts the remainder of the options by 4 bytes to fill the gap left by the first address.

Cleanup

639-646

After the loop, the size of the option list (including the first-hop address) must be no more than 44 (MAX_IPOPTLEN+4) bytes. A larger list does not fit in the IP packet header. The list is saved in *pcbopt and the function returns.

9.10. Limitations

Options are rarely present in IP datagrams other than those created by administrative and diagnostic tools. Volume 1 discusses two of the more common tools, ping and traceroute. It is difficult to write applications that utilize IP options. The programming interfaces are poorly documented and not well standardized. Most vendor supplied applications, such as Telnet and FTP, do not provide a way for a user to specify options such as a source route.

The usefulness of the record route, timestamp, and source route options in a large internet is limited by the maximum size of an IP header. Most routes contain more hops than can be represented in the 40 option bytes. When multiple options appear in the same packet, the available space is almost useless. IPv6 addresses this problem with a more flexible option header design.

During fragmentation, IP copies only some options into the noninitial fragments, since the options in noninitial fragments are discarded during reassembly. Only options from the initial fragment are made available to the transport protocol at the destination (Section 10.6). But some, such as source route, must be copied to each fragment, even if they are discarded in noninitial fragments at the destination.

9.11. Summary

In this chapter we showed the format and processing of IP options. We didn’t cover the security and stream ID options since they are not implemented in Net/3.

We saw that the size of multibyte options is fixed by the source host when it constructs the option. The usefulness of IP options is severely limited by the small maximum option header size of 40 bytes.

The source route options require the most support. Incoming source routes are saved by save_rte and reversed by ip_srcroute. A host that does not normally forward packets may forward source routed packets, but RFC 1122 requires this capability to be disabled by default. Net/3 does not have a switch for this feature and always forwards source routed packets.

Finally, we saw how options are merged into an outgoing packet by ip_insertoptions.

Exercises

9.1 What would happen if a packet contained two different source route options?

9.2 Some commercial routers can be configured to discard packets based on their IP destination address. In this way, a machine or group of machines can be isolated from the larger internet beyond the router. Describe how source routed packets can bypass this mechanism. Assume that there is at least one host within the network that the router is not blocking, and that it forwards source routed datagrams.

9.3 Some hosts may not be configured with a default route. In general, this prevents communication with the host since the host can’t route to destinations outside its directly connected networks. Describe how a source route can enable communication with this type of host.

9.4 Why is a NOP used in the ip_srcrt structure in Figure 9.16?

9.5 Can a nonstandard time value be confused with a standard time value in the timestamp options?

9.6 ip_dooptions saves the destination address of the packet in dest before processing any options (Figure 9.8). Why?

Chapter 10. IP Fragmentation and Reassembly

10.1. Introduction

In this chapter we describe the IP fragmentation and reassembly processing that we postponed in Chapter 8.

IP has an important capability of being able to fragment a packet when it is too large to be transmitted by the selected hardware interface. The oversized packet is split into two or more IP fragments, each of which is small enough to be transmitted on the selected network. Fragments may be further split by routers farther along the path to the final destination. Thus, at the destination host, an IP datagram can be contained in a single IP packet or, if it was fragmented in transit, it can arrive in multiple IP packets. Because individual fragments may take different paths to the destination host, only the destination host has a chance to see all the fragments. Thus only the destination host can reassemble the fragments into a complete datagram to be delivered to the appropriate transport protocol.

Figure 8.5 shows that 0.3% (72, 786/27, 881, 978) of the packets received were fragments and 0.12% (260, 484/(29, 447, 726—796, 084)) of the datagrams sent were fragmented. On world.std.com, 9.5% of the packets received were fragments. world has more NFS activity, which is a common source of IP fragmentation.

Three fields in the IP header implement fragmentation and reassembly: the identification field (ip_id), the flags field (the 3 high-order bits of ip_off), and the offset field (the 13 low-order bits of ip_off). The flags field is composed of three 1-bit flags. Bit 0 is reserved and must be 0, bit 1 is the “don’t fragment” (DF) flag, and bit 2 is the “more fragments” (MF) flag. In Net/3, the flag and offset fields are combined and accessed by ip_off, as shown in Figure 10.1.

Figure 10.1. ip_off controls fragmentation of an IP packet.

[image: Image]

Net/3 accesses the DF and MF bits by masking ip_off with IP_DF and IP_MF respectively. An IP implementation must allow an application to request that the DF bit be set in an outgoing datagram.

Net/3 does not provide application-level control over the DF bit when using UDP or TCP.

A process may construct and send its own IP headers with the raw IP interface (Chapter 32). The DF bit may be set by the transport layers directly such as when TCP performs path MTU discovery.

The remaining 13 bits of ip_off specify the fragment’s position within the original datagram, measured in 8-byte units. Accordingly, every fragment except the last must contain a multiple of 8 bytes of data so that the following fragment starts on an 8-byte boundary. Figure 10.2 illustrates the relationship between the byte offset within the original datagram and the fragment offset (low-order 13 bits of ip_off) in the fragment’s IP header.

Figure 10.2. Fragmentation of a 65535-byte datagram.

[image: Image]

Figure 10.2 shows a maximally sized IP datagram divided into 8190 fragments. Each fragment contains 8 bytes except the last, which contains only 3 bytes. We also show the MF bit set in all the fragments except the last. This is an unrealistic example, but it illustrates several implementation issues.

The numbers above the original datagram are the byte offsets for the data portion of the datagram. The fragment offset (ip_off) is computed from the start of the data portion of the datagram. It is impossible for a fragment to include a byte beyond offset 65514 since the reassembled datagram would be larger than 65535 bytes t he maximum value of the ip_len field. This restricts the maximum value of ip_off to 8189 (8189 × 8 = 65512), which leaves room for 3 bytes in the last fragment. If IP options are present, the offset must be smaller still.

Because an IP internet is connectionless, fragments from one datagram may be interleaved with those from another at the destination. ip_id uniquely identifies the fragments of a particular datagram. The source system sets ip_id in each datagram to a unique value for all datagrams using the same source (ip_src), destination (ip_dst), and protocol (ip_p) values for the lifetime of the datagram on the internet.

To summarize, ip_id identifies the fragments of a particular datagram, ip_off positions the fragment within the original datagram, and the MF bit marks every fragment except the last.

10.2. Code Introduction

The reassembly data structures appear in a single header. Reassembly and fragmentation processing is found in two C files. The three files are listed in Figure 10.3.

Figure 10.3. Files discussed in this chapter.

[image: Image]

Global Variables

Only one global variable, ipq, is described in this chapter.

Figure 10.4. Global variable introduced in this chapter.

[image: Image]

Statistics

The statistics modified by the fragmentation and reassembly code are shown in Figure 10.5. They are a subset of the statistics included in the ipstat structure described by Figure 8.4.

Figure 10.5. Statistics collected in this chapter.

[image: Image]

10.3. Fragmentation

We now return to ip_output and describe the fragmentation code. Recall from Figure 8.25 that if a packet fits within the MTU of the selected outgoing interface, it is transmitted in a single link-level frame. Otherwise the packet must be fragmented and transmitted in multiple frames. A packet may be a complete datagram or it may itself be a fragment that was created by a previous system. We describe the fragmentation code in three parts:

[image: Image] determine fragment size (Figure 10.6),

Figure 10.6. ip_output function: determine fragment size.

	

--- ip_output.c
253 /*
254 * Too large for interface; fragment if possible.
255 * Must be able to put at least 8 bytes per fragment.
256 */
257 if (ip->ip_off & IP_DF) {
258 error = EMSGSIZE;
259 ipstat.ips_cantfrag++;
260 goto bad;
261 }
262 len = (ifp->if_mtu - hlen) & ~7;
263 if (len < 8) {
264 error = EMSGSIZE;
265 goto bad;
266 }
--- ip_output.c

[image: Image] construct fragment list (Figure 10.7), and

Figure 10.7. ip_output function: construct fragment list.

[image: Image]
[image: Image]

[image: Image] construct initial fragment and send fragments (Figure 10.8).

Figure 10.8. ip_output function: send fragments.

	

--- ip_output.c
315 /*
316 * Update first fragment by trimming what's been copied out
317 * and updating header, then send each fragment (in order).
318 */
319 m = m0;
320 m_adj(m, hlen + firstlen - (u_short) ip->ip_len);
321 m->m_pkthdr.len = hlen + firstlen;
322 ip->ip_len = htons((u_short) m->m_pkthdr.len);
323 ip->ip_off = htons((u_short) (ip->ip_off | IP_MF));
324 ip->ip_sum = 0;
325 ip->ip_sum = in_cksum(m, hlen);
326 sendorfree:
327 for (m = m0; m; m = m0) {
328 m0 = m->m_nextpkt;
329 m->m_nextpkt = 0;
330 if (error == 0)
331 error = (*ifp->if_output) (ifp, m,
332 (struct sockaddr *) dst, ro->ro_rt);
333 else
334 m_freem(m);
335 }

336 if (error == 0)
337 ipstat.ips_fragmented++;
338 }
--- ip_output.c

253-261

The fragmentation algorithm is straightforward, but the implementation is complicated by the manipulation of the mbuf structures and chains. If fragmentation is prohibited by the DF bit, ip_output discards the packet and returns EMSGSIZE. If the datagram was generated on this host, a transport protocol passes the error back to the process, but if the datagram is being forwarded, ip_forward generates an ICMP destination unreachable error with an indication that the packet could not be forwarded without fragmentation (Figure 8.21).

Net/3 does not implement the path MTU discovery algorithms used to probe the path to a destination and discover the largest transmission unit supported by all the intervening networks. Sections 11.8 and 24.2 of Volume 1 describe path MTU discovery for UDP and TCP.

262-266

len, the number of data bytes in each fragment, is computed as the MTU of the interface less the size of the packet’s header and then rounded down to an 8-byte boundary by clearing the low-order 3 bits (& ~7). If the MTU is so small that each fragment contains less than 8 bytes, ip_output returns EMSGSIZE.

Each new fragment contains an IP header, some of the options from the original packet, and at most len data bytes.

The code in Figure 10.7, which is the start of a C compound statement, constructs the list of fragments starting with the second fragment. The original packet is converted into the initial fragment after the list is created (Figure 10.8).

267-269

The extra block allows mhlen, firstlen, and mnext to be declared closer to their use in the function. These variables are in scope until the end of the block and hide any similarly named variables outside the block.

270-276

Since the original mbuf chain becomes the first fragment, the for loop starts with the offset of the second fragment: hlen + len. For each fragment ip_output takes the following actions:

[image: Image] 277-284

Allocate a new packet mbuf and adjust its m_data pointer to leave room for a 16-byte link-layer header (max_linkhdr). If ip_output didn’t do this, the network interface driver would have to allocate an additional mbuf to hold the link header or move the data. Both are time-consuming tasks that are easily avoided here.

[image: Image] 285-290

Copy the IP header and IP options from the original packet into the new packet. The former is copied with a structure assignment. ip_optcopy copies only those options that get copied into each fragment (Section 10.4).

[image: Image] 291-297

Set the offset field (ip_off) for the fragment including the MF bit. If MF is set in the original packet, then MF is set in all the fragments. If MF is not set in the original packet, then MF is set for every fragment except the last.

[image: Image] 298

Set the length of this fragment accounting for a shorter header (ip_optcopy may not have copied all the options) and a shorter data area for the last fragment. The length is stored in network byte order.

[image: Image] 299-305

Copy the data from the original packet into this fragment. m_copy allocates additional mbufs if necessary. If m_copy fails, ENOBUFS is posted. Any mbufs already allocated are discarded at sendorfree.

[image: Image] 306-314

Adjust the mbuf packet header of the newly created fragment to have the correct total length, clear the new fragment’s interface pointer, convert ip_off to network byte order, compute the checksum for the new fragment, and link the fragment to the previous fragment through m_nextpkt.

In Figure 10.8, ip_output constructs the initial fragment and then passes each fragment to the interface layer.

315-325

The original packet is converted into the first fragment by trimming the extra data from its end, setting the MF bit, converting ip_len and ip_off to network byte order, and computing the new checksum. All the IP options are retained in this fragment. At the destination host, only the IP options from the first fragment of a datagram are retained when the datagram is reassembled (Figure 10.28). Some options, such as source routing, must be copied into each fragment even though the option is discarded during reassembly.

326-338

At this point, ip_output has either a complete list of fragments or an error has occurred and the partial list of fragments must be discarded. The for loop traverses the list either sending or discarding fragments according to error. Any error encountered while sending fragments causes the remaining fragments to be discarded.

10.4. ip_optcopy Function

During fragmentation, ip_optcopy (Figure 10.9) copies the options from the incoming packet (if the packet is being forwarded) or from the original datagram (if the datagram is locally generated) into the outgoing fragments.

Figure 10.9. ip_optcopy function.

	

--- ip_output.c
395 int
396 ip_optcopy(ip, jp)
397 struct ip *ip, *jp;
398 {
399 u_char *cp, *dp;
400 int opt, optlen, cnt;

401 cp = (u_char *) (ip + 1);
402 dp = (u_char *) (jp + 1);
403 cnt = (ip->ip_hl << 2) - sizeof(struct ip);
404 for (; cnt > 0; cnt -= optlen, cp += optlen) {
405 opt = cp[0];
406 if (opt == IPOPT_EOL)
407 break;
408 if (opt == IPOPT_NOP) {
409 /* Preserve for IP mcast tunnel's LSRR alignment. */
410 *dp++ = IPOPT_NOP;
411 optlen = 1;
412 continue;
413 } else
414 optlen = cp[IPOPT_OLEN];
415 /* bogus lengths should have been caught by ip_dooptions */
416 if (optlen > cnt)
417 optlen = cnt;
418 if (IPOPT_COPIED(opt)) {
419 bcopy((caddr_t) cp, (caddr_t) dp, (unsigned) optlen);
420 dp += optlen;
421 }
422 }
423 for (optlen = dp - (u_char *) (jp + 1); optlen & 0x3; optlen++)
424 *dp++ = IPOPT_EOL;
425 return (optlen);
426 }
--- ip_output.c

395-422

The arguments to ip_optcopy are: ip, a pointer to the IP header of the outgoing packet; and jp, a pointer to the IP header of the newly created fragment. ip_optcopy initializes cp and dp to point to the first option byte in each packet and advances cp and dp as it processes each option. The first for loop copies a single option during each iteration stopping when it encounters an EOL option or when it has examined all the options. NOP options are copied to preserve any alignment constraints in the subsequent options.

The Net/2 release discarded NOP options.

If IPOPT_COPIED indicates that the copied bit is on, ip_optcopy copies the option to the new fragment. Figure 9.5 shows which options have the copied bit set. If an option length is too large, it is truncated; ip_dooptions should have already discovered this type of error.

423-426

The second for loop pads the option list out to a 4-byte boundary. This is required, since the packet’s header length (ip_hlen) is measured in 4-byte units. It also ensures that the transport header that follows is aligned on a 4-byte boundary. This improves performance since many transport protocols are designed so that 32-bit header fields are aligned on 32-bit boundaries if the transport header starts on a 32-bit boundary. This arrangement increases performance on CPUs that have difficulty accessing unaligned 32-bit words.

Figure 10.10 illustrates the operation of ip_optcopy.

Figure 10.10. Not all options are copied during fragmentation.

[image: Image]

In Figure 10.10 we see that ip_optcopy does not copy the timestamp option (its copied bit is 0) but does copy the LSRR option (its copied bit is 1). ip_optcopy has also added a single EOL option to pad the new options to a 4-byte boundary.

10.5. Reassembly

Now that we have described the fragmentation of a datagram (or of a fragment), we return to ipintr and the reassembly process. In Figure 8.15 we omitted the reassembly code from ipintr and postponed its discussion. ipintr can pass only entire datagrams up to the transport layer for processing. Fragments that are received by ipintr are passed to ip_reass, which attempts to reassemble fragments into complete datagrams. The code from ipintr is shown in Figure 10.11.

Figure 10.11. ipintr function: fragment processing.

[image: Image]
[image: Image]

271-279

Recall that ip_off contains the DF bit, the MF bit, and the fragment offset. The DF bit is masked out and if either the MF bit or fragment offset is nonzero, the packet is a fragment that must be reassembled. If both are zero, the packet is a complete datagram, the reassembly code is skipped and the else clause at the end of Figure 10.11 is executed, which excludes the header length from the total datagram length.

280-286

m_pullup moves data in an external cluster into the data area of the mbuf. Recall that the SLIP interface (Section 5.3) may return an entire IP packet in an external cluster if it does not fit in a single mbuf. Also m_devget can return the entire packet in a cluster (Section 2.6). Before the mtod macros will work (Section 2.6), m_pullup must move the IP header from the cluster into the data area of an mbuf.

287-297

Net/3 keeps incomplete datagrams on the global doubly linked list, ipq. The name is somewhat confusing since the data structure isn’t a queue. That is, insertions and deletions can occur anywhere in the list, not just at the ends. We’ll use the term list to emphasize this fact.

ipintr performs a linear search of the list to locate the appropriate datagram for the current fragment. Remember that fragments are uniquely identified by the 4-tuple: {ip_id, ip_src, ip_dst, ip_p}. Each entry in ipq is a list of fragments and fp points to the appropriate list if ipintr finds a match.

Net/3 uses linear searches to access many of its data structures. While simple, this method can become a bottleneck in hosts supporting large numbers of network connections.

298-303

At found, the packet is modified by ipintr to facilitate reassembly:

[image: Image] 304

ipintr changes ip_len to exclude the standard IP header and any options. We must keep this in mind to avoid confusion with the standard interpretation of ip_len, which includes the standard header, options, and data. ip_len is also changed if the reassembly code is skipped because this is not a fragment.

[image: Image] 305-307

ipintr copies the MF flag into the low-order bit of ipf_mff, which overlays ip_tos (&= ~1 clears the low-order bit only). Notice that ip must be cast to a pointer to an ipasfrag structure before ipf_mff is a valid member. Section 10.6 and Figure 10.14 describe the ipasfrag structure.

Although RFC 1122 requires the IP layer to provide a mechanism that enables the transport layer to set ip_tos for every outgoing datagram, it only recommends that the IP layer pass ip_tos values to the transport layer at the destination host. Since the low-order bit of the TOS field must always be 0, it is available to hold the MF bit while ip_off (where the MF bit is normally found) is used by the reassembly algorithm.

ip_off can now be accessed as a 16-bit offset instead of 3 flag bits and a 13-bit offset.

[image: Image] 308

ip_off is multiplied by 8 to convert from 8-byte to 1-byte units.

ipf_mff and ip_off determine if ipintr should attempt reassembly. Figure 10.12 describes the different cases and the corresponding actions. Remember that fp points to the list of fragments the system has previously received for the datagram. Most of the work is done by ip_reass.

Figure 10.12. IP fragment processing in ipintr and ip_reass.

[image: Image]

309-322

If ip_reass is able to assemble a complete datagram by combining the current fragment with previously received fragments, it returns a pointer to the reassembled datagram. If reassembly is not possible, ip_reass saves the fragment and ipintr jumps to next to process the next packet (Figure 8.12).

323-324

This else branch is taken when a complete datagram arrives and ip_hlen is modified as described earlier. This is the normal flow, since most received datagrams are not fragments.

If a complete datagram is available after reassembly processing, it is passed up to the appropriate transport protocol by ipintr (Figure 8.15):

 (*inetsw[ip_protox[ip->ip_p]].pr_input) (m, hlen);

10.6. ip_reass Function

ipintr passes ip_reass a fragment to be processed, and a pointer to the matching reassembly header from ipq. ip_reass attempts to assemble and return a complete datagram or links the fragment into the datagram’s reassembly list for reassembly when the remaining fragments arrive. The head of each reassembly list is an ipq structure, show in Figure 10.13.

Figure 10.13. ipq structure.

	

-- ip_var.h
 52 struct ipq {
 53 struct ipq *next, *prev; /* to other reass headers */
 54 u_char ipq_ttl; /* time for reass q to live */
 55 u_char ipq_p; /* protocol of this fragment */
 56 u_short ipq_id; /* sequence id for reassembly */
 57 struct ipasfrag *ipq_next, *ipq_prev;
 58 /* to ip headers of fragments */
 59 struct in_addr ipq_src, ipq_dst;
 60 };
-- ip_var.h

52-60

The four fields required to identify a datagram’s fragments, ip_id, ip_p, ip_src, and ip_dst, are kept in the ipq structure at the head of each reassembly list. Net/3 constructs the list of datagrams with next and prev and the list of fragments with ipq_next and ipq_prev.

The IP header of incoming IP packets is converted to an ipasfrag structure (Figure 10.14) before it is placed on a reassembly list.

Figure 10.14. ipasfrag structure.

	

--- ip_var.h
 66 struct ipasfrag {
 67 #if BYTE_ORDER == LITTLE_ENDIAN
 68 u_char ip_hl:4,
 69 ip_v:4;
 70 #endif
 71 #if BYTE_ORDER == BIG_ENDIAN
 72 u_char ip_v:4,
 73 ip_hl:4;
 74 #endif
 75 u_char ipf_mff; /* XXX overlays ip_tos: use low bit
 76 * to avoid destroying tos;
 77 * copied from (ip_off&IP_MF) */
 78 short ip_len;
 79 u_short ip_id;
 80 short ip_off;
 81 u_char ip_ttl;
 82 u_char ip_p;
 83 u_short ip_sum;
 84 struct ipasfrag *ipf_next; /* next fragment */
 85 struct ipasfrag *ipf_prev; /* previous fragment */
 86 };
--- ip_var.h

66-86

ip_reass collects fragments for a particular datagram on a circular doubly linked list joined by the ipf_next and ipf_prev members. These pointers overlay the source and destination addresses in the IP header. The ipf_mff member overlays ip_tos from the ip structure. The other members are the same.

Figure 10.15 illustrates the relationship between the fragment header list (ipq) and the fragments (ipasfrag).

Figure 10.15. The fragment header list, ipq, and fragments.

[image: Image]

Down the left side of Figure 10.15 is the list of reassembly headers. The first node in the list is the global ipq structure, ipq. It never has a fragment list associated with it. The ipq list is a doubly linked list used to support fast insertions and deletions. The next and prev pointers reference the next or previous ipq structure, which we have shown by terminating the arrows at the corners of the structures.

Each ipq structure is the head node of a circular doubly linked list of ipasfrag structures. Incoming fragments are placed on these fragment lists ordered by their fragment offset. We’ve highlighted the pointers for these lists in Figure 10.15.

Figure 10.15 still does not show all the complexity of the reassembly structures. The reassembly code is difficult to follow because it relies so heavily on casting pointers to three different structures on the underlying mbuf. We’ve seen this technique already, for example, when an ip structure overlays the data portion of an mbuf.

Figure 10.16 illustrates the relationship between an mbuf, an ipq structure, an ipasfrag structure, and an ip structure.

Figure 10.16. An area of memory can be accessed through multiple structures.

[image: Image]

A lot of information is contained within Figure 10.16:

[image: Image] All the structures are located within the data area of an mbuf.

[image: Image] The ipq list consists of ipq structures joined by next and prev. Within the structure, the four fields that uniquely identify an IP datagram are saved (shaded in Figure 10.16).

[image: Image] Each ipq structure is treated as an ipasfrag structure when accessed as the head of a linked list of fragments. The fragments are joined by ipf_next and ipf_prev, which overlay the ipq structures’ ipq_next and ipq_prev members.

[image: Image] Each ipasfrag structure overlays the ip structure from the incoming fragment. The data that arrived with the fragment follows the structure in the mbuf. The members that have a different meaning in the ipasfrag structure than they do in the ip structure are shaded.

Figure 10.15 showed the physical connections between the reassembly structures and Figure 10.16 illustrated the overlay technique used by ip_reass. In Figure 10.17 we show the reassembly structures from a logical point of view: this figure shows the reassembly of three datagrams and the relationship between the ipq list and the ipasfrag structures.

Figure 10.17. Reassembly of three IP datagrams.

[image: Image]

The head of each reassembly list contains the id, protocol, source, and destination address of the original datagram. Only the ip_id field is shown in the figure. Each fragment list is ordered by the offset field, the fragment is labeled with MF if the MF bit is set, and missing fragments appear as shaded boxes. The numbers within each fragment show the starting and ending byte offset for the fragment relative to the data portion of the original datagram, not to the IP header of the original datagram.

The example is constructed to show three UDP datagrams with no IP options and 1024 bytes of data each. The total length of each datagram is 1052 (20 + 8 + 1024) bytes, which is well within the 1500-byte MTU of an Ethernet. The datagrams encounter a SLIP link on the way to the destination, and the router at that link fragments the datagrams to fit within a typical 296-byte SLIP MTU. Each datagram arrives as four fragments. The first fragment contain a standard 20-byte IP header, the 8-byte UDP header, and 264 bytes of data. The second and third fragments contain a 20-byte IP header and 272 bytes of data. The last fragment has a 20-byte header and 216 bytes of data (1032 = 272 × 3 + 216).

In Figure 10.17, datagram 5 is missing a single fragment containing bytes 272 through 543. Datagram 6 is missing the first fragment, bytes 0 through 271, and the end of the datagram starting at offset 816. Datagram 7 is missing the first three fragments, bytes 0 through 815.

Figure 10.18 lists ip_reass. Remember that ipintr calls ip_reass when an IP fragment has arrived for this host, and after any options have been processed.

Figure 10.18. ip_reass function: datagram reassembly.

[image: Image]

343-358

When ip_reass is called, ip points to the fragment and fp either points to the matching ipq structure or is null.

Since reassembly involves only the data portion of each fragment, ip_reass adjusts m_data and m_len from the mbuf containing the fragment to exclude the IP header in each fragment.

465-469

When an error occurs during reassembly, the function jumps to dropfrag, which increments ips_fragdropped, discards the fragment, and returns a null pointer.

Dropping fragments usually incurs a serious performance penalty at the transport layer since the entire datagram must be retransmitted. TCP is careful to avoid fragmentation, but a UDP application must take steps to avoid fragmentation on its own. [Kent and Mogul 1987] explain why fragmentation should be avoided.

All IP implementations must to be able to reassemble a datagram of up to 576 bytes. There is no general way to determine the size of the largest datagram that can be reassembled by a remote host. We’ll see in Section 27.5 that TCP has a mechanism to determine the size of the maximum datagram that can be processed by the remote host. UDP has no such mechanism, so many UDP-based protocols (e.g., RIP, TFTP, BOOTP, SNMP, and DNS) are designed around the 576-byte limit.

We’ll show the reassembly code in seven parts, starting with Figure 10.19.

Figure 10.19. ip_reass function: create reassembly list.

	

--- ip_input.c
359 /*
360 * If first fragment to arrive, create a reassembly queue.
361 */
362 if (fp == 0) {
363 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
364 goto dropfrag;
365 fp = mtod(t, struct ipq *);
366 insque(fp, &ipq);
367 fp->ipq_ttl = IPFRAGTTL;
368 fp->ipq_p = ip->ip_p;
369 fp->ipq_id = ip->ip_id;
370 fp->ipq_next = fp->ipq_prev = (struct ipasfrag *) fp;
371 fp->ipq_src = ((struct ip *) ip)->ip_src;
372 fp->ipq_dst = ((struct ip *) ip)->ip_dst;
373 q = (struct ipasfrag *) fp;
374 goto insert;
375 }
--- ip_input.c

Create reassembly list

359-366

When fp is null, ip_reass creates a reassembly list with the first fragment of the new datagram. It allocates an mbuf to hold the head of the new list (an ipq structure), and calls insque to insert the structure in the list of reassembly lists.

Figure 10.20 lists the functions that manipulate the datagram and fragment lists.

Figure 10.20. Queueing functions used by ip_reass.

[image: Image]

The functions insque and remque are defined in machdep.c for the 386 version of Net/3. Each machine has its own machdep.c file in which customized versions of kernel functions are defined, typically to improve performance. This file also contains architecture-dependent functions such as the interrupt handler support, cpu and device configuration, and memory management functions.

insque and remque exist primarily to maintain the kernel’s run queue. Net/3 can use them for the datagram reassembly list because both lists have next and previous pointers as the first two members of their respective node structures. These functions work for any similarly structured list, although the compiler may issue some warnings. This is yet another example of accessing memory through two different structures.

In all the kernel structures the next pointer always precedes the previous pointer (Figure 10.14, for example). This is because the insque and remque functions were first implemented on the VAX using the insque and remque hardware instructions, which require this ordering of the forward and backward pointers.

The fragment lists are not joined with the first two members of the ipasfrag structures (Figure 10.14) so Net/3 calls ip_enq and ip_deq instead of insque and remque.

Reassembly timeout

367

The time-to-live field (ipq_ttl) is required by RFC 1122 and limits the time Net/3 waits for fragments to complete a datagram. It is different from the TTL field in the IP header, which limits the amount of time a packet circulates in the internet. The IP header TTL field is reused as the reassembly timeout since the header TTL is not needed once the fragment arrives at its final destination.

In Net/3, the initial value of the reassembly timeout is 60 (IPFRAGTTL). Since ipq_ttl is decremented every time the kernel calls ip_slowtimo and the kernel calls ip_slowtimo every 500 ms, the system discards an IP reassembly list if it hasn’t assembled a complete IP datagram within 30 seconds of receiving any one of the datagram’s fragments. The reassembly timer starts ticking on the first call to ip_slowtimo after the list is created.

RFC 1122 recommends that the reassembly time be between 60 and 120 seconds and that an ICMP time exceeded error be sent to the source host if the timer expires and the first fragment of the datagram has been received. The header and options of the other fragments are always discarded during reassembly and an ICMP error must contain the first 64 bits of the erroneous datagram (or less if the datagram was shorter than 8 bytes). So, if the kernel hasn’t received fragment 0, it can’t send an ICMP message.

Net/3’s timer is a bit too short and Net/3 neglects to send the ICMP message when a fragment is discarded. The requirement to return the first 64 bits of the datagram ensures that the first portion of the transport header is included, which allows the error message to be returned to the application that generated it. Note that TCP and UDP purposely put their port numbers in the first 8 bytes of their headers for this reason.

Datagram identifiers

368-375

ip_reass saves ip_p, ip_id, ip_src, and ip_dst in the ipq structure allocated for this datagram, points the ipq_next and ipq_prev pointers to the ipq structure (i.e., it constructs a circular list with one node), points q at this structure, and jumps to insert (Figure 10.25) where it inserts the first fragment, ip, into the new reassembly list.

The next part of ip_reass, shown in Figure 10.21, is executed when fp is not null and locates the correct position in the existing list for the new fragment.

Figure 10.21. ip_reass function: find position in reassembly list.

	

--- ip_input.c
376 /*
377 * Find a fragment which begins after this one does.
378 */
379 for (q = fp->ipq_next; q != (struct ipasfrag *) fp; q = q->ipf_next)
380 if (q->ip_off > ip->ip_off)
381 break;
--- ip_input.c

376-381

Since fp is not null, the for loop searches the datagram’s fragment list to locate a fragment with an offset greater than ip_off.

The byte ranges contained within fragments may overlap at the destination. This can happen when a transport-layer protocol retransmits a datagram that gets sent along a route different from the one followed by the original datagram. The fragmentation pattern may also be different resulting in overlaps at the destination. The transport protocol must be able to force IP to use the original ID field in order for the datagram to be recognized as a retransmission at the destination.

Net/3 does not provide a mechanism for a transport protocol to ensure that IP ID fields are reused on a retransmitted datagram. ip_output always assigns a new value by incrementing the global integer ip_id when preparing a new datagram (Figure 8.22). Nevertheless, a Net/3 system could receive overlapping fragments from a system that lets the transport layer retransmit IP datagrams with the same ID field.

Figure 10.22 illustrates the different ways in which the fragment may overlap with existing fragments. The fragments are numbered according to the order in which they arrive at the destination host. The reassembled fragment is shown at the bottom of Figure 10.22 The shaded areas of the fragments are the duplicate bytes that are discarded.

Figure 10.22. The byte range of fragments may overlap at the destination.

[image: Image]

In the following discussion, an earlier fragment is a fragment that previously arrived at the host.

The code in Figure 10.23 trims or discards incoming fragments.

Figure 10.23. ip_reass function: trim incoming packet.

	

-- ip_input.c
382 /*
383 * If there is a preceding fragment, it may provide some of
384 * our data already. If so, drop the data from the incoming
385 * fragment. If it provides all of our data, drop us.
386 */
387 if (q->ipf_prev != (struct ipasfrag *) fp) {
388 i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
389 if (i > 0) {
390 if (i >= ip->ip_len)
391 goto dropfrag;
392 m_adj(dtom(ip), i);
393 ip->ip_off += i;
394 ip->ip_len -= i;
395 }
396 }
-- ip_input.c

382-396

ip_reass discards bytes that overlap the end of an earlier fragment by trimming the new fragment (the front of fragment 5 in Figure 10.22) or discarding the new fragment (fragment 6) if all its bytes arrived in an earlier fragment (fragment 4).

The code in Figure 10.24 trims or discards existing fragments.

Figure 10.24. ip_reass function: trim existing packets.

	

--- ip_input.c
397 /*
398 * While we overlap succeeding fragments trim them or,
399 * if they are completely covered, dequeue them.
400 */
401 while (q != (struct ipasfrag *) fp && ip->ip_off + ip->ip_len > q->ip_off) {
402 i = (ip->ip_off + ip->ip_len) - q->ip_off;
403 if (i < q->ip_len) {
404 q->ip_len -= i;
405 q->ip_off += i;
406 m_adj(dtom(q), i);
407 break;
408 }
409 q = q->ipf_next;
410 m_freem(dtom(q->ipf_prev));
411 ip_deq(q->ipf_prev);
412 }
--- ip_input.c

397-412

If the current fragment partially overlaps the front of an earlier fragment, the duplicate data is trimmed from the earlier fragment (the front of fragment 2 in Figure 10.22). Any earlier fragments that are completely overlapped by the arriving fragment are discarded (fragment 3).

In Figure 10.25, the incoming fragment is inserted into the reassembly list.

Figure 10.25. ip_reass function: insert packet.

	

--- ip_input.c
413 insert:
414 /*
415 * Stick new fragment in its place;
416 * check for complete reassembly.
417 */
418 ip_enq(ip, q->ipf_prev);
419 next = 0;
420 for (q = fp->ipq_next; q != (struct ipasfrag *) fp; q = q->ipf_next) {
421 if (q->ip_off != next)
422 return (0);
423 next += q->ip_len;
424 }
425 if (q->ipf_prev->ipf_mff & 1)
426 return (0);
--- ip_input.c

413-426

After trimming, ip_enq inserts the fragment into the list and the list is scanned to determine if all the fragments have arrived. If any fragment is missing, or the last fragment in the list has ipf_mff set, ip_reass returns 0 and waits for more fragments.

When the current fragment completes a datagram, the entire list is converted to an mbuf chain by the code shown in Figure 10.26.

Figure 10.26. ip_reass function: reassemble datagram.

	

-- ip_input.c
427 /*
428 * Reassembly is complete; concatenate fragments.
429 */
430 q = fp->ipq_next;
431 m = dtom(q);
432 t = m->m_next;
433 m->m_next = 0;
434 m_cat(m, t);
435 q = q->ipf_next;
436 while (q != (struct ipasfrag *) fp) {
437 t = dtom(q);
438 q = q->ipf_next;
439 m_cat(m, t);
440 }
-- ip_input.c

427-440

If all the fragments for the datagram have been received, the while loop reconstructs the datagram from the fragments with m_cat.

Figure 10.27 shows the relationships between mbufs and the ipq structure for a datagram composed of three fragments.

Figure 10.27. m_cat reassembles the fragments within mbufs.

[image: Image]

The darkest areas in the figure mark the data portions of a packet and the lighter shaded areas mark the unused portions of the mbufs. We show three fragments each contained in a chain of two mbufs; a packet header, and a cluster. The m_data pointer in the first mbuf of each fragment points to the packet data, not the packet header. Therefore, the mbuf chain constructed by m_cat includes only the data portion of the fragments.

This is the typical scenario when a fragment contains more than 208 bytes of data (Section 2.6). The “frag” portion of the mbufs is the IP header from the fragment. The m_data pointer of the first mbuf in each chain points beyond “opts” because of the code in Figure 10.18.

Figure 10.28 shows the reassembled datagram using the mbufs from all the fragments. Notice that the IP header and options from fragments 2 and 3 are not included in the reassembled datagram.

Figure 10.28. The reassembled datagram.

[image: Image]

The header of the first fragment is still being used as an ipasfrag structure. It is restored to a valid IP datagram header by the code shown in Figure 10.29.

Figure 10.29. ip_reass function: datagram reassembly.

	

--- ip_input.c
441 /*
442 * Create header for new ip packet by
443 * modifying header of first packet;
444 * dequeue and discard fragment reassembly header.
445 * Make header visible.
446 */
447 ip = fp->ipq_next;
448 ip->ip_len = next;
449 ip->ipf_mff &= ~1;
450 ((struct ip *) ip)->ip_src = fp->ipq_src;
451 ((struct ip *) ip)->ip_dst = fp->ipq_dst;
452 remque(fp);
453 (void) m_free(dtom(fp));
454 m = dtom(ip);
455 m->m_len += (ip->ip_hl << 2);
456 m->m_data -= (ip->ip_hl << 2);
457 /* some debugging cruft by sklower, below, will go away soon */
458 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
459 int plen = 0;
460 for (t = m; m; m = m->m_next)
461 plen += m->m_len;
462 t->m_pkthdr.len = plen;
463 }
464 return ((struct ip *) ip);
--- ip_input.c

Reconstruct datagram header

441-456

ip_reass points ip to the first fragment in the list and changes the ipasfrag structure back to an ip structure by restoring the length of the datagram to ip_len, the source address to ip_src, the destination address to ip_dst; and by clearing the low-order bit in ipf_mff. (Recall from Figure 10.14 that ipf_mff in the ipasfrag structure overlays ipf_tos in the ip structure.)

ip_reass removes the entire packet from the reassembly list with remque, discards the ipq structure that was the head of the list, and adjusts m_len and m_data in the first mbuf to include the previously hidden IP header and options from the first fragment.

Compute packet length

457-464

The code here is always executed, since the first mbuf for the datagram is always a packet header. The for loop computes the number of data bytes in the mbuf chain and saves the value in m_pkthdr.len.

The purpose of the copied bit in the option type field should be clear now. Since the only options retained at the destination are those that appear in the first fragment, only options that control processing of the packet as it travels toward its destination are copied. Options that collect information while in transit are not copied, since the information collected is discarded at the destination when the packet is reassembled.

10.7. ip_slowtimo Function

As shown in Section 7.4, each protocol in Net/3 may specify a function to be called every 500 ms. For IP, that function is ip_slowtimo, shown in Figure 10.30, which times out the fragments on the reassembly list.

Figure 10.30. ip_slowtimo function.

	

-- ip_input.c
515 void
516 ip_slowtimo(void)
517 {
518 struct ipq *fp;
519 int s = splnet();

520 fp = ipq.next;
521 if (fp == 0) {
522 splx(s);
523 return;
524 }
525 while (fp != &ipq) {
526 --fp->ipq_ttl;
527 fp = fp->next;
528 if (fp->prev->ipq_ttl == 0) {
529 ipstat.ips_fragtimeout++;
530 ip_freef(fp->prev);
531 }
532 }
533 splx(s);
534 }
-- ip_input.c

515-534

ip_slowtimo traverses the list of partial datagrams and decrements the reassembly TTL field. ip_freef is called if the field drops to 0 to discard the fragments associated with the datagram. ip_slowtimo runs at splnet to prevent the lists from being modified by incoming packets.

ip_freef is shown in Figure 10.31.

Figure 10.31. ip_freef function.

	

--- ip_input.c
474 void
475 ip_freef(fp)
476 struct ipq *fp;
477 {
478 struct ipasfrag *q, *p;

479 for (q = fp->ipq_next; q != (struct ipasfrag *) fp; q = p) {
480 p = q->ipf_next;
481 ip_deq(q);
482 m_freem(dtom(q));
483 }
484 remque(fp);
485 (void) m_free(dtom(fp));
486 }
--- ip_input.c

470-486

ip_freef removes and releases every fragment on the list pointed to by fp and then releases the list itself.

ip_drain Function

In Figure 7.14 we showed that IP defines ip_drain as the function to be called when the kernel needs additional memory. This usually occurs during mbuf allocation, which we described with Figure 2.13. ip_drain is shown in Figure 10.32.

Figure 10.32. ip_drain function.

	

-- ip_input.c
538 void
539 ip_drain()
540 {

541 while (ipq.next != &ipq) {
542 ipstat.ips_fragdropped++;
543 ip_freef(ipq.next);
544 }
545 }
-- ip_input.c

538-545

The simplest way for IP to release memory is to discard all the IP fragments on the reassembly list. For IP fragments that belong to a TCP segment, TCP eventually retransmits the data. IP fragments that belong to a UDP datagram are lost and UDP-based protocols must handle this at the application layer.

10.8. Summary

In this chapter we showed how ip_output splits an outgoing datagram into fragments if it is too large to be transmitted on the selected network. Since fragments may themselves be fragmented as they travel toward their final destination and may take multiple paths, only the destination host can reassemble the original datagram.

ip_reass accepts incoming fragments and attempts to reassemble datagrams. If it is successful, the datagram is passed back to ipintr and then to the appropriate transport protocol. Every IP implementation must reassemble datagrams of up to 576 bytes. The only limit for Net/3 is the number of mbufs that are available. ip_slowtimo discards incomplete datagrams when all their fragments haven’t been received within a reasonable amount of time.

Exercises

10.1 Modify ip_slowtimo to send an ICMP time exceeded message when it discards an incomplete datagram (Figure 11.1).

10.2 The recorded route in a fragmented datagram may be different in each fragment. When a datagram is reassembled at the destination host, which return route is available to the transport protocols?

10.3 Draw a picture showing the mbufs involved in the ipq structure and its associated fragment list for the fragment with an ID of 7 in Figure 10.17.

10.4 [Auerbach 1994] suggests that after fragmenting a datagram, the last fragment should be sent first. If the receiving system gets that last fragment first, it can use the offset to allocate an appropriately sized reassembly buffer for the datagram. Modify ip_output to send the last fragment first.

[Auerbach 1994] notes that some commercial TCP/IP implementations have been known to crash if they receive the last fragment first.

10.5 Use the statistics in Figure 8.5 to answer the following questions. What is the average number of fragments per reassembled datagram? What is the average number of fragments created when an outgoing datagram is fragmented?

10.6 What happens to a packet when the reserved bit in ip_off is set?

Chapter 11. ICMP: Internet Control Message Protocol

11.1. Introduction

ICMP communicates error and administrative messages between IP systems and is an integral and required part of any IP implementation. The specification for ICMP appears in RFC 792 [Postel 1981b]. RFC 950 [Mogul and Postel 1985] and RFC 1256 [Deering 1991a] define additional ICMP message types. RFC 1122 [Braden 1989a] also provides important details on ICMP.

ICMP has its own transport protocol number (1) allowing ICMP messages to be carried within an IP datagram. Application programs can send and receive ICMP messages directly through the raw IP interface discussed in Chapter 32.

We can divide the ICMP messages into two classes: errors and queries. Query messages are defined in pairs: a request and its reply. ICMP error messages always include the IP header (and options) along with at least the first 8 bytes of the data from the initial fragment of the IP datagram that caused the error. The standard assumes that the 8 bytes includes any demultiplexing information from the transport protocol header of the original packet, which allows a transport protocol to deliver an ICMP error to the correct process.

TCP and UDP port numbers appear within the first 8 bytes of their respective headers.

Figure 11.1 shows all the currently defined ICMP messages. The messages above the double line are ICMP requests and replies; those below the double line are ICMP errors.

Figure 11.1. ICMP message types and codes.

[image: Image]

Figures 11.1 and 11.2 contain a lot of information:

Figure 11.2. ICMP message types and codes.

[image: Image]

[image: Image] The PRC_ column shows the mapping between the ICMP messages and the protocol-independent error codes processed by Net/3 (Section 11.6). This column is blank for requests and replies, since no error is generated in that case. If this column is blank for an ICMP error, the code is not recognized by Net/3 and the error message is silently discarded.

[image: Image] Figure 11.3 shows where we discuss each of the functions listed in Figure 11.2.

Figure 11.3. Functions called during ICMP input processing.

[image: Image]

[image: Image] The icmp_input column shows the function called by icmp_input for each ICMP message.

[image: Image] The UDP column shows the functions that process ICMP messages for UDP sockets.

[image: Image] The TCP column shows the functions that process ICMP messages for TCP sockets. Note that ICMP source quench errors are handled by tcp_quench, not tcp_notify.

[image: Image] If the errno column is blank, the kernel does not report the ICMP message to the process.

[image: Image] The last line in the tables shows that unrecognized ICMP messages are delivered to the raw IP protocol where they may be received by processes that have arranged to receive ICMP messages.

In Net/3, ICMP is implemented as a transport-layer protocol above IP and does not generate errors or requests; it formats and sends these messages on behalf of the other protocols. ICMP passes incoming errors and replies to the appropriate transport protocol or to processes that are waiting for ICMP messages. On the other hand, ICMP responds to most incoming ICMP requests with an appropriate ICMP reply. Figure 11.4 summarizes this information.

Figure 11.4. ICMP message processing.

[image: Image]

11.2. Code Introduction

The two files listed in Figure 11.5 contain the ICMP data structures, statistics, and processing code described in this chapter.

Figure 11.5. Files discussed in this chapter.

[image: Image]

Global Variables

The global variables shown in Figure 11.6 are introduced in this chapter.

Figure 11.6. Global variables introduced in this chapter.

[image: Image]

Statistics

Statistics are collected by the members of the icmpstat structure shown in Figure 11.7.

Figure 11.7. Statistics collected in this chapter.

[image: Image]

We’ll see where these counters are incremented as we proceed through the code.

Figure 11.8 shows some sample output of these statistics, from the netstat -s command.

Figure 11.8. Sample ICMP statistics.

[image: Image]

SNMP Variables

Figure 11.9 shows the relationship between the variables in the SNMP ICMP group and the statistics collected by Net/3.

Figure 11.9. Simple SNMP variables in ICMP group.

[image: Image]

icmpInMsgs is the sum of the counts in the icps_inhist array and icmpInErrors, and icmpOutMsgs is the sum of the counts in the icps_outhist array and icmpOutErrors.

11.3. icmp Structure

Net/3 accesses an ICMP message through the icmp structure shown in Figure 11.10.

Figure 11.10. icmp structure.

[image: Image]

[image: Image]

42-45

icmp_type identifies the particular message, and icmp_code further specifies the message (the first column of Figure 11.1). icmp_cksum is computed with the same algorithm as the IP header checksum and protects the entire ICMP message (not just the header as with IP).

46-79

The unions icmp_hun (header union) and icmp_dun (data union) access the various ICMP messages according to icmp_type and icmp_code. Every ICMP message uses icmp_hun; only some utilize icmp_dun. Unused fields must be set to 0.

80-86

As we have seen with other nested structures (e.g., mbuf, le_softc, and ether_arp) the #define macros simplify access to structure members.

Figure 11.11 shows the overall structure of an ICMP message and reiterates that an ICMP message is encapsulated within an IP datagram. We show the specific structure of each message when we encounter it in the code.

Figure 11.11. An ICMP message (icmp_omitted).

[image: Image]

11.4. ICMP protosw Structure

The protosw structure in inetsw[4] (Figure 7.13) describes ICMP and supports both kernel and process access to the protocol. We show this structure in Figure 11.12. Within the kernel, incoming ICMP messages are processed by icmp_input. Outgoing ICMP messages generated by processes are handled by rip_output. The three functions beginning with rip_ are described in Chapter 32.

Figure 11.12. ICMP inetsw entry.

[image: Image]

11.5. Input Processing: icmp_input Function

Recall that ipintr demultiplexes datagrams based on the transport protocol number, ip_p, in the IP header. For ICMP messages, ip_p is 1, and through ip_protox, it selects inetsw[4].

Figure 11.13. An ip_p value of 1 selects inetsw[4].

[image: Image]

The IP layer calls icmp_input indirectly through the pr_input function of inetsw[4] when an ICMP message arrives (Figure 8.15).

We’ll see in icmp_input that each ICMP message may be processed up to three times: by icmp_input, by the transport protocol associated with the IP packet within an ICMP error message, and by a process that registers interest in receiving ICMP messages. Figure 11.14 shows the overall organization of ICMP input processing.

Figure 11.14. ICMP input processing.

[image: Image]

We discuss icmp_input in five sections: (1) verification of the received message, (2) ICMP error messages, (3) ICMP requests messages, (4) ICMP redirect messages, (5) ICMP reply messages. Figure 11.15 shows the first portion of the icmp_input function.

Figure 11.15. icmp_input function.

[image: Image]

[image: Image]

Static structures

131-134

These four structures are statically allocated to avoid the delays of dynamic allocation every time icmp_input is called and to minimize the size of the stack since icmp_input is called at interrupt time when the stack size is limited. icmp_input uses these structures as temporary variables.

The naming of icmpsrc is misleading since icmp_input uses it as a temporary sockaddr_in variable and it never contains a source address. In the Net/2 version of icmp_input, the source address of the message was copied to icmpsrc at the end of the function before the message was delivered to the raw IP mechanism by the raw_input function. Net/3 calls rip_input, which expects only a pointer to the packet, instead of raw_input. Despite this change, icmpsrc retains its name from Net/2.

Validate message

135-139

icmp_input expects a pointer to the datagram containing the received ICMP message (m) and the length of the datagram’s IP header in bytes (hlen). Figure 11.16 lists several constants and a macro that simplify the detection of invalid ICMP messages in icmp_input.

Figure 11.16. Constants and a macro referenced by ICMP to validate messages.

[image: Image]

140-160

icmp_input pulls the size of the ICMP message from ip_len and stores it in icmplen. Remember from Chapter 8 that ipintr excludes the length of the header from ip_len. If the message is too short to be a valid ICMP message, icps_tooshort is incremented and the message discarded. If the ICMP header and the IP header are not contiguous in the first mbuf, m_pullup ensures that the ICMP header and the IP header of any enclosed IP packet are in a single mbuf.

Verify checksum

161-170

icmp_input hides the IP header in the mbuf and verifies the ICMP checksum with in_cksum. If the message is damaged, icps_checksum is incremented and the message discarded.

Verify type

171-175

If the message type (icmp_type) is out of the recognized range, icmp_input jumps around the switch to raw (Section 11.9). If it is in the recognized range, icmp_input duplicates icmp_code and the switch processes the message according to icmp_type.

After the processing within the ICMP switch statement, icmp_input sends ICMP messages to rip_input where they are distributed to processes that are prepared to receive ICMP messages. The only messages that are not passed to rip_input are damaged messages (length or checksum errors) and ICMP request messages, which are handled exclusively by the kernel. In both cases, icmp_input returns immediately, skipping the code at raw.

Raw ICMP input

317-325

icmp_input passes the incoming message to rip_input, which distributes it to listening processes based on the protocol and the source and destination addresses within the message (Chapter 32).

The raw IP mechanism allows a process to send and to receive ICMP messages directly, which is desirable for several reasons:

[image: Image] New ICMP messages can be handled by a process without having to modify the kernel (e.g., router advertisement, Figure 11.28).

[image: Image] Utilities for sending ICMP requests and processing the replies can be implemented as a process instead of as a kernel module (ping and traceroute).

[image: Image] A process can augment the kernel processing of a message. This is common with the ICMP redirect messages that are passed to a routing daemon after the kernel has updated its routing tables.

11.6. Error Processing

We first consider the ICMP error messages. A host receives these messages when a datagram that it sent cannot successfully be delivered to its destination. The intended destination host or an intermediate router generates the error message and returns it to the originating system. Figure 11.17 illustrates the format of the various ICMP error messages.

Figure 11.17. ICMP error messages (icmp_omitted).

[image: Image]

The code in Figure 11.18 is from the switch shown in Figure 11.15.

Figure 11.18. icmp_input function: error messages.

[image: Image]
[image: Image]

176-216

The processing of ICMP errors is minimal since responsibility for responding to ICMP errors lies primarily with the transport protocols. icmp_input maps icmp_type and icmp_code to a set of protocol-independent error codes represented by the PRC_ constants. There is an implied ordering of the PRC_ constants that matches the ICMP code values. This explains why code is incremented by a PRC_ constant.

If the type and code are recognized, icmp_input jumps to deliver. If the type and code are not recognized, icmp_input jumps to badcode.

217-225

If the message length is incorrect for the error being reported, icps_badlen is incremented and the message discarded. Net/3 always discards invalid ICMP messages, without generating an ICMP error about the invalid message. This prevent an infinite sequence of error messages from forming between two faulty implementations.

226-231

icmp_input calls the pr_ctlinput function of the transport protocol that created the original IP datagram by demultiplexing the incoming packets to the correct transport protocol based on ip_p from the original datagram. pr_ctlinput (if it is defined for the protocol) is passed the error code (code), the destination of the original IP datagram (icmpsrc), and a pointer to the invalid datagram (icmp_ip). We discuss these errors with Figures 23.31 and 27.12.

232-234

icps_badcode is incremented and control breaks out of the switch statement.

Figure 11.19. The protocol-independent error codes.

[image: Image]

While the PRC_ constants are ostensibly protocol independent, they are primarily based on the Internet protocols. This results in some loss of specificity when a protocol outside the Internet domain maps its errors to the PRC_ constants.

11.7. Request Processing

Net/3 responds to properly formatted ICMP request messages but passes invalid ICMP request messages to rip_input. We show in Chapter 32 how ICMP request messages may be generated by an application process.

Most ICMP request messages received by Net/3 generate a reply message, except the router advertisement message. To avoid allocation of a new mbuf for the reply, icmp_input converts the mbuf containing the incoming request to the reply and returns it to the sender. We discuss each request separately.

Echo Query: ICMP_ECHO and ICMP_ECHOREPLY

For all its simplicity, an ICMP echo request and reply is arguably the single most powerful diagnostic tool available to a network administrator. Sending an ICMP echo request is called pinging a host, a reference to the ping program that most systems provide for manually sending ICMP echo requests. Chapter 7 of Volume 1 discusses ping in detail.

The program ping is named after sonar pings used to locate objects by listening for the echo generated as the ping is reflected by the other objects. Volume 1 incorrectly described the name as standing for Packet InterNet Groper.

Figure 11.20 shows the structure of an ICMP echo and reply message.

Figure 11.20. ICMP echo request and reply.

[image: Image]

icmp_code is always 0. icmp_id and icmp_seq are set by the sender of the request and returned without modification in the reply. The source system can match requests and replies with these fields. Any data that arrives in icmp_data is also reflected. Figure 11.21 shows the ICMP echo processing and also the common code in icmp_input that implements the reflection of ICMP requests.

Figure 11.21. icmp_input function: echo request and reply.

[image: Image]

235-237

icmp_input converts an echo request into an echo reply by changing icmp_type to ICMP_ECHOREPLY and jumping to reflect to send the reply.

277-282

After constructing the reply for each ICMP request, icmp_input executes the code at reflect. The correct datagram length is restored, the number of requests and the type of ICMP messages are counted in icps_reflect and icps_outhist[], and icmp_reflect (Section 11.12) sends the reply back to the requestor.

Timestamp Query: ICMP_TSTAMP and ICMP_TSTAMPREPLY

The ICMP timestamp message is illustrated in Figure 11.22.

Figure 11.22. ICMP timestamp request and reply.

[image: Image]

icmp_code is always 0. icmp_id and icmp_seq serve the same purpose as those in the ICMP echo messages. The sender of the request sets icmp_otime (the time the request originated); icmp_rtime (the time the request was received) and icmp_ttime (the time the reply was transmitted) are set by the sender of the reply. All times are in milliseconds since midnight UTC; the high-order bit is set if the time value is recorded in nonstandard units, as with the IP timestamp option.

Figure 11.23 shows the code that implements the timestamp messages.

Figure 11.23. icmp_input function: timestamp request and reply.

	

-- ip_icmp.c
238 case ICMP_TSTAMP:
239 if (icmplen < ICMP_TSLEN) {
240 icmpstat.icps_badlen++;
241 break;
242 }
243 icp->icmp_type = ICMP_TSTAMPREPLY;
244 icp->icmp_rtime = iptime();
245 icp->icmp_ttime = icp->icmp_rtime; /* bogus, do later! */
246 goto reflect;
-- ip_icmp.c

238-246

icmp_input responds to an ICMP timestamp request by changing icmp_type to ICMP_TSTAMPREPLY, recording the current time in icmp_rtime and icmp_ttime, and jumping to reflect to send the reply.

It is difficult to set icmp_rtime and icmp_ttime accurately. When the system executes this code, the message may have already waited on the IP input queue to be processed and icmp_rtime is set too late. Likewise, the datagram still requires processing and may be delayed in the transmit queue of the network interface so icmp_ttime is set too early here. To set the timestamps closer to the true receive and transmit times would require modifying the interface drivers for every network to understand ICMP messages (Exercise 11.8).

Address Mask Query: ICMP_MASKREQ and ICMP_MASKREPLY

The ICMP address mask request and reply are illustrated in Figure 11.24.

Figure 11.24. ICMP address request and reply.

[image: Image]

RFC 950 [Mogul and Postel 1985] added the address mask messages to the original ICMP specification. They enable a system to discover the subnet mask in use on a network.

RFC 1122 forbids sending mask replies unless a system has been explicitly configured as an authoritative agent for address masks. This prevents a system from sharing an incorrect address mask with every system that sends a request. Without administrative authority to respond, a system should ignore address mask requests.

If the global integer icmpmaskrepl is nonzero, Net/3 responds to address mask requests. The default value is 0 and can be changed by icmp_sysctl through the sysctl(8) program (Section 11.14).

In Net/2 systems there was no mechanism to control the reply to address mask requests. As a result, it is very important to configure Net/2 interfaces with the correct address mask; the information is shared with any system on the network that sends an address mask request.

The address mask message processing is shown in Figure 11.25.

Figure 11.25. icmp_input function: address mask request and reply.

	

-- ip_icmp.c
247 case ICMP_MASKREQ:
248 #define satosin(sa) ((struct sockaddr_in *)(sa))
249 if (icmpmaskrepl == 0)
250 break;
251 /*
252 * We are not able to respond with all ones broadcast
253 * unless we receive it over a point-to-point interface.
254 */
255 if (icmplen < ICMP_MASKLEN)
256 break;
257 switch (ip->ip_dst.s_addr) {

258 case INADDR_BROADCAST:
259 case INADDR_ANY:
260 icmpdst.sin_addr = ip->ip_src;
261 break;

262 default:
263 icmpdst.sin_addr = ip->ip_dst;
264 }
265 ia = (struct in_ifaddr *) ifaof_ifpforaddr(
266 (struct sockaddr *) &icmpdst, m->m_pkthdr.rcvif);
267 if (ia == 0)
268 break;
269 icp->icmp_type = ICMP_MASKREPLY;
270 icp->icmp_mask = ia->ia_sockmask.sin_addr.s_addr;
271 if (ip->ip_src.s_addr == 0) {
272 if (ia->ia_ifp->if_flags & IFF_BROADCAST)
273 ip->ip_src = satosin(&ia->ia_broadaddr)->sin_addr;
274 else if (ia->ia_ifp->if_flags & IFF_POINTOPOINT)
275 ip->ip_src = satosin(&ia->ia_dstaddr)->sin_addr;
276 }
-- ip_icmp.c

247-256

If the system is not configured to respond to mask requests, or if the request is too short, this code breaks out of the switch and passes the message to rip_input (Figure 11.15).

Net/3 fails to increment icps_badlen here. It does increment icps_badlen for all other ICMP length errors.

Select subnet mask

257-267

If the request was sent to 0.0.0.0 or 255.255.255.255, the source address is saved in icmpdst where it is used by ifaof_ifpforaddr to locate the in_ifaddr structure on the same network as the source address. If the source address is 0.0.0.0 or 255.255.255.255, ifaof_ifpforaddr returns a pointer to the first IP address associated with the receiving interface.

The default case (for unicast or directed broadcasts) saves the destination address for ifaof_ifpforaddr.

Convert to reply

269-270

The request is converted into a reply by changing icmp_type and by copying the selected subnet mask, ia_sockmask, into icmp_mask.

Select destination address

271-276

If the source address of the request is all 0s (“this host on this net,” which can be used only as a source address during bootstrap, RFC 1122), then the source does not know its own address and Net/3 must broadcast the reply so the source system can receive the message. In this case, the destination for the reply is ia_broadaddr or ia_dstaddr if the receiving interface is on a broadcast or point-to-point network, respectively. icmp_input puts the destination address for the reply in ip_src since the code at reflect (Figure 11.21) calls icmp_reflect, which reverses the source and destination addresses. The addresses of a unicast request remain unchanged.

Information Query: ICMP_IREQ and ICMP_IREQREPLY

The ICMP information messages are obsolete. They were intended to allow a host to discover the number of an attached IP network by broadcasting a request with 0s in the network portion of the source and destination address fields. A host responding to the request would return a message with the appropriate network numbers filled in. Some other method was required for a host to discover the host portion of the address.

RFC 1122 recommends that a host not implement the ICMP information messages because RARP (RFC 903 [Finlayson et al. 1984]), and BOOTP (RFC 951 [Croft and Gilmore 1985]) are better suited for discovering addresses. A new protocol, the Dynamic Host Configuration Protocol (DHCP), described in RFC 1541 [Droms 1993], will probably replace and augment the capabilities of BOOTP. It is currently a proposed standard.

Net/2 did respond to ICMP information request messages, but Net/3 passes them on to rip_input.

Router Discovery: icmp_routeradvert and icmp_routersolicit

RFC 1256 defines the ICMP router discovery messages. The Net/3 kernel does not process these messages directly but instead passes them, by rip_input, to a user-level daemon, which sends and responds to the messages.

Section 9.6 of Volume 1 discusses the design and operation of these messages.

11.8. Redirect Processing

Figure 11.26 shows the format of ICMP redirect messages.

Figure 11.26. ICMP redirect message.

[image: Image]

The last case to discuss in icmp_input is ICMP_REDIRECT. As discussed in Section 8.5, a redirect message arrives when a packet is sent to the wrong router. The router forwards the packet to the correct router and sends back a ICMP redirect message, which the system incorporates into its routing tables.

Figure 11.27 shows the code executed by icmp_input to process redirect messages.

Figure 11.27. icmp_input function: redirect messages.

	

-- ip_icmp.c
283 case ICMP_REDIRECT:
284 if (code > 3)
285 goto badcode;
286 if (icmplen < ICMP_ADVLENMIN || icmplen < ICMP_ADVLEN(icp) ||
287 icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) {
288 icmpstat.icps_badlen++;
289 break;
290 }
291 /*
292 * Short circuit routing redirects to force
293 * immediate change in the kernel's routing
294 * tables. The message is also handed to anyone
295 * listening on a raw socket (e.g. the routing
296 * daemon for use in updating its tables).
297 */
298 icmpgw.sin_addr = ip->ip_src;
299 icmpdst.sin_addr = icp->icmp_gwaddr;
300 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
301 rtredirect((struct sockaddr *) &icmpsrc,
302 (struct sockaddr *) &icmpdst,
303 (struct sockaddr *) 0, RTF_GATEWAY | RTF_HOST,
304 (struct sockaddr *) &icmpgw, (struct rtentry **) 0);
305 pfctlinput(PRC_REDIRECT_HOST, (struct sockaddr *) &icmpsrc);
306 break;
-- ip_icmp.c

Validate

283-290

icmp_input jumps to badcode (Figure 11.18, line 232) if the redirect message includes an unrecognized ICMP code, and drops out of the switch if the message has an invalid length or if the enclosed IP packet has an invalid header length. Figure 11.16 showed that 36 (ICMP_ADVLENMIN) is the minimum size of an ICMP error message, and ICMP_ADVLEN (icp) is the minimum size of an ICMP error message including any IP options that may be in the packet pointed to by icp.

291-300

icmp_input assigns to the static structures icmpgw, icmpdst, and icmpsrc, the source address of the redirect message (the gateway that sent the message), the recommended router for the original packet (the first-hop destination), and the final destination of the original packet.

Here, icmpsrc does not contain a source address it is a convenient location for holding the destination address instead of declaring another sockaddr structure.

Update routes

301-306

Net/3 follows RFC 1122 recommendations and treats a network redirect and a host redirect identically. The redirect information is passed to rtredirect, which updates the routing tables. The redirected destination (saved in icmpsrc) is passed to pfctlinput, which informs all the protocol domains about the redirect (Section 7.7). This gives the protocols an opportunity to invalidate any route caches to the destination.

According to RFC 1122, network redirects should be treated as host redirects since they may provide incorrect routing information when the destination network is subnetted. In fact, RFC 1009 requires routers not to send network redirects when the network is subnetted. Unfortunately, many routers violate this requirement. Net/3 never sends network redirects.

ICMP redirect messages are a fundamental part of the IP routing architecture. While classified as an error message, redirect messages appear during normal operations on any network with more than a single router. Chapter 18 covers IP routing issues in more detail.

11.9. Reply Processing

The kernel does not process any of the ICMP reply messages. ICMP requests are generated by processes, never by the kernel, so the kernel passes any replies that it receives to processes waiting for ICMP messages. In addition, the ICMP router discovery messages are passed to rip_input.

Figure 11.28. icmp_input function: reply messages.

	

-- ip_icmp.c
307 /*
308 * No kernel processing for the following;
309 * just fall through to send to raw listener.
310 */
311 case ICMP_ECHOREPLY:
312 case ICMP_ROUTERADVERT:
313 case ICMP_ROUTERSOLICIT:
314 case ICMP_TSTAMPREPLY:
315 case ICMP_IREQREPLY:
316 case ICMP_MASKREPLY:
317 default:
318 break;
319 }
320 raw:
321 rip_input(m);
322 return;
-- ip_icmp.c

307-322

No actions are required by the kernel for ICMP reply messages, so execution continues after the switch statement at raw. Note that the default case for the switch statement (unrecognized ICMP messages) also passes control to the code at raw.

11.10. Output Processing

Outgoing ICMP messages are generated in several ways. We saw in Chapter 8 that IP calls icmp_error to generate and send ICMP error messages. ICMP reply messages are sent by icmp_reflect, and it is possible for a process to generate ICMP messages through the raw ICMP protocol. Figure 11.29 shows how these functions relate to ICMP output processing.

Figure 11.29. ICMP output processing.

[image: Image]

11.11. icmp_error Function

The icmp_error function constructs an ICMP error message at the request of IP or the transport protocols and passes it to icmp_reflect, where it is returned to the source of the invalid datagram. The function is shown in three parts:

[image: Image] validate the message (Figure 11.30),

Figure 11.30. icmp_error function: validation.

	

-- ip_icmp.c
 46 void
 47 icmp_error(n, type, code, dest, destifp)
 48 struct mbuf *n;
 49 int type, code;
 50 n_long dest;
 51 struct ifnet *destifp;
 52 {
 53 struct ip *oip = mtod(n, struct ip *), *nip;
 54 unsigned oiplen = oip->ip_hl << 2;
 55 struct icmp *icp;
 56 struct mbuf *m;
 57 unsigned icmplen;

 58 if (type != ICMP_REDIRECT)
 59 icmpstat.icps_error++;
 60 /*
 61 * Don't send error if not the first fragment of message.
 62 * Don't error if the old packet protocol was ICMP
 63 * error message, only known informational types.
 64 */
 65 if (oip->ip_off & ~(IP_MF | IP_DF))
 66 goto freeit;
 67 if (oip->ip_p == IPPROTO_ICMP && type != ICMP_REDIRECT &&
 68 n->m_len >= oiplen + ICMP_MINLEN &&
 69 !ICMP_INFOTYPE(((struct icmp *) ((caddr_t) oip + oiplen))->icmp_type)) {
 70 icmpstat.icps_oldicmp++;
 71 goto freeit;
 72 }
 73 /* Don't send error in response to a multicast or broadcast packet */
 74 if (n->m_flags & (M_BCAST | M_MCAST))
 75 goto freeit;
-- ip_icmp.c

[image: Image] construct the header (Figure 11.32), and

[image: Image] include the original datagram (Figure 11.33).

46-57

The arguments are: n, a pointer to an mbuf chain containing the invalid datagram; type and code, the ICMP error type and code values; dest, the next-hop router address included in ICMP redirect messages; and destifp, a pointer to the outgoing interface for the original IP packet. mtod converts the mbuf pointer n to oip, a pointer to the ip structure in the mbuf. The length in bytes of the original IP header is kept in oiplen.

58-75

All ICMP errors except redirect messages are counted in icps_error. Net/3 does not consider redirect messages as errors and icps_error is not an SNMP variable.

icmp_error discards the invalid datagram, oip, and does not send an error message if:

[image: Image] some bits of ip_off, except those represented by IP_MF and IP_DF, are nonzero (Exercise 11.10). This indicates that oip is not the first fragment of a datagram and that ICMP must not generate error messages for trailing fragments of a datagram.

[image: Image] the invalid datagram is itself an ICMP error message. ICMP_INFOTYPE returns true if icmp_type is an ICMP request or response type and false if it is an error type. This rule avoids creating an infinite sequence of errors about errors.

Net/3 does not consider ICMP redirect messages errors, although RFC 1122 does.

[image: Image] the datagram arrived as a link-layer broadcast or multicast (indicated by the M_BCAST and M_MCAST flags).

ICMP error messages must not be sent in two other circumstances:

[image: Image] The datagram was sent to an IP broadcast or IP multicast address.

[image: Image] The datagram’s source address is not a unicast IP address (i.e., the source address is a 0 address, a loopback address, a broadcast address, a multicast address, or a class E address)

Net/3 fails to check for the first case. The second case is addressed by the icmp_reflect function (Section 11.12).

Interestingly, the Deering multicast extensions to Net/2 do discard datagrams of the first type. Since the Net/3 multicast code was derived from the Deering multicast extensions, it appears the test was removed.

These restrictions attempt to prevent a single broadcast datagram with an error from triggering ICMP error messages from every host on the network. These broadcast storms can disrupt communication on a network for an extended period of time as all the hosts attempt to send an error message simultaneously.

These rules apply to ICMP error messages but not to ICMP replies. As RFCs 1122 and 1127 discuss, responding to broadcast requests is allowed but neither recommended nor discouraged. Net/3 responds only to broadcast requests with a unicast source address, since ip_output will drop ICMP messages returned to a broadcast address (Figure 11.39).

Figure 11.31 illustrates the construction of an ICMP error message.

Figure 11.31. The construction of an ICMP error message.

[image: Image]

The code in Figure 11.32 builds the error message.

Figure 11.32. icmp_error function: message header construction.

	

-- ip_icmp.c
 76 /*
 77 * First, formulate icmp message
 78 */
 79 m = m_gethdr(M_DONTWAIT, MT_HEADER);
 80 if (m == NULL)
 81 goto freeit;
 82 icmplen = oiplen + min(8, oip->ip_len);
 83 m->m_len = icmplen + ICMP_MINLEN;
 84 MH_ALIGN(m, m->m_len);
 85 icp = mtod(m, struct icmp *);
 86 if ((u_int) type > ICMP_MAXTYPE)
 87 panic("icmp_error");
 88 icmpstat.icps_outhist[type]++;
 89 icp->icmp_type = type;
 90 if (type == ICMP_REDIRECT)
 91 icp->icmp_gwaddr.s_addr = dest;
 92 else {
 93 icp->icmp_void = 0;
 94 /*
 95 * The following assignments assume an overlay with the
 96 * zeroed icmp_void field.
 97 */
 98 if (type == ICMP_PARAMPROB) {
 99 icp->icmp_pptr = code;
100 code = 0;
101 } else if (type == ICMP_UNREACH &&
102 code == ICMP_UNREACH_NEEDFRAG && destifp) {
103 icp->icmp_nextmtu = htons(destifp->if_mtu);
104 }
105 }
106 icp->icmp_code = code;
-- ip_icmp.c

76-106

icmp_error constructs the ICMP message header in the following way:

[image: Image] m_gethdr allocates a new packet header mbuf. MH_ALIGN positions the mbuf’s data pointer so that the ICMP header, the IP header (and options) of the invalid datagram, and up to 8 bytes of the invalid datagram’s data are located at the end of the mbuf.

[image: Image] icmp_type, icmp_code, icmp_gwaddr (for redirects), icmp_pptr (for parameter problems), and icmp_nextmtu (for the fragmentation required message) are initialized. The icmp_nextmtu field implements the extension to the fragmentation required message described in RFC 1191. Section 24.2 of Volume 1 describes the path MTU discovery algorithm, which relies on this message.

Once the ICMP header has been constructed, a portion of the original datagram must be attached to the header, as shown in Figure 11.33.

Figure 11.33. icmp_error function: including the original datagram.

	

-- ip_icmp.c
107 bcopy((caddr_t) oip, (caddr_t) & icp->icmp_ip, icmplen);
108 nip = &icp->icmp_ip;
109 nip->ip_len = htons((u_short) (nip->ip_len + oiplen));

110 /*
111 * Now, copy old ip header (without options)
112 * in front of icmp message.
113 */
114 if (m->m_data - sizeof(struct ip) < m->m_pktdat)
115 panic("icmp len");
116 m->m_data -= sizeof(struct ip);
117 m->m_len += sizeof(struct ip);
118 m->m_pkthdr.len = m->m_len;
119 m->m_pkthdr.rcvif = n->m_pkthdr.rcvif;
120 nip = mtod(m, struct ip *);
121 bcopy((caddr_t) oip, (caddr_t) nip, sizeof(struct ip));
122 nip->ip_len = m->m_len;
123 nip->ip_hl = sizeof(struct ip) >> 2;
124 nip->ip_p = IPPROTO_ICMP;
125 nip->ip_tos = 0;
126 icmp_reflect(m);

127 freeit:
128 m_freem(n);
129 }
-- ip_icmp.c

107-125

The IP header, options, and data (a total of icmplen bytes) are copied from the invalid datagram into the ICMP error message. Also, the header length is added back into the invalid datagram’s ip_len.

In udp_usrreq, UDP also adds the header length back into the invalid datagram’s ip_len. The result is an ICMP message with an incorrect datagram length in the IP header of the invalid packet. The authors found that many systems based on Net/2 code have this bug. Net/1 systems do not have this problem.

Since MH_ALIGN located the ICMP message at the end of the mbuf, there should be enough room to prepend an IP header at the front. The IP header (excluding options) is copied from the invalid datagram to the front of the ICMP message.

The Net/2 release included a bug in this portion of the code: the last bcopy in the function moved oiplen bytes, which includes the options from the invalid datagram. Only the standard header without options should be copied.

The IP header is completed by restoring the correct datagram length (ip_len), header length (ip_hl), and protocol (ip_p), and clearing the TOS field (ip_tos).

RFCs 792 and 1122 recommend that the TOS field be set to 0 for ICMP messages.

126-129

The completed message is passed to icmp_reflect, where it is sent back to the source host. The invalid datagram is discarded.

11.12. icmp_reflect Function

icmp_reflect sends ICMP replies and errors back to the source of the request or back to the source of the invalid datagram. It is important to remember that icmp_reflect reverses the source and destination addresses in the datagram before sending it. The rules regarding source and destination addresses of ICMP messages are complex. Figure 11.34 summarizes the actions of several functions in this area.

Figure 11.34. ICMP discard and address summary.

[image: Image]

We describe the icmp_reflect function in three parts: source and destination address selection, option construction, and assembly and transmission. Figure 11.35 shows the first part of the function.

Figure 11.35. icmp_reflect function: address selection.

[image: Image]

Set destination address

329-345

icmp_reflect starts by making a copy of ip_dst and moving ip_src, the source of the request or error datagram, to ip_dst. icmp_error and icmp_reflect ensure that ip_src is a valid destination address for the error message. ip_output discards any packets sent to a broadcast address.

Select source address

346-371

icmp_reflect selects a source address for the message by searching in_ifaddr for the interface with a unicast or broadcast address matching the destination address of the original datagram. On a multihomed host, the matching interface may not be the interface on which the datagram was received. If there is no match, the in_ifaddr structure of the receiving interface is selected or, failing that (the interface may not be configured for IP), the first address in in_ifaddr. The function sets ip_src to the selected address and changes ip_ttl to 255 (MAXTTL) because the error is a new datagram.

RFC 1700 recommends that the TTL field of all IP packets be set to 64. Many systems, however, set the TTL of ICMP messages to 255 nowadays.

There is a tradeoff associated with TTL values. A small TTL prevents a packet from circulating in a routing loop but may not allow a packet to reach a site far (many hops) away. A large TTL allows packets to reach distant hosts but lets packets circulate in routing loops for a longer period of time.

RFC 1122 requires that source route options, and recommends that record route and timestamp options, from an incoming echo request or timestamp request, be attached to a reply. The source route must be reversed in the process. RFC 1122 is silent on how these options should be handled on other types of ICMP replies. Net/3 applies these rules to the address mask request, since it calls icmp_reflect (Figure 11.21) after constructing the address mask reply.

The next section of code (Figure 11.36) constructs the options for the ICMP message.

Figure 11.36. icmp_reflect function: option construction.

[image: Image]

Get reversed source route

372-385

If the incoming datagram did not contain options, control passes to line 430 (Figure 11.37). The error messages that icmp_error sends to icmp_reflect never have IP options, and so the following code applies only to ICMP requests that are converted to replies and passed directly to icmp_reflect.

Figure 11.37. icmp_reflect function: final assembly.

	

-- ip_icmp.c
417 /*
418 * Now strip out original options by copying rest of first
419 * mbuf's data back, and adjust the IP length.
420 */
421 ip->ip_len -= optlen;
422 ip->ip_hl = sizeof(struct ip) >> 2;
423 m->m_len -= optlen;
424 if (m->m_flags & M_PKTHDR)
425 m->m_pkthdr.len -= optlen;
426 optlen += sizeof(struct ip);
427 bcopy((caddr_t) ip + optlen, (caddr_t) (ip + 1),
428 (unsigned) (m->m_len - sizeof(struct ip)));
429 }
430 m->m_flags &= ~(M_BCAST | M_MCAST);
431 icmp_send(m, opts);
432 done:
433 if (opts)
434 (void) m_free(opts);
435 }
-- ip_icmp.c

cp points to the start of the options for the reply. ip_srcroute reverses and returns any source route option saved when ipintr processed the datagram. If ip_srcroute returns 0, the request did not contain a source route option so icmp_reflect allocates and initializes an mbuf to serve as an empty ipoption structure.

Add record route and timestamp options

386-416

If opts points to an mbuf, the for loop searches the options from the original IP header and appends the record route and timestamp options to the source route returned by ip_srcroute.

The options in the original header must be removed before the ICMP message can be sent. This is done by the code shown in Figure 11.37.

Remove original options

417-429

icmp_reflect removes the options from the original request by moving the ICMP message up to the end of the IP header. This is shown in Figure 11.38. The new options, which are in the mbuf pointed to by opts, are reinserted by ip_output.

Figure 11.38. icmp_reflect: removal of options.

[image: Image]

Send message and cleanup

430-435

The broadcast and multicast flags are explicitly cleared before passing the message and options to icmp_send, after which the mbuf containing the options is released.

11.13. icmp_send Function

icmp_send (Figure 11.39) processes all outgoing ICMP messages and computes the ICMP checksum before passing them to the IP layer.

Figure 11.39. icmp_send function.

	

-- ip_icmp.c
440 void
441 icmp_send(m, opts)
442 struct mbuf *m;
443 struct mbuf *opts;
444 {
445 struct ip *ip = mtod(m, struct ip *);
446 int hlen;
447 struct icmp *icp;

448 hlen = ip->ip_hl << 2;
449 m->m_data += hlen;
450 m->m_len -= hlen;
451 icp = mtod(m, struct icmp *);
452 icp->icmp_cksum = 0;
453 icp->icmp_cksum = in_cksum(m, ip->ip_len - hlen);
454 m->m_data -= hlen;
455 m->m_len += hlen;
456 (void) ip_output(m, opts, NULL, 0, NULL);
457 }
-- ip_icmp.c

440-457

As it does when checking the ICMP checksum in icmp_input, Net/3 adjusts the mbuf data pointer and length to hide the IP header and lets in_cksum look only at the ICMP message. The computed checksum is placed in the header at icmp_cksum and the datagram and any options are passed to ip_output. The ICMP layer does not maintain a route cache, so icmp_send passes a null pointer to ip_output instead of a route entry as the third argument. icmp_send also does not pass any control flags to ip_output (the fourth argument). In particular, IP_ALLOWBROADCAST isn’t passed, so ip_output discards any ICMP messages with a broadcast destination address (i.e., the original datagram arrived with an invalid source address).

11.14. icmp_sysctl Function

The icmp_sysctl function for IP supports the single option listed in Figure 11.40. The system administrator can modify the option through the sysctl(8) program.

Figure 11.40. icmp_sysctl parameters.

[image: Image]

Figure 11.41 shows the icmp_sysctl function.

Figure 11.41. icmp_sysctl function.

	

-- ip_icmp.c
467 int
468 icmp_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
469 int *name;
470 u_int namelen;
471 void *oldp;
472 size_t *oldlenp;
473 void *newp;
474 size_t newlen;
475 {

476 /* All sysctl names at this level are terminal. */
477 if (namelen != 1)
478 return (ENOTDIR);

479 switch (name[0]) {
480 case ICMPCTL_MASKREPL:
481 return (sysctl_int(oldp, oldlenp, newp, newlen, &icmpmaskrepl));
482 default:
483 return (ENOPROTOOPT);
484 }
485 /* NOTREACHED */
486 }
-- ip_icmp.c

467-478

ENOTDIR is returned if the required ICMP sysctl name is missing.

479-486

There are no options below the ICMP level, so this function calls sysctl_int to modify icmpmaskrepl or returns ENOPROTOOPT if the option is not recognized.

11.15. Summary

The ICMP protocol is implemented as a transport layer above IP, but it is tightly integrated with the IP layer. We’ve seen that the kernel responds directly to ICMP request messages but passes errors and replies to the appropriate transport protocol or application program for processing. The kernel makes immediate changes to the routing tables when an ICMP redirect message arrives but also passes redirects to any waiting processes, typically a routing daemon.

In Sections 23.9 and 27.6 we’ll see how the UDP and TCP protocols respond to ICMP error messages, and in Chapter 32 we’ll see how a process can generate ICMP requests.

Exercises

11.1 What is the source address of an ICMP address mask reply message generated by a request with a destination address of 0.0.0.0?

11.2 Describe how a link-level broadcast of a packet with a forged unicast source address can interfere with the operation of another host on the network.

11.3 RFC 1122 suggests that a host should discard an ICMP redirect message if the new first-hop router is on a different subnet from the old first-hop router or if the message came from a router other than the current first-hop router for the final destination included in the message. Why should this advice be followed?

11.4 If the ICMP information request is obsolete, why does icmp_input pass it to rip_input instead of discarding it?

11.5 We pointed out that Net/3 does not convert the offset and length field of an IP packet to network byte order before including the packet in an ICMP error message. Why is this inconsequential in the case of the IP offset field?

11.6 Describe a situation in which ifaof_ifpforaddr from Figure 11.25 returns a null pointer.

11.7 What happens to data included after the timestamps in a timestamp query?

11.8 Implement the following changes to improve the ICMP timestamp code:

Add a timestamp field to the mbuf packet header. Have the device drivers record the exact time a packet is received in this field and have the ICMP timestamp code copy the value into the icmp_rtime field.

On output, have the ICMP timestamp code store the byte offset of where in the packet to store the current time in the timestamp field. Modify a device driver to insert the timestamp right before sending the packet.

11.9 Modify icmp_error to return up to 64 bytes (as does Solaris 2.x) of the original datagram in ICMP error messages.

11.10 In Figure 11.30, what happens to a packet that has the high-order bit of ip_off set?

11.11 Why is the return value from ip_output discarded in Figure 11.39?

Chapter 12. IP Multicasting

12.1. Introduction

Recall from Chapter 8 that class D IP addresses (224.0.0.0 to 239.255.255.255) do not identify individual interfaces in an internet but instead identify groups of interfaces. For this reason, class D addresses are called multicast groups. A datagram with a class D destination address is delivered to every interface in an internet that has joined the corresponding multicast group.

Experimental applications on the Internet that take advantage of multicasting include audio and video conferencing applications, resource discovery tools, and shared whiteboards.

Group membership is determined dynamically as interfaces join and leave groups based on requests from processes running on each system. Since group membership is relative to an interface, it is possible for a multihomed host have different group membership lists for each interface. We’ll refer to group membership on a particular interface as an {interface, group} pair.

Group membership on a single network is communicated between systems by the IGMP protocol (Chapter 13). Multicast routers propagate group membership information using multicast routing protocols (Chapter 14), such as DVMRP (Distance Vector Multicast Routing Protocol). A standard IP router may support multicast routing, or multicast routing may be handled by a router dedicated to that purpose.

Networks such as Ethernet, token ring, and FDDI directly support hardware multicasting. In Net/3, if an interface supports multicasting, the IFF_MULTICAST bit is on in if_flags in the interface’s ifnet structure (Figure 3.7). We’ll use Ethernet to illustrate hardware-supported IP multicasting, since Ethernet is in widespread use and Net/3 includes sample Ethernet drivers. Multicast services are trivially implemented on point-to-point networks such as SLIP and the loopback interface.

IP multicasting services may not be available on a particular interface if the local network does not support hardware-level multicast. RFC 1122 does not prevent the interface layer from providing a software-level multicast service as long as it is transparent to IP.

RFC 1112 [Deering 1989] describes the host requirements for IP multicasting. There are three levels of conformance:

	
Level 0

	
The host cannot send or receive IP multicasts.

Such a host should silently discard any packets it receives with a class D destination address.

	
Level 1

	
The host can send but cannot receive IP multicasts.

A host is not required to join an IP multicast group before sending a datagram to the group. A multicast datagram is sent in the same way as a unicast datagram except the destination address is the IP multicast group. The network drivers must recognize this and multicast the datagram on the local network.

	
Level 2

	
The host can send and receive IP multicasts.

To receive IP multicasts, the host must be able to join and leave multicast groups and must support IGMP for exchanging group membership information on at least one interface. A multihomed host may support multicasting on a subset of its interfaces.

Net/3 meets the level 2 host requirements and can additionally act as a multicast router. As with unicast IP routing, we assume that the system we are describing is a multicast router and we include the Net/3 multicast routing code in our presentation.

Well-Known IP Multicast Groups

As with UDP and TCP port numbers, the Internet Assigned Numbers Authority (IANA) maintains a list of registered IP multicast groups. The current list can be found in RFC 1700. For more information about the IANA, see RFC 1700. Figure 12.1 shows only some of the well-known groups.

Figure 12.1. Some registered IP multicast groups.

[image: Image]

The first 256 groups (224.0.0.0 to 224.0.0.255) are reserved for protocols that implement IP unicast and multicast routing mechanisms. Datagrams sent to any of these groups are not forwarded beyond the local network by multicast routers, regardless of the TTL value in the IP header.

RFC 1075 places this requirement only on the 224.0.0.0 and 224.0.0.1 groups but mrouted, the most common multicast routing implementation, restricts the remaining groups as described here. Group 224.0.0.0 (INADDR_UNSPEC_GROUP) is reserved and group 224.0.0.255 (INADDR_MAX_LOCAL_GROUP) marks the last local multicast group.

Every level-2 conforming system is required to join the 224.0.0.1 (INADDR_ALLHOSTS_GROUP) group on all multicast interfaces at system initialization time (Figure 6.17) and remain a member of the group until the system is shut down. There is no multicast group that corresponds to every interface on an internet.

Imagine if your voice-mail system had the option of sending a message to every voice mailbox in your company. Maybe you have such an option. Do you find it useful? Does it scale to larger companies? Can anyone send to the “all-mailbox” group, or is it restricted?

Unicast and multicast routers may join group 224.0.0.2 to communicate with each other. The ICMP router solicitation message and router advertisement messages may be sent to 224.0.0.2 (the all-routers group) and 224.0.0.1 (the all-hosts group), respectively, instead of to the limited broadcast address (255.255.255.255).

The 224.0.0.4 group supports communication between multicast routers that implement DVMRP. Other groups within the local multicast group range are similarly assigned for other routing protocols. Beyond the first 256 groups, the remaining groups (224.0.1.0-239.255.255.255) are assigned to various multicast application protocols or remain unassigned. Figure 12.1 lists two examples, the Network Time Protocol (224.0.1.1), and SGI-Dogfight (224.0.1.2).

Throughout this chapter, we note that multicast packets are sent and received by the transport layer on a host. While the multicasting code is not aware of the specific transport protocol that sends and receives multicast datagrams, the only Internet transport protocol that supports multicasting is UDP.

12.2. Code Introduction

The basic multicasting code discussed in this chapter is contained within the same files as the standard IP code. Figure 12.2 lists the files that we examine.

Figure 12.2. Files discussed in this chapter.

[image: Image]

Global Variables

Three new global variables are introduced in this chapter:

Figure 12.3. Global variables introduced in this chapter.

[image: Image]

Statistics

The code in this chapter updates a few of the counters maintained in the global ipstat structure.

Figure 12.4. Multicast processing statistics.

[image: Image]

Link-level multicast statistics are collected in the ifnet structure (Figure 4.5) and may include multicasting of protocols other than IP.

12.3. Ethernet Multicast Addresses

An efficient implementation of IP multicasting requires IP to take advantage of hardware-level multicasting, without which each IP datagram would have to be broadcast to the network and every host would have to examine each datagram and discard those not intended for the host. The hardware filters unwanted datagrams before they reach the IP layer.

For the hardware filter to work, the network interface must convert the IP multicast group destination to a link-layer multicast address recognized by the network hardware. On point-to-point networks, such as SLIP and the loopback interface, the mapping is implicit since there is only one possible destination. On other networks, such as Ethernet, an explicit mapping function is required. The standard mapping for Ethernet applies to any network that employs 802.3 addressing.

Figure 4.12 illustrated the difference between a Ethernet unicast and multicast address: if the low-order bit of the high-order byte of the Ethernet address is a 1, it is a multicast address; otherwise it is a unicast address. Unicast Ethernet addresses are assigned by the interface’s manufacturer, but multicast addresses are assigned dynamically by network protocols.

IP to Ethernet Multicast Address Mapping

Because Ethernet supports multiple protocols, a method to allocate the multicast addresses and prevent conflicts is needed. Ethernet addresses allocation is administered by the IEEE. A block of Ethernet multicast addresses is assigned to the IANA by the IEEE to support IP multicasting. The addresses in the block all start with 01:00:5e.

The block of Ethernet unicast addresses starting with 00:00:5e is also assigned to the IANA but remains reserved for future use.

Figure 12.5 illustrates the construction of an Ethernet multicast address from a class D IP address.

Figure 12.5. Mapping between IP and Ethernet addresses.

[image: Image]

The mapping illustrated by Figure 12.5 is a many-to-one mapping. The high-order 9 bits of the class D IP address are not used when constructing the Ethernet address. 32 IP multicast groups map to a single Ethernet multicast address (Exercise 12.3). In Section 12.14 we’ll see how this affects input processing. Figure 12.6 shows the macro that implements this mapping in Net/3.

Figure 12.6. ETHER_MAP_IP_MULTICAST macro.

	

-- if_ether.h
 61 #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \
 62 /* struct in_addr *ipaddr; */ \
 63 /* u_char enaddr[6]; */ \
 64 { \
 65 (enaddr)[0] = 0x01; \
 66 (enaddr)[1] = 0x00; \
 67 (enaddr)[2] = 0x5e; \
 68 (enaddr)[3] = ((u_char *)ipaddr)[1] & 0x7f; \
 69 (enaddr)[4] = ((u_char *)ipaddr)[2]; \
 70 (enaddr)[5] = ((u_char *)ipaddr)[3]; \
 71 }
-- if_ether.h

IP to Ethernet multicast mapping

61-71

ETHER_MAP_IP_MULTICAST implements the mapping shown in Figure 12.5. ipaddr points to the class D multicast address, and the matching Ethernet address is constructed in enaddr, an array of 6 bytes. The first 3 bytes of the Ethernet multicast address are 0x01,0x00, and 0x5e followed by a 0 bit and then the low-order 23 bits of the class D IP address.

12.4. ether_multi Structure

For each Ethernet interface, Net/3 maintains a list of Ethernet multicast address ranges to be received by the hardware. This list defines the multicast filtering to be implemented by the device. Because most Ethernet devices are limited in the number of addresses they can selectively receive, the IP layer must be prepared to discard datagrams that pass through the hardware filter. Each address range is stored in an ether_multi structure:

Figure 12.7. ether_multi structure.

	

--- if_ether.h
147 struct ether_multi {
148 u_char enm_addrlo[6]; /* low or only address of range */
149 u_char enm_addrhi[6]; /* high or only address of range */
150 struct arpcom *enm_ac; /* back pointer to arpcom */
151 u_int enm_refcount; /* no. claims to this addr/range */
152 struct ether_multi *enm_next; /* ptr to next ether_multi */
153 };
--- if_ether.h

Ethernet multicast addresses

147-153

enm_addrlo and enm_addrhi specify a range of Ethernet multicast addresses that should be received. A single Ethernet address is specified when enm_addrlo and enm_addrhi are the same. The entire list of ether_multi structures is attached to the arpcom structure of each Ethernet interface (Figure 3.26). Ethernet multicasting is independent of ARP usin g the arpcom structure is a matter of convenience, since the structure is already included in every Ethernet interface structure.

We’ll see that the start and end of the ranges are always the same since there is no way in Net/3 for a process to specify an address range.

enm_ac points back to the arpcom structure of the associated interface and enm_refcount tracks the usage of the ether_multi structure. When the reference count drops to 0, the structure is released. enm_next joins the ether_multi structures for a single interface into a linked list. Figure 12.8 shows a list of three ether_multi structures attached to le_softc[0], the ifnet structure for our sample Ethernet interface.

Figure 12.8. The LANCE interface with three ether_multi structures.

[image: Image]

In Figure 12.8 we see that:

[image: Image] The interface has joined three groups. Most likely they are: 224.0.0.1 (all-hosts), 224.0.0.2 (all-routers), and 224.0.1.2 (SGI-dogfight). Because the Ethernet to IP mapping is a one-to-many mapping, we cannot determine the exact IP multicast groups by examining the resulting Ethernet multicast addresses. The interface may have joined 225.0.0.1, 225.0.0.2, and 226.0.1.2, for example.

[image: Image] The most recently joined group appears at the front of the list.

[image: Image] The enm_ac back-pointer makes it easy to find the beginning of the list and to release an ether_multi structure, without having to implement a doubly linked list.

[image: Image] The ether_multi structures apply to Ethernet devices only. Other multicast devices may have a different multicast implementation.

The ETHER_LOOKUP_MULTI macro, shown in Figure 12.9, searches an ether_multi list for a range of addresses.

Figure 12.9. ETHER_LOOKUP_MULTI macro.

	

-- if_ether.h
166 #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm) \
167 /* u_char addrlo[6]; */ \
168 /* u_char addrhi[6]; */ \
169 /* struct arpcom *ac; */ \
170 /* struct ether_multi *enm; */ \
171 { \
172 for ((enm) = (ac)->ac_multiaddrs; \
173 (enm) != NULL && \
174 (bcmp((enm)->enm_addrlo, (addrlo), 6) != 0 || \
175 bcmp((enm)->enm_addrhi, (addrhi), 6) != 0); \
176 (enm) = (enm)->enm_next); \
177 }
-- if_ether.h

Ethernet multicast lookups

166-177

addrlo and addrhi specify the search range and ac points to the arpcom structure containing the list to search. The for loop performs a linear search, stopping at the end of the list or when enm_addrlo and enm_addrhi both match the supplied addrlo and addrhi addresses. When the loop terminates, enm is null or points to a matching ether_multi structure.

12.5. Ethernet Multicast Reception

After this section, this chapter discusses only IP multicasting, but it is possible in Net/3 to configure the system to receive any Ethernet multicast packet. Although not useful with the IP protocols, other protocol families within the kernel might be prepared to receive these multicasts. Explicit multicast configuration is done by issuing the ioctl commands shown in Figure 12.10.

Figure 12.10. Multicast ioctl commands.

[image: Image]

These two commands are passed by ifioctl (Figure 12.11) directly to the device driver for the interface specified in the ifreq structure (Figure 6.12).

Figure 12.11. ifioctl function: multicast commands.

	

-- if.c
440 case SIOCADDMULTI:
441 case SIOCDELMULTI:
442 if (error = suser(p->p_ucred, &p->p_acflag))
443 return (error);
444 if (ifp->if_ioctl == NULL)
445 return (EOPNOTSUPP);
446 return ((*ifp->if_ioctl) (ifp, cmd, data));
-- if.c

440-446

If the process does not have superuser privileges, or if the interface does not have an if_ioctl function, ifioctl returns an error; otherwise the request is passed directly to the device driver.

12.6. in_multi Structure

The Ethernet multicast data structures described in Section 12.4 are not specific to IP; they must support multicast activity by any of the protocol families supported by the kernel. At the network level, IP maintains a list of IP multicast groups associated with each interface.

As a matter of implementation convenience, the IP multicast list is attached to the in_ifaddr structure associated with the interface. Recall from Section 6.5 that this structure contains the unicast address for the interface. There is no relationship between the unicast address and the attached multicast group list other than that they both are associated with the same interface.

This is an artifact of the Net/3 implementation. It is possible for an implementation to support IP multicast groups on an interface that does not accept IP unicast packets.

Each IP multicast {interface, group} pair is described by an in_multi structure shown in Figure 12.12.

Figure 12.12. in_multi structure.

	

-- in_var.h
111 struct in_multi {
112 struct in_addr inm_addr; /* IP multicast address */
113 struct ifnet *inm_ifp; /* back pointer to ifnet */
114 struct in_ifaddr *inm_ia; /* back pointer to in_ifaddr */
115 u_int inm_refcount; /* no. membership claims by sockets */
116 u_int inm_timer; /* IGMP membership report timer */
117 struct in_multi *inm_next; /* ptr to next multicast address */
118 };
-- in_var.h

IP multicast addresses

111-118

inm_addr is a class D multicast address (e.g., 224.0.0.1, the all-hosts group). inm_ifp points back to the ifnet structure of the associated interface and inm_ia points back to the interface’s in_ifaddr structure.

An in_multi structure exists only if at least one process on the system has notified the kernel that it wants to receive multicast datagrams for a particular {interface, group} pair. Since multiple processes may elect to receive datagrams sent to a particular pair, inm_refcount keeps track of the number of references to the pair. When no more processes are interested in the pair, inm_refcount drops to 0 and the structure is released. This action may cause an associated ether_multi structure to be released if its reference count also drops to 0.

inm_timer is part of the IGMP protocol implementation described in Chapter 13. Finally, inm_next points to the next in_multi structure in the list.

Figure 12.13 illustrates the relationship between an interface, its IP unicast address, and its IP multicast group list using the le_softc[0] sample interface.

Figure 12.13. An IP multicast group list for the le interface.

[image: Image]

We’ve omitted the corresponding ether_multi structures for clarity (but see Figure 12.34). If the system had two Ethernet cards, the second card would be managed through le_softc[1] and would have its own multicast group list attached to its arpcom structure. The macro IN_LOOKUP_MULTI (Figure 12.14) searches the IP multicast list for a particular multicast group.

Figure 12.14. IN_LOOKUP_MULTI macro.

	

-- in_var.h
131 #define IN_LOOKUP_MULTI(addr, ifp, inm) \
132 /* struct in_addr addr; */ \
133 /* struct ifnet *ifp; */ \
134 /* struct in_multi *inm; */ \
135 { \
136 struct in_ifaddr *ia; \
137 \
138 IFP_TO_IA((ifp), ia); \
139 if (ia == NULL) \
140 (inm) = NULL; \
141 else \
142 for ((inm) = ia->ia_multiaddrs; \
143 (inm) != NULL && (inm)->inm_addr.s_addr != (addr).s_addr; \
144 (inm) = inm->inm_next) \
145 continue; \
146 }
-- in_var.h

IP multicast lookups

131-146

IN_LOOKUP_MULTI looks for the multicast group addr in the multicast group list associated with interface ifp. IFP_TO_IA searches the Internet address list, in_ifaddr, for the in_ifaddr structure associated with the interface identified by ifp. If IFP_TO_IA finds an interface, the for loop searches its IP multicast list. After the loop, inm is null or points to the matching in_multi structure.

12.7. ip_moptions Structure

The ip_moptions structure contains the multicast options through which the transport layer controls multicast output processing. For example, the UDP call to ip_output is:

error = ip_output(m, inp->inp_options, &inp->inp_route,
 inp->inp_socket->so_options & (SO_DONTROUTE|SO_BROADCAST),
 inp->inp_moptions);

In Chapter 22 we’ll see that inp points to an Internet protocol control block (PCB) and that UDP associates a PCB with each socket created by a process. Within the PCB, inp_moptions is a pointer to an ip_moptions structure. From this we see that a different ip_moptions structure may be passed to ip_output for each outgoing datagram. Figure 12.15 shows the definition of the ip_moptions structure.

Figure 12.15. ip_moptions structure.

	

-- ip_var.h
100 struct ip_moptions {
101 struct ifnet *imo_multicast_ifp; /* ifp for outgoing multicasts */
102 u_char imo_multicast_ttl; /* TTL for outgoing multicasts */
103 u_char imo_multicast_loop; /* 1 => hear sends if a member */
104 u_short imo_num_memberships; /* no. memberships this socket */
105 struct in_multi *imo_membership[IP_MAX_MEMBERSHIPS];
106 };
-- ip_var.h

Multicast options

100-106

ip_output routes outgoing multicast datagrams through the interface pointed to by imo_multicast_ifp or, if imo_multicast_ifp is null, through the default interface for the destination multicast group (Chapter 14).

imo_multicast_ttl specifies the initial IP TTL value for outgoing multicasts. The default is 1, which causes multicast datagrams to remain on the local network.

If imo_multicast_loop is 0, the multicast datagram is not looped back and delivered to the transmitting interface even if the interface is a member of the multicast group. If imo_multicast_loop is 1, the multicast datagram is looped back to the transmitting interface if the interface is a member of the multicast group.

Finally, the integer imo_num_memberships and the array imo_membership maintain the list of {interface, group} pairs associated with the structure. Changes to the list are communicated to IP, which announces membership changes on the locally attached network. Each entry in the imo_membership array is a pointer to an in_multi structure attached to the in_ifaddr structure of the appropriate interface.

12.8. Multicast Socket Options

Several IP-level socket options, shown in Figure 12.16, provide process-level access to ip_moptions structures.

Figure 12.16. Multicast socket options.

[image: Image]

In Figure 8.31 we looked at the overall structure of the ip_ctloutput function. Figure 12.17 shows the cases relevant to changing and retrieving multicast options.

Figure 12.17. ip_ctloutput function: multicast options.

[image: Image]

486-491 539-549

All the multicast options are handled through the ip_setmoptions and ip_getmoptions functions. The ip_moptions structure passed by reference to ip_getmoptions or to ip_setmoptions is the one associated with the socket on which the ioctl command was issued.

The error code returned when an option is not recognized is different for the get and set cases. ENOPROTOOPT is the more reasonable choice.

12.9. Multicast TTL Values

Multicast TTL values are difficult to understand because they have two purposes. The primary purpose of the TTL value, as with all IP packets, is to limit the lifetime of the packet within an internet and prevent it from circulating indefinitely. The second purpose is to contain packets within a region of the internet specified by administrative boundaries. This administrative region is specified in subjective terms such as “this site,” “this company,” or “this state,” and is relative to the starting point of the packet. The region associated with a multicast packet is called its scope.

The standard implementation of RFC 1112 multicasting merges the two concepts of lifetime and scope into the single TTL value in the IP header. In addition to discarding packets when the IP TTL drops to 0, multicast routers associate with each interface a TTL threshold that limits multicast transmission on that interface. A packet must have a TTL greater than or equal to the interface’s threshold value for it to be transmitted on the interface. Because of this, a multicast packet may be dropped even before its TTL value reaches 0.

Threshold values are assigned by an administrator when configuring a multicast router. These values define the scope of multicast packets. The significance of an initial TTL value for multicast datagrams is defined by the threshold policy used by the administrator and the distance between the source of the datagram and the multicast interfaces.

Figure 12.18 shows the recommended TTL values for various applications as well as recommended threshold values.

Figure 12.18. TTL values for IP multicast datagrams.

[image: Image]

The first column lists the starting value of ip_ttl in the IP header. The second column illustrates an application specific use of threshold values ([Casner 1993]). The third column lists the recommended scopes to associate with the TTL values.

For example, an interface that communicates to a network outside the local site would be configured with a multicast threshold of 32. The TTL field of any datagram that start with a TTL of 32 (or less) is less than 32 when it reaches this interface (there is at least one hop between the source and the router) and is discarded before the router forwards it to the external network even if the TTL is still greater than 0.

A multicast datagram that starts with a TTL of 128 would pass through site interfaces with a threshold of 32 (as long as it reached the interface within 128 - 32 = 96 hops) but would be discarded by intercontinental interfaces with a threshold of 128.

The MBONE

A subset of routers on the Internet supports IP multicast routing. This multicast backbone is called the MBONE, which is described in [Casner 1993]. It exists to support experimentation with IP multicasting in particular with audio and video data streams. In the MBONE, threshold values limit how far various data streams propagate. In Figure 12.18, we see that local event video packets always start with a TTL of 31. An interface with a threshold of 32 always blocks local event video. At the other end of the scale, IETF channel 1 low-rate audio is restricted only by the inherent IP TTL maximum of 255 hops. It propagates through the entire MBONE. An administrator of a multicast router within the MBONE can select a threshold value to accept or discard MBONE data streams selectively.

Expanding-Ring Search

Another use of the multicast TTL is to probe the internet for a resource by varying the initial TTL value of the probe datagram. This technique is called an expanding-ring search ([Boggs 1982]). A datagram with an initial TTL of 0 reaches only a resource on the local system associated with the outgoing interface. A TTL of 1 reaches the resource if it exists on the local subnet. A TTL of 2 reaches resources within two hops of the source. An application increases the TTL exponentially to probe a large internet quickly.

RFC 1546 [Partridge, Mendez, and Milliken 1993] describes a related service called anycasting. As proposed, anycasting relies on a distinguished set of IP addresses to represent groups of hosts much like multicasting. Unlike multicast addresses, the network is expected to propagate an anycast packet until it is received by at least one host. This simplifies the implementation of an application, which no longer needs to perform expanding-ring searches.

12.10. ip_setmoptions Function

The bulk of the ip_setmoptions function consists of a switch statement to handle each option. Figure 12.19 shows the beginning and end of ip_setmoptions. The body of the switch is discussed in the following sections.

Figure 12.19. ip_setmoptions function.

[image: Image]

650-664

The first argument, optname, indicates which multicast option is being changed. The second argument, imop, references a pointer to an ip_moptions structure. If *imop is nonnull, ip_setmoptions modifies the structure it points to. Otherwise, ip_setmoptions allocates a new ip_moptions structure and saves its address in *imop. If no memory is available, ip_setmoptions returns ENOBUFS immediately. Any subsequent errors that occur are posted in error, which is returned to the caller at the end of the function. The third argument, m, points to an mbuf that contains the data for the option to be changed (second column of Figure 12.16).

Construct the defaults

665-679

When a new ip_moptions structure is allocated, ip_setmoptions initializes the default multicast interface pointer to null, initializes the default TTL to 1 (IP_DEFAULT_MULTICAST_TTL), enables the loopback of multicast datagrams, and clears the group membership list. With these defaults, ip_output selects an outgoing interface by consulting the routing tables, multicasts are kept on the local network, and the system receives its own multicast transmissions if the outgoing interface is a member of the destination group.

Process options

680-860

The body of ip_setmoptions consists of a switch statement with a case for each option. The default case (for unknown options) sets error to EOPNOTSUPP.

Discard structure if defaults are OK

861-872

After the switch statement, ip_setmoptions examines the ip_moptions structure. If all the multicast options match their respective default values, the structure is unnecessary and is released. ip_setmoptions returns 0 or the posted error code.

Selecting an Explicit Multicast Interface: IP_MULTICAST_IF

When optname is IP_MULTICAST_IF, the mbuf passed to ip_setmoptions contains the unicast address of a multicast interface, which specifies the particular interface for multicasts sent on this socket. Figure 12.20 shows the code for this option.

Figure 12.20. ip_setmoptions function: selecting a multicast output interface.

	

-- ip_output.c
681 case IP_MULTICAST_IF:
682 /*
683 * Select the interface for outgoing multicast packets.
684 */
685 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
686 error = EINVAL;
687 break;
688 }
689 addr = *(mtod(m, struct in_addr *));
690 /*
691 * INADDR_ANY is used to remove a previous selection.
692 * When no interface is selected, a default one is
693 * chosen every time a multicast packet is sent.
694 */
695 if (addr.s_addr == INADDR_ANY) {
696 imo->imo_multicast_ifp = NULL;
697 break;
698 }
699 /*
700 * The selected interface is identified by its local
701 * IP address. Find the interface and confirm that
702 * it supports multicasting.
703 */
704 INADDR_TO_IFP(addr, ifp);
705 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
706 error = EADDRNOTAVAIL;
707 break;
708 }
709 imo->imo_multicast_ifp = ifp;
710 break;
-- ip_output.c

Validation

681-698

If no mbuf has been provided or the data within the mbuf is not the size of an in_addr structure, ip_setmoptions posts an EINVAL error; otherwise the data is copied into addr. If the interface address is INADDR_ANY, any previously selected interface is discarded. Subsequent multicasts with this ip_moptions structure are routed according to their destination group instead of through an explicitly named interface (Figure 12.40).

Select the default interface

699-710

If addr contains an address, INADDR_TO_IFP locates the matching interface. If a match can’t be found or the interface does not support multicasting, EADDRNOTAVAIL is posted. Otherwise, ifp, the matching interface, becomes the multicast interface for output requests associated with this ip_moptions structure.

Selecting an Explicit Multicast TTL: IP_MULTICAST_TTL

When optname is IP_MULTICAST_TTL, the mbuf is expected to contain a single byte specifying the IP TTL for outgoing multicasts. This TTL is inserted by ip_output into every multicast datagram sent on the associated socket. Figure 12.21 shows the code for this option.

Figure 12.21. ip_setmoptions function: selecting an explicit multicast TTL.

	

-- ip_output.c
711 case IP_MULTICAST_TTL:
712 /*
713 * Set the IP time-to-live for outgoing multicast packets.
714 */
715 if (m == NULL || m->m_len != 1) {
716 error = EINVAL;
717 break;
718 }
719 imo->imo_multicast_ttl = *(mtod(m, u_char *));
720 break;
-- ip_output.c

Validate and select the default TTL

711-720

If the mbuf contains a single byte of data, it is copied into imo_multicast_ttl. Otherwise, EINVAL is posted.

Selecting Multicast Loopbacks: IP_MULTICAST_LOOP

In general, multicast applications come in two forms:

[image: Image] An application with one sender per system and multiple remote receivers. In this configuration only one local process is sending datagrams to the group so there is no need to loopback outgoing multicasts. Examples include a multicast routing daemon and conferencing systems.

[image: Image] An application with multiple senders and receivers on a system. Datagrams must be looped back so that each process receives the transmissions of the other senders on the system.

The IP_MULTICAST_LOOP option (Figure 12.22) selects the loopback policy associated with an ip_moptions structure.

Figure 12.22. ip_setmoptions function: selecting multicast loopbacks.

	

-- ip_output.c
721 case IP_MULTICAST_LOOP:
722 /*
723 * Set the loopback flag for outgoing multicast packets.
724 * Must be zero or one.
725 */
726 if (m == NULL || m->m_len != 1 ||
727 (loop = *(mtod(m, u_char *))) > 1) {
728 error = EINVAL;
729 break;
730 }
731 imo->imo_multicast_loop = loop;
732 break;
-- ip_output.c

Validate and select the loopback policy

721-732

If m is null, does not contain 1 byte of data, or the byte is not 0 or 1, EINVAL is posted. Otherwise, the byte is copied into imo_multicast_loop. A 0 indicates that datagrams should not be looped back, and a 1 enables the loopback mechanism.

Figure 12.23 shows the relationship between, the maximum scope of a multicast datagram, imo_multicast_ttl, and imo_multicast_loop.

Figure 12.23. Loopback and TTL effects on multicast scope.

[image: Image]

Figure 12.23 shows that the set of interfaces that may receive a multicast packet depends on what the loopback policy is for the transmission and what TTL value is specified in the packet. A packet may be received on an interface if the hardware receives its own transmissions, regardless of the loopback policy. A datagram may be routed through the network and arrive on another interface attached to the system (Exercise 12.6). If the sending system is itself a multicast router, outgoing packets may be forwarded to the other interfaces, but they will only be accepted for input processing on one interface (Chapter 14).

12.11. Joining an IP Multicast Group

Other than the IP all-hosts group, which the kernel automatically joins (Figure 6.17), membership in a group is driven by explicit requests from processes on the system. The process of joining (or leaving) a multicast group is more involved than the other multicast options. The in_multi list for an interface must be modified as well as any link-layer multicast structures such as the ether_multi list we described for Ethernet.

The data passed in the mbuf when optname is IP_ADD_MEMBERSHIP is an ip_mreq structure shown in Figure 12.24.

Figure 12.24. ip_mreq structure.

	

-- in.h
148 struct ip_mreq {
149 struct in_addr imr_multiaddr; /* IP multicast address of group */
150 struct in_addr imr_interface; /* local IP address of interface */
151 };
-- in.h

148-151

imr_multiaddr specifies the multicast group and imr_interface identifies the interface by its associated unicast IP address. The ip_mreq structure specifies the {interface, group} pair for membership changes.

Figure 12.25 illustrates the functions involved with joining and leaving a multicast group associated with our example Ethernet interface.

Figure 12.25. Joining and leaving a multicast group.

[image: Image]

We start by describing the changes to the ip_moptions structure in the IP_ADD_MEMBERSHIP case in ip_setmoptions (Figure 12.26). Then we follow the request down through the IP layer, the Ethernet driver, and to the physical device in our case, the LANCE Ethernet card.

Figure 12.26. ip_setmoptions function: joining a multicast group.

[image: Image]

Validation

733-746

ip_setmoptions starts by validating the request. If no mbuf was passed, if it is not the correct size, or if the address (imr_multiaddr) within the structure is not a multicast group, then ip_setmoptions posts EINVAL. mreq points to the valid ip_mreq structure.

Locate the interface

747-774

If the unicast address of the interface (imr_interface) is INADDR_ANY, ip_setmoptions must locate the default interface for the specified group. A route structure is constructed with the group as the desired destination and passed to rtalloc, which locates a route for the group. If no route is available, the add request fails with the error EADDRNOTAVAIL. If a route is located, a pointer to the outgoing interface for the route is saved in ifp and the route entry, which is no longer needed, is released.

If imr_interface is not INADDR_ANY, an explicit interface has been requested. The macro INADDR_TO_IFP searches for the interface with the requested unicast address. If an interface isn’t found or if it does not support multicasting, the request fails with the error EADDRNOTAVAIL.

We described the route structure in Section 8.5. The function rtalloc is described in Section 19.2, and the use of the routing tables for selecting multicast interfaces is described in Chapter 14.

Already a member?

775-792

The last check performed on the request is to examine the imo_membership array to see if the selected interface is already a member of the requested group. If the for loop finds a match, or if the membership array is full, EADDRINUSE or ETOOMANYREFS is posted and processing of this option stops.

Join the group

793-803

At this point the request looks reasonable. in_addmulti arranges for IP to begin receiving multicast datagrams for the group. The pointer returned by in_addmulti points to a new or existing in_multi structure (Figure 12.12) in the interface’s multicast group list. It is saved in the membership array and the size of the array is incremented.

in_addmulti Function

in_addmulti and its companion in_delmulti (Figures 12.27 and 12.36) maintain the list of multicast groups that an interface has joined. Join requests either add a new in_multi structure to the interface list or increase the reference count of an existing structure.

Figure 12.27. in_addmulti function: first half.

	

-- in.c
469 struct in_multi *
470 in_addmulti(ap, ifp)
471 struct in_addr *ap;
472 struct ifnet *ifp;
473 {
474 struct in_multi *inm;
475 struct ifreq ifr;
476 struct in_ifaddr *ia;
477 int s = splnet();

478 /*
479 * See if address already in list.
480 */
481 IN_LOOKUP_MULTI(*ap, ifp, inm);
482 if (inm != NULL) {
483 /*
484 * Found it; just increment the reference count.
485 */
486 ++inm->inm_refcount;
487 } else {
-- in.c

Already a member

469-487

ip_setmoptions has already verified that ap points to a class D multicast address and that ifp points to a multicast-capable interface. IN_LOOKUP_MULTI (Figure 12.14) determines if the interface is already a member of the group. If it is a member, in_addmulti updates the reference count and returns.

If the interface is not yet a member of the group, the code in Figure 12.28 is executed.

Figure 12.28. in_addmulti function: second half.

[image: Image]

Update the in_multi list

487-509

If the interface isn’t a member yet, in_addmulti allocates, initializes, and inserts the new in_multi structure at the front of the ia_multiaddrs list in the interface’s in_ifaddr structure (Figure 12.13).

Update the interface and announce the change

510-530

If the interface driver has defined an if_ioctl function, in_addmulti constructs an ifreq structure (Figure 4.23) containing the group address and passes the SIOCADDMULTI request to the interface. If the interface rejects the request, the in_multi structure is unlinked from the interface and released. Finally, in_addmulti calls igmp_joingroup to propagate the membership change to other hosts and routers.

in_addmulti returns a pointer to the in_multi structure or null if an error occurred.

slioctl and loioctl Functions: SIOCADDMULTI and SIOCDELMULTI

Multicast group processing for the SLIP and loopback interfaces is trivial: there is nothing to do other than error checking. Figure 12.29 shows the SLIP processing.

Figure 12.29. slioctl function: multicast processing.

	

-- if_sl.c
673 case SIOCADDMULTI:
674 case SIOCDELMULTI:
675 ifr = (struct ifreq *) data;
676 if (ifr == 0) {
677 error = EAFNOSUPPORT; /* XXX */
678 break;
679 }
680 switch (ifr->ifr_addr.sa_family) {

681 case AF_INET:
682 break;

683 default:
684 error = EAFNOSUPPORT;
685 break;
686 }
687 break;
-- if_sl.c

673-687

EAFNOSUPPORT is returned whether the request is empty or not for the AF_INET protocol family.

Figure 12.30 shows the loopback processing.

Figure 12.30. loioctl function: multicast processing.

	

-- if_loop.c
152 case SIOCADDMULTI:
153 case SIOCDELMULTI:
154 ifr = (struct ifreq *) data;
155 if (ifr == 0) {
156 error = EAFNOSUPPORT; /* XXX */
157 break;
158 }
159 switch (ifr->ifr_addr.sa_family) {

160 case AF_INET:
161 break;

162 default:
163 error = EAFNOSUPPORT;
164 break;
165 }
166 break;
-- if_loop.c

152-166

The processing for the loopback interface is identical to the SLIP code in Figure 12.29. EAFNOSUPPORT is returned whether the request is empty or not for the AF_INET protocol family.

leioctl Function: SIOCADDMULTI and SIOCDELMULTI

Recall from Figure 4.2 that leioctl is the if_ioctl function for the LANCE Ethernet driver. Figure 12.31 shows the code for the SIOCADDMULTI and SIOCDELMULTI options.

Figure 12.31. leioctl function: multicast processing.

	

-- if_le.c
657 case SIOCADDMULTI:
658 case SIOCDELMULTI:
659 /* Update our multicast list */
660 error = (cmd == SIOCADDMULTI) ?
661 ether_addmulti((struct ifreq *) data, &le->sc_ac) :
662 ether_delmulti((struct ifreq *) data, &le->sc_ac);

663 if (error == ENETRESET) {
664 /*
665 * Multicast list has changed; set the hardware
666 * filter accordingly.
667 */
668 lereset(ifp->if_unit);
669 error = 0;
670 }
671 break;
-- if_le.c

657-671

leioctl passes add and delete requests directly to the ether_addmulti or ether_delmulti functions. Both functions return ENETRESET if the request changes the set of IP multicast addresses that must be received by the physical hardware. If this occurs, leioctl calls lereset to reinitialize the hardware with the new multicast reception list.

We don’t show lereset, as it is specific to the LANCE Ethernet hardware. For multicasting, lereset arranges for the hardware to receive frames addressed to any of the Ethernet multicast addresses contained in the ether_multi list associated with the interface. The LANCE driver uses a hashing mechanism if each entry on the multicast list is a single address. The hash code allows the hardware to receive multicast packets selectively. If the driver finds an entry that describes a range of addresses, it abandons the hash strategy and configures the hardware to receive all multicast packets. If the driver must fall back to receiving all Ethernet multicast addresses, the IFF_ALLMULTI flag is on when lereset returns.

ether_addmulti Function

Every Ethernet driver calls ether_addmulti to process the SIOCADDMULTI request. This function maps the IP class D address to the appropriate Ethernet multicast address (Figure 12.5) and updates the ether_multi list. Figure 12.32 shows the first half of the ether_addmulti function.

Figure 12.32. ether_addmulti function: first half.

	

-- if_ethersubr.c
366 int
367 ether_addmulti(ifr, ac)
368 struct ifreq *ifr;
369 struct arpcom *ac;
370 {
371 struct ether_multi *enm;
372 struct sockaddr_in *sin;
373 u_char addrlo[6];
374 u_char addrhi[6];
375 int s = splimp();

376 switch (ifr->ifr_addr.sa_family) {

377 case AF_UNSPEC:
378 bcopy(ifr->ifr_addr.sa_data, addrlo, 6);
379 bcopy(addrlo, addrhi, 6);
380 break;

381 case AF_INET:
382 sin = (struct sockaddr_in *) &(ifr->ifr_addr);
383 if (sin->sin_addr.s_addr == INADDR_ANY) {
384 /*
385 * An IP address of INADDR_ANY means listen to all
386 * of the Ethernet multicast addresses used for IP.
387 * (This is for the sake of IP multicast routers.)
388 */
389 bcopy(ether_ipmulticast_min, addrlo, 6);
390 bcopy(ether_ipmulticast_max, addrhi, 6);
391 } else {
392 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
393 bcopy(addrlo, addrhi, 6);
394 }
395 break;

396 default:
397 splx(s);
398 return (EAFNOSUPPORT);
399 }
-- if_ethersubr.c

Initialize address range

366-399

First, ether_addmulti initializes a range of multicast addresses in addrlo and addrhi (both are arrays of six unsigned characters). If the requested address is from the AF_UNSPEC family, ether_addmulti assumes the address is an explicit Ethernet multicast address and copies it into addrlo and addrhi. If the address is in the AF_INET family and is INADDR_ANY (0.0.0.0), ether_addmulti initializes addrlo to ether_ipmulticast_min and addrhi to ether_ipmulticast_max. These two constant Ethernet addresses are defined as:

u_char ether_ipmulticast_min[6] = { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
u_char ether_ipmulticast_max[6] = { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };

As with etherbroadcastaddr (Section 4.3), this is a convenient way to define a 48-bit constant.

IP multicast routers must listen for all IP multicasts. Specifying the group as INADDR_ANY is considered a request to join every IP multicast group. The Ethernet address range selected in this case spans the entire block of IP multicast addresses allocated to the IANA.

The mrouted(8) daemon issues a SIOCADDMULTI request with INADDR_ANY when it begins routing packets for a multicast interface.

ETHER_MAP_IP_MULTICAST maps any other specific IP multicast group to the appropriate Ethernet multicast address. Requests for other address families are rejected with an EAFNOSUPPORT error.

While the Ethernet multicast list supports address ranges, there is no way for a process or the kernel to request a specific range, other than to enumerate the addresses, since addrlo and addrhi are always set to the same address.

The second half of ether_addmulti, shown in Figure 12.33, verifies the address range and adds it to the list if it is new.

Figure 12.33. ether_addmulti function: second half.

[image: Image]

Already receiving

400-418

ether_addmulti checks the multicast bit (Figure 4.12) of the high and low addresses to ensure that they are indeed Ethernet multicast addresses. ETHER_LOOKUP_MULTI (Figure 12.9) determines if the hardware is already listening for the specified multicast addresses. If so, the reference count (enm_refcount) in the matching ether_multi structure is incremented and ether_addmulti returns 0.

Update ether_multi list

419-441

If this is a new address range, a new ether_multi structure is allocated, initialized, and linked to the ac_multiaddrs list in the interfaces arpcom structure (Figure 12.8). If ENETRESET is returned by ether_addmulti, the device driver that called the function knows that the multicast list has changed and the hardware reception filter must be updated.

Figure 12.34 shows the relationships between the ip_moptions, in_multi, and ether_multi structures after the LANCE Ethernet interface has joined the all-hosts group.

Figure 12.34. Overview of multicast data structures.

[image: Image]

12.12. Leaving an IP Multicast Group

In general, the steps required to leave a group are the reverse of those required to join a group. The membership list in the ip_moptions structure is updated, the in_multi list for the IP interface is updated, and the ether_multi list for the device is updated. First, we return to ip_setmoptions and the IP_DROP_MEMBERSHIP case, which we show in Figure 12.35.

Figure 12.35. ip_setmoptions function: leaving a multicast group.

[image: Image]

Validation

804-830

The mbuf must contain an ip_mreq structure, within the structure imr_multiaddr must be a multicast group, and there must be an interface associated with the unicast address imr_interface. If these conditions aren’t met, EINVAL or EADDRNOTAVAIL is posted and processing continues at the end of the switch.

Delete membership references

831-856

The for loop searches the group membership list for an in_multi structure with the requested {interface, group} pair. If a match isn’t found, EADDRNOTAVAIL is posted. Otherwise, in_delmulti updates the in_multi list and the second for loop removes the unused entry in the membership array by shifting subsequent entries to fill the gap. The size of the array is updated accordingly.

in_delmulti Function

Since many processes may be receiving multicast datagrams, calling in_delmulti (Figure 12.36) results only in leaving the specified group when there are no more references to the in_multi structure.

Figure 12.36. in_delmulti function.

	

-- in.c
534 int
535 in_delmulti(inm)
536 struct in_multi *inm;
537 {
538 struct in_multi **p;
539 struct ifreq ifr;
540 int s = splnet();

541 if (--inm->inm_refcount == 0) {
542 /*
543 * No remaining claims to this record; let IGMP know that
544 * we are leaving the multicast group.
545 */
546 igmp_leavegroup(inm);
547 /*
548 * Unlink from list.
549 */
550 for (p = &inm->inm_ia->ia_multiaddrs;
551 *p != inm;
552 p = &(*p)->inm_next)
553 continue;
554 *p = (*p)->inm_next;
555 /*
556 * Notify the network driver to update its multicast reception
557 * filter.
558 */
559 ((struct sockaddr_in *) &(ifr.ifr_addr))->sin_family = AF_INET;
560 ((struct sockaddr_in *) &(ifr.ifr_addr))->sin_addr =
561 inm->inm_addr;
562 (*inm->inm_ifp->if_ioctl) (inm->inm_ifp, SIOCDELMULTI,
563 (caddr_t) & ifr);
564 free(inm, M_IPMADDR);
565 }
566 splx(s);
567 }
-- in.c

Update in_multi structure

534-567

in_delmulti starts by decrementing the reference count of the in_multi structure and returning if the reference count is nonzero. If the reference count drops to 0, there are no longer any processes waiting for the multicast datagrams on the specified {interface, group} pair. igmp_leavegroup is called, but as we’ll see in Section 13.8, the function does nothing.

The for loop traverses the linked list of in_multi structures until it locates the matching structure.

The body of this for loop consists of the single continue statement. All the work is done by the expressions at the top of the loop. The continue is not required but stands out more clearly than a bare semicolon.

The ETHER_LOOKUP_MULTI macro in Figure 12.9 does not use the continue and the bare semicolon is almost undetectable.

After the loop, the matching in_multi structure is unlinked and in_delmulti issues the SIOCDELMULTI request to the interface so that any device-specific data structures can be updated. For Ethernet interfaces, this means the ether_multi list is updated. Finally, the in_multi structure is released.

The SIOCDELMULTI case for the LANCE driver was included in Figure 12.31 where we also discussed the SIOCADDMULTI case.

ether_delmulti Function

When IP releases an in_multi structure associated with an Ethernet device, the device may be able to release the matching ether_multi structure. We say may because IP may be unaware of other software listening for IP multicasts. When the reference count for the ether_multi structure drops to 0, it can be released. Figure 12.37 shows the ether_delmulti function.

Figure 12.37. ether_delmulti function.

[image: Image]

445-479

ether_delmulti initializes the addrlo and addrhi arrays in the same way as ether_addmulti does.

Locate ether_multi structure

480-494

ETHER_LOOKUP_MULTI locates a matching ether_multi structure. If it isn’t found, ENXIO is returned. If the matching structure is found, the reference count is decremented and if the result is nonzero, ether_delmulti returns immediately. In this case, the structure may not be released because another protocol has elected to receive the same multicast packets.

Delete ether_multi structure

495-511

The for loop searches the ether_multi list for the matching address range. The matching structure is unlinked from the list and released. Finally, the size of the list is updated and ENETRESET is returned so that the device driver can update its hardware reception filter.

12.13. ip_getmoptions Function

Fetching the current option settings is considerably easier than setting them. All the work is done by ip_getmoptions, shown in Figure 12.38.

Figure 12.38. ip_getmoptions function.

[image: Image]

Copy the option data and return

876-914

The three arguments to ip_getmoptions are: optname, the option to fetch; imo, the ip_moptions structure; and mp, which points to a pointer to an mbuf. m_get allocates an mbuf to hold the option data. For each of the three options, a pointer (addr, ttl, and loop, respectively) is initialized to the data area of the mbuf and the length of the mbuf is set to the length of the option data.

For IP_MULTICAST_IF, the unicast address found by IFP_TO_IA is returned or INADDR_ANY is returned if no explicit multicast interface has been selected.

For IP_MULTICAST_TTL, imo_multicast_ttl is returned or if an explicit multicast TTL has not been selected, 1 (IP_DEFAULT_MULTICAST_TTL) is returned.

For IP_MULTICAST_LOOP, imo_multicast_loop is returned or if an explicit multicast loopback policy has not been selected, 1 (IP_DEFAULT_MULTICAST_LOOP) is returned.

Finally, EOPNOTSUPP is returned if the option isn’t recognized.

12.14. Multicast Input Processing: ipintr Function

Now that we have described multicast addressing, group memberships, and the various data structures associated with IP and Ethernet multicasting, we can move on to multicast datagram processing.

In Figure 4.13 we saw that an incoming Ethernet multicast packet is detected by ether_input, which sets the M_MCAST flag in the mbuf header before placing an IP packet on the IP input queue (ipintrq). The ipintr function processes each packet in turn. The multicast processing code we omitted from the discussion of ipintr appears in Figure 12.39.

Figure 12.39. ipintr function: multicast input processing.

[image: Image]

The code is from the section of ipintr that determines if a packet is addressed to the local system or if it should be forwarded. At this point, the packet has been checked for errors and any options have been processed. ip points to the IP header within the packet.

Forward packets if configured as multicast router

214-245

This entire section of code is skipped if the destination address is not an IP multicast group. If the address is a multicast group and the system is configured as an IP multicast router (ip_mrouter), ip_id is converted to network byte order (the form that ip_mforward expects), and the packet is passed to ip_mforward. If ip_mforward returns a nonzero value, an error was detected or the packet arrived through a multicast tunnel. The packet is discarded and ips_cantforward incremented.

We describe multicast tunnels in Chapter 14. They transport multicast packets between multicast routers separated by standard IP routers. Packets that arrive through a tunnel must be processed by ip_mforward and not ipintr.

If ip_mforward returns 0, ip_id is converted back to host byte order and ipintr may continue processing the packet.

If ip points to an IGMP packet, it is accepted and execution continues at ours (ipintr, Figure 10.11). A multicast router must accept all IGMP packets irrespective of their individual destination groups or of the group memberships of the incoming interface. The IGMP packets contain announcements of membership changes.

246-257

The remaining code in Figure 12.39 is executed whether or not the system is configured as a multicast router. IN_LOOKUP_MULTI searches the list of multicast groups that the interface has joined. If a match is not found, the packet is discarded. This occurs when the hardware filter accepts unwanted packets or when a group associated with the interface and the destination group of the packet map to the same Ethernet multicast address.

If the packet is accepted, execution continues at the label ours in ipintr (Figure 10.11).

12.15. Multicast Output Processing: ip_output Function

When we discussed ip_output in Chapter 8, we postponed discussion of the mp argument to ip_output and the multicast processing code. In ip_output, if mp points to an ip_moptions structure, it overrides the default multicast output processing. The omitted code from ip_output appears in Figures 12.40 and 12.41. ip points to the outgoing packet, m points to the mbuf holding the packet, and ifp points to the interface selected by the routing tables for the destination group.

Figure 12.40. ip_output function: defaults and source address.

[image: Image]

Figure 12.41. ip_output function: loopback, forward, and send.

[image: Image]

Establish defaults

129-155

The code in Figure 12.40 is executed only if the packet is destined for a multicast group. If so, ip_output sets M_MCAST in the mbuf and dst is reset to the final destination as it may have been set to the next-hop router earlier in ip_output (Figure 8.24).

If an ip_moptions structure was passed, ip_ttl and ifp are changed accordingly. Otherwise, ip_ttl is set to 1 (IP_DEFAULT_MULTICAST_TTL), which prevents the multicast from escaping to a remote network. The interface selected by consulting the routing tables or the interface specified within the ip_moptions structure must support multicasting. If they do not, ip_output discards the packet and returns ENETUNREACH.

Select source address

156-167

If the source address is unspecified, the for loop finds the Internet unicast address associated with the outgoing interface and fills in ip_src in the IP header.

Unlike a unicast packet, an outgoing multicast packet may be transmitted on more than one interface if the system is configured as a multicast router. Even if the system is not a multicast router, the outgoing interface may be a member of the destination group and may need to receive the packet. Finally, we need to consider the multicast loopback policy and the loopback interface itself. Taking all this into account, there are three questions to consider:

[image: Image] Should the packet be received on the outgoing interface?

[image: Image] Should the packet be forwarded to other interfaces?

[image: Image] Should the packet be transmitted on the outgoing interface?

Figure 12.41 shows the code from ip_output that answers these questions.

Loopback or not?

168-176

If IN_LOOKUP_MULTI determines that the outgoing interface is a member of the destination group and imo_multicast_loop is nonzero, the packet is queued for input on the output interface by ip_mloopback. In this case, the original packet is not considered for forwarding, since the copy is forwarded during input processing if necessary.

Forward or not?

178-197

If the packet is not looped back, but the system is configured as a multicast router and the packet is eligible for forwarding, ip_mforward distributes copies to other multicast interfaces. If ip_mforward does not return 0, ip_output discards the packet and does not attempt to transmit it. This indicates an error with the packet.

To prevent infinite recursion between ip_mforward and ip_output, ip_mforward always turns on IP_FORWARDING before calling ip_output. A datagram originating on the system is eligible for forwarding because the transport protocols do not turn on IP_FORWARDING.

Transmit or not?

198-209

Packets with a TTL of 0 may be looped back, but they are never forwarded (ip_mforward discards them) and are never transmitted. If the TTL is 0 or if the output interface is the loopback interface, ip_output discards the packet since the TTL has expired or the packet has already been looped back by ip_mloopback.

Send packet

210-211

If the packet has made it this far, it is ready to be physically transmitted on the output interface. The code at sendit (ip_output, Figure 8.25) may fragment the datagram before passing it (or the resulting fragments) to the interface’s if_output function. We’ll see in Section 21.10 that the Ethernet output function, ether_output, calls arpresolve, which calls ETHER_MAP_IP_MULTICAST to construct an Ethernet multicast destination address based on the IP multicast destination address.

ip_mloopback Function

ip_mloopback relies on looutput (Figure 5.27) to do its job. Instead of passing a pointer to the loopback interface to looutput, ip_mloopback passes a pointer to the output multicast interface. The ip_mloopback function is shown in Figure 12.42.

Figure 12.42. ip_mloopback function.

	

-- ip_output.c
935 static void
936 ip_mloopback(ifp, m, dst)
937 struct ifnet *ifp;
938 struct mbuf *m;
939 struct sockaddr_in *dst;
940 {
941 struct ip *ip;
942 struct mbuf *copym;

943 copym = m_copy(m, 0, M_COPYALL);
944 if (copym != NULL) {
945 /*
946 * We don't bother to fragment if the IP length is greater
947 * than the interface's MTU. Can this possibly matter?
948 */
949 ip = mtod(copym, struct ip *);
950 ip->ip_len = htons((u_short) ip->ip_len);
951 ip->ip_off = htons((u_short) ip->ip_off);
952 ip->ip_sum = 0;
953 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
954 (void) looutput(ifp, copym, (struct sockaddr *) dst, NULL);
955 }
956 }
-- ip_output.c

Duplicate and queue packet

929-956

Copying the packet isn’t enough; the packet must look as though it was received on the output interface, so ip_mloopback converts ip_len and ip_off to network byte order and computes the checksum for the packet. looutput takes care of putting the packet on the IP input queue.

12.16. Performance Considerations

The multicast implementation in Net/3 has several potential performance bottlenecks. Since many Ethernet cards do not support perfect filtering of multicast addresses, the operating system must be prepared to discard multicast packets that pass through the hardware filter. In the worst case, an Ethernet card may fall back to receiving all multicast packets, most of which must be discarded by ipintr when they are found not to contain a valid IP multicast group address.

IP uses a simple linear list and linear search to filter incoming IP datagrams. If the list grows to any appreciable length, a caching mechanism such as moving the most recently received address to the front of the list would help performance.

12.17. Summary

In this chapter we described how a single host processes IP multicast datagrams. We looked at the format of an IP class D address and an Ethernet multicast address and the mapping between the two.

We discussed the in_multi and ether_multi structures, and we saw that each IP multicast interface maintains its own group membership list and that each Ethernet interface maintains a list of Ethernet multicast addresses.

During input processing, IP multicasts are accepted only if they arrive on an interface that is a member of their destination group, although they may be forwarded to other interfaces if the system is configured as a multicast router.

Systems configured as multicast routers must accept all multicast packets on every interface. This can be done quickly by issuing the SIOCADDMULTI command for the INADDR_ANY address.

The ip_moptions structure is the cornerstone of multicast output processing. It controls the selection of an output interface, the TTL field of the multicast datagram, and the loopback policy. It also holds references to the in_multi structures, which determine when an interface joins or leaves an IP multicast group.

We also discussed the two concepts implemented by the multicast TTL value: packet lifetime and packet scope.

Exercises

12.1 What is the difference between sending an IP broadcast packet to 255.255.255.255 and sending an IP multicast to the all-hosts group 224.0.0.1?

12.2 Why are interfaces identified by their IP unicast addresses in the multicasting code? What must be changed so that an interface could send and receive multicast datagrams but not have a unicast IP address?

12.3 In Section 12.3 we said that 32 IP groups are mapped to a single Ethernet address. Since 9 bits of a 32-bit address are not included in the mapping, why didn’t we say that 512 (29) IP groups mapped to a single Ethernet address?

12.4 Why do you think IP_MAX_MEMBERSHIPS is set to 20? Could it be set to a larger value? Hint: Consider the size of the ip_moptions structure (Figure 12.15).

12.5 What happens when a multicast datagram is looped back by IP and is also received by the hardware interface on which it is transmitted (i.e., a nonsimplex interface)?

12.6 Draw a picture of a network with a multihomed host so that a multicast packet sent on one interface may be received on the other interface even if the host is not acting as a multicast router.

12.7 Trace the membership add request through the SLIP and loopback interfaces instead of the Ethernet interface.

12.8 How could a process request that the kernel join more than IP_MAX_MEMBERSHIPS?

12.9 Computing the checksum on a looped back packet is superfluous. Design a method to avoid the checksum computation for loopback packets.

12.10 How many IP multicast groups could an interface join without reusing an Ethernet multicast address?

12.11 The careful reader might have noticed that in_delmulti assumes that the interface has defined an ioctl function when it issues the SIOCDELMULTI request. Why is this OK?

12.12 What happens to the mbuf allocated in ip_getmoptions if an unrecognized option is requested?

12.13 Why is the group membership mechanism separate from the binding mechanism used to receive unicast and broadcast datagrams?

Chapter 13. IGMP: Internet Group Management Protocol

13.1. Introduction

IGMP conveys group membership information between hosts and routers on a local network. Routers periodically multicast IGMP queries to the all-hosts group. Hosts respond to the queries by multicasting IGMP report messages. The IGMP specification appears in RFC 1112. Chapter 13 of Volume 1 describes the specification of IGMP and provides some examples.

From an architecture perspective, IGMP is a transport protocol above IP. It has a protocol number (2) and its messages are carried in IP datagrams (as with ICMP). IGMP usually isn’t accessed directly by a process but, as with ICMP, a process can send and receive IGMP messages through an IGMP socket. This feature enables multicast routing daemons to be implemented as user-level processes.

Figure 13.1 shows the overall organization of the IGMP protocol in Net/3.

Figure 13.1. Summary of IGMP processing.

[image: Image]

The key to IGMP processing is the collection of in_multi structures shown in the center of Figure 13.1. An incoming IGMP query causes igmp_input to initialize a countdown timer for each in_multi structure. The timers are updated by igmp_fasttimo, which calls igmp_sendreport as each timer expires.

We saw in Chapter 12 that ip_setmoptions calls igmp_joingroup when a new in_multi structure is created. igmp_joingroup calls igmp_sendreport to announce the new group and enables the group’s timer to schedule a second announcement a short time later.

igmp_sendreport takes care of formatting an IGMP message and passing it to ip_output.

On the left and right of Figure 13.1 we see that a raw socket can send and receive IGMP messages directly.

13.2. Code Introduction

The IGMP protocol is implemented in four files listed in Figure 13.2.

Figure 13.2. Files discussed in this chapter.

[image: Image]

Global Variables

Three new global variables, shown in Figure 13.3, are introduced in this chapter.

Figure 13.3. Global variables introduced in this chapter.

[image: Image]

Statistics

IGMP statistics are maintained in the igmpstat variables shown in Figure 13.4.

Figure 13.4. IGMP statistics.

[image: Image]

Figure 13.5 shows some sample output of these statistics, from the netstat -p igmp command on vangogh.cs.berkeley.edu.

Figure 13.5. Sample IGMP statistics.

[image: Image]

From Figure 13.5 we can tell that vangogh is attached to a network where IGMP is being used, but that vangogh is not joining any multicast groups, since igps_snd_reports is 0.

SNMP Variables

There is no standard SNMP MIB for IGMP, but [McCloghrie and Farinacci 1994a] describes an experimental MIB for IGMP.

13.3. igmp Structure

An IGMP message is only 8 bytes long. Figure 13.6 shows the igmp structure used by Net/3.

Figure 13.6. igmp structure.

[image: Image]

43-44

A 4-bit version code and a 4-bit type code are contained within igmp_type. Figure 13.7 shows the standard values.

Figure 13.7. IGMP message types.

[image: Image]

Only version 1 messages are used by Net/3. Multicast routers send type 1 (IGMP_HOST_MEMBERSHIP_QUERY) messages to solicit membership reports from hosts on the local network. The response to a type 1 IGMP message is a type 2 (IGMP_HOST_MEMBERSHIP_REPORT) message from the hosts reporting their multicast membership information. Type 3 messages transport multicast routing information between routers (Chapter 14). A host never processes type 3 messages. The remainder of this chapter discusses only type 1 and 2 messages.

45-46

igmp_code is unused in IGMP version 1, and igmp_cksum is the familiar IP checksum computed over all 8 bytes of the IGMP message.

47-48

igmp_group is 0 for queries. For replies, it contains the multicast group being reported.

Figure 13.8 shows the structure of an IGMP message relative to an IP datagram.

Figure 13.8. An IGMP message (igmp_omitted).

[image: Image]

13.4. IGMP protosw Structure

Figure 13.9 describes the protosw structure for IGMP.

Figure 13.9. The IGMP protosw structure.

[image: Image]

Although it is possible for a process to send raw IP packets through the IGMP protosw entry, in this chapter we are concerned only with how the kernel processes IGMP messages. Chapter 32 discusses how a process can access IGMP using a raw socket.

There are three events that trigger IGMP processing:

[image: Image] a local interface has joined a new multicast group (Section 13.5),

[image: Image] an IGMP timer has expired (Section 13.6), and

[image: Image] an IGMP query is received (Section 13.7).

There are also two events that trigger local IGMP processing but do not result in any messages being sent:

[image: Image] an IGMP report is received (Section 13.7), and

[image: Image] a local interface leaves a multicast group (Section 13.8).

These five events are discussed in the following sections.

13.5. Joining a Group: igmp_joingroup Function

We saw in Chapter 12 that igmp_joingroup is called by in_addmulti when a new in_multi structure is created. Subsequent requests to join the same group only increase the reference count in the in_multi structure; igmp_joingroup is not called. igmp_joingroup is shown in Figure 13.10

Figure 13.10. igmp_joingroup function.

	

--- igmp.c
164 void
165 igmp_joingroup(inm)
166 struct in_multi *inm;
167 {
168 int s = splnet();

169 if (inm->inm_addr.s_addr == igmp_all_hosts_group ||
170 inm->inm_ifp == &loif)
171 inm->inm_timer = 0;
172 else {
173 igmp_sendreport(inm);
174 inm->inm_timer = IGMP_RANDOM_DELAY(inm->inm_addr);
175 igmp_timers_are_running = 1;
176 }
177 splx(s);
178 }
--- igmp.c

164-178

inm points to the new in_multi structure for the group. If the new group is the all-hosts group, or the membership request is for the loopback interface, inm_timer is disabled and igmp_joingroup returns. Membership in the all-hosts group is never reported, since every multicast host is assumed to be a member of the group. Sending a membership report to the loopback interface is unnecessary, since the local host is the only system on the loopback network and it already knows its membership status.

In the remaining cases, a report is sent immediately for the new group, and the group timer is set to a random value based on the group. The global flag igmp_timers_are_running is set to indicate that at least one timer is enabled. igmp_fasttimo (Section 13.6) examines this variable to avoid unnecessary processing.

When the timer for the new group expires, a second membership report is issued. The duplicate report is harmless, but it provides insurance in case the first report is lost or damaged. The report delay is computed by IGMP_RANDOM_DELAY (Figure 13.11).

Figure 13.11. IGMP_RANDOM_DELAY function.

[image: Image]

59-73

According to RFC 1122, report timers should be set to a random time between 0 and 10 (IGMP_MAX_HOST_REPORT_DELAY) seconds. Since IGMP timers are decremented five (PR_FASTHZ) times per second, IGMP_RANDOM_DELAY must pick a random value between 1 and 50. If r is the random number computed by adding the total number of IP packets received, the host’s primary IP address, and the multicast group, then

	
0 ≤(r mod 50)≤49

and

	
1≤(r mod 50) +1 ≤50

Zero is avoided because it would disable the timer and no report would be sent.

13.6. igmp_fasttimo Function

Before looking at igmp_fasttimo, we need to describe the mechanism used to traverse the in_multi structures.

To locate each in_multi structure, Net/3 must traverse the in_multi list for each interface. During a traversal, an in_multistep structure (shown in Figure 13.12) records the position.

Figure 13.12. in_multistep function.

	

--- in_var.h
123 struct in_multistep {
124 struct in_ifaddr *i_ia;
125 struct in_multi *i_inm;
126 };
--- in_var.h

123-126

i_ia points to the next in_ifaddr interface structure and i_inm points to the next in_multi structure for the current interface.

The IN_FIRST_MULTI and IN_NEXT_MULTI macros (shown in Figure 13.13) traverse the lists.

Figure 13.13. IN_FIRST_MULTI and IN_NEXT_MULTI structures.

[image: Image]

154-169

If the in_multi list has more entries, i_inm is advanced to the next entry. When IN_NEXT_MULTI reaches the end of a multicast list, i_ia is advanced to the next interface and i_inm to the first in_multi structure associated with the interface. If the interface has no multicast structures, the while loop continues to advance through the interface list until all interfaces have been searched.

170-177

The in_multistep array is initialized to point to the first in_ifaddr structure in the in_ifaddr list and i_inm is set to null. IN_NEXT_MULTI finds the first in_multi structure.

We know from Figure 13.9 that igmp_fasttimo is the fast timeout function for IGMP and is called five times per second. igmp_fasttimo (shown in Figure 13.14) decrements multicast report timers and sends a report when the timer expires.

Figure 13.14. igmp_fasttimo function.

[image: Image]

187-198

If igmp_timers_are_running is false, igmp_fasttimo returns immediately instead of wasting time examining each timer.

199-213

igmp_fasttimo resets the running flag and then initializes step and inm with IN_FIRST_MULTI. The igmp_fasttimo function locates each in_multi structure with the while loop and the IN_NEXT_MULTI macro. For each structure:

[image: Image] If the timer is 0, there is nothing to be done.

[image: Image] If the timer is nonzero, it is decremented. If it reaches 0, an IGMP membership report is sent for the group.

[image: Image] If the timer is still nonzero, then at least one timer is still running, so igmp_timers_are_running is set to 1.

igmp_sendreport Function

The igmp_sendreport function (shown in Figure 13.15) constructs and sends an IGMP report message for a single multicast group.

Figure 13.15. igmp_sendreport function.

[image: Image]

214-232

The single argument inm points to the in_multi structure for the group being reported. igmp_sendreport allocates a new mbuf and prepares it for an IGMP message. igmp_sendreport leaves room for a link-layer header and sets the length of the mbuf and packet to the length of an IGMP message.

233-245

The IP header and IGMP message is constructed one field at a time. The source address for the datagram is set to INADDR_ANY, and the destination address is the multicast group being reported.

ip_output replaces INADDR_ANY with the unicast address of the outgoing interface. Every member of the group receives the report as does every multicast router (since multicast routers receive all IP multicasts).

246-260

Finally, igmp_sendreport constructs an ip_moptions structure to go along with the message sent to ip_output. The interface associated with the in_multi structure is selected as the outgoing interface; the TTL is set to 1 to keep the report on the local network; and, if the local system is configured as a router, multicast loopback is enabled for this request.

The process-level multicast router must hear the membership reports. In Section 12.14 we saw that IGMP datagrams are always accepted when the system is configured as a multicast router. Through the normal transport demultiplexing code, the messages are passed to igmp_input, the pr_input function for IGMP (Figure 13.9).

13.7. Input Processing: igmp_input Function

In Section 12.14 we described the multicast processing portion of ipintr. We saw that a multicast router accepts any IGMP message, but a multicast host accepts only IGMP messages that arrive on an interface that is a member of the destination multicast group (i.e., queries and membership reports for which the receiving interface is a member).

The accepted messages are passed to igmp_input by the standard protocol demultiplexing mechanism. The beginning and end of igmp_input are shown in Figure 13.16. The code for each IGMP message type is described in following sections.

Figure 13.16. igmp_input function.

[image: Image]
[image: Image]

Validate IGMP message

52-96

The function ipintr passes m, a pointer to the received packet (stored in an mbuf), and iphlen, the size of the IP header in the datagram.

The datagram must be large enough to contain an IGMP message (IGMP_MINLEN), must be contained within a standard mbuf header (m_pullup), and must have a correct IGMP checksum. If any errors are found, they are counted, the datagram is silently discarded, and igmp_input returns.

The body of igmp_input processes the validated messages based on the code in igmp_type. Remember from Figure 13.6 that igmp_type includes a version code and a type code. The switch statement is based on the combined value stored in igmp_type (Figure 13.7). Each case is described separately in the following sections.

Pass IGMP messages to raw IP

157-163

There is no default case for the switch statement. Any valid message (i.e., one that is properly formed) is passed to rip_input where it is delivered to any process listening for IGMP messages. IGMP messages with versions or types that are unrecognized by the kernel can be processed or discarded by the listening processes.

The mrouted program depends on this call to rip_input so that it receives membership queries and reports.

Membership Query: IGMP_HOST_MEMBERSHIP_QUERY

RFC 1075 recommends that multicast routers issue an IGMP membership query at least once every 120 seconds. The query is sent to group 224.0.0.1 (the all-hosts group). Figure 13.17 shows how the message is processed by a host.

Figure 13.17. Input processing of the IGMP query message.

[image: Image]

97-122

Queries that arrive on the loopback interface are silently discarded (Exercise 13.1). Queries by definition are sent to the all-hosts group. If a query arrives addressed to a different address, it is counted in igps_rcv_badqueries and discarded.

The receipt of a query message does not trigger an immediate flurry of IGMP membership reports. Instead, igmp_input resets the membership timers for each group associated with the interface on which the query was received to a random value with IGMP_RANDOM_DELAY. When the timer for a group expires, igmp_fasttimo sends a membership report. Meanwhile, the same activity is occurring on all the other hosts that received the IGMP query. As soon as the random timer for a particular group expires on one host, it is multicast to that group. This report cancels the timers on the other hosts so that only one report is multicast to the network. The routers, as well as any other members of the group, receive the report.

The one exception to this scenario is the all-hosts group. A timer is never set for this group and a report is never sent.

Membership Report: IGMP_HOST_MEMBERSHIP_REPORT

The receipt of an IGMP membership report is one of the two events we mentioned in Section 13.1 that does not result in an IGMP message. The effect of the message is local to the interface on which it was received. Figure 13.18 shows the message processing.

Figure 13.18. Input processing of the IGMP report message.

	

--- igmp.c
123 case IGMP_HOST_MEMBERSHIP_REPORT:
124 ++igmpstat.igps_rcv_reports;

125 if (ifp == &loif)
126 break;

127 if (!IN_MULTICAST(ntohl(igmp->igmp_group.s_addr)) ||
128 igmp->igmp_group.s_addr != ip->ip_dst.s_addr) {
129 ++igmpstat.igps_rcv_badreports;
130 m_freem(m);
131 return;
132 }
133 /*
134 * KLUDGE: if the IP source address of the report has an
135 * unspecified (i.e., zero) subnet number, as is allowed for
136 * a booting host, replace it with the correct subnet number
137 * so that a process-level multicast routing demon can
138 * determine which subnet it arrived from. This is necessary
139 * to compensate for the lack of any way for a process to
140 * determine the arrival interface of an incoming packet.
141 */
142 if ((ntohl(ip->ip_src.s_addr) & IN_CLASSA_NET) == 0) {
143 IFP_TO_IA(ifp, ia);
144 if (ia)
145 ip->ip_src.s_addr = htonl(ia->ia_subnet);
146 }
147 /*
148 * If we belong to the group being reported, stop
149 * our timer for that group.
150 */
151 IN_LOOKUP_MULTI(igmp->igmp_group, ifp, inm);
152 if (inm != NULL) {
153 inm->inm_timer = 0;
154 ++igmpstat.igps_rcv_ourreports;
155 }
156 break;
--- igmp.c

123-146

Reports sent to the loopback interface are discarded, as are membership reports sent to the incorrect multicast group. That is, the message must be addressed to the group identified within the message.

The source address of an incompletely initialized host might not include a network or host number (or both). igmp_report looks at the class A network portion of the address, which can only be 0 when the network and subnet portions of the address are 0. If this is the case, the source address is set to the subnet address, which includes the network ID and subnet ID, of the receiving interface. The only reason for doing this is to inform a process-level daemon of the receiving interface, which is identified by the subnet number.

If the receiving interface belongs to the group being reported, the associated report timer is reset to 0. In this way the first report sent to the group stops any other hosts from issuing a report. It is only necessary for the router to know that at least one interface on the network is a member of the group. The router does not need to maintain an explicit membership list or even a counter.

13.8. Leaving a Group: igmp_leavegroup Function

We saw in Chapter 12 that in_delmulti calls igmp_leavegroup when the last reference count in the associated in_multi structure drops to 0.

Figure 13.19. igmp_leavegroup function.

	

--- igmp.c
179 void
180 igmp_leavegroup(inm)
181 struct in_multi *inm;
182 {
183 /*
184 * No action required on leaving a group.
185 */
186 }
--- igmp.c

179-186

As we can see, IGMP takes no action when an interface leaves a group. No explicit notification is sent the next time a multicast router issues an IGMP query, the interface does not generate an IGMP report for this group. If no report is generated for a group, the multicast router assumes that all the interfaces have left the group and stops forwarding multicast packets for the group to the network.

If the interface leaves the group while a report is pending (i.e., the group’s report timer is running), the report is never sent, since the timer is discarded by in_delmulti (Figure 12.36) along with the in_multi structure for the group when icmp_leavegroup returns.

13.9. Summary

In this chapter we described IGMP, which communicates IP multicast membership information between hosts and routers on a single network. IGMP membership reports are generated when an interface joins a group, and on demand when multicast routers issue an IGMP report query message.

The design of IGMP minimizes the number of messages required to communicate membership information:

[image: Image] Hosts announce their membership when they join a group.

[image: Image] Response to membership queries are delayed for a random interval, and the first response suppresses any others.

[image: Image] Hosts are silent when they leave a group.

[image: Image] Membership queries are sent no more than once per minute.

Multicast routers share the IGMP information they collect with each other (Chapter 14) to route multicast datagrams toward remote members of the multicast destination group.

Exercises

13.1 Why isn’t it necessary to respond to an IGMP query on the loopback interface?

13.2 Verify the assumption stated on lines 226 to 229 in Figure 13.15.

13.3 Is it necessary to set random delays for membership queries that arrive on a point-to-point network interface?

Chapter 14. IP Multicast Routing

14.1. Introduction

The previous two chapters discussed multicasting on a single network. In this chapter we look at multicasting across an entire internet. We describe the operation of the mrouted program, which computes the multicast routing tables, and the kernel functions that forward multicast datagrams between networks.

Technically, multicast packets are forwarded. In this chapter we assume that every multicast packet contains an entire datagram (i.e., there are no fragments), so we use the term datagram exclusively. Net/3 forwards IP fragments as well as IP datagrams.

Figure 14.1 shows several versions of mrouted and how they correspond to the BSD releases. The mrouted releases include both the user-level daemons and the kernel-level multicast code.

Figure 14.1. mrouted and IP multicasting releases.

[image: Image]

IP multicast technology is an active area of research and development. This chapter discusses version 2.0 of the multicast software, which is included in Net/3 but is considered an obsolete implementation. Version 3.3 was released too late to be discussed fully in this text, but we will point out various 3.3 features along the way.

Because commercial multicast routers are not widely deployed, multicast networks are often constructed using multicast tunnels, which connect two multicast routers over a standard IP unicast internet. Multicast tunnels are supported by Net/3 and are constructed with the Loose Source Record Route (LSRR) option (Section 9.6). An improved tunneling technique encapsulates the IP multicast datagram within an IP unicast datagram and is supported by version 3.3 of the multicast code but is not supported by Net/3.

As in Chapter 12, we use the generic term transport protocols to refer to the protocols that send and receive multicast datagrams, but UDP is the only Internet protocol that supports multicasting.

14.2. Code Introduction

The three files listed in Figure 14.2 are discussed in this chapter.

Figure 14.2. Files discussed in this chapter.

[image: Image]

Global Variables

The global variables used by the multicast routing code are shown in Figure 14.3.

Figure 14.3. Global variables introduced in this chapter.

[image: Image]

Statistics

All the statistics collected by the multicast routing code are found in the mrtstat structure described by Figure 14.4. Figure 14.5 shows some sample output of these statistics, from the netstat -gs command.

Figure 14.4. Statistics collected in this chapter.

[image: Image]

Figure 14.5. Sample IP multicast routing statistics.

[image: Image]

These statistics are from a system with two physical interfaces and one tunnel interface. These statistics show that the multicast route is found in the cache 98% of the time. The group address cache is less effective with only a 34% hit rate. The route cache is described with Figure 14.34 and the group address cache with Figure 14.21.

SNMP Variables

There is no standard SNMP MIB for multicast routing, but [McCloghrie and Farinacci 1994a] and [McCloghrie and Farinacci 1994b] describe some experimental MIBs for multicast routers.

14.3. Multicast Output Processing Revisited

In Section 12.15 we described how an interface is selected for an outgoing multicast datagram. We saw that ip_output is passed an explicit interface in the ip_moptions structure, or ip_output looks up the destination group in the routing tables and uses the interface returned in the route entry.

If, after selecting an outgoing interface, ip_output loops back the datagram, it is queued for input processing on the interface selected for output and is considered for forwarding when it is processed by ipintr. Figure 14.6 illustrates this process.

Figure 14.6. Multicast output processing with loopback.

[image: Image]

In Figure 14.6 the dashed arrows represent the original outgoing datagram, which in this example is multicast on a local Ethernet. The copy created by ip_mloopback is represented by the thin arrows; this copy is passed to the transport protocols for input. The third copy is created when ip_mforward decides to forward the datagram through another interface on the system. The thickest arrows in Figure 14.6 represents the third copy, which in this example is sent on a multicast tunnel.

If the datagram is not looped back, ip_output passes it directly to ip_mforward, where it is duplicated and also processed as if it were received on the interface that ip_output selected. This process is shown in Figure 14.7.

Figure 14.7. Multicast output processing with no loopback.

[image: Image]

Whenever ip_mforward calls ip_output to send a multicast datagram, it sets the IP_FORWARDING flag so that ip_output does not pass the datagram back to ip_mforward, which would create an infinite loop.

ip_mloopback was described with Figure 12.42. ip_mforward is described in Section 14.8.

14.4. mrouted Daemon

Multicast routing is enabled and managed by a user-level process: the mrouted daemon, mrouted implements the router portion of the IGMP protocol and communicates with other multicast routers to implement multicast routing between networks. The routing algorithms are implemented in mrouted, but the multicast routing tables are maintained in the kernel, which forwards the datagrams.

In this text we describe only the kernel data structures and functions that support mrouted w e do not describe mrouted itself. We describe the Truncated Reverse Path Broadcast (TRPB) algorithm [Deering and Cheriton 1990], used to select routes for multicast datagrams, and the Distance Vector Multicast Routing Protocol (DVMRP), used to convey information between multicast routers, in enough detail to make sense of the kernel multicast code.

RFC 1075 [Waitzman, Partridge, and Deering 1988] describes an old version of DVMRP. mrouted implements a newer version of DVMRP, which is not yet documented in an RFC. The best documentation for the current algorithm and protocol is the source code release for mrouted. Appendix B describes where the source code can be obtained.

The mrouted daemon communicates with the kernel by setting options on an IGMP socket (Chapter 32). The options are summarized in Figure 14.8.

Figure 14.8. Multicast routing socket options.

[image: Image]

The socket options shown in Figure 14.8 are passed to rip_ctloutput (Section 32.8) by the setsockopt system call. Figure 14.9 shows the portion of rip_ctloutput that handles the DVMRP_xxx options.

Figure 14.9. rip_ctloutput function: DVMRP_xxx socket options.

	

-- raw_ip.c
173 case DVMRP_INIT:
174 case DVMRP_DONE:
175 case DVMRP_ADD_VIF:
176 case DVMRP_DEL_VIF:
177 case DVMRP_ADD_LGRP:
178 case DVMRP_DEL_LGRP:
179 case DVMRP_ADD_MRT:
180 case DVMRP_DEL_MRT:
181 if (op == PRCO_SETOPT) {
182 error = ip_mrouter_cmd(optname, so, *m);
183 if (*m)
184 (void) m_free(*m);
185 } else
186 error = EINVAL;
187 return (error);
-- raw_ip.c

173-187

When setsockopt is called, op equals PRCO_SETOPT and all the options are passed to the ip_mrouter_cmd function. For the getsockopt system call, op equals PRCO_GETOPT and EINVAL is returned for all the options.

Figure 14.10 shows the ip_mrouter_cmd function.

Figure 14.10. ip_mrouter_cmd function.

[image: Image]
[image: Image]

These “options” are more like commands, since they cause the kernel to update various data structures. We use the term command throughout the rest of this chapter to emphasize this fact.

84-92

The first command issued by mrouted must be DVMRP_INIT. Subsequent commands must come from the same socket as the DVMRP_INIT command. EACCES is returned when other commands are issued on a different socket.

94-142

Each case in the switch checks to see if the right amount of data was included with the command and then calls the matching function. If the command is not recognized, EOPNOTSUPP is returned. Any error returned from the matching function is posted in error and returned at the end of the function.

Figure 14.11 shows ip_mrouter_init, which is called when mrouted issues the DVMRP_INIT command during initialization.

Figure 14.11. ip_mrouter_init function: DVMRP_INIT command.

	

-- ip_mroute.c
146 static int
147 ip_mrouter_init(so)
148 struct socket *so;
149 {
150 if (so->so_type != SOCK_RAW ||
151 so->so_proto->pr_protocol != IPPROTO_IGMP)
152 return (EOPNOTSUPP);

153 if (ip_mrouter != NULL)
154 return (EADDRINUSE);

155 ip_mrouter = so;

156 return (0);
157 }
-- ip_mroute.c

146-157

If the command is issued on something other than a raw IGMP socket, or if DVMRP_INIT has already been set, EOPNOTSUPP or EADDRINUSE are returned respectively. A pointer to the socket on which the initialization command is issued is saved in the global ip_mrouter. Subsequent commands must be issued on this socket. This prevents the concurrent operation of more than one instance of mrouted.

The remainder of the DVMRP_xxx commands are described in the following sections.

14.5. Virtual Interfaces

When operating as a multicast router, Net/3 accepts incoming multicast datagrams, duplicates them and forwards the copies through one or more interfaces. In this way, the datagram is forwarded to other multicast routers on the internet.

An outgoing interface can be a physical interface or it can be a multicast tunnel. Each end of the multicast tunnel is associated with a physical interface on a multicast router. Multicast tunnels allow two multicast routers to exchange multicast datagrams even when they are separated by routers that cannot forward multicast datagrams. Figure 14.12 shows two multicast routers connected by a multicast tunnel.

Figure 14.12. A multicast tunnel.

[image: Image]

In Figure 14.12, the source host HS on network A is multicasting a datagram to group G. The only member of group G is on network B, which is connected to network A by a multicast tunnel. Router A receives the multicast (because multicast routers receive all multicasts), consults its multicast routing tables, and forwards the datagram through the multicast tunnel.

The tunnel starts on the physical interface on router A identified by the IP unicast address Ts. The tunnel ends on the physical interface on router B identified by the IP unicast address, Te. The tunnel itself is an arbitrarily complex collection of networks connected by IP unicast routers that implement the LSRR option. Figure 14.13 shows how an IP LSRR option implements the multicast tunnel.

Figure 14.13. LSRR multicast tunnel options.

[image: Image]

The first line of Figure 14.13 shows the datagram sent by HS as a multicast on network A. Router A receives the datagram because multicast routers receive all multicasts on their locally attached networks.

To send the datagram through the tunnel, router A inserts an LSRR option in the IP header. The second line shows the datagram as it leaves A on the tunnel. The first address in the LSRR option is the source address of the tunnel and the second address is the destination group. The destination of the datagram is Te the other end of the tunnel. The LSRR offset points to the destination group.

The tunneled datagram is forwarded through the internet until it reaches the other end of the tunnel on router B.

The third line of the figure shows the datagram after it is processed by ip_dooptions on router B. Recall from Chapter 9 that ip_dooptions processes the LSRR option before the destination address of the datagram is examined by ipintr. Since the destination address of the datagram (Te) matches one of the interfaces on router B, ip_dooptions copies the address identified by the option offset (G in this example) into the destination field of the IP header. In the option, G is replaced with the address returned by ip_rtaddr, which normally selects the outgoing interface for the datagram based on the IP destination address (G in this case). This address is irrelevant, since ip_mforward discards the entire option. Finally, ip_dooptions advances the option offset.

The fourth line in Figure 14.13 shows the datagram after ipintr calls ip_mforward, where the LSRR option is recognized and removed from the datagram header. The resulting datagram looks like the original multicast datagram and is processed by ip_mforward, which in our example forwards it onto network B as a multicast datagram where it is received by HG.

Multicast tunnels constructed with LSRR options are obsolete. Since the March 1993 release of mrouted, tunnels have been constructed by prepending another IP header to the IP multicast datagram. The protocol in the new IP header is set to 4 to indicate that the contents of the packet is another IP packet. This value is documented in RFC 1700 as the “IP in IP” protocol. LSRR tunnels are supported in newer versions of mrouted for backward compatibility.

Virtual Interface Table

For both physical interfaces and tunnel interfaces, the kernel maintains an entry in a virtual interface table, which contains information that is used only for multicasting. Each virtual interface is described by a vif structure (Figure 14.14). The global variable viftable is an array of these structures. An index to the table is stored in a vifi_t variable, which is an unsigned short integer.

Figure 14.14. vif structure.

	

-- ip_mroute.h
105 struct vif {
106 u_char v_flags; /* VIFF_ flags */
107 u_char v_threshold; /* min ttl required to forward on vif */
108 struct in_addr v_lcl_addr; /* local interface address */
109 struct in_addr v_rmt_addr; /* remote address (tunnels only) */
110 struct ifnet *v_ifp; /* pointer to interface */
111 struct in_addr *v_lcl_grps; /* list of local grps (phyints only) */
112 int v_lcl_grps_max; /* malloc'ed number of v_lcl_grps */
113 int v_lcl_grps_n; /* used number of v_lcl_grps */
114 u_long v_cached_group; /* last grp looked-up (phyints only) */
115 int v_cached_result; /* last look-up result (phyints only) */
116 };
-- ip_mroute.h

105-110

The only flag defined for v_flags is VIFF_TUNNEL. When set, the interface is a tunnel to a remote multicast router. When not set, the interface is a physical interface on the local system. v_threshold is the multicast threshold, which we described in Section 12.9. v_lcl_addr is the unicast IP address of the local interface associated with this virtual interface. v_rmt_addr is the unicast IP address of the remote end of an IP multicast tunnel. Either v_lcl_addr or v_rmt_addr is nonzero, but never both. For physical interfaces, v_ifp is nonnull and points to the ifnet structure of the local interface. For tunnels, v_ifp is null.

111-116

The list of groups with members on the attached interface is kept as an array of IP multicast group addresses pointed to by v_lcl_grps, which is always null for tunnels. The size of the array is in v_lcl_grps_max, and the number of entries that are used is in v_lcl_grps_n. The array grows as needed to accommodate the group membership list. v_cached_group and v_cached_result implement a one-entry cache, which contain the group and result of the previous lookup.

Figure 14.15 illustrates the viftable, which has 32 (MAXVIFS) entries. viftable[2] is the last entry in use, so numvifs is 3. The size of the table is fixed when the kernel is compiled. Several members of the vif structure in the first entry of the table are shown. v_ifp points to an ifnet structure, v_lcl_grps points to an array of in_addr structures. The array has 32 (v_lcl_grps_max) entries, of which only 4 (v_lcl_grps_n) are in use.

Figure 14.15. viftable array.

[image: Image]

mrouted maintains viftable through the DVMRP_ADD_VIF and DVMRP_DEL_VIF commands. Normally all multicast-capable interfaces on the local system are added to the table when mrouted begins. Multicast tunnels are added when mrouted reads its configuration file, usually /etc/mrouted.conf. Commands in this file can also delete physical interfaces from the virtual interface table or change the multicast information associated with the interfaces.

A vifctl structure (Figure 14.16) is passed by mrouted to the kernel with the DVMRP_ADD_VIF command. It instructs the kernel to add an interface to the table of virtual interfaces.

Figure 14.16. vifctl structure.

	

-- ip_mroute.h
 76 struct vifctl {
 77 vifi_t vifc_vifi; /* the index of the vif to be added */
 78 u_char vifc_flags; /* VIFF_ flags (Figure 14.14) */
 79 u_char vifc_threshold; /* min ttl required to forward on vif */
 80 struct in_addr vifc_lcl_addr; /* local interface address */
 81 struct in_addr vifc_rmt_addr; /* remote address (tunnels only) */
 82 };
-- ip_mroute.h

76-82

vifc_vifi identifies the index of the virtual interface within viftable. The remaining four members, vifc_flags, vifc_threshold, vifc_lcl_addr, and vifc_rmt_addr, are copied into the vif structure by the add_vif function.

add_vif Function

Figure 14.17 shows the add_vif function.

Figure 14.17. add_vif function: DVMRP_ADD_VIF command.

[image: Image]

Validate index

202-216

If the table index specified by mrouted in vifc_vifi is too large, or the table entry is already in use, EINVAL or EADDRINUSE is returned respectively.

Locate physical interface

217-221

ifa_ifwithaddr takes the unicast IP address in vifc_lcl_addr and returns a pointer to the associated ifnet structure. This identifies the physical interface to be used for this virtual interface. If there is no matching interface, EADDRNOTAVAIL is returned.

Configure tunnel interface

222-224

For a tunnel, the remote end of the tunnel is copied from the vifctl structure to the vif structure in the interface table.

Configure physical interface

225-243

For a physical interface, the link-level driver must support multicasting. The SIOCADDMULTI command used with INADDR_ANY configures the interface to begin receiving all IP multicast datagrams (Figure 12.32) because it is a multicast router. Incoming datagrams are forwarded when ipintr passes them to ip_mforward.

Save multicast information

244-253

The remaining interface information is copied from the vifctl structure to the vif structure. If necessary, numvifs is updated to record the number of virtual interfaces in use.

del_vif Function

The function del_vif, shown in Figure 14.18, deletes entries from the virtual interface table. It is called when mrouted sets the DVMRP_DEL_VIF command.

Figure 14.18. del_vif function: DVMRP_DEL_VIF command.

	

-- ip_mroute.c
257 static int
258 del_vif(vifip)
259 vifi_t *vifip;
260 {
261 struct vif *vifp = viftable + *vifip;
262 struct ifnet *ifp;
263 int i, s;
264 struct ifreq ifr;

265 if (*vifip >= numvifs)
266 return (EINVAL);
267 if (vifp->v_lcl_addr.s_addr == 0)
268 return (EADDRNOTAVAIL);

269 s = splnet();

270 if (!(vifp->v_flags & VIFF_TUNNEL)) {
271 if (vifp->v_lcl_grps)
272 free(vifp->v_lcl_grps, M_MRTABLE);
273 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
274 satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY;
275 ifp = vifp->v_ifp;
276 (*ifp->if_ioctl) (ifp, SIOCDELMULTI, (caddr_t) & ifr);
277 }
278 bzero((caddr_t) vifp, sizeof(*vifp));

279 /* Adjust numvifs down */
280 for (i = numvifs - 1; i >= 0; i--)
281 if (viftable[i].v_lcl_addr.s_addr != 0)
282 break;
283 numvifs = i + 1;

284 splx(s);
285 return (0);
286 }
-- ip_mroute.c

Validate index

257-268

If the index passed to del_vif is greater than the largest index in use or it references an entry that is not in use, EINVAL or EADDRNOTAVAIL is returned respectively.

Delete interface

269-278

For a physical interface, the local group table is released, and the reception of all multicast datagrams is disabled by SIOCDELMULTI. The entry in viftable is cleared by bzero.

Adjust interface count

279-286

The for loop searches for the first active entry in the table starting at the largest previously active entry and working back toward the first entry. For unused entries, the s_addr member of v_lcl_addr (an in_addr structure) is 0. numvifs is updated accordingly and the function returns.

14.6. IGMP Revisited

Chapter 13 focused on the host part of the IGMP protocol. mrouted implements the router portion of this protocol. For every physical interface, mrouted must keep track of which multicast groups have members on the attached network. mrouted multicasts an IGMP_HOST_MEMBERSHIP_QUERY datagram every 120 seconds and compiles the resulting IGMP_HOST_MEMBERSHIP_REPORT datagrams into a membership array associated with each network. This array is not the same as the membership list we described in Chapter 13.

From the information collected, mrouted constructs the multicast routing tables. The list of groups is also used to suppress multicasts to areas of the multicast internet that do not have members of the destination group.

The membership array is maintained only for physical interfaces. Tunnels are point-to-point interfaces to another multicast router, so no group membership information is needed.

We saw in Figure 14.14 that v_lcl_grps points to an array of IP multicast groups. mrouted maintains this list with the DVMRP_ADD_LGRP and DVMRP_DEL_LGRP commands. An Igrplctl (Figure 14.19) structure is passed with both commands.

Figure 14.19. lgrplctl structure.

	

-- ip_mroute.h
 87 struct lgrplctl {
 88 vifi_t lgc_vifi;
 89 struct in_addr lgc_gaddr;
 90 };
-- ip_mroute.h

87-90

The {interface, group} pair is identified by lgc_vifi and lgc_gaddr. The interface index (lgc_vifi, an unsigned short) identifies a virtual interface, not a physical interface.

When an IGMP_HOST_MEMBERSHIP_REPORT datagram is received, the functions shown in Figure 14.20 are called.

Figure 14.20. IGMP report processing.

[image: Image]

add_lgrp Function

mrouted examines the source address of an incoming IGMP report to determine which subnet and therefore which interface the report arrived on. Based on this information, mrouted sets the DVMRP_ADD_LGRP command for the interface to update the membership table in the kernel. This information is also fed into the multicast routing algorithm to update the routing tables. Figure 14.21 shows the add_lgrp function.

Figure 14.21. add_lgrp function: process DVMRP_ADD_LGRP command.

[image: Image]

Validate add request

291-301

If the request identifies an invalid interface, EINVAL is returned. If the interface is not in use or is a tunnel, EADDRNOTAVAIL is returned.

If needed, expand group array

302-326

If the new group won’t fit in the current group array, a new array is allocated. The first time add_lgrp is called for an interface, an array is allocated to hold 32 groups.

Each time the array fills, add_lgrp allocates a new array of twice the previous size. The new array is allocated by malloc, cleared by bzero, and filled by copying the old array into the new one with bcopy. The maximum number of entries, v_lcl_grps_max, is updated, the old array (if any) is released, and the new array is attached to the vif entry with v_lcl_grps.

The “paranoid” comment points out there is no guarantee that the memory allocated by malloc contains all 0s.

Add new group

327-332

The new group is copied into the next available entry and if the cache already contains the new group, the cache is marked as valid.

The lookup cache contains an address, v_cached_group, and a cached lookup result, v_cached_result. The grplst_member function always consults the cache before searching the membership array. If the given group matches v_cached_group, the cached result is returned; otherwise the membership array is searched.

del_lgrp Function

Group information is expired for each interface when no membership report has been received for the group within 270 seconds. mrouted maintains the appropriate timers and issues the DVMRP_DEL_LGRP command when the information expires. Figure 14.22 shows del_lgrp.

Figure 14.22. del_lgrp function: process DVMRP_DEL_LGRP command.

	

-- ip_mroute.c
337 static int
338 del_lgrp(gcp)
339 struct lgrplctl *gcp;
340 {
341 struct vif *vifp;
342 int i, error, s;

343 if (gcp->lgc_vifi >= numvifs)
344 return (EINVAL);
345 vifp = viftable + gcp->lgc_vifi;
346 if (vifp->v_lcl_addr.s_addr == 0 || (vifp->v_flags & VIFF_TUNNEL))
347 return (EADDRNOTAVAIL);

348 s = splnet();

349 if (gcp->lgc_gaddr.s_addr == vifp->v_cached_group)
350 vifp->v_cached_result = 0;

351 error = EADDRNOTAVAIL;
352 for (i = 0; i < vifp->v_lcl_grps_n; ++i)
353 if (same(&gcp->lgc_gaddr, &vifp->v_lcl_grps[i])) {
354 error = 0;
355 vifp->v_lcl_grps_n--;
356 bcopy((caddr_t) & vifp->v_lcl_grps[i + 1],
357 (caddr_t) & vifp->v_lcl_grps[i],
358 (vifp->v_lcl_grps_n - i) * sizeof(struct in_addr));
359 error = 0;
360 break;
361 }
362 splx(s);
363 return (error);
364 }
-- ip_mroute.c

Validate interface index

337-347

If the request identifies an invalid interface, EINVAL is returned. If the interface is not in use or is a tunnel, EADDRNOTAVAIL is returned.

Update lookup cache

348-350

If the group to be deleted is in the cache, the lookup result is set to 0 (false).

Delete group

351-364

EADDRNOTAVAIL is posted in error in case the group is not found in the membership list. The for loop searches the membership array associated with the interface. If same (a macro that uses bcmp to compare the two addresses) is true, error is cleared and the group count is decremented. bcopy shifts the subsequent array entries down to delete the group and del_lgrp breaks out of the loop.

If the loop completes without finding a match, EADDRNOTAVAIL is returned; otherwise 0 is returned.

grplst_member Function

During multicast forwarding, the membership array is consulted to avoid sending datagrams on a network when no member of the destination group is present. grplst_member, shown in Figure 14.23, searches the list looking for the given group address.

Figure 14.23. grplst_member function.

	

-- ip_mroute.c
368 static int
369 grplst_member(vifp, gaddr)
370 struct vif *vifp;
371 struct in_addr gaddr;
372 {
373 int i, s;
374 u_long addr;

375 mrtstat.mrts_grp_lookups++;

376 addr = gaddr.s_addr;
377 if (addr == vifp->v_cached_group)
378 return (vifp->v_cached_result);

379 mrtstat.mrts_grp_misses++;

380 for (i = 0; i < vifp->v_lcl_grps_n; ++i)
381 if (addr == vifp->v_lcl_grps[i].s_addr) {
382 s = splnet();
383 vifp->v_cached_group = addr;
384 vifp->v_cached_result = 1;
385 splx(s);
386 return (1);
387 }
388 s = splnet();
389 vifp->v_cached_group = addr;
390 vifp->v_cached_result = 0;
391 splx(s);
392 return (0);
393 }
-- ip_mroute.c

Check the cache

368-379

If the requested group is located in the cache, the cached result is returned and the membership array is not searched.

Search the membership array

380-393

A linear search determines if the group is in the array. If it is found, the cache is updated to record the match and one is returned. If it is not found, the cache is updated to record the miss and 0 is returned.

14.7. Multicast Routing

As we mentioned at the start of this chapter, we will not be presenting the TRPB algorithm implemented by mrouted, but we do need to provide a general overview of the mechanism to describe the multicast routing table and the multicast routing functions in the kernel. Figure 14.24 shows the sample multicast network that we use to illustrate the algorithms.

Figure 14.24. Sample multicast network.

[image: Image]

In Figure 14.24, routers are shown as boxes and the ellipses are the multicast networks attached to the routers. For example, router D can multicast on network D and C. Router C can multicast to network C, to routers A and B through point-to-point interfaces, and to E through a multicast tunnel.

The simplest approach to multicast routing is to select a subset of the internet topology that forms a spanning tree. If each router forwards multicasts along the spanning tree, every router eventually receives the datagram. Figure 14.25 shows one spanning tree for our sample network, where host S on network A represents the source of a multicast datagram.

Figure 14.25. Spanning tree for network A.

[image: Image]

For a discussion of spanning trees, see [Tanenbaum 1989] or [Perlman 1992].

We constructed the tree based on the shortest reverse path from every network back to the source in network A. In Figure 14.25, the link between routers B and C is omitted to form the spanning tree. The arrows between the source and router A, and between router C and D, emphasize that the multicast network is part of the spanning tree.

If the same spanning tree were used to forward a datagram from network C, the datagram would be forwarded along a longer path than needed to get to a recipient on network B. The algorithm described in RFC 1075 computes a separate spanning tree for each potential source network to avoid this problem. The routing tables contain a network number and subnet mask for each route, so that a single route applies to any host within the source subnet.

Because each spanning tree is constructed to provide the shortest reverse path to the source of the datagram, and every network receives every multicast datagram, this process is called reverse path broadcasting or RPB.

The RPB protocol has no knowledge of multicast group membership, so many datagrams are unnecessarily forwarded to networks that have no members in the destination group. If, in addition to computing the spanning trees, the routing algorithm records which networks are leaves and is aware of the group membership on each network, then routers attached to leaf networks can avoid forwarding datagrams onto the network when there is no member of the destination group present. This is called truncated reverse path broadcasting (TRPB), and is implemented by version 2.0 of mrouted with the help of IGMP to keep track of membership in the leaf networks.

Figure 14.26 shows TRPB applied to a multicast sent from a source on network C and with a member of the destination group on network B.

Figure 14.26. TRPB routing for network C.

[image: Image]

We’ll use Figure 14.26 to illustrate the terms used in the Net/3 multicast routing table. In this example, the shaded networks and routers receive a copy of the multicast datagram sent from the source on network C. The link between A and B is not part of the spanning tree and C does not have a link to D, since the multicast sent by the source is received directly by C and D.

In this figure, networks A, B, D, and E are leaf networks. Router C receives the multicast and forwards it through the interfaces attached to routers A, B, and E even though sending it to A and E is wasted effort. This is a major weakness of the TRPB algorithm.

The interface associated with network C on router C is called the parent because it is the interface on which router C expects to receive multicasts originating from network C. The interfaces from router C to routers A, B, and E, are child interfaces. For router A, the point-to-point interface is the parent for the source packets from C and the interface for network A is a child. Interfaces are identified as a parent or as a child relative to the source of the datagram. Multicast datagrams are forwarded only to the associated child interfaces, and never to the parent interface.

Continuing with the example, networks A, D, and E are not shaded because they are leaf networks without members of the destination group, so the spanning tree is truncated at the routers and the datagram is not forwarded onto these networks. Router B forwards the datagram onto network B, since there is a member of the destination group on the network. To implement the truncation algorithm, each multicast router that receives the datagram consults the group table associated with every virtual interface in the router’s viftable.

The final refinement to the multicast routing algorithm is called reverse path multicasting (RPM). The goal of RPM is to prune each spanning tree and avoid sending datagrams along branches of the tree that do not contain a member of the destination group. In Figure 14.26, RPM would prevent router C from sending a datagram to A and E, since there is no member of the destination group in those branches of the tree. Version 3.3 of mrouted implements RPM.

Figure 14.27 shows our example network, but this time only the routers and networks reached when the datagram is routed by RPM are shaded.

Figure 14.27. RPM routing for network C.

[image: Image]

To compute the routing tables corresponding to the spanning trees we described, the multicast routers communicate with adjacent multicast routers to discover the multicast internet topology and the location of multicast group members. In Net/3, DVMRP is used for this communication. DVMRP messages are transmitted as IGMP datagrams and are sent to the multicast group 224.0.0.4, which is reserved for DVMRP communication (Figure 12.1).

In Figure 12.39, we saw that incoming IGMP packets are always accepted by a multicast router. They are passed to igmp_input, to rip_input, and then read by mrouted on a raw IGMP socket. mrouted sends DVMRP messages to other multicast routers on the same raw IGMP socket.

For more information about RPB, TRPB, RPM, and the DVMRP messages that are needed to implement these algorithms, see [Deering and Cheriton 1990] and the source code release of mrouted.

There are other multicast routing protocols in use on the Internet. Proteon routers implement the MOSPF protocol described in RFC 1584 [Moy 1994]. PIM (Protocol Independent Multicasting) is implemented by Cisco routers, starting with Release 10.2 of their operating software. PIM is described in [Deering et al. 1994].

Multicast Routing Table

We can now describe the implementation of the multicast routing tables in Net/3. The kernel’s multicast routing table is maintained as a hash table with 64 entries (MRTHASHSIZ). The table is kept in the global array mrttable, and each entry points to a linked list of mrt structures, shown in Figure 14.28.

Figure 14.28. mrt structure.

	

-- ip_mroute.h
120 struct mrt {
121 struct in_addr mrt_origin; /* subnet origin of multicasts */
122 struct in_addr mrt_originmask; /* subnet mask for origin */
123 vifi_t mrt_parent; /* incoming vif */
124 vifbitmap_t mrt_children; /* outgoing children vifs */
125 vifbitmap_t mrt_leaves; /* subset of outgoing children vifs */
126 struct mrt *mrt_next; /* forward link */
127 };
-- ip_mroute.h

120-127

mrtc_origin and mrtc_originmask identify an entry in the table. mrtc_parent is the index of the virtual interface on which all multicast datagrams from the origin are expected. The outgoing interfaces are identified within mrtc_children, which is a bitmap. Outgoing interfaces that are also leaves in the multicast routing tree are identified in mrtc_leaves, which is also a bitmap. The last member, mrt_next, implements a linked list in case multiple routes hash to the same array entry.

Figure 14.29 shows the organization of the multicast routing table. Each mrt structure is placed in the hash chain that corresponds to return value from the nethash function shown in Figure 14.31.

Figure 14.29. Multicast routing table.

[image: Image]

The multicast routing table maintained by the kernel is a subset of the routing table maintained within mrouted and contains enough information to support multicast forwarding within the kernel. Updates to the kernel table are sent with the DVMRP_ADD_MRT command, which includes the mrtctl structure shown in Figure 14.30.

Figure 14.30. mrtctl structure.

	

-- ip_mroute.h
 95 struct mrtctl {
 96 struct in_addr mrtc_origin; /* subnet origin of multicasts */
 97 struct in_addr mrtc_originmask; /* subnet mask for origin */
 98 vifi_t mrtc_parent; /* incoming vif */
 99 vifbitmap_t mrtc_children; /* outgoing children vifs */
100 vifbitmap_t mrtc_leaves; /* subset of outgoing children vifs */
101 };
-- ip_mroute.h

95-101

The five members of the mrtctl structure carry the information we have already described (Figure 14.28) between mrouted and the kernel.

The multicast routing table is keyed by the source IP address of the multicast datagram. nethash (Figure 14.31) implements the hashing algorithm used for the table. It accepts the source IP address and returns a value between 0 and 63 (MRTHASHSIZ—1).

Figure 14.31. nethash function.

	

-- ip_mroute.c
398 static u_long
399 nethash(in)
400 struct in_addr in;
401 {
402 u_long n;

403 n = in_netof(in);
404 while ((n & 0xff) == 0)
405 n >>= 8;
406 return (MRTHASHMOD(n));
407 }
-- ip_mroute.c

398-407

in_netof returns in with the host portion set to all 0s leaving only the class A, B, or C network of the sending host in n. The result is shifted to the right until the low-order 8 bits are nonzero. MRTHASHMOD is

 #define MRTHASHMOD(h) ((h) & (MRTHASHSIZ - 1))

The low-order 8 bits are logically ANDed with 63, leaving only the low-order 6 bits, which is an integer in the range 0 to 63.

Doing two function calls (nethash and in_netof) to calculate a hash value is an expensive algorithm to compute a hash for a 32-bit address.

del_mrt Function

The mrouted daemon adds and deletes entries in the kernel’s multicast routing table through the DVMRP_ADD_MRT and DVMRP_DEL_MRT commands. Figure 14.32 shows the del_mrt function.

Figure 14.32. del_mrt function: process DVMRP_DEL_MRT command.

	

-- ip_mroute.c
451 static int
452 del_mrt(origin)
453 struct in_addr *origin;
454 {
455 struct mrt *rt, *prev_rt;
456 u_long hash = nethash(*origin);
457 int s;

458 for (prev_rt = rt = mrttable[hash]; rt; prev_rt = rt, rt = rt->mrt_next)
459 if (origin->s_addr == rt->mrt_origin.s_addr)
460 break;
461 if (!rt)
462 return (ESRCH);

463 s = splnet();

464 if (rt == cached_mrt)
465 cached_mrt = NULL;

466 if (prev_rt == rt)
467 mrttable[hash] = rt->mrt_next;
468 else
469 prev_rt->mrt_next = rt->mrt_next;
470 free(rt, M_MRTABLE);

471 splx(s);
472 return (0);
473 }
-- ip_mroute.c

Find route entry

451-462

The for loop starts at the entry identified by hash (initialized in its declaration from nethash). If the entry is not located, ESRCH is returned.

Delete route entry

463-473

If the entry was stored in the cache, the cache is invalidated. The entry is unlinked from the hash chain and released. The if statement is needed to handle the special case when the matched entry is at the front of the list.

add_mrt Function

The add_mrt function is shown in Figure 14.33.

Figure 14.33. add_mrt function: process DVMRP_ADD_MRT command.

	

-- ip_mroute.c
411 static int
412 add_mrt(mrtcp)
413 struct mrtctl *mrtcp;
414 {
415 struct mrt *rt;
416 u_long hash;
417 int s;

418 if (rt = mrtfind(mrtcp->mrtc_origin)) {
419 /* Just update the route */
420 s = splnet();
421 rt->mrt_parent = mrtcp->mrtc_parent;
422 VIFM_COPY(mrtcp->mrtc_children, rt->mrt_children);
423 VIFM_COPY(mrtcp->mrtc_leaves, rt->mrt_leaves);
424 splx(s);
425 return (0);
426 }
427 s = splnet();

428 rt = (struct mrt *) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
429 if (rt == NULL) {
430 splx(s);
431 return (ENOBUFS);
432 }
433 /*
434 * insert new entry at head of hash chain
435 */
436 rt->mrt_origin = mrtcp->mrtc_origin;
437 rt->mrt_originmask = mrtcp->mrtc_originmask;
438 rt->mrt_parent = mrtcp->mrtc_parent;
439 VIFM_COPY(mrtcp->mrtc_children, rt->mrt_children);
440 VIFM_COPY(mrtcp->mrtc_leaves, rt->mrt_leaves);
441 /* link into table */
442 hash = nethash(mrtcp->mrtc_origin);
443 rt->mrt_next = mrttable[hash];
444 mrttable[hash] = rt;

445 splx(s);
446 return (0);
447 }
-- ip_mroute.c

Update existing route

411-427

If the requested route is already in the routing table, the new information is copied into the route and add_mrt returns.

Allocate new route

428-447

An mrt structure is constructed in a newly allocated mbuf with the information from mrtctl structure passed with the add request. The hash index is computed from mrtc_origin, and the new route is inserted as the first entry on the hash chain.

mrtfind Function

The multicast routing table is searched with the mrtfind function. The source of the datagram is passed to mrtfind, which returns a pointer to the matching mrt structure, or a null pointer if there is no match.

Figure 14.34. mrtfind function.

	

-- ip_mroute.c
477 static struct mrt *
478 mrtfind(origin)
479 struct in_addr origin;
480 {
481 struct mrt *rt;
482 u_int hash;
483 int s;

484 mrtstat.mrts_mrt_lookups++;

485 if (cached_mrt != NULL &&
486 (origin.s_addr & cached_originmask) == cached_origin)
487 return (cached_mrt);

488 mrtstat.mrts_mrt_misses++;

489 hash = nethash(origin);
490 for (rt = mrttable[hash]; rt; rt = rt->mrt_next)
491 if ((origin.s_addr & rt->mrt_originmask.s_addr) ==
492 rt->mrt_origin.s_addr) {
493 s = splnet();
494 cached_mrt = rt;
495 cached_origin = rt->mrt_origin.s_addr;
496 cached_originmask = rt->mrt_originmask.s_addr;
497 splx(s);
498 return (rt);
499 }
500 return (NULL);
501 }
-- ip_mroute.c

Check route lookup cache

477-488

The given source IP address (origin) is logically ANDed with the origin mask in the cache. If the result matches cached_origin, the cached entry is returned.

Check the hash table

489-501

nethash returns the hash index for the route entry. The for loop searches the hash chain for a matching route. When a match is found, the cache is updated and a pointer to the route is returned. If a match is not found, a null pointer is returned.

14.8. Multicast Forwarding: ip_mforward Function

Multicast forwarding is implemented entirely in the kernel. We saw in Figure 12.39 that ipintr passes incoming multicast datagrams to ip_mforward when ip_mrouter is nonnull, that is, when mrouted is running.

We also saw in Figure 12.40 that ip_output can pass multicast datagrams that originate on the local host to ip_mforward to be routed to interfaces other than the one interface selected by ip_output.

Unlike unicast forwarding, each time a multicast datagram is forwarded to an interface, a copy is made. For example, if the local host is acting as a multicast router and is connected to three different networks, multicast datagrams originating on the system are duplicated and queued for output on all three interfaces. Additionally, the datagram may be duplicated and queued for input if the multicast loopback flag was set by the application or if any of the outgoing interfaces receive their own transmissions.

Figure 14.35 shows a multicast datagram arriving on a physical interface.

Figure 14.35. Multicast datagram arriving on physical interface.

[image: Image]

In Figure 14.35, the interface on which the datagram arrived is a member of the destination group, so the datagram is passed to the transport protocols for input processing. The datagram is also passed to ip_mforward, where it is duplicated and forwarded to a physical interface and to a tunnel (the thick arrows), both of which must be different from the receiving interface.

Figure 14.36 shows a multicast datagram arriving on a tunnel.

Figure 14.36. Multicast datagram arriving on a multicast tunnel.

[image: Image]

In Figure 14.36, the datagram arriving on a physical interface associated with the local end of the tunnel is represented by the dashed arrows. It is passed to ip_mforward, which as we’ll see in Figure 14.37 returns a nonzero value because the packet arrived on a tunnel. This causes ipintr to not pass the packet to the transport protocols.

Figure 14.37. ip_mforward function: tunnel arrival.

[image: Image]

ip_mforward strips the tunnel options from the packet, consults the multicast routing table, and, in this example, forwards the packet on another tunnel and on the same physical interface on which it arrived, as shown by the thin arrows. This is OK because the multicast routing tables are based on the virtual interfaces, not the physical interfaces.

In Figure 14.36 we assume that the physical interface is a member of the destination group, so ip_output passes the datagram to ip_mloopback, which queues it for processing by ipintr (the thick arrows). The packet is passed to ip_mforward again, where it is discarded (Exercise 14.4). ip_mforward returns 0 this time (because the packet arrived on a physical interface), so ipintr considers and accepts the datagram for input processing.

We show the multicast forwarding code in three parts:

[image: Image] tunnel input processing (Figure 14.37),

[image: Image] forwarding eligibility (Figure 14.39), and

[image: Image] forward to outgoing interfaces (Figure 14.40).

516-526

The two arguments to ip_mforward are a pointer to the mbuf chain containing the datagram; and a pointer to the ifnet structure of the receiving interface.

Arrival on physical interface

527-530

To distinguish between a multicast datagram arriving on a physical interface and a tunneled datagram arriving on the same physical interface, the IP header is examined for the characteristic LSRR option. If the header is too small to contain the option, or if the options don’t start with a NOP followed by an LSRR option, it is assumed that the datagram arrived on a physical interface and tunnel_src is set to 0.

Arrival on a tunnel

531-558

If the datagram looks as though it arrived on a tunnel, the options are verified to make sure they are well formed. If the options are not well formed for a multicast tunnel, ip_mforward returns 1 to indicate that the datagram should be discarded. Figure 14.38 shows the organization of the tunnel options.

Figure 14.38. Multicast tunnel options.

[image: Image]

In Figure 14.38 we assume there are no other options in the datagram, although that is not required. Any other IP options will appear after the LSRR option, which is always inserted before any other options by the multicast router at the start of the tunnel.

Delete tunnel options

559-565

If the options are OK, they are removed from the datagram by shifting the remaining options and data forward and adjusting m_len in the mbuf header and ip_len and ip_hl in the IP header (Figure 14.38).

ip_mforward often uses tunnel_source as its return value, which is only nonzero when the datagram arrives on a tunnel. When ip_mforward returns a nonzero value, the caller discards the datagram. For ipintr this means that a datagram that arrives on a tunnel is passed to ip_mforward and discarded by ipintr. The forwarding code strips out the tunnel information, duplicates the datagram, and sends the datagrams with ip_output, which calls ip_mloopback if the interface is a member of the destination group.

The next part of ip_mforward, shown in Figure 14.39, discards the datagram if it is ineligible for forwarding.

Figure 14.39. ip_mforward function: forwarding eligibility checks.

	

-- ip_mroute.c
566 /*
567 * Don't forward a packet with time-to-live of zero or one,
568 * or a packet destined to a local-only group.
569 */
570 if (ip->ip_ttl <= 1 ||
571 ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
572 return ((int) tunnel_src);

573 /*
574 * Don't forward if we don't have a route for the packet's origin.
575 */
576 if (!(rt = mrtfind(ip->ip_src))) {
577 mrtstat.mrts_no_route++;
578 return ((int) tunnel_src);
579 }
580 /*
581 * Don't forward if it didn't arrive from the parent vif for its origin.
582 */
583 vifi = rt->mrt_parent;
584 if (tunnel_src == 0) {
585 if ((viftable[vifi].v_flags & VIFF_TUNNEL) ||
586 viftable[vifi].v_ifp != ifp)
587 return ((int) tunnel_src);
588 } else {
589 if (!(viftable[vifi].v_flags & VIFF_TUNNEL) ||
590 viftable[vifi].v_rmt_addr.s_addr != tunnel_src)
591 return ((int) tunnel_src);
592 }
-- ip_mroute.c

Expired TTL or local multicast

566-572

If ip_ttl is 0 or 1, the datagram has reached the end of its lifetime and is not forwarded. If the destination group is less than or equal to INADDR_MAX_LOCAL_GROUP (the 224.0.0.x groups, Figure 12.1), the datagram is not allowed beyond the local network and is not forwarded. In either case, tunnel_src is returned to the caller.

Version 3.3 of mrouted supports administrative scoping of certain destination groups. An interface can be configured to discard datagrams addressed to these groups, similar to the automatic scoping of the 224.0.0.x groups.

No route available

573-579

If mrtfind cannot locate a route based on the source address of the datagram, the function returns. Without a route, the multicast router cannot determine to which interfaces the datagram should be forwarded. This might occur, for example, when the multicast datagrams arrive before the multicast routing table has been updated by mrouted.

Arrived on unexpected interface

580-592

If the datagram arrived on a physical interface but was expected to arrive on a tunnel or on a different physical interface, ip_mforward returns. If the datagram arrived on a tunnel but was expected to arrive on a physical interface or on a different tunnel, ip_mforward returns. A datagram may arrive on an unexpected interface when the routing tables are in transition because of changes in the group membership or in the physical topology of the network.

The final part of ip_mforward (Figure 14.40) sends the datagram on each of the outgoing interfaces specified in the multicast route entry.

Figure 14.40. ip_mforward function: forwarding.

	

-- ip_mroute.c
593 /*
594 * For each vif, decide if a copy of the packet should be forwarded.
595 * Forward if:
596 * - the ttl exceeds the vif's threshold AND
597 * - the vif is a child in the origin's route AND
598 * - (the vif is not a leaf in the origin's route OR
599 * the destination group has members on the vif)
600 *
601 * (This might be speeded up with some sort of cache -- someday.)
602 */
603 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) {
604 if (ip->ip_ttl > vifp->v_threshold &&
605 VIFM_ISSET(vifi, rt->mrt_children) &&
606 (!VIFM_ISSET(vifi, rt->mrt_leaves) ||
607 grplst_member(vifp, ip->ip_dst))) {
608 if (vifp->v_flags & VIFF_TUNNEL)
609 tunnel_send(m, vifp);
610 else
611 phyint_send(m, vifp);
612 }
613 }

614 return ((int) tunnel_src);
615 }
-- ip_mroute.c

593-615

For each interface in viftable, a datagram is sent on the interface if

[image: Image] the datagram’s TTL is greater than the multicast threshold for the interface,

[image: Image] the interface is a child interface for the route, and

[image: Image] the interface is not connected to a leaf network.

If the interface is a leaf, the datagram is output only if there is a member of the destination group on the network (i.e., grplst_member returns a nonzero value).

tunnel_send forwards the datagram on tunnel interfaces; phyint_send is used for physical interfaces.

phyint_send Function

To send a multicast datagram on a physical interface, phyint_send (Figure 14.41) specifies the output interface explicitly in the ip_moptions structure it passes to ip_output.

Figure 14.41. phyint_send function.

	

-- ip_mroute.c
616 static void
617 phyint_send(m, vifp)
618 struct mbuf *m;
619 struct vif *vifp;
620 {
621 struct ip *ip = mtod(m, struct ip *);
622 struct mbuf *mb_copy;
623 struct ip_moptions *imo;
624 int error;
625 struct ip_moptions simo;

626 mb_copy = m_copy(m, 0, M_COPYALL);
627 if (mb_copy == NULL)
628 return;

629 imo = &simo;
630 imo->imo_multicast_ifp = vifp->v_ifp;
631 imo->imo_multicast_ttl = ip->ip_ttl - 1;
632 imo->imo_multicast_loop = 1;

633 error = ip_output(mb_copy, NULL, NULL, IP_FORWARDING, imo);
634 }
-- ip_mroute.c

616-634

m_copy duplicates the outgoing datagram. The ip_moptions structure is set to force the datagram to be transmitted on the selected interface. The TTL value is decremented, and multicast loopback is enabled.

The datagram is passed to ip_output. The IP_FORWARDING flag avoids an infinite loop, where ip_output calls ip_mforward again.

tunnel_send Function

To send a datagram on a tunnel, tunnel_send (Figure 14.43) must construct the appropriate tunnel options and insert them in the header of the outgoing datagram. Figure 14.42 shows how tunnel_send prepares a packet for the tunnel.

Figure 14.42. Inserting tunnel options.

[image: Image]

Figure 14.43. tunnel_send function: verify and allocate new header.

	

-- ip_mroute.c
635 static void
636 tunnel_send(m, vifp)
637 struct mbuf *m;
638 struct vif *vifp;
639 {
640 struct ip *ip = mtod(m, struct ip *);
641 struct mbuf *mb_copy, *mb_opts;
642 struct ip *ip_copy;
643 int error;
644 u_char *cp;

645 /*
646 * Make sure that adding the tunnel options won't exceed the
647 * maximum allowed number of option bytes.
648 */
649 if (ip->ip_hl > (60 - TUNNEL_LEN) >> 2) {
650 mrtstat.mrts_cant_tunnel++;
651 return;
652 }
653 /*
654 * Get a private copy of the IP header so that changes to some
655 * of the IP fields don't damage the original header, which is
656 * examined later in ip_input.c.
657 */
658 mb_copy = m_copy(m, IP_HDR_LEN, M_COPYALL);
659 if (mb_copy == NULL)
660 return;
661 MGETHDR(mb_opts, M_DONTWAIT, MT_HEADER);
662 if (mb_opts == NULL) {
663 m_freem(mb_copy);
664 return;
665 }
666 /*
667 * Make mb_opts be the new head of the packet chain.
668 * Any options of the packet were left in the old packet chain head
669 */
670 mb_opts->m_next = mb_copy;
671 mb_opts->m_len = IP_HDR_LEN + TUNNEL_LEN;
672 mb_opts->m_data += MSIZE - mb_opts->m_len;
-- ip_mroute.c

Will the tunnel options fit?

635-652

If there is no room in the IP header for the tunnel options, tunnel_send returns immediately and the datagram is not forwarded on the tunnel. It may be forwarded on other interfaces.

Duplicate the datagram and allocate mbuf for new header and tunnel options

653-672

In the call to m_copy, the starting offset for the copy is 20 (IP_HDR_LEN). The resulting mbuf chain contains the options and data for the datagram but not the IP header. mb_opts points to a new datagram header allocated by MGETHDR. The datagram header is prepended to mb_copy. Then m_len and m_data are adjusted to accommodate an IP header and the tunnel options.

The second half of tunnel_send, shown in Figure 14.44, modifies the headers of the outgoing packet and sends the packet.

Figure 14.44. tunnel_send function: construct headers and send.

	

-- ip_mroute.c
673 ip_copy = mtod(mb_opts, struct ip *);
674 /*
675 * Copy the base ip header to the new head mbuf.
676 */
677 *ip_copy = *ip;
678 ip_copy->ip_ttl--;
679 ip_copy->ip_dst = vifp->v_rmt_addr; /* remote tunnel end-point */
680 /*
681 * Adjust the ip header length to account for the tunnel options.
682 */
683 ip_copy->ip_hl += TUNNEL_LEN >> 2;
684 ip_copy->ip_len += TUNNEL_LEN;
685 /*
686 * Add the NOP and LSRR after the base ip header
687 */
688 cp = (u_char *) (ip_copy + 1);
689 *cp++ = IPOPT_NOP;
690 *cp++ = IPOPT_LSRR;
691 *cp++ = 11; /* LSRR option length */
692 *cp++ = 8; /* LSSR pointer to second element */
693 *(u_long *) cp = vifp->v_lcl_addr.s_addr; /* local tunnel end-point */
694 cp += 4;
695 *(u_long *) cp = ip->ip_dst.s_addr; /* destination group */

696 error = ip_output(mb_opts, NULL, NULL, IP_FORWARDING, NULL);
697 }
-- ip_mroute.c

Modify IP header

673-679

The original IP header is copied from the original mbuf chain into the newly allocated mbuf header. The TTL in the header is decremented, and the destination is changed to be the other end of the tunnel.

Construct tunnel options

680-664

ip_h1 and ip_len are adjusted to accommodate the tunnel options. The tunnel options are placed just after the IP header: a NOP, followed by the LSRR code, the length of the LSRR option (11 bytes), and a pointer to the second address in the option (8 bytes). The source route consists of the local tunnel end point followed by the destination group (Figure 14.13).

Send the tunneled datagram

665-697

ip_output sends the datagram, which now looks like a unicast datagram with an LSRR option since the destination address is the unicast address of the other end of the tunnel. When it reaches the other end of the tunnel, the tunnel options are stripped off and the datagram is forwarded at that point, possibly through additional tunnels.

14.9. Cleanup: ip_mrouter_done Function

When mrouted shuts down, it issues the DVMRP_DONE command, which is handled by the ip_mrouter_done function shown in Figure 14.45.

Figure 14.45. ip_mrouter_done function: DVMRP_DONE command.

	

-- ip_mroute.c
161 int
162 ip_mrouter_done()
163 {
164 vifi_t vifi;
165 int i;
166 struct ifnet *ifp;
167 int s;
168 struct ifreq ifr;
169 s = splnet();
170 /*
171 * For each phyint in use, free its local group list and
172 * disable promiscuous reception of all IP multicasts.
173 */
174 for (vifi = 0; vifi < numvifs; vifi++) {
175 if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
176 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
177 if (viftable[vifi].v_lcl_grps)
178 free(viftable[vifi].v_lcl_grps, M_MRTABLE);
179 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
180 satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY;
181 ifp = viftable[vifi].v_ifp;
182 (*ifp->if_ioctl) (ifp, SIOCDELMULTI, (caddr_t) & ifr);
183 }
184 }
185 bzero((caddr_t) viftable, sizeof(viftable));
186 numvifs = 0;
187 /*
188 * Free any multicast route entries.
189 */
190 for (i = 0; i < MRTHASHSIZ; i++)
191 if (mrttable[i])
192 free(mrttable[i], M_MRTABLE);
193 bzero((caddr_t) mrttable, sizeof(mrttable));
194 cached_mrt = NULL;
195 ip_mrouter = NULL;
196 splx(s);
197 return (0);
198 }
-- ip_mroute.c

161-186

This function runs at splnet to avoid any interaction with the multicast forwarding code. For every physical multicast interface, the list of local groups is released and the SIOCDELMULTI command is issued to stop receiving multicast datagrams (Exercise 14.3). The entire viftable array is cleared by bzero and numvifs is set to 0.

187-198

Every active entry in the multicast routing table is released, the entire table is cleared with bzero, the cache is cleared, and ip_mrouter is reset.

Each entry in the multicast routing table may be the first in a linked list of entries. This code introduces a memory leak by releasing only the first entry in the list.

14.10. Summary

In this chapter we described the general concept of internetwork multicasting and the specific functions within the Net/3 kernel that support it. We did not discuss the implementation of mrouted, but the source is readily available for the interested reader.

We described the virtual interface table and the differences between a physical interface and a tunnel, as well as the LSRR options used to implement tunnels in Net/3.

We illustrated the RPB, TRPB, and RPM algorithms and described the kernel tables used to forward multicast datagrams according to TRPB. The concept of parent and leaf networks was also discussed.

Exercises

14.1 In Figure 14.25, how many multicast routes are needed?

14.2 Why is the update to the group membership cache in Figure 14.23 protected by splnet and splx?

14.3 What happens when SIOCDELMULTI is issued for an interface that has explicitly joined a multicast group with the IP_ADD_MEMBERSHIP option?

14.4 When a datagram arrives on a tunnel and is accepted by ip_mforward, it may be looped back by ip_output when it is forwarded to a physical interface. Why does ip_mforward discard the looped-back packet when it arrives on the physical interface?

14.5 Redesign the group address cache to increase its effectiveness.

Chapter 15. Socket Layer

15.1. Introduction

This chapter is the first of three that cover the socket-layer code in Net/3. The socket abstraction was introduced with the 4.2BSD release in 1983 to provide a uniform interface to network and interprocess communication protocols. The Net/3 release discussed here is based on the 4.3BSD Reno version of sockets, which is slightly different from the earlier 4.2 releases used by many Unix vendors.

As described in Section 1.7, the socket layer maps protocol-independent requests from a process to the protocol-specific implementation selected when the socket was created.

To allow standard Unix I/O system calls such as read and write to operate with network connections, the filesystem and networking facilities in BSD releases are integrated at the system call level. Network connections represented by sockets are accessed through a descriptor (a small integer) in the same way an open file is accessed through a descriptor. This allows the standard filesystem calls such as read and write, as well as network-specific system calls such as sendmsg and recvmsg, to work with a descriptor associated with a socket.

Our focus is on the implementation of sockets and the associated system calls and not on how a typical program might use the socket layer to implement network applications. For a detailed discussion of the process-level socket interface and how to program network applications see [Stevens 1990] and [Rago 1993].

Figure 15.1 shows the layering between the socket interface in a process and the protocol implementation in the kernel.

Figure 15.1. The socket layer converts generic requests to specific protocol operations.

[image: Image]

splnet Processing

The socket layer contains many paired calls to splnet and splx. As discussed in Section 1.12, these calls protect code that accesses data structures shared between the socket layer and the protocol-processing layer. Without calls to splnet, a software interrupt that initiates protocol processing and changes the shared data structures will confuse the socket-layer code when it resumes.

We assume that readers understand these calls and we rarely point them out in our discussion.

15.2. Code Introduction

The three files listed in Figure 15.2 are described in this chapter.

Figure 15.2. Files discussed in this chapter.

[image: Image]

Global Variables

The two global variable covered in this chapter are described in Figure 15.3.

Figure 15.3. Global variable introduced in this chapter.

[image: Image]

15.3. socket Structure

A socket represents one end of a communication link and holds or points to all the information associated with the link. This information includes the protocol to use, state information for the protocol (which includes source and destination addresses), queues of arriving connections, data buffers, and option flags. Figure 15.5 shows the definition of a socket and its associated buffers.

41-42

so_type is specified by the process creating a socket and identifies the communication semantics to be supported by the socket and the associated protocol. so_type shares the same values as pr_type shown in Figure 7.8. For UDP, so_type would be SOCK_DGRAM and for TCP it would be SOCK_STREAM.

43

so_options is a collection of flags that modify the behavior of a socket. Figure 15.4 describes the flags.

Figure 15.4. so_options values.

[image: Image]

A process can modify all the socket options with the getsockopt and setsockopt system calls except SO_ACCEPTCONN, which is set by the kernel when the listen system call is issued on the socket.

Figure 15.5. struct socket definition.

[image: Image]

44

so_linger is the time in clock ticks that a socket waits for data to drain while closing a connection (Section 15.15).

45

so_state represents the internal state and additional characteristics of the socket. Figure 15.6 lists the possible values for so_state.

Figure 15.6. so_state values.

[image: Image]

In Figure 15.6, the middle column shows that SS_ASYNC and SS_NBIO can be changed explicitly by a process by the fcntl and ioctl system calls. The other flags are implicitly changed by the process during the execution of system calls. For example, if the process calls connect, the SS_ISCONNECTED flag is set by the kernel when the connection is established.

SS_NBIO and SS_ASYNC Flags

By default, a process blocks waiting for resources when it makes an I/O request. For example, a read system call on a socket blocks if there is no data available from the network. When the data arrives, the process is unblocked and read returns. Similarly, when a process calls write, the kernel blocks the process until space is available in the kernel for the data. If SS_NBIO is set, the kernel does not block a process during I/O on the socket but instead returns the error code EWOULDBLOCK.

If SS_ASYNC is set, the kernel sends the SIGIO signal to the process or process group specified by so_pgid when the status of the socket changes for one of the following reasons:

[image: Image] a connection request has completed,

[image: Image] a disconnect request has been initiated,

[image: Image] a disconnect request has completed,

[image: Image] half of a connection has been shut down,

[image: Image] data has arrived on a socket,

[image: Image] data has been sent from a socket (i.e., the output buffer has free space), or

[image: Image] an asynchronous error has occurred on a UDP or TCP socket.

46

so_pcb points to a protocol control block that contains protocol-specific state information and parameters for the socket. Each protocol defines its own control block structure, so so_pcb is defined to be a generic pointer. Figure 15.7 lists the control block structures that we discuss.

Figure 15.7. Protocol control blocks.

[image: Image]

so_pcb never points to a tcpcb structure directly; see Figure 22.1.

47

so_proto points to the protosw structure of the protocol selected by the process during the socket system call (Section 7.4).

48-64

Sockets with SO_ACCEPTCONN set maintain two connection queues. Connections that are not yet established (e.g., the TCP three-way handshake is not yet complete) are placed on the queue so_q0. Connections that are established and are ready to be accepted (e.g., the TCP three-way handshake is complete) are placed on the queue so_q. The lengths of the queues are kept in so_q0len and so_qlen. Each queued connection is represented by its own socket. so_head in each queued socket points to the original socket with SO_ACCEPTCONN set.

The maximum number of queued connections for a particular socket is controlled by so_qlimit, which is specified by a process when it calls listen. The kernel silently enforces an upper limit of 5 (SOMAXCONN, Figure 15.24) and a lower limit of 0. A somewhat obscure formula shown with Figure 15.29 uses so_qlimit to control the number of queued connections.

Figure 15.8 illustrates a queue configuration in which three connections are ready to be accepted and one connection is being established.

Figure 15.8. Socket connection queues.

[image: Image]

65

so_timeo is a wait channel (Section 15.10) used during accept, connect, and close processing.

66

so_error holds an error code until it can be reported to a process during the next system call that references the socket.

67

If SS_ASYNC is set for a socket, the SIGIO signal is sent to the process (if so_pgid is greater than 0) or to the progress group (if so_pgid is less than 0). so_pgid can be changed or examined with the SIOCSPGRP and SIOCGPGRP ioctl commands. For more information about process groups see [Stevens 1992].

68

so_oobmark identifies the point in the input data stream at which out-of-band data was most recently received. Section 16.11 discusses socket support for out-of-band data and Section 29.7 discusses the semantics of out-of-band data in TCP.

69-82

Each socket contains two data buffers, so_rcv and so_snd, used to buffer incoming and outgoing data. These are structures contained within the socket structure, not pointers to structures. We describe the organization and use of the socket buffers in Chapter 16.

83-86

so_tpcb is not used by Net/3. so_upcall and so_upcallarg are used only by the NFS software in Net/3.

NFS is unusual. In many ways it is a process-level application that has been moved into the kernel. The so_upcall mechanism triggers NFS input processing when data is added to a socket receive buffer. The tsleep and wakeup mechanism is inappropriate in this case, since the NFS protocol executes within the kernel, not as a process.

The files socketvar.h and uipc_socket2.c define several macros and functions that simplify the socket-layer code. Figure 15.9 summarizes them.

Figure 15.9. Socket macros and functions.

[image: Image]

15.4. System Calls

A process interacts with the kernel through a collection of well-defined functions called system calls. Before showing the system calls that support networking, we discuss the system call mechanism itself.

The transfer of execution from a process to the protected environment of the kernel is machine- and implementation-dependent. In the discussion that follows, we use the 386 implementation of Net/3 to illustrate implementation specific operations.

In BSD kernels, each system call is numbered and the hardware is configured to transfer control to a single kernel function when the process executes a system call. The particular system call is identified as an integer argument to the function. In the 386 implementation, syscall is that function. Using the system call number, syscall indexes a table to locate the sysent structure for the requested system call. Each entry in the table is a sysent structure:

struct sysent {
 int sy_narg; /* number of arguments */
 int (*sy_call) (); /* implementing function */
}; /* system call table entry */

Here are several entries from the sysent array, which is defined in kern/init_sysent.c.

struct sysent sysent[] = {
 /* ... */
 { 3, recvmsg }, /* 27 = recvmsg */
 { 3, sendmsg }, /* 28 = sendmsg */
 { 6, recvfrom }, /* 29 = recvfrom */
 { 3, accept }, /* 30 = accept */
 { 3, getpeername }, /* 31 = getpeername */
 { 3, getsockname }, /* 32 = getsockname */
 /* ... */
}

For example, the recvmsg system call is the 27th entry in the system call table, has three arguments, and is implemented by the recvmsg function in the kernel.

syscall copies the arguments from the calling process into the kernel and allocates an array to hold the results of the system call, which syscall returns to the process when the system call completes, syscall dispatches control to the kernel function associated with the system call. In the 386 implementation, this call looks like:

struct sysent *callp;
error = (*callp->sy_call)(p, args, rval);

where callp is a pointer to the relevant sysent structure, p is a pointer to the process table entry for the process that made the system call, args represents the arguments to the system call as an array of 32-bit words, and rval is an array of two 32-bit words to hold the return value of the system call. When we use the term system call, we mean the function within the kernel called by syscall, not the function within the process called by the application.

syscall expects the system call function (i.e., what sy_call points to) to return 0 if no errors occurred and a nonzero error code otherwise. If no error occurs, the kernel passes the values in rval back to the process as the return value of the system call (the one made by the application). If an error occurs, syscall ignores the values in rval and returns the error code to the process in a machine-dependent way so that the error is made available to the process in the external variable errno. The function called by the application returns −1 or a null pointer to indicate that errno should be examined.

The 386 implementation sets the carry bit to indicate that the value returned by syscall is an error code. The system call stub in the process stores the code in errno and returns −1 or a null pointer to the application. If the carry bit is not set, the value returned by syscall is returned by the stub.

To summarize, a function implementing a system call “returns” two values: one for the syscall function, and a second (found in rval) that syscall returns to the calling process when no error occurs.

Example

The prototype for the socket system call is:

int socket (int domain, int type, int protocol);

The prototype for the kernel function that implements the system call is

struct socket_args {
 int domain;
 int type;
 int protocol;
};
socket(struct proc *p, struct socket_args *uap, int *retval);

When an application calls socket, the process passes three separate integers to the kernel with the system call mechanism, syscall copies the arguments into an array of 32-bit values and passes a pointer to the array as the second argument to the kernel version of socket. The kernel version of socket treats the second argument as a pointer to an socket_args structure. Figure 15.10 illustrates this arrangement.

Figure 15.10. socket argument processing.

[image: Image]

As illustrated by socket, each kernel function that implements a system call declares args not as a pointer to an array of 32-bit words, but as a pointer to a structure specific to the system call.

The implicit cast is legal only in traditional K&R C or in ANSI C when a prototype is not in effect. If a prototype is in effect, the compiler generates a warning.

syscall prepares the return value of 0 before executing the kernel system call function. If no error occurs, the system call function can return without clearing *retval and syscall returns 0 to the process.

System Call Summary

Figure 15.11 summarizes the system calls relevant to networking.

Figure 15.11. Networking system calls in Net/3.

[image: Image]

We present the setup, server, client, and termination calls in this chapter. The input and output system calls are discussed in Chapter 16 and the administrative calls in Chapter 17.

Figure 15.12 shows the sequence in which an application might use the calls. The I/O system calls in the large box can be called in any order. This is not a complete state diagram as some valid transitions are not included; just the most common ones are shown.

Figure 15.12. Network system call flowchart.

[image: Image]

15.5. Processes, Descriptors, and Sockets

Before describing the socket system calls, we need to discuss the data structures that tie together processes, descriptors, and sockets. Figure 15.13 shows the structures and members relevant to our discussion. A more complete explanation of the file structures can be found in [Leffler et al. 1989].

Figure 15.13. Process, file, and socket structures.

[image: Image]

The first argument to a function implementing a system call is always p, a pointer to the proc structure of the calling process. The proc structure represents the kernel’s notion of a process. Within the proc structure, p_fd points to a filedesc structure, which manages the descriptor table pointed to by fd_ofiles. The descriptor table is dynamically sized and consists of an array of pointers to file structures. Each file structure describes a single open file and can be shared between multiple processes.

Only a single file structure is shown in Figure 15.13. It is accessed by p->p_fd>fd_ofiles[fd]. Within the file structure, two members are of interest to us: f_ops and f_data. The implementation of I/O system calls such as read and write varies according to what type of I/O object is associated with a descriptor. f_ops points to a fileops structure containing a list of function pointers that implement the read, write, ioctl, select, and close system calls for the associated I/O object. Figure 15.13 shows f_ops pointing to a global fileops structure, socketops, which contains pointers to the functions for sockets.

f_data points to private data used by the associated I/O object. For sockets, f_data points to the socket structure associated with the descriptor. Finally, we see that so_proto in the socket structure points to the protosw structure for the protocol selected when the socket is created. Recall that each protosw structure is shared by all sockets associated with the protocol.

We now proceed to discuss the system calls.

15.6. socket System Call

The socket system call creates a new socket and associates it with a protocol as specified by the domain, type, and protocol arguments specified by the process. The function (shown in Figure 15.14) allocates a new descriptor, which identifies the socket in future system calls, and returns the descriptor to the process.

Figure 15.14. socket system call.

	

-- uipc_syscalls.c
 42 struct socket_args {
 43 int domain;
 44 int type;
 45 int protocol;
 46 };

 47 socket(p, uap, retval)
 48 struct proc *p;
 49 struct socket_args *uap;
 50 int *retval;
 51 {
 52 struct filedesc *fdp = p->p_fd;
 53 struct socket *so;
 54 struct file *fp;
 55 int fd, error;

 56 if (error = falloc(p, &fp, &fd))
 57 return (error);
 58 fp->f_flag = FREAD | FWRITE;
 59 fp->f_type = DTYPE_SOCKET;
 60 fp->f_ops = &socketops;
 61 if (error = socreate(uap->domain, &so, uap->type, uap->protocol)) {
 62 fdp->fd_ofiles[fd] = 0;
 63 ffree(fp);
 64 } else {
 65 fp->f_data = (caddr_t) so;
 66 *retval = fd;
 67 }
 68 return (error);
 69 }
-- uipc_syscalls.c

42-55

Before each system call a structure is defined to describe the arguments passed from the process to the kernel. In this case, the arguments are passed within a socket_args structure. All the socket-layer system calls have three arguments: p, a pointer to the proc structure for the calling process; uap, a pointer to a structure containing the arguments passed by the process to the system call; and retval, a value–result argument that points to the return value for the system call. Normally, we ignore the p and retval arguments and refer to the contents of the structure pointed to by uap as the arguments to the system call.

56-60

falloc allocates a new file structure and slot in the fd_ofiles array (Figure 15.13). fp points to the new structure and fd is the index of the structure in the fd_ofiles array. socket enables the file structure for read and write access and marks it as a socket. socketops, a global fileops structure shared by all sockets, is attached to the file structure by f_ops. The socketops variable is initialized at compile time as shown in Figure 15.15.

Figure 15.15. socketops: the global fileops structure for sockets.

[image: Image]

60-69

socreate allocates and initializes a socket structure. If socreate fails, the error code is posted in error, the file structure is released, and the descriptor slot cleared. If socreate succeeds, f_data is set to point to the socket structure and establishes the association between the descriptor and the socket. fd is returned to the process through *retval. socket returns 0 or the error code returned by socreate.

socreate Function

Most socket system calls are divided into at least two functions, in the same way that socket and socreate are. The first function retrieves from the process all the data required, calls the second soxxx function to do the work, and then returns any results to the process. This split is so that the second function can be called directly by kernel-based network protocols, such as NFS. socreate is shown in Figure 15.16.

Figure 15.16. socreate function.

	

--- uipc_socket.c
 43 socreate(dom, aso, type, proto)
 44 int dom;
 45 struct socket **aso;
 46 int type;
 47 int proto;
 48 {
 49 struct proc *p = curproc; /* XXX */
 50 struct protosw *prp;
 51 struct socket *so;
 52 int error;

 53 if (proto)
 54 prp = pffindproto(dom, proto, type);
 55 else
 56 prp = pffindtype(dom, type);
 57 if (prp == 0 || prp->pr_usrreq == 0)
 58 return (EPROTONOSUPPORT);
 59 if (prp->pr_type != type)
 60 return (EPROTOTYPE);
 61 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_WAIT);
 62 bzero((caddr_t) so, sizeof(*so));
 63 so->so_type = type;
 64 if (p->p_ucred->cr_uid == 0)
 65 so->so_state = SS_PRIV;
 66 so->so_proto = prp;
 67 error =
 68 (*prp->pr_usrreq) (so, PRU_ATTACH,
 69 (struct mbuf *) 0, (struct mbuf *) proto, (struct mbuf *) 0);
 70 if (error) {
 71 so->so_state |= SS_NOFDREF;
 72 sofree(so);
 73 return (error);
 74 }
 75 *aso = so;
 76 return (0);
 77 }
--- uipc_socket.c

43-52

The four arguments to socreate are: dom, the requested protocol domain (e.g., PF_INET); aso, in which a pointer to a new socket structure is returned; type, the requested socket type (e.g., SOCK_STREAM); and proto, the requested protocol.

Find protocol switch table

53-60

If proto is nonzero, pffindproto looks for the specific protocol requested by the process. If proto is 0, pffindtype looks for a protocol within the specified domain with the semantics specified by type. Both functions return a pointer to a protosw structure of the matching protocol or a null pointer (Section 7.6).

Allocate and initialize socket structure

61-66

socreate allocates a new socket structure, fills it with 0s, records the type, and, if the calling process has superuser privileges, turns on SS_PRIV in the socket structure.

PRU_ATTACH request

67-69

The first example of the protocol-independent socket layer making a protocol-specific request appears in socreate. Recall from Section 7.4 and Figure 15.13 that so->so_proto>pr_usrreq is a pointer to the user-request function of the protocol associated with socket so. Every protocol provides this function in order to handle communication requests from the socket layer. The prototype for the function is:

int pr_usrreq (struct socket *so, int req, struct mbuf *m0, *m1, *m2);

The first argument, so, is a pointer to the relevant socket and req is a constant identifying the particular request. The next three arguments (m0, m1, and m2) are different for each request. They are always passed as pointers to mbuf structures, even if they have another type. Casts are used when necessary to avoid warnings from the compiler.

Figure 15.17 shows the requests available through the pr_usrreq function. The semantics of each request depend on the particular protocol servicing the request.

Figure 15.17. pr_usrreq requests.

[image: Image]

PRU_CONNECT2 is supported only within the Unix domain, where it connects two local sockets to each other. Unix pipes are implemented in this way.

Cleanup and return

70-77

Returning to socreate, the function attaches the protocol switch table to the new socket and issues the PRU_ATTACH request to notify the protocol of the new end point. This request causes most protocols, including TCP and UDP, to allocate and initialize any structures required to support the new end point.

Superuser Privileges

Figure 15.18 summarizes the networking operations that require superuser access.

Figure 15.18. Superuser privileges in Net/3.

[image: Image]

The multicast ioctl commands (SIOCADDMULTI and SIOCDELMULTI) are accessible to nonsuperuser processes when they are invoked indirectly by the IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP socket options (Sections 12.11 and 12.12).

In Figure 15.18, the “Process” column identifies requests that must be made by a superuser process, and the “Socket” column identifies requests that must be issued on a socket created by a superuser process (i.e., the process does not need superuser privileges if it has access to the socket, Exercise 15.1). In Net/3, the suser function determines if the calling process has superuser privileges, and the SS_PRIV flag determines if the socket was created by a superuser process.

Since rip_usrreq tests SS_PRIV immediately after creating the socket with socreate, we show this function as accessible only from a superuser process.

15.7. getsock and sockargs Functions

These functions appear repeatedly in the implementation of the socket system calls. getsock maps a descriptor to a file table entry and sockargs copies arguments from the process to a newly allocated mbuf in the kernel. Both functions check for invalid arguments and return a nonzero error code accordingly.

Figure 15.19 shows the getsock function.

Figure 15.19. getsock function.

	

--- uipc_syscalls.c
754 getsock(fdp, fdes, fpp)
755 struct filedesc *fdp;
756 int fdes;
757 struct file **fpp;
758 {
759 struct file *fp;

760 if ((unsigned) fdes >= fdp->fd_nfiles ||
761 * (fp = fdp->fd_ofiles[fdes]) == NULL)
762 return (EBADF);
763 if (fp->f_type != DTYPE_SOCKET)
764 return (ENOTSOCK);
765 *fpp = fp;
766 return (0);
767 }
--- uipc_syscalls.c

754-767

The function selects the file table entry specified by the descriptor fdes with fdp, a pointer to the filedesc structure. getsock returns a pointer to the open file structure in fpp or an error if the descriptor is out of the valid range, does not point to an open file, or does not have a socket associated with it.

Figure 15.20 shows the sockargs function.

Figure 15.20. sockargs function.

	

--- uipc_syscalls.c
768 sockargs(mp, buf, buflen, type)
769 struct mbuf **mp;
770 caddr_t buf;
771 int buflen, type;
772 {
773 struct sockaddr *sa;
774 struct mbuf *m;
775 int error;

776 if ((u_int) buflen > MLEN) {
777 return (EINVAL);
778 }
779 m = m_get(M_WAIT, type);
780 if (m == NULL)
781 return (ENOBUFS);
782 m->m_len = buflen;
783 error = copyin(buf, mtod(m, caddr_t), (u_int) buflen);
784 if (error)
785 (void) m_free(m);
786 else {
787 *mp = m;
788 if (type == MT_SONAME) {
789 sa = mtod(m, struct sockaddr *);
790 sa->sa_len = buflen;
791 }
792 }
793 return (error);
794 }
--- uipc_syscalls.c

768-783

The mechanism described in Section 15.4 copies pointer arguments for a system call from the process to the kernel but does not copy the data referenced by the pointers, since the semantics of each argument are known only by the specific system call and not by the generic system call mechanism. Several system calls use sockargs to follow the pointer arguments and copy the referenced data from the process into a newly allocated mbuf within the kernel. For example, sockargs copies the local socket address pointed to by bind’s second argument from the process to an mbuf.

If the data does not fit in a single mbuf or an mbuf cannot be allocated, sockargs returns EINVAL or ENOBUFS. Note that a standard mbuf is used and not a packet header mbuf. copyin copies the data from the process into the mbuf. The most common error from copyin is EACCES, returned when the process provides an invalid address.

784-785

When an error occurs, the mbuf is discarded and the error code is returned. If there is no error, a pointer to the mbuf is returned in mp, and sockargs returns 0.

786-794

If type is MT_SONAME, the process is passing in a sockaddr structure. sockargs sets the internal length, sa_len, to the length of the argument just copied. This ensures that the size contained within the structure is correct even if the process did not initialize the structure correctly.

Net/3 does include code to support applications compiled on a pre-4.3BSD Reno system, which did not have an sa_len member in the sockaddr structure, but that code is not shown in Figure 15.20.

15.8. bind System Call

The bind system call associates a local network transport address with a socket. A process acting as a client usually does not care what its local address is. In this case, it isn’t necessary to call bind before the process attempts to communicate; the kernel selects and implicitly binds a local address to the socket as needed.

A server process almost always needs to bind to a specific well-known address. If so, the process must call bind before accepting connections (TCP) or receiving datagrams (UDP), because the clients establish connections or send datagrams to the well-known address.

A socket’s foreign address is specified by connect or by one of the write calls that allow specification of foreign addresses (sendto or sendmsg).

Figure 15.21 shows bind.

Figure 15.21. bind function.

	

-- uipc_syscalls.c
 70 struct bind_args {
 71 int s;
 72 caddr_t name;
 73 int namelen;
 74 };

 75 bind(p, uap, retval)
 76 struct proc *p;
 77 struct bind_args *uap;
 78 int *retval;
 79 {
 80 struct file *fp;
 81 struct mbuf *nam;
 82 int error;

 83 if (error = getsock(p->p_fd, uap->s, &fp))
 84 return (error);
 85 if (error = sockargs(&nam, uap->name, uap->namelen, MT_SONAME))
 86 return (error);
 87 error = sobind((struct socket *) fp->f_data, nam);
 88 m_freem(nam);
 89 return (error);
 90 }
-- uipc_syscalls.c

70-82

The arguments to bind (passed within a bind_args structure) are: s, the socket descriptor; name, a pointer to a buffer containing the transport address (e.g., a sockaddr_in structure); and namelen, the size of the buffer.

83-90

getsock returns the file structure for the descriptor, and sockargs copies the local address from the process into an mbuf, sobind associates the address specified by the process with the socket. Before bind returns sobind’s result, the mbuf holding the address is released.

Technically, a descriptor such as s identifies a file structure with an associated socket structure and is not itself a socket structure. We refer to such a descriptor as a socket to simplify our discussion.

We will see this pattern many times: arguments specified by the process are copied into an mbuf and processed as necessary, and then the mbuf is released before the system call returns. Although mbufs were designed explicitly to facilitate processing of network data packets, they are also effective as a general-purpose dynamic memory allocation mechanism.

Another pattern illustrated by bind is that retval is unused in many system calls. In Section 15.4 we mentioned that retval is always initialized to 0 before syscall dispatches control to a system call. If 0 is the appropriate return value, the system calls do not need to change retval.

sobind Function

sobind, shown in Figure 15.22, is a wrapper that issues the PRU_BIND request to the protocol associated with the socket.

Figure 15.22. sobind function.

	

--- uipc_socket.c
 78 sobind(so, nam)
 79 struct socket *so;
 80 struct mbuf *nam;
 81 {
 82 int s = splnet();
 83 int error;

 84 error =
 85 (*so->so_proto->pr_usrreq) (so, PRU_BIND,
 86 (struct mbuf *) 0, nam, (struct mbuf *) 0);
 87 splx(s);
 88 return (error);
 89 }
--- uipc_socket.c

78-89

sobind issues the PRU_BIND request. The local address, nam, is associated with the socket if the request succeeds; otherwise the error code is returned.

15.9. listen System Call

The listen system call, shown in Figure 15.23, notifies a protocol that the process is prepared to accept incoming connections on the socket. It also specifies a limit on the number of connections that can be queued on the socket, after which the socket layer refuses to queue additional connection requests. When this occurs, TCP ignores incoming connection requests. Queued connections are made available to the process when it calls accept (Section 15.11).

Figure 15.23. listen system call.

	

-- uipc_syscalls.c
 91 struct listen_args {
 92 int s;
 93 int backlog;
 94 };

 95 listen(p, uap, retval)
 96 struct proc *p;
 97 struct listen_args *uap;
 98 int *retval;
 99 {
100 struct file *fp;
101 int error;

102 if (error = getsock(p->p_fd, uap->s, &fp))
103 return (error);
104 return (solisten((struct socket *) fp->f_data, uap->backlog));
105 }
-- uipc_syscalls.c

91-98

The two arguments passed to listen specify the socket descriptor and the connection queue limit.

99-105

getsock returns the file structure for the descriptor, s, and solisten passes the listen request to the protocol layer.

solisten Function

This function, shown in Figure 15.24, issues the PRU_LISTEN request and prepares the socket to receive connections.

Figure 15.24. solisten function.

	

--- uipc_socket.c
 90 solisten(so, backlog)
 91 struct socket *so;
 92 int backlog;
 93 {
 94 int s = splnet(), error;

 95 error =
 96 (*so->so_proto->pr_usrreq) (so, PRU_LISTEN,
 97 (struct mbuf *) 0, (struct mbuf *) 0, (struct mbuf *) 0);
 98 if (error) {
 99 splx(s);
100 return (error);
101 }
102 if (so->so_q == 0)
103 so->so_options |= SO_ACCEPTCONN;
104 if (backlog < 0)
105 backlog = 0;
106 so->so_qlimit = min(backlog, SOMAXCONN);
107 splx(s);
108 return (0);
109 }
--- uipc_socket.c

90-109

After solisten issues the PRU_LISTEN request and pr_usrreq returns, the socket is marked as ready to accept connections. SS_ACCEPTCONN is not set if a connection is queued when pr_usrreq returns.

The maximum queue size for incoming connections is computed and saved in so_qlimit. Here Net/3 silently enforces a lower limit of 0 and an upper limit of 5 (SOMAXCONN) backlogged connections.

15.10. tsleep and wakeup Functions

When a process executing within the kernel cannot proceed because a kernel resource is unavailable, it waits for the resource by calling tsleep, which has the following prototype:

int tsleep (caddr_t chan, int pri, char *mesg, int timeo);

The first argument to tsleep, chan, is called the wait channel. It identifies the particular resource or event such as an incoming network connection, for which the process is waiting. Many processes can be sleeping on a single wait channel. When the resource becomes available or when the event occurs, the kernel calls wakeup with the wait channel as the single argument. The prototype for wakeup is:

void wakeup (caddr_t chan);

All processes waiting for the channel are awakened and set to the run state. The kernel arranges for tsleep to return when each of the processes resumes execution.

The pri argument specifies the priority of the process when it is awakened, as well as several optional control flags for tsleep. By setting the PCATCH flag in pri, tsleep also returns when a signal arrives, mesg is a string identifying the call to tsleep and is included in debugging messages and in ps output. timeo sets an upper bound on the sleep period and is measured in clock ticks.

Figure 15.25 summarizes the return values from tsleep.

Figure 15.25. tsleep return values.

[image: Image]

A process never sees the ERESTART error because it is handled by the syscall function and never returned to a process.

Because all processes sleeping on a wait channel are awakened by wakeup, we always see a call to tsleep within a tight loop. Every process must determine if the resource is available before proceeding because another awakened process may have claimed the resource first. If the resource is not available, the process calls tsleep once again.

It is unusual for multiple processes to be sleeping on a single socket, so a call to wakeup usually causes only one process to be awakened by the kernel.

For a more detailed discussion of the sleep and wakeup mechanism see [Leffler et al. 1989].

Example

One use of multiple processes sleeping on the same wait channel is to have multiple server processes reading from a UDP socket. Each server calls recvfrom and, as long as no data is available, the calls block in tsleep. When a datagram arrives on the socket, the socket layer calls wakeup and each server is placed on the run queue. The first server to run receives the datagram while the others call tsleep again. In this way, incoming datagrams are distributed to multiple servers without the cost of starting a new process for each datagram. This technique can also be used to process incoming connection requests in TCP by having multiple processes call accept on the same socket. This technique is described in [Comer and Stevens 1993].

15.11. accept System Call

After calling listen, a process waits for incoming connections by calling accept, which returns a descriptor that references a new socket connected to a client. The original socket, s, remains unconnected and ready to receive additional connections. accept returns the address of the foreign system if name points to a valid buffer.

The connection-processing details are handled by the protocol associated with the socket. For TCP, the socket layer is notified when a connection has been established (i.e., when TCP’s three-way handshake has completed). For other protocols, such as OSI’s TP4, tsleep returns when a connection request has arrived. The connection is completed when explicitly confirmed by the process by reading or writing on the socket.

Figure 15.26 shows the implementation of accept.

Figure 15.26. accept system call.

[image: Image]
[image: Image]

106-114

The three arguments to accept (in the accept_args structure) are: s, the socket descriptor; name, a pointer to a buffer to be filled in by accept with the transport address of the foreign host; and anamelen, a pointer to the size of the buffer.

Validate arguments

116-134

accept copies the size of the buffer (*anamelen) into namelen, and getsock returns the file structure for the socket. If the socket is not ready to accept connections (i.e., listen has not been called) or nonblocking I/O has been requested and no connections are queued, EINVAL or EWOULDBLOCK are returned respectively.

Wait for a connection

135-145

The while loop continues until a connection is available, an error occurs, or the socket can no longer receive data. accept is not automatically restarted after a signal is caught (tsleep returns EINTR). The protocol layer wakes up the process when it inserts a new connection on the queue with sonewconn.

Within the loop, the process waits in tsleep, which returns 0 when a connection is available. If tsleep is interrupted by a signal or the socket is set for nonblocking semantics, accept returns EINTR or EWOULDBLOCK (Figure 15.25).

Asynchronous errors

146-151

If an error occurred on the socket during the sleep, the error code is moved from the socket to the return value for accept, the socket error is cleared, and accept returns.

It is common for asynchronous events to change the state of a socket. The protocol processing layer notifies the socket layer of the change by setting so_error and waking any process waiting on the socket. Because of this, the socket layer must always examine so_error after waking to see if an error occurred while the process was sleeping.

Associate socket with descriptor

152-164

falloc allocates a descriptor for the new connection; the socket is removed from the accept queue by soqremque and attached to the file structure. Exercise 15.4 discusses the call to panic.

Protocol processing

167-179

accept allocates a new mbuf to hold the foreign address and calls soaccept to do protocol processing. The allocation and queueing of new sockets created during connection processing is described in Section 15.12. If the process provided a buffer to receive the foreign address, copyout copies the address from nam and the length from namelen to the process. If necessary, copyout silently truncates the name to fit in the process’s buffer. Finally, the mbuf is released, protocol processing enabled, and accept returns.

Because only one mbuf is allocated for the foreign address, transport addresses must fit in one mbuf. Unix domain addresses, which are pathnames in the filesystem (up to 1023 bytes in length), may encounter this limit, but there is no problem with the 16-byte sockaddr_in structure for the Internet domain. The comment on line 170 indicates that this limitation could be removed by allocating and copying an mbuf chain.

soaccept Function

soaccept, shown in Figure 15.27, calls the protocol layer to retrieve the client’s address for the new connection.

Figure 15.27. soaccept function.

	

--- uipc_socket.c
184 soaccept(so, nam)
185 struct socket *so;
186 struct mbuf *nam;
187 {
188 int s = splnet();
189 int error;

190 if ((so->so_state & SS_NOFDREF) == 0)
191 panic("soaccept: !NOFDREF");
192 so->so_state &= ~SS_NOFDREF;
193 error = (*so->so_proto->pr_usrreq) (so, PRU_ACCEPT,
194 (struct mbuf *) 0, nam, (struct mbuf *) 0);
195 splx(s);
196 return (error);
197 }
--- uipc_socket.c

184-197

soaccept ensures that the socket is associated with a descriptor and issues the PRU_ACCEPT request to the protocol. After pr_usrreq returns, nam contains the name of the foreign socket.

15.12. sonewconn and soisconnected Functions

In Figure 15.26 we saw that accept waits for the protocol layer to process incoming connection requests and to make them available through so_q. Figure 15.28 uses TCP to illustrate this process.

Figure 15.28. Incoming TCP connection processing.

[image: Image]

In the upper left corner of Figure 15.28, accept calls tsleep to wait for incoming connections. In the lower left, tcp_input processes an incoming TCP SYN by calling sonewconn to create a socket for the new connection (Figure 28.7). sonewconn queues the socket on so_q0, since the three-way handshake is not yet complete.

When the final ACK of the TCP handshake arrives, tcp_input calls soisconnected (Figure 29.2), which updates the new socket, moves it from so_q0 to so_q, and wakes up any processes that had called accept to wait for incoming connections.

The upper right corner of the figure shows the functions we described with Figure 15.26. When tsleep returns, accept takes the connection off so_q and issues the PRU_ATTACH request. The socket is associated with a new file descriptor and returned to the calling process.

Figure 15.29 shows the sonewconn function.

Figure 15.29. sonewconn function.

	

-- uipc_socket2.c
123 struct socket *
124 sonewconn(head, connstatus)
125 struct socket *head;
126 int connstatus;
127 {
128 struct socket *so;
129 int soqueue = connstatus ? 1 : 0;

130 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
131 return ((struct socket *) 0);
132 MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
133 if (so == NULL)
134 return ((struct socket *) 0);
135 bzero((caddr_t) so, sizeof(*so));
136 so->so_type = head->so_type;
137 so->so_options = head->so_options & ~SO_ACCEPTCONN;
138 so->so_linger = head->so_linger;
139 so->so_state = head->so_state | SS_NOFDREF;
140 so->so_proto = head->so_proto;
141 so->so_timeo = head->so_timeo;
142 so->so_pgid = head->so_pgid;
143 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
144 soqinsque(head, so, soqueue);
145 if ((*so->so_proto->pr_usrreq) (so, PRU_ATTACH,
146 (struct mbuf *) 0, (struct mbuf *) 0, (struct mbuf *) 0)) {
147 (void) soqremque(so, soqueue);
148 (void) free((caddr_t) so, M_SOCKET);
149 return ((struct socket *) 0);
150 }
151 if (connstatus) {
152 sorwakeup(head);
153 wakeup((caddr_t) & head->so_timeo);
154 so->so_state |= connstatus;
155 }
156 return (so);
157 }
-- uipc_socket2.c

123-129

The protocol layer passes head, a pointer to the socket that is accepting the incoming connection, and connstatus, a flag to indicate the state of the new connection. For TCP, connstatus is always 0.

For TP4, connstatus is always SS_ISCONFIRMING. The connection is implicitly confirmed when a process begins reading from or writing to the socket.

Limit incoming connections

130-131

sonewconn prohibits additional connections when the following inequality is true:

[image: Image]

This formula provides a fudge factor for connections that never complete and guarantees that listen (fd, 0) allows one connection. See Figure 18.23 in Volume 1 for an additional discussion of this formula.

Allocate new socket

132-143

A new socket structure is allocated and initialized. If the process calls setsockopt for the listening socket, the connected socket inherits several socket options because so_options, so_linger, so_pgid, and the sb_hiwat values are copied into the new socket structure.

Queue connection

144

soqueue was set from connstatus on line 129. The new socket is inserted onto so_q0 if soqueue is 0 (e.g., TCP connections) or onto so_q if connstatus is nonzero (e.g., TP4 connections).

Protocol processing

145-150

The PRU_ATTACH request is issued to perform protocol layer processing on the new connection. If this fails, the socket is dequeued and discarded, and sonewconn returns a null pointer.

Wakeup processes

151-157

If connstatus is nonzero, any processes sleeping in accept or selecting for readability on the socket are awakened, connstatus is logically ORed with so_state. This code is never executed for TCP connections, since connstatus is always 0 for TCP.

Protocols, such as TCP, that put incoming connections on so_q0 first, call soisconnected when the connection establishment phase completes. For TCP, this happens when the second SYN is ACKed on the connection.

Figure 15.30 shows soisconnected.

Figure 15.30. soisconnected function.

	

-- uipc_socket2.c
 78 soisconnected(so)
 79 struct socket *so;
 80 {
 81 struct socket *head = so->so_head;

 82 so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING);
 83 so->so_state |= SS_ISCONNECTED;
 84 if (head && soqremque(so, 0)) {
 85 soqinsque(head, so, 1);
 86 sorwakeup(head);
 87 wakeup((caddr_t) & head->so_timeo);
 88 } else {
 89 wakeup((caddr_t) & so->so_timeo);
 90 sorwakeup(so);
 91 sowwakeup(so);
 92 }
 93 }
-- uipc_socket2.c

Queue incomplete connections

78-87

The socket state is changed to show that the connection has completed. When soisconnected is called for incoming connections, (i.e., when the local process is calling accept), head is nonnull.

If soqremque returns 1, the socket is queued on so_q and sorwakeup wakes up any processes using select to monitor the socket for connection arrival by testing for readability. If a process is blocked in accept waiting for the connection, wakeup causes the matching tsleep to return.

Wakeup processes waiting for new connection

88-93

If head is null, soqremque is not called since the process initiated the connection with the connect system call and the socket is not on a queue. If head is nonnull and soqremque returns 0, the socket is already on so_q. This happens with protocols such as TP4, which place connections on so_q before they are complete. wakeup awakens any process blocked in connect, and sorwakeup and sowwakeup take care of any processes that are using select to wait for the connection to complete.

15.13. connect System call

A server process calls the listen and accept system calls to wait for a remote process to initiate a connection. If the process wants to initiate a connection itself (i.e., a client), it calls connect.

For connection-oriented protocols such as TCP, connect establishes a connection to the specified foreign address. The kernel selects and implicitly binds an address to the local socket if the process has not already done so with bind.

For connectionless protocols such as UDP or ICMP, connect records the foreign address for use in sending future datagrams. Any previous foreign address is replaced with the new address.

Figure 15.31 shows the functions called when connect is used for UDP or TCP.

Figure 15.31. connect processing.

[image: Image]

The left side of the figure shows connect processing for connectionless protocols, such as UDP. In this case the protocol layer calls soisconnected and the connect system call returns immediately.

The right side of the figure shows connect processing for connection-oriented protocols, such as TCP. In this case, the protocol layer begins the connection establishment and calls soisconnecting to indicate that the connection will complete some time in the future. Unless the socket is nonblocking, soconnect calls tsleep to wait for the connection to complete. For TCP, when the three-way handshake is complete, the protocol layer calls soisconnected to mark the socket as connected and then calls wakeup to awaken the process and complete the connect system call.

Figure 15.32 shows the connect system call.

Figure 15.32. connect system call.

[image: Image]

180-188

The three arguments to connect (in the connect_args structure) are: s, the socket descriptor; name, a pointer to a buffer containing the foreign address; and namelen, the length of the buffer.

189-200

getsock returns the socket as usual. A connection request may already be pending on a nonblocking socket, in which case EALREADY is returned. sockargs copies the foreign address from the process into the kernel.

Start connection processing

201-208

The connection attempt is started by calling soconnect. If soconnect reports an error, connect jumps to bad. If a connection has not yet completed by the time soconnect returns and nonblocking I/O is enabled, EINPROGRESS is returned immediately to avoid waiting for the connection to complete. Since connection establishment normally involves exchanging several packets with the remote system, it may take a while to complete. Further calls to connect return EALREADY until the connection completes. EISCONN is returned when the connection is complete.

Wait for connection establishment

208-217

The while loop continues until the connection is established or an error occurs. splnet prevents connect from missing a wakeup between testing the state of the socket and the call to tsleep. After the loop, error contains 0, the error code from tsleep, or the error from the socket.

218-224

The SS_ISCONNECTING flag is cleared since the connection has completed or the attempt has failed. The mbuf containing the foreign address is released and any error is returned.

soconnect Function

This function ensures that the socket is in a valid state for a connection request. If the socket is not connected or a connection is not pending, then the connection request is always valid. If the socket is already connected or a connection is pending, the new connection request is rejected for connection-oriented protocols such as TCP. For connectionless protocols such as UDP, multiple connection requests are OK but each new request replaces the previous foreign address.

Figure 15.33 shows the soconnect function.

Figure 15.33. soconnect function.

	

--- uipc_socket.c
198 soconnect(so, nam)
199 struct socket *so;
200 struct mbuf *nam;
201 {
202 int s;
203 int error;

204 if (so->so_options & SO_ACCEPTCONN)
205 return (EOPNOTSUPP);
206 s = splnet();
207 /*
208 * If protocol is connection-based, can only connect once.
209 * Otherwise, if connected, try to disconnect first.
210 * This allows user to disconnect by connecting to, e.g.,
211 * a null address.
212 */
213 if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING) &&
214 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
215 (error = sodisconnect(so))))
216 error = EISCONN;
217 else
218 error = (*so->so_proto->pr_usrreq) (so, PRU_CONNECT,
219 (struct mbuf *) 0, nam, (struct mbuf *) 0);
220 splx(s);
221 return (error);
222 }
--- uipc_socket.c

198-222

soconnect returns EOPNOTSUPP if the socket is marked to accept connections, since a process cannot initiate connections if listen has already been called for the socket. EISCONN is returned if the protocol is connection oriented and a connection has already been initiated. For a connectionless protocol, any existing association with a foreign address is broken by sodisconnect.

The PRU_CONNECT request starts the appropriate protocol processing to establish the connection or the association.

Breaking a Connectionless Association

For connectionless protocols, the foreign address associated with a socket can be discarded by calling connect with an invalid name such as a pointer to a structure filled with 0s or a structure with an invalid size. sodisconnect removes a foreign address associated with the socket, and PRU_CONNECT returns an error such as EAFNOSUPPORT or EADDRNOTAVAIL, leaving the socket with no foreign address. This is a useful, although obscure, way of breaking the association between a connectionless socket and a foreign address without replacing it.

15.14. shutdown System Call

The shutdown system call, shown in Figure 15.34, closes the write-half, read-half, or both halves of a connection. For the read-half, shutdown discards any data the process hasn’t yet read and any data that arrives after the call to shutdown. For the write-half, shutdown lets the protocol specify the semantics. For TCP, any remaining data will be sent followed by a FIN. This is TCP’s half-close feature (Section 18.5 of Volume 1).

Figure 15.34. shutdown system call.

	

--- uipc_syscalls.c
550 struct shutdown_args {
551 int s;
552 int how;
553 };

554 shutdown(p, uap, retval)
555 struct proc *p;
556 struct shutdown_args *uap;
557 int *retval;
558 {
559 struct file *fp;
560 int error;

561 if (error = getsock(p->p_fd, uap->s, &fp))
562 return (error);
563 return (soshutdown((struct socket *) fp->f_data, uap->how));
564 }
--- uipc_syscalls.c

To destroy the socket and release the descriptor, close must be called. close can also be called directly without first calling shutdown. As with all descriptors, close is called by the kernel for sockets that have not been closed when a process terminates.

550-557

In the shutdown_args structure, s is the socket descriptor and how specifies which halves of the connection are to be closed. Figure 15.35 shows the expected values for how and how++ (which is used in Figure 15.36).

Figure 15.35. shutdown system can options.

[image: Image]

Figure 15.36. soshutdown function.

	

--- uipc_socket.c
720 soshutdown(so, how)
721 struct socket *so;
722 int how;
723 {
724 struct protosw *pr = so->so_proto;

725 how++;
726 if (how & FREAD)
727 sorflush(so);
728 if (how & FWRITE)
729 return ((*pr->pr_usrreq) (so, PRU_SHUTDOWN,
730 (struct mbuf *) 0, (struct mbuf *) 0, (struct mbuf *) 0));
731 return (0);
732 }
--- uipc_socket.c

Notice that there is an implicit numerical relationship between how and the constants FREAD and FWRITE.

558-564

shutdown is a wrapper function for soshutdown. The socket associated with the descriptor is returned by getsock, soshutdown is called, and its value is returned.

soshutdown and sorflush

The shut down of the read-half of a connection is handled in the socket layer by sorflush, and the shut down of the write-half of a connection is processed by the PRU_SHUTDOWN request in the protocol layer. The soshutdown function is shown in Figure 15.36.

720-732

If the read-half of the socket is being closed, sorflush, shown in Figure 15.37, discards the data in the socket’s receive buffer and disables the read-half of the connection. If the write-half of the socket is being closed, the PRU_SHUTDOWN request is issued to the protocol.

Figure 15.37. sorflush function.

	

-- uipc_socket.c
733 sorflush(so)
734 struct socket *so;
735 {
736 struct sockbuf *sb = &so->so_rcv;
737 struct protosw *pr = so->so_proto;
738 int s;
739 struct sockbuf asb;

740 sb->sb_flags |= SB_NOINTR;
741 (void) sblock(sb, M_WAITOK);
742 s = splimp();
743 socantrcvmore(so);
744 sbunlock(sb);
745 asb = *sb;
746 bzero((caddr_t) sb, sizeof(*sb));
747 splx(s);

748 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
749 (*pr->pr_domain->dom_dispose) (asb.sb_mb);
750 sbrelease(&asb);
751 }
-- uipc_socket.c

733-747

The process waits for a lock on the receive buffer. Because of SB_NOINTR, sblock does not return when an interrupt occurs. splimp blocks network interrupts and protocol processing while the socket is modified, since the receive buffer may be accessed by the protocol layer as it processes incoming packets.

socantrcvmore marks the socket to reject incoming packets. A copy of the sockbuf structure is saved in asb to be used after interrupts are restored by splx. The original sockbuf structure is cleared by bzero, so that the receive queue appears to be empty.

Release control mbufs

748-751

Some kernel resources may be referenced by control information present in the receive queue when shutdown was called. The mbuf chain is still available through sb_mb in the copy of the sockbuf structure.

If the protocol supports access rights and has registered a dom_dispose function, it is called here to release these resources.

In the Unix domain it is possible to pass descriptors between processes with control messages. These messages contain pointers to reference counted data structures. The dom_dispose function takes care of discarding the references and the data structures if necessary to avoid creating an unreferenced structure and introducing a memory leak in the kernel. For more information on passing file descriptors within the Unix domain, see [Stevens 1990] and [Leffler et al. 1989].

Any input data pending when shutdown is called is discarded when sbrelease releases any mbufs on the receive queue.

Notice that the shut down of the read-half of the connection is processed entirely by the socket layer (Exercise 15.6) and the shut down of the write-half of the connection is handled by the protocol through the PRU_SHUTDOWN request. TCP responds to the PRU_SHUTDOWN by sending all queued data and then a FIN to close the write-half of the TCP connection.

15.15. close System Call

The close system call works with any type of descriptor. When fd is the last descriptor that references the object, the object-specific close function is called:

error = (*fp->f_ops->fo_close)(fp, p);

As shown in Figure 15.13, fp->f_ops->fo_close for a socket is the function soo_close.

soo_close Function

This function, shown in Figure 15.38, is a wrapper for the soclose function.

Figure 15.38. soo_close function.

	

-- sys_socket.c
152 soo_close(fp, p)
153 struct file *fp;
154 struct proc *p;
155 {
156 int error = 0;

157 if (fp->f_data)
158 error = soclose((struct socket *) fp->f_data);
159 fp->f_data = 0;
160 return (error);
161 }
-- sys_socket.c

152-161

If a socket structure is associated with the file structure, soclose is called, f_data is cleared, and any posted error is returned.

soclose Function

This function aborts any connections that are pending on the socket (i.e., that have not yet been accepted by a process), waits for data to be transmitted to the foreign system, and releases the data structures that are no longer needed.

soclose is shown in Figure 15.39.

Figure 15.39. soclose function.

[image: Image]

Discard pending connections

129-141

If the socket was accepting connections, soclose traverses the two connection queues and calls soabort for each pending connection. If the protocol control block is null, the protocol has already been detached from the socket and soclose jumps to the cleanup code at discard.

soabort issues the PRU_ABORT request to the socket’s protocol and returns the result. soabort is not shown in this text. Figures 23.38 and 30.7 discuss how UDP and TCP handle this request.

Break established connection or association

142-157

If the socket is not connected, execution continues at drop; otherwise the socket must be disconnected from its peer. If a disconnect is not in progress, sodisconnect starts the disconnection process. If the SO_LINGER socket option is set, soclose may need to wait for the disconnect to complete before returning. A nonblocking socket never waits for a disconnect to complete, so soclose jumps immediately to drop in that case. Otherwise, the connection termination is in progress and the SO_LINGER option indicates that soclose must wait some time for it to complete. The while loop continues until the disconnect completes, the linger time (so_linger) expires, or a signal is delivered to the process.

If the linger time is set to 0, tsleep returns only when the disconnect completes (perhaps because of an error) or a signal is delivered.

Release data structures

158-173

If the socket still has an attached protocol, the PRU_DETACH request breaks the connection between this socket and the protocol. Finally the socket is marked as not having an associated file descriptor, which allows sofree to release the socket.

The sofree function is shown in Figure 15.40.

Figure 15.40. sofree function.

	

-- uipc_socket.c
110 sofree(so)
111 struct socket *so;
112 {

113 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
114 return;
115 if (so->so_head) {
116 if (!soqremque(so, 0) && !soqremque(so, 1))
117 panic("sofree dq");
118 so->so_head = 0;
119 }
120 sbrelease(&so->so_snd);
121 sorflush(so);
122 FREE(so, M_SOCKET);
123 }
-- uipc_socket.c

Return if socket still in use

110-114

If a protocol is still associated with the socket, or if the socket is still associated with a descriptor, sofree returns immediately.

Remove from connection queues

115-119

If the socket is on a connection queue (so_head is nonnull), the socket’s queues should be empty. If they are not empty, there is a bug in the socket code and the kernel panics. If they are empty, so_head is cleared.

Discard send and receive queues

120-123

sbrelease discards any buffers in the send queue and sorflush discards any buffers in the receive queue. Finally, the socket itself is released.

15.16. Summary

In this chapter we looked at all the system calls related to network operations. The system call mechanism was described, and we traced the calls until they entered the protocol processing layer through the pr_usrreq function.

While looking at the socket layer, we avoided any discussion of address formats, protocol semantics, or protocol implementations. In the upcoming chapters we tie together the link-layer processing and socket-layer processing by looking in detail at the implementation of the Internet protocols in the protocol processing layer.

Exercises

15.1 How can a process without superuser privileges gain access to a socket created by a superuser process?

15.2 How can a process determine if the sockaddr buffer it provides to accept was too small to hold the foreign address returned by the call?

15.3 A feature proposed for IPv6 sockets is to have accept and recvfrom return a source route as an array of 128-bit IPv6 addresses instead of a single peer address. Since the array will not fit in a single mbuf, modify accept and recvfrom to handle an mbuf chain from the protocol layer instead of a single mbuf. Will the existing code work if the protocol layer returns the array in an mbuf cluster instead of a chain of mbufs?

15.4 Why is panic called when soqremque returns a null pointer in Figure 15.26?

15.5 Why does sorflush make a copy of the receive buffer?

15.6 What happens when additional data is received after sorflush has zeroed the socket’s receive buffer? Read Chapter 16 before attempting this exercise.

Chapter 16. Socket I/O

16.1. Introduction

In this chapter we discuss the system calls that read and write data on a network connection. The chapter is divided into three parts.

The first part covers the four system calls for sending data: write, writev, sendto, and sendmsg. The second part covers the four system calls for receiving data: read, readv, recvfrom, and recvmsg. The third part of the chapter covers the select system call, which provides a standard way to monitor the status of descriptors in general and sockets in particular.

The core of the socket layer is the sosend and soreceive functions. They handle all I/O between the socket layer and the protocol layer. As we’ll see, the semantics of the various types of protocols overlap in these functions, making the functions long and complex.

16.2. Code Introduction

The three headers and four C files listed in Figure 16.1 are covered in this chapter.

Figure 16.1. Files discussed in this chapter.

[image: Image]

Global Variables

The first two global variables shown in Figure 16.2 are used by the select system call. The third global variable controls the amount of memory allocated to a socket.

Figure 16.2. Global variables introduced in this chapter.

[image: Image]

16.3. Socket Buffers

Section 15.3 showed that each socket has an associated send and receive buffer. The sockbuf structure definition from Figure 15.5 is repeated in Figure 16.3.

Figure 16.3. sockbuf structure.

[image: Image]

72-78

Each buffer contains control information as well as pointers to data stored in mbuf chains. sb_mb points to the first mbuf in the chain, and sb_cc is the total number of data bytes contained within the mbufs. sb_hiwat and sb_lowat regulate the socket flow control algorithms, sb_mbcnt is the total amount of memory allocated to the mbufs in the buffer.

Recall that each mbuf may store from 0 to 2048 bytes of data (if an external cluster is used). sb_mbmax is an upper bound on the amount of memory to be allocated as mbufs for each socket buffer. Default limits are specified by each protocol when the PRU_ATTACH request is issued by the socket system call. The high-water and low-water marks may be modified by the process as long as the kernel-enforced hard limit of 262,144 bytes per socket buffer (sb_max) is not exceeded. The flow control algorithms are described in Sections 16.4 and 16.8. Figure 16.4 shows the default settings for the Internet protocols.

Figure 16.4. Default socket buffer limits for the Internet protocols.

[image: Image]

Since the source address of each incoming UDP datagram is queued with the data (Section 23.8), the default UDP value for sb_hiwat is set to accommodate 40 1K datagrams and their associated sockaddr_in structures (16 bytes each).

79

sb_sel is a selinfo structure used to implement the select system call (Section 16.13).

80

Figure 16.5 lists the possible values for sb_flags.

Figure 16.5. sb_flags values.

[image: Image]

81-82

sb_timeo is measured in clock ticks and limits the time a process blocks during a read or write call. The default value of 0 causes the process to wait indefinitely. sb_timeo may be changed or retrieved by the SO_SNDTIMEO and SO_RCVTIMEO socket options.

Socket Macros and Functions

There are many macros and functions that manipulate the send and receive buffers associated with each socket. The macros and functions in Figure 16.6 handle buffer locking and synchronization.

Figure 16.6. Macros and functions for socket buffer locking and synchronization.

[image: Image]

Figure 16.7 includes the macros and functions used to set the resource limits for socket buffers and to append and delete data from the buffers. In the table, m, m0, n, and control are all pointers to mbuf chains. sb points to the send or receive buffer for a socket.

Figure 16.7. Macros and functions for socket buffer allocation and manipulation.

[image: Image]

16.4. write, writev, sendto, and sendmsg System Calls

These four system calls, which we refer to collectively as the write system calls, send data on a network connection. The first three system calls are simpler interfaces to the most general request, sendmsg.

All the write system calls, directly or indirectly, call sosend, which does the work of copying data from the process to the kernel and passing data to the protocol associated with the socket. Figure 16.8 summarizes the flow of control.

Figure 16.8. All socket output is handled by sosend.

[image: Image]

In the following sections, we discuss the functions shaded in Figure 16.8. The other four system calls and soo_write are left for readers to investigate on their own.

Figure 16.9 shows the features of these four system calls and a related library function (send).

Figure 16.9. Write system calls.

[image: Image]

In Net/3, send is implemented as a library function that calls sendto. For binary compatibility with previously compiled programs, the kernel maps the old send system call to the function osend, which is not discussed in this text.

From the second column in Figure 16.9 we see that the write and writev system calls are valid with any descriptor, but the remaining system calls are valid only with socket descriptors.

The third column shows that writev and sendmsg accept data from multiple buffers. Writing from multiple buffers is called gathering. The analogous read operation is called scattering. In a gather operation the kernel accepts, in order, data from each buffer specified in an array of iovec structures. The array can have a maximum of UIO_MAXIOV elements. The structure is shown in Figure 16.10.

Figure 16.10. iovec structure.

	

-- uio.h
 41 struct iovec {
 42 char *iov_base; /* Base address */
 43 size_t iov_len; /* Length */
 44 };
-- uio.h

41-44

iov_base points to the start of a buffer of iov_len bytes.

Without this type of interface, a process would have to copy buffers into a single larger buffer or make multiple write system calls to send data from multiple buffers. Both alternatives are less efficient than passing an array of iovec structures to the kernel in a single call. With datagram protocols, the result of one writev is one datagram, which cannot be emulated with multiple writes.

Figure 16.11 illustrates the structures as they are used by writev, where iovp points to the first element of the array and iovcnt is the size of the array.

Figure 16.11. iovec arguments to writev.

[image: Image]

Datagram protocols require a destination address to be associated with each write call. Since write, writev, and send do not accept an explicit destination, they may be called only after a destination has been associated with a connectionless socket by calling connect. A destination must be provided with sendto or sendmsg, or connect must have been previously called.

The fifth column in Figure 16.9 shows that the sendxxx system calls accept optional control flags, which are described in Figure 16.12.

Figure 16.12. sendxxx system calls: flags values.

[image: Image]

As indicated in the last column of Figure 16.9, only the sendmsg system call supports control information. The control information and several other arguments to sendmsg are specified within a msghdr structure (Figure 16.13) instead of being passed separately.

Figure 16.13. msghdr structure.

	

--- socket.h
228 struct msghdr {
229 caddr_t msg_name; /* optional address */
230 u_int msg_namelen; /* size of address */
231 struct iovec *msg_iov; /* scatter/gather array */
232 u_int msg_iovlen; /* # elements in msg_iov */
233 caddr_t msg_control; /* ancillary data, see below */
234 u_int msg_controllen; /* ancillary data buffer len */
235 int msg_flags; /* Figure 16.33 */
236 };
--- socket.h

msg_name should be declared as a pointer to a sockaddr structure, since it contains a network address.

228-236

The msghdr structure contains a destination address (msg_name and msg_namelen), a scatter/gather array (msg_iov and msg_iovlen), control information (msg_control and msg_controllen), and receive flags (msg_flags). The control information is formatted as a cmsghdr structure shown in Figure 16.14.

Figure 16.14. cmsghdr structure.

	

-- socket.h
251 struct cmsghdr {
252 u_int cmsg_len; /* data byte count, including hdr */
253 int cmsg_level; /* originating protocol */
254 int cmsg_type; /* protocol-specific type */
255 /* followed by u_char cmsg_data[]; */
256 };
-- socket.h

251-256

The control information is not interpreted by the socket layer, but the messages are typed (cmsg_type) and they have an explicit length (cmsg_len). Multiple control messages may appear in the control information mbuf.

Example

Figure 16.15 shows how a fully specified msghdr structure might look during a call to sendmsg.

Figure 16.15. msghdr structure for sendmsg system call.

[image: Image]

16.5. sendmsg System Call

Only the sendmsg system call provides access to all the features of the sockets API associated with output. The sendmsg and sendit functions prepare the data structures needed by sosend, which passes the message to the appropriate protocol. For SOCK_DGRAM protocols, a message is a datagram. For SOCK_STREAM protocols, a message is a sequence of bytes. For SOCK_SEQPACKET protocols, a message could be an entire record (implicit record boundaries) or part of a larger record (explicit record boundaries). A message is always an entire record (implicit record boundaries) for SOCK_RDM protocols.

Even though the general sosend code handles SOCK_SEQPACKET and SOCK_RDM protocols, there are no such protocols in the Internet domain.

Figure 16.16 shows the sendmsg code.

Figure 16.16. sendmsg system call.

	

-- uipc_syscalls.c
307 struct sendmsg_args {
308 int s;
309 caddr_t msg;
310 int flags;
311 };

312 sendmsg(p, uap, retval)
313 struct proc *p;
314 struct sendmsg_args *uap;
315 int *retval;
316 {
317 struct msghdr msg;
318 struct iovec aiov[UIO_SMALLIOV], *iov;
319 int error;

320 if (error = copyin(uap->msg, (caddr_t) & msg, sizeof(msg)))
321 return (error);
322 if ((u_int) msg.msg_iovlen >= UIO_SMALLIOV) {
323 if ((u_int) msg.msg_iovlen >= UIO_MAXIOV)
324 return (EMSGSIZE);
325 MALLOC(iov, struct iovec *,
326 sizeof(struct iovec) * (u_int) msg.msg_iovlen, M_IOV,
327 M_WAITOK);
328 } else
329 iov = aiov;
330 if (msg.msg_iovlen &&
331 (error = copyin((caddr_t) msg.msg_iov, (caddr_t) iov,
332 (unsigned) (msg.msg_iovlen * sizeof(struct iovec)))))
333 goto done;
334 msg.msg_iov = iov;
335 error = sendit(p, uap->s, &msg, uap->flags, retval);
336 done:
337 if (iov != aiov)
338 FREE(iov, M_IOV);
339 return (error);
340 }
-- uipc_syscalls.c

307-321

There are three arguments to sendmsg: the socket descriptor; a pointer to a msghdr structure; and several control flags. The copyin function copies the msghdr structure from user space to the kernel.

Copy iov array

322-334

An iovec array with eight entries (UIO_SMALLIOV) is allocated automatically on the stack. If this is not large enough, sendmsg calls MALLOC to allocate a larger array. If the process specifies an array with more than 1024 (UIO_MAXIOV) entries, EMSGSIZE is returned. copyin places a copy of the iovec array from user space into either the array on the stack or the larger, dynamically allocated, array.

This technique avoids the relatively expensive call to malloc in the most common case of eight or fewer entries.

sendit and cleanup

335-340

When sendit returns, the data has been delivered to the appropriate protocol or an error has occurred. sendmsg releases the iovec array (if it was dynamically allocated) and returns sendit’s result.

16.6. sendit Function

sendit is the common function called by sendto and sendmsg. sendit initializes a uio structure and copies control and address information from the process into the kernel. Before discussing sosend, we must explain the uiomove function and the uio structure.

uiomove Function

The prototype for this function is:

int uiomove(caddr_t cp, int n, struct uio *uio);

The uiomove function moves n bytes between a single buffer referenced by cp and the multiple buffers specified by an iovec array in uio. Figure 16.17 shows the definition of the uio structure, which controls and records the actions of the uiomove function.

Figure 16.17. uio structure.

	

--- uio.h
 45 enum uio_rw {
 46 UIO_READ, UIO_WRITE
 47 };

 48 enum uio_seg { /* Segment flag values */
 49 UIO_USERSPACE, /* from user data space */
 50 UIO_SYSSPACE, /* from system space */
 51 UIO_USERISPACE /* from user instruction space */
 52 };

 53 struct uio {
 54 struct iovec *uio_iov; /* an array of iovec structures */
 55 int uio_iovcnt; /* size of iovec array */
 56 off_t uio_offset; /* starting position of transfer */
 57 int uio_resid; /* remaining bytes to transfer */
 58 enum uio_seg uio_segflg; /* location of buffers */
 59 enum uio_rw uio_rw; /* direction of transfer */
 60 struct proc *uio_procp; /* the associated process */
 61 };
--- uio.h

45-61

In the uio structure, uio_iov points to an array of iovec structures, uio_offset counts the number of bytes transferred by uiomove, and uio_resid counts the number of bytes remaining to be transferred. Each time uiomove is called, uio_offset increases by n and uio_resid decreases by n. uiomove adjusts the base pointers and buffer lengths in the uio_iov array to exclude any bytes that uiomove transfers each time it is called. Finally, uio_iov is advanced through each entry in the array as each buffer is transferred. uio_segflg indicates the location of the buffers specified by the base pointers in the uio_iov array and uio_rw indicates the direction of the transfer. The buffers may be located in the user data space, user instruction space, or kernel data space. Figure 16.18 summarizes the operation of uiomove. The descriptions use the argument names shown in the uiomove prototype.

Figure 16.18. uiomove operation.

[image: Image]

Example

Figure 16.19 shows a uio structure before uiomove is called.

Figure 16.19. uiomove: before.

[image: Image]

uio_iov points to the first entry in the iovec array. Each of the iov_base pointers point to the start of their respective buffer in the address space of the process. uio_offset is 0, and uio_resid is the sum of size of the three buffers. cp points to a buffer within the kernel, typically the data area of an mbuf. Figure 16.20 shows the same data structures after

Figure 16.20. uiomove: after.

[image: Image]

uiomove(cp, n, uio);

is executed where n includes all the bytes from the first buffer and only some of the bytes from the second buffer (i.e., n0 < n < n0 + n1).

After uiomove, the first buffer has a length of 0 and its base pointer has been advanced to the end of the buffer. uio_iov now points to the second entry in the iovec array. The pointer in this entry has been advanced and the length decreased to reflect the transfer of some of the bytes in the buffer. uio_offset has been increased by n and uio_resid has been decreased by n. The data from the buffers in the process has been moved into the kernel’s buffer because uio_rw was UIO_WRITE.

sendit Code

We can now discuss the sendit code shown in Figure 16.21.

Figure 16.21. sendit function.

[image: Image]

Initialize auio

341-368

sendit calls getsock to get the file structure associated with the descriptor s and initializes the uio structure to gather the output buffers specified by the process into mbufs in the kernel. The length of the transfer is calculated by the for loop as the sum of the buffer lengths and saved in uio_resid. The first if within the loop ensures that the buffer length is nonnegative. The second if ensures that uio_resid does not overflow, since uio_resid is a signed integer and iov_len is guaranteed to be nonnegative.

Copy address and control information from the process

369-385

sockargs makes copies of the destination address and control information into mbufs if they are provided by the process.

Send data and cleanup

386-401

uio_resid is saved in len so that the number of bytes transferred can be calculated if sosend does not accept all the data. The socket, destination address, uio structure, control information, and flags are all passed to sosend. When sosend returns, sendit responds as follows:

[image: Image] If sosend transfers some data and is interrupted by a signal or a blocking condition, the error is discarded and the partial transfer is reported.

[image: Image] If sosend returns EPIPE, the SIGPIPE signal is sent to the process. error is not set to 0, so if a process catches the signal and the signal handler returns, or if the process ignores the signal, the write call returns EPIPE.

[image: Image] If no error occurred (or it was discarded), the number of bytes transferred is calculated and saved in *retsize. Since sendit returns 0, syscall (Section 15.4) returns *retsize to the process instead of returning the error code.

[image: Image] If any other error occurs, the error code is returned to the process.

Before returning, sendit releases the mbuf containing the destination address. sosend is responsible for releasing the control mbuf.

16.7. sosend Function

sosend is one of the most complicated functions in the socket layer. Recall from Figure 16.8 that all five write calls eventually call sosend. It is sosend’s responsibility to pass the data and control information to the pr_usrreq function of the protocol associated with the socket according to the semantics supported by the protocol and the buffer limits specified by the socket. sosend never places data in the send buffer; it is the protocol’s responsibility to store and remove the data.

The interpretation of the send buffer’s sb_hiwat and sb_lowat values by sosend depends on whether the associated protocol implements reliable or unreliable data transfer semantics.

Reliable Protocol Buffering

For reliable protocols, the send buffer holds both data that has not yet been transmitted and data that has been sent, but has not been acknowledged. sb_cc is the number of bytes of data that reside in the send buffer, and 0 ≤ sb_cc ≤sb_hiwat.

sb_cc may temporarily exceed sb_hiwat when out-of-band data is sent.

It is sosend’s responsibility to ensure that there is enough space in the send buffer before passing any data to the protocol layer through the pr_usrreq function. The protocol layer adds the data to the send buffer. sosend transfers data to the protocol in one of two ways:

[image: Image] If PR_ATOMIC is set, sosend must preserve the message boundaries between the process and the protocol layer. In this case, sosend waits for enough space to become available to hold the entire message. When the space is available, an mbuf chain containing the entire message is constructed and passed to the protocol in a single call through the pr_usrreq function. RDP and SPP are examples of this type of protocol.

[image: Image] If PR_ATOMIC is not set, sosend passes the message to the protocol one mbuf at a time and may pass a partial mbuf to avoid exceeding the high-water mark. This method is used with SOCK_STREAM protocols such as TCP and SOCK_SEQPACKET protocols such as TP4. With TP4, record boundaries are indicated explicitly with the MSG_EOR flag (Figure 16.12), so it is not necessary for the message boundaries to be preserved by sosend.

TCP applications have no control over the size of outgoing TCP segments. For example, a message of 4096 bytes sent on a TCP socket will be split by the socket layer into two mbufs with external clusters, containing 2048 bytes each, assuming there is enough space in the send buffer for 4096 bytes. Later, during protocol processing, TCP will segment the data according to the maximum segment size for the connection, which is normally less than 2048.

When a message is too large to fit in the available buffer space and the protocol allows messages to be split, sosend still does not pass data to the protocol until the free space in the buffer rises above sb_lowat. For TCP, sb_lowat defaults to 2048 (Figure 16.4), so this rule prevents the socket layer from bothering TCP with small chunks of data when the send buffer is nearly full.

Unreliable Protocol Buffering

With unreliable protocols (e.g., UDP), no data is ever stored in the send buffer and no acknowledgment is ever expected. Each message is passed immediately to the protocol where it is queued for transmission on the appropriate network device. In this case, sb_cc is always 0, and sb_hiwat specifies the maximum size of each write and indirectly the maximum size of a datagram.

Figure 16.4 shows that sb_hiwat defaults to 9216 (9 × 1024) for UDP. Unless the process changes sb_hiwat with the SO_SNDBUF socket option, an attempt to write a datagram larger than 9216 bytes returns with an error. Even then, other limitations of the protocol implementation may prevent a process from sending large datagrams. Section 11.10 of Volume 1 discusses these defaults and limits in other TCP/IP implementations.

9216 is large enough for a NFS write, which often defaults to 8192 bytes of data plus protocol headers.

sosend Code

Figure 16.22 shows an overview of the sosend function. We discuss the four shaded sections separately.

Figure 16.22. sosend function: overview.

[image: Image]

271-278

The arguments to sosend are: so, a pointer to the relevant socket; addr, a pointer to a destination address; uio, a pointer to a uio structure describing the I/O buffers in user space; top, an mbuf chain that holds data to be sent; control, an mbuf that holds control information to be sent; and flags, which contains options for this write call.

Normally, a process provides data to the socket layer through the uio mechanism and top is null. When the kernel itself is using the socket layer (such as with NFS), the data is passed to sosend as an mbuf chain pointed to by top, and uio is null.

279-304

The initialization code is described separately.

Lock send buffer

305-308

sosend’s main processing loop starts at restart, where it obtains a lock on the send buffer with sblock before proceeding. The lock ensures orderly access to the socket buffer by multiple processes.

If MSG_DONTWAIT is set in flags, then SBLOCKWAIT returns M_NOWAIT, which tells sblock to return EWOULDBLOCK if the lock is not available immediately.

MSG_DONTWAIT is used only by NFS in Net/3.

The main loop continues until sosend transfers all the data to the protocol (i.e., resid == 0).

Check for space

309-341

Before any data is passed to the protocol, various error conditions are checked and sosend implements the flow control and resource control algorithms described earlier. If sosend blocks waiting for more space to appear in the output buffer, it jumps back to restart before continuing.

Use data from top

342-350

Once space becomes available and sosend has obtained a lock on the send buffer, the data is prepared for delivery to the protocol layer. If uio is null (i.e., the data is in the mbuf chain pointed to by top), sosend checks MSG_EOR and sets M_EOR in the chain to mark the end of a logical record. The mbuf chain is ready for the protocol layer.

Copy data from process

351-396

When uio is not null, sosend must transfer the data from the process. When PR_ATOMIC is set (e.g., UDP), this loop continues until all the data has been stored in a single mbuf chain. A break, which is not shown in Figure 16.22, causes the loop to terminate when all the data has been copied from the process, and sosend passes the entire chain to the protocol. When PR_ATOMIC is not set (e.g., TCP), this loop is executed only once, filling a single mbuf with data from uio. In this case, the mbufs are passed one at a time to the protocol.

Pass data to the protocol

397-413

For PR_ATOMIC protocols, after the mbuf chain is passed to the protocol, resid is always 0 and control falls through the two loops to release. When PR_ATOMIC is not set, sosend continues filling individuals mbufs while there is more data to send and while there is still space in the buffer. If the buffer fills and there is still data to send, sosend loops back and waits for more space before filling the next mbuf. If all the data is sent, both loops terminate.

Cleanup

414-422

After all the data has been passed to the protocol, the socket buffer is unlocked, any remaining mbufs are discarded, and sosend returns.

The detailed description of sosend is shown in four parts:

[image: Image] initialization (Figure 16.23),

Figure 16.23. sosend function: initialization.

	

-- uipc_socket.c
279 struct proc *p = curproc; /* XXX */
280 struct mbuf **mp;
281 struct mbuf *m;
282 long space, len, resid;
283 int clen = 0, error, s, dontroute, mlen;
284 int atomic = sosendallatonce(so) || top;

285 if (uio)
286 resid = uio->uio_resid;
287 else
288 resid = top->m_pkthdr.len;
289 /*
290 * In theory resid should be unsigned.
291 * However, space must be signed, as it might be less than 0
292 * if we over-committed, and we must use a signed comparison
293 * of space and resid. On the other hand, a negative resid
294 * causes us to loop sending 0-length segments to the protocol.
295 */
296 if (resid < 0)
297 return (EINVAL);
298 dontroute =
299 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
300 (so->so_proto->pr_flags & PR_ATOMIC);
301 p->p_stats->p_ru.ru_msgsnd++;
302 if (control)
303 clen = control->m_len;
304 #define snderr(errno) { error = errno; splx(s); goto release; }
-- uipc_socket.c

[image: Image] error and resource checking (Figure 16.24),

Figure 16.24. sosend function: error and resource checking.

	

--- uipc_socket.c
309 s = splnet();
310 if (so->so_state & SS_CANTSENDMORE)
311 snderr(EPIPE);
312 if (so->so_error)
313 snderr(so->so_error);
314 if ((so->so_state & SS_ISCONNECTED) == 0) {
315 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
316 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
317 !(resid == 0 && clen != 0))
318 snderr(ENOTCONN);
319 } else if (addr == 0)
320 snderr(EDESTADDRREQ);
321 }
322 space = sbspace(&so->so_snd);
323 if (flags & MSG_OOB)
324 space += 1024;
325 if (atomic && resid > so->so_snd.sb_hiwat ||
326 clen > so->so_snd.sb_hiwat)
327 snderr(EMSGSIZE);
328 if (space < resid + clen && uio &&
329 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
330 if (so->so_state & SS_NBIO)
331 snderr(EWOULDBLOCK);
332 sbunlock(&so->so_snd);
333 error = sbwait(&so->so_snd);
334 splx(s);
335 if (error)
336 goto out;
337 goto restart;
338 }
339 splx(s);
340 mp = ⊤
341 space -= clen;
--- uipc_socket.c

[image: Image] data transfer (Figure 16.25), and

Figure 16.25. sosend function: data transfer.

[image: Image]

[image: Image] protocol dispatch (Figure 16.26).

Figure 16.26. sosend function: protocol dispatch.

	

-- uipc_socket.c
397 if (dontroute)
398 so->so_options |= SO_DONTROUTE;
399 s = splnet(); /* XXX */
400 error = (*so->so_proto->pr_usrreq) (so,
401 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
402 top, addr, control);
403 splx(s);
404 if (dontroute)
405 so->so_options &= ~SO_DONTROUTE;
406 clen = 0;
407 control = 0;
408 top = 0;
409 mp = ⊤
410 if (error)
411 goto release;
412 } while (resid && space > 0);
413 } while (resid);
-- uipc_socket.c

The first part of sosend shown in Figure 16.23 initializes various variables.

Compute transfer size and semantics

279-284

atomic is set if sosendallatonce is true (any protocol for which PR_ATOMIC is set) or the data has been passed to sosend as an mbuf chain in top. This flag controls whether data is passed to the protocol as a single mbuf chain or in separate mbufs.

285-297

resid is the number of bytes in the iovec buffers or the number of bytes in the top mbuf chain. Exercise 16.1 discusses why resid might be negative.

If requested, disable routing

298-303

dontroute is set when the routing tables should be bypassed for this message only. clen is the number of bytes in the optional control mbuf.

304

The macro snderr posts the error code, reenables protocol processing, and jumps to the cleanup code at out. This macro simplifies the error handling within the function.

Figure 16.24 shows the part of sosend that checks for error conditions and waits for space to appear in the send buffer.

309

Protocol processing is suspended to prevent the buffer from changing while it is being examined. Before each transfer, sosend checks several conditions:

[image: Image] 310-311

If output from the socket is prohibited (e.g., the write-half of a TCP connection has been closed), EPIPE is returned.

[image: Image] 312-313

If the socket is in an error state (e.g., an ICMP port unreachable may have been generated by a previous datagram), so_error is returned. sendit discards the error if some data has been sent before the error occurs (Figure 16.21, line 389).

[image: Image] 314-318

If the protocol requires connections and a connection has not been established or a connection attempt has not been started, ENOTCONN is returned. sosend permits a write consisting of control information and no data even when a connection has not been established.

The Internet protocols do not use this feature, but it is used by TP4 to send data with a connection request, to confirm a connection request, and to send data with a disconnect request.

[image: Image] 319-321

If a destination address is not specified for a connectionless protocol (e.g., the process calls send without establishing a destination with connect), EDESTADDREQ is returned.

Compute available space

322-324

sbspace computes the amount of free space remaining in the send buffer. This is an administrative limit based on the buffer’s high-water mark, but is also limited by sb_mbmax to prevent many small messages from consuming too many mbufs (Figure 16.6). sosend gives out-of-band data some priority by relaxing the limits on the buffer size by 1024 bytes.

Enforce message size limit

325-327

If atomic is set and the message is larger than the high-water mark, EMSGSIZE is returned; the message is too large to be accepted by the protocol e ven if the buffer were empty. If the control information is larger than the high-water mark, EMSGSIZE is also returned. This is the test that limits the size of a datagram or record.

Wait for more space?

328-329

If there is not enough space in the send buffer, the data is from a process (versus from the kernel in top), and one of the following conditions is true, then sosend must wait for additional space before continuing:

[image: Image] the message must be passed to protocol in a single request (atomic is set), or

[image: Image] the message may be split, but the free space has dropped below the low-water mark, or

[image: Image] the message may be split, but the control information does not fit in the available space.

When the data is passed to sosend in top (i.e., when uio is null), the data is already located in mbufs. Therefore sosend ignores the high- and low-water marks since no additional mbuf allocations are required to pass the data to the protocol.

If the send buffer low-water mark is not used in this test, an interesting interaction occurs between the socket layer and the transport layer that leads to performance degradation. [Crowcroft et al. 1992] provides details on this scenario.

Wait for space

330-338

If sosend must wait for space and the socket is nonblocking, EWOULDBLOCK is returned. Otherwise, the buffer lock is released and sosend waits with sbwait until the status of the buffer changes. When sbwait returns, sosend reenables protocol processing and jumps back to restart to obtain a lock on the buffer and to check the error and space conditions again before continuing.

By default, sbwait blocks until data can be sent. By changing sb_timeo in the buffer through the SO_SNDTIMEO socket option, the process selects an upper bound for the wait time. If the timer expires, sbwait returns EWOULDBLOCK. Recall from Figure 16.21 that this error is discarded by sendit if some data has already been transferred to the protocol. This timer does not limit the length of the entire call, just the inactivity time between filling mbufs.

339-341

At this point, sosend has determined that some data may be passed to the protocol. splx enables interrupts since they should not be blocked during the relatively long time it takes to copy data from the process to the kernel. mp holds a pointer used to construct the mbuf chain. The size of the control information (clen) is subtracted from the space available before sosend transfers any data from the process.

Figure 16.25 shows the section of sosend that moves data from the process to one or more mbufs in the kernel.

Allocate packet header or standard mbuf

351-360

When atomic is set, this code allocates a packet header during the first iteration of the loop and standard mbufs afterwards. When atomic is not set, this code always allocates a packet header since top is always cleared before entering the loop.

If possible, use a cluster

361-371

If the message is large enough to make a cluster allocation worthwhile and space is greater than or equal to MCLBYTES, a cluster is attached to the mbuf by MCLGET. When space is less than MCLBYTES, the extra 2048 bytes will break the allocation limit for the buffer since the entire cluster is allocated even if resid is less than MCLBYTES.

If MCLGET fails, sosend jumps to nopages and uses a standard mbuf instead of an external cluster.

The test against MINCLSIZE should use >, not >=, since a write of 208 (MINCLSIZE) bytes fits within two mbufs.

When atomic is set (e.g., UDP), the mbuf chain represents a datagram or record and max_hdr bytes are reserved at the front of the first cluster for protocol headers. Subsequent clusters are part of the same chain and do not need room for the headers.

If atomic is not set (e.g., TCP), no space is reserved since sosend does not know how the protocol will segment the outgoing data.

Notice that space is decremented by the size of the cluster (2048 bytes) and not by len, which is the number of data bytes to be placed in the cluster (Exercise 16.2).

Prepare the mbuf

372-382

If a cluster was not used, the number of bytes stored in the mbuf is limited by the smaller of: (1) the space in the mbuf, (2) the number of bytes in the message, or (3) the space in the buffer.

When atomic is set, MH_ALIGN locates the data at the end of the buffer for the first buffer in the chain. MH_ALIGN is skipped if the data completely fills the mbuf. This may or may not leave enough room for protocol headers, depending on how much data is placed in the mbuf. When atomic is not set, no space is set aside for the headers.

Get data from the process

383-395

uiomove copies len bytes of data from the process to the mbuf. After the transfer, the mbuf length is updated, the previous mbuf is linked to the new mbuf (or top points to the first mbuf), and the length of the mbuf chain is updated. If an error occurred during the transfer, sosend jumps to release.

When the last byte is transferred from the process, M_EOR is set in the packet if the process set MSG_EOR, and sosend breaks out of this loop.

MSG_EOR applies only to protocols with explicit record boundaries such as TP4, from the OSI protocol suite. TCP does not support logical records and ignores the MSG_EOR flag.

Fill another buffer?

396

If atomic is set, sosend loops back and begins filling another mbuf.

The test for space > 0 appears to be extraneous. space is irrelevant when atomic is not set since the mbufs are passed to the protocol one at a time. When atomic is set, this loop is entered only when there is enough space for the entire message. See also Exercise 16.2.

The last section of sosend, shown in Figure 16.26, passes the data and control mbufs to the protocol associated with the socket.

397-405

The socket’s SO_DONTROUTE option is toggled if necessary before and after passing the data to the protocol layer to bypass the routing tables on this message. This is the only option that can be enabled for a single message and, as described with Figure 16.23, it is controlled by the MSG_DONTROUTE flag during a write.

pr_usrreq is bracketed with splnet and splx to block interrupts while the protocol is processing the message. This is a paranoid assumption since some protocols (such as UDP) may be able to do output processing without blocking interrupts, but this information is not available at the socket layer.

If the process tagged this message as out-of-band data, sosend issues the PRU_SENDOOB request; otherwise it issues the PRU_SEND request. Address and control mbufs are also passed to the protocol at this time.

406-413

clen, control, top, and mp are reset, since control information is passed to the protocol only once and a new mbuf chain is constructed for the next part of the message. resid is nonzero only when atomic is not set (e.g., TCP). In that case, if space remains in the buffer, sosend loops back to fill another mbuf. If there is no more space, sosend loops back to wait for more space (Figure 16.24).

We’ll see in Chapter 23 that unreliable protocols, such as UDP, immediately queue the data for transmission on the network. Chapter 26 describes how reliable protocols, such as TCP, add the data to the socket’s send buffer where it remains until it is sent to, and acknowledged by, the destination.

sosend Summary

sosend is a complex function. It is 142 lines long, contains three nested loops, one loop implemented with goto, two code paths based on whether PR_ATOMIC is set or not, and two concurrency locks. As with much software, some of the complexity has accumulated over the years. NFS added the MSG_DONTWAIT semantics and the possibility of receiving data from an mbuf chain instead of the buffers in a process. The SS_ISCONFIRMING state and MSG_EOR flag were introduced to handle the connection and record semantics of the OSI protocols.

A cleaner approach would be to implement a separate sosend function for each type of protocol and dispatch through a pr_send pointer in the protosw entry. This idea is suggested and implemented for UDP in [Partridge and Pink 1993].

Performance Considerations

As described in Figure 16.25, sosend, when possible, passes message in mbuf-sized chunks to the protocol layer. While this results in more calls to the protocol than building and passing an entire mbuf chain, [Jacobson 1988a] reports that it improves performance by increasing parallelism.

Transferring one mbuf at a time (up to 2048 bytes) allows the CPU to prepare a packet while the network hardware is transmitting. Contrast this to a sending a large mbuf chain: while the chain is being constructed, the network and the receiving system are idle. On the system described in [Jacobson 1988a], this change resulted in a 20% increase in network throughput.

It is important to make sure the send buffer is always larger than the bandwidth-delay product of a connection (Section 20.7 of Volume 1). For example, if TCP discovers that the connection can hold 20 segments before an acknowledgment is received, the send buffer must be large enough to hold the 20 unacknowledged segments. If it is too small, TCP will run out of data to send before the first acknowledgment is returned and the connection will be idle for some period of time.

16.8. read, readv, recvfrom, and recvmsg System Calls

These four system calls, which we refer to collectively as read system calls, receive data from a network connection. The first three system calls are simpler interfaces to the most general read system call, recvmsg. Figure 16.27 summarizes the features of the four read system calls and one library function (recv).

Figure 16.27. Read system calls.

[image: Image]

In Net/3, recv is implemented as a library function that calls recvfrom. For binary compatibility with previously compiled programs, the kernel maps the old recv system call to the function orecv. We discuss only the kernel implementation of recvfrom.

The read and readv system calls are valid with any descriptor, but the remaining calls are valid only with socket descriptors.

As with the write calls, multiple buffers are specified by an array of iovec structures. For datagram protocols, recvfrom and recvmsg return the source address associated with each incoming datagram. For connection-oriented protocols, getpeername returns the address associated with the other end of the connection. The flags associated with the receive calls are shown in Section 16.11.

As with the write calls, the receive calls utilize a common function, in this case soreceive, to do all the work. Figure 16.28 illustrates the flow of control for the read system calls.

Figure 16.28. All socket input is processed by soreceive.

[image: Image]

We discuss only the three shaded functions in Figure 16.28. The remaining functions are left for readers to investigate on their own.

16.9. recvmsg System Call

The recvmsg function is the most general read system call. Addresses, control information, and receive flags may be discarded without notification if a process uses one of the other read system calls while this information is pending. Figure 16.29 shows the recvmsg function.

Figure 16.29. recvmsg system call.

	

-- uipc_syscalls.c
433 struct recvmsg_args {
434 int s;
435 struct msghdr *msg;
436 int flags;
437 };

438 recvmsg(p, uap, retval)
439 struct proc *p;
440 struct recvmsg_args *uap;
441 int *retval;
442 {
443 struct msghdr msg;
444 struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
445 int error;

446 if (error = copyin((caddr_t) uap->msg, (caddr_t) & msg, sizeof(msg)))
447 return (error);
448 if ((u_int) msg.msg_iovlen >= UIO_SMALLIOV) {
449 if ((u_int) msg.msg_iovlen >= UIO_MAXIOV)
450 return (EMSGSIZE);
451 MALLOC(iov, struct iovec *,
452 sizeof(struct iovec) * (u_int) msg.msg_iovlen, M_IOV,
453 M_WAITOK);
454 } else
455 iov = aiov;
456 msg.msg_flags = uap->flags;
457 uiov = msg.msg_iov;
458 msg.msg_iov = iov;
459 if (error = copyin((caddr_t) uiov, (caddr_t) iov,
460 (unsigned) (msg.msg_iovlen * sizeof(struct iovec))))
461 goto done;
462 if ((error = recvit(p, uap->s, &msg, (caddr_t) 0, retval)) == 0) {
463 msg.msg_iov = uiov;
464 error = copyout((caddr_t) & msg, (caddr_t) uap->msg, sizeof(msg));
465 }
466 done:
467 if (iov != aiov)
468 FREE(iov, M_IOV);
469 return (error);
470 }
-- uipc_syscalls.c

433-445

The three arguments to recvmsg are: the socket descriptor; a pointer to a msghdr structure; and several control flags.

Copy iov array

446-461

As with sendmsg, recvmsg copies the msghdr structure into the kernel, allocates a larger iovec array if the automatic array aiov is too small, and copies the array entries from the process into the kernel array pointed to by iov (Section 16.4). The flags provided as the third argument are copied into the msghdr structure.

recvit and cleanup

462-470

After recvit has received data, the msghdr structure is copied back into the process with the updated buffer lengths and flags. If a larger iovec structure was allocated, it is released before recvmsg returns.

16.10. recvit Function

The recvit function shown in Figures 16.30 and 16.31 is called from recv, recvfrom, and recvmsg. It prepares a uio structure for processing by soreceive based on the msghdr structure prepared by the recvxxx calls.

Figure 16.30. recvit function: initialize uio structure.

	

--- uipc_syscalls.c
471 recvit(p, s, mp, namelenp, retsize)
472 struct proc *p;
473 int s;
474 struct msghdr *mp;
475 caddr_t namelenp;
476 int *retsize;
477 {
478 struct file *fp;
479 struct uio auio;
480 struct iovec *iov;
481 int i;
482 int len, error;
483 struct mbuf *from = 0, *control = 0;

484 if (error = getsock(p->p_fd, s, &fp))
485 return (error);
486 auio.uio_iov = mp->msg_iov;
487 auio.uio_iovcnt = mp->msg_iovlen;
488 auio.uio_segflg = UIO_USERSPACE;
489 auio.uio_rw = UIO_READ;
490 auio.uio_procp = p;
491 auio.uio_offset = 0; /* XXX */
492 auio.uio_resid = 0;
493 iov = mp->msg_iov;
494 for (i = 0; i < mp->msg_iovlen; i++, iov++) {
495 if (iov->iov_len < 0)
496 return (EINVAL);
497 if ((auio.uio_resid += iov->iov_len) < 0)
498 return (EINVAL);
499 }
500 len = auio.uio_resid;
--- uipc_syscalls.c

Figure 16.31. recvit function: return results.

[image: Image]

471-500

getsock returns the file structure for the descriptor s, and then recvit initializes the uio structure to describe a read transfer from the kernel to the process. The number of bytes to transfer is computed by summing the msg_iovlen members of the iovec array. The total is saved in uio_resid and in len.

The second half of recvit, shown in Figure 16.31, calls soreceive and copies the results back to the process.

Call soreceive

501-510

soreceive implements the complex semantics of receiving data from the socket buffers. The number of bytes transferred is saved in *retsize and returned to the process. When an signal arrives or a blocking condition occurs after some data has been copied to the process (len is not equal to uio_resid), the error is discarded and the partial transfer is reported.

Copy address and control information to the process

511-542

If the process provided a buffer for an address or control information or both, the buffers are filled and their lengths adjusted according to what soreceive returned. An address may be truncated if the buffer is too small. This can be detected by the process if it saves the buffer length before the read call and compares it with the value returned by the kernel in the namelenp variable (or in the length field of the sockaddr structure). Truncation of control information is reported by setting MSG_CTRUNC in msg_flags. See also Exercise 16.7.

Cleanup

543-549

At out, the mbufs allocated for the source address and the control information are released.

16.11. soreceive Function

This function transfers data from the receive buffer of the socket to the buffers specified by the process. Some protocols provide an address specifying the sender of the data, and this can be returned along with additional control information that may be present. Before examining the code, we need to discuss the semantics of a receive operation, out-of-band data, and the organization of a socket’s receive buffer.

Figure 16.32 lists the flags that are recognized by the kernel during soreceive.

Figure 16.32. recvxxx system calls: flag values passed to kernel.

[image: Image]

recvmsg is the only read system call that returns flags to the process. In the other calls, the information is discarded by the kernel before control returns to the process. Figure 16.33 lists the flags that recvmsg can set in the msghdr structure.

Figure 16.33. recvmsg system call: msg_flag values returned by kernel.

[image: Image]

Out-of-Band Data

Out-of-band (OOB) data semantics vary widely among protocols. In general, protocols expedite OOB data along a previously established communication link. The OOB data might not remain in sequence with previously sent regular data. The socket layer supports two mechanisms to facilitate handling OOB data in a protocol-independent way: tagging and synchronization. In this chapter we describe the abstract OOB mechanisms implemented by the socket layer. UDP does not support OOB data. The relationship between TCP’s urgent data mechanism and the socket OOB mechanism is described in the TCP chapters.

A sending process tags data as OOB data by setting the MSG_OOB flag in any of the sendxxx calls, sosend passes this information to the socket’s protocol, which provides any special services, such as expediting the data or using an alternate queueing strategy.

When a protocol receives OOB data, the data is set aside instead of placing it in the socket’s receive buffer. A process receives the pending OOB data by setting the MSG_OOB flag in one of the recvxxx calls. Alternatively, the receiving process can ask the protocol to place OOB data inline with the regular data by setting the SO_OOBINLINE socket option (Section 17.3). When SO_OOBINLINE is set, the protocol places incoming OOB data in the receive buffer with the regular data. In this case, MSG_OOB is not used to receive the OOB data. Read calls return either all regular data or all OOB data. The two types are never mixed in the input buffers of a single input system call. A process that uses recvmsg to receive data can examine the MSG_OOB flag to determine if the returned data is regular data or OOB data that has been placed inline.

The socket layer supports synchronization of OOB and regular data by allowing the protocol layer to mark the point in the regular data stream at which OOB data was received. The receiver can determine when it has reached this mark by using the SIOCATMARK ioctl command after each read system call. When receiving regular data, the socket layer ensures that only the bytes preceding the mark are returned in a single message so that the receiver does not inadvertently pass the mark. If additional OOB data is received before the receiver reaches the mark, the mark is silently advanced.

Example

Figure 16.34 illustrates the two methods of receiving out-of-band data.

Figure 16.34. Receiving out-of-band data.

[image: Image]

In both examples, bytes A through I have been received as regular data, byte J as out-of-band data, and bytes K and L as regular data. The receiving process has accepted all data up to but not including byte A.

In the first example, the process can read bytes A through I or, if MSG_OOB is set, byte J. Even if the length of the read request is more than 9 bytes (A—I), the socket layer returns only 9 bytes to avoid passing the out-of-band synchronization mark. When byte I is consumed, SIOCATMARK is true; it is not necessary to consume byte J for the process to reach the out-of-band mark.

In the second example, the process can read only bytes A through I, at which point SIOCATMARK is true. A second call can read bytes J through L.

In Figure 16.34, byte J is not the byte identified by TCP’s urgent pointer. The urgent pointer in this example would point to byte K. See Section 29.7 for details.

Other Receive Options

A process can set the MSG_PEEK flag to retrieve data without consuming it. The data remains on the receive queue until a read system call without MSG_PEEK is processed.

The MSG_WAITALL flag indicates that the call should not return until enough data can be returned to fulfill the entire request. Even if soreceive has some data that can be returned to the process, it waits until additional data has been received.

When MSG_WAITALL is set, soreceive can return without filling the buffer in the following cases:

[image: Image] the read-half of the connection is closed,

[image: Image] the socket’s receive buffer is smaller than the size of the read,

[image: Image] an error occurs while the process is waiting for additional data,

[image: Image] out-of-band data becomes available, or

[image: Image] the end of a logical record occurs before the read buffer is filled.

NFS is the only software in Net/3 that uses the MSG_WAITALL and MSG_DONTWAIT flags. MSG_DONTWAIT can be set by a process to issue a nonblocking read system call without selecting nonblocking I/O with ioctl or fcntl.

Receive Buffer Organization: Message Boundaries

For protocols that support message boundaries, each message is stored in a single chain of mbufs. Multiple messages in the receive buffer are linked together by m_nextpkt to form a queue of mbufs (Figure 2.21). The protocol processing layer adds data to the receive queue and the socket layer removes data from the receive queue. The high-water mark for a receive buffer restricts the amount of data that can be stored in the buffer.

When PR_ATOMIC is not set, the protocol layer stores as much data in the buffer as possible and discards the portion of the incoming data that does not fit. For TCP, this means that any data that arrives and is outside the receive window is discarded. When PR_ATOMIC is set, the entire message must fit within the buffer. If the message does not fit, the protocol layer discards the entire message. For UDP, this means that incoming datagrams are discarded when the receive buffer is full, probably because the process is not reading datagrams fast enough.

Protocols with PR_ADDR set use sbappendaddr to construct an mbuf chain and add it to the receive queue. The chain contains an mbuf with the source address of the message, 0 or more control mbufs, followed by 0 or more mbufs containing the data.

For SOCK_SEQPACKET and SOCK_RDM protocols, the protocol builds an mbuf chain for each record and calls sbappendrecord to append the record to the end of the receive buffer if PR_ATOMIC is set. If PR_ATOMIC is not set (OSI’s TP4), a new record is started with sbappendrecord. Additional data is added to the record with sbappend.

It is not correct to assume that PR_ATOMIC indicates the buffer organization. For example, TP4 does not have PR_ATOMIC set, but supports record boundaries with the M_EOR flag.

Figure 16.35 illustrates the organization of a UDP receive buffer consisting of 3 mbuf chains (i.e., three datagrams). The m_type value for each mbuf is included.

Figure 16.35. UDP receive buffer consisting of three datagrams.

[image: Image]

In the figure, the third datagram has some control information associated with it. Three UDP socket options can cause control information to be placed in the receive buffer. See Figure 22.5 and Section 23.7 for details.

For PR_ATOMIC protocols, sb_lowat is ignored while data is being received. When PR_ATOMIC is not set, sb_lowat is the smallest number of bytes returned in a read system call. There are some exceptions to this rule, discussed with Figure 16.41.

Receive Buffer Organization: No Message Boundaries

When the protocol does not maintain message boundaries (i.e., SOCK_STREAM protocols such as TCP), incoming data is appended to the end of the last mbuf chain in the buffer with sbappend. Incoming data is trimmed to fit within the receive buffer, and sb_lowat puts a lower bound on the number of bytes returned by a read system call.

Figure 16.36 illustrates the organization of a TCP receive buffer, which contains only regular data.

Figure 16.36. so_rcv buffer for TCP.

[image: Image]

Control Information and Out-of-band Data

Unlike TCP, some stream protocols support control information and call sbappendcontrol to append the control information and the associated data as a new mbuf chain in the receive buffer. If the protocol supports inline OOB data, sbinsertoob inserts a new mbuf chain just after any mbuf chain that contains OOB data, but before any mbuf chain with regular data. This ensures that incoming OOB data is queued ahead of any regular data.

Figure 16.37 illustrates the organization of a receive buffer that contains control information and OOB data.

Figure 16.37. so_rcv buffer with control and OOB data.

[image: Image]

The Unix domain stream protocol supports control information and the OSI TP4 protocol supports MT_OOBDATA mbufs. TCP does not support control data nor does it support the MT_OOBDATA form of out-of-band data. If the byte identified by TCP’s urgent pointer is stored inline (SO_OOBINLINE is set), it appears as regular data, not OOB data. TCP’s handling of the urgent pointer and the associated byte is described in Section 29.7.

16.12. soreceive Code

We now have enough background information to discuss soreceive in detail. While receiving data, soreceive must respect message boundaries, handle addresses and control information, and handle any special semantics identified by the read flags (Figure 16.32). The general rule is that soreceive processes one record per call and tries to return the number of bytes requested. Figure 16.38 shows an overview of the function.

Figure 16.38. soreceive function: overview.

[image: Image]
[image: Image]

439-446

soreceive has six arguments. so is a pointer to the socket. A pointer to an mbuf to receive address information is returned in *paddr. If mp0 points to an mbuf pointer, soreceive transfers the receive buffer data to an mbuf chain pointed to by *mp0. In this case, the uio structure is used only for the count in uio_resid. If mp0 is null, soreceive copies the data into buffers described by the uio structure. A pointer to the mbuf containing control information is returned in *controlp, and soreceive returns the flags described in Figure 16.33 in *flagsp.

447-453

soreceive starts by setting pr to point to the socket’s protocol switch structure and saving uio_resid (the size of the receive request) in orig_resid. If control information or addressing information is copied from the kernel to the process, orig_resid is set to 0. If data is copied, uio_resid is updated. In either case, orig_resid will not equal uio_resid. This fact is used at the end of soreceive (Figure 16.51).

454-461

*paddr and *controlp are cleared. The flags passed to soreceive in *flagsp are saved in flags after the MSG_EOR flag is cleared (Exercise 16.8). flagsp is a value-result argument, but only the recvmsg system call can receive the result flags. If flagsp is null, flags is set to 0.

483-487

Before accessing the receive buffer, sblock locks the buffer. soreceive waits for the lock unless MSG_DONTWAIT is set in flags.

This is another side effect of supporting calls to the socket layer from NFS within the kernel.

Protocol processing is suspended, so soreceive is not interrupted while it examines the buffer. m is the first mbuf on the first chain in the receive buffer.

If necessary, wait for data

488-541

soreceive checks several conditions and if necessary waits for more data to arrive in the buffer before continuing. If soreceive sleeps in this code, it jumps back to restart when it wakes up to see if enough data has arrived. This continues until the request can be satisfied.

542-545

soreceive jumps to dontblock when it has enough data to satisfy the request. A pointer to the second chain in the receive buffer is saved in nextrecord.

Process address and control information

546-590

Address information and control information are processed before any other data is transferred from the receive buffer.

Setup data transfer

591-597

Since only OOB data or regular data is transferred in a single call to soreceive, this code remembers the type of data at the front of the queue so soreceive can stop the transfer when the type changes.

Mbuf data transfer loop

598-692

This loop continues as long as there are mbufs in the buffer (m is not null), the requested number of bytes has not been transferred (uio_resid > 0), and no error has occurred.

Cleanup

693-719

The remaining code updates various pointers, flags, and offsets; releases the socket buffer lock; enables protocol processing; and returns.

In Figure 16.39, soreceive handles requests for OOB data.

Figure 16.39. soreceive function: out-of-band data.

	

-- uipc_socket.c
462 if (flags & MSG_OOB) {
463 m = m_get(M_WAIT, MT_DATA);
464 error = (*pr->pr_usrreq) (so, PRU_RCVOOB,
465 m, (struct mbuf *) (flags & MSG_PEEK), (struct mbuf *) 0);
466 if (error)
467 goto bad;
468 do {
469 error = uiomove(mtod(m, caddr_t),
470 (int) min(uio->uio_resid, m->m_len), uio);
471 m = m_free(m);
472 } while (uio->uio_resid && error == 0 && m);
473 bad:
474 if (m)
475 m_freem(m);
476 return (error);
477 }
-- uipc_socket.c

Receive OOB data

462-477

Since OOB data is not stored in the receive buffer, soreceive allocates a standard mbuf and issues the PRU_RCVOOB request to the protocol. The while loop copies any data returned by the protocol to the buffers specified by uio. After the copy, soreceive returns 0 or the error code.

UDP always returns EOPNOTSUPP for the PRU_RCVOOB request. See Section 30.2 for details regarding TCP urgent processing. In Figure 16.40, soreceive handles connection confirmation.

Figure 16.40. soreceive function: connection confirmation.

	

--- uipc_socket.c
478 if (mp)
479 *mp = (struct mbuf *) 0;
480 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
481 (*pr->pr_usrreq) (so, PRU_RCVD, (struct mbuf *) 0,
482 (struct mbuf *) 0, (struct mbuf *) 0);
--- uipc_socket.c

Connection confirmation

478-482

If the data is to be returned in an mbuf chain, *mp is initialized to null. If the socket is in the SO_ISCONFIRMING state, the PRU_RCVD request notifies the protocol that the process is attempting to receive data.

The SO_ISCONFIRMING state is used only by the OSI stream protocol, TP4. In TP4, a connection is not considered complete until a user-level process has confirmed the connection by attempting to send or receive data. The process can reject a connection by calling shutdown or close, perhaps after calling getpeername to determine where the connection came from.

Figure 16.38 showed that the receive buffer is locked before it is examined by the code in Figure 16.41. This part of soreceive determines if the read system call can be satisfied by the data that is already in the receive buffer.

Figure 16.41. soreceive function: enough data?

	

-- uipc_socket.c
488 /*
489 * If we have less data than requested, block awaiting more
490 * (subject to any timeout) if:
491 * 1. the current count is less than the low water mark, or
492 * 2. MSG_WAITALL is set, and it is possible to do the entire
493 * receive operation at once if we block (resid <= hiwat).
494 * 3. MSG_DONTWAIT is not set
495 *
496 * If MSG_WAITALL is set but resid is larger than the receive buffer,
497 * we have to do the receive in sections, and thus risk returning
498 * a short count if a timeout or signal occurs after we start.
499 */
500 if (m == 0 || ((flags & MSG_DONTWAIT) == 0 &&
501 so->so_rcv.sb_cc < uio->uio_resid) &&
502 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
503 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
504 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0) {
-- uipc_socket.c

Can the call be satisfied now?

488-504

The general rule for soreceive is that it waits until enough data is in the receive buffer to satisfy the entire read. There are several conditions that cause an error or less data than was requested to be returned.

If any of the following conditions are true, the process is put to sleep to wait for more data to arrive so the call can be satisfied:

[image: Image] There is no data in the receive buffer (m equals 0).

[image: Image] There is not enough data to satisfy the entire read (sb_cc < uio_resid) and MSG_DONTWAIT is not set), the minimum amount of data is not available (sb_cc < sb_lowat), and more data can be appended to this chain when it arrives (m_nextpkt is 0 and PR_ATOMIC is not set).

[image: Image] There is not enough data to satisfy the entire read, a minimum amount of data is available, data can be added to this chain, but MSG_WAITALL indicates that soreceive should wait until the entire read can be satisfied.

If the conditions in the last case are met but the read is too large to be satisfied without blocking (uio_resid <= sb_hiwat), soreceive continues without waiting for more data.

If there is some data in the buffer and MSG_DONTWAIT is set, soreceive does not wait for more data.

There are several reasons why waiting for more data may not be appropriate. In Figure 16.42, soreceive checks for these conditions and returns, or waits for more data to arrive.

Figure 16.42. soreceive function: wait for more data?

	

--- uipc_socket.c
505 if (so->so_error) {
506 if (m)
507 goto dontblock;
508 error = so->so_error;
509 if ((flags & MSG_PEEK) == 0)
510 so->so_error = 0;
511 goto release;
512 }
513 if (so->so_state & SS_CANTRCVMORE) {
514 if (m)
515 goto dontblock;
516 else
517 goto release;
518 }
519 for (; m; m = m->m_next)
520 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
521 m = so->so_rcv.sb_mb;
522 goto dontblock;
523 }
524 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0 &&
525 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
526 error = ENOTCONN;
527 goto release;
528 }
529 if (uio->uio_resid == 0)
530 goto release;
531 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
532 error = EWOULDBLOCK;
533 goto release;
534 }
535 sbunlock(&so->so_rcv);
536 error = sbwait(&so->so_rcv);
537 splx(s);
538 if (error)
539 return (error);
540 goto restart;
541 }
--- uipc_socket.c

Wait for more data?

505-534

At this point, soreceive has determined that it must wait for additional data to arrive before the read can be satisfied. Before waiting it checks for several additional conditions:

[image: Image] 505-512

If the socket is in an error state and empty (m is null), soreceive returns the error code. If there is an error and the receive buffer also contains data (m is nonnull), the data is returned and a subsequent read returns the error when there is no more data. If MSG_PEEK is set, the error is not cleared, since a read system call with MSG_PEEK set should not change the state of the socket.

[image: Image] 513-518

If the read-half of the connection has been closed and data remains in the receive buffer, sosend does not wait and returns the data to the process (at dontblock). If the receive buffer is empty, soreceive jumps to release and the read system call returns 0, which indicates that the read-half of the connection is closed.

[image: Image] 519-523

If the receive buffer contains out-of-band data or the end of a logical record, soreceive does not wait for additional data and jumps to dontblock.

[image: Image] 524-528

If the protocol requires a connection and it does not exist, ENOTCONN is posted and the function jumps to release.

[image: Image] 529-534

If the read is for 0 bytes or nonblocking semantics have been selected, the function jumps to release and returns 0 or EWOULDBLOCK, respectively.

Yes, wait for more data

535-541

soreceive has now determined that it must wait for more data, and that it is reasonable to do so (i.e., some data will arrive). The receive buffer is unlocked while the process sleeps in sbwait. If sbwait returns because of an error or a signal, soreceive returns the error; otherwise the function jumps to restart to determine if the read can be satisfied now that more data has arrived.

As in sosend, a process can enable a receive timer for sbwait with the SO_RCVTIMEO socket option. If the timer expires before a data arrives, sbwait returns EWOULDBLOCK.

The effect of this timer is not what one would expect. Since the timer gets reset every time there is activity on the socket buffer, the timer never expires if at least 1 byte arrives within the timeout interval. This can delay the return of the read system call for more than the value of the timer. sb_timeo is an inactivity timer and does not put an upper bound on the amount of time that may be required to satisfy the read system call.

At this point, soreceive is prepared to transfer some data from the receive buffer. Figure 16.43 shows the transfer of any address information.

Figure 16.43. soreceive function: return address information.

	

--- uipc_socket.c
542 dontblock:
543 if (uio->uio_procp)
544 uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
545 nextrecord = m->m_nextpkt;
546 if (pr->pr_flags & PR_ADDR) {
547 orig_resid = 0;
548 if (flags & MSG_PEEK) {
549 if (paddr)
550 *paddr = m_copy(m, 0, m->m_len);
551 m = m->m_next;
552 } else {
553 sbfree(&so->so_rcv, m);
554 if (paddr) {
555 *paddr = m;
556 so->so_rcv.sb_mb = m->m_next;
557 m->m_next = 0;
558 m = so->so_rcv.sb_mb;
559 } else {
560 MFREE(m, so->so_rcv.sb_mb);
561 m = so->so_rcv.sb_mb;
562 }
563 }
564 }
--- uipc_socket.c

dontblock

542-545

nextrecord maintains a reference to the next record that appears in the receive buffer. This is used at the end of soreceive to attach the remaining mbufs to the socket buffer after the first chain has been discarded.

Return address information

546-564

If the protocol provides addresses, such as UDP, the mbuf containing the address is removed from the mbuf chain and returned in *paddr. If paddr is null, the address is discarded.

Throughout soreceive, if MSG_PEEK is set, the data is not removed from the buffer.

The code in Figure 16.44 processes any control mbufs that are in the buffer.

Figure 16.44. soreceive function: control information.

	

--- uipc_socket.c
565 while (m && m->m_type == MT_CONTROL && error == 0) {
566 if (flags & MSG_PEEK) {
567 if (controlp)
568 *controlp = m_copy(m, 0, m->m_len);
569 m = m->m_next;
570 } else {
571 sbfree(&so->so_rcv, m);
572 if (controlp) {
573 if (pr->pr_domain->dom_externalize &&
574 mtod(m, struct cmsghdr *)->cmsg_type ==
575 SCM_RIGHTS)
576 error = (*pr->pr_domain->dom_externalize) (m);
577 *controlp = m;
578 so->so_rcv.sb_mb = m->m_next;
579 m->m_next = 0;
580 m = so->so_rcv.sb_mb;
581 } else {
582 MFREE(m, so->so_rcv.sb_mb);
583 m = so->so_rcv.sb_mb;
584 }
585 }
586 if (controlp) {
587 orig_resid = 0;
588 controlp = &(*controlp)->m_next;
589 }
590 }
--- uipc_socket.c

Return control information

565-590

Each control mbuf is removed from the buffer (or copied if MSG_PEEK is set) and attached to *controlp. If controlp is null, the control information is discarded.

If the process is prepared to receive control information, the protocol has a dom_externalize function defined, and if the control mbuf contains a SCM_RIGHTS (access rights) message, the dom_externalize function is called. This function takes any kernel action associated with receiving the access rights. Only the Unix protocol domain supports access rights, as discussed in Section 7.3. If the process is not prepared to receive control information (controlp is null) the mbuf is discarded.

The loop continues while there are more mbufs with control information and no error has occurred.

For the Unix protocol domain, the dom_externalize function implements the semantics of passing file descriptors by modifying the file descriptor table of the receiving process.

After the control mbufs are processed, m points to the next mbuf on the chain. If the chain does not contain any mbufs after the address, or after the control information, m is null. This occurs, for example, when a 0-length UDP datagram is queued in the receive buffer. In Figure 16.45 soreceive prepares to transfer the data from the mbuf chain.

Figure 16.45. soreceive function: mbuf transfer setup.

	

--- uipc_socket.c
591 if (m) {
592 if ((flags & MSG_PEEK) == 0)
593 m->m_nextpkt = nextrecord;
594 type = m->m_type;
595 if (type == MT_OOBDATA)
596 flags |= MSG_OOB;
597 }
--- uipc_socket.c

Prepare to transfer data

591-597

After the control mbufs have been processed, the chain should contain regular, out-of-band data mbufs or no mbufs at all. If m is null, soreceive is finished with this chain and control drops to the bottom of the while loop. If m is not null, any remaining chains (nextrecord) are reattached to m and the type of the next mbuf is saved in type. If the next mbuf contains OOB data, MSG_OOB is set in flags, which is later returned to the process. Since TCP does not support the MT_OOBDATA form of out-of-band data, MSG_OOB will never be returned for reads on TCP sockets.

Figure 16.47 shows the first part of the mbuf transfer loop. Figure 16.46 lists the variables updated within the loop.

Figure 16.46. soreceive function: loop variables.

[image: Image]

Figure 16.47. soreceive function: uiomove.

	

--- uipc_socket.c
598 moff = 0;
599 offset = 0;
600 while (m && uio->uio_resid > 0 && error == 0) {
601 if (m->m_type == MT_OOBDATA) {
602 if (type != MT_OOBDATA)
603 break;
604 } else if (type == MT_OOBDATA)
605 break;
606 so->so_state &= ~SS_RCVATMARK;
607 len = uio->uio_resid;
608 if (so->so_oobmark && len > so->so_oobmark - offset)
609 len = so->so_oobmark - offset;
610 if (len > m->m_len - moff)
611 len = m->m_len - moff;
612 /*
613 * If mp is set, just pass back the mbufs.
614 * Otherwise copy them out via the uio, then free.
615 * Sockbuf must be consistent here (points to current mbuf,
616 * it points to next record) when we drop priority;
617 * we must note any additions to the sockbuf when we
618 * block interrupts again.
619 */
620 if (mp == 0) {
621 splx(s);
622 error = uiomove(mtod(m, caddr_t) + moff, (int) len, uio);
623 s = splnet();
624 } else
625 uio->uio_resid -= len;
--- uipc_socket.c

598-600

During each iteration of the while loop, the data in a single mbuf is transferred to the output chain or to the uio buffers. The loop continues while there are more mbufs, the process’s buffers are not full, and no error has occurred.

Check for transition between OOB and regular data

600-605

If, while processing the mbuf chain, the type of the mbuf changes, the transfer stops. This ensures that regular and out-of-band data are not both returned in the same message. This check does not apply to TCP.

Update OOB mark

606-611

The distance to the oobmark is computed and limits the size of the transfer, so the byte before the mark is the last byte transferred. The size of the transfer is also limited by the size of the mbuf. This code does apply to TCP.

612-625

If the data is being returned to the uio buffers, uiomove is called. If the data is being returned as an mbuf chain, uio_resid is adjusted to reflect the number of bytes moved.

To avoid suspending protocol processing for a long time, protocol processing is enabled during the call to uiomove. Additional data may appear in the receive buffer because of protocol processing while uiomove is running.

The code in Figure 16.48 adjusts all the pointers and offsets to prepare for the next mbuf.

Figure 16.48. soreceive function: update buffer.

	

--- uipc_socket.c
626 if (len == m->m_len - moff) {
627 if (m->m_flags & M_EOR)
628 flags |= MSG_EOR;
629 if (flags & MSG_PEEK) {
630 m = m->m_next;
631 moff = 0;
632 } else {
633 nextrecord = m->m_nextpkt;
634 sbfree(&so->so_rcv, m);
635 if (mp) {
636 *mp = m;
637 mp = &m->m_next;
638 so->so_rcv.sb_mb = m = m->m_next;
639 *mp = (struct mbuf *) 0;
640 } else {
641 MFREE(m, so->so_rcv.sb_mb);
642 m = so->so_rcv.sb_mb;
643 }
644 if (m)
645 m->m_nextpkt = nextrecord;
646 }
647 } else {
648 if (flags & MSG_PEEK)
649 moff += len;
650 else {
651 if (mp)
652 *mp = m_copym(m, 0, len, M_WAIT);
653 m->m_data += len;
654 m->m_len -= len;
655 so->so_rcv.sb_cc -= len;
656 }
657 }
--- uipc_socket.c

Finished with mbuf?

626-646

If all the bytes in the mbuf have been transferred, the mbuf must be discarded or the pointers advanced. If the mbuf contained the end of a logical record, MSG_EOR is set. If MSG_PEEK is set, soreceive skips to the next buffer. If MSG_PEEK is not set, the buffer is discarded if the data was copied by uiomove, or appended to mp if the data is being returned in an mbuf chain.

More data to process

647-657

There may be more data to process in the mbuf if the request didn’t consume all the data, if so_oobmark cut the request short, or if additional data arrived during uiomove. If MSG_PEEK is set, moff is updated. If the data is to be returned on an mbuf chain, len bytes are copied and attached to the chain. The mbuf pointers and the receive buffer byte count are updated by the amount of data that was transferred.

Figure 16.49 contains the code that handles the OOB offset and the MSG_EOR processing.

Figure 16.49. soreceive function: out-of-band data mark.

	

--- uipc_socket.c
658 if (so->so_oobmark) {
659 if ((flags & MSG_PEEK) == 0) {
660 so->so_oobmark -= len;
661 if (so->so_oobmark == 0) {
662 so->so_state |= SS_RCVATMARK;
663 break;
664 }
665 } else {
666 offset += len;
667 if (offset == so->so_oobmark)
668 break;
669 }
670 }
671 if (flags & MSG_EOR)
672 break;
--- uipc_socket.c

Update OOB mark

658-670

If the out-of-band mark is nonzero, it is decremented by the number of bytes transferred. If the mark has been reached, SS_RCVATMARK is set and soreceive breaks out of the while loop. If MSG_PEEK is set, offset is updated instead of so_oobmark.

End of logical record

671-672

If the end of a logical record has been reached, soreceive breaks out of the mbuf processing loop so data from the next logical record is not returned with this message.

The loop in Figure 16.50 waits for more data to arrive when MSG_WAITALL is set and the request is not complete.

Figure 16.50. soreceive function: MSG_WAITALL processing.

	

-- uipc_socket.c
673 /*
674 * If the MSG_WAITALL flag is set (for non-atomic socket),
675 * we must not quit until "uio->uio_resid == 0" or an error
676 * termination. If a signal/timeout occurs, return
677 * with a short count but without error.
678 * Keep sockbuf locked against other readers.
679 */
680 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
681 !sosendallatonce(so) && !nextrecord) {
682 if (so->so_error || so->so_state & SS_CANTRCVMORE)
683 break;
684 error = sbwait(&so->so_rcv);
685 if (error) {
686 sbunlock(&so->so_rcv);
687 splx(s);
688 return (0);
689 }
690 if (m = so->so_rcv.sb_mb)
691 nextrecord = m->m_nextpkt;
692 }
693 } /* while more data and more space to fill */
-- uipc_socket.c

MSG_WAITALL

673-681

If MSG_WAITALL is set, there is no more data in the receive buffer (m equals 0), the caller wants more data, sosendallatonce is false, and this is the last record in the receive buffer (nextrecord is null), then soreceive must wait for additional data.

Error or no more data will arrive

682-683

If an error is pending or the connection is closed, the loop is terminated.

Wait for data to arrive

684-689

sbwait returns when the receive buffer is changed by the protocol layer. If the wait was interrupted by a signal (error is nonzero), sosend returns immediately.

Synchronize m and nextrecord with receive buffer

690-692

m and nextrecord are updated, since the receive buffer has been modified by the protocol layer. If data arrived in the mbuf, m will be nonzero and the while loop terminates.

Process next mbuf

693

This is the end of the mbuf processing loop. Control returns to the loop starting on line 600 (Figure 16.47). As long as there is data in the receive buffer, more space to fill, and no error has occurred, the loop continues.

When soreceive stops copying data, the code in Figure 16.51 is executed.

Figure 16.51. soreceive function: cleanup.

	

-- uipc_socket.c
694 if (m && pr->pr_flags & PR_ATOMIC) {
695 flags |= MSG_TRUNC;
696 if ((flags & MSG_PEEK) == 0)
697 (void) sbdroprecord(&so->so_rcv);
698 }
699 if ((flags & MSG_PEEK) == 0) {
700 if (m == 0)
701 so->so_rcv.sb_mb = nextrecord;
702 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
703 (*pr->pr_usrreq) (so, PRU_RCVD, (struct mbuf *) 0,
704 (struct mbuf *) flags, (struct mbuf *) 0,
705 (struct mbuf *) 0);
706 }
707 if (orig_resid == uio->uio_resid && orig_resid &&
708 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
709 sbunlock(&so->so_rcv);
710 splx(s);
711 goto restart;
712 }
713 if (flagsp)
714 *flagsp |= flags;
-- uipc_socket.c

Truncated message

694-698

If the process received a partial message (a datagram or a record) because its receive buffer was too small, the process is notified by setting MSG_TRUNC and the remainder of the message is discarded. MSG_TRUNC (as with all receive flags) is available only to a process through the recvmsg system call, even though soreceive always sets the flags.

End of record processing

699-706

If MSG_PEEK is not set, the next mbuf chain is attached to the receive buffer and, if required, the protocol is notified that the receive operation has been completed by issuing the PRU_RCVD protocol request. TCP uses this feature to update the receive window for the connection.

Nothing transferred

707-712

If soreceive runs to completion, no data is transferred, the end of a record is not reached, and the read-half of the connection is still active, then the buffer is unlocked and soreceive jumps back to restart to continue waiting for data.

713-714

Any flags set during soreceive are returned in *flagsp, the buffer is unlocked, and soreceive returns.

Analysis

soreceive is a complex function. Much of the complication is because of the intricate manipulation of pointers and the multiple types of data (out-of-band, address, control, regular) and multiple destinations (process buffers, mbuf chain).

Similar to sosend, soreceive has collected features over the years. A specialized receive function for each protocol would blur the boundary between the socket layer and the protocol layer, but it would simplify the code considerably.

[Partridge and Pink 1993] describe the creation of a custom soreceive function for UDP to checksum datagrams while they are copied from the receive buffer to the process. They note that modifying the generic soreceive function to support this feature would “make the already complicated socket routines even more complex.”

16.13. select System Call

In the following discussion we assume that the reader is familiar with the basic operation and semantics of select. For a detailed discussion of the application interface to select see [Stevens 1992].

Figure 16.52 shows the conditions detected by using select to monitor a socket.

Figure 16.52. select system call: socket events.

[image: Image]

We start with the first half of the select system call, shown in Figure 16.53.

Figure 16.53. select function: initialization.

[image: Image]

Validation and setup

390-410

Two arrays of three descriptor sets are allocated on the stack: ibits and obits. They are cleared by bzero. The first argument, nd, must be no larger than the maximum number of descriptors associated with the process. If nd is more than the number of descriptors currently allocated to the process, it is reduced to the current allocation. ni is set to the number of bytes needed to store a bit mask with nd bits (1 bit for each descriptor). For example, if the maximum number of descriptors is 256 (FD_SETSIZE), fd_set is represented as an array of 32-bit integers (NFDBITS), and nd is 65, then:

ni = howmany(65,32) × 4 = 3 × 4 = 12

where howmany (x,y) returns the number of y-bit objects required to store x bits.

Copy file descriptor sets from process

411-418

The getbits macro uses copyin to transfer the file descriptor sets from the process to the three descriptor sets in ibits. If a descriptor set pointer is null, nothing is copied from the process.

Setup timeout value

419-438

If tv is null, timo is set to 0 and select will wait indefinitely. If tv is not null, the timeout value is copied into the kernel and rounded up to the resolution of the hardware clock by itimerfix. The current time is added to the timeout value by timevaladd. The number of clock ticks until the timeout is computed by hzto and saved in timo. If the resulting timeout is 0, timo is set to 1. This prevents select from blocking and implements the nonblocking semantics of an all-0s timeval structure.

The second half of select, shown in Figure 16.54, scans the file descriptors indicated by the process and returns when one or more become ready, or the timer expires, or a signal occurs.

Figure 16.54. select function: second half.

[image: Image]

Scan file descriptors

439-442

The loop that starts at retry continues until select can return. The current value of the global integer nselcoll is saved and the P_SELECT flag is set in the calling process’s control block. If either of these change while selscan (Figure 16.55) is checking the file descriptors, it indicates that the status of a descriptor has changed because of interrupt processing and select must rescan the descriptors. selscan looks at every descriptor set in the three input descriptor sets and sets the matching descriptor in the output set if the descriptor is ready.

Figure 16.55. selscan function.

	

--- sys_generic.c
481 selscan(p, ibits, obits, nfd, retval)
482 struct proc *p;
483 fd_set *ibits, *obits;
484 int nfd, *retval;
485 {
486 struct filedesc *fdp = p->p_fd;
487 int msk, i, j, fd;
488 fd_mask bits;
489 struct file *fp;
490 int n = 0;
491 static int flag[3] =
492 {FREAD, FWRITE, 0};

493 for (msk = 0; msk < 3; msk++) {
494 for (i = 0; i < nfd; i += NFDBITS) {
495 bits = ibits[msk].fds_bits[i / NFDBITS];
496 while ((j = ffs(bits)) && (fd = i + --j) < nfd) {
497 bits &= ~(1 << j);
498 fp = fdp->fd_ofiles[fd];
499 if (fp == NULL)
500 return (EBADF);
501 if ((*fp->f_ops->fo_select) (fp, flag[msk], p)) {
502 FD_SET(fd, &obits[msk]);
503 n++;
504 }
505 }
506 }
507 }
508 *retval = n;
509 return (0);
510 }
--- sys_generic.c

Error or some descriptors are ready

443-444

Return immediately if an error occurred or if a descriptor is ready.

Timeout expired?

445-451

If the process supplied a time limit and the current time has advanced beyond the timeout value, return immediately.

Status changed during selscan

452-455

selscan can be interrupted by protocol processing. If the socket is modified during the interrupt, P_SELECT and nselcoll are changed and select must rescan the descriptors.

Wait for buffer changes

456-460

All processes calling select use selwait as the wait channel when they call tsleep. With Figure 16.60 we show that this causes some inefficiencies if more than one process is waiting for the same socket buffer. If tsleep returns without an error, select jumps to retry to rescan the descriptors.

Ready to return

461-480

At done, P_SELECT is cleared, ERESTART is changed to EINTR, and EWOULDBLOCK is changed to 0. These changes ensure that EINTR is returned when a signal occurs during select and 0 is returned when a timeout occurs.

The output descriptor sets are copied back to the process and select returns.

selscan Function

The heart of select is the selscan function shown in Figure 16.55. For every bit set in one of the three descriptor sets, selscan computes the descriptor associated with the bit and dispatches control to the fo_select function associated with the descriptor. For sockets, this is the soo_select function.

Locate descriptors to be monitored

481-496

The first for loop iterates through each of the three descriptor sets: read, write, and exception. The second for loop interates within each descriptor set. This loop is executed once for every 32 bits (NFDBITS) in the set.

The inner while loop checks all the descriptors identified by the 32-bit mask extracted from the current descriptor set and stored in bits. The function ffs returns the position within bits of the first 1 bit, starting at the low-order bit. For example, if bits is 1000 (with 28 leading 0s), ffs(bits) is 4.

Poll descriptor

497-500

From i and the return value of ffs, the descriptor associated with the bit is computed and stored in fd. The bit is cleared in bits (but not in the input descriptor set), the file structure associated with the descriptor is located, and fo_select is called.

The second argument to fo_select is one of the elements in the flag array. msk is the index of the outer for loop. So the first time through the loop, the second argument is FREAD, the second time it is FWRITE, and the third time it is 0. EBADF is returned if the descriptor is not valid.

Descriptor is ready

501-504

When a descriptor is found to be ready, the matching bit is set in the output descriptor set and n (the number of matches) is incremented.

505-510

The loops continue until all the descriptors are polled. The number of ready descriptors is returned in *retval.

soo_select Function

For every descriptor that selscan finds in the input descriptor sets, it calls the function referenced by the fo_select pointer in the fileops structure (Section 15.5) associated with the descriptor. In this text, we are interested only in socket descriptors and the soo_select function shown in Figure 16.56.

Figure 16.56. soo_select function.

	

--- sys_socket.c
105 soo_select(fp, which, p)
106 struct file *fp;
107 int which;
108 struct proc *p;
109 {
110 struct socket *so = (struct socket *) fp->f_data;
111 int s = splnet();

112 switch (which) {

113 case FREAD:
114 if (soreadable(so)) {
115 splx(s);
116 return (1);
117 }
118 selrecord(p, &so->so_rcv.sb_sel);
119 so->so_rcv.sb_flags |= SB_SEL;
120 break;

121 case FWRITE:
122 if (sowriteable(so)) {
123 splx(s);
124 return (1);
125 }
126 selrecord(p, &so->so_snd.sb_sel);
127 so->so_snd.sb_flags |= SB_SEL;
128 break;

129 case 0:
130 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) {
131 splx(s);
132 return (1);
133 }
134 selrecord(p, &so->so_rcv.sb_sel);
135 so->so_rcv.sb_flags |= SB_SEL;
136 break;
137 }
138 splx(s);
139 return (0);
140 }
--- sys_socket.c

105-112

Each time soo_select is called, it checks the status of only one descriptor. If the descriptor is ready relative to the conditions specified in which, the function returns 1 immediately. If the descriptor is not ready, selrecord marks either the socket’s receive or send buffer to indicate that a process is selecting on the buffer and then soo_select returns 0.

Figure 16.52 showed the read, write, and exceptional conditions for sockets. Here we see that the macros soreadable and sowriteable are consulted by soo_select. These macros are defined in sys/socketvar.h.

Is socket readable?

113-120

The soreadable macro is:

#define soreadable(so) \

 ((so)->so_rcv.sb_cc >= (so)->so_rcv.sb_lowat || \
 ((so)->so_state & SS_CANTRCVMORE) || \
 (so)->so_qlen || (so)->so_error)

Since the receive low-water mark for UDP and TCP defaults to 1 (Figure 16.4), the socket is readable if any data is in the receive buffer, if the read-half of the connection is closed, if any connections are ready to be accepted, or if there is an error pending.

Is socket writeable?

121-128

The sowriteable macro is:

 #define sowriteable(so) \
 (sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat &&
\
 (((so)->so_state&SS_ISCONNECTED) || \
 ((so)->so_proto->pr_flags&PR_CONNREQUIRED)==0) ||
\
 ((so)->so_state & SS_CANTSENDMORE) || \
 (so)->so_error)

The default send low-water mark for UDP and TCP is 2048. For UDP, sowriteable is always true because sbspace is always equal to sb_hiwat, which is always greater than or equal to sb_lowat, and a connection is not required.

For TCP, the socket is not writeable when the free space in the send buffer is less than 2048 bytes. The other cases are described in Figure 16.52.

Are there any exceptional conditions pending?

129-140

For exceptions, so_oobmark and the SS_RCVATMARK flags are examined. An exceptional condition exists until the process has read past the synchronization mark in the data stream.

selrecord Function

Figure 16.57 shows the definition of the selinfo structure stored with each send and receive buffer (the sb_sel member from Figure 16.3).

Figure 16.57. selinfo structure.

	

--- select.h
 41 struct selinfo {
 42 pid_t si_pid; /* process to be notified */
 43 short si_flags; /* 0 or SI_COLL */
 44 };
--- select.h

41-44

When only one process has called select for a given socket buffer, sl_pid is the process ID of the waiting process. When additional processes call select on the same buffer, SI_COLL is set in sl_flags. This is called a collision. This is the only flag currently defined for sl_flags.

The selrecord function shown in Figure 16.58 is called when soo_select finds a descriptor that is not ready. The function records enough information so that the process is awakened by the protocol processing layer when the buffer changes.

Figure 16.58. selrecord function.

	

--- sys_generic.c
522 void
523 selrecord(selector, sip)
524 struct proc *selector;
525 struct selinfo *sip;
526 {
527 struct proc *p;
528 pid_t mypid;

529 mypid = selector->p_pid;
530 if (sip->si_pid == mypid)
531 return;
532 if (sip->si_pid && (p = pfind(sip->si_pid)) &&
533 p->p_wchan == (caddr_t) & selwait)
534 sip->si_flags |= SI_COLL;
535 else
536 sip->si_pid = mypid;
537 }
--- sys_generic.c

Already selecting on this descriptor

522-531

The first argument to selrecord points to the proc structure for the selecting process. The second argument points to the selinfo record to update (so_snd.sb_sel or so_rcv.sb_sel). If this process is already recorded in the selinfo record for this socket buffer, the function returns immediately. For example, the process called select with the read and exception bits set for the same descriptor.

Select collision with another process?

532-534

If another process is already selecting on this buffer, SI_COLL is set.

No collision

535-537

If there is no other process already selecting on this buffer, si_pid is 0 so the ID of the current process is saved in si_pid.

selwakeup Function

When protocol processing changes the state of a socket buffer and only one process is selecting on the buffer, Net/3 can immediately put that process on the run queue based on the information it finds in the selinfo structure.

When the state changes and there is more than one process selecting on the buffer (SI_COLL is set), Net/3 has no way of determining the set of processes interested in the buffer. When we discussed the code in Figure 16.54, we pointed out that every process that calls select uses selwait as the wait channel when calling tsleep. This means the corresponding wakeup will schedule all the processes that are blocked in select even those that are not interested in activity on the buffer.

Figure 16.59 shows how selwakeup is called.

Figure 16.59. selwakeup processing.

[image: Image]

The protocol processing layer is responsible for notifying the socket layer by calling one of the functions listed at the bottom of Figure 16.59 when an event occurs that changes the state of a socket. The three functions shown at the bottom of Figure 16.59 cause selwakeup to be called and any process selecting on the socket to be scheduled to run.

selwakeup is shown in Figure 16.60.

Figure 16.60. selwakeup function.

	

--- sys_generic.c
541 void
542 selwakeup(sip)
543 struct selinfo *sip;
544 {
545 struct proc *p;
546 int s;

547 if (sip->si_pid == 0)
548 return;
549 if (sip->si_flags & SI_COLL) {
550 nselcoll++;
551 sip->si_flags &= ~SI_COLL;
552 wakeup((caddr_t) & selwait);
553 }
554 p = pfind(sip->si_pid);
555 sip->si_pid = 0;
556 if (p != NULL) {
557 s = splhigh();
558 if (p->p_wchan == (caddr_t) & selwait) {
559 if (p->p_stat == SSLEEP)
560 setrunnable(p);
561 else
562 unsleep(p);
563 } else if (p->p_flag & P_SELECT)
564 p->p_flag &= ~P_SELECT;
565 splx(s);
566 }
567 }
--- sys_generic.c

541-548

If si_pid is 0, there is no process selecting on the buffer and the function returns immediately.

Wake all processes during a collision

549-553

If more than one process is selecting on the affected socket, nselcoll is incremented, the collision flag is cleared, and every process blocked in select is awakened. As mentioned with Figure 16.54, nselcoll forces select to rescan the descriptors if the buffers change before the process has blocked in tsleep (Exercise 16.9).

554-567

If the process identified by si_pid is waiting on selwait, it is scheduled to run. If the process is waiting on some other wait channel, the P_SELECT flag is cleared. The process can be waiting on some other wait channel if selrecord is called for a valid descriptor and then selscan finds a bad file descriptor in one of the descriptor sets. selscan returns EBADF, but the previously modified selinfo record is not reset. Later, when selwakeup runs, selwakeup may find the process identified by sel_pid is no longer waiting on the socket buffer so the selinfo information is ignored.

Only one process is awakened during selwakeup unless multiple processes are sharing the same descriptor (i.e., the same socket buffers), which is rare. On the machines to which the authors had access, nselcoll was always 0, which confirms the statement that select collisions are rare.

16.14. Summary

In this chapter we looked at the read, write, and select system calls for sockets.

We saw that sosend handles all output between the socket layer and the protocol processing layer and that soreceive handles all input.

The organization of the send buffer and receive buffers was described, as well as the default values and semantics of the high-water and low-water marks for the buffers.

The last part of the chapter discussed the implementation of select. We showed that when only one process is selecting on a descriptor, the protocol processing layer will awaken only the process identified in the selinfo structure. When there is a collision and more than one process is selecting on a descriptor, the protocol layer has no choice but to awaken every process that is selecting on any descriptor.

Exercises

16.1 What happens to resid in sosend when an unsigned integer larger than the maximum positive signed integer is passed in the write system call?

16.2 When sosend puts less than MCLBYTES of data in a cluster, space is reduced by the full MCLBYTES and may become negative, which terminates the loop that fills mbufs for atomic protocols. Is this a problem?

16.3 Datagram and stream protocols have very different semantics. Divide the sosend and soreceive functions each into two functions, one to handle messages, and one to handle streams. Other than making the code clearer, what are the advantages of making this change?

16.4 For PR_ATOMIC protocols, each write call specifies an implicit message boundary. The socket layer delivers the message as a single unit to the protocol. The MSG_EOR flag allows a process to specify explicit message boundaries. Why is the implicit technique insufficient?

16.5 What happens when sosend cannot immediately acquire a lock on the send buffer when the socket descriptor is marked as nonblocking and the process does not specify MSG_DONTWAIT?

16.6 Under what circumstances would sb_cc < sb_hiwat yet sbspace would report no free space? Why should a process be blocked in this case?

16.7 Why isn’t the length of a control message copied back to the process by recvit as is the name length?

16.8 Why does soreceive clear MSG_EOR?

16.9 What might happen if the nselcoll code were removed from select and selwakeup?

16.10 Modify the select system call to return the time remaining in the timer when select returns.

Chapter 17. Socket Options

17.1. Introduction

We complete our discussion of the socket layer in this chapter by discussing several system calls that modify the behavior of sockets.

The setsockopt and getsockopt system calls were introduced in Section 8.8, where we described the options that provide access to IP features. In this chapter we show the implementation of these two system calls and the socket-level options that are controlled through them.

The ioctl function was introduced in Section 4.4, where we described the protocol-independent ioctl commands for network interface configuration. In Section 6.7 we described the IP specific ioctl commands used to assign network masks as well as unicast, broadcast, and destination addresses. In this chapter we describe the implementation of ioctl and the related features of the fcntl function.

Finally, we describe the getsockname and getpeername system calls, which return address information for sockets and connections.

Figure 17.1 shows the functions that implement the socket option system calls. The shaded functions are described in this chapter.

Figure 17.1. setsockopt and getsockopt system calls.

[image: Image]

17.2. Code Introduction

The code in this chapter comes from the four files listed in Figure 17.2.

Figure 17.2. Files discussed in this chapter.

[image: Image]

Global Variables and Statistics

No new global variables are introduced and no statistics are collected by the system calls we describe in this chapter.

17.3. setsockopt System Call

Figure 8.29 listed the different protocol levels that can be accessed with this function (and with getsockopt). In this chapter we focus on the SOL_SOCKET level options, which are listed in Figure 17.3.

Figure 17.3. setsockopt and getsockopt options.

[image: Image]

The prototype for setsockopt is

int setsockopt(int s, int level, int optname, void *optval, int optlen);

Figure 17.4 shows the code for this system call.

Figure 17.4. setsockopt system call.

	

--- uipc_syscalls.c
565 struct setsockopt_args {
566 int s;
567 int level;
568 int name;
569 caddr_t val;
570 int valsize;
571 };

572 setsockopt(p, uap, retval)
573 struct proc *p;
574 struct setsockopt_args *uap;
575 int *retval;
576 {
577 struct file *fp;
578 struct mbuf *m = NULL;
579 int error;

580 if (error = getsock(p->p_fd, uap->s, &fp))
581 return (error);
582 if (uap->valsize > MLEN)
583 return (EINVAL);
584 if (uap->val) {
585 m = m_get(M_WAIT, MT_SOOPTS);
586 if (m == NULL)
587 return (ENOBUFS);
588 if (error = copyin(uap->val, mtod(m, caddr_t),
589 (u_int) uap->valsize)) {
590 (void) m_free(m);
591 return (error);
592 }
593 m->m_len = uap->valsize;
594 }
595 return (sosetopt((struct socket *) fp->f_data, uap->level,
596 uap->name, m));
597 }
--- uipc_syscalls.c

565-597

getsock locates the file structure for the socket descriptor. If val is nonnull, valsize bytes of data are copied from the process into an mbuf allocated by m_get. The data associated with an option can be no more than MLEN bytes in length, so if valsize is larger than MLEN, then EINVAL is returned. sosetopt is called and its value is returned.

sosetopt Function

This function processes all the socket-level options and passes any other options to the pr_ctloutput function for the protocol associated with the socket. Figure 17.5 shows an overview of the function.

Figure 17.5. sosetopt function.

[image: Image]

752-764

If the option is not for the socket level (SOL_SOCKET), the PRCO_SETOPT request is issued to the underlying protocol. Note that the protocol’s pr_ctloutput function is being called and not its pr_usrreq function. Figure 17.6 shows which function is called for the Internet protocols.

Figure 17.6. pr_ctloutput functions.

[image: Image]

765

The switch statement handles the socket-level options.

841-844

An unrecognized option causes ENOPROTOOPT to be returned after the mbuf holding the option is released.

845-855

Unless an error occurs, control always falls through the switch, where the option is passed to the associated protocol in case the protocol layer needs to respond to the request as well as the socket layer. None of the Internet protocols expect to process the socket-level options.

Notice that the return value from the call to the pr_ctloutput function is explicitly discarded in case the option is not expected by the protocol. m is set to null to avoid the call to m_free, since the protocol layer is responsible for releasing the mbuf.

Figure 17.7 shows the linger option and the options that set a single flag in the socket structure.

Figure 17.7. sosetopt function: linger and flag options.

	

--- uipc_socket.c
766 case SO_LINGER:
767 if (m == NULL || m->m_len != sizeof(struct linger)) {
768 error = EINVAL;
769 goto bad;
770 }
771 so->so_linger = mtod(m, struct linger *)->l_linger;
772 /* fall thru... */

773 case SO_DEBUG:
774 case SO_KEEPALIVE:
775 case SO_DONTROUTE:
776 case SO_USELOOPBACK:
777 case SO_BROADCAST:
778 case SO_REUSEADDR:
779 case SO_REUSEPORT:
780 case SO_OOBINLINE:
781 if (m == NULL || m->m_len < sizeof(int)) {
782 error = EINVAL;
783 goto bad;
784 }
785 if (*mtod(m, int *))
786 so->so_options |= optname;
787 else
788 so->so_options &= ~optname;
789 break;
--- uipc_socket.c

766-772

The linger option expects the process to pass a linger structure:

struct linger {
 int l_onoff; /* option on/off */
 int l_linger; /* linger time in seconds */
};

After making sure the process has passed data and it is the size of a linger structure, the l_linger member is copied into so_linger. The option is enabled or disabled after the next set of case statements. so_linger was described in Section 15.15 with the close system call.

773-789

These options are boolean flags set when the process passes a nonzero value and cleared when 0 is passed. The first check makes sure an integer-sized object (or larger) is present in the mbuf and then sets or clears the appropriate option.

Figure 17.8 shows the socket buffer options.

Figure 17.8. sosetopt function: socket buffer options.

	

-- uipc_socket.c
790 case SO_SNDBUF:
791 case SO_RCVBUF:
792 case SO_SNDLOWAT:
793 case SO_RCVLOWAT:
794 if (m == NULL || m->m_len < sizeof(int)) {
795 error = EINVAL;
796 goto bad;
797 }
798 switch (optname) {

799 case SO_SNDBUF:
800 case SO_RCVBUF:
801 if (sbreserve(optname == SO_SNDBUF ?
802 &so->so_snd : &so->so_rcv,
803 (u_long) * mtod(m, int *)) == 0) {
804 error = ENOBUFS;
805 goto bad;
806 }
807 break;

808 case SO_SNDLOWAT:
809 so->so_snd.sb_lowat = *mtod(m, int *);
810 break;
811 case SO_RCVLOWAT:
812 so->so_rcv.sb_lowat = *mtod(m, int *);
813 break;
814 }
815 break;
-- uipc_socket.c

790-815

This set of options changes the size of the send and receive buffers in a socket. The first test makes sure the required integer has been provided for all four options. For SO_SNDBUF and SO_RCVBUF, sbreserve adjusts the high-water mark but does no buffer allocation. For SO_SNDLOWAT and SO_RCVLOWAT, the low-water marks are adjusted.

Figure 17.9 shows the timeout options.

Figure 17.9. sosetopt function: timeout options.

	

-- uipc_socket.c
816 case SO_SNDTIMEO:
817 case SO_RCVTIMEO:
818 {
819 struct timeval *tv;
820 short val;

821 if (m == NULL || m->m_len < sizeof(*tv)) {
822 error = EINVAL;
823 goto bad;
824 }
825 tv = mtod(m, struct timeval *);
826 if (tv->tv_sec > SHRT_MAX / hz - hz) {
827 error = EDOM;
828 goto bad;
829 }
830 val = tv->tv_sec * hz + tv->tv_usec / tick;

831 switch (optname) {

832 case SO_SNDTIMEO:
833 so->so_snd.sb_timeo = val;
834 break;
835 case SO_RCVTIMEO:
836 so->so_rcv.sb_timeo = val;
837 break;
838 }
839 break;
840 }
-- uipc_socket.c

816-824

The timeout value for SO_SNDTIMEO and SO_RCVTIMEO is specified by the process in a timeval structure. If the right amount of data is not available, EINVAL is returned.

825-830

The time interval stored in the timeval structure must be small enough so that when it is represented as clock ticks, it fits within a short integer, since sb_timeo is a short integer.

The code on line 826 is incorrect. The time interval cannot be represented as a short integer if:

[image: Image]

where

[image: Image]

So EDOM should be returned if

[image: Image]

The last term in this equation is not hz as specified in the code. The correct test is

if (tv->tv_sec*hz + tv->tv_usec/tick > SHRT_MAX)

but see Exercise 17.3 for more discussion.

831-840

The converted time, val, is saved in the send or receive buffer as requested. sb_timeo limits the amount of time a process will wait for data in the receive buffer or space in the send buffer. See Sections 16.7 and 16.11 for details.

The timeout values are passed as the last argument to tsleep, which expects an integer, so the process is limited to 65535 ticks. At 100 Hz, this less than 11 minutes.

17.4. getsockopt System Call

getsockopt returns socket and protocol options as requested. The prototype for this system call is

int getsockopt(int s, int level, int name, caddr_t val, int *valsize);

The code is shown in Figure 17.10.

Figure 17.10. getsockopt system call.

	

-- uipc_syscalls.c
598 struct getsockopt_args {
599 int s;
600 int level;
601 int name;
602 caddr_t val;
603 int *avalsize;
604 };

605 getsockopt(p, uap, retval)
606 struct proc *p;
607 struct getsockopt_args *uap;
608 int *retval;
609 {
610 struct file *fp;
611 struct mbuf *m = NULL;
612 int valsize, error;

613 if (error = getsock(p->p_fd, uap->s, &fp))
614 return (error);
615 if (uap->val) {
616 if (error = copyin((caddr_t) uap->avalsize, (caddr_t) & valsize,
617 sizeof(valsize)))
618 return (error);
619 } else
620 valsize = 0;
621 if ((error = sogetopt((struct socket *) fp->f_data, uap->level,
622 uap->name, &m)) == 0 && uap->val && valsize && m != NULL) {
623 if (valsize > m->m_len)
624 valsize = m->m_len;
625 error = copyout(mtod(m, caddr_t), uap->val, (u_int) valsize);
626 if (error == 0)
627 error = copyout((caddr_t) & valsize,
628 (caddr_t) uap->avalsize, sizeof(valsize));
629 }
630 if (m != NULL)
631 (void) m_free(m);
632 return (error);
633 }
-- uipc_syscalls.c

598-633

The code should look pretty familiar by now. getsock locates the socket, the size of the option buffer is copied into the kernel, and sogetopt is called to get the value of the requested option. The data returned by sogetopt is copied out to the buffer in the process along with the possibly new length of the buffer. It is possible that the data will be silently truncated if the process did not provide a large enough buffer. As usual, the mbuf holding the option data is released before the function returns.

sogetopt Function

As with sosetopt, the sogetopt function handles the socket-level options and passes any other options to the protocol associated with the socket. The beginning and end of the function are shown in Figure 17.11.

Figure 17.11. sogetopt function: overview.

[image: Image]

856-871

As with sosetopt, options that do not pertain to the socket level are immediately passed to the protocol level through the PRCO_GETOPT protocol request. The protocol returns the requested option in the mbuf pointed to by *mp.

For socket-level options, a standard mbuf is allocated to hold the option value, which is normally an integer, so m_len is set to the size of an integer. The appropriate option is copied into the mbuf by the code in the switch statement.

918-925

If the default case is taken by the switch, the mbuf is released and ENOPROTOOPT returned. Otherwise, after the switch statement, the pointer to the mbuf is saved in *mp. When this function returns, getsockopt copies the option from the mbuf to the process and releases the mbuf.

In Figure 17.12 the linger option and the options that are implemented as boolean flags are processed.

Figure 17.12. sogetopt function: SO_LINGER and boolean options.

	

-- uipc_socket.c
872 case SO_LINGER:
873 m->m_len = sizeof(struct linger);
874 mtod(m, struct linger *)->l_onoff =
875 so->so_options & SO_LINGER;
876 mtod(m, struct linger *)->l_linger = so->so_linger;
877 break;

878 case SO_USELOOPBACK:
879 case SO_DONTROUTE:
880 case SO_DEBUG:
881 case SO_KEEPALIVE:
882 case SO_REUSEADDR:
883 case SO_REUSEPORT:
884 case SO_BROADCAST:
885 case SO_OOBINLINE:
886 *mtod(m, int *) = so->so_options & optname;
887 break;
-- uipc_socket.c

872-877

The SO_LINGER option requires two copies, one for the flag into l_onoff and a second for the linger time into l_linger.

878-887

The remaining options are implemented as boolean flags. so_options is masked with optname, which results in a nonzero value if the option is on and 0 if the option is off. Notice that the return value is not necessarily 1 when the flag is on.

In the next part of sogetopt (Figure 17.13), the integer-valued options are copied into the mbuf.

Figure 17.13. sogetopt function: integer valued options.

	

-- uipc_socket.c
888 case SO_TYPE:
889 *mtod(m, int *) = so->so_type;
890 break;

891 case SO_ERROR:
892 *mtod(m, int *) = so->so_error;
893 so->so_error = 0;
894 break;

895 case SO_SNDBUF:
896 *mtod(m, int *) = so->so_snd.sb_hiwat;
897 break;

898 case SO_RCVBUF:
899 *mtod(m, int *) = so->so_rcv.sb_hiwat;
900 break;

901 case SO_SNDLOWAT:
902 *mtod(m, int *) = so->so_snd.sb_lowat;
903 break;

904 case SO_RCVLOWAT:
905 *mtod(m, int *) = so->so_rcv.sb_lowat;
906 break;
-- uipc_socket.c

888-906

Each option is copied as an integer into the mbuf. Notice that some of the options are stored as shorts in the kernel (e.g., the high-water and low-water marks) but returned as integers. Also, so_error is cleared once the value is copied into the mbuf. This is the only time that a call to getsockopt changes the state of the socket.

The third and last part of sogetopt is shown in Figure 17.14, where the SO_SNDTIMEO and SO_RCVTIMEO options are handled.

Figure 17.14. sogetopt function: timeout options.

	

--- uipc_socket.c
907 case SO_SNDTIMEO:
908 case SO_RCVTIMEO:
909 {
910 int val = (optname == SO_SNDTIMEO ?
911 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);

912 m->m_len = sizeof(struct timeval);
913 mtod(m, struct timeval *)->tv_sec = val / hz;
914 mtod(m, struct timeval *)->tv_usec =
915 (val % hz) / tick;
916 break;
917 }
--- uipc_socket.c

907-917

The sb_timeo value from the send or receive buffer is copied into var. A timeval structure is constructed in the mbuf based on the clock ticks in val.

There is a bug in the calculation of tv_usec. The expression should be "(val % hz) * tick".

17.5. fcntl and ioctl System Calls

Due more to history than intent, several features of the sockets API can be accessed from either ioctl or fcntl. We have already discussed many of the ioctl commands and have mentioned fcntl several times.

Figure 17.15 highlights the functions described in this chapter.

Figure 17.15. fcntl and ioctl functions.

[image: Image]

The prototypes for ioctl and fcntl are:

int ioctl(int fd, unsigned long result, char *argp);

int fcntl(int fd, int cmd, ... /* int arg */);

Figure 17.16 summarizes the features of these two system calls as they relate to sockets. We show the traditional constants in Figure 17.16, since they appear in the code. For Posix compatibility, O_NONBLOCK can be used instead of FNONBLOCK, and O_ASYNC can be used instead of FASYNC.

Figure 17.16. fcntl and ioctl commands.

[image: Image]

fcntl Code

Figure 17.17 shows an overview of the fcntl function.

Figure 17.17. fcntl system call: overview.

[image: Image]

133-153

After verifying that the descriptor refers to an open file, the switch statement processes the requested command.

253-257

If the command is not recognized, fcntl returns EINVAL.

Figure 17.18 shows only the cases from fcntl that are relevant to sockets.

Figure 17.18. fcntl system call: socket processing.

[image: Image]

168-185

F_GETFL returns the current file status flags associated with the descriptor and F_SETFL sets the flags. The new settings for FNONBLOCK and FASYNC are passed to the associated socket by calling fo_ioctl, which for sockets is the soo_ioctl function described with Figure 17.20. The third call to fo_ioctl is made only if the second call fails. It clears the FNONBLOCK flag, but should instead restore the flag to its original setting.

186-209

F_GETOWN returns so_pgid, the process or process group associated with the socket. For a descriptor other than a socket, the TIOCGPGRP ioctl command is passed to the associated fo_ioctl function. F_SETOWN assigns a new value to so_pgid.

For a descriptor other than a socket, the process group is checked in this function, but for sockets, the value is checked just before a signal is sent in sohasoutofband and in sowakeup.

ioctl Code

We skip the ioctl system call itself and start with soo_ioctl in Figure 17.20, since most of the code in ioctl duplicates the code we described with Figure 17.17. We’ve already shown that this function sends routing commands to rtioctl, interface commands to ifioctl, and any remaining commands to the pr_usrreq function of the underlying protocol.

55-68

A few commands are handled by soo_ioctl directly. FIONBIO turns on nonblocking semantics if *data is nonzero, and turns them off otherwise. As we have seen, this flag affects the accept, connect, and close system calls as well as the various read and write system calls.

69-79

FIOASYNC enables or disables asynchronous I/O notification. Whenever there is activity on a socket, sowakeup gets called and if SS_ASYNC is set, the SIGIO signal is sent to the process or process group.

80-88

FIONREAD returns the number of bytes available in the receive buffer. SIOCSPGRP sets the process group associated with the socket, and SIOCGPGRP gets it. so_pgid is used as a target for the SIGIO signal as we just described and for the SIGURG signal when out-of-band data arrives for a socket. The signal is sent when the protocol layer calls the sohasoutofband function.

89-92

SIOCATMARK returns true if the socket is at the out-of-band synchronization mark, false otherwise.

ioctl commands, the FIOxxx and SIOxxx constants, have an internal structure illustrated in Figure 17.19.

Figure 17.19. The structure of an ioctl command.

[image: Image]

Figure 17.20. soo_ioctl function.

[image: Image]

If the third argument to ioctl is used as input, input is set. If the argument is used as output, output is set. If the argument is unused, void is set. length is the size of the argument in bytes. Related commands are in the same group but each command has its own number within the group. The macros in Figure 17.21 extract the components of an ioctl command.

Figure 17.21. ioctl command macros.

[image: Image]

93-104

The macro IOCGROUP extracts the 8-bit group from the command. Interface commands are handled by ifioctl. Routing commands are processed by rtioctl. All other commands are passed to the socket’s protocol through the PRU_CONTROL request.

As we described in Chapter 19, Net/2 introduced a new interface to the routing tables in which messages are passed to the routing subsystem through a socket created in the PF_ROUTE domain. This method replaces the ioctl method shown here. rtioctl always returns ENOTSUPP in kernels that do not have compatibility code compiled in.

17.6. getsockname System Call

The prototype for this system call is:

int getsockname(int fd, caddr_t asa, int *alen);

getsockname retrieves the local address bound to the socket fd and places it in the buffer pointed to by asa. This is useful when the kernel has selected an address during an implicit bind or when the process specified a wildcard address (Section 22.5) during an explicit call to bind. The getsockname system call is shown in Figure 17.22.

Figure 17.22. getsockname system call.

	

-- uipc_syscalls.c
682 struct getsockname_args {
683 int fdes;
684 caddr_t asa;
685 int *alen;
686 };

687 getsockname(p, uap, retval)
688 struct proc *p;
689 struct getsockname_args *uap;
690 int *retval;
691 {
692 struct file *fp;
693 struct socket *so;
694 struct mbuf *m;
695 int len, error;

696 if (error = getsock(p->p_fd, uap->fdes, &fp))
697 return (error);
698 if (error = copyin((caddr_t) uap->alen, (caddr_t) & len, sizeof(len)))
699 return (error);
700 so = (struct socket *) fp->f_data;
701 m = m_getclr(M_WAIT, MT_SONAME);
702 if (m == NULL)
703 return (ENOBUFS);
704 if (error = (*so->so_proto->pr_usrreq) (so, PRU_SOCKADDR, 0, m, 0))
705 goto bad;
706 if (len > m->m_len)
707 len = m->m_len;
708 error = copyout(mtod(m, caddr_t), (caddr_t) uap->asa, (u_int) len);
709 if (error == 0)
710 error = copyout((caddr_t) & len, (caddr_t) uap->alen,
711 sizeof(len));
712 bad:
713 m_freem(m);
714 return (error);
715 }
-- uipc_syscalls.c

682-715

getsock locates the file structure for the descriptor. The size of the buffer specified by the process is copied from the process into len. This is the first call to m_getclr that we’ve seen it allocates a standard mbuf and clears it with bzero. The protocol processing layer is responsible for returning the local address in m when the PRU_SOCKADDR request is issued.

If the address is larger than the buffer specified by the process, it is silently truncated when it is copied out to the process. *alen is updated to the number of bytes copied out to the process. Finally, the mbuf is released and getsockname returns.

17.7. getpeername System Call

The prototype for this system call is:

int getpeername(int fd, caddr_t asa, int *alen);

The getpeername system call returns the address of the remote end of the connection associated with the specified socket. This function is often called when a server is invoked through a fork and exec by the process that calls accept (i.e., any server started by inetd). The server doesn’t have access to the peer address returned by accept and must use getpeername. The returned address is often checked against an access list for the application, and the connection is closed if the address is not on the list.

Some protocols, such as TP4, utilize this function to determine if an incoming connection should be rejected or confirmed. In TP4, the connection associated with a socket returned by accept is not yet complete and must be confirmed before the connection completes. Based on the address returned by getpeername, the server can close the connection or implicitly confirm the connection by sending or receiving data. This feature is irrelevant for TCP, since TCP doesn’t make a connection available to accept until the three-way handshake is complete. Figure 17.23 shows the getpeername function.

Figure 17.23. getpeername system call.

	

--- uipc_syscalls.c
719 struct getpeername_args {
720 int fdes;
721 caddr_t asa;
722 int *alen;
723 };

724 getpeername(p, uap, retval)
725 struct proc *p;
726 struct getpeername_args *uap;
727 int *retval;
728 {
729 struct file *fp;
730 struct socket *so;
731 struct mbuf *m;
732 int len, error;

733 if (error = getsock(p->p_fd, uap->fdes, &fp))
734 return (error);
735 so = (struct socket *) fp->f_data;
736 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONFIRMING)) == 0)
737 return (ENOTCONN);
738 if (error = copyin((caddr_t) uap->alen, (caddr_t) & len, sizeof(len)))
739 return (error);
740 m = m_getclr(M_WAIT, MT_SONAME);
741 if (m == NULL)
742 return (ENOBUFS);
743 if (error = (*so->so_proto->pr_usrreq) (so, PRU_PEERADDR, 0, m, 0))
744 goto bad;
745 if (len > m->m_len)
746 len = m->m_len;
747 if (error = copyout(mtod(m, caddr_t), (caddr_t) uap->asa, (u_int) len))
748 goto bad;
749 error = copyout((caddr_t) & len, (caddr_t) uap->alen, sizeof(len));
750 bad:
751 m_freem(m);
752 return (error);
753 }
--- uipc_syscalls.c

719-753

The code here is almost identical to the getsockname code. getsock locates the socket and ENOTCONN is returned if the socket is not yet connected to a peer or if the connection is not in a confirmation state (e.g., TP4). If it is connected, the size of the buffer is copied in from the process and an mbuf is allocated to hold the address. The PRU_PEERADDR request is issued to get the remote address from the protocol layer. The address and the length of the address are copied from the kernel mbuf to the buffer in the process. The mbuf is released and the function returns.

17.8. Summary

In this chapter we discussed the six functions that modify the semantics of a socket. Socket options are processed by setsockopt and getsockopt. Additional options, some of which are not unique to sockets, are handled by fcntl and ioctl. Finally, connection information is available through getsockname and getpeername.

Exercises

17.1 Why do you think options are limited to the size of a standard mbuf (MHLEN, 128 bytes)?

17.2 Why does the code at the end of Figure 17.7 work for the SO_LINGER option?

17.3 There is a problem with the suggested code used to test the timeval structure in Figure 17.9 since tv->tv_sec* hz may cause an overflow. Suggest a change to the code to solve this problem.

Chapter 18. Radix Tree Routing Tables

18.1. Introduction

The routing performed by IP, when it searches the routing table and decides which interface to send a packet out on, is a routing mechanism. This differs from a routing policy, which is a set of rules that decides which routes go into the routing table. The Net/3 kernel implements the routing mechanism while a routing daemon, typically routed or gated, implements the routing policy. The structure of the routing table must recognize that the packet forwarding occurs frequently hundre ds or thousands of times a second on a busy system w hile routing policy changes are less frequent.

Routing is a detailed issue and we divide our discussion into three chapters.

[image: Image] This chapter looks at the structure of the radix tree routing tables used by the Net/3 packet forwarding code. The tables are consulted by IP every time a packet is sent (since IP must determine which local interface receives the packet) and every time a packet is forwarded.

[image: Image] Chapter 19 looks at the functions that interface between the kernel and the radix tree functions, and also at the routing messages that are exchanged between the kernel and routing processes no rmally the routing daemons that implement the routing policy. These messages allow a process to modify the kernel’s routing table (add a route, delete a route, etc.) and let the kernel notify the daemons when an asynchronous event occurs that might affect the routing policy (a redirect is received, an interface goes down, and so on).

[image: Image] Chapter 20 presents the routing sockets that are used to exchange routing messages between the kernel and a process.

18.2. Routing Table Structure

Before looking at the internal structure of the Net/3 routing table, we need to understand the type of information contained in the table. Figure 18.1 is the bottom half of Figure 1.17: the four systems on the author’s Ethernet.

Figure 18.1. Subnet used for routing table example.

[image: Image]

Figure 18.2 shows the routing table for bsdi in Figure 18.1.

Figure 18.2. Routing table on the host bsdi.

[image: Image]

We have modified the “Flags” column from the normal netstat output, making it easier to see which flags are set for the various entries.

The routes in this table were entered as follows. Steps 1, 3, 5, 8, and 9 are performed at system initialization when the /etc/netstart shell script is executed.

1. A default route is added by the route command to the host sun (140.252.13.33), which contains a PPP link to the Internet.

2. The entry for network 127 is typically created by a routing daemon such as gated, or it can be entered with the route command in the /etc/netstart file. This entry causes all packets sent to this network, other than references to the host 127.0.0.1 (which are covered by the more specific route entered in the next step), to be rejected by the loopback driver (Figure 5.27).

3. The entry for the loopback interface (127.0.0.1) is configured by ifconfig.

4. The entry for vangogh.cs.berkeley.edu (128.32.33.5) was created by hand using the route command. It specifies the same router as the default route (140.252.13.33), but having a host-specific route, instead of using the default route for this host, allows routing metrics to be stored in this entry. These metrics can optionally be set by the administrator, are used by TCP each time a connection is established to the destination host, and are updated by TCP when the connection is closed. We describe these metrics in more detail with Figure 27.3.

5. The interface 1e0 is initialized using the ifconfig command. This causes the entry for network 140.252.13.32 to be entered into the routing table.

6. The entries for the other two hosts on the Ethernet, sun (140.252.13.33) and svr4 (140.252.13.34), were created by ARP, as we describe in Chapter 21. These are temporary entries that are removed if they are not used for a certain period of time.

7. The entry for the local host, 140.252.13.35, is created the first time the host’s own IP address is referenced. The interface is the loopback, meaning any IP datagrams sent to the host’s own IP address are looped back internally. The automatic creation of this entry is new with 4.4BSD, as we describe in Section 21.13.

8. The entry for the host 140.252.13.65 is created when the SLIP interface is configured by ifconfig.

9. The route command adds the route to network 224 through the Ethernet interface.

10. The entry for the multicast group 224.0.0.1 (the all-hosts group) was created by running the Ping program, pinging the address 224.0.0.1. This is also a temporary entry that is removed if not used for a certain period of time.

The “Flags” column in Figure 18.2 needs a brief explanation. Figure 18.25 provides a list of all the possible flags.

	
U

	
The route is up.

	
G

	
The route is to a gateway (router). This is called an indirect route. If this flag is not set, the destination is directly connected; this is called a direct route.

	
H

	
The route is to a host, that is, the destination is a complete host address. If this flag is not set, the route is to a network, and the destination is a network address: a network ID, or a combination of a network ID and a subnet ID. The netstat command doesn’t show it, but each network route also contains a network mask. A host route has an implied mask of all one bits.

	
S

	
The route is static. The three entries created by the route command in Figure 18.2 are static.

	
C

	
The route is cloned to create new routes. Two entries in this routing table have this flag set: (1) the route for the local Ethernet (140.252.13.32), which is cloned by ARP to create the host-specific routes of other hosts on the Ethernet, and (2) the route for multicast groups (224), which is cloned to create specific multicast group routes such as 224.0.0.1

	
L

	
The route contains a link-layer address. The host routes that ARP clones from the Ethernet network routes all have the link flag set. This applies to unicast and multicast addresses.

	
R

	
The loopback driver (the normal interface for routes with this flag) rejects all datagrams that use this route.

The ability to enter a route with the “reject” flag was provided in Net/2. It provides a simple way of preventing datagrams destined to network 127 from appearing outside the host. See also Exercise 6.6.

Before 4.3BSD Reno, two distinct routing tables were maintained by the kernel for IP addresses: one for host routes and one for network routes. A given route was entered into one table or the other, based on the type of route. The default route was stored in the network routing table with a destination address of 0.0.0.0. There was an implied hierarchy: a search was made for a host route first, and if not found a search was made for a network route, and if still not found, a search was made for a default route. Only if all three searches failed was the destination unreachable. Section 11.5 of [Leffler et al. 1989] describes the hash table with linked lists used for the host and network routing tables in Net/1.

Major changes took place in the internal representation of the routing table with 4.3BSD Reno [Sklower 1991]. These changes allow the same routing table functions to access a routing table for other protocol suites, notably the OSI protocols, which use variable-length addresses, unlike the fixed-length 32-bit Internet addresses. The internal structure was also changed, to provide faster lookups.

The Net/3 routing table uses a Patricia tree structure [Sedgewick 1990] to represent both host addresses and network addresses. (Patricia stands for “Practical Algorithm to Retrieve Information Coded in Alphanumeric.”) The address being searched for and the addresses in the tree are considered as sequences of bits. This allows the same functions to maintain and search one tree containing fixed-length 32-bit Internet addresses, another tree containing fixed-length 48-bit XNS addresses, and another tree containing variable-length OSI addresses.

The idea of using Patricia trees for the routing table is attributed to Van Jacobson in [Sklower 1991]. These are actually binary radix tries with one-way branching removed.

An example is the easiest way to describe the algorithm. The goal of routing lookup is to find the most specific address that matches the given destination: the search key. The term most specific implies that a host address is preferred over a network address, which is preferred over a default address.

Each entry has an associated network mask, although no mask is stored with a host route; instead host routes have an implied mask of all one bits. An entry in the routing table matches a search key if the search key logically ANDed with the network mask of the entry equals the entry itself. A given search key might match multiple entries in the routing table, so with a single table for both network route and host routes, the table must be organized so that more-specific routes are considered before less-specific routes.

Consider the examples in Figure 18.3. The two search keys are 127.0.0.1 and 127.0.0.2, which we show in hexadecimal since the logical ANDing is easier to illustrate. The two routing table entries are the host entry for 127.0.0.1 (with an implied mask of 0xffffffff) and the network entry for 127.0.0.0 (with a mask of 0xff000000).

Figure 18.3. Example routing table lookups for the two search keys 127.0.0.1 and 127.0.0.2.

[image: Image]

Since the search key 127.0.0.1 matches both routing table entries, the routing table must be organized so that the more-specific entry (127.0.0.1) is tried first.

Figure 18.4 shows the internal representation of the Net/3 routing table corresponding to Figure 18.2. This table was built from the output of the netstat command with the -A flag, which dumps the tree structure of the routing tables.

Figure 18.4. Net/3 routing table corresponding to Figure 18.2.

[image: Image]

The two shaded boxes labeled “end” are leaves with special flags denoting the end of the tree. The left one has a key of all zero bits and the right one has a key of all one bits. The two boxes stacked together at the left, labeled “end” and “default,” are a special representation used for duplicate keys, which we describe in Section 18.9.

The square-cornered boxes are called internal nodes or just nodes, and the boxes with rounded corners are called leaves. Each internal node corresponds to a bit to test in the search key, and a branch is made to the left or the right. Each leaf corresponds to either a host address or a network address. If there is a hexadecimal number beneath a leaf, that leaf is a network address and the number specifies the network mask for the leaf. The absence of a hexadecimal mask beneath a leaf node implies that the leaf is a host address with an implied mask of 0xffffffff.

Some of the internal nodes also contain network masks, and we’ll see how these are used in backtracking. Not shown in this figure is that every node also contains a pointer to its parent, to facilitate backtracking, deletion, and nonrecursive walks of the tree.

The bit comparisons are performed on socket address structures, so the bit positions given in Figure 18.4 are from the start of the socket address structure. Figure 18.5 shows the bit positions for a sockaddr_in structure.

Figure 18.5. Bit offsets in Internet socket address structure.

[image: Image]

The highest-order bit of the IP address is at bit position 32 and the lowest-order bit is at bit position 63. We also show the length as 16 and the address family as 2 (AF_INET), as we’ll encounter these two values throughout our examples.

To work through the examples we also need to show the bit representations of the various IP addresses in the tree. These are shown in Figure 18.6 along with some other IP addresses that are used in the examples that follow. The bit positions used in Figure 18.4 as branching points are shown in a bolder font.

Figure 18.6. Bit representations of the IP addresses in Figures 18.2 and 18.4.

[image: Image]

We now provide some specific examples of how the routing table searches are performed.

Example—Host Match

Assume the host address 127.0.0.1 is the search key the destination address being looked up. Bit 32 is off, so the left branch is made from the top of the tree. Bit 33 is on, so the right branch is made from the next node. Bit 63 is on, so the right branch is made from the next node. This next node is a leaf, so the search key (127.0.0.1) is compared to the address in the leaf (127.0.0.1). They match exactly so this routing table entry is returned by the lookup function.

Example—Host Match

Next assume the search key is the address 140.252.13.35. Bit 32 is on, so the right branch is made from the top of the tree. Bit 33 is off, bit 36 is on, bit 57 is off, bit 62 is on, and bit 63 is on, so the search ends at the leaf on the bottom labeled 140.252.13.35. The search key matches the routing table key exactly.

Example—Network Match

The search key is 127.0.0.2. Bit 32 is off, bit 33 is on, and bit 63 is off so the search ends up at the leaf labeled 127.0.0.0. The search key and the routing table key don’t match exactly, so a network match is tried. The search key is logically ANDed with the network mask (0xff000000) and since the result equals the routing table key, this entry is considered a match.

Example—Default Match

The search key is 10.1.2.3. Bit 32 is off and bit 33 is off, so the search ends up at the leaf with the duplicate keys labeled “end” and “default.” The routing table key that is duplicated in these two leaves is 0.0.0.0. The search key and the routing table key don’t match exactly, so a network match is tried. This match is tried for all duplicate keys that have a network mask. The first key (the end marker) doesn’t have a network mask, so it is skipped. The next key (the default entry) has a mask of 0x00000000. The search key is logically ANDed with this mask and since the result equals the routing table key (0), this entry is considered a match. The default route is used.

Example—Network Match with Backtracking

The search key is 127.0.0.3. Bit 32 is off, bit 33 is on, and bit 63 is on, so the search ends up at the leaf labeled 127.0.0.1. The search key and the routing table key don’t match exactly. A network match cannot be attempted since this leaf does not have a network mask. Backtracking now takes place.

The backtracking algorithm is to move up the tree, one level at a time. If an internal node is encountered that contains a mask, the search key is logically ANDed with the mask and another search is made of the subtree starting at the node with the mask, looking for a match with the ANDed key. If a match isn’t found, the backtrack keeps moving up the tree, until the top is reached.

In this example the search moves up one level to the node for bit 63 and this node contains a mask. The search key is logically ANDed with the mask (0xff000000), giving a new search key of 127.0.0.0. Another search is made starting at this node for 127.0.0.0. Bit 63 is off, so the left branch is taken to the leaf labeled 127.0.0.0. The new search key is compared to the routing table key and since they’re equal, this leaf is the match.

Example—Backtracking Multiple Levels

The search key is 112.0.0.1. Bit 32 is off, bit 33 is on, and bit 63 is on, so the search ends up at the leaf labeled 127.0.0.1. The keys are not equal and the routing table entry does not have a network mask, so backtracking takes place.

The search moves up one level to the node for bit 63, which contains a mask. The search key is logically ANDed with the mask of 0xff000000 and another search is made starting at that node. Bit 63 is off in the new search key, so the left branch is made to the leaf labeled 127.0.0.0. A comparison is made but the ANDed search key (112.0.0.0) doesn’t equal the search key in the table.

Backtracking continues up one level from the bit-63 node to the bit-33 node. But this node does not have a mask, so the backtracking continues upward. The next level is the top of the tree (bit 32) and it has a mask. The search key (112.0.0.1) is logically ANDed with the mask (0x00000000) and a new search started from that point. Bit 32 is off in the new search key, as is bit 33, so the search ends up at the leaf labeled “end” and “default.” The list of duplicate keys is traversed and the default key matches the new search key, so the default route is used.

As we can see in this example, if a default route is present in the routing table, when the backtrack ends up at the top node in the tree, its mask is all zero bits, which causes the search to proceed to the leftmost leaf in the tree for a match with the default.

Example—Host Match with Backtracking and Cloning

The search key is 224.0.0.5. Bit 32 is on, bit 33 is on, bit 35 is off, and bit 63 is on, so the search ends up at the leaf labeled 224.0.0.1. This routing table key does not equal the search key, and the routing table entry does not contain a network mask, so backtracking takes place.

The backtrack moves one level up to the node that tests bit 63. This node contains the mask 0xff000000, so the search key ANDed with the mask yields a new search key of 224.0.0.0. Another search is made, starting at this node. Since bit 63 is off in the ANDed key, the left branch is taken to the leaf labeled 224.0.0.0. This routing table key matches the ANDed search key, so this entry is a match.

This route has the “clone” flag set (Figure 18.2), so a new leaf is created for the address 224.0.0.5. The new routing table entry is

[image: Image]

and Figure 18.7 shows the new arrangement of the right side of the routing table tree from Figure 18.4, starting with the node for bit 35. Notice that whenever a new leaf is added to the tree, two nodes are needed: one for the leaf and one for the internal node specifying the bit to test.

Figure 18.7. Modification of Figure 18.4 after inserting entry for 224.0.0.5.

[image: Image]

This newly created entry is the one returned to the caller who was searching for 224.0.0.5.

The Big Picture

Figure 18.8 shows a bigger picture of all the data structures involved. The bottom portion of this figure is from Figure 3.32.

Figure 18.8. Data structures involved with routing tables.

[image: Image]

There are numerous points about this figure that we’ll note now and describe in detail later in this chapter.

[image: Image] rt_tables is an array of pointers to radix_node_head structures. There is one entry in the array for each address family. rt_tables[AF_INET] points to the top of the Internet routing table tree.

[image: Image] The radix_node_head structure contains three radix_node structures. These structures are built when the tree is initialized and the middle of the three is the top of the tree. This corresponds to the top box in Figure 18.4, labeled “bit 32.” The first of the three radix_node structures is the leftmost leaf in Figure 18.4 (the shared duplicate with the default route) and the third of the three is the rightmost leaf. An empty routing table consists of just these three radix_node structures; we’ll see how it is constructed by the rn_inithead function.

[image: Image] The global mask_rnhead also points to a radix_node_head structure. This is the head of a separate tree of all the masks. Notice in Figure 18.4 that of the eight masks shown, one is duplicated four times and two are duplicated once. By keeping a separate tree for the masks, only one copy of each unique mask is maintained.

[image: Image] The routing table tree is built from rtentry structures, and we show two of these in Figure 18.8. Each rtentry structure contains two radix_node structures, because each time a new entry is inserted into the tree, two nodes are required: an internal node corresponding to a bit to be tested, and a leaf node corresponding to a host route or a network route. In each rtentry structure we also show which bit test the internal node corresponds to and the address contained in the leaf node.

The remainder of the rtentry structure is the focal point of information for this route. We show only a single pointer from this structure to the corresponding ifnet structure for the route, but this structure also contains a pointer to the ifaddr structure, the flags for the route, a pointer to another rtentry structure if this entry is an indirect route, the metrics for the route, and so on.

[image: Image] Protocol control blocks (Chapter 22), of which one exists for each UDP and TCP socket (Figure 22.1), contain a route structure that points to an rtentry structure. The UDP and TCP output functions both pass a pointer to the route structure in a PCB as the third argument to ip_output, each time an IP datagram is sent. PCBs that use the same route point to the same routing table entry.

18.3. Routing Sockets

When the routing table changes were made with 4.3BSD Reno, the interaction of processes with the routing subsystem also changed the concept of routing sockets was introduced. Prior to 4.3BSD Reno, fixed-length ioctls were issued by a process (such as the route command) to modify the routing table. 4.3BSD Reno changed this to a more generalized message-passing scheme using the new PF_ROUTE domain. A process creates a raw socket in the PF_ROUTE domain and can send routing messages to the kernel, and receives routing messages from the kernel (e.g., redirects and other asynchronous notifications from the kernel).

Figure 18.9 shows the 12 different types of routing messages. The message type is the rtm_type field in the rt_msghdr structure, which we describe in Figure 19.16. Only five of the messages can be issued by a process (a write to a routing socket), but all 12 can be received by a process.

Figure 18.9. Types of messages exchanged across a routing socket.

[image: Image]

We’ll defer our discussion of these routing messages until Chapter 19.

18.4. Code Introduction

Three headers and five C files define the various structures and functions used for routing. These are summarized in Figure 18.10.

Figure 18.10. Files discussed in this chapter.

[image: Image]

In general, the prefix rn_ denotes the radix node functions that search and manipulate the Patricia trees, the raw_ prefix denotes the routing control block functions, and the three prefixes route_, rt_, and rt denote the general routing functions.

We use the term routing control blocks instead of raw control blocks in all the routing chapters, even though the files and functions begin with the prefix raw. This is to avoid confusion with the raw IP control blocks and functions, which we discuss in Chapter 32. Although the raw control blocks and their associated functions are used for more than just routing sockets in Net/3 (one of the raw OSI protocols uses these structures and functions), our use in this text is only with routing sockets in the PF_ROUTE domain.

Figure 18.11 shows the primary routing functions and their relationships. The shaded ellipses are the ones we cover in this chapter and the next two. We also show where each of the 12 routing message types are generated.

Figure 18.11. Relationships between the various routing functions.

[image: Image]

rtalloc is the function called by the Internet protocols to look up routes to destinations. We’ve already encountered rtalloc in the ip_rtaddr, ip_forward, ip_output, and ip_setmoptions functions. We’ll also encounter it later in the in_pcbconnect and tcp_mss functions.

We also show in Figure 18.11 that five programs typically create sockets in the routing domain:

[image: Image] arp manipulates the ARP cache, which is stored in the IP routing table in Net/3 (Chapter 21),

[image: Image] gated and routed are routing daemons that communicate with other routers and manipulate the kernel’s routing table as the routing environment changes (routers and links go up or down),

[image: Image] route is a program typically executed by start-up scripts or by the system administrator to add or delete routes, and

[image: Image] rwhod issues a routing sysct1 on start-up to determine the attached interfaces.

Naturally, any process (with superuser privilege) can open a routing socket to send and receive messages to and from the routing subsystem; we show only the common system programs in Figure 18.11.

Global Variables

The global variables introduced in the three routing chapters are shown in Figure 18.12.

Figure 18.12. Global variables in the three routing chapters.

[image: Image]

Statistics

Some routing statistics are maintained in the global structure rtstat, described in Figure 18.13.

Figure 18.13. Routing statistics maintained in the rtstat structure.

[image: Image]

We’ll see where these counters are incremented as we proceed through the code. None are used by SNMP.

Figure 18.14 shows some sample output of these statistics from the netstat -rs command, which displays this structure.

Figure 18.14. Sample routing statistics.

[image: Image]

SNMP Variables

Figure 18.15 shows the IP routing table, named ipRouteTable, and the kernel variables that supply the corresponding value.

Figure 18.15. IP routing table: ipRouteTable.

[image: Image]

For ipRouteType, if the RTF_GATEWAY flag is set in rt_flags, the route is remote (4); otherwise the route is direct (3). For ipRouteProto, if either the RTF_DYNAMIC or RTF_MODIFIED flag is set, the route was created or modified by ICMP (4), otherwise the value is other (1). Finally, if the rt_mask pointer is null, the returned mask is all one bits (i.e., a host route).

18.5. Radix Node Data Structures

In Figure 18.8 we see that the head of each routing table is a radix_node_head and all the nodes in the routing tree, both the internal nodes and the leaves, are radix_node structures. The radix_node_head structure is shown in Figure 18.16.

Figure 18.16. radix_node_head structure: the top of each routing tree.

	

--- radix.h
 91 struct radix_node_head {
 92 struct radix_node *rnh_treetop;
 93 int rnh_addrsize; /* (not currently used) */
 94 int rnh_pktsize; /* (not currently used) */
 95 struct radix_node *(*rnh_addaddr) /* add based on sockaddr */
 96 (void *v, void *mask,
 97 struct radix_node_head * head, struct radix_node nodes[]);
 98 struct radix_node *(*rnh_addpkt) /* add based on packet hdr */
 99 (void *v, void *mask,
100 struct radix_node_head * head, struct radix_node nodes[]);
101 struct radix_node *(*rnh_deladdr) /* remove based on sockaddr */
102 (void *v, void *mask, struct radix_node_head * head);
103 struct radix_node *(*rnh_delpkt) /* remove based on packet hdr */
104 (void *v, void *mask, struct radix_node_head * head);
105 struct radix_node *(*rnh_matchaddr) /* locate based on sockaddr */
106 (void *v, struct radix_node_head * head);
107 struct radix_node *(*rnh_matchpkt) /* locate based on packet hdr */
108 (void *v, struct radix_node_head * head);
109 int (*rnh_walktree) /* traverse tree */
110 (struct radix_node_head * head, int (*f) (), void *w);

111 struct radix_node rnh_nodes[3]; /* top and end nodes */
112 };
--- radix.h

92

rnh_treetop points to the top radix_node structure for the routing tree. Notice that three of these structures are allocated at the end of the radix_node_head, and the middle one of these is initialized as the top of the tree (Figure 18.8).

93-94

rnh_addrsize and rnh_pktsize are not currently used.

rnh_addrsize is to facilitate porting the routing table code to systems that don’t have a length byte in the socket address structure. rnh_pktsize is to allow using the radix node machinery to examine addresses in packet headers without having to copy the address into a socket address structures.

95-110

The seven function pointers, rnh_addaddr through rnh_walktree, point to functions that are called to operate on the tree. Only four of these pointers are initialized by rn_inithead and the other three are never used by Net/3, as shown in Figure 18.17.

Figure 18.17. The seven function pointers in the radix_node_head structure.

[image: Image]

111-112

Figure 18.18 shows the radix_node structure that forms the nodes of the tree. In Figure 18.8 we see that three of these are allocated in the radix_node_head and two are allocated in each rtentry structure.

Figure 18.18. radix_node structure: the nodes of the routing tree.

	

-- radix.h
 40 struct radix_node {
 41 struct radix_mask *rn_mklist; /* list of masks contained in subtree */
 42 struct radix_node *rn_p; /* parent pointer */
 43 short rn_b; /* bit offset; -1-index(netmask) */
 44 char rn_bmask; /* node: mask for bit test */
 45 u_char rn_flags; /* Figure 18.20 */
 46 union {
 47 struct { /* leaf only data: rn_b < 0 */
 48 caddr_t rn_Key; /* object of search */
 49 caddr_t rn_Mask; /* netmask, if present */
 50 struct radix_node *rn_Dupedkey;
 51 } rn_leaf;
 52 struct { /* node only data: rn_b >= 0 */
 53 int rn_Off; /* where to start compare */
 54 struct radix_node *rn_L; /* left pointer */
 55 struct radix_node *rn_R; /* right pointer */
 56 } rn_node;
 57 } rn_u;
 58 };

 59 #define rn_dupedkey rn_u.rn_leaf.rn_Dupedkey
 60 #define rn_key rn_u.rn_leaf.rn_Key
 61 #define rn_mask rn_u.rn_leaf.rn_Mask
 62 #define rn_off rn_u.rn_node.rn_Off
 63 #define rn_l rn_u.rn_node.rn_L
 64 #define rn_r rn_u.rn_node.rn_R
-- radix.h

41-45

The first five members are common to both internal nodes and leaves, followed by a union defining three members if the node is a leaf, or a different three members if the node is internal. As is common throughout the Net/3 code, a set of #define statements provide shorthand names for the members in the union.

41-42

rn_mklist is the head of a linked list of masks for this node. We describe this field in Section 18.9. rn_p points to the parent node.

43

If rn_b is greater than or equal to 0, the node is an internal node, else the node is a leaf. For the internal nodes, rn_b is the bit number to test: for example, its value is 32 in the top node of the tree in Figure 18.4. For leaves, rn_b is negative and its value is -1 minus the index of the network mask. This index is the first bit number where a 0 occurs. Figure 18.19 shows the indexes of the masks from Figure 18.4.

Figure 18.19. Example of mask indexes.

[image: Image]

As we can see, the index of the all-zero mask is handled specially: its index is 0, not 32.

44

rn_bmask is a 1-byte mask used with the internal nodes to test whether the corresponding bit is on or off. Its value is 0 in leaves. We’ll see how this member is used with the rn_off member shortly.

45

Figure 18.20 shows the three values for the rn_flags member.

Figure 18.20. rn_flags values.

[image: Image]

The RNF_ROOT flag is set only for the three radix nodes in the radix_node_head structure: the top of the tree and the left and right end nodes. These three nodes can never be deleted from the routing tree.

48-49

For a leaf, rn_key points to the socket address structure and rn_mask points to a socket address structure containing the mask. If rn_mask is null, the implied mask is all one bits (i.e., this route is to a host, not to a network).

Figure 18.21 shows an example corresponding to the leaf for 140.252.13.32 in Figure 18.4.

Figure 18.21. radix_node structure corresponding to leaf for 140.252.13.32 in Figure 18.4.

[image: Image]

This example also shows a radix_mask structure, which we describe in Figure 18.22. We draw this latter structure with a smaller width, to help distinguish it as a different structure from the radix_node; we’ll encounter both structures in many of the figures that follow. We describe the reason for the radix_mask structure in Section 18.9.

Figure 18.22. radix_mask structure.

	

--- radix.h
 76 extern struct radix_mask {
 77 short rm_b; /* bit offset; -1-index(netmask) */
 78 char rm_unused; /* cf. rn_bmask */
 79 u_char rm_flags; /* cf. rn_flags */
 80 struct radix_mask *rm_mklist; /* more masks to try */
 81 caddr_t rm_mask; /* the mask */
 82 int rm_refs; /* # of references to this struct */
 83 } *rn_mkfreelist;
--- radix.h

The rn_b of—60 corresponds to an index of 59. rn_key points to a sockaddr_in, with a length of 16 and an address family of 2 (AF_INET). The mask structure pointed to by rn_mask and rm_mask has a length of 8 and a family of 0 (this family is AF_UNSPEC, but it is never even looked at).

50-51

The rn_dupedkey pointer is used when there are multiple leaves with the same key. We describe these in Section 18.9.

52-58

We describe rn_off in Section 18.8. rn_1 and rn_r are the left and right pointers for the internal node.

Figure 18.22 shows the radix_mask structure.

76-83

Each of these structures contains a pointer to a mask: rm_mask, which is really a pointer to a socket address structure containing the mask. Each radix_node structure points to a linked list of radix_mask structures, allowing multiple masks per node: rn_mklist points to the first, and then each rm_mklist points to the next. This structure definition also declares the global rn_mkfreelist, which is the head of a linked list of available structures.

18.6. Routing Structures

The focal points of access to the kernel’s routing information are

1. the rtalloc function, which searches for a route to a destination,

2. the route structure that is filled in by this function, and

3. the rtentry structure that is pointed to by the route structure.

Figure 18.8 showed that the protocol control blocks (PCBs) used by UDP and TCP (Chapter 22) contain a route structure, which we show in Figure 18.23.

Figure 18.23. route structure.

	

--- route.h
 46 struct route {
 47 struct rtentry *ro_rt; /* pointer to struct with information */
 48 struct sockaddr ro_dst; /* destination of this route */
 49 };
--- route.h

ro_dst is declared as a generic socket address structure, but for the Internet protocols it is a sockaddr_in. Notice that unlike most references to this type of structure, ro_dst is the structure itself, not a pointer to one.

At this point it is worth reviewing Figure 8.24, which shows the use of these routes every time an IP datagram is output.

[image: Image] If the caller passes a pointer to a route structure, that structure is used. Otherwise a local route structure is used and it is set to 0, setting ro_rt to a null pointer. UDP and TCP pass a pointer to the route structure in their PCB to ip_output.

[image: Image] If the route structure points to an rtentry structure (the ro_rt pointer is nonnull), and if the referenced interface is still up, and if the destination address in the route structure equals the destination address of the IP datagram, that route is used. Otherwise the socket address structure so_dst is filled in with the destination IP address and rtalloc is called to locate a route to that destination. For a TCP connection the destination address of the datagram never changes from the destination address of the route, but a UDP application can send a datagram to a different destination with each sendto.

[image: Image] If rtalloc returns a null pointer in ro_rt, a route was not found and ip_output returns an error.

[image: Image] If the RTF_GATEWAY flag is set in the rtentry structure, the route is indirect (the G flag in Figure 18.2). The destination address (dst) for the interface output function becomes the IP address of the gateway, the rt_gateway member, not the destination address of the IP datagram.

Figure 18.24 shows the rtentry structure.

Figure 18.24. rtentry structure.

	

-- route.h
 83 struct rtentry {
 84 struct radix_node rt_nodes[2]; /* a leaf and an internal node */

 85 struct sockaddr *rt_gateway; /* value associated with rn_key */
 86 short rt_flags; /* Figure 18.25 */
 87 short rt_refcnt; /* #held references */
 88 u_long rt_use; /* raw #packets sent */
 89 struct ifnet *rt_ifp; /* interface to use */
 90 struct ifaddr *rt_ifa; /* interface address to use */
 91 struct sockaddr *rt_genmask; /* for generation of cloned routes */
 92 caddr_t rt_llinfo; /* pointer to link level info cache */
 93 struct rt_metrics rt_rmx; /* metrics: Figure 18.26 */
 94 struct rtentry *rt_gwroute; /* implied entry for gatewayed routes */
 95 };

 96 #define rt_key(r) ((struct sockaddr *)((r)->rt_nodes->rn_key))
 97 #define rt_mask(r) ((struct sockaddr *)((r)->rt_nodes->rn_mask))
-- route.h

83-84

Two radix_node structures are contained within this structure. As we noted in the example with Figure 18.7, each time a new leaf is added to the routing tree a new internal node is also added. rt_nodes[0] contains the leaf entry and rt_nodes[1] contains the internal node. The two #define statements at the end of Figure 18.24 provide a shorthand access to the key and mask of this leaf node.

86

Figure 18.25 shows the various constants stored in rt_flags and the corresponding character output by netstat in the “Flags” column (Figure 18.2).

Figure 18.25. rt_flags values.

[image: Image]

The RTF_BLACKHOLE flag is not output by netstat and the two with lowercase flag characters, RTF_DONE and RTF_MASK, are used in routing messages and not normally stored in the routing table entry.

85

If the RTF_GATEWAY flag is set, rt_gateway contains a pointer to a socket address structure containing the address (e.g., the IP address) of that gateway. Also, rt_gwroute points to the rtentry for that gateway. This latter pointer was used in ether_output (Figure 4.15).

87

rt_refcnt counts the “held” references to this structure. We describe this counter at the end of Section 19.3. This counter is output as the “Refs” column in Figure 18.2.

88

rt_use is initialized to 0 when the structure is allocated; we saw it incremented in Figure 8.24 each time an IP datagram was output using the route. This counter is also the value printed in the “Use” column in Figure 18.2.

89-90

rt_ifp and rt_ifa point to the interface structure and the interface address structure, respectively. Recall from Figure 6.5 that a given interface can have multiple addresses, so minimally the rt_ifa is required.

92

The rt_llinfo pointer allows link-layer protocols to store pointers to their protocol-specific structures in the routing table entry. This pointer is normally used with the RTF_LLINFO flag. Figure 21.1 shows how ARP uses this pointer.

93

Figure 18.26 shows the rt_metrics structure, which is contained within the rtentry structure. Figure 27.3 shows that TCP uses six members in this structure.

Figure 18.26. rt_metrics structure.

	

-- route.h
 54 struct rt_metrics {
 55 u_long rmx_locks; /* bitmask for values kernel leaves alone */
 56 u_long rmx_mtu; /* MTU for this path */
 57 u_long rmx_hopcount; /* max hops expected */
 58 u_long rmx_expire; /* lifetime for route, e.g. redirect */
 59 u_long rmx_recvpipe; /* inbound delay-bandwith product */
 60 u_long rmx_sendpipe; /* outbound delay-bandwith product */
 61 u_long rmx_ssthresh; /* outbound gateway buffer limit */
 62 u_long rmx_rtt; /* estimated round trip time */
 63 u_long rmx_rttvar; /* estimated RTT variance */
 64 u_long rmx_pksent; /* #packets sent using this route */
 65 };
-- route.h

54-65

rmx_locks is a bitmask telling the kernel which of the eight metrics that follow must not be modified. The values for this bitmask are shown in Figure 20.13.

rmx_expire is used by ARP (Chapter 21) as a timer for each ARP entry. Contrary to the comment with rmx_expire, it is not used for redirects.

Figure 18.28 summarizes the structures that we’ve described, their relationships, and the various types of socket address structures they reference. The rtentry that we show is for the route to 128.32.33.5 in Figure 18.2. The other radix_node contained in the rtentry is for the bit 36 test right above this node in Figure 18.4. The two sockaddr_dl structures pointed to by the first ifaddr were shown in Figure 3.38. Also note from Figure 6.5 that the ifnet structure is contained within an le_softc structure, and the second ifaddr structure is contained within an in_ifaddr structure.

18.7. Initialization: route_init and rtable_init Functions

The initialization of the routing tables is somewhat obscure and takes us back to the domain structures in Chapter 7. Before outlining the function calls, Figure 18.27 shows the relevant fields from the domain structure (Figure 7.5) for various protocol families.

Figure 18.27. Members of domain structure relevant to routing.

[image: Image]

The PF_ROUTE domain is the only one with an initialization function. Also, only the domains that require a routing table have a dom_rtattach function, and it is always rn_inithead. The routing domain and the Unix domain protocols do not require a routing table.

The dom_rtoffset member is the offset, in bits, (from the beginning of the domain’s socket address structure) of the first bit to be examined for routing. The size of this structure in bytes is given by dom_maxrtkey. We saw earlier in this chapter that the offset of the IP address in the sockaddr_in structure is 32 bits. The dom_maxrtkey member is the size in bytes of the protocol’s socket address structure: 16 for sockaddr_in.

Figure 18.29 outlines the steps involved in initializing the routing tables.

Figure 18.28. Summary of routing structures.

[image: Image]

Figure 18.29. Steps involved in initialization of routing tables.

[image: Image]

domaininit is called once by the kernel’s main function when the system is initialized. The linked list of domain structures is built by the ADDDOMAIN macro and the linked list is traversed, calling each domain’s dom_init function, if defined. As we saw in Figure 18.27, the only dom_init function is route_init, which is shown in Figure 18.30.

Figure 18.30. route_init function.

	

-- route.c
 49 void
 50 route_init()
 51 {
 52 rn_init(); /* initialize all zeros, all ones, mask table */

 53 rtable_init((void **) rt_tables);
 54 }
-- route.c

The function rn_init, shown in Figure 18.32, is called only once.

The function rtable_init, shown in Figure 18.31, is also called only once. It in turn calls all the dom_rtattach functions, which initialize a routing table tree for that domain.

Figure 18.31. rtable_init function: call each domain’s dom_rtattach function.

	

--- route.c
 39 void
 40 rtable_init(table)
 41 void **table;
 42 {
 43 struct domain *dom;
 44 for (dom = domains; dom; dom = dom->dom_next)
 45 if (dom->dom_rtattach)
 46 dom->dom_rtattach(&table[dom->dom_family],
 47 dom->dom_rtoffset);
 48 }
--- route.c

We saw in Figure 18.27 that the only dom_rtattach function is rn_inithead, which we describe in the next section.

18.8. Initialization: rn_init and rn_inithead Functions

The function rn_init, shown in Figure 18.32, is called once by route_init to initialize some of the globals used by the radix functions.

Figure 18.32. rn_init function.

	

-- radix.c
750 void
751 rn_init()
752 {
753 char *cp, *cplim;
754 struct domain *dom;

755 for (dom = domains; dom; dom = dom->dom_next)
756 if (dom->dom_maxrtkey > max_keylen)
757 max_keylen = dom->dom_maxrtkey;
758 if (max_keylen == 0) {
759 printf("rn_init: radix functions require max_keylen be set\n");
760 return;
761 }
762 R_Malloc(rn_zeros, char *, 3 * max_keylen);
763 if (rn_zeros == NULL)
764 panic("rn_init");
765 Bzero(rn_zeros, 3 * max_keylen);
766 rn_ones = cp = rn_zeros + max_keylen;
767 maskedKey = cplim = rn_ones + max_keylen;
768 while (cp < cplim)
769 *cp++ = -1;

770 if (rn_inithead((void **) &mask_rnhead, 0) == 0)
771 panic("rn_init 2");
772 }
-- radix.c

Determine max_keylen

750-761

All the domain structures are examined and the global max_keylen is set to the largest value of dom_maxrtkey. In Figure 18.27 the largest value is 32 for AF_ISO, but in a typical system that excludes the OSI and XNS protocols, max_keylen is 16, the size of a sockaddr_in structure.

Allocate and initialize rn_zeros, rn_ones, and maskedKey

762-769

A buffer three times the size of max_keylen is allocated and the pointer stored in the global rn_zeros. R_Malloc is a macro that calls the kernel’s malloc function, specifying a type of M_RTABLE and M_DONTWAIT. We’ll also encounter the macros Bcmp, Bcopy, Bzero, and Free, which call kernel functions of similar names, with the arguments appropriately type cast.

This buffer is divided into three pieces, and each piece is initialized as shown in Figure 18.33.

Figure 18.33. rn_zeros, rn_ones, and maskedKey arrays.

[image: Image]

rn_zeros is an array of all zero bits, rn_ones is an array of all one bits, and maskedKey is an array used to hold a temporary copy of a search key that has been masked.

Initialize tree of masks

770-772

The function rn_inithead is called to initialize the head of the routing tree for the address masks; the radix_node_head structure pointed to by the global mask_rnhead in Figure 18.8.

From Figure 18.27 we see that rn_inithead is also the dom_attach function for all the protocols that require a routing table. Instead of showing the source code for this function, Figure 18.34 shows the radix_node_head structure that it builds for the Internet protocols.

Figure 18.34. radix_node_head structure built by rn_inithead for Internet protocols.

[image: Image]

The three radix_node structures form a tree: the middle of the three is the top (it is pointed to by rnh_treetop), the first of the three is the leftmost leaf of the tree, and the last of the three is the rightmost leaf of the tree. The parent pointer of all three nodes (rn_p) points to the middle node.

The value 32 for rnh_nodes [1].rn_b is the bit position to test. It is from the dom_rtoffset member of the Internet domain structure (Figure 18.27). Instead of performing shifts and masks during forwarding, the byte offset and corresponding byte mask are precomputed. The byte offset from the start of a socket address structure is in the rn_off member of the radix_node structure (4 in this case) and the byte mask is in the rn_bmask member (0x80 in this case). These values are computed whenever a radix_node structure is added to the tree, to speed up the comparisons during forwarding. As additional examples, the offset and byte mask for the two nodes that test bit 33 in Figure 18.4 would be 4 and 0x40, respectively. The offset and byte mask for the two nodes that test bit 63 would be 7 and 0x01.

The value of -33 for the rn_b member of both leaves is negative one minus the index of the leaf.

The key of the leftmost node is all zero bits (rn_zeros) and the key of the rightmost node is all one bits (rn_ones).

All three nodes have the RNF_ROOT flag set. (We have omitted the RNF_ prefix.) This indicates that the node is one of the three original nodes used to build the tree. These are the only nodes with this flag.

One detail we have not mentioned is that the Network File System (NFS) also uses the routing table functions. For each mount point on the local host a radix_node_head structure is allocated, along with an array of pointers to these structures (indexed by the protocol family), similar to the rt_tables array. Each time this mount point is exported, the protocol address of the host that can mount this filesystem is added to the appropriate tree for the mount point.

18.9. Duplicate Keys and Mask Lists

Before looking at the source code that looks up entries in a routing table we need to understand two fields in the radix_node structure: rn_dupedkey, which forms a linked list of additional radix_node structures containing duplicate keys, and rn_mklist, which starts a linked list of radix_mask structures containing network masks.

We first return to Figure 18.4 and the two boxes on the far left of the tree labeled “end” and “default.” These are duplicate keys. The leftmost node with the RNF_ROOT flag set (rnh_nodes [0] in Figure 18.34) has a key of all zero bits, but this is the same key as the default route. We would have the same problem with the rightmost end node in the tree, which has a key of all one bits, if an entry were created for 255.255.255.255, but this is the limited broadcast address, which doesn’t appear in the routing table. In general, the radix node functions in Net/3 allow any key to be duplicated, if each occurrence has a unique mask.

Figure 18.35 shows the two nodes with a duplicate key of all zero bits. In this figure we have removed the RNF_ prefix for the rn_flags and omit nonnull parent, left, and right pointers, which add nothing to the discussion.

Figure 18.35. Duplicated nodes with a key of all zero bits.

[image: Image]

The top node is the top of the routing tree the node for bit 32 at the top of Figure 18.4. The next two nodes are leaves (their rn_b values are negative) with the rn_dupedkey member of the first pointing to the second. The first of these two leaves is the rnh_nodes [0] structure from Figure 18.34, which is the left end marker of the tree its RNF_ROOT flag is set. Its key was explicitly set by rn_inithead to rn_zeros.

The second of these leaves is the entry for the default route. Its rn_key points to a sockaddr_in with the value 0.0.0.0, and it has a mask of all zero bits. Its rn_mask points to rn_zeros, since equivalent masks in the mask table are shared.

Normally keys are not shared, let alone shared with masks. The rn_key pointers of the two end markers (those with the RNF_ROOT flag) are special since they are built by rn_inithead (Figure 18.34). The key of the left end marker points to rn_zeros and the key of the right end marker points to rn_ones.

The final structure is a radix_mask structure and is pointed to by both the top node of the tree and the leaf for the default route. The list from the top node of the tree is used with the backtracking algorithm when the search is looking for a network mask. The list of radix_mask structures with an internal node specifies the masks that apply to subtrees starting at that node. In the case of duplicate keys, a mask list also appears with the leaves, as we’ll see in the following example.

We now show a duplicate key that is added to the routing tree intentionally and the resulting mask list. In Figure 18.4 we have a host route for 127.0.0.1 and a network route for 127.0.0.0. The default mask for the class A network route is 0xff000000, as we show in the figure. If we divide the 24 bits following the class A network ID into a 16-bit subnet ID and an 8-bit host ID, we can add a route for the subnet 127.0.0 with a mask of 0xffffff00:

bsdi $ route add 127.0.0.0 -netmask 0xffffff00 140.252.13.33

Although it makes little practical sense to use network 127 in this fashion, our interest is in the resulting routing table structure. Although duplicate keys are not common with the Internet protocols (other than the previous example with the default route), duplicate keys are required to provide routes to subnet 0 of any network.

There is an implied priority in these three entries with a network ID of 127. If the search key is 127.0.0.1 it matches all three entries, but the host route is selected because it is the most specific: its mask (0xffffffff) has the most one bits. If the search key is 127.0.0.2 it matches both network routes, but the route for subnet 0, with a mask of 0xffffff00, is more specific than the route with a mask of 0xff000000. The search key 127.1.2.3 matches only the entry with a mask of 0xff000000.

Figure 18.36 shows the resulting tree structure, starting at the internal node for bit 33 from Figure 18.4. We show two boxes for the entry with the key of 127.0.0.0 since there are two leaves with this duplicate key.

Figure 18.36. Routing tree showing duplicate keys for 127.0.0.0.

[image: Image]

Figure 18.37 shows the resulting radix_node and radix_mask structures.

Figure 18.37. Example routing table structures for the duplicate keys for network 127.0.0.0.

[image: Image]

First look at the linked list of radix_mask structures for each radix_node. The mask list for the top node (bit 63) consists of the entry for 0xffffff00 followed by 0xff000000. The more-specific mask comes first in the list so that it is tried first. The mask list for the second radix_node (the one with the rn_b of -57) is the same as that of the first. But the list for the third radix_node consists of only the entry with a mask of 0xff000000.

Notice that masks with the same value are shared but keys with the same value are not. This is because the masks are maintained in their own routing tree, explicitly to be shared, because equal masks are so common (e.g., every class C network route has the same mask of 0xffffff00), while equal keys are infrequent.

18.10. rn_match Function

We now show the rn_match function, which is called as the rnh_matchaddr function for the Internet protocols. We’ll see that it is called by the rtalloc1 function, which is called by the rtalloc function. The algorithm is as follows:

1. Start at the top of the tree and go to the leaf corresponding to the bits in the search key. Check the leaf for an exact match (Figure 18.38).

Figure 18.38. rn_match function: go down tree, check for exact host match.

	

--- radix.c
135 struct radix_node *
136 rn_match(v_arg, head)
137 void *v_arg;
138 struct radix_node_head *head;
139 {
140 caddr_t v = v_arg;
141 struct radix_node *t = head->rnh_treetop, *x;
142 caddr_t cp = v, cp2, cp3;
143 caddr_t cplim, mstart;
144 struct radix_node *saved_t, *top = t;
145 int off = t->rn_off, vlen = *(u_char *) cp, matched_off;

146 /*
147 * Open code rn_search(v, top) to avoid overhead of extra
148 * subroutine call.
149 */
150 for (; t->rn_b >= 0;) {
151 if (t->rn_bmask & cp[t->rn_off])
152 t = t->rn_r; /* right if bit on */
153 else
154 t = t->rn_l; /* left if bit off */
155 }

156 /*
157 * See if we match exactly as a host destination
158 */
159 cp += off;
160 cp2 = t->rn_key + off;
161 cplim = v + vlen;
162 for (; cp < cplim; cp++, cp2++)
163 if (*cp != *cp2)
164 goto on1;
165 /*
166 * This extra grot is in case we are explicitly asked
167 * to look up the default. Ugh!
168 */
169 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
170 t = t->rn_dupedkey;
171 return t;
172 on1:
--- radix.c

2. Check the leaf for a network match (Figure 18.40).

3. Backtrack (Figure 18.43).

Figure 18.38 shows the first part of rn_match.

135-145

The first argument v_arg is a pointer to a socket address structure, and the second argument head is a pointer to the radix_node_head structure for the protocol. All protocols call this function (Figure 18.17) but each calls it with a different head argument.

In the assignment statements, off is the rn_off member of the top node of the tree (4 for Internet addresses, from Figure 18.34), and vlen is the length field from the socket address structure of the search key (16 for Internet addresses).

Go down the tree to the corresponding leaf

146-155

This loop starts at the top of the tree and moves down the left and right branches until a leaf is encountered (rn_b is less than 0). Each test of the appropriate bit is made using the precomputed byte mask in rn_bmask and the corresponding precomputed offset in rn_off. For Internet addresses, rn_off will be 4, 5, 6, or 7.

Check for exact match

156-164

When the leaf is encountered, a check is first made for an exact match. All bytes of the socket address structure, starting at the rn_off value for the protocol family, are compared. This is shown in Figure 18.39 for an Internet socket address structure.

Figure 18.39. Variables during comparison of sockaddr_in structures.

[image: Image]

As soon as a mismatch is found, a jump is made to on1.

Normally the final 8 bytes of the sockaddr_in are 0 but proxy ARP (Section 21.12) sets one of these bytes nonzero. This allows two routing table entries for a given IP address: one for the normal IP address (with the final 8 bytes of 0) and a proxy ARP entry for the same IP address (with one of the final 8 bytes nonzero).

The length byte in Figure 18.39 was assigned to vlen at the beginning of the function, and we’ll see that rtalloc1 uses the family member to select the routing table to search. The port is never used by the routing functions.

Explicit check for default

165-172

Figure 18.35 showed that the default route is stored as a duplicate leaf with a key of 0. The first of the duplicate leaves has the RNF_ROOT flag set. Hence if the RNF_ROOT flag is set in the matching node and the leaf contains a duplicate key the value of the pointer rn_dupedkey is returned (i.e., the pointer to the node containing the default route in Figure 18.35). If a default route has not been entered and the search matches the left end marker (a key of all zero bits), or if the search encounters the right end marker (a key of all one bits), the returned pointer t points to a node with the RNF_ROOT flag set. We’ll see that rtalloc1 explicitly checks whether the matching node has this flag set, and considers such a match an error.

At this point in rn_match a leaf has been reached but it is not an exact match with the search key. The next part of the function, shown in Figure 18.40, checks whether the leaf is a network match.

Figure 18.40. rn_match function: check for network match.

	

--- radix.c
173 matched_off = cp - v;
174 saved_t = t;
175 do {
176 if (t->rn_mask) {
177 /*
178 * Even if we don’t match exactly as a host;
179 * we may match if the leaf we wound up at is
180 * a route to a net.
181 */
182 cp3 = matched_off + t->rn_mask;
183 cp2 = matched_off + t->rn_key;
184 for (; cp < cplim; cp++)
185 if ((*cp2++ ^ *cp) & *cp3++)
186 break;
187 if (cp == cplim)
188 return t;
189 cp = matched_off + v;
190 }
191 } while (t = t->rn_dupedkey);
192 t = saved_t;
--- radix.c

173-174

cp points to the unequal byte in the search key. matched_off is set to the offset of this byte from the start of the socket address structure.

175-183

The do while loop iterates through all duplicate leaves and each one with a network mask is compared. Let’s work through the code with an example. Assume we’re looking up the IP address 140.252.13.60 in the routing table in Figure 18.4. The search will end up at the node labeled 140.252.13.32 (bits 62 and 63 are both off), which contains a network mask. Figure 18.41 shows the structures when the for loop in Figure 18.40 starts executing.

Figure 18.41. Example for network mask comparison.

[image: Image]

The search key and the routing table key are both sockaddr_in structures, but the length of the mask is different. The mask length is the minimum number of bytes containing nonzero values. All the bytes past this point, up through max_keylen, are 0.

184-190

The search key is exclusive ORed with the routing table key, and the result logically ANDed with the network mask, one byte at a time. If the resulting byte is ever nonzero, the loop terminates because they don’t match (Exercise 18.1). If the loop terminates normally, however, the search key ANDed with the network mask matches the routing table entry. The pointer to the routing table entry is returned.

Figure 18.42 shows how this example matches, and how the IP address 140.252.13.188 does not match, looking at just the fourth byte of the IP address. The search for both IP addresses ends up at this node since both addresses have bits 57, 62, and 63 off.

Figure 18.42. Example of search key match using network mask.

[image: Image]

The first example (140.252.13.60) matches since the result of the logical AND is 0 (and all the remaining bytes in the address, the key, and the mask are all 0). The other example does not match since the result of the logical AND is nonzero.

191

If the routing table entry has duplicate keys, the loop is repeated for each key.

The final portion of rn_match, shown in Figure 18.43, backtracks up the tree, looking for a network match or a match with the default.

Figure 18.43. rn_match function: backtrack up the tree.

	

--- radix.c
193 /* start searching up the tree */
194 do {
195 struct radix_mask *m;
196 t = t->rn_p;
197 if (m = t->rn_mklist) {
198 /*
199 * After doing measurements here, it may
200 * turn out to be faster to open code
201 * rn_search_m here instead of always
202 * copying and masking.
203 */
204 off = min(t->rn_off, matched_off);
205 mstart = maskedKey + off;
206 do {
207 cp2 = mstart;
208 cp3 = m->rm_mask + off;
209 for (cp = v + off; cp < cplim;)
210 *cp2++ = *cp++ & *cp3++;
211 x = rn_search(maskedKey, t);
212 while (x && x->rn_mask != m->rm_mask)
213 x = x->rn_dupedkey;
214 if (x &&
215 (Bcmp(mstart, x->rn_key + off,
216 vlen - off) == 0))
217 return x;
218 } while (m = m->rm_mklist);
219 }
220 } while (t != top);
221 return 0;
222 };
--- radix.c

193-195

The do while loop continues up the tree, checking each level, until the top has been checked.

196

The pointer t is replaced with the pointer to the parent node, moving up one level. Having the parent pointer in each node simplifies backtracking.

197-210

Each level is checked only if the internal node has a nonnull list of masks. rn_mklist is a pointer to a linked list of radix_mask structures, each containing a mask that applies to the subtree starting at that node. The inner do while loop iterates through each radix_mask structure on the list.

Using the previous example, 140.252.13.188, Figure 18.44 shows the various data structures when the innermost for loop starts. This loop logically ANDs each byte of the search key with each byte of the mask, storing the result in the global maskedKey. The mask value is 0xffffffe0 and the search would have backtracked from the leaf for 140.252.13.32 in Figure 18.4 two levels to the node that tests bit 62.

Figure 18.44. Preparation to search again using masked search key.

[image: Image]

Once the for loop completes, the masking is complete, and rn_search (shown in Figure 18.48) is called with maskedKey as the search key and the pointer t as the top of the subtree to search. Figure 18.45 shows the value of maskedKey for our example.

Figure 18.45. maskedKey when rn_search is called.

[image: Image]

The byte 0xa0 is the logical AND of 0xbc (188, the search key) and 0xe0 (the mask).

211

rn_search proceeds down the tree from its starting point, branching right or left depending on the key, until a leaf is reached. In this example the search key is the 9 bytes shown in Figure 18.45 and the leaf that’s reached is the one labeled 140.252.13.32 in Figure 18.4, since bits 62 and 63 are off in the byte 0xa0. Figure 18.46 shows the data structures when Bcmp is called to check if a match has been found.

Figure 18.46. Comparison of maskedKey and new leaf.

[image: Image]

Since the 9-byte strings are not the same, the comparison fails.

212-221

This while loop handles duplicate keys, each with a different mask. The only key of the duplicates that is compared is the one whose rn_mask pointer equals m->rm_mask. As an example, recall Figures 18.36 and 18.37. If the search starts at the node for bit 63, the first time through the inner do while loop m points to the radix_mask structure for 0xffffff00. When rn_search returns the pointer to the first of the duplicate leaves for 127.0.0.0, the rm_mask of this leaf equals m->rm_mask, so Bcmp is called. If the comparison fails, m is replaced with the pointer to the next radix_mask structure on the list (the one with a mask of 0xff000000) and the do while loop iterates around again with the new mask. rn_search again returns the pointer to the first of the duplicate leaves for 127.0.0.0, but its rn_mask does not equal m->rm_rnask. The while steps to the next of the duplicate leaves and its rn_mask is the right one.

Returning to our example with the search key of 140.252.13.188, since the search from the node that tests bit 62 failed, the backtracking continues up the tree until the top is reached, which is the next node up the tree with a nonnull rn_mklist.

Figure 18.47 shows the data structures when the top node of the tree is reached. At this point maskedKey is computed (it is all zero bits) and rn_search starts at this node (the top of the tree) and continues down the two left branches to the leaf labeled “default” in Figure 18.4.

Figure 18.47. Backtrack to top of tree and rn_search that locates default leaf.

[image: Image]

When rn_search returns, x points to the radix_node with an rn_b of -33, which is the first leaf encountered after the two left branches from the top of the tree. But x->rn_mask (which is null) does not equal m->rm_mask, so x is replaced with x->rn_dupedkey. The test of the while loop occurs again, but now x->rn_mask equals m->rm_mask, so the while loop terminates. Bcmp compares the 12 bytes of 0 starting at mstart with the 12 bytes of 0 stating at x->rn_key plus 4, and since they’re equal, the function returns the pointer x, which points to the entry for the default route.

18.11. rn_search Function

rn_search was called in the previous section from rn_match to search a subtree of the routing table.

Figure 18.48. rn_search function.

	

--- radix.c
 79 struct radix_node *
 80 rn_search(v_arg, head)
 81 void *v_arg;
 82 struct radix_node *head;
 83 {
 84 struct radix_node *x;
 85 caddr_t v;

 86 for (x = head, v = v_arg; x->rn_b >= 0;) {
 87 if (x->rn_bmask & v[x->rn_off])
 88 x = x->rn_r; /* right if bit on */
 89 else
 90 x = x->rn_l; /* left if bit off */
 91 }
 92 return (x);
 93 };
--- radix.c

This loop is similar to the one in Figure 18.38. It compares one bit in the search key at each node, branching left if the bit is off or right if the bit is on, terminating when a leaf is encountered. The pointer to that leaf is returned.

18.12. Summary

Each routing table entry is identified by a key: the destination IP address in the case of the Internet protocols, which is either a host address or a network address with an associated network mask. Once the entry is located by searching for the key, additional information in the entry specifies the IP address of a router to which datagrams should be sent for the destination, a pointer to the interface to use, metrics, and so on.

The information maintained by the Internet protocols is the route structure, composed of just two elements: a pointer to a routing table entry and the destination address. We’ll encounter one of these route structures in each of the Internet protocol control blocks used by UDP, TCP, and raw IP.

The Patricia tree data structure is well suited to routing tables. Routing table lookups occur much more frequently than adding or deleting routes, so from a performance standpoint using Patricia trees for the routing table makes sense. Patricia trees provide fast lookups at the expense of additional work in adding and deleting. Measurements in [Sklower 1991] comparing the radix tree approach to the Net/1 hash table show that the radix tree method is about two times faster in building a test tree and four times faster in searching.

Exercises

18.1 We said with Figure 18.3 that the general condition for matching a routing table entry is that the search key logically ANDed with the routing table mask equal the routing table key. But in Figure 18.40 a different test is used. Build a logic truth table showing that the two tests are the same.

18.2 Assume a Net/3 system needs a routing table with 20,000 entries (IP addresses). Approximately how much memory is required for this, ignoring the space required for the masks?

18.3 What is the limit imposed on the length of a routing table key by the radix_node structure?

Chapter 19. Routing Requests and Routing Messages

19.1. Introduction

The various protocols within the kernel don’t access the routing trees directly, using the functions from the previous chapter, but instead call a few functions that we describe in this chapter: rtalloc and rtalloc1 are two that perform routing table lookups, rtrequest adds and deletes routing table entries, and rtinit is called by most interfaces when the interface goes up or down.

Routing messages communicate information in two directions. A process such as the route command or one of the routing daemons (routed or gated) writes routing messages to a routing socket, causing the kernel to add a new route, delete an existing route, or modify an existing route. The kernel also generates routing messages that can be read by any routing socket when events occur in which the processes might be interested: an interface has gone down, a redirect has been received, and so on. In this chapter we cover the formats of these routing messages and the information contained therein, and we save our discussion of routing sockets until the next chapter.

Another interface provided by the kernel to the routing tables is through the sysctl system call, which we describe at the end of this chapter. This system call allows a process to read the entire routing table or a list of all the configured interfaces and interface addresses.

19.2. rtalloc and rtalloc1 Functions

rtalloc and rtalloc1 are the functions normally called to look up an entry in the routing table. Figure 19.1 shows rtalloc.

Figure 19.1. rtalloc function.

	

--- route.c
 58 void
 59 rtalloc(ro)
 60 struct route *ro;
 61 {
 62 if (ro->ro_rt && ro->ro_rt->rt_ifp && (ro->ro_rt->rt_flags & RTF_UP))
 63 return; /* XXX */
 64 ro->ro_rt = rtalloc1(&ro->ro_dst, 1);
 65 }
--- route.c

58-65

The argument ro is often the pointer to a route structure contained in an Internet PCB (Chapter 22) which is used by UDP and TCP. If ro already points to an rtentry structure (ro_rt is nonnull), and that structure points to an interface structure, and the route is up, the function returns. Otherwise rtalloc1 is called with a second argument of 1. We’ll see the purpose of this argument shortly.

rtalloc1, shown in Figure 19.2, calls the rnh_matchaddr function, which is always rn_match (Figure 18.17) for Internet addresses.

Figure 19.2. rtalloc1 function.

	

--- route.c
 66 struct rtentry *
 67 rtalloc1(dst, report)
 68 struct sockaddr *dst;
 69 int report;
 70 {
 71 struct radix_node_head *rnh = rt_tables[dst->sa_family];
 72 struct rtentry *rt;
 73 struct radix_node *rn;
 74 struct rtentry *newrt = 0;
 75 struct rt_addrinfo info;
 76 int s = splnet(), err = 0, msgtype = RTM_MISS;

 77 if (rnh && (rn = rnh->rnh_matchaddr((caddr_t) dst, rnh)) &&
 78 ((rn->rn_flags & RNF_ROOT) == 0)) {
 79 newrt = rt = (struct rtentry *) rn;
 80 if (report && (rt->rt_flags & RTF_CLONING)) {
 81 err = rtrequest(RTM_RESOLVE, dst, SA(0),
 82 SA(0), 0, &newrt);
 83 if (err) {
 84 newrt = rt;
 85 rt->rt_refcnt++;
 86 goto miss;
 87 }
 88 if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE)) {
 89 msgtype = RTM_RESOLVE;
 90 goto miss;
 91 }
 92 } else
 93 rt->rt_refcnt++;
 94 } else {
 95 rtstat.rts_unreach++;
 96 miss:if (report) {
 97 bzero((caddr_t) & info, sizeof(info));
 98 info.rti_info[RTAX_DST] = dst;
 99 rt_missmsg(msgtype, &info, 0, err);
100 }
101 }
102 splx(s);
103 return (newrt);
104 }
--- route.c

66-76

The first argument is a pointer to a socket address structure containing the address to search for. The sa_family member selects the routing table to search.

Call rn_match

77-78

If the following three conditions are met, the search is successful.

1. A routing table exists for the protocol family,

2. rn_match returns a nonnull pointer, and

3. the matching radix_node does not have the RNF_ROOT flag set.

Remember that the two leaves that mark the end of the tree both have the RNF_ROOT flag set.

Search fails

94-101

If the search fails because any one of the three conditions is not met, the statistic rts_unreach is incremented and if the second argument to rtalloc1 (report) is nonzero, a routing message is generated that can be read by any interested processes on a routing socket. The routing message has the type RTM_MISS, and the function returns a null pointer.

79

If all three of the conditions are met, the lookup succeeded and the pointer to the matching radix_node is stored in rt and newrt. Notice that in the definition of the rtentry structure (Figure 18.24) the two radix_node structures are at the beginning, and, as shown in Figure 18.8, the first of these two structures contains the leaf node. Therefore the pointer to a radix_node structure returned by rn_match is really a pointer to an rtentry structure, which is the matching leaf node.

Create clone entries

80-82

If the caller specified a nonzero second argument, and if the RTF_CLONING flag is set, rtrequest is called with a command of RTM_RESOLVE to create a new rtentry structure that is a clone of the one that was located. This feature is used by ARP and for multicast addresses.

Clone creation fails

83-87

If rtrequest returns an error, newrt is set back to the entry returned by rn_match and its reference count is incremented. A jump is made to miss where an RTM_MISS message is generated.

Check for external resolution

88-91

If rtrequest succeeds but the newly cloned entry has the RTF_XRESOLVE flag set, a jump is made to miss, this time to generate an RTM_RESOLVE message. The intent of this message is to notify a user process when the route is created, and it could be used with the conversion of IP addresses to X.121 addresses.

Increment reference count for normal successful search

92-93

When the search succeeds but the RTF_CLONING flag is not set, this statement increments the entry’s reference count. This is the normal flow through the function, which then returns the nonnull pointer.

For a small function, rtalloc1 has many options in how it operates. There are seven different flows through the function, summarized in Figure 19.3.

Figure 19.3. Summary of operation of rtalloc1.

[image: Image]

We note that the first two rows (entry not found) are impossible if a default route exists. Also we show rt_refcnt being incremented in the fifth and sixth rows when the call to rtrequest with a command of RTM_RESOLVE is OK. The increment is done by rtrequest.

19.3. RTFREE Macro and rtfree Function

The RTFREE macro, shown in Figure 19.4, calls the rtfree function only if the reference count is less than or equal to 1, otherwise it just decrements the reference count.

Figure 19.4. RTFREE macro.

	

--- route.h
209 #define RTFREE(rt) \
210 if ((rt)->rt_refcnt <= 1) \
211 rtfree(rt); \
212 else \
213 (rt)->rt_refcnt--; /* no need for function call */
--- route.h

209-213

The rtfree function, shown in Figure 19.5, releases an rtentry structure when there are no more references to it. We’ll see in Figure 22.7, for example, that when a process control block is released, if it points to a routing entry, rtfree is called.

Figure 19.5. rtfree function: release an rtentry structure.

	

--- route.c
105 void
106 rtfree(rt)
107 struct rtentry *rt;
108 {
109 struct ifaddr *ifa;

110 if (rt == 0)
111 panic("rtfree");
112 rt->rt_refcnt--;
113 if (rt->rt_refcnt <= 0 && (rt->rt_flags & RTF_UP) == 0) {
114 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT))
115 panic("rtfree 2");
116 rttrash--;
117 if (rt->rt_refcnt < 0) {
118 printf("rtfree: %x not freed (neg refs)\n", rt);
119 return;
120 }
121 ifa = rt->rt_ifa;
122 IFAFREE(ifa);
123 Free(rt_key(rt));
124 Free(rt);
125 }
126 }
--- route.c

105-115

The entry’s reference count is decremented and if it is less than or equal to 0 and the route is not usable, the entry can be released. If either of the flags RNF_ACTIVE or RNF_ROOT are set, this is an internal error. If RNF_ACTIVE is set, this structure is still part of the routing table tree. If RNF_ROOT is set, this structure is one of the end markers built by rn_inithead.

116

rttrash is a debugging counter of the number of routing entries not in the routing tree, but not released. It is incremented by rtrequest when it begins deleting a route, and then decremented here. Its value should normally be 0.

Release interface reference

117-122

A check is made that the reference count is not negative, and then IFAFREE decrements the reference count for the ifaddr structure and releases it by calling ifafree when it reaches 0.

Release routing memory

123-124

The memory occupied by the routing entry key and its gateway is released. We’ll see in rt_setgate that the memory for both is allocated in one contiguous chunk, allowing both to be released with a single call to Free. Finally the rtentry structure itself is released.

Routing Table Reference Counts

The handling of the routing table reference count, rt_refcnt, differs from most other reference counts. We see in Figure 18.2 that most routes have a reference count of 0, yet the routing table entries without any references are not deleted. We just saw the reason in rtfree: an entry with a reference count of 0 is not deleted unless the entry’s RTF_UP flag is not set. The only time this flag is cleared is by rtrequest when a route is deleted from the routing tree.

Most routes are used in the following fashion.

[image: Image] If the route is created automatically as a route to an interface when the interface is configured (which is typical for Ethernet interfaces, for example), then rtinit calls rtrequest with a command of RTM_ADD, creating the new entry and setting the reference count to 1. rtinit then decrements the reference count to 0 before returning.

A point-to-point interface follows a similar procedure, so the route starts with a reference count of 0.

If the route is created manually by the route command or by a routing daemon, a similar procedure occurs, with route_output calling rtrequest with a command of RTM_ADD, setting the reference count to 1. This is then decremented by route_output to 0 before it returns.

Therefore all newly created routes start with a reference count of 0.

[image: Image] When an IP datagram is sent on a socket, be it TCP or UDP, we saw that ip_output calls rtalloc, which calls rtalloc1. In Figure 19.3 we saw that the reference count is incremented by rtalloc1 if the route is found.

The located route is called a held route, since a pointer to the routing table entry is being held by the protocol, normally in a route structure contained within a protocol control block. An rtentry structure that is being held by someone else cannot be deleted, which is why rtfree doesn’t release the structure until its reference count reaches 0.

[image: Image] A protocol releases a held route by calling RTFREE or rtfree. We saw this in Figure 8.24 when ip_output detects a change in the destination address. We’ll encounter it in Chapter 22 when a protocol control block that holds a route is released.

Part of the confusion we’ll encounter in the code that follows is that rtalloc1 is often called to look up a route in order to verify that a route to the destination exists, but when the caller doesn’t want to hold the route. Since rtalloc1 increments the counter, the caller immediately decrements it.

Consider a route being deleted by rtrequest. The RTF_UP flag is cleared, and if no one is holding the route (its reference count is 0), rtfree should be called. But rtfree considers it an error for the reference count to go below 0, so rtrequest checks whether its reference count is less than or equal to 0, and, if so, increments it and calls rtfree. Normally this sets the reference count to 1 and rtfree decrements it to 0 and deletes the route.

19.4. rtrequest Function

The rtrequest function is the focal point for adding and deleting routing table entries. Figure 19.6 shows some of the other functions that call it.

Figure 19.6. Summary of functions that call rtrequest.

[image: Image]

rtrequest is a switch statement with one case per command: RTM_ADD, RTM_DELETE, and RTM_RESOLVE. Figure 19.7 shows the start of the function and the RTM_DELETE command.

Figure 19.7. rtrequest function: RTM_DELETE command.

[image: Image]
[image: Image]

290-307

The second argument, dst, is a socket address structure specifying the key to be added or deleted from the routing table. The sa_family from this key selects the routing table. If the flags argument indicates a host route (instead of a route to a network), the netmask pointer is set to null, ignoring any value the caller may have passed.

Delete from routing tree

309-315

The rnh_deladdr function (rn_delete from Figure 18.17) deletes the entry from the routing table tree and returns a pointer to the corresponding rtentry structure. The RTF_UP flag is cleared.

Remove reference to gateway routing table entry

316-320

If the entry is an indirect route through a gateway, RTFREE decrements the rt_refcnt member of the gateway’s entry and deletes it if the count reaches 0. The rt_gwroute pointer is set to null and rt is set back to point to the entry that was deleted.

Call interface request function

321-322

If an ifa_rtrequest function is defined for this entry, that function is called. This function is used by ARP, for example, in Chapter 21 to delete the corresponding ARP entry.

Return pointer or release reference

323-330

The rttrash global is incremented because the entry may not be released in the code that follows. If the caller wants the pointer to the rtentry structure that was deleted from the routing tree (if ret_nrt is nonnull), then that pointer is returned, but the entry cannot be released: it is the caller’s responsibility to call rtfree when it is finished with the entry. If ret_nrt is null, the entry can be released: if the reference count is less than or equal to 0, it is incremented, and rtfree is called. The break causes the function to return.

Figure 19.8 shows the next part of the function, which handles the RTM_RESOLVE command. This function is called with this command only from rtalloc1, when a new entry is to be created from an entry with the RTF_CLONING flag set.

Figure 19.8. rtrequest function: RTM_RESOLVE command.

	

--- route.c
331 case RTM_RESOLVE:
332 if (ret_nrt == 0 || (rt = *ret_nrt) == 0)
333 senderr(EINVAL);
334 ifa = rt->rt_ifa;
335 flags = rt->rt_flags & ~RTF_CLONING;
336 gateway = rt->rt_gateway;
337 if ((netmask = rt->rt_genmask) == 0)
338 flags |= RTF_HOST;
339 goto makeroute;
--- route.c

331-339

The final argument, ret_nrt, is used differently for this command: it contains the pointer to the entry with the RTF_CLONING flag set (Figure 19.2). The new entry will have the same rt_ifa pointer, the same flags (with the RTF_CLONING flag cleared), and the same rt_gateway. If the entry being cloned has a null rt_genmask pointer, the new entry has its RTF_HOST flag set, because it is a host route; otherwise the new entry is a network route and the network mask of the new entry is copied from the rt_genmask value. We give an example of cloned routes with a network mask at the end of this section. This case continues at the label makeroute, which is in the next figure.

Figure 19.9 shows the RTM_ADD command.

Figure 19.9. rtrequest function: RTM_ADD command.

[image: Image]

Locate corresponding interface

340-342

The function ifa_ifwithroute finds the appropriate local interface for the destination (dst), returning a pointer to its ifaddr structure.

Allocate memory for routing table entry

343-348

An rtentry structure is allocated. Recall that this structure contains both the two radix_node structures for the routing tree and the other routing information. The structure is zeroed and the rt_flags are set from the caller’s flags, including the RTF_UP flag.

Allocate and copy gateway address

349-352

The rt_setgate function (Figure 19.11) allocates memory for both the routing table key (dst) and its gateway. It then copies gateway into the new memory and sets the pointers rt_key, rt_gateway, and rt_gwroute.

Copy destination address

353-357

The destination address (the routing table key dst) must now be copied into the memory pointed to by rn_key. If a network mask is supplied, rt_maskedcopy logically ANDs dst and netmask, forming the new key. Otherwise dst is copied into the new key. The reason for logically ANDing dst and netmask is to guarantee that the key in the table has already been ANDed with its mask, so when a search key is compared against the key in the table only the search key needs to be ANDed. For example, the following command adds another IP address (an alias) to the Ethernet interface le0, with subnet 12 instead of 13:

bsdi $ ifconfig le0 inet 140.252.12.63 netmask 0xffffffe0 alias

The problem is that we’ve incorrectly specified all one bits for the host ID. Nevertheless, when the key is stored in the routing table we can verify with netstat that the address is first logically ANDed with the mask:

[image: Image]

Add entry to routing tree

358-366

The rnh_addaddr function (rn_addroute from Figure 18.17) adds this rtentry structure, with its destination and mask, to the routing table tree. If an error occurs, the structures are released and EEXIST returned (i.e., the entry is already in the routing table).

Store interface pointers

367-369

The ifaddr structure’s reference count is incremented and the pointers to its ifaddr and ifnet structures are stored.

Copy metrics for newly cloned route

370-371

If the command was RTM_RESOLVE (not RTM_ADD), the entire metrics structure is copied from the cloned entry into the new entry. If the command was RTM_ADD, the caller can set the metrics after this function returns.

Call interface request function

372-373

If an ifa_rtrequest function is defined for this entry, that function is called. ARP uses this to perform additional processing for both the RTM_ADD and RTM_RESOLVE commands (Section 21.13).

Return pointer and increment reference count

374-378

If the caller wants a copy of the pointer to the new structure, it is returned through ret_nrt and the rt_refcnt reference count is incremented from 0 to 1.

Example: Cloned Routes with Network Masks

The only use of the rt_genmask value is with cloned routes created by the RTM_RESOLVE command in rtrequest. If an rt_genmask pointer is nonnull, then the socket address structure pointed to by this pointer becomes the network mask of the newly created route. In our routing table, Figure 18.2, the cloned routes are for the local Ethernet and for multicast addresses. The following example from [Sklower 1991] provides a different use of cloned routes. Another example is in Exercise 19.2.

Consider a class B network, say 128.1, that is behind a point-to-point link. The subnet mask is 0xffffff00, the typical value that uses 8 bits for the subnet ID and 8 bits for the host ID. We need a routing table entry for all possible 254 subnets, with a gateway value of a router that is directly connected to our host and that knows how to reach the link to which the 128.1 network is connected.

The easiest solution, assuming the gateway router isn’t our default router, is a single entry with a destination of 128.1.0.0 and a mask of 0xffff0000. Assume, however, that the topology of the 128.1 network is such that each of the possible 254 subnets can have different operational characteristics: RTTs, MTUs, delays, and so on. If a separate routing table entry were used for each subnet, we would see that whenever a connection is closed, TCP would update the routing table entry with statistics about that route its RTT, RTT variance, and so on (Figure 27.3). While we could create up to 254 entries by hand using the route command, one per subnet, a better solution is to use the cloning feature.

One entry is created by the system administrator with a destination of 128.1.0.0 and a network mask of 0xffff0000. Additionally, the RTF_CLONING flag is set and the genmask is set to 0xffffff00, which differs from the network mask. If the routing table is searched for 128.1.2.3, and an entry does not exist for the 128.1.2 subnet, the entry for 128.1 with the mask of 0xffff0000 is the best match. A new entry is created (since the RTF_CLONING flag is set) with a destination of 128.1.2 and a network mask of 0xffffff00 (the genmask value). The next time any host on this subnet is referenced, say 128.1.2.88, it will match this newly created entry.

19.5. rt_setgate Function

Each leaf in the routing tree has a key (rt_key, which is just the rn_key member of the radix_node structure contained at the beginning of the rtentry structure), and an associated gateway (rt_gateway). Both are socket address structures specified when the routing table entry is created. Memory is allocated for both structures by rt_setgate, as shown in Figure 19.10.

Figure 19.10. Example of routing table keys and associated gateways.

[image: Image]

This example shows two of the entries from Figure 18.2, the ones with keys of 127.0.0.1 and 140.252.13.33. The former’s gateway member points to an Internet socket address structure, while the latter’s points to a data-link socket address structure that contains an Ethernet address. The former was entered into the routing table by the route system when the system was initialized, and the latter was created by ARP.

We purposely show the two structures pointed to by rt_key one right after the other, since they are allocated together by rt_setgate, which we show in Figure 19.11.

Figure 19.11. rt_setgate function.

	

--- route.c
384 int
385 rt_setgate(rt0, dst, gate)
386 struct rtentry *rt0;
387 struct sockaddr *dst, *gate;
388 {
389 caddr_t new, old;
390 int dlen = ROUNDUP(dst->sa_len), glen = ROUNDUP(gate->sa_len);
391 struct rtentry *rt = rt0;

392 if (rt->rt_gateway == 0 || glen > ROUNDUP(rt->rt_gateway->sa_len)) {
393 old = (caddr_t) rt_key(rt);
394 R_Malloc(new, caddr_t, dlen + glen);
395 if (new == 0)
396 return 1;
397 rt->rt_nodes->rn_key = new;
398 } else {
399 new = rt->rt_nodes->rn_key;
400 old = 0;
401 }
402 Bcopy(gate, (rt->rt_gateway = (struct sockaddr *) (new + dlen)), glen);
403 if (old) {
404 Bcopy(dst, new, dlen);
405 Free(old);
406 }
407 if (rt->rt_gwroute) {
408 rt = rt->rt_gwroute;
409 RTFREE(rt);
410 rt = rt0;
411 rt->rt_gwroute = 0;
412 }
413 if (rt->rt_flags & RTF_GATEWAY) {
414 rt->rt_gwroute = rtalloc1(gate, 1);
415 }
416 return 0;
417 }
--- route.c

Set lengths from socket address structures

384-391

dlen is the length of the destination socket address structure, and glen is the length of the gateway socket address structure. The ROUNDUP macro rounds the value up to the next multiple of 4 bytes, but the size of most socket address structures is already a multiple of 4.

Allocate memory

392-397

If memory has not been allocated for this routing table key and gateway yet, or if glen is greater than the current size of the structure pointed to by rt_gateway, a new piece of memory is allocated and rn_key is set to point to the new memory.

Use memory already allocated for key and gateway

398-401

An adequately sized piece of memory is already allocated for the key and gateway, so new is set to point to this existing memory.

Copy new gateway

402

The new gateway structure is copied and rt_gateway is set to point to the socket address structure.

Copy key from old memory to new memory

403-406

If a new piece of memory was allocated, the routing table key (dst) is copied right before the gateway field that was just copied. The old piece of memory is released.

Release gateway routing pointer

407-412

If the routing table entry contains a nonnull rt_gwroute pointer, that structure is released by RTFREE and the rt_gwroute pointer is set to null.

Locate and store new gateway routing pointer

413-415

If the routing table entry is an indirect route, rtalloc1 locates the entry for the new gateway, which is stored in rt_gwroute. If an invalid gateway is specified for an indirect route, an error is not returned by rt_setgate, but the rt_gwroute pointer will be null.

19.6. rtinit Function

There are four calls to rtinit from the Internet protocols to add or delete routes associated with interfaces.

[image: Image] in_control calls rtinit twice when the destination address of a point-to-point interface is set (Figure 6.21). The first call specifies RTM_DELETE to delete any existing route to the destination; the second call specifies RTM_ADD to add the new route.

[image: Image] in_ifinit calls rtinit to add a network route for a broadcast network or a host route for a point-to-point link (Figure 6.19). If the route is for an Ethernet interface, the RTF_CLONING flag is automatically set by in_ifinit.

[image: Image] in_ifscrub calls rtinit to delete an existing route for an interface.

Figure 19.12 shows the first part of the rtinit function. The cmd argument is always RTM_ADD or RTM_DELETE.

Figure 19.12. rtinit function: call rtrequest to handle command.

	

--- route.c
441 int
442 rtinit(ifa, cmd, flags)
443 struct ifaddr *ifa;
444 int cmd, flags;
445 {
446 struct rtentry *rt;
447 struct sockaddr *dst;
448 struct sockaddr *deldst;
449 struct mbuf *m = 0;
450 struct rtentry *nrt = 0;
451 int error;

452 dst = flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;
453 if (cmd == RTM_DELETE) {
454 if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
455 m = m_get(M_WAIT, MT_SONAME);
456 deldst = mtod(m, struct sockaddr *);
457 rt_maskedcopy(dst, deldst, ifa->ifa_netmask);
458 dst = deldst;
459 }
460 if (rt = rtalloc1(dst, 0)) {
461 rt->rt_refcnt--;
462 if (rt->rt_ifa != ifa) {
463 if (m)
464 (void) m_free(m);
465 return (flags & RTF_HOST ? EHOSTUNREACH
466 : ENETUNREACH);
467 }
468 }
469 }
470 error = rtrequest(cmd, dst, ifa->ifa_addr, ifa->ifa_netmask,
471 flags | ifa->ifa_flags, &nrt);
472 if (m)
473 (void) m_free(m);
--- route.c

Get destination address for route

452

If the route is to a host, the destination address is the other end of the point-to-point link. Otherwise we’re dealing with a network route and the destination address is the unicast address of the interface (masked with ifa_netmask).

Mask network address with network mask

453-459

If a route is being deleted, the destination must be looked up in the routing table to locate its routing table entry. If the route being deleted is a network route and the interface has an associated network mask, an mbuf is allocated and the destination address is copied into the mbuf by rt_maskedcopy, logically ANDing the caller’s address with the mask. dst is set to point to the masked copy in the mbuf, and that is the destination looked up in the next step.

Search for routing table entry

460-469

rtalloc1 searches the routing table for the destination address. If the entry is found, its reference count is decremented (since rtalloc1 incremented the reference count). If the pointer to the interface’s ifaddr in the routing table does not equal the caller’s argument, an error is returned.

Process request

470-473

rtrequest executes the command, either RTM_ADD or RTM_DELETE. When it returns, if an mbuf was allocated earlier, it is released.

Figure 19.13 shows the second half of rtinit.

Figure 19.13. rtinit function: second half.

	

--- route.c
474 if (cmd == RTM_DELETE && error == 0 && (rt = nrt)) {
475 rt_newaddrmsg(cmd, ifa, error, nrt);
476 if (rt->rt_refcnt <= 0) {
477 rt->rt_refcnt++;
478 rtfree(rt);
479 }
480 }
481 if (cmd == RTM_ADD && error == 0 && (rt = nrt)) {
482 rt->rt_refcnt--;
483 if (rt->rt_ifa != ifa) {
484 printf("rtinit: wrong ifa (%x) was (%x)\n", ifa,
485 rt->rt_ifa);
486 if (rt->rt_ifa->ifa_rtrequest)
487 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, SA(0));
488 IFAFREE(rt->rt_ifa);
489 rt->rt_ifa = ifa;
490 rt->rt_ifp = ifa->ifa_ifp;
491 ifa->ifa_refcnt++;
492 if (ifa->ifa_rtrequest)
493 ifa->ifa_rtrequest(RTM_ADD, rt, SA(0));
494 }
495 rt_newaddrmsg(cmd, ifa, error, nrt);
496 }
497 return (error);
498 }
--- route.c

Generate routing message on successful delete

474-480

If a route was deleted, and rtrequest returned 0 along with a pointer to the rtentry structure that was deleted (in nrt), a routing socket message is generated by rt_newaddrmsg. If the reference count is less than or equal to 0, it is incremented and the route is released by rtfree.

Successful add

481-482

If a route was added, and rtrequest returned 0 along with a pointer to the rtentry structure that was added (in nrt), the reference count is decremented (since rtrequest incremented it).

Incorrect interface

483-494

If the pointer to the interface’s ifaddr in the new routing table entry does not equal the caller’s argument, an error occurred. Recall that rtrequest determines the ifa pointer that is stored in the new entry by calling ifa_ifwithroute (Figure 19.9). When this error occurs the following steps take place: an error message is output to the console, the ifa_rtrequest function is called (if defined) with a command of RTM_DELETE, the ifaddr structure is released, the rt_ifa pointer is set to the value specified by the caller, the interface reference count is incremented, and the new interface’s ifa_rtrequest function (if defined) is called with a command of RTM_ADD.

Generate routing message

495

A routing socket message is generated by rt_newaddrmsg for the RTM_ADD command.

19.7. rtredirect Function

When an ICMP redirect is received, icmp_input calls rtredirect and then calls pfctlinput (Figure 11.27). This latter function calls udp_ctlinput and tcp_ctlinput, which go through all the UDP and TCP protocol control blocks. If the PCB is connected to the foreign address that has been redirected, and if the PCB holds a route to that foreign address, the route is released by rtfree. The next time any of these control blocks is used to send an IP datagram to that foreign address, rtalloc will be called and the destination will be looked up in the routing table, possibly finding a new (redirected) route.

The purpose of rtredirect, the first half of which is shown in Figure 19.14, is to validate the information in the redirect, update the routing table immediately, and then generate a routing socket message.

Figure 19.14. rtredirect function: validate received redirect.

	

--- route.c
147 int
148 rtredirect(dst, gateway, netmask, flags, src, rtp)
149 struct sockaddr *dst, *gateway, *netmask, *src;
150 int flags;
151 struct rtentry **rtp;
152 {
153 struct rtentry *rt;
154 int error = 0;
155 short *stat = 0;
156 struct rt_addrinfo info;
157 struct ifaddr *ifa;

158 /* verify the gateway is directly reachable */
159 if ((ifa = ifa_ifwithnet(gateway)) == 0) {
160 error = ENETUNREACH;
161 goto out;
162 }
163 rt = rtalloc1(dst, 0);
164 /*
165 * If the redirect isn't from our current router for this dst,
166 * it's either old or wrong. If it redirects us to ourselves,
167 * we have a routing loop, perhaps as a result of an interface
168 * going down recently.
169 */
170 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
171 if (!(flags & RTF_DONE) && rt &&
172 (!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa))
173 error = EINVAL;
174 else if (ifa_ifwithaddr(gateway))
175 error = EHOSTUNREACH;
176 if (error)
177 goto done;
178 /*
179 * Create a new entry if we just got back a wildcard entry
180 * or if the lookup failed. This is necessary for hosts
181 * which use routing redirects generated by smart gateways
182 * to dynamically build the routing tables.
183 */
184 if ((rt == 0) || (rt_mask(rt) && rt_mask(rt)->sa_len < 2))
185 goto create;
--- route.c

147-157

The arguments are dst, the destination IP address of the datagram that caused the redirect (HD in Figure 8.18); gateway, the IP address of the router to use as the new gateway field for the destination (R2 in Figure 8.18); netmask, which is a null pointer; flags, which is RTF_GATEWAY and RTF_HOST; src, the IP address of the router that sent the redirect (R1 in Figure 8.18); and rtp, which is a null pointer. We indicate that netmask and rtp are both null pointers when called by icmp_input, but these arguments might be nonnull when called from other protocols.

New gateway must be directly connected

158-162

The new gateway must be directly connected or the redirect is invalid.

Locate routing table entry for destination and validate redirect

163-177

rtalloc1 searches the routing table for a route to the destination. The following conditions must all be true, or the redirect is invalid and an error is returned. Notice that icmp_input ignores any error return from rtredirect. ICMP does not generate an error in response to an invalid redirect it just ignores it.

[image: Image] the RTF_DONE flag must not be set;

[image: Image] rtalloc must have located a routing table entry for dst;

[image: Image] the address of the router that sent the redirect (src) must equal the current rt_gateway for the destination;

[image: Image] the interface for the new gateway (the ifa returned by ifa_ifwithnet) must equal the current interface for the destination (rt_ifa), that is, the new gateway must be on the same network as the current gateway; and

[image: Image] the new gateway cannot redirect this host to itself, that is, there cannot exist an attached interface with a unicast address or a broadcast address equal to gateway.

Must create a new route

178-185

If a route to the destination was not found, or if the routing table entry that was located is the default route, a new entry is created for the destination. As the comment indicates, a host with access to multiple routers can use this feature to learn of the correct router when the default is not correct. The test for finding the default route is whether the routing table entry has an associated mask and if the length field of the mask is less than 2, since the mask for the default route is rn_zeros (Figure 18.35).

Figure 19.15 shows the second half of this function.

Figure 19.15. rtredirect function: second half.

[image: Image]

Create new host route

186-195

If the current route to the destination is a network route and the redirect is a host redirect and not a network redirect, a new host route is created for the destination and the existing network route is left alone. We mentioned that the flags argument always specifies RTF_HOST since the Net/3 ICMP considers all received redirects as host redirects.

Create route

196-201

rtrequest creates the new route, setting the RTF_GATEWAY and RTF_DYNAMIC flags. The netmask argument is a null pointer, since the new route is a host route with an implied mask of all one bits. stat points to a counter that is incremented later.

Modify existing host route

202-211

This code is executed when the current route to the destination is already a host route. A new entry is not created, but the existing entry is modified. The RTF_MODIFIED flag is set and rt_setgate changes the rt_gateway field of the routing table entry to the new gateway address.

Ignore if destination is directly connected

212-213

If the current route to the destination is a direct route (the RTF_GATEWAY flag is not set), it is a redirect for a destination that is already directly connected. EHOSTUNREACH is returned.

Return pointer and increment statistic

214-225

If a routing table entry was located, it is either returned (if rtp is nonnull and there were no errors) or released by rtfree. The appropriate statistic is incremented.

Generate routing message

226-232

An rt_addrinfo structure is cleared and a routing socket message is generated by rt_missmsg. This message is sent by raw_input to any processes interested in the redirect.

19.8. Routing Message Structures

Routing messages consist of a fixed-length header followed by up to eight socket address structures. The fixed-length header is one of the following three structures:

[image: Image] rt_msghdr

[image: Image] if_msghdr

[image: Image] ifa_msghdr

Figure 18.11 provided an overview of which functions generated the different messages and Figure 18.9 showed which structure is used by each message type. The first three members of the three structures have the same data type and meaning: the message length, version, and type. This allows the receiver of the message to decode the message. Also, each structure has a member that encodes which of the eight potential socket address structures follow the structure (a bitmask): the rtm_addrs, ifm_addrs, and ifam_addrs members.

Figure 19.16 shows the most common of the structures, rt_msghdr. The RTM_IFINFO message uses an if_msghdr structure, shown in Figure 19.17. The RTM_NEWADDR and RTM_DELADDR messages use an ifa_msghdr structure, shown in Figure 19.18.

Figure 19.16. rt_msghdr structure.

	

-- route.h
139 struct rt_msghdr {
140 u_short rtm_msglen; /* to skip over non-understood messages */
141 u_char rtm_version; /* future binary compatibility */
142 u_char rtm_type; /* message type */

143 u_short rtm_index; /* index for associated ifp */
144 int rtm_flags; /* flags, incl. kern & message, e.g. DONE */
145 int rtm_addrs; /* bitmask identifying sockaddrs in msg */
146 pid_t rtm_pid; /* identify sender */
147 int rtm_seq; /* for sender to identify action */
148 int rtm_errno; /* why failed */
149 int rtm_use; /* from rtentry */
150 u_long rtm_inits; /* which metrics we are initializing */
151 struct rt_metrics rtm_rmx; /* metrics themselves */
152 };
-- route.h

Figure 19.17. if_msghdr structure.

	

--- if.h
235 struct if_msghdr {
236 u_short ifm_msglen; /* to skip over non-understood messages */
237 u_char ifm_version; /* future binary compatability */
238 u_char ifm_type; /* message type */

239 int ifm_addrs; /* like rtm_addrs */
240 int ifm_flags; /* value of if_flags */
241 u_short ifm_index; /* index for associated ifp */
242 struct if_data ifm_data; /* statistics and other data about if */
243 };
--- if.h

Figure 19.18. ifa_msghdr structure.

	

--- if.h
248 struct ifa_msghdr {
249 u_short ifam_msglen; /* to skip over non-understood messages */
250 u_char ifam_version; /* future binary compatability */
251 u_char ifam_type; /* message type */

252 int ifam_addrs; /* like rtm_addrs */
253 int ifam_flags; /* value of ifa_flags */
254 u_short ifam_index; /* index for associated ifp */
255 int ifam_metric; /* value of ifa_metric */
256 };
--- if.h

Note that the first three members across the three different structures have the same data types and meanings.

The three variables rtm_addrs, ifm_addrs, and ifam_addrs are bitmasks defining which socket address structures follow the header. Figure 19.19 shows the constants used with these bitmasks.

Figure 19.19. Constants used to refer to members of rti_info array.

[image: Image]

The bitmask value is always the constant 1 left shifted by the number of bits specified by the array index. For example, 0x20 (RTA_IFA) is 1 left shifted by five bits (RTAX_IFA). We’ll see this fact used in the code.

The socket address structures that are present always occur in order of increasing array index, one right after the other. For example, if the bitmask is 0x87, the first socket address structure contains the destination, followed by the gateway, followed by the network mask, followed by the broadcast address.

The array indexes in Figure 19.19 are used within the kernel to refer to its rt_addrinfo structure, shown in Figure 19.20. This structure holds the same bitmask that we described, indicating which addresses are present, and pointers to those socket address structures.

Figure 19.20. rt_addrinfo structure: encode which addresses are present and pointers to them.

	

--- route.h
199 struct rt_addrinfo {
200 int rti_addrs; /* bitmask, same as rtm_addrs */
201 struct sockaddr *rti_info[RTAX_MAX];
202 };
--- route.h

For example, if the RTA_GATEWAY bit is set in the rti_addrs member, then the member rti_info [RTAX_GATEWAY] is a pointer to a socket address structure containing the gateway’s address. In the case of the Internet protocols, the socket address structure is a sockaddr_in containing the gateway’s IP address.

The fifth column in Figure 19.19 shows the names used for the corresponding members of an rti_info array throughout the file rtsock.c. These definitions look like

#define dst info.rti_info[RTAX_DST]

We’ll encounter these names in many of the source files later in this chapter. The RTAX_AUTHOR element is not assigned a name because it is never passed from a process to the kernel.

We’ve already encountered this rt_addrinfo structure twice: in rtalloc1 (Figure 19.2) and rtredirect (Figure 19.14). Figure 19.21 shows the format of this structure when built by rtalloc1, after a routing table lookup fails, when rt_missmsg is called.

Figure 19.21. rt_addrinfo structure passed by rtalloc1 to rt_missmsg.

[image: Image]

All the unused pointers are null because the structure is set to 0 before it is used. Also note that the rti_addrs member is not initialized with the appropriate bitmask because when this structure is used within the kernel, a null pointer in the rti_info array indicates a nonexistent socket address structure. The bitmask is needed only for messages between a process and the kernel.

Figure 19.22 shows the format of the structure built by rtredirect when it calls rt_missmsg.

Figure 19.22. rt_addrinfo structure passed by rtredirect to rt_missmsg.

[image: Image]

The following sections show how these structures are placed into the messages sent to a process.

Figure 19.23 shows the route_cb structure, which we’ll encounter in the following sections. It contains four counters; one each for the IP, XNS, and OSI protocols, and an “any” counter. Each counter is the number of routing sockets currently in existence for that domain.

Figure 19.23. route_cb structure: counters of routing socket listeners.

	

-- route.h
203 struct route_cb {
204 int ip_count; /* IP */
205 int ns_count; /* XNS */
206 int iso_count; /* ISO */
207 int any_count; /* sum of above three counters */
208 };
--- route.h

203-208

By keeping track of the number of routing socket listeners, the kernel avoids building a routing message and calling raw_input to send the message when there aren’t any processes waiting for a message.

19.9. rt_missmsg Function

The function rt_missmsg, shown in Figure 19.24, takes the structures shown in Figures 19.21 and 19.22, calls rt_msg1 to build a corresponding variable-length message for a process in an mbuf chain, and then calls raw_input to pass the mbuf chain to all appropriate routing sockets.

Figure 19.24. rt_missmsg function.

	

--- rtsock.c
516 void
517 rt_missmsg(type, rtinfo, flags, error)
518 int type, flags, error;
519 struct rt_addrinfo *rtinfo;
520 {
521 struct rt_msghdr *rtm;
522 struct mbuf *m;
523 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];

524 if (route_cb.any_count == 0)
525 return;

526 m = rt_msg1(type, rtinfo);
527 if (m == 0)
528 return;

529 rtm = mtod(m, struct rt_msghdr *);
530 rtm->rtm_flags = RTF_DONE | flags;
531 rtm->rtm_errno = error;
532 rtm->rtm_addrs = rtinfo->rti_addrs;

533 route_proto.sp_protocol = sa ? sa->sa_family : 0;
534 raw_input(m, &route_proto, &route_src, &route_dst);
535 }
--- rtsock.c

516-525

If there aren’t any routing socket listeners, the function returns immediately.

Build message in mbuf chain

526-528

rt_msg1 (Section 19.12) builds the appropriate message in an mbuf chain, and returns the pointer to the chain. Figure 19.25 shows an example of the resulting mbuf chain, using the rt_addrinfo structure from Figure 19.22. The information needs to be in an mbuf chain because raw_input calls sbappendaddr to append the mbuf chain to a socket’s receive buffer.

Figure 19.25. Mbuf chain built by rt_msg1 corresponding to Figure 19.22.

[image: Image]

Finish building message

529-532

The two members rtm_flags and rtm_errno are set to the values passed by the caller. The rtm_addrs member is copied from the rti_addrs value. We showed this value as 0 in Figures 19.21 and 19.22, but rt_msg1 calculates and stores the appropriate bitmask, based on which pointers in the rti_info array are nonnull.

Set protocol of message, call raw_input

533-534

The final three arguments to raw_input specify the protocol, source, and destination of the routing message. These three structures are initialized as

struct sockaddr route_dst = { 2, PF_ROUTE, };
struct sockaddr route_src = { 2, PF_ROUTE, };
struct sockproto route_proto = { PF_ROUTE, };

The first two structures are never modified by the kernel. The sockproto structure, shown in Figure 19.26, is one we haven’t seen before.

Figure 19.26. sockproto structure.

	

--- socket.h
128 struct sockproto {
129 u_short sp_family; /* address family */
130 u_short sp_protocol; /* protocol */
131 };
--- socket.h

The family is never changed from its initial value of PF_ROUTE, but the protocol is set each time raw_input is called. When a process creates a routing socket by calling socket, the third argument (the protocol) specifies the protocol in which the process is interested. The caller of raw_input sets the sp_protocol member of the route_proto structure to the protocol of the routing message. In the case of rt_missmsg, it is set to the sa_family of the destination socket address structure (if specified by the caller), which in Figures 19.21 and 19.22 would be AF_INET.

19.10. rt_ifmsg Function

In Figure 4.30 we saw that if_up and if_down both call rt_ifmsg, shown in Figure 19.27, to generate a routing socket message when an interface goes up or down.

Figure 19.27. rt_ifmsg function.

	

--- rtsock.c
540 void
541 rt_ifmsg(ifp)
542 struct ifnet *ifp;
543 {
544 struct if_msghdr *ifm;
545 struct mbuf *m;
546 struct rt_addrinfo info;

547 if (route_cb.any_count == 0)
548 return;

549 bzero((caddr_t) & info, sizeof(info));
550 m = rt_msg1(RTM_IFINFO, &info);
551 if (m == 0)
552 return;

553 ifm = mtod(m, struct if_msghdr *);
554 ifm->ifm_index = ifp->if_index;
555 ifm->ifm_flags = ifp->if_flags;
556 ifm->ifm_data = ifp->if_data; /* structure assignment */
557 ifm->ifm_addrs = 0;

558 route_proto.sp_protocol = 0;
559 raw_input(m, &route_proto, &route_src, &route_dst);
560 }
--- rtsock.c

547-548

If there aren’t any routing socket listeners, the function returns immediately.

Build message in mbuf chain

549-552

An rt_addrinfo structure is set to 0 and rt_msg1 builds an appropriate message in an mbuf chain. Notice that all socket address pointers in the rt_addrinfo structure are null, so only the fixed-length if_msghdr structure becomes the routing message; there are no addresses.

Finish building message

553-557

The interface’s index, flags, and if_data structure are copied into the message in the mbuf and the ifm_addrs bitmask is set to 0.

Set protocol of message, call raw_input

558-559

The protocol of the routing message is set to 0 because this message can apply to all protocol suites. It is a message about an interface, not about some specific destination. raw_input delivers the message to the appropriate listeners.

19.11. rt_newaddrmsg Function

In Figure 19.13 we saw that rtinit calls rt_newaddrmsg with a command of RTM_ADD or RTM_DELETE when an interface has an address added or deleted. Figure 19.28 shows the first half of the function.

Figure 19.28. rt_newaddrmsg function: first half: create ifa_msghdr message.

	

--- rtsock.c
569 void
570 rt_newaddrmsg(cmd, ifa, error, rt)
571 int cmd, error;
572 struct ifaddr *ifa;
573 struct rtentry *rt;
574 {
575 struct rt_addrinfo info;
576 struct sockaddr *sa;
577 int pass;
578 struct mbuf *m;
579 struct ifnet *ifp = ifa->ifa_ifp;

580 if (route_cb.any_count == 0)
581 return;

582 for (pass = 1; pass < 3; pass++) {
583 bzero((caddr_t) & info, sizeof(info));
584 if ((cmd == RTM_ADD && pass == 1) ||
585 (cmd == RTM_DELETE && pass == 2)) {
586 struct ifa_msghdr *ifam;
587 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;

588 ifaaddr = sa = ifa->ifa_addr;
589 ifpaddr = ifp->if_addrlist->ifa_addr;
590 netmask = ifa->ifa_netmask;
591 brdaddr = ifa->ifa_dstaddr;
592 if ((m = rt_msg1(ncmd, &info)) == NULL)
593 continue;
594 ifam = mtod(m, struct ifa_msghdr *);
595 ifam->ifam_index = ifp->if_index;
596 ifam->ifam_metric = ifa->ifa_metric;
597 ifam->ifam_flags = ifa->ifa_flags;
598 ifam->ifam_addrs = info.rti_addrs;
599 }
--- rtsock.c

580-581

If there aren’t any routing socket listeners, the function returns immediately.

Generate two routing messages

582

The for loop iterates twice because two messages are generated. If the command is RTM_ADD, the first message is of type RTM_NEWADDR and the second message is of type RTM_ADD. If the command is RTM_DELETE, the first message is of type RTM_DELETE and the second message is of type RTM_DELADDR. The RTM_NEWADDR and RTM_DELADDR messages are built from an ifa_msghdr structure, while the RTM_ADD and RTM_DELETE messages are built from an rt_msghdr structure. The function generates two messages because one message provides information about the interface and the other about the addresses.

583

An rt_addrinfo structure is set to 0.

Generate message with up to four addresses

588-591

Pointers to four socket address structures containing information about the interface address that has been added or deleted are stored in the rti_info array. Recall from Figure 19.19 that ifaaddr, ifpaddr, netmask, and brdaddr reference elements in the rti_info array named in info. rt_msg1 builds the appropriate message in an mbuf chain. Notice that sa is set to point to the ifa_addr structure, and we’ll see at the end of the function that the family of this socket address structure becomes the protocol of the routing message.

Finish building message

Remaining members of the ifa_msghdr structure are filled in with the interface’s index, metric, and flags, along with the bitmask set by rt_msg1.

Figure 19.29 shows the second half of rt_newaddrmsg, which creates an rt_msghdr message with information about the routing table entry that was added or deleted.

Figure 19.29. rt_newaddrmsg function: second half, create rt_msghdr message.

	

--- rtsock.c
600 if ((cmd == RTM_ADD && pass == 2) ||
601 (cmd == RTM_DELETE && pass == 1)) {
602 struct rt_msghdr *rtm;

603 if (rt == 0)
604 continue;
605 netmask = rt_mask(rt);
606 dst = sa = rt_key(rt);
607 gate = rt->rt_gateway;
608 if ((m = rt_msg1(cmd, &info)) == NULL)
609 continue;
610 rtm = mtod(m, struct rt_msghdr *);
611 rtm->rtm_index = ifp->if_index;
612 rtm->rtm_flags |= rt->rt_flags;
613 rtm->rtm_errno = error;
614 rtm->rtm_addrs = info.rti_addrs;
615 }
616 route_proto.sp_protocol = sa ? sa->sa_family : 0;
617 raw_input(m, &route_proto, &route_src, &route_dst);
618 }
619 }
--- rtsock.c

Build message

600-609

Pointers to three socket address structures are stored in the rti_info array: the rt_mask, rt_key, and rt_gateway structures. sa is set to point to the destination address, and its family becomes the protocol of the routing message. rt_msg1 builds the appropriate message in an mbuf chain.

Additional fields in the rt_msghdr structure are filled in, including the bitmask set by rt_msg1.

Set protocol of message, call raw_input

616-619

The protocol of the routing message is set and raw_input passes the message to the appropriate listeners. The function returns after two iterations through the loop.

19.12. rt_msg1 Function

The functions described in the previous three sections each called rt_msg1 to build the appropriate routing message. In Figure 19.25 we showed the mbuf chain that was built by rt_msg1 from the rt_msghdr and rt_addrinfo structures in Figure 19.22. Figure 19.30 shows the function.

Figure 19.30. rt_msg1 function: obtain and initialize mbuf.

[image: Image]

Get mbuf and determine fixed size of message

399-422

An mbuf with a packet header is obtained and the length of the fixed-size message is stored in len. Two of the message types in Figure 18.9 use an ifa_msghdr structure, one uses an if_msghdr structure, and the remaining nine use an rt_msghdr structure.

Verify structure fits in mbuf

423-424

The size of the fixed-length structure must fit entirely within the data portion of the packet header mbuf, because the mbuf pointer is cast to a structure pointer using mtod and the structure is then referenced through the pointer. The largest of the three structures is if_msghdr, which at 84 bytes is less than MHLEN (100).

Initialize mbuf packet header and zero structure

425-428

The two fields in the packet header are initialized and the structure in the mbuf is set to 0.

Copy socket address structures into mbuf chain

429-436

The caller passes a pointer to an rt_addrinfo structure. The socket address structures corresponding to all the nonnull pointers in the rti_info are copied into the mbuf by m_copyback. The value 1 is left shifted by the RTAX_xxx index to generate the corresponding RTA_xxx bitmask (Figure 19.19), and each individual bitmask is logically ORed into the rti_addrs member, which the caller can store on return into the corresponding member of the message structure. The ROUNDUP macro rounds the size of each socket address structure up to the next multiple of 4 bytes.

437-440

If, when the loop terminates, the length in the mbuf packet header does not equal len, the function m_copyback wasn’t able to obtain a required mbuf.

Store length, version, and type

441-445

The length, version, and message type are stored in the first three members of the message structure. Again, all three xxx_msghdr structures start with the same three members, so this code works with all three structures even though the pointer rtm is a pointer to an rt_msghdr structure.

19.13. rt_msg2 Function

rt_msg1 constructs a routing message in an mbuf chain, and the three functions that called it then called raw_input to append the mbuf chain to one or more socket’s receive buffer. rt_msg2 is different it builds a routing message in a memory buffer, not an mbuf chain, and has as an argument a pointer to a walkarg structure that is used when rt_msg2 is called by the two functions that handle the sysctl system call for the routing domain. rt_msg2 is called in two different scenarios:

1. from route_output to process the RTM_GET command, and

2. from sysctl_dumpentry and sysctl_iflist to process a sysctl system call.

Before looking at rt_msg2, Figure 19.31 shows the walkarg structure that is used in scenario 2. We go through all these members as we encounter them.

Figure 19.31. walkarg structure: used with the sysctl system call in the routing domain.

	

--- rtsock.c
 41 struct walkarg {
 42 int w_op; /* NET_RT_xxx */
 43 int w_arg; /* RTF_xxx for FLAGS, if_index for IFLIST */
 44 int w_given; /* size of process' buffer */
 45 int w_needed; /* #bytes actually needed (at end) */
 46 int w_tmemsize; /* size of buffer pointed to by w_tmem */
 47 caddr_t w_where; /* ptr to process' buffer (maybe null) */
 48 caddr_t w_tmem; /* ptr to our malloc'ed buffer */
 49 };
--- rtsock.c

Figure 19.32 shows the first half of the rt_msg2 function. This portion is similar to the first half of rt_msg1.

Figure 19.32. rt_msg2 function: copy socket address structures.

	

--- rtsock.c
446 static int
447 rt_msg2(type, rtinfo, cp, w)
448 int type;
449 struct rt_addrinfo *rtinfo;
450 caddr_t cp;
451 struct walkarg *w;
452 {
453 int i;
454 int len, dlen, second_time = 0;
455 caddr_t cp0;

456 rtinfo->rti_addrs = 0;
457 again:
458 switch (type) {

459 case RTM_DELADDR:
460 case RTM_NEWADDR:
461 len = sizeof(struct ifa_msghdr);
462 break;

463 case RTM_IFINFO:
464 len = sizeof(struct if_msghdr);
465 break;

466 default:
467 len = sizeof(struct rt_msghdr);
468 }
469 if (cp0 = cp)
470 cp += len;
471 for (i = 0; i < RTAX_MAX; i++) {
472 struct sockaddr *sa;

473 if ((sa = rtinfo->rti_info[i]) == 0)
474 continue;
475 rtinfo->rti_addrs |= (1 << i);
476 dlen = ROUNDUP(sa->sa_len);
477 if (cp) {
478 bcopy((caddr_t) sa, cp, (unsigned) dlen);
479 cp += dlen;
480 }
481 len += dlen;
482 }
--- rtsock.c

446-455

Since this function stores the resulting message in a memory buffer, the caller specifies the start of that buffer in the cp argument. It is the caller’s responsibility to ensure that the buffer is large enough for the message that is generated. To help the caller determine this size, if the cp argument is null, rt_msg2 doesn’t store anything but processes the input and returns the total number of bytes required to hold the result. We’ll see that route_output uses this feature and calls this function twice: first to determine the size and then to store the result, after allocating a buffer of the correct size. When rt_msg2 is called by route_output, the final argument is null. This final argument is nonnull when called as part of the sysctl system call processing.

Determine size of structure

458-470

The size of the fixed-length message structure is set based on the message type. If the cp pointer is nonnull, it is incremented by this size.

Copy socket address structures

471-482

The for loop goes through the rti_info array, and for each element that is a nonnull pointer it sets the appropriate bit in the rti_addrs bitmask, copies the socket address structure (if cp is nonnull), and updates the length.

Figure 19.33 shows the second half of rt_msg2, most of which handles the optional walkarg structure.

Figure 19.33. rt_msg2 function: handle optional walkarg argument.

	

--- rtsock.c
483 if (cp == 0 && w != NULL && !second_time) {
484 struct walkarg *rw = w;

485 rw->w_needed += len;
486 if (rw->w_needed <= 0 && rw->w_where) {
487 if (rw->w_tmemsize < len) {
488 if (rw->w_tmem)
489 free(rw->w_tmem, M_RTABLE);
490 if (rw->w_tmem = (caddr_t)
491 malloc(len, M_RTABLE, M_NOWAIT))
492 rw->w_tmemsize = len;
493 }
494 if (rw->w_tmem) {
495 cp = rw->w_tmem;
496 second_time = 1;
497 goto again;
498 } else
499 rw->w_where = 0;
500 }
501 }
502 if (cp) {
503 struct rt_msghdr *rtm = (struct rt_msghdr *) cp0;

504 rtm->rtm_version = RTM_VERSION;
505 rtm->rtm_type = type;
506 rtm->rtm_msglen = len;
507 }
508 return (len);
509 }
--- rtsock.c

483-484

This if statement is true only when a pointer to a walkarg structure was passed and this is the first loop through the function. The variable second_time was initialized to 0 but can be set to 1 within this if statement, and a jump made back to the label again in Figure 19.32. The test for cp being a null pointer is superfluous since whenever the w pointer is nonnull, the cp pointer is null, and vice versa.

Check if data to be stored

485-486

w_needed is incremented by the size of the message. This variable is initialized to 0 minus the size of the user’s buffer to the sysctl function. For example, if the buffer size is 500 bytes, w_needed is initialized to—500. As long as it remains negative, there is room in the buffer. w_where is a pointer to the buffer in the calling process. It is null if the process doesn’t want the result the process just wants sysctl to return the size of the result, so the process can allocate a buffer and call sysctl again. rt_msg2 doesn’t copy the data back to the process that is up to the caller b ut if the w_where pointer is null, there’s no need for rt_msg2 to malloc a buffer to hold the result and loop back through the function again, storing the result in this buffer. There are really five different scenarios that this function handles, summarized in Figure 19.34.

Figure 19.34. Summary of different scenarios for rt_msg2.

[image: Image]

Allocate buffer first time or if message length increases

487-493

w_tmemsize is the size of the buffer pointed to by w_tmem. It is initialized to 0 by sysctl_rtable, so the first time rt_msg2 is called for a given sysctl request, the buffer must be allocated. Also, if the size of the result increases, the existing buffer must be released and a new (larger) buffer allocated.

Go around again and store result

494-499

If w_tmem is nonnull, a buffer already exists or one was just allocated. cp is set to point to this buffer, second_time is set to 1, and a jump is made to again. The if statement at the beginning of this figure won’t be true during this second pass, since second_time is now 1. If w_tmem is null, the call to malloc failed, so the pointer to the buffer in the process is set to null, preventing anything from being returned.

Store length, version, and type

502-509

If cp is nonnull, the first three elements of the message header are stored. The function returns the length of the message.

19.14. sysctl_rtable Function

This function handles the sysctl system call on a routing socket. It is called by net_sysctl as shown in Figure 18.11.

Before going through the source code, Figure 19.35 shows the typical use of this system call with respect to the routing table. This example is from the arp program.

Figure 19.35. Example of sysctl with routing table.

 int mib[6];
 size_t needed;
 char *buf, *lim, *next;
 struct rt_msghdr *rtm;

 mib[0] = CTL_NET;
 mib[1] = PF_ROUTE;
 mib[2] = 0;
 mib[3] = AF_INET; /* address family; can be 0 */
 mib[4] = NET_RT_FLAGS; /* operation */
 mib[5] = RTF_LLINFO; /* flags; can be 0 */

 if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0)
 quit("sysctl error, estimate");

 if ((buf = malloc(needed)) == NULL)
 quit("malloc");

 if (sysctl(mib, 6, buf, &needed, NULL, 0) < 0)
 quit("sysctl error, retrieval");

 lim = buf + needed;
 for (next = buf; next < lim; next += rtm->rtm_msglen) {
 rtm = (struct rt_msghdr *)next;
 ... /* do whatever */
 }

The first three elements in the mib array cause the kernel to call sysctl_rtable to process the remaining elements.

mib[4] specifies the operation. Three operations are supported.

1. NET_RT_DUMP: return the routing table corresponding to the address family specified by mib[3]. If the address family is 0, all routing tables are returned.

An RTM_GET routing message is returned for each routing table entry containing two, three, or four socket address structures per message: those addresses pointed to by rt_key, rt_gateway, rt_netmask, and rt_genmask. The final two pointers might be null.

2. NET_RT_FLAGS: the same as the previous command except mib[5] specifies an RTF_xxx flag (Figure 18.25), and only entries with this flag set are returned.

3. NET_RT_IFLIST: return information on all the configured interfaces. If the mib[5] value is nonzero it specifies an interface index and only the interface with the corresponding if_index is returned. Otherwise all interfaces on the ifnet linked list are returned.

For each interface one RTM_IFINFO message is returned, with information about the interface itself, followed by one RTM_NEWADDR message for each ifaddr structure on the interface’s if_addrlist linked list. If the mib[3] value is nonzero, RTM_NEWADDR messages are returned for only the addresses with an address family that matches the mib[3] value. Otherwise mib[3] is 0 and information on all addresses is returned. This operation is intended to replace the SIOCGIFCONF ioctl (Figure 4.26).

One problem with this system call is that the amount of information returned can vary, depending on the number of routing table entries or the number of interfaces. Therefore the first call to sysctl typically specifies a null pointer as the third argument, which means: don’t return any data, just return the number of bytes of return information. As we see in Figure 19.35, the process then calls malloc, followed by sysctl to fetch the information. This second call to sysctl again returns the number of bytes through the fourth argument (which might have changed since the previous call), and this value provides the pointer lim that points just beyond the final byte of data that was returned. The process then steps through the routing messages in the buffer, using the rtm_msglen member to step to the next message.

Figure 19.36 shows the values for these six mib variables that various Net/3 programs specify to access the routing table and interface list.

Figure 19.36. Examples of programs that call sysctl to obtain routing table and interface list.

[image: Image]

The first three programs fetch entries from the routing table and the last three fetch the interface list. The routed program supports only the Internet routing protocols, so it specifies a mib[3] value of AF_INET, while gated supports other protocols, so its value for mib[3] is 0.

Figure 19.37 shows the organization of the three sysctl_xxx functions that we cover in the following sections.

Figure 19.37. Functions that support the sysctl system call for routing sockets.

[image: Image]

Figure 19.38 shows the sysctl_rtable function.

Figure 19.38. sysctl_rtable function: process sysctl system call requests.

[image: Image]
[image: Image]

Validate arguments

705-719

The new argument is used when the process is calling sysctl to set the value of a variable, which isn’t supported with the routing tables. Therefore this argument must be a null pointer.

720-721

namelen must be 3 because at this point in the processing of the system call, three elements in the name array remain: name[0], the address family (what the process specifies as mib[3]); name[1], the operation (mib[4]); and name[2], the flags (mib[5]).

Initialize walkarg structure

723-728

A walkarg structure (Figure 19.31) is set to 0 and the following members are initialized: w_where is the address in the calling process of the buffer for the results (this can be a null pointer, as we mentioned); w_given is the size of the buffer in bytes (this is meaningless on input if w_where is a null pointer, but it must be set on return to the amount of data that would have been returned); w_needed is set to the negative of the buffer size; w_op is the operation (the NET_RT_xxx value); and w_arg is the flags value.

Dump routing table

731-738

The NET_RT_DUMP and NET_RT_FLAGS operations are handled the same way: a loop is made through all the routing tables (the rt_tables array), and if the routing table is in use and either the address family argument was 0 or the address family argument matches the family of this routing table, the rnh_walktree function is called to process the entire routing table. In Figure 18.17 we show that this function is normally rn_walktree. The second argument to this function is the address of another function that is called for each leaf of the routing tree (sysctl_dumpentry). The third pointer is just a pointer to anything that rn_walktree passes to the sysctl_dumpentry function. This argument is a pointer to the walkarg structure that contains all the information about this sysctl call.

Return interface list

739-740

The NET_RT_IFLIST operation calls the function sysctl_iflist, which goes through all the ifnet structures.

Release buffer

743-744

If a buffer was allocated by rt_msg2 to contain a routing message, it is now released.

Update w_needed

745

The size of each message was added to w_needed by rt_msg2. Since this variable was initialized to the negative of w_given, its value can now be expressed as

w_needed = 0 - w_given + totalbytes

where totalbytes is the sum of all the message lengths added by rt_msg2. By adding the value of w_given back into w_needed, we get

w_needed = 0 - w_given + totalbytes + w_given
 = totalbytes

the total number of bytes. Since the two values of w_given in this equation end up canceling each other, when the process specifies w_where as a null pointer it need not initialize the value of w_given. Indeed, we see in Figure 19.35 that the variable needed was not initialized.

Return actual size of message

746-749

If where is nonnull, the number of bytes stored in the buffer is returned through the given pointer. If this value is less than the size of the buffer specified by the process, an error is returned because the return information has been truncated.

Return estimated size of message

750-752

When the where pointer is null, the process just wants the total number of bytes returned. A 10% fudge factor is added to the size, in case the size of the desired tables increases between this call to sysctl and the next.

19.15. sysctl_dumpentry Function

In the previous section we described how this function is called by rn_walktree, which in turn is called by sysctl_rtable. Figure 19.39 shows the function.

Figure 19.39. sysctl_dumpentry function: process one routing table entry.

	

--- rtsock.c
623 int
624 sysctl_dumpentry(rn, w)
625 struct radix_node *rn;
626 struct walkarg *w;
627 {
628 struct rtentry *rt = (struct rtentry *) rn;
629 int error = 0, size;
630 struct rt_addrinfo info;

631 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
632 return 0;
633 bzero((caddr_t) & info, sizeof(info));
634 dst = rt_key(rt);
635 gate = rt->rt_gateway;
636 netmask = rt_mask(rt);
637 genmask = rt->rt_genmask;
638 size = rt_msg2(RTM_GET, &info, 0, w);
639 if (w->w_where && w->w_tmem) {
640 struct rt_msghdr *rtm = (struct rt_msghdr *) w->w_tmem;

641 rtm->rtm_flags = rt->rt_flags;
642 rtm->rtm_use = rt->rt_use;
643 rtm->rtm_rmx = rt->rt_rmx;
644 rtm->rtm_index = rt->rt_ifp->if_index;
645 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
646 rtm->rtm_addrs = info.rti_addrs;
647 if (error = copyout((caddr_t) rtm, w->w_where, size))
648 w->w_where = NULL;
649 else
650 w->w_where += size;
651 }
652 return (error);
653 }
--- rtsock.c

623-630

Each time this function is called, its first argument points to a radix_node structure, which is also a pointer to a rtentry structure. The second argument points to the walkarg structure that was initialized by sysctl_rtable.

Check flags of routing table entry

631-632

If the process specified a flag value (mib[5]), this entry is skipped if the rt_flags member doesn’t have the desired flag set. We see in Figure 19.36 that the arp program uses this to select only those entries with the RTF_LLINFO flag set, since these are the entries of interest to ARP.

Form routing message

633-638

The following four pointers in the rti_info array are copied from the routing table entry: dst, gate, netmask, and genmask. The first two are always nonnull, but the other two can be null. rt_msg2 forms an RTM_GET message.

Copy message back to process

639-651

If the process wants the message returned and a buffer was allocated by rt_msg2, the remainder of the routing message is formed in the buffer pointed to by w_tmem and copyout copies the message back to the process. If the copy was successful, w_where is incremented by the number of bytes copied.

19.16. sysctl_iflist Function

This function, shown in Figure 19.40, is called directly by sysctl_rtable to return the interface list to the process.

Figure 19.40. sysctl_iflist function: return list of interfaces and their addresses.

[image: Image]
[image: Image]

This function is a for loop that iterates through each interface starting with the one pointed to by ifnet. Then a while loop proceeds through the linked list of ifaddr structures for each interface. An RTM_IFINFO routing message is generated for each interface and an RTM_NEWADDR message for each address.

Check interface index

654-666

The process can specify a nonzero flags argument (mib[5] in Figure 19.36) to select only the interface with a matching if_index value.

Build routing message

667-670

The only socket address structure returned with the RTM_IFINFO message is ifpaddr. The message is built by rt_msg2. The pointer ifpaddr in the info structure is then set to 0, since the same info structure is used for generating the subsequent RTM_NEWADDR messages.

Copy message back to process

671-681

If the process wants the message returned, the remainder of the if_msghdr structure is filled in, copyout copies the buffer to the process, and w_where is incremented.

Iterate through address structures, check address family

682-684

Each ifaddr structure for the interface is processed and the process can specify a nonzero address family (mib[3] in Figure 19.36) to select only the interface addresses of the given family.

Build routing message

685-688

Up to three socket address structures are returned in each RTM_NEWADDR message: ifaaddr, netmask, and brdaddr. The message is built by rt_msg2.

Copy message back to process

689-699

If the process wants the message returned, the remainder of the ifa_msghdr structure is filled in, copyout copies the buffer to the process, and w_where is incremented.

701

These three pointers in the info array are set to 0, since the same array is used for the next interface message.

19.17. Summary

Routing messages all have the same format a fixed-length structure followed by a variable number of socket address structures. There are three different types of messages, each corresponding to a different fixed-length structure, and the first three elements of each structure identify the length, version, and type of message. A bitmask in each structure identifies which socket address structures follow the fixed-length structure.

These messages are passed between a process and the kernel in two different ways. Messages can be passed in either direction, one message per read or write, across a routing socket. This allows a superuser process complete read and write access to the kernel’s routing tables. This is how routing daemons such as routed and gated implement their desired routing policy.

Alternatively any process can read the contents of the kernel’s routing tables using the sysctl system call. This does not involve a routing socket and does not require special privileges. The entire result, normally consisting of many routing messages, is returned as part of the system call. Since the process does not know the size of the result, a method is provided for the system call to return this size without returning the actual result.

Exercises

19.1 What is the difference in the RTF_DYNAMIC and RTF_MODIFIED flags? Can both be set for a given routing table entry?

19.2 What happens when the default route is entered with the command of the form

bsdi $ route add default -cloning -genmask 255.255.255.255 sun

19.3 Estimate the space required by sysctl to dump a routing table that contains 15 ARP entries and 20 routes.

Chapter 20. Routing Sockets

20.1. Introduction

A process sends and receives the routing messages described in the previous chapter by using a socket in the routing domain. The socket system call is issued specifying a family of PF_ROUTE and a socket type of SOCK_RAW.

The process can then send five routing messages to the kernel:

1. RTM_ADD: add a new route.

2. RTM_DELETE: delete an existing route.

3. RTM_GET: fetch all the information about a route.

4. RTM_CHANGE: change the gateway, interface, or metrics of an existing route.

5. RTM_LOCK: specify which metrics the kernel should not modify.

Additionally, the process can receive any of the other seven types of routing messages that are generated by the kernel when some event, such as interface down, redirect received, etc., occurs.

This chapter looks at the routing domain, the routing control blocks that are created for each routing socket, the function that handles messages from a process (route_output), the function that sends routing messages to one or more processes (raw_input), and the various functions that support all the socket operations on a routing socket.

20.2. routedomain and protosw Structures

Before describing the routing socket functions, we need to discuss additional details about the routing domain; the SOCK_RAW protocol supported in the routing domain; and routing control blocks, one of which is associated with each routing socket.

Figure 20.1 lists the domain structure for the PF_ROUTE domain, named routedomain.

Figure 20.1. routedomain structure.

[image: Image]

Unlike the Internet domain, which supports multiple protocols (TCP, UDP, ICMP, etc.), only one protocol (of type SOCK_RAW) is supported in the routing domain. Figure 20.2 lists the protocol switch entry for the PF_ROUTE domain.

Figure 20.2. The routing protocol protosw structure.

[image: Image]

20.3. Routing Control Blocks

Each time a routing socket is created with a call of the form

socket(PF_ROUTE, SOCK_RAW, protocol);

the corresponding PRU_ATTACH request to the protocol’s user-request function (route_usrreq) allocates a routing control block and links it to the socket structure. The protocol can restrict the messages sent to the process on this socket to one particular family. If a protocol of AF_INET is specified, for example, only routing messages containing Internet addresses will be sent to the process. A protocol of 0 causes all routing messages from the kernel to be sent on the socket.

Recall that we call these structures routing control blocks, not raw control blocks, to avoid confusion with the raw IP control blocks in Chapter 32.

Figure 20.3 shows the definition of the rawcb structure.

Figure 20.3. rawcb structure.

	

--- raw_cb.h
 39 struct rawcb {
 40 struct rawcb *rcb_next; /* doubly linked list */
 41 struct rawcb *rcb_prev;
 42 struct socket *rcb_socket; /* back pointer to socket */
 43 struct sockaddr *rcb_faddr; /* destination address */
 44 struct sockaddr *rcb_laddr; /* socket's address */
 45 struct sockproto rcb_proto; /* protocol family, protocol */
 46 };

 47 #define sotorawcb(so) ((struct rawcb *)(so)->so_pcb)
--- raw_cb.h

Additionally, a global of the same name, rawcb, is allocated as the head of the doubly linked list. Figure 20.4 shows the arrangement.

Figure 20.4. Relationship of raw protocol control blocks to other data structures.

[image: Image]

39-47

We showed the sockproto structure in Figure 19.26. Its sp_family member is set to PF_ROUTE and its sp_protocol member is set to the third argument to the socket system call. The rcb_faddr member is permanently set to point to route_src, which we described with Figure 19.26. rcb_laddr is always a null pointer.

20.4. raw_init Function

The raw_init function, shown in Figure 20.5, is the protocol initialization function in the protosw structure in Figure 20.2. We described the entire initialization of the routing domain with Figure 18.29.

Figure 20.5. raw_init function: initialize doubly linked list of routing control blocks.

	

-- raw_usrreq.c
 38 void
 39 raw_init()
 40 {

 41 rawcb.rcb_next = rawcb.rcb_prev = &rawcb;
 42 }
-- raw_usrreq.c

38-42

The function initializes the doubly linked list of routing control blocks by setting the next and previous pointers of the head structure to point to itself.

20.5. route_output Function

As we showed in Figure 18.11, route_output is called when the PRU_SEND request is issued to the protocol’s user-request function, which is the result of a write operation by a process to a routing socket. In Figure 18.9 we indicated that five different types of routing messages are accepted by the kernel from a process.

Since this function is invoked as a result of a write by a process, the data from the process (the routing message to process) is in an mbuf chain from sosend. Figure 20.6 shows an overview of the processing steps, assuming the process sends an RTM_ADD command, specifying three addresses: the destination, its gateway, and a network mask (hence this is a network route, not a host route).

Figure 20.6. Example processing of an RTM_ADD command from a process.

[image: Image]

There are numerous points to note in this figure, most of which we’ll cover as we proceed through the source code for route_output. Also note that, to save space, we omit the RTAX_ prefix for each array index in the rt_addrinfo structure.

[image: Image] The process specifies which socket address structures follow the fixed-length rt_msghdr structure by setting the bitmask rtm_addrs. We show a bitmask of 0x07, which corresponds to a destination address, a gateway address, and a network mask (Figure 19.19). The RTM_ADD command requires the first two; the third is optional. Another optional address, the genmask specifies the mask to be used for generating cloned routes.

[image: Image] The write system call (the sosend function) copies the buffer from the process into an mbuf chain in the kernel.

[image: Image] m_copydata copies the mbuf chain into a buffer that route_output obtains using malloc. It is easier to access all the information in the structure and the socket address structures that follow when stored in a single contiguous buffer than it is when stored in an mbuf chain.

[image: Image] The function rt_xaddrs is called by route_output to take the bitmask and build the rt_addrinfo structure that points into the buffer. The code in route_output references these structures using the names shown in the fifth column in Figure 19.19. The bitmask is also copied into the rti_addrs member.

[image: Image] route_output normally modifies the rt_msghdr structure. If an error occurs, the corresponding errno value is returned in rtm_errno (for example, EEXIST if the route already exists); otherwise the flag RTF_DONE is logically ORed into the rtm_flags supplied by the process.

[image: Image] The rt_msghdr structure and the addresses that follow become input to 0 or more processes that are reading from a routing socket. The buffer is first converted back into an mbuf chain by m_copyback. raw_input goes through all the routing PCBs and passes a copy to the appropriate processes. We also show that a process with a routing socket receives a copy of each message it writes to that socket unless it disables the SO_USELOOPBACK socket option.

To avoid receiving a copy of their own routing messages, some programs, such as route, call shutdown with a second argument of 0 to prevent any data from being received on the routing socket.

We examine the source code for route_output in seven parts. Figure 20.7 shows an overview of the function.

Figure 20.7. Summary of route_output processing steps.

[image: Image]
[image: Image]

The first part of route_output is shown in Figure 20.8.

Figure 20.8. route_output function: initial processing, copy message from mbuf chain.

[image: Image]

Check mbuf for validity

113-136

The mbuf chain is checked for validity: its length must be at least the size of an rt_msghdr structure. The first longword is fetched from the data portion of the mbuf, which contains the rtm_msglen value.

Allocate buffer

137-142

A buffer is allocated to hold the entire message and m_copydata copies the message from the mbuf chain into the buffer.

Check version number

143-146

The version of the message is checked. In the future, should a new version of the routing messages be introduced, this member could be used to provide support for older versions.

147-149

The process ID is copied into rtm_pid and the bitmask supplied by the process is copied into info.rti_addrs, a structure local to this function. The function rt_xaddrs (shown in the next section) fills in the eight socket address pointers in the info structure to point into the buffer now containing the message.

Destination address required

150-151

A destination address is a required address for all commands. If the info.rti_info[RTAX_DST] element is a null pointer, EINVAL is returned. Remember that dst refers to this array element (Figure 19.19).

Handle optional genmask

152-159

A genmask is optional and is used as the network mask for routes created when the RTF_CLONING flag is set (Figure 19.8). rn_addmask adds the mask to the tree of masks, first searching for an existing entry for the mask and then referencing that entry if found. If the mask is found or added to the mask tree, an additional check is made that the entry in the mask tree really equals the genmask value, and, if so, the genmask pointer is replaced with a pointer to the mask in the mask tree.

Figure 20.9 shows the next part of route_output, which handles the RTM_ADD and RTM_DELETE commands.

Figure 20.9. route_output function: process RTM_ADD and RTM_DELETE commands.

	

-- rtsock.c
160 switch (rtm->rtm_type) {

161 case RTM_ADD:
162 if (gate == 0)
163 senderr(EINVAL);
164 error = rtrequest(RTM_ADD, dst, gate, netmask,
165 rtm->rtm_flags, &saved_nrt);
166 if (error == 0 && saved_nrt) {
167 rt_setmetrics(rtm->rtm_inits,
168 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
169 saved_nrt->rt_refcnt--;
170 saved_nrt->rt_genmask = genmask;
171 }
172 break;

173 case RTM_DELETE:
174 error = rtrequest(RTM_DELETE, dst, gate, netmask,
175 rtm->rtm_flags, (struct rtentry **) 0);
176 break;
-- rtsock.c

162-163

An RTM_ADD command requires the process to specify a gateway.

164-165

rtrequest processes the request. The netmask pointer can be null if the route being entered is a host route. If all is OK, the pointer to the new routing table entry is returned through saved_nrt.

166-172

The rt_metrics structure is copied from the caller’s buffer into the routing table entry. The reference count is decremented and the genmask pointer is stored (possibly a null pointer).

173-176

Processing the RTM_DELETE command is simple because all the work is done by rtrequest. Since the final argument is a null pointer, rtrequest calls rtfree if the reference count is 0, deleting the entry from the routing table (Figure 19.7).

The next part of the processing is shown in Figure 20.10, which handles the common code for the RTM_GET, RTM_CHANGE, and RTM_LOCK commands.

Figure 20.10. route_output function: common processing for RTM_GET, RTM_CHANGE, and RTM_LOCK.

	

-- rtsock.c
177 case RTM_GET:
178 case RTM_CHANGE:
179 case RTM_LOCK:
180 rt = rtalloc1(dst, 0);
181 if (rt == 0)
182 senderr(ESRCH);
183 if (rtm->rtm_type != RTM_GET) { /* XXX: too grotty */
184 struct radix_node *rn;
185 extern struct radix_node_head *mask_rnhead;

186 if (Bcmp(dst, rt_key(rt), dst->sa_len) != 0)
187 senderr(ESRCH);
188 if (netmask && (rn = rn_search(netmask,
189 mask_rnhead->rnh_treetop)))
190 netmask = (struct sockaddr *) rn->rn_key;
191 for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
192 if (netmask == (struct sockaddr *) rn->rn_mask)
193 break;
194 if (rn == 0)
195 senderr(ETOOMANYREFS);
196 rt = (struct rtentry *) rn;
197 }
-- rtsock.c

Locate existing entry

177-182

Since all three commands reference an existing entry, rtalloc1 locates the entry. If the entry isn’t found, ESRCH is returned.

Do not allow network match

183-187

For the RTM_CHANGE and RTM_LOCK commands, a network match is inadequate: an exact match with the routing table key is required. Therefore, if the dst argument doesn’t equal the routing table key, the match was a network match and ESRCH is returned.

Use network mask to find correct entry

188-193

Even with an exact match, if there are duplicate keys, each with a different network mask, the correct entry must still be located. If a netmask argument was supplied, it is looked up in the mask table (mask_rnhead). If found, the netmask pointer is replaced with the pointer to the mask in the mask tree. Each leaf node in the duplicate key list is examined, looking for an entry with an rn_mask pointer that equals netmask. This test compares the pointers, not the structures that they point to. This works because all masks appear in the mask tree, and only one copy of each unique mask is stored in this tree. In the common case, keys are not duplicated, so the for loop iterates once. If a host entry is being modified, a mask must not be specified and then both netmask and rn_mask are null pointers (which are equal). But if an entry that has an associated mask is being modified, that mask must be specified as the netmask argument.

194-195

If the for loop terminates without finding a matching network mask, ETOOMANYREFS is returned.

The comment XXX is because this function must go to all this work to find the desired entry. All these details should be hidden in another function similar to rtalloc1 that detects a network match and handles a mask argument.

The next part of this function, shown in Figure 20.11, continues processing the RTM_GET command. This command is unique among the commands supported by route_output in that it can return more data than it was passed. For example, only a single socket address structure is required as input, the destination, but at least two are returned: the destination and its gateway. With regard to Figure 20.6, this means the buffer allocated for m_copydata to copy into might need to be increased in size.

Figure 20.11. route_output function: RTM_GET processing.

	

-- rtsock.c
198 switch (rtm->rtm_type) {

199 case RTM_GET:
200 dst = rt_key(rt);
201 gate = rt->rt_gateway;
202 netmask = rt_mask(rt);
203 genmask = rt->rt_genmask;
204 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
205 if (ifp = rt->rt_ifp) {
206 ifpaddr = ifp->if_addrlist->ifa_addr;
207 ifaaddr = rt->rt_ifa->ifa_addr;
208 rtm->rtm_index = ifp->if_index;
209 } else {
210 ifpaddr = 0;
211 ifaaddr = 0;
212 }
213 }
214 len = rt_msg2(RTM_GET, &info, (caddr_t) 0,
215 (struct walkarg *) 0);
216 if (len > rtm->rtm_msglen) {
217 struct rt_msghdr *new_rtm;
218 R_Malloc(new_rtm, struct rt_msghdr *, len);
219 if (new_rtm == 0)
220 senderr(ENOBUFS);
221 Bcopy(rtm, new_rtm, rtm->rtm_msglen);
222 Free(rtm);
223 rtm = new_rtm;
224 }
225 (void) rt_msg2(RTM_GET, &info, (caddr_t) rtm,
226 (struct walkarg *) 0);
227 rtm->rtm_flags = rt->rt_flags;
228 rtm->rtm_rmx = rt->rt_rmx;
229 rtm->rtm_addrs = info.rti_addrs;
230 break;
-- rtsock.c

Return destination, gateway, and masks

198-203

Four pointers are stored in the rti_info array: dst, gate, netmask, and genmask. The latter two might be null pointers. These pointers in the info structure point to the socket address structures that will be returned to the process.

Return interface information

204-213

The process can set the masks RTA_IFP and RTA_IFA in the rtm_flags bitmask. If either or both are set, the process wants to receive the contents of both the ifaddr structures pointed to by this routing table entry: the link-level address of the interface (pointed to by rt_ifp>if_addrlist) and the protocol address for this entry (pointed to by rt_ifa>ifa_addr). The interface index is also returned.

Construct reply

214-224

rt_msg2 is called with a null third pointer to calculate the length of the routing message corresponding to RTM_GET and the addresses pointed to by the info structure. If the length of the result message exceeds the length of the input message, then a new buffer is allocated, the input message is copied into the new buffer, the old buffer is released, and rtm is set to point to the new buffer.

225-230

rt_msg2 is called again, this time with a nonnull third pointer, which builds the result message in the buffer. The final three members in the rt_msghdr structure are then filled in.

Figure 20.12 shows the processing of the RTM_CHANGE and RTM_LOCK commands.

Figure 20.12. route_output function: RTM_CHANGE and RTM_LOCK processing.

[image: Image]

Change gateway

231-233

If a gate address was passed by the process, rt_setgate is called to change the gateway for the entry.

Locate new interface

234-244

The new gateway (if changed) can also require new rt_ifp and rt_ifa pointers. The process can specify these new values by passing either an ifpaddr socket address structure or an ifaaddr socket address structure. The former is tried first, and then the latter. If neither is passed by the process, the rt_ifp and rt_ifa pointers are left alone.

Check if interface changed

245-256

If an interface was located (ifa is nonnull), then the existing rt_ifa pointer for the route is compared to the new value. If it has changed, new values for rt_ifp and rt_ifa are stored in the routing table entry. Before doing this the interface request function (if defined) is called with a command of RTM_DELETE. The delete is required because the link-layer information from one type of network to another can be quite different, say changing a route from an X.25 network to an Ethernet, and the output routines must be notified.

Update metrics

257-258

The metrics in the routing table entry are updated by rt_setmetrics.

Call interface request function

259-260

If an interface request function is defined, it is called with a command of RTM_ADD.

Store clone generation mask

261-262

If the process specifies the genmask argument, the pointer to the mask that was obtained in Figure 20.8 is saved in rt_genmask.

Update bitmask of locked metrics

266-270

The RTM_LOCK command updates the bitmask stored in rt_rmx.rmx_locks. Figure 20.13 shows the values of the different bits in this bitmask, one value per metric.

Figure 20.13. Constants to initialize or lock metrics.

[image: Image]

The rmx_locks member of the rt_metrics structure in the routing table entry is the bitmask telling the kernel which metrics to leave alone. That is, those metrics specified by rmx_locks won’t be updated by the kernel. The only use of these metrics by the kernel is with TCP, as noted with Figure 27.3. The rmx_pksent metric cannot be locked or initialized, but it turns out this member is never even referenced or updated by the kernel.

The rtm_inits value in the message from the process specifies the bitmask of which metrics were just initialized by rt_setmetrics. The rtm_rmx.rmx_locks value in the message specifies the bitmask of which metrics should now be locked. The value of rt_rmx.rmx_locks is the bitmask in the routing table of which metrics are currently locked. First, any bits to be initialized (rtm_inits) are unlocked. Any bits that are both initialized (rtm_inits) and locked (rtm_rmx.rmx_locks) are locked.

273-275

This default is for the switch at the beginning of Figure 20.9 and catches any of the routing commands other than the five that are supported in messages from a process.

The final part of route_output, shown in Figure 20.14, sends the reply to raw_input.

Figure 20.14. route_output function: pass results to raw_input.

	

--- rtsock.c
276 flush:
277 if (rtm) {
278 if (error)
279 rtm->rtm_errno = error;
280 else
281 rtm->rtm_flags |= RTF_DONE;
282 }
283 if (rt)
284 rtfree(rt);
285 {
286 struct rawcb *rp = 0;
287 /*
288 * Check to see if we don't want our own messages.
289 */
290 if ((so->so_options & SO_USELOOPBACK) == 0) {
291 if (route_cb.any_count <= 1) {
292 if (rtm)
293 Free(rtm);
294 m_freem(m);
295 return (error);
296 }
297 /* There is another listener, so construct message */
298 rp = sotorawcb(so);
299 }
300 if (rtm) {
301 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t) rtm);
302 Free(rtm);
303 }
304 if (rp)
305 rp->rcb_proto.sp_family = 0; /* Avoid us */
306 if (dst)
307 route_proto.sp_protocol = dst->sa_family;
308 raw_input(m, &route_proto, &route_src, &route_dst);
309 if (rp)
310 rp->rcb_proto.sp_family = PF_ROUTE;
311 }
312 return (error);
313 }
--- rtsock.c

Return error or OK

276-282

flush is the label jumped to by the senderr macro defined at the beginning of the function. If an error occurred it is returned in the rtm_errno member; otherwise the RTF_DONE flag is set.

Release held route

283-284

If a route is being held, it is released. The call to rtalloc1 at the beginning of Figure 20.10 holds the route, if found.

No process to receive message

285-296

The SO_USELOOPBACK socket option is true by default and specifies that the sending process is to receive a copy of each routing message that it writes to a routing socket. (If the sender doesn’t receive a copy, it can’t receive any of the information returned by RTM_GET.) If that option is not set, and the total count of routing sockets is less than or equal to 1, there are no other processes to receive the message and the sender doesn’t want a copy. The buffer and mbuf chain are both released and the function returns.

Other listeners but no loopback copy

297-299

There is at least one other listener but the sending process does not want a copy. The pointer rp, which defaults to null, is set to point to the routing control block for the sender and is also used as a flag that the sender doesn’t want a copy.

Convert buffer into mbuf chain

300-303

The buffer is converted back into an mbuf chain (Figure 20.6) and the buffer released.

Avoid loopback copy

304-305

If rp is set, some other process might want the message but the sender does not want a copy. The sp_family member of the sender’s routing control block is temporarily set to 0, but the sp_family of the message (the route_proto structure, shown with Figure 19.26) has a family of PF_ROUTE. This trick prevents raw_input from passing a copy of the result to the sending process because raw_input does not pass a copy to any socket with an sp_family of 0.

Set address family of routing message

306-308

If dst is a nonnull pointer, the address family of that socket address structure becomes the protocol of the routing message. With the Internet protocols this value would be PF_INET. A copy is passed to the appropriate listeners by raw_input.

309-313

If the sp_family member in the calling process was temporarily set to 0, it is reset to PF_ROUTE, its normal value.

20.6. rt_xaddrs Function

The rt_xaddrs function is called only once from route_output (Figure 20.8) after the routing message from the process has been copied from the mbuf chain into a buffer and after the bitmask from the process (rtm_addrs) has been copied into the rti_info member of an rt_addrinfo structure. The purpose of rt_xaddrs is to take this bitmask and set the pointers in the rti_info array to point to the corresponding address in the buffer. Figure 20.15 shows the function.

Figure 20.15. rt_xaddrs function: fill rti_into array with pointers.

	

-- rtsock.c
330 #define ROUNDUP(a) \
331 ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
332 #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))

333 static void
334 rt_xaddrs(cp, cplim, rtinfo)
335 caddr_t cp, cplim;
336 struct rt_addrinfo *rtinfo;
337 {
338 struct sockaddr *sa;
339 int i;

340 bzero(rtinfo->rti_info, sizeof(rtinfo->rti_info));
341 for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
342 if ((rtinfo->rti_addrs & (1 << i)) == 0)
343 continue;
344 rtinfo->rti_info[i] = sa = (struct sockaddr *) cp;
345 ADVANCE(cp, sa);
346 }
347 }
-- rtsock.c

330-340

The array of pointers is set to 0 so all the pointers to address structures not appearing in the bitmask will be null.

341-347

Each of the 8 (RTAX_MAX) possible bits in the bitmask is tested and, if set, a pointer is stored in the rti_info array to the corresponding socket address structure. The ADVANCE macro takes the sa_len field of the socket address structure, rounds it up to the next multiple of 4 bytes, and increments the pointer cp accordingly.

20.7. rt_setmetrics Function

This function was called twice from route_output: when a new route was added and when an existing route was changed. The rtm_inits member in the routing message from the process specifies which of the metrics the process wants to initialize from the rtm_rmx array. The bit values in the bitmask are shown in Figure 20.13.

Notice that both rtm_addrs and rtm_inits are bitmasks in the message from the process, the former specifying the socket address structures that follow, and the latter specifying which metrics are to be initialized. Socket address structures whose bits don’t appear in rtm_addrs don’t even appear in the routing message, to save space. But the entire rt_metrics array always appears in the fixed-length rt_msghdr structure elements in the array whose bits are not set in rtm_inits are ignored.

Figure 20.16 shows the rt_setmetrics function.

Figure 20.16. rt_setmetrics function: set elements of the rt_metrics structure.

	

--- rtsock.c
314 void
315 rt_setmetrics(which, in, out)
316 u_long which;
317 struct rt_metrics *in, *out;
318 {
319 #define metric(f, e) if (which & (f)) out->e = in->e;
320 metric(RTV_RPIPE, rmx_recvpipe);
321 metric(RTV_SPIPE, rmx_sendpipe);
322 metric(RTV_SSTHRESH, rmx_ssthresh);
323 metric(RTV_RTT, rmx_rtt);
324 metric(RTV_RTTVAR, rmx_rttvar);
325 metric(RTV_HOPCOUNT, rmx_hopcount);
326 metric(RTV_MTU, rmx_mtu);
327 metric(RTV_EXPIRE, rmx_expire);
328 #undef metric
329 }
--- rtsock.c

314-318

The which argument is always the rtm_inits member of the routing message from the process. in points to the rt_metrics structure from the process, and out points to the rt_metrics structure in the routing table entry that is being created or modified.

319-329

Each of the 8 bits in the bitmask is tested and if set, the corresponding metric is copied. Notice that when a new routing table entry is being created with the RTM_ADD command, route_output calls rtrequest, which sets the entire routing table entry to 0 (Figure 19.9). Hence, any metrics not specified by the process in the routing message default to 0.

20.8. raw_input Function

All routing messages destined for a process those that originate from within the kernel and those that originate from a process ar e given to raw_input, which selects the processes to receive the message. Figure 18.11 summarizes the four functions that call raw_input.

When a routing socket is created, the family is always PF_ROUTE and the protocol, the third argument to socket, can be 0, which means the process wants to receive all routing messages, or a value such as AF_INET, which restricts the socket to messages containing addresses of that specific protocol family. A routing control block is created for each routing socket (Section 20.3) and these two values are stored in the sp_family and sp_protocol members of the rcb_proto structure.

Figure 20.17 shows the raw_input function.

Figure 20.17. raw_input function: pass routing messages to 0 or more processes.

[image: Image]
[image: Image]

51-61

In all four calls to raw_input that we’ve seen, the proto, src, and dst arguments are pointers to the three globals route_proto, route_src, and route_dst, which are declared and initialized as shown with Figure 19.26.

Compare address family and protocol

62-67

The for loop goes through every routing control block checking for a match. The family in the control block (normally PF_ROUTE) must match the family in the sockproto structure or the control block is skipped. Next, if the protocol in the control block (the third argument to socket) is nonzero, it must match the family in the sockproto structure, or the message is skipped. Hence a process that creates a routing socket with a protocol of 0 receives all routing messages.

Compare local and foreign addresses

68-81

These two tests compare the local address in the control block and the foreign address in the control block, if specified. Currently the process is unable to set the rcb_laddr or rcb_faddr members of the control block. Normally a process would set the former with bind and the latter with connect, but that is not possible with routing sockets in Net/3. Instead, we’ll see that route_usrreq permanently connects the socket to the route_src socket address structure, which is OK since that is always the src argument to this function.

Append message to socket receive buffer

82-107

If last is nonnull, it points to the most recently seen socket structure that should receive this message. If this variable is nonnull, a copy of the message is appended to that socket’s receive buffer by m_copy and sbappendaddr, and any processes waiting on this receive buffer are awakened. Then last is set to point to this socket that just matched the previous tests. The use of last is to avoid calling m_copy (an expensive operation) if only one process is to receive the message.

If N processes are to receive the message, the first N—1 receive a copy and the final one receives the message itself.

The variable sockets that is incremented within this function is not used. Since it is incremented only when a message is passed to a process, if it is 0 at the end of the function it indicates that no process received the message (but the value isn’t stored anywhere).

20.9. route_usrreq Function

route_usrreq is the routing protocol’s user-request function. It is called for a variety of operations. Figure 20.18 shows the function.

Figure 20.18. route_usrreq function: process PRU_xxx requests.

[image: Image]
[image: Image]

PRU_ATTACH: allocate control block

64-77

The PRU_ATTACH request is issued when the process calls socket. Memory is allocated for a routing control block. The pointer returned by MALLOC is stored in the so_pcb member of the socket structure, and if the memory was allocated, the rawcb structure is set to 0.

PRU_DETACH: decrement counters

78-87

The close system call issues the PRU_DETACH request. If the socket structure points to a protocol control block, two of the counters in the route_cb structure are decremented: one is the any_count and one is based on the protocol.

Process request

88-90

The function raw_usrreq is called to process the PRU_xxx request further.

Increment counters

91-104

If the request is PRU_ATTACH and the socket points to a routing control block, a check is made for an error from raw_usrreq. Two of the counters in the route_cb structure are then incremented: one is the any_count and one is based on the protocol.

Connect socket

105-106

The foreign address in the routing control block is set to route_src. This permanently connects the new socket to receive routing messages from the PF_ROUTE family.

Enable SO_USELOOPBACK by default

107-111

The SO_USELOOPBACK socket option is enabled. This is a socket option that defaults to being enabled a ll others default to being disabled.

20.10. raw_usrreq Function

raw_usrreq performs most of the processing for the user request in the routing domain. It was called by route_usrreq in the previous section. The reason the user-request processing is divided between these two functions is that other protocols (e.g., the OSI CLNP) call raw_usrreq but not route_usrreq. raw_usrreq is not intended to be the pr_usrreq function for a protocol. Instead it is a common subroutine called by the various pr_usrreq functions.

Figure 20.19 shows the beginning and end of the raw_usrreq function. The body of the switch is discussed in separate figures following this figure.

Figure 20.19. Body of raw_usrreq function.

[image: Image]

PRU_CONTROL requests invalid

119-129

The PRU_CONTROL request is from the ioctl system call and is not supported in the routing domain.

Control information invalid

130-133

If control information was passed by the process (using the sendmsg system call) an error is returned, since the routing domain doesn’t use this optional information.

Socket must have a control block

134-137

If the socket structure doesn’t point to a routing control block, an error is returned. If a new socket is being created, it is the caller’s responsibility (i.e., route_usrreq) to allocate this control block and store the pointer in the so_pcb member before calling this function.

262-269

The default for this switch catches two requests that are not handled by case statements: PRU_BIND and PRU_CONNECT. The code for these two requests is present but commented out in Net/3. Therefore issuing the bind or connect system calls on a routing socket causes a kernel panic. This is a bug. Fortunately it requires a superuser process to create this type of socket.

We now discuss the individual case statements. Figure 20.20 shows the processing for the PRU_ATTACH and PRU_DETACH requests.

Figure 20.20. raw_usrreq function: PRU_ATTACH and PRU_DETACH requests.

	

--- raw_usrreq.c
139 /*
140 * Allocate a raw control block and fill in the
141 * necessary info to allow packets to be routed to
142 * the appropriate raw interface routine.
143 */
144 case PRU_ATTACH:
145 if ((so->so_state & SS_PRIV) == 0) {
146 error = EACCES;
147 break;
148 }
149 error = raw_attach(so, (int) nam);
150 break;

151 /*
152 * Destroy state just before socket deallocation.
153 * Flush data or not depending on the options.
154 */
155 case PRU_DETACH:
156 if (rp == 0) {
157 error = ENOTCONN;
158 break;
159 }
160 raw_detach(rp);
161 break;
--- raw_usrreq.c

139-148

The PRU_ATTACH request is a result of the socket system call. A routing socket must be created by a superuser process.

149-150

The function raw_attach (Figure 20.24) links the control block into the doubly linked list. The nam argument is the third argument to socket and gets stored in the control block.

151-159

The PRU_DETACH is issued by the close system call. The test of a null rp pointer is superfluous, since the test was already done before the switch statement.

160-161

raw_detach (Figure 20.25) removes the control block from the doubly linked list.

Figure 20.21 shows the processing of the PRU_CONNECT2, PRU_DISCONNECT, and PRU_SHUTDOWN requests.

Figure 20.21. raw_usrreq function: PRU_CONNECT2, PRU_DISCONNECT, and PRU_SHUTDOWN requests.

	

--- raw_usrreq.c
186 case PRU_CONNECT2:
187 error = EOPNOTSUPP;
188 goto release;

189 case PRU_DISCONNECT:
190 if (rp->rcb_faddr == 0) {
191 error = ENOTCONN;
192 break;
193 }
194 raw_disconnect(rp);
195 soisdisconnected(so);
196 break;

197 /*
198 * Mark the connection as being incapable of further input.
199 */
200 case PRU_SHUTDOWN:
201 socantsendmore(so);
202 break;
--- raw_usrreq.c

186-188

The PRU_CONNECT2 request is from the socketpair system call and is not supported in the routing domain.

189-196

Since a routing socket is always connected (Figure 20.18), the PRU_DISCONNECT request is issued by close before the PRU_DETACH request. The socket must already be connected to a foreign address, which is always true for a routing socket. raw_disconnect and soisdisconnected complete the processing.

197-202

The PRU_SHUTDOWN request is from the shutdown system call when the argument specifies that no more writes will be performed on the socket. socantsendmore disables further writes.

The most common request for a routing socket, PRU_SEND, and the PRU_ABORT and PRU_SENSE requests are shown in Figure 20.22.

Figure 20.22. raw_usrreq function: PRU_SEND, PRU_ABORT, and PRU_SENSE requests.

	

-- raw_usrreq.c
203 /*
204 * Ship a packet out. The appropriate raw output
205 * routine handles any massaging necessary.
206 */
207 case PRU_SEND:
208 if (nam) {
209 if (rp->rcb_faddr) {
210 error = EISCONN;
211 break;
212 }
213 rp->rcb_faddr = mtod(nam, struct sockaddr *);
214 } else if (rp->rcb_faddr == 0) {
215 error = ENOTCONN;
216 break;
217 }
218 error = (*so->so_proto->pr_output) (m, so);
219 m = NULL;
220 if (nam)
221 rp->rcb_faddr = 0;
222 break;

223 case PRU_ABORT:
224 raw_disconnect(rp);
225 sofree(so);
226 soisdisconnected(so);
227 break;

228 case PRU_SENSE:
229 /*
230 * stat: don't bother with a blocksize.
231 */
232 return (0);
-- raw_usrreq.c

203-217

The PRU_SEND request is issued by sosend when the process writes to the socket. If a nam argument is specified, that is, the process specified a destination address using either sendto or sendmsg, an error is returned because route_usrreq always sets rcb_faddr for a routing socket.

218-222

The message in the mbuf chain pointed to by m is passed to the protocol’s pr_output function, which is route_output.

223-227

If a PRU_ABORT request is issued, the control block is disconnected, the socket is released, and the socket is disconnected.

228-232

The PRU_SENSE request is issued by the fstat system call. The function returns OK.

Figure 20.23 shows the remaining PRU_xxx requests.

Figure 20.23. raw_usrreq function: final part.

	

-- raw_usrreq.c
233 /*
234 * Not supported.
235 */
236 case PRU_RCVOOB:
237 case PRU_RCVD:
238 return (EOPNOTSUPP);

239 case PRU_LISTEN:
240 case PRU_ACCEPT:
241 case PRU_SENDOOB:
242 error = EOPNOTSUPP;
243 break;

244 case PRU_SOCKADDR:
245 if (rp->rcb_laddr == 0) {
246 error = EINVAL;
247 break;
248 }
249 len = rp->rcb_laddr->sa_len;
250 bcopy((caddr_t) rp->rcb_laddr, mtod(nam, caddr_t), (unsigned) len);
251 nam->m_len = len;
252 break;

253 case PRU_PEERADDR:
254 if (rp->rcb_faddr == 0) {
255 error = ENOTCONN;
256 break;
257 }
258 len = rp->rcb_faddr->sa_len;
259 bcopy((caddr_t) rp->rcb_faddr, mtod(nam, caddr_t), (unsigned) len);
260 nam->m_len = len;
261 break;
-- raw_usrreq.c

233-243

These five requests are not supported.

244-261

The PRU_SOCKADDR and PRU_PEERADDR requests are from the getsockname and getpeername system calls respectively. The former always returns an error, since the bind system call, which sets the local address, is not supported in the routing domain. The latter always returns the contents of the socket address structure route_src, which was set by route_usrreq as the foreign address.

20.11. raw_attach, raw_detach, and raw_disconnect Functions

The raw_attach function, shown in Figure 20.24, was called by raw_input to finish processing the PRU_ATTACH request.

Figure 20.24. raw_attach function.

	

--- raw_cb.c
 49 int
 50 raw_attach(so, proto)
 51 struct socket *so;
 52 int proto;
 53 {
 54 struct rawcb *rp = sotorawcb(so);
 55 int error;

 56 /*
 57 * It is assumed that raw_attach is called
 58 * after space has been allocated for the
 59 * rawcb.
 60 */
 61 if (rp == 0)
 62 return (ENOBUFS);
 63 if (error = soreserve(so, raw_sendspace, raw_recvspace))
 64 return (error);
 65 rp->rcb_socket = so;
 66 rp->rcb_proto.sp_family = so->so_proto->pr_domain->dom_family;
 67 rp->rcb_proto.sp_protocol = proto;
 68 insque(rp, &rawcb);
 69 return (0);
 70 }
--- raw_cb.c

49-64

The caller must have already allocated the raw protocol control block. soreserve sets the high-water marks for the send and receive buffers to 8192. This should be more than adequate for the routing messages.

65-67

A pointer to the socket structure is stored in the protocol control block along with the dom_family (which is PF_ROUTE from Figure 20.1 for the routing domain) and the proto argument (which is the third argument to socket).

68-70

insque adds the control block to the front of the doubly linked list headed by the global rawcb.

The raw_detach function, shown in Figure 20.25, was called by raw_input to finish processing the PRU_DETACH request.

Figure 20.25. raw_detach function.

	

--- raw_cb.c
 75 void
 76 raw_detach(rp)
 77 struct rawcb *rp;
 78 {
 79 struct socket *so = rp->rcb_socket;

 80 so->so_pcb = 0;
 81 sofree(so);
 82 remque(rp);
 83 free((caddr_t) (rp), M_PCB);
 84 }
--- raw_cb.c

75-84

The so_pcb pointer in the socket structure is set to null and the socket is released. The control block is removed from the doubly linked list by remque and the memory used for the control block is released by free.

The raw_disconnect function, shown in Figure 20.26, was called by raw_input to process the PRU_DISCONNECT and PRU_ABORT requests.

Figure 20.26. raw_disconnect function.

	

--- raw_cb.c
 88 void
 89 raw_disconnect(rp)
 90 struct rawcb *rp;
 91 {

 92 if (rp->rcb_socket->so_state & SS_NOFDREF)
 93 raw_detach(rp);
 94 }
--- raw_cb.c

88-94

If the socket does not reference a descriptor, raw_detach releases the socket and control block.

20.12. Summary

A routing socket is a raw socket in the PF_ROUTE domain. Routing sockets can be created only by a superuser process. If a nonprivileged process wants to read the routing information contained in the kernel, the sysctl system call supported by the routing domain can be used (we described this in the previous chapter).

This chapter was our first encounter with the protocol control blocks (PCBs) that are normally associated with each socket. In the routing domain a special rawcb contains information about the routing socket: the local and foreign addresses, the address family, and the protocol. We’ll see in Chapter 22 that the larger Internet protocol control block (inpcb) is used with UDP, TCP, and raw IP sockets. The concepts are the same, however: the socket structure is used by the socket layer, and the PCB, a rawcb or an inpcb, is used by the protocol layer. The socket structure points to the PCB and vice versa.

The route_output function handles the five routing requests that can be issued by a process. raw_input delivers a routing message to one or more routing sockets, depending on the protocol and address family. The various PRU_xxx requests for a routing socket are handled by raw_usrreq and route_usrreq. In later chapters we’ll encounter additional xxx_usrreq functions, one per protocol (UDP, TCP, and raw IP), each consisting of a switch statement to handle each request.

Exercises

20.1 List two ways a process can receive the return value from route_output when the process writes a message to a routing socket. Which method is more reliable?

20.2 What happens when a process specifies a nonzero protocol argument to the socket system call, since the pr_protocol member of the routesw structure is 0?

20.3 Routes in the routing table (other than ARP entries) never time out. Implement a timeout on routes.

Chapter 21. ARP: Address Resolution Protocol

21.1. Introduction

ARP, the Address Resolution Protocol, handles the translation of 32-bit IP addresses into the corresponding hardware address. For an Ethernet, the hardware addresses are 48-bit Ethernet addresses. In this chapter we only consider mapping IP addresses into 48-bit Ethernet addresses, although ARP is more general and can work with other types of data links. ARP is specified in RFC 826 [Plummer 1982].

When a host has an IP datagram to send to another host on a locally attached Ethernet, the local host first looks up the destination host in the ARP cache, a table that maps a 32-bit IP address into its corresponding 48-bit Ethernet address. If the entry is found for the destination, the corresponding Ethernet address is copied into the Ethernet header and the datagram is added to the appropriate interface’s output queue. If the entry is not found, the ARP functions hold onto the IP datagram, broadcast an ARP request asking the destination host for its Ethernet address, and, when a reply is received, send the datagram to its destination.

This simple overview handles the common case, but there are many details that we describe in this chapter as we examine the Net/3 implementation of ARP. Chapter 4 of Volume 1 contains additional ARP examples.

21.2. ARP and the Routing Table

The Net/3 implementation of ARP is tied to the routing table, which is why we postponed discussing ARP until we had described the structure of the Net/3 routing tables. Figure 21.1 shows an example that we use in this chapter when describing ARP.

Figure 21.1. Relationship of ARP to routing table and interface structures.

[image: Image]

The entire figure corresponds to the example network used throughout the text (Figure 1.17). It shows the ARP entries on the system bsdi. The ifnet, ifaddr, and in_ifaddr structures are simplified from Figures 3.32 and 6.5. We have removed some of the details from these three structures, which were covered in Chapters 3 and 6.

For example, we don’t show the two sockaddr_dl structures that appear after each ifaddr structure i nstead we summarize the information contained in these two structures. Similarly, we summarize the information contained in the three in_ifaddr structures.

We briefly summarize some relevant points from this figure, the details of which we cover as we proceed through the chapter.

1. A doubly linked list of llinfo_arp structures contains a minimal amount of information for each hardware address known by ARP. The global llinfo_arp is the head of this list. Not shown in this figure is that the la_prev pointer of the first entry points to the last entry, and the la_next pointer of the last entry points to the first entry. This linked list is processed by the ARP timer function every 5 minutes.

2. For each IP address with a known hardware address, a routing table entry exists (an rtentry structure). The llinfo_arp structure points to the corresponding rtentry structure, and vice versa, using the la_rt and rt_llinfo pointers. The three routing table entries in this figure with an associated llinfo_arp structure are for the hosts sun (140.252.13.33), svr4 (140.252.13.34), and bsdi itself (140.252.13.35). These three are also shown in Figure 18.2.

3. We show a fourth routing table entry on the left, without an llinfo_arp structure, which is the entry for the interface route to the local Ethernet (140.252.13.32). We show its rt_flags with the C bit on, since this entry is cloned to form the other three routing table entries. This entry is created by the call to rtinit when the IP address is assigned to the interface by in_ifinit (Figure 6.19). The other three entries are host entries (the H flag) and are generated by ARP (the L flag) when a datagram is sent to that IP address.

4. The rt_gateway member of the rtentry structure points to a sockaddr_dl structure. This data-link socket address structure contains the hardware address if the sdl_alen member equals 6.

5. The rt_ifp member of the routing table entry points to the ifnet structure of the outgoing interface. Notice that the two routing table entries in the middle, for other hosts on the local Ethernet, both point to le_softc[0], but the routing table entry on the right, for the host bsdi itself, points to the loopback structure. Since rt_ifp.if_output (Figure 8.25) points to the output routine, packets sent to the local IP address are routed to the loopback interface.

6. Each routing table entry also points to the corresponding in_ifaddr structure. (Actually the rt_ifa member points to an ifaddr structure, but recall from Figure 6.8 that the first member of an in_ifaddr structure is an ifaddr structure.) We show only one of these pointers in the figure, although all four point to the same structure. Remember that a single interface, say le0, can have multiple IP addresses, each with its own in_ifaddr structure, which is why the rt_ifa pointer is required in addition to the rt_ifp pointer.

7. The la_hold member is a pointer to an mbuf chain. An ARP request is broadcast because a datagram is sent to that IP address. While the kernel awaits the ARP reply it holds onto the mbuf chain for the datagram by storing its address in la_hold. When the ARP reply is received, the mbuf chain pointed to by la_hold is sent.

8. Finally, we show the variable rmx_expire, which is in the rt_metrics structure within the routing table entry. This value is the timer associated with each ARP entry. Some time after an ARP entry has been created (normally 20 minutes) the ARP entry is deleted.

Even though major routing table changes took place with 4.3BSD Reno, the ARP cache was left alone with 4.3BSD Reno and Net/2. 4.4BSD, however, removed the stand-alone ARP cache and moved the ARP information into the routing table.

The ARP table in Net/2 was an array of structures composed of the following members: an IP address, an Ethernet address, a timer, flags, and a pointer to an mbuf (similar to the la_hold member in Figure 21.1). We see with Net/3 that the same information is now spread throughout multiple structures, all of which are linked.

21.3. Code Introduction

There are nine ARP functions in a single C file and definitions in two headers, as shown in Figure 21.2.

Figure 21.2. Files discussed in this chapter.

[image: Image]

Figure 21.3 shows the relationship of the ARP functions to other kernel functions. In this figure we also show the relationship between the ARP functions and some of the routing functions from Chapter 19. We describe all these relationships as we proceed through the chapter.

Figure 21.3. Relationship of ARP functions to rest of kernel.

[image: Image]

Global Variables

Ten global variables are introduced in this chapter, which are shown in Figure 21.4.

Figure 21.4. Global variables introduced in this chapter.

[image: Image]

Statistics

The only statistics maintained by ARP are the two globals arp_inuse and arp_allocated, from Figure 21.4. The former counts the number of ARP entries currently in use and the latter counts the total number of ARP entries allocated since the system was initialized. Neither counter is output by the netstat program, but they can be examined with a debugger.

The entire ARP cache can be listed using the arp -a command, which uses the sysctl system call with the arguments shown in Figure 19.36. Figure 21.5 shows the output from this command, for the entries shown in Figure 18.2.

Figure 21.5. arp -a output corresponding to Figure 18.2.

	

bsdi $ arp -a
sun.tuc.noao.edu (140.252.13.33) at 8:0:20:3:f6:42
svr4.tuc.noao.edu (140.252.13.34) at 0:0:c0:c2:9b:26
bsdi.tuc.noao.edu (140.252.13.35) at 0:0:c0:6f:2d:40 permanent
ALL-SYSTEMS.MCAST.NET (224.0.0.1) at (incomplete)

Since the multicast group 224.0.0.1 has the L flag set in Figure 18.2, and since the arp program looks for entries with the RTF_LLINFO flag set, the multicast groups are output by the program. Later in this chapter we’ll see why this entry is marked as “incomplete” and why the entry above it is “permanent.”

SNMP Variables

As described in Section 25.8 of Volume 1, the original SNMP MIB defined an address translation group that was the system’s ARP cache. MIB-II deprecated this group and instead each network protocol group (i.e., IP) contains its own address translation tables. Notice that the change in Net/2 to Net/3 from a stand-alone ARP table to an integration of the ARP information within the IP routing table parallels this SNMP change.

Figure 21.6 shows the IP address translation table from MIB-II, named ipNetToMediaTable. The values returned by SNMP for this table are taken from the routing table entry and its corresponding ifnet structure.

Figure 21.6. IP address translation table: ipNetToMediaTable.

[image: Image]

If the routing table entry has an expiration time of 0 it is considered permanent and hence “static.” Otherwise the entry is considered “dynamic.”

21.4. ARP Structures

Figure 21.7 shows the format of an ARP packet when transmitted on an Ethernet.

Figure 21.7. Format of an ARP request or reply when used on an Ethernet.

[image: Image]

The ether_header structure (Figure 4.10) defines the 14-byte Ethernet header; the arphdr structure defines the next five fields, which are common to ARP requests and ARP replies on any type of media; and the ether_arp structure combines the arphdr structure with the sender and target addresses when ARP is used on an Ethernet.

Figure 21.8 shows the definition of the arphdr structure. Figure 21.7 shows the values of the first four fields in this structure when ARP is mapping IP addresses to Ethernet addresses.

Figure 21.8. arphdr structure: common ARP request/reply header.

	

-- if_arp.h
 45 struct arphdr {
 46 u_short ar_hrd; /* format of hardware address */
 47 u_short ar_pro; /* format of protocol address */
 48 u_char ar_hln; /* length of hardware address */
 49 u_char ar_pln; /* length of protocol address */
 50 u_short ar_op; /* ARP/RARP operation, Figure 21.15 */
 51 };
-- if_arp.h

Figure 21.9 shows the combination of the arphdr structure with the fields used with IP addresses and Ethernet addresses, forming the ether_arp structure. Notice that ARP uses the terms hardware to describe the 48-bit Ethernet address, and protocol to describe the 32-bit IP address.

Figure 21.9. ether_arp structure.

	

--- if_ether.h
 79 struct ether_arp {
 80 struct arphdr ea_hdr; /* fixed-size header */
 81 u_char arp_sha[6]; /* sender hardware address */
 82 u_char arp_spa[4]; /* sender protocol address */
 83 u_char arp_tha[6]; /* target hardware address */
 84 u_char arp_tpa[4]; /* target protocol address */
 85 };

 86 #define arp_hrd ea_hdr.ar_hrd
 87 #define arp_pro ea_hdr.ar_pro
 88 #define arp_hln ea_hdr.ar_hln
 89 #define arp_pln ea_hdr.ar_pln
 90 #define arp_op ea_hdr.ar_op
--- if_ether.h

One llinfo_arp structure, shown in Figure 21.10, exists for each ARP entry. Additionally, one of these structures is allocated as a global of the same name and used as the head of the linked list of all these structures. We often refer to this list as the ARP cache, since it is the only data structure in Figure 21.1 that has a one-to-one correspondence with the ARP entries.

Figure 21.10. llinfo_arp structure.

	

--- if_ether.h
103 struct llinfo_arp {
104 struct llinfo_arp *la_next;
105 struct llinfo_arp *la_prev;
106 struct rtentry *la_rt;
107 struct mbuf *la_hold; /* last packet until resolved/timeout */
108 long la_asked; /* #times we've queried for this addr */
109 };

110 #define la_timer la_rt->rt_rmx.rmx_expire /* deletion time in seconds */
-- if_ether.h

With Net/2 and earlier systems it was easy to identify the structure called the ARP cache, since a single structure contained everything for each ARP entry. Since Net/3 stores the ARP information among multiple structures, no single structure can be called the ARP cache. Nevertheless, having the concept of an ARP cache, which is the collection of information describing a single ARP entry, simplifies the discussion.

104-106

The first two entries form the doubly linked list, which is updated by the insque and remque functions. la_rt points to the associated routing table entry, and the rt_llinfo member of the routing table entry points to this structure.

107

When ARP receives an IP datagram to send to another host but the destination’s hardware address is not in the ARP cache, an ARP request must be sent and the ARP reply received before the datagram can be sent. While waiting for the reply the mbuf pointer to the datagram is saved in la_hold. When the ARP reply is received, the packet pointed to by la_hold (if any) is sent.

108-109

la_asked counts how many consecutive times an ARP request has been sent to this IP address without receiving a reply. We’ll see in Figure 21.24 that when this counter reaches a limit, that host is considered down and another ARP request won’t be sent for a while.

110

This definition uses the rmx_expire member of the rt_metrics structure in the routing table entry as the ARP timer. When the value is 0, the ARP entry is considered permanent. When nonzero, the value is the number of seconds since the Unix Epoch when the entry expires.

21.5. arpwhohas Function

The arpwhohas function is normally called by arpresolve to broadcast an ARP request. It is also called by each Ethernet device driver to issue a gratuitous ARP request when the IP address is assigned to the interface (the SIOCSIFADDR ioctl in Figure 6.28). Section 4.7 of Volume 1 describes gratuitous ARP it detects if another host on the Ethernet is using the same IP address and also allows other hosts with ARP entries for this host to update their ARP entry if this host has changed its Ethernet address. arpwhohas simply calls arprequest, shown in the next section, with the correct arguments.

Figure 21.11. arpwhohas function: broadcast an ARP request.

	

--- if_ether.c
196 void
197 arpwhohas(ac, addr)
198 struct arpcom *ac;
199 struct in_addr *addr;
200 {
201 arprequest(ac, &ac->ac_ipaddr.s_addr, &addr->s_addr, ac->ac_enaddr);
202 }
--- if_ether.c

196-202

The arpcom structure (Figure 3.26) is common to all Ethernet devices and is part of the le_softc structure, for example (Figure 3.20). The ac_ipaddr member is a copy of the interface’s IP address, which is set by the driver when the SIOCSIFADDR ioctl is executed (Figure 6.28). ac_enaddr is the Ethernet address of the device.

The second argument to this function, addr, is the IP address for which the ARP request is being issued: the target IP address. In the case of a gratuitous ARP request, addr equals ac_ipaddr, so the second and third arguments to arprequest are the same, which means the sender IP address will equal the target IP address in the gratuitous ARP request.

21.6. arprequest Function

The arprequest function is called by arpwhohas to broadcast an ARP request. It builds an ARP request packet and passes it to the interface’s output function.

Before looking at the source code, let’s examine the data structures built by the function. To send the ARP request the interface output function for the Ethernet device (ether_output) is called. One argument to ether_output is an mbuf containing the data to send: everything that follows the Ethernet type field in Figure 21.7. Another argument is a socket address structure containing the destination address. Normally this destination address is an IP address (e.g., when ip_output calls ether_output in Figure 21.3). For the special case of an ARP request, the sa_family member of the socket address structure is set to AF_UNSPEC, which tells ether_output that it contains a filled-in Ethernet header, including the destination Ethernet address. This prevents ether_output from calling arpresolve, which would cause an infinite loop. We don’t show this loop in Figure 21.3, but the “interface output function” below arprequest is ether_output. If ether_output were to call arpresolve again, the infinite loop would occur.

Figure 21.12 shows the mbuf and the socket address structure built by this function. We also show the two pointers eh and ea, which are used in the function.

Figure 21.12. sockaddr and mbuf built by arprequest.

[image: Image]

Figure 21.13 shows the arprequest function.

Figure 21.13. arprequest function: build an ARP request packet and send it.

	

-- if_ether.c
209 static void
210 arprequest(ac, sip, tip, enaddr)
211 struct arpcom *ac;
212 u_long *sip, *tip;
213 u_char *enaddr;
214 {
215 struct mbuf *m;
216 struct ether_header *eh;
217 struct ether_arp *ea;
218 struct sockaddr sa;

219 if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
220 return;
221 m->m_len = sizeof(*ea);
222 m->m_pkthdr.len = sizeof(*ea);
223 MH_ALIGN(m, sizeof(*ea));

224 ea = mtod(m, struct ether_arp *);
225 eh = (struct ether_header *) sa.sa_data;
226 bzero((caddr_t) ea, sizeof(*ea));

227 bcopy((caddr_t) etherbroadcastaddr, (caddr_t) eh->ether_dhost,
228 sizeof(eh->ether_dhost));
229 eh->ether_type = ETHERTYPE_ARP; /* if_output() will swap */

230 ea->arp_hrd = htons(ARPHRD_ETHER);
231 ea->arp_pro = htons(ETHERTYPE_IP);
232 ea->arp_hln = sizeof(ea->arp_sha); /* hardware address length */
233 ea->arp_pln = sizeof(ea->arp_spa); /* protocol address length */
234 ea->arp_op = htons(ARPOP_REQUEST);
235 bcopy((caddr_t) enaddr, (caddr_t) ea->arp_sha, sizeof(ea->arp_sha));
236 bcopy((caddr_t) sip, (caddr_t) ea->arp_spa, sizeof(ea->arp_spa));
237 bcopy((caddr_t) tip, (caddr_t) ea->arp_tpa, sizeof(ea->arp_tpa));

238 sa.sa_family = AF_UNSPEC;
239 sa.sa_len = sizeof(sa);

240 (*ac->ac_if.if_output) (&ac->ac_if, m, &sa, (struct rtentry *) 0);
241 }
-- if_ether.c

Allocate and initialize mbuf

209-223

A packet header mbuf is allocated and the two length fields are set. MH_ALIGN allows room for a 28-byte ether_arp structure at the end of the mbuf, and sets the m_data pointer accordingly. The reason for moving this structure to the end of the mbuf is to allow ether_output to prepend the 14-byte Ethernet header in the same mbuf.

Initialize pointers

224-226

The two pointers ea and eh are set and the ether_arp structure is set to 0. The only purpose of the call to bzero is to set the target hardware address to 0, because the other eight fields in this structure are explicitly set to their respective value.

Fill in Ethernet header

227-229

The destination Ethernet address is set to the Ethernet broadcast address and the Ethernet type field is set to ETHERTYPE_ARP. Note the comment that this 2-byte field will be converted from host byte order to network byte order by the interface output function. This function also fills in the Ethernet source address field. Figure 21.14 shows the different values for the Ethernet type field.

Figure 21.14. Ethernet type fields.

[image: Image]

RARP maps an Ethernet address to an IP address and is used when a diskless system bootstraps. RARP is normally not part of the kernel’s implementation of TCP/IP, so it is not covered in this text. Chapter 5 of Volume 1 describes RARP.

Fill in ARP fields

230-237

All fields in the ether_arp structure are filled in, except the target hardware address, which is what the ARP request is looking for. The constant ARPHRD_ETHER, which has a value of 1, specifies the format of the hardware addresses as 6-byte Ethernet addresses. To identify the protocol addresses as 4-byte IP addresses, arp_pro is set to the Ethernet type field for IP from Figure 21.14. Figure 21.15 shows the various ARP operation codes. We encounter the first two in this chapter. The last two are used with RARP.

Figure 21.15. ARP operation codes.

[image: Image]

Fill in sockaddr and call interface output function

238-241

The sa_family member of the socket address structure is set to AF_UNSPEC and the sa_len member is set to 16. The interface output function is called, which we said is ether_output.

21.7. arpintr Function

In Figure 4.13 we saw that when ether_input receives an Ethernet frame with a type field of ETHERTYPE_ARP, it schedules a software interrupt of priority NETISR_ARP and appends the frame to ARP’s input queue: arpintrq. When the kernel processes the software interrupt, the function arpintr, shown in Figure 21.16, is called.

Figure 21.16. arpintr function: process Ethernet frames containing ARP requests or replies.

	

--- if_ether.c
319 void
320 arpintr()
321 {
322 struct mbuf *m;
323 struct arphdr *ar;
324 int s;

325 while (arpintrq.ifq_head) {
326 s = splimp();
327 IF_DEQUEUE(&arpintrq, m);
328 splx(s);
329 if (m == 0 || (m->m_flags & M_PKTHDR) == 0)
330 panic("arpintr");

331 if (m->m_len >= sizeof(struct arphdr) &&
332 (ar = mtod(m, struct arphdr *)) &&
333 ntohs(ar->ar_hrd) == ARPHRD_ETHER &&
334 m->m_len >= sizeof(struct arphdr) + 2*ar->ar_hln + 2*ar->ar_pln)

335 switch (ntohs(ar->ar_pro)) {
336 case ETHERTYPE_IP:
337 case ETHERTYPE_IPTRAILERS:
338 in_arpinput(m);
339 continue;
340 }

341 m_freem(m);
342 }
343 }
--- if_ether.c

319-343

The while loop processes one frame at a time, as long as there are frames on the queue. The frame is processed if the hardware type specifies Ethernet addresses, and if the size of the frame is greater than or equal to the size of an arphdr structure plus the sizes of two hardware addresses and two protocol addresses. If the type of protocol addresses is either ETHERTYPE_IP or ETHERTYPE_IPTRAILERS, the in_arpinput function, shown in the next section, is called. Otherwise the frame is discarded.

Notice the order of the tests within the if statement. The length is checked twice. First, if the length is at least the size of an arphdr structure, then the fields in that structure can be examined. The length is checked again, using the two length fields in the arphdr structure.

21.8. in_arpinput Function

This function is called by arpintr to process each received ARP request or ARP reply. While ARP is conceptually simple, numerous rules add complexity to the implementation. The following two scenarios are typical:

1. If a request is received for one of the host’s IP addresses, a reply is sent. This is the normal case of some other host on the Ethernet wanting to send this host a packet. Also, since we’re about to receive a packet from that other host, and we’ll probably send a reply, an ARP entry is created for that host (if one doesn’t already exist) because we have its IP address and hardware address. This optimization avoids another ARP exchange when the packet is received from the other host.

2. If a reply is received in response to a request sent by this host, the corresponding ARP entry is now complete (the hardware address is known). The other host’s hardware address is stored in the sockaddr_dl structure and any queued packet for that host can now be sent. Again, this is the normal case.

ARP requests are normally broadcast so each host sees all ARP requests on the Ethernet, even those requests for which it is not the target. Recall from arprequest that when a request is sent, it contains the sender’s IP address and hardware address. This allows the following tests also to occur.

3. If some other host sends a request or reply with a sender IP address that equals this host’s IP address, one of the two hosts is misconfigured. Net/3 detects this error and logs a message for the administrator. (We say “request or reply” here because in_arpinput doesn’t examine the operation type. But ARP replies are normally unicast, in which case only the target host of the reply receives the reply.)

4. If this host receives a request or reply from some other host for which an ARP entry already exists, and if the other host’s hardware address has changed, the hardware address in the ARP entry is updated accordingly. This can happen if the other host is shut down and then rebooted with a different Ethernet interface (hence a different hardware address) before its ARP entry times out. The use of this technique, along with the other host sending a gratuitous ARP request when it reboots, prevents this host from being unable to communicate with the other host after the reboot because of an ARP entry that is no longer valid.

5. This host can be configured as a proxy ARP server. This means it responds to ARP requests for some other host, supplying the other host’s hardware address in the reply. The host whose hardware address is supplied in the proxy ARP reply must be one that is able to forward IP datagrams to the host that is the target of the ARP request. Section 4.6 of Volume 1 discusses proxy ARP.

A Net/3 system can be configured as a proxy ARP server. These ARP entries are added with the arp command, specifying the IP address, hardware address, and the keyword pub. We’ll see the support for this in Figure 21.20 and we describe it in Section 21.12.

We examine in_arpinput in four parts. Figure 21.17 shows the first part.

Figure 21.17. in_arpinput function: look for matching interface.

	

--- if_ether.c
358 static void
359 in_arpinput(m)
360 struct mbuf *m;
361 {
362 struct ether_arp *ea;
363 struct arpcom *ac = (struct arpcom *) m->m_pkthdr.rcvif;
364 struct ether_header *eh;
365 struct llinfo_arp *la = 0;
366 struct rtentry *rt;
367 struct in_ifaddr *ia, *maybe_ia = 0;
368 struct sockaddr_dl *sdl;
369 struct sockaddr sa;
370 struct in_addr isaddr, itaddr, myaddr;
371 int op;

372 ea = mtod(m, struct ether_arp *);
373 op = ntohs(ea->arp_op);
374 bcopy((caddr_t) ea->arp_spa, (caddr_t) & isaddr, sizeof(isaddr));
375 bcopy((caddr_t) ea->arp_tpa, (caddr_t) & itaddr, sizeof(itaddr));

376 for (ia = in_ifaddr; ia; ia = ia->ia_next)
377 if (ia->ia_ifp == &ac->ac_if) {
378 maybe_ia = ia;
379 if ((itaddr.s_addr == ia->ia_addr.sin_addr.s_addr) ||
380 (isaddr.s_addr == ia->ia_addr.sin_addr.s_addr))
381 break;
382 }
383 if (maybe_ia == 0)
384 goto out;
385 myaddr = ia ? ia->ia_addr.sin_addr : maybe_ia->ia_addr.sin_addr;
--- if_ether.c

358-375

The length of the ether_arp structure was verified by the caller, so ea is set to point to the received packet. The ARP operation (request or reply) is copied into op but it isn’t examined until later in the function. The sender’s IP address and target IP address are copied into isaddr and itaddr.

Look for matching interface and IP address

376-382

The linked list of Internet addresses for the host is scanned (the list of in_ifaddr structures, Figure 6.5). Remember that a given interface can have multiple IP addresses. Since the received packet contains a pointer (in the mbuf packet header) to the receiving interface’s ifnet structure, the only IP addresses considered in the for loop are those associated with the receiving interface. If either the target IP address or the sender’s IP address matches one of the IP addresses for the receiving interface, the break terminates the loop.

383-384

If the loop terminates with the variable maybe_ia equal to 0, the entire list of configured IP addresses was searched and not one was associated with the received interface. The function jumps to out (Figure 21.19), where the mbuf is discarded and the function returns. This should only happen if an ARP request is received on an interface that has been initialized but has not been assigned an IP address.

385

If the for loop terminates having located a receiving interface (maybe_ia is non-null) but none of its IP addresses matched the sender or target IP address, myaddr is set to the final IP address assigned to the interface. Otherwise (the normal case) myaddr contains the local IP address that matched either the sender or target IP address.

Figure 21.18 shows the next part of the in_arpinput function, which performs some validation of the packet.

Figure 21.18. in_arpinput function: validate received packet.

	

-- if_ether.c
386 if (!bcmp((caddr_t) ea->arp_sha, (caddr_t) ac->ac_enaddr,
387 sizeof(ea->arp_sha)))
388 goto out; /* it's from me, ignore it. */
389 if (!bcmp((caddr_t) ea->arp_sha, (caddr_t) etherbroadcastaddr,
390 sizeof(ea->arp_sha))) {
391 log(LOG_ERR,
392 "arp: ether address is broadcast for IP address %x!\n",
393 ntohl(isaddr.s_addr));
394 goto out;
395 }
396 if (isaddr.s_addr == myaddr.s_addr) {
397 log(LOG_ERR,
398 "duplicate IP address %x!! sent from ethernet address: %s\n",
399 ntohl(isaddr.s_addr), ether_sprintf(ea->arp_sha));
400 itaddr = myaddr;
401 goto reply;
402 }
-- if_ether.c

Validate sender’s hardware address

386-388

If the sender’s hardware address equals the hardware address of the interface, the host received a copy of its own request, which is ignored.

389-395

If the sender’s hardware address is the Ethernet broadcast address, this is an error. The error is logged and the packet is discarded.

Check sender’s IP address

396-402

If the sender’s IP address equals myaddr, then the sender is using the same IP address as this host. This is also an error pro bably a configuration error by the system administrator on either this host or the sending host. The error is logged and the function jumps to reply (Figure 21.19), after setting the target IP address to myaddr (the duplicate address). Notice that this ARP packet could have been destined for some other host on the Ethernet i t need not have been sent to this host. Nevertheless, if this form of IP address spoofing is detected, the error is logged and a reply generated.

Figure 21.19. in_arpinput function: create a new ARP entry or update existing entry.

	

--- if_ether.c
403 la = arplookup(isaddr.s_addr, itaddr.s_addr == myaddr.s_addr, 0);
404 if (la && (rt = la->la_rt) && (sdl = SDL(rt->rt_gateway))) {
405 if (sdl->sdl_alen &&
406 bcmp((caddr_t) ea->arp_sha, LLADDR(sdl), sdl->sdl_alen))
407 log(LOG_INFO, "arp info overwritten for %x by %s\n",
408 isaddr.s_addr, ether_sprintf(ea->arp_sha));
409 bcopy((caddr_t) ea->arp_sha, LLADDR(sdl),
410 sdl->sdl_alen = sizeof(ea->arp_sha));
411 if (rt->rt_expire)
412 rt->rt_expire = time.tv_sec + arpt_keep;
413 rt->rt_flags &= ~RTF_REJECT;
414 la->la_asked = 0;
415 if (la->la_hold) {
416 (*ac->ac_if.if_output) (&ac->ac_if, la->la_hold,
417 rt_key(rt), rt);
418 la->la_hold = 0;
419 }
420 }

421 reply:
422 if (op != ARPOP_REQUEST) {
423 out:
424 m_freem(m);
425 return;
426 }
--- if_ether.c

Figure 21.19 shows the next part of in_arpinput.

Search routing table for match with sender’s IP address

403

arplookup searches the ARP cache for the sender’s IP address (isaddr). The second argument is 1 if the target IP address equals myaddr (meaning create a new entry if an entry doesn’t exist), or 0 otherwise (do not create a new entry). An entry is always created for the sender if this host is the target; otherwise the host is processing a broadcast intended for some other target, so it just looks for an existing entry for the sender. As mentioned earlier, this means that if a host receives an ARP request for itself from another host, an ARP entry is created for that other host on the assumption that, since that host is about to send us a packet, we’ll probably send a reply.

The third argument is 0, which means do not look for a proxy ARP entry (described later). The return value is a pointer to an llinfo_arp structure, or a null pointer if an entry is not found or created.

Update existing entry or fill in new entry

404

The code associated with the if statement is executed only if the following three conditions are all true:

1. an ARP entry was found or a new ARP entry was successfully created (la is nonnull),

2. the ARP entry points to a routing table entry (rt), and

3. the rt_gateway field of the routing table entry points to a sockaddr_dl structure.

The first condition is false for every broadcast ARP request not directed to this host, from some other host whose IP address is not currently in the routing table.

Check if sender’s hardware addresses changed

405-408

If the link-level address length (sdl_alen) is nonzero (meaning that an existing entry is being referenced and not a new entry that was just created), the link-level address is compared to the sender’s hardware address. If they are different, the sender’s Ethernet address has changed. This can happen if the sending host is shut down, its Ethernet interface card replaced, and it reboots before the ARP entry times out. While not common, this is a possibility that must be handled. An informational message is logged and the code continues, which will update the hardware address with its new value.

The sender’s IP address in the log message should be converted to host byte order. This is a bug.

Record sender’s hardware address

409-410

The sender’s hardware address is copied into the sockaddr_dl structure pointed to by the rt_gateway member of the routing table entry. The link-level address length (sdl_alen) in the sockaddr_dl structure is also set to 6. This assignment of the length field is required if this is a newly created entry (Exercise 21.3).

Update newly resolved ARP entry

411-412

When the sender’s hardware address is resolved, the following steps occur. If the expiration time is nonzero, it is reset to 20 minutes (arpt_keep) in the future. This test exists because the arp command can create permanent entries: entries that never time out. These entries are marked with an expiration time of 0. We’ll also see in Figure 21.24 that when an ARP request is sent (i.e., for a nonpermanent ARP entry) the expiration time is set to the current time, which is nonzero.

413-414

The RTF_REJECT flag is cleared and the la_asked counter is set to 0. We’ll see that these last two steps are used in arpresolve to avoid ARP flooding.

415-420

If ARP is holding onto an mbuf awaiting ARP resolution of that host’s hardware address (the la_hold pointer), the mbuf is passed to the interface output function. (We show this in Figure 21.3.) Since this mbuf was being held by ARP, the destination address must be on a local Ethernet so the interface output function is ether_output. This function again calls arpresolve, but the hardware address was just filled in, allowing the mbuf to be queued on the actual device’s output queue.

Finished with ARP reply packets

421-426

If the ARP operation is not a request, the received packet is discarded and the function returns.

The remainder of the function, shown in Figure 21.20, generates a reply to an ARP request. A reply is generated in only two instances:

1. this host is the target of a request for its hardware address, or

2. this host receives a request for another host’s hardware address for which this host has been configured to act as an ARP proxy server.

Figure 21.20. in_arpinput function: form ARP reply and send it.

	

-- if_ether.c
427 if (itaddr.s_addr == myaddr.s_addr) {
428 /* I am the target */
429 bcopy((caddr_t) ea->arp_sha, (caddr_t) ea->arp_tha,
430 sizeof(ea->arp_sha));
431 bcopy((caddr_t) ac->ac_enaddr, (caddr_t) ea->arp_sha,
432 sizeof(ea->arp_sha));
433 } else {
434 la = arplookup(itaddr.s_addr, 0, SIN_PROXY);
435 if (la == NULL)
436 goto out;
437 rt = la->la_rt;
438 bcopy((caddr_t) ea->arp_sha, (caddr_t) ea->arp_tha,
439 sizeof(ea->arp_sha));
440 sdl = SDL(rt->rt_gateway);
441 bcopy(LLADDR(sdl), (caddr_t) ea->arp_sha, sizeof(ea->arp_sha));
442 }

443 bcopy((caddr_t) ea->arp_spa, (caddr_t) ea->arp_tpa, sizeof(ea->arp_spa));
444 bcopy((caddr_t) & itaddr, (caddr_t) ea->arp_spa, sizeof(ea->arp_spa));
445 ea->arp_op = htons(ARPOP_REPLY);
446 ea->arp_pro = htons(ETHERTYPE_IP); /* let's be sure! */
447 eh = (struct ether_header *) sa.sa_data;
448 bcopy((caddr_t) ea->arp_tha, (caddr_t) eh->ether_dhost,
449 sizeof(eh->ether_dhost));
450 eh->ether_type = ETHERTYPE_ARP;
451 sa.sa_family = AF_UNSPEC;
452 sa.sa_len = sizeof(sa);
453 (*ac->ac_if.if_output) (&ac->ac_if, m, &sa, (struct rtentry *) 0);
454 return;
455 }
-- if_ether.c

At this point in the function, an ARP request has been received, but since ARP requests are normally broadcast, the request could be for any system on the Ethernet.

This host is the target

427-432

If the target IP address equals myaddr, this host is the target of the request. The source hardware address is copied into the target hardware address (i.e., whoever sent it becomes the target) and the Ethernet address of the interface is copied from the arpcom structure into the source hardware address. The remainder of the ARP reply is constructed after the else clause.

Check if this host is a proxy server for target

433-436

Even if this host is not the target, this host can be configured to be a proxy server for the specified target. arplookup is called again with the create flag set to 0 (the second argument) and the third argument set to SIN_PROXY. This finds an entry in the routing table only if that entry’s SIN_PROXY flag is set. If an entry is not found (the typical case where this host receives a copy of some other ARP request on the Ethernet), the code at out discards the mbuf and returns.

Form proxy reply

437-442

To handle a proxy ARP request, the sender’s hardware address becomes the target hardware address and the Ethernet address from the ARP entry is copied into the sender hardware address field. This value from the ARP entry can be the Ethernet address of any host on the Ethernet capable of sending IP datagrams to the target IP address. Normally the host providing the proxy ARP service supplies its own Ethernet address, but that’s not required. Proxy entries are created by the system administrator using the arp command, with the keyword pub, specifying the target IP address (which becomes the key of the routing table entry) and an Ethernet address to return in the ARP reply.

Complete construction of ARP reply packet

443-444

The remainder of the function completes the construction of the ARP reply. The sender and target hardware addresses have been filled in. The sender and target IP addresses are now swapped. The target IP address is contained in itaddr, which might have been changed if another host was found using this host’s IP address (Figure 21.18).

445-446

The ARP operation is set to ARPOP_REPLY and the type of protocol address is set to ETHERTYPE_IP. The comment “let’s be sure!” is because arpintr also calls this function when the type of protocol address is ETHERTYPE_IPTRAILERS, but the use of trailer encapsulation is no longer supported.

Fill in sockaddr with Ethernet header

447-452

A sockaddr structure is filled in with the 14-byte Ethernet header, as shown in Figure 21.12. The target hardware address also becomes the Ethernet destination address.

453-455

The ARP reply is passed to the interface’s output routine and the function returns.

21.9. ARP Timer Functions

ARP entries are normally dynamic they are created when needed and time out automatically. It is also possible for the system administrator to create permanent entries (i.e., no timeout), and the proxy entries we discussed in the previous section are always permanent. Recall from Figure 21.1 and the #define at the end of Figure 21.10 that the rmx_expire member of the routing metrics structure is used by ARP as a timer.

arptimer Function

This function, shown in Figure 21.21, is called every 5 minutes. It goes through all the ARP entries to see if any have expired.

Figure 21.21. arptimer function: check all ARP timers every 5 minutes.

	

-- if_ether.c
 74 static void
 75 arptimer(ignored_arg)
 76 void *ignored_arg;
 77 {
 78 int s = splnet();
 79 struct llinfo_arp *la = llinfo_arp.la_next;

 80 timeout(arptimer, (caddr_t) 0, arpt_prune * hz);
 81 while (la != &llinfo_arp) {
 82 struct rtentry *rt = la->la_rt;
 83 la = la->la_next;
 84 if (rt->rt_expire && rt->rt_expire <= time.tv_sec)
 85 arptfree(la->la_prev); /* timer has expired, clear */
 86 }
 87 splx(s);
 88 }
-- if_ether.c

Set next timeout

80

We’ll see that the arp_rtrequest function causes arptimer to be called the first time, and from that point arptimer causes itself to be called 5 minutes (arpt_prune) in the future.

Check all ARP entries

81-86

Each entry in the linked list is processed. If the timer is nonzero (it is not a permanent entry) and if the timer has expired, arptfree releases the entry. If rt_expire is nonzero, it contains a count of the number of seconds since the Unix Epoch when the entry expires.

arptfree Function

This function, shown in Figure 21.22, is called by arptimer to delete a single entry from the linked list of llinfo_arp entries.

Figure 21.22. arptfree function: delete or invalidate an ARP entry.

	

-- if_ether.c
459 static void
460 arptfree(la)
461 struct llinfo_arp *la;
462 {
463 struct rtentry *rt = la->la_rt;
464 struct sockaddr_dl *sdl;
465 if (rt == 0)
466 panic("arptfree");
467 if (rt->rt_refcnt > 0 && (sdl = SDL(rt->rt_gateway)) &&
468 sdl->sdl_family == AF_LINK) {
469 sdl->sdl_alen = 0;
470 la->la_asked = 0;
471 rt->rt_flags &= ~RTF_REJECT;
472 return;
473 }
474 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *) 0, rt_mask(rt),
475 0, (struct rtentry **) 0);
476 }
-- if_ether.c

Invalidate (don’t delete) entries in use

467-473

If the routing table reference count is greater than 0 and the rt_gateway member points to a sockaddr_dl structure, arptfree takes the following steps:

1. the link-layer address length is set to 0,

2. the la_asked counter is reset to 0, and

3. the RTF_REJECT flag is cleared.

The function then returns. Since the reference count is nonzero, the routing table entry is not deleted. But setting sdl_alen to 0 invalidates the entry, so the next time the entry is used, an ARP request will be generated.

Delete unreferenced entries

474-475

rtrequest deletes the routing table entry, and we’ll see in Section 21.13 that it calls arp_rtrequest. This latter function frees any mbuf chain held by the ARP entry (the la_hold pointer) and deletes the corresponding llinfo_arp entry.

21.10. arpresolve Function

We saw in Figure 4.16 that ether_output calls arpresolve to obtain the Ethernet address for an IP address. arpresolve returns 1 if the destination Ethernet address is known, allowing ether_output to queue the IP datagram on the interface’s output queue. A return value of 0 means arpresolve does not know the Ethernet address. The datagram is “held” by arpresolve (using the la_hold member of the llinfo_arp structure) and an ARP request is sent. If and when an ARP reply is received, in_arpinput completes the ARP entry and sends the held datagram.

arpresolve must also avoid ARP flooding, that is, it must not repeatedly send ARP requests at a high rate when an ARP reply is not received. This can happen when several datagrams are sent to the same unresolved IP address before an ARP reply is received, or when a datagram destined for an unresolved address is fragmented, since each fragment is sent to ether_output as a separate packet. Section 11.9 of Volume 1 contains an example of ARP flooding caused by fragmentation, and discusses the associated problems. Figure 21.23 shows the first half of arpresolve.

Figure 21.23. arpresolve function: find ARP entry if required.

	

--- if_ether.c
252 int
253 arpresolve(ac, rt, m, dst, desten)
254 struct arpcom *ac;
255 struct rtentry *rt;
256 struct mbuf *m;
257 struct sockaddr *dst;
258 u_char *desten;
259 {
260 struct llinfo_arp *la;
261 struct sockaddr_dl *sdl;

262 if (m->m_flags & M_BCAST) { /* broadcast */
263 bcopy((caddr_t) etherbroadcastaddr, (caddr_t) desten,
264 sizeof(etherbroadcastaddr));
265 return (1);
266 }
267 if (m->m_flags & M_MCAST) { /* multicast */
268 ETHER_MAP_IP_MULTICAST(&SIN(dst)->sin_addr, desten);
269 return (1);
270 }
271 if (rt)
272 la = (struct llinfo_arp *) rt->rt_llinfo;
273 else {
274 if (la = arplookup(SIN(dst)->sin_addr.s_addr, 1, 0))
275 rt = la->la_rt;
276 }
277 if (la == 0 || rt == 0) {
278 log(LOG_DEBUG, "arpresolve: can't allocate llinfo");
279 m_freem(m);
280 return (0);
281 }
--- if_ether.c

252-261

dst is a pointer to a sockaddr_in containing the destination IP address and desten is an array of 6 bytes that is filled in with the corresponding Ethernet address, if known.

Handle broadcast and multicast destinations

262-270

If the M_BCAST flag of the mbuf is set, the destination is filled in with the Ethernet broadcast address and the function returns 1. If the M_MCAST flag is set, the ETHER_MAP_IP_MULTICAST macro (Figure 12.6) converts the class D address into the corresponding Ethernet address.

Get pointer to llinfo_arp structure

271-276

The destination address is a unicast address. If a pointer to a routing table entry is passed by the caller, la is set to the corresponding llinfo_arp structure. Otherwise arplookup searches the routing table for the specified IP address. The second argument is 1, telling arplookup to create the entry if it doesn’t already exist; the third argument is 0, which means don’t look for a proxy ARP entry.

277-281

If either rt or la are null pointers, one of the allocations failed, since arplookup should have created an entry if one didn’t exist. An error message is logged, the packet released, and the function returns 0.

Figure 21.24 contains the last half of arpresolve. It checks whether the ARP entry is still valid, and, if not, sends an ARP request.

Figure 21.24. arpresolve function: check if ARP entry valid, send ARP request if not.

	

--- if_ether.c
282 sdl = SDL(rt->rt_gateway);
283 /*
284 * Check the address family and length is valid, the address
285 * is resolved; otherwise, try to resolve.
286 */
287 if ((rt->rt_expire == 0 || rt->rt_expire > time.tv_sec) &&
288 sdl->sdl_family == AF_LINK && sdl->sdl_alen != 0) {
289 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
290 return 1;
291 }
292 /*
293 * There is an arptab entry, but no ethernet address
294 * response yet. Replace the held mbuf with this
295 * latest one.
296 */
297 if (la->la_hold)
298 m_freem(la->la_hold);
299 la->la_hold = m;

300 if (rt->rt_expire) {
301 rt->rt_flags &= ~RTF_REJECT;
302 if (la->la_asked == 0 || rt->rt_expire != time.tv_sec) {
303 rt->rt_expire = time.tv_sec;
304 if (la->la_asked++ < arp_maxtries)
305 arpwhohas(ac, &(SIN(dst)->sin_addr));
306 else {
307 rt->rt_flags |= RTF_REJECT;
308 rt->rt_expire += arpt_down;
309 la->la_asked = 0;
310 }
311 }
312 }
313 return (0);
314 }
--- if_ether.c

Check ARP entry for validity

282-291

Even though an ARP entry is located, it must be checked for validity. The entry is valid if the following conditions are all true:

1. the entry is permanent (the expiration time is 0) or the expiration time is greater than the current time, and

2. the family of the socket address structure pointed to by rt_gateway is AF_LINK, and

3. the link-level address length (sdl_alen) is nonzero.

Recall that arptfree invalidated an ARP entry that was still referenced by setting sdl_alen to 0. If the entry is valid, the Ethernet address contained in the sockaddr_dl is copied into desten and the function returns 1.

Hold only most recent IP datagram

292-299

At this point an ARP entry exists but it does not contain a valid Ethernet address. An ARP request must be sent. First the pointer to the mbuf chain is saved in la_hold, after releasing any mbuf chain that was already pointed to by la_hold. This means that if multiple IP datagrams are sent quickly to a given destination, and an ARP entry does not already exist for the destination, during the time it takes to send an ARP request and receive a reply only the last datagram is held, and all prior ones are discarded. An example that generates this condition is NFS. If NFS sends an 8500-byte IP datagram that is fragmented into six IP fragments, and if all six fragments are sent by ip_output to ether_output in the time it takes to send an ARP request and receive a reply, the first five fragments are discarded and only the final fragment is sent when the reply is received. This in turn causes an NFS timeout, and a retransmission of all six fragments.

Send ARP request but avoid ARP flooding

300-314

RFC 1122 requires ARP to avoid sending ARP requests to a given destination at a high rate when a reply is not received. The technique used by Net/3 to avoid ARP flooding is as follows.

[image: Image] Net/3 never sends more than one ARP request in any given second to a destination.

[image: Image] If a reply is not received after five ARP requests (i.e., after about 5 seconds), the RTF_REJECT flag in the routing table is set and the expiration time is set for 20 seconds in the future. This causes ether_output to refuse to send IP datagrams to this destination for 20 seconds, returning EHOSTDOWN or EHOSTUNREACH instead (Figure 4.15).

[image: Image] After the 20-second pause in ARP requests, arpresolve will send ARP requests to that destination again.

If the expiration time is nonzero (i.e., this is not a permanent entry) the RTF_REJECT flag is cleared, in case it had been set earlier to avoid flooding. The counter la_asked counts the number of consecutive times an ARP request has been sent to this destination. If the counter is 0 or if the expiration time does not equal the current time (looking only at the seconds portion of the current time), an ARP request might be sent. This comparison avoids sending more than one ARP request during any second. The expiration time is then set to the current time in seconds (i.e., the microseconds portion, time.tv_usec is ignored).

The counter is compared to the limit of 5 (arp_maxtries) and then incremented. If the value was less than 5, arpwhohas sends the request. If the request equals 5, however, ARP has reached its limit: the RTF_REJECT flag is set, the expiration time is set to 20 seconds in the future, and the counter la_asked is reset to 0.

Figure 21.25 shows an example to explain further the algorithm used by arpresolve and ether_output to avoid ARP flooding.

Figure 21.25. Algorithm used to avoid ARP flooding.

[image: Image]

We show 26 seconds of time, labeled 10 through 36. We assume a process is sending an IP datagram every one-half second, causing two datagrams to be sent every second. The datagrams are numbered 1 through 52. We also assume that the destination host is down, so there are no replies to the ARP requests. The following actions take place:

[image: Image] We assume la_asked is 0 when datagram 1 is written by the process. la_hold is set to point to datagram 1, rt_expire is set to the current time (10), la_asked becomes 1, and an ARP request is sent. The function returns 0.

[image: Image] When datagram 2 is written by the process, datagram 1 is discarded and la_hold is set to point to datagram 2. Since rt_expire equals the current time (10), nothing else happens (an ARP request is not sent) and the function returns 0.

[image: Image] When datagram 3 is written, datagram 2 is discarded and la_hold is set to point to datagram 3. The current time (11) does not equal rt_expire (10), so rt_expire is set to 11. la_asked is less than 5, so la_asked becomes 2 and an ARP request is sent.

[image: Image] When datagram 4 is written, datagram 3 is discarded and la_hold is set to point to datagram 4. Since rt_expire equals the current time (11), nothing else happens and the function returns 0.

[image: Image] Similar actions occur for datagrams 5 through 10. After datagram 9 causes an ARP request to be sent, la_asked is 5.

[image: Image] When datagram 11 is written, datagram 10 is discarded and la_hold is set to point to datagram 11. The current time (15) does not equal rt_expire (14), so rt_expire is set to 15. la_asked is no longer less than 5, so the ARP flooding avoidance algorithm takes place: RTF_REJECT flag is set, rt_expire is set to 35 (20 seconds in the future), and la_asked is reset to 0. The function returns 0.

[image: Image] When datagram 12 is written, ether_output notices that the RTF_REJECT flag is set and that the current time is less than rt_expire (35) causing EHOSTDOWN to be returned to the sender (normally ip_output).

[image: Image] The EHOSTDOWN error is returned for datagrams 13 through 50.

[image: Image] When datagram 51 is written, even though the RTF_REJECT flag is set ether_output does not return the error because the current time (35) is no longer less than rt_expire (35). arpresolve is called and the entire process starts over again: five ARP requests are sent in 5 seconds, followed by a 20-second pause. This continues until the sending process gives up or the destination host responds to an ARP request.

21.11. arplookup Function

arplookup calls the routing function rtalloc1 to look up an ARP entry in the Internet routing table. We’ve seen three calls to arplookup:

1. from in_arpinput to look up and possibly create an entry corresponding to the source IP address of a received ARP packet,

2. from in_arpinput to see if a proxy ARP entry exists for the destination IP address of a received ARP request, and

3. from arpresolve to look up or create an entry corresponding to the destination IP address of a datagram that is about to be sent.

If arplookup succeeds, a pointer is returned to the corresponding llinfo_arp structure; otherwise a null pointer is returned.

arplookup has three arguments. The first is the IP address to search for, the second is a flag that is true if the entry is not found and a new entry should be created, and the third is a flag that is true if a proxy ARP entry should be searched for and possibly created.

Proxy ARP entries are handled by defining a different form of the Internet socket address structure, a sockaddr_inarp structure, shown in Figure 21.26. This structure is used only by ARP.

Figure 21.26. sockaddr_inarp structure.

	

--- if_ether.h
111 struct sockaddr_inarp {
112 u_char sin_len; /* sizeof(struct sockaddr_inarp) = 16 */
113 u_char sin_family; /* AF_INET */
114 u_short sin_port;
115 struct in_addr sin_addr; /* IP address */
116 struct in_addr sin_srcaddr; /* not used */
117 u_short sin_tos; /* not used */
118 u_short sin_other; /* 0 or SIN_PROXY */
119 };
--- if_ether.h

111-119

The first 8 bytes are the same as a sockaddr_in structure and the sin_family is also set to AF_INET. The final 8 bytes, however, are different: the sin_srcaddr, sin_tos, and sin_other members. Of these three, only the final one is used, being set to SIN_PROXY (1) if the entry is a proxy entry.

Figure 21.27 shows the arplookup function.

Figure 21.27. arplookup function: look up an ARP entry in the routing table.

	

--- if_ether.c
480 static struct llinfo_arp *
481 arplookup(addr, create, proxy)
482 u_long addr;
483 int create, proxy;
484 {
485 struct rtentry *rt;
486 static struct sockaddr_inarp sin =
487 {sizeof(sin), AF_INET};

488 sin.sin_addr.s_addr = addr;
489 sin.sin_other = proxy ? SIN_PROXY : 0;
490 rt = rtalloc1((struct sockaddr *) &sin, create);
491 if (rt == 0)
492 return (0);
493 rt->rt_refcnt--;
494 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
495 rt->rt_gateway->sa_family != AF_LINK) {
496 if (create)
497 log(LOG_DEBUG, "arptnew failed on %x\n", ntohl(addr));
498 return (0);
499 }
500 return ((struct llinfo_arp *) rt->rt_llinfo);
501 }
--- if_ether.c

Initialize sockaddr_inarp to look up

480-489

The sin_addr member is set to the IP address that is being looked up. The sin_other member is set to SIN_PROXY if the proxy argument is nonzero, or 0 otherwise.

Look up entry in routing table

490-492

rtalloc1 looks up the IP address in the Internet routing table, creating a new entry if the create argument is nonzero. If the entry is not found, the function returns 0 (a null pointer).

Decrement routing table reference count

493

If the entry is found, the reference count for the routing table entry is decremented. This is because ARP is not considered to “hold onto” a routing table entry like the transport layers, so the increment of rt_refcnt that was done by the routing table lookup is undone here by ARP.

494-499

If the RTF_GATEWAY flag is set, or the RTF_LLINFO flag is not set, or the address family of the socket address structure pointed to by rt_gateway is not AF_LINK, something is wrong and a null pointer is returned. If the entry was created this way, a log message is created.

The comment in the log message with the function name arptnew refers to the older Net/2 function that created ARP entries.

If rtalloc1 creates a new entry because the matching entry had the RTF_CLONING flag set, the function arp_rtrequest (which we describe in Section 21.13) is also called by rtrequest.

21.12. Proxy ARP

Net/3 supports proxy ARP, as we saw in the previous section. Two different types of proxy ARP entries can be added to the routing table. Both are added with the arp command, specifying the pub option. Adding a proxy ARP entry always causes a gratuitous ARP request to be issued by arp_rtrequest (Figure 21.28) because the RTF_ANNOUNCE flag is set when the entry is created.

Figure 21.28. arp_rtrequest function: RTM_ADD command.

[image: Image]

The first type of proxy ARP entry allows an IP address for a host on an attached network to be entered into the ARP cache. Any Ethernet address can be assigned to the entry. These entries are added to the routing table with an explicit mask of 0xffffffff. The purpose of this mask is to allow the call to rtalloc1 in Figure 21.27 to match this entry, even if the SIN_PROXY flag is set in the socket address structure of the search key. This in turn allows the call to arplookup from Figure 21.20 to match this entry when a search is made for the target address with the SIN_PROXY flag set.

This type of entry can be used if a host H1 that doesn’t implement ARP is on an attached network. The host with the proxy entry answers all ARP requests for H1’s hardware address, supplying the Ethernet address that was specified when the proxy entry was created (i.e., the Ethernet address of H1). These entries are output with the notation “published” by the arp -a command.

The second type of proxy ARP entry is for a host for which a routing table entry already exists. The kernel creates another routing table entry for the destination, with this new entry containing the link-layer information (i.e., the Ethernet address). The SIN_PROXY flag is set in the sin_other member of the sockaddr_inarp structure (Figure 21.26) in the new routing table entry. Recall that routing table searches compare 12 bytes of the Internet socket address structure (Figure 18.39). This use of the SIN_PROXY flag is the only time the final 8 bytes of the structure are nonzero. When arplookup specifies the SIN_PROXY value in the sin_other member of the structure passed to rtalloc1, the only entries in the routing table that will match are ones that also have the SIN_PROXY flag set.

This type of entry normally specifies the Ethernet address of the host acting as the proxy server. If the proxy entry was created for a host HD, the sequence of steps is as follows.

1. The proxy server receives a broadcast ARP request for HD’s hardware address from some other host HS. The host HS thinks HD is on the local network.

2. The proxy server responds, supplying its own Ethernet address.

3. HS sends the datagram with a destination IP address of HD to the proxy server’s Ethernet address.

4. The proxy server receives the datagram for HD and forwards it, using the normal routing table entry for HD.

This type of entry was used on the router netb in the example in Section 4.6 of Volume 1. These entries are output by the arp -a command with the notation “published (proxy only).”

21.13. arp_rtrequest Function

Figure 21.3 provides an overview of the relationship between the ARP functions and the routing functions. We’ve encountered two calls to the routing table functions from the ARP functions.

1. arplookup calls rtalloc1 to look up an ARP entry and possibly create a new entry if a match isn’t found.

If a matching entry is found in the routing table and the RTF_CLONING flag is not set (i.e., it is a matching entry for the destination host), the pointer to the matching entry is returned. But if the RTF_CLONING bit is set, rtalloc1 calls rtrequest with a command of RTM_RESOLVE. This is how the entries for 140.252.13.33 and 140.252.13.34 in Figure 18.2 were created they were cloned from the entry for 140.252.13.32.

2. arptfree calls rtrequest with a command of RTM_DELETE to delete an entry from the routing table that corresponds to an ARP entry.

Additionally, the arp command manipulates the ARP cache by sending and receiving routing messages on a routing socket. The arp command issues routing messages with commands of RTM_ADD, RTM_DELETE, and RTM_GET. The first two commands cause rtrequest to be called and the third causes rtalloc1 to be called.

Finally, when an Ethernet device driver has an IP address assigned to the interface, rtinit adds a route to the network. This causes rtrequest to be called with a command of RTM_ADD and with the flags of RTF_UP and RTF_CLONING. This is how the entry for 140.252.13.32 in Figure 18.2 was created.

As described in Chapter 19, each ifaddr structure can contain a pointer to a function (the ifa_rtrequest member) that is automatically called when a routing table entry is added or deleted for that interface. We saw in Figure 6.17 that in_ifinit sets this pointer to the function arp_rtrequest for all Ethernet devices. Therefore, whenever the routing functions are called to add or delete a routing table entry for ARP, arp_rtrequest is also called. The purpose of this function is to do whatever type of initialization or cleanup is required above and beyond what the generic routing table functions perform. For example, this is where a new llinfo_arp structure is allocated and initialized whenever a new ARP entry is created. In a similar way, the llinfo_arp structure is deleted by this function after the generic routing routines have completed processing an RTM_DELETE command.

Figure 21.28 shows the first part of the arp_rtrequest function.

Initialize ARP timeout function

92-105

The first time arp_rtrequest is called (when the first Ethernet interface is assigned an IP address during system initialization), the timeout function schedules the function arptimer to be called in 1 clock tick. This starts the ARP timer code running every 5 minutes, since arptimer always calls timeout.

Ignore indirect routes

106-107

If the RTF_GATEWAY flag is set, the function returns. This flag indicates an indirect routing table entry and all ARP entries are direct routes.

108

The remainder of the function is a switch with three cases: RTM_ADD, RTM_RESOLVE, and RTM_DELETE. (The latter two are shown in figures that follow.)

RTM_ADD command

109

The first case for RTM_ADD is invoked by either the arp command manually creating an ARP entry or by an Ethernet interface being assigned an IP address by rtinit (Figure 21.3).

Backward compatibility

110-117

If the RTF_HOST flag is cleared, this routing table entry has an associated mask (i.e., it is a network route, not a host route). If that mask is not all one bits, then the entry is really a route to an interface, so the RTF_CLONING flag is set. As the comment indicates, this is for backward compatibility with older versions of some routing daemons. Also, the command

route add -net 224.0.0.0 -interface bsdi

that is in the file /etc/netstart creates the entry for this network shown in Figure 18.2 that has the RTF_CLONING flag set.

Initialize entry for network route to interface

118-126

If the RTF_CLONING flag is set (which in_ifinit sets for all Ethernet interfaces), this entry is probably being added by rtinit. rt_setgate allocates space for a sockaddr_dl structure, which is pointed to by the rt_gateway member. This data-link socket address structure is the one associated with the routing table entry for 140.252.13.32 in Figure 21.1. The sdl_len and sdl_family members are initialized from the static definition of null_sdl at the beginning of the function, and the sdl_type (probably IFT_ETHER) and sdl_index members are copied from the interface’s ifnet structure. This structure never contains an Ethernet address and the sdl_alen member remains 0.

127-128

Finally, the expiration time is set to the current time, which is simply the time the entry was created, and the break causes the function to return. For entries created at system initialization, their rmx_expire value is the time at which the system was bootstrapped. Notice in Figure 21.1 that this routing table entry does not have an associated llinfo_arp structure, so it is never processed by arptimer. Nevertheless this sockaddr_dl structure is used: since it is the rt_gateway structure for the entry that is cloned for host-specific entries on this Ethernet, it is copied by rtrequest when the newly cloned entries are created with the RTM_RESOLVE command. Also, the netstat program prints the sdl_index value as link#n, as we see in Figure 18.2.

Send gratuitous ARP request

130-135

If the RTF_ANNOUNCE flag is set, this entry is being created by the arp command with the pub option. This option has two ramifications: (1) the SIN_PROXY flag will be set in the sin_other member of the sockaddr_inarp structure, and (2) the RTF_ANNOUNCE flag will be set. Since the RTF_ANNOUNCE flag is set, arprequest broadcasts a gratuitous ARP request. Notice that the second and third arguments are the same, which causes the sender IP address to equal the target IP address in the ARP request.

136

The code falls through to the case for the RTM_RESOLVE command.

Figure 21.29 shows the next part of the arp_rtrequest function, which handles the RTM_RESOLVE command. This command is issued when rtalloc1 matches an entry with the RTF_CLONING flag set and its second argument is nonzero (the create argument to arplookup). A new llinfo_arp structure must be allocated and initialized.

Figure 21.29. arp_rtrequest function: RTM_RESOLVE command.

[image: Image]

Verify sockaddr_dl Structure

137-144

The family and length of the sockaddr_dl structure pointed to by the rt_gateway pointer are verified. The interface type (probably IFT_ETHER) and index are then copied into the new sockaddr_dl structure.

Handle route changes

145-146

Normally the routing table entry is new and does not point to an llinfo_arp structure. If the la pointer is nonnull, however, arp_rtrequest was called when a route changed for an existing routing table entry. Since the llinfo_arp structure is already allocated, the break causes the function to return.

Initialize llinfo_arp structure

147-158

An llinfo_arp structure is allocated and its pointer is stored in the rt_llinfo pointer of the routing table entry. The two statistics arp_inuse and arp_allocated are incremented and the llinfo_arp structure is set to 0. This sets la_hold to a null pointer and la_asked to 0.

159-161

The rt pointer is stored in the llinfo_arp structure and the RTF_LLINFO flag is set. In Figure 18.2 we see that the three routing table entries created by ARP, 140.252.13.33, 140.252.13.34, and 140.252.13.35, all have the L flag enabled, as does the entry for 224.0.0.1. Recall that the arp program looks only for entries with this flag (Figure 19.36). Finally the new structure is added to the front of the linked list of llinfo_arp structures by insque.

The ARP entry has been created: rtrequest creates the routing table entry (often cloning a network-specific entry for the Ethernet) and arp_rtrequest allocates and initializes an llinfo_arp structure. All that remains is for an ARP request to be broadcast so that an ARP reply can fill in the host’s Ethernet address. In the common sequence of events, arp_rtrequest is called because arpresolve called arplookup (the intermediate sequence of function calls can be followed in Figure 21.3). When control returns to arpresolve, it broadcasts the ARP request.

Handle local host specially

162-173

This portion of code is a special test that is new with 4.4BSD (although the comment is left over from earlier releases). It creates the rightmost routing table entry in Figure 21.1 with a key consisting of the local host’s IP address (140.252.13.35). The if test checks whether the routing table key equals the IP address of the interface. If so, the entry that was just created (probably as a clone of the interface entry) refers to the local host.

Make entry permanent and set Ethernet address

174-176

The expiration time is set to 0, making the entry permanent it will never time out. The Ethernet address is copied from the arpcom structure of the interface into the sockaddr_dl structure pointed to by the rt_gateway member.

Set interface pointer to loopback interface

177-178

If the global useloopback is nonzero (it defaults to 1), the interface pointer in the routing table entry is changed to point to the loopback interface. This means that any datagrams sent to the host’s own IP address are sent to the loopback interface instead. Prior to 4.4BSD, the route from the host’s own IP address to the loopback interface was established using a command of the form

route add 140.252.13.35 127.0.0.1

in the /etc/netstart file. Although this still works with 4.4BSD, it is unnecessary because the code we just looked at creates an equivalent route automatically, the first time an IP datagram is sent to the host’s own IP address. Also realize that this piece of code is executed only once per interface. Once the routing table entry and the permanent ARP entry are created, they don’t expire, so another RTM_RESOLVE for this IP address won’t occur.

The final part of arp_rtrequest, shown in Figure 21.30, handles the RTM_DELETE request. From Figure 21.3 we see that this command can be generated from the arp command, to delete an entry manually, and from the arptfree function, when an ARP entry times out.

Figure 21.30. arp_rtrequest function: RTM_DELETE command.

	

--- if_ether.c
181 case RTM_DELETE:
182 if (la == 0)
183 break;
184 arp_inuse--;
185 remque(la);
186 rt->rt_llinfo = 0;
187 rt->rt_flags &= ~RTF_LLINFO;
188 if (la->la_hold)
189 m_freem(la->la_hold);
190 Free((caddr_t) la);
191 }
192 }
--- if_ether.c

Verify la pointer

182-183

The la pointer should always be nonnull (that is, the routing table entry should always point to an llinfo_arp structure); otherwise the break causes the function to return.

Delete llinfo_arp structure

184-190

The arp_inuse statistic is decremented and the llinfo_arp structure is removed from the doubly linked list by remque. The rt_llinfo pointer is set to 0 and the RTF_LLINFO flag is cleared. If an mbuf is held by the ARP entry (i.e., an ARP request is outstanding), that mbuf is released. Finally the llinfo_arp structure is released.

Notice that the switch statement does not provide a default case and does not provide a case for the RTM_GET command. This is because the RTM_GET command issued by the arp program is handled entirely by the route_output function, and rtrequest is not called. Also, the call to rtalloc1 that we show in Figure 21.3, which is caused by an RTM_GET command, specifies a second argument of 0; therefore rtalloc1 does not call rtrequest in this case.

21.14. ARP and Multicasting

If an IP datagram is destined for a multicast group, ip_output checks whether the process has assigned a specific interface to the socket (Figure 12.40), and if so, the datagram is sent out that interface. Otherwise, ip_output selects the outgoing interface using the normal IP routing table (Figure 8.24). Therefore, on a system with more than one multicast-capable interface, the IP routing table specifies the default interface for each multicast group.

We saw in Figure 18.2 that an entry was created in our routing table for the 224.0.0.0 network and since that entry has its “clone” flag set, all multicast groups starting with 224 had the associated interface (le0) as its default. Additional routing table entries can be created for the other multicast groups (the ones beginning with 225-239), or specific entries can be created for particular multicast groups to assign an explicit default. For example, a routing table entry could be created for 224.0.1.1 (the network time protocol) with an interface that differs from the interface for 224.0.0.0. If an entry for a multicast group does not exist in the routing table, and the process doesn’t specify an interface with the IP_MULTICAST_IF socket option, the default interface for the group becomes the interface associated with the “default” route in the table. In Figure 18.2 the entry for 224.0.0.0 isn’t really needed, since both it and the default route use the interface le0.

Once the interface is selected, if the interface is an Ethernet, arpresolve is called to convert the multicast group address into its corresponding Ethernet address. In Figure 21.23 this was done by invoking the macro ETHER_MAP_IP_MULTICAST. Since this simple macro logically ORs the low-order 23 bits of the multicast group with a constant (Figure 12.6), an ARP request-reply is not required and the mapping does not need to go into the ARP cache. The macro is just invoked each time the conversion is required.

Multicast group addresses appear in the Net/3 ARP cache if the multicast group is cloned from another entry, as we saw in Figure 21.5. This is because these entries have the RTF_LLINFO flag set. These are not true ARP entries because they do not require an ARP request—reply, and they do not have an associated link-layer address, since the mapping is done when needed by the ETHER_MAP_IP_MULTICAST macro.

The timeout of the ARP entries for these multicast group addresses is different from normal ARP entries. When a routing table entry is created for a multicast group, such as the entry for 224.0.0.1 in Figure 18.2, rtrequest copies the rt_metrics structure from the entry being cloned (Figure 19.9). We mentioned with Figure 21.28 that the network entry has an rmx_expire value of the time the RTM_ADD command was executed, normally the time the system was initialized. The new entry for 224.0.0.1 has this same expiration time.

This means the ARP entry for a multicast group such as 224.0.0.1 expires the next time arptimer executes, because its expiration time is always in the past. The entry is created again the next time it is looked up in the routing table.

21.15. Summary

ARP provides the dynamic mapping between IP addresses and hardware addresses. This chapter has examined an implementation of ARP that maps IP addresses to Ethernet addresses.

The Net/3 implementation is a major change from previous BSD releases. The ARP information is now stored in various structures: the routing table, a data-link socket address structure, and an llinfo_arp structure. Figure 21.1 shows the relationships between all the structures.

Sending an ARP request is simple: the appropriate fields are filled in and the request is sent as a broadcast. Processing a received request is more complicated because each host receives all broadcast ARP requests. Besides responding to requests for one of the host’s IP addresses, in_arpinput also checks that some other host isn’t using the host’s IP address. Since all ARP requests contain the sender’s IP and hardware addresses, any host on the Ethernet can use this information to update an existing ARP entry for the sender.

ARP flooding can be a problem on a LAN and Net/3 is the first BSD release to handle this. A maximum of one ARP request per second is sent to any given destination, and after five consecutive requests without a reply, a 20-second pause occurs before another ARP request is sent to that destination.

Exercises

21.1 What assumption is made in the assignment of the local variable ac in Figure 21.17?

21.2 If we ping the broadcast address of the local Ethernet and then execute arp -a, we see that this causes the ARP cache to be filled with entries for almost every other host on the local Ethernet. Why?

21.3 Follow through the code and explain why the assignment of 6 to sdl_alen is required in Figure 21.19.

21.4 With the separate ARP table in Net/2, independent of the routing table, each time arpresolve was called, a search was made of the ARP table. Compare this to the Net/3 approach. Which is more efficient?

21.5 The ARP code in Net/2 explicitly set a timeout of 3 minutes for an incomplete entry in the ARP cache, that is, for an entry that is awaiting an ARP reply. We’ve never explicitly said how Net/3 handles this timeout. When does Net/3 time out an incomplete ARP entry?

21.6 What changes in the avoidance of ARP flooding when a Net/3 system is acting as a router and the packets that cause the flooding are from some other host?

21.7 What are the values of the four rmx_expire variables shown in Figure 21.1? Where in the code are the values set?

21.8 What change would be required to the code in this chapter to cause an ARP entry to be created for every host that broadcasts an ARP request?

21.9 To verify the example in Figure 21.25 the authors ran the sock program from Appendix C of Volume 1, writing a UDP datagram every 500 ms to a nonexistent host on the local Ethernet. (The -p option of the program was modified to allow millisecond waits.) But only 10 UDP datagrams were sent without an error, instead of the 11 shown in Figure 21.25, before the first EHOSTDOWN error was returned. Why?

21.10 Modify ARP to hold onto all packets for a destination, awaiting an ARP reply, instead of just the most recent one. What are the implications of this change? Should there be a limit, as there is for each interface’s output queue? Are any changes required to the data structures?

Chapter 22. Protocol Control Blocks

22.1. Introduction

Protocol control blocks (PCBs) are used at the protocol layer to hold the various pieces of information required for each UDP or TCP socket. The Internet protocols maintain Internet protocol control blocks and TCP control blocks. Since UDP is connectionless, everything it needs for an end point is found in the Internet PCB; there are no UDP control blocks.

The Internet PCB contains the information common to all UDP and TCP end points: foreign and local IP addresses, foreign and local port numbers, IP header prototype, IP options to use for this end point, and a pointer to the routing table entry for the destination of this end point. The TCP control block contains all of the state information that TCP maintains for each connection: sequence numbers in both directions, window sizes, retransmission timers, and the like.

In this chapter we describe the Internet PCBs used in Net/3, saving TCP’s control blocks until we describe TCP in detail. We examine the numerous functions that operate on Internet PCBs, since we’ll encounter them when we describe UDP and TCP. Most of the functions begin with the six characters in_pcb.

Figure 22.1 summarizes the protocol control blocks that we describe and their relationship to the file and socket structures.

Figure 22.1. Internet protocol control blocks and their relationship to other structures.

[image: Image]

There are numerous points to consider in this figure.

[image: Image] When a socket is created by either socket or accept, the socket layer creates a file structure and a socket structure. The file type is DTYPE_SOCKET and the socket type is SOCK_DGRAM for UDP end points or SOCK_STREAM for TCP end points.

[image: Image] The protocol layer is then called. UDP creates an Internet PCB (an inpcb structure) and links it to the socket structure: the so_pcb member points to the inpcb structure and the inp_socket member points to the socket structure.

[image: Image] TCP does the same and also creates its own control block (a tcpcb structure) and links it to the inpcb using the inp_ppcb and t_inpcb pointers. In the two UDP inpcbs the inp_ppcb member is a null pointer, since UDP does not maintain its own control block.

[image: Image] The four other members of the inpcb structure that we show, inp_faddr through inp_lport, form the socket pair for this end point: the foreign IP address and port number along with the local IP address and port number.

[image: Image] Both UDP and TCP maintain a doubly linked list of all their Internet PCBs, using the inp_next and inp_prev pointers. They allocate a global inpcb structure as the head of their list (named udb and tcb) and only use three members in the structure: the next and previous pointers, and the local port number. This latter member contains the next ephemeral port number to use for this protocol.

The Internet PCB is a transport layer data structure. It is used by TCP, UDP, and raw IP, but not by IP, ICMP, or IGMP.

We haven’t described raw IP yet, but it too uses Internet PCBs. Unlike TCP and UDP, raw IP does not use the port number members in the PCB, and raw IP uses only two of the functions that we describe in this chapter: in_pcballoc to allocate a PCB, and in_pcbdetach to release a PCB. We return to raw IP in Chapter 32.

22.2. Code Introduction

All the PCB functions are in a single C file and a single header contains the definitions, as shown in Figure 22.2.

Figure 22.2. Files discussed in this chapter.

[image: Image]

Global Variables

One global variable is introduced in this chapter, which is shown in Figure 22.3.

Figure 22.3. Global variable introduced in this chapter.

[image: Image]

Statistics

Internet PCBs and TCP PCBs are both allocated by the kernel’s malloc function with a type of M_PCB. This is just one of the approximately 60 different types of memory allocated by the kernel. Mbufs, for example, are allocated with a type of M_BUF, and socket structures are allocated with a type of M_SOCKET.

Since the kernel can keep counters of the different types of memory buffers that are allocated, various statistics on the number of PCBs can be maintained. The command vmstat -m shows the kernel’s memory allocation statistics and the netstat -m command shows the mbuf allocation statistics.

22.3. inpcb Structure

Figure 22.4 shows the definition of the inpcb structure. It is not a big structure, and occupies only 84 bytes.

Figure 22.4. inpcb structure.

	

--- in_pcb.h
 42 struct inpcb {
 43 struct inpcb *inp_next, *inp_prev; /* doubly linked list */
 44 struct inpcb *inp_head; /* pointer back to chain of inpcb's for
 45 this protocol */
 46 struct in_addr inp_faddr; /* foreign IP address */
 47 u_short inp_fport; /* foreign port# */
 48 struct in_addr inp_laddr; /* local IP address */
 49 u_short inp_lport; /* local port# */
 50 struct socket *inp_socket; /* back pointer to socket */
 51 caddr_t inp_ppcb; /* pointer to per-protocol PCB */
 52 struct route inp_route; /* placeholder for routing entry */
 53 int inp_flags; /* generic IP/datagram flags */
 54 struct ip inp_ip; /* header prototype; should have more */
 55 struct mbuf *inp_options; /* IP options */
 56 struct ip_moptions *inp_moptions; /* IP multicast options */
 57 };
--- in_pcb.h

43-45

inp_next and inp_prev form the doubly linked list of all PCBs for UDP and TCP. Additionally, each PCB has a pointer to the head of the protocol’s linked list (inp_head). For PCBs on the UDP list, inp_head always points to udb (Figure 22.1); for PCBs on the TCP list, this pointer always points to tcb.

46-49

The next four members, inp_faddr, inp_fport, inp_laddr, and inp_lport, contain the socket pair for this IP end point: the foreign IP address and port number and the local IP address and port number. These four values are maintained in the PCB in network byte order, not host byte order.

The Internet PCB is used by both transport layers, TCP and UDP. While it makes sense to store the local and foreign IP addresses in this structure, the port numbers really don’t belong here. The definition of a port number and its size are specified by each transport layer and could differ between different transport layers. This problem was identified in [Partridge 1987], where 8-bit port numbers were used in version 1 of RDP, which required reimplementing several standard kernel routines to use 8-bit port numbers. Version 2 of RDP [Partridge and Hinden 1990] uses 16-bit port numbers. The port numbers really belong in a transport-specific control block, such as TCP’s tcpcb. A new UDP-specific PCB would then be required. While doable, this would complicate some of the routines we’ll examine shortly.

50-51

inp_socket is a pointer to the socket structure for this PCB and inp_ppcb is a pointer to an optional transport-specific control block for this PCB. We saw in Figure 22.1 that the inp_ppcb pointer is used with TCP to point to the corresponding tcpcb, but is not used by UDP. The link between the socket and inpcb is two way because sometimes the kernel starts at the socket layer and needs to find the corresponding Internet PCB (e.g., user output), and sometimes the kernel starts at the PCB and needs to locate the corresponding socket structure (e.g., processing a received IP datagram).

52

If IP has a route to the foreign address, it is stored in the inp_route entry. We’ll see that when an ICMP redirect message is received, all Internet PCBs are scanned and all those with a foreign IP address that matches the redirected IP address have their inp_route entry marked as invalid. This forces IP to find a new route to the foreign address the next time the PCB is used for output.

53

Various flags are stored in the inp_flags member. Figure 22.5 lists the individual flags.

Figure 22.5. inp_flags values.

[image: Image]

54

A copy of an IP header is maintained in the PCB but only two members are used, the TOS and TTL. The TOS is initialized to 0 (normal service) and the TTL is initialized by the transport layer. We’ll see that TCP and UDP both default the TTL to 64. A process can change these defaults using the IP_TOS or IP_TTL socket options, and the new value is recorded in the inpcb.inp_ip structure. This structure is then used by TCP and UDP as the prototype IP header when sending IP datagrams.

55-56

A process can set the IP options for outgoing datagrams with the IP_OPTIONS socket option. A copy of the caller’s options are stored in an mbuf by the function ip_pcbopts and a pointer to that mbuf is stored in the inp_options member. Each time TCP or UDP calls the ip_output function, a pointer to these IP options is passed for IP to insert into the outgoing IP datagram. Similarly, a pointer to a copy of the user’s IP multicast options is maintained in the inp_moptions member.

22.4. in_pcballoc and in_pcbdetach Functions

An Internet PCB is allocated by TCP, UDP, and raw IP when a socket is created. A PRU_ATTACH request is issued by the socket system call. In the case of UDP, we’ll see in Figure 23.33 that the resulting call is

struct socket *so;
int error;

error = in_pcballoc(so, &udb);

Figure 22.6 shows the in_pcballoc function.

Figure 22.6. in_pcballoc function: allocate an Internet PCB.

	

--- in_pcb.h
 36 int
 37 in_pcballoc(so, head)
 38 struct socket *so;
 39 struct inpcb *head;
 40 {
 41 struct inpcb *inp;

 42 MALLOC(inp, struct inpcb *, sizeof(*inp), M_PCB, M_WAITOK);
 43 if (inp == NULL)
 44 return (ENOBUFS);
 45 bzero((caddr_t) inp, sizeof(*inp));

 46 inp->inp_head = head;
 47 inp->inp_socket = so;
 48 insque(inp, head);
 49 so->so_pcb = (caddr_t) inp;
 50 return (0);
 51 }
--- in_pcb.h

Allocate PCB and initialize to zero

36-45

in_pcballoc calls the kernel’s memory allocator using the macro MALLOC. Since these PCBs are always allocated as the result of a system call, it is OK to wait for one.

Net/2 and earlier Berkeley releases stored both Internet PCBs and TCP PCBs in mbufs. Their sizes were 80 and 108 bytes, respectively. With the Net/3 release, the sizes went to 84 and 140 bytes, so TCP control blocks no longer fit into an mbuf. Net/3 uses the kernel’s memory allocator instead of mbufs for both types of control blocks.

Careful readers may note that the example in Figure 2.6 shows 17 mbufs allocated for PCBs, yet we just said that Net/3 no longer uses mbufs for Internet PCBs or TCP PCBs. Net/3 does, however, use mbufs for Unix domain PCBs, and that is what this counter refers to. The mbuf statistics output by netstat are for all mbufs in the kernel across all protocol suites, not just the Internet protocols.

bzero sets the PCB to 0. This is important because the IP addresses and port numbers in the PCB must be initialized to 0.

Link structures together

46-49

The inp_head member points to the head of the protocol’s PCB list (either udb or tcb), the inp_socket member points to the socket structure, the new PCB is added to the protocol’s doubly linked list (insque), and the socket structure points to the PCB. The insque function puts the new PCB at the head of the protocol’s list.

An Internet PCB is deallocated when a PRU_DETACH request is issued. This happens when the socket is closed. The function in_pcbdetach, shown in Figure 22.7, is eventually called.

Figure 22.7. in_pcbdetach function: deallocate an Internet PCB.

	

--- in_pcb.h
252 int
253 in_pcbdetach(inp)
254 struct inpcb *inp;
255 {
256 struct socket *so = inp->inp_socket;

257 so->so_pcb = 0;
258 sofree(so);
259 if (inp->inp_options)
260 (void) m_free(inp->inp_options);
261 if (inp->inp_route.ro_rt)
262 rtfree(inp->inp_route.ro_rt);
263 ip_freemoptions(inp->inp_moptions);
264 remque(inp);
265 FREE(inp, M_PCB);
266 }
--- in_pcb.h

252-263

The PCB pointer in the socket structure is set to 0 and that structure is released by sofree. If an mbuf with IP options was allocated for this PCB, it is released by m_free. If a route is held by this PCB, it is released by rtfree. Any multicast options are also released by ip_freemoptions.

264-265

The PCB is removed from the protocol’s doubly linked list by remque and the memory used by the PCB is returned to the kernel.

22.5. Binding, Connecting, and Demultiplexing

Before examining the kernel functions that bind sockets, connect sockets, and demultiplex incoming datagrams, we describe the rules imposed by the kernel on these actions.

Binding of Local IP Address and Port Number

Figure 22.8 shows the six different combinations of a local IP address and local port number that a process can specify in a call to bind.

Figure 22.8. Combination of local IP address and local port number for bind.

[image: Image]

The first three lines are typical for servers they bind a specific port, termed the server’s well-known port, whose value is known by the client. The last three lines are typical for clients they don’t care what the local port, termed an ephemeral port, is, as long as it is unique on the client host.

Most servers and most clients specify the wildcard IP address in the call to bind. This is indicated in Figure 22.8 by the notation * on lines 3 and 6.

If a server binds a specific IP address to a socket (i.e., not the wildcard address), then only IP datagrams arriving with that specific IP address as the destination IP address be it unicast, broadcast, or multicast are delivered to the process. Naturally, when the process binds a specific unicast or broadcast IP address to a socket, the kernel verifies that the IP address corresponds to a local interface.

It is rare, though possible, for a client to bind a specific IP address (lines 4 and 5 in Figure 22.8). Normally a client binds the wildcard IP address (the final line in Figure 22.8), which lets the kernel choose the outgoing interface based on the route chosen to reach the server.

What we don’t show in Figure 22.8 is what happens if the client tries to bind a local port that is already in use with another socket. By default a process cannot bind a port number if that port is already in use. The error EADDRINUSE (address already in use) is returned if this occurs. The definition of in use is simply whether a PCB exists with that port as its local port. This notion of “in use” is relative to a given protocol: TCP or UDP, since TCP port numbers are independent of UDP port numbers.

Net/3 allows a process to change this default behavior by specifying one of following two socket options:

	
SO_REUSEADDR

	
Allows the process to bind a port number that is already in use, but the IP address being bound (including the wildcard) must not already be bound to that same port.

	
	
For example, if an attached interface has the IP address 140.252.1.29 then one socket can be bound to 140.252.1.29, port 5555; another socket can be bound to 127.0.0.1, port 5555; and another socket can be bound to the wildcard IP address, port 5555. The call to bind for the second and third cases must be preceded by a call to setsockopt, setting the so_reuseaddr option.

	
SO_REUSEPORT

	
Allows a process to reuse both the IP address and port number, but each binding

	
SO_REUSEADDR

	
Allows the process to bind a port number that is already in use, but the IP address being bound (including the wildcard) must not already be bound to that same port.

	
	
For example, if an attached interface has the IP address 140.252.1.29 then one socket can be bound to 140.252.1.29, port 5555; another socket can be bound to 127.0.0.1, port 5555; and another socket can be bound to the wildcard IP address, port 5555. The call to bind for the second and third cases must be preceded by a call to setsockopt, setting the so_reuseaddr option.

	
	
of the IP address and port number, including the first, must specify this socket option. With SO_REUSEADDR, the first binding of the port number need not specify the socket option.

	
	
For example, if an attached interface has the IP address 140.252.1.29 and a socket is bound to 140.252.1.29, port 6666 specifying the SO_REUSEPORT socket option, then another socket can also specify this same socket option and bind 140.252.1.29, port 6666.

Later in this section we describe what happens in this final example when an IP datagram arrives with a destination address of 140.252.1.29 and a destination port of 6666, since two sockets are bound to that end point.

The SO_REUSEPORT option is new with Net/3 and was introduced with the support for multicasting in 4.4BSD. Before this release it was never possible for two sockets to be bound to the same IP address and same port number.

Unfortunately the so_REUSEPORT option was not part of the original Stanford multicast sources and is therefore not widely supported. Other systems that support multicasting, such as Solaris 2.x, let a process specify SO_REUSEADDR to specify that it is OK to bind multiple sockets to the same IP address and same port number.

Connecting a UDP Socket

We normally associate the connect system call with TCP clients, but it is also possible for a UDP client or a UDP server to call connect and specify the foreign IP address and foreign port number for the socket. This restricts the socket to exchanging UDP datagrams with that one particular peer.

There is a side effect when a UDP socket is connected: the local IP address, if not already specified by a call to bind, is automatically set by connect. It is set to the local interface address chosen by IP routing to reach the specified peer.

Figure 22.9 shows the three different states of a UDP socket along with the pseudo-code of the function calls to end up in that state.

Figure 22.9. Specification of local and foreign IP addresses and port numbers for UDP sockets.

[image: Image]

The first of the three states is called a connected UDP socket and the next two states are called unconnected UDP sockets. The difference between the two unconnected sockets is that the first has a fully specified local address and the second has a wildcarded local IP address.

Demultiplexing of Received IP Datagrams by TCP

Figure 22.10 shows the state of three Telnet server sockets on the host sun. The first two sockets are in the LISTEN state, waiting for incoming connection requests, and the third is connected to a client at port 1500 on the host with an IP address of 140.252.1.11. The first listening socket will handle connection requests that arrive on the 140.252.1.29 interface and the second listening socket will handle all other interfaces (since its local IP address is the wildcard).

Figure 22.10. Three TCP sockets with a local port of 23.

[image: Image]

We show both of the listening sockets with unspecified foreign IP addresses and port numbers because the sockets API doesn’t allow a TCP server to restrict either of these values. A TCP server must accept the client’s connection and is then told of the client’s IP address and port number after the connection establishment is complete (i.e., when TCP’s three-way handshake is complete). Only then can the server close the connection if it doesn’t like the client’s IP address and port number. This isn’t a required TCP feature, it is just the way the sockets API has always worked.

When TCP receives a segment with a destination port of 23 it searches through its list of Internet PCBs looking for a match by calling in_pcblookup. When we examine this function shortly we’ll see that it has a preference for the smallest number of wildcard matches. To determine the number of wildcard matches we consider only the local and foreign IP addresses. We do not consider the foreign port number. The local port number must match, or we don’t even consider the PCB. The number of wildcard matches can be 0, 1 (local IP address or foreign IP address), or 2 (both local and foreign IP addresses).

For example, assume the incoming segment is from 140.252.1.11, port 1500, destined for 140.252.1.29, port 23. Figure 22.11 shows the number of wildcard matches for the three sockets from Figure 22.10.

Figure 22.11. Incoming segment from {140.252.1.11, 1500} to {140.252.1.29, 23}.

[image: Image]

The first socket matches these four values, but with one wildcard match (the foreign IP address). The second socket also matches the incoming segment, but with two wildcard matches (the local and foreign IP addresses). The third socket is a complete match with no wildcards. Net/3 uses the third socket, the one with the smallest number of wildcard matches.

Continuing this example, assume the incoming segment is from 140.252.1.11, port 1501, destined for 140.252.1.29, port 23. Figure 22.12 shows the number of wildcard matches.

Figure 22.12. Incoming segment from {140.252.1.11, 1501} to {140.252.1.29, 23}.

[image: Image]

The first socket matches with one wildcard match; the second socket matches with two wildcard matches; and the third socket doesn’t match at all, since the foreign port numbers are unequal. (The foreign port numbers are compared only if the foreign IP address in the PCB is not a wildcard.) The first socket is chosen.

In these two examples we never said what type of TCP segment arrived: we assume that the segment in Figure 22.11 contains data or an acknowledgment for an established connection since it is delivered to an established socket. We also assume that the segment in Figure 22.12 is an incoming connection request (a SYN) since it is delivered to a listening socket. But the demultiplexing code in in_pcblookup doesn’t care. If the TCP segment is the wrong type for the socket that it is delivered to, we’ll see later how TCP handles this. For now the important fact is that the demultiplexing code only compares the source and destination socket pair from the IP datagram against the values in the PCB.

Demultiplexing of Received IP Datagrams by UDP

The delivery of UDP datagrams is more complicated than the TCP example we just examined, since UDP datagrams can be sent to a broadcast or multicast address. Since Net/3 (and most systems with multicast support) allow multiple sockets to have identical local IP addresses and ports, how are multiple recipients handled? The Net/3 rules are:

1. An incoming UDP datagram destined for either a broadcast IP address or a multicast IP address is delivered to all matching sockets. There is no concept of a “best” match here (i.e., the one with the smallest number of wildcard matches).

2. An incoming UDP datagram destined for a unicast IP address is delivered only to one matching socket, the one with the smallest number of wildcard matches. If there are multiple sockets with the same “smallest” number of wildcard matches, which socket receives the incoming datagram is implementation-dependent.

Figure 22.13 shows four UDP sockets that we’ll use for some examples. Having four UDP sockets with the same local port number requires using either SO_REUSEADDR or SO_REUSEPORT. The first two sockets have been connected to a foreign IP address and port number, and the last two are unconnected.

Figure 22.13. Four UDP sockets with a local port of 577.

[image: Image]

Consider an incoming UDP datagram destined for 140.252.13.63 (the broadcast address on the 140.252.13 subnet), port 577, from 140.252.13.34, port 1500. Figure 22.14 shows that it is delivered to the third and fourth sockets.

Figure 22.14. Received datagram from {140.252.13.34, 1500} to {140.252.13.63, 577}.

[image: Image]

The broadcast datagram is not delivered to the first socket because the local IP address doesn’t match the destination IP address and the foreign IP address doesn’t match the source IP address. It isn’t delivered to the second socket because the foreign IP address doesn’t match the source IP address.

As the next example, consider an incoming UDP datagram destined for 140.252.1.29 (a unicast address), port 577, from 140.252.1.11, port 1500. Figure 22.15 shows to which sockets the datagram is delivered.

Figure 22.15. Received datagram from {140.252.1.11, 1500} to {140.252.1.29, 577}.

[image: Image]

The datagram matches the first socket with no wildcard matches and also matches the fourth socket with two wildcard matches. It is delivered to the first socket, the best match.

22.6. in_pcblookup Function

The function in_pcblookup serves four different purposes.

1. When either TCP or UDP receives an IP datagram, in_pcblookup scans the protocol’s list of Internet PCBs looking for a matching PCB to receive the datagram. This is transport layer demultiplexing of a received datagram.

2. When a process executes the bind system call, to assign a local IP address and local port number to a socket, in_pcbbind is called by the protocol to verify that the requested local address pair is not already in use.

3. When a process executes the bind system call, requesting an ephemeral port be assigned to its socket, the kernel picks an ephemeral port and calls in_pcbbind to check if the port is in use. If it is in use, the next ephemeral port number is tried, and so on, until an unused port is located.

4. When a process executes the connect system call, either explicitly or implicitly, in_pcbbind verifies that the requested socket pair is unique. (An implicit call to connect happens when a UDP datagram is sent on an unconnected socket. We’ll see this scenario in Chapter 23.)

In cases 2, 3, and 4 in_pcbbind calls in_pcblookup. Two options confuse the logic of the function. First, a process can specify either the SO_REUSEADDR or SO_REUSEPORT socket option to say that a duplicate local address is OK.

Second, sometimes a wildcard match is OK (e.g., an incoming UDP datagram can match a PCB that has a wildcard for its local IP address, meaning that the socket will accept UDP datagrams that arrive on any local interface), while other times a wildcard match is forbidden (e.g., when connecting to a foreign IP address and port number).

In the original Stanford IP multicast code appears the comment that “The logic of in_pcblookup is rather opaque and there is not a single comment,” The adjective opaque is an understatement.

The publicly available IP multicast code available for BSD/386, which is derived from the port to 4.4BSD done by Craig Leres, fixed the overloaded semantics of this function by using in_pcblookup only for case 1 above. Cases 2 and 4 are handled by a new function named in_pcbconflict, and case 3 is handled by a new function named in_uniqueport. Dividing the original functionality into separate functions is much clearer, but in the Net/3 release, which we’re describing in this text, the logic is still combined into the single function in_pcblookup.

Figure 22.16 shows the in_pcblookup function.

Figure 22.16. in_pcblookup function: search all the PCBs for a match.

[image: Image]

The function starts at the head of the protocol’s PCB list and potentially goes through every PCB on the list. The variable match remembers the pointer to the entry with the best match so far, and matchwild remembers the number of wildcards in that match. The latter is initialized to 3, which is a value greater than the maximum number of wildcard matches that can be encountered. (Any value greater than 2 would work.) Each time around the loop, the variable wildcard starts at 0 and counts the number of wildcard matches for each PCB.

Compare local port number

416-417

The first comparison is the local port number. If the PCB’s local port doesn’t match the lport argument, the PCB is ignored.

Compare local address

419-427

in_pcblookup compares the local address in the PCB with the laddr argument. If one is a wildcard and the other is not a wildcard, the wildcard counter is incremented. If both are not wildcards, then they must be the same, or this PCB is ignored. If both are wildcards, nothing changes: they can’t be compared and the wildcard counter isn’t incremented. Figure 22.17 summarizes the four different conditions.

Figure 22.17. Four scenarios for the local IP address comparison done by in_pcblookup.

[image: Image]

Compare foreign address and foreign port number

428-437

These lines perform the same test that we just described, but using the foreign addresses instead of the local addresses. Also, if both foreign addresses are not wildcards then not only must the two IP addresses be equal, but the two foreign ports must also be equal. Figure 22.18 summarizes the foreign IP comparisons.

Figure 22.18. Four scenarios for the foreign IP address comparison done by in_pcblookup.

[image: Image]

The additional comparison of the foreign port numbers can be performed for the second line of Figure 22.18 because it is not possible to have a PCB with a nonwildcard foreign address and a foreign port number of 0. This restriction is enforced by connect, which we’ll see shortly requires a nonwildcard foreign IP address and a nonzero foreign port. It is possible, however, and common, to have a wildcard local address with a nonzero local port. We saw this in Figures 22.10 and 22.13.

Check if wildcard match allowed

438-439

The flags argument can be set to INPLOOKUP_WILDCARD, which means a match containing wildcards is OK. If a match is found containing wildcards (wildcard is nonzero) and this flag was not specified by the caller, this PCB is ignored. When TCP and UDP call this function to demultiplex an incoming datagram, INPLOOKUP_WILDCARD is always set, since a wildcard match is OK. (Recall our examples using Figures 22.10 and 22.13.) But when this function is called as part of the connect system call, in order to verify that a socket pair is not already in use, the flags argument is set to 0.

Remember best match, return if exact match found

440-447

These statements remember the best match found so far. Again, the best match is considered the one with the fewest number of wildcard matches. If a match is found with one or two wildcards, that match is remembered and the loop continues. But if an exact match is found (wildcard is 0), the loop terminates, and a pointer to the PCB with that exact match is returned.

Example—Demultiplexing of Received TCP Segment

Figure 22.19 is from the TCP example we discussed with Figure 22.11. Assume in_pcblookup is demultiplexing a received datagram from 140.252.1.11, port 1500, destined for 140.252.1.29, port 23. Also assume that the order of the PCBs is the order of the rows in the figure. laddr is the destination IP address, lport is the destination TCP port, faddr is the source IP address, and fport is the source TCP port.

Figure 22.19. laddr = 140.252.1.29, lport = 23, faddr = 140.252.1.11, fport = 1500.

[image: Image]

When the first row is compared to the incoming segment, wildcard is 1 (the foreign IP address), flags is set to INPLOOKUP_WILDCARD, so match is set to point to this PCB and matchwild is set to 1. The loop continues since an exact match has not been found yet. The next time around the loop, wildcard is 2 (the local and foreign IP addresses) and since this is greater than matchwild, the entry is not remembered, and the loop continues. The next time around the loop, wildcard is 0, which is less than matchwild (1), so this entry is remembered in match. The loop also terminates since an exact match has been found and the pointer to this PCB is returned to the caller.

If in_pcblookup were used by TCP and UDP only to demultiplex incoming datagrams, it could be simplified. First, there’s no need to check whether the faddr or laddr arguments are wildcards, since these are the source and destination IP addresses from the received datagram. Also the flags argument could be removed, along with its corresponding test, since wildcard matches are always OK.

This section has covered the mechanics of the in_pcblookup function. We’ll return to this function and discuss its meaning after seeing how it is called from the in_pcbbind and in_pcbconnect functions.

22.7. in_pcbbind Function

The next function, in_pcbbind, binds a local address and port number to a socket. It is called from five functions:

1. from bind for a TCP socket (normally to bind a server’s well-known port);

2. from bind for a UDP socket (either to bind a server’s well-known port or to bind an ephemeral port to a client’s socket);

3. from connect for a TCP socket, if the socket has not yet been bound to a nonzero port (this is typical for TCP clients);

4. from 1isten for a TCP socket, if the socket has not yet been bound to a nonzero port (this is rare, since listen is called by a TCP server, which normally binds a well-known port, not an ephemeral port); and

5. from in_pcbconnect (Section 22.8), if the local IP address and local port number have not been set (typical for a call to connect for a UDP socket or for each call to sendto for an unconnected UDP socket).

In cases 3, 4, and 5, an ephemeral port number is bound to the socket and the local IP address is not changed (in case it is already set).

We call cases 1 and 2 explicit binds and cases 3, 4, and 5 implicit binds. We also note that although it is normal in case 2 for a server to bind a well-known port, servers invoked using remote procedure calls (RPC) often bind ephemeral ports and then register their ephemeral port with another program that maintains a mapping between the server’s RPC program number and its ephemeral port (e.g., the Sun port mapper described in Section 29.4 of Volume 1).

We’ll show the in_pcbbind function in three sections. Figure 22.20 is the first section.

Figure 22.20. in_pcbbind function: bind a local address and port number.

	

--- in_pcb.h
 52 int
 53 in_pcbbind(inp, nam)
 54 struct inpcb *inp;
 55 struct mbuf *nam;
 56 {
 57 struct socket *so = inp->inp_socket;
 58 struct inpcb *head = inp->inp_head;
 59 struct sockaddr_in *sin;
 60 struct proc *p = curproc; /* XXX */
 61 u_short lport = 0;
 62 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
 63 int error;

 64 if (in_ifaddr == 0)
 65 return (EADDRNOTAVAIL);
 66 if (inp->inp_lport || inp->inp_laddr.s_addr != INADDR_ANY)
 67 return (EINVAL);

 68 if ((so->so_options & (SO_REUSEADDR | SO_REUSEPORT)) == 0 &&
 69 ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 ||
 70 (so->so_options & SO_ACCEPTCONN) == 0))
 71 wild = INPLOOKUP_WILDCARD;
--- in_pcb.h

64-67

The first two tests verify that at least one interface has been assigned an IP address and that the socket is not already bound. You can’t bind a socket twice.

68-71

This if statement is confusing. The net result sets the variable wild to INPLOOKUP_WILDCARD if neither SO_REUSEADDR or SO_REUSEPORT are set.

The second test is true for UDP sockets since PR_CONNREQUIRED is false for connectionless sockets and true for connection-oriented sockets.

The third test is where the confusion lies [Torek 1992]. The socket flag SO_ACCEPTCONN is set only by the listen system call (Section 15.9), which is valid only for a connection-oriented server. In the normal scenario, a TCP server calls socket, bind, and then listen. Therefore, when in_pcbbind is called by bind, this socket flag is cleared. Even if the process calls socket and then listen, without calling bind, TCP’s PRU_LISTEN request calls in_pcbbind to assign an ephemeral port to the socket before the socket layer sets the SO_ACCEPTCONN flag. This means the third test in the if statement, testing whether SO_ACCEPTCONN is not set, is always true. The if statement is therefore equivalent to

if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 &&
 ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 || 1)
 wild = INPLOOKUP_WILDCARD;

Since anything logically ORed with 1 is always true, this is equivalent to

if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
 wild = INPLOOKUP_WILDCARD;

which is simpler to understand: if either of the REUSE socket options is set, wild is left as 0. If neither of the REUSE socket options are set, wild is set to INPLOOKUP_WILDCARD. In other words, when in_pcblookup is called later in the function, a wildcard match is allowed only if neither of the REUSE socket options are on.

The next section of the in_pcbbind, shown in Figure 22.22, function processes the optional nam argument.

72-75

The nam argument is a nonnull pointer only when the process calls bind explicitly. For an implicit bind (a side effect of connect, listen, or in_pcbconnect, cases 3, 4, and 5 from the beginning of this section), nam is a null pointer. When the argument is specified, it is an mbuf containing a sockaddr_in structure. Figure 22.21 shows the four cases for the nonnull nam argument.

Figure 22.21. Four cases for nam argument to in_pcbbind.

[image: Image]

76-83

The test for the correct address family is commented out, yet the identical test in the in_pcbconnect function (Figure 22.25) is performed. We expect either both to be in or both to be out.

Figure 22.22. in_pcbbind function: process optional nam argument.

	

--- in_pcb.c
 72 if (nam) {
 73 sin = mtod(nam, struct sockaddr_in *);
 74 if (nam->m_len != sizeof(*sin))
 75 return (EINVAL);
 76 #ifdef notdef
 77 /*
 78 * We should check the family, but old programs
 79 * incorrectly fail to initialize it.
 80 */
 81 if (sin->sin_family != AF_INET)
 82 return (EAFNOSUPPORT);
 83 #endif
 84 lport = sin->sin_port; /* might be 0 */
 85 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
 86 /*
 87 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
 88 * allow complete duplication of binding if
 89 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
 90 * and a multicast address is bound on both
 91 * new and duplicated sockets.
 92 */
 93 if (so->so_options & SO_REUSEADDR)
 94 reuseport = SO_REUSEADDR | SO_REUSEPORT;
 95 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
 96 sin->sin_port = 0; /* yech... */
 97 if (ifa_ifwithaddr((struct sockaddr *) sin) == 0)
 98 return (EADDRNOTAVAIL);
 99 }
100 if (lport) {
101 struct inpcb *t;

102 /* GROSS */
103 if (ntohs(lport) < IPPORT_RESERVED &&
104 (error = suser(p->p_ucred, &p->p_acflag)))
105 return (error);
106 t = in_pcblookup(head, zeroin_addr, 0,
107 sin->sin_addr, lport, wild);
108 if (t && (reuseport & t->inp_socket->so_options) == 0)
109 return (EADDRINUSE);
110 }
111 inp->inp_laddr = sin->sin_addr; /* might be wildcard */
112 }
--- in_pcb.c

85-94

Net/3 tests whether the IP address being bound is a multicast group. If so, the SO_REUSEADDR option is considered identical to SO_REUSEPORT.

95-99

Otherwise, if the local address being bound by the caller is not the wildcard, ifa_ifwithaddr verifies that the address corresponds to a local interface.

The comment “yech” is probably because the port number in the socket address structure must be 0 because ifa_ifwithaddr does a binary comparison of the entire structure, not just a comparison of the IP addresses.

This is one of the few instances where the process must zero the socket address structure before issuing the system call. If bind is called and the final 8 bytes of the socket address structure (sin_zero [8]) are nonzero, ifa_ifwithaddr will not find the requested interface, and in_pcbbind will return an error.

100-105

The next if statement is executed when the caller is binding a nonzero port, that is, the process wants to bind one particular port number (the second and fourth scenarios from Figure 22.21). If the requested port is less than 1024 (IPPORT_RESERVED) the process must have superuser privilege. This is not part of the Internet protocols, but a Berkeley convention. A port number less than 1024 is called a reserved port and is used, for example, by the rcmd function [Stevens 1990], which in turn is used by the rlogin and rsh client programs as part of their authentication with their servers.

106-109

The function in_pcblookup (Figure 22.16) is then called to check whether a PCB already exists with the same local IP address and local port number. The second argument is the wildcard IP address (the foreign IP address) and the third argument is a port number of 0 (the foreign port). The wildcard value for the second argument causes in_pcblookup to ignore the foreign IP address and foreign port in the PCB on ly the local IP address and local port are compared to sin->sin_addr and lport, respectively. We mentioned earlier that wild is set to INPLOOKUP_WILDCARD only if neither of the REUSE socket options are set.

111

The caller’s value for the local IP address is stored in the PCB. This can be the wildcard address, if that’s the value specified by the caller. In this case the local IP address is chosen by the kernel, but not until the socket is connected at some later time. This is because the local IP address is determined by IP routing, based on foreign IP address.

The final section of in_pcbbind handles the assignment of an ephemeral port when the caller explicitly binds a port of 0, or when the nam argument is a null pointer (an implicit bind).

Figure 22.23. in_pcbbind function: choose an ephemeral port.

	

--- in_pcb.c
113 if (lport == 0)
114 do {
115 if (head->inp_lport++ < IPPORT_RESERVED ||
116 head->inp_lport > IPPORT_USERRESERVED)
117 head->inp_lport = IPPORT_RESERVED;
118 lport = htons(head->inp_lport);
119 } while (in_pcblookup(head,
120 zeroin_addr, 0, inp->inp_laddr, lport, wild));
121 inp->inp_lport = lport;
122 return (0);
123 }
--- in_pcb.c

113-122

The next ephemeral port number to use for this protocol (TCP or UDP) is maintained in the head of the protocol’s PCB list: tcb or udb. Other than the inp_next and inp_back pointers in the protocol’s head PCB, the only other element of the inpcb structure that is used is the local port number. Confusingly, this local port number is maintained in host byte order in the head PCB, but in network byte order in all the other PCBs on the list! The ephemeral port numbers start at 1024 (IPPORT_RESERVED) and get incremented by 1 until port 5000 is used (IPPORT_USERRESERVED), then cycle back to 1024. The loop is executed until in_pcbbind does not find a match.

so_reuseaddr Examples

Let’s look at some common examples to see the interaction of in_pcbbind with in_pcblookup and the two REUSE socket options.

1. A TCP or UDP server normally starts by calling socket and bind. Assume a TCP server that calls bind, specifying the wildcard IP address and its nonzero well-known port, say 23 (the Telnet server). Also assume that the server is not already running and that the process does not set the SO_REUSEADDR socket option.

in_pcbbind calls in_pcblookup with INPLOOKUP_WILDCARD as the final argument. The loop in in_pcblookup won’t find a matching PCB, assuming no other process is using the server’s well-known TCP port, causing a null pointer to be returned. This is OK and in_pcbbind returns 0.

2. Assume the same scenario as above, but with the server already running when someone tries to start the server a second time.

When in_pcblookup is called it finds the PCB with a local socket of {*, 23}. Since the wildcard counter is 0, in_pcblookup returns the pointer to this entry. Since reuseport is 0, in_pcbbind returns EADDRINUSE.

3. Assume the same scenario as the previous example, but when the attempt is made to start the server a second time, the SO_REUSEADDR socket option is specified.

Since this socket option is specified, in_pcbbind calls in_pcblookup with a final argument of 0. But the PCB with a local socket of {*, 23} is still matched and returned because wildcard is 0, since in_pcblookup cannot compare the two wildcard addresses (Figure 22.17). in_pcbbind again returns EADDRINUSE, preventing us from starting two instances of the server with identical local sockets, regardless of whether we specify SO_REUSEADDR or not.

4. Assume that a Telnet server is already running with a local socket of {*, 23} and we try to start another with a local socket of {140.252.13.35, 23}.

Assuming SO_REUSEADDR is not specified, in_pcblookup is called with a final argument of INPLOOKUP_WILDCARD. When it compares the PCB containing *.23, the counter wildcard is set to 1. Since a wildcard match is allowed, this match is remembered as the best match and a pointer to it is returned after all the TCP PCBs are scanned. in_pcbbind returns EADDRINUSE.

5. This example is the same as the previous one, but we specify the SO_REUSEADDR socket option for the second server that tries to bind the local socket {140.252.13.35, 23}.

The final argument to in_pcblookup is now 0, since the socket option is specified. When the PCB with the local socket {*, 23} is compared, the wildcard counter is 1, but since the final flags argument is 0, this entry is skipped and is not remembered as a match. After comparing all the TCP PCBs, the function returns a null pointer and in_pcbbind returns 0.

6. Assume the first Telnet server is started with a local socket of {140.252.13.35, 23} when we try to start a second server with a local socket of {*, 23}. This is the same as the previous example, except we’re starting the servers in reverse order this time.

The first server is started without a problem, assuming no other socket has already bound port 23. When we start the second server, the final argument to in_pcblookup is INPLOOKUP_WILDCARD, assuming the SO_REUSEADDR socket option is not specified. When the PCB with the local socket of {140.252.13.35, 23} is compared, the wildcard counter is set to 1 and this entry is remembered. After all the TCP PCBs are compared, the pointer to this entry is returned, causing in_pcbbind to return EADDRINUSE.

7. What if we start two instances of a server, both with a nonwildcard local IP address? Assume we start the first Telnet server with a local socket of {140.252.13.35, 23} and then try to start a second with a local socket of {127.0.0.1, 23}, without specifying SO_REUSEADDR.

When the second server calls in_pcbbind, it calls in_pcblookup with a final argument of INPLOOKUP_WILDCARD. When the PCB with the local socket of {140.252.13.35, 23} is compared, it is skipped because the local IP addresses are not equal. in_pcblookup returns a null pointer, and in_pcbbind returns 0.

From this example we see that the SO_REUSEADDR socket option has no effect on nonwildcard IP addresses. Indeed the test on the flags value INPLOOKUP_WILDCARD in in_pcblookup is made only when wildcard is greater than 0, that is, when either the PCB entry has a wildcard IP address or the IP address being bound is the wildcard.

8. As a final example, assume we try to start two instances of the same server, both with the same nonwildcard local IP address, say 127.0.0.1.

When the second server is started, in_pcblookup always returns a pointer to the matching PCB with the same local socket. This happens regardless of the SO_REUSEADDR socket option, because the wildcard counter is always 0 for this comparison. Since in_pcblookup returns a nonnull pointer, in_pcbbind returns EADDRINUSE.

From these examples we can state the rules about the binding of local IP addresses and the SO_REUSEADDR socket option. These rules are shown in Figure 22.24. We assume that localIP1 and localIP2 are two different unicast or broadcast IP addresses valid on the local host, and that localmcastIP is a multicast group. We also assume that the process is trying to bind the same nonzero port number that is already bound to the existing PCB.

Figure 22.24. Effect of SO_REUSEADDR socket option on binding of local IP address.

[image: Image]

We need to differentiate between a unicast or broadcast address and a multicast address, because we saw that in_pcbbind considers SO_REUSEADDR to be the same as SO_REUSEPORT for a multicast address.

SO_REUSEPORT Socket Option

The handling of SO_REUSEPORT in Net/3 changes the logic of in_pcbbind to allow duplicate local sockets as long as both sockets specify SO_REUSEPORT. In other words, all the servers must agree to share the same local port.

22.8. in_pcbconnect Function

The function in_pcbconnect specifies the foreign IP address and foreign port number for a socket. It is called from four functions:

1. from connect for a TCP socket (required for a TCP client);

2. from connect for a UDP socket (optional for a UDP client, rare for a UDP server);

3. from sendto when a datagram is output on an unconnected UDP socket (common); and

4. from tcp_input when a connection request (a SYN segment) arrives on a TCP socket that is in the LISTEN state (standard for a TCP server).

In all four cases it is common, though not required, for the local IP address and local port be unspecified when in_pcbconnect is called. Therefore one function of in_pcbconnect is to assign the local values when they are unspecified.

We’ll discuss the in_pcbconnect function in four sections. Figure 22.25 shows the first section.

Figure 22.25. in_pcbconnect function: verify arguments, check foreign IP address.

	

--- in_pcb.h
130 int
131 in_pcbconnect(inp, nam)
132 struct inpcb *inp;
133 struct mbuf *nam;
134 {
135 struct in_ifaddr *ia;
136 struct sockaddr_in *ifaddr;
137 struct sockaddr_in *sin = mtod(nam, struct sockaddr_in *);

138 if (nam->m_len != sizeof(*sin))
139 return (EINVAL);
140 if (sin->sin_family != AF_INET)
141 return (EAFNOSUPPORT);
142 if (sin->sin_port == 0)
143 return (EADDRNOTAVAIL);
144 if (in_ifaddr) {
145 /*
146 * If the destination address is INADDR_ANY,
147 * use the primary local address.
148 * If the supplied address is INADDR_BROADCAST,
149 * and the primary interface supports broadcast,
150 * choose the broadcast address for that interface.
151 */
152 #define satosin(sa) ((struct sockaddr_in *)(sa))
153 #define sintosa(sin) ((struct sockaddr *)(sin))
154 #define ifatoia(ifa) ((struct in_ifaddr *)(ifa))
155 if (sin->sin_addr.s_addr == INADDR_ANY)
156 sin->sin_addr = IA_SIN(in_ifaddr)->sin_addr;
157 else if (sin->sin_addr.s_addr == (u_long) INADDR_BROADCAST &&
158 (in_ifaddr->ia_ifp->if_flags & IFF_BROADCAST))
159 sin->sin_addr = satosin(&in_ifaddr->ia_broadaddr)->sin_addr;
160 }
--- in_pcb.h

Validate argument

130-143

The nam argument points to an mbuf containing a sockaddr_in structure with the foreign IP address and port number. These lines validate the argument and verify that the caller is not trying to connect to a port number of 0.

Handle connection to 0.0.0.0 and 255.255.255.255 specially

144-160

The test of the global in_ifaddr verifies that an IP interface has been configured. If the foreign IP address is 0.0.0.0 (INADDR_ANY), then 0.0.0.0 is replaced with the IP address of the primary IP interface. This means the calling process is connecting to a peer on this host. If the foreign IP address is 255.255.255.255 (INADDR_BROADCAST) and the primary interface supports broadcasting, then 255.255.255.255 is replaced with the broadcast address of the primary interface. This allows a UDP application to broadcast on the primary interface without having to figure out its IP address i t can simply send datagrams to 255.255.255.255, and the kernel converts this to the appropriate IP address for the interface.

The next section of code, Figure 22.26, handles the case of an unspecified local address. This is the common scenario for TCP and UDP clients, cases 1, 2, and 3 from the list at the beginning of this section.

Figure 22.26. in_pcbconnect function: local IP address not yet specified.

[image: Image]

Release route if no longer valid

164-175

If a route is held by the PCB but the destination of that route differs from the foreign address being connected to, or the SO_DONTROUTE socket option is set, that route is released.

To understand why a PCB may have an associated route, consider case 3 from the list at the beginning of this section: in_pcbconnect is called every time a UDP datagram is sent on an unconnected socket. Each time a process calls sendto, the UDP output function calls in_pcbconnect, ip_output, and in_pcbdisconnect. If all the datagrams sent on the socket go to the same destination IP address, then the first time through in_pcbconnect the route is allocated and it can be used from that point on. But since a UDP application can send datagrams to a different IP address with each call to sendto, the destination address must be compared to the saved route and the route released when the destination changes. This same test is done in ip_output, which seems to be redundant.

The SO_DONTROUTE socket option tells the kernel to bypass the normal routing decisions and send the IP datagram to the locally attached interface whose IP network address matches the network portion of the destination address.

Acquire route

176-185

If the SO_DONTROUTE socket option is not set, and a route to the destination is not held by the PCB, try to acquire one by calling rtalloc.

Determine outgoing interface

186-205

The goal in this section of code is to have ia point to an interface address structure (in_ifaddr, Section 6.5), which contains the IP address of the interface. If the PCB holds a route that is still valid, or if rtalloc found a route, and the route is not to the loopback interface, the corresponding interface is used. Otherwise ifa_withdstaddr and ifa_withnet are called to check if the foreign IP address is on the other end of a point-to-point link or on an attached network. Both of these functions require that the port number in the socket address structure be 0, so it is saved in fport across the calls. If this fails, the primary IP address is used (in_ifaddr), and if no interfaces are configured (in_ifaddr is zero), an error is returned.

Figure 22.27 shows the next section of in_pcbconnect, which handles a destination address that is a multicast address.

Figure 22.27. in_pcbconnect function: destination address is a multicast address.

	

--- in_pcb.c
206 /*
207 * If the destination address is multicast and an outgoing
208 * interface has been set as a multicast option, use the
209 * address of that interface as our source address.
210 */
211 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
212 inp->inp_moptions != NULL) {
213 struct ip_moptions *imo;
214 struct ifnet *ifp;

215 imo = inp->inp_moptions;
216 if (imo->imo_multicast_ifp != NULL) {
217 ifp = imo->imo_multicast_ifp;
218 for (ia = in_ifaddr; ia; ia = ia->ia_next)
219 if (ia->ia_ifp == ifp)
220 break;
221 if (ia == 0)
222 return (EADDRNOTAVAIL);
223 }
224 }
225 ifaddr = (struct sockaddr_in *) &ia->ia_addr;
226 }
--- in_pcb.c

206-223

If the destination address is a multicast address and the process has specified the outgoing interface to use for multicast packets (using the IP_MULTICAST_IF socket option), then the IP address of that interface is used as the local address. A search is made of all IP interfaces for the one matching the interface that was specified with the socket option. An error is returned if that interface is no longer up.

224-225

The code that started at the beginning of Figure 22.26 to handle the case of a wildcard local address is complete. The pointer to the sockaddr_in structure for the local interface ia is saved in ifaddr.

The final section of in_pcblookup is shown in Figure 22.28.

Figure 22.28. in_pcbconnect function: verify that socket pair is unique.

	

--- in_pcb.c
227 if (in_pcblookup(inp->inp_head,
228 sin->sin_addr,
229 sin->sin_port,
230 inp->inp_laddr.s_addr ? inp->inp_laddr : ifaddr->sin_addr,
231 inp->inp_lport,
232 0))
233 return (EADDRINUSE);

234 if (inp->inp_laddr.s_addr == INADDR_ANY) {
235 if (inp->inp_lport == 0)
236 (void) in_pcbbind(inp, (struct mbuf *) 0);
237 inp->inp_laddr = ifaddr->sin_addr;
238 }
239 inp->inp_faddr = sin->sin_addr;
240 inp->inp_fport = sin->sin_port;
241 return (0);
242 }
--- in_pcb.c

Verify that socket pair is unique

227-233

in_pcblookup verifies that the socket pair is unique. The foreign address and foreign port are the values specified as arguments to in_pcbconnect. The local address is either the value that was already bound to the socket or the value in ifaddr that was calculated in the code we just described. The local port can be 0, which is typical for a TCP client, and we’ll see that later in this section of code an ephemeral port is chosen for the local port.

This test prevents two TCP connections to the same foreign address and foreign port from the same local address and local port. For example, if we establish a TCP connection with the echo server on the host sun and then try to establish another connection to the same server from the same local port (8888, specified with the -b option), the call to in_pcblookup returns a match, causing connect to return the error EADDRINUSE. (We use the sock program from Appendix C of Volume 1.)

bsdi $ sock -b 8888 sun echo & start first one in the background
bsdi $ sock -A -b 8888 sun echo then try again
connect () error: Address already in use

We specify the -A option to set the SO_REUSEADDR socket option, which lets the bind succeed, but the connect cannot succeed. This is a contrived example, as we explicitly bound the same local port (8888) to both sockets. In the normal scenario of two different clients from the host bsdi to the echo server on the host sun, the local port will be 0 when the second client calls in_pcblookup from Figure 22.28.

This test also prevents two UDP sockets from being connected to the same foreign address from the same local port. This test does not prevent two UDP sockets from alternately sending datagrams to the same foreign address from the same local port, as long as neither calls connect, since a UDP socket is only temporarily connected to a peer for the duration of a sendto system call.

Implicit bind and assignment of ephemeral port

234-238

If the local address is still wildcarded for the socket, it is set to the value saved in ifaddr. This is an implicit bind: cases 3, 4, and 5 from the beginning of Section 22.7. First a check is made as to whether the local port has been bound yet, and if not, in_pcbbind binds an ephemeral port to the socket. The order of the call to in_pcbbind and the assignment to inp_laddr is important, since in_pcbbind fails if the local address is not the wildcard address.

Store foreign address and foreign port in PCB

239-240

The final step of this function sets the foreign IP address and foreign port number in the PCB. We are guaranteed, on successful return from this function, that both socket pairs in the PCB th e local and foreign are f illed in with specific values.

IP Source Address Versus Outgoing Interface Address

There is a subtle difference between the source address in the IP datagram versus the IP address of the interface used to send the datagram.

The PCB member inp_laddr is used by TCP and UDP as the source address of the IP datagram. It can be set by the process to the IP address of any configured interface by bind. (The call to ifa_ifwithaddr in in_pcbbind verifies the local address desired by the application.) in_pcbconnect assigns the local address only if it is a wildcard, and when this happens the local address is based on the outgoing interface (since the destination address is known).

The outgoing interface, however, is also determined by ip_output based on the destination IP address. On a multihomed host it is possible for the source address to be a local interface that is not the outgoing interface, when the process explicitly binds a local address that differs from the outgoing interface. This is allowed because Net/3 chooses the weak end system model (Section 8.4).

22.9. in_pcbdisconnect Function

A UDP socket is disconnected by in_pcbdisconnect. This removes the foreign association by setting the foreign IP address to all 0s (INADDR_ANY) and foreign port number to 0.

This is done after a datagram has been sent on an unconnected UDP socket and when connect is called on a connected UDP socket. In the first case the sequence of steps when the process calls sendto is: UDP calls in_pcbconnect to connect the socket temporarily to the destination, udp_output sends the datagram, and then in_pcbdisconnect removes the temporary connection.

in_pcbdisconnect is not called when a socket is closed since in_pcbdetach handles the release of the PCB. A disconnect is required only when the PCB needs to be reused for a different foreign address or port number.

Figure 22.29 shows the function in_pcbdisconnect.

Figure 22.29. in_pcbdisconnect function: disconnect from foreign address and port number.

	

--- in_pcb.c
243 int
244 in_pcbdisconnect(inp)
245 struct inpcb *inp;
246 {

247 inp->inp_faddr.s_addr = INADDR_ANY;
248 inp->inp_fport = 0;
249 if (inp->inp_socket->so_state & SS_NOFDREF)
250 in_pcbdetach(inp);
251 }
--- in_pcb.c

If there is no longer a file table reference for this PCB (SS_NOFDREF is set) then in_pcbdetach (Figure 22.7) releases the PCB.

22.10. in_setsockaddr and in_setpeeraddr Functions

The getsockname system call returns the local protocol address of a socket (e.g., the IP address and port number for an Internet socket) and the getpeername system call returns the foreign protocol address. Both system calls end up issuing a PRU_SOCKADDR request or a PRU_PEERADDR request. The protocol then calls either in_setsockaddr or in_setpeeraddr. We show the first of these in Figure 22.30.

Figure 22.30. in_setsockaddr function: return local address and port number.

	

--- in_pcb.c
267 int
268 in_setsockaddr(inp, nam)
269 struct inpcb *inp;
270 struct mbuf *nam;
271 {
272 struct sockaddr_in *sin;

273 nam->m_len = sizeof(*sin);
274 sin = mtod(nam, struct sockaddr_in *);
275 bzero((caddr_t) sin, sizeof(*sin));
276 sin->sin_family = AF_INET;
277 sin->sin_len = sizeof(*sin);
278 sin->sin_port = inp->inp_lport;
279 sin->sin_addr = inp->inp_laddr;
280 }
--- in_pcb.c

The argument nam is a pointer to an mbuf that will hold the result: a sockaddr_in structure that the system call copies back to the process. The code fills in the socket address structure and copies the IP address and port number from the Internet PCB into the sin_addr and sin_port members.

Figure 22.31 shows the in_setpeeraddr function. It is nearly identical to Figure 22.30, but copies the foreign IP address and port number from the PCB.

Figure 22.31. in_setpeeraddr function: return foreign address and port number.

	

--- in_pcb.c
281 int
282 in_setpeeraddr(inp, nam)
283 struct inpcb *inp;
284 struct mbuf *nam;
285 {
286 struct sockaddr_in *sin;

287 nam->m_len = sizeof(*sin);
288 sin = mtod(nam, struct sockaddr_in *);
289 bzero((caddr_t) sin, sizeof(*sin));
290 sin->sin_family = AF_INET;
291 sin->sin_len = sizeof(*sin);
292 sin->sin_port = inp->inp_fport;
293 sin->sin_addr = inp->inp_faddr;
294 }
--- in_pcb.c

22.11. in_pcbnotify, in_rtchange, and in_losing Functions

The function in_pcbnotify is called when an ICMP error is received, in order to notify the appropriate process of the error. The “appropriate process” is found by searching all the PCBs for one of the protocols (TCP or UDP) and comparing the local and foreign IP addresses and port numbers with the values returned in the ICMP error. For example, when an ICMP source quench error is received in response to a TCP segment that some router discarded, TCP must locate the PCB for the connection that caused the error and slow down the transmission on that connection.

Before showing the function we must review how it is called. Figure 22.32 summarizes the functions called to process an ICMP error. The two shaded ellipses are the functions described in this section.

Figure 22.32. Summary of processing of ICMP errors.

[image: Image]

When an ICMP message is received, icmp_input is called. Five of the ICMP messages are classified as errors (Figures 11.1 and 11.2):

[image: Image] destination unreachable,

[image: Image] parameter problem,

[image: Image] redirect,

[image: Image] source quench, and

[image: Image] time exceeded.

Redirects are handled differently from the other four errors. All other ICMP messages (the queries) are handled as described in Chapter 11.

Each protocol defines its control input function, the pr_ctlinput entry in the protosw structure (Section 7.4). The ones for TCP and UDP are named tcp_ctlinput and udp_ctlinput, and we’ll show their code in later chapters. Since the ICMP error that is received contains the IP header of the datagram that caused the error, the protocol that caused the error (TCP or UDP) is known. Four of the five ICMP errors cause that protocol’s control input function to be called. Redirects are handled differently: the function pfctlinput is called, and it in turn calls the control input functions for all the protocols in the family (Internet). TCP and UDP are the only protocols in the Internet family with control input functions.

Redirects are handled specially because they affect all IP datagrams going to that destination, not just the one that caused the redirect. On the other hand, the other four errors need only be processed by the protocol that caused the error.

The final points we need to make about Figure 22.32 are that TCP handles source quenches differently from the other errors, and redirects are handled specially by in_pcbnotify: the function in_rtchange is called, regardless of the protocol that caused the error.

Figure 22.33 shows the in_pcbnotify function. When it is called by TCP, the first argument is the address of tcb and the final argument is the address of the function tcp_notify. For UDP, these two arguments are the address of udb and the address of the function udp_notify.

Figure 22.33. in_pcbnotify function: pass error notification to processes.

[image: Image]

Verify arguments

306-324

The cmd argument and the address family of the destination are verified. The foreign address is checked to ensure it is not 0.0.0.0.

Handle redirects specially

325-338

If the error is a redirect it is handled specially. (The error PRC_HOSTDEAD is an old error that was generated by the IMPs. Current systems should never see this error it is a historical artifact.) The foreign port, local port, and local address are all set to 0 so that the for loop that follows won’t compare them. For a redirect we want that loop to select the PCBs to receive notification based only on the foreign IP address, because that is the IP address for which our host received a redirect. Also, the function that is called for a redirect is in_rtchange (Figure 22.34) instead of the notify argument specified by the caller.

Figure 22.34. in_rtchange function: invalidate route.

	

--- in_pcb.c
391 void
392 in_rtchange(inp, errno)
393 struct inpcb *inp;
394 int errno;
395 {
396 if (inp->inp_route.ro_rt) {
397 rtfree(inp->inp_route.ro_rt);
398 inp->inp_route.ro_rt = 0;
399 /*
400 * A new route can be allocated the next time
401 * output is attempted.
402 */
403 }
404 }
--- in_pcb.c

339

The global array inetctlerrmap maps one of the protocol-independent error codes (the PRC_xxx values from Figure 11.19) into its corresponding Unix errno value (the final column in Figure 11.1).

Call notify function for selected PCBs

340-353

This loop selects the PCBs to be notified. Multiple PCBs can be notified t he loop keeps going even after a match is located. The first if statement combines five tests, and if any one of the five is true, the PCB is skipped: (1) if the foreign addresses are unequal, (2) if the PCB does not have a corresponding socket structure, (3) if the local ports are unequal, (4) if the local addresses are unequal, or (5) if the foreign ports are unequal. The foreign addresses must match, while the other three foreign and local elements are compared only if the corresponding argument is nonzero. When a match is found, the notify function is called.

in_rtchange Function

We saw that in_pcbnotify calls the function in_rtchange when the ICMP error is a redirect. This function is called for all PCBs with a foreign address that matches the IP address that has been redirected. Figure 22.34 shows the in_rtchange function.

If the PCB holds a route, that route is released by rtfree, and the PCB member is marked as empty. We don’t try to update the route at this time, using the new router address returned in the redirect. The new route will be allocated by ip_output when this PCB is used next, based on the kernel’s routing table, which is updated by the redirect, before pfctlinput is called.

Redirects and Raw Sockets

Let’s examine the interaction of redirects, raw sockets, and the cached route in the PCB. If we run the Ping program, which uses a raw socket, and an ICMP redirect error is received for the IP address being pinged, Ping continues using the original route, not the redirected route. We can see this as follows.

We ping the host svr4 on the 140.252.13 network from the host gemini on the 140.252.1 network. The default router for gemini is gateway, but the packets should be sent to the router netb instead. Figure 22.35 shows the arrangement.

Figure 22.35. Example of ICMP redirect.

[image: Image]

We expect gateway to send a redirect when it receives the first ICMP echo request.

gemini $ ping -sv svr4
PING 140.252.13.34: 56 data bytes
ICMP Host redirect from gateway 140.252.1.4
 to netb (140.252.1.183) for svr4 (140.252.13.34)

64 bytes from svr4 (140.252.13.34): icmp_seq=0. time=572. ms

ICMP Host redirect from gateway 140.252.1.4
 to netb (140.252.1.183) for svr4 (140.252.13.34)
64 bytes from svr4 (140.252.13.34): icmp_seq=1. time=392. ms

The -s option causes an ICMP echo request to be sent once a second, and the -v option prints every received ICMP message (instead of only the ICMP echo replies).

Every ICMP echo request elicits a redirect, but the raw socket used by ping never notices the redirect to change the route that it is using. The route that is first calculated and stored in the PCB, causing the IP datagrams to be sent to the router gateway (140.252.1.4), should be updated so that the datagrams are sent to the router netb (140.252.1.183) instead. We see that the ICMP redirects are received by the kernel on gemini, but they appear to be ignored.

If we terminate the program and start it again, we never see a redirect:

gemini $ ping -sv svr4
PING 140.252.13.34: 56 data bytes
64 bytes from svr4 (140.252.13.34): icmp_seq=0. time=388. ms
64 bytes from svr4 (140.252.13.34): icmp_seq=1. time=363. ms

The reason for this anomaly is that the raw IP socket code (Chapter 32) does not have a control input function. Only TCP and UDP have a control input function. When the redirect error is received, ICMP updates the kernel’s routing table accordingly, and pfctlinput is called (Figure 22.32). But since there is no control input function for the raw IP protocol, the cached route in the PCB associated with Ping’s raw socket is never released. When we start the Ping program a second time, however, the route that is allocated is based on the kernel’s updated routing table, and we never see the redirects.

ICMP Errors and UDP Sockets

One confusing part of the sockets API is that ICMP errors received on a UDP socket are not passed to the application unless the application has issued a connect on the socket, restricting the foreign IP address and port number for the socket. We now see where this limitation is enforced by in_pcbnotify.

Consider an ICMP port unreachable, probably the most common ICMP error on a UDP socket. The foreign IP address and the foreign port number in the dst argument to in_pcbnotify are the IP address and port number that caused the ICMP error. But if the process has not issued a connect on the socket, the inp_faddr and inp_fport members of the PCB are both 0, preventing in_pcbnotify from ever calling the notify function for this socket. The for loop in Figure 22.33 will skip every UDP PCB.

This limitation arises for two reasons. First, if the sending process has an unconnected UDP socket, the only nonzero element in the socket pair is the local port. (This assumes the process did not call bind.) This is the only value available to in_pcbnotify to demultiplex the incoming ICMP error and pass it to the correct process. Although unlikely, there could be multiple processes bound to the same local port, making it ambiguous which process should receive the error. There’s also the possibility that the process that sent the datagram that caused the ICMP error has terminated, with another process then starting and using the same local port. This is also unlikely since ephemeral ports are assigned in sequential order from 1024 to 5000 and reused only after cycling around (Figure 22.23).

The second reason for this limitation is because the error notification from the kernel to the process an errno value is inadequate. Consider a process that calls sendto on an unconnected UDP socket three times in a row, sending a UDP datagram to three different destinations, and then waits for the replies with recvfrom. If one of the datagrams generates an ICMP port unreachable error, and if the kernel were to return the corresponding error (ECONNREFUSED) to the recvfrom that the process issued, the errno value doesn’t tell the process which of the three datagrams caused the error. The kernel has all the information required in the ICMP error, but the sockets API doesn’t provide a way to return this to the process.

Therefore the design decision was made that if a process wants to be notified of these ICMP errors on a UDP socket, that socket must be connected to a single peer. If the error ECONNREFUSED is returned on that connected socket, there’s no question which peer generated the error.

There is still a remote possibility of an ICMP error being delivered to the wrong process. One process sends the UDP datagram that elicits the ICMP error, but it terminates before the error is received. Another process then starts up before the error is received, binds the same local port, and connects to the same foreign address and foreign port, causing this new process to receive the error. There’s no way to prevent this from occurring, given UDP’s lack of memory. We’ll see that TCP handles this with its TIME_WAIT state.

In our preceding example, one way for the application to get around this limitation is to use three connected UDP sockets instead of one unconnected socket, and call select to determine when any one of the three has a received datagram or an error to be read.

Here we have a scenario where the kernel has the information but the API (sockets) is inadequate. With most implementations of Unix System V and the other popular API (TLI), the reverse is true: the TLI function t_rcvuderr can return the peer’s IP address, port number, and an error value, but most SVR4 streams implementations of TCP/IP don’t provide a way for ICMP to pass the error to an unconnected UDP end point.

In an ideal world, in_pcbnotify delivers the ICMP error to all UDP sockets that match, even if the only nonwildcard match is the local port. The error returned to the process would include the destination IP address and destination UDP port that caused the error, allowing the process to determine if the error corresponds to a datagram sent by the process.

in_losing Function

The final function dealing with PCBs is in_losing, shown in Figure 22.36. It is called by TCP when its retransmission timer has expired four or more times in a row for a given connection (Figure 25.26).

Figure 22.36. in_losing function: invalidate cached route information.

	

--- in_pcb.c
361 int
362 in_losing(inp)
363 struct inpcb *inp;
364 {
365 struct rtentry *rt;
366 struct rt_addrinfo info;

367 if ((rt = inp->inp_route.ro_rt)) {
368 inp->inp_route.ro_rt = 0;
369 bzero((caddr_t) & info, sizeof(info));
370 info.rti_info[RTAX_DST] =
371 (struct sockaddr *) &inp->inp_route.ro_dst;
372 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
373 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
374 rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);

375 if (rt->rt_flags & RTF_DYNAMIC)
376 (void) rtrequest(RTM_DELETE, rt_key(rt),
377 rt->rt_gateway, rt_mask(rt), rt->rt_flags,
378 (struct rtentry **) 0);
379 else
380 /*
381 * A new route can be allocated
382 * the next time output is attempted.
383 */
384 rtfree(rt);
385 }
386 }
--- in_pcb.c

Generate routing message

361-374

If the PCB holds a route, that route is discarded. An rt_addrinfo structure is filled in with information about the cached route that appears to be failing. The function rt_missmsg is then called to generate a message from the routing socket of type RTM_LOSING, indicating a problem with the route.

Delete or release route

375-384

If the cached route was generated by a redirect (RTF_DYNAMIC is set), the route is deleted by calling rtrequest with a request of RTM_DELETE. Otherwise the cached route is released, causing the next output on the socket to allocate another route to the destination h opefully a better route.

22.12. Implementation Refinements

Undoubtedly the most time-consuming algorithm we’ve encountered in this chapter is the linear searching of the PCBs done by in_pcblookup. At the beginning of Section 22.6 we noted four instances when this function is called. We can ignore the calls to bind and connect, as they occur much less frequently than the calls to in_pcblookup from TCP and UDP, to demultiplex every received IP datagram.

In later chapters we’ll see that TCP and UDP both try to help this linear search by maintaining a pointer to the last PCB that the protocol referenced: a one-entry cache. If the local address, local port, foreign address, and foreign port in the cached PCB match the values in the received datagram, the protocol doesn’t even call in_pcblookup. If the protocol’s data fits the packet train model [Jain and Routhier 1986], this simple cache works well. But if the data does not fit this model and, for example, looks like data entry into an on-line transaction processing system, the one-entry cache performs poorly [McKenney and Dove 1992].

One proposal for a better PCB arrangement is to move a PCB to the front of the PCB list when the PCB is referenced. ([McKenney and Dove 1992] attribute this idea to Jon Crowcroft; [Partridge and Pink 1993] attribute it to Gary Delp.) This movement of the PCB is easy to do since it is a doubly linked list and a pointer to the head of the list is the first argument to in_pcblookup.

[McKenney and Dove 1992] compare the original Net/1 implementation (no cache), an enhanced one-entry send—receive cache, the move-to-the-front heuristic, and their own algorithm that uses hash chains. They show that maintaining a linear list of PCBs on hash chains provides an order of magnitude improvement over the other algorithms. The only cost for the hash chains is the memory required for the hash chain headers and the computation of the hash function. They also consider adding the move-to-the-front heuristic to their hash-chain algorithm and conclude that it is easier simply to add more hash chains.

Another comparison of the BSD linear search to a hash table search is in [Hutchinson and Peterson 1991]. They show that the time required to demultiplex an incoming UDP datagram is constant as the number of sockets increases for a hash table, but with a linear search the time increases as the number of sockets increases.

22.13. Summary

An Internet PCB is associated with every Internet socket: TCP, UDP, and raw IP. It contains information common to all Internet sockets: local and foreign IP addresses, pointer to a route structure, and so on. All the PCBs for a given protocol are placed on a doubly linked list maintained by that protocol.

In this chapter we’ve looked at numerous functions that manipulate the PCBs, and three in detail.

1. in_pcblookup is called by TCP and UDP to demultiplex every received datagram. It chooses which socket receives the datagram, taking into account wildcard matches.

This function is also called by in_pcbbind to verify that the local address and local process are unique, and by in_pcbconnect to verify that the combination of a local address, local process, foreign address, and foreign process are unique.

2. in_pcbbind explicitly or implicitly binds a local address and local port to a socket. An explicit bind occurs when the process calls bind, and an implicit bind occurs when a TCP client calls connect without calling bind, or when a UDP process calls sendto or connect without calling bind.

3. in_pcbconnect sets the foreign address and foreign process. If the local address has not been set by the process, a route to the foreign address is calculated and the resulting local interface becomes the local address. If the local port has not been set by the process, in_pcbbind chooses an ephemeral port for the socket.

Figure 22.37 summarizes the common scenarios for various TCP and UDP applications and the values stored in the PCB for the local address and port and the foreign address and port. We have not yet covered all the actions shown in Figure 22.37 for TCP and UDP processes, but will examine the code in later chapters.

Figure 22.37. Summary of in_pcbbind and in_pcbconnect.

[image: Image]

Exercises

22.1 What happens in Figure 22.23 when the process asks for an ephemeral port and every ephemeral port is in use?

22.2 In Figure 22.10 we showed two Telnet servers with listening sockets: one with a specific local IP address and one with the wildcard for its local IP address. Does your system’s Telnet daemon allow you to specify the local IP address, and if so, how?

22.3 Assume a socket is bound to the local socket {140.252.1.29, 8888}, and this is the only socket using local port 8888. (1) Go through the steps performed by in_pcbbind when another socket is bound to {140.252.13.33, 8888}, without any socket options. (2) Go through the steps performed when another socket is bound to the wildcard IP address, port 8888, without any socket options. (3) Go through the steps performed when another socket is bound to the wildcard IP address, port 8888, with the SO_REUSEADDR socket option.

22.4 What is the first ephemeral port number allocated by UDP?

22.5 When a process calls bind, which elements in the sockaddr_in structure must be filled in?

22.6 What happens if a process tries to bind a local broadcast address? What happens if a process tries to bind the limited broadcast address (255.255.255.255)?

Chapter 23. UDP: User Datagram Protocol

23.1. Introduction

The User Datagram Protocol, or UDP, is a simple, datagram-oriented, transport-layer protocol: each output operation by a process produces exactly one UDP datagram, which causes one IP datagram to be sent.

A process accesses UDP by creating a socket of type SOCK_DGRAM in the Internet domain. By default the socket is termed unconnected. Each time the process sends a datagram it must specify the destination IP address and port number. Each time a datagram is received for the socket, the process can receive the source IP address and port number from the datagram.

We mentioned in Section 22.5 that a UDP socket can also be connected to one particular IP address and port number. This causes all datagrams written to the socket to go to that destination, and only datagrams arriving from that IP address and port number are passed to the process.

This chapter examines the implementation of UDP.

23.2. Code Introduction

There are nine UDP functions in a single C file and various UDP definitions in two headers, as shown in Figure 23.1.

Figure 23.1. Files discussed in this chapter.

[image: Image]

Figure 23.2 shows the relationship of the six main UDP functions to other kernel functions. The shaded ellipses are the six functions that we cover in this chapter. We also cover three additional UDP functions that are called by some of these six functions.

Figure 23.2. Relationship of UDP functions to rest of kernel.

[image: Image]

Global Variables

Seven global variables are introduced in this chapter, which are shown in Figure 23.3.

Figure 23.3. Global variables introduced in this chapter.

[image: Image]

Statistics

Various UDP statistics are maintained in the global structure udpstat, described in Figure 23.4. We’ll see where these counters are incremented as we proceed through the code.

Figure 23.4. UDP statistics maintained in the udpstat structure.

[image: Image]

Figure 23.5 shows some sample output of these statistics, from the netstat -S command.

Figure 23.5. Sample UDP statistics.

[image: Image]

The number of UDP datagrams delivered (the second from last line of output) is the number of datagrams received (udps_ipackets) minus the six variables that precede it in Figure 23.5.

SNMP Variables

Figure 23.6 shows the four simple SNMP variables in the UDP group and which counters from the udpstat structure implement that variable.

Figure 23.6. Simple SNMP variables in udp group.

[image: Image]

Figure 23.7 shows the UDP listener table, named udpTable. The values returned by SNMP for this table are taken from a UDP PCB, not the udpstat structure.

Figure 23.7. Variables in UDP listener table: udpTable.

[image: Image]

23.3. UDP protosw Structure

Figure 23.8 lists the protocol switch entry for UDP.

Figure 23.8. The UDP protosw structure.

[image: Image]

We describe the five functions that begin with udp_ in this chapter. We also cover a sixth function, udp_output, which is not in the protocol switch entry but is called by udp_usrreq when a UDP datagram is output.

23.4. UDP Header

The UDP header is defined as a udphdr structure. Figure 23.9 shows the C structure and Figure 23.10 shows a picture of the UDP header.

Figure 23.9. udphdr structure.

[image: Image]

Figure 23.10. UDP header and optional data.

[image: Image]

In the source code the UDP header is normally referenced as an IP header immediately followed by a UDP header. This is how udp_input processes received IP datagrams, and how udp_output builds outgoing IP datagrams. This combined IP/UDP header is a udpiphdr structure, shown in Figure 23.11.

Figure 23.11. udpiphdr structure: combined IP/UDP header.

	

-- udp_var.h
 38 struct udpiphdr {
 39 struct ipovly ui_i; /* overlaid ip structure */
 40 struct udphdr ui_u; /* udp header */
 41 };

 42 #define ui_next ui_i.ih_next
 43 #define ui_prev ui_i.ih_prev
 44 #define ui_x1 ui_i.ih_x1
 45 #define ui_pr ui_i.ih_pr
 46 #define ui_len ui_i.ih_len
 47 #define ui_src ui_i.ih_src
 48 #define ui_dst ui_i.ih_dst
 49 #define ui_sport ui_u.uh_sport
 50 #define ui_dport ui_u.uh_dport
 51 #define ui_ulen ui_u.uh_ulen
 52 #define ui_sum ui_u.uh_sum
-- udp_var.h

The 20-byte IP header is defined as an ipovly structure, shown in Figure 23.12.

Figure 23.12. ipovly structure.

	

--- ip_var.h
 38 struct ipovly {
 39 caddr_t ih_next, ih_prev; /* for protocol sequence q's */
 40 u_char ih_x1; /* (unused) */
 41 u_char ih_pr; /* protocol */
 42 short ih_len; /* protocol length */
 43 struct in_addr ih_src; /* source internet address */
 44 struct in_addr ih_dst; /* destination internet address */
 45 };
--- ip_var.h

Unfortunately this structure is not a real IP header, as shown in Figure 8.8. The size is the same (20 bytes) but the fields are different. We’ll return to this discrepancy when we discuss the calculation of the UDP checksum in Section 23.6.

23.5. udp_init Function

The domaininit function calls UDP’s initialization function (udp_init, Figure 23.13) at system initialization time.

Figure 23.13. udp_init function.

	

--- udp_usrreq.c
 50 void
 51 udp_init()
 52 {
 53 udb.inp_next = udb.inp_prev = &udb;
 54 }
--- udp_usrreq.c

The only action performed by this function is to set the next and previous pointers in the head PCB (udb) to point to itself. This is an empty doubly linked list.

The remainder of the udb PCB is initialized to 0, although the only other field used in this head PCB is inp_lport, the next UDP ephemeral port number to allocate. In the solution for Exercise 22.4 we mention that because this local port number is initialized to 0, the first ephemeral port number will be 1024.

23.6. udp_output Function

UDP output occurs when the application calls one of the five write functions: send, sendto, sendmsg, write, or writev. If the socket is connected, any of the five functions can be called, although a destination address cannot be specified with sendto or sendmsg. If the socket is unconnected, only sendto and sendmsg can be called, and a destination address must be specified. Figure 23.14 summarizes how these five write functions end up with udp_output being called, which in turn calls ip_output.

Figure 23.14. How the five write functions end up calling udp_output.

[image: Image]

All five functions end up calling sosend, passing a pointer to a msghdr structure as an argument. The data to output is packaged into an mbuf chain and an optional destination address and optional control information are also put into mbufs by sosend. A PRU_SEND request is issued.

UDP calls the function udp_output, which we show the first half of in Figure 23.15. The four arguments are inp, a pointer to the socket Internet PCB; m, a pointer to the mbuf chain for output; addr, an optional pointer to an mbuf with the destination address packaged as a sockaddr_in structure; and control, an optional pointer to an mbuf with control information from sendmsg.

Figure 23.15. udp_output function: temporarily connect an unconnected socket.

[image: Image]

Discard optional control information

333-344

Any optional control information is discarded by m_freem, without generating an error. UDP output does not use control information for any purpose.

The comment XXX is because the control information is ignored without generating an error. Other protocols, such as the routing domain and TCP, generate an error if the process passes control information.

Temporarily connect an unconnected socket

345-359

If the caller specifies a destination address for the UDP datagram (addr is nonnull), the socket is temporarily connected to that destination address by in_pcbconnect. The socket will be disconnected at the end of this function. Before doing this connect, a check is made as to whether the socket is already connected, and, if so, the error EISCONN is returned. This is why a sendto that specifies a destination address on a connected socket returns an error.

Before the socket is temporarily connected, IP input processing is stopped by splnet. This is done because the temporary connect changes the foreign address, foreign port, and possibly the local address in the socket’s PCB. If a received UDP datagram were processed while this PCB was temporarily connected, that datagram could be delivered to the wrong process. Setting the processor priority to splnet only stops a software interrupt from causing the IP input routine to be executed (Figure 1.12), it does not prevent the interface layer from accepting incoming packets and placing them onto IP’s input queue.

[Partridge and Pink 1993] note that this operation of temporarily connecting the socket is expensive and consumes nearly one-third of the cost of each UDP transmission.

The local address from the PCB is saved in laddr before temporarily connecting, because if it is the wildcard address it will be changed by in_pcbconnect when it calls in_pcbbind.

The same rules apply to the destination address that would apply if the process called connect, since in_pcbconnect is called for both cases.

360-364

If the process doesn’t specify a destination address, and the socket is not connected, ENOTCONN is returned.

Prepend IP and UDP headers

366-373

M_PREPEND allocates room for the IP and UDP headers in front of the data. Figure 1.8 showed one scenario, assuming there is not room in the first mbuf on the chain for the 28 bytes of header. Exercise 23.1 details the other possible scenarios. The flag M_DONTWAIT is specified because if the socket is temporarily connected, IP processing is blocked, and M_PREPEND should not block.

Earlier Berkeley releases incorrectly specified M_WAIT here.

Prepending IP/UDP Headers and Mbuf Clusters

There is a subtle interaction between the M_PREPEND macro and mbuf clusters. If the user data is placed into a cluster by sosend, then 56 bytes (max_hdr from Figure 7.17) are left unused at the beginning of the cluster, allowing room for the Ethernet, IP, and UDP headers. This is to prevent M_PREPEND from allocating another mbuf just to hold these headers. M_PREPEND calls M_LEADINGSPACE to calculate how much space is available at the beginning of the mbuf:

 #define M_LEADINGSPACE(m) \
 ((m)->m_flags & M_EXT ? /* (m)->m_data - (m)-
>m_ext.ext_buf */ 0 : \
 (m)->m_flags & M_PKTHDR ? (m)->m_data - (m)-
>m_pktdat : \
 (m)->m_data - (m)->m_dat)

The code that correctly calculates the amount of room at the front of a cluster is commented out, and the macro always returns 0 if the data is in a cluster. This means that when the user data is in a cluster, M_PREPEND always allocates a new mbuf for the protocol headers instead of using the room allocated for this purpose by sosend.

The reason for commenting out the correct code in M_LEADINGSPACE is that the cluster might be shared (Section 2.9), and, if it is shared, using the space before the user’s data in the cluster could wipe out someone else’s data.

With UDP data, clusters are not shared, since udp_output does not save a copy of the data. TCP, however, saves a copy of the data in its send buffer (waiting for the data to be acknowledged), and if the data is in a cluster, it is shared. But tcp_output doesn’t call M_LEADINGSPACE, because sosend leaves room for only 56 bytes at the beginning of the cluster for datagram protocols. tcp_output always calls MGETHDR instead, to allocate an mbuf for the protocol headers.

UDP Checksum Calculation and Pseudo-Header

Before showing the last half of udp_output we describe how UDP fills in some of the fields in the IP/UDP headers, calculates the UDP checksum, and passes the IP/UDP headers and the data to IP for output. The way this is done with the ipovly structure is tricky.

Figure 23.16 shows the 28-byte IP/UDP headers that are built by udp_output in the first mbuf in the chain pointed to by m. The unshaded fields are filled in by udp_output and the shaded fields are filled in by ip_output. This figure shows the format of the headers as they appear on the wire.

Figure 23.16. IP/UDP headers: unshaded fields filled in by UDP; shaded fields filled in by IP.

[image: Image]

The UDP checksum is calculated over three areas: (1) a 12-byte pseudo-header containing fields from the IP header, (2) the 8-byte UDP header, and (3) the UDP data. Figure 23.17 shows the 12 bytes of pseudo-header used for the checksum computation, along with the UDP header. The UDP header used for the checksum calculation is identical to the UDP header that appears on the wire (Figure 23.16).

Figure 23.17. Pseudo-header used for checksum computation and UDP header.

[image: Image]

The following three facts are used in computing the UDP checksum. (1) The third 32-bit word in the pseudo-header (Figure 23.17) looks similar to the third 32-bit word in the IP header (Figure 23.16): two 8-bit values and a 16-bit value. (2) The order of the three 32-bit values in the pseudo-header is irrelevant. Actually, the computation of the Internet checksum does not depend on the order of the 16-bit values that are used (Section 8.7). (3) Including additional 32-bit words of 0 in the checksum computation has no effect.

udp_output takes advantage of these three facts and fills in the fields in the udpiphdr structure (Figure 23.11), which we depict in Figure 23.18. This structure is contained in the first mbuf in the chain pointed to by the argument m.

Figure 23.18. udpiphdr structure used by udp_output.

[image: Image]

The last three 32-bit words in the 20-byte IP header (the five members ui_x1, ui_pr, ui_len, ui_src, and ui_dst) are used as the pseudo-header for the checksum computation. The first two 32-bit words in the IP header (ui_next and ui_prev) are also used in the checksum computation, but they’re initialized to 0, and don’t affect the checksum.

Figure 23.19 summarizes the operations we’ve described.

Figure 23.19. Operations to fill in IP/UDP headers and calculate UDP checksum.

[image: Image]

1. The top picture shown in Figure 23.19 is the protocol definition of the pseudo-header, which corresponds to Figure 23.17.

2. The middle picture is the udpiphdr structure that is used in the source code, which corresponds to Figure 23.11. (To make the figure readable, the prefix ui_ has been left off all the members.) This is the structure built by udp_output in the first mbuf and then used to calculate the UDP checksum.

3. The bottom picture shows the IP/UDP headers that appear on the wire, which corresponds to Figure 23.16. The seven fields with an arrow above are filled in by udp_output before the checksum computation. The three fields with an asterisk above are filled in by udp_output after the checksum computation. The remaining six shaded fields are filled in by ip_output.

Figure 23.20 shows the last half of the udp_output function.

Figure 23.20. udp_output function: fill in headers, calculate checksum, pass to IP.

	

-- udp_usrreq.c
374 /*
375 * Fill in mbuf with extended UDP header
376 * and addresses and length put into network format.
377 */
378 ui = mtod(m, struct udpiphdr *);
379 ui->ui_next = ui->ui_prev = 0;
380 ui->ui_x1 = 0;
381 ui->ui_pr = IPPROTO_UDP;
382 ui->ui_len = htons((u_short) len + sizeof(struct udphdr));
383 ui->ui_src = inp->inp_laddr;
384 ui->ui_dst = inp->inp_faddr;
385 ui->ui_sport = inp->inp_lport;
386 ui->ui_dport = inp->inp_fport;
387 ui->ui_ulen = ui->ui_len;

388 /*
389 * Stuff checksum and output datagram.
390 */
391 ui->ui_sum = 0;
392 if (udpcksum) {
393 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
394 ui->ui_sum = 0xffff;
395 }
396 ((struct ip *) ui)->ip_len = sizeof(struct udpiphdr) + len;
397 ((struct ip *) ui)->ip_ttl = inp->inp_ip.ip_ttl; /* XXX */
398 ((struct ip *) ui)->ip_tos = inp->inp_ip.ip_tos; /* XXX */
399 udpstat.udps_opackets++;
400 error = ip_output(m, inp->inp_options, &inp->inp_route,
401 inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST),
402 inp->inp_moptions);

403 if (addr) {
404 in_pcbdisconnect(inp);
405 inp->inp_laddr = laddr;
406 splx(s);
407 }
408 return (error);
-- udp_usrreq.c

Prepare pseudo-header for checksum computation

374-387

All the members in the udpiphdr structure (Figure 23.18) are set to their respective values. The local and foreign sockets from the PCB are already in network byte order, but the UDP length must be converted to network byte order. The UDP length is the number of bytes of data (len, which can be 0) plus the size of the UDP header (8). The UDP length field appears twice in the UDP checksum calculation: ui_len and ui_ulen. One of them is redundant.

Calculate checksum

388-395

The checksum is calculated by first setting it to 0 and then calling in_cksum. If UDP checksums are disabled (a bad idea see Section 11.3 of Volume 1), 0 is sent as the checksum. If the calculated checksum is 0, 16 one bits are stored in the header instead of 0. (In one’s complement arithmetic, all one bits and all zero bits are both considered 0.) This allows the receiver to distinguish between a UDP packet without a checksum (the checksum field is 0) versus a UDP packet with a checksum whose value is 0 (the checksum is 16 one bits).

The variable udpcksum (Figure 23.3) normally defaults to 1, enabling UDP checksums. The kernel can be compiled for 4.2BSD compatibility, which initializes udpcksum to 0.

Fill in UDP length, TTL, and TOS

396-398

The pointer ui is cast to a pointer to a standard IP header (ip), and three fields in the IP header are set by UDP. The IP length field is set to the amount of data in the UDP datagram, plus 28, the size of the IP/UDP headers. Notice that this field in the IP header is stored in host byte order, not network byte order like the rest of the multibyte fields in the header. ip_output converts it to network byte order before transmission.

The TTL and TOS fields in the IP header are then set from the values in the socket’s PCB. These values are defaulted by UDP when the socket is created, but can be changed by the process using setsockopt. Since these three fields IP length, TTL, and TOS are not par t of the pseudo-header and not used in the UDP checksum computation, they must be set after the checksum is calculated but before ip_output is called.

Send datagram

400-402

ip_output sends the datagram. The second argument, inp_options, are IP options the process can set using setsockopt. These IP options are placed into the IP header by ip_output. The third argument is a pointer to the cached route in the PCB, and the fourth argument is the socket options. The only socket options that are passed to ip_output are SO_DONTROUTE (bypass the routing tables) and SO_BROADCAST (allow broadcasting). The final argument is a pointer to the multicast options for this socket.

Disconnect temporarily connected socket

403-407

If the socket was temporarily connected, in_pcbdisconnect disconnects the socket, the local IP address is restored in the PCB, and the interrupt level is restored to its saved value.

23.7. udp_input Function

UDP output is driven by a process calling one of the five write functions. The functions shown in Figure 23.14 are all called directly as part of the system call. UDP input, on the other hand, occurs when IP input receives an IP datagram on its input queue whose protocol field specifies UDP. IP calls the function udp_input through the pr_input function in the protocol switch table (Figure 8.15). Since IP input is at the software interrupt level, udp_input also executes at this level. The goal of udp_input is to place the UDP datagram onto the appropriate socket’s buffer and wake up any process blocked for input on that socket.

We’ll divide our discussion of the udp_input function into three sections:

1. the general validation that UDP performs on the received datagram,

2. processing UDP datagrams destined for a unicast address: locating the appropriate PCB and placing the datagram onto the socket’s buffer, and

3. processing UDP datagrams destined for a broadcast or multicast address: the datagram may be delivered to multiple sockets.

This last step is new with the support of multicasting in Net/3, but consumes almost one-third of the code.

General Validation of Received UDP Datagram

Figure 23.21 shows the first section of UDP input.

Figure 23.21. udp_input function: general validation of received UDP datagram.

[image: Image]

55-65

The two arguments to udp_input are m, a pointer to an mbuf chain containing the IP datagram, and iphlen, the length of the IP header (including possible IP options).

Discard IP options

67-76

If IP options are present they are discarded by ip_stripoptions. As the comments indicate, UDP should save a copy of the IP options and make them available to the receiving process through the IP_RECVOPTS socket option, but this isn’t implemented yet.

77-88

If the length of the first mbuf on the mbuf chain is less than 28 bytes (the size of the IP header plus the UDP header), m_pullup rearranges the mbuf chain so that at least 28 bytes are stored contiguously in the first mbuf.

Verify UDP length

89-101

There are two lengths associated with a UDP datagram: the length field in the IP header (ip_len) and the length field in the UDP header (uh_ulen). Recall that ipintr subtracted the length of the IP header from ip_len before calling udp_input (Figure 10.11). The two lengths are compared and there are three possibilities:

ip_len equals uh_ulen. This is the common case.

ip_len is greater than uh_ulen. The IP datagram is too big, as shown in Figure 23.22.

Figure 23.22. UDP length too small.

[image: Image]

The code believes the smaller of the two lengths (the UDP header length) and m_adj removes the excess bytes of data from the end of the datagram. In the code the second argument to m_adj is negative, which we said in Figure 2.20 trims data from the end of the mbuf chain. It is possible in this scenario that the UDP length field has been corrupted. If so, the datagram will probably be discarded shortly, assuming the sender calculated the UDP checksum, that this checksum detects the error, and that the receiver verifies the checksum. The IP length field should be correct since it was verified by IP against the amount of data received from the interface, and the IP length field is covered by the mandatory IP header checksum.

3. ip_len is less than uh_ulen. The IP datagram is smaller than possible, given the length in the UDP header. Figure 23.23 shows this case.

Figure 23.23. UDP length too big.

[image: Image]

Something is wrong and the datagram is discarded. There is no other choice here: if the UDP length field has been corrupted, it can’t be detected with the UDP checksum. The correct UDP length is needed to calculate the checksum.

As we’ve said, the UDP length is redundant. In Chapter 28 we’ll see that TCP does not have a length field in its header it uses the IP length field, minus the lengths of the IP and TCP headers, to determine the amount of data in the datagram. Why does the UDP length field exist? Possibly to add a small amount of error checking, since UDP checksums are optional.

Save copy of IP header and verify UDP checksum

102-106

udp_input saves a copy of the IP header before verifying the checksum, because the checksum computation wipes out some of the fields in the original IP header.

110

The checksum is verified only if UDP checksums are enabled for the kernel (udpcksum), and if the sender calculated a UDP checksum (the received checksum is nonzero).

This test is incorrect. If the sender calculated a checksum, it should be verified, regardless of whether outgoing checksums are calculated or not. The variable udpcksum should only specify whether outgoing checksums are calculated. Unfortunately many vendors have copied this incorrect test, although many vendors today finally ship their kernels with UDP checksums enabled by default.

111-120

Before calculating the checksum, the IP header is referenced as an ipovly structure (Figure 23.18) and the fields are initialized as described in the previous section when the UDP checksum is calculated by udp_output.

At this point special code is executed if the datagram is destined for a broadcast or multicast IP address. We defer this code until later in the section.

Demultiplexing Unicast Datagrams

Assuming the datagram is destined for a unicast address, Figure 23.24 shows the code that is executed.

Figure 23.24. udp_input function: demultiplex unicast datagram.

	

--- udp_usrreq.c

 /* demultiplex broadcast & multicast datagrams (Figure 23.26) */

206 /*
207 * Locate pcb for unicast datagram.
208 */
209 inp = udp_last_inpcb;
210 if (inp->inp_lport != uh->uh_dport ||
211 inp->inp_fport != uh->uh_sport ||
212 inp->inp_faddr.s_addr != ip->ip_src.s_addr ||
213 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) {

214 inp = in_pcblookup(&udb, ip->ip_src, uh->uh_sport,
215 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD);
216 if (inp)
217 udp_last_inpcb = inp;
218 udpstat.udpps_pcbcachemiss++;
219 }
220 if (inp == 0) {
221 udpstat.udps_noport++;
222 if (m->m_flags & (M_BCAST | M_MCAST)) {
223 udpstat.udps_noportbcast++;
224 goto bad;
225 }
226 *ip = save_ip;
227 ip->ip_len += iphlen;
228 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
229 return;
230 }
--- udp_usrreq.c

Check one-behind cache

206-209

UDP maintains a pointer to the last Internet PCB for which it received a datagram, udp_last_inpcb. Before calling in_pcblookup, which might have to search many PCBs on the UDP list, the foreign and local addresses and ports of that last PCB are compared against the received datagram. This is called a one-behind cache [Partridge and Pink 1993], and it is based on the assumption that the next datagram received has a high probability of being destined for the same socket as the last received datagram [Mogul 1991]. This cache was introduced with the 4.3BSD Tahoe release.

210-213

The order of the four comparisons between the cached PCB and the received datagram is intentional. If the PCBs don’t match, the comparisons should stop as soon as possible. The highest probability is that the destination port numbers are different this is therefore the first test. The lowest probability of a mismatch is between the local addresses, especially on a host with just one interface, so this is the last test.

Unfortunately this one-behind cache, as coded, is practically useless [Partridge and Pink 1993]. The most common type of UDP server binds only its well-known port, leaving its local address, foreign address, and foreign port wildcarded. The most common type of UDP client does not connect its UDP socket; it specifies the destination address for each datagram using sendto. Therefore most of the time the three values in the PCB inp_laddr, inp_faddr, and inp_fport are wildcards. In the cache comparison the four values in the received datagram are never wildcards, meaning the cache entry will compare equal with the received datagram only when the PCB has all four local and foreign values specified to nonwildcard values. This happens only for a connected UDP socket.

On the system bsdi, the counter udpps_pcbcachemiss was 41,253 and the counter udps_ipackets was 42,485. This is less than a 3% cache hit rate.

The netstat -s command prints most of the fields in the udpstat structure (Figure 23.5). Unfortunately the Net/3 version, and most vendor’s versions, never print udpps_pcbcachemiss. If you want to see the value, use a debugger to examine the variable in the running kernel.

Search all UDP PCBs

214-218

Assuming the comparison with the cached PCB fails, in_pcblookup searches for a match. The INPLOOKUP_WILDCARD flag is specified, allowing a wildcard match. If a match is found, the pointer to the PCB is saved in udp_last_inpcb, which we said is a cache of the last received UDP datagram’s PCB.

Generate ICMP port unreachable error

220-230

If a matching PCB is not found, UDP normally generates an ICMP port unreachable error. First the m_flags for the received mbuf chain is checked to see if the datagram was sent to a link-level broadcast or multicast destination address. It is possible to receive an IP datagram with a unicast IP address that was sent to a broadcast or multicast link-level address, but an ICMP port unreachable error must not be generated. If it is OK to generate the ICMP error, the IP header is restored to its received value (save_ip) and the IP length is also set back to its original value.

This check for a link-level broadcast or multicast address is redundant. icmp_error also performs this check. The only advantage in this redundant check is to maintain the counter udps_noportbcast in addition to the counter udps_noport.

The addition of iphlen back into ip_len is a bug. icmp_error will also do this, causing the IP length field in the IP header returned in the ICMP error to be 20 bytes too large. You can tell if a system has this bug by adding a few lines of code to the Traceroute program (Chapter 8 of Volume 1) to print this field in the ICMP port unreachable that is returned when the destination host is finally reached.

Figure 23.25 is the next section of processing for a unicast datagram, delivering the datagram to the socket corresponding to the destination PCB.

Figure 23.25. udp_input function: deliver unicast datagram to socket.

[image: Image]

Return source IP address and source port

231-236

The source IP address and source port number from the received IP datagram are stored in the global sockaddr_in structure udp_in. This structure is passed as an argument to sbappendaddr later in the function.

Using a global to hold the IP address and port number is OK because udp_input is single threaded. When this function is called by ipintr it processes the received datagram completely before returning. Also, sbappendaddr copies the socket address structure from the global into an mbuf.

IP_RECVDSTADDR socket option

237-244

The constant INP_CONTROLOPTS is the combination of the three socket options that the process can set to cause control information to be returned through the recvmsg system call for a UDP socket (Figure 22.5). The IP_RECVDSTADDR socket option returns the destination IP address from the received UDP datagram as control information. The function udp_saveopt allocates an mbuf of type MT_CONTROL and stores the 4-byte destination IP address in the mbuf. We show this function in Section 23.8.

This socket option appeared with 4.3BSD Reno and was intended for applications such as TFTP, the Trivial File Transfer Protocol, that should not respond to client requests that are sent to a broadcast address. Unfortunately, even if the receiving application uses this option, it is nontrivial to determine if the destination IP address is a broadcast address or not (Exercise 23.6).

When the multicasting changes were added in 4.4BSD, this code was left in only for datagrams destined for a unicast address. We’ll see in Figure 23.26 that this option is not implemented for datagrams sent to a broadcast of multicast address. This defeats the purpose of the option!

Figure 23.26. udp_input function: demultiplexing of broadcast and multicast datagrams.

[image: Image]

Unimplemented socket options

245-260

This code is commented out because it doesn’t work. The intent of the IP_RECVOPTS socket option is to return the IP options from the received datagram as control information, and the intent of IP_RECVRETOPTS socket option is to return source route information. The manipulation of the mp variable by all three IP_RECV socket options is to build a linked list of up to three mbufs that are then placed onto the socket’s buffer by sbappendaddr. The code shown in Figure 23.25 only returns one option as control information, so the m_next pointer of that mbuf is always a null pointer.

Append data to socket’s receive queue

262-272

At this point the received datagram (the mbuf chain pointed to by m), is ready to be placed onto the socket’s receive queue along with a socket address structure representing the sender’s IP address and port (udp_in), and optional control information (the destination IP address, the mbuf pointed to by opts). This is done by sbappendaddr. Before calling this function, however, the pointer and lengths of the first mbuf on the chain are adjusted to ignore the IP and UDP headers. Before returning, sorwakeup is called for the receiving socket to wake up any processes asleep on the socket’s receive queue.

Error return

273-276

If an error is encountered during UDP input processing, udp_input jumps to the label bad. The mbuf chain containing the datagram is released, along with the mbuf chain containing any control information (if present).

Demultiplexing Multicast and Broadcast Datagrams

We now return to the portion of udp_input that handles datagrams sent to a broadcast or multicast IP address. The code is shown in Figure 23.26.

121-138

As the comments indicate, these datagrams are delivered to all sockets that match, not just a single socket. The inadequacy of the UDP interface that is mentioned refers to the inability of a process to receive asynchronous errors on a UDP socket (notably ICMP port unreachables) unless the socket is connected. We described this in Section 22.11.

139-145

The source IP address and port number are saved in the global sockaddr_in structure udp_in, which is passed to sbappendaddr. The mbuf chain’s length and data pointer are updated to ignore the IP and UDP headers.

146-164

The large for loop scans each UDP PCB to find all matching PCBs. in_pcblookup is not called for this demultiplexing because it returns only one PCB, whereas the broadcast or multicast datagram may be delivered to more than one PCB.

If the local port in the PCB doesn’t match the destination port from the received datagram, the entry is ignored. If the local address in the PCB is not the wildcard, it is compared to the destination IP address and the entry is skipped if they’re not equal. If the foreign address in the PCB is not a wildcard, it is compared to the source IP address and if they match, the foreign port must also match the source port. This last test assumes that if the socket is connected to a foreign IP address it must also be connected to a foreign port, and vice versa. This is the same logic we saw in in_pcblookup.

165-177

If this is not the first match found (last is nonnull), a copy of the datagram is placed onto the receive queue for the previous match. Since sbappendaddr releases the mbuf chain when it is done, a copy is first made by m_copy. Any processes waiting for this data are awakened by sorwakeup. A pointer to this matching socket structure is saved in last.

This use of the variable last avoids calling m_copy (an expensive operation since an entire mbuf chain is copied) unless there are multiple recipients for a given datagram. In the common case of a single recipient, the for loop just sets last to the single matching PCB, and when the loop terminates, sbappendaddr places the mbuf chain onto the socket’s receive queue a copy is not made.

178-188

If this matching socket doesn’t have either the SO_REUSEPORT or the SO_REUSEADDR socket option set, then there’s no need to check for additional matches and the loop is terminated. The datagram is placed onto the single socket’s receive queue in the call to sbappendaddr outside the loop.

189-197

If last is null at the end of the loop, no matches were found. An ICMP error is not generated because the datagram was sent to a broadcast or multicast IP address.

198-204

The final matching entry (which could be the only matching entry) has the original datagram (m) placed onto its receive queue. After sorwakeup is called, udp_input returns, since the processing the broadcast or multicast datagram is complete.

The remainder of the function (shown previously in Figure 23.24) handles unicast datagrams.

Connected UDP Sockets and Multihomed Hosts

There is a subtle problem when using a connected UDP socket to exchange datagrams with a process on a multihomed host. Datagrams from the peer may arrive with a different source IP address and will not be delivered to the connected socket.

Consider the example shown in Figure 23.27.

Figure 23.27. Example of connected UDP socket sending datagram to a multihomed host.

[image: Image]

Three steps take place.

1. The client on bsdi creates a UDP socket and connects it to 140.252.1.29, the PPP interface on sun, not the Ethernet interface. A datagram is sent on the socket to the server.

The server on sun receives the datagram and accepts it, even though it arrives on an interface that differs from the destination IP address. (sun is acting as a router, so whether it implements the weak end system model or the strong end system model doesn’t matter.) The datagram is delivered to the server, which is waiting for client requests on an unconnected UDP socket.

The server sends a reply, but since the reply is being sent on an unconnected UDP socket, the source IP address for the reply is chosen by the kernel based on the outgoing interface (140.252.13.33). The destination IP address in the request is not used as the source address for the reply.

When the reply is received by bsdi it is not delivered to the client’s connected UDP socket since the IP addresses don’t match.

3. bsdi generates an ICMP port unreachable error since the reply can’t be demultiplexed. (This assumes that there is not another process on bsdi eligible to receive the datagram.)

The problem in this example is that the server does not use the destination IP address from the request as the source IP address of the reply. If it did, the problem wouldn’t exist, but this solution is nontrivial see Exercise 23.10. We’ll see in Figure 28.16 that a TCP server uses the destination IP address from the client as the source IP address from the server, if the server has not explicitly bound a local IP address to its socket.

23.8. udp_saveopt Function

If a process specifies the IP_RECVDSTADDR socket option, to receive the destination IP address from the received datagram udp_saveopt is called by udp_input:

*mp = udp_saveopt((caddr_t) &ip->ip_dst, sizeof(struct in_addr),
 IP_RECVDSTADDR);

Figure 23.28 shows this function.

Figure 23.28. udp_saveopt function: create mbuf with control information.

	

-- udp_usrreq.c
278 /*
279 * Create a "control" mbuf containing the specified data
280 * with the specified type for presentation with a datagram.
281 */
282 struct mbuf *
283 udp_saveopt(p, size, type)
284 caddr_t p;
285 int size;
286 int type;
287 {
288 struct cmsghdr *cp;
289 struct mbuf *m;

290 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
291 return ((struct mbuf *) NULL);
292 cp = (struct cmsghdr *) mtod(m, struct cmsghdr *);
293 bcopy(p, CMSG_DATA(cp), size);
294 size += sizeof(*cp);
295 m->m_len = size;
296 cp->cmsg_len = size;
297 cp->cmsg_level = IPPROTO_IP;
298 cp->cmsg_type = type;
299 return (m);
300 }
-- udp_usrreq.c

278-289

The arguments are p, a pointer to the information to be stored in the mbuf (the destination IP address from the received datagram); size, its size in bytes (4 in this example, the size of an IP address); and type, the type of control information (IP_RECVDSTADDR).

290-299

An mbuf is allocated, and since the code is executing at the software interrupt layer, M_DONTWAIT is specified. The pointer cp points to the data portion of the mbuf, and it is cast into a pointer to a cmsghdr structure (Figure 16.14). The IP address is copied from the IP header into the data portion of the cmsghdr structure by bcopy. The length of the mbuf is then set (to 16 in this example), followed by the remainder of the cmsghdr structure. Figure 23.29 shows the final state of the mbuf.

Figure 23.29. Mbuf containing destination address from received datagram as control information.

[image: Image]

The cmsg_len field contains the length of the cmsghdr structure (12) plus the size of the cmsg_data field (4 for this example). If the application calls recvmsg to receive the control information, it must go through the cmsghdr structure to determine the type and length of the cmsg_data field.

23.9. udp_ctlinput Function

When icmp_input receives an ICMP error (destination unreachable, parameter problem, redirect, source quench, and time exceeded) the corresponding protocol’s pr_ctlinput function is called:

 if (ctlfunc = inetsw[ip_protox[icp->icmp_ip.ip_p]
].pr_ctlinput)
 (*ctlfunc)(code, (struct sockaddr *)&icmpsrc, &icp
>icmp_ip);

For UDP, Figure 22.32 showed that the function udp_ctlinput is called. We show this function in Figure 23.30.

Figure 23.30. udp_ctlinput function: process received ICMP errors.

	

--- udp_usrreq.c
314 void
315 udp_ctlinput(cmd, sa, ip)
316 int cmd;
317 struct sockaddr *sa;
318 struct ip *ip;
319 {
320 struct udphdr *uh;
321 extern struct in_addr zeroin_addr;
322 extern u_char inetctlerrmap[];

323 if (!PRC_IS_REDIRECT(cmd) &&
324 ((unsigned) cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0))
325 return;
326 if (ip) {
327 uh = (struct udphdr *) ((caddr_t) ip + (ip->ip_hl << 2));
328 in_pcbnotify(&udb, sa, uh->uh_dport, ip->ip_src, uh->uh_sport,
329 cmd, udp_notify);
330 } else
331 in_pcbnotify(&udb, sa, 0, zeroin_addr, 0, cmd, udp_notify);
332 }
--- udp_usrreq.c

314-322

The arguments are cmd, one of the PRC_xxx constants from Figure 11.19; sa, a pointer to a sockaddr_in structure containing the source IP address from the ICMP message; and ip, a pointer to the IP header that caused the error. For the destination unreachable, parameter problem, source quench, and time exceeded errors, the pointer ip points to the IP header that caused the error. But when udp_ctlinput is called by pfctlinput for redirects (Figure 22.32), sa points to a sockaddr_in structure containing the destination address that should be redirected, and ip is a null pointer. There is no loss of information in this final case, since we saw in Section 22.11 that a redirect is applied to all TCP and UDP sockets connected to the destination address. The nonnull third argument is needed, however, for other errors, such as a port unreachable, since the protocol header following the IP header contains the unreachable port.

323-325

If the error is not a redirect, and either the PRC_xxx value is too large or there is no error code in the global array inetctlerrmap, the ICMP error is ignored. To understand this test we need to review what happens to a received ICMP message.

1. icmp_input converts the ICMP type and code into a PRC_xxx error code.

2. The PRC_xxx error code is passed to the protocol’s control-input function.

3. The Internet protocols (TCP and UDP) map the PRC_xxx error code into one of the Unix errno values using inetctlerrmap, and this value is returned to the process.

Figures 11.1 and 11.2 summarize this processing of ICMP messages.

Returning to Figure 23.30, we can see what happens to an ICMP source quench that arrives in response to a UDP datagram. icmp_input converts the ICMP message into the error PRC_QUENCH and udp_ctlinput is called. But since the errno column for this ICMP error is blank in Figure 11.2, the error is ignored.

326-331

The function in_pcbnotify notifies the appropriate PCBs of the ICMP error. If the third argument to udp_ctlinput is nonnull, the source and destination UDP ports from the datagram that caused the error are passed to in_pcbnotify along with the source IP address.

udp_notify Function

The final argument to in_pcbnotify is a pointer to a function that in_pcbnotify calls for each PCB that is to receive the error. The function for UDP is udp_notify and we show it in Figure 23.31.

Figure 23.31. udp_notify function: notify process of an asynchronous error.

	

--- udp_usrreq.c
305 static void
306 udp_notify(inp, errno)
307 struct inpcb *inp;
308 int errno;
309 {
310 inp->inp_socket->so_error = errno;
311 sorwakeup(inp->inp_socket);
312 sowwakeup(inp->inp_socket);
313 }
--- udp_usrreq.c

301-313

The errno value, the second argument to this function, is stored in the socket’s so_error variable. By setting this socket variable, the socket becomes readable and writable if the process calls select. Any processes waiting to receive or send on the socket are then awakened to receive the error.

23.10. udp_usrreq Function

The protocol’s user-request function is called for a variety of operations. We saw in Figure 23.14 that a call to any one of the five write functions on a UDP socket ends up calling UDP’s user-request function with a request of PRU_SEND.

Figure 23.32 shows the beginning and end of udp_usrreq. The body of the switch is discussed in separate figures following this figure. The function arguments are described in Figure 15.17.

Figure 23.32. Body of udp_usrreq function.

[image: Image]
[image: Image]

417-428

The PRU_CONTROL request is from the ioctl system call. The function in_control processes the request completely.

429-432

The socket pointer was converted to the PCB pointer when inp was declared at the beginning of the function. The only time a null PCB pointer is allowed is when a new socket is being created (PRU_ATTACH).

433-436

The comment indicates that whenever entries are being added to or deleted from UDP’s PCB list, the code must be protected by splnet. This is done because udp_usrreq is called as part of a system call, and it doesn’t want to be interrupted by UDP input (called by IP input, which is called as a software interrupt) while it is modifying the doubly linked list of PCBs. UDP input is also blocked while modifying the local or foreign addresses or ports in a PCB, to prevent a received UDP datagram from being delivered incorrectly by in_pcblookup.

We now discuss the individual case statements. The PRU_ATTACH request, shown in Figure 23.33, is from the socket system call.

Figure 23.33. udp_usrreq function: PRU_ATTACH and PRU_DETACH requests.

	

-- udp_usrreq.c
438 case PRU_ATTACH:
439 if (inp != NULL) {
440 error = EINVAL;
441 break;
442 }
443 s = splnet();
444 error = in_pcballoc(so, &udb);
445 splx(s);
446 if (error)
447 break;
448 error = soreserve(so, udp_sendspace, udp_recvspace);
449 if (error)
450 break;
451 ((struct inpcb *) so->so_pcb)->inp_ip.ip_ttl = ip_defttl;
452 break;

453 case PRU_DETACH:
454 udp_detach(inp);
455 break;
-- udp_usrreq.c

438-447

If the socket structure already points to a PCB, EINVAL is returned. in_pcballoc allocates a new PCB, adds it to the front of UDP’s PCB list, and links the socket structure and the PCB to each other.

448-450

soreserve reserves buffer space for a receive buffer and a send buffer for the socket. As noted in Figure 16.7, soreserve just enforces system limits; the buffer space is not actually allocated. The default values for the send and receive buffer sizes are 9216 bytes (udp_sendspace) and 41,600 bytes (udp_recvspace). The former allows for a maximum UDP datagram size of 9200 bytes (to hold 8 Kbytes of data in an NFS packet), plus the 16-byte sockaddr_in structure for the destination address. The latter allows for 40 1024-byte datagrams to be queued at one time for the socket. The process can change these defaults by calling setsockopt.

451-452

There are two fields in the prototype IP header in the PCB that the process can change by calling setsockopt: the TTL and the TOS. The TTL defaults to 64 (ip_defttl) and the TOS defaults to 0 (normal service), since the PCB is initialized to 0 by in_pcballoc.

453-455

The close system call issues the PRU_DETACH request. The function udp_detach, shown in Figure 23.34, is called. This function is also called later in this section for the PRU_ABORT request.

Figure 23.34. udp_detach function: delete a UDP PCB.

	

-- udp_usrreq.c
534 static void
535 udp_detach(inp)
536 struct inpcb *inp;
537 {
538 int s = splnet();

539 if (inp == udp_last_inpcb)
540 udp_last_inpcb = &udb;
541 in_pcbdetach(inp);
542 splx(s);
543 }
-- udp_usrreq.c

If the last-received PCB pointer (the one-behind cache) points to the PCB being detached, the cache pointer is set to the head of the UDP list (udb). The function in_pcbdetach removes the PCB from UDP’s list and releases the PCB.

Returning to udp_usrreq, a PRU_BIND request is the result of the bind system call and a PRU_LISTEN request is the result of the listen system call. Both are shown in Figure 23.35.

Figure 23.35. udp_usrreq function: PRU_BIND and PRU_LISTEN requests.

	

-- udp_usrreq.c
456 case PRU_BIND:
457 s = splnet();
458 error = in_pcbbind(inp, addr);
459 splx(s);
460 break;

461 case PRU_LISTEN:
462 error = EOPNOTSUPP;
463 break;
-- udp_usrreq.c

456-460

All the work for a PRU_BIND request is done by in_pcbbind.

461-463

The PRU_LISTEN request is invalid for a connectionless protocol it is used only by connection-oriented protocols.

We mentioned earlier that a UDP application, either a client or server (normally a client), can call connect. This fixes the foreign IP address and port number that this socket can send to or receive from. Figure 23.36 shows the PRU_CONNECT, PRU_CONNECT2, and PRU_ACCEPT requests.

Figure 23.36. udp_usrreq function: PRU_CONNECT, PRU_CONNECT2, and PRU_ACCEPT requests.

	

--- udp_usrreq.c
464 case PRU_CONNECT:
465 if (inp->inp_faddr.s_addr != INADDR_ANY) {
466 error = EISCONN;
467 break;
468
469 s = splnet();
470 error = in_pcbconnect(inp, addr);
471 splx(s);
472 if (error == 0)
473 soisconnected(so);
474 break;

475 case PRU_CONNECT2:
476 error = EOPNOTSUPP;
477 break;

478 case PRU_ACCEPT:
479 error = EOPNOTSUPP;
480 break;
--- udp_usrreq.c

464-474

If the socket is already connected, EISCONN is returned. The socket should never be connected at this point, because a call to connect on an already-connected UDP socket generates a PRU_DISCONNECT request before this PRU_CONNECT request. Otherwise in_pcbconnect does all the work. If no errors are encountered, soisconnected marks the socket structure as being connected.

475-477

The socketpair system call issues the PRU_CONNECT2 request, which is defined only for the Unix domain protocols.

478-480

The PRU_ACCEPT request is from the accept system call, which is defined only for connection-oriented protocols.

The PRU_DISCONNECT request can occur in two cases for a UDP socket:

1. When a connected UDP socket is closed, PRU_DISCONNECT is called before PRU_DETACH.

2. When a connect is issued on an already-connected UDP socket, soconnect issues the PRU_DISCONNECT request before the PRU_CONNECT request.

Figure 23.37 shows the PRU_DISCONNECT request.

Figure 23.37. udp_usrreq function: PRU_DISCONNECT request.

	

-- udp_usrreq.c
481 case PRU_DISCONNECT:
482 if (inp->inp_faddr.s_addr == INADDR_ANY) {
483 error = ENOTCONN;
484 break;
485 }
486 s = splnet();
487 in_pcbdisconnect(inp);
488 inp->inp_laddr.s_addr = INADDR_ANY;
489 splx(s);
490 so->so_state &= ~SS_ISCONNECTED; /* XXX */
491 break;
-- udp_usrreq.c

If the socket is not already connected, ENOTCONN is returned. Otherwise in_pcbdisconnect sets the foreign IP address to 0.0.0.0 and the foreign port to 0. The local address is also set to 0.0.0.0, since this PCB variable could have been set by connect.

A call to shutdown specifying that the process has finished sending data generates the PRU_SHUTDOWN request, although it is rare for a process to issue this system call for a UDP socket. Figure 23.38 shows the PRU_SHUTDOWN, PRU_SEND, and PRU_ABORT requests.

Figure 23.38. udp_usrreq function: PRU_SHUTDOWN, PRU_SEND, and PRU_ABORT requests.

	

--- udp_usrreq.c
492 case PRU_SHUTDOWN:
493 socantsendmore(so);
494 break;

495 case PRU_SEND:
496 return (udp_output(inp, m, addr, control));

497 case PRU_ABORT:
498 soisdisconnected(so);
499 udp_detach(inp);
500 break;
--- udp_usrreq.c

492-494

socantsendmore sets the socket’s flags to prevent any future output.

495-496

In Figure 23.14 we showed how the five write functions ended up calling udp_usrreq with a PRU_SEND request. udp_output sends the datagram. udp_usrreq returns, to avoid falling through to the label release (Figure 23.32), since the mbuf chain containing the data (m) must not be released yet. IP output appends this mbuf chain to the appropriate interface output queue, and the device driver will release the mbuf when the data has been transmitted.

The only buffering of UDP output within the kernel is on the interface’s output queue. If there is room in the socket’s send buffer for the datagram and destination address, sosend calls udp_usrreq, which we see calls udp_output. We saw in Figure 23.20 that ip_output is then called, which calls ether_output for an Ethernet, placing the datagram onto the interface’s output queue (if there is room). If the process calls sendto faster than the interface can transmit the datagrams, ether_output can return ENOBUFS, which is returned to the process.

497-500

A PRU_ABORT request should never be generated for a UDP socket, but if it is, the socket is disconnected and the PCB detached.

The PRU_SOCKADDR and PRU_PEERADDR requests are from the getsockname and getpeername system calls, respectively. These two requests, and the PRU_SENSE request, are shown in Figure 23.39.

Figure 23.39. udp_usrreq function: PRU_SOCKADDR, PRU_PEERADDR, and PRU_SENSE requests.

	

-- udp_usrreq.c
501 case PRU_SOCKADDR:
502 in_setsockaddr(inp, addr);
503 break;

504 case PRU_PEERADDR:
505 in_setpeeraddr(inp, addr);
506 break;

507 case PRU_SENSE:
508 /*
509 * fstat: don't bother with a blocksize.
510 */
511 return (0);
-- udp_usrreq.c

501-506

The functions in_setsockaddr and in_setpeeraddr fetch the information from the PCB, storing the result in the addr argument.

507-511

The fstat system call generates the PRU_SENSE request. The function returns OK, but doesn’t return any other information. We’ll see later that TCP returns the size of the send buffer as the st_blksize element of the stat structure.

The remaining seven PRU_xxx requests, shown in Figure 23.40, are not supported for a UDP socket.

Figure 23.40. udp_usrreq function: unsupported requests.

	

--- udp_usrreq.c
512 case PRU_SENDOOB:
513 case PRU_FASTTIMO:
514 case PRU_SLOWTIMO:
515 case PRU_PROTORCV:
516 case PRU_PROTOSEND:
517 error = EOPNOTSUPP;
518 break;

519 case PRU_RCVD:
520 case PRU_RCVOOB:
521 return (EOPNOTSUPP); /* do not free mbuf's */
--- udp_usrreq.c

There is a slight difference in how the last two are handled because PRU_RCVD doesn’t pass a pointer to an mbuf as an argument (m is a null pointer) and PRU_RCVOOB passes a pointer to an mbuf for the protocol to fill in. In both cases the error is immediately returned, without breaking out of the switch and releasing the mbuf chain. With PRU_RCVOOB the caller releases the mbuf that it allocated.

23.11. udp_sysctl Function

The sysctl function for UDP supports only a single option, the UDP checksum flag. The system administrator can enable or disable UDP checksums using the sysctl(8) program. Figure 23.41 shows the udp_sysctl function. This function calls sysctl_int to fetch or set the value of the integer udpcksum.

Figure 23.41. udp_sysctl function.

	

--- udp_usrreq.c
547 udp_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
548 int *name;
549 u_int namelen;
550 void *oldp;
551 size_t *oldlenp;
552 void *newp;
553 size_t newlen;
554 {
555 /* All sysctl names at this level are terminal. */
556 if (namelen != 1)
557 return (ENOTDIR);

558 switch (name[0]) {
559 case UDPCTL_CHECKSUM:
560 return (sysctl_int(oldp, oldlenp, newp, newlen, &udpcksum));
561 default:
562 return (ENOPROTOOPT);
563 }
564 /* NOTREACHED */
565 }
--- udp_usrreq.c

23.12. Implementation Refinements

UDP PCB Cache

In Section 22.12 we talked about some general features of PCB searching and how the code we’ve seen uses a linear search of the protocol’s PCB list. We now tie this together with the one-behind cache used by UDP in Figure 23.24.

The problem with the one-behind cache occurs when the cached PCB contains wildcard values (for either the local address, foreign address, or foreign port): the cached value never matches any received datagram. One solution tested in [Partridge and Pink 1993] is to modify the cache to not compare wildcarded values. That is, instead of comparing the foreign address in the PCB with the source address in the datagram, compare these two values only if the foreign address in the PCB is not a wildcard.

There’s a subtle problem with this approach [Partridge and Pink 1993]. Assume there are two sockets bound to local port 555. One has the remaining three elements wildcarded, while the other has connected to the foreign address 128.1.2.3 and the foreign port 1600. If we cache the first PCB and a datagram arrives from 128.1.2.3, port 1600, we can’t ignore comparing the foreign addresses just because the cached value has a wildcarded foreign address. This is called cache hiding. The cached PCB has hidden another PCB that is a better match in this example.

To get around cache hiding requires more work when a new entry is added to or deleted from the cache. Those PCBs that hide other PCBs cannot be cached. This is not a problem, however, because the normal scenario is to have one socket per local port. The example we just gave with two sockets bound to local port 555, while possible (especially on a multihomed host), is rare.

The next enhancement tested in [Partridge and Pink 1993] is to also remember the PCB of the last datagram sent. This is motivated by [Mogul 1991], who shows that half of all datagrams received are replies to the last datagram that was sent. Cache hiding is a problem here also, so PCBs that would hide other PCBs are not cached.

The results of these two caches shown in [Partridge and Pink 1993] on a general-purpose system measured for around 100,000 received UDP datagrams show a 57% hit rate for the last-received PCB cache and a 30% hit rate for the last-sent PCB cache. The amount of CPU time spent in udp_input is more than halved, compared to the version with no caching.

These two caches still depend on a certain amount of locality: that with a high probability the UDP datagram that just arrived is either from the same peer as the last UDP datagram received or from the peer to whom the last datagram was sent. The latter is typical for request-response applications that send a datagram and wait for a reply. [McKenney and Dove 1992] show that some applications, such as data entry into an online transaction processing (OLTP) system, don’t yield the high cache hit rates that [Partridge and Pink 1993] observed. As we mentioned in Section 22.12, placing the PCBs onto hash chains provided an order of magnitude improvement over the last-received and last-sent caches for a system with thousands of OLTP connections.

UDP Checksum

The next area for improving the implementation is to combine the copying of data between the process and the kernel with the calculation of the checksum. In Net/3, each byte of data is processed twice during an output operation: once when copied from the process into an mbuf (the function uiomove, which is called by sosend), and again when the UDP checksum is calculated (by the function in_cksum, which is called by udp_output). This happens on input as well as output.

[Partridge and Pink 1993] modified the UDP output processing from what we showed in Figure 23.14 so that a UDP-specific function named udp_sosend is called instead of sosend. This new function calculates the checksum of the UDP header and the pseudo-header in-line (instead of calling the general-purpose function in_cksum) and then copies the data from the process into an mbuf chain using a special function named in_uiomove (instead of the general-purpose uiomove). This new function copies the data and updates the checksum. The amount of time spent copying the data and calculating the checksum is reduced with this technique by about 40 to 45%.

On the receive side the scenario is different. UDP calculates the checksum of the UDP header and the pseudo-header, removes the UDP header, and queues the data for the appropriate socket. When the application reads the data, a special version of soreceive (called udp_soreceive) completes the calculation of the checksum while copying the data into the user’s buffer. If the checksum is in error, however, the error is not detected until the entire datagram has been copied into the user’s buffer. In the normal case of a blocking socket, udp_soreceive just waits for the next datagram to arrive. But if the socket is nonblocking, the error EWOULDBLOCK must be returned if another datagram is not ready to be passed to the process. This implies two changes in the socket interface for a nonblocking read from a UDP socket:

1. The select function can indicate that a nonblocking UDP socket is readable, yet the error EWOULDBLOCK is unexpectedly returned by one of the read functions if the checksum fails.

2. Since a checksum error is detected after the datagram has been copied into the user’s buffer, the application’s buffer is changed even though no data is returned by the read.

Even with a blocking socket, if the datagram with the checksum error contains 100 bytes of data and the next datagram without an error contains 40 bytes of data, recvfrom returns a length of 40, but the 60 bytes that follow in the user’s buffer have also been modified.

[Partridge and Pink 1993] compare the timings for a copy versus a copy-with-checksum for six different computers. They show that the checksum is calculated for free during the copy operation on many architectures. This occurs when memory access speeds and CPU processing speeds are mismatched, as is true for many current RISC processors.

23.13. Summary

UDP is a simple, connectionless protocol, which is why we cover it before looking at TCP. UDP output is simple: IP and UDP headers are prepended to the user’s data, as much of the header is filled in as possible, and the result is passed to ip_output. The only complication is calculating the UDP checksum, which involves prepending a pseudo-header just for the checksum computation. We’ll encounter a similar pseudo-header for the calculation of the TCP checksum in Chapter 26.

When udp_input receives a datagram, it first performs a general validation (the length and checksum); the processing then differs depending on whether the destination IP address is a unicast address or a broadcast or multicast address. A unicast datagram is delivered to at most one process, but a broadcast or multicast datagram can be delivered to multiple processes. A one-behind cache is maintained for unicast datagrams, which maintains a pointer to the last Internet PCB for which a UDP datagram was received. We saw, however, that because of the prevalence of wildcard addressing with UDP applications, this cache is practically useless.

The udp_ctlinput function is called to handle received ICMP messages, and the udp_usrreq function handles the PRU_xxx requests from the socket layer.

Exercises

23.1 List the five types of mbuf chains that udp_output passes to ip_output. (Hint: look at sosend.)

23.2 What happens to the answer for the previous exercise when the process specifies IP options for the outgoing datagram?

23.3 Does a UDP client need to call bind? Why or why not?

23.4 What happens to the processor priority level in udp_output if the socket is unconnected and the call to M_PREPEND in Figure 23.15 fails?

23.5 udp_output does not check for a destination port of 0. Is it possible to send a UDP datagram with a destination port of 0?

23.6 Assuming the IP_RECVDSTADDR socket option worked when a datagram was sent to a broadcast address, how can you then determine if this address is a broadcast address?

23.7 Who releases the mbuf that udp_saveopt (Figure 23.28) allocates?

23.8 How can a process disconnect a connected UDP socket? That is, the process calls connect and exchanges datagrams with that peer, and then the process wants to disconnect the socket, allowing it to call sendto and send a datagram to some other host.

23.9 In our discussion of Figure 22.25 we noted that a UDP application that calls connect with a foreign IP address of 255.255.255.255 actually sends datagrams out the primary interface with a destination IP address corresponding to the broadcast address of that interface. What happens if a UDP application uses an unconnected socket instead, calling sendto with a destination address of 255.255.255.255?

23.10 After discussing the problem with Figure 23.27, we mentioned that this problem would not exist if the server used the destination IP address from the request as the source IP address of the reply. Explain how the server could do this.

23.11 Implement changes to allow a process to perform path MTU discovery using UDP: the process must be able to set the “don’t fragment” bit in the resulting IP datagram and be told if the corresponding ICMP destination unreachable error is received.

23.12 Does the variable udp_in need to be global?

23.13 Modify udp_input to save the IP options and make them available to the receiver with the IP_RECVOPTS socket option.

23.14 Fix the one-behind cache in Figure 23.24.

23.15 Fix udp_input to implement the IP_RECVOPTS and IP_RETOPTS socket options.

23.16 Fix udp_input so that the IP_RECVDSTADDR socket option works for datagrams sent to a broadcast or multicast address.

Chapter 24. TCP: Transmission Control Protocol

24.1. Introduction

The Transmission Control Protocol, or TCP, provides a connection-oriented, reliable, byte-stream service between the two end points of an application. This is completely different from UDP’s connectionless, unreliable, datagram service.

The implementation of UDP presented in Chapter 23 comprised 9 functions and about 800 lines of C code. The TCP implementation we’re about to describe comprises 28 functions and almost 4,500 lines of C code. Therefore we divide the presentation of TCP into multiple chapters.

These chapters are not an introduction to TCP. We assume the reader is familiar with the operation of TCP from Chapters 17—24 of Volume 1.

24.2. Code Introduction

The TCP functions appear in six C files and numerous TCP definitions are in seven headers, as shown in Figure 24.1.

Figure 24.1. Files discussed in the TCP chapters.

[image: Image]

Figure 24.2 shows the relationship of the various TCP functions to other kernel functions. The shaded ellipses are the nine main TCP functions that we cover. Eight of these functions appear in the TCP protosw structure (Figure 24.8) and the ninth is tcp_output.

Figure 24.2. Relationship of TCP functions to rest of the kernel.

[image: Image]

Global Variables

Figure 24.3 shows the global variables we encounter throughout the TCP functions.

Figure 24.3. Global variables introduced in the following chapters.

[image: Image]

Statistics

Various TCP statistics are maintained in the global structure tcpstat, described in Figure 24.4. We’ll see where these counters are incremented as we proceed through the code.

Figure 24.4. TCP statistics maintained in the tcpstat structure.

[image: Image]

Figure 24.5 shows some sample output of these statistics, from the netstat –s command. These statistics were collected after the host had been up for 30 days. Since some counters come in pairs one counts the number of packets and the other the number of bytes we abbreviate these in the figure. For example, the two counters for the second line of the table are tcps_sndpack and tcps_sndbyte.

Figure 24.5. Sample TCP statistics.

[image: Image]

The counter for stcps_sndbyte should be 3,722,884,824, not -22,194,928 bytes. This is an average of about 405 bytes per segment, which makes sense. Similarly, the counter for tcps_rcvackbyte should be 3,738,811,552, not -21,264,360 bytes (for an average of about 565 bytes per segment). These numbers are incorrectly printed as negative numbers because the printf calls in the netstat program use %d (signed decimal) instead of %lu (long integer, unsigned decimal). All the counters are unsigned long integers, and these two counters are near the maximum value of an unsigned 32-bit long integer (232—1=4,294,967,295).

SNMP Variables

Figure 24.6 shows the 14 simple SNMP variables in the TCP group and the counters from the tcpstat structure implementing that variable. The constant values shown for the first four entries are fixed by the Net/3 implementation. The counter tcpCurrEstab is computed as the number of Internet PCBs on the TCP PCB list.

Figure 24.6. Simple SNMP variables in tcp group.

[image: Image]

Figure 24.7 shows tcpTable, the TCP listener table.

Figure 24.7. Variables in TCP listener table: tcpTable.

[image: Image]

The first PCB variable (t_state) is from the TCP control block (Figure 24.13) and the remaining four are from the Internet PCB (Figure 22.4).

24.3. TCP protosw Structure

Figure 24.8 lists the TCP protosw structure, the protocol switch entry for TCP.

Figure 24.8. The TCP protosw structure.

[image: Image]

24.4. TCP Header

The TCP header is defined as a tcphdr structure. Figure 24.9 shows the C structure and Figure 24.10 shows a picture of the TCP header.

Figure 24.9. tcphdr structure.

	

--- tcp.h
 40 struct tcphdr {
 41 u_short th_sport; /* source port */
 42 u_short th_dport; /* destination port */
 43 tcp_seq th_seq; /* sequence number */
 44 tcp_seq th_ack; /* acknowledgement number */
 45 #if BYTE_ORDER == LITTLE_ENDIAN
 46 u_char th_x2:4, /* (unused) */
 47 th_off:4; /* data offset */
 48 #endif
 49 #if BYTE_ORDER == BIG_ENDIAN
 50 u_char th_off:4, /* data offset */
 51 th_x2:4; /* (unused) */
 52 #endif
 53 u_char th_flags; /* ACK, FIN, PUSH, RST, SYN, URG */
 54 u_short th_win; /* advertised window */
 55 u_short th_sum; /* checksum */
 56 u_short th_urp; /* urgent offset */
 57 };
--- tcp.h

Figure 24.10. TCP header and optional data.

[image: Image]

Most RFCs, most books (including Volume 1), and the code we’ll examine call th_urp the urgent pointer. A better term is the urgent offset, since this field is a 16-bit unsigned offset that must be added to the sequence number field (th_seq) to give the 32-bit sequence number of the last byte of urgent data. (There is a continuing debate over whether this sequence number points to the last byte of urgent data or to the byte that follows. This is immaterial for the present discussion.) We’ll see in Figure 24.13 that TCP correctly calls the 32-bit sequence number of the last byte of urgent data snd_up the send urgent pointer. But using the term pointer for the 16-bit offset in the TCP header is misleading. In Exercise 26.6 we’ll reiterate the distinction between the urgent pointer and the urgent offset.

The 4-bit header length, the 6 reserved bits that follow, and the 6 flag bits are defined in C as two 4-bit bit-fields, followed by 8 bits of flags. To handle the difference in the order of these 4-bit fields within an 8-bit byte, the code contains an #ifdef based on the byte order of the system.

Also notice that we call the 4-bit th_off the header length, while the C code calls it the data offset. Both are correct since it is the length of the TCP header, including options, in 32-bit words, which is the offset of the first byte of data.

The th_flags member contains 6 flag bits, accessed using the names in Figure 24.11.

Figure 24.11. th_flags values.

[image: Image]

In Net/3 the TCP header is normally referenced as an IP header immediately followed by a TCP header. This is how tcp_input processes received IP datagrams and how tcp_output builds outgoing IP datagrams. This combined IP/TCP header is a tcpiphdr structure, shown in Figure 24.12.

Figure 24.12. tcpiphdr structure: combined IP/TCP header.

	

--- tcpip.h
 38 struct tcpiphdr {
 39 struct ipovly ti_i; /* overlaid ip structure */
 40 struct tcphdr ti_t; /* tcp header */
 41 };

 42 #define ti_next ti_i.ih_next
 43 #define ti_prev ti_i.ih_prev
 44 #define ti_x1 ti_i.ih_x1
 45 #define ti_pr ti_i.ih_pr
 46 #define ti_len ti_i.ih_len
 47 #define ti_src ti_i.ih_src
 48 #define ti_dst ti_i.ih_dst
 49 #define ti_sport ti_t.th_sport
 50 #define ti_dport ti_t.th_dport
 51 #define ti_seq ti_t.th_seq
 52 #define ti_ack ti_t.th_ack
 53 #define ti_x2 ti_t.th_x2
 54 #define ti_off ti_t.th_off
 55 #define ti_flags ti_t.th_flags
 56 #define ti_win ti_t.th_win
 57 #define ti_sum ti_t.th_sum
 58 #define ti_urp ti_t.th_urp
--- tcpip.h

38-58

The 20-byte IP header is defined as an ipovly structure, which we showed earlier in Figure 23.12. As we discussed with Figure 23.19, this structure is not a real IP header, although the lengths are the same (20 bytes).

24.5. TCP Control Block

In Figure 22.1 we showed that TCP maintains its own control block, a tcpcb structure, in addition to the standard Internet PCB. In contrast, UDP has everything it needs in the Internet PCB it doesn’t need its own control block.

The TCP control block is a large structure, occupying 140 bytes. As shown in Figure 22.1 there is a one-to-one relationship between the Internet PCB and the TCP control block, and each points to the other. Figure 24.13 shows the definition of the TCP control block.

Figure 24.13. tcpcb structure: TCP control block.

[image: Image]

We’ll save the discussion of these variables until we encounter them in the code.

Figure 24.14 shows the values for the t_flags member.

Figure 24.14. t_flags values.

[image: Image]

24.6. TCP State Transition Diagram

Many of TCP’s actions, in response to different types of segments arriving on a connection, can be summarized in a state transition diagram, shown in Figure 24.15. We also duplicate this diagram on one of the front end papers, for easy reference while reading the TCP chapters.

Figure 24.15. TCP state transition diagram.

[image: Image]

These state transitions define the TCP finite state machine. Although the transition from LISTEN to SYN_SENT is allowed by TCP, there is no way to do this using the sockets API (i.e., a connect is not allowed after a listen).

The t_state member of the control block holds the current state of a connection, with the values shown in Figure 24.16.

Figure 24.16. t_state values.

[image: Image]

This figure also shows the tcp_outflags array, which contains the outgoing flags for tcp_output to use when the connection is in that state.

Figure 24.16 also shows the numerical values of these constants since the code uses their numerical relationships. For example, the following two macros are defined:

#define TCPS_HAVERCVDSYN(s) ((s) >= TCPS_SYN_RECEIVED)
#define TCPS_HAVERCVDFIN(s) ((s) >= TCPS_TIME_WAIT)

Similarly, we’ll see that tcp_notify handles ICMP errors differently when the connection is not yet established, that is, when t_state is less than TCPS_ESTABLISHED.

The name TCPS_HAVERCVDSYN is correct, but the name TCPS_HAVERCVDFIN is misleading. A FIN has also been received in the CLOSE_WAIT, CLOSING, and LAST_ACK states. We encounter this macro in Chapter 29.

Half-Close

When a process calls shutdown with a second argument of 1, it is called a half-close. TCP sends a FIN but allows the process to continue receiving on the socket. (Section 18.5 of Volume 1 contains examples of TCP’s half-close.)

For example, even though we label the ESTABLISHED state “data transfer,” if the process does a half-close, moving the connection to the FIN_WAIT_1 and then the FIN_WAIT_2 states, data can continue to be received by the process in these two states.

24.7. TCP Sequence Numbers

Every byte of data exchanged across a TCP connection, along with the SYN and FIN flags, is assigned a 32-bit sequence number. The sequence number field in the TCP header (Figure 24.10) contains the sequence number of the first byte of data in the segment. The acknowledgment number field in the TCP header contains the next sequence number that the sender of the ACK expects to receive, which acknowledges all data bytes through the acknowledgment number minus 1. In other words, the acknowledgment number is the next sequence number expected by the sender of the ACK. The acknowledgment number is valid only if the ACK flag is set in the header. We’ll see that TCP always sets the ACK flag except for the first SYN sent by an active open (the SYN_SENT state; see tcp_outflags[2] in Figure 24.16) and in some RST segments.

Since a TCP connection is full-duplex, each end must maintain a set of sequence numbers for both directions of data flow. In the TCP control block (Figure 24.13) there are 13 sequence numbers: eight for the send direction (the send sequence space) and five for the receive direction (the receive sequence space).

Figure 24.17 shows the relationship of four of the variables in the send sequence space: snd_wnd, snd_una, snd_nxt, and snd_max. In this example we number the bytes 1 through 11.

Figure 24.17. Example of send sequence space.

[image: Image]

An acceptable ACK is one for which the following inequality holds:

snd_una < acknowledgment field <= snd_max

In Figure 24.17 an acceptable ACK has an acknowledgment field of 5, 6, or 7. An acknowledgment field less than or equal to snd_una is a duplicate ACK it acknowledges data that has already been ACKed, or else snd_una would not have incremented past those bytes.

We encounter the following test a few times in tcp_output, which is true if a segment is being retransmitted:

snd_nxt < snd_max

Figure 24.18 shows the other end of the connection in Figure 24.17: the receive sequence space, assuming the segment containing sequence numbers 4, 5, and 6 has not been received yet. We show the three variables rcv_nxt, rcv_wnd, and rcv_adv.

Figure 24.18. Example of receive sequence space.

[image: Image]

The receiver considers a received segment valid if it contains data within the window, that is, if either of the following two inequalities is true:

rcv_nxt <= beginning sequence number of segment < rcv_nxt + rcv_wnd

rcv_nxt <= ending sequence number of segment < rcv_nxt + rcv_wnd

The beginning sequence number of a segment is just the sequence number field in the TCP header, ti_seq. The ending sequence number is the sequence number field plus the number of bytes of TCP data, minus 1.

For example, Figure 24.19 could represent the TCP segment containing the 3 bytes with sequence numbers 4, 5, and 6 in Figure 24.17.

Figure 24.19. TCP segment transmitted as an IP datagram.

[image: Image]

We assume that there are 8 bytes of IP options and 12 bytes of TCP options. Figure 24.20 shows the values of the relevant variables.

Figure 24.20. Values of variables corresponding to Figure 24.19.

[image: Image]

ti_len is not a field that is transmitted in the TCP header. Instead, it is computed as shown in Figure 24.20 and stored in the overlaid IP structure (Figure 24.12) once the received header fields have been checksummed and verified. The last value in this figure is not stored in the header, but is computed from the other values when needed.

Modular Arithmetic with Sequence Numbers

A problem that TCP must deal with is that the sequence numbers are from a finite 32-bit number space: 0 through 4,294,967,295. If more than 232 bytes of data are exchanged across a TCP connection, the sequence numbers will be reused. Sequence numbers wrap around from 4,294,967,295 to 0.

Even if less than 232 bytes of data are exchanged, wrap around is still a problem because the sequence numbers for a connection don’t necessarily start at 0. The initial sequence number for each direction of data flow across a connection can start anywhere between 0 and 4,294,967,295. This complicates the comparison of sequence numbers. For example, sequence number 1 is “greater than” 4,294,967,295, as we discuss below.

TCP sequence numbers are defined as unsigned longs in tcp.h:

typedef u_long tcp_seq;

The four macros shown in Figure 24.21 compare sequence numbers.

Figure 24.21. Macros for TCP sequence number comparison.

	

--- tcp_seq.h
 40 #define SEQ_LT(a,b) ((int)((a)-(b)) < 0)
 41 #define SEQ_LEQ(a,b) ((int)((a)-(b)) <= 0)
 42 #define SEQ_GT(a,b) ((int)((a)-(b)) > 0)
 43 #define SEQ_GEQ(a,b) ((int)((a)-(b)) >= 0)
--- tcp_seq.h

Example—Sequence Number Comparisons

Let’s look at an example to see how TCP’s sequence numbers operate. Assume 3-bit sequence numbers, 0 through 7. Figure 24.22 shows these eight sequence numbers, their 3-bit binary representation, and their two’s complement representation. (To form the two’s complement take the binary number, convert each 0 to a 1 and vice versa, then add 1.) We show the two’s complement because to form a - b we just add a to the two’s complement of b.

Figure 24.22. Example using 3-bit sequence numbers.

[image: Image]

The final three columns of this table are 0 minus x, 1 minus x, and 2 minus x. In these final three columns, if the value is considered to be a signed integer (notice the cast to int in all four macros in Figure 24.21), the value is less than 0 (the SEQ_LT macro) if the high-order bit is 1, and the value is greater than 0 (the SEQ_GT macro) if the high-order bit is 0 and the value is not 0. We show horizontal lines in these final three columns to distinguish between the four negative and the four nonnegative values.

If we look at the fourth column of Figure 24.22, (labeled “0 - x”), we see that 0 (i.e., x), is less than 1, 2, 3, and 4 (the high-order bit of the result is 1), and 0 is greater than 5, 6, and 7 (the high-order bit is 0 and the result is not 0). We show this relationship pictorially in Figure 24.23.

Figure 24.23. TCP sequence number comparisons for 3-bit sequence numbers.

[image: Image]

Figure 24.24 shows a similar figure using the fifth row of the table (1 - x).

Figure 24.24. TCP sequence number comparisons for 3-bit sequence numbers.

[image: Image]

Figure 24.25 is another representation of the two previous figures, using circles to reiterate the wrap around of sequence numbers.

Figure 24.25. Another way to visualize Figures 24.23 and 24.24.

[image: Image]

With regard to TCP, these sequence number comparisons determine whether a given sequence number is in the future or in the past (a retransmission). For example, using Figure 24.24, if TCP is expecting sequence number 1 and sequence number 6 arrives, since 6 is less than 1 using the sequence number arithmetic we showed, the data byte is considered a retransmission of a previously received data byte and is discarded. But if sequence number 5 is received, since it is greater than 1 it is considered a future data byte and is saved by TCP, awaiting the arrival of the missing bytes 2, 3, and 4 (assuming byte 5 is within the receive window).

Figure 24.26 is an expansion of the left circle in Figure 24.25, using TCP’s 32-bit sequence numbers instead of 3-bit sequence numbers.

Figure 24.26. Comparisons against 0, using 32-bit sequence numbers.

[image: Image]

The right circle in Figure 24.26 is to reiterate that one-half of the 32-bit sequence space uses 231 numbers.

24.8. tcp_init Function

The domaininit function calls TCP’s initialization function, tcp_init (Figure 24.27), at system initialization time.

Figure 24.27. tcp_init function.

	

--- tcp_subr.c
 43 void
 44 tcp_init()
 45 {

 46 tcp_iss = 1; /* wrong */
 47 tcb.inp_next = tcb.inp_prev = &tcb;

 48 if (max_protohdr < sizeof(struct tcpiphdr))
 49 max_protohdr = sizeof(struct tcpiphdr);
 50 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
 51 panic("tcp_init");
 52 }
--- tcp_subr.c

Set initial send sequence number (ISS)

46

The initial send sequence number (ISS), tcp_iss, is initialized to 1. As the comment indicates, this is wrong. We discuss the implications behind this choice shortly, when we describe TCP’s quiet time. Compare this to the initialization of the IP identifier in Figure 7.23, which used the time-of-day clock.

Initialize linked list of TCP Internet PCBs

47

The next and previous pointers in the head PCB (tcb) point to itself. This is an empty doubly linked list. The remainder of the tcb PCB is initialized to 0 (all uninitialized globals are set to 0), although the only other field used in this head PCB is inp_lport, the next TCP ephemeral port number to allocate. The first ephemeral port used by TCP will be 1024, for the reasons described in the solution for Exercise 22.4.

Calculate maximum protocol header length

48-51

If the maximum protocol header encountered so far is less than 40 bytes, max_protohdr is set to 40 (the size of the combined IP and TCP headers, without any options). This variable is described in Figure 7.17. If the sum of max_linkhdr (normally 16) and 40 is greater than the amount of data that fits into an mbuf with a packet header (100 bytes, MHLEN from Figure 2.7), the kernel panics (Exercise 24.2).

MSL and Quiet Time Concept

TCP requires any host that crashes without retaining any knowledge of the last sequence numbers used on active connections to refrain from sending any TCP segments for one MSL (2 minutes, the quiet time) on reboot. Few TCPs, if any, retain this knowledge over a crash or operator shutdown.

MSL is the maximum segment lifetime. Each implementation chooses a value for the MSL. It is the maximum amount of time any segment can exist in the network before being discarded. A connection that is actively closed remains in the CLOSE_WAIT state (Figure 24.15) for twice the MSL.

RFC 793 [Postel 1981c] recommends an MSL of 2 minutes, but Net/3 uses an MSL of 30 seconds (the constant TCPTV_MSL in Figure 25.3).

The problem occurs if packets are delayed somewhere in the network (RFC 793 calls these wandering duplicates). Assume a Net/3 system starts up, initializes tcp_iss to 1 (as in Figure 24.27) and then crashes just after the sequence numbers wrap. We’ll see in Section 25.5 that TCP increments tcp_iss by 128,000 every second, causing the wrap around of the ISS to occur about 9.3 hours after rebooting. Also, tcp_iss is incremented by 64,000 each time a connect is issued, which can cause the wrap around to occur earlier than 9.3 hours. The following scenario is one example of how an old segment can incorrectly be delivered to a connection:

1. A client and server have an established connection. The client’s port number is 1024. The client sends a data segment with a starting sequence number of 2. This data segment gets trapped in a routing loop somewhere between the two end points and is not delivered to the server. This data segment becomes a wandering duplicate.

2. The client retransmits the data segment starting with sequence number 2, which is delivered to the server.

3. The client closes the connection.

4. The client host crashes.

5. The client host reboots about 40 seconds after crashing, causing TCP to initialize tcp_iss to 1 again.

6. Another connection is immediately established by the same client to the same server, using the same socket pair: the client uses 1024 again, and the server uses its well-known port. The client’s SYN uses sequence number 1. This new connection using the same socket pair is called a new incarnation of the old connection.

7. The wandering duplicate from step 1 is delivered to the server, and it thinks this datagram belongs to the new connection, when it is really from the old connection.

Figure 24.28 is a time line of this sequence of steps.

Figure 24.28. Example of old segment delivered to new incarnation of a connection.

[image: Image]

This problem exists even if the rebooting TCP were to use an algorithm based on its time-of-day clock to choose the ISS on rebooting: regardless of the ISS for the previous incarnation of a connection, because of sequence number wrap it is possible for the ISS after rebooting to nearly equal the sequence number in use before the reboot.

Besides saving the sequence number of all established connections, the only other way around this problem is for the rebooting TCP to be quiet (i.e., not send any TCP segments) for MSL seconds after crashing. Few TCPs do this, however, since it takes most hosts longer than MSL seconds just to reboot.

24.9. Summary

This chapter is an introduction to the TCP source code in the six chapters that follow. TCP maintains its own control block for each connection, containing all the variable and state information for the connection.

A state transition diagram is defined for TCP that shows under what conditions TCP moves from one state to another and what segments get sent by TCP for each transition. This diagram shows how connections are established and terminated. We’ll refer to this state transition diagram frequently in our description of TCP.

Every byte exchanged across a TCP connection has an associated sequence number, and TCP maintains numerous sequence numbers in the connection control block: some for sending and some for receiving (since TCP is full-duplex). Since these sequence numbers are from a finite 32-bit sequence space, they wrap around from the maximum value back to 0. We explained how the sequence numbers are compared to each other using less-than and greater-than tests, which we’ll encounter repeatedly in the TCP code.

Finally, we looked at one of the simplest of the TCP functions, tcp_init, which initializes TCP’s linked list of Internet PCBs. We also discussed TCP’s choice of an initial send sequence number, which is used when actively opening a connection.

Exercises

24.1 What is the average number of bytes transmitted and received per connection from the statistics in Figure 24.5?

24.2 Is the kernel panic in tcp_init reasonable?

24.3 Execute netstat -a to see how many TCP end points your system currently has active.

Chapter 25. TCP Timers

25.1. Introduction

We start our detailed description of the TCP source code by looking at the various TCP timers. We encounter these timers throughout most of the TCP functions.

TCP maintains seven timers for each connection. They are briefly described here, in the approximate order of their occurrence during the lifetime of a connection.

1. A connection-establishment timer starts when a SYN is sent to establish a new connection. If a response is not received within 75 seconds, the connection establishment is aborted.

2. A retransmission timer is set when TCP sends data. If the data is not acknowledged by the other end when this timer expires, TCP retransmits the data. The value of this timer (i.e., the amount of time TCP waits for an acknowledgment) is calculated dynamically, based on the round-trip time measured by TCP for this connection, and based on the number of times this data segment has been retransmitted. The retransmission timer is bounded by TCP to be between 1 and 64 seconds.

3. A delayed ACK timer is set when TCP receives data that must be acknowledged, but need not be acknowledged immediately. Instead, TCP waits up to 200 ms before sending the ACK. If, during this 200-ms time period, TCP has data to send on this connection, the pending acknowledgment is sent along with the data (called piggybacking).

4. A persist timer is set when the other end of a connection advertises a window of 0, stopping TCP from sending data. Since window advertisements from the other end are not sent reliably (that is, ACKs are not acknowledged, only data is acknowledged), there’s a chance that a future window update, allowing TCP to send some data, can be lost. Therefore, if TCP has data to send and the other end advertises a window of 0, the persist timer is set and when it expires, 1 byte of data is sent to see if the window has opened. Like the retransmission timer, the persist timer value is calculated dynamically, based on the round-trip time. The value of this is bounded by TCP to be between 5 and 60 seconds.

5. A keepalive timer can be set by the process using the SO_KEEPALIVE socket option. If the connection is idle for 2 hours, the keepalive timer expires and a special segment is sent to the other end, forcing it to respond. If the expected response is received, TCP knows that the other host is still up, and TCP won’t probe it again until the connection is idle for another 2 hours. Other responses to the keepalive probe tell TCP that the other host has crashed and rebooted. If no response is received to a fixed number of keepalive probes, TCP assumes that the other end has crashed, although it can’t distinguish between the other end being down (i.e., it crashed and has not yet rebooted) and a temporary lack of connectivity to the other end (i.e., an intermediate router or phone line is down).

6. A FIN_WAIT_2 timer. When a connection moves from the FIN_WAIT_1 state to the FIN_WAIT_2 state (Figure 24.15) and the connection cannot receive any more data (implying the process called close, instead of taking advantage of TCP’s half-close with shutdown), this timer is set to 10 minutes. When this timer expires it is reset to 75 seconds, and when it expires the second time the connection is dropped. The purpose of this timer is to avoid leaving a connection in the FIN_WAIT_2 state forever, if the other end never sends a FIN. (We don’t show this timeout in Figure 24.15.)

7. A TIME_WAIT timer, often called the 2MSL timer. The term 2MSL means twice the MSL, the maximum segment lifetime defined in Section 24.8. It is set when a connection enters the TIME_WAIT state (Section 18.6 of Volume 1 describes the reasoning for the 2MSL wait state in detail. The timer is set to 1 minute (Net/3 uses an MSL of 30 seconds) when the connection enters the TIME_WAIT state and when it expires, the TCP control block and Internet PCB are deleted, allowing that socket pair to be reused.

TCP has two timer functions: one is called every 200 ms (the fast timer) and the other every 500 ms (the slow timer). The delayed ACK timer is different from the other six: when the delayed ACK timer is set for a connection it means that a delayed ACK must be sent the next time the 200-ms timer expires (i.e., the elapsed time is between 0 and 200 ms). The other six timers are decremented every 500 ms, and only when the counter reaches 0 does the corresponding action take place.

25.2. Code Introduction

The delayed ACK timer is enabled for a connection when the TF_DELACK flag (Figure 24.14) is set in the TCP control block. The array t_timer in the TCP control block contains four (TCPT_NTIMERS) counters used to implement the other six timers. The indexes into this array are shown in Figure 25.1. We describe briefly how the six timers (other than the delayed ACK timer) are implemented by these four counters.

Figure 25.1. Indexes into the t_timer array.

[image: Image]

Each entry in the t_timer array contains the number of 500-ms clock ticks until the timer expires, with 0 meaning that the timer is not set. Since each timer is a short, if 16 bits hold a short, the maximum timer value is 16,383.5 seconds, or about 4.5 hours.

Notice in Figure 25.1 that four “timer counters” implement six TCP “timers,” because some of the timers are mutually exclusive. We’ll distinguish between the counters and the timers. The TCPT_KEEP counter implements both the keepalive timer and the connection-establishment timer, since the two timers are never used at the same time for a connection. Similarly, the 2MSL timer and the FIN_WAIT_2 timer are implemented using the TCPT_2MSL counter, since a connection is only in one state at a time. The first section of Figure 25.2 summarizes the implementation of the seven TCP timers. The second and third sections of the table show how four of the seven timers are initialized using three global variables from Figure 24.3 and two constants from Figure 25.3. Notice that two of the three globals are used with multiple timers. We’ve already said that the delayed ACK timer is tied to TCP’s 200-ms timer, and we describe how the other two timers are set later in this chapter.

Figure 25.2. Implementation of the seven TCP timers.

[image: Image]

Figure 25.3. Fundamental timer values for the implementation.

[image: Image]

Figure 25.3 shows the fundamental timer values for the Net/3 implementation.

Figure 25.4 shows other timer constants that we’ll encounter.

Figure 25.4. Timer constants.

[image: Image]

The TCPT_RANGESET macro, shown in Figure 25.5, sets a timer to a given value, making certain the value is between the specified minimum and maximum.

Figure 25.5. TCPT_RANGESET macro.

	

-- tcp_timer.h
102 #define TCPT_RANGESET(tv, value, tvmin, tvmax) { \
103 (tv) = (value); \
104 if ((tv) < (tvmin)) \
105 (tv) = (tvmin); \
106 else if ((tv) > (tvmax)) \
107 (tv) = (tvmax); \
108 }
-- tcp_timer.h

We see in Figure 25.3 that the retransmission timer and the persist timer have upper and lower bounds, since their values are calculated dynamically, based on the measured round-trip time. The other timers are set to constant values.

There is one additional timer that we allude to in Figure 25.4 but don’t discuss in this chapter: the linger timer for a socket, set by the SO_LINGER socket option. This is a socket-level timer used by the close system call (Section 15.15). We will see in Figure 30.12 that when a socket is closed, TCP checks whether this socket option is set and whether the linger time is 0. If so, the connection is aborted with an RST instead of TCP’s normal close.

25.3. tcp_canceltimers Function

The function tcp_canceltimers, shown in Figure 25.6, is called by tcp_input when the TIME_WAIT state is entered. All four timer counters are set to 0, which turns off the retransmission, persist, keepalive, and FIN_WAIT_2 timers, before tcp_input sets the 2MSL timer.

Figure 25.6. tcp_canceltimers function.

	

-- tcp_timer.c
107 void
108 tcp_canceltimers(tp)
109 struct tcpcb *tp;
110 {
111 int i;

112 for (i = 0; i < TCPT_NTIMERS; i++)
113 tp->t_timer[i] = 0;
114 }
-- tcp_timer.c

25.4. tcp_fasttimo Function

The function tcp_fasttimo, shown in Figure 25.7, is called by pr_fasttimo every 200 ms. It handles only the delayed ACK timer.

Figure 25.7. tcp_fasttimo function, which is called every 200 ms.

	

-- tcp_timer.c
 41 void
 42 tcp_fasttimo()
 43 {
 44 struct inpcb *inp;
 45 struct tcpcb *tp;
 46 int s = splnet();

 47 inp = tcb.inp_next;
 48 if (inp)
 49 for (; inp != &tcb; inp = inp->inp_next)
 50 if ((tp = (struct tcpcb *) inp->inp_ppcb) &&
 51 (tp->t_flags & TF_DELACK)) {
 52 tp->t_flags &= ~TF_DELACK;
 53 tp->t_flags |= TF_ACKNOW;
 54 tcpstat.tcps_delack++;
 55 (void) tcp_output(tp);
 56 }
 57 splx(s);
 58 }
-- tcp_timer.c

Each Internet PCB on the TCP list that has a corresponding TCP control block is checked. If the TF_DELACK flag is set, it is cleared and the TF_ACKNOW flag is set instead. tcp_output is called, and since the TF_ACKNOW flag is set, an ACK is sent.

How can TCP have an Internet PCB on its PCB list that doesn’t have a TCP control block (the test at line 50)? When a socket is created (the PRU_ATTACH request, in response to the socket system call) we’ll see in Figure 30.11 that the creation of the Internet PCB is done first, followed by the creation of the TCP control block. Between these two operations a high-priority clock interrupt can occur (Figure 1.13), which calls tcp_fasttimo.

25.5. tcp_slowtimo Function

The function tcp_slowtimo, shown in Figure 25.8, is called by pr_slowtimo every 500 ms. It handles the other six TCP timers: connection establishment, retransmission, persist, keepalive, FIN_WAIT_2, and 2MSL.

Figure 25.8. tcp_slowtimo function, which is called every 500 ms.

	

-- tcp_timer.c
 64 void
 65 tcp_slowtimo()
 66 {
 67 struct inpcb *ip, *ipnxt;
 68 struct tcpcb *tp;
 69 int s = splnet();
 70 int i;

 71 tcp_maxidle = TCPTV_KEEPCNT * tcp_keepintvl;
 72 /*
 73 * Search through tcb's and update active timers.
 74 */
 75 ip = tcb.inp_next;
 76 if (ip == 0) {
 77 splx(s);
 78 return;
 79 }
 80 for (; ip != &tcb; ip = ipnxt) {
 81 ipnxt = ip->inp_next;
 82 tp = intotcpcb(ip);
 83 if (tp == 0)
 84 continue;
 85 for (i = 0; i < TCPT_NTIMERS; i++) {
 86 if (tp->t_timer[i] && --tp->t_timer[i] == 0) {
 87 (void) tcp_usrreq(tp->t_inpcb->inp_socket,
 88 PRU_SLOWTIMO, (struct mbuf *) 0,
 89 (struct mbuf *) i, (struct mbuf *) 0);
 90 if (ipnxt->inp_prev != ip)
 91 goto tpgone;
 92 }
 93 }
 94 tp->t_idle++;
 95 if (tp->t_rtt)
 96 tp->t_rtt++;
 97 tpgone:
 98 ;
 99 }
100 tcp_iss += TCP_ISSINCR / PR_SLOWHZ; /* increment iss */
101 tcp_now++; /* for timestamps */
102 splx(s);
103 }
-- tcp_timer.c

71

tcp_maxidle is initialized to 10 minutes. This is the maximum amount of time TCP will send keepalive probes to another host, waiting for a response from that host. This variable is also used with the FIN_WAIT_2 timer, as we describe in Section 25.6. This initialization statement could be moved to tcp_init, since it only needs to be evaluated when the system is initialized (see Exercise 25.2).

Check each timer counter in all TCP control blocks

72-89

Each Internet PCB on the TCP list that has a corresponding TCP control block is checked. Each of the four timer counters for each connection is tested, and if nonzero, the counter is decremented. When the timer reaches 0, a PRU_SLOWTIMO request is issued. We’ll see that this request calls the function tcp_timers, which we describe later in this chapter.

The fourth argument to tcp_usrreq is a pointer to an mbuf. But this argument is actually used for different purposes when the mbuf pointer is not required. Here we see the index i is passed, telling the request which timer has expired. The funny-looking cast of i to an mbuf pointer is to avoid a compile-time error.

Check if TCP control block has been deleted

90-93

Before examining the timers for a control block, a pointer to the next Internet PCB is saved in ipnxt. Each time the PRU_SLOWTIMO request returns, tcp_slowtimo checks whether the next PCB in the TCP list still points to the PCB that’s being processed. If not, it means the control block has been deleted perhaps the 2MSL timer expired or the retransmission timer expired and TCP is giving up on this connection causing a jump to tpgone, skipping the remaining timers for this control block, and moving on to the next PCB.

Count idle time

94

t_idle is incremented for the control block. This counts the number of 500-ms clock ticks since the last segment was received on this connection. It is set to 0 by tcp_input when a segment is received on the connection and used for three purposes: (1) by the keepalive algorithm to send a probe after the connection is idle for 2 hours, (2) to drop a connection in the FIN_WAIT_2 state that is idle for 10 minutes and 75 seconds, and (3) by tcp_output to return to the slow start algorithm after the connection has been idle for a while.

Increment RTT counter

95-96

If this connection is timing an outstanding segment, t_rtt is nonzero and counts the number of 500-ms clock ticks until that segment is acknowledged. It is initialized to 1 by tcp_output when a segment is transmitted whose RTT should be timed. tcp_slowtimo increments this counter.

Increment initial send sequence number

100

tcp_iss was initialized to 1 by tcp_init. Every 500 ms it is incremented by 64,000: 128,000 (TCP_ISSINCR) divided by 2 (PR_SLOWHZ). This is a rate of about once every 8 microseconds, although tcp_iss is incremented only twice a second. We’ll see that tcp_iss is also incremented by 64,000 each time a connection is established, either actively or passively.

RFC 793 specifies that the initial sequence number should increment roughly every 4 microseconds, or 250,000 times a second. The Net/3 value increments at about one-half this rate.

Increment RFC 1323 timestamp value

101

tcp_now is initialized to 0 on bootstrap and incremented every 500 ms. It is used by the timestamp option defined in RFC 1323 [Jacobson, Braden, and Borman 1992], which we describe in Section 26.6.

75-79

Notice that if there are no TCP connections active on the host (tcb.inp_next is null), neither tcp_iss nor tcp_now is incremented. This would occur only when the system is being initialized, since it would be rare to find a Unix system attached to a network without a few TCP servers active.

25.6. tcp_timers Function

The function tcp_timers is called by TCP’s PRU_SLOWTIMO request (Figure 30.10):

case PRU_SLOWTIMO:
 tp = tcp_timers(tp, (int)nam);

when any one of the four TCP timer counters reaches 0 (Figure 25.8).

The structure of the function is a switch statement with one case per timer, as outlined in Figure 25.9.

Figure 25.9. tcp_timers function: general organization.

[image: Image]

We now discuss three of the four timer counters (five of TCP’s timers), saving the retransmission timer for Section 25.11.

FIN_WAIT_2 and 2MSL Timers

TCP’s TCPT_2MSL counter implements two of TCP’s timers.

1. FIN_WAIT_2 timer. When tcp_input moves from the FIN_WAIT_1 state to the FIN_WAIT_2 state and the socket cannot receive any more data (implying the process called close, instead of taking advantage of TCP’s half-close with shutdown), the FIN_WAIT_2 timer is set to 10 minutes (tcp_maxidle). We’ll see that this prevents the connection from staying in the FIN_WAIT_2 state forever.

2. 2MSL timer. When TCP enters the TIME_WAIT state, the 2MSL timer is set to 60 seconds (TCPTV_MSL times 2).

Figure 25.10 shows the case for the 2MSL timer executed when the timer reaches 0.

Figure 25.10. tcp_timers function: expiration of 2MSL timer counter.

[image: Image]

2MSL timer

127-139

The puzzling logic in the conditional is because the two different uses of the TCPT_2MSL counter are intermixed (Exercise 25.4). Let’s first look at the TIME_WAIT state. When the timer expires after 60 seconds, tcp_close is called and the control blocks are released. We have the scenario shown in Figure 25.11.

Figure 25.11. Setting and expiration of 2MSL timer in TIME_WAIT state.

[image: Image]

This figure shows the series of function calls that occurs when the 2MSL timer expires. We also see that setting one of the timers for N seconds in the future (2 x N ticks), causes the timer to expire somewhere between 2 x N - 1 and 2 x N ticks in the future, since the time until the first decrement of the counter is between 0 and 500 ms in the future.

FIN_WAIT_2 timer

127-139

If the connection state is not TIME_WAIT, the TCPT_2MSL counter is the FIN_WAIT_2 timer. As soon as the connection has been idle for more than 10 minutes (tcp_maxidle) the connection is closed. But if the connection has been idle for less than or equal to 10 minutes, the FIN_WAIT_2 timer is reset for 75 seconds in the future. Figure 25.12 shows the typical scenario.

Figure 25.12. FIN_WAIT_2 timer to avoid infinite wait in FIN_WAIT_2 state.

[image: Image]

The connection moves from the FIN_WAIT_1 state to the FIN_WAIT_2 state on the receipt of an ACK (Figure 24.15). Receiving this ACK sets t_idle to 0 and the FIN_WAIT_2 timer is set to 1200 (tcp_maxidle). In Figure 25.12 we show the up arrow just to the right of the tick mark starting the 10-minute period, to reiterate that the first decrement of the counter occurs between 0 and 500 ms after the counter is set. After 1199 ticks the timer expires, but since t_idle is incremented after the test and decrement of the four counters in Figure 25.8, t_idle is 1198. (We assume the connection is idle for this 10-minute period.) The comparison of 1198 as less than or equal to 1200 is true, so the FIN_WAIT_2 timer is set to 150 (tcp_keepintvl). When the timer expires again in 75 seconds, assuming the connection is still idle, t_idle is now 1348, the test is false, and tcp_close is called.

The reason for the 75-second timeout after the first 10-minute timeout is as follows: a connection in the FIN_WAIT_2 state is not dropped until the connection has been idle for more than 10 minutes. There’s no reason to test t_idle until at least 10 minutes have expired, but once this time has passed, the value of t_idle is checked every 75 seconds. Since a duplicate segment could be received, say a duplicate of the ACK that moved the connection from the FIN_WAIT_1 state to the FIN_WAIT_2 state, the 10-minute wait is restarted when the segment is received (since t_idle will be set to 0).

Terminating an idle connection after more than 10 minutes in the FIN_WAIT_2 state violates the protocol specification, but this is practical. In the FIN_WAIT_2 state the process has called close, all outstanding data on the connection has been sent and acknowledged, the other end has acknowledged the FIN, and TCP is waiting for the process at the other end of the connection to issue its close. If the other process never closes its end of the connection, our end can remain in the FIN_WAIT_2 forever. A counter should be maintained for the number of connections terminated for this reason, to see how often this occurs.

Persist Timer

Figure 25.13 shows the case for when the persist timer expires.

Figure 25.13. tcp_timers function: expiration of persist timer.

	

--- tcp_timer.c
210 /*
211 * Persistence timer into zero window.
212 * Force a byte to be output, if possible.
213 */
214 case TCPT_PERSIST:
215 tcpstat.tcps_persisttimeo++;
216 tcp_setpersist(tp);
217 tp->t_force = 1;
218 (void) tcp_output(tp);
219 tp->t_force = 0;
220 break;
--- tcp_timer.c

Force window probe segment

210-220

When the persist timer expires, there is data to send on the connection but TCP has been stopped by the other end’s advertisement of a zero-sized window. tcp_setpersist calculates the next value for the persist timer and stores it in the TCPT_PERSIST counter. The flag t_force is set to 1, forcing tcp_output to send 1 byte, even though the window advertised by the other end is 0.

Figure 25.14 shows typical values of the persist timer for a LAN, assuming the retransmission timeout for the connection is 1.5 seconds (see Figure 22.1 of Volume 1).

Figure 25.14. Time line of persist timer when probing a zero window.

[image: Image]

Once the value of the persist timer reaches 60 seconds, TCP continues sending window probes every 60 seconds. The reason the first two values are both 5, and not 1.5 and 3, is that the persist timer is lower bounded at 5 seconds. It is also upper bounded at 60 seconds. The multiplication of each value by 2 to give the next value is called an exponential backoff, and we describe how it is calculated in Section 25.9.

Connection Establishment and Keepalive Timers

TCP’s TCPT_KEEP counter implements two timers:

1. When a SYN is sent, the connection-establishment timer is set to 75 seconds (TCPTV_KEEP_INIT). This happens when connect is called, putting a connection into the SYN_SENT state (active open), or when a connection moves from the LISTEN to the SYN_RCVD state (passive open). If the connection doesn’t enter the ESTABLISHED state within 75 seconds, the connection is dropped.

2. When a segment is received on a connection, tcp_input resets the keepalive timer for that connection to 2 hours (tcp_keepidle), and the t_idle counter for the connection is reset to 0. This happens for every TCP connection on the system, whether the keepalive option is enabled for the socket or not. If the keepalive timer expires (2 hours after the last segment was received on the connection), and if the socket option is set, a keepalive probe is sent to the other end. If the timer expires and the socket option is not set, the keepalive timer is just reset for 2 hours in the future.

Figure 25.16 shows the case for TCP’s TCPT_KEEP counter.

Connection-establishment timer expires after 75 seconds

221-228

If the state is less than ESTABLISHED (Figure 24.16), the TCPT_KEEP counter is the connection-establishment timer. At the label dropit, tcp_drop is called to terminate the connection attempt with an error of ETIMEDOUT. We’ll see that this error is the default error if, for example, a soft error such as an ICMP host unreachable was received on the connection, the error returned to the process will be changed to EHOSTUNREACH instead of the default.

In Figure 30.4 we’ll see that when TCP sends a SYN, two timers are initialized: the connection-establishment timer as we just described, with a value of 75 seconds, and the retransmission timer, to cause the SYN to be retransmitted if no response is received. Figure 25.15 shows these two timers.

Figure 25.15. Connection-establishment timer and retransmission timer after SYN is sent.

[image: Image]

The retransmission timer is initialized to 6 seconds for a new connection (Figure 25.19), and successive values are calculated to be 24 and 48 seconds. We describe how these values are calculated in Section 25.7. The retransmission timer causes the SYN to be transmitted a total of three times, at times 0, 6, and 30. At time 75, 3 seconds before the retransmission timer would expire again, the connection-establishment timer expires, and tcp_drop terminates the connection attempt.

Figure 25.16. tcp_timers function: expiration of keepalive timer.

	

--- tcp_timer.c
221 /*
222 * Keep-alive timer went off; send something
223 * or drop connection if idle for too long.
224 */
225 case TCPT_KEEP:
226 tcpstat.tcps_keeptimeo++;
227 if (tp->t_state < TCPS_ESTABLISHED)
228 goto dropit; /* connection establishment timer */

229 if (tp->t_inpcb->inp_socket->so_options & SO_KEEPALIVE &&
230 tp->t_state <= TCPS_CLOSE_WAIT) {
231 if (tp->t_idle >= tcp_keepidle + tcp_maxidle)
232 goto dropit;
233 /*
234 * Send a packet designed to force a response
235 * if the peer is up and reachable:
236 * either an ACK if the connection is still alive,
237 * or an RST if the peer has closed the connection
238 * due to timeout or reboot.
239 * Using sequence number tp->snd_una-1
240 * causes the transmitted zero-length segment
241 * to lie outside the receive window;
242 * by the protocol spec, this requires the
243 * correspondent TCP to respond.
244 */
245 tcpstat.tcps_keepprobe++;
246 tcp_respond(tp, tp->t_template, (struct mbuf *) NULL,
247 tp->rcv_nxt, tp->snd_una - 1, 0);
248 tp->t_timer[TCPT_KEEP] = tcp_keepintvl;
249 } else
250 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
251 break;
252 dropit:
253 tcpstat.tcps_keepdrops++;
254 tp = tcp_drop(tp, ETIMEDOUT);
255 break;
--- tcp_timer.c

Keepalive timer expires after 2 hours of idle time

229-230

This timer expires after 2 hours of idle time on every connection, not just ones with the SO_KEEPALIVE socket option enabled. If the socket option is set, probes are sent only if the connection is in the ESTABLISHED or CLOSE_WAIT states (Figure 24.15). Once the process calls close (the states greater than CLOSE_WAIT), keepalive probes are not sent, even if the connection is idle for 2 hours.

Drop connection when no response

231-232

If the total idle time for the connection is greater than or equal to 2 hours (tcp_keepidle) plus 10 minutes (tcp_maxidle), the connection is dropped. This means that TCP has sent its limit of nine keepalive probes, 75 seconds apart (tcp_keepintvl), with no response. One reason TCP must send multiple keepalive probes before considering the connection dead is that the ACKs sent in response do not contain data and therefore are not reliably transmitted by TCP. An ACK that is a response to a keepalive probe can get lost.

Send a keepalive probe

233-248

If TCP hasn’t reached the keepalive limit, tcp_respond sends a keepalive packet. The acknowledgment field of the keepalive packet (the fourth argument to tcp_respond) contains rcv_nxt, the next sequence number expected on the connection. The sequence number field of the keepalive packet (the fifth argument) deliberately contains snd_una minus 1, which is the sequence number of a byte of data that the other end has already acknowledged (Figure 24.17). Since this sequence number is outside the window, the other end must respond with an ACK, specifying the next sequence number it expects.

Figure 25.17 summarizes this use of the keepalive timer.

Figure 25.17. Summary of keepalive timer to detect unreachability of other end.

[image: Image]

The nine keepalive probes are sent every 75 seconds, starting at time 0, through time 600. At time 675 (11.25 minutes after the 2-hour timer expired) the connection is dropped. Notice that nine keepalive probes are sent, even though the constant TCPTV_KEEPCNT (Figure 25.4) is 8. This is because the variable t_idle is incremented in Figure 25.8 after the timer is decremented, compared to 0, and possibly handled. When tcp_input receives a segment on a connection, it sets the keepalive timer to 14400 (tcp_keepidle) and t_idle to 0. The next time tcp_slowtimo is called, the keepalive timer is decremented to 14399 and t_idle is incremented to 1. About 2 hours later, when the keepalive timer is decremented from 1 to 0 and tcp_timers is called, the value of t_idle will be 14399. We can build the table in Figure 25.18 to see the value of t_idle each time tcp_timers is called.

Figure 25.18. The value of t_idle when tcp_timers is called for keepalive processing.

[image: Image]

The code in Figure 25.16 is waiting for t_idle to be greater than or equal to 15600 (tcp_keepidle + tcp_maxidle) and that only happens at time 675 in Figure 25.17, after nine keepalive probes have been sent.

Reset keepalive timer

249-250

If the socket option is not set or the connection state is greater than CLOSE_WAIT, the keepalive timer for this connection is reset to 2 hours (tcp_keepidle).

Unfortunately the counter tcps_keepdrops (line 253) counts both uses of the TCPT_KEEP counter: the connection-establishment timer and the keepalive timer.

25.7. Retransmission Timer Calculations

The timers that we’ve described so far in this chapter have fixed times associated with them: 200 ms for the delayed ACK timer, 75 seconds for the connection-establishment timer, 2 hours for the keepalive timer, and so on. The final two timers that we describe, the retransmission timer and the persist timer, have values that depend on the measured RTT for the connection. Before going through the source code that calculates and sets these timers we need to understand how TCP measures the RTT for a connection.

Fundamental to the operation of TCP is setting a retransmission timer when a segment is transmitted and an ACK is required from the other end. If the ACK is not received when the retransmission timer expires, the segment is retransmitted. TCP requires an ACK for data segments but does not require an ACK for a segment without data (i.e., a pure ACK segment). If the calculated retransmission timeout is too small, it can expire prematurely, causing needless retransmissions. If the calculated value is too large, after a segment is lost, additional time is lost before the segment is retransmitted, degrading performance. Complicating this is that the round-trip times between two hosts can vary widely and dynamically over the course of a connection.

TCP in Net/3 calculates the retransmission timeout (RTO) by measuring the round-trip time (nticks) of data segments and keeping track of the smoothed RTT estimator (srtt) and a smoothed mean deviation estimator (rttvar). The mean deviation is a good approximation of the standard deviation, but easier to compute since, unlike the standard deviation, the mean deviation does not require square root calculations. [Jacobson 1988b] provides additional details on these RTT measurements, which lead to the following equations:

[image: Image]

delta is the difference between the measured round trip just obtained (nticks) and the current smoothed RTT estimator (srtt). g is the gain applied to the RTT estimator and equals 1/8. h is the gain applied to the mean deviation estimator and equals 1/4. The two gains and the multiplier 4 in the RTO calculation are purposely powers of 2, so they can be calculated using shift operations instead of multiplying or dividing.

[Jacobson 1988b] specified 2 x rttvar in the calculation of RTO, but after further research, [Jacobson 1990d] changed the value to 4 x rttvar, which is what appeared in the Net/1 implementation.

We now describe the variables and calculations used to calculate TCP’s retransmission timer, as we’ll encounter them throughout the TCP code. Figure 25.19 lists the variables in the control block related to the retransmission timer.

Figure 25.19. Control block variables for calculation of retransmission timer.

[image: Image]

We show the tcp_backoff array at the end of Section 25.9. The tcp_newtcpcb function sets the initial values for these variables, and we cover it in the next section. The term shift in the variable t_rxtshift and its limit TCP_MAXRXTSHIFT is not entirely accurate. The former is not used for bit shifting, but as Figure 25.19 indicates, it is an index into an array.

The confusing part of TCP’s timeout calculations is that the two smoothed estimators maintained in the C code (t_srtt and t_rttvar) are fixed-point integers, instead of floating-point values. This is done to avoid floating-point calculations within the kernel, but it complicates the code.

To keep the scaled and unscaled variables distinct, we’ll use the italic variables srtt and rttvar to refer to the unscaled variables in the earlier equations, and t_srtt and t_rttvar to refer to the scaled variables in the TCP control block.

Figure 25.20 shows four constants we encounter, which define the scale factors of 8 for t_srtt and 4 for t_rttvar.

Figure 25.20. Multipliers and shifts for RTT estimators.

[image: Image]

25.8. tcp_newtcpcb Function

A new TCP control block is allocated and initialized by tcp_newtcpcb, shown in Figure 25.21. This function is called by TCP’s PRU_ATTACH request when a new socket is created (Figure 30.2). The caller has previously allocated an Internet PCB for this connection, pointed to by the argument inp. We present this function now because it initializes the TCP timer variables.

Figure 25.21. tcp_newtcpcb function: create and initialize a new TCP control block.

[image: Image]

167-175

The kernel’s malloc function allocates memory for the control block, and bzero sets it to 0.

176

The two variables seg_next and seg_prev point to the reassembly queue for out-of-order segments received for this connection. We discuss this queue in detail in Section 27.9.

177-179

The maximum segment size to send, t_maxseg, defaults to 512 (tcp_mssdflt). This value can be changed by the tcp_mss function after an MSS option is received from the other end. (TCP also sends an MSS option to the other end when a new connection is established.) The two flags TF_REQ_SCALE and TF_REQ_TSTMP are set if the system is configured to request window scaling and timestamps as defined in RFC 1323 (the global tcp_do_rfc1323 from Figure 24.3, which defaults to 1). The t_inpcb pointer in the TCP control block is set to point to the Internet PCB passed in by the caller.

180-185

The four variables t_srtt, t_rttvar, t_rttmin, and t_rxtcur, described in Figure 25.19, are initialized. First, the smoothed RTT estimator t_srtt is set to 0 (TCPTV_SRTTBASE), which is a special value that means no RTT measurements have been made yet for this connection. tcp_xmit_timer recognizes this special value when the first RTT measurement is made.

186-187

The smoothed mean deviation estimator t_rttvar is set to 24: 3 (tcp_rttdflt, from Figure 24.3) times 2 (PR_SLOWHZ) multiplied by 4 (the left shift of 2 bits). Since this scaled estimator is 4 times the variable rttvar, this value equals 6 clock ticks, or 3 seconds. The minimum RTO, stored in t_rttmin, is 2 ticks (TCPTV_MIN).

188-190

The current RTO in clock ticks is calculated and stored in t_rxtcur. It is bounded by a minimum value of 2 ticks (TCPTV_MIN) and a maximum value of 128 ticks (TCPTV_REXMTMAX). The value calculated as the second argument to TCPT_RANGESET is 12 ticks, or 6 seconds. This is the first RTO for the connection.

Understanding these C expressions involving the scaled RTT estimators can be a challenge. It helps to start with the unscaled equation and substitute the scaled variables. The unscaled equation we’re solving is

	
RTO = srtt + 2 × rttvar

where we use the multipler of 2 instead of 4 to calculate the first RTO.

The use of the multiplier 2 instead of 4 appears to be a leftover from the original 4.3BSD Tahoe code [Paxson 1994].

Substituting the two scaling relationships

	
t_srtt = 8 × srtt

t_rttvar = 4 × rttvar

we get

[image: Image]

which is the C code for the second argument to TCPT_RANGESET. In this code the variable t_rttvar is not used the constant TCPTV_SRTTDFLT, whose value is 6 ticks, is used instead, and it must be multiplied by 4 to have the same scale as t_rttvar.

191-192

The congestion window (snd_cwnd) and slow start threshold (snd_ssthresh) are set to 1,073,725,440 (approximately one gigabyte), which is the largest possible TCP window if the window scale option is in effect. (Slow start and congestion avoidance are described in Section 21.6 of Volume 1.) It is calculated as the maximum value for the window size field in the TCP header (65535, TCP_MAXWIN) times 214, where 14 is the maximum value for the window scale factor (TCP_MAX_WINSHIFT). We’ll see that when a SYN is sent or received on the connection, tcp_mss resets snd_cwnd to a single segment.

193-194

The default IP TTL in the Internet PCB is set to 64 (ip_defttl) and the PCB is set to point to the new TCP control block.

Not shown in this code is that numerous variables, such as the shift variable t_rxtshift, are implicitly initialized to 0 since the control block is initialized by bzero.

25.9. tcp_setpersist Function

The next function we look at that uses TCP’s retransmission timeout calculations is tcp_setpersist. In Figure 25.13 we saw this function called when the persist timer expired. This timer is set when TCP has data to send on a connection, but the other end is advertising a window of 0. This function, shown in Figure 25.22, calculates and stores the next value for the timer.

Figure 25.22. tcp_setpersist function: calculate and store a new value for the persist timer.

	

--- tcp_output.c
493 void
494 tcp_setpersist(tp)
495 struct tcpcb *tp;
496 {
497 t = ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1;

498 if (tp->t_timer[TCPT_REXMT])
499 panic("tcp_output REXMT");
500 /*
501 * Start/restart persistance timer.
502 */
503 TCPT_RANGESET(tp->t_timer[TCPT_PERSIST],
504 t * tcp_backoff[tp->t_rxtshift],
505 TCPTV_PERSMIN, TCPTV_PERSMAX);
506 if (tp->t_rxtshift < TCP_MAXRXTSHIFT)
507 tp->t_rxtshift++;
508 }
--- tcp_output.c

Check retransmission timer not enabled

493-499

A check is made that the retransmission timer is not enabled when the persist timer is about to be set, since the two timers are mutually exclusive: if data is being sent, the other side must be advertising a nonzero window, but the persist timer is being set only if the advertised window is 0.

Calculate RTO

500-505

The variable t is set to the RTO value that was calculated at the beginning of the function. The equation being solved is

	
RTO = srtt + 2 × rttvar

which is identical to the formula used at the end of the previous section. With substitution we get

[image: Image]

which is the value computed for the variable t.

Apply exponential backoff

506-507

An exponential backoff is also applied to the RTO. This is done by multiplying the RTO by a value from the tcp_backoff array:

int tcp_backoff[TCP_MAXRXTSHIFT + 1] =
 { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 };

When tcp_output initially sets the persist timer for a connection, the code is

tp->t_rxtshift = 0;
tcp_setpersist(tp);

so the first time tcp_setpersist is called, t_rxtshift is 0. Since the value of tcp_backoff[0] is 1, t is used as the persist timeout. The TCPT_RANGESET macro bounds this value between 5 and 60 seconds. t_rxtshift is incremented by 1 until it reaches a maximum of 12 (TCP_MAXRXTSHIFT), since tcp_backoff[12] is the final entry in the array.

25.10. tcp_xmit_timer Function

The next function we look at, tcp_xmit_timer, is called each time an RTT measurement is collected, to update the smoothed RTT estimator (srtt) and the smoothed mean deviation estimator (rttvar).

The argument rtt is the RTT measurement to be applied. It is the value nticks + 1, using the notation from Section 25.7. It can be from one of two sources:

1. If the timestamp option is present in a received segment, the measured RTT is the current time (tcp_now) minus the timestamp value. We’ll examine the timestamp option in Section 26.6, but for now all we need to know is that tcp_now is incremented every 500 ms (Figure 25.8). When a data segment is sent, tcp_now is sent as the timestamp, and the other end echoes this time-stamp in the acknowledgment it sends back.

2. If timestamps are not in use and a data segment is being timed, we saw in Figure 25.8 that the counter t_rtt is incremented every 500 ms for the connection. We also mentioned in Section 25.5 that this counter is initialized to 1, so when the acknowledgment is received the counter is the measured RTT (in ticks) plus 1.

Typical code in tcp_input that calls tcp_xmit_timer is

if (ts_present)
 tcp_xmit_timer(tp, tcp_now - ts_ecr + 1);

else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
 tcp_xmit_timer(tp, tp->t_rtt);

If a timestamp was present in the segment (ts_present), the RTT estimators are updated using the current time (tcp_now) minus the echoed timestamp (ts_ecr) plus 1. (We describe the reason for adding 1 below.)

If a timestamp is not present, the RTT estimators are updated only if the received segment acknowledges a data segment that was being timed. There is only one RTT counter per TCP control block (t_rtt), so only one outstanding data segment can be timed per connection. The starting sequence number of that segment is stored in t_rtseq when the segment is transmitted, to tell when an acknowledgment is received that covers that sequence number. If the received acknowledgment number (ti_ack) is greater than the starting sequence number of the segment being timed (t_rtseq), the RTT estimators are updated using t_rtt as the measured RTT.

Before RFC 1323 timestamps were supported, TCP measured the RTT only by counting clock ticks in t_rtt. But this variable is also used as a flag that specifies whether a segment is being timed (Figure 25.8): if t_rtt is greater than 0, then tcp_slowtimo adds 1 to it every 500 ms. Hence when t_rtt is nonzero, it is the number of ticks plus 1. We’ll see shortly that tcp_xmit_timer always decrements its second argument by 1 to account for this offset. Therefore when timestamps are being used, 1 is added to the second argument to account for the decrement by 1 in tcp_xmit_timer.

The greater-than test of the sequence numbers is because ACKs are cumulative: if TCP sends and times a segment with sequence numbers 1-1024 (t_rtseq equals 1), then immediately sends (but can’t time) a segment with sequence numbers 1025-2048, and then receives an ACK with ti_ack equal to 2049, this is an ACK for sequence numbers 1-2048 and the ACK acknowledges the first segment being timed as well as the second (untimed) segment. Notice that when RFC 1323 timestamps are in use there is no comparison of sequence numbers. If the other end sends a timestamp option, it chooses the echo reply value (ts_ecr) to allow TCP to calculate the RTT.

Figure 25.23 shows the first part of the function that updates the estimators.

Figure 25.23. tcp_xmit_timer function: apply new RTT measurement to smoothed estimators.

[image: Image]

Update smoothed estimators

1310-1325

Recall that tcp_newtcpcb initialized the smoothed RTT estimator (t_srtt) to 0, indicating that no measurements have been made for this connection. delta is the difference between the measured RTT and the current value of the smoothed RTT estimator, in unscaled ticks. t_srtt is divided by 8 to convert from scaled to unscaled ticks.

1326-1327

The smoothed RTT estimator is updated using the equation

	
srtt ← srtt + g × delta

Since the gain g is 1/8, this equation is

	
8 × srtt ← 8 × srtt + delta

which is

	
t_srtt ←t_srtt + delta

1328-1342

The mean deviation estimator is updated using the equation

	
rttvar ← rttvar + h(| delta | - rttvar)

Substituting 1/4 for h and the scaled variable t_rttvar for 4 x rttvar, we get

[image: Image]

which is

[image: Image]

This final equation corresponds to the C code.

Initialize smoothed estimators on first RTT measurement

1343-1350

If this is the first RTT measured for this connection, the smoothed RTT estimator is initialized to the measured RTT. These calculations use the value of the argument rtt, which we said is the measured RTT plus 1 (nticks + 1), whereas the earlier calculation of delta subtracted 1 from rtt.

	
srtt = nticks + 1

or

[image: Image]

which is

	
t_srtt = (nticks + 1) × 8

The smoothed mean deviation is set to one-half of the measured RTT:

[image: Image]

which is

[image: Image]

or

	
t_rttvar = (nticks + 1) × 2

The comment in the code states that this initial setting for the smoothed mean deviation yields an initial RTO of 3 x srtt. Since the RTO is calculated as

	
RTO = srtt + 4 × rttvar

substituting for rttvar gives us

[image: Image]

which is indeed

	
RTO = 3 × srtt

Figure 25.24 shows the final part of the tcp_xmit_timer function.

Figure 25.24. tcp_xmit_timer function: final part.

	

-- tcp_input.c
1352 tp->t_rtt = 0;
1353 tp->t_rxtshift = 0;

1354 /*
1355 * the retransmit should happen at rtt + 4 * rttvar.
1356 * Because of the way we do the smoothing, srtt and rttvar
1357 * will each average +1/2 tick of bias. When we compute
1358 * the retransmit timer, we want 1/2 tick of rounding and
1359 * 1 extra tick because of +-1/2 tick uncertainty in the
1360 * firing of the timer. The bias will give us exactly the
1361 * 1.5 tick we need. But, because the bias is
1362 * statistical, we have to test that we don't drop below
1363 * the minimum feasible timer (which is 2 ticks).
1364 */
1365 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1366 tp->t_rttmin, TCPTV_REXMTMAX);

1367 /*
1368 * We received an ack for a packet that wasn't retransmitted;
1369 * it is probably safe to discard any error indications we've
1370 * received recently. This isn't quite right, but close enough
1371 * for now (a route might have failed after we sent a segment,
1372 * and the return path might not be symmetrical).
1373 */
1374 tp->t_softerror = 0;
1375 }
-- tcp_input.c

1352-1353

The RTT counter (t_rtt) and the retransmission shift count (t_rxtshift) are both reset to 0 in preparation for timing and transmission of the next segment.

1354-1366

The next RTO to use for the connection (t_rxtcur) is calculated using the macro

#define TCP_REXMTVAL(tp) \
 (((tp)->t_srtt >> TCP_RTT_SHIFT) + (tp)->t_rttvar)

This is the now-familiar equation

	
RTO = srtt + 4 × rttvar

using the scaled variables updated by tcp_xmit_timer. Substituting these scaled variables for srtt and rttvar, we have

[image: Image]

which corresponds to the macro. The calculated value for the RTO is bounded by the minimum RTO for this connection (t_rttmin, which t_newtcpcb set to 2 ticks), and 128 ticks (TCPTV_REXMTMAX).

Clear soft error variable

1367-1374

Since tcp_xmit_timer is called only when an acknowledgment is received for a data segment that was sent, if a soft error was recorded for this connection (t_softerror), that error is discarded. We describe soft errors in more detail in the next section.

25.11. Retransmission Timeout: tcp_timers Function

We now return to the tcp_timers function and cover the final case that we didn’t present in Section 25.6: the one that handles the expiration of the retransmission timer. This code is executed when a data segment that was transmitted has not been acknowledged by the other end within the RTO.

Figure 25.25 summarizes the actions caused by the retransmission timer. We assume that the first timeout calculated by tcp_output is 1.5 seconds, which is typical for a LAN (see Figure 21.1 of Volume 1).

Figure 25.25. Summary of retransmission timer when sending data.

[image: Image]

The x-axis is labeled with the time in seconds: 0, 1.5, 4.5, and so on. Below each of these numbers we show the value of t_rxtshift that is used in the code we’re about to examine. Only after 12 retransmissions and a total of 542.5 seconds (just over 9 minutes) does TCP give up and drop the connection.

RFC 793 recommended that an open of a new connection, active or passive, allow a parameter specifying the total timeout period for data sent by TCP. This is the total amount of time TCP will try to send a given segment before giving up and terminating the connection. The recommended default was 5 minutes.

RFC 1122 requires that an application must be able to specify a parameter for a connection giving either the total number of retransmissions or the total timeout value for data sent by TCP. This parameter can be specified as “infinity,” meaning TCP never gives up, allowing, perhaps, an interactive user the choice of when to give up.

We’ll see in the code described shortly that Net/3 does not give the application any of this control: a fixed number of retransmissions (12) always occurs before TCP gives up, and the total timeout before giving up depends on the RTT.

The first half of the retransmission timeout case is shown in Figure 25.26.

Figure 25.26. tcp_timers function: expiration of retransmission timer, first half.

	

--- tcp_timer.c
140 /*
141 * Retransmission timer went off. Message has not
142 * been acked within retransmit interval. Back off
143 * to a longer retransmit interval and retransmit one segment.
144 */
145 case TCPT_REXMT:
146 if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) {
147 tp->t_rxtshift = TCP_MAXRXTSHIFT;
148 tcpstat.tcps_timeoutdrop++;
149 tp = tcp_drop(tp, tp->t_softerror ?
150 tp->t_softerror : ETIMEDOUT);
151 break;
152 }
153 tcpstat.tcps_rexmttimeo++;
154 rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
155 TCPT_RANGESET(tp->t_rxtcur, rexmt,
156 tp->t_rttmin, TCPTV_REXMTMAX);
157 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
158 /*
159 * If losing, let the lower level know and try for
160 * a better route. Also, if we backed off this far,
161 * our srtt estimate is probably bogus. Clobber it
162 * so we'll take the next rtt measurement as our srtt;
163 * move the current srtt into rttvar to keep the current
164 * retransmit times until then.
165 */
166 if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
167 in_losing(tp->t_inpcb);
168 tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
169 tp->t_srtt = 0;
170 }
171 tp->snd_nxt = tp->snd_una;
172 /*
173 * If timing a segment in this window, stop the timer.
174 */
175 tp->t_rtt = 0;
--- tcp_timer.c

Increment shift count

146

The retransmission shift count (t_rxtshift) is incremented, and if the value exceeds 12 (TCP_MAXRXTSHIFT) it is time to drop the connection. This new value of t_rxtshift is what we show in Figure 25.25. Notice the difference between this dropping of a connection because an acknowledgment is not received from the other end in response to data sent by TCP, and the keepalive timer, which drops a connection after a long period of inactivity and no response from the other end. Both report the error ETIMEDOUT to the process, unless a soft error is received for the connection.

Drop connection

147-152

A soft error is one that doesn’t cause TCP to terminate an established connection or an attempt to establish a connection, but the soft error is recorded in case TCP gives up later. For example, if TCP retransmits a SYN segment to establish a connection, receiving nothing in response, the error returned to the process will be ETIMEDOUT. But if during the retransmissions an ICMP host unreachable is received for the connection, that is considered a soft error and stored in t_softerror by tcp_notify. If TCP finally gives up the retransmissions, the error returned to the process will be EHOSTUNREACH instead of ETIMEDOUT, providing more information to the process. If TCP receives an RST on the connection in response to the SYN, that’s considered a hard error and the connection is terminated immediately with an error of ECONNREFUSED (Figure 28.18).

Calculate new RTO

153-157

The next RTO is calculated using the TCP_REXMTVAL macro, applying an exponential backoff. In this code, t_rxtshift will be 1 the first time a given segment is retransmitted, so the RTO will be twice the value calculated by TCP_REXMTVAL. This value is stored in t_rxtcur and as the retransmission timer for the connection, t_timer[TCPT_REXMT]. The value stored in t_rxtcur is used in tcp_input when the retransmission timer is restarted (Figures 28.12 and 29.6).

Ask IP to find a new route

158-167

If this segment has been retransmitted four or more times, in_losing releases the cached route (if there is one), so when the segment is retransmitted by tcp_output (at the end of this case statement in Figure 25.27) a new, and hopefully better, route will be chosen. In Figure 25.25 in_losing is called each time the retransmission timer expires, starting with the retransmission at time 22.5.

Figure 25.27. tcp_timers function: expiration of retransmission timer, second half.

	

--- tcp_timer.c
176 /*
177 * Close the congestion window down to one segment
178 * (we'll open it by one segment for each ack we get).
179 * Since we probably have a window's worth of unacked
180 * data accumulated, this "slow start" keeps us from
181 * dumping all that data as back-to-back packets (which
182 * might overwhelm an intermediate gateway).
183 *
184 * There are two phases to the opening: Initially we
185 * open by one mss on each ack. This makes the window
186 * size increase exponentially with time. If the
187 * window is larger than the path can handle, this
188 * exponential growth results in dropped packet(s)
189 * almost immediately. To get more time between
190 * drops but still "push" the network to take advantage
191 * of improving conditions, we switch from exponential
192 * to linear window opening at some threshhold size.
193 * For a threshhold, we use half the current window
194 * size, truncated to a multiple of the mss.
195 *
196 * (the minimum cwnd that will give us exponential
197 * growth is 2 mss. We don't allow the threshhold
198 * to go below this.)
199 */
200 {
201 u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg;
202 if (win < 2)
203 win = 2;
204 tp->snd_cwnd = tp->t_maxseg;
205 tp->snd_ssthresh = win * tp->t_maxseg;
206 tp->t_dupacks = 0;
207 }
208 (void) tcp_output(tp);
209 break;
--- tcp_timer.c

Clear estimators

168-170

The smoothed RTT estimator (t_srtt) is set to 0, which is what t_newtcpcb did. This forces tcp_xmit_timer to use the next measured RTT as the smoothed RTT estimator. This is done because the retransmitted segment has been sent four or more times, implying that TCP’s smoothed RTT estimator is probably way off. But if the retransmission timer expires again, at the beginning of this case statement the RTO is calculated by TCP_REXMTVAL. That calculation should generate the same value as it did for this retransmission (which will then be exponentially backed off), even though t_srtt is set to 0. (The retransmission at time 42.464 in Figure 25.28 is an example of what’s happening here.)

Figure 25.28. Values of RTT variables and estimators during example.

[image: Image]

To accomplish this the value of t_rttvar is changed as follows. The next time the RTO is calculated, the equation

[image: Image]

is evaluated. Since t_srtt will be 0, if t_rttvar is increased by t_srtt divided by 8, RTO will have the same value. If the retransmission timer expires again for this segment (e.g., times 84.064 through 217.184 in Figure 25.28), when this code is executed again t_srtt will be 0, so t_rttvar won’t change.

Force retransmission of oldest unacknowledged data

171

The next send sequence number (snd_nxt) is set to the oldest unacknowledged sequence number (snd_una). Recall from Figure 24.17 that snd_nxt can be greater than snd_una. By moving snd_nxt back, the retransmission will be the oldest segment that hasn’t been acknowledged.

Karn’s algorithm

172-175

The RTT counter, t_rtt, is set to 0, in case the last segment transmitted was being timed. Karn’s algorithm says that even if an ACK of that segment is received, since the segment is about to be retransmitted, any timing of the segment is worthless since the ACK could be for the first transmission or for the retransmission. The algorithm is described in [Karn and Partridge 1987] and in Section 21.3 of Volume 1. Therefore the only segments that are timed using the t_rtt counter and used to update the RTT estimators are those that are not retransmitted. We’ll see in Figure 29.6 that the use of RFC 1323 timestamps overrides Karn’s algorithm.

Slow Start and Congestion Avoidance

The second half of this case is shown in Figure 25.27. It performs slow start and congestion avoidance and retransmits the oldest unacknowledged segment.

Since a retransmission timeout has occurred, this is a strong indication of congestion in the network. TCP’s congestion avoidance algorithm comes into play, and when a segment is eventually acknowledged by the other end, TCP’s slow start algorithm will continue the data transmission on the connection at a slower rate. Sections 20.6 and 21.6 of Volume 1 describe the two algorithms in detail.

176-205

win is set to one-half of the current window size (the minimum of the receiver’s advertised window, snd_wnd, and the sender’s congestion window, snd_cwnd) in segments, not bytes (hence the division by t_maxseg). Its minimum value is two segments. This records one-half of the window size when the congestion occurred, assuming one cause of the congestion is our sending segments too rapidly into the network. This becomes the slow start threshold, t_ssthresh (which is stored in bytes, hence the multiplication by t_maxseg). The congestion window, snd_cwnd, is set to one segment, which forces slow start.

This code is enclosed in braces because it was added between the 4.3BSD and Net/1 releases and required its own local variable (win).

206

The counter of consecutive duplicate ACKs, t_dupacks (which is used by the fast retransmit algorithm in Section 29.4), is set to 0. We’ll see how this counter is used with TCP’s fast retransmit and fast recovery algorithms in Chapter 29.

208

tcp_output resends a segment containing the oldest unacknowledged sequence number. This is the retransmission caused by the retransmission timer expiring.

Accuracy

How accurate are these estimators that TCP maintains? At first they appear too coarse, since the RTTs are measured in multiples of 500 ms. The mean and mean deviation are maintained with additional accuracy (factors of 8 and 4 respectively), but LANs have RTTs on the order of milliseconds, and a transcontinental RTT is around 60 ms. What these estimators provide is a solid upper bound on the RTT so that the retransmission timeout can be set without worrying that the timeout is too small, causing unnecessary and wasteful retransmissions.

[Brakmo, O’Malley, and Peterson 1994] describe a TCP implementation that provides higher-resolution RTT measurements. This is done by recording the system clock (which has a much higher resolution than 500 ms) when a segment is transmitted and reading the system clock when the ACK is received, calculating a higher-resolution RTT.

The timestamp option provided by Net/3 (Section 26.6) can provide higher-resolution RTTs, but Net/3 sets the resolution of these timestamps to 500 ms.

25.12. An RTT Example

We now go through an actual example to see how the calculations are performed. We transfer 12288 bytes from the host bsdi to vangogh.cs.berkeley.edu. During the transfer we purposely bring down the PPP link being used and then bring it back up, to see how timeouts and retransmissions are handled. To transfer the data we use our sock program (described in Appendix C of Volume 1) with the -D option, to enable the SO_DEBUG socket option (Section 27.10). After the transfer is complete we examine the debug records left in the kernel’s circular buffer using the trpt(8) program and print the desired timer variables from the TCP control block.

Figure 25.28 shows the calculations that occur at the various times. We use the notation M:N to mean that sequence numbers M through and including N—1 are sent. Each segment in this example contains 512 bytes. The notation “ack M” means that the acknowledgment field of the ACK is M. The column labeled “actual delta (ms)” shows the time difference between the RTT timer going on and going off. The column labeled “rtt (arg.)” shows the second argument to the tcp_xmit_timer function: the number of clock ticks plus 1 between the RTT timer going on and going off.

The function tcp_newtcpcb initializes t_srtt, t_rttvar, and t_rxtcur to the values shown at time 0.0.

The first segment timed is the initial SYN. When its ACK is received 365 ms later, tcp_xmit_timer is called with an rtt argument of 2. Since this is the first RTT measurement (t_srtt is 0), the else clause in Figure 25.23 calculates the first values of the smoothed estimators.

The data segment containing bytes 1 through 512 is the next segment timed, and the RTT variables are updated at time 1.259 when its ACK is received.

The next three segments show how ACKs are cumulative. The timer is started at time 1.260 when bytes 513 through 1024 are sent. Another segment is sent with bytes 1025 through 1536, and the ACK received at time 2.206 acknowledges both data segments. The RTT estimators are then updated, since the ACK covers the starting sequence number being timed (513).

The segment with bytes 1537 through 2048 is transmitted at time 2.206 and the timer is started. Just that segment is acknowledged at time 3.132, and the estimators updated.

The data segment at time 3.132 is timed and the retransmission timer is set to 5 ticks (the current value of t_rxtcur). Somewhere around this time the PPP link between the routers sun and netb is taken down and then brought back up, a procedure that takes a few minutes. When the retransmission timer expires at time 6.064, the code in Figure 25.26 is executed to update the RTT variables. t_rxtshift is incremented from 0 to 1 and t_rxtcur is set to 10 ticks (the exponential backoff). A segment starting with the oldest unacknowledged sequence number (snd_una, which is 3073) is retransmitted. After 5 seconds the timer expires again, t_rxtshift is incremented to 2, and the retransmission timer is set to 20 ticks.

When the retransmission timer expires at time 42.464, t_srtt is set to 0 and t_rttvar is set to 5. As we mentioned in our discussion of Figure 25.26, this leaves the calculation of t_rxtcur the same (so the next calculation yields 160), but by setting t_srtt to 0, the next time the RTT estimators are updated (at time 218.834), the measured RTT becomes the smoothed RTT, as if the connection were starting fresh.

The rest of the data transfer continues, and the estimators are updated a few more times.

25.13. Summary

The two functions tcp_fasttimo and tcp_slowtimo are called by the kernel every 200 ms and every 500 ms, respectively. These two functions drive TCP’s per-connection timer maintenance.

TCP maintains the following seven timers for each connection:

[image: Image] a connection-establishment timer,

[image: Image] a retransmission timer,

[image: Image] a delayed ACK timer,

[image: Image] a persist timer,

[image: Image] a keepalive timer,

[image: Image] a FIN_WAIT_2 timer, and

[image: Image] a 2MSL timer.

The delayed ACK timer is different from the other six, since when it is set it means a delayed ACK must be sent the next time TCP’s 200-ms timer expires. The other six timers are counters that are decremented by 1 every time TCP’s 500-ms timer expires. When any one of the counters reaches 0, the appropriate action is taken: drop the connection, retransmit a segment, send a keepalive probe, and so on, as described in this chapter. Since some of the timers are mutually exclusive, the six timers are really implemented using four counters, which complicates the code.

This chapter also introduced the recommended way to calculate values for the retransmission timer. TCP maintains two smoothed estimators for a connection: the round-trip time and the mean deviation of the RTT. Although the algorithms are simple and elegant, these estimators are maintained as scaled fixed-point numbers (to provide adequate precision without using floating-point code within the kernel), which complicates the code.

Exercises

25.1 How efficient is TCP’s fast timeout function? (Hint: Look at the number of delayed ACKs in Figure 24.5.) Suggest alternative implementations.

25.2 Why do you think the initialization of tcp_maxidle is in the tcp_slowtimo function instead of the tcp_init function?

25.3 tcp_slowtimo increments t_idle, which we said counts the clock ticks since a segment was last received on the connection. Should TCP also count the idle time since a segment was last sent on a connection?

25.4 Rewrite the code in Figure 25.10 to separate the logic for the two different uses of the TCPT_2MSL counter.

25.5 75 seconds after the connection in Figure 25.12 enters the FIN_WAIT_2 state a duplicate ACK is received on the connection. What happens?

25.6 A connection has been idle for 1 hour when the application sets the SO_KEEPALIVE option. Will the first keepalive probe be sent 1 or 2 hours in the future?

25.7 Why is tcp_rttdflt a global variable and not a constant?

25.8 Rewrite the code related to Exercise 25.6 to implement the alternate behavior.

Chapter 26. TCP Output

26.1. Introduction

The function tcp_output is called whenever a segment needs to be sent on a connection. There are numerous calls to this function from other TCP functions:

[image: Image] tcp_usrreq calls it for various requests: PRU_CONNECT to send the initial SYN, PRU_SHUTDOWN to send a FIN, PRU_RCVD in case a window update can be sent after the process has read some data from the socket receive buffer, PRU_SEND to send data, and PRU_SENDOOB to send out-of-band data.

[image: Image] tcp_fasttimo calls it to send a delayed ACK.

[image: Image] tcp_timers calls it to retransmit a segment when the retransmission timer expires.

[image: Image] tcp_timers calls it to send a persist probe when the persist timer expires.

[image: Image] tcp_drop calls it to send an RST.

[image: Image] tcp_disconnect calls it to send a FIN.

[image: Image] tcp_input calls it when output is required or when an immediate ACK should be sent.

[image: Image] tcp_input calls it when a pure ACK is processed by the header prediction code and there is more data to send. (A pure ACK is a segment without data that just acknowledges data.)

[image: Image] tcp_input calls it when the third consecutive duplicate ACK is received, to send a single segment (the fast retransmit algorithm).

tcp_output first determines whether a segment should be sent or not. TCP output is controlled by numerous factors other than data being ready to send to the other end of the connection. For example, the other end might be advertising a window of size 0 that stops TCP from sending anything, the Nagle algorithm prevents TCP from sending lots of small segments, and slow start and congestion avoidance limit the amount of data TCP can send on a connection. Conversely, some functions set flags just to force tcp_output to send a segment, such as the TF_ACKNOW flag that means an ACK should be sent immediately and not delayed. If tcp_output decides not to send a segment, the data (if any) is left in the socket’s send buffer for a later call to this function.

26.2. tcp_output Overview

tcp_output is a large function, so we’ll discuss it in 14 parts. Figure 26.1 shows the outline of the function.

Figure 26.1. tcp_output function: overview.

[image: Image]

Is an ACK expected from the other end?

61

idle is true if the maximum sequence number sent (snd_max) equals the oldest unacknowledged sequence number (snd_una), that is, if an ACK is not expected from the other end. In Figure 24.17 idle would be 0, since an ACK is expected for sequence numbers 4—6, which have been sent but not yet acknowledged.

Go back to slow start

62-68

If an ACK is not expected from the other end and a segment has not been received from the other end in one RTO, the congestion window is set to one segment (t_maxseg bytes). This forces slow start to occur for this connection the next time a segment is sent. When a significant pause occurs in the data transmission (“significant” being more than the RTT), the network conditions can change from what was previously measured on the connection. Net/3 assumes the worst and returns to slow start.

Send more than one segment

69-70

When send is jumped to, a single segment is sent by calling ip_output. But if tcp_output determines that more than one segment can be sent, sendalot is set to 1, and the function tries to send another segment. Therefore, one call to tcp_output can result in multiple segments being sent.

26.3. Determine if a Segment Should be Sent

Sometimes tcp_output is called but a segment is not generated. For example, the PRU_RCVD request is generated when the socket layer removes data from the socket’s receive buffer, passing the data to a process. It is possible that the process removed enough data that TCP should send a segment to the other end with a new window advertisement, but this is just a possibility, not a certainty. The first half of tcp_output determines if there is a reason to send a segment to the other end. If not, the function returns without sending a segment.

Figure 26.2. shows the first of the tests to determine whether a segment should be sent.

Figure 26.2. tcp_output function: data is being forced out.

	

-- tcp_output.c
 71 off = tp->snd_nxt - tp->snd_una;
 72 win = min(tp->snd_wnd, tp->snd_cwnd);

 73 flags = tcp_outflags[tp->t_state];
 74 /*
 75 * If in persist timeout with window of 0, send 1 byte.
 76 * Otherwise, if window is small but nonzero
 77 * and timer expired, we will send what we can
 78 * and go to transmit state.
 79 */
 80 if (tp->t_force) {
 81 if (win == 0) {
 82 /*
 83 * If we still have some data to send, then
 84 * clear the FIN bit. Usually this would
 85 * happen below when it realizes that we
 86 * aren't sending all the data. However,
 87 * if we have exactly 1 byte of unsent data,
 88 * then it won't clear the FIN bit below,
 89 * and if we are in persist state, we wind
 90 * up sending the packet without recording
 91 * that we sent the FIN bit.
 92 *
 93 * We can't just blindly clear the FIN bit,
 94 * because if we don't have any more data
 95 * to send then the probe will be the FIN
 96 * itself.
 97 */
 98 if (off < so->so_snd.sb_cc)
 99 flags &= ~TH_FIN;
100 win = 1;
101 } else {
102 tp->t_timer[TCPT_PERSIST] = 0;
103 tp->t_rxtshift = 0;
104 }
105 }
-- tcp_output.c

71-72

off is the offset in bytes from the beginning of the send buffer of the first data byte to send. The first off bytes in the send buffer, starting with snd_una, have already been sent and are waiting to be ACKed.

win is the minimum of the window advertised by the receiver (snd_wnd) and the congestion window (snd_cwnd).

73

The tcp_outflags array was shown in Figure 24.16. The value of this array that is fetched and stored in flags depends on the current state of the connection. flags contains the combination of the TH_ACK, TH_FIN, TH_RST, and TH_SYN flag bits to send to the other end. The other two flag bits, TH_PUSH and TH_URG, will be logically ORed into flags if necessary before the segment is sent.

74-105

The flag t_force is set nonzero when the persist timer expires or when out-of-band data is being sent. These two conditions invoke tcp_output as follows:

tp->t_force = 1;
error = tcp_output(tp);
tp->t_force = 0;

This forces TCP to send a segment when it normally wouldn’t send anything.

If win is 0, the connection is in the persist state (since t_force is nonzero). The FIN flag is cleared if there is more data in the socket’s send buffer. win must be set to 1 byte to force out a single byte.

If win is nonzero, out-of-band data is being sent, so the persist timer is cleared and the exponential backoff index, t_rxtshift, is set to 0.

Figure 26.3 shows the next part of tcp_output, which calculates how much data to send.

Figure 26.3. tcp_output function: calculate how much data to send.

	

-- tcp_output.c
106 len = min(so->so_snd.sb_cc, win) - off;
107 if (len < 0) {
108 /*
109 * If FIN has been sent but not acked,
110 * but we haven't been called to retransmit,
111 * len will be -1. Otherwise, window shrank
112 * after we sent into it. If window shrank to 0,
113 * cancel pending retransmit and pull snd_nxt
114 * back to (closed) window. We will enter persist
115 * state below. If the window didn't close completely,
116 * just wait for an ACK.
117 */
118 len = 0;
119 if (win == 0) {
120 tp->t_timer[TCPT_REXMT] = 0;
121 tp->snd_nxt = tp->snd_una;
122 }
123 }
124 if (len > tp->t_maxseg) {
125 len = tp->t_maxseg;
126 sendalot = 1;
127 }
128 if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + so->so_snd.sb_cc))
129 flags &= ~TH_FIN;

130 win = sbspace(&so->so_rcv);
-- tcp_output.c

Calculate amount of data to send

106

len is the minimum of the number of bytes in the send buffer and win (which is the minimum of the receiver’s advertised window and the congestion window, perhaps 1 byte if output is being forced). off is subtracted because that many bytes at the beginning of the send buffer have already been sent and are awaiting acknowledgment.

Check for window shrink

107-117

One way for len to be less than 0 occurs if the receiver shrinks the window, that is, the receiver moves the right edge of the window to the left. The following example demonstrates how this can happen. First the receiver advertises a window of 6 bytes and TCP transmits a segment with bytes 4, 5, and 6. TCP immediately transmits another segment with bytes 7, 8, and 9. Figure 26.4 shows the status of our end after the two segments are sent.

Figure 26.4. Send buffer after bytes 4 through 9 are sent.

[image: Image]

Then an ACK is received with an acknowledgment field of 7 (acknowledging all data up through and including byte 6) but with a window of 1. The receiver has shrunk the window, as shown in Figure 26.5.

Figure 26.5. Send buffer after receiving acknowledgment of bytes 4 through 6.

[image: Image]

Performing the calculations in Figures 26.2 and 26.3, after the window is shrunk, we have

off = snd_nxt - snd_una = 10 - 7 = 3
win = 1
len = min(so_snd.sb_cc, win) - off = min(3, 1) - 3 = -2

assuming the send buffer contains only bytes 7, 8, and 9.

Both RFC 793 and RFC 1122 strongly discourage shrinking the window. Nevertheless, implementations must be prepared for this. Handling scenarios such as this comes under the Robustness Principle, first mentioned in RFC 791: “Be liberal in what you accept, and conservative in what you send.”

Another way for len to be less than 0 occurs if the FIN has been sent but not acknowledged and not retransmitted. (See Exercise 26.2.) We show this in Figure 26.6.

Figure 26.6. Bytes 1 through 9 have been sent and acknowledged, and then connection is closed.

[image: Image]

This figure continues Figure 26.4, assuming the final segment with bytes 7, 8, and 9 is acknowledged, which sets snd_una to 10. The process then closes the connection, causing the FIN to be sent. We’ll see later in this chapter that when the FIN is sent, snd_nxt is incremented by 1 (since the FIN takes a sequence number), which in this example sets snd_nxt to 11. The sequence number of the FIN is 10. Performing the calculations in Figures 26.2 and 26.3, we have

off = snd_nxt - snd_una = 11 - 10 = 1
win = 6
len = min(so_snd.sb_cc, win) - off = min(0, 6) - 1 = -1

We assume that the receiver advertises a window of 6, which makes no difference, since the number of bytes in the send buffer (0) is less than this.

Enter persist state

118-122

len is set to 0. If the advertised window is 0, any pending retransmission is canceled by setting the retransmission timer to 0. snd_nxt is also pulled to the left of the window by setting it to the value of snd_una. The connection will enter the persist state later in this function, and when the receiver finally opens its window, TCP starts retransmitting from the left of the window.

Send one segment at a time

124-127

If the amount of data to send exceeds one segment, len is set to a single segment and the sendalot flag is set to 1. As shown in Figure 26.1, this causes another loop through tcp_output after the segment is sent.

Turn off FIN flag if send buffer not emptied

128-129

If the send buffer is not being emptied by this output operation, the FIN flag must be cleared (in case it is set in flags). Figure 26.7 shows an example of this.

Figure 26.7. Example of send buffer not being emptied when FIN is set.

[image: Image]

In this example the first 512-byte segment has already been sent (and is waiting to be acknowledged) and TCP is about to send the next 512-byte segment (bytes 512—1024). There is still 1 byte left in the send buffer (byte 1025) and the process closes the connection. len equals 512 (one segment), and the C expression becomes

SEQ_LT(1025, 1026)

which is true, so the FIN flag is cleared. If the FIN flag were mistakenly left on, TCP couldn’t send byte 1025 to the receiver.

Calculate window advertisement

130

win is set to the amount of space available in the receive buffer, which becomes TCP’s window advertisement to the other end. Be aware that this is the second use of this variable in this function. Earlier it contained the maximum amount of data TCP could send, but for the remainder of this function it contains the receive window advertised by this end of the connection.

The silly window syndrome (called SWS and described in Section 22.3 of Volume 1) occurs when small amounts of data, instead of full-sized segments, are exchanged across a connection. It can be caused by a receiver who advertises small windows and by a sender who transmits small segments. Correct avoidance of the silly window syndrome must be performed by both the sender and the receiver. Figure 26.8 shows silly window avoidance by the sender.

Figure 26.8. tcp_output function: sender silly window avoidance.

	

-- tcp_output.c
131 /*
132 * Sender silly window avoidance. If connection is idle
133 * and can send all data, a maximum segment,
134 * at least a maximum default-sized segment do it,
135 * or are forced, do it; otherwise don't bother.
136 * If peer's buffer is tiny, then send
137 * when window is at least half open.
138 * If retransmitting (possibly after persist timer forced us
139 * to send into a small window), then must resend.
140 */
141 if (len) {
142 if (len == tp->t_maxseg)
143 goto send;
144 if ((idle || tp->t_flags & TF_NODELAY) &&
145 len + off >= so->so_snd.sb_cc)
146 goto send;
147 if (tp->t_force)
148 goto send;
149 if (len >= tp->max_sndwnd / 2)
150 goto send;
151 if (SEQ_LT(tp->snd_nxt, tp->snd_max))
152 goto send;
153 }
-- tcp_output.c

Sender silly window avoidance

142-143

If a full-sized segment can be sent, it is sent.

144-146

If an ACK is not expected (idle is true), or if the Nagle algorithm is disabled (TF_NODELAY is true) and TCP is emptying the send buffer, the data is sent. The Nagle algorithm (Section 19.4 of Volume 1) prevents TCP from sending less than a full-sized segment when an ACK is expected for the connection. It can be disabled using the TCP_NODELAY socket option. For a normal interactive connection (e.g., Telnet or Rlogin), if there is unacknowledged data, this if statement is false, since the Nagle algorithm is enabled by default.

147-148

If output is being forced by either the persist timer or sending out-of-band data, some data is sent.

149-150

If the receiver’s window is at least half open, data is sent. This is to deal with peers that always advertise tiny windows, perhaps smaller than the segment size. The variable max_sndwnd is calculated by tcp_input as the largest window advertisement ever advertised by the other end. It is an attempt to guess the size of the other end’s receive buffer and assumes the other end never reduces the size of its receive buffer.

151-152

If the retransmission timer expired, then a segment must be sent. snd_max is the highest sequence number that has been transmitted. We saw in Figure 25.26 that when the retransmission timer expires, snd_nxt is set to snd_una, that is, snd_nxt is moved to the left edge of the window, making it less than snd_max.

The next portion of tcp_output, shown in Figure 26.9, determines if TCP must send a segment just to advertise a new window to the other end. This is called a window update.

Figure 26.9. tcp_output function: check if a window update should be sent.

	

-- tcp_output.c
154 /*
155 * Compare available window to amount of window
156 * known to peer (as advertised window less
157 * next expected input). If the difference is at least two
158 * max size segments, or at least 50% of the maximum possible
159 * window, then want to send a window update to peer.
160 */
161 if (win > 0) {
162 /*
163 * "adv" is the amount we can increase the window,
164 * taking into account that we are limited by
165 * TCP_MAXWIN << tp->rcv_scale.
166 */
167 long adv = min(win, (long) TCP_MAXWIN << tp->rcv_scale) -
168 (tp->rcv_adv - tp->rcv_nxt);

169 if (adv >= (long) (2 * tp->t_maxseg))
170 goto send;
171 if (2 * adv >= (long) so->so_rcv.sb_hiwat)
172 goto send;
173 }
-- tcp_output.c

154-168

The expression

min(win, (long)TCP_MAXWIN << tp->rcv_scale)

is the smaller of the amount of available space in the socket’s receive buffer (win) and the maximum size of the window allowed for this connection. This is the maximum window TCP can currently advertise to the other end. The expression

(tp->rcv_adv - tp->rcv_nxt)

is the number of bytes remaining in the last window advertisement that TCP sent to the other end. Subtracting this from the maximum window yields adv, the number of bytes by which the window has opened. rcv_nxt is incremented by tcp_input when data is received in sequence, and rcv_adv is incremented by tcp_output in Figure 26.32 when the edge of the advertised window moves to the right.

Consider Figure 24.18 and assume that a segment with bytes 4, 5, and 6 is received and that these three bytes are passed to the process. Figure 26.10 shows the state of the receive space at this point in tcp_output.

Figure 26.10. Transition from Figure 24.18 after bytes 4, 5, and 6 are received.

[image: Image]

The value of adv is 3, since there are 3 more bytes of the receive space (bytes 10, 11, and 12) for the other end to fill.

169-170

If the window has opened by two or more segments, a window update is sent. When data is received as full-sized segments, this code causes every other received segment to be acknowledged: TCP’s ACK-every-other-segment property. (We show an example of this shortly.)

171-172

If the window has opened by at least 50% of the maximum possible window (the socket’s receive buffer high-water mark), a window update is sent.

The next part of tcp_output, shown in Figure 26.11, checks whether various flags require TCP to send a segment.

Figure 26.11. tcp_output function: should a segment should be sent?

	

-- tcp_output.c
174 /*
175 * Send if we owe peer an ACK.
176 */
177 if (tp->t_flags & TF_ACKNOW)
178 goto send;
179 if (flags & (TH_SYN | TH_RST))
180 goto send;
181 if (SEQ_GT(tp->snd_up, tp->snd_una))
182 goto send;
183 /*
184 * If our state indicates that FIN should be sent
185 * and we have not yet done so, or we're retransmitting the FIN,
186 * then we need to send.
187 */
188 if (flags & TH_FIN &&
189 ((tp->t_flags & TF_SENTFIN) == 0 || tp->snd_nxt == tp->snd_una))
190 goto send;
-- tcp_output.c

174-178

If an immediate ACK is required, a segment is sent. The TF_ACKNOW flag is set by various functions: when the 200-ms delayed ACK timer expires, when a segment is received out of order (for the fast retransmit algorithm), when a SYN is received during the three-way handshake, when a persist probe is received, and when a FIN is received.

179-180

If flags specifies that a SYN or RST should be sent, a segment is sent.

181-182

If the urgent pointer, snd_up, is beyond the start of the send buffer, a segment is sent. The urgent pointer is set by the PRU_SENDOOB request (Figure 30.9).

183-190

If flags specifies that a FIN should be sent, a segment is sent only if the FIN has not already been sent, or if the FIN is being retransmitted. The flag TF_SENTFIN is set later in this function when the FIN is sent.

At this point in tcp_output there is no need to send a segment. Figure 26.12 shows the final piece of code before tcp_output returns.

Figure 26.12. tcp_output function: enter persist state.

	

-- tcp_output.c
191 /*
192 * TCP window updates are not reliable, rather a polling protocol
193 * using 'persist' packets is used to ensure receipt of window
194 * updates. The three 'states' for the output side are:
195 * idle not doing retransmits or persists
196 * persisting to move a small or zero window
197 * (re)transmitting and thereby not persisting
198 *
199 * tp->t_timer[TCPT_PERSIST]
200 * is set when we are in persist state.
201 * tp->t_force
202 * is set when we are called to send a persist packet.
203 * tp->t_timer[TCPT_REXMT]
204 * is set when we are retransmitting
205 * The output side is idle when both timers are zero.
206 *
207 * If send window is too small, there is data to transmit, and no
208 * retransmit or persist is pending, then go to persist state.
209 * If nothing happens soon, send when timer expires:
210 * if window is nonzero, transmit what we can,
211 * otherwise force out a byte.
212 */
213 if (so->so_snd.sb_cc && tp->t_timer[TCPT_REXMT] == 0 &&
214 tp->t_timer[TCPT_PERSIST] == 0) {
215 tp->t_rxtshift = 0;
216 tcp_setpersist(tp);
217 }
218 /*
219 * No reason to send a segment, just return.
220 */
221 return (0);
-- tcp_output.c

191-217

If there is data in the send buffer to send (so_snd.sb_cc is nonzero) and both the retransmission timer and the persist timer are off, turn the persist timer on. This scenario happens when the window advertised by the other end is too small to receive a full-sized segment, and there is no other reason to send a segment.

218-221

tcp_output returns, since there is no reason to send a segment.

Example

A process writes 100 bytes, followed by a write of 50 bytes, on an idle connection. Assume a segment size of 512 bytes. When the first write occurs, the code in Figure 26.8 (lines 144—146) sends a segment with 100 bytes of data since the connection is idle and TCP is emptying the send buffer.

When 50-byte write occurs, the code in Figure 26.8 does not send a segment: the amount of data is not a full-sized segment, the connection is not idle (assume TCP is awaiting the ACK for the 100 bytes that it just sent), the Nagle algorithm is enabled by default, t_force is not set, and assuming a typical receive window of 4096, 50 is not greater than or equal to 2048. These 50 bytes remain in the send buffer, probably until the ACK for the 100 bytes is received. This ACK will probably be delayed by the other end, causing more delay in sending the final 50 bytes.

This example shows the timing delays that can occur when sending less than full-sized segments with the Nagle algorithm enabled. See also Exercise 26.12.

Example

This example demonstrates the ACK-every-other-segment property of TCP. Assume a connection is established with a segment size of 1024 bytes and a receive buffer size of 4096. There is no data to send T CP is just receiving.

A window of 4096 is advertised in the ACK of the SYN, and Figure 26.13 shows the two variables rcv_nxt and rcv_adv. The receive buffer is empty.

Figure 26.13. Receiver advertising a window of 4096.

[image: Image]

The other end sends a segment with bytes 1—1024. tcp_input processes the segment, sets the delayed-ACK flag for the connection, and appends the 1024 bytes of data to the socket’s receiver buffer (Figure 28.13). rcv_nxt is updated as shown in Figure 26.14.

Figure 26.14. Transition from Figure 26.13 after bytes 1–1024 received.

[image: Image]

The process reads the 1024 bytes in its socket receive buffer. We’ll see in Figure 30.6 that the resulting PRU_RCVD request causes tcp_output to be called, because a window update might need to be sent after the process reads data from the receive buffer. When tcp_output is called, the two variables still have the values shown in Figure 26.14 and the only difference is that the amount of space in the receive buffer has increased to 4096 since the process has read the first 1024 bytes. The calculations in Figure 26.9 are performed:

adv = min(4096, 65535) - (4097 - 1025)
 = 1024

TCP_MAXWIN is 65535 and we assume a receive window scale shift of 0. Since the window has increased by less than two segments (2048), nothing is sent. But the delayed-ACK flag is still set, so if the 200-ms timer expires, an ACK will be sent.

When TCP receives the next segment with bytes 1025—2048, tcp_input processes the segment, sets the delayed-ACK flag for the connection (which was already on), and appends the 1024 bytes of data to the socket’s receiver buffer. rcv_nxt is updated as shown in Figure 26.15.

Figure 26.15. Transition from Figure 26.14 after bytes 1025–2048 received.

[image: Image]

The process reads bytes 1025—2048 and tcp_output is called. The two variables still have the values shown in Figure 26.15, although the space in the receive buffer increases to 4096 when the process reads the 1024 bytes of data. The calculations in Figure 26.9 are performed:

adv = min(4096, 65535) - (4097 - 2049)
 = 2048

This value is now greater than or equal to two segments, so a segment is sent with an acknowledgment field of 2049 and an advertised window of 4096. This is a window update. The receiver is willing to receive bytes 2049 through 6145. We’ll see later in this function that when this segment is sent, the value of rcv_adv also gets updated to 6145.

This example shows that when receiving data faster than the 200-ms delayed ACK timer, an ACK is sent when the receive window changes by more than two segments due to the process reading the data. If data is received for the connection but the process is not reading the data from the socket’s receive buffer, the ACK-every-other-segment property won’t occur. Instead the sender will only see the delayed ACKs, each advertising a smaller window, until the receive buffer is filled and the window goes to 0.

26.4. TCP Options

The TCP header can contain options. We digress to discuss these options since the next piece of tcp_output decides which options to send and constructs the options in the outgoing segment. Figure 26.16 shows the format of the options supported by Net/3.

Figure 26.16. TCP options supported by Net/3.

[image: Image]

Every option begins with a 1-byte kind that specifies the type of option. The first two options (with kinds of 0 and 1) are single-byte options. The other three are multibyte options with a len byte that follows the kind byte. The length is the total length, including the kind and len bytes.

The multibyte integers th e MSS and the two timestamp values are stored in network byte order.

The final two options, window scale and timestamp, are new and therefore not supported by many systems. To provide interoperability with these older systems, the following rules apply.

1. TCP can send one of these options (or both) with the initial SYN segment corresponding to an active open (that is, a SYN without an ACK). Net/3 does this for both options if the global tcp_do_rfc1323 is nonzero (it defaults to 1). This is done in tcp_newtcpcb.

2. The option is enabled only if the SYN reply from the other end also includes the desired option. This is handled in Figures 28.20 and 29.2.

3. If TCP performs a passive open and receives a SYN specifying the option, the response (the SYN plus ACK) must contain the option if TCP wants to enable the option. This is done in Figure 26.23.

Since a system must ignore options that it doesn’t understand, the newer options are enabled by both ends only if both ends understand the option and both ends want the option enabled.

The processing of the MSS option is covered in Section 27.5. The next two sections summarize the Net/3 handling of the two newer options: window scale and timestamp.

Other options have been proposed. kinds of 4, 5, 6, and 7, called the selective-ACK and echo options, are defined in RFC 1072 [Jacobson and Braden 1988]. We don’t show them in Figure 26.16 because the echo options were replaced with the timestamp option, and selective ACKs, as currently defined, are still under discussion and were not included in RFC 1323. Also, the T/TCP proposal for TCP transactions (RFC 1644 [Braden 1994], and Section 24.7 of Volume 1) specifies three options with kinds of 11, 12, and 13.

26.5. Window Scale Option

The window scale option, defined in RFC 1323, avoids the limitation of a 16-bit window size field in the TCP header (Figure 24.10). Larger windows are required for what are called long fat pipes, networks with either a high bandwidth or a long delay (i.e., a long RTT). Section 24.3 of Volume 1 gives examples of current networks that require larger windows to obtain maximum TCP throughput.

The 1-byte shift count in Figure 26.16 is between 0 (no scaling performed) and 14. This maximum value of 14 provides a maximum window of 1,073,725,440 bytes (65535 x 214). Internally Net/3 maintains window sizes as 32-bit values, not 16-bit values.

The window scale option can only appear in a SYN segment; therefore the scale factor is fixed in each direction when the connection is established.

The two variables snd_scale and rcv_scale in the TCP control block specify the shift count for the send window and the receive window, respectively. Both default to 0 for no scaling. Every 16-bit advertised window received from the other end is left shifted by snd_scale bits to obtain the real 32-bit advertised window size (Figure 28.6). Every time TCP sends a window advertisement to the other end, the internal 32-bit window size is right shifted by rcv_scale bits to give the value that is placed into the TCP header (Figure 26.29).

When TCP sends a SYN, either actively or passively, it chooses the value of rcv_scale to request, based on the size of the socket’s receive buffer (Figures 28.7 and 30.4).

26.6. Timestamp Option

The timestamp option is also defined in RFC 1323 and lets the sender place a timestamp in every segment. The receiver sends the timestamp back in the acknowledgment, allowing the sender to calculate the RTT for each received ACK. Figure 26.17 summarizes the timestamp option and the variables involved.

Figure 26.17. Summary of variables used with timestamp option.

[image: Image]

The global variable tcp_now is the timestamp clock. It is initialized to 0 when the kernel is initialized and incremented by 1 every 500 ms (Figure 25.8). Three variables are maintained in the TCP control block for the timestamp option:

[image: Image] ts_recent is a copy of the most-recent valid timestamp from the other end. (We describe shortly what makes a timestamp “valid.”)

[image: Image] ts_recent_age is the value of tcp_now when ts_recent was last copied from a received segment.

[image: Image] last_ack_sent is the value of the acknowledgment field (ti_ack) the last time a segment was sent (Figure 26.32). This is normally equal to rcv_nxt, the next expected sequence number, unless ACKs are delayed.

The two variables ts_val and ts_ecr are local variables in the function tcp_input that contain the two values from the timestamp option.

[image: Image] ts_val is the timestamp sent by the other end with its data.

[image: Image] ts_ecr is the timestamp from the segment that is being acknowledged by the received segment.

In an outgoing segment, the first 4 bytes of the timestamp option are set to 0x0101080a. This is the recommended value from Appendix A of RFC 1323. The 2 bytes of 1 are NOPs from Figure 26.16, followed by a kind of 8 and a len of 10, which identify the timestamp option. By placing two NOPs in front of the option, the two 32-bit timestamps in the option and the data that follows are aligned on 32-bit boundaries. Also, we show the received timestamp option in Figure 26.17 with the recommended 12-byte format (which Net/3 always generates), but the code that processes received options (Figure 28.10) does not require this format. The 10-byte format shown in Figure 26.16, without two preceding NOPs, is handled fine on input (but see Exercise 28.4).

The RTT of a transmitted segment and its ACK is calculated as tcp_now minus ts_ecr. The units are 500-ms clock ticks, since that is the units of the Net/3 timestamps.

The presence of the timestamp option also allows TCP to perform PAWS: protection against wrapped sequence numbers. We describe this algorithm in Section 28.7. The variable ts_recent_age is used with PAWS.

tcp_output builds a timestamp option in an outgoing segment by copying tcp_now into the timestamp and ts_recent into the echo reply (Figure 26.24). This is done for every segment when the option is in use, unless the RST flag is set.

Which Timestamp to Echo, RFC 1323 Algorithm

The test for a valid timestamp determines whether the value in ts_recent is updated, and since this value is always sent as the timestamp echo reply, the test for validity determines which timestamp gets echoed back to the other end. RFC 1323 specified the following test:

ti_seq <= last_ack_sent < ti_seq + ti_len

which is implemented in C as shown in Figure 26.18.

Figure 26.18. Typical code to determine if received timestamp is valid.

	

--
 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
 tp->ts_recent_age = tcp_now;
 tp->ts_recent = ts_val;
 }
--

The variable ts_present is true if a timestamp option was received in the segment. We encounter this code twice in tcp_input: Figure 28.11 does the test in the header prediction code, and Figure 28.35 does the test in the normal input processing.

To see what this test is doing, Figure 26.19 shows show five different scenarios, corresponding to five different segments received on a connection. In each scenario ti_len is 3.

Figure 26.19. Example receive window and five different scenarios of received segment.

[image: Image]

The left edge of the receive window begins with sequence number 4. In scenario 1 the segment contains completely duplicate data. The SEQ_LEQ test in Figure 28.11 is true, but the SEQ_LT test fails. For scenarios 2, 3, and 4, both the SEQ_LEQ and SEQ_LT tests are true because the left edge of the window is advanced by any one of these three segments, even though scenario 2 contains two duplicate bytes of data, and scenario 3 contains one duplicate byte of data. Scenario 5 fails the SEQ_LEQ test, because it doesn’t advance the left edge of the window. This segment is one in the future that’s not the next expected, implying that a previous segment was lost or reordered.

Unfortunately this test to determine whether to update ts_recent is flawed [Braden 1993]. Consider the following example.

1. In Figure 26.19 a segment that we don’t show arrives with bytes 1, 2, and 3. The timestamp in this segment is saved in ts_recent because last_ack_sent is 2. An ACK is sent with an acknowledgment field of 4, and last_ack_sent is set to 4 (the value of rcv_nxt). We have the receive window shown in Figure 26.19.

2. This ACK is lost.

3. The other end times out and retransmits the segment with bytes 1, 2, and 3. This segment arrives and is the one labeled “scenario 1” in Figure 26.19. Since the SEQ_LT test in Figure 26.18 fails, ts_recent is not updated with the value from the retransmitted segment.

4. A duplicate ACK is sent with an acknowledgment field of 4, but the timestamp echo reply is ts_recent, the value copied from the segment in step 1. But when the receiver calculates the RTT using this value, it will (incorrectly) take into account the original transmission, the lost ACK, the timeout, the retransmission, and the duplicate ACK.

For correct RTT estimation by the other end, the timestamp value from the retransmission should be returned in the duplicate ACK.

The tests in Figure 26.18 also fail to update ts_recent if the length of the received segment is 0, since the left edge of the window is not moved. This incorrect test can also lead to problems with long-lived (greater than 24 days, the PAWS limit described in Section 28.7), unidirectional connections (all the data flow is in one direction so the sender of the data always sends the same ACKs).

Which Timestamp to Echo, Corrected Algorithm

The algorithm we’ll encounter in the Net/3 sources is from Figure 26.18. The correct algorithm given in [Braden 1993] replaces Figure 26.18 with the one in Figure 26.20.

Figure 26.20. Correct code to determine if received timestamp is valid.

	

--
 if (ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) &&
 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent)) {
--

This doesn’t test whether the left edge of the window moves or not, it just verifies that the new timestamp (ts_val) is greater than or equal to the previous timestamp (ts_recent), and that the starting sequence number of the received segment is not greater than the left edge of the window. Scenario 5 in Figure 26.19 would fail this new test since it is out of order.

The macro TSTMP_GEQ is identical to SEQ_GEQ in Figure 24.21. It is used with timestamps, since timestamps are 32-bit unsigned values that wrap around just like sequence numbers.

Timestamps and Delayed ACKs

It is constructive to see how timestamps and RTT calculations are affected by delayed ACKs. Recall from Figure 26.17 that the value saved by TCP in ts_recent becomes the echoed timestamp in segments that are sent, which are used by the other end in calculating its RTT. When ACKs are delayed, the delay time should be taken into account by the side that sees the delays, or else it might retransmit too quickly. In the example that follows we only consider the code in Figure 26.20, but the incorrect code in Figure 26.18 also handles delayed ACKs correctly.

Consider the receive sequence space in Figure 26.21 when the received segment contains bytes 4 and 5.

Figure 26.21. Receive sequence space when segment with bytes 4 and 5 arrives.

[image: Image]

Since ti_seq is less than or equal to last_ack_sent, ts_recent is copied from the segment. rcv_nxt is also increased by 2.

Assume that the ACK for these 2 bytes is delayed, and before that delayed ACK is sent, the next in-order segment arrives. This is shown in Figure 26.22.

Figure 26.22. Receive sequence space when segment with bytes 6 and 7 arrives.

[image: Image]

This time ti_seq is greater than last_ack_sent, so ts_recent is not updated. This is intentional. Assuming TCP now sends an ACK for sequence numbers 4—7, the other end’s RTT will take into account the delayed ACK, since the echoed timestamp (Figure 26.24) is the one from the segment with sequence numbers 4 and 5. These figures also demonstrate that rcv_nxt equals last_ack_sent except when ACKs are delayed.

26.7. Send a Segment

The last half of tcp_output sends the segment it fills in all the fields in the TCP header and passes the segment to IP for output.

Figure 26.23 shows the first part, which sends the MSS and window scale options with a SYN segment.

Figure 26.23. tcp_output function: send options with first SYN segment.

	

-- tcp_output.c
222 send:
223 /*
224 * Before ESTABLISHED, force sending of initial options
225 * unless TCP set not to do any options.
226 * NOTE: we assume that the IP/TCP header plus TCP options
227 * always fit in a single mbuf, leaving room for a maximum
228 * link header, i.e.
229 * max_linkhdr + sizeof (struct tcpiphdr) + optlen <= MHLEN
230 */
231 optlen = 0;
232 hdrlen = sizeof(struct tcpiphdr);
233 if (flags & TH_SYN) {
234 tp->snd_nxt = tp->iss;
235 if ((tp->t_flags & TF_NOOPT) == 0) {
236 u_short mss;

237 opt[0] = TCPOPT_MAXSEG;
238 opt[1] = 4;
239 mss = htons((u_short) tcp_mss(tp, 0));
240 bcopy((caddr_t) & mss, (caddr_t) (opt + 2), sizeof(mss));
241 optlen = 4;

242 if ((tp->t_flags & TF_REQ_SCALE) &&
243 ((flags & TH_ACK) == 0 ||
244 (tp->t_flags & TF_RCVD_SCALE))) {
245 *((u_long *) (opt + optlen)) = htonl(TCPOPT_NOP << 24 |
246 TCPOPT_WINDOW << 16 |
247 TCPOLEN_WINDOW << 8 |
248 tp->request_r_scale);
249 optlen += 4;
250 }
251 }
252 }
-- tcp_output.c

223-234

The TCP options are built in the array opt, and the integer optlen keeps a count of the number of bytes accumulated (since multiple options can be sent at once). If the SYN flag bit is set, snd_nxt is set to the initial send sequence number (iss). If TCP is performing an active open, iss is set by the PRU_CONNECT request when the TCP control block is created. If this is a passive open, tcp_input creates the TCP control block and sets iss. In both cases, iss is set from the global tcp_iss.

235

The flag TF_NOOPT is checked, but this flag is never enabled and there is no way to turn it on. Hence, the MSS option is always sent with a SYN segment.

In the Net/1 version of tcp_newtcpcb, the comment “send options!” appeared on the line that initialized t_flags to 0. The TF_NOOPT flag is probably a historical artifact from a pre-Net/1 system that had problems interoperating with other hosts when it sent the MSS option, so the default was to not send the option.

Build MSS option

236-241

opt[0] is set to 2 (TCPOPT_MAXSEG) and opt[1] is set to 4, the length of the MSS option in bytes. The function tcp_mss calculates the MSS to announce to the other end; we cover this function in Section 27.5. The 16-bit MSS is stored in opt[2] and opt[3] by bcopy (Exercise 26.5). Notice that Net/3 always sends an MSS announcement with the SYN for a connection.

Should window scale option be sent?

242-244

If TCP is to request the window scale option, this option is sent only if this is an active open (TH_ACK is not set) or if this is a passive open and the window scale option was received in the SYN from the other end. Recall that t_flags was set to TF_REQ_SCALE|TF_REQ_TSTMP when the TCP control block was created in Figure 25.21, if the global variable tcp_do_rfc1323 was nonzero (its default value).

Build window scale option

245-249

Since the window scale option occupies 3 bytes (Figure 26.16), a 1-byte NOP is stored before the option, forcing the option length to be 4 bytes. This causes the data in the segment that follows the options to be aligned on a 4-byte boundary. If this is an active open, request_r_scale is calculated by the PRU_CONNECT request. If this is a passive open, the window scale factor is calculated by tcp_input when the SYN is received.

RFC 1323 specifies that if TCP is prepared to scale windows it should send this option even if its own shift count is 0. This is because the option serves two purposes: to notify the other end that it supports the option, and to announce its shift count. Even though TCP may calculate its own shift count as 0, the other end might want to use a different value.

The next part of tcp_output is shown in Figure 26.24. It finishes building the options in the outgoing segment.

Figure 26.24. tcp_output function: finish sending options.

	

-- tcp_output.c
253 /*
254 * Send a timestamp and echo-reply if this is a SYN and our side
255 * wants to use timestamps (TF_REQ_TSTMP is set) or both our side
256 * and our peer have sent timestamps in our SYN's.
257 */
258 if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
259 (flags & TH_RST) == 0 &&
260 ((flags & (TH_SYN | TH_ACK)) == TH_SYN ||
261 (tp->t_flags & TF_RCVD_TSTMP))) {
262 u_long *lp = (u_long *) (opt + optlen);

263 /* Form timestamp option as shown in appendix A of RFC 1323. */
264 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
265 *lp++ = htonl(tcp_now);
266 *lp = htonl(tp->ts_recent);
267 optlen += TCPOLEN_TSTAMP_APPA;
268 }
269 hdrlen += optlen;

270 /*
271 * Adjust data length if insertion of options will
272 * bump the packet length beyond the t_maxseg length.
273 */
274 if (len > tp->t_maxseg - optlen) {
275 len = tp->t_maxseg - optlen;
276 sendalot = 1;
277 }
-- tcp_output.c

Should timestamp option be sent?

253-261

If the following three conditions are all true, a timestamp option is sent: (1) TCP is configured to request the timestamp option, (2) the segment being formed does not contain the RST flag, and (3) either this is an active open (i.e., flags specifies the SYN flag but not the ACK flag) or TCP has received a timestamp from the other end (TF_RCVD_TSTMP). Unlike the MSS and window scale options, a timestamp option can be sent with every segment once both ends agree to use the option.

Build timestamp option

263-267

The timestamp option (Section 26.6) consists of 12 bytes (TCPOLEN_TSTAMP_APPA). The first 4 bytes are 0x0101080a (the constant TCPOPT_TSTAMP_HDR), as described with Figure 26.17. The timestamp value is taken from tcp_now (the number of 500-ms clock ticks since the system was initialized), and the timestamp echo reply is taken from ts_recent, which is set by tcp_input.

Check if options have overflowed segment

270-277

The size of the TCP header is incremented by the number of option bytes (optlen). If the amount of data to send (len) exceeds the MSS minus the size of the options (optlen), the data length is decreased accordingly and the sendalot flag is set, to force another loop through this function after this segment is sent (Figure 26.1).

The MSS and window scale options only appear in SYN segments, which Net/3 always sends without data, so this adjustment of the data length doesn’t apply. When the timestamp option is in use, however, it appears in all segments. This reduces the amount of data in each full-sized data segment from the announced MSS to the announced MSS minus 12 bytes.

The next part of tcp_output, shown in Figure 26.25, updates some statistics and allocates an mbuf for the IP and TCP headers. This code is executed when the segment being output contains some data (len is greater than 0).

Figure 26.25. tcp_output function: update statistics, allocate mbuf for IP and TCP headers.

	

-- tcp_output.c
278 /*
279 * Grab a header mbuf, attaching a copy of data to
280 * be transmitted, and initialize the header from
281 * the template for sends on this connection.
282 */
283 if (len) {
284 if (tp->t_force && len == 1)
285 tcpstat.tcps_sndprobe++;
286 else if (SEQ_LT(tp->snd_nxt, tp->snd_max)) {
287 tcpstat.tcps_sndrexmitpack++;
288 tcpstat.tcps_sndrexmitbyte += len;
289 } else {
290 tcpstat.tcps_sndpack++;
291 tcpstat.tcps_sndbyte += len;
292 }
293 MGETHDR(m, M_DONTWAIT, MT_HEADER);
294 if (m == NULL) {
295 error = ENOBUFS;
296 goto out;
297 }
298 m->m_data += max_linkhdr;
299 m->m_len = hdrlen;
300 if (len <= MHLEN - hdrlen - max_linkhdr) {
301 m_copydata(so->so_snd.sb_mb, off, (int) len,
302 mtod(m, caddr_t) + hdrlen);
303 m->m_len += len;
304 } else {
305 m->m_next = m_copy(so->so_snd.sb_mb, off, (int) len);
306 if (m->m_next == 0)
307 len = 0;
308 }
309 /*
310 * If we're sending everything we've got, set PUSH.
311 * (This will keep happy those implementations that
312 * give data to the user only when a buffer fills or
313 * a PUSH comes in.)
314 */
315 if (off + len == so->so_snd.sb_cc)
316 flags |= TH_PUSH;
-- tcp_output.c

Update statistics

284-292

If t_force is nonzero and TCP is sending a single byte of data, this is a window probe. If snd_nxt is less than snd_max, this is a retransmission. Otherwise, this is normal data transmission.

Allocate an mbuf for IP and TCP headers

293-297

An mbuf with a packet header is allocated by MGETHDR. This is for the IP and TCP headers, and possibly the data (if there’s room). Although tcp_output is often called as part of a system call (e.g., write) it is also called at the software interrupt level by tcp_input, and as part of the timer processing. Therefore M_DONTWAIT is specified. If an error is returned, a jump is made to the label out. This label is near the end of the function, in Figure 26.32.

Copy data into mbuf

298-308

If the amount of data is less than 44 bytes (100—40—16, assuming no TCP options), the data is copied directly from the socket send buffer into the new packet header mbuf by m_copydata. Otherwise m_copy creates a new mbuf chain with the data from the socket send buffer and this chain is linked to the new packet header mbuf. Recall our description of m_copy in Section 2.9, where we showed that if the data is in a cluster, m_copy just references that cluster and doesn’t make a copy of the data.

Set PSH flag

309-316

If TCP is sending everything it has from the send buffer, the PSH flag is set. As the comment indicates, this is intended for receiving systems that only pass received data to an application when the PSH flag is received or when a buffer fills. We’ll see in tcp_input that Net/3 never holds data in a socket receive buffer waiting for a received PSH flag.

The next part of tcp_output, shown in Figure 26.26, starts with the code that is executed when len equals 0: there is no data in the segment TCP is sending.

Figure 26.26. tcp_output function: update statistics and allocate mbuf for IP and TCP headers.

	

-- tcp_output.c
317 } else { /* len == 0 */
318 if (tp->t_flags & TF_ACKNOW)
319 tcpstat.tcps_sndacks++;
320 else if (flags & (TH_SYN | TH_FIN | TH_RST))
321 tcpstat.tcps_sndctrl++;
322 else if (SEQ_GT(tp->snd_up, tp->snd_una))
323 tcpstat.tcps_sndurg++;
324 else
325 tcpstat.tcps_sndwinup++;

326 MGETHDR(m, M_DONTWAIT, MT_HEADER);
327 if (m == NULL) {
328 error = ENOBUFS;
329 goto out;
330 }
331 m->m_data += max_linkhdr;
332 m->m_len = hdrlen;
333 }
334 m->m_pkthdr.rcvif = (struct ifnet *) 0;
335 ti = mtod(m, struct tcpiphdr *);
336 if (tp->t_template == 0)
337 panic("tcp_output");
338 bcopy((caddr_t) tp->t_template, (caddr_t) ti, sizeof(struct tcpiphdr));
-- tcp_output.c

Update statistics

318-325

Various statistics are updated: TF_ACKNOW and a length of 0 means this is an ACK-only segment. If any one of the flags SYN, FIN, or RST is set, this is a control segment. If the urgent pointer exceeds snd_una, the segment is being sent to notify the other end of the urgent pointer. If none of these conditions are true, this segment is a window update.

Get mbuf for IP and TCP headers

326-335

An mbuf with a packet header is allocated to contain the IP and TCP headers.

Copy IP and TCP header templates into mbuf

336-338

The template of the IP and TCP headers is copied from t_template into the mbuf by bcopy. This template was created by tcp_template.

Figure 26.27 shows the next part of tcp_output, which fills in some remaining fields in the TCP header.

Figure 26.27. tcp_output function: set ti_seq, ti_ack, and ti_flags.

	

-- tcp_output.c
339 /*
340 * Fill in fields, remembering maximum advertised
341 * window for use in delaying messages about window sizes.
342 * If resending a FIN, be sure not to use a new sequence number.
343 */
344 if (flags & TH_FIN && tp->t_flags & TF_SENTFIN &&
345 tp->snd_nxt == tp->snd_max)
346 tp->snd_nxt--;
347 /*
348 * If we are doing retransmissions, then snd_nxt will
349 * not reflect the first unsent octet. For ACK only
350 * packets, we do not want the sequence number of the
351 * retransmitted packet, we want the sequence number
352 * of the next unsent octet. So, if there is no data
353 * (and no SYN or FIN), use snd_max instead of snd_nxt
354 * when filling in ti_seq. But if we are in persist
355 * state, snd_max might reflect one byte beyond the
356 * right edge of the window, so use snd_nxt in that
357 * case, since we know we aren't doing a retransmission.
358 * (retransmit and persist are mutually exclusive...)
359 */
360 if (len || (flags & (TH_SYN | TH_FIN)) || tp->t_timer[TCPT_PERSIST])
361 ti->ti_seq = htonl(tp->snd_nxt);
362 else
363 ti->ti_seq = htonl(tp->snd_max);

364 ti->ti_ack = htonl(tp->rcv_nxt);

365 if (optlen) {
366 bcopy((caddr_t) opt, (caddr_t) (ti + 1), optlen);
367 ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
368 }
369 ti->ti_flags = flags;
-- tcp_output.c

Decrement snd_nxt if FIN is being retransmitted

339-346

If TCP has already transmitted the FIN, the send sequence space appears as shown in Figure 26.28.

Figure 26.28. Send sequence space after FIN has been transmitted.

[image: Image]

Therefore, if the FIN flag is set, and if the TF_SENTFIN flag is set, and if snd_nxt equals snd_max, TCP knows the FIN is being retransmitted. We’ll see shortly (Figure 26.31) that when a FIN is sent, snd_nxt is incremented 1 one (since the FIN occupies a sequence number), so this piece of code decrements snd_nxt by 1.

Set sequence number field of segment

347-363

The sequence number field of the segment is normally set to snd_nxt, but is set to snd_max if (1) there is no data to send (len equals 0), (2) neither the SYN flag nor the FIN flag is set, and (3) the persist timer is not set.

Set acknowledgment field of segment

364

The acknowledgment field of the segment is always set to rcv_nxt, the next expected receive sequence number.

Set header length if options present

365-368

If TCP options are present (optlen is greater than 0), the options are copied into the TCP header and the 4-bit header length in the TCP header (th_off in Figure 24.10) is set to the fixed size of the TCP header (20 bytes) plus the length of the options, divided by 4. This field is the number of 32-bit words in the TCP header, including options.

369

The flags field in the TCP header is set from the variable flags.

The next part of code, shown in Figure 26.29, fills in more fields in the TCP header and calculates the TCP checksum.

Figure 26.29. tcp_output function: fill in more TCP header fields and calculate checksum.

	

-- tcp_output.c
370 /*
371 * Calculate receive window. Don't shrink window,
372 * but avoid silly window syndrome.
373 */
374 if (win < (long) (so->so_rcv.sb_hiwat / 4) && win < (long) tp->t_maxseg)
375 win = 0;
376 if (win > (long) TCP_MAXWIN << tp->rcv_scale)
377 win = (long) TCP_MAXWIN << tp->rcv_scale;
378 if (win < (long) (tp->rcv_adv - tp->rcv_nxt))
379 win = (long) (tp->rcv_adv - tp->rcv_nxt);
380 ti->ti_win = htons((u_short) (win >> tp->rcv_scale));

381 if (SEQ_GT(tp->snd_up, tp->snd_nxt)) {
382 ti->ti_urp = htons((u_short) (tp->snd_up - tp->snd_nxt));
383 ti->ti_flags |= TH_URG;
384 } else
385 /*
386 * If no urgent pointer to send, then we pull
387 * the urgent pointer to the left edge of the send window
388 * so that it doesn't drift into the send window on sequence
389 * number wraparound.
390 */
391 tp->snd_up = tp->snd_una; /* drag it along */

392 /*
393 * Put TCP length in extended header, and then
394 * checksum extended header and data.
395 */
396 if (len + optlen)
397 ti->ti_len = htons((u_short) (sizeof(struct tcphdr) +
398 optlen + len));
399 ti->ti_sum = in_cksum(m, (int) (hdrlen + len));
-- tcp_output.c

Don’t advertise less than one full-sized segment

370-375

Avoidance of the silly window syndrome is performed, this time in calculating the window size that is advertised to the other end (ti_win). Recall that win was set at the end of Figure 26.3 to the amount of space in the socket’s receive buffer. If win is less than one-fourth of the receive buffer size (so_rcv.sb_hiwat) and less than one full-sized segment, the advertised window will be 0. This is subject to the later test that prevents the window from shrinking. In other words, when the amount of available space reaches either one-fourth of the receive buffer size or one full-sized segment, the available space will be advertised.

Observe upper limit for advertised window on this connection

376-377

If win is larger than the maximum value for this connection, reduce it to its maximum value.

Do not shrink window

378-379

Recall from Figure 26.10 that rcv_adv minus rcv_nxt is the amount of space still available to the sender that was previously advertised. If win is less than this value, win is set to this value, because we must not shrink the window. This can happen when the available space is less than one full-sized segment (hence win was set to 0 at the beginning of this figure), but there is room in the receive buffer for some data. Figure 22.3 of Volume 1 shows an example of this scenario.

Set urgent offset

381-383

If the urgent pointer (snd_up) is greater than snd_nxt, TCP is in urgent mode. The urgent offset in the TCP header is set to the 16-bit offset of the urgent pointer from the starting sequence number of the segment, and the URG flag bit is set. TCP sends the urgent offset and the URG flag regardless of whether the referenced byte of urgent data is contained in this segment or not.

Figure 26.30 shows an example of how the urgent offset is calculated, assuming the process executes

send(fd, buf, 3, MSG_OOB);

Figure 26.30. Example of urgent pointer and urgent offset calculation.

[image: Image]

and the send buffer is empty when this call to send takes place. This shows that Berkeley-derived systems consider the urgent pointer to point to the first byte of data after the out-of-band byte. Recall our discussion after Figure 24.10 where we distinguished between the 32-bit urgent pointer in the data stream (snd_up), and the 16-bit urgent offset in the TCP header (ti_urp).

There is a subtle bug here. The bug occurs when the send buffer is larger than 65535, regardless of whether the window scale option is in use or not. If the send buffer is greater than 65535 and is nearly full, and the process sends out-of-band data, the offset of the urgent pointer from snd_nxt can exceed 65535. But the urgent pointer is a 16-bit unsigned value, and if the calculated value exceeds 65535, the 16 high-order bits are discarded, delivering a bogus urgent pointer to the other end. See Exercise 26.6 for a solution.

384-391

If TCP is not in urgent mode, the urgent pointer is moved to the left edge of the window (snd_una).

392-399

The TCP length is stored in the pseudo-header and the TCP checksum is calculated. All the fields in the TCP header have been filled in, and when the IP and TCP header template were copied from t_template (Figure 26.26), the fields in the IP header that are used as the pseudo-header were initialized (as shown in Figure 23.19 for the UDP checksum calculation).

The next part of tcp_output, shown in Figure 26.31, updates the sequence number if the SYN or FIN flags are set and initializes the retransmission timer.

Figure 26.31. tcp_output function: update sequence number, initialize retransmit timer.

[image: Image]

Remember starting sequence number

400-405

If TCP is not in the persist state, the starting sequence number is saved in startseq. This is used later in Figure 26.31 if the segment is timed.

Increment snd_nxt

406-417

Since both the SYN and FIN flags take a sequence number, snd_nxt is incremented if either is set. TCP also remembers that the FIN has been sent, by setting the flag TF_SENTFIN. snd_nxt is then incremented by the number of bytes of data (len), which can be 0.

Update snd_max

418-419

If the new value of snd_nxt is larger than snd_max, this is not a retransmission. The new value of snd_max is stored.

420-428

If a segment is not currently being timed for this connection (t_rtt equals 0), the timer is started (t_rtt is set to 1) and the starting sequence number of the segment being timed is saved in t_rtseq. This sequence number is used by tcp_input to determine when the segment being timed is acknowledged, to update the RTT estimators. The sample code we discussed in Section 25.10 looked like

if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
 tcp_xmit_timer(tp, tp->t_rtt);

Set retransmission timer

430-440

If the retransmission timer is not currently set, and if this segment contains data, the retransmission timer is set to t_rxtcur. Recall that t_rxtcur is set by tcp_xmit_timer, when an RTT measurement is made. This is an ACK-only segment if snd_nxt equals snd_una (since len was added to snd_nxt earlier in this figure), and the retransmission timer is set only for segments containing data.

441-444

If the persist timer is enabled, it is disabled. Either the retransmission timer or the persist timer can be enabled at any time for a given connection, but not both.

Persist state

446-447

The connection is in the persist state since t_force is nonzero and the persist timer is enabled. (This else clause is associated with the if at the beginning of the figure.) snd_max is updated, if necessary. In the persist state, len will be one.

The final part of tcp_output, shown in Figure 26.32 completes the formation of the outgoing segment and calls ip_output to send the datagram.

Figure 26.32. tcp_output function: call ip_output to send segment.

[image: Image]

Add trace record for socket debugging

448-452

If the SO_DEBUG socket option is enabled, tcp_trace adds a record to TCP’s circular trace buffer. We describe this function in Section 27.10.

Set IP length, TTL, and TOS

453-462

The final three fields in the IP header that must be set by the transport layer are stored: IP length, TTL, and TOS. These three fields are marked with an asterisk at the bottom of Figure 23.19.

The comments XXX are because the latter two fields normally remain constant for a connection and should be stored in the header template, instead of being assigned explicitly each time a segment is sent. But these two fields cannot be stored in the IP header until after the TCP checksum is calculated.

Pass datagram to IP

463-464

ip_output sends the datagram containing the TCP segment. The socket options are logically ANDed with SO_DONTROUTE, which means that the only socket option passed to ip_output is SO_DONTROUTE. The only other socket option examined by ip_output is SO_BROADCAST, so this logical AND turns off the SO_BROADCAST bit, if set. This means that a process cannot issue a connect to a broadcast address, even if it sets the SO_BROADCAST socket option.

467-470

The error ENOBUFS is returned if the interface queue is full or if IP needs to obtain an mbuf and can’t. The function tcp_quench puts the connection into slow start, by setting the congestion window to one full-sized segment. Notice that tcp_output still returns 0 (OK) in this case, instead of the error, even though the datagram was discarded. This differs from udp_output (Figure 23.20), which returned the error. The difference is that UDP is unreliable, so the ENOBUFS error return is the only indication to the process that the datagram was discarded. TCP, however, will time out (if the segment contains data) and retransmit the datagram, and it is hoped that there will be space on the interface output queue or more available mbufs. If the TCP segment doesn’t contain data, the other end will time out when the ACK isn’t received and will retransmit the data whose ACK was discarded.

471-475

If a route can’t be located for the destination, and if the connection has received a SYN, the error is recorded as a soft error for the connection.

When tcp_output is called by tcp_usrreq as part of a system call by a process (Chapter 30, the PRU_CONNECT, PRU_SEND, PRU_SENDOOB, and PRU_SHUTDOWN requests), the process receives the return value from tcp_output. Other functions that call tcp_output, such as tcp_input and the fast and slow timeout functions, ignore the return value (because these functions don’t return an error to a process).

Update rcv_adv and last_ack_sent

479-486

If the highest sequence number advertised in this segment (rcv_nxt plus win) is larger than rcv_adv, the new value is saved. Recall that rcv_adv was used in Figure 26.9 to determine how much the window had opened since the last segment that was sent, and in Figure 26.29 to make certain TCP was not shrinking the window.

487

The value of the acknowledgment field in the segment is saved in last_ack_sent. This variable is used by tcp_input with the timestamp option (Section 26.6).

488

Any pending ACK has been sent, so the TF_ACKNOW and TF_DELACK flags are cleared.

More data to send?

489-490

If the sendalot flag is set, a jump is made back to the label again (Figure 26.1). This occurs if the send buffer contains more than one full-sized segment that can be sent (Figure 26.3), or if a full-sized segment was being sent and TCP options were included that reduced the amount of data in the segment (Figure 26.24).

26.8. tcp_template Function

The function tcp_newtcpcb (from the previous chapter) is called when the socket is created, to allocate and partially initialize the TCP control block. When the first segment is sent or received on the socket (an active open is performed, the PRU_CONNECT request, or a SYN arrives for a listening socket), tcp_template creates a template of the IP and TCP headers for the connection. This minimizes the amount of work required by tcp_output when a segment is sent on the connection.

Figure 26.33 shows the tcp_template function.

Figure 26.33. tcp_template function: create template of IP and TCP headers.

	

-- tcp_subr.c
 59 struct tcpiphdr *
 60 tcp_template(tp)
 61 struct tcpcb *tp;
 62 {
 63 struct inpcb *inp = tp->t_inpcb;
 64 struct mbuf *m;
 65 struct tcpiphdr *n;

 66 if ((n = tp->t_template) == 0) {
 67 m = m_get(M_DONTWAIT, MT_HEADER);
 68 if (m == NULL)
 69 return (0);
 70 m->m_len = sizeof(struct tcpiphdr);
 71 n = mtod(m, struct tcpiphdr *);
 72 }
 73 n->ti_next = n->ti_prev = 0;
 74 n->ti_x1 = 0;
 75 n->ti_pr = IPPROTO_TCP;
 76 n->ti_len = htons(sizeof(struct tcpiphdr) - sizeof(struct ip));
 77 n->ti_src = inp->inp_laddr;
 78 n->ti_dst = inp->inp_faddr;
 79 n->ti_sport = inp->inp_lport;
 80 n->ti_dport = inp->inp_fport;
 81 n->ti_seq = 0;
 82 n->ti_ack = 0;
 83 n->ti_x2 = 0;
 84 n->ti_off = 5; /* 5 32-bit words = 20 bytes */
 85 n->ti_flags = 0;
 86 n->ti_win = 0;
 87 n->ti_sum = 0;
 88 n->ti_urp = 0;
 89 return (n);
 90 }
-- tcp_subr.c

Allocate mbuf

59-72

The template of the IP and TCP headers is formed in an mbuf, and a pointer to the mbuf is stored in the t_template member of the TCP control block. Since this function can be called at the software interrupt level, from tcp_input, the M_DONTWAIT flag is specified.

Initialize header fields

73-88

All the fields in the IP and TCP headers are set to 0 except as follows: ti_pr is set to the IP protocol value for TCP (6); ti_len is set to 20, the default length of the TCP header; and ti_off is set to 5, the number of 32-bit words in the 20-byte TCP header. Also the source and destination IP addresses and TCP port numbers are copied from the Internet PCB into the TCP header template.

Pseudo-header for TCP checksum computation

73-88

The initialization of many of the fields in the combined IP and TCP header simplifies the computation of the TCP checksum, using the same pseudo-header technique as discussed for UDP in Section 23.6. Examining the udpiphdr structure in Figure 23.19 shows why tcp_template initializes fields such as ti_next and ti_prev to 0.

26.9. tcp_respond Function

The function tcp_respond is a special-purpose function that also calls ip_output to send IP datagrams. tcp_respond is called in two cases:

1. by tcp_input to generate an RST segment, with or without an ACK, and

2. by tcp_timers to send a keepalive probe.

Instead of going through all the logic of tcp_output for these two cases, the special-purpose function tcp_respond is called. We also note that the function tcp_drop that we cover in the next chapter also generates RST segments by calling tcp_output. Not all RST segments are generated by tcp_respond.

Figure 26.34 shows the first half of tcp_respond.

Figure 26.34. tcp_respond function: first half.

	

-- tcp_subr.c
104 void
105 tcp_respond(tp, ti, m, ack, seq, flags)
106 struct tcpcb *tp;
107 struct tcpiphdr *ti;
108 struct mbuf *m;
109 tcp_seq ack, seq;
110 int flags;
111 {
112 int tlen;
113 int win = 0;
114 struct route *ro = 0;

115 if (tp) {
116 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
117 ro = &tp->t_inpcb->inp_route;
118 }
119 if (m == 0) { /* generate keepalive probe */
120 m = m_gethdr(M_DONTWAIT, MT_HEADER);
121 if (m == NULL)
122 return;
123 tlen = 0; /* no data is sent */
124 m->m_data += max_linkhdr;
125 *mtod(m, struct tcpiphdr *) = *ti;
126 ti = mtod(m, struct tcpiphdr *);
127 flags = TH_ACK;

128 } else { /* generate RST segment */
129 m_freem(m->m_next);
130 m->m_next = 0;
131 m->m_data = (caddr_t) ti;
132 m->m_len = sizeof(struct tcpiphdr);
133 tlen = 0;
134 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
135 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_long);
136 xchg(ti->ti_dport, ti->ti_sport, u_short);
137 #undef xchg
138 }
-- tcp_subr.c

104-110

Figure 26.35 shows the different arguments to tcp_respond for the three cases in which it is called.

Figure 26.35. Arguments to tcp_respond.

[image: Image]

tp is a pointer to the TCP control block (possibly a null pointer); ti is a pointer to an IP/TCP header template; m is a pointer to the mbuf containing the segment causing the RST to be generated; and the last three arguments are the acknowledgment field, sequence number field, and flags field of the segment being generated.

113-118

It is possible for tcp_input to generate an RST when a segment is received that does not have an associated TCP control block. This happens, for example, when a segment is received that doesn’t reference an existing connection (e.g., a SYN for a port without an associated listening server). In this case tp is null and the initial values for win and ro are used. If tp is not null, the amount of space in the receive buffer will be sent as the advertised window, and the pointer to the cached route is saved in ro for the call to ip_output.

Send keepalive probe when keepalive timer expires

119-127

The argument m is a pointer to the mbuf chain for the received segment. But a keep-alive probe is sent in response to the keepalive timer expiring, not in response to a received TCP segment. Therefore m is null and m_gethdr allocates a packet header mbuf to contain the IP and TCP headers. tlen, the length of the TCP data, is set to 0, since the keepalive probe doesn’t contain any data.

Some older implementations based on 4.2BSD do not respond to these keepalive probes unless the segment contains data. Net/3 can be configured to send 1 garbage byte of data in the probe to elicit the response by defining the name TCP_COMPAT_42 when the kernel is compiled. This assigns 1, instead of 0, to tlen. The garbage byte causes no harm, because it is not the expected byte (it is a byte that the receiver has previously received and acknowledged), so it is thrown away by the receiver.

The assignment of *ti copies the TCP header template structure pointed to by ti into the data portion of the mbuf. The pointer ti is then set to point to the header template in the mbuf.

Send RST segment in response to received segment

128-138

An RST segment is being sent by tcp_input in response to a received segment. The mbuf containing the input segment is reused for the response. All the mbufs on the chain are released by m_free except the first mbuf (the packet header), since the segment generated by tcp_respond consists of only an IP header and a TCP header. The source and destination IP address and port numbers are swapped in the IP and TCP header.

Figure 26.36 shows the final half of tcp_respond.

Figure 26.36. tcp_respond function: second half.

	

-- tcp_subr.c
139 ti->ti_len = htons((u_short) (sizeof(struct tcphdr) + tlen));
140 tlen += sizeof(struct tcpiphdr);
141 m->m_len = tlen;
142 m->m_pkthdr.len = tlen;
143 m->m_pkthdr.rcvif = (struct ifnet *) 0;
144 ti->ti_next = ti->ti_prev = 0;
145 ti->ti_x1 = 0;
146 ti->ti_seq = htonl(seq);
147 ti->ti_ack = htonl(ack);
148 ti->ti_x2 = 0;
149 ti->ti_off = sizeof(struct tcphdr) >> 2;
150 ti->ti_flags = flags;
151 if (tp)
152 ti->ti_win = htons((u_short) (win >> tp->rcv_scale));
153 else
154 ti->ti_win = htons((u_short) win);
155 ti->ti_urp = 0;
156 ti->ti_sum = 0;
157 ti->ti_sum = in_cksum(m, tlen);
158 ((struct ip *) ti)->ip_len = tlen;
159 ((struct ip *) ti)->ip_ttl = ip_defttl;
160 (void) ip_output(m, NULL, ro, 0, NULL);
161 }
-- tcp_subr.c

139-157

The fields in the IP and TCP headers must be initialized for the TCP checksum computation. These statements are similar to the way tcp_template initializes the t_template field. The sequence number and acknowledgment fields are passed by the caller as arguments. Finally ip_output sends the datagram.

26.10. Summary

This chapter has looked at the general-purpose function that generates most TCP segments (tcp_output) and the special-purpose function that generates RST segments and keepalive probes (tcp_respond).

Many factors determine whether TCP can send a segment or not: the flags in the segment, the window advertised by the other end, the amount of data ready to send, whether unacknowledged data already exists for the connection, and so on. Therefore the logic of tcp_output determines whether a segment can be sent (the first half of the function), and if so, what values to set all the TCP header fields to (the last half of the function). If a segment is sent, the TCP control block variables for the send sequence space must be updated.

One segment at a time is generated by tcp_output, and at the end of the function a check is made of whether more data can still be sent. If so, the function loops around and tries to send another segment. This looping continues until there is no more data to send, or until some other condition (e.g., the receiver’s advertised window) stops the transmission.

A TCP segment can also contain options. The options supported by Net/3 specify the maximum segment size, a window scale factor, and a pair of timestamps. The first two can only appear with SYN segments, while the timestamp option (if supported by both ends) normally appears in every segment. Since the window scale and timestamp options are newer and optional, if the first end to send a SYN wants to use the option, it sends the option with its SYN and uses the option only if the other end’s SYN also contains the option.

Exercises

26.1 Slow start is resumed in Figure 26.1 when there is a pause in the sending of data, yet the amount of idle time is calculated as the amount of time since the last segment was received on the connection. Why doesn’t TCP calculate the idle time as the amount of time since the last segment was sent on the connection?

26.2 With Figure 26.6 we said that len is less than 0 if the FIN has been sent but not acknowledged and not retransmitted. What happens if the FIN is retransmitted?

26.3 Net/3 always sends the window scale and timestamp options with an active open. Why does the global variable tcp_do_rfc1323 exist?

26.4 In Figure 25.28, which did not use the timestamp option, the RTT estimators are updated eight times. If the timestamp option had been used in this example, how many times would the RTT estimators have been updated?

26.5 In Figure 26.23 bcopy is called to store the received MSS in the variable mss. Why not cast the pointer to opt[2] into a pointer to an unsigned short and perform an assignment?

26.6 After Figure 26.29 we described a bug in the code, which can cause a bogus urgent offset to be sent. Propose a solution. (Hint: What is the largest amount of TCP data that can be sent in a segment?)

26.7 With Figure 26.32 we mentioned that an error of ENOBUFS is not returned to the process because (1) if the discarded segment contained data, the retransmission timer will expire and the data will be retransmitted, or (2) if the discarded segment was an ACK-only segment, the other end will retransmit its data when it doesn’t receive the ACK. What if the discarded segment contains an RST?

26.8 Explain the settings of the PSH flag in Figure 20.3 of Volume 1.

26.9 Why does Figure 26.36 use the value of ip_defttl for the TTL, while Figure 26.32 uses the value in the PCB?

26.10 Describe what happens with the mbuf allocated in Figure 26.25 when IP options are specified by the process for the TCP connection. Implement a better solution.

26.11 tcp_output is a long function (about 500 lines, including comments), which can appear to be inefficient. But lots of the code handles special cases. Assume the function is called with a full-sized segment ready to be sent, and no special cases: no IP options and no special flags such as SYN, FIN, or URG. About how many lines of C code are actually executed? How many functions are called before the segment is passed to ip_output?

26.12 In the example at the end of Section 26.3 in which the application did a write of 100 bytes followed by a write of 50 bytes, would anything change if the application called writev once for both buffers, instead of calling write twice? Does anything change with writev if the two buffer lengths are 200 and 300, instead of 100 and 50?

26.13 The timestamp that is sent in the timestamp option is taken from the global tcp_now, which is incremented every 500 ms. Modify TCP to use a higher resolution timestamp value.

Chapter 27. TCP Functions

27.1. Introduction

This chapter presents numerous TCP functions that we need to cover before discussing TCP input in the next two chapters:

[image: Image] tcp_drain is the protocol’s drain function, called when the kernel is out of mbufs. It does nothing.

[image: Image] tcp_drop aborts a connection by sending an RST.

[image: Image] tcp_close performs the normal TCP connection termination: send a FIN and wait for the four-way exchange to complete. Section 18.2 of Volume 1 talks about the four packets that are exchanged when a connection is closed.

[image: Image] tcp_mss processes a received MSS option and calculates the MSS to announce when TCP sends an MSS option of its own.

[image: Image] tcp_ctlinput is called when an ICMP error is received in response to a TCP segment, and it calls tcp_notify to process the ICMP error. tcp_quench is a special case function that handles ICMP source quench errors.

[image: Image] The TCP_REASS macro and the tcp_reass function manipulate segments on TCP’s reassembly queue for a given connection. This queue handles the receipt of out-of-order segments, some of which might overlap.

[image: Image] tcp_trace adds records to the kernel’s circular debug buffer for TCP (the SO_DEBUG socket option) that can be printed with the trpt(8) program.

27.2. tcp_drain Function

The simplest of all the TCP functions is tcp_drain. It is the protocol’s pr_drain function, called by m_reclaim when the kernel runs out of mbufs. We saw in Figure 10.32 that ip_drain discards all the fragments on its reassembly queue, and UDP doesn’t define a drain function. Although TCP holds onto mbufs segments that have arrived out of order, but within the receive window for the socket the Net/3 implementation of TCP does not discard these pending mbufs if the kernel runs out of space. Instead, tcp_drain does nothing, on the assumption that a received (but out-of-order) TCP segment is “more important” than an IP fragment.

27.3. tcp_drop Function

tcp_drop is called from numerous places to drop a connection by sending an RST and to report an error to the process. This differs from closing a connection (the tcp_disconnect function), which sends a FIN to the other end and follows the connection termination steps in the state transition diagram.

Figure 27.1 shows the seven places where tcp_drop is called and the errno argument.

Figure 27.1. Calls to tcp_drop and errno argument.

[image: Image]

Figure 27.2 shows the tcp_drop function.

Figure 27.2. tcp_drop function.

	

--- tcp_subr.c
202 struct tcpcb *
203 tcp_drop(tp, errno)
204 struct tcpcb *tp;
205 int errno;
206 {
207 struct socket *so = tp->t_inpcb->inp_socket;

208 if (TCPS_HAVERCVDSYN(tp->t_state)) {
209 tp->t_state = TCPS_CLOSED;
210 (void) tcp_output(tp);
211 tcpstat.tcps_drops++;
212 } else
213 tcpstat.tcps_conndrops++;
214 if (errno == ETIMEDOUT && tp->t_softerror)
215 errno = tp->t_softerror;
216 so->so_error = errno;
217 return (tcp_close(tp));
218 }
--- tcp_subr.c

202-213

If TCP has received a SYN, the connection is synchronized and an RST must be sent to the other end. This is done by setting the state to CLOSED and calling tcp_output. In Figure 24.16 the value of tcp_outflags for the CLOSED state includes the RST flag.

214-216

If the error is ETIMEDOUT but a soft error was received on the connection (e.g., EHOSTUNREACH), the soft error becomes the socket error, instead of the less specific ETIMEDOUT.

217

tcp_close finishes closing the socket.

27.4. tcp_close Function

tcp_close is normally called by tcp_input when the process has done a passive close and the ACK is received in the LAST_ACK state, and by tcp_timers when the 2MSL timer expires and the socket moves from the TIME_WAIT to CLOSED state. It is also called in other states, possibly after an error has occurred, as we saw in the previous section. It releases the memory occupied by the connection (the IP and TCP header template, the TCP control block, the Internet PCB, and any out-of-order segments remaining on the connection’s reassembly queue) and updates the route characteristics.

We describe this function in three parts, the first two dealing with the route characteristics and the final part showing the release of resources.

Route Characteristics

Nine variables are maintained in the rt_metrics structure (Figure 18.26), six of which are used by TCP. Eight of these can be examined and changed with the route(8) command (the ninth, rmx_pksent is never used): these variables are shown in Figure 27.3.

Figure 27.3. Members of the rt_metrics structure used by TCP.

[image: Image]

Additionally, the -lock modifier can be used with the route command to set the corresponding RTV_xxx bit in the rmx_locks member (Figure 20.13). Setting the RTV_xxx bit tells the kernel not to update that metric.

When a TCP socket is closed, tcp_close updates three of the routing metrics the smoothed RTT estimator, the smoothed mean deviation estimator, and the slow start threshold but only if enough data was transferred on the connection to yield meaningful statistics and the variable is not locked.

Figure 27.4 shows the first part of tcp_close.

Figure 27.4. tcp_close function: update RTT and mean deviation.

[image: Image]

Check if enough data sent to update statistics

234-248

The default send buffer size is 8192 bytes (sb_hiwat), so the first test is whether 131,072 bytes (16 full buffers) have been transferred across the connection. The initial send sequence number is compared to the maximum sequence number sent on the connection. Additionally, the socket must have a cached route and that route cannot be the default route. (See Exercise 19.2.)

Notice there is a small chance for an error in the first test, because of sequence number wrap, if the amount of data transferred is within N x 232 and N x 232 + 131072, for any N greater than 1. But few connections (today) transfer 4 gigabytes of data.

Despite the prevalence of default routes in the Internet, this information is still useful to maintain in the routing table. If a host continually exchanges data with another host (or network), even if a default route can be used, a host-specific or network-specific route can be entered into the routing table with the route command just to maintain this information across connections. (See Exercise 19.2.) This information is lost when the system is rebooted.

250

The administrator can lock any of the variables from Figure 27.3, preventing them from being updated by the kernel, so before modifying each variable this lock must be checked.

Update RTT

251-264

t_srtt is stored as ticks x 8 (Figure 25.19) and rmx_rtt is stored as microseconds. So t_srtt is multiplied by 1,000,000 (RTM_RTTUNIT) and then divided by 2 (ticks/second) times 8. If a value for rmx_rtt already exists, the new value is one-half the old value plus one-half the new value. Otherwise the new value is stored in rmx_rtt.

Update mean deviation

265-273

The same algorithm is applied to the mean deviation estimator. It too is stored as microseconds, requiring a conversion from the t_rttvar units of ticks x 4.

Figure 27.5 shows the next part of tcp_close, which updates the slow start threshold for the route.

Figure 27.5. tcp_close function: update slow start threshold.

	

--- tcp_subr.c
274 /*
275 * update the pipelimit (ssthresh) if it has been updated
276 * already or if a pipesize was specified & the threshhold
277 * got below half the pipesize. I.e., wait for bad news
278 * before we start updating, then update on both good
279 * and bad news.
280 */
281 if ((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
282 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh ||
283 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
284 /*
285 * convert the limit from user data bytes to
286 * packets then to packet data bytes.
287 */
288 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
289 if (i < 2)
290 i = 2;
291 i *= (u_long) (tp->t_maxseg + sizeof(struct tcpiphdr));
292 if (rt->rt_rmx.rmx_ssthresh)
293 rt->rt_rmx.rmx_ssthresh =
294 (rt->rt_rmx.rmx_ssthresh + i) / 2;
295 else
296 rt->rt_rmx.rmx_ssthresh = i;
297 }
298 }
--- tcp_subr.c

274-283

The slow start threshold is updated only if (1) it has been updated already (rmx_ssthresh is nonzero) or (2) rmx_sendpipe is specified by the administrator and the new value of snd_ssthresh is less than one-half the value of rmx_sendpipe. As the comment in the code indicates, TCP does not update the value of rmx_ssthresh until it is forced to because of packet loss; from that point on it considers itself free to adjust the value either up or down.

284-290

The variable snd_ssthresh is maintained in bytes. The first conversion divides this variable by the MSS (t_maxseg), yielding the number of segments. The addition of one-half t_maxseg rounds the integer result. The lower bound on this result is two segments.

291-297

The size of the IP and TCP headers (40) is added to the MSS and multipled by the number of segments. This value updates rmx_ssthresh, using the same filtering as in Figure 27.4 (one-half the old plus one-half the new).

Resource Release

The final part of tcp_close, shown in Figure 27.6, releases the memory resources held by the socket.

Figure 27.6. tcp_close function: release connection resources.

	

--- tcp_subr.c
299 /* free the reassembly queue, if any */
300 t = tp->seg_next;
301 while (t != (struct tcpiphdr *) tp) {
302 t = (struct tcpiphdr *) t->ti_next;
303 m = REASS_MBUF((struct tcpiphdr *) t->ti_prev);
304 remque(t->ti_prev);
305 m_freem(m);
306 }
307 if (tp->t_template)
308 (void) m_free(dtom(tp->t_template));
309 free(tp, M_PCB);
310 inp->inp_ppcb = 0;
311 soisdisconnected(so);
312 /* clobber input pcb cache if we're closing the cached connection */
313 if (inp == tcp_last_inpcb)
314 tcp_last_inpcb = &tcb;
315 in_pcbdetach(inp);
316 tcpstat.tcps_closed++;
317 return ((struct tcpcb *) 0);
318 }
--- tcp_subr.c

Release any mbufs on reassembly queue

299-306

If any segments are left on the connection’s reassembly queue, they are discarded. This queue is for segments that arrive out of order but within the receive window. They are held in a reassembly queue until the required “earlier” segments are received, at which time they are reassembled and passed to the application in the correct order. We discuss this in more detail in Section 27.9.

Release header template and TCP control block

307-311

The template of the IP and TCP headers is released by m_free and the TCP control block is released by free. soisdisconnected marks the socket as disconnected.

Release PCB

312-318

If the Internet PCB for this socket is the one currently cached by TCP, the cache is marked as empty by setting tcp_last_inpcb to the head of TCP’s PCB list. The PCB is then detached, which releases the memory used by the PCB.

27.5. tcp_mss Function

The tcp_mss function is called from two other functions:

1. from tcp_output, when a SYN segment is being sent, to include an MSS option, and

2. from tcp_input, when an MSS option is received in a SYN segment.

The tcp_mss function checks for a cached route to the destination and calculates the MSS to use for this connection.

Figure 27.7 shows the first part of tcp_mss, which acquires a route to the destination if one is not already held by the PCB.

Figure 27.7. tcp_mss function: acquire a route if one is not held by the PCB.

	

--- tcp_input.c
1391 int
1392 tcp_mss(tp, offer)
1393 struct tcpcb *tp;
1394 u_int offer;
1395 {
1396 struct route *ro;
1397 struct rtentry *rt;
1398 struct ifnet *ifp;
1399 int rtt, mss;
1400 u_long bufsize;
1401 struct inpcb *inp;
1402 struct socket *so;
1403 extern int tcp_mssdflt;

1404 inp = tp->t_inpcb;
1405 ro = &inp->inp_route;

1406 if ((rt = ro->ro_rt) == (struct rtentry *) 0) {
1407 /* No route yet, so try to acquire one */
1408 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1409 ro->ro_dst.sa_family = AF_INET;
1410 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1411 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1412 inp->inp_faddr;
1413 rtalloc(ro);
1414 }
1415 if ((rt = ro->ro_rt) == (struct rtentry *) 0)
1416 return (tcp_mssdflt);
1417 }
1418 ifp = rt->rt_ifp;
1419 so = inp->inp_socket;
--- tcp_input.c

Acquire a route if necessary

1391-1417

If the socket does not have a cached route, rtalloc acquires one. The interface pointer associated with the outgoing route is saved in ifp. Knowing the outgoing interface is important, since its associated MTU can affect the MSS announced by TCP. If a route is not acquired, the default of 512 (tcp_mssdflt) is returned immediately.

The next part of tcp_mss, shown in Figure 27.8, checks whether the route has metrics associated with it; if so, the variables t_rttmin, t_srtt, and t_rttvar can be initialized from the metrics.

Figure 27.8. tcp_mss function: check if the route has an associated RTT metric.

	

--- tcp_input.c
1420 /*
1421 * While we're here, check if there's an initial rtt
1422 * or rttvar. Convert from the route-table units
1423 * to scaled multiples of the slow timeout timer.
1424 */
1425 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1426 /*
1427 * XXX the lock bit for RTT indicates that the value
1428 * is also a minimum value; this is subject to time.
1429 */
1430 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1431 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1432 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));

1433 if (rt->rt_rmx.rmx_rttvar)
1434 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1435 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1436 else
1437 /* default variation is +- 1 rtt */
1438 tp->t_rttvar =
1439 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;

1440 TCPT_RANGESET(tp->t_rxtcur,
1441 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1442 tp->t_rttmin, TCPTV_REXMTMAX);
1443 }
--- tcp_input.c

Initialize smoothed RTT estimator

1420-1432

If there are no RTT measurements yet for the connection (t_srtt is 0) and rmx_rtt is nonzero, the latter initializes the smoothed RTT estimator t_srtt. If the RTV_RTT bit in the routing metric lock flag is set, it indicates that rmx_rtt should also be used to initialize the minimum RTT for this connection (t_rttmin). We saw that tcp_newtcpcb initializes t_rttmin to 2 ticks.

rmx_rtt (in units of microseconds) is converted to t_srtt (in units of ticks x 8). This is the reverse of the conversion done in Figure 27.4. Notice that t_rttmin is set to one-eighth the value of t_srtt, since the former is not divided by the scale factor TCP_RTT_SCALE.

Initialize smoothed mean deviation estimator

1433-1439

If the stored value of rmx_rttvar is nonzero, it is converted from units of microseconds into ticks x 4 and stored in t_rttvar. But if the value is 0, t_rttvar is set to t_rtt, that is, the variation is set to the mean. This defaults the variation to − 1 RTT. Since the units of the former are ticks x 4 and the units of the latter are ticks x 8, the value of t_srtt is converted accordingly.

Calculate initial RTO

1440-1442

The current RTO is calculated and stored in t_rxtcur, using the unscaled equation

	
RTO = srtt + 2 × rttvar

A multipler of 2, instead of 4, is used to calculate the first RTO. This is the same equation that was used in Figure 25.21. Substituting the scaling relationships we get

[image: Image]

which is the second argument to TCPT_RANGESET.

The next part of tcp_mss, shown in Figure 27.9, calculates the MSS.

Figure 27.9. tcp_mss function: calculate MSS.

	

--- tcp_input.c
1444 /*
1445 * if there's an mtu associated with the route, use it
1446 */
1447 if (rt->rt_rmx.rmx_mtu)
1448 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1449 else {
1450 mss = ifp->if_mtu - sizeof(struct tcpiphdr);

1451 #if (MCLBYTES & (MCLBYTES - 1)) == 0
1452 if (mss > MCLBYTES)
1453 mss &= ~(MCLBYTES - 1);
1454 #else
1455 if (mss > MCLBYTES)
1456 mss = mss / MCLBYTES * MCLBYTES;
1457 #endif

1458 if (!in_localaddr(inp->inp_faddr))
1459 mss = min(mss, tcp_mssdflt);
1460 }
--- tcp_input.c

Use MSS from routing table MTU

1444-1450

If the MTU is set in the routing table, mss is set to that value. Otherwise mss starts at the value of the outgoing interface MTU minus 40 (the default size of the IP and TCP headers). For an Ethernet, mss would start at 1460.

Round MSS down to multiple of MCLBYTES

1451-1457

The goal of these lines of code is to reduce the value of mss to the next-lower multiple of the mbuf cluster size, if mss exceeds MCLBYTES. If the value of MCLBYTES (typically 1024 or 2048) logically ANDed with the value minus 1 equals 0, then MCLBYTES is a power of 2. For example, 1024 (0x400) logically ANDed with 1023 (0x3ff) is 0.

The value of mss is reduced to the next-lower multiple of MCLBYTES by clearing the appropriate number of low-order bits: if the cluster size is 1024, logically ANDing mss with the one’s complement of 1023 (0xfffffc00) clears the low-order 10 bits. For an Ethernet, this reduces mss from 1460 to 1024. If the cluster size is 2048, logically ANDing mss with the one’s complement of 2047 (0xffff8000) clears the low-order 11 bits. For a token ring with an MTU of 4464, this reduces the value of mss from 4424 to 4096. If MCLBYTES is not a power of 2, the rounding down to the next-lower multiple of MCLBYTES is done with an integer division followed by a multiplication.

Check if destination local or nonlocal

1458-1459

If the foreign IP address is not local (in_localaddr returns 0), and if mss is greater than 512 (tcp_mssdflt), it is set to 512.

Whether an IP address is “local” or not depends on the value of the global subnetsarelocal, which is initialized from the symbol SUBNETSARELOCAL when the kernel is compiled. The default value is 1, meaning that an IP address with the same network ID as one of the host’s interfaces is considered local. If the value is 0, an IP address must have the same network ID and the same subnet ID as one of the host’s interfaces to be considered local.

This minimization for nonlocal hosts is an attempt to avoid fragmentation across wide-area networks. It is a historical artifact from the ARPANET when the MTU across most WAN links was 1006. As discussed in Section 11.7 of Volume 1, most WANs today support an MTU of 1500 or greater. See also the discussion of the path MTU discovery feature (RFC 1191 [Mogul and Deering 1990]), in Section 24.2 of Volume 1. Net/3 does not support path MTU discovery.

The final part of tcp_mss is shown in Figure 27.10.

Figure 27.10. tcp_mss function: complete processing.

[image: Image]

Other end’s MSS is upper bound

1461-1472

The argument offer is nonzero when this function is called from tcp_input, and its value is the MSS advertised by the other end. If the value of mss is greater than the value advertised by the other end, it is set to the value of offer. For example, if the function calculates an mss of 1024 but the advertised value from the other end is 512, mss must be set to 512. Conversely, if mss is calculated as 536 (say the outgoing MTU is 576) and the other end advertises an MSS of 1460, TCP will use 536. TCP can always use a value less than the advertised MSS, but it can’t exceed the advertised value. The argument offer is 0 when this function is called by tcp_output to send an MSS option. The value of mss is also lower-bounded by 32.

1473-1483

If the value of mss has decreased from the default set by tcp_newtcpcb in the variable t_maxseg (512), or if TCP is processing a received MSS option (offer is nonzero), the following steps occur. First, if the value of rmx_sendpipe has been stored for the route, its value will be used as the send buffer high-water mark (Figure 16.4). If the buffer size is less than mss, the smaller value is used. This should never happen unless the application explicitly sets the send buffer size to a small value, or the administrator sets rmx_sendpipe to a small value, since the high-water mark of the send buffer defaults to 8192, larger than most values for the MSS.

Round buffer sizes to multiple of MSS

1484-1489

The send buffer size is rounded up to the next integral multiple of the MSS, bounded by the value of sb_max (262,144 on Net/3, which is 256x1024). The socket’s high-water mark is set by sbreserve. For example, the default high-water mark is 8192, but for a local TCP connection on an Ethernet with a cluster size of 2048 (i.e., an MSS of 1460) this code increases the high-water mark to 8760 (which is 6x1460). But for a nonlocal connection with an MSS of 512, the high-water mark is left at 8192.

1490

The value of t_maxseg is set, either because it decreased from the default (512) or because an MSS option was received from the other end.

1491-1499

The same logic just applied to the send buffer is also applied to the receive buffer.

Initialize congestion window and slow start threshold

1500-1509

The value of the congestion window, snd_cwnd, is set to one segment. If the rmx_ssthresh value in the routing table is nonzero, the slow start threshold (snd_ssthresh) is set to that value, but the value must not be less than two segments.

1510

The value of mss is returned by the function. tcp_input ignores this value in Figure 28.10 (since it received an MSS from the other end), but tcp_output sends this value as the announced MSS in Figure 26.23.

Example

Let’s go through an example of a TCP connection establishment and the operation of tcp_mss, since it can be called twice: once when the SYN is sent and once when a SYN is received with an MSS option.

1. The socket is created and tcp_newtcpcb sets t_maxseg to 512.

2. The process calls connect, and tcp_output calls tcp_mss with an offer argument of 0, to include an MSS option with the SYN. Assuming a local destination, an Ethernet LAN, and an mbuf cluster size of 2048, mss is set to 1460 by the code in Figure 27.9. Since offer is 0, Figure 27.10 leaves the value as 1460 and this is the function’s return value. The buffer sizes aren’t modified, since 1460 is larger than the default (512) and a value hasn’t been received from the other end yet. tcp_output sends an MSS option announcing a value of 1460.

3. The other end replies with its SYN, announcing an MSS of 1024. tcp_input calls tcp_mss with an offer argument of 1024. The logic in Figure 27.9 still yields a value of 1460 for mss, but the call to min at the beginning of Figure 27.10 reduces this to 1024. Since the value of offer is nonzero, the buffer sizes are rounded up to the next integral multiple of 1024 (i.e., they’re left at 8192). t_maxseg is set to 1024.

It might appear that the logic of tcp_mss is flawed: TCP announces an MSS of 1460 but receives an MSS of 1024 from the other end. While TCP is restricted to sending 1024-byte segments, the other end is free to send 1460-byte segments. We might think that the send buffer should be a multiple of 1024, but the receive buffer should be a multiple of 1460. Yet the code in Figure 27.10 sets both buffer sizes based on the received MSS. The reasoning is that even if TCP announces an MSS of 1460, since it receives an MSS of 1024 from the other end, the other end probably won’t send 1460-byte segments, but will restrict itself to 1024-byte segments.

27.6. tcp_ctlinput Function

Recall from Figure 22.32 that tcp_ctlinput processes five types of ICMP errors: destination unreachable, parameter problem, source quench, time exceeded, and redirects. All redirects are passed to both TCP and UDP. For the other four errors, tcp_ctlinput is called only if a TCP segment caused the error.

tcp_ctlinput is shown in Figure 27.11. It is similar to udp_ctlinput, shown in Figure 23.30.

Figure 27.11. tcp_ctlinput function.

	

--- tcp_subr.c
355 void
356 tcp_ctlinput(cmd, sa, ip)
357 int cmd;
358 struct sockaddr *sa;
359 struct ip *ip;
360 {
361 struct tcphdr *th;
362 extern struct in_addr zeroin_addr;
363 extern u_char inetctlerrmap[];
364 void (*notify) (struct inpcb *, int) = tcp_notify;

365 if (cmd == PRC_QUENCH)
366 notify = tcp_quench;
367 else if (!PRC_IS_REDIRECT(cmd) &&
368 ((unsigned) cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0))
369 return;
370 if (ip) {
371 th = (struct tcphdr *) ((caddr_t) ip + (ip->ip_hl << 2));
372 in_pcbnotify(&tcb, sa, th->th_dport, ip->ip_src, th->th_sport,
373 cmd, notify);
374 } else
375 in_pcbnotify(&tcb, sa, 0, zeroin_addr, 0, cmd, notify);
376 }
--- tcp_subr.c

365-366

The only difference in the logic from udp_ctlinput is how an ICMP source quench error is handled. UDP ignores these errors since the PRC_QUENCH entry of inetctlerrmap is 0. TCP explicitly checks for this error, changing the notify function from its default of tcp_notify to tcp_quench.

27.7. tcp_notify Function

tcp_notify is called by tcp_ctlinput to handle destination unreachable, parameter problem, time exceeded, and redirect errors. This function is more complicated than its UDP counterpart, since TCP must intelligently handle soft errors for an established connection. Figure 27.12 shows the tcp_notify function.

Figure 27.12. tcp_notify function.

	

--- tcp_subr.c
328 void
329 tcp_notify(inp, error)
330 struct inpcb *inp;
331 int error;
332 {
333 struct tcpcb *tp = (struct tcpcb *) inp->inp_ppcb;
334 struct socket *so = inp->inp_socket;

335 /*
336 * Ignore some errors if we are hooked up.
337 * If connection hasn't completed, has retransmitted several times,
338 * and receives a second error, give up now. This is better
339 * than waiting a long time to establish a connection that
340 * can never complete.
341 */
342 if (tp->t_state == TCPS_ESTABLISHED &&
343 (error == EHOSTUNREACH || error == ENETUNREACH ||
344 error == EHOSTDOWN)) {
345 return;
346 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
347 tp->t_softerror)
348 so->so_error = error;
349 else
350 tp->t_softerror = error;
351 wakeup((caddr_t) & so->so_timeo);
352 sorwakeup(so);
353 sowwakeup(so);
354 }
--- tcp_subr.c

328-345

If the connection is ESTABLISHED, the errors EHOSTUNREACH, ENETUNREACH, and EHOSTDOWN are ignored.

This handling of these three errors is new with 4.4BSD. Net/2 and earlier releases recorded these errors in the connection’s soft error variable (t_softerror), and the error was reported to the process should the connection eventually fail. Recall that tcp_xmit_timer resets this variable to 0 when an ACK is received for a segment that hasn’t been retransmitted.

346-353

If the connection is not yet established, TCP has retransmitted the current segment four or more times, and an error has already been recorded in t_softerror, the current error is recorded in the socket’s so_error variable. By setting this socket variable, the socket becomes readable and writable if the process calls select. Otherwise the current error is just saved in t_softerror. We saw that tcp_drop sets the socket error to this saved value if the connection is subsequently dropped because of a timeout. Any processes waiting to receive or send on the socket are then awakened to receive the error.

27.8. tcp_quench Function

tcp_quench, which is shown in Figure 27.13, is called by tcp_ctlinput when a source quench is received for the connection, and by tcp_output (Figure 26.32) when ip_output returns ENOBUFS.

Figure 27.13. tcp_quench function.

	

--- tcp_subr.c
381 void
382 tcp_quench(inp, errno)
383 struct inpcb *inp;
384 int errno;
385 {
386 struct tcpcb *tp = intotcpcb(inp);

387 if (tp)
388 tp->snd_cwnd = tp->t_maxseg;
389 }
--- tcp_subr.c

The congestion window is set to one segment, causing slow start to take over. The slow start threshold is not changed (as it is when tcp_timers handles a retransmission timeout), so the window will open up exponentially until snd_ssthresh is reached, or congestion occurs.

27.9. TCP_REASS Macro and tcp_reass Function

TCP segments can arrive out of order, and it is TCP’s responsibility to place the misordered segments into the correct order for presentation to the process. For example, if a receiver advertises a window of 4096 with byte number 0 as the next expected byte, and receives a segment with bytes 0—1023 (an in-order segment) followed by a segment with bytes 2048-3071, this second segment is out of order. TCP does not discard the out-of-order segment if it is within the receive window. Instead it places the segment on the reassembly list for the connection, waiting for the missing segment to arrive (with bytes 1024-2047), at which time it can acknowledge bytes 1024-3071 and pass these 2048 bytes to the process. In this section we examine the code that manipulates the TCP reassembly queue, before discussing tcp_input in the next two chapters.

If we assume that a single mbuf contains the IP header, TCP header, and 4 bytes of TCP data (recall the left half of Figure 2.14) we would have the arrangement shown in Figure 27.14. We also assume the data bytes are sequence numbers 7, 8, 9, and 10.

Figure 27.14. Example mbuf with IP and TCP headers and 4 bytes of data.

[image: Image]

The ipovly and tcphdr structures form the tcpiphdr structure, which we showed in Figure 24.12. We showed a picture of the tcphdr structure in Figure 24.10. In Figure 27.14 we show only the variables used in the reassembly: ti_next, ti_prev, ti_len, ti_sport, ti_dport, and ti_seq. The first two are pointers that form a doubly linked list of all the out-of-order segments for a given connection. The head of this list is the TCP control block for the connection: the seg_next and seg_prev members, which are the first two members of the structure. The ti_next and ti_prev pointers overlay the first 8 bytes of the IP header, which aren’t needed once the datagram reaches TCP. ti_len is the length of the TCP data, and is calculated and stored by TCP before verifying the TCP checksum.

TCP_REASS Macro

When data is received by tcp_input, the macro TCP_REASS, shown in Figure 27.15, is invoked to place the data onto the connection’s reassembly queue. This macro is called from only one place: see Figure 29.22.

Figure 27.15. TCP_REASS macro: add data to reassembly queue for connection.

	

--- tcp_input.c
 53 #define TCP_REASS(tp, ti, m, so, flags) { \
 54 if ((ti)->ti_seq == (tp)->rcv_nxt && \
 55 (tp)->seg_next == (struct tcpiphdr *)(tp) && \
 56 (tp)->t_state == TCPS_ESTABLISHED) { \

 57 tp->t_flags |= TF_DELACK; \
 58 (tp)->rcv_nxt += (ti)->ti_len; \
 59 flags = (ti)->ti_flags & TH_FIN; \
 60 tcpstat.tcps_rcvpack++; \
 61 tcpstat.tcps_rcvbyte += (ti)->ti_len; \
 62 sbappend(&(so)->so_rcv, (m)); \
 63 sorwakeup(so); \
 64 } else { \
 65 (flags) = tcp_reass((tp), (ti), (m)); \
 66 tp->t_flags |= TF_ACKNOW; \
 67 } \
 68 }
--- tcp_input.c

54-63

tp is a pointer to the TCP control block for the connection and ti is a pointer to the tcpiphdr structure for the received segment. If the following three conditions are all true:

1. this segment is in-order (the sequence number ti_seq equals the next expected sequence number for the connection, rcv_nxt), and

2. the reassembly queue for the connection is empty (seg_next points to itself, not some mbuf), and

3. the connection is ESTABLISHED,

the following steps take place: a delayed ACK is scheduled, rcv_nxt is updated with the amount of data in the segment, the flags argument is set to TH_FIN if the FIN flag is set in the TCP header of the segment, two statistics are updated, the data is appended to the socket’s receive buffer, and any receiving processes waiting for the socket are awakened.

The reason all three conditions must be true is that, first, if the data is out of order, it must be placed onto the connection’s reassembly queue and the “preceding” segments must be received before anything can be passed to the process. Second, even if the data is in order, if there is out-of-order data already on the reassembly queue, there’s a chance that the new segment might fill a hole, allowing the received segment and one or more segments on the queue to all be passed to the process. Third, it is OK for data to arrive with a SYN segment that establishes a connection, but that data cannot be passed to the process until the connection is ESTABLISHED any such data is just added to the reassembly queue when it arrives.

64-67

If these three conditions are not all true, the TCP_REASS macro calls the function tcp_reass to add the segment to the reassembly queue. Since the segment is either out of order, or the segment might fill a hole from previously received out-of-order segments, an immediate ACK is scheduled. One important feature of TCP is that a receiver should generate an immediate ACK when an out-of-order segment is received. This aids the fast retransmit algorithm (Section 29.4).

Before looking at the code for the tcp_reass function, we need to explain what’s done with the two port numbers in the TCP header in Figure 27.14, ti_sport and ti_dport. Once the TCP control block is located and tcp_reass is called, these two port numbers are no longer needed. Therefore, when a TCP segment is placed on a reassembly queue, the address of the corresponding mbuf is stored over these two port numbers. In Figure 27.14 this isn’t needed, because the IP and TCP headers are in the data portion of the mbuf, so the dtom macro works. But recalling our discussion of m_pullup in Section 2.6, if the IP and TCP headers are in a cluster (as in Figure 2.16, which is the normal case for a full-sized TCP segment), the dtom macro doesn’t work. We mentioned in that section that TCP stores its own back pointer from the TCP header to the mbuf, and that back pointer is stored over the two TCP port numbers.

Figure 27.16 shows an example of this technique with two out-of-order segments for a connection, each segment stored in an mbuf cluster. The head of the doubly linked list of out-of-order segments is the seg_next member of the control block for this connection. To simplify the figure we don’t show the seg_prev pointer and the ti_next pointer of the last segment on the list.

Figure 27.16. Two out-of-order TCP segments stored in mbuf clusters.

[image: Image]

The next expected sequence number is 1 (rcv_nxt) but we assume that segment was lost. The next two segments have been received, containing bytes 1461-4380, but they are out of order. The segments were placed into clusters by m_devget, as shown in Figure 2.16.

The first 32 bits of the TCP header contain a back pointer to the corresponding mbuf. This back pointer is used in the tcp_reass function, shown next.

tcp_reass Function

Figure 27.17 shows the first part of the tcp_reass function. The arguments are: tp, a pointer to the TCP control block for the received segment; ti, a pointer to the IP and TCP headers of the received segment; and m, a pointer to the mbuf chain for the received segment. As mentioned earlier, ti can point into the data area of the mbuf pointed to by m, or ti can point into a cluster.

Figure 27.17. tcp_reass function: first part.

	

--- tcp_input.c
 69 int
 70 tcp_reass(tp, ti, m)
 71 struct tcpcb *tp;
 72 struct tcpiphdr *ti;
 73 struct mbuf *m;
 74 {
 75 struct tcpiphdr *q;
 76 struct socket *so = tp->t_inpcb->inp_socket;
 77 int flags;

 78 /*
 79 * Call with ti==0 after become established to
 80 * force pre-ESTABLISHED data up to user socket.
 81 */
 82 if (ti == 0)
 83 goto present;

 84 /*
 85 * Find a segment that begins after this one does.
 86 */
 87 for (q = tp->seg_next; q != (struct tcpiphdr *) tp;
 88 q = (struct tcpiphdr *) q->ti_next)
 89 if (SEQ_GT(q->ti_seq, ti->ti_seq))
 90 break;
--- tcp_input.c

69-83

We’ll see that tcp_input calls tcp_reass with a null ti pointer when a SYN is acknowledged (Figures 28.20 and 29.2). This means the connection is now established, and any data that might have arrived with the SYN (which tcp_reass had to queue earlier) can now be passed to the application. Data that arrives with a SYN cannot be passed to the process until the connection is established. The label present is in Figure 27.23.

84-90

Go through the list of segments for this connection, starting at seg_next, to find the first one with a sequence number that is greater than the received sequence number (ti_seq). Note that the if statement is the entire body of the for loop.

Figure 27.18 shows an example with two out-of-order segments already on the queue when a new segment arrives. We show the pointer q pointing to the next segment on the list, the one with bytes 10-15. In this figure we also show the two pointers ti_next and ti_prev, the starting sequence number (ti_seq), the length (ti_len), and the sequence numbers of the data bytes. With the small segments we show, each segment is probably in a single mbuf, as in Figure 27.14.

Figure 27.18. Example of TCP reassembly queue with overlapping segments.

[image: Image]

The next part of tcp_reass is shown in Figure 27.19.

Figure 27.19. tcp_reass function: second part.

	

--- tcp_input.c
 91 /*
 92 * If there is a preceding segment, it may provide some of
 93 * our data already. If so, drop the data from the incoming
 94 * segment. If it provides all of our data, drop us.
 95 */
 96 if ((struct tcpiphdr *) q->ti_prev != (struct tcpiphdr *) tp) {
 97 int i;
 98 q = (struct tcpiphdr *) q->ti_prev;
 99 /* conversion to int (in i) handles seq wraparound */
100 i = q->ti_seq + q->ti_len - ti->ti_seq;
101 if (i > 0) {
102 if (i >= ti->ti_len) {
103 tcpstat.tcps_rcvduppack++;
104 tcpstat.tcps_rcvdupbyte += ti->ti_len;
105 m_freem(m);
106 return (0);
107 }
108 m_adj(m, i);
109 ti->ti_len -= i;
110 ti->ti_seq += i;
111 }
112 q = (struct tcpiphdr *) (q->ti_next);
113 }
114 tcpstat.tcps_rcvoopack++;
115 tcpstat.tcps_rcvoobyte += ti->ti_len;
116 REASS_MBUF(ti) = m; /* XXX */
--- tcp_input.c

91-107

If there is a segment before the one pointed to by q, that segment may overlap the new segment. The pointer q is moved to the previous segment on the list (the one with bytes 4-8 in Figure 27.18) and the number of bytes of overlap is calculated and stored in i:

i = q->ti_seq + q->ti_len - ti->ti_seq;
= 4 + 5 - 7

= 2

If i is greater than 0, there is overlap, as we have in our example. If the number of bytes of overlap in the previous segment on the list (i) is greater than or equal to the size of the new segment, then all the data bytes in the new segment are already contained in the previous segment on the list. In this case the duplicate segment is discarded.

108-112

If there is only partial overlap (as there is in Figure 27.18), m_adj discards i bytes of data from the beginning of the new segment. The sequence number and length of the new segment are updated accordingly. q is moved to the next segment on the list. Figure 27.20 shows our example at this point.

Figure 27.20. Update of Figure 27.18 after bytes 7 and 8 have been removed from new segment.

[image: Image]

116

The address of the mbuf m is stored in the TCP header, over the source and destination TCP ports. We mentioned earlier in this section that this provides a back pointer from the TCP header to the mbuf, in case the TCP header is stored in a cluster, meaning that the macro dtom won’t work. The macro REASS_MBUF is

#define REASS_MBUF(ti) (*(struct mbuf **)&((ti)->ti_t))

ti_t is the tcphdr structure (Figure 24.12) and the first two members of the structure are the two 16-bit port numbers. The comment XXX in Figure 27.19 is because this hack assumes that a pointer fits in the 32 bits occupied by the two port numbers.

The third part of tcp_reass is shown in Figure 27.21. It removes any overlap from the next segment in the queue.

Figure 27.21. tcp_reass function: third part.

	

--- tcp_input.c
117 /*
118 * While we overlap succeeding segments trim them or,
119 * if they are completely covered, dequeue them.
120 */
121 while (q != (struct tcpiphdr *) tp) {
122 int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
123 if (i <= 0)
124 break;
125 if (i < q->ti_len) {
126 q->ti_seq += i;
127 q->ti_len -= i;
128 m_adj(REASS_MBUF(q), i);
129 break;
130 }
131 q = (struct tcpiphdr *) q->ti_next;
132 m = REASS_MBUF((struct tcpiphdr *) q->ti_prev);
133 remque(q->ti_prev);
134 m_freem(m);
135 }

136 /*
137 * Stick new segment in its place.
138 */
139 insque(ti, q->ti_prev);
--- tcp_input.c

117-135

If there is another segment on the list, the number of bytes of overlap between the new segment and that segment is calculated in i. In our example we have

i = 9 + 2 - 10
 = 1

since byte number 10 overlaps the two segments.

Depending on the value of i, one of three conditions exists:

1. If i is less than or equal to 0, there is no overlap.

2. If i is less than the number of bytes in the next segment (q->ti_len), there is partial overlap and m_adj removes the first i bytes from the next segment on the list.

3. If i is greater than or equal to the number of bytes in the next segment, there is complete overlap and that next segment on the list is deleted.

136-139

The new segment is inserted into the reassembly list for this connection by insque. Figure 27.22 shows the state of our example at this point.

Figure 27.22. Update of Figure 27.20 after removal of all overlapping bytes.

[image: Image]

Figure 27.23 shows the final part of tcp_reass. It passes the data to the process, if possible.

Figure 27.23. tcp_reass function: fourth part.

	

--- tcp_input.c
140 present:
141 /*
142 * Present data to user, advancing rcv_nxt through
143 * completed sequence space.
144 */
145 if (TCPS_HAVERCVDSYN(tp->t_state) == 0)
146 return (0);
147 ti = tp->seg_next;
148 if (ti == (struct tcpiphdr *) tp || ti->ti_seq != tp->rcv_nxt)
149 return (0);
150 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
151 return (0);
152 do {
153 tp->rcv_nxt += ti->ti_len;
154 flags = ti->ti_flags & TH_FIN;
155 remque(ti);
156 m = REASS_MBUF(ti);
157 ti = (struct tcpiphdr *) ti->ti_next;
158 if (so->so_state & SS_CANTRCVMORE)
159 m_freem(m);
160 else
161 sbappend(&so->so_rcv, m);
162 } while (ti != (struct tcpiphdr *) tp && ti->ti_seq == tp->rcv_nxt);
163 sorwakeup(so);
164 return (flags);
165 }
--- tcp_input.c

145-146

If the connection has not received a SYN (i.e., it is in the LISTEN or SYN_SENT state), data cannot be passed to the process and the function returns. When this function is called by TCP_REASS, the return value of 0 is stored in the flags argument to the macro. This can have the side effect of clearing the FIN flag. We’ll see that this side effect is a possibility when TCP_REASS is invoked in Figure 29.22, and the received segment contains a SYN, FIN, and data (not a typical segment, but valid).

147-149

ti starts at the first segment on the list. If the list is empty, or if the starting sequence number of the first segment on the list (ti->ti_seq) does not equal the next receive sequence number (rcv_nxt), the function returns a value of 0. If the second condition is true, there is still a hole in the received data starting with the next expected sequence number. For instance, in our example (Figure 27.22), if the segment with bytes 4-8 is the first on the list but rcv_nxt equals 2, bytes 2 and 3 are still missing, so bytes 4-15 cannot be passed to the process. The return of 0 turns off the FIN flag (if set), because one or more data segments are still missing, so a received FIN cannot be processed yet.

150-151

If the state is SYN_RCVD and the length of the segment is nonzero, the function returns a value of 0. If both of these conditions are true, the socket is a listening socket that has received in-order data with the SYN. The data is left on the connection’s queue, waiting for the three-way handshake to complete.

152-164

This loop starts with the first segment on the list (which is known to be in order) and appends it to the socket’s receive buffer. rcv_nxt is incremented by the number of bytes in the segment. The loop stops when the list is empty or when the sequence number of the next segment on the list is out of order (i.e., there is a hole in the sequence space). When the loop terminates, the flags variable (which becomes the return value of the function) is 0 or TH_FIN, depending on whether the final segment placed in the socket’s receive buffer has the FIN flag set or not.

After all the mbufs have been placed onto the socket’s receive buffer, sorwakeup wakes any process waiting for data to be received on the socket.

27.10. tcp_trace Function

In tcp_output, before sending a segment to IP for output, we saw the following call to tcp_trace in Figure 26.32:

if (so->so_options & SO_DEBUG)
 tcp_trace(TA_OUTPUT, tp->t_state, tp, ti, 0);

This call adds a record to a circular buffer in the kernel that can be examined with the trpt(8) program. Additionally, if the kernel is compiled with TCPDEBUG defined, and if the variable tcpconsdebug is nonzero, information is output on the system console.

Any process can set the SO_DEBUG socket option for a TCP socket, causing the information to be stored in the kernel’s circular buffer. But trpt must read the kernel memory (/dev/kmem) to fetch this information, and this often requires special privileges.

The SO_DEBUG socket option can be set for any type of socket (e.g., UDP or raw IP), but TCP is the only protocol that looks at the option.

The information saved by the kernel is a tcp_debug structure, shown in Figure 27.24.

Figure 27.24. tcp_debug structure.

	

--- tcp_debug.h
 35 struct tcp_debug {
 36 n_time td_time; /* iptime(): ms since midnight, UTC */
 37 short td_act; /* TA_xxx value (Figure 27.25) */
 38 short td_ostate; /* old state */
 39 caddr_t td_tcb; /* addr of TCP connection block */
 40 struct tcpiphdr td_ti; /* IP and TCP headers */
 41 short td_req; /* PRU_xxx value for TA_USER */
 42 struct tcpcb td_cb; /* TCP connection block */
 43 };

 53 #define TCP_NDEBUG 100
 54 struct tcp_debug tcp_debug[TCP_NDEBUG];
 55 int tcp_debx;
--- tcp_debug.h

35-43

This is a large structure (196 bytes), since it contains two other structures: the tcpiphdr structure with the IP and TCP headers; and the tcpcb structure, the entire TCP control block. Since the entire TCP control block is saved, any variable in the control block can be printed by trpt. Also, if trpt doesn’t print the variable we’re interested in, we can modify the source code (it is available with the Net/3 release) to print whatever information we would like from the control block. The RTT variables in Figure 25.28 were obtained using this technique.

53-55

We also show the declaration of the array tcp_debug, which is used as the circular buffer. The index into the array (tcp_debx) is initialized to 0. This array occupies almost 20,000 bytes.

There are only four calls to tcp_trace in the kernel. Each call stores a different value in the td_act member of the structure, as shown in Figure 27.25.

Figure 27.25. td_act values and corresponding call to tcp_trace.

[image: Image]

Figure 27.27 shows the main body of the tcp_trace function. We omit the code that outputs directly to the console.

48-133

ostate is the old state of the connection, when the function was called. By saving this value and the new state of the connection (which is in the control block) we can see the state transition that occurred. In Figure 27.25, TA_OUTPUT doesn’t change the state of the connection, but the other three calls can change the state.

Sample Output

Figure 27.26 shows the first four lines of tcpdump output corresponding to the three-way handshake and the first data segment from the example in Section 25.12. (Appendix A of Volume 1 provides additional details on the tcpdump output format.)

Figure 27.26. tcpdump output from example in Figure 25.28.

[image: Image]

Figure 27.28 shows the corresponding output from trpt.

This output contains a few changes from the normal trpt output. The 32-bit decimal sequence numbers are printed as unsigned values (trpt incorrectly prints them as signed numbers). Some values printed by trpt in hexadecimal have been output in decimal. The values from t_rtt through t_rxtcur were added to trpt by the authors, for Figure 25.28.

Figure 27.27. tcp_trace function: save information in kernel’s circular buffer.

[image: Image]

Figure 27.28. trpt output from example in Figure 25.28.

[image: Image]

At time 953738 the SYN is sent. Notice that only the lower 6 digits of the millisecond time are output i t would take 8 digits to represent 1 minute before midnight. The ending sequence number that is output is wrong (20288005). Four bytes are sent with the SYN, but these are the MSS option, not data. The retransmit timer is 6 seconds (REXMT) and the keepalive timer is 75 seconds (KEEP). These timer values are in 500-ms ticks. The value of 1 for t_rtt means this segment is being timed for an RTT measurement.

This SYN segment is sent in response to the process calling connect. One millisecond later the trace record for this system call is added to the kernel’s buffer. Even though the call to connect generates the SYN segment, since the call to tcp_trace appears after processing the PRU_CONNECT request, the two trace records appear backward in the buffer. Also, when the process called connect, the connection state was CLOSED, and it changes to SYN_SENT. Nothing else changes from the first trace record to this one.

The third trace record, at time 954103, occurs 365 ms after the first. (tcpdump shows a 362.7 ms difference.) This is how the values in the column “actual delta (ms)” in Figure 25.28 were computed. The connection state changes from SYN_SENT to ESTABLISHED when the segment with a SYN and an ACK is received. The RTT estimators are updated because the segment being timed was acknowledged.

The fourth trace record is the third segment of the three-way handshake: the ACK of the other end’s SYN. Since this segment contains no data, it is not timed (rtt is 0).

After the ACK has been sent at time 954103, the connect system call returns to the process, which then calls write to send data. This generates TCP output, shown in trace record 5 at time 954153, 50 ms after the three-way handshake is complete. 512 bytes of data are sent, starting with sequence number 20288002. The retransmission timer is set to 3 seconds and the segment is timed.

This output is caused by an application write. Although we don’t show any more trace records, the next four are from PRU_SEND requests. The first PRU_SEND request generates the output of the first 512-byte segment that we show, but the other three do not cause output, since the connection has just started and is in slow start. Four trace records are generated because the system used for this example uses a TCP send buffer of 4096 and a cluster size of 1024. Once the send buffer is full, the process is put to sleep.

27.11. Summary

This chapter has covered a wide range of TCP functions that we’ll encounter in the following chapters.

TCP connections can be aborted by sending an RST or they can be closed down gracefully, by sending a FIN and waiting for the four-way exchange of segments to complete.

Eight variables are stored in each routing table entry, three of which are updated when a connection is closed and six of which can be used later when a new connection is established. This lets the kernel keep track of certain variables, such as the RTT estimators and the slow start threshold, between successive connections to the same destination. The system administrator can also set and lock some of these variables, such as the MTU, receive pipe size, and send pipe size, that affect TCP connections to that destination.

TCP is tolerant of received ICMP errors none cause Net/3 to terminate an established connection. This handling of ICMP errors by Net/3 differs from earlier Berkeley releases.

Received TCP segments can arrive out of order and can contain duplicate data, and TCP must handle these anomalies. We saw that a reassembly queue is maintained for each connection, and this holds the out-of-order segments along with segments that arrive before they can be passed to the application.

Finally we looked at the type of information saved by the kernel when the SO_DEBUG socket option is enabled for a TCP socket. This trace information can be a useful diagnostic tool in addition to programs such as tcpdump.

Exercises

27.1 Why is the errno value 0 for the last row in Figure 27.1?

27.2 What is the maximum value that can be stored in rmx_rtt?

27.3 To save the route information in Figure 27.3 for a given host, we enter a route into the routing table by hand for this destination. We then run the FTP client to send data to this host, making certain we send enough data, as described with Figure 27.4. But after terminating the FTP client we look at the routing table, and all the values for this host are still 0. What’s happening?

Chapter 28. TCP Input

28.1. Introduction

TCP input processing is the largest piece of code that we examine in this text. The function tcp_input is about 1100 lines of code. The processing of incoming segments is not complicated, just long and detailed. Many implementations, including the one in Net/3, closely follow the input event processing steps in RFC 793, which spell out in detail how to respond to the various input segments, based on the current state of the connection.

The tcp_input function is called by ipintr (through the pr_input function in the protocol switch table) when a datagram is received with a protocol field of TCP. tcp_input executes at the software interrupt level.

The function is so long that we divide its discussion into two chapters. Figure 28.1 outlines the processing steps in tcp_input. This chapter discusses the steps through RST processing, and the next chapter starts with ACK processing.

Figure 28.1. Summary of TCP input processing steps.

[image: Image]

The first few steps are typical: validate the input segment (checksum, length, etc.) and locate the PCB for this connection. Given the length of the remainder of the function, however, an attempt is made to bypass all this logic with an algorithm called header prediction (Section 28.4). This algorithm is based on the assumption that segments are not typically lost or reordered, hence for a given connection TCP can often guess what the next received segment will be. If the header prediction algorithm works, notice that the function returns. This is the fast path through tcp_input.

The slow path through the function ends up at the label dodata, which tests a few flags and calls tcp_output if a segment should be sent in response to the received segment.

There are also three labels at the end of the function that are jumped to when errors occur: dropafterack, dropwithreset, and drop. The term drop means to drop the segment being processed, not drop the connection, but when an RST is sent by dropwithreset it normally causes the connection to be dropped.

The only other branching in the function occurs when a valid SYN is received in either the LISTEN or SYN_SENT states, at the switch following header prediction. When the code at trimthenstep6 finishes, it jumps to step6, which continues the normal flow.

28.2. Preliminary Processing

Figure 28.2 shows the declarations and the initial processing of the received TCP segment.

Figure 28.2. tcp_input function: declarations and preliminary processing.

	

--- tcp_input.c
170 void
171 tcp_input(m, iphlen)
172 struct mbuf *m;
173 int iphlen;
174 {
175 struct tcpiphdr *ti;
176 struct inpcb *inp;
177 caddr_t optp = NULL;
178 int optlen;
179 int len, tlen, off;
180 struct tcpcb *tp = 0;
181 int tiflags;
182 struct socket *so;
183 int todrop, acked, ourfinisacked, needoutput = 0;
184 short ostate;
185 struct in_addr laddr;
186 int dropsocket = 0;
187 int iss = 0;
188 u_long tiwin, ts_val, ts_ecr;
189 int ts_present = 0;

190 tcpstat.tcps_rcvtotal++;
191 /*
192 * Get IP and TCP header together in first mbuf.
193 * Note: IP leaves IP header in first mbuf.
194 */
195 ti = mtod(m, struct tcpiphdr *);
196 if (iphlen > sizeof(struct ip))
197 ip_stripoptions(m, (struct mbuf *) 0);
198 if (m->m_len < sizeof(struct tcpiphdr)) {
199 if ((m = m_pullup(m, sizeof(struct tcpiphdr))) == 0) {
200 tcpstat.tcps_rcvshort++;
201 return;
202 }
203 ti = mtod(m, struct tcpiphdr *);
204 }
--- tcp_input.c

Get IP and TCP headers in first mbuf

170-204

The argument iphlen is the length of the IP header, including possible IP options. If the length is greater than 20 bytes, options are present, and ip_stripoptions discards the options. TCP ignores all IP options other than a source route, which is saved specially by IP (Section 9.6) and fetched later by TCP in Figure 28.7. If the number of bytes in the first mbuf in the chain is less than the size of the combined IP/TCP header (40 bytes), m_pullup moves the first 40 bytes into the first mbuf.

The next piece of code, shown in Figure 28.3, verifies the TCP checksum and offset field.

Figure 28.3. tcp_input function: verify TCP checksum and offset field.

	

--- tcp_input.c
205 /*
206 * Checksum extended TCP header and data.
207 */
208 tlen = ((struct ip *) ti)->ip_len;
209 len = sizeof(struct ip) + tlen;
210 ti->ti_next = ti->ti_prev = 0;
211 ti->ti_x1 = 0;
212 ti->ti_len = (u_short) tlen;
213 HTONS(ti->ti_len);
214 if (ti->ti_sum = in_cksum(m, len)) {
215 tcpstat.tcps_rcvbadsum++;
216 goto drop;
217 }
218 /*
219 * Check that TCP offset makes sense,
220 * pull out TCP options and adjust length. XXX
221 */
222 off = ti->ti_off << 2;
223 if (off < sizeof(struct tcphdr) || off > tlen) {
224 tcpstat.tcps_rcvbadoff++;
225 goto drop;
226 }
227 tlen -= off;
228 ti->ti_len = tlen;
--- tcp_input.c

Verify TCP checksum

205-217

tlen is the TCP length, the number of bytes following the IP header. Recall that IP has already subtracted the IP header length from ip_len. The variable len is then set to the length of the IP datagram, the number of bytes to be checksummed, including the pseudo-header. The fields in the pseudo-header are set, as required for the checksum calculation, as shown in Figure 23.19.

Verify TCP offset field

218-228

The TCP offset field, ti_off, is the number of 32-bit words in the TCP header, including any TCP options. It is multiplied by 4 (to become the byte offset of the first data byte in the TCP segment) and checked for sanity. It must be greater than or equal to the size of the standard TCP header (20) and less than or equal to the TCP length.

The byte offset of the first data byte is subtracted from the TCP length, leaving tlen with the number of bytes of data in the segment (possibly 0). This value is stored back into the TCP header, in the variable ti_len, and will be used throughout the function.

Figure 28.4 shows the next part of processing: handling of certain TCP options.

Figure 28.4. tcp_input function: handle certain TCP options.

	

--- tcp_input.c
229 if (off > sizeof(struct tcphdr)) {
230 if (m->m_len < sizeof(struct ip) + off) {
231 if ((m = m_pullup(m, sizeof(struct ip) + off)) == 0) {
232 tcpstat.tcps_rcvshort++;
233 return;
234 }
235 ti = mtod(m, struct tcpiphdr *);
236 }
237 optlen = off - sizeof(struct tcphdr);
238 optp = mtod(m, caddr_t) + sizeof(struct tcpiphdr);
239 /*
240 * Do quick retrieval of timestamp options ("options
241 * prediction?"). If timestamp is the only option and it's
242 * formatted as recommended in RFC 1323 Appendix A, we
243 * quickly get the values now and not bother calling
244 * tcp_dooptions(), etc.
245 */
246 if ((optlen == TCPOLEN_TSTAMP_APPA ||
247 (optlen > TCPOLEN_TSTAMP_APPA &&
248 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
249 *(u_long *) optp == htonl(TCPOPT_TSTAMP_HDR) &&
250 (ti->ti_flags & TH_SYN) == 0) {
251 ts_present = 1;
252 ts_val = ntohl(*(u_long *) (optp + 4));
253 ts_ecr = ntohl(*(u_long *) (optp + 8));
254 optp = NULL; /* we've parsed the options */
255 }
256 }
--- tcp_input.c

Get headers plus option into first mbuf

230-236

If the byte offset of the first data byte is greater than 20, TCP options are present. m_pullup is called, if necessary, to place the standard IP header, standard TCP header, and any TCP options in the first mbuf in the chain. Since the maximum size of these three pieces is 80 bytes (20 + 20 + 40), they all fit into the first packet header mbuf on the chain.

Since the only way m_pullup can fail here is when fewer than 20 plus off bytes are in the IP datagram, and since the TCP checksum has already been verified, we expect this call to m_pullup never to fail. Unfortunately the counter tcps_rcvshort is also shared by the call to m_pullup in Figure 28.2, so looking at the counter doesn’t tell us which call failed. Nevertheless, Figure 24.5 shows that after receiving almost 9 million TCP segments, this counter is 0.

Process timestamp option quickly

237-255

optlen is the number of bytes of options, and optp is a pointer to the first option byte. If the following three conditions are all true, only the timestamp option is present and it is in the desired format:

1. (a) The TCP option length equals 12 (TCPOLEN_TSTAMP_APPA), or (b) the TCP option length is greater than 12 and optp[12] equals the end-of-option byte.

2. The first 4 bytes of options equals 0x0101080a (TCPOPT_TSTAMP_HDR, which we described in Section 26.6).

3. The SYN flag is not set (i.e., this segment is for an established connection, hence if a timestamp option is present, we know both sides have agreed to use the option).

If all three conditions are true, ts_present is set to 1; the two timestamp values are fetched and stored in ts_val and ts_ecr; and optp is set to null, since all the options have been parsed. The benefit in recognizing the timestamp option this way is to avoid calling the general option processing function tcp_dooptions later in the code. The general option processing function is OK for the other options that appear only with the SYN segment that creates a connection (the MSS and window scale options), but when the timestamp option is being used, it will appear with almost every segment on an established connection, so the faster it can be recognized, the better.

The next piece of code, shown in Figure 28.5, locates the Internet PCB for the segment.

Figure 28.5. tcp_input function: locate Internet PCB for segment.

	

-- tcp_input.c
257 tiflags = ti->ti_flags;

258 /*
259 * Convert TCP protocol specific fields to host format.
260 */
261 NTOHL(ti->ti_seq);
262 NTOHL(ti->ti_ack);
263 NTOHS(ti->ti_win);
264 NTOHS(ti->ti_urp);

265 /*
266 * Locate pcb for segment.
267 */
268 findpcb:
269 inp = tcp_last_inpcb;
270 if (inp->inp_lport != ti->ti_dport ||
271 inp->inp_fport != ti->ti_sport ||
272 inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
273 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
274 inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
275 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
276 if (inp)
277 tcp_last_inpcb = inp;
278 ++tcpstat.tcps_pcbcachemiss;
279 }
-- tcp_input.c

Save input flags and convert fields to host byte order

257-264

The received flags (SYN, FIN, etc.) are saved in the local variable tiflags, since they are referenced throughout the code. Two 16-bit values and the two 32-bit values in the TCP header are converted from network byte order to host byte order. The two 16-bit port numbers are left in network byte order, since the port numbers in the Internet PCB are in that order.

Locate Internet PCB

265-279

TCP maintains a one-behind cache (tcp_last_inpcb) containing the address of the PCB for the last received TCP segment. This is the same technique used by UDP. The comparison of the four elements in the socket pair is in the same order as done by udp_input. If the cache entry does not match, in_pcblookup is called, and the cache is set to the new PCB entry.

TCP does not have the same problem that we encountered with UDP: wildcard entries in the cache causing a high miss rate. The only time a TCP socket has a wildcard entry is for a server listening for connection requests. Once a connection is made, all four entries in the socket pair contain nonwildcard values. In Figure 24.5 we see a cache hit rate of almost 80%.

Figure 28.6 shows the next piece of code.

Figure 28.6. tcp_input function: check if segment should be dropped.

	

-- tcp_input.c
280 /*
281 * If the state is CLOSED (i.e., TCB does not exist) then
282 * all data in the incoming segment is discarded.
283 * If the TCB exists but is in CLOSED state, it is embryonic,
284 * but should either do a listen or a connect soon.
285 */
286 if (inp == 0)
287 goto dropwithreset;
288 tp = intotcpcb(inp);
289 if (tp == 0)
290 goto dropwithreset;
291 if (tp->t_state == TCPS_CLOSED)
292 goto drop;

293 /* Unscale the window into a 32-bit value. */
294 if ((tiflags & TH_SYN) == 0)
295 tiwin = ti->ti_win << tp->snd_scale;
296 else
297 tiwin = ti->ti_win;
-- tcp_input.c

Drop segment and generate RST

280-287

If the PCB was not found, the input segment is dropped and an RST is sent as a reply. This is how TCP handles SYNs that arrive for a server that doesn’t exist, for example. Recall that UDP sends an ICMP port unreachable in this case.

288-290

If the PCB exists but a corresponding TCP control block does not exist, the socket is probably being closed (tcp_close releases the TCP control block first, and then releases the PCB), so the input segment is dropped and an RST is sent as a reply.

Silently drop segment

291-292

If the TCP control block exists, but the connection state is CLOSED, the socket has been created and a local address and local port may have been assigned, but neither connect nor listen has been called. The segment is dropped but nothing is sent as a reply. This scenario can happen if a client catches a server between the server’s call to bind and listen. By silently dropping the segment and not replying with an RST, the client’s connection request should time out, causing the client to retransmit the SYN.

Unscale advertised window

293-297

If window scaling is to take place for this connection, both ends must specify their send scale factor using the window scale option when the connection is established. If the segment contains a SYN, the window scale factor has not been established yet, so tiwin is copied from the value in the TCP header. Otherwise the 16-bit value in the header is left shifted by the send scale factor into a 32-bit value.

The next piece of code, shown in Figure 28.7, does some preliminary processing if the socket debug option is enabled or if the socket is listening for incoming connection requests.

Figure 28.7. tcp_input function: handle debug option and listening sockets.

	

-- tcp_input.c
298 so = inp->inp_socket;
299 if (so->so_options & (SO_DEBUG | SO_ACCEPTCONN)) {
300 if (so->so_options & SO_DEBUG) {
301 ostate = tp->t_state;
302 tcp_saveti = *ti;
303 }
304 if (so->so_options & SO_ACCEPTCONN) {
305 so = sonewconn(so, 0);
306 if (so == 0)
307 goto drop;
308 /*
309 * This is ugly, but
310 *
311 * Mark socket as temporary until we're
312 * committed to keeping it. The code at
313 * 'drop' and 'dropwithreset' check the
314 * flag dropsocket to see if the temporary
315 * socket created here should be discarded.
316 * We mark the socket as discardable until
317 * we're committed to it below in TCPS_LISTEN.
318 */
319 dropsocket++;
320 inp = (struct inpcb *) so->so_pcb;
321 inp->inp_laddr = ti->ti_dst;
322 inp->inp_lport = ti->ti_dport;
323 #if BSD>=43
324 inp->inp_options = ip_srcroute();
325 #endif
326 tp = intotcpcb(inp);
327 tp->t_state = TCPS_LISTEN;

328 /* Compute proper scaling value from buffer space */
329 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
330 TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
331 tp->request_r_scale++;
332 }
333 }
-- tcp_input.c

Save connection state and IP/TCP headers if socket debug option enabled

300-303

If the SO_DEBUG socket option is enabled the current connection state is saved (ostate) as well as the IP and TCP headers (tcp_saveti). These become arguments to tcp_trace when it is called at the end of the function (Figure 29.26).

Create new socket if segment arrives for listening socket

304-319

When a segment arrives for a listening socket (SO_ACCEPTCONN is enabled by listen), a new socket is created by sonewconn. This issues the protocol’s PRU_ATTACH request (Figure 30.2), which allocates an Internet PCB and a TCP control block. But more processing is needed before TCP commits to accept the connection request (such as the fundamental question of whether the segment contains a SYN or not), so the flag dropsocket is set, to cause the code at the labels drop and dropwithreset to discard the new socket if an error is encountered. If the received segment is OK, dropsocket is set back to 0 in Figure 28.17.

320-326

inp and tp point to the new socket that has been created. The local address and local port are copied from the destination address and destination port of the IP and TCP headers. If the input datagram contained a source route, it was saved by save_rte. TCP calls ip_srcroute to fetch that source route, saving a pointer to the mbuf containing the source route option in inp_options. This option is passed to ip_output by tcp_output, and the reverse route is used for datagrams sent on this connection.

327

The state of the new socket is set to LISTEN. If the received segment contains a SYN, the code in Figure 28.16 completes the connection request.

Compute window scale factor

328-331

The window scale factor that will be requested is calculated from the size of the receive buffer. 65535 (TCP_MAXWIN) is left shifted until the result exceeds the size of the receive buffer, or until the maximum window scale factor is encountered (14, TCP_MAX_WINSHIFT). Notice that the requested window scale factor is chosen based on the size of the listening socket’s receive buffer. This means the process must set the SO_RCVBUF socket option before listening for incoming connection requests or it inherits the default value in tcp_recvspace.

The maximum scale factor is 14, and 65535 × 214 is 1,073,725,440. This is far greater than the maximum size of the receive buffer (262,144 in Net/3), so the loop should always terminate with a scale factor much less than 14. See Exercises 28.1 and 28.2.

Figure 28.8 shows the next part of TCP input processing.

Figure 28.8. tcp_input function: reset idle time and keepalive timer, process options.

	

--- tcp_input.c
334 /*
335 * Segment received on connection.
336 * Reset idle time and keepalive timer.
337 */
338 tp->t_idle = 0;
339 tp->t_timer[TCPT_KEEP] = tcp_keepidle;

340 /*
341 * Process options if not in LISTEN state,
342 * else do it below (after getting remote address).
343 */
344 if (optp && tp->t_state != TCPS_LISTEN)
345 tcp_dooptions(tp, optp, optlen, ti,
346 &ts_present, &ts_val, &ts_ecr);
--- tcp_input.c

Reset idle time and keepalive timer

334-339

t_idle is set to 0 since a segment has been received on the connection. The keepalive timer is also reset to 2 hours.

Process TCP options if not in LISTEN state

340-346

If options are present in the TCP header, and if the connection state is not LISTEN, tcp_dooptions processes the options. Recall that if only a timestamp option appears for an established connection, and that option is in the format recommended by Appendix A of RFC 1323, it was already processed in Figure 28.4 and optp was set to a null pointer. If the socket is in the LISTEN state, tcp_dooptions is called in Figure 28.17 after the peer’s address has been recorded in the PCB, because processing the MSS option requires knowledge of the route that will be used to this peer.

28.3. tcp_dooptions Function

This function processes the five TCP options supported by Net/3 (Section 26.4): the EOL, NOP, MSS, window scale, and timestamp options. Figure 28.9 shows the first part of this function.

Figure 28.9. tcp_dooptions function: handle EOL and NOP options.

	

-- tcp_input.c
1213 void
1214 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
1215 struct tcpcb *tp;
1216 u_char *cp;
1217 int cnt;
1218 struct tcpiphdr *ti;
1219 int *ts_present;
1220 u_long *ts_val, *ts_ecr;
1221 {
1222 u_short mss;
1223 int opt, optlen;

1224 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1225 opt = cp[0];
1226 if (opt == TCPOPT_EOL)
1227 break;
1228 if (opt == TCPOPT_NOP)
1229 optlen = 1;
1230 else {
1231 optlen = cp[1];
1232 if (optlen <= 0)
1233 break;
1234 }
1235 switch (opt) {

1236 default:
1237 continue;
-- tcp_input.c

Fetch option type and length

1213-1229

The options are scanned and an EOL (end-of-options) terminates the processing, causing the function to return. The length of a NOP is set to 1, since this option is not followed by a length byte (Figure 26.16). The NOP will be ignored via the default in the switch statement.

1230-1234

All other options have a length byte that is stored in optlen.

Any new options that are not understood by this implementation of TCP are also ignored. This occurs because:

1. Any new options defined in the future will have an option length (NOP and EOL are the only two without a length), and the for loop skips optlen bytes each time around the loop.

2. The default in the switch statement ignores unknown options.

The final part of tcp_dooptions, shown in Figure 28.10, handles the MSS, window scale, and timestamp options.

Figure 28.10. tcp_dooptions function: process MSS, window scale, and timestamp options.

	

-- tcp_input.c
1238 case TCPOPT_MAXSEG:
1239 if (optlen != TCPOLEN_MAXSEG)
1240 continue;
1241 if (!(ti->ti_flags & TH_SYN))
1242 continue;
1243 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1244 NTOHS(mss);
1245 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1246 break;

1247 case TCPOPT_WINDOW:
1248 if (optlen != TCPOLEN_WINDOW)
1249 continue;
1250 if (!(ti->ti_flags & TH_SYN))
1251 continue;
1252 tp->t_flags |= TF_RCVD_SCALE;
1253 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1254 break;

1255 case TCPOPT_TIMESTAMP:
1256 if (optlen != TCPOLEN_TIMESTAMP)
1257 continue;
1258 *ts_present = 1;
1259 bcopy((char *) cp + 2, (char *) ts_val, sizeof(*ts_val));
1260 NTOHL(*ts_val);
1261 bcopy((char *) cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
1262 NTOHL(*ts_ecr);

1263 /*
1264 * A timestamp received in a SYN makes
1265 * it ok to send timestamp requests and replies.
1266 */
1267 if (ti->ti_flags & TH_SYN) {
1268 tp->t_flags |= TF_RCVD_TSTMP;
1269 tp->ts_recent = *ts_val;
1270 tp->ts_recent_age = tcp_now;
1271 }
1272 break;
1273 }
1274 }
1275 }
-- tcp_input.c

MSS option

1238-1246

If the length is not 4 (TCPOLEN_MAXSEG), or the segment does not have the SYN flag set, the option is ignored. Otherwise the 2 MSS bytes are copied into a local variable, converted to host byte order, and processed by tcp_mss. This has the side effect of setting the variable t_maxseg in the control block, the maximum number of bytes that can be sent in a segment to the other end.

Window scale option

1247-1254

If the length is not 3 (TCPOLEN_WINDOW), or the segment does not have the SYN flag set, the option is ignored. Net/3 remembers that it received a window scale request, and the scale factor is saved in requested_s_scale. Since only 1 byte is referenced by cp[2], there can’t be alignment problems. When the ESTABLISHED state is entered, if both ends requested window scaling, it is enabled.

Timestamp option

1255-1273

If the length is not 10 (TCPOLEN_TIMESTAMP), the segment is ignored. Otherwise the flag pointed to by ts_present is set to 1, and the two timestamps are saved in the variables pointed to by ts_val and ts_ecr. If the received segment contains the SYN flag, Net/3 remembers that a timestamp request was received. ts_recent is set to the received timestamp and ts_recent_age is set to tcp_now, the counter of the number of 500-ms clock ticks since the system was initialized.

28.4. Header Prediction

We now continue with the code in tcp_input, from where we left off in Figure 28.8.

Header prediction was put into the 4.3BSD Reno release by Van Jacobson. The only description of the algorithm, other than the source code we’re about to examine, is in [Jacobson 1990b], which is a copy of three slides showing the code.

Header prediction helps unidirectional data transfer by handling the two common cases.

1. If TCP is sending data, the next expected segment for this connection is an ACK for outstanding data.

2. If TCP is receiving data, the next expected segment for this connection is the next in-sequence data segment.

In both cases a small set of tests determines if the next expected segment has been received, and if so, it is handled in-line, faster than the general processing that follows later in this chapter and the next.

[Partridge 1993] shows an even faster version of TCP header prediction from a research implementation developed by Van Jacobson.

Figure 28.11 shows the first part of header prediction.

Figure 28.11. tcp_input function: header prediction, first part.

[image: Image]

Check if segment is the next expected

347-366

The following six conditions must all be true for the segment to be the next expected data segment or the next expected ACK:

1. The connection state must be ESTABLISHED.

2. The following four control flags must not be on: SYN, FIN, RST, or URG. The ACK flag must be on. In other words, of the six TCP control flags, the ACK flag must be set, the four just listed must be cleared, and it doesn’t matter whether PSH is set or cleared. (Normally in the ESTABLISHED state the ACK flag is always on unless the RST flag is on.)

3. If the segment contains a timestamp option, the timestamp value from the other end (ts_val) must be greater than or equal to the previous timestamp received for this connection (ts_recent). This is basically the PAWS test, which we describe in detail in Section 28.7. If ts_val is less than ts_recent, this segment is out of order because it was sent before the most previous segment received on this connection. Since the other end always sends its timestamp clock (the global variable tcp_now in Net/3) as its timestamp value, the received timestamps of in-order segments always form a monotonic increasing sequence.

The timestamp need not increase with every in-order segment. Indeed, on a Net/3 system that increments the timestamp clock (tcp_now) every 500 ms, multiple segments are often sent on a connection before that clock is incremented. Think of the timestamp and sequence number as forming a 64-bit value, with the sequence number in the low-order 32 bits and the timestamp in the high-order 32 bits. This 64-bit value always increases by at least 1 for every in-order segment (taking into account the modulo arithmetic).

4. The starting sequence number of the segment (ti_seq) must equal the next expected receive sequence number (rcv_nxt). If this test is false, then the received segment is either a retransmission or a segment beyond the one expected.

5. The window advertised by the segment (tiwin) must be nonzero, and must equal the current send window (snd_wnd). This means the window has not changed.

6. The next sequence number to send (snd_nxt) must equal the highest sequence number sent (snd_max). This means the last segment sent by TCP was not a retransmission.

Update ts_recent from received timestamp

367-375

If a timestamp option is present and if its value passes the test described with Figure 26.18, the received timestamp (ts_val) is saved in ts_recent. Also, the current time (tcp_now) is recorded in ts_recent_age.

Recall our discussion with Figure 26.18 on how this test for a valid timestamp is flawed, and the correct test presented in Figure 26.20. In this header prediction code the TSTMP_GEQ test in Figure 26.20 is redundant, since it was already done as step 3 of the if test at the beginning of Figure 28.11.

The next part of the header prediction code, shown in Figure 28.12, is for the sender of unidirectional data: process an ACK for outstanding data.

Figure 28.12. tcp_input function: header prediction, sender processing.

	

-- tcp_input.c
376 if (ti->ti_len == 0) {
377 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
378 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
379 tp->snd_cwnd >= tp->snd_wnd) {
380 /*
381 * this is a pure ack for outstanding data.
382 */
383 ++tcpstat.tcps_predack;
384 if (ts_present)
385 tcp_xmit_timer(tp, tcp_now - ts_ecr + 1);
386 else if (tp->t_rtt &&
387 SEQ_GT(ti->ti_ack, tp->t_rtseq))
388 tcp_xmit_timer(tp, tp->t_rtt);

389 acked = ti->ti_ack - tp->snd_una;
390 tcpstat.tcps_rcvackpack++;
391 tcpstat.tcps_rcvackbyte += acked;
392 sbdrop(&so->so_snd, acked);
393 tp->snd_una = ti->ti_ack;
394 m_freem(m);

395 /*
396 * If all outstanding data is acked, stop
397 * retransmit timer, otherwise restart timer
398 * using current (possibly backed-off) value.
399 * If process is waiting for space,
400 * wakeup/selwakeup/signal. If data
401 * is ready to send, let tcp_output
402 * decide between more output or persist.
403 */
404 if (tp->snd_una == tp->snd_max)
405 tp->t_timer[TCPT_REXMT] = 0;
406 else if (tp->t_timer[TCPT_PERSIST] == 0)
407 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;

408 if (so->so_snd.sb_flags & SB_NOTIFY)
409 sowwakeup(so);
410 if (so->so_snd.sb_cc)
411 (void) tcp_output(tp);
412 return;
413 }
-- tcp_input.c

Test for pure ACK

376-379

If the following four conditions are all true, this segment is a pure ACK.

1. The segment contains no data (ti_len is 0).

2. The acknowledgment field in the segment (ti_ack) is greater than the largest unacknowledged sequence number (snd_una). Since this test is “greater than” and not “greater than or equal to,” it is true only if some positive amount of data is acknowledged by the ACK.

3. The acknowledgment field in the segment (ti_ack) is less than or equal to the maximum sequence number sent (snd_max).

4. The congestion window (snd_cwnd) is greater than or equal to the current send window (snd_wnd). This test is true only if the window is fully open, that is, the connection is not in the middle of slow start or congestion avoidance.

Update RTT estimators

384-388

If the segment contains a timestamp option, or if a segment was being timed and the acknowledgment field is greater than the starting sequence number being timed, tcp_xmit_timer updates the RTT estimators.

Delete acknowledged bytes from send buffer

389-394

acked is the number of bytes acknowledged by the segment. sbdrop deletes those bytes from the send buffer. The largest unacknowledged sequence number (snd_una) is set to the acknowledgment field and the received mbuf chain is released. (Since the length is 0, there should be just a single mbuf containing the headers.)

Stop retransmit timer

395-407

If the received segment acknowledges all outstanding data (snd_una equals snd_max), the retransmission timer is turned off. Otherwise, if the persist timer is off, the retransmit timer is restarted using t_rxtcur as the timeout.

Recall that when tcp_output sends a segment, it sets the retransmit timer only if the timer is not currently enabled. If two segments are sent one right after the other, the timer is set when the first is sent, but not touched when the second is sent. But if an ACK is received only for the first segment, the retransmit timer must be restarted, in case the second was lost.

Awaken waiting processes

408-409

If a process must be awakened when the send buffer is modified, sowwakeup is called. From Figure 16.5, SB_NOTIFY is true if a process is waiting for space in the buffer, if a process is selecting on the buffer, or if a process wants the SIGIO signal for this socket.

Generate more output

410-411

If there is data in the send buffer, tcp_output is called because the sender’s window has moved to the right. snd_una was just incremented and snd_wnd did not change, so in Figure 24.17 the entire window has shifted to the right.

The next part of header prediction, shown in Figure 28.13, is the receiver processing when the segment is the next in-sequence data segment.

Figure 28.13. tcp_input function: header prediction, receiver processing.

	

-- tcp_input.c
414 } else if (ti->ti_ack == tp->snd_una &&
415 tp->seg_next == (struct tcpiphdr *) tp &&
416 ti->ti_len <= sbspace(&so->so_rcv)) {
417 /*
418 * this is a pure, in-sequence data packet
419 * with nothing on the reassembly queue and
420 * we have enough buffer space to take it.
421 */
422 ++tcpstat.tcps_preddat;
423 tp->rcv_nxt += ti->ti_len;
424 tcpstat.tcps_rcvpack++;
425 tcpstat.tcps_rcvbyte += ti->ti_len;
426 /*
427 * Drop TCP, IP headers and TCP options then add data
428 * to socket buffer.
429 */
430 m->m_data += sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
431 m->m_len -= sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
432 sbappend(&so->so_rcv, m);
433 sorwakeup(so);
434 tp->t_flags |= TF_DELACK;
435 return;
436 }
437 }
-- tcp_input.c

Test for next in-sequence data segment

414-416

If the following four conditions are all true, this segment is the next expected data segment for the connection, and there is room in the socket buffer for the data.

1. The amount of data in the segment (ti_len) is greater than 0. This is the else portion of the if at the beginning of Figure 28.12.

2. The acknowledgment field (ti_ack) equals the largest unacknowledged sequence number. This means no data is acknowledged by this segment.

3. The reassembly list of out-of-order segments for the connection is empty (seg_next equals tp).

4. There is room in the receive buffer for the data in the segment.

Complete processing of received data

423-435

The next expected receive sequence number (rcv_nxt) is incremented by the number of bytes of data. The IP header, TCP header, and any TCP options are dropped from the mbuf, and the mbuf chain is appended to the socket’s receive buffer. The receiving process is awakened by sorwakeup. Notice that this code avoids calling the TCP_REASS macro, since the tests performed by that macro have already been performed by the header prediction tests. The delayed-ACK flag is set and the input processing is complete.

Statistics

How useful is header prediction? A few simple unidirectional transfers were run across a LAN (between bsdi and svr4, in both directions) and across a WAN (between vangogh.cs.berkeley.edu and ftp.uu.net in both directions). The netstat output (Figure 24.5) shows the two header prediction counters.

On the LAN, with no packet loss but a few duplicate ACKs, header prediction worked between 97 and 100% of the time. Across the WAN, however, the header prediction percentages dropped slightly to between 83 and 99%.

Realize that header prediction works on a per-connection basis, regardless how much additional TCP traffic is being received by the host, while the PCB cache works on a per-host basis. Even though lots of TCP traffic can cause PCB cache misses, if packets are not lost on a given connection, header prediction still works on that connection.

28.5. TCP Input: Slow Path Processing

We continue with the code that’s executed if header prediction fails, the slow path through tcp_input. Figure 28.14 shows the next piece of code, which prepares the received segment for input processing.

Figure 28.14. tcp_input function: drop IP and TCP headers.

	

--- tcp_input.c
438 /*
439 * Drop TCP, IP headers and TCP options.
440 */
441 m->m_data += sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
442 m->m_len -= sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);

443 /*
444 * Calculate amount of space in receive window,
445 * and then do TCP input processing.
446 * Receive window is amount of space in rcv queue,
447 * but not less than advertised window.
448 */
449 {
450 int win;

451 win = sbspace(&so->so_rcv);
452 if (win < 0)
453 win = 0;
454 tp->rcv_wnd = max(win, (int) (tp->rcv_adv - tp->rcv_nxt));
455 }
--- tcp_input.c

Drop IP and TCP headers, including TCP options

438-442

The data pointer and length of the first mbuf in the chain are updated to skip over the IP header, TCP header, and any TCP options. Since off is the number of bytes in the TCP header, including options, the size of the normal TCP header (20) must be subtracted from the expression.

Calculate receive window

443-455

win is set to the number of bytes available in the socket’s receive buffer. rcv_adv minus rcv_nxt is the current advertised window. The receive window is the maximum of these two values. The max is taken to ensure that the value is not less than the currently advertised window. Also, if the process has taken data out of the socket receive buffer since the window was last advertised, win could exceed the advertised window, so TCP accepts up to win bytes of data (even though the other end should not be sending more than the advertised window).

This value is calculated now, since the code later in this function must determine how much of the received data (if any) fits within the advertised window. Any received data outside the advertised window is dropped: data to the left of the window is duplicate data that has already been received and acknowledged, and data to the right should not be sent by the other end.

28.6. Initiation of Passive Open, Completion of Active Open

If the state is LISTEN or SYN_SENT, the code shown in this section is executed. The expected segment in these two states is a SYN, and we’ll see that any other received segment is dropped.

Initiation of Passive Open

Figure 28.15 shows the processing when the connection is in the LISTEN state. In this code the variables tp and inp refer to the new socket that was created in Figure 28.7, not the server’s listening socket.

Figure 28.15. tcp_input function: check if SYN received for listening socket.

	

-- tcp_input.c
456 switch (tp->t_state) {

457 /*
458 * If the state is LISTEN then ignore segment if it contains an RST.
459 * If the segment contains an ACK then it is bad and send an RST.
460 * If it does not contain a SYN then it is not interesting; drop it.
461 * Don't bother responding if the destination was a broadcast.
462 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
463 * tp->iss, and send a segment:
464 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
465 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
466 * Fill in remote peer address fields if not previously specified.
467 * Enter SYN_RECEIVED state, and process any other fields of this
468 * segment in this state.
469 */
470 case TCPS_LISTEN:{
471 struct mbuf *am;
472 struct sockaddr_in *sin;

473 if (tiflags & TH_RST)
474 goto drop;
475 if (tiflags & TH_ACK)
476 goto dropwithreset;
477 if ((tiflags & TH_SYN) == 0)
478 goto drop;
-- tcp_input.c

Drop if RST, ACK, or no SYN

473-478

If the received segment contains the RST flag, it is dropped. If it contains an ACK, it is dropped and an RST is sent as the reply. (The initial SYN to open a connection is one of the few segments that does not contain an ACK.) If the SYN flag is not set, the segment is dropped. The remaining code for this case handles the reception of a SYN for a connection in the LISTEN state. The new state will be SYN_RCVD.

Figure 28.16 shows the next piece of code for this case.

Figure 28.16. tcp_input function: process SYN for listening socket.

	

-- tcp_input.c
479 /*
480 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
481 * in_broadcast() should never return true on a received
482 * packet with M_BCAST not set.
483 */
484 if (m->m_flags & (M_BCAST | M_MCAST) ||
485 IN_MULTICAST(ti->ti_dst.s_addr))
486 goto drop;

487 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
488 if (am == NULL)
489 goto drop;
490 am->m_len = sizeof(struct sockaddr_in);
491 sin = mtod(am, struct sockaddr_in *);
492 sin->sin_family = AF_INET;
493 sin->sin_len = sizeof(*sin);
494 sin->sin_addr = ti->ti_src;
495 sin->sin_port = ti->ti_sport;
496 bzero((caddr_t) sin->sin_zero, sizeof(sin->sin_zero));

497 laddr = inp->inp_laddr;
498 if (inp->inp_laddr.s_addr == INADDR_ANY)
499 inp->inp_laddr = ti->ti_dst;
500 if (in_pcbconnect(inp, am)) {
501 inp->inp_laddr = laddr;
502 (void) m_free(am);
503 goto drop;
504 }
505 (void) m_free(am);
-- tcp_input.c

Drop if broadcast or multicast

479-486

If the packet was sent to a broadcast or multicast address, it is dropped. TCP is defined only for unicast applications. Recall that the M_BCAST and M_MCAST flags were set by ether_input, based on the destination hardware address of the frame. The IN_MULTICAST macro tests whether the IP address is a class D address.

The comment reference to in_broadcast is because the Net/1 code (which did not support multicasting) called that function here, to check whether the destination IP address was a broadcast address. The setting of the M_BCAST and M_MCAST flags by ether_input, based on the destination hardware address, was introduced with Net/2.

This Net/3 code tests only whether the destination hardware address is a broadcast address, and does not call in_broadcast to test whether the destination IP address is a broadcast address, on the assumption that a packet should never be received with a destination IP address that is a broadcast address unless the packet was sent to the hardware broadcast address. This assumption is made to avoid calling in_broadcast. Nevertheless, if a Net/3 system receives a SYN destined for a broadcast IP address but a unicast hardware address, that segment will be processed by the code in Figure 28.16.

The destination address argument to IN_MULTICAST needs to be converted to host byte order.

Get mbuf for client’s IP address and port

487-496

An mbuf is allocated to hold a sockaddr_in structure, and the structure is filled in with the client’s IP address and port number. The IP address is copied from the source address in the IP header and the port number is copied from the source port number in the TCP header. This structure is used shortly to connect the server’s PCB to the client, and then the mbuf is released.

The XXX comment is probably because of the cost associated with obtaining an mbuf just for the call to in_pcbconnect that follows. But this is the slow processing path for TCP input. Figure 24.5 shows that less than 2% of all received segments execute this code.

Set local address in PCB

497-499

laddr is the local address bound to the socket. If the server bound the wildcard address to the socket (the normal scenario), the destination address from the IP header becomes the local address in the PCB. Note that the destination address from the IP header is used, regardless of which local interface the datagram was received on.

Notice that laddr cannot be the wildcard address, because in Figure 28.7 it is explicitly set to the destination IP address from the received datagram.

Connect PCB to peer

500-505

in_pcbconnect connects the server’s PCB to the client. This fills in the foreign address and foreign process in the PCB. The mbuf is then released.

The next piece of code, shown in Figure 28.17 completes the processing for this case.

Figure 28.17. tcp_input function: complete processing of SYN received in LISTEN state.

	

--- tcp_input.c
506 tp->t_template = tcp_template(tp);
507 if (tp->t_template == 0) {
508 tp = tcp_drop(tp, ENOBUFS);
509 dropsocket = 0; /* socket is already gone */
510 goto drop;
511 }
512 if (optp)
513 tcp_dooptions(tp, optp, optlen, ti,
514 &ts_present, &ts_val, &ts_ecr);
515 if (iss)
516 tp->iss = iss;
517 else
518 tp->iss = tcp_iss;
519 tcp_iss += TCP_ISSINCR / 2;
520 tp->irs = ti->ti_seq;
521 tcp_sendseqinit(tp);
522 tcp_rcvseqinit(tp);
523 tp->t_flags |= TF_ACKNOW;
524 tp->t_state = TCPS_SYN_RECEIVED;
525 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
526 dropsocket = 0; /* committed to socket */
527 tcpstat.tcps_accepts++;
528 goto trimthenstep6;
529 }
--- tcp_input.c

Allocate and initialize IP and TCP header template

506-511

A template of the IP and TCP headers is created by tcp_template. The call to sonewconn in Figure 28.7 allocated the PCB and TCP control block for the new connection, but not the header template.

Process any TCP options

512-514

If TCP options are present, they are processed by tcp_dooptions. The call to this function in Figure 28.8 was done only if the connection was not in the LISTEN state. This function is called now for a listening socket, after the foreign address is set in the PCB, since the foreign address is used by the tcp_mss function: to get a route to the peer, and to check if the peer is “local” or “foreign” (with regard to the peer’s network ID and subnet ID, used to select the MSS).

Initialize ISS

515-519

The initial send sequence number is normally copied from the global tcp_iss, which is then incremented by 64,000 (TCP_ISSINCR divided by 2). If the local variable iss is nonzero, however, its value is used instead of tcp_iss to initialize the send sequence number for the connection.

The local iss variable is used for the following scenario.

[image: Image] A server is started on port 27 on the host with an IP address of 128.1.2.3.

[image: Image] A client on host 192.3.4.5 establishes a connection with this server. The client’s ephemeral port is 3000. The socket pair on the server is {128.1.2.3, 27, 192.3.4.5, 3000}.

[image: Image] The server actively closes the connection, putting this socket pair into the TIME_WAIT state. While the connection is in this state, the last receive sequence number is remembered in the TCP control block. Assume its value is 100,000.

[image: Image] Before this connection leaves the TIME_WAIT state, a new SYN is received from the same port on the same client host (192.3.4.5, port 3000), which locates the PCB corresponding to the connection in the TIME_WAIT state, not the PCB for the listening server. Assume the sequence number of this new SYN is 200,000.

[image: Image] Since this connection does not correspond to a listening socket in the LISTEN state, the code we just looked at is not executed. Instead, the code in Figure 28.29 is executed, and we’ll see that it contains the following logic: if the sequence number of the new SYN (200,000) is greater than the last sequence number received from this client (100,000), then (1) the local variable iss is set to 100,000 plus 128,000, (2) the connection in the TIME_WAIT state is completely closed (its PCB and TCP control block are deleted), and (3) a jump is made to findpcb (Figure 28.5).

[image: Image] This time the server’s listening PCB will be located (assuming the listening server is still running), causing the code in this section to be executed. The local variable iss (now 228,000) is used in Figure 28.17 to initialize tcp_iss for the new connection.

This logic, which is allowed by RFC 1122, lets the same client and server reuse the same socket pair as long as the server does the active close. This also explains why the global variable tcp_iss is incremented by 64,000 each time any process issues a connect (Figure 30.4): to ensure that if a single client reopens the same connection with the same server repeatedly, a larger ISS is used each time, even if no data was transferred on the previous connection, and even if the 500-ms timer (which increments tcp_iss) has not expired since the last connection.

Initialize sequence number variables in control block

520-522

In Figure 28.17, the initial receive sequence number (irs) is copied from the sequence number in the SYN segment. The following two macros initialize the appropriate variables in the TCP control block:

 #define tcp_rcvseqinit(tp) \
 (tp)->rcv_adv = (tp)->rcv_nxt = (tp)->irs + 1

 #define tcp_sendseqinit(tp) \
 (tp)->snd_una = (tp)->snd_nxt = (tp)->snd_max =
(tp)->snd_up = \
 (tp)->iss

The addition of 1 in the first macro is because the SYN occupies a sequence number.

ACK the SYN and change state

523-525

The TF_ACKNOW flag is set since the ACK of a SYN is not delayed. The connection state becomes SYN_RCVD, and the connection-establishment timer is set to 75 seconds (TCPTV_KEEP_INIT). Since the TF_ACKNOW flag is set, at the bottom of this function tcp_output will be called.

Looking at Figure 24.16 we see that tcp_outflags will cause a segment with the SYN and ACK flags to be sent.

526-528

TCP is now committed to the new socket created in Figure 28.7, so the dropsocket flag is cleared. The code at trimthenstep6 is jumped to, to complete processing of the SYN segment. Remember that a SYN segment can contain data, although the data cannot be passed to the application until the connection enters the ESTABLISHED state.

Completion of Active Open

Figure 28.18 shows the first part of processing when the connection is in the SYN_SENT state. TCP is expecting to receive a SYN.

Figure 28.18. tcp_input function: check if SYN in response to active open.

	

-- tcp_input.c
530 /*
531 * If the state is SYN_SENT:
532 * if seg contains an ACK, but not for our SYN, drop the input.
533 * if seg contains an RST, then drop the connection.
534 * if seg does not contain SYN, then drop it.
535 * Otherwise this is an acceptable SYN segment
536 * initialize tp->rcv_nxt and tp->irs
537 * if seg contains ack then advance tp->snd_una
538 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
539 * arrange for segment to be acked (eventually)
540 * continue processing rest of data/controls, beginning with URG
541 */
542 case TCPS_SYN_SENT:
543 if ((tiflags & TH_ACK) &&
544 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
545 SEQ_GT(ti->ti_ack, tp->snd_max)))
546 goto dropwithreset;
547 if (tiflags & TH_RST) {
548 if (tiflags & TH_ACK)
549 tp = tcp_drop(tp, ECONNREFUSED);
550 goto drop;
551 }
552 if ((tiflags & TH_SYN) == 0)
553 goto drop;
-- tcp_input.c

Verify received ACK

530-546

When TCP sends a SYN in response to an active open by a process, we’ll see in Figure 30.4 that the connection’s iss is copied from the global tcp_iss and the macro tcp_sendseqinit (shown at the end of the previous section) is executed. Assuming the ISS is 365, Figure 28.19 shows the send sequence variables after the SYN is sent by tcp_output.

Figure 28.19. Send variables after SYN is sent with sequence number 365.

[image: Image]

tcp_sendseqinit sets all four of these variables to 365, then Figure 26.31 increments two of them to 366 when the SYN segment is output. Therefore, if the received segment in Figure 28.18 contains an ACK, and if the acknowledgment field is less than or equal to iss (365) or greater than snd_max (366), the ACK is invalid, causing the segment to be dropped and an RST sent in reply. Notice that the received segment for a connection in the SYN_SENT state need not contain an ACK. It can contain only a SYN, which is called a simultaneous open (Figure 24.15), and is described shortly.

Process and drop RST segment

547-551

If the received segment contains an RST, it is dropped. But the ACK flag was checked first because receipt of an acceptable ACK (which was just verified) and an RST in response to a SYN is how the other end tells TCP that its connection request was refused. Normally this is caused by the server process not being started on the other host. In this case tcp_drop sets the socket’s so_error variable, causing an error to be returned to the process that called connect.

Verify SYN flag set

552-553

If the SYN flag is not set in the received segment, it is dropped.

The remainder of this case handles the receipt of a SYN (with an optional ACK) in response to TCP’s SYN. The next part of tcp_input, shown in Figure 28.20, continues processing the SYN.

Figure 28.20. tcp_input function: process received SYN in response to an active open.

	

--- tcp_input.c
554 if (tiflags & TH_ACK) {
555 tp->snd_una = ti->ti_ack;
556 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
557 tp->snd_nxt = tp->snd_una;
558 }
559 tp->t_timer[TCPT_REXMT] = 0;
560 tp->irs = ti->ti_seq;
561 tcp_rcvseqinit(tp);
562 tp->t_flags |= TF_ACKNOW;
563 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
564 tcpstat.tcps_connects++;
565 soisconnected(so);
566 tp->t_state = TCPS_ESTABLISHED;
567 /* Do window scaling on this connection? */
568 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
569 (TF_RCVD_SCALE | TF_REQ_SCALE)) {
570 tp->snd_scale = tp->requested_s_scale;
571 tp->rcv_scale = tp->request_r_scale;
572 }
573 (void) tcp_reass(tp, (struct tcpiphdr *) 0,
574 (struct mbuf *) 0);
575 /*
576 * if we didn't have to retransmit the SYN,
577 * use its rtt as our initial srtt & rtt var.
578 */
579 if (tp->t_rtt)
580 tcp_xmit_timer(tp, tp->t_rtt);
581 } else
582 tp->t_state = TCPS_SYN_RECEIVED;
--- tcp_input.c

Process ACK

554-558

If the received segment contains an ACK, snd_una is set to the acknowledgment field. In Figure 28.19, snd_una becomes 366, since 366 is the only acceptable value for the acknowledgment field. If snd_nxt is less than snd_una (which shouldn’t happen, given Figure 28.19), snd_nxt is set to snd_una.

Turn off retransmission timer

559

The retransmission timer is turned off.

This is a bug. This timer should be turned off only if the ACK flag is set, since the receipt of a SYN without an ACK is a simultaneous open, and doesn’t mean the other end received TCP’s SYN.

Initialize receive sequence numbers

560-562

The initial receive sequence number is copied from the sequence number of the received segment. The tcp_rcvseqinit macro (shown at the end of the previous section) initializes rcv_adv and rcv_nxt to the receive sequence number, plus 1. The TF_ACKNOW flag is set, causing tcp_output to be called at the bottom of this function. The segment it sends will contain rcv_nxt as the acknowledgment field (Figure 26.27), which acknowledges the SYN just received.

563-564

If the received segment contains an ACK, and if snd_una is greater than the ISS for the connection, the active open is complete, and the connection is established.

This second test appears superfluous. At the beginning of Figure 28.20 snd_una was set to the received acknowledgment field if the ACK flag was on. Also the if following the case statement in Figure 28.18 verified that the received acknowledgment field is greater than the ISS. So at this point in the code, if the ACK flag is set, we’re already guaranteed that snd_una is greater than the ISS.

Connection is established

565-566

soisconnected sets the socket state to connected, and the state of the TCP connection is set to ESTABLISHED.

Check for window scale option

567-572

If TCP sent the window scale option in its SYN and the received SYN also contains the option, the option is enabled and the two variables snd_scale and rcv_scale are set. Since the TCP control block is initialized to 0 by tcp_newtcpcb, these two variables correctly default to 0 if the window scale option is not used.

Pass any queued data to process

573-574

Since data can arrive for a connection before the connection is established, any such data is now placed in the receive buffer by calling tcp_reass with a null pointer as the second argument.

This test is unnecessary. In this piece of code, TCP has just received the SYN with an ACK that moves it from the SYN_SENT state to the ESTABLISHED state. If data appears with this received SYN segment, it isn’t processed until the label dodata near the end of the function. If TCP just received a SYN without an ACK (a simultaneous open) but with some data, that data is handled later (Figure 29.2) when the ACK is received that moves the connection from the SYN_RCVD state to the ESTABLISHED state.

Although it is valid for data to accompany a SYN, and Net/3 handles this type of received segment correctly, Net/3 never generates such a segment.

Update RTT estimators

575-580

If the SYN that is ACKed was being timed, tcp_xmit_timer initializes the RTT estimators based on the measured RTT for the SYN.

TCP ignores a received timestamp option here, and checks only the t_rtt counter. TCP sends a timestamp in a SYN generated by an active open (Figure 26.24) and if the other end agrees to the option, the other end should echo the received timestamp in its SYN. (Net/3 echoes the received timestamp in a SYN in Figure 28.10.) This would allow TCP to use the received timestamp here, instead of t_rtt, but since both have the same precision (500 ms) there’s no advantage in using the timestamp value. The real advantage in using the timestamp option, instead of the t_rtt counter, is with large pipes, when lots of segments are in flight at once, providing more RTT timings and (it is hoped) better estimators.

Simultaneous open

581-582

When TCP receives a SYN without an ACK in the SYN_SENT state, it is a simultaneous open and the connection moves to the SYN_RCVD state.

The next piece of code, shown in Figure 28.21, handles any data received with the SYN. The label trimthenstep6 is also jumped to at the end of Figure 28.17.

Figure 28.21. tcp_input function: common processing for receipt of SYN.

	

--- tcp_input.c
583 trimthenstep6:
584 /*
585 * Advance ti->ti_seq to correspond to first data byte.
586 * If data, trim to stay within window,
587 * dropping FIN if necessary.
588 */
589 ti->ti_seq++;
590 if (ti->ti_len > tp->rcv_wnd) {
591 todrop = ti->ti_len - tp->rcv_wnd;
592 m_adj(m, -todrop);
593 ti->ti_len = tp->rcv_wnd;
594 tiflags &= ~TH_FIN;
595 tcpstat.tcps_rcvpackafterwin++;
596 tcpstat.tcps_rcvbyteafterwin += todrop;
597 }
598 tp->snd_wl1 = ti->ti_seq - 1;
599 tp->rcv_up = ti->ti_seq;
600 goto step6;
601 }
--- tcp_input.c

584-589

The sequence number of the segment is incremented by 1 to account for the SYN. If there is any data in the segment, ti_seq now contains the starting sequence number of the first byte of data.

Drop any received data that follows receive window

590-597

ti_len is the number of data bytes in the segment. If it is greater than the receive window, the excess data (ti_len minus rcv_wnd) is dropped by m_adj. The negative argument to this function causes the data to be trimmed from the end of the mbuf chain (Figure 2.20). ti_len is updated to be the new amount of data in the mbuf chain and in case the FIN flag was set, it is cleared. This is because the FIN would follow the final data byte, which was just discarded because it was outside the receive window.

If too much data is received with a SYN, and if the SYN is in response to an active open, the other end received TCP’s SYN, which contained a window advertisement. This means the other end ignored the advertised window and is exhibiting unsocial behavior. But if too much data accompanies a SYN performing an active open, the other end has not received a window advertisement, so it has to guess how much data can accompany its SYN.

Force update of window variables

598-599

snd_wl1 is set the received sequence number minus 1. We’ll see in Figure 29.15 that this causes the three window update variables, snd_wnd, snd_wl1, and snd_wl2, to be updated. The receive urgent pointer (rcv_up) is set to the received sequence number. A jump is made to step6, which refers to a step in RFC 793, and we cover this in Figure 29.15.

28.7. PAWS: Protection Against Wrapped Sequence Numbers

The next part of tcp_input, shown in Figure 28.22, provides protection against wrapped sequence numbers: the PAWS algorithm from RFC 1323. Also recall our discussion of the timestamp option in Section 26.6.

Figure 28.22. tcp_input function: process timestamp option.

	

--- tcp_input.c
602 /*
603 * States other than LISTEN or SYN_SENT.
604 * First check timestamp, if present.
605 * Then check that at least some bytes of segment are within
606 * receive window. If segment begins before rcv_nxt,
607 * drop leading data (and SYN); if nothing left, just ack.
608 *
609 * RFC 1323 PAWS: If we have a timestamp reply on this segment
610 * and it's less than ts_recent, drop it.
611 */
612 if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
613 TSTMP_LT(ts_val, tp->ts_recent)) {

614 /* Check to see if ts_recent is over 24 days old. */
615 if ((int) (tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
616 /*
617 * Invalidate ts_recent. If this segment updates
618 * ts_recent, the age will be reset later and ts_recent
619 * will get a valid value. If it does not, setting
620 * ts_recent to zero will at least satisfy the
621 * requirement that zero be placed in the timestamp
622 * echo reply when ts_recent isn't valid. The
623 * age isn't reset until we get a valid ts_recent
624 * because we don't want out-of-order segments to be
625 * dropped when ts_recent is old.
626 */
627 tp->ts_recent = 0;
628 } else {
629 tcpstat.tcps_rcvduppack++;
630 tcpstat.tcps_rcvdupbyte += ti->ti_len;
631 tcpstat.tcps_pawsdrop++;
632 goto dropafterack;
633 }
634 }
--- tcp_input.c

Basic PAWS test

602-613

ts_present was set by tcp_dooptions if a timestamp option was present. If the following three conditions are all true, the segment is dropped:

1. the RST flag is not set (Exercise 28.8),

2. TCP has received a valid timestamp from this peer (ts_recent is nonzero), and

3. the received timestamp in this segment (ts_val) is less than the previously received timestamp from this peer.

PAWS is built on the premise that the 32-bit timestamp values wrap around at a much lower frequency than the 32-bit sequence numbers, on a high-speed connection. Exercises 28.6 shows that even at the highest possible timestamp counter frequency (incrementing by 1 bit every millisecond), the sign bit of the timestamp wraps around only every 24 days. On a high-speed network such as a gigabit network, the sequence number can wrap in 17 seconds (Section 24.3 of Volume 1). Therefore, if the received timestamp value is less than the most recent one from this peer, this segment is old and must be discarded (subject to the outdated timestamp test that follows). The packet might be discarded later in the input processing because the sequence number is “old,” but PAWS is intended for high-speed connections where the sequence numbers can wrap quickly.

Notice that the PAWS algorithm is symmetric: it not only discards duplicate data segments but also discards duplicate ACKs. All received segments are subject to PAWS. Recall that the header prediction code also applied the PAWS test (Figure 28.11).

Check for outdated timestamp

614-627

There is a small possibility that the reason the PAWS test fails is because the connection has been idle for a long time. The received segment is not a duplicate; it is just that because the connection has been idle for so long, the peer’s timestamp value has wrapped around when compared to the most recent timestamp from that peer.

Whenever ts_recent is copied from the timestamp in a received segment, ts_recent_age records the current time (tcp_now). If the time at which ts_recent was saved is more than 24 days ago, it is set to 0 to invalidate it. The constant TCP_PAWS_IDLE is defined to be (24 × 24 × 60 × 60 × 2), the final 2 being the number of ticks per second. The received segment is not dropped in this case, since the problem is not a duplicated segment, but an outdated timestamp. See also Exercises 28.6 and 28.7.

Figure 28.23 shows an example of an outdated timestamp. The system on the left is a non-Net/3 system that increments its timestamp clock at the highest frequency allowed by RFC 1323: once every millisecond. The system on the right is a Net/3 system.

Figure 28.23. Example of outdated timestamp.

[image: Image]

When the data segment arrives with a timestamp of 1, that value is saved in ts_recent and ts_recent_age is set to the current time (tcp_now), as shown in Figures 28.11 and 28.35. The connection is then idle for 25 days, during which time tcp_now will increase by 4,320,000 (25 × 24 × 60 × 60 × 2). During these 25 days the other end’s timestamp clock will increase by 2,160,000,000 (25 × 24 × 60 × 60 × 1000). During this interval the timestamp “changes sign” with regard to the value 1, that is, 2,147,483,649 is greater than 1, but 2,147,483,650 is less than 1 (recall Figure 24.26). Therefore, when the data segment is received with a timestamp of 2,160,000,001, this value is less than ts_recent (1), when compared using the TSTMP_LT macro, so the PAWS test fails. But since tcp_now minus ts_recent_age is greater than 24 days, the reason for the failure is that the connection has been idle for more than 24 days, and the segment is accepted.

Drop duplicate segment

628-633

The segment is determined to be a duplicate based on the PAWS algorithm, and the timestamp is not outdated. It is dropped, after being acknowledged (since all duplicate segments are acknowledged).

Figure 24.5 shows a much smaller value for tcps_pawsdrop (22) than for tcps_rcvduppack (46,953). This is probably because fewer systems support the timestamp option today, causing most duplicate packets to be discarded by later tests in TCP’s input processing instead of by PAWS.

28.8. Trim Segment so Data is Within Window

This section trims the received segment so that it contains only data that is within the advertised window:

[image: Image] duplicate data at the beginning of the received segment is discarded, and

[image: Image] data that is beyond the end of the window is discarded from the end of the segment.

What remains is new data within the window. The code shown in Figure 28.24 checks if there is any duplicate data at the beginning of the segment.

Figure 28.24. tcp_input function: check for duplicate data at beginning of segment.

	

-- tcp_input.c
635 todrop = tp->rcv_nxt - ti->ti_seq;
636 if (todrop > 0) {
637 if (tiflags & TH_SYN) {
638 tiflags &= ~TH_SYN;
639 ti->ti_seq++;
640 if (ti->ti_urp > 1)
641 ti->ti_urp--;
642 else
643 tiflags &= ~TH_URG;
644 todrop--;
645 }
-- tcp_input.c

Check if any duplicate data at front of segment

635-636

If the starting sequence number of the received segment (ti_seq) is less than the next receive sequence number expected (rcv_nxt), data at the beginning of the segment is old and todrop will be greater than 0. These data bytes have already been acknowledged and passed to the application (Figure 24.18).

Remove duplicate SYN

637-645

If the SYN flag is set, it refers to the first sequence number in the segment, which is known to be old. The SYN flag is cleared and the starting sequence number of the segment is incremented by 1 to skip over the duplicate SYN. Furthermore, if the urgent offset in the received segment (ti_urp) is greater than 1, it must be decremented by 1, since the urgent offset is relative to the starting sequence number, which was just incremented. If the urgent offset is 0 or 1, it is left alone, but in case it was 1, the URG flag is cleared. Finally todrop is decremented by 1 (since the SYN occupies a sequence number).

The handling of duplicate data at the front of the segment continues in Figure 28.25.

Figure 28.25. tcp_input function: handle completely duplicate segment.

	

-- tcp_input.c
646 if (todrop >= ti->ti_len) {
647 tcpstat.tcps_rcvduppack++;
648 tcpstat.tcps_rcvdupbyte += ti->ti_len;
649 /*
650 * If segment is just one to the left of the window,
651 * check two special cases:
652 * 1. Don't toss RST in response to 4.2-style keepalive.
653 * 2. If the only thing to drop is a FIN, we can drop
654 * it, but check the ACK or we will get into FIN
655 * wars if our FINs crossed (both CLOSING).
656 * In either case, send ACK to resynchronize,
657 * but keep on processing for RST or ACK.
658 */
659 if ((tiflags & TH_FIN && todrop == ti->ti_len + 1)
660) {
661 todrop = ti->ti_len;
662 tiflags &= ~TH_FIN;
663 tp->t_flags |= TF_ACKNOW;
664 } else {
665 /*
666 * Handle the case when a bound socket connects
667 * to itself. Allow packets with a SYN and
668 * an ACK to continue with the processing.
669 */
670 if (todrop != 0 || (tiflags & TH_ACK) == 0)
671 goto dropafterack;
672 }
673 } else {
674 tcpstat.tcps_rcvpartduppack++;
675 tcpstat.tcps_rcvpartdupbyte += todrop;
676 }
677 m_adj(m, todrop);
678 ti->ti_seq += todrop;
679 ti->ti_len -= todrop;
680 if (ti->ti_urp > todrop)
681 ti->ti_urp -= todrop;
682 else {
683 tiflags &= ~TH_URG;
684 ti->ti_urp = 0;
685 }
686 }
-- tcp_input.c

Check for entire duplicate packet

646-648

If the amount of duplicate data at the front of the segment is greater than or equal to the size of the segment, the entire segment is a duplicate.

Check for duplicate FIN

649-663

The next check is whether the FIN is duplicated. Figure 28.26 shows an example of this.

Figure 28.26. Example of duplicate packet with FIN flag set.

[image: Image]

In this example todrop equals 5, which is greater than or equal to ti_len (4). Since the FIN flag is set and todrop equals ti_len plus 1, todrop is set to 4, the FIN flag is cleared, and the TF_ACKNOW flag is set, forcing an immediate ACK to be sent at the end of this function. This example also works for other segments if ti_seq plus ti_len equals 10.

The code contains the comment regarding 4.2BSD keepalives. This code (another test within the if statement) is omitted.

Generate duplicate ACK

664-672

If todrop is nonzero (the completely duplicate segment contains data) or the ACK flag is not set, the segment is dropped and an ACK is generated by dropafterack. This normally occurs when the other end did not receive our ACK, causing the other end to retransmit the segment. TCP generates another ACK.

Handle simultaneous open or self-connect

664-672

This code also handles either a simultaneous open or a socket that connects to itself. We go over both of these scenarios in the next section. If todrop equals 0 (there is no data in the completely duplicate segment) and the ACK flag is set, processing is allowed to continue.

This if statement is new with 4.4BSD. Earlier Berkeley-derived systems just had a jump to dropafterack. These systems could not handle either a simultaneous open or a socket connecting to itself.

Nevertheless, the piece of code in this figure still has bugs, which we describe at the end of this section.

Update statistics for partial duplicate segments

673-676

This else clause is executed when todrop is less than the segment length: only part of the segment contains duplicate bytes.

Remove duplicate data and update urgent offset

677-685

The duplicate bytes are removed from the front of the mbuf chain by m_adj and the starting sequence number and length adjusted appropriately. If the urgent offset points to data still in the mbuf, it is also adjusted. Otherwise the urgent offset is set to 0 and the URG flag is cleared.

The next part of input processing, shown in Figure 28.27, handles data that arrives after the process has terminated.

Figure 28.27. tcp_input function: handle data that arrives after the process terminates.

	

-- tcp_input.c
687 /*
688 * If new data is received on a connection after the
689 * user processes are gone, then RST the other end.
690 */
691 if ((so->so_state & SS_NOFDREF) &&
692 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
693 tp = tcp_close(tp);
694 tcpstat.tcps_rcvafterclose++;
695 goto dropwithreset;
696 }
-- tcp_input.c

687-696

If the socket has no descriptor referencing it, the process has closed the connection (the state is any one of the five with a value greater than CLOSE_WAIT in Figure 24.16), and there is data in the received segment, the connection is closed. The segment is then dropped and an RST is output.

Because of TCP’s half-close, if a process terminates unexpectedly (perhaps it is terminated by a signal), when the kernel closes all open descriptors as part of process termination, a FIN is output by TCP. The connection moves into the FIN_WAIT_1 state. But the receipt of the FIN by the other end doesn’t tell TCP whether this end performed a half-close or a full-close. If the other end assumes a half-close, and sends more data, it will receive an RST from the code in Figure 28.27.

The next piece of code, shown in Figure 28.29, removes any data from the end of the received segment that is beyond the right edge of the advertised window.

Calculate number of bytes beyond right edge of window

697-703

todrop contains the number of bytes of data beyond the right edge of the window. For example, in Figure 28.28, todrop would be (6 + 5) minus (4 + 6), or 1.

Figure 28.28. Example of received segment with data beyond right edge of window.

[image: Image]

Figure 28.29. tcp_input function: remove data beyond right edge of window.

	

-- tcp_input.c
697 /*
698 * If segment ends after window, drop trailing data
699 * (and PUSH and FIN); if nothing left, just ACK.
700 */
701 todrop = (ti->ti_seq + ti->ti_len) - (tp->rcv_nxt + tp->rcv_wnd);
702 if (todrop > 0) {
703 tcpstat.tcps_rcvpackafterwin++;
704 if (todrop >= ti->ti_len) {
705 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
706 /*
707 * If a new connection request is received
708 * while in TIME_WAIT, drop the old connection
709 * and start over if the sequence numbers
710 * are above the previous ones.
711 */
712 if (tiflags & TH_SYN &&
713 tp->t_state == TCPS_TIME_WAIT &&
714 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
715 iss = tp->rcv_nxt + TCP_ISSINCR;
716 tp = tcp_close(tp);
717 goto findpcb;
718 }
719 /*
720 * If window is closed can only take segments at
721 * window edge, and have to drop data and PUSH from
722 * incoming segments. Continue processing, but
723 * remember to ack. Otherwise, drop segment
724 * and ack.
725 */
726 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
727 tp->t_flags |= TF_ACKNOW;
728 tcpstat.tcps_rcvwinprobe++;
729 } else
730 goto dropafterack;
731 } else
732 tcpstat.tcps_rcvbyteafterwin += todrop;
733 m_adj(m, -todrop);
734 ti->ti_len -= todrop;
735 tiflags &= ~(TH_PUSH | TH_FIN);
736 }
-- tcp_input.c

Check for new incarnation of a connection in the TIME_WAIT state

704-718

If todrop is greater than or equal to the length of the segment, the entire segment will be dropped. If the following three conditions are all true:

1. the SYN flag is set, and

2. the connection is in the TIME_WAIT state, and

3. the new starting sequence number is greater than the final sequence number for the connection,

this is a request for a new incarnation of a connection that was recently terminated and is currently in the TIME_WAIT state. This is allowed by RFC 1122, but the ISS for the new connection must be greater than the last sequence number used (rcv_nxt). TCP adds 128,000 (TCP_ISSINCR), which becomes the ISS when the code in Figure 28.17 is executed. The PCB and TCP control block for the connection in the TIME_WAIT state is discarded by tcp_close. A jump is made to findpcb (Figure 28.5) to locate the PCB for the listening server, assuming it is still running. The code in Figure 28.7 is then executed, creating a new socket for the new connection, and finally the code in Figures 28.16 and 28.17 will complete the new connection request.

Check for probe of closed window

719-728

If the receive window is closed (rcv_wnd equals 0) and the received segment starts at the left edge of the window (rcv_nxt), then the other end is probing TCP’s closed window. An immediate ACK is sent as the reply, even though the ACK may still advertise a window of 0. Processing of the received segment also continues for this case.

Drop other segments that are completely outside window

729-730

The entire segment lies outside the window and it is not a window probe, so the segment is discarded and an ACK is sent as the reply. This ACK will contain the expected sequence number.

Handle segments that contain some valid data

731-735

The data to the right of the window is discarded from the mbuf chain by m_adj and ti_len is updated. In the case of a probe into a closed window, this discards all the data in the mbuf chain and sets ti_len to 0. Finally the FIN and PSH flags are cleared.

When to Drop an ACK

The code in Figure 28.25 has a bug that causes a jump to dropafterack in several cases when the code should fall through for further processing of the segment [Carlson 1993; Lanciani 1993]. In an actual scenario, when both ends of a connection had a hole in the data on the reassembly queue and both ends enter the persist state, the connection becomes deadlocked as both ends throw away perfectly good ACKs.

The fix is to simplify the code at the beginning of Figure 28.25. Instead of jumping to dropafterack, a completely duplicate segment causes the FIN flag to be turned off and an immediate ACK to be generated at the end of the function. Lines 646—676 in Figure 28.25 are replaced with the code shown in Figure 28.30.

Figure 28.30. Correction for lines 646–676 of Figure 28.25.

if (todrop > ti->ti_len ||
 todrop == ti->ti_len && (tiflags & TH_FIN) == 0) {

 /*
 * Any valid FIN must be to the left of the window.
 * At this point the FIN must be a duplicate or
 * out of sequence; drop it.
 */
 tiflags &= ~TH_FIN;

 /*
 * Send an ACK to resynchronize and drop any data.
 * But keep on processing for RST or ACK.
 */
 tp->t_flags |= TF_ACKNOW;
 todrop = ti->ti_len;
 tcpstat.tcps_rcvdupbyte += todrop;
 tcpstat.tcps_rcvduppack++;

} else {
 tcpstat.tcps_rcvpartduppack++;
 tcpstat.tcps_rcvpartdupbyte += todrop;
}

This code also corrects another bug present in the original code (Exercise 28.9).

28.9. Self-Connects and Simultaneous Opens

It is instructive to look at the steps involved in a socket connecting to itself to see how the one-line fix to Figure 28.25 that was added to 4.4BSD allows this. This same fix allowed simultaneous opens to work, which wasn’t handled correctly prior to 4.4BSD.

A process creates a socket and connects it to itself using the system calls: socket, bind a local port (say 3000), and then connect to this same port and some local IP address. If the connect succeeds, the socket is connected to itself: anything written to the socket can be read back from the socket. This is similar to a full-duplex pipe, but with a single descriptor instead of two descriptors. Although this is of limited use within a process, we’ll see that the state transitions are the same as they are for a simultaneous open. If your system doesn’t allow a socket to connect to itself, it probably doesn’t handle simultaneous opens correctly either, and the latter are required by RFC 1122. Some people are surprised that a self-connect even works, given that a single Internet PCB and a single TCP control block are used. But TCP is a full-duplex, symmetric protocol and it maintains separate variables for each direction of data flow.

Figure 28.31 shows the send sequence space when the process calls connect. A SYN segment is sent and the state becomes SYN_SENT.

Figure 28.31. Send sequence space when SYN is sent for self-connect.

[image: Image]

The SYN is received and processed in Figures 28.18 and 28.20, but since the SYN does not contain an ACK the resulting state is SYN_RCVD. According to the state transition diagram (Figure 24.15), this looks like a simultaneous open. Figure 28.32 shows the receive sequence space.

Figure 28.32. Receive sequence space after received SYN is processed.

[image: Image]

Figure 28.20 sets the TF_ACKNOW flag and the segment generated by tcp_output will contain a SYN and an ACK (the tcp_outflags value in Figure 24.16). The sequence number of the SYN is 153 and the acknowledgment number is 154.

Nothing changes in the send sequence space from Figure 28.20, except the state is now SYN_SENT. Figure 28.33 shows the receive sequence space when the segment with the SYN and ACK is received.

Figure 28.33. Receive sequence space when segment with SYN and ACK received.

[image: Image]

Since the connection state is SYN_RCVD, the segment is not processed by the active open or passive open code that we saw earlier in this chapter. It must be processed by the SYN_RCVD code that we’ll examine in Figure 29.2. But it is first processed by Figure 28.24, and it looks like a duplicate SYN:

todrop = rcv_nxt - ti_seq
 = 154 - 153
 = 1

Since the SYN flag is set, the flag is cleared, ti_seq becomes 154, and todrop becomes 0. But the test at the beginning of Figure 28.25 is true, because todrop equals the length of the segment (0). The segment is counted as a duplicate packet and the code with the comment “Handle the case when a bound socket connects to itself” is executed. Earlier releases jumped to dropafterack, which skipped the necessary code to handle the SYN_RCVD state, preventing the connection from ever being established. Instead, Net/3 continues processing the received segment if todrop equals 0 and the ACK flag is set, both of which are true in this example. This allows the SYN_RCVD processing to happen later in the function, which moves the connection to the ESTABLISHED state.

It is also interesting to look at the sequence of function calls in this self-connect. This is shown in Figure 28.34.

Figure 28.34. Sequence of function calls for self-connect.

[image: Image]

The order of the operations goes from the left to the right. The steps that we show begin with the process calling connect. This issues the PRU_CONNECT request, which sends a SYN down the protocol stack. Since the segment is destined for the host’s own IP address it is routed to the loopback interface, which adds the segment to ipintrq and generates a software interrupt.

The software interrupt causes ipintr to execute, which calls tcp_input. This function calls tcp_output, causing a SYN segment with an ACK to be sent down the protocol stack. It is again added to ipintrq by the loopback interface, and a software interrupt is generated. When this interrupt is processed by ipintr, the function tcp_input is called, and it moves the connection to the ESTABLISHED state.

28.10. Record Timestamp

The next part of tcp_input, shown in Figure 28.35, handles a received timestamp option.

Figure 28.35. tcp_input function: record timestamp.

	

--- tcp_input.c
737 /*
738 * If last ACK falls within this segment's sequence numbers,
739 * record its timestamp.
740 */
741 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
742 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
743 ((tiflags & (TH_SYN | TH_FIN)) != 0))) {
744 tp->ts_recent_age = tcp_now;
745 tp->ts_recent = ts_val;
746 }
--- tcp_input.c

737-746

If the received segment contains a timestamp, the timestamp value is saved in ts_recent. We discussed in Section 26.6 how this code used by Net/3 is flawed. The expression

 ((tiflags & (TH_SYN|TH_FIN)) != 0)

is 0 if neither of the two flags is set, or 1 if either is set. This effectively adds 1 to ti_len if either flag is set.

28.11. RST Processing

Figure 28.36 shows the switch statement to handle the RST flag, which depends on the connection state.

Figure 28.36. tcp_input function: process RST flag.

[image: Image]

SYN_RCVD state

759-761

The socket’s error code is set to ECONNREFUSED, and a jump is made a few lines forward to close the socket.

This state can be entered from two directions. Normally it is entered from the LISTEN state, after a SYN has been received. TCP replied with a SYN and an ACK but received an RST in reply. Perhaps the other end sent its SYN and then terminated before the reply arrived, causing it to send an RST. In this case the socket referred to by so is the new socket created by sonewconn in Figure 28.7. Since dropsocket will still be true, the socket is discarded at the label drop. The listening descriptor isn’t affected at all. This is why we show the state transition from SYN_RCVD back to LISTEN in Figure 24.15.

This state can also be entered by a simultaneous open, after a process has called connect. In this case the socket error is returned to the process.

Other states

762-777

The receipt of an RST in the ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, or CLOSE_WAIT states returns the error ECONNRESET. In the CLOSING, LAST_ACK, and TIME_WAIT state an error is not generated, since the process has closed the socket.

Allowing an RST to terminate a connection in the TIME_WAIT state circumvents the reason this state exists. RFC 1337 [Braden 1992] discusses this and other forms of “TIME_WAIT assassination hazards” and recommends not letting an RST prematurely terminate the TIME_WAIT state. See Exercise 28.10 for an example.

The next piece of code, shown in Figure 28.37, checks for erroneous SYNs and verifies that an ACK is present.

Figure 28.37. tcp_input function: handle SYN-full and ACK-less segments.

	

-- tcp_input.c
778 /*
779 * If a SYN is in the window, then this is an
780 * error and we send an RST and drop the connection.
781 */
782 if (tiflags & TH_SYN) {
783 tp = tcp_drop(tp, ECONNRESET);
784 goto dropwithreset;
785 }
786 /*
787 * If the ACK bit is off we drop the segment and return.
788 */
789 if ((tiflags & TH_ACK) == 0)
790 goto drop;
-- tcp_input.c

778-785

If the SYN flag is still set, this is an error and the connection is dropped with the error ECONNRESET.

786-790

If the ACK flag is not set, the segment is dropped. The remainder of this function, which we continue in the next chapter, assumes the ACK flag is set.

28.12. Summary

This chapter has started our detailed look at TCP input. It continues in the next chapter.

The code in this chapter verifies the segment’s checksum, processes any TCP options, handles SYNs that initiate or complete connection requests, trims excess data from the beginning or end of the segment, and processes the RST flag.

Header prediction is a successful attempt to handle common cases with the minimum amount of processing. Although the general processing steps that we’ve covered handle all possible cases (which they must), many segments are well behaved and the processing steps can be minimized.

Exercises

28.1 Given that the maximum size of a socket buffer is 262,144 in Net/3, what are the possible window scale shift factors calculated by Figure 28.7?

28.2 Given that the maximum size of a socket buffer is 262,144 in Net/3, what is the maximum throughput possible with a round-trip time of 60 ms? (Hint: See Figure 24.5 in Volume 1 and solve for the bandwidth.)

28.3 Why are the two timestamp values fetched using bcopy in Figure 28.10?

28.4 We mentioned in Section 26.6 that TCP correctly handles timestamp options in a format other than the one recommended in Appendix A of RFC 1323. While this is true, what is the penalty for not following the recommended format?

28.5 The PRU_ATTACH request allocates the PCB and the TCP control block, but doesn’t call tcp_template to allocate the header template. Instead we saw in Figure 28.17 that the header template is allocated when the SYN arrives. Why doesn’t the PRU_ATTACH request allocate this template?

28.6 Read RFC 1323 to determine why the limit of 24 days was chosen in Figure 28.22.

28.7 The comparison of tcp_now minus ts_recent_age to TCP_PAWS_IDLE in Figure 28.22 is also subject to sign bit wrap around, if the connection is idle for a period much longer than 24 days. With the 500-ms timestamp clock used by Net/3, when does this become a problem?

28.8 Read RFC 1323 to find out why RST segments are exempt from the PAWS test in Figure 28.22.

28.9 A client sends a SYN and the server responds with a SYN/ACK. The client moves to the ESTABLISHED state and responds with an ACK, but this ACK is lost. The server resends its SYN/ACK. Describe the processing steps when the client receives this duplicate SYN/ACK.

28.10 A client and server have an established connection and the server performs the active close. The connection terminates normally and the socket pair goes into the TIME_WAIT state on the server. Before this 2MSL wait expires on the server, the same client (i.e., the same socket pair on the client) sends a SYN to the server’s socket pair but with a sequence number that is less than the ending sequence number from the previous incarnation of this connection. Describe what happens.

Chapter 29. TCP Input

29.1. Introduction

This chapter continues the discussion of TCP input processing, picking up where the previous chapter left off. Recall that the final test in Figure 28.37 was that either the ACK flag was set or, if not, the segment was dropped.

The ACK flag is handled, the window information is updated, the URG flag is processed, and any data in the segment is processed. Finally the FIN flag is processed and tcp_output is called, if required.

29.2. ACK Processing Overview

We begin this chapter with ACK processing, a summary of which is shown in Figure 29.1. The SYN_RCVD state is handled specially, followed by common processing for all remaining states. (Remember that a received ACK in either the LISTEN or SYN_SENT state was discussed in the previous chapter.) This is followed by special processing for the three states in which a received ACK causes a state transition, and for the TIME_WAIT state, in which the receipt of an ACK causes the 2MSL timer to be restarted.

Figure 29.1. Summary of ACK processing.

[image: Image]

29.3. Completion of Passive Opens and Simultaneous Opens

The first part of the ACK processing, shown in Figure 29.2, handles the SYN_RCVD state. As mentioned in the previous chapter, this handles the completion of a passive open (the common case) and also handles simultaneous opens and self-connects (the infrequent case).

Figure 29.2. tcp_input function: received ACK in SYN_RCVD state.

	

--- tcp_input.c
791 /*
792 * Ack processing.
793 */
794 switch (tp->t_state) {

795 /*
796 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
797 * ESTABLISHED state and continue processing, otherwise
798 * send an RST.
799 */
800 case TCPS_SYN_RECEIVED:
801 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
802 SEQ_GT(ti->ti_ack, tp->snd_max))
803 goto dropwithreset;
804 tcpstat.tcps_connects++;
805 soisconnected(so);
806 tp->t_state = TCPS_ESTABLISHED;
807 /* Do window scaling? */
808 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
809 (TF_RCVD_SCALE | TF_REQ_SCALE)) {
810 tp->snd_scale = tp->requested_s_scale;
811 tp->rcv_scale = tp->request_r_scale;
812 }
813 (void) tcp_reass(tp, (struct tcpiphdr *) 0, (struct mbuf *) 0);
814 tp->snd_wl1 = ti->ti_seq - 1;
815 /* fall into ... */
--- tcp_input.c

Verify received ACK

801-806

For the ACK to acknowledge the SYN that was sent, it must be greater than snd_una (which is set to the ISS for the connection, the sequence number of the SYN, by tcp_sendseqinit) and less than or equal to snd_max. If so, the socket is marked as connected and the state becomes ESTABLISHED.

Since soisconnected wakes up the process that performed the passive open (normally a server), we see that this doesn’t occur until the last of the three segments in the three-way handshake has been received. If the server is blocked in a call to accept, that call now returns; if the server is blocked in a call to select waiting for the listening descriptor to become readable, it is now readable.

Check for window scale option

807-812

If TCP sent a window scale option and received one, the send and receive scale factors are saved in the TCP control block. Otherwise the default values of snd_scale and rcv_scale in the TCP control block are 0 (no scaling).

Pass queued data to process

813

Any data queued for the connection can now be passed to the process. This is done by tcp_reass with a null pointer as the second argument. This data would have arrived with the SYN that moved the connection into the SYN_RCVD state.

814

snd_wl1 is set to the received sequence number minus 1. We’ll see in Figure 29.15 that this causes the three window update variables to be updated.

29.4. Fast Retransmit and Fast Recovery Algorithms

The next part of ACK processing, shown in Figure 29.3, handles duplicate ACKs and determines if TCP’s fast retransmit and fast recovery algorithms [Jacobson 1990c] should come into play. The two algorithms are separate but are normally implemented together [Floyd 1994].

Figure 29.3. tcp_input function: check for completely duplicate ACK.

[image: Image]

[image: Image] The fast retransmit algorithm occurs when TCP deduces from a small number (normally 3) of consecutive duplicate ACKs that a segment has been lost and deduces the starting sequence number of the missing segment. The missing segment is retransmitted. The algorithm is mentioned in Section 4.2.2.21 of RFC 1122, which states that TCP may generate an immediate ACK when an out-of-order segment is received. We saw that Net/3 generates the immediate duplicate ACKs in Figure 27.15. This algorithm first appeared in the 4.3BSD Tahoe release and the subsequent Net/1 release. In these two implementations, after the missing segment was retransmitted, the slow start phase was entered.

[image: Image] The fast recovery algorithm says that after the fast retransmit algorithm (that is, after the missing segment has been retransmitted), congestion avoidance but not slow start is performed. This is an improvement that allows higher throughput under moderate congestion, especially for large windows. This algorithm appeared in the 4.3BSD Reno release and the subsequent Net/2 release.

Net/3 implements both fast retransmit and fast recovery, as we describe shortly.

In the discussion of Figure 24.17 we noted that an acceptable ACK must be in the range

snd_una < acknowledgment field <= snd_max

This first test of the acknowledgment field compares it only to snd_una. The comparison against snd_max is in Figure 29.5. The reason for separating the tests is so that the following five tests can be applied to the received segment:

1. If the acknowledgment field is less than or equal to snd_una, and

2. the length of the received segment is 0, and

3. the advertised window (tiwin) has not changed, and

4. TCP has outstanding data that has not been acknowledged (the retransmission timer is nonzero), and

5. the received segment contains the biggest ACK TCP has seen (the acknowledgment field equals snd_una),

then this segment is a completely duplicate ACK. (Tests 1, 2, and 3 are in Figure 29.3; tests 4 and 5 are at the beginning of Figure 29.4.)

Figure 29.4. tcp_input function: duplicate ACK processing.

	

--- tcp_input.c
858 if (tp->t_timer[TCPT_REXMT] == 0 ||
859 ti->ti_ack != tp->snd_una)
860 tp->t_dupacks = 0;
861 else if (++tp->t_dupacks == tcprexmtthresh) {
862 tcp_seq onxt = tp->snd_nxt;
863 u_int win =
864 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
865 tp->t_maxseg;

866 if (win < 2)
867 win = 2;
868 tp->snd_ssthresh = win * tp->t_maxseg;
869 tp->t_timer[TCPT_REXMT] = 0;
870 tp->t_rtt = 0;
871 tp->snd_nxt = ti->ti_ack;
872 tp->snd_cwnd = tp->t_maxseg;
873 (void) tcp_output(tp);
874 tp->snd_cwnd = tp->snd_ssthresh +
875 tp->t_maxseg * tp->t_dupacks;
876 if (SEQ_GT(onxt, tp->snd_nxt))
877 tp->snd_nxt = onxt;
878 goto drop;
879 } else if (tp->t_dupacks > tcprexmtthresh) {
880 tp->snd_cwnd += tp->t_maxseg;
881 (void) tcp_output(tp);
882 goto drop;
883 }
884 } else
885 tp->t_dupacks = 0;
886 break; /* beyond ACK processing (to step 6) */
887 }
--- tcp_input.c

TCP counts the number of these duplicate ACKs that are received in a row (in the variable t_dupacks), and when the number reaches a threshold of 3 (tcprexmtthresh), the lost segment is retransmitted. This is the fast retransmit algorithm described in Section 21.7 of Volume 1. It works in conjunction with the code we saw in Figure 27.15: when TCP receives an out-of-order segment, it is required to generate an immediate duplicate ACK, telling the other end that a segment might have been lost and telling it the value of the next expected sequence number. The goal of the fast retransmit algorithm is for TCP to retransmit immediately what appears to be the missing segment, instead of waiting for the retransmission timer to expire. Figure 21.7 of Volume 1 gives a detailed example of how this algorithm works.

The receipt of a duplicate ACK also tells TCP that a packet has “left the network,” because the other end had to receive an out-of-order segment to send the duplicate ACK. The fast recovery algorithm says that after some number of consecutive duplicate ACKs have been received, TCP should perform congestion avoidance (i.e., slow down) but need not wait for the pipe to empty between the two connection end points (slow start). The expression “a packet has left the network” means a packet has been received by the other end and has been added to the out-of-order queue for the connection. The packet is not still in transit somewhere between the two end points.

If only the first three tests shown earlier are true, the ACK is still a duplicate and is counted by the statistic tcps_rcvdupack, but the counter of the number of consecutive duplicate ACKs for this connection (t_dupacks) is reset to 0. If only the first test is true, the counter t_dupacks is reset to 0.

The remainder of the fast recovery algorithm is shown in Figure 29.4. When all five tests are true, the fast recovery algorithm processes the segment depending on the number of these consecutive duplicate ACKs that have been received.

1. t_dupacks equals 3 (tcprexmtthresh). Congestion avoidance is performed and the missing segment is retransmitted.

2. t_dupacks exceeds 3. Increase the congestion window and perform normal TCP output.

3. t_dupacks is less than 3. Do nothing.

Number of consecutive duplicate ACKs reaches threshold of 3

861-868

When t_dupacks reaches 3 (tcprexmtthresh), the value of snd_nxt is saved in onxt and the slow start threshold (ssthresh) is set to one-half the current congestion window, with a minimum value of two segments. This is what was done with the slow start threshold when the retransmission timer expired in Figure 25.27, but we’ll see later in this piece of code that the fast recovery algorithm does not set the congestion window to one segment, as was done with the timeout.

Turn off retransmission timer

869-870

The retransmission timer is turned off and, in case a segment is currently being timed, t_rtt is set to 0.

Retransmit missing segment

871-873

snd_nxt is set to the starting sequence number of the segment that appears to have been lost (the acknowledgment field of the duplicate ACK) and the congestion window is set to one segment. This causes tcp_output to send only the missing segment. (This is shown by segment 63 in Figure 21.7 of Volume 1.)

Set congestion window

874-875

The congestion window is set to the slow start threshold plus the number of segments that the other end has cached. By cached we mean the number of out-of-order segments that the other end has received and generated duplicate ACKs for. These cannot be passed to the process at the other end until the missing segment (which was just sent) is received. Figures 21.10 and 21.11 in Volume 1 show what happens with the congestion window and slow start threshold when the fast recovery algorithm is in effect.

Set snd_nxt

876-878

The value of the next sequence number to send is set to the maximum of its previous value (onxt) and its current value. Its current value was modified by tcp_output when the segment was retransmitted. Normally this causes snd_nxt to be set back to its previous value, which means that only the missing segment is retransmitted, and that future calls to tcp_output carry on with the next segment in sequence.

Number of consecutive duplicate ACKs exceeds threshold of 3

879-883

The missing segment was retransmitted when t_dupacks equaled 3, so the receipt of each additional duplicate ACK means that another packet has left the network. The congestion window is incremented by one segment. tcp_output sends the next segment in sequence, and the duplicate ACK is dropped. (This is shown by segments 67, 69, and 71 in Figure 21.7 of Volume 1.)

884-885

This statement is executed when the received segment contains a duplicate ACK, but either the length is nonzero or the advertised window changed. Only the first of the five tests described earlier is true. The counter of consecutive duplicate ACKs is set to 0.

Skip remainder of ACK processing

886

This break is executed in three cases:

(1) only the first of the five tests described earlier is true, or

(2) only the first three of the five tests is true, or

(3) the ACK is a duplicate, but the number of consecutive duplicates is less than the threshold of 3.

For any of these cases the ACK is still a duplicate and the break goes to the end of the switch that started in Figure 29.2, which continues processing at the label step6.

To understand the purpose in this aggressive window manipulation, consider the following example. Assume the window is eight segments, and segments 1 through 8 are sent. Segment 1 is lost, but the remainder arrive OK and are acknowledged. After the ACKs for segments 2, 3, and 4 arrive, the missing segment (1) is retransmitted. TCP would like the subsequent ACKs for 5 through 8 to allow some of the segments starting with 9 to be sent, to keep the pipe full. But the window is 8, which prevents segments 9 and above from being sent. Therefore, the congestion window is temporarily inflated by one segment each time another duplicate ACK is received, since the receipt of the duplicate ACK tells TCP that another segment has left the pipe at the other end. When the acknowledgment of segment 1 is finally received, the next figure reduces the congestion window back to the slow start threshold. This increase in the congestion window as the duplicate ACKs arrive, and its subsequent decrease when the fresh ACK arrives, can be seen visually in Figure 21.10 of Volume 1.

29.5. ACK Processing

The ACK processing continues with Figure 29.5.

Figure 29.5. tcp_input function: ACK processing continued.

	

--- tcp_input.c
888 /*
889 * If the congestion window was inflated to account
890 * for the other side's cached packets, retract it.
891 */
892 if (tp->t_dupacks > tcprexmtthresh &&
893 tp->snd_cwnd > tp->snd_ssthresh)
894 tp->snd_cwnd = tp->snd_ssthresh;
895 tp->t_dupacks = 0;

896 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
897 tcpstat.tcps_rcvacktoomuch++;
898 goto dropafterack;
899 }
900 acked = ti->ti_ack - tp->snd_una;
901 tcpstat.tcps_rcvackpack++;
902 tcpstat.tcps_rcvackbyte += acked;
--- tcp_input.c

Adjust congestion window

888-895

If the number of consecutive duplicate ACKs exceeds the threshold of 3, this is the first nonduplicate ACK after a string of four or more duplicate ACKs. The fast recovery algorithm is complete. Since the congestion window was incremented by one segment for every consecutive duplicate after the third, if it now exceeds the slow start threshold, it is set back to the slow start threshold. The counter of consecutive duplicate ACKs is set to 0.

Check for out-of-range ACK

896-899

Recall the definition of an acceptable ACK,

snd_una < acknowledgment field <= snd_max

If the acknowledgment field is greater than snd_max, the other end is acknowledging data that TCP hasn’t even sent yet! This probably occurs on a high-speed connection when the sequence numbers wrap and a missing ACK reappears later. As we can see in Figure 24.5, this rarely happens (since today’s networks aren’t fast enough).

Calculate number of bytes acknowledged

900-902

At this point TCP knows that it has an acceptable ACK. acked is the number of bytes acknowledged.

The next part of ACK processing, shown in Figure 29.6, deals with RTT measurements and the retransmission timer.

Figure 29.6. tcp_input function: RTT measurements and retransmission timer.

	

--- tcp_input.c
903 /*
904 * If we have a timestamp reply, update smoothed
905 * round-trip time. If no timestamp is present but
906 * transmit timer is running and timed sequence
907 * number was acked, update smoothed round-trip time.
908 * Since we now have an rtt measurement, cancel the
909 * timer backoff (cf., Phil Karn's retransmit alg.).
910 * Recompute the initial retransmit timer.
911 */
912 if (ts_present)
913 tcp_xmit_timer(tp, tcp_now - ts_ecr + 1);
914 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
915 tcp_xmit_timer(tp, tp->t_rtt);

916 /*
917 * If all outstanding data is acked, stop retransmit
918 * timer and remember to restart (more output or persist).
919 * If there is more data to be acked, restart retransmit
920 * timer, using current (possibly backed-off) value.
921 */
922 if (ti->ti_ack == tp->snd_max) {
923 tp->t_timer[TCPT_REXMT] = 0;
924 needoutput = 1;
925 } else if (tp->t_timer[TCPT_PERSIST] == 0)
926 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
--- tcp_input.c

Update RTT estimators

903-915

If either (1) a timestamp option was present, or (2) a segment was being timed and the acknowledgment number is greater than the starting sequence number of the segment being timed, tcp_xmit_timer updates the RTT estimators. Notice that the second argument to this function when timestamps are used is the current time (tcp_now) minus the timestamp echo reply (ts_ecr) plus 1 (since the function subtracts 1).

Delayed ACKs are the reason for the greater-than test of the sequence numbers. For example, if TCP sends and times a segment with bytes 1–1024, followed by a segment with bytes 1025–2048, if an ACK of 2049 is returned, this test will consider whether 2049 is greater than 1 (the starting sequence number of the segment being timed), and since this is true, the RTT estimators are updated.

Check if all outstanding data has been acknowledged

916-924

If the acknowledgment field of the received segment (ti_ack) equals the maximum sequence number that TCP has sent (snd_max), all outstanding data has been acknowledged. The retransmission timer is turned off and the needoutput flag is set to 1. This flag forces a call to tcp_output at the end of this function. Since there is no more data waiting to be acknowledged, TCP may have more data to send that it has not been able to send earlier because the data was beyond the right edge of the window. Now that a new ACK has been received, the window will probably move to the right (snd_una is updated in Figure 29.8), which could allow more data to be sent.

Unacknowledged data outstanding

925-926

Since there is additional data that has been sent but not acknowledged, if the persist timer is not on, the retransmission timer is restarted using the current value of t_rxtcur.

Karn’s Algorithm and Timestamps

Notice that timestamps overrule the portion of Karn’s algorithm (Section 21.3 of Volume 1) that says: when a timeout and retransmission occurs, the RTT estimators cannot be updated when the acknowledgment for the retransmitted data is received (the retransmission ambiguity problem). In Figure 25.26 we saw that t_rtt was set to 0 when a retransmission took place, because of Karn’s algorithm. If timestamps are not present and it is a retransmission, the code in Figure 29.6 does not update the RTT estimators because t_rtt will be 0 from the retransmission. But if a timestamp is present, t_rtt isn’t examined, allowing the RTT estimators to be updated using the received timestamp echo reply. With RFC 1323 timestamps the ambiguity is gone since the ts_ecr value was copied by the other end from the segment being acknowledged. The other half of Karn’s algorithm, specifying that an exponential backoff must be used with retransmissions, still holds, of course.

Figure 29.7 shows the next part of ACK processing, updating the congestion window.

Figure 29.7. tcp_input function: open congestion window in response to ACKs.

	

--- tcp_input.c
927 /*
928 * When new data is acked, open the congestion window.
929 * If the window gives us less than ssthresh packets
930 * in flight, open exponentially (maxseg per packet).
931 * Otherwise open linearly: maxseg per window
932 * (maxseg^2 / cwnd per packet), plus a constant
933 * fraction of a packet (maxseg/8) to help larger windows
934 * open quickly enough.
935 */
936 {
937 u_int cw = tp->snd_cwnd;
938 u_int incr = tp->t_maxseg;

939 if (cw > tp->snd_ssthresh)
940 incr = incr * incr / cw + incr / 8;
941 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN << tp->snd_scale);
942 }
--- tcp_input.c

Update congestion window

927-942

One of the rules of slow start and congestion avoidance is that a received ACK increases the congestion window. By default the congestion window is increased by one segment for each received ACK (slow start). But if the current congestion window is greater than the slow start threshold, it is increased by 1 divided by the congestion window, plus a constant fraction of a segment. The term

incr * incr / cw

is

t_maxseg * t_maxseg / snd_cwnd

which is 1 divided by the congestion window, taking into account that snd_cwnd is maintained in bytes, not segments. The constant fraction is the segment size divided by 8. The congestion window is then limited by the maximum value of the send window for this connection. Example calculations of this algorithm are in Section 21.8 of Volume 1.

Adding in the constant fraction (the segment size divided by 8) is wrong [Floyd 1994]. But it has been in the BSD sources since 4.3BSD Reno and is still in 4.4BSD and Net/3. It should be removed.

The next part of tcp_input, shown in Figure 29.8, removes the acknowledged data from the send buffer.

Figure 29.8. tcp_input function: remove acknowledged data from send buffer.

	

--- tcp_input.c
943 if (acked > so->so_snd.sb_cc) {
944 tp->snd_wnd -= so->so_snd.sb_cc;
945 sbdrop(&so->so_snd, (int) so->so_snd.sb_cc);
946 ourfinisacked = 1;
947 } else {
948 sbdrop(&so->so_snd, acked);
949 tp->snd_wnd -= acked;
950 ourfinisacked = 0;
951 }
952 if (so->so_snd.sb_flags & SB_NOTIFY)
953 sowwakeup(so);
954 tp->snd_una = ti->ti_ack;
955 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
956 tp->snd_nxt = tp->snd_una;
--- tcp_input.c

Remove acknowledged bytes from the send buffer

943-946

If the number of bytes acknowledged exceeds the number of bytes on the send buffer, snd_wnd is decremented by the number of bytes in the send buffer and TCP knows that its FIN has been ACKed. That number of bytes is then removed from the send buffer by sbdrop. This method for detecting the ACK of a FIN works only because the FIN occupies 1 byte in the sequence number space.

947-951

Otherwise the number of bytes acknowledged is less than or equal to the number of bytes in the send buffer, so ourfinisacked is set to 0, and acked bytes of data are dropped from the send buffer.

Wakeup processes waiting on send buffer

951-956

sowwakeup awakens any processes waiting on the send buffer. snd_una is updated to contain the oldest unacknowledged sequence number. If this new value of snd_una exceeds snd_nxt, the latter is updated, since the intervening bytes have been acknowledged.

Figure 29.9 shows how snd_nxt can end up with a sequence number that is less than snd_una. Assume two segments are transmitted, the first with bytes 1–512 and the second with bytes 513–1024.

Figure 29.9. Two segments sent on a connection.

[image: Image]

The retransmission timer then expires before an acknowledgment is returned. The code in Figure 25.26 sets snd_nxt back to snd_una, slow start is entered, tcp_output is called, and one segment containing bytes 1–512 is retransmitted. tcp_output increases snd_nxt to 513, and we have the scenario shown in Figure 29.10.

Figure 29.10. Continuation of Figure 29.9 after retransmission timer expires.

[image: Image]

At this point an ACK of 1025 arrives (either the two original segments or the ACK was delayed somewhere in the network). The ACK is valid since it is less than or equal to snd_max, but snd_nxt will be less than the updated value of snd_una.

The general ACK processing is now complete, and the switch shown in Figure 29.11 handles four special cases.

Figure 29.11. tcp_input function: receipt of ACK in FIN_WAIT_1 state.

	

--- tcp_input.c
957 switch (tp->t_state) {

958 /*
959 * In FIN_WAIT_1 state in addition to the processing
960 * for the ESTABLISHED state if our FIN is now acknowledged
961 * then enter FIN_WAIT_2.
962 */
963 case TCPS_FIN_WAIT_1:
964 if (ourfinisacked) {
965 /*
966 * If we can't receive any more
967 * data, then closing user can proceed.
968 * Starting the timer is contrary to the
969 * specification, but if we don't get a FIN
970 * we'll hang forever.
971 */
972 if (so->so_state & SS_CANTRCVMORE) {
973 soisdisconnected(so);
974 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
975 }
976 tp->t_state = TCPS_FIN_WAIT_2;
977 }
978 break;
--- tcp_input.c

Receipt of ACK in FIN_WAIT_1 state

958-971

In this state the process has closed the connection and TCP has sent the FIN. But other ACKs can be received for data segments sent before the FIN. Therefore the connection moves into the FIN_WAIT_2 state only when the FIN has been acknowledged. The flag ourfinisacked is set in Figure 29.8; this depends on whether the number of bytes ACKed exceeds the amount of data in the send buffer or not.

Set FIN_WAIT_2 timer

972-975

We also described in Section 25.6 how Net/3 sets a FIN_WAIT_2 timer to prevent an infinite wait in the FIN_WAIT_2 state. This timer is set only if the process completely closed the connection (i.e., the close system call or its kernel equivalent if the process was terminated by a signal), and not if the process performed a half-close (i.e., the FIN was sent but the process can still receive data on the connection).

Figure 29.12 shows the receipt of an ACK in the CLOSING state.

Figure 29.12. tcp_input function: receipt of ACK in CLOSING state.

	

--- tcp_input.c
979 /*
980 * In CLOSING state in addition to the processing for
981 * the ESTABLISHED state if the ACK acknowledges our FIN
982 * then enter the TIME-WAIT state, otherwise ignore
983 * the segment.
984 */
985 case TCPS_CLOSING:
986 if (ourfinisacked) {
987 tp->t_state = TCPS_TIME_WAIT;
988 tcp_canceltimers(tp);
989 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
990 soisdisconnected(so);
991 }
992 break;
--- tcp_input.c

Receipt of ACK in CLOSING state

979-992

If the ACK is for the FIN (and not for some previous data segment), the connection moves into the TIME_WAIT state. Any pending timers are cleared (such as a pending retransmission timer), and the TIME_WAIT timer is started with a value of twice the MSL.

The processing of an ACK in the LAST_ACK state is shown in Figure 29.13.

Figure 29.13. tcp_input function: receipt of ACK in LAST_ACK state.

	

--- tcp_input.c
 993 /*
 994 * In LAST_ACK, we may still be waiting for data to drain
 995 * and/or to be acked, as well as for the ack of our FIN.
 996 * If our FIN is now acknowledged, delete the TCB,
 997 * enter the closed state, and return.
 998 */
 999 case TCPS_LAST_ACK:
1000 if (ourfinisacked) {
1001 tp = tcp_close(tp);
1002 goto drop;
1003 }
1004 break;
--- tcp_input.c

Receipt of ACK in LAST_ACK state

993-1004

If the FIN is ACKed, the new state is CLOSED. This state transition is handled by tcp_close, which also releases the Internet PCB and TCP control block.

Figure 29.14 shows the processing of an ACK in the TIME_WAIT state.

Figure 29.14. tcp_input function: receipt of ACK in TIME_WAIT state.

	

--- tcp_input.c
1005 /*
1006 * In TIME_WAIT state the only thing that should arrive
1007 * is a retransmission of the remote FIN. Acknowledge
1008 * it and restart the finack timer.
1009 */
1010 case TCPS_TIME_WAIT:
1011 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1012 goto dropafterack;
1013 }
1014 }
--- tcp_input.c

Receipt of ACK in TIME WAIT state

1005-1014

In this state both ends have sent a FIN and both FINs have been acknowledged. If TCP’s ACK of the remote FIN was lost, however, the other end will retransmit the FIN (with an ACK). TCP drops the segment and resends the ACK. Additionally, the TIME_WAIT timer must be restarted with a value of twice the MSL.

29.6. Update Window Information

There are two variables in the TCP control block that we haven’t described yet: snd_wl1 and snd_wl2.

[image: Image] snd_wl1 records the sequence number of the last segment used to update the send window (snd_wnd).

[image: Image] snd_wl2 records the acknowledgment number of the last segment used to update the send window.

Our only encounter with these variables so far was when a connection was established (active, passive, or simultaneous open) and snd_wl1 was set to ti_seq minus 1. We said this was to guarantee a window update, which we’ll see in the following code.

The send window (snd_wnd) is updated from the advertised window in the received segment (tiwin) if any one of the following three conditions is true:

1. The segment contains new data. Since snd_wl1 contains the starting sequence number of the last segment that was used to update the send window, if

2. snd_wl1 < ti_seq this condition is true.

3. The segment does not contain new data (snd_wl1 equals ti_seq), but the segment acknowledges new data. The latter condition is true if

4. snd_wl2 < ti_ack
since snd_wl2 records the acknowledgment number of the last segment that updated the send window.

5. The segment does not contain new data, and the segment does not acknowledge new data, but the advertised window is larger than the current send window.

The purpose of these tests is to prevent an old segment from affecting the send window, since the send window is not an absolute sequence number, but is an offset from snd_una.

Figure 29.15 shows the code that implements the update of the send window.

Figure 29.15. tcp_input function: update window information.

[image: Image]

Check if send window should be updated

1015-1023

This if test verifies that the ACK flag is set along with any one of the three previously stated conditions. Recall that a jump was made to step6 after the receipt of a SYN in either the LISTEN or SYN_SENT state, and in the LISTEN state the SYN does not contain an ACK.

The term TAC referred to in the comment is a “terminal access controller.” These were Telnet clients on the ARPANET.

1024-1027

If the received segment is a pure window update (the length is 0 and the ACK does not acknowledge new data, but the advertised window is larger), the statistic tcps_rcvwinupd is incremented.

Update variables

1028-1033

The send window is updated and new values of snd_wl1 and snd_wl2 are recorded. Additionally, if this advertised window is the largest one TCP has received from this peer, the new value is recorded in max_sndwnd. This is an attempt to guess the size of the other end’s receive buffer, and it is used in Figure 26.8. needoutput is set to 1 since the new value of snd_wnd might enable a segment to be sent.

29.7. Urgent Mode Processing

The next part of TCP input processing handles segments with the URG flag set.

Figure 29.16. tcp_input function: urgent mode processing.

	

--- tcp_input.c
1035 /*
1036 * Process segments with URG.
1037 */
1038 if ((tiflags & TH_URG) && ti->ti_urp &&
1039 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1040 /*
1041 * This is a kludge, but if we receive and accept
1042 * random urgent pointers, we'll crash in
1043 * soreceive. It's hard to imagine someone
1044 * actually wanting to send this much urgent data.
1045 */
1046 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1047 ti->ti_urp = 0; /* XXX */
1048 tiflags &= ~TH_URG; /* XXX */
1049 goto dodata; /* XXX */
1050 }
--- tcp_input.c

Check if URG flag should be processed

1035-1039

These segments must have the URG flag set, a nonzero urgent offset (ti_urp), and the connection must not have received a FIN. The macro TCPS_HAVERCVDFIN is true only for the TIME_WAIT state, so the URG is processed in any other state. This is contrary to a comment appearing later in the code stating that the URG flag is ignored in the CLOSE_WAIT, CLOSING, LAST_ACK, or TIME_WAIT states.

Ignore bogus urgent offsets

1040-1050

If the urgent offset plus the number of bytes already in the receive buffer exceeds the maximum size of a socket buffer, the urgent notification is ignored. The urgent offset is set to 0, the URG flag is cleared, and the rest of the urgent mode processing is skipped.

The next piece of code, shown in Figure 29.17, processes the urgent pointer.

Figure 29.17. tcp_input function: processing of received urgent pointer.

[image: Image]

1051-1065

If the starting sequence number of the received segment plus the urgent offset exceeds the current receive urgent pointer, a new urgent pointer has been received. For example, when the 3-byte segment that was sent in Figure 26.30 arrives at the receiver, we have the scenario shown in Figure 29.18.

Figure 29.18. Receiver side when segment from Figure 26.30 arrives.

[image: Image]

Normally the receive urgent pointer (rcv_up) equals rcv_nxt. In this example, since the if test is true (4 plus 3 is greater than 4), the new value of rcv_up is calculated as 7.

Calculate receive urgent pointer

1066-1070

The out-of-band mark in the socket’s receive buffer is calculated, taking into account any data bytes already in the receive buffer (so_rcv.sb_cc). In our example, assuming there is no data already in the receive buffer, so_oobmark is set to 2: that is, the byte with the sequence number 6 is considered the out-of-band byte. If this out-of-band mark is 0, the socket is currently at the out-of-band mark. This happens if the send system call that sends the out-of-band byte specifies a length of 1, and if the receive buffer is empty when this segment arrives at the other end. This reiterates that Berkeley-derived systems consider the urgent pointer to point to the first byte of data after the out-of-band byte.

Notify process of TCP’s urgent mode

1071-1072

sohasoutofband notifies the process that out-of-band data has arrived for the socket. The two flags TCPOOB_HAVEDATA and TCPOOB_HADDATA are cleared. These two flags are used with the PRU_RCVOOB request in Figure 30.8.

Pull out-of-band byte out of normal data stream

1074-1085

If the urgent offset is less than or equal to the number of bytes in the received segment, the out-of-band byte is contained in the segment. With TCP’s urgent mode it is possible for the urgent offset to point to a data byte that has not yet been received. If the SO_OOBINLINE constant is defined (which it always is for Net/3), and if the corresponding socket option is not enabled, the receiving process wants the out-of-band byte pulled out of the normal stream of data and placed into the variable t_iobc. This is done by tcp_pulloutofband, which we cover in the next section.

Notice that the receiving process is notified that the sender has entered urgent mode, regardless of whether the byte pointed to by the urgent pointer is readable or not. This is a feature of TCP’s urgent mode.

Adjust receive urgent pointer if not urgent mode

1086-1093

When the receiver is not processing an urgent pointer, if rcv_nxt is greater than the receive urgent pointer, rcv_up is moved to the right and set equal to rcv_nxt. This keeps the receive urgent pointer at the left edge of the receive window so that the comparison using SEQ_GT at the beginning of Figure 29.17 will work correctly when an URG flag is received.

If the solution to Exercise 26.6 is implemented, corresponding changes will have to go into Figures 29.16 and 29.17 also.

29.8. tcp_pulloutofband Function

This function is called from Figure 29.17 when

1. urgent mode notification arrives in a received segment, and

2. the out-of-band byte is contained within the segment (i.e., the urgent pointer points into the received segment), and

3. the SO_OOBINLINE socket option is not enabled for this socket.

This function removes the out-of-band byte from the normal stream of data (i.e., the mbuf chain containing the received segment) and places it into the t_iobc variable in the TCP control block for the connection. The process reads this variable using the MSG_OOB flag with the recv system call: the PRU_RCVOOB request in Figure 30.8. Figure 29.19 shows the function.

Figure 29.19. tcp_pulloutofband function: place out-of-band byte into t_iobc.

	

--- tcp_input.c
1282 void
1283 tcp_pulloutofband(so, ti, m)
1284 struct socket *so;
1285 struct tcpiphdr *ti;
1286 struct mbuf *m;
1287 {
1288 int cnt = ti->ti_urp - 1;

1289 while (cnt >= 0) {
1290 if (m->m_len > cnt) {
1291 char *cp = mtod(m, caddr_t) + cnt;
1292 struct tcpcb *tp = sototcpcb(so);

1293 tp->t_iobc = *cp;
1294 tp->t_oobflags |= TCPOOB_HAVEDATA;
1295 bcopy(cp + 1, cp, (unsigned) (m->m_len - cnt - 1));
1296 m->m_len--;
1297 return;
1298 }
1299 cnt -= m->m_len;
1300 m = m->m_next;
1301 if (m == 0)
1302 break;
1303 }
1304 panic("tcp_pulloutofband");
1305 }
--- tcp_input.c

1282-1289

Consider the example in Figure 29.20. The urgent offset is 3, therefore the urgent pointer is 7, and the sequence number of the out-of-band byte is 6. There are 5 bytes in the received segment, all contained in a single mbuf.

Figure 29.20. Received segment with an out-of-band byte.

[image: Image]

The variable cnt is 2 and since m_len (which is 5) is greater than 2, the true portion of the if statement is executed.

1290-1298

cp points to the shaded byte with a sequence number of 6. This is placed into the variable t_iobc, which contains the out-of-band byte. The TCPOOB_HAVEDATA flag is set and bcopy moves the next 2 bytes (with sequence numbers 7 and 8) left 1 byte, giving the arrangement shown in Figure 29.21.

Figure 29.21. Result from Figure 29.20 after removal of out-of-band byte.

[image: Image]

Remember that the numbers 7 and 8 specify the sequence numbers of the data bytes, not the contents of the data bytes. The length of the mbuf is decremented from 5 to 4 but ti_len is left as 5, for sequencing of the segment into the socket’s receive buffer. Both the TCP_REASS macro and the tcp_reass function (which are called in the next section) increment rcv_nxt by ti_len, which in this example must be 5, because the next expected receive sequence number is 9. Also notice in this function that the length field in the packet header (m_pkthdr.len) in the first mbuf is not decremented by 1. This is because that length field is not used by sbappend, which appends the data to the socket’s receive buffer.

Skip to next mbuf in chain

1299-1302

The out-of-band byte is not contained in this mbuf, so cnt is decremented by the number of bytes in the mbuf and the next mbuf in the chain is processed. Since this function is called only when the urgent offset points into the received segment, if there is not another mbuf on the chain, the break causes the call to panic.

29.9. Processing of Received Data

tcp_input continues by taking the received data (if any) and either appending it to the socket’s receive buffer (if it is the next expected segment) or placing it onto the socket’s out-of-order queue. Figure 29.22 shows the code that performs this task.

Figure 29.22. tcp_input function: merge received data into sequencing queue for socket.

	

--- tcp_input.c
1094 dodata: /* XXX */
1095 /*
1096 * Process the segment text, merging it into the TCP sequencing queue,
1097 * and arranging for acknowledgment of receipt if necessary.
1098 * This process logically involves adjusting tp->rcv_wnd as data
1099 * is presented to the user (this happens in tcp_usrreq.c,
1100 * case PRU_RCVD). If a FIN has already been received on this
1101 * connection then we just ignore the text.
1102 */
1103 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1104 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1105 TCP_REASS(tp, ti, m, so, tiflags);
1106 /*
1107 * Note the amount of data that peer has sent into
1108 * our window, in order to estimate the sender's
1109 * buffer size.
1110 */
1111 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1112 } else {
1113 m_freem(m);
1114 tiflags &= ~TH_FIN;
1115 }
--- tcp_input.c

1094-1105

Segment data is processed if

1. the length of the received data is greater than 0 or the FIN flag is set, and

2. a FIN has not yet been received for the connection.

The macro TCP_REASS processes the data. If the data is in sequence (i.e., the next expected data for this connection), the delayed-ACK flag is set, rcv_nxt is incremented, and the data is appended to the socket’s receive buffer. If the data is out of order, the macro calls tcp_reass to add the data to the connection’s reassembly queue (which might fill a hole and cause already-queued data to be appended to the socket’s receive buffer).

Recall that the final argument to the macro (tiflags) can be modified. Specifically, if the data is out of order, tcp_reass sets tiflags to 0, clearing the FIN flag (if it was set). That’s why the if statement is true if the FIN flag is set even if there is no data in the segment.

Consider the following example. A connection is established and the sender immediately transmits three segments: one with bytes 1–1024, another with bytes 1025–2048, and another with the FIN flag but no data. The first segment is lost, so when the second arrives (bytes 1025–2048) the receiver places it onto the out-of-order list and generates an immediate ACK. When the third segment with the FIN flag is received, the code in Figure 29.22 is executed. Even though the data length is 0, since the FIN flag is set, TCP_REASS is invoked, which calls tcp_reass. Since ti_seq (2049, the sequence number of the FIN) does not equal rcv_nxt (1), tcp_reass returns 0 (Figure 27.23), which in the TCP_REASS macro sets tiflags to 0. This clears the FIN flag, preventing the code that follows (Section 29.10) from processing the FIN flag.

Guess size of other end’s send buffer

1106-1111

The calculation of len is attempt to guess the size of the other end’s send buffer. Consider the following example. A socket has a receive buffer size of 8192 (the Net/3 default), so TCP advertises a window of 8192 in its SYN. The first segment with bytes 1–1024 is then received. Figure 29.23 shows the state of the receive space after TCP_REASS has incremented rcv_nxt to account for the received segment.

Figure 29.23. Receipt of bytes 1–1024 into a 8192-byte receive window.

[image: Image]

The calculation of len yields 1024. The value of len will increase as the other end sends more data into the receive window, but it will never exceed the size of the other end’s send buffer. Recall that the variable max_sndwnd, calculated in Figure 29.15, is an attempt to guess the size of the other end’s receive buffer.

This variable len is never used! It is left over code from Net/1 when the variable max_rcvd was stored in the TCP control block after the calculation of len:

if (len > tp->max_rcvd)
 tp->max_rcvd = len;

But even in Net/1 the variable max_rcvd was never used.

1112-1115

If the length is 0 and the FIN flag is not set, or if a FIN has already been received for the connection, the received mbuf chain is discarded and the FIN flag is cleared.

29.10. FIN Processing

The next step in tcp_input, shown in Figure 29.24, handles the FIN flag.

Figure 29.24. tcp_input function: FIN processing, first half.

	

--- tcp_input.c
1116 /*
1117 * If FIN is received ACK the FIN and let the user know
1118 * that the connection is closing.
1119 */
1120 if (tiflags & TH_FIN) {
1121 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1122 socantrcvmore(so);
1123 tp->t_flags |= TF_ACKNOW;
1124 tp->rcv_nxt++;
1125 }
1126 switch (tp->t_state) {

1127 /*
1128 * In SYN_RECEIVED and ESTABLISHED states
1129 * enter the CLOSE_WAIT state.
1130 */
1131 case TCPS_SYN_RECEIVED:
1132 case TCPS_ESTABLISHED:
1133 tp->t_state = TCPS_CLOSE_WAIT;
1134 break;
--- tcp_input.c

Process first FIN received on connection

1116-1125

If the FIN flag is set and this is the first FIN received for this connection, socantrcvmore marks the socket as write-only, TF_ACKNOW is set to acknowledge the FIN immediately (i.e., it is not delayed), and rcv_nxt steps over the FIN in the sequence space.

1126

The remainder of FIN processing is handled by a switch that depends on the connection state. Notice that the FIN is not processed in the CLOSED, LISTEN, or SYN_SENT states, since in these three states a SYN has not been received to synchronize the received sequence number, making it impossible to validate the sequence number of the FIN. A FIN is also ignored in the CLOSING, CLOSE_WAIT, and LAST_ACK states, because in these three states the FIN is a duplicate.

SYN_RCVD or ESTABLISHED states

1127-1134

From either the ESTABLISHED or SYN_RCVD states, the CLOSE_WAIT state is entered.

The receipt of a FIN in the SYN_RCVD state is unusual, but legal. It is not shown in Figure 24.15. It means a socket is in the LISTEN state when a segment containing a SYN and a FIN is received. Alternatively, a SYN is received for a listening socket, moving the connection to the SYN_RCVD state but before the ACK is received a FIN is received. (We know the segment does not contain a valid ACK, because if it did the code in Figure 29.2 would have moved the connection to the ESTABLISHED state.)

The next part of FIN processing is shown in Figure 29.25

Figure 29.25. tcp_input function: FIN processing, second half.

	

--- tcp_input.c
1135 /*
1136 * If still in FIN_WAIT_1 state FIN has not been acked so
1137 * enter the CLOSING state.
1138 */
1139 case TCPS_FIN_WAIT_1:
1140 tp->t_state = TCPS_CLOSING;
1141 break;

1142 /*
1143 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1144 * starting the time-wait timer, turning off the other
1145 * standard timers.
1146 */
1147 case TCPS_FIN_WAIT_2:
1148 tp->t_state = TCPS_TIME_WAIT;
1149 tcp_canceltimers(tp);
1150 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1151 soisdisconnected(so);
1152 break;

1153 /*
1154 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1155 */
1156 case TCPS_TIME_WAIT:
1157 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1158 break;
1159 }
1160 }
--- tcp_input.c

FIN_WAIT_1 state

1135-1141

Since ACK processing is already complete for this segment, if the connection is in the FIN_WAIT_1 state when the FIN is processed, it means a simultaneous close is taking place—the two FINs from each end have passed in the network. The connection enters the CLOSING state.

FIN_WAIT_2 state

1142-1148

The receipt of the FIN moves the connection into the TIME_WAIT state. When a segment containing a FIN and an ACK is received in the FIN_WAIT_1 state (the typical scenario), although Figure 24.15 shows the transition directly from the FIN_WAIT_1 state to the TIME_WAIT state, the ACK is processed in Figure 29.11, moving the connection to the FIN_WAIT_2 state. The FIN processing here moves the connection into the TIME_WAIT state. Because the ACK is processed before the FIN, the FIN_WAIT_2 state is always passed through, albeit momentarily.

Start TIME_WAIT timer

1149-1152

Any pending TCP timer is turned off and the TIME_WAIT timer is started with a value of twice the MSL. (If the received segment contained a FIN and an ACK, Figure 29.11 started the FIN_WAIT_2 timer.) The socket is disconnected.

TIME_WAIT state

1153-1159

If a FIN arrives in the TIME_WAIT state, it is a duplicate, and similar to Figure 29.14, the TIME_WAIT timer is restarted with a value of twice the MSL.

29.11. Final Processing

The final part of the slow path through tcp_input along with the label dropafterack is shown in Figure 29.26.

Figure 29.26. tcp_input function: final processing.

	

--- tcp_input.c
1161 if (so->so_options & SO_DEBUG)
1162 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);

1163 /*
1164 * Return any desired output.
1165 */
1166 if (needoutput || (tp->t_flags & TF_ACKNOW))
1167 (void) tcp_output(tp);
1168 return;

1169 dropafterack:
1170 /*
1171 * Generate an ACK dropping incoming segment if it occupies
1172 * sequence space, where the ACK reflects our state.
1173 */
1174 if (tiflags & TH_RST)
1175 goto drop;
1176 m_freem(m);
1177 tp->t_flags |= TF_ACKNOW;
1178 (void) tcp_output(tp);
1179 return;
--- tcp_input.c

SO_DEBUG socket option

1161-1162

If the SO_DEBUG socket option is enabled, tcp_trace appends the trace record to the kernel’s circular buffer. Remember that the code in Figure 28.7 saved both the original connection state and the IP and TCP headers, since these values may have changed in this function.

Call tcp_output

1163-1168

If either the needoutput flag was set (Figures 29.6 and 29.15) or if an immediate ACK is required, tcp_output is called.

dropafterack

1169-1179

An ACK is generated only if the RST flag was not set. (A segment with an RST is never ACKed.) The mbuf chain containing the received segment is released, and tcp_output generates an immediate ACK.

Figure 29.27 completes the tcp_input function.

Figure 29.27. tcp_input function: final processing.

	

--- tcp_input.c
1180 dropwithreset:
1181 /*
1182 * Generate an RST, dropping incoming segment.
1183 * Make ACK acceptable to originator of segment.
1184 * Don't bother to respond if destination was broadcast/multicast.
1185 */
1186 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST) ||
1187 IN_MULTICAST(ti->ti_dst.s_addr))
1188 goto drop;
1189 if (tiflags & TH_ACK)
1190 tcp_respond(tp, ti, m, (tcp_seq) 0, ti->ti_ack, TH_RST);
1191 else {
1192 if (tiflags & TH_SYN)
1193 ti->ti_len++;
1194 tcp_respond(tp, ti, m, ti->ti_seq + ti->ti_len, (tcp_seq) 0,
1195 TH_RST | TH_ACK);
1196 }
1197 /* destroy temporarily created socket */
1198 if (dropsocket)
1199 (void) soabort(so);
1200 return;

1201 drop:
1202 /*
1203 * Drop space held by incoming segment and return.
1204 */
1205 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1206 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1207 m_freem(m);
1208 /* destroy temporarily created socket */
1209 if (dropsocket)
1210 (void) soabort(so);
1211 return;
1212 }
--- tcp_input.c

dropwithreset

1180-1188

An RST is generated unless the received segment also contained an RST, or the received segment was sent as a broadcast or multicast. An RST is never generated in response to an RST, since this could lead to RST storms (a continual exchange of RST segments between two end points).

This code contains the same error that we noted in Figure 28.16: it does not check whether the destination address of the received segment was a broadcast address.

Similarly, the destination address argument to IN_MULTICAST needs to be converted to host byte order.

Sequence number and acknowledgment number of RST segment

1189-1196

The values of the sequence number field, the acknowledgment field, and the ACK flag of the RST segment depend on whether the received segment contained an ACK.

Figure 29.28 summarizes these fields in the RST segment that is generated.

Figure 29.28. Values of fields in RST segment generated.

[image: Image]

Realize that the ACK flag is normally set in all segments except when an initial SYN is sent (Figure 24.16). The fourth argument to tcp_respond is the acknowledgment field, and the fifth argument is the sequence number.

Rejecting connections

1192-1193

If the SYN flag is set, ti_len must be incremented by 1, causing the acknowledgment field of the RST to be 1 greater than the received sequence number of the SYN. This code is executed when a SYN arrives for a nonexistent server. When the Internet PCB is not found in Figure 28.6, a jump is made to dropwithreset. But for the received RST to be acceptable to the other end, the acknowledgment field must ACK the SYN (Figure 28.18). Figure 18.14 of Volume 1 contains an example of this type of RST segment.

Finally note that tcp_respond builds the RST in the first mbuf of the received chain and releases any remaining mbufs in the chain. When that mbuf finally makes its way to the device driver, it will be discarded.

Destroy temporarily created socket

1197-1199

If a temporary socket was created in Figure 28.7 for a listening server, but the code in Figure 28.16 found the received segment to contain an error, dropsocket will be 1. If so, that socket is now destroyed.

Drop (without ACK or RST)

1201-1206

tcp_trace is called when a segment is dropped without generating an ACK or an RST. If the SO_DEBUG flag is set and an ACK is generated, tcp_output generates a trace record. If the SO_DEBUG flag is set and an RST is generated, a trace record is not generated for the RST.

1207-1211

The mbuf chain containing the received segment is released and the temporary socket is destroyed if dropsocket is nonzero.

29.12. Implementation Refinements

The refinements to speed up TCP processing are similar to the ones described for UDP (Section 23.12). Multiple passes over the data should be avoided and the checksum computation should be combined with a copy. [Dalton et al. 1993] describe these modifications.

The linear search of the TCP PCBs is also a bottleneck when the number of connections increases. [McKenney and Dove 1992] address this problem by replacing the linear search with hash tables.

[Partridge 1993] describes a research implementation being developed by Van Jacobson that greatly reduces the TCP input processing. The received packet is processed by IP (about 25 instructions on a RISC system), then by a demultiplexer to locate the PCB (about 10 instructions), and then by TCP (about 30 instructions). These 30 instructions perform header prediction and calculate the pseudo-header checksum. If the segment passes the header prediction test, contains data, and the process is waiting for the data, the data is copied into the process buffer and the remainder of the TCP checksum is calculated and verified (a one-pass copy and checksum). If the TCP header prediction fails, the slow path through the TCP input processing occurs.

29.13. Header Compression

We now describe TCP header compression. Although header compression is not part of TCP input, we needed to cover TCP thoroughly before describing header compression. Header compression is described in detail in RFC 1144 [Jacobson 1990a]. It was designed by Van Jacobson and is sometimes called VJ header compression. Our purpose in this section is not to go through the header compression source code (a well-commented version of which is presented in RFC 1144, and which is approximately the same size as tcp_output), but to provide an overview of the algorithm. Be sure to distinguish between header prediction (Section 28.4) and header compression.

Introduction

Most implementations of SLIP and PPP support header compression. Although header compression could, in theory, be used with any data link, it is intended for slow-speed serial links. Header compression works with TCP segments only—it does nothing with other IP datagrams (e.g., ICMP, IGMP, UDP, etc.). Header compression reduces the size of the combined IP/TCP header from its normal 40 bytes to as few as 3 bytes. This reduces the size of a typical TCP segment from an interactive application such as Rlogin or Telnet from 41 bytes to 4 bytes—a big saving on a slowspeed serial link.

Each end of the serial link maintains two connection state tables, one for datagrams sent and one for datagrams received. Each table allows a maximum of 256 entries, but typically there are 16 entries in this table, allowing up to 16 different TCP connections to be compressed at any time. Each entry contains an 8-bit connection ID (hence the limit of 256), some flags, and the complete uncompressed IP/TCP header from the most recent datagram. The 96-bit socket pair that uniquely identifies each connection—the source and destination IP addresses and source and destination TCP ports—are contained in this uncompressed header. Figure 29.29 shows an example of these tables.

Figure 29.29. A pair of connection state tables at each end of a link (e.g., SLIP link).

[image: Image]

Since a TCP connection is full duplex, header compression can be applied in both directions. Each end must implement both compression and decompression. A connection appears in both tables, as shown in Figure 29.29. In this example, the entry with a connection ID of 1 in the top two tables has a source IP address of 128.1.2.3, source TCP port of 1500, destination IP address of 192.3.4.5, and a destination TCP port of 25. The entry with a connection ID of 2 in the bottom two tables is for the other direction of the same connection.

We show these tables as arrays, but the source code defines each entry as a structure, and a connection table is a circular linked list of these structures. The most recently used structure is stored at the head of the list.

By saving the most recent uncompressed header at each end, only the differences in various header fields from the previous datagram to the current datagram are transmitted across the link (along with a special first byte indicating which fields follow). Since some header fields don’t change at all from one datagram to the next, and other header fields change by small amounts, this differential coding provides the savings. Header compression works with the IP and TCP headers only—the data contents of the TCP segment are not modified.

Figure 29.30 shows the steps involved at the sending side when it has an IP datagram to send across a link using header compression.

Figure 29.30. Steps involved in header compression at sender side.

[image: Image]

Three different types of datagrams are sent and must be recognized at the receiver:

1. Type IP is specified with the high-order 4 bits of the first byte equal to 4. This is the normal IP version number in the IP header (Figure 8.8). The normal, uncompressed datagram is transmitted across the link.

2. Type COMPRESSED_TCP is specified by setting the high-order bit of the first byte. This looks like an IP version between 8 and 15 (i.e., the remaining 7 bits of this byte are used by the compression algorithm). The compressed header and uncompressed data are transmitted across the link, as we describe later in this section.

3. Type UNCOMPRESSED_TCP is specified with the high-order 4 bits of the first byte equal to 7. The normal, uncompressed datagram is transmitted across the link, but the IP protocol field (which equals 6 for TCP), is replaced with the connection ID. This identifies the connection state table entry for the receiver.

The receiver can identify the datagram type by examining its first byte. The code that does this was shown in Figure 5.13. In Figure 5.16 the sender calls sl_compress_tcp to check if a TCP segment is compressible, and the return value of this function is logically ORed into the first byte of the datagram.

Figure 29.31 shows an illustration of the first byte that is sent across the link.

Figure 29.31. First byte transmitted across link.

[image: Image]

The 4 bits shown as “-” comprise the normal IP header length field. The 7 bits shown as C, I, P, S, A, W, and U indicate which optional fields follow. We describe these fields shortly.

Figure 29.32 shows the complete IP datagram for the various datagrams that are sent.

Figure 29.32. Different types of IP datagrams possible with header compression.

[image: Image]

We show two datagrams with a type of IP: one that is not a TCP segment (e.g., a protocol of UDP, ICMP, or IGMP), and one that is a TCP segment. This is to illustrate the differences between the TCP segment sent as type IP and the TCP segment sent as type UNCOMPRESSED_TCP: the first 4 bits are different as is the protocol field in the IP header.

Datagrams are not candidates for header compression if the protocol is not TCP, or if the protocol is TCP but any one of the following conditions is true.

[image: Image] The datagram is an IP fragment: either the fragment offset is nonzero or the more-fragments bit is set.

[image: Image] Any one of the SYN, FIN, or RST flags is set.

[image: Image] The ACK flag is not set.

If any one of these three conditions is true, the datagram is sent as type IP.

Furthermore, even if the datagram is a TCP segment that looks compressible, it is possible to abort the compression and send the datagram as type UNCOMPRESSED_TCP if certain fields have changed between the current datagram and the last datagram sent for this connection. These are fields that normally do not change for a given connection, so the compression scheme was not designed to encode their differences from one datagram to the next. The TOS field and the don’t fragment bit are examples. Also, when the differences in some fields are greater than 65535, the compression algorithm fails and the datagram is sent uncompressed.

Compression of Header Fields

We now describe how the fields in the IP and TCP headers, shown in Figure 29.33, are compressed. The shaded fields normally don’t change during a connection.

Figure 29.33. Combined IP and TCP headers: shaded fields normally don’t change.

[image: Image]

If any of the shaded fields have changed from the previous segment on this connection to the current segment, the segment is sent uncompressed. We don’t show IP options or TCP options in this figure, but if either are present and have changed from the previous segment, the segment is sent uncompressed (Exercise 29.7).

If the algorithm transmitted only the nonshaded fields when the shaded fields do not change from the previous segment, about a 50% savings would result. VJ header compression does even better than this, by knowing which fields in the IP and TCP headers normally don’t change. Figure 29.34 shows the format of the compressed IP/TCP header.

Figure 29.34. Format of compressed IP/TCP header.

[image: Image]

The smallest compressed header consists of 3 bytes: the first byte (the flag bits) followed by the 16-bit TCP checksum. For protection against possible link errors, the TCP checksum is always transmitted without any change. (SLIP provides no link-layer checksum, although PPP does provide one.)

The other six fields, connid, urgoff, Δwin, Δack, Δseq, and Δ ipid, are optional. We show the number of bytes used to encode all the fields to the left of the field in Figure 29.34. The largest compressed header appears to be 19 bytes, but we’ll see shortly that the 4 bits SAWU can never be set at the same time in a compressed header, so the largest size is actually 16 bytes.

Six of the 7 bits in the first byte specify which of the six optional fields are present. The high-order bit of the first byte is always set to 1. This identifies the datagram type as COMPRESSED_TCP. Figure 29.35 summarizes the 7 bits, which we now describe.

Figure 29.35. The 7 bits in the compressed header.

[image: Image]

C If this bit is 0, this segment has the same connection ID as the previous compressed or uncompressed segment. If this flag is 1, connid is the connection ID, a value between 0 and 255.

I If this bit is 0, the IP identification field has increased by 1 (the typical case). If this bit is 1, Δipid is the current value of ip_id minus its previous value.

P This bit is a copy of the PSH flag from the TCP segment. Since the PSH flag doesn’t follow any established pattern, it must be explicitly specified for each segment.

S If this bit is 0, the TCP sequence number has not changed. If this bit is 1, Δseq is the current value of th_seq minus its previous value.

A If this bit is 0, the TCP acknowledgment number has not changed (the typical case). If this bit is 1, Δack is the current value of th_ack minus its previous value.

W If this bit is 0, the TCP window has not changed (the typical case). If this bit is 1, Δwin is the current value of th_win minus its previous value.

U If this bit is 0, the URG flag in the segment is not set and the urgent offset has not changed from its previous value (the typical case). If this bit is 1, urgoff is the current value of th_urg and the URG flag is set. If the urgent offset changes without the URG flag being set, the segment is sent uncompressed. (This often occurs in the first segment following urgent data.)

The differences are encoded as the current value minus the previous value, because most of these differences will be small positive numbers (with Δwin being an exception) given the way these fields normally change.

We note that five of the optional fields in Figure 29.34 are encoded in 0, 1, or 3 bytes.

	
0 bytes:

	
If the corresponding flag is not set, nothing is encoded for the field.

	
1 byte:

	
If the value to send is between 1 and 255, a single byte encodes the value.

	
3 bytes:

	
If the value to send is either 0 or between 256 and 65535, 3 bytes encode the value: the first byte is 0, followed by the 2-byte value. This always works for the three 16-bit values, urgoff, Δwin, and Δipid; but if the difference to encode for the two 32-bit values, Δack and Δseq, is less than 0 or greater than 65535, the segment is sent uncompressed.

If we compare the nonshaded fields in Figure 29.33 with the possible fields in Figure 29.34 we notice that some fields are never transmitted.

[image: Image] The IP total length field is not transmitted since most link layers provide the length of a received message to the receiver.

[image: Image] Since the only field in the IP header that is being transmitted is the identification field, the IP checksum is also omitted. This is a hop-by-hop checksum that protects only the IP header across any given link.

Special Cases

Two common cases are detected and transmitted as special combinations of the 4 low-order bits: SAWU. Since urgent data is rare, if the URG flag in the segment is set and both the sequence number and window also change (implying that the 4 low-order bits would be 1011 or 1111), the segment is sent uncompressed. Therefore if the 4 low-order bits are sent as 1011 (called *SA) or 1111 (called *S), the following two special cases apply:

	
*SA

	
The sequence number and acknowledgment number both increase by the amount of data in the last segment, the window and urgent offset don’t change, and the URG flag is not set. This special case avoids encoding both Δseq and Δack.

This case occurs frequently for both directions of echoed terminal traffic. Figures 19.3 and 19.4 of Volume 1 give examples of this type of data flow across an Rlogin connection.

	
*S

	
The sequence number changes by the amount of data in the last segment, the acknowledgment number, window, and urgent offset don’t change, and the URG flag is not set. This special case avoids encoding Δseq.

This case occurs frequently for the sending side of a unidirectional data transfer (e.g., FTP). Figures 20.1, 20.2, and 20.3 of Volume 1 give examples of this type of data transfer. This case also occurs for the sender of nonechoed terminal traffic (e.g., commands that are not echoed by a full-screen editor).

Examples

Two simple examples were run across the SLIP link between the systems bsdi and slip in Figure 1.17. This SLIP link uses header compression in both directions. The tcpdump program described in Appendix A of Volume 1 was also run on the host bsdi to save a copy of all the frames. This program has an option that outputs the compressed header, showing all the fields in Figure 29.34.

Two traces were obtained: a short portion of an Rlogin connection and a file transfer from bsdi to slip using FTP. Figure 29.36 shows a summary of the different frame types for both connections.

Figure 29.36. Counts of different frame types for Rlogin and FTP connections.

[image: Image]

The two entries of 75 verify our claim that this special case often occurs for both directions of echoed terminal traffic. The entry of 325 verifies our claim that this special case occurs frequently for the sending side of a unidirectional data transfer.

The 10 frames of type IP for the FTP example correspond to four segments with the SYN flag set and six segments with the FIN flag set. FTP uses two connections: one for the interactive commands and one for the file transfer.

The UNCOMPRESSED_TCP frame types normally correspond to the first segment following connection establishment, the one that establishes the connection ID. An additional few are seen in these examples when the type of service is set (the Net/3 Rlogin and FTP clients and servers all set the TOS field after the connection is established).

Figure 29.37 shows the distribution of the compressed-header sizes. The average size of the compressed header for the final four columns in Figure 29.37 is 3.1, 4.1, 6.0, and 3.3 bytes, a significant savings compared to the uncompressed 40-byte headers, especially for the interactive connection.

Figure 29.37. Distribution of compressed-header sizes.

[image: Image]

Almost all of the 325 6-byte headers in the FTP input column contain only a Δack of 256, which being greater than 255 is encoded in 3 bytes. The SLIP MTU is 296, so TCP uses an MSS of 256. Almost all of the 250 3-byte headers in the FTP output column contain the *S special case (sequence number change only) with a change of 256 bytes. But since this change refers to the amount of data in the previous segment, nothing is transmitted other than the flag byte and the TCP checksum. The 78 4-byte headers in the FTP output column are this same special case, but with a change in the IP identification field also (Exercise 29.8).

Configuration

Header compression must be enabled on a given SLIP or PPP link. With a SLIP link there are normally two flags that can be set when the interface is configured: enable header compression and autoenable header compression. These two flags are set using the link0 and link2 flags to the ifconfig command, respectively. Normally a client (the dialin host) decides whether to use header compression or not. The server (the host or terminal server to which the client dials in) specifies the autoenable flag only. If header compression is enabled by the client, its TCP will send a datagram of type UNCOMPRESSED_TCP to specify the connection ID. When the server sees this packet it enables header compression (since it was in the autoenable mode). If the server never sees this type of packet, it never enables header compression for this line.

PPP allows the negotiation of options between the two ends of the link when the link is established. One of the options that can be negotiated is whether to use header compression or not.

29.14. Summary

This chapter completes our detailed look at TCP input processing. We started with the processing of an ACK in the SYN_RCVD state, which completes a passive open, a simultaneous open, or a self-connect.

The fast retransmit algorithm lets TCP detect a dropped segment after receiving a specified number of consecutive duplicate ACKs and retransmit the segment before the retransmission timer expires. Net/3 combines the fast retransmit algorithm with the fast recovery algorithm, which tries to keep the data flowing from the sender to the receiver, albeit at a slower rate, using congestion avoidance but not slow start.

ACK processing then discards the acknowledged data from the socket’s send buffer and handles a few TCP states specially, when the receipt of an ACK changes the connection state.

The URG flag is processed, if set, and TCP’s urgent mode is mapped into the socket abstraction of out-of-band data. This is complicated because the process can receive the out-of-band byte inline or in a special out-of-band buffer, and TCP can receive urgent notification before the data byte referenced by the urgent pointer has been received.

TCP input processing completes by calling TCP_REASS to merge the received data into either the socket’s receive buffer or the socket’s out-of-order queue, processing the FIN flag, and calling tcp_output if a segment must be generated in response to the received segment.

TCP header compression is a technique used on SLIP and PPP links to reduce the size of the IP and TCP headers from the normal 40 bytes to around 3-6 bytes (typically). This is done by recognizing that most fields in these headers don’t change from one segment to the next on a given connection, and the fields that do change often change by a small amount. This allows a flag byte to be sent indicating which fields have changed, and the changes are encoded as differences from the previous segment.

Exercises

29.1 A client connects to a server and no segments are lost. Which process, the client or server, completes its open of the connection first?

29.2 A Net/3 system receives a SYN for a listening socket and the SYN segment also contains 50 bytes of data. What happens?

29.3 Continue the previous exercise assuming that the client does not retransmit the 50 bytes of data; instead the client responds with a segment that acknowledges the server’s SYN/ACK and contains a FIN. What happens?

29.4 A Net/3 client performs a passive open to a listening server. The server’s response to the client’s SYN is a segment with the expected SYN/ACK, but the segment also contains 50 bytes of data and the FIN flag. List the processing steps for the client’s TCP.

29.5 Figure 18.19 in Volume 1 and Figure 14 in RFC 793 both show four segments exchanged during a simultaneous close. But if we trace a simultaneous close between two Net/3 systems, or if we watch the close sequence following a self-connect on a Net/3 system, we see six segments, not four. The extra two segments are a retransmission of the FIN by each end when the other’s FIN is received. Where is the bug and what is the fix?

29.6 Page 72 of RFC 793 says that when data in the send buffer is acknowledged by the other end “Users should receive positive acknowledgments for buffers which have been sent and fully acknowledged (i.e., send buffer should be returned with ‘ok’ response).” Does Net/3 provide this notification?

29.7 What effect do the options defined in RFC 1323 have on TCP header compression?

29.8 What effect does the Net/3 assignment of the IP identification field have on TCP header compression?

Chapter 30. TCP User Requests

30.1. Introduction

This chapter looks at the TCP user-request function tcp_usrreq, which is called as the protocol’s pr_usrreq function to handle many of the system calls that reference a TCP socket. We also look at tcp_ctloutput, which is called when the process calls setsockopt for a TCP socket.

30.2. tcp_usrreq Function

TCP’s user-request function is called for a variety of operations. Figure 30.1 shows the beginning and end of tcp_usrreq. The body of the switch is shown in following figures. The function arguments, some of which differ depending on the request, are described in Figure 15.17.

Figure 30.1. Body of tcp_usrreq function.

[image: Image]

in_control processes ioctl requests

45-58

The PRU_CONTROL request is from the ioctl system call. The function in_control processes the request completely.

Control information is invalid

59-64

A call to sendmsg specifying control information is invalid for a TCP socket. If this happens, the mbufs are released and EINVAL is returned.

65-66

This remainder of the function executes at splnet. This is overly conservative locking to avoid sprinkling the individual case statements with calls to splnet when the calls are really necessary. As we mentioned with Figure 23.15, setting the processor priority to splnet only stops a software interrupt from causing the IP input routine to be executed (which could call tcp_input). It does not prevent the interface layer from accepting incoming packets and placing them onto IP’s input queue.

The pointer to the Internet PCB is obtained from the socket structure pointer. The only time the resulting PCB pointer is allowed to be a null pointer is when the PRU_ATTACH request is issued, which occurs in response to the socket system call.

67-81

If inp is nonnull, the current connection state is saved in ostate for the call to tcp_trace at the end of the function.

We now discuss the individual case statements. The PRU_ATTACH request, shown in Figure 30.2, is issued by the socket system call and by sonewconn when a connection request arrives for a listening socket (Figure 28.7).

Figure 30.2. tcp_usrreq function: PRU_ATTACH and PRU_DETACH requests.

	

--- tcp_usrreq.c
 83 /*
 84 * TCP attaches to socket via PRU_ATTACH, reserving space,
 85 * and an internet control block.
 86 */
 87 case PRU_ATTACH:
 88 if (inp) {
 89 error = EISCONN;
 90 break;
 91 }
 92 error = tcp_attach(so);
 93 if (error)
 94 break;
 95 if ((so->so_options & SO_LINGER) && so->so_linger == 0)
 96 so->so_linger = TCP_LINGERTIME;
 97 tp = sototcpcb(so);
 98 break;

 99 /*
100 * PRU_DETACH detaches the TCP protocol from the socket.
101 * If the protocol state is non-embryonic, then can't
102 * do this directly: have to initiate a PRU_DISCONNECT,
103 * which may finish later; embryonic TCB's can just
104 * be discarded here.
105 */
106 case PRU_DETACH:
107 if (tp->t_state > TCPS_LISTEN)
108 tp = tcp_disconnect(tp);
109 else
110 tp = tcp_close(tp);
111 break;
--- tcp_usrreq.c

PRU_ATTACH request

83-94

If the socket structure already points to a PCB, EISCONN is returned. tcp_attach completes the processing: it allocates and initializes the Internet PCB and the TCP control block.

95-96

If the SO_LINGER socket option is set, and the linger time is 0, it is set to 120 (TCP_LINGERTIME).

How can a socket option be set before the PRU_ATTACH request is issued? It is impossible to set a socket option before calling socket, but sonewconn also issues the PRU_ATTACH request. The PRU_ATTACH request is issued after sonewconn copies the so_options from the listening socket to the newly created socket. This code prevents a newly accepted connection from inheriting a linger time of 0 from the listening socket.

There is a bug here. The constant TCP_LINGERTIME is initialized to 120 in the header tcp_timer.h with the comment “linger at most 2 minutes.” But the so_linger value becomes the final argument to the kernel’s tsleep function (called from soclose), which becomes the final argument to the kernel’s timeout function and is in clock ticks, not seconds. If the system’s clock-tick frequency (hz) is 100, this value for the linger time is 1.2 seconds, not 2 minutes.

97

tp is now set to the pointer to the socket’s TCP control block. This is required at the end, in case the SO_DEBUG socket option is set.

PRU_DETACH request

99-111

The close system call issues the PRU_DETACH request if the PRU_DISCONNECT request fails. If the connection has not been completed (the connection state is less than ESTABLISHED), nothing needs to be sent to the other end. But if the connection has been established, tcp_disconnect initiates TCP’s connection-close sequence (e.g., any pending data is sent, followed by a FIN).

The test for the state being greater than LISTEN is incorrect, because if the state is SYN_SENT or SYN_RCVD, both of which are greater than LISTEN, tcp_disconnect just calls tcp_close. This case could be simplified by just calling tcp_disconnect.

Figure 30.3 shows the processing for the bind and listen system calls.

Figure 30.3. tcp_usrreq function: PRU_BIND and PRU_LISTEN requests.

	

--- tcp_usrreq.c
112 /*
113 * Give the socket an address.
114 */
115 case PRU_BIND:
116 error = in_pcbbind(inp, nam);
117 if (error)
118 break;
119 break;

120 /*
121 * Prepare to accept connections.
122 */
123 case PRU_LISTEN:
124 if (inp->inp_lport == 0)
125 error = in_pcbbind(inp, (struct mbuf *) 0);
126 if (error == 0)
127 tp->t_state = TCPS_LISTEN;
128 break;
--- tcp_usrreq.c

112-119

All the work for a PRU_BIND request is done by in_pcbbind.

120-128

For the PRU_LISTEN request, if the socket has not been bound with a local port, in_pcbbind assigns one automatically. This is rare, since most servers explicitly bind their well-known port, although RPC (remote procedure call) servers typically bind an ephemeral port and then register the port with the Port Mapper. (Section 29.4 of Volume 1 describes the Port Mapper.) The connection state is set to LISTEN. This is the main purpose of listen: to set the socket’s state so that incoming connections are accepted (i.e., a passive open).

Figure 30.4 shows the processing for the connect system call: an active open normally initiated by a client.

Figure 30.4. tcp_usrreq function: PRU_CONNECT request.

	

--- tcp_usrreq.c
129 /*
130 * Initiate connection to peer.
131 * Create a template for use in transmissions on this connection.
132 * Enter SYN_SENT state, and mark socket as connecting.
133 * Start keepalive timer, and seed output sequence space.
134 * Send initial segment on connection.
135 */
136 case PRU_CONNECT:
137 if (inp->inp_lport == 0) {
138 error = in_pcbbind(inp, (struct mbuf *) 0);
139 if (error)
140 break;
141 }
142 error = in_pcbconnect(inp, nam);
143 if (error)
144 break;

145 tp->t_template = tcp_template(tp);
146 if (tp->t_template == 0) {
147 in_pcbdisconnect(inp);
148 error = ENOBUFS;
149 break;
150 }
151 /* Compute window scaling to request. */
152 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
153 (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.sb_hiwat)
154 tp->request_r_scale++;
155 soisconnecting(so);
156 tcpstat.tcps_connattempt++;
157 tp->t_state = TCPS_SYN_SENT;
158 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;

159 tp->iss = tcp_iss;
160 tcp_iss += TCP_ISSINCR / 2;
161 tcp_sendseqinit(tp);

162 error = tcp_output(tp);
163 break;
--- tcp_usrreq.c

Assign ephemeral port

129-141

If the socket has not been bound with a local port, in_pcbbind assigns one automatically. This is typical for clients, which normally don’t care about the value of the local port.

Connect PCB

142-144

in_pcbconnect acquires a route to the destination, determines the outgoing interface, and verifies that the socket pair is unique.

Initialize IP and TCP headers

145-150

tcp_template allocates an mbuf for a copy of the IP and TCP headers, and it initializes both headers with as much information as possible. The only way for this function to fail is for the kernel to run out of mbufs.

Calculate window scale factor

151-154

The window scale value for the receive buffer is calculated: 65535 (TCP_MAXWIN) is left shifted until the value is greater than or equal to the size of the receive buffer (so_rcv.sb_hiwat). The resulting shift count (between 0 and 14) is the scale factor that will be sent in the SYN. (We saw identical code in Figure 28.7 that was executed for a passive open.) Since the window scale option is sent in the SYN resulting from a connect, the process must set the SO_RCVBUF socket option before calling connect, or the default buffer size is used (tcp_recvspace from Figure 24.3).

Set socket and connection state

155-158

soisconnecting sets the appropriate bits in the socket’s state variable, and the state of the TCP connection is set to SYN_SENT. This causes the call to tcp_output that follows to send the SYN (see the tcp_outflags value in Figure 24.16). The connection-establishment timer is initialized to 75 seconds. tcp_output will also set the retransmission timer for the SYN, as shown in Figure 25.15.

Initialize sequence numbers

159-161

The initial send sequence number is copied from the global tcp_iss. This global is then incremented by 64,000 (TCP_ISSINCR divided by 2). We saw this same handling of tcp_iss when the ISS was initialized after a listening server received a SYN (Figure 28.17). The send sequence numbers are then initialized by tcp_sendseqinit.

Send initial SYN

162

tcp_output sends the initial SYN to initiate the connection. A local error (for example, out of mbufs or no route to destination) is returned by tcp_output, which becomes the return value from tcp_usrreq, which is returned to the process.

Figure 30.5 shows the processing for the PRU_CONNECT2, PRU_DISCONNECT, and PRU_ACCEPT requests.

Figure 30.5. tcp_usrreq function: PRU_CONNECT2, PRU_DISCONNECT, and PRU_ACCEPT requests.

	

-- tcp_usrreq.c
164 /*
165 * Create a TCP connection between two sockets.
166 */
167 case PRU_CONNECT2:
168 error = EOPNOTSUPP;
169 break;

170 /*
171 * Initiate disconnect from peer.
172 * If connection never passed embryonic stage, just drop;
173 * else if don't need to let data drain, then can just drop anyway,
174 * else have to begin TCP shutdown process: mark socket disconnecting,
175 * drain unread data, state switch to reflect user close, and
176 * send segment (e.g. FIN) to peer. Socket will be really disconnected
177 * when peer sends FIN and acks ours.
178 *
179 * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB.
180 */
181 case PRU_DISCONNECT:
182 tp = tcp_disconnect(tp);
183 break;

184 /*
185 * Accept a connection. Essentially all the work is
186 * done at higher levels; just return the address
187 * of the peer, storing through addr.
188 */
189 case PRU_ACCEPT:
190 in_setpeeraddr(inp, nam);
191 break;
-- tcp_usrreq.c

164-169

The PRU_CONNECT2 request, a result of the socketpair system call, is invalid for the TCP protocol.

170-183

The close system call issues the PRU_DISCONNECT request. If the connection has been established, a FIN must be sent and the normal TCP close sequence followed. This is done by tcp_disconnect.

The comment beginning with “SHOULD IMPLEMENT” refers to the fact that a socket that encounters an error cannot be reused. For example, if a client issues a connect and receives an error, it cannot issue another connect on the same socket. Instead, the socket with the error must be closed, a new socket created with socket, and the connect issued on the new socket.

184-191

All the work associated with the accept system call is done by the socket layer and the protocol layer. The PRU_ACCEPT request just returns the IP address and port number of the peer to the process.

The PRU_SHUTDOWN, PRU_RCVD, and PRU_SEND requests are processed in Figure 30.6.

Figure 30.6. tcp_usrreq function: PRU_SHUTDOWN, PRU_RCVD, and PRU_SEND requests.

	

--- tcp_usrreq.c
192 /*
193 * Mark the connection as being incapable of further output.
194 */
195 case PRU_SHUTDOWN:
196 socantsendmore(so);
197 tp = tcp_usrclosed(tp);
198 if (tp)
199 error = tcp_output(tp);
200 break;

201 /*
202 * After a receive, possibly send window update to peer.
203 */
204 case PRU_RCVD:
205 (void) tcp_output(tp);
206 break;

207 /*
208 * Do a send by putting data in output queue and updating urgent
209 * marker if URG set. Possibly send more data.
210 */
211 case PRU_SEND:
212 sbappend(&so->so_snd, m);
213 error = tcp_output(tp);
214 break;
--- tcp_usrreq.c

PRU_SHUTDOWN request

192-200

This request is issued by soshutdown when the process calls shutdown to prevent any further output. socantsendmore sets the socket’s flags to prevent any future output. tcp_usrclosed sets the connection state according to Figure 24.15. tcp_output attempts to send the FIN, but if there is still pending data to send to the other end, that data is sent before the FIN is sent.

PRU_RCVD request

201-206

This request is issued by soreceive after the process has read data from the socket’s receive buffer. TCP needs to know about this since the receive buffer may now have enough room to allow the advertised window to increase. tcp_output will determine whether a window update segment should be sent.

PRU_SEND request

207-214

In Figure 23.14 we showed how the five write functions ended up issuing this request. sbappend adds the data to the socket’s send buffer (where it must wait until acknowledged by the other end), and tcp_output sends a segment, if possible.

Figure 30.7 shows the processing of the PRU_ABORT and PRU_SENSE requests.

Figure 30.7. tcp_usrreq function: PRU_ABORT and PRU_SENSE requests.

	

--- tcp_usrreq.c
215 /*
216 * Abort the TCP.
217 */
218 case PRU_ABORT:
219 tp = tcp_drop(tp, ECONNABORTED);
220 break;

221 case PRU_SENSE:
222 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
223 (void) splx(s);
224 return (0);
--- tcp_usrreq.c

PRU_ABORT request

215-220

A PRU_ABORT request is issued for a TCP socket by soclose if the socket is a listening socket (e.g., a server) and if there are pending connections for the server that have already initiated or completed the three-way handshake, but have not been accepted by the server yet. tcp_drop sends an RST if the connection is synchronized.

PRU_SENSE request

221-224

The fstat system call generates the PRU_SENSE request. TCP returns the size of the send buffer as the st_blksize element of the stat structure.

Figure 30.8 shows the PRU_RCVOOB request, issued by soreceive when the process issues a read system call specifying the MSG_OOB flag to read out-of-band data.

Figure 30.8. tcp_usrreq function: PRU_RCVOOB request.

	

--- tcp_usrreq.c
225 case PRU_RCVOOB:
226 if ((so->so_oobmark == 0 &&
227 (so->so_state & SS_RCVATMARK) == 0) ||
228 so->so_options & SO_OOBINLINE ||
229 tp->t_oobflags & TCPOOB_HADDATA) {
230 error = EINVAL;
231 break;
232 }
233 if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) {
234 error = EWOULDBLOCK;
235 break;
236 }
237 m->m_len = 1;
238 *mtod(m, caddr_t) = tp->t_iobc;
239 if (((int) nam & MSG_PEEK) == 0)
240 tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA);
241 break;
--- tcp_usrreq.c

Verify that reading out-of-band data is appropriate

225-232

It is an error for the process to try to read out-of-band data if any one of the following three conditions is true:

1. if the socket’s out-of-band mark is 0 (so_oobmark) and the socket is not at the mark (the SS_RCVATMARK flag is not set), or

2. if the SO_OOBINLINE socket option is set, or

3. if the TCPOOB_HADDATA flag is set for the connection (i.e., the connection did have an out-of-band byte, but it has already been read).

The error EINVAL is returned if any one of these is true.

Check that out-of-band byte has arrived

233-236

If none of the three conditions above is true, but the TCPOOB_HAVEDATA flag is false, this indicates that TCP has received an urgent mode notification from the other end, but the byte whose sequence number is 1 less than the urgent pointer has not been received yet (Figure 29.17). The error EWOULDBLOCK is returned. It is possible for TCP to send an urgent notification with an urgent offset referencing a byte that the sender has not been able to send yet. Figure 26.7 of Volume 1 shows an example of this scenario, which often happens if the sender’s data transmission has been stopped by a zero-window advertisement.

Return out-of-band byte

237-238

The single byte of out-of-band data that was stored in t_iobc by tcp_pulloutofband is returned to the process.

Flip flags

239-241

If the process is actually reading the out-of-band byte (as compared to peeking at it with the MSG_PEEK flag), this exclusive OR turns the HAVE flag off and the HAD flag on. We are guaranteed at this point in the case statement that the HAVE flag is set and the HAD flag is cleared. The purpose of the HAD flag is to prevent the process from trying to read the out-of-band byte more than once. Once the HAD flag is set, it is not cleared until a new urgent pointer is received from the other end (Figure 29.17).

The reason for this hard-to-understand exclusive OR, instead of the simpler

tp->t_oobflags = TCPOOB_HADDATA;

is to allow additional bits in t_oobflags to be used. Net/3, however, only uses the 2 bits that we’ve described.

The PRU_SENDOOB request, shown in Figure 30.9, is issued by sosend when the process writes data and specifies the MSG_OOB flag.

Figure 30.9. tcp_usrreq function: PRU_SENDOOB request.

	

--- tcp_usrreq.c
242 case PRU_SENDOOB:
243 if (sbspace(&so->so_snd) < -512) {
244 m_freem(m);
245 error = ENOBUFS;
246 break;
247 }
248 /*
249 * According to RFC961 (Assigned Protocols),
250 * the urgent pointer points to the last octet
251 * of urgent data. We continue, however,
252 * to consider it to indicate the first octet
253 * of data past the urgent section.
254 * Otherwise, snd_up should be one lower.
255 */
256 sbappend(&so->so_snd, m);
257 tp->snd_up = tp->snd_una + so->so_snd.sb_cc;

258 tp->t_force = 1;
259 error = tcp_output(tp);
260 tp->t_force = 0;

261 break;
--- tcp_usrreq.c

Check for room and append to send buffer

242-247

The process is allowed to exceed the size of the send buffer by up to 512 bytes when sending out-of-band data. The socket layer is more permissive, allowing out-of-band data to exceed the size of the send buffer by 1024 bytes (Figure 16.24). sbappend adds the data to the end of the send buffer.

Calculate urgent pointer

248-257

The urgent pointer (snd_up) points to the byte following the final byte from the write request. We showed this in Figure 26.30, assuming the process writes 3 bytes of data with the MSG_OOB flag set and that the send buffer was empty. Realize that if the process writes more than 1 byte of data with the MSG_OOB flag set, only the final byte is considered the out-of-band byte when the data is received by a Berkeley-derived system.

Force TCP output

258-261

t_force is set to 1 and tcp_output is called. This causes a segment to be sent with the URG flag set and with a nonzero urgent offset, even if no data can be sent because of a zero-window advertisement. Figure 26.7 of Volume 1 shows the transmission of an urgent segment into a closed window.

The final three requests are shown in Figure 30.10.

Figure 30.10. tcp_usrreq function: PRU_SOCKADDR, PRU_PEERADDR, and PRU_SLCWTIMO requests.

	

-- tcp_usrreq.c
262 case PRU_SOCKADDR:
263 in_setsockaddr(inp, nam);
264 break;

265 case PRU_PEERADDR:
266 in_setpeeraddr(inp, nam);
267 break;

268 /*
269 * TCP slow timer went off; going through this
270 * routine for tracing's sake.
271 */
272 case PRU_SLOWTIMO:
273 tp = tcp_timers(tp, (int) nam);
274 req |= (int) nam << 8; /* for debug's sake */
275 break;
-- tcp_usrreq.c

262-267

The getsockname and getpeername system calls issue the PRU_SOCKADDR and PRU_PEERADDR requests, respectively. The functions in_setsockaddr and in_setpeeraddr fetch the information from the PCB, storing the result in the addr argument.

268-275

The PRU_SLOWTIMO request is issued by the tcp_slowtimo function. As the comment indicates, the only reason tcp_slowtimo doesn’t call tcp_timers directly is to allow the timer expiration to be traced by the call to tcp_trace at the end of the function (Figure 30.1). For the trace record to show which one of the four TCP timer counters expired, tcp_slowtimo passes the index into the t_timer array (Figure 25.1) as the nam argument, and this is left shifted 8 bits and logically ORed into the request value (req). The trpt program knows about this hack and handles it accordingly.

30.3. tcp_attach Function

The tcp_attach function is called by tcp_usrreq to process the PRU_ATTACH request (i.e., when the socket system call is issued or when a new connection request arrives for a listening socket). Figure 30.11 shows the code.

Figure 30.11. tcp_attach function: create a new TCP socket.

	

-- tcp_usrreq.c
361 int
362 tcp_attach(so)
363 struct socket *so;
364 {
365 struct tcpcb *tp;
366 struct inpcb *inp;
367 int error;

368 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
369 error = soreserve(so, tcp_sendspace, tcp_recvspace);
370 if (error)
371 return (error);
372 }
373 error = in_pcballoc(so, &tcb);
374 if (error)
375 return (error);
376 inp = sotoinpcb(so);
377 tp = tcp_newtcpcb(inp);
378 if (tp == 0) {
379 int nofd = so->so_state & SS_NOFDREF; /* XXX */

380 so->so_state &= ~SS_NOFDREF; /* don't free the socket yet */
381 in_pcbdetach(inp);
382 so->so_state |= nofd;
383 return (ENOBUFS);
384 }
385 tp->t_state = TCPS_CLOSED;
386 return (0);
387 }
-- tcp_usrreq.c

Allocate space for send buffer and receive buffer

361-372

If space has not been allocated for the socket’s send and receive buffers, sbreserve sets them both to 8192, the default values of the global variables tcp_sendspace and tcp_recvspace (Figure 24.3).

Whether these defaults are adequate depends on the MSS for each direction of the connection, which depends on the MTU. For example, [Comer and Lin 1994] show that anomalous behavior occurs if the send buffer is less than three times the MSS, which drastically reduces performance. Some implementations have much higher defaults, such as 61,444 bytes, realizing the effect these defaults have on performance, especially with higher MTUs (e.g., FDDI and ATM).

Allocate Internet PCB and TCP control block

373-377

in_pcballoc allocates an Internet PCB and tcp_newtcpcb allocates a TCP control block and links it to the PCB.

378-384

The code with the comment XXX is executed if the call to malloc in tcp_newtcpcb fails. Remember that the PRU_ATTACH request is issued as a result of the socket system call, and when a connection request arrives for a listening socket (sonewconn). In the latter case the socket flag SS_NOFDREF is set. If this flag is left on, the call to sofree by in_pcbdetach releases the socket structure. As we saw in tcp_input, this structure should not be released until that function is done with the received segment (the dropsocket flag in Figure 29.27). Therefore the current value of the SS_NOFDREF flag is saved in the variable nofd when in_pcbdetach is called, and reset before tcp_attach returns.

385-386

The TCP connection state is initialized to CLOSED.

30.4. tcp_disconnect Function

tcp_disconnect, shown in Figure 30.12, initiates a TCP disconnect.

Figure 30.12. tcp_disconnect function: initiate TCP disconnect.

	

--- tcp_usrreq.c
396 struct tcpcb *
397 tcp_disconnect(tp)
398 struct tcpcb *tp;
399 {
400 struct socket *so = tp->t_inpcb->inp_socket;

401 if (tp->t_state < TCPS_ESTABLISHED)
402 tp = tcp_close(tp);
403 else if ((so->so_options & SO_LINGER) && so->so_linger == 0)
404 tp = tcp_drop(tp, 0);
405 else {
406 soisdisconnecting(so);
407 sbflush(&so->so_rcv);
408 tp = tcp_usrclosed(tp);
409 if (tp)
410 (void) tcp_output(tp);
411 }
412 return (tp);
413 }
--- tcp_usrreq.c

Connection not yet synchronized

396-402

If the socket is not yet in the ESTABLISHED state (i.e., LISTEN, SYN_SENT, or SYN_RCVD), tcp_close just releases the PCB and the TCP control block. Nothing needs to be sent to the other end since the connection has not been synchronized.

Hard disconnect

403-404

If the connection is synchronized, the SO_LINGER socket option is set, and the linger time (so_linger) is set to 0, the connection is dropped by tcp_drop. This sets the connection state to CLOSED, sends an RST to the other end, and releases the PCB and TCP control block. The connection does not pass through the TIME_WAIT state. The call to close that caused the PRU_DISCONNECT request will discard any data still in the send or receive buffers.

If the SO_LINGER socket option has been set with a nonzero linger time, it is handled by soclose.

Graceful disconnect

405-406

This code is executed when the connection has been synchronized but the SO_LINGER option either was not set or was set with a nonzero linger time. TCP’s normal connection termination steps must be followed. soisdisconnecting sets the socket’s state.

Discard pending receive data

407

Any pending data in the receive buffer is discarded by sbflush, since the process has closed the socket. The send buffer is left alone, however, and tcp_output will try to send what remains. We say “try” because there’s no guarantee that the data still to be sent will be transmitted successfully. The other end might crash before it receives and acknowledges the data, or even if the TCP module at the other end receives and acknowledges the data, the system might crash before the application at the other end reads the data. Since the local process has closed the socket, if TCP gives up trying to send what remains in the send buffer (because its retransmission timer finally expires), there is no way to notify the process of the error.

Change connection state

408-410

tcp_usrclosed moves the connection into the next state, based on the current state. This normally moves the connection to the FIN_WAIT_1 state, since the connection is typically closed from the ESTABLISHED state. We’ll see that tcp_usrclosed always returns the current control block pointer (tp), since the state must be synchronized to get to this point in the code, so tcp_output is always called to send a segment. If the connection moves from the ESTABLISHED to the FIN_WAIT_1 state, this causes a FIN to be sent.

30.5. tcp_usrclosed Function

This function, shown in Figure 30.13, is called from tcp_disconnect and when the PRU_SHUTDOWN request is processed.

Figure 30.13. tcp_usrclosed function: move connection to next state, based on process close.

	

--- tcp_usrreq.c
424 struct tcpcb *
425 tcp_usrclosed(tp)
426 struct tcpcb *tp;
427 {

428 switch (tp->t_state) {

429 case TCPS_CLOSED:
430 case TCPS_LISTEN:
431 case TCPS_SYN_SENT:
432 tp->t_state = TCPS_CLOSED;
433 tp = tcp_close(tp);
434 break;

435 case TCPS_SYN_RECEIVED:
436 case TCPS_ESTABLISHED:
437 tp->t_state = TCPS_FIN_WAIT_1;
438 break;

439 case TCPS_CLOSE_WAIT:
440 tp->t_state = TCPS_LAST_ACK;
441 break;
442 }
443 if (tp && tp->t_state >= TCPS_FIN_WAIT_2)
444 soisdisconnected(tp->t_inpcb->inp_socket);
445 return (tp);
446 }
--- tcp_usrreq.c

Simple close when SYN not received

429-434

If a SYN has not been received on the connection, a FIN need not be sent. The new state is CLOSED and tcp_close releases the Internet PCB and the TCP control block.

Move to FIN_WAIT_1 state

435-438

In the SYN_RCVD and ESTABLISHED states, the new state is FIN_WAIT_1, which causes the next call to tcp_output to send a FIN (the tcp_outflags value in Figure 24.16).

Move to LAST_ACK state

439-441

In the CLOSE_WAIT state, the close moves the connection into the LAST_ACK state. The next call to tcp_output will cause a FIN to be sent.

443-444

If the connection state is either FIN_WAIT_2 or TIME_WAIT, soisdisconnected marks the socket state appropriately.

30.6. tcp_ctloutput Function

The tcp_ctloutput function is called by the getsockopt and setsockopt system calls when the descriptor argument refers to a TCP socket and when the level is not SOL_SOCKET. Figure 30.14 shows the two socket options supported by TCP.

Figure 30.14. Socket options supported by TCP.

[image: Image]

Figure 30.15 shows the first part of the function.

Figure 30.15. tcp_ctloutput function: first part.

	

--- tcp_usrreq.c
284 int
285 tcp_ctloutput(op, so, level, optname, mp)
286 int op;
287 struct socket *so;
288 int level, optname;
289 struct mbuf **mp;
290 {
291 int error = 0, s;
292 struct inpcb *inp;
293 struct tcpcb *tp;
294 struct mbuf *m;
295 int i;

296 s = splnet();
297 inp = sotoinpcb(so);
298 if (inp == NULL) {
299 splx(s);
300 if (op == PRCO_SETOPT && *mp)
301 (void) m_free(*mp);
302 return (ECONNRESET);
303 }
304 if (level != IPPROTO_TCP) {
305 error = ip_ctloutput(op, so, level, optname, mp);
306 splx(s);
307 return (error);
308 }
309 tp = intotcpcb(inp);
--- tcp_usrreq.c

296-303

The processor priority is set to splnet while the function executes, and inp points to the Internet PCB for the socket. If inp is null, the mbuf is released if the operation was to set a socket option, and an error is returned.

304-308

If the level (the second argument to the getsockopt and setsockopt system calls) is not IPPROTO_TCP, the command is for some other protocol (i.e., IP). For example, it is possible to create a TCP socket and set the IP source routing socket option. In this example IP processes the socket option, not TCP. ip_ctloutput handles the command.

309

The command is for TCP, so tp is set to the TCP control block.

The remainder of the function is a switch with two cases: one for PRCO_SETOPT (shown in Figure 30.16) and one for PRCO_GETOPT (shown in Figure 30.17).

Figure 30.16. tcp_ctloutput function: set a socket option.

	

--- tcp_usrreq.c
310 switch (op) {

311 case PRCO_SETOPT:
312 m = *mp;
313 switch (optname) {

314 case TCP_NODELAY:
315 if (m == NULL || m->m_len < sizeof(int))
316 error = EINVAL;
317 else if (*mtod(m, int *))
318 tp->t_flags |= TF_NODELAY;
319 else
320 tp->t_flags &= ~TF_NODELAY;
321 break;

322 case TCP_MAXSEG:
323 if (m && (i = *mtod(m, int *)) > 0 && i <= tp->t_maxseg)
324 tp->t_maxseg = i;
325 else
326 error = EINVAL;
327 break;

328 default:
329 error = ENOPROTOOPT;
330 break;
331 }
332 if (m)
333 (void) m_free(m);
334 break;
--- tcp_usrreq.c

Figure 30.17. tcp_ctloutput function: get a socket option.

	

--- tcp_usrreq.c
335 case PRCO_GETOPT:
336 *mp = m = m_get(M_WAIT, MT_SOOPTS);
337 m->m_len = sizeof(int);

338 switch (optname) {
339 case TCP_NODELAY:
340 *mtod(m, int *) = tp->t_flags & TF_NODELAY;
341 break;
342 case TCP_MAXSEG:
343 *mtod(m, int *) = tp->t_maxseg;
344 break;
345 default:
346 error = ENOPROTOOPT;
347 break;
348 }
349 break;
350 }
351 splx(s);
352 return (error);
353 }
--- tcp_usrreq.c

315-316

m is an mbuf containing the fourth argument to setsockopt. For both of the TCP options the mbuf must contain an integer value. If either the mbuf pointer is null, or the amount of data in the mbuf is less than the size of an integer, an error is returned.

TCP_NODELAY option

317-321

If the integer value is nonzero, the TF_NODELAY flag is set. This disables the Nagle algorithm in Figure 26.8. If the integer value is 0, the Nagle algorithm is enabled (the default) and the TF_NODELAY flag is cleared.

TCP_MAXSEG option

322-327

A process can only decrease the MSS. When a TCP socket is created, tcp_newtcpcb initializes t_maxseg to its default of 512. When a SYN is received from the other end with an MSS option, tcp_input calls tcp_mss, and t_maxseg can be set as high as the outgoing interface MTU (minus 40 bytes for the default IP and TCP headers), which is 1460 for an Ethernet. Therefore, after a call to socket but before a connection is established, a process can only decrease the MSS from its default of 512. After a connection is established, the process can decrease the MSS from whatever value was selected by tcp_mss.

4.4BSD was the first Berkeley release to allow the MSS to be set with a socket option. Prior releases only allowed a getsockopt for the MSS.

Release mbuf

332-333

The mbuf chain is released.

Figure 30.17 shows the processing for the PRCO_GETOPT command.

335-337

Both TCP socket options return an integer to the process, so m_get obtains an mbuf and its length is set to the size of an integer.

339-341

TCP_NODELAY returns the current status of the TF_NODELAY flag: 0 if the flag is not set (the Nagle algorithm is enabled) or TF_NODELAY if the flag is set.

342-344

The TCP_MAXSEG option returns the current value of t_maxseg. As we said in our discussion of the PRCO_SETOPT command, the value returned depends whether the socket has been connected yet.

30.7. Summary

The tcp_usrreq function is straightforward because most of the required processing is done by other functions. The PRU_xxx requests form the glue between the protocol-independent system calls and the TCP protocol processing.

The tcp_ctloutput function is also simple because only two socket options are supported by TCP: enable or disable the Nagle algorithm, and set or fetch the maximum segment size.

Exercises

30.1 Now that we’ve covered all of TCP, list the processing steps and the TCP state transitions when a client goes through the normal steps of socket, connect, write (a request to the server), read (a reply from the server), and close. Do the same exercise for the server end.

30.2 If a process sets the SO_LINGER socket option with a linger time of 0 and then calls close, we showed how tcp_disconnect is called, which causes an RST to be sent. What happens if a process sets this socket option with a linger time of 0 but is then killed by a signal instead of calling close? Is the RST segment still sent?

30.3 The description for TCP_LINGERTIME in Figure 25.4 is the “maximum #seconds for SO_LINGER socket option.” Given the code in Figure 30.2, is this description correct?

30.4 A Net/3 client calls socket and connect to actively open a connection to a server. The server is reached through the client’s default router. A total of 1,129 segments are sent by the client host to the server. Assuming the route to the destination does not change, how many routing table lookups are done on the client host for this connection? Explain.

30.5 Obtain the sock program described in Appendix C of Volume 1. Run it as a sink server with a pause before reading (-P) and a large receive buffer. Then run the same program on another system as a source client. Watch the data with tcpdump. Verify that TCP’s ACK-every-other-segment does not occur and that the only ACKs seen from the server are delayed ACKs.

30.6 Modify the SO_KEEPALIVE socket option so that the parameters can be configured on a per-connection basis.

30.7 Read RFC 1122 to determine why it recommends that an implementation should allow an RST to carry data. Modify the Net/3 code to implement this.

Chapter 31. BPF: BSD Packet Filter

31.1. Introduction

The BSD Packet Filter (BPF) is a software device that “taps” network interfaces. A process accesses a BPF device by opening /dev/bpf0, /dev/bpf1, and so on. Each BPF device can be opened only by one process at a time.

Since each BPF device allocates 8192 bytes of buffer space, the system administrator typically limits the number of BPF devices. If open returns EBUSY, the device is in use, and a process tries the next device until the open succeeds.

The device is configured with several ioctl commands that associate the device with a network interface and install filters to receive incoming packets selectively. Packets are received by reading from the device, and packets are queued on the network interface by writing to the device.

We will use the term packet even though frame is more accurate, since BPF works at the data-link layer and includes the link-layer headers in the frames it sends and receives.

BPF works only with network interfaces that been modified to support BPF. In Chapter 3 we saw that the Ethernet, SLIP, and loopback drivers call bpfattach. This call configures the interface for access through the BPF devices. In this section we show how the BPF device driver is organized and how packets move between the driver and the network interfaces.

BPF is normally used as a diagnostic tool to examine the traffic on a locally attached network. The tcpdump program is the best example of such a tool and is described in Appendix A of Volume 1. Normally the user is interested in packets between a given set of machines, or for a particular protocol, or even for a particular TCP connection. A BPF device can be configured with a filter that discards or accepts incoming packets according to a filter specification. Filters are specified as instructions to a pseudomachine. The details of BPF filters are not discussed in this text. For more information about filters, see bpf(4) and [McCanne and Jacobson 1993].

31.2. Code Introduction

The code for the portion of the BPF device driver that we describe resides in the two headers and one C file listed in Figure 31.1.

Figure 31.1. Files discussed in this chapter.

[image: Image]

Global Variables

The global variables introduced in this chapter are shown in Figure 31.2.

Figure 31.2. Global variables introduced in this chapter.

[image: Image]

Statistics

Figure 31.3 shows the two statistics collected in the bpf_d structure for every active BPF device.

Figure 31.3. Statistics collected in this chapter.

[image: Image]

The remainder of this chapter is divided into four sections:

• BPF interface structures,

• BPF device descriptors,

• BPF input processing, and

• BPF output processing.

31.3. bpf_if Structure

BPF keeps a list of the network interfaces that support BPF. Each interface is described by a bpf_if structure, and the global pointer bpf_iflist points to the first structure in the list. Figure 31.4 shows a BPF interface structure.

Figure 31.4. bpf_if structure.

	

--- bpfdesc.h
 67 struct bpf_if {
 68 struct bpf_if *bif_next; /* list of all interfaces */
 69 struct bpf_d *bif_dlist; /* descriptor list */
 70 struct bpf_if **bif_driverp; /* pointer into softc */
 71 u_int bif_dlt; /* link layer type */
 72 u_int bif_hdrlen; /* length of header (with padding) */
 73 struct ifnet *bif_ifp; /* correspoding interface */
 74 };
--- bpfdesc.h

67-69

bif_next points to the next BPF interface structure in the list. bif_dlist points to a list of BPF devices that have been opened and configured to tap this interface.

70

bif_driverp points to a bpf_if pointer stored in the ifnet structure of the tapped interface. When the interface is not tapped, *bif_driverp is null. When a BPF device is configured to tap an interface, * is changed to point back to the bif_if structure and tells the interface to begin passing packets to BPF.

71

The type of interface is saved in bif_dlt. The values for our example interfaces are shown in Figure 31.5.

Figure 31.5. bif_dlt values.

[image: Image]

72-74

Each packet accepted by BPF has a BPF header prepended to it. bif_hdrlen is the size of the header. Finally, bif_ifp points to the ifnet structure for the associated interface.

Figure 31.6 shows the bpf_hdr structure that is prepended to every incoming packet.

Figure 31.6. bpf_hdr structure.

	

--- bpf.h
122 struct bpf_hdr {
123 struct timeval bh_tstamp; /* time stamp */
124 u_long bh_caplen; /* length of captured portion */
125 u_long bh_datalen; /* original length of packet */
126 u_short bh_hdrlen; /* length of bpf header (this struct plus
127 alignment padding) */
128 };
--- bpf.h

122-128

bh_tstamp records the time the packet was captured. bh_caplen is the number of bytes saved by BPF, and bh_datalen is the number of bytes in the original packet. bh_headlen is the size of the bpf_hdr structure plus any padding. This value should match bif_hdrlen for the receiving interface and is used by processes to interpret the packets read from the BPF device.

Figure 31.7 shows how bpf_if structures are connected to the ifnet structures for each of our three sample interfaces (le_softc [0], sl_softc [0], and loif).

Figure 31.7. bpf_if and ifnet structures.

[image: Image]

Notice that bif_driverp points to the if_bpf and sc_bpf pointers in the network interfaces and not to the interface structures.

The SLIP device uses sc_bpf, instead of the if_bpf member. One reason might be that the SLIP BPF code was written before the if_bpf member was added to the ifnet structure. The ifnet structure in Net/2 does not include a if_bpf member.

The link-type and header-length members are initialized for all three interfaces according to the information passed by each driver in the call to bpfattach.

In Chapter 3 we saw that bpfattach was called by the Ethernet, SLIP, and loop-back drivers. The linked list of BPF interface structures is built as each device driver calls bpfattach during initialization. The function is shown in Figure 31.8.

Figure 31.8. bpfattach function.

	

--- bpf.c
1053 void
1054 bpfattach(driverp, ifp, dlt, hdrlen)
1055 caddr_t *driverp;
1056 struct ifnet *ifp;
1057 u_int dlt, hdrlen;
1058 {
1059 struct bpf_if *bp;
1060 int i;
1061 bp = (struct bpf_if *) malloc(sizeof(*bp), M_DEVBUF, M_DONTWAIT);
1062 if (bp == 0)
1063 panic("bpfattach");

1064 bp->bif_dlist = 0;
1065 bp->bif_driverp = (struct bpf_if **) driverp;
1066 bp->bif_ifp = ifp;
1067 bp->bif_dlt = dlt;

1068 bp->bif_next = bpf_iflist;
1069 bpf_iflist = bp;

1070 *bp->bif_driverp = 0;

1071 /*
1072 * Compute the length of the bpf header. This is not necessarily
1073 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1074 * that the network layer header begins on a longword boundary (for
1075 * performance reasons and to alleviate alignment restrictions).
1076 */
1077 bp->bif_hdrlen = BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen;

1078 /*
1079 * Mark all the descriptors free if this hasn't been done.
1080 */
1081 if (!D_ISFREE(&bpf_dtab[0]))
1082 for (i = 0; i < NBPFILTER; ++i)
1083 D_MARKFREE(&bpf_dtab[i]);

1084 printf("bpf: %s%d attached\en", ifp->if_name, ifp->if_unit);
1085 }
--- bpf.c

1053-1063

bpfattach is called by each device driver that supports BPF. The first argument is the pointer saved in bif_driverp (described with Figure 31.4). The second argument points to the ifnet structure of the interface. The third argument identifies the data-link type, and the fourth argument identifies the size of link-layer header passed with the packet. A new bpf_if structure is allocated for the interface.

Initialize bpf_if structure

1064-1070

The bpf_if structure is initialized from the arguments and inserted into the front of the BPF interface list, bpf_iflist.

Compute BPF header size

1071-1077

bif_hdrlen is set to force the network-layer header (e.g., the IP header) to start on a longword boundary. This improves performance and avoids unnecessary alignment restrictions for the BPF filter. Figure 31.9 shows the overall organization of the captured BPF packet for each of our three sample interfaces.

Figure 31.9. BPF packet organization.

[image: Image]

The ether_header structure was described with Figure 4.10, the SLIP pseudo-link header was described with Figure 5.14, and the loopback pseudo-link header was described with Figure 5.28.

Notice that the SLIP and loopback packets require 2 bytes of padding to force the IP header to appear on a 4-byte boundary.

Initialize bpf_dtab table

1078-1083

This code initializes the BPF descriptor table, which is described with Figure 31.10. The initialization occurs the first time bpfattach is called and is skipped thereafter.

Figure 31.10. bpf_d structure.

	

--- bpfdesc.h
 45 struct bpf_d {
 46 struct bpf_d *bd_next; /* Linked list of descriptors */
 47 caddr_t bd_sbuf; /* store slot */
 48 caddr_t bd_hbuf; /* hold slot */
 49 caddr_t bd_fbuf; /* free slot */
 50 int bd_slen; /* current length of store buffer */
 51 int bd_hlen; /* current length of hold buffer */

 52 int bd_bufsize; /* absolute length of buffers */

 53 struct bpf_if *bd_bif; /* interface descriptor */
 54 u_long bd_rtout; /* Read timeout in 'ticks' */
 55 struct bpf_insn *bd_filter; /* filter code */
 56 u_long bd_rcount; /* number of packets received */
 57 u_long bd_dcount; /* number of packets dropped */

 58 u_char bd_promisc; /* true if listening promiscuously */
 59 u_char bd_state; /* idle, waiting, or timed out */
 60 u_char bd_immediate; /* true to return on packet arrival */
 61 u_char bd_pad; /* explicit alignment */
 62 struct selinfo bd_sel; /* bsd select info */
 63 };
--- bpfdesc.h

Print console message

1084-1085

A short message is printed to the console to announce that the interface has been configured for use by BPF.

31.4. bpf_d Structure

To begin tapping an interface, a process opens a BPF device and issues ioctl commands to select the interface, the read buffer size, and timeouts, and to specify a BPF filter. Each BPF device has an associated bpf_d structure, shown in Figure 31.10.

45-46

bpf_d structures are placed on a linked list when more than one BPF device is attached to the same network interface. bd_next points to the next structure in the list.

Packet buffers

47-52

Each bpf_d structure has two packet buffers associated with it. Incoming packets are always stored in the buffer attached to bd_sbuf (the store buffer). The other buffer is either attached to bd_fbuf (the free buffer), which means it is empty, or to bd_hbuf (the hold buffer), which means it contains packets that are being read by a process. bd_slen and bd_hlen record the number of bytes saved in the store and hold buffer respectively.

When the store buffer becomes full, it is attached to bd_hbuf and the free buffer is attached to bd_sbuf. When the hold buffer is emptied, it is attached to bd_fbuf. The macro ROTATE_BUFFERS attaches the store buffer to bd_hbuf, attaches the free buffer to bd_sbuf, and clears bd_fbuf. It is called when the store buffer becomes full, or when the process doesn’t want to wait for more packets.

bd_bufsize records the size of the two buffers associated with the device. It defaults to 4096 (BPF_BUFSIZE) bytes. The default value can be changed by patching the kernel, or bd_bufsize can be changed for a particular BPF device with the BIOCSBLEN ioctl command. The BIOCGBLEN command returns the current value of bd_bufsize, which can never exceed 32768 (BPF_MAXBUFSIZE) bytes. There is also a minimum size of 32 (BPF_MINBUFSIZE) bytes.

53-57

bd_bif points to the bpf_if structure associated with the BPF device. The BIOCSETIF command specifies the device. bd_rtout is the number of clock ticks to delay while waiting for packets to appear. bd_filter points to the BPF filter code for this device. Two statistics, which are available to a process through the BIOCGSTATS command, are kept in bd_rcount and bd_dcount.

58-63

bd_promisc is set with the BIOCPROMISC command and causes the interface to operate in promiscuous mode. bd_state is unused. bd_immediate is set with the BIOCIMMEDIATE command and causes the driver to return each packet as it is received instead of waiting for the hold buffer to fill. bd_pad pads the bpf_d structure to a longword boundary, and bd_sel holds the selinfo structure for the select system call. We don’t describe the use of select with a BPF device, but select itself is described in Section 16.13.

bpfopen Function

When open is called for a BPF device, the call is routed to bpfopen (Figure 31.11) for processing.

Figure 31.11. bpfopen function.

	

--- bpf.c
256 int
257 bpfopen(dev, flag)
258 dev_t dev;
259 int flag;
260 {
261 struct bpf_d *d;

262 if (minor(dev) >= NBPFILTER)
263 return (ENXIO);
264 /*
265 * Each minor can be opened by only one process. If the requested
266 * minor is in use, return EBUSY.
267 */
268 d = &bpf_dtab[minor(dev)];
269 if (!D_ISFREE(d))
270 return (EBUSY);

271 /* Mark "free" and do most initialization. */
272 bzero((char *) d, sizeof(*d));
273 d->bd_bufsize = bpf_bufsize;

274 return (0);
275 }
--- bpf.c

256-263

The number of BPF devices is limited at compile time to NBPFILTER. The minor device number specifies the device and ENXIO is returned if it is too large. This happens when the system administrator creates more /dev/bpfx entries than the value NBPFILTER.

Allocate bpf_d structure

264-275

Only one process is allowed access to a BPF device at a time. If the bpf_d structure is already active, EBUSY is returned. Programs such as tcpdump try the next device when this error is returned. If the device is available, the entry in the bpf_dtab table specified by the minor device number is cleared and the size of the packet buffers is set to the default value.

bpfioctl Function

Once the device is opened, it is configured with ioctl commands. Figure 31.12 summarizes the ioctl commands used with BPF devices. Figure 31.13 shows the bpfioctl function. Only the code for BIOCSETF and BIOCSETIF is shown. We have omitted the ioctl commands that are not discussed in this text.

Figure 31.12. BPF ioctl commands.

[image: Image]

Figure 31.13. bpfioctl function.

	

-- bpf.c
501 int
502 bpfioctl(dev, cmd, addr, flag)
503 dev_t dev;
504 int cmd;
505 caddr_t addr;
506 int flag;
507 {
508 struct bpf_d *d = &bpf_dtab[minor(dev)];
509 int s, error = 0;

510 switch (cmd) {
511 /*
512 * Set link layer read filter.
513 */
514 case BIOCSETF:
515 error = bpf_setf(d, (struct bpf_program *) addr);
516 break;

517 /*
518 * Set interface.
519 */
520 case BIOCSETIF:
521 error = bpf_setif(d, (struct ifreq *) addr);
522 break;

 /* other ioctl commands from Figure 31.12 */

668 default:
669 error = EINVAL;
670 break;
671 }
672 return (error);
673 }
-- bpf.c

501-509

As with bpfopen, the minor device number selects the bpf_d structure from the bpf_dtab table. The command is processed by the cases within the switch. We show two commands, BIOCSETF and BIOCSETIF, as well as the default case.

510-522

The bpf_setf function installs the filter passed in addr, and bpf_setif attaches the named interface to the bpf_d structure. We don’t show the implementation of bpf_setf in this text.

668-673

If the command is not recognized, EINVAL is returned.

Figure 31.14 shows the bpf_d structure after bpf_setif has attached it to the LANCE interface in our example system.

Figure 31.14. BPF device attached to the Ethernet interface.

[image: Image]

In the figure, bif__dlist points to bpf_dtab[0], the first and only descriptor in the descriptor list for the Ethernet interface. In bpf_dtab[0], the bd_sbuf and bd_hbuf members point to the store and hold buffers. Each buffer is 4096 (bd_bufsize) bytes long. bd_bif points back to the bpf_if structure for the interface.

if_bpf in the ifnet structure (le_softc[0]) also points back to the bpf_if structure. As shown in Figures 4.19 and 4.11, when if_bpf is nonnull, the driver begins passing packets to the BPF device by calling bpf_tap.

Figure 31.15 shows the same structures after a second BPF device is opened and attached to the same Ethernet network interface as in Figure 31.10.

Figure 31.15. Two BPF devices attached to the Ethernet interface.

[image: Image]

When the second BPF device is opened, a new bpf_d structure is allocated from the bpf_dtab table, in this case, bpf_dtab[1]. The second BPF device is also attached to the Ethernet interface, so bif_dlist points to bpf_dtab[l], and bpf_dtab[l].bd_next points to bpf_dtab[0], which is the first BPF descriptor attached to the Ethernet interface. Separate store and hold buffers are allocated and attached to the new descriptor structure.

bpf_setif Function

The bpf_setif function, which associates the BPF descriptor with a network interface, is shown in Figure 31.16.

Figure 31.16. bpf_setif function.

[image: Image]

721-746

The first part of bpf_setif separates the text portion of the name in the ifreq structure (Figure 4.23) from the numeric portion. The numeric portion is saved in unit. For example, if the first 4 bytes of ifr_name start is "sl1\0", after this code executes they are "sl\0\0" and unit is 1.

Locate matching ifnet structure

747-754

The for loop searches the interfaces that support BPF (the ones in bpf_iflist) for the one specified in the ifreq structure.

755-768

If the matching interface is not up ENETDOWN is returned. If the interface is up, bpf_allocate attaches the free and store buffers to the bpf_d structure, if they have not already been allocated.

Attach bpf_d structure

769-777

If no interface is attached to the BPF device, or if a different interface from the one specified in the ifreq structure is attached, bpf_detachd discards the previous interface (if any), and bpf_attachd attaches the new interface to the device.

778-784

reset_d resets the packet buffers, discarding any pending packets in the process. The function returns 0 to indicate success or returns ENXIO if the interface was not located.

bpf_attachd Function

The bpf_attachd function shown in Figure 31.17 associates a BPF descriptor structure with a BPF device and with a network interface.

Figure 31.17. bpf_attachd function.

	

-- bpf.c
189 static void
190 bpf_attachd(d, bp)
191 struct bpf_d *d;
192 struct bpf_if *bp;
193 {
194 /*
195 * Point d at bp, and add d to the interface's list of listeners.
196 * Finally, point the driver's bpf cookie at the interface so
197 * it will divert packets to bpf.
198 */
199 d->bd_bif = bp;
200 d->bd_next = bp->bif_dlist;
201 bp->bif_dlist = d;

202 *bp->bif_driverp = bp;
203 }
-- bpf.c

189-203

First, bd_bif is set to point to the BPF interface structure for the network device. Next, the bpf_d structure is inserted into the front of the list of bpf_d structures associated with the device. Finally, the BPF pointer within the network interface is changed to point to the BPF structure, which causes the interface to begin passing packets to the BPF device.

31.5. BPF Input

Once the BPF device is opened and configured, a process uses the read system call to receive packets from the interface. The BPF tap collects copies of the incoming packets so BPF does not interfere with normal network processing. Incoming packets are collected in the store and hold buffers associated with each BPF device.

bpf_tap Function

We described the call to bpf_tap by the LANCE device driver with Figure 4.11 and use this call to describe the bpf_tap. The call (from Figure 4.11) is:

bpf_tap(le->sc_if.if_bpf, buf, len + sizeof(struct ether_header));

The bpf_tap function is shown in Figure 31.18.

Figure 31.18. bpf_tap function.

	

-- bpf.c
869 void
870 bpf_tap(arg, pkt, pktlen)
871 caddr_t arg;
872 u_char *pkt;
873 u_int pktlen;
874 {
875 struct bpf_if *bp;
876 struct bpf_d *d;
877 u_int slen;
878 /*
879 * Note that the ipl does not have to be raised at this point.
880 * The only problem that could arise here is that if two different
881 * interfaces shared any data. This is not the case.
882 */
883 bp = (struct bpf_if *) arg;
884 for (d = bp->bif_dlist; d != 0; d = d->bd_next) {
885 ++d->bd_rcount;
886 slen = bpf_filter(d->bd_filter, pkt, pktlen, pktlen);
887 if (slen != 0)
888 catchpacket(d, pkt, pktlen, slen, bcopy);
889 }
890 }
-- bpf.c

869-882

The first argument is a pointer to the bpf_if structure, which is set by bpfattach. The second argument is a pointer to the incoming packet, including the Ethernet header. The third argument is the number of bytes contained in the buffer, in this case, the size of the Ethernet header (14 bytes) plus the size of the data portion of the Ethernet frame.

Pass packet to one or more BPF devices

883-890

The for loop traverses the list of BPF devices attached to the interface. For each device, the packet is passed to bpf_filter. If the filter accepts the packet, it returns the number of bytes to capture and catchpacket saves a copy of the packet. If the filter rejects the packet, slen is 0 and the loop continues. When the loop completes, bpf_tap returns. This mechanism enables each BPF device to have a separate filter when multiple BPF devices are associated with the same network interface.

The loopback driver calls bpf_mtap to pass packets to BPF. This function is similar to bpf_tap but copies the packet from an mbuf chain instead of from a contiguous area of memory. This function is not described in this text.

catchpacket Function

In Figure 31.18 we saw that catchpacket is called when the filter accepts the packet. The function is shown in Figure 31.19.

Figure 31.19. catchpacket function.

[image: Image]

946-955

The arguments to catchpacket are: d, a pointer to the BPF device structure; pkt a generic pointer to the incoming packet; pktlen the length of the packet as it was received; snaplen the number of bytes to save from the packet; and cpfn a pointer to a function that will copy the packet from pkt to a contiguous area of memory. When the packet is already in a contiguous area of memory, cpfn is bcopy. When the packet is stored in an mbuf (i.e., pkt points to the first mbuf in a chain such as with the loopback driver), cpfn is bpf_mcopy.

956-964

In addition to the link-layer header and the packet, catchpacket appends a bpf_hdr to every packet. The number of bytes to save from the packet is the smaller of snaplen and pktlen. The resulting packet and bpf_hdr must fit within the packet buffers (bd_bufsize bytes).

Will the packet fit?

965-985

curlen is the number of bytes already in the store buffer plus enough bytes to align the next packet on a longword boundary. If the incoming packet doesn’t fit in the remaining buffer space, the store buffer is full. If a free buffer is not available (i.e., a process is still reading data from the hold buffer), the incoming packet is discarded. If a free buffer is available, it is rotated into place by ROTATE_BUFFERS and any process waiting for incoming data is awakened by bpf_wakeup.

Immediate mode processing

986-991

If the device is operating in immediate mode, any waiting processes are awakened to process the incoming packet there is no buffering of packets in the kernel.

Append BPF header

992-1004

The current time (microtime), the packet length, and the header length are saved in a bpf_hdr. The function pointed to by cpfn is called to copy the packet into the store buffer and the length of the store buffer is updated. Since bpf_tap is called directly from leread even before the packet is transferred from a device buffer to an mbuf chain, the receive timestamp is close to the actual reception time.

bpfread Function

The kernel routes a read on a BPF device to bpfread. BPF supports a timed read through the BIOCSRTIMEOUT command. This “feature” is easily emulated by the more general select system call, but tcpdump, for example, uses BIOCSRTIMEOUT and not select. The process must provide a read buffer that matches the size of the hold buffer for the device. The BIOCGBLEN command returns the size of the buffer. Normally, a read returns when the store buffer becomes full. The kernel rotates the store buffer to the hold buffer, which is copied to the buffer provided with the read system call while the BPF device continues collecting incoming packets in the store buffer. bpfread is shown in Figure 31.20.

Figure 31.20. bpfread function.

[image: Image]

344-357

The minor device number selects the BPF device from the bpf_dtab table. If the read buffer doesn’t match the size of the BPF device buffers, EINVAL is returned.

Wait for data

358-364

Since multiple processes may be reading from the same BPF device, the while loop forces the read to continue when some other process gets to the data first. If there is data in the hold buffer, the loop is skipped. This is different from two processes tapping the same network interface through two different BPF devices (Exercise 31.2).

Immediate mode

365-373

If the device is in immediate mode and there is some data in the store buffer, the buffers are rotated and the while loop terminates.

No packets available

374-384

If the device is not in the immediate mode, or there is no data in the store buffer, the process sleeps until a signal arrives, the read timer expires, or data arrives in the hold buffer. If a signal arrives, EINTR or ERESTART is returned.

Remember that a process never sees the ERESTART error because the error is handled by the syscall function and never returned to a process.

Check hold buffer

385-391

If the timer expired and data is in the hold buffer, the loop terminates.

Check store buffer

392-399

If the timer expired and there is no data in the store buffer, the read returns 0. The process must handle this case when using a timed read. If the timer expired and there is data in the store buffer, it is rotated to the hold buffer and the loop terminates.

If tsleep returns without an error and data is present, the while loop test is false and the loop terminates.

Packets are available

400-416

At this point, there is data in the hold buffer. uiomove moves bd_hlen bytes of data from the hold buffer to the process. After the move, the hold buffer is moved to the free buffer, and the buffer counts are cleared before the function returns. The comment before uiomove indicates that uiomove will always be able to copy bd_hlen bytes into the process because the read buffer was checked to ensure it can hold the maximum number of bytes, bd_bufsize.

31.6. BPF Output

Finally, we describe how to add packets to the network interface output queues with BPF. An entire data-link frame must be constructed by the process. For Ethernet this includes the source and destination hardware addresses and the frame type (Figure 4.8). The kernel will not modify the frame before putting it on the interface’s output queue.

bpfwrite Function

The frame is passed to the BPF device with the write system call, which the kernel routes to bpfwrite, shown in Figure 31.21.

Figure 31.21. bpfwrite function.

	

-- bpf.c
437 int
438 bpfwrite(dev, uio)
439 dev_t dev;
440 struct uio *uio;
441 {
442 struct bpf_d *d = &bpf_dtab[minor(dev)];
443 struct ifnet *ifp;
444 struct mbuf *m;
445 int error, s;
446 static struct sockaddr dst;
447 int datlen;

448 if (d->bd_bif == 0)
449 return (ENXIO);

450 ifp = d->bd_bif->bif_ifp;

451 if (uio->uio_resid == 0)
452 return (0);

453 error = bpf_movein(uio, (int) d->bd_bif->bif_dlt, &m, &dst, &datlen);
454 if (error)
455 return (error);

456 if (datlen > ifp->if_mtu)
457 return (EMSGSIZE);

458 s = splnet();
459 error = (*ifp->if_output) (ifp, m, &dst, (struct rtentry *) 0);
460 splx(s);
461 /*
462 * The driver frees the mbuf.
463 */
464 return (error);
465 }
-- bpf.c

Check device number

437-449

The minor device number selects the BPF device, which must be attached to a network interface. If it isn’t, ENXIO is returned.

Copy data into mbuf chain

450-457

If the write specified 0 bytes, 0 is returned immediately. bpf_movein copies the data from the process into an mbuf chain. Based on the interface type passed from bif_dlt, it computes the length of the packet excluding the link-layer header and returns the value in datlen. It also returns an initialized sockaddr structure in dst. For Ethernet, the type of this address structure will be af_unspec, indicating that the mbuf chain contains the data-link header for the outgoing frame. If the packet is larger than the MTU of the interface, EMSGSIZE is returned.

Queue packet

458-465

The resulting mbuf chain is passed to the network interface using the if_output function specified in the ifnet structure. For Ethernet, if_output is ether_output.

31.7. Summary

In this chapter we showed how BPF devices are configured, how incoming frames are passed to BPF devices, and how outgoing frames can be transmitted on a BPF device.

We showed that a single network interface can have multiple BPF taps, each with a separate filter. The store and hold buffers minimize the number of read system calls required to process incoming frames.

We focused only on the major features of BPF in this chapter. For a more detailed description of the filtering code and the other features of the BPF device, the interested reader should examine the source code and the Net/3 manual pages.

Exercises

31.1 Why is it OK to call bpf_wakeup in catchpacket before the packet is stored in the BPF buffers?

31.2 With Figure 31.20, we noted that two processes may be waiting for data from the same BPF device. With Figure 31.11, we noted that only one process at a time can open a particular BPF device. How can both of these statements be true?

31.3 What happens if the device named in the BIOCSETIF command does not support BPF?

Chapter 32. Raw IP

32.1. Introduction

A process accesses the raw IP layer by creating a socket of type SOCK_RAW in the Internet domain. There are three uses for raw sockets:

1. Raw sockets allow a process to send and receive ICMP and IGMP messages.

The Ping program uses this type of socket to send ICMP echo requests and to receive ICMP echo replies.

Some routing daemons use this feature to track ICMP redirects that are processed by the kernel. We saw in Section 19.7 that Net/3 generates an RTM_REDIRECT message on a routing socket when a redirect is processed, obviating the need for this use of raw sockets.

This feature is also used to implement protocols based on ICMP, such as router advertisement and router solicitation (Section 9.6 of Volume 1), which use ICMP but are better implemented as user processes than within the kernel.

The multicast routing daemon uses a raw IGMP socket to send and receive IGMP messages.

2. Raw sockets let a process build its own IP headers. The Traceroute program uses this feature to build its own UDP datagrams, including the IP and UDP headers.

3. Raw sockets let a process read and write IP datagrams with an IP protocol type that the kernel doesn’t support.

The gated program uses this to support three routing protocols that are built directly on IP: EGP, HELLO, and OSPF.

This type of raw socket can also be used to experiment with new transport layers on top of IP, instead of adding support to the kernel. It is usually much easier to debug code within a user process than it is within the kernel.

This chapter examines the implementation of raw IP sockets.

32.2. Code Introduction

There are five raw IP functions in a single C file, shown in Figure 32.1.

Figure 32.1. File discussed in this chapter.

[image: Image]

Figure 32.2 shows the relationship of the five raw IP functions to other kernel functions.

Figure 32.2. Relationship of raw IP functions to rest of kernel.

[image: Image]

The shaded ellipses are the five functions that we cover in this chapter. Be aware that the “rip” prefix used within the raw IP functions stands for “raw IP” and not the “Routing Information Protocol,” whose common acronym is RIP.

Global Variables

Four global variables are introduced in this chapter, which are shown in Figure 32.3.

Figure 32.3. Global variables introduced in this chapter.

[image: Image]

Statistics

Raw IP maintains two of the counters in the ipstat structure (Figure 8.4). We describe these in Figure 32.4.

Figure 32.4. Raw IP statistics maintained in the ipstat structure.

[image: Image]

The use of the ips_noproto counter with SNMP is shown in Figure 8.6. Figure 8.5 shows some sample output of these two counters.

32.3. Raw IP protosw Structure

Unlike all other protocols, raw IP is accessed through multiple entries in the inetsw array. There are four entries in this structure with a socket type of SOCK_RAW, each with a different protocol value:

[image: Image] IPPROTO_ICMP (protocol value of 1),

[image: Image] IPPROTO_IGMP (protocol value of 2),

[image: Image] IPPROTO_RAW (protocol value of 255), and

[image: Image] raw wildcard entry (protocol value of 0).

The first two entries for ICMP and IGMP were described earlier (Figures 11.12 and 13.9). The difference in these four entries can be summarized as follows:

[image: Image] If the process creates a raw socket (SOCK_RAW) with a nonzero protocol value (the third argument to socket), and if that value matches IPPROTO_ICMP, IPPROTO_IGMP, or IPPROTO_RAW, then the corresponding protosw entry is used.

[image: Image] If the process creates a raw socket with a nonzero protocol value that is not known to the kernel, the wildcard entry with a protocol of 0 is matched by pffindproto. This allows a process to handle any IP protocol that is not known to the kernel, without making kernel modifications.

We saw in Section 7.8 that all entries in the ip_protox array that are unknown are set to point to the entry for IPPROTO_RAW, whose protocol switch entry we show in Figure 32.5.

Figure 32.5. The raw IP protosw structure.

[image: Image]

We describe the three functions that begin with rip_ in this chapter. We also cover the function rip_output, which is not in the protocol switch entry but is called by rip_usrreq when a raw IP datagram is output.

The fifth raw IP function, rip_init, is contained only in the wildcard entry. The initialization function must be called only once, so it could appear in either the IPPROTO_RAW entry or in the wildcard entry.

What Figure 32.5 doesn’t show, however, is that other protocols (ICMP and IGMP) also reference some of the raw IP functions in their protosw entries. Figure 32.6 compares the relevant fields in the protosw entries for the four SOCK_RAW protocols. To highlight the differences, values in these rows are in a bolder font when they differ.

Figure 32.6. Comparison of protocol switch values for raw sockets.

[image: Image]

The implementation of raw sockets has changed with the different BSD releases. The entry with a protocol of IPPROTO_RAW has always been used as the wildcard entry in the ip_protox table for unknown IP protocols. The entry with a protocol of 0 has always been the default entry, to allow processes to read and write IP datagrams with a protocol that the kernel doesn’t support.

Usage of the IPPROTO_RAW entry by a process started when Traceroute was developed by Van Jacobson, because Traceroute was the first process that needed to write its own IP headers (to change the TTL field). The kernel patches to 4.3BSD and Net/1 to support Traceroute included a change to rip_output so that if the protocol was IPPROTO_RAW, it was assumed the process had passed a complete IP datagram, including the IP header. This was changed with Net/2 when the IP_HDRINCL socket option was introduced, removing this overloading of the IPPROTO_RAW protocol and allowing a process to send its own IP header with the wildcard entry.

32.4. rip_init Function

The domaininit function calls the raw IP initialization function rip_init (Figure 32.7) at system initialization time.

Figure 32.7. rip_init function.

	

-- raw_ip.c
 47 void
 48 rip_init()
 49 {

 50 rawinpcb.inp_next = rawinpcb.inp_prev = &rawinpcb;
 51 }
-- raw_ip.c

The only action performed by this function is to set the next and previous pointers in the head PCB (rawinpcb) to point to itself. This is an empty doubly linked list.

Whenever a socket of type SOCK_RAW is created by the socket system call, we’ll see that the raw IP PRU_ATTACH function creates an Internet PCB and puts it onto the rawinpcb list.

32.5. rip_input Function

Since all entries in the ip_protox array for unknown protocols are set to point to the entry for IPPROTO_RAW (Section 7.8), and since the pr_input function for this protocol is rip_input (Figure 32.6), this function is called for all IP datagrams that have a protocol value that the kernel doesn’t recognize. But from Figure 32.2 we see that both ICMP and IGMP also call rip_input. This happens under the following conditions:

[image: Image] icmp_input calls rip_input for all unknown ICMP message types and for all ICMP messages that are not reflected.

[image: Image] igmp_input calls rip_input for all IGMP packets.

One reason for calling rip_input in these two cases is to allow a process with a raw socket to handle new ICMP and IGMP messages that might not be supported by the kernel.

Figure 32.8 shows the rip_input function.

Figure 32.8. rip_input function.

[image: Image]

Save source IP address

59-66

The source address from the IP datagram is put into the global variable ripsrc, which becomes an argument to sbappendaddr whenever a matching PCB is found. Unlike UDP, there is no concept of a port number with raw IP, so the sin_port field in the sockaddr_in structure is always 0.

Search all raw IP PCBs for one or more matching entries

67-88

Raw IP handles its list of PCBs differently from UDP and TCP. We saw that these two protocols maintain a pointer to the PCB for the most recently received datagram (a one-behind cache) and call the generic function in_pcblookup to search for a single “best” match when the received datagram does not equal the cache entry. Raw IP has completely different criteria for a matching PCB, so it searches the PCB list itself. in_pcblookup cannot be used because a raw IP datagram can be delivered to multiple sockets, so every PCB on the raw PCB list must be scanned. This is similar to UDP’s handling of a received datagram destined for a broadcast or multicast address (Figure 23.26).

Compare protocols

68-69

If the protocol field in the PCB is nonzero, and if it doesn’t match the protocol field in the IP header, the PCB is ignored. This implies that a raw socket with a protocol value of 0 (the third argument to socket) can match any received raw IP datagram.

Compare local and foreign IP addresses

70-75

If the local address in the PCB is nonzero, and if it doesn’t match the destination IP address in the IP header, the PCB is ignored. If the foreign address in the PCB is nonzero, and if it doesn’t match the source IP address in the IP header, the PCB is ignored.

These three tests imply that a process can create a raw socket with a protocol of 0, not bind a local address, and not connect to a foreign address, and the process receives all datagrams processed by rip_input.

Lines 71 and 74 both contain the same bug: the test for equality should be a test for inequality.

Pass copy of received datagram to processes

76-94

sbappendaddr passes a copy of the received datagram to the process. The use of the variable last is similar to what we saw in Figure 23.26: since sbappendaddr releases the mbuf after placing it onto the appropriate queue, if more than one process receives a copy of the datagram, rip_input must make a copy by calling m_copy. But if only one process receives the datagram, there’s no need to make a copy.

Undeliverable datagram

95-99

If no matching sockets are found for the datagram, the mbuf is released, ips_noproto is incremented, and ips_delivered is decremented. This latter counter was incremented by IP just before calling the rip_input (Figure 8.15). It must be decremented so that the two SNMP counters, ipInDiscards and ipInDelivers (Figure 8.6) are correct, since the datagram was not really delivered to a transport layer.

At the beginning of this section we mentioned that icmp_input calls rip_input for unknown message types and for messages that are not reflected. This means that the receipt of an ICMP host unreachable causes ips_noproto to be incremented if there are no raw listeners whose PCB is matched by rip_input. That’s one reason this counter has such a large value in Figure 8.5. The description of this counter as being “unknown or unsupported protocols” is not entirely accurate.

Net/3 does not generate an ICMP destination unreachable message with code 2 (protocol unreachable) when an IP datagram is received with a protocol field that is not handled by either the kernel or some process through a raw socket. RFC 1122 says an implementation should generate this ICMP error. (See Exercise 32.4.)

32.6. rip_output Function

We saw in Figure 32.6 that rip_output is called for output for raw sockets by ICMP, IGMP, and raw IP. Output occurs when the application calls one of the five write functions: send, sendto, sendmsg, write, or writev. If the socket is connected, any of the five functions can be called, although a destination address cannot be specified with sendto or sendmsg. If the socket is unconnected, only sendto and sendmsg can be called, and a destination address must be specified.

The function rip_output is shown in Figure 32.9.

Figure 32.9. rip_output function.

	

--- raw_ip.c
105 int
106 rip_output(m, so, dst)
107 struct mbuf *m;
108 struct socket *so;
109 u_long dst;
110 {
111 struct ip *ip;
112 struct inpcb *inp = sotoinpcb(so);
113 struct mbuf *opts;
114 int flags = (so->so_options & SO_DONTROUTE) | IP_ALLOWBROADCAST;

115 /*
116 * If the user handed us a complete IP packet, use it.
117 * Otherwise, allocate an mbuf for a header and fill it in.
118 */
119 if ((inp->inp_flags & INP_HDRINCL) == 0) {
120 M_PREPEND(m, sizeof(struct ip), M_WAIT);
121 ip = mtod(m, struct ip *);
122 ip->ip_tos = 0;
123 ip->ip_off = 0;
124 ip->ip_p = inp->inp_ip.ip_p;
125 ip->ip_len = m->m_pkthdr.len;
126 ip->ip_src = inp->inp_laddr;
127 ip->ip_dst.s_addr = dst;
128 ip->ip_ttl = MAXTTL;
129 opts = inp->inp_options;
130 } else {
131 ip = mtod(m, struct ip *);
132 if (ip->ip_id == 0)
133 ip->ip_id = htons(ip_id++);
134 opts = NULL;
135 /* XXX prevent ip_output from overwriting header fields */
136 flags |= IP_RAWOUTPUT;
137 ipstat.ips_rawout++;
138 }
139 return (ip_output(m, opts, &inp->inp_route, flags, inp->inp_moptions));
140 }
--- raw_ip.c

Kernel fills in IP header

119-128

If the IP_HDRINCL socket option is not defined, M_PREPEND allocates room for an IP header, and fields in the IP header are filled in. The fields that are not filled in here are left for ip_output to initialize (Figure 8.22). The protocol field is set to the value stored in the PCB, which we’ll see in Figure 32.10 is the third argument to the socket system call.

Figure 32.10. rip_usrreq function: PRU_ATTACH request.

	

--- raw_ip.c
194 int
195 rip_usrreq(so, req, m, nam, control)
196 struct socket *so;
197 int req;
198 struct mbuf *m, *nam, *control;
199 {
200 int error = 0;
201 struct inpcb *inp = sotoinpcb(so);
202 extern struct socket *ip_mrouter;
203 switch (req) {

204 case PRU_ATTACH:
205 if (inp)
206 panic("rip_attach");
207 if ((so->so_state & SS_PRIV) == 0) {
208 error = EACCES;
209 break;
210 }
211 if ((error = soreserve(so, rip_sendspace, rip_recvspace)) ||
212 (error = in_pcballoc(so, &rawinpcb)))
213 break;
214 inp = (struct inpcb *) so->so_pcb;
215 inp->inp_ip.ip_p = (int) nam;
216 break;
--- raw_ip.c

The TOS is set to 0 and the TTL to 255. These values are always used for a raw socket when the kernel fills in the header. This differs from UDP and TCP where the process had the capability of setting the IP_TTL and IP_TOS socket options.

129

Any IP options set by the process with the IP_OPTIONS socket options are passed to ip_output through the opts variable.

Caller fills in IP header: IP_HDRINCL socket option

130-133

If the IP_HDRINCL socket option is set, the caller supplies a completed IP header at the front of the datagram. The only modification made to this IP header is to set the ID field if the value supplied by the process is 0. The ID field of an IP datagram can be 0. The assignment of the ID field here by rip_output is just a convention that allows the process to set it to 0, asking the kernel to assign an ID value based on the kernel’s current ip_id variable.

134-136

The opts variable is set to a null pointer, which ignores any IP options the process may have set with the IP_OPTIONS socket option. The convention here is that if the caller builds its own IP header, that header includes any IP options the caller might want. The flags variable must also include the IP_RAWOUTPUT flag, telling ip_output to leave the header alone.

137

The counter ips_rawout is incremented. Running Traceroute causes this variable to be incremented by 1 for each datagram sent by Traceroute.

The operation of rip_output has changed over time. When the IP_HDRINCL socket option is used in Net/3, the only change made to the IP header by rip_output is to set the ID field, if the process sets it to 0. The Net/3 ip_output function does nothing to the IP header fields because the IP_RAWOUTPUT flag is set. Net/2, however, always set certain fields in the IP header, even if the IP_HDRINCL socket option was set: the IP version was set to 4, the fragment offset was set to 0, and the more-fragments flag was cleared.

32.7. rip_usrreq Function

The protocol’s user-request function is called for a variety of operations. As with the UDP and TCP user-request functions, rip_usrreq is a large switch statement, with one case for each PRU_xxx request.

The PRU_ATTACH request, shown in Figure 32.10, is from the socket system call.

194-206

Since the socket function creates a new socket structure each time it is called, that structure cannot point to an Internet PCB.

Verify superuser

207-210

Only the superuser can create a raw socket. This is to prevent random users from writing their own IP datagrams to the network.

Create Internet PCB and reserve buffer space

211-215

Space is reserved for input and output queues, and in_pcballoc allocates a new Internet PCB. The PCB is added to the raw IP PCB list (rawinpcb). The PCB is linked to the socket structure. The nam argument to rip_usrreq is the third argument to the socket system call: the protocol. It is stored in the PCB since it is used by rip_input to demultiplex received datagrams, and its value is placed into the protocol field of outgoing datagrams by rip_output (if IP_HDRINCL is not set).

A raw IP socket can be connected to a foreign IP address similar to a UDP socket being connected to a foreign IP address. This fixes the foreign IP address from which the raw socket receives datagrams, as we saw in rip_input. Since raw IP is a connectionless protocol like UDP, a PRU_DISCONNECT request can occur in two cases:

1. When a connected raw socket is closed, PRU_DISCONNECT is called before PRU_DETACH.

2. When a connect is issued on an already-connected raw socket, soconnect issues the PRU_DISCONNECT request before the PRU_CONNECT request.

Figure 32.11 shows the PRU_DISCONNECT, PRU_ABORT, and PRU_DETACH requests.

Figure 32.11. rip_usrreq function: PRU_DISCONNECT, PRU_ABORT, and PRU_DETACH requests.

	

--- raw_ip.c
217 case PRU_DISCONNECT:
218 if ((so->so_state & SS_ISCONNECTED) == 0) {
219 error = ENOTCONN;
220 break;
221 }
222 /* FALLTHROUGH */

223 case PRU_ABORT:
224 soisdisconnected(so);
225 /* FALLTHROUGH */

226 case PRU_DETACH:
227 if (inp == 0)
228 panic("rip_detach");
229 if (so == ip_mrouter)
230 ip_mrouter_done();
231 in_pcbdetach(inp);
232 break;
--- raw_ip.c

217-222

The socket must already be connected to disconnect or else an error is returned.

223-225

A PRU_ABORT abort should never be issued for a raw IP socket, but this case also handles the fall through from PRU_DISCONNECT. The socket is marked as disconnected.

226-230

The close system call issues the PRU_DETACH request, and this case also handles the fall through from the PRU_DISCONNECT request. If the socket structure is the one used for multicast routing (ip_mrouner), multicast routing is disabled by calling ip_mrouter_done. Normally the mrouted(8) daemon issues the DVMRP_DONE socket option to disable multicast routing, so this check handles the case of the router daemon terminating (i.e., crashing) without issuing the socket option.

231

The Internet PCB is released by in_pcbdetach, which also removes the PCB from the list of raw IP PCBs (rawinpcb).

A raw IP socket can be bound to a local IP address with the PRU_BIND request, shown in Figure 32.12. We saw in rip_input that the socket will receive only datagrams sent to this IP address.

Figure 32.12. rip_usrreq function: PRU_BIND request.

	

--- raw_ip.c
233 case PRU_BIND:
234 {
235 struct sockaddr_in *addr = mtod(nam, struct sockaddr_in *);

236 if (nam->m_len != sizeof(*addr)) {
237 error = EINVAL;
238 break;
239 }
240 if ((ifnet == 0) ||
241 ((addr->sin_family != AF_INET) &&
242 (addr->sin_family != AF_IMPLINK)) ||
243 (addr->sin_addr.s_addr &&
244 ifa_ifwithaddr((struct sockaddr *) addr) == 0)) {
245 error = EADDRNOTAVAIL;
246 break;
247 }
248 inp->inp_laddr = addr->sin_addr;
249 break;
250 }
--- raw_ip.c

233-250

The process fills in a sockaddr_in structure with the local IP address. The following three conditions must all be true, or else the error EADDRNOTAVAIL is returned:

1. at least one interface must be configured,

2. the address family must be AF_INET (or AF_IMPLINK, a historical artifact), and

3. if the IP address being bound is not 0.0.0.0, it must correspond to a local interface. For the call to ifa_ifwithaddr to succeed, the port number in the caller’s sockaddr_in must be 0.

The local IP address is stored in the PCB.

A process can also connect a raw IP socket to a particular foreign IP address. We saw in rip_input that this restricts the process so that it receives only IP datagrams with a source IP address equal to the connected IP address. A process has the option of calling bind, connect, both, or neither, depending on the type of filtering it wants rip_input to place on received datagrams. Figure 32.13 shows the PRU_CONNECT request.

Figure 32.13. rip_usrreq function: PRU_CONNECT request.

	

--- raw_ip.c
251 case PRU_CONNECT:
252 {
253 struct sockaddr_in *addr = mtod(nam, struct sockaddr_in *);

254 if (nam->m_len != sizeof(*addr)) {
255 error = EINVAL;
256 break;
257 }
258 if (ifnet == 0) {
259 error = EADDRNOTAVAIL;
260 break;
261 }
262 if ((addr->sin_family != AF_INET) &&
263 (addr->sin_family != AF_IMPLINK)) {
264 error = EAFNOSUPPORT;
265 break;
266 }
267 inp->inp_faddr = addr->sin_addr;
268 soisconnected(so);
269 break;
270 }
--- raw_ip.c

251-270

If the caller’s sockaddr_in is initialized correctly and at least one IP interface is configured, the specified foreign IP address is stored in the PCB. Notice that this process differs from the connection of a UDP socket to a foreign address. In the UDP case, in_pcbconnect acquires a route to the foreign address and also stores the outgoing interface as the local address (Figure 22.9). With raw IP, only the foreign IP address is stored in the PCB, and unless the process also calls bind, only the foreign address is compared by rip_input.

A call to shutdown specifying that the process has finished sending data generates the PRU_SHUTDOWN request, although it is rare for a process to issue this system call for a raw IP socket. Figure 32.14 shows the PRU_CONNECT2 and PRU_SHUTDOWN requests.

Figure 32.14. rip_usrreq function: PRU_CONNECT2 and PRU_SHUTDOWN requests.

	

-- raw_ip.c
271 case PRU_CONNECT2:
272 error = EOPNOTSUPP;
273 break;

274 /*
275 * Mark the connection as being incapable of further input.
276 */
277 case PRU_SHUTDOWN:
278 socantsendmore(so);
279 break;
-- raw_ip.c

271-273

The PRU_CONNECT2 request is not supported for a raw IP socket.

274-279

socantsendmore sets the socket’s flags to prevent any future output.

In Figure 23.14 we showed how the five write functions call the protocol’s pr_usrreq function with a PRU_SEND request. We show this request in Figure 32.15.

Figure 32.15. rip_usrreq function: PRU_SEND request.

	

-- raw_ip.c
280 /*
281 * Ship a packet out. The appropriate raw output
282 * routine handles any massaging necessary.
283 */
284 case PRU_SEND:
285 {
286 u_long dst;

287 if (so->so_state & SS_ISCONNECTED) {
288 if (nam) {
289 error = EISCONN;
290 break;
291 }
292 dst = inp->inp_faddr.s_addr;
293 } else {
294 if (nam == NULL) {
295 error = ENOTCONN;
296 break;
297 }
298 dst = mtod(nam, struct sockaddr_in *)->sin_addr.s_addr;
299 }
300 error = rip_output(m, so, dst);
301 m = NULL;
302 break;
303 }
-- raw_ip.c

280-303

If the socket state is connected, the caller cannot specify a destination address (the nam argument). Likewise, if the state is unconnected, a destination address is required. If all is OK, in either state, dst is set to the destination IP address. rip_output sends the datagram. The mbuf pointer m is set to a null pointer, to prevent it from being released at the end of the function. This is because the interface output routine will release the mbuf after it has been output. (Remember that rip_output passes the mbuf chain to ip_output, who appends it to the interface’s output queue.)

The final part of rip_usrreq is shown in Figure 32.16. The PRU_SENSE request, generated by the fstat system call, returns nothing. The PRU_SOCKADDR and PRU_PEERADDR requests are from the getsockname and getpeername system calls, respectively. The remaining requests are not supported.

Figure 32.16. rip_usrreq function: remaining requests.

	

-- raw_ip.c
304 case PRU_SENSE:
305 /*
306 * fstat: don't bother with a blocksize.
307 */
308 return (0);

309 /*
310 * Not supported.
311 */
312 case PRU_RCVOOB:
313 case PRU_RCVD:
314 case PRU_LISTEN:
315 case PRU_ACCEPT:
316 case PRU_SENDOOB:
317 error = EOPNOTSUPP;
318 break;

319 case PRU_SOCKADDR:
320 in_setsockaddr(inp, nam);
321 break;

322 case PRU_PEERADDR:
323 in_setpeeraddr(inp, nam);
324 break;

325 default:
326 panic("rip_usrreq");
327 }
328 if (m != NULL)
329 m_freem(m);
330 return (error);
331 }
-- raw_ip.c

319-324

The functions in_setsockaddr and in_setpeeraddr fetch the information from the PCB, storing the result in the nam argument.

32.8. rip_ctloutput Function

The setsockopt and getsockopt system calls invoke the rip_ctloutput function. Only one IP socket option is handled here, along with eight socket options related to multicast routing.

Figure 32.17 shows the first part of the rip_ctloutput function.

Figure 32.17. rip_usrreq function: process IP_HDRINCL socket option.

	

--- raw_ip.c
144 int
145 rip_ctloutput(op, so, level, optname, m)
146 int op;
147 struct socket *so;
148 int level, optname;
149 struct mbuf **m;
150 {
151 struct inpcb *inp = sotoinpcb(so);
152 int error;

153 if (level != IPPROTO_IP)
154 return (EINVAL);

155 switch (optname) {

156 case IP_HDRINCL:
157 if (op == PRCO_SETOPT || op == PRCO_GETOPT) {
158 if (m == 0 || *m == 0 || (*m)->m_len < sizeof(int))
159 return (EINVAL);
160 if (op == PRCO_SETOPT) {
161 if (*mtod(*m, int *))
162 inp->inp_flags |= INP_HDRINCL;
163 else
164 inp->inp_flags &= ~INP_HDRINCL;
165 (void) m_free(*m);
166 } else {
167 (*m)->m_len = sizeof(int);
168 *mtod(*m, int *) = inp->inp_flags & INP_HDRINCL;
169 }
170 return (0);
171 }
172 break;
--- raw_ip.c

144-172

The size of the mbuf that contains either the new value of the option or will hold the current value of the option must be at least as large as an integer. For the setsockopt system call, the flag is set if the integer value in the mbuf is nonzero, or cleared otherwise. For the getsockopt system call, the value returned in the mbuf is either 0 or the nonzero value of the flag. The function returns, to avoid the processing at the end of the switch statement for other IP options.

Figure 32.18 shows the last portion of the rip_ctloutput function. It handles eight multicast routing socket options.

Figure 32.18. rip_usrreq function: process multicast routing socket option.

	

--- raw_ip.c
173 case DVMRP_INIT:
174 case DVMRP_DONE:
175 case DVMRP_ADD_VIF:
176 case DVMRP_DEL_VIF:
177 case DVMRP_ADD_LGRP:
178 case DVMRP_DEL_LGRP:
179 case DVMRP_ADD_MRT:
180 case DVMRP_DEL_MRT:

 /* shown in Figure 14.9 */

188 }
189 return (ip_ctloutput(op, so, level, optname, m));
190 }
--- raw_ip.c

173-188

These eight socket options are valid only for the setsockopt system call. They are processed by the ip_mrouter_cmd function as discussed with Figure 14.9.

189

Any other IP socket options, such as IP_OPTIONS to set the IP options, are processed by ip_ctloutput.

32.9. Summary

Raw sockets provide three capabilities for an IP host.

1. They are used to send and receive ICMP and IGMP messages.

2. They allow a process to build its own IP headers.

3. They allow additional IP-based protocols to be supported in a user process.

We saw that raw IP output is simple it just fills in a few fields in the IP header b ut it allows a process to supply its own IP header. This allows diagnostic programs to create any type of IP datagram.

Raw IP input provides three types of filtering for incoming IP datagrams. The process chooses to receive datagrams based on (1) the protocol field, (2) the source IP address (set by connect), and (3) the destination IP address (set by bind). The process chooses which combination of these three filters (if any) to apply.

Exercises

32.1 Assume the IP_HDRINCL socket option is not set. What value will rip_output place into the IP header protocol field (ip_p) when the third argument to socket is 0? What value will rip_output place into this field when the third argument to socket is IPPROTO_RAW(255)?

32.2 A process creates a raw socket with a protocol value of IPPROTO_RAW (255). What type of IP datagrams will the process receive on this socket?

32.3 A process creates a raw socket with a protocol value of 0. What type of IP datagrams will the process receive on this socket?

32.4 Modify rip_input to send an ICMP destination unreachable with code 2 (protocol unreachable) when appropriate. Be careful not to generate the error for received ICMP and IGMP packets for which rip_input is called.

32.5 If a process wants to write its own IP datagrams with its own IP header, what are the differences in using a raw IP socket with the IP_HDRINCL option, and using BPF (Chapter 31)?

32.6 When would a process read from a raw IP socket, and when would it read from BPF?

Epilogue

“We have come a long way. Nine chapters stuffed with code is a lot to negotiate. If you didn’t assimilate all of it the first time through, don’t worry—you weren’t really expected to. Even the best of code takes time to absorb, and you seldom grasp all the implications until you try to use and modify the program. Much of what you learn about programming comes only from working with the code: reading, revising and rereading.”

From the Epilogue of Software Tools [Kernighan and Plauger 1976].

“In fact, this RFC will argue that modularity is one of the chief villains in attempting to obtain good performance, so that the designer is faced with a delicate and inevitable tradeoff between good structure and good performance.”

From RFC 817 [Clark 1982].

This text has provided a long and detailed examination of a significant piece of a real operating system. Versions of the code presented in the text are shipped as part of the Unix kernel with most flavors of Unix today, along with many non-Unix systems.

The code that we’ve examined is not perfect and it is not the only way to write a TCP/IP protocol stack. It has been modified, enhanced, tweaked, and maligned over the past 15 years by many people. Large portions of the code that we’ve presented weren’t even written at the U. C. Berkeley Computer Systems Research Group: the multicasting code was written by Steve Deering, the long fat pipe support was added by Thomas Skibo, portions of the TCP code were written by Van Jacobson, and so on. The code contains gotos (221 to be exact), many large functions (e.g., tcp_input and tcp_output), and numerous examples of questionable coding style. (We tried to note these items when discussing the code.) Nevertheless, the code is unquestionably “industrial strength” and continues to be the base upon which new features are added and the standard upon which other implementations are measured.

The Berkeley networking code was designed on VAXes when a VAX-11/780 with 4 megabytes of memory was a big system. For that reason some of the design features (e.g., mbufs) emphasized memory savings over higher performance. This would change if the code were rewritten from scratch today.

There has been a strong push over the last few years toward higher performance of networking software, as the underlying networks become faster (e.g., FDDI and ATM) and as high-bandwidth applications become more prevalent (e.g., voice and video). Whenever designing networking software within the kernel of an operating system, clarity normally gives way to speed [Clark 1982]. This will continue in any real-world implementation.

The research implementation of the Internet protocols described in [Partridge 1993] and [Jacobson 1993] is a move toward much higher performance. [Jacobson 1993] reports the code is 10 to 100 times faster than the implementation described in this book. Mbufs, software interrupts, and much of the protocol layering evident in BSD systems are gone. If widely released, this implementation could become the standard that others are measured against in the future.

In July 1994 the successor to IP version 4, IP version 6 (IPv6), was announced. It uses 128-bit (16-byte) addresses. Many changes will take place with the IP and ICMP protocols, but the transport layers, UDP and TCP, will remain virtually the same. (There is talk of a TCPng, the next generation of TCP, but the authors think just upgrading IP will provide enough of a challenge for the hundreds of vendors and millions of users across the world to put off any changes to TCP.) It will take a year or two for vendor-supported implementations to appear, and many years after that for end users to migrate their hosts and routers to IPv6. Research implementations of IPv6 based on the code in this text should appear in early 1995.

To continue your understanding of the Berkeley networking code, the best course of action at this point is to obtain the source code, and modify it. The source code is easily obtainable (Appendix B) and numerous exercises throughout the text suggest modifications.

Appendix A. Solutions to Selected Exercises

Chapter 1

1.2 SLIP drivers execute at spltty (Figure 1.13), which must be a priority lower than or equal to splimp and must be a priority higher than splnet. Therefore the SLIP drivers are blocked from interrupting.

Chapter 2

2.1 The M_EXT flag is a property of the mbuf itself, not a property of the packet described by the mbuf.

2.2 The caller asks for more than 100 (MHLEN) contiguous bytes.

2.3 This is infeasible since clusters can be pointed to by multiple mbufs (Section 2.9). Also, there is no room in a cluster for a back pointer (Exercise 2.4).

2.4 In the macros MCLALLOC and MCLFREE in <sys/mbuf.h> we see that the reference count is an array named mclrefcnt. This array is allocated when the kernel is initialized in the file machdep.c.

Chapter 3

3.3 A large interactive queue would defeat the purpose of the queue by delaying new interactive traffic behind the existing interactive data.

3.4 Since the sl_softc structures are all declared as global variables, they are initialized to 0 when the kernel starts.

3.5 [image: Image]

Chapter 4

4.1 leread must examine the packet to decide if it needs to be discarded after it is passed to BPF. Since a BPF tap can enable promiscuous mode on the interface, packets may be addressed to some other system on the Ethernet and must be discarded after BPF has processed them.

When the interface is not tapped, the tests must be done in ether_input.

4.2 If the tests were reversed, the broadcast flag would never be set.

If the second if wasn’t preceded by an else, every broadcast packet would also have the multicast flag set.

Chapter 5

5.1 The loopback interface does not need an input function because all its packets are received directly from looutput, which performs the “input” functions.

5.2 The stack allocation is faster than dynamic memory allocation. Performance is important for BPF processing, since the code is executed for each incoming packet.

5.5 The first character that overflows the buffer is discarded, SC_ERROR is set, and slinput resets the cluster pointers to begin collecting characters at the start of the buffer. Because SC_ERROR is set, slinput discards the frame when it receives the SLIP END character.

5.6 IP discards the packet when the checksum is found to be invalid or when it notices that the length in the IP header does not match the physical packet size.

5.7 Since ifp points to the first member of a le_softc structure,

sc = (struct le_softc *)ifp;

initializes sc correctly.

5.8 This is very hard to do. Some routers may send ICMP source quench messages when they begin discarding packets but Net/3 discards these messages for UDP sockets (Figure 23.30). An application would have to begin using the same techniques used by TCP: estimation of the available bandwidth and delay on roundtrip times for acknowledged datagrams.

Chapter 6

6.1 Before IP subnetting (RFC 950 [Mogul and Postel 1985]), the network and host portions of IP addresses always appeared on byte boundaries. The definition of an in_addr structure was

struct in_addr {
 union {
 struct { u_char s_b1, s_b2, s_b3, s_b4; } S_un_b;
 struct { u_short s_w1, s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
#define s_addr S_un.S_addr /* should be used for all code */
#define s_host S_un.S_un_b.s_b2 /* OBSOLETE: host on imp */
#define s_net S_un.S_un_b.s_b1 /* OBSOLETE: network */
#define s_imp S_un.S_un_w.s_w2 /* OBSOLETE: imp */
#define s_impno S_un.S_un_b.s_b4 /* OBSOLETE: imp # */
#define s_lh S_un.S_un_b.s_b3 /* OBSOLETE: logical host */
};

The Internet address could be accessed as 8-bit bytes, 16-bit words, or a single 32-bit address. The macros s_host, s_net, s_imp, and so on have names that correspond to the physical structure of early TCP/IP networks.

The use of subnetting and supernetting makes the byte and word divisions obsolete.

6.2 A pointer to the structure labeled sl_softc[0] is returned.

6.3 The interface output functions, such as ether_output, have a pointer only to the ifnet structure for the interface, and not to an ifaddr structure. Using the IP address in the arpcom structure (which is the last IP address assigned to the interface) avoids having to select an address from the ifaddr address list.

6.4 Only a superuser process can create a raw IP socket. By using a UDP socket, any process can examine the interface configurations but the kernel can still require superuser privileges to modify the interface addresses.

6.5 Three functions loop through a netmask 1 byte at a time. These are ifa_ifwithnet, ifaof_ifpforaddr, and rt_maskedcopy. A shorter mask improves the performance of these functions.

6.6 The Telnet connection is established with the remote system. Net/2 systems shouldn’t forward these packets, and other systems should never accept loopback packets that arrive on any interface other than the loopback interface.

Chapter 7

7.1 The following call returns a pointer to inetsw[6]:

pffindproto(PF_INET, 0, SOCK_RAW);

Chapter 8

8.1 Probably not. The system could not respond to any broadcasts since it would have no source address to use in the reply.

8.4 Since the packet has been damaged, there is no way of knowing if the addresses in the header are correct or not.

8.5 If an application selects a source address that differs from the address of the selected outgoing interface, redirects from the selected next-hop router fail. The next-hop router sees a source address different from that of the subnetwork on which it was transmitted and does not send a redirect message. This is a consequence of implementing the weak end system model and is noted in RFC 1122.

8.6 The new host thinks the broadcast packet is the address of some other host in the unsubnetted network and trys to send it back out on the network. The network interface begins broadcasting ARP requests for the broadcast address, which are never answered.

8.7 The decrement of the TTL is done after the comparison for less than or equal to 1 to avoid the potential error of decrementing a received TTL of 0 to become 255.

8.8 If two routers each consider the other the best next-hop for a packet, a routing loop exists.

Until the loop is removed, the original packet bounces between the two routers and each one sends an ICMP redirect back to the source host if that host is on the same network as the routers. Loops may exist when the routing tables are temporarily inconsistent during a routing update.

The TTL of the original packet eventually reaches 0 and the packet is discarded. This is one of the primary reasons why the TTL field exists.

8.9 The four Ethernet broadcast addresses would not be checked because they do not belong to the receiving interface. The limited-broadcast addresses would be checked. This implies that a system on a SLIP link can communicate with the system on the other end without knowing the other system’s address by utilizing the limited-broadcast address.

8.10 ICMP error messages are generated only for the initial fragment of a datagram, which always has an offset of 0. The host and network forms for 0 are the same, so no conversion is necessary.

Chapter 9

9.1 RFC 1122 says that the behavior is implementation dependent when conflicting options appear in a packet. Net/3 processes the first source route option correctly, but since this updates ip_dst in the packet header, the second source route processing will be incorrect.

9.2 The host within the network can be used as a relay to access other hosts within the network. To communicate with an otherwise-blocked host, the source host need only construct packets with a loose route to the relay host and then to the final destination host. The router does not drop the packets because the destination address is the relay host, which will process the route and forward the packet to the final destination host. The destination host reverses the route and uses the relay host to return packets.

9.3 The same principle from the previous exercise applies. We pick a relay router that can communicate with the source and destination hosts and construct source routes to pass through the relay and to the destination. The relay router must be on the same network as the destination host so that a default route is not required for communication.

This technique can be extended to allow two hosts to communicate even if they do not have routes to each other, as long as they can find willing relay hosts.

9.4 If the source route is the only IP option, the NOP option causes all the IP addresses to be on a 4-byte boundary in the IP header. This can optimize memory references to these addresses on many architectures. This alignment technique also works when multiple options are present if each option is padded with NOPs to a 4-byte boundary.

9.5 A nonstandard time value cannot be confused with a standard value since the largest standard time value is 86,399,999 (24 × 60 × 60 × 1000−1) and this value can be represented in 28 bits, which avoids any conflict with the high-order bit since time values are 32 bits long.

9.6 The source route option code may change ip_dst in the packet during processing. The destination is saved so that the timestamp processing code uses the original destination.

Chapter 10

10.2 After reassembly, only the options from the initial fragment are available to the transport protocols.

10.3 The fragment is read into a cluster since the data length (204 + 20) is greater than 208 (Figure 2.16).

m_pullup in Figure 10.11 moves the first 40 bytes into a separate mbuf as in Figure 2.18.

[image: Image]

10.5 The average number of received fragments per datagram is

[image: Image]

The average number of fragments created for an outgoing datagram is

[image: Image]

10.6 In Figure 10.11 the packet is initially processed as a fragment. The reserved bit is discarded when ip_off is left shifted. The resulting packet is processed as a fragment or as a complete datagram, depending on the values of the MF and offset bits.

Chapter 11

11.1 The outgoing reply uses the source address of the interface on which the request was received. Hosts are not required to recognize 0.0.0.0 as a valid broadcast address, so the request may be ignored. The recommended broadcast address is 255.255.255.255.

11.2 Assume that a host sends link-level broadcasts packets with the IP source address of another host and the packet contains errors such as an improperly formed option. Every host receives and detects the error because of the link-level broadcast and because options are processed before a final destination check. Many hosts that detect the error try to send an ICMP message back to the IP source of the packet even though the original packet was sent as a link-level broadcast. The unfortunate host will begin receiving many bogus ICMP error messages. This is one reason why ICMP errors must not be sent in response to link-level broadcasts.

11.3 In the first case, such a redirect message can fool the host into sending packets to an arbitrary host on an alternate subnetwork. This host may be masquerading as a router but recording the traffic it receives instead. RFC 1009 requires that routers only generate redirect messages for other routers on the same subnet. Even if the host ignores these messages to redirect packets to a new subnetwork, a host on the same subnetwork can fool the host. The second case guards against this by requiring that the host only accept the redirect advice from the original router that it had (erroneously) selected to receive the traffic. Presumably this incorrect router was a default router specified by an administrator.

11.4 By passing the message to rip_input, a process-level daemon could respond and old systems that relied on this behavior could continue to be supported.

11.5 ICMP errors are sent only for the initial fragment of an IP datagram. Since the offset value of an initial fragment is always 0, the byte ordering of the field is unimportant.

11.6 If the ICMP request was received on an interface that was not yet configured with an IP address, ia would be null and no reply could be generated.

11.7 Net/3 reflects the data along with the timestamp reply.

11.10 The high-order bit is reserved and must be 0. If it is sent, icmp_error will discard the packet.

11.11 The return value is discarded because icmp_send does not return an error, but more significantly, errors generated during ICMP processing are discarded to avoid generating an endless series of error messages.

Chapter 12

12.1 On an Ethernet, the IP broadcast address 255.255.255.255 translates to the Ethernet broadcast address ff:ff:ff:ff:ff:ff and is received by every Ethernet interface on the network. Systems that aren’t running IP software must actively receive and discard each of these broadcast packets.

A packet sent to the IP all-hosts multicast group 224.0.0.1 translates to the Ethernet multicast address 01:00:5e:00:00:01 and is received only by systems that have explicitly instructed their interfaces to receive IP multicast datagrams. Systems that aren’t running IP or that aren’t level-2 compliant never receive these datagrams, as they are discarded by the Ethernet interface hardware itself.

12.2 One alternative would be to specify interfaces by their text name as with the ifreq structure and the ioctl commands for accessing interface information. ip_setmoptions and ip_getmoptions would have to call ifunit instead of INADDR_TO_IFP to locate the pointer to the interface’s ifnet structure.

12.3 The high-order 4 bits of a multicast group are always 1110, so only 5 significant bits are discarded by the mapping function.

12.4 The entire ip_moptions structure must fit within an mbuf, which limits the size of the structure to 108 bytes (remember the 20-byte mbuf header). IP_MAX_MEMBERSHIPS can be larger but must be less than or equal to 25. (4 + 1 + 1 + 2 + (4 × 25) = 108)

12.5 The datagram is duplicated and two copies appear on the IP input queue. A multicast application must be prepared to discard duplicate datagrams.

12.6 [image: Image]

12.8 The process could create a second socket and request another IP_MAX_MEMBERSHIPS through the second socket.

12.9 Define a new mbuf flag M_LOCAL for the m_flags member of the mbuf header. The flag can be set on loopback packets by ip_output instead of computing the checksum. ipintr can skip the checksum verification if the flag is on. SunOS 5.X has an option to do this (ip_local_cksum, page 531, Volume 1).

12.10 There are 223−1 (8,388,607) unique Ethernet IP multicast addresses. Remember that IP group 224.0.0.0 is reserved.

12.11 This assumption is correct since in_addmulti rejects all add requests if the interface does not have an ioctl function, and this implies that in_delmulti is never called if if_ioctl is null.

12.12 The mbuf is never released. It appears that ip_getmoptions contains a memory leak. ip_getmoptions is called from ip_ctloutput, which allows a call such as:

ip_getmoptions(IP_ADD_MEMBERSHIP, 0, mp)

which exercises the bug in ip_getmoptions.

Chapter 13

13.1 Responding to an IGMP query from the loopback interface is unnecessary since the local host is the only system on the loopback network and it already knows its membership status.

13.2 max_linkhdr + sizeof(struct ip) + IGMP_MINLEN = 16 + 20 + 8 = 44 < 100

13.3 The primary reason for the random delay in reporting memberships is to minimize (ideally to 1) the number of reports that appear on a multicast network. A point-to-point network consists only of two interfaces, so the delay is not necessary to minimize the response to the query. One interface (presumably a multicast router) generates the query, and the other interface responds.

There is another reason not to flood the interface’s output queue with all the membership reports. The output queue may have a packet or byte limit that could be exceeded by many IGMP membership reports. For example, in the SLIP driver, if the output queue is full or the device is too busy, the entire queue of pending packets is discarded (Figure 5.16).

Chapter 14

14.1 Five. One each for networks A through E.

14.2 grplst_member is called only by ip_mforward, but ip_mforward can be called by ipintr during protocol processing, or by ip_output, which can be called indirectly from the socket layer. The cache is a shared data structure that must be protected while it is being updated. The membership list itself is protected by splx calls in add_lgrp and del_lgrp, where it is modified.

14.3 The SIOCDELMULTI command affects only the Ethernet multicast list for the interface. The IP multicast group list remains unchanged, so the interface remains a member of the group. The interface continues accepting multicast datagrams for any groups that are still on the IP group membership list for the interface. Specifically, when ether_delmulti returns ENETRESET to leioctl, the function lereset is called to reconfigure the interface (Figure 12.31).

14.4 Only one virtual interface is considered to be the parent interface for a multicast spanning tree. If the packet is accepted on the tunnel, then the physical interface cannot be the parent and ip_mforward discards the packet.

Chapter 15

15.1 The socket could be shared across a fork or passed to a process through a Unix domain socket ([Stevens 1990]).

15.2 The sa_len member of the structure is larger than the size of the buffer after accept returns. This is usually not a problem with the fixed-length Internet address, but it can be when using variable-length addresses supported by the OSI protocols, for example.

15.4 The call to soqremque is only made when so_qlen is not equal to 0. If soqremque returns a null pointer there must be an error in the socket queueing code so the kernel panics.

15.5 The copy is made so that bzero can clear the structure while it is locked and so that dom_dispose and sbrelease can be called after splx. This minimizes the amount of time the CPU is kept at splimp and therefore the amount of time that network interrupts are blocked.

15.6 The sbspace macro will return 0. As a result, the sbappendaddr and sbappendcontrol functions (used by UDP) will refuse to queue additional packets. TCP uses sbappend, which assumes that the caller has checked for space first. TCP calls sbappend even when sbspace returns 0. The data placed in the receive queue is not available to a process because the SS_CANTRCVMORE flag prevents the read system calls from returning any data.

Chapter 16

16.1 When the value is assigned to uio_resid in the uio structure it becomes a large negative number. sosend rejects the message with EINVAL.

Net/2 did not check for a negative value. This problem is described by the comment at the start of sosend (Figure 16.23).

16.2 No. The only time the cluster is ever filled with less than MCLBYTES is at the end of a message when less than MCLBYTES remain. resid is 0 at this time and the loop is terminated by the break on line 394 before reaching the test for space > 0.

16.5 The process blocks until the buffer is unlocked. In this case the lock exists only while another process is examining the buffer or passing data to the protocol layer, and not when a process must wait for space in the buffer, which may take an indefinite amount of time.

16.6 If the send buffer contained many mbufs, each of which contained only a few bytes of data, sb_cc may be well below the limit specified by sb_hiwat while a large amount of memory would be allocated for the mbufs. If the kernel didn’t limit the number of mbufs attached to each buffer, a process could easily create a memory shortage.

16.7 recvit is called from recvfrom and recvmsg. Only recvmsg handles control information. The entire msghdr structure, including the length of the control message, is copied back to the process by recvmsg. For address information, recvmsg sets the namelenp argument to null because it expects the length in msg_namelen. When recvfrom calls recvit, the namelenp is nonnull because it expects the length in *namelenp.

16.8 MSG_EOR is cleared by soreceive so that it is not inadvertently returned by soreceive before an M_EOR mbuf is processed.

16.9 There would be a race condition while select examined the descriptors. If a selectable event occurred after selscan examined the descriptor but before select called tsleep, it would not be detected and the process would sleep until another selectable event occurred.

Chapter 17

17.1 This simplifies the code that copies data between the kernel and the process. copyin and copyout can be used for a single mbuf, but uiomove is needed to handle multiple mbufs.

17.2 The code works correctly because the first member of a linger structure is the expected integer flag.

Chapter 18

18.1 Write eight rows, one for each possible combination of the bits from the search key, the routing table key, and the routing table mask.

[image: Image]

The column “2 == 4?” should equal the final column “6 & 3.” On first glance they are not the same, but we can ignore rows 3 and 7 because in these two rows the routing table bit is 1 while the same bit in the routing table mask is 1. When the routing table is built the key is logically ANDed with the mask, guaranteeing that for every bit of 0 in the mask, the corresponding bit in the key is also 0.

Another way to look at the exclusive OR and logical AND in Figure 18.40 is that the exclusive OR becomes 1 only if the search key bit differs from the bit in the routing table key. The logical AND then ignores any differences that correspond to a bit that’s 0 in the mask. If the result is still nonzero, the search key does not match the routing table

18.2 The size of an rtentry structure is 120 bytes, which includes the two radix_node structures. Each entry also requires two sockaddr_in structures (Figure 18.28), for 152 bytes per routing table entry. The total is about 3 megabytes.

18.3 Since rn_b is a short integer, assuming 16 bits for a short imposes a limit of 32767 bits per key (4095 bytes).

Chapter 19

19.1 The RTF_DYNAMIC flag is set in Figure 19.15 when the route is created by a redirect, and the RTF_MODIFIED flag is set when the gateway field of an existing route is modified by a redirect. If a route is created by a redirect and then later modified by another redirect, both flags will be set.

19.2 A host route is created for each host accessed through the default route. TCP can then maintain and update routing metrics for each individual host (Figure 27.3).

19.3 Each rt_msghdr structure requires 76 bytes. Two sockaddr_in structures are present for a host route (destination and gateway) giving a message size of 108 bytes. The message size for each ARP entry is 112 bytes: one sockaddr_in and one sockaddr_dl. The total size is then (15 × 112 + 20 × 108) or 3840 bytes. A network route (instead of a host route) requires an additional 8 bytes for the network mask (116 bytes for the message instead of 108), so if the 20 routes are all network routes, the total size is 4000 bytes.

Chapter 20

20.1 The return value is returned in the rtm_errno member of the message (Figure 20.14) and also as the return value from write (Figure 20.22). The latter is more reliable since the former may run into mbuf starvation, causing the reply message to be discarded (Figure 20.17).

20.2 For a SOCK_RAW socket, the pffindproto function (Figure 7.20) returns the entry with a protocol of 0 (the wildcard) if an exact match isn’t found.

Chapter 21

21.1 It is assumed that the ifnet structure is at the beginning of the arpcom structure, which it is (Figure 3.20).

21.2 Sending the ICMP echo request does not require ARP, since the destination address is the broadcast address. But the ICMP echo replies are normally unicast, so each sender uses ARP to determine the destination Ethernet address. When the local host receives each ARP request, in_arpinput replies and creates an entry for the other host.

21.3 When a new ARP entry is created, the rt_gateway value, a sockaddr_dl structure in this case, is copied from the entry being cloned by rtrequest in Figure 19.8. In Figure 21.1 we see that the sdl_alen member of this entry is 0.

21.4 With Net/3, if the caller of arpresolve supplies a pointer to a routing table entry, arplookup is not called, and the corresponding Ethernet address is available through the rt_gateway pointer (assuming it hasn’t expired). This avoids any type of lookup in the common case. In Chapter 22 we’ll see that TCP and UDP store a pointer to their routing table entry in their protocol control block, avoiding a search of the routing table in the case of TCP (where the destination IP address never changes for a connection) and in the case of UDP when the destination doesn’t change.

21.5 The timeout of an incomplete ARP entry occurs between 0 and 5 minutes after the entry is created. arpresolve sets rt_expire to the current time when the ARP request is sent. The next time arptimer runs, if that entry is not resolved, it is deleted (assuming its reference count is 0).

21.6 ether_output returns EHOSTUNREACH instead of EHOSTDOWN, causing an ICMP host unreachable error to be sent to the sending host by ip_forward.

21.7 The value for 140.252.13.32 is set in Figure 21.28 to the current time when the entry is created. It never changes.

The values for 140.252.13.33 and 140.252.13.34 are copied from the entry for 140.252.13.32 when these two entries are cloned by rtrequest. They are then set to the time at which an ARP request is sent by arpresolve, and finally set by in_arpinput to the time at which an ARP reply is received, plus 20 minutes.

The value for 140.252.13.35 is also copied from the entry for 140.252.13.32 when the entry is cloned, but then set to 0 by the code at the end of Figure 21.29.

21.8 Change the call to arplookup at the beginning of Figure 21.19 to always specify a second argument of 1 (the create flag).

21.9 The first datagram was sent after the halfway mark to the next second. Therefore both the first and second datagrams caused ARP requests to be sent, about 500 ms apart, since the kernel’s time.tv_sec variable had different values when these two datagrams were sent.

21.10 Each packet to send is an mbuf chain. The m_nextpkt pointer in the first mbuf in each chain could be used to form a list of mbufs awaiting transmission.

Chapter 22

22.1 An infinite loop occurs, waiting for a port to become available. This assumes the process is allowed to open enough descriptors to tie up all ephemeral ports.

22.2 Few, if any, servers support this option. [Cheswick and Bellovin 1994] mention how this would be nice for implementing firewall systems.

22.4 The udb structure is initialized to 0 so udb.inp_lport starts at 0. The first time through in_pcbbind it is incremented to 1, which is less than 1024, so it is set to 1024.

22.5 Normally the caller sets the address family (sa_family) to AF_INET, but we saw in Figure 22.20 that the test for this is commented out. The caller can set the length member (sa_len), but we saw in Figure 15.20 that the function sockargs always sets this to the third argument to bind, which for a sockaddr_in structure is specified as 16, normally using C’s sizeof operator.

The local IP address (sin_addr) can be specified as a wildcard address or as a local IP address. The local port number (sin_port), can be either 0 (telling the kernel to choose an ephemeral port) or nonzero if the process wants a particular port. Normally a TCP or UDP server specifies a wildcard IP address and a nonzero port, and a UDP client often specifies a wildcard IP address and a port number of 0.

22.6 A process is allowed to bind a local broadcast address, because the call to ifa_ifwithaddr in Figure 22.22 succeeds. That address is used as the source address for IP datagrams sent on the socket. As noted in Section C.2, this behavior is not allowed by RFC 1122.

An attempt to bind 255.255.255.255, however, fails, since that address is not acceptable to ifa_ifwithaddr.

Chapter 23

23.1 sosend places the user data into a single mbuf if the size is less than or equal to 100 bytes; into two mbufs if the size is less than or equal to 207 bytes; or into one or more mbufs, each with a cluster, otherwise. Furthermore, sosend calls MH_ALIGN if the size is less than 100 bytes, which, it is hoped, will allow room at the beginning of the mbuf for the protocol headers. Since udp_output calls M_PREPEND, the following five scenarios are possible: (1) If the size of the user data is less than or equal to 72 bytes, a single mbuf contains the IP header, UDP header, and data. (2) If the size is between 73 and 100 bytes, one mbuf is allocated by sosend for the data and another is allocated by M_PREPEND for the IP and UDP headers. (3) If the size is between 101 and 207 bytes, two mbufs are allocated by sosend for the data and another by M_PREPEND for the IP and UDP headers. (4) If the size is between 208 and MCLBYTES, one mbuf with a cluster is allocated by sosend for the data and another by M_PREPEND for the IP and UDP headers. (5) Beyond this size, sosend allocates as many mbufs with clusters as necessary to hold the data (up to 64 for a maximum data size of 65507 bytes with 1024-byte clusters), and one mbuf is allocated by M_PREPEND for the IP and UDP headers.

23.2 IP options are passed to ip_output, which calls ip_insertoptions to insert the options into the outgoing IP datagram. This function in turn allocates a new mbuf to hold the IP header including options if the first mbuf in the chain points to a cluster (which never happens with UDP output) or if there is not enough room at the beginning of the first mbuf in the chain for the options. In scenario 1 from the previous solution, the size of the options determines whether another mbuf is allocated by ip_insertoptions: if the size of the user data is less than 100–28– optlen, (where optlen is the number of bytes of IP options), there is room in the mbuf for the IP header with options, the UDP header, and the data.

In scenarios 2, 3, 4, and 5, the first mbuf in the chain is always allocated by M_PREPEND just for the IP and UDP headers. M_PREPEND calls m_prepend, which calls MH_ALIGN, moving the 28 bytes of headers to the end of the mbuf, hence there is always room for the maximum of 40 bytes of IP options in this first mbuf in the chain.

23.3 No. The function in_pcbconnect is called, either when the application calls connect or when the first datagram is sent on an unconnected UDP socket. Since the local address is a wildcard and the local port is 0, in_pcbconnect sets the local port to an ephemeral port (by calling in_pcbbind) and sets the local address based on the route to the destination.

23.4 The processor priority level is left at splnet; it is not restored to the saved value. This is a bug.

23.5 No. in_pcbconnect will not allow a connection to port 0. Even if the process doesn’t call connect directly, an implicit connect is performed, so in_pcbconnect is called regardless.

23.6 The application must call ioctl with the SIOCGIFCONF command to return information on all configured IP interfaces. The destination address in the received UDP datagram must then be compared against all the IP addresses and broadcast addresses in the list returned by ioctl. (As an alternative to ioctl, the sysctl system call described in Section 19.14 can also be used to obtain the information on all the configured interfaces.)

23.7 recvit releases the mbuf with the control information.

23.8 To disconnect a connected UDP socket, call connect with an invalid address, such as 0.0.0.0, and a port of 0. Since the socket is already connected, soconnect calls sodisconnect, which calls udp_usrreq with a PRU_DISCONNECT request. This sets the foreign address to 0.0.0.0 and the foreign port to 0, allowing a subsequent call to sendto that specifies a destination address to succeed. Specifying the invalid address causes the PRU_CONNECT request from sodisconnect to fail. We don’t want the connect to succeed, we just want the PRU_DISCONNECT request executed and this back door through connect is the only way to execute this request, since the sockets API doesn’t provide a disconnect function.

The manual page for connect(2) usually contains the following note that hints at this: “Datagram sockets may dissolve the association by connecting to an invalid address, such as a null address.” What this note fails to mention is that the call to connect for the invalid address is expected to return an error. The term null address is also vague: it means the IP address 0.0.0.0, not a null pointer for the second argument to bind.

23.9 Since an unconnected UDP socket is temporarily connected to the foreign IP address by in_pcbconnect, the scenario is the same as if the process calls connect: the datagram is sent out the primary interface with a destination IP address corresponding to the broadcast address of that interface.

23.10 The server must set the IP_RECVDSTADDR socket option and use recvmsg to obtain the destination IP address from the client’s request. For this address to be the source IP address of the reply requires that this IP address be bound to the socket. Since you cannot bind a socket more than once, the server must create a brand new socket for each reply.

23.11 Notice in ip_output (Figure 8.22) that IP does not modify the DF bit supplied by the caller. A new socket option could be defined to cause udp_output to set the DF bit before passing datagrams to IP.

23.12 No. It is used only in the udp_input function and should be local to that function.

Chapter 24

24.1 The total number of ESTABLISHED connections is 126,820. Dividing this into the total number of bytes transmitted and received yields an average of about 30,000 bytes in each direction.

24.2 In tcp_output, the mbuf obtained for the IP and TCP headers also contains room for the link-layer headers (max_linkhdr). The IP and TCP header prototype is copied into the mbuf using bcopy, which won’t work if the 40-byte header were split between two mbufs. Although the 40-byte headers must fit into one mbuf, the link-layer header need not. But a performance penalty would occur later (ether_output) because a separate mbuf would be required for the link-layer header.

24.3 On the author’s system bsdi, the count was 16, 15 of which were standard system daemons (Telnet, Rlogin, FTP, etc.). On vangogh.cs.berkeley.edu, a medium-sized multiuser system with around 20 users, the count was 60. On a large multiuser system (world.std.com) with around 150 users, the count was 417 TCP end points and 809 UDP end points.

Chapter 25

25.1 Figure 24.5 there were 531,285 delayed ACKs over 2,592,000 seconds (30 days). This is an average of about one delayed ACK every 5 seconds, or one delayed ACK every 25 times tcp_fasttimo is called. This means 96% of the time (24 times out of every 25) every TCP control block is checked for the delayed-ACK flag, when not one is set. On the large multiuser system in the solution to Exercise 24.3, this involves looking at over 400 control blocks, 5 times a second.

One alternative implementation would be to set a global flag when a delayed ACK is needed and only go through the list of control blocks when the flag is set. Alternatively, another list could be maintained that contains only the control blocks that require a delayed ACK. See, for example, the variable igmp_timers_are_running in Figure 13.14.

25.2 This allows the variable tcp_keepintvl to be patched in the running kernel, which then changes the value of tcp_maxidle the next time tcp_slowtimo is called.

25.3 t_idle actually counts the time since a segment was last received or transmitted. This is because TCP output must be acknowledged by the other end and the receipt of the ACK clears t_idle, as does the receipt of a data segment (Figure 28.8).

25.4 Here is one way to rewrite the code:

case TCPT_2MSL:
 if (tp->t_state == TCPS_TIME_WAIT)
 tp = tcp_close(tp);
 else {
 if (tp->t_idle <= tcp_maxidle)
 tp->t_timer[TCPT_2MSL] = tcp_keepintvl;
 else
 tp = tcp_close(tp);
 }
 break;

25.5 When the duplicate ACK is received, t_idle is 150, but it is reset to 0. When the FIN_WAIT_2 timer expires, t_idle will be 1048 (1198 − 150), so the timer is set to 150 ticks. When the timer expires the next time, t_idle will be 1198, so the timer is set to 150 ticks. When the timer expires the next time, t_idle will be 1198 + 150, so the connection is closed. The duplicate ACK extends the time until the connection is closed.

25.6 The first keepalive probe will be sent 1 hour in the future. When the process sets the option, nothing happens other than setting the SO_KEEPALIVE option in the socket structure. When the timer expires 1 hour in the future, since the option is enabled, the code in Figure 25.16 sends the first probe.

25.7 The value of tcp_rttdflt initializes the RTT estimators for every TCP connection. A site can change the default of 3, if desired, by patching the global variable. If the value were a #define constant, it could be changed only by recompiling the kernel.

Chapter 26

26.1 The counter t_idle is always running for a connection, whereas TCP does not measure the amount of time since the last segment was sent on a connection.

26.2 In Figure 25.26 snd_nxt is set to snd_una, giving a value of 0 for len.

26.3 If you’re running a Net/3 system and encounter a peer that can’t handle either of these two newer options (i.e., that peer refuses to establish the connection, even though a host is required to ignore options it doesn’t understand), this global can be patched in the kernel to disable one or both of these options.

26.4 The timestamp option would have updated the RTT estimators each time an ACK was received for new data: 16 times, twice the number of times without the option. The value calculated when the ACK of 6145 was received at time 217.944, however, would have been bogus—either the data segment with bytes 5633 through 6144 that was sent at time 3.740, or the received ACK of 6145, was delayed somewhere for about 200 seconds.

26.5 There is no guarantee that the 2-byte MSS value is correctly aligned for such a memory reference.

26.6 (This solution is from Dave Borman.) The maximum amount of TCP data in a segment is 65495 bytes, which is 65535 minus the minimum IP and TCP headers (40). Hence there are 39 values of the urgent offset that make no sense: 65496 through and including 65535. Whenever the sender has a 32-bit urgent offset that exceeds 65495, 65535 is sent as the urgent offset instead, and the URG flag is set. This puts the receiver into urgent mode and tells the receiver that the urgent offset points to data that has not been sent yet. The special value of 65535 continues to be sent as the urgent offset (with the URG flag set) until the urgent offset is less than or equal to 65495, at which point the real urgent offset is sent.

26.7 We’ve mentioned that data segments are transmitted reliably (i.e., the retransmission timer is set) but ACKs are not. RST segments are not transmitted reliably either. RST segments are generated when a bogus segment arrives (either a segment that is wrong for a connection, or a segment for a nonexistent connection). If the RST segment is discarded by ip_output, when the other end retransmits the segment that caused the RST to be generated, another RST will be generated.

26.8 The application does eight writes of 1024 bytes. The first four times sosend is called, tcp_output is called, and a segment is sent. Since these four segments each contain the final bytes of data in the send buffer, the PSH flag is set for each segment (Figure 26.25). The send buffer is also full, so the next write by the process puts the process to sleep in sosend. When the ACK is returned with an advertised window of 0, the 4096 bytes of data in the send buffer have been acknowledged and are discarded, and the process wakes up and continues filling the send buffer with the next four writes. But nothing can be sent until a nonzero window is advertised by the receiver. When this happens, the next four segments are sent, but only the final segment contains the PSH flag, since the first three segments do not empty the send buffer.

26.9 The tp argument to tcp_respond can be a null pointer if the segment being sent does not correspond to a connection. The code should check the value of tp and use the default only if the pointer is null.

26.10 tcp_output always allocates an mbuf just to contain the IP and TCP headers, by calling MGETHDR in Figures 26.25 and 26.26. This code allocates room at the front of the new mbuf only for the link-layer header (max_linkhdr). If IP options are in use and the size of the options exceeds max_linkhdr, another mbuf is allocated by ip_insertoptions. If the size of the IP options is less than or equal to max_linkhdr, then even though ip_insertoptions will use the space at the beginning of the mbuf, this will cause ether_output to allocate another mbuf for the link-layer header (assuming Ethernet output).

To try to avoid the extra mbuf, Figures 26.25 and 26.26 could call MH_ALIGN if the segment will contain IP options.

26.11 About 80 lines of C code, assuming RFC 1323 timestamps are in use and the segment is timed.

The macro MGETHDR invokes the macro MALLOC, which might call the function malloc. The function m_copy is also called, but a full-sized segment will be in a cluster, so the mbuf is not copied, a reference is made to the cluster. The call to MGET by m_copy might call malloc. The function bcopy copies the header template and in_cksum calculates the TCP checksum.

26.12 Nothing changes with writev because of the logic in sosend. Since the total size of the data (150) is less than MINCLSIZE (208), one mbuf is allocated for the first 100 bytes, and since the protocol is not atomic, the PRU_SEND request is issued. Another mbuf is allocated for the next 50 bytes, and another PRU_SEND is issued. TCP still generates two segments. (writev only generates a single “record,” that is, a single PRU_SEND request, for PR_ATOMIC protocols such as UDP.)

With two buffers of length 200 and 300 the total size now exceeds MINCLSIZE. An mbuf cluster is allocated and only one PRU_SEND is issued. One 500-byte segment is generated by TCP.

Chapter 27

27.1 The first six rows of the table are asynchronous errors that are generated by the receipt of a segment or the expiration of a timer. By storing the nonzero error code in so_error, the process receives the error on the next read or write. The call from tcp_disconnect, however, occurs when the process calls close, or when the descriptor is closed automatically on process termination. In either case of the descriptor being closed, the process won’t issue a read or write call to fetch the error. Also, since the process had to set the socket option explicitly to force the RST, returning an error provides no useful information to the process.

27.2 Assuming a 32-bit u_long, the maximum value is just under 4298 seconds (1.2 hours).

27.3 The statistics in the routing table are updated by tcp_close and it is called only when the connection enters the CLOSED state. Since the sending of data to the other end is terminated by the FTP client (it does the active close), the local end point enters the TIME_WAIT state. The routing table statistics won’t be updated until twice the MSL has elapsed.

Chapter 28

28.1 0, 1, 2, and 3.

28.2 34.9 Mbits/sec. For higher speeds, larger buffers are required on both ends.

28.3 In the general case, tcp_dooptions doesn’t know whether the two timestamp values are aligned on 32-bit boundaries or not. The special code in Figure 28.4, however, knows that the values are on 32-bit boundaries, and avoids calling bcopy.

28.4 The “options prediction” code in Figure 28.4 handles only the recommended format, so systems that send other than the recommended format cause the slower processing of tcp_dooptions to occur for every received segment.

28.5 If tcp_template were called every time a socket were created, instead of every time a connection is established, each listening server on a system would have one allocated, which it would never use.

28.6 The timestamp clock frequency should be between 1 bit/ms and 1 bit/sec. (Net/3 uses 2 bits/sec.) With the highest frequency of 1 bit/ms, a 32-bit timestamp wraps its sign bit in 231/(24 × 60 × 60 × 1000) days, which is 24.8 days.

28.7 With a frequency of 1 bit per 500 ms, a 32-bit timestamp wraps its sign bit in 231/(24 × 60 × 60 × 2) days, which is 12,427 days, or about 34 years, longer than the uptime of current computer systems.

28.8 The cleanup function of an RST should take precedence over timestamps, and it is recommended that RSTs not carry timestamps (which is enforced by tcp_input in Figure 26.24).

28.9 Since the client is in the ESTABLISHED state, processing ends up in Figure 28.24. todrop is 1 because rcv_nxt was incremented over the SYN when it was first received. The SYN flag is cleared (since it is a duplicate), ti_seq is incremented, and todrop is decremented to 0. The if statement at the top of Figure 28.25 is executed since todrop and ti_len are both 0. The next if statement is skipped, and processing continues with the call to m_adj. But tcp_output is not called in the continuation of tcp_input in the next chapter, therefore the client does not respond to the duplicate SYN/ACK. The server will time out and resend the SYN/ACK (recall the timer set in Figure 28.17 when a passive socket receives a SYN), which will also be ignored. This is another bug in the code in Figure 28.25 and this one is also fixed with the code shown in Figure 28.30.

28.10 The client’s SYN arrives at the server and is delivered to the socket in the TIME_WAIT state. The code in Figure 28.24 turns off the SYN flag and the code in Figure 28.25 jumps to dropafterack, dropping the segment but generating an ACK with an acknowledgment field of rcv_nxt (Figure 26.27). This is called a resynchronization ACK because its purpose is to tell the other end what sequence number it expects. When this ACK is received at the client (which is in the SYN_SENT state), its acknowledgment field is not the expected value (Figure 28.18), causing an RST to be sent. The sequence number of the RST is the acknowledgment field from the resynchronization ACK, and the ACK flag of the RST segment is off (Figure 29.28). When the server receives the RST, its TIME_WAIT state is prematurely terminated and the socket is closed on the server’s host (Figure 28.36). The client times out after 6 seconds and retransmits its SYN. Assuming a listening server process is running on the server host, the new connection is established. Because of this form of TIME_WAIT assassination, a new connection is established not only when a SYN arrives with a higher sequence number (as checked for in Figure 28.29), but also when a SYN with a lower sequence number arrives.

Chapter 29

29.1 Assume a 2-second RTT. The server has a passive open pending and the client issues its active open at time 0. The server receives the SYN at time 1 and responds with its own SYN and an ACK of the client’s SYN. The client receives this segment at time 2, and the code in Figure 28.20 completes the active open with the call to soisconnected (waking up the client process) and an ACK will be sent back to the server. The server receives the ACK at time 3, and the code in Figure 29.2 completes the server’s passive open, returning control to the server process. In general, the client process receives control about one-half RTT before the server.

29.2 Assume the sequence number of the SYN is 1000 and the 50 bytes of data are numbered 1001–1050. When the SYN is processed by tcp_input, first the case starting in Figure 28.15 is executed, which sets rcv_nxt to 1001, and then a jump is made to step6. Figure 29.22 calls tcp_reass and the data is placed onto the socket’s reassembly queue. But the data cannot be appended to the socket’s receive buffer yet (Figure 27.23) so rcv_nxt is left at 1001. When tcp_output is called to generate the immediate ACK, rcv_nxt (1001) is sent as the acknowledgment field. In summary, the SYN is acknowledged, but not the 50 bytes of data. Since the client will retransmit the 50 bytes of data, there is no advantage in sending data with a SYN generated by an active open.

29.3 The server’s socket is in the SYN_RCVD state when the client’s ACK/FIN arrives, so tcp_input ends up processing the ACK in Figure 29.2. The connection moves to the ESTABLISHED state and tcp_reass appends the already-queued data to the socket’s receive buffer. rcv_nxt is incremented to 1051. tcp_input continues and the FIN is handled in Figure 29.24 where the TF_ACKNOW flag is set and rcv_nxt becomes 1052. socantrcvmore sets the socket’s state so that after the server reads the 50 bytes of data, the server will receive an end-of-file. The server’s socket also moves to the CLOSE_WAIT state. tcp_output will be called to ACK the client’s FIN (since rcv_nxt equals 1052). Assuming the server process closes its socket when it reads the end-of-file, the server will then send a FIN for the client to ACK.

In this example six segments requiring three round trips are required to pass the 50 bytes from the client to server. To reduce the number of segments requires the TCP extensions for transactions [Braden 1994].

29.4 The client’s socket is in the SYN_SENT state when the server’s response is received. Figure 28.20 processes the segment and moves the connection to the ESTABLISHED state. A jump is made to step6 and the data is processed in Figure 29.22. TCP_REASS appends the data to the socket’s receive buffer and rcv_nxt is incremented to acknowledge the data. The FIN is then processed in Figure 29.24, incrementing rcv_nxt again and moving the connection to the CLOSE_WAIT state. When tcp_output is called, the acknowledgment field ACKs the SYN, the 50 bytes of data, and the FIN. The client process then reads the 50 bytes of data, followed by the end-of-file, and then probably closes its socket. This moves the connection to the LAST_ACK state and causes a FIN to be sent by the client, which the server should acknowledge.

29.5 The bug is in the entry tcp_outflags [TCPS_CLOSING] shown in Figure 24.16. It specifies the TH_FIN flag, whereas the state transition diagram (Figure 24.15) doesn’t specify that the FIN should be retransmitted. To fix this, remove TH_FIN from the tcp_outflags entry for this state. The bug is relatively harmless—it just causes two extra segments to be exchanged—and a simultaneous close or a close following a self-connect is rare.

29.6 No. An OK return from a write system call only means the data has been copied into the socket buffer. Net/3 does not notify the process when that data is acknowledged by the other end. An application-level acknowledgment is required to obtain this information.

29.7 RFC 1323 timestamps defeat header compression because whenever the timestamps change, the TCP options change, and the segment is sent uncompressed. The window scale option has no effect because the value in the TCP header is still a 16-bit value.

29.8 IP assigns the ID field from a global variable that is incremented each time any IP datagram is sent. This increases the probability that two consecutive TCP segments sent on the same connection will have ID values that differ by more than 1. A difference other than 1 causes the Δipid field in Figure 29.34 to be transmitted, increasing the size of the compressed header. A better scheme would be for TCP to maintain its own counter for assigning IDs.

Chapter 30

30.2 Yes, the RST is still sent. Part of process termination is the closing of all open descriptors. The same function (soclose) is eventually called, regardless of whether the process explicitly closes the socket descriptor or implicitly closes it (by terminating first).

30.3 No. The only use of this constant is when a listening socket sets the SO_LINGER socket option with a linger time of 0. Normally this causes an RST to be sent when the connection is closed (Figure 30.12), but Figure 30.2 changes this value of 0 to 120 (clock ticks) for a listening socket that receives a connection request.

30.4 Two if this is the first use of the default route; otherwise one. When the socket is created the Internet PCB is set to 0 by in_pcballoc. This sets the route structure in the PCB to 0. When the first segment is sent (the SYN), tcp_output calls ip_output. Since the ro_rt pointer is null, ro_dst is filled in with the destination address of the IP datagram and rtalloc is called. The pointer to the default route is saved in the ro_rt member of the route structure within the PCB for this connection. When ether_output is called by ip_output, it checks whether the rt_gwroute member of the routing table entry is null, and, if so, rtalloc1 is called. Assuming the route doesn’t change, each time tcp_output is called for this connection, the cached ro_rt pointer is used, avoiding any additional routing table lookups.

Chapter 31

31.1 Because catchpacket will always run to completion before any sleeping processes are awakened by the bpf_wakeup call.

31.2 A process that opens a BPF device may call fork resulting in multiple processes with access to the same BPF device.

31.3 Only supported devices are on the BPF interface list (bpf_iflist), so bpf_setif returns ENXIO when the interface is not found.

Chapter 32

32.1 0 in the first example, and 255 in the second. Both of these values are reserved in RFC 1700 [Reynolds and Postel 1994] and should not appear in datagrams. This means, for example, that a socket created with a protocol of IPPROTO_RAW should always have the IP_HDRINCL socket option set, and datagrams written to the socket should have a valid protocol value.

32.2 Since the IP protocol value of 255 is reserved, datagrams should never appear on the wire with this protocol value. Since this is a nonzero protocol value, the first of the three tests in rip_input will ignore every received datagram that does not have this protocol value. Therefore the process should not receive any datagrams on the socket.

32.3 Even though this protocol value is reserved and datagrams should never appear on the wire with this value, the first of the three tests in rip_input allows datagrams with any protocol value to be received by sockets of this type. The only input filtering that occurs for this type of raw socket is based on the source and destination IP addresses, if the process calls either connect or bind, or both.

32.4 Since the array ip_protox array (Figure 7.22) contains information about which protocol the kernel supports, the ICMP error should be generated only when there are no raw listeners for the protocol and the pointer inetsw[ip_protox [ip->ip_p]].pr_input equals rip_input.

32.5 In both cases the process must build its own IP header, in addition to whatever follows the IP header (UDP datagram, TCP segment, or whatever). With a raw IP socket, output is normally done using sendto specifying the destination address as an Internet socket address structure containing an IP address. ip_output is called and normal IP routing is done based on the destination IP address.

BPF requires the process to supply a complete data-link header, such as an Ethernet header. Output is normally done by calling write, since a destination address cannot be specified. The packet is passed directly to the interface output function, bypassing ip_output (Figure 31.20). The process selects the outgoing interface using the BIOCSETIF ioctl (Figure 31.16). Since IP routing is not performed, the destination of the packet is limited to another system on an attached network (unless the process duplicates the IP routing function and sends the packet to a router on an attached network, for the router to forward based on the destination IP address).

32.6 A raw IP socket receives only IP datagrams destined for an IP protocol that the kernel does not process itself. A process cannot receive TCP segments or UDP datagrams on a raw socket, for example.

BPF can receive all frames received on a specified interface, regardless of whether they are IP datagrams or not. The BIOCPROMISC ioctl can put the interface into a promiscuous mode, to receive datagrams that are not even destined for this host.

Appendix B. Source Code Availability

URLs: Uniform Resource Locators

This text uses URLs to specify the location and method of access of resources on the Internet. For example, the common “anonymous FTP” technique is designated as

ftp://ftp.cdrom.com/pub/bsd-sources/4.4BSD-Lite.tar.gz

This specifies anonymous FTP to the host ftp.cdrom.com. The filename is 4.4BSD-Lite.tar.gz in the directory pub/bsd-sources. The suffix .tar implies the standard Unix tar(1) format, and the additional .gz suffix implies that the file has been compressed with the GNU gzip(1) program.

4.4BSD-Lite

There are numerous ways to obtain the 4.4BSD-Lite release. The entire 4.4BSD-Lite release is available from Walnut Creek CD-ROM as

ftp://ftp.cdrom.com/pub/bsd-sources/4.4BSD-Lite.tar.gz

You can also obtain this release on CD-ROM. Contact 1 800 786 9907 or +1 510 674 0783.

O’Reilly & Associates publishes the entire set of 4.4BSD manuals along with the 4.4BSD-Lite release on CD-ROM. Contact 1 800 889 8969 or +1 707 829 0515.

Operating Systems that Run the 4.4BSD-Lite Networking Software

The 4.4BSD-Lite release is not a complete operating system. To experiment with the networking software described in this text you need an operating system that is built from the 4.4BSD-Lite release or an environment that supports the 4.4BSD-Lite networking code.

The operating system used by the authors is commercially available from Berkeley Software Design, Inc. Contact 1 800 ITS BSD8, +1 719 260 8114, or info@bsdi.com for additional information.

There are also freely available operating systems built on 4.4BSD-Lite. These are known by the names NetBSD, 386BSD, and FreeBSD. Additional information is available from Walnut Creek CD-ROM (ftp.cdrom.com) or on the various comp.os.386bsd Usenet newsgroups.

RFCs

All RFCs are available at no charge through electronic mail or by using anonymous FTP across the Internet. Sending electronic mail as shown here:

To: rfc-info@ISI.EDU
Subject: getting rfcs

help: ways_to_get_rfcs

returns a detailed listing of various ways to obtain the RFCs using either email or anonymous FTP.

Remember that the starting place is to obtain the current index and look up the RFC that you want in the index. This entry tells you if that RFC has been made obsolete or updated by a newer RFC.

GNU Software

The GNU Indent program was used to format all the source code presented in the text, and the GNU Gzip program is often used on the Internet to compress files. These programs are available as

ftp://prep.ai.mit.edu/pub/gnu/indent-1.9.1.tar.gz
ftp://prep.ai.mit.edu/pub/gnu/gzip-1.2.2.tar

The numbers in the filenames will change as newer versions are released. There are also versions of the Gzip program for other operating systems, such as MS-DOS.

There are many sites around the world that also provide the GNU archives, and the FTP greeting on prep.ai.mit.edu displays their names.

PPP Software

There are several freely available implementations of PPP. Part 5 of the comp.protocols.ppp FAQ is a good place to start:

http://cs.uni-bonn.de/ppp/part5.html

mrouted Software

Current releases of the mrouted software as well as other multicast applications can be found at the Xerox Palo Alto Research Center:

ftp://parcftp.xerox.com/pub/net-research/

ISODE Software

An SNMP agent implementation compatible with Net/3 is part of the ISODE software package. For more information, start with the ISODE Consortium’s World Wide Web page at

http://www.isode.com/

Appendix C. RFC 1122 Compliance

This appendix summarizes the compliance of the Net/3 implementation with RFC 1122 [Braden 1989a]. This RFC summarizes these requirements in four categories

[image: Image] link layer

[image: Image] internet layer

[image: Image] UDP

[image: Image] TCP

We have chosen to present these requirements in the same breakdown and order as the chapters of this text.

C.1. Link-Layer Requirements

This section summarizes the link-layer requirements from Section 2.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

[image: Image] May support trailer encapsulation.

Partially: Net/3 does not send IP datagrams with trailer encapsulation but some Net/3 device drivers may be able to receive such datagrams. We have omitted all the trailer encapsulation code in this text. Interested readers are referred to RFC 893 and Section 11.8 of [Leffler et al. 1989] for additional details.

[image: Image] Must not send trailers by default without negotiation.

Not applicable: Net/2 would negotiate the use of trailers but Net/3 ignores requests to send trailers and does not request trailers itself.

[image: Image] Must be able to send and receive RFC 894 Ethernet encapsulation.

Yes: Net/3 supports RFC 894 Ethernet encapsulation.

[image: Image] Should be able to receive RFC 1042 (IEEE 802) encapsulation.

No: Net/3 processes packets received with 802.3 encapsulation but only for use with OSI protocols. IP packets that arrive with 802.3 encapsulation are discarded by ether_input (Figure 4.13).

[image: Image] May send RFC 1042 encapsulation, in which case there must be a software configuration switch to select the encapsulation method and RFC 894 must be the default.

No: Net/3 does not send IP packets in RFC 1042 encapsulation.

[image: Image] Must report link-layer broadcasts to the IP layer.

Yes: The link layer reports link-layer broadcasts by setting the M_BCAST flag (or the M_MCAST flag for multicasts) in the mbuf packet header.

[image: Image] Must pass the IP TOS value to the link layer.

Yes: The TOS value is not passed explicitly, but is part of the IP header available to the link layer.

C.2. IP Requirements

This section summarizes the IP requirements from Section 3.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

[image: Image] Must implement IP and ICMP.

Yes: inetsw[0] implements the IP protocol and inetsw[4] implements ICMP.

[image: Image] Must handle remote multihoming in application layer.

Yes: The kernel is unaware of communication to remote multihomed hosts and neither hinders nor supports such communication by an application.

[image: Image] May support local multihoming.

Yes: Net/3 supports multiple IP interfaces with the ifnet list and multiple addresses per IP interface with the ifaddr list for each ifnet structure.

[image: Image] Must meet router specifications if forwarding datagrams.

Partially: See Chapter 18 for a discussion of the router requirements.

[image: Image] Must provide configuration switch for embedded router functionality. The switch must default to host operation.

Yes: The ipforwarding variable defaults to false and controls the IP packet forwarding mechanism in Net/3.

[image: Image] Must not enable routing based on number of interfaces.

Yes: The if_attach function does not modify ipforwarding according to the number of interfaces configured at system initialization time.

[image: Image] Should log discarded datagrams, including the contents of the datagram, and record the event in a statistics counter.

Partially: Net/3 does not provide a mechanism for logging the contents of discarded datagrams but maintains a variety of statistics counters.

[image: Image] Must silently discard datagrams that arrive with an IP version other than 4.

Yes: ipintr implements this requirement.

[image: Image] Must verify IP checksum and silently discard an invalid datagram.

Yes: ipintr calls in_cksum and implements this requirement.

[image: Image] Must support subnet addressing (RFC 950).

Yes: Every IP address has an associated subnet mask in the in_ifaddr structure.

[image: Image] Must transmit packets with host’s own IP address as the source address.

Partially: When the transport layer sends an IP datagram with all-0 bits as the source address, IP inserts the IP address of the outgoing interface in its place. A process can bind one of the local IP broadcast addresses to the local socket, and IP will transmit it as an invalid source address.

[image: Image] Must silently discard datagrams not destined for the host.

Yes: If the system is not configured as a router, ipintr discards datagrams that arrive with a bad destination address (i.e., an unrecognized unicast, broadcast, or multicast address).

[image: Image] Must silently discard datagrams with bad source address (nonunicast address).

No: ipintr does not examine the source address of incoming datagrams before delivering the datagram to the transport protocols.

[image: Image] Must support reassembly.

Yes: ip_reass implements reassembly.

[image: Image] May retain same ID field in identical datagrams.

No: ip_output assigns a new ID to every outgoing datagram and does not allow the ID to be specified by the transport protocols. See Chapter 32.

[image: Image] Must allow the transport layer to set TOS.

Yes: ip_output accepts any TOS value set in the IP header by the transport protocols. The transport layer must default TOS to all 0s. The TOS value for a particular datagram or connection may be set by the application through the IP_TOS socket option.

[image: Image] Must pass received TOS up to transport layer.

Yes: Net/3 preserves the TOS field during input processing. The entire IP header is made available to the transport layer when IP calls the pr_input function for the receiving protocol. Unfortunately, the UDP and TCP transport layers ignore it.

[image: Image] Should not use RFC 795 [Postel 1981d] link-layer mappings for TOS.

Yes: Net/3 does not use these mappings.

[image: Image] Must not send packet with TTL of 0.

Partially: The IP layer (ip_output) in Net/3 does not check this requirement and relies on the transport layers not to construct an IP header with a TTL of 0. UDP, TCP, ICMP, and IGMP all select a nonzero TTL default value. The default value can be overridden by the IP_TTL option.

[image: Image] Must not discard received packets with a TTL less than 2.

Yes: If the system is the final destination of the packet, ipintr accepts it regardless of the TTL value. The TTL is examined only when the packet is being forwarded.

[image: Image] Must allow transport layer to set TTL.

Yes: The transport layer must set TTL before calling ip_output.

[image: Image] Must enable configuration of a fixed TTL.

Yes: The default TTL is specified by the global integer ip_defttl, which defaults to 64 (IPDEFTTL). Both UDP and TCP use this value unless the IP_TTL socket option has specified a different value for a particular socket. ip_defttl can be modified through the IPCTL_DEFTTL name for sysctl.

Multihoming

[image: Image] Should select, as the source address for a reply, the specific address received as the destination address of the request.

Yes: Responses generated by the kernel (ICMP reply messages) include the correct source address (Section C.5). Responses generated by the transport protocols are described in their respective chapters.

[image: Image] Must allow application to choose local IP address.

Yes: An application can bind a socket to a specific local IP address (Section 15.8).

[image: Image] May silently discard datagrams addressed to an interface other than the one on which it is received.

No: Net/3 implements the weak end system model and ipintr accepts such packets.

[image: Image] May require packets to exit the system through the interface with an IP address that corresponds to the source address of the packet. This requirement pertains only to packets that are not source routed.

No: Net/3 allows packets to exit the system through any interface another weak end system characteristic.

Broadcast

[image: Image] Must not select an IP broadcast address as a source address.

Partially: If an application explicitly selects a source address, the IP layer does not override the selection. Otherwise, IP selects as a source address the specific IP address associated with the outgoing interface.

[image: Image] Should accept an all-0s or all-1s broadcast address.

Yes: ipintr accepts packets sent to either address.

[image: Image] May support a configurable option to send all 0s or all 1s as the broadcast address on an interface. If provided, the configurable broadcast address must default to all 1s.

No: A process must explicitly send to either the all-0s (INADDR_ANY) or all-1s broadcast address (INADDR_BROADCAST). There is no configurable default.

[image: Image] Must recognize all broadcast address formats.

Yes: ipintr recognizes the limited (all-1s and all-0s) and the network-directed and subnet-directed broadcast addresses.

[image: Image] Must use an IP broadcast or IP multicast destination address in a link-layer broadcast.

Yes: ip_output enables the link-layer multicast or broadcast flags only when the destination is an IP multicast or broadcast address.

[image: Image] Should silently discard link-layer broadcasts when the packet does not specify an IP broadcast address as its destination.

No: There is no explicit test for the M_BCAST or M_MCAST flags on incoming packets in Net/3, but ip_forward will discard these packets before forwarding them.

[image: Image] Should use limited broadcast address for connected networks.

Partially: The decision to use the limited broadcast address (versus a subnet-directed or network-directed broadcast) is left to the application level by Net/3.

IP Interface

[image: Image] Must allow transport layer to use all IP mechanisms (e.g., IP options, TTL, TOS).

Yes: All the IP mechanisms are available to the transport layer in Net/3.

[image: Image] Must pass interface identification up to transport layer.

Yes: The m_pkthdr.rcvif member of each mbuf containing an incoming packet points to the ifnet structure of the interface that received the packet.

[image: Image] Must pass all IP options to transport layer.

Yes: The entire IP header, including options, is present in the packet passed to the pr_input function of the receiving transport protocol by ipintr.

[image: Image] Must allow transport layer to send ICMP port unreachable and any of the ICMP query messages.

Yes: The transport layer may send any ICMP error messages by calling icmp_error or may format and send any type of IP datagram by calling the ip_output function.

[image: Image] Must pass the following ICMP messages to the transport layer: destination unreachable, source quench, echo reply, timestamp reply, and time exceeded.

Yes: These messages are distributed by ICMP to other transport protocols or to any waiting processes using the raw IP socket mechanism.

[image: Image] Must include contents of ICMP message (IP header plus the data bytes present) in ICMP message passed to the transport layer.

Yes: icmp_input passes the portion of the original IP packet contained within the ICMP message to the transport layers.

[image: Image] Should be able to leap tall buildings at a single bound.

No: The next version of IP may meet this requirement.

C.3. IP Options Requirements

This section summarizes the IP option processing requirements from Section 3.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

[image: Image] Must allow transport layer to send IP options.

Yes: The second argument to ip_output is a list of IP options to include in the outgoing IP datagram.

[image: Image] Must pass all IP options received to higher layer.

Yes: The IP header and options are passed to the pr_input function of the receiving transport protocol.

[image: Image] Must silently ignore unknown options.

Yes: The default case in ip_dooptions skips over unknown options.

[image: Image] May support the security option.

No: Net/3 does not support the IP security option.

[image: Image] Should not send the stream identifier option and must ignore it in received datagrams.

Yes: Net/3 does not support the stream identifier option and ignores it on incoming datagrams.

[image: Image] May support the record route option.

Yes: Net/3 supports the record route option.

[image: Image] May support the timestamp option.

Partially: Net/3 supports the timestamp option but does not implement it exactly as specified. The originating host does not insert a timestamp when required but the destination host records a timestamp before passing the datagram to the transport layer. The timestamp value follows the rules regarding standard values as specified in Section 3.2.2.8 of RFC 1122 for the ICMP timestamp message.

[image: Image] Must support originating a source route and must be able to act as the final destination of a source route.

Yes: A source route may be included in the options passed to ip_output, and ip_dooptions correctly terminates a source route and saves it for use in constructing return routes.

[image: Image] Must pass a datagram with completed source route up to the transport layer.

Yes: The source route option is passed up with any other options that may have appeared in the datagram.

[image: Image] Must build correct (nonredundant) return route.

No: Net/3 blindly reverses the source route and does not check or correct for a route that was built incorrectly with a redundant hop for the original source host.

[image: Image] Must not send multiple source route options in one header.

No: The IP layer in Net/3 does not prohibit a transport protocol from constructing and sending multiple source route options in a single datagram.

Source Route Forwarding

[image: Image] May support packet forwarding with the source route option.

Yes: Net/3 supports the source route options. ip_dooptions does all the work.

[image: Image] Must obey corresponding router rules while processing source routes.

Yes: Net/3 follows the router rules whether or not the packet contains a source route.

[image: Image] Must update TTL according to gateway rules.

Yes: ip_forward implements this requirement.

[image: Image] Must generate ICMP error codes 4 and 5 (fragmentation required and source route failed).

Yes: ip_output is able to generate a fragmentation required message, and ip_dooptions is able to generate the source route failed message.

[image: Image] Must allow the IP source address of a source routed packet to not be an IP address of the forwarding host.

Yes: ip_output transmits such packets.

RFC 1122 lists this as a may requirement because the addresses may be different, which must be allowed.

[image: Image] Must update timestamp and record route options.

Yes: ip_dooptions processes these options for source routed packets.

[image: Image] Must support a configurable switch for nonlocal source routing. The switch must default to off.

No: Net/3 always allows nonlocal source routing and does not provide a switch to disable this function. Nonlocal source routing is routing packets between two different interfaces instead of receiving and sending the packet on the same interface.

[image: Image] Must satisfy gateway access rules for nonlocal source routing.

Yes: Net/3 follows the forwarding rules for nonlocal source routing.

[image: Image] Should send an ICMP destination unreachable error (source route failed) if a source routed packet cannot be forwarded (except for ICMP error messages).

Yes: ip_dooptions sends the ICMP destination unreachable error. icmp_error discards it if the original datagram was an ICMP error message.

C.4. IP Fragmentation and Reassembly Requirements

This section summarizes the IP fragmentation and reassembly requirements from Section 3.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

[image: Image] Must be able to reassemble incoming datagrams of at least 576 bytes.

Yes: ip_reass supports reassembly of datagrams of indefinite size.

[image: Image] Should support a configurable or indefinite maximum size for incoming datagrams.

Yes: Net/3 supports an indefinite maximum size for incoming datagrams.

[image: Image] Must provide a mechanism for the transport layer to learn the maximum datagram size to receive.

Not applicable: Net/3 has an indefinite limit based on available memory.

[image: Image] Must send ICMP time exceeded error on reassembly timeout.

No: Net/3 does not send an ICMP time exceeded error. See Figure 10.30 and Exercise 10.1.

[image: Image] Should support a fixed reassembly timeout value. The remaining TTL value in a received IP fragment should not be used as a reassembly timeout value.

Yes: Net/3 uses a compile-time value of 30 seconds (IPFRAGTTL is 60 slow-timeout intervals, which equals 30 seconds).

[image: Image] Must provide the MMS_S (maximum message size to send) to higher layers.

Partially: TCP derives the MMS_S from the MTU found in the route entry for the destination or from the MTU of the outgoing interface. A UDP application does not have access to this information.

[image: Image] May support local fragmentation of outgoing packets.

Yes: ip_output fragments an outgoing packet if it is too large for the selected interface.

[image: Image] Must not allow transport layer to send a message larger than MMS_S if local fragmentation is not supported.

Not applicable: This is a transport-level requirement that does not apply to Net/3 since local fragmentation is supported.

[image: Image] Should not send messages larger than 576 bytes to a remote destination in the absence of other information regarding the path MTU to the destination.

Partially: Net/3 TCP defaults to a segment size of 552 (512 data bytes + 40 header bytes). Net/3 UDP applications cannot determine if a destination is local or remote and so they often restrict their messages to 540 bytes (512 + 20 + 8). There is no kernel mechanism that prohibits sending larger messages.

[image: Image] May support an all-subnets-MTU configuration flag.

Yes: The global integer subnetsarelocal defaults to true. TCP uses this flag to select a larger segment size (the size of the outgoing interface’s MTU) instead of the default segment size for destinations on a subnet of the local network.

C.5. ICMP Requirements

This section summarizes the ICMP requirements from Section 3.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

[image: Image] Must silently discard ICMP messages with unknown type.

Partially: icmp_input ignores these messages and passes them to rip_input, which delivers the message to any waiting processes or silently discards the message if no process is prepared to receive the message.

[image: Image] May include more than 8 bytes of the original datagram.

No: The icmp_error function returns only a maximum of 8 bytes of the original datagram in the ICMP error message, Exercise 11.9.

[image: Image] Must return the header and data unchanged from the received datagram.

Partially: Net/3 converts the ID, offset, and length fields of an IP packet from network byte order to host byte order in ipintr. This facilitates processing the packet, but Net/3 neglects to return the offset and length fields to network byte order before including the header in an ICMP error message. If the system operates with the same byte ordering as the network, this error is harmless. If it operates with a different ordering, the IP header contained within the ICMP error message has incorrect offset and length values.

The authors found that an Intel implementation of SVR4 and AIX 3.2 (Net/2 based) both return the length byte-swapped. Implementations other than Net/2 or Net/3 that were tried (Cisco, NetBlazer, VM, and Solaris 2.3) did not have this bug.

Another error occurs when an ICMP port unreachable error is sent from the UDP code: the header length of the received datagram is changed incorrectly (Section 23.7). The authors found this error in Net/2 and Net/3 implementations. Net/1, however, did not have the bug.

[image: Image] Must demultiplex received ICMP error message to transport protocol.

Yes: icmp_error uses the protocol field from the original header to select the appropriate transport protocol to respond to the error.

[image: Image] Should send ICMP error messages with a TOS field of 0.

Yes: All ICMP error messages are constructed with a TOS of 0 by icmp_error.

[image: Image] Must not send an ICMP error message caused by a previous ICMP error message.

Partially: icmp_error sends an error for an ICMP redirect message, which Section 3.2.2 of RFC 1122 classifies as an ICMP error message.

[image: Image] Must not send an ICMP error message caused by an IP broadcast or IP multicast datagram.

No: icmp_error does not check for this case.

The icmp_error function from the original Deering multicast code for BSD checks for this case.

[image: Image] Must not send an ICMP error message caused by a link-layer broadcast.

Yes: icmp_error discards ICMP messages in response to packets that arrived as link-layer broadcasts or multicasts.

[image: Image] Must not send an ICMP error message caused by a noninitial fragment.

Yes: icmp_error discards errors generated in this case.

[image: Image] Must not send an ICMP error message caused by a datagram with nonunique source address.

Yes: icmp_reflect checks for experimental and multicast addresses. ip_output discards messages sent from a broadcast address.

[image: Image] Must return ICMP error messages when not prohibited.

Partially: In general, Net/3 sends appropriate ICMP error messages. It fails to send an ICMP reassembly timeout message at the appropriate time (Exercise 10.1).

[image: Image] Should generate ICMP destination unreachable (protocol and port).

Partially: Datagrams for unsupported protocols are delivered to rip_input where they are silently discarded if there are no processes registered to accept the datagrams. UDP generates an ICMP port unreachable error.

[image: Image] Must pass ICMP destination unreachable to higher layer.

Yes: icmp_input passes the message to the pr_ctlinput function defined for the protocol (udp_ctlinput and tcp_ctlinput for UDP and TCP, respectively).

[image: Image] Should respond to destination unreachable error.

See Sections 23.9 and 27.6.

[image: Image] Must interpret destination unreachable as only a hint, as it may indicate a transient condition.

See Sections 23.9 and 27.6.

[image: Image] Must not send an ICMP redirect when configured as a host.

Yes: ip_forward, the only function that detects and sends redirects, is not called unless the system is configured as a router.

[image: Image] Must update route cache when an ICMP redirect is received.

Yes: ipintr calls rtredirect to process the message.

[image: Image] Must handle both host and network redirects. Furthermore, network redirects must be treated as host redirects.

Yes: ipintr calls rtredirect for both types of messages.

[image: Image] Should discard illegal redirects.

Yes: rtredirect discards illegal redirects (Section 19.7).

[image: Image] May send source quench if memory is unavailable.

Yes: ip_forward sends a source quench if ip_output returns ENOBUFS. This occurs when there is a shortage of mbufs or when an interface output queue is full.

[image: Image] Must pass source quench to higher layer.

Yes: icmp_input passes source quench errors to the transport layers.

[image: Image] Should respond to source quench in higher layer.

See Sections 23.9 and 27.6 for UDP and TCP processing. Neither ICMP nor IGMP accept ICMP error messages (they don’t define a pr_ctlinput function), in which case they are discarded by IP.

[image: Image] Must pass time exceeded error to transport layer.

Yes: icmp_input passes this message to the transport layers.

[image: Image] Should send parameter problem errors.

Yes: ip_dooptions complains about incorrectly formed options.

[image: Image] Must pass parameter problem errors to transport layer.

Yes: icmp_input passes parameter problem errors to the transport layer.

[image: Image] May report parameter problem errors to process.

See Sections 23.9 and 27.6 for UDP and TCP processing. Neither ICMP nor IGMP accept ICMP error messages.

[image: Image] Must support an echo server and should support an echo client.

Yes: icmp_input implements the echo server and the ping program implements the echo client using a raw IP socket.

[image: Image] May discard echo requests to a broadcast address.

No: The reply is sent by icmp_reflect.

[image: Image] May discard echo request to multicast address.

No: Net/3 responds to multicast echo requests. Both icmp_reflect and ip_output permit multicast destination addresses.

[image: Image] Must use specific destination address as echo reply source.

Yes: icmp_reflect converts a broadcast or multicast destination to the specific address of the receiving interface and uses the result as the source address for the echo reply.

[image: Image] Must return echo request data in echo reply.

Yes: The data portion of the echo request is not altered by icmp_reflect.

[image: Image] Must pass echo reply to higher layer.

Yes: ICMP echo replies are passed to rip_input for receipt by registered processes.

[image: Image] Must reflect record route and timestamp options in ICMP echo request message.

Yes: icmp_reflect includes the record route and timestamp options in the echo reply message.

[image: Image] Must reverse and reflect source route option.

Yes: icmp_reflect retrieves the reversed source route with ip_srcroute and includes it in the outgoing echo reply.

[image: Image] Should not support the ICMP information request or reply.

Partially: The kernel does not generate or respond to either message, but a process may send or receive the messages through the raw IP mechanism.

[image: Image] May implement the ICMP timestamp request and timestamp reply messages.

Yes: icmp_input implements the timestamp server functionality. The timestamp client may be implemented through the raw IP mechanism.

[image: Image] Must minimize timestamp delay variability (if implementing the timestamp messages).

Partially: The receive timestamp is applied after the message is taken off the IP input queue and the transmit timestamp is applied before the message is placed in the interface output queue.

[image: Image] May silently discard broadcast timestamp request.

No: icmp_input responds to broadcast timestamp requests.

[image: Image] May silently discard multicast timestamp requests.

No: icmp_input responds to broadcast timestamp requests.

[image: Image] Must use specific destination address as timestamp reply source address.

Yes: icmp_reflect converts a broadcast or multicast destination to the specific address of the receiving interface and uses the result as the source address for the timestamp reply.

[image: Image] Should reflect record route and timestamp options in an ICMP timestamp request.

Yes: icmp_reflect includes the record route and timestamp options in the timestamp reply message.

[image: Image] Must reverse and reflect source route option in ICMP timestamp request.

Yes: icmp_reflect retrieves the reversed source route with ip_srcroute and includes it in the outgoing timestamp reply.

[image: Image] Must pass timestamp reply to higher layer.

Yes: ICMP timestamp replies are passed to rip_input for receipt by registered processes.

[image: Image] Must obey rules for standard timestamp value.

Yes: icmp_input calls iptime, which returns a standard time value.

[image: Image] Must provide a configurable method for selecting the address mask selection method for an interface.

No: Net/3 supports only static configuration of address masks through the ifconfig program.

[image: Image] Must support static configuration of address mask.

Yes: This is accomplished indirectly by specifying static information when the ifconfig program configures an interface during system initialization, typically in the /etc/netstart start-up script.

[image: Image] May get address mask dynamically during system initialization.

No: Net/3 does not support the use of BOOTP or DHCP to acquire address mask information.

[image: Image] May get address with an ICMP address mask request and reply messages.

No: Net/3 does not support the use ICMP messages to acquire address mask information.

[image: Image] Must retransmit address mask request if no reply.

Not Applicable: Not required since this method is not implemented by Net/3.

[image: Image] Should assume default mask if no reply is received.

Not Applicable: Not required since this method is not implemented by Net/3.

[image: Image] Must update address mask from first reply only.

Not Applicable: Not required since this method is not implemented by Net/3.

[image: Image] Should perform reasonableness check on any installed address mask.

No: Net/3 performs no reasonableness check on address masks.

[image: Image] Must not send unauthorized address mask reply messages and must be explicitly configured to be agent.

Yes: icmp_input only responds to address mask requests if icmpmaskrepl is nonzero (it defaults to 0).

[image: Image] Should support an associated address mask authority flag with each static address mask configuration.

No: Net/3 consults a global authority flag (icmpmaskrepl) to determine if it should send address mask replies for any interface.

[image: Image] Must broadcast address mask reply when initialized.

No: Net/3 does not broadcast an address mask reply when an interface is configured.

C.6. Multicasting Requirements

This section summarizes the IP multicast requirements from Section 3.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

[image: Image] Should support local IP multicasting (RFC 1112).

Yes: Net/3 supports IP multicasting.

[image: Image] Should join the all-hosts group at start-up.

Yes: in_ifinit joins the all-hosts group while initializing an interface.

[image: Image] Should provide a mechanism for higher layers to discover an interface’s IP multicast capability.

Yes: The IFF_MULTICAST flag in the interface’s ifnet structure is available directly to kernel code and by the SIOCGIFFLAGS command for processes.

C.7. IGMP Requirements

This section summarizes the IGMP requirements from Section 3.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

[image: Image] May support IGMP (RFC 1112).

Yes: Net/3 supports IGMP.

C.8. Routing Requirements

This section summarizes the routing requirements from Section 3.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements. Be aware that the requirements of this RFC apply to a host and not necessarily the kernel implementation. Some items are not explicitly handled by the kernel routing function in Net/3, but they are expected to be provided by a routing daemon such as routed or gated.

[image: Image] Must use address mask in determining whether a datagram’s destination is on a connected network.

Yes: When an interface for a connected network such as an Ethernet is configured, its address mask is specified (or a default is chosen based on the class of IP address) and stored in the routing table entry. This mask is used by rn_match when it checks a leaf for a network match.

[image: Image] Must operate correctly in a minimal environment when there are no routers (all networks are directly connected).

Yes: The system administrator must not configure a default route in this case.

[image: Image] Must keep a “route cache” of mappings to next-hop routers.

Yes: The routing table is the cache.

[image: Image] Should treat a received network redirect the same as a host redirect.

Yes, as described in Section 19.7.

[image: Image] Must use a default router when no entry exists for the destination in the routing table.

Yes, if a default route has been entered into the routing table.

[image: Image] Must support multiple default routers.

Multiple defaults are not supported by the kernel. Instead, this should be provided by a routing daemon.

[image: Image] May implement a table of static routes.

Yes: These can be created at system initialization time with the route command.

[image: Image] May include a flag with each static route specifying whether or not the route can be overridden by a redirect.

No.

[image: Image] May allow the routing table key to be a complete host address and not just a network address.

Yes: Host routes take priority over a network route to the same network.

[image: Image] Should include the TOS in the routing table entry.

No: There is a TOS field in the sockaddr_inarp that we describe in Chapter 21, but it is not currently used.

[image: Image] Must be able to detect the failure of a next-hop router that appears as the gateway field in the routing table and be able to choose an alternate next-hop router.

Negative advice, the RTM_LOSING message generated by in_losing, is passed to any processes reading from a routing socket, which allows the process (e.g., a routing daemon) to handle this event.

[image: Image] Should not assume that a route is good forever.

Yes: There are no timeouts on routing table entries in the kernel other than those created by ARP Again, the standard Unix routing daemons time out routes and replace them with alternatives when possible.

[image: Image] Must not ping routers continuously (ICMP echo request).

Yes: The Net/3 kernel does not do this. The routing daemons don’t generate ICMP echo requests either.

[image: Image] Must use pinging of a router only when traffic is being sent to that router.

The Net/3 kernel never generates pings to a next-hop router.

[image: Image] Should allow higher and lower layers to give positive and negative advice.

Partially: The only information passed by other layers to the Net/3 routing functions is by in_losing, which is called only from TCP. The only action performed by the routing layer is to generate the RTM_LOSING message.

[image: Image] Must switch to another default router when the existing default fails.

Yes, although the Net/3 kernel does not do this, it is supported by the routing daemons.

[image: Image] Must allow the following information to be configured manually in the routing table: IP address, network mask, list of defaults.

Yes, but only one default is supported in the kernel.

C.9. ARP Requirements

This section summarizes the ARP requirements from Section 2.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

[image: Image] Must provide a mechanism to flush out-of-date ARP entries. If this mechanism involves a timeout, it should be configurable.

Yes and yes: arptimer provides this mechanism. The timeout is configurable (the arpt_prune and arpt_keep globals) but the only ways to change their values are to recompile the kernel or modify the kernel with a debugger.

[image: Image] Must include a mechanism to prevent ARP flooding.

Yes, as we described with Figure 21.24.

[image: Image] Should save (rather than discard) at least one (the latest) packet of each set of packets destined to the same unresolved IP address, and transmit the saved packet when the address has been resolved.

Yes: This is the purpose of the la_hold member of the llinfo_arp structure.

C.10. UDP Requirements

This section summarizes the UDP requirements from Section 4.1.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

[image: Image] Should send ICMP port unreachable.

Yes: udp_input does this.

[image: Image] Must pass received IP options to application.

No: The code to do this is commented out in udp_input. This means that a process that receives a UDP datagram with a source route option cannot send a reply using the reversed route.

[image: Image] Must allow application to specify IP options to send.

Yes: The IP_OPTIONS socket option does this. The options are saved in the PCB and placed into the outgoing IP datagram by ip_output.

[image: Image] Must pass IP options down to IP layer.

Yes: As mentioned above, IP places the options into the IP datagram.

[image: Image] Must pass received ICMP messages to application.

Yes: We must look at the exact wording from the RFC: “A UDP-based application that wants to receive ICMP error messages is responsible for maintaining the state necessary to demultiplex these messages when they arrive; for example, the application may keep a pending receive operation for this purpose.” The state required by Berkeley-derived systems is that the socket be connected to the foreign address and port. As the comments at the beginning of Figure 23.26 indicate, some applications create both a connected and an unconnected socket for a given foreign port, using the connected socket to receive asynchronous errors.

[image: Image] Must be able to generate and verify UDP checksum.

Yes: This is done by udp_input, based on the global integer udpcksum.

[image: Image] Must silently discard datagrams with bad checksum.

Yes: This is done only if udpcksum is nonzero. As we mentioned earlier, this variable controls both the sending of checksums and the verification of received checksums. If this variable is 0, the kernel does not verify a received nonzero checksum.

[image: Image] May allow sending application to specify whether outgoing checksum is calculated, but must default to on.

No: The application has no control over UDP checksums. Regarding the default, UDP checksums are generated unless the kernel is compiled with 4.2BSD compatibility defined, or unless the administrator has disabled UDP checksums using sysctl(8).

[image: Image] May allow receiving application to specify whether received UDP datagrams without a checksum (i.e., the received checksum is 0) are discarded or passed to the application.

No: Received datagrams with a checksum field of 0 are passed to the receiving process.

[image: Image] Must pass destination IP address to application.

Yes: The application must call recvmsg and specify the IP_RECVDSTADDR socket option. Also recall our discussion following Figure 23.25 noting that 4.4BSD broke this option when the destination address is a multicast or broadcast address.

[image: Image] Must allow application to specify local IP address to be used when sending a UDP datagram.

Yes: The application can call bind to set the local IP address. Recall our discussion at the end of Section 22.8 about the difference between the source IP address and the IP address of the outgoing interface. Net/3 does not allow the application to choose the outgoing interface t hat is done by ip_output, based on the route to the destination IP address.

[image: Image] Must allow application to specify wildcard local IP address.

Yes: If the IP address INADDR_ANY is specified in the call to bind, the local IP address is chosen by in_pcbconnect, based on the route to the destination.

[image: Image] Should allow application to learn of the local address that was chosen.

Yes: The application must call connect. When a datagram is sent on an unconnected socket with a wildcard local address, ip_output chooses the outgoing interface, which also becomes the source address. The inp_laddr member of the PCB, however, is restored to the wildcard address at the end of udp_output before sendto returns. Therefore, getsockname cannot return the value. But the application can connect a UDP socket to the destination, causing in_pcbconnect to determine the local interface and store the address in the PCB. The application can then call getsockname to fetch the IP address of the local interface.

[image: Image] Must silently discard a received UDP datagram with an invalid source IP address (broadcast or multicast).

No: A received UDP datagram with an invalid source address is delivered to a socket, if a socket is bound to the destination port.

[image: Image] Must send a valid IP source address.

Yes: If the local IP address is set by bind, it checks the validity of the address. If the local IP address is wildcarded, ip_output chooses the local address.

[image: Image] Must provide the full IP interface from Section 3.4 of RFC 1122.

Refer to Section C.2.

[image: Image] Must allow application to specify TTL, TOS, and IP options for output datagrams.

Yes: The application can use the IP_TTL, IP_TOS, and IP_OPTIONS socket options.

[image: Image] May pass received TOS to application.

No: There is no way for the application to receive this value from the IP header. Notice that a getsockopt of IP_TOS returns the value used in outgoing datagrams, not the value from a received datagram. The received ip_tos value is available to udp_input, but is discarded along with the entire IP header.

C.11. TCP Requirements

This section summarizes the TCP requirements from Section 4.2.5 of RFC 1122 and the compliance of the Net/3 code that we’ve examined to those requirements.

PSH Flag

[image: Image] May aggregate data sent by the user without the PSH flag.

Yes and no: Net/3 does not give the process a way to specify the PSH flag with a write operation, but Net/3 does aggregate data sent by the user in separate write operations.

[image: Image] May queue data received without the PSH flag.

No: The absence or presence of a PSH flag in a received datagram makes no difference. Received data is placed onto the socket’s received queue when it is processed.

[image: Image] Sender should collapse successive PSH flags when it packetizes data.

No.

[image: Image] May implement PSH flag on write calls.

No: This is not part of the sockets API.

[image: Image] Since the PSH flag is not part of the write calls, must not buffer data indefinitely and must set the PSH flag in the last buffered segment.

Yes: This is the method used by Berkeley-derived implementations.

[image: Image] May pass received PSH flag to application.

No: This is not part of the sockets API.

[image: Image] Should send maximum-sized segment whenever possible, to improve performance.

Yes.

Window

[image: Image] Must treat window size as an unsigned number. Should treat window size as 32-bit value.

Yes: All the window sizes in Figure 24.13 are unsigned longs, which is also required by the window scale option of RFC 1323.

[image: Image] Receiver must not shrink the window (move the right edge to the left).

Yes, in Figure 26.29.

[image: Image] Sender must be robust against window shrinking.

Yes, in Figure 29.15.

[image: Image] May keep offered receive window closed indefinitely.

Yes.

[image: Image] Sender must probe a zero window.

Yes, this is the purpose of the persist timer.

[image: Image] Should send first zero-window probe when the window has been closed for the RTO.

No: Net/3 sets a lower bound for the persist timer of 5 seconds, which is normally greater than the RTO.

[image: Image] Should exponentially increase the interval between successive probes.

Yes, as shown in Figure 25.14.

[image: Image] Must allow peer’s window to stay closed indefinitely.

Yes, TCP never gives up probing a closed window.

[image: Image] Sender must not timeout a connection just because the other end keeps advertising a zero window.

Yes.

Urgent Data

[image: Image] Must have urgent pointer point to last byte of urgent data.

No: Berkeley-derived implementations continue to interpret the urgent pointer as pointing just beyond the last byte of urgent data.

[image: Image] Must support a sequence of urgent data of any length.

Yes, with the bug fix discussed in Exercise 26.6.

[image: Image] Must inform the receiving process (1) when TCP receives an urgent pointer and there was no previously pending urgent data, or (2) when the urgent pointer advances in the data stream.

Yes, in Figure 29.17.

[image: Image] Must be a way for the process to determine how much urgent data remains, or at least whether more urgent data remains to be read.

Yes, this is the purpose of the out-of-band mark, the SIOCATMARK ioctl.

TCP Options

[image: Image] Must be able to receive TCP options in any segment.

Yes.

[image: Image] Must ignore any options not supported.

Yes, in Section 28.3.

[image: Image] Must cope with an illegal option length.

Yes, in Section 28.3.

[image: Image] Must implement both sending and receiving the MSS option.

Yes, a received MSS option is handled in Figure 28.10, and Figure 26.23 always sends an MSS option with a SYN.

[image: Image] Should send an MSS option in every SYN when its receive MSS differs from 536, and may send it always.

Yes, as mentioned earlier, an MSS option is always sent by Net/3 with a SYN.

[image: Image] If an MSS option is not received with a SYN, must assume a default MSS of 536.

No: The default MSS is 512, not 536.

This is probably a historical artifact because VAXes had a physical page size of 512 bytes and trailer protocols working only with data that is a multiple of 512.

[image: Image] Must calculate the “effective send MSS.”

Yes, in Section 27.5.

TCP Checksums

[image: Image] Must generate a TCP checksum in outgoing segments and must verify received checksums.

Yes, TCP checksums are always calculated and verified.

Initial Sequence Number Selection

[image: Image] Must use the specified clock-driven selection from RFC 793.

No: RFC 793 specifies a clock that changes by 125,000 every half-second, whereas the Net/3 ISN (the global variable tcp_iss) is incremented by 64,000 every half-second, about one-half the specified rate.

Opening Connections

[image: Image] Must support simultaneous open attempts.

Yes, although Berkeley-derived systems prior to 4.4BSD did not support this, as described in Section 28.9.

[image: Image] Must keep track of whether it reached the SYN_RCVD state from the LISTEN or SYN_SENT states.

Yes, same result, different technique. The purpose of this requirement is to allow a passive open that receives an RST to return to the LISTEN state (as shown in Figure 24.15), but force an active open that ends up in SYN_RCVD and then receives an RST to be aborted. This is described following Figure 28.36.

[image: Image] A passive open must not affect previously created connections.

Yes.

[image: Image] Must allow a listening socket with a given local port at the same time that another socket with the same local port is in the SYN_SENT or SYN_RCVD state.

Yes: The stated purpose of this requirement is to allow a given application to accept multiple connection attempts at about the same time. This is done in Berkeley-derived implementations by cloning new connections from the socket in the LISTEN state when the incoming SYN arrives.

[image: Image] Must ask IP to select a local IP address to be used as the source IP address when the source IP address is not specified by the process performing an active open on a multihomed host.

Yes, done by in_pcbconnect.

[image: Image] Must continue to use the same source IP address for all segments sent on a connection.

Yes: Once in_pcbconnect selects the source address, it doesn’t change.

[image: Image] Must not allow an active open for a broadcast or multicast foreign address.

Yes and no: TCP will not send segments to a broadcast address because the call to ip_output in Figure 26.32 does not specify the SO_BROADCAST option. Net/3, however, allows connection attempts to multicast addresses.

[image: Image] Must ignore incoming SYNs with an invalid source address.

Yes: The code in Figure 28.16 checks for these invalid source addresses.

Closing Connections

[image: Image] Should allow an RST to contain data.

No: The RST processing in Figure 28.36 ends up jumping to drop, which skips the processing of any segment data in Figure 29.22.

[image: Image] Must inform process whether other end closed the connection normally (e.g., sent a FIN) or aborted the connection with an RST.

Yes: The read system calls return 0 (end-of-file) when the FIN is processed, but—1 with an error of ECONNRESET when an RST is received.

[image: Image] May implement a half-close.

Yes: The process calls shutdown with a second argument of 1 to send a FIN. The process can still read from the connection.

[image: Image] If the process completely closes a connection (i.e., not a half-close) and received data is still pending in TCP, or if new data arrives after the close, TCP should send an RST to indicate data was lost.

No and yes: If a process calls close and unread data is in the socket’s receive buffer, an RST is not sent. But if data arrives after a socket is closed, an RST is returned to the sender.

[image: Image] Must linger in TIME_WAIT state for twice the MSL.

Yes, although the Net/3 MSL of 30 seconds is much smaller than the RFC 793 recommended value of 2 minutes.

[image: Image] May accept a new SYN from a peer to reopen a connection directly from the TIME_WAIT state.

Yes, as shown in Figure 28.29.

Retransmissions

[image: Image] Must implement Van Jacobson’s slow start and congestion avoidance.

Yes.

[image: Image] May reuse the same IP identifier field when a retransmission is identical to the original packet.

No: The IP identifier is assigned by ip_output from the global variable ip_id, which increments each time an IP datagram is sent. It is not assigned by TCP.

[image: Image] Must implement Jacobson’s algorithm for calculating the RTO and Karn’s algorithm for selecting the RTT measurements.

Yes, but realize that when RFC 1323 timestamps are present, the retransmission ambiguity problem is gone, obviating half of Karn’s algorithm, as we discussed with Figure 29.6.

[image: Image] Must include an exponential backoff for successive RTO values.

Yes, as described with Figure 25.22.

[image: Image] Retransmission of SYN segments should use the same algorithm as data segments.

Yes, as shown in Figure 25.15.

[image: Image] Should initialize estimation parameters to calculate an initial RTO of 3 seconds.

No: The initial value of t_rxtcur calculated by tcp_newtcpcb is 6 seconds. This is also seen in Figure 25.15.

[image: Image] Should have a lower bound on the RTO measured in fractions of a second and an upper bound of twice the MSL.

No: The lower bound is 1 second and the upper bound is 64 seconds (Figure 25.3).

Generating ACKs

[image: Image] Should queue out-of-order segments.

Yes, done by tcp_reass.

[image: Image] Must process all queued segments before sending any ACKs.

Yes, but only for in-order segments. ipintr calls tcp_input for each queued datagram that is a TCP segment. For in-order segments, tcp_input schedules a delayed ACK and returns to ipintr. If there are additional TCP segments on IP’s input queue, tcp_input is called by ipintr for each one. Only when ipintr finds no more IP datagrams on its input queue and returns can tcp_fasttimo be called to generate a delayed ACK. This ACK will contain the highest acknowledgment number in all the segments processed by tcp_input.

The problem is with out-of-order segments: tcp_input calls tcp_output itself, before returning to ipintr, to generate the ACK for the out-of-order segment. If there are additional segments on IP’s input queue that would have made the out-of-order segment be in order, they are processed after the immediate ACK is sent.

[image: Image] May generate an immediate ACK for an out-of-order segment.

Yes, this is needed for the fast retransmit and fast recovery algorithms (Section 29.4).

[image: Image] Should implement delayed ACKs and the delay must be less than 0.5 seconds.

Yes: The TF_DELACK flag is checked by the tcp_fasttimo function every 200 ms.

[image: Image] Should send an ACK for at least every second segment.

Yes, the code in Figure 26.9 generates an ACK for every second segment. We also discussed that this happens only if the process receiving the data reads the data as it arrives, since the calls to tcp_output that cause every other segment to be acknowledged are driven by the PRU_RCVD request.

[image: Image] Must include silly window syndrome avoidance in the receiver.

Yes, as seen in Figure 26.29.

Sending Data

[image: Image] The TTL value for TCP segments must be configurable.

Yes: The TTL is initialized to 64 (IPDEFTTL) by tcp_newtcpcb, but can then be changed by a process using the IP_TTL socket option.

[image: Image] Must include sender silly window syndrome avoidance.

Yes, in Figure 26.8.

[image: Image] Should implement the Nagle algorithm.

Yes, in Figure 26.8.

[image: Image] Must allow a process to disable the Nagle algorithm on a given connection.

Yes, with the TCP_NODELAY socket option.

Connection Failures

[image: Image] Must pass negative advice to IP when the number of retransmissions for a given segment exceeds some value R1.

Yes: The value of R1 is 4, and in Figure 25.26, when the number of retransmissions exceeds 4, in_losing is called.

[image: Image] Must close a connection when the number of retransmissions for a given segment exceeds some value R2.

Yes: The value of R2 is 12 (Figure 25.26).

[image: Image] Must allow process to set the value of R2.

No: The value 12 is hardcoded in Figure 25.26.

[image: Image] Should inform the process when R1 is reached and before R2 is reached.

No.

[image: Image] Should default R1 to at least 3 retransmissions and R2 to at least 100 seconds.

Yes: R1 is 4 retransmissions, and with a minimum RTO of 1 second, the tcp_backoff array (Section 25.9) guarantees a minimum value of R2 of over 500 seconds.

[image: Image] Must handle SYN retransmissions in the same general way as data retransmissions.

Yes, but R1 is normally not reached for the retransmission of a SYN (Figure 25.15).

[image: Image] Must set R2 to at least 3 minutes for a SYN.

No: R2 for a SYN is limited to 75 seconds by the connection-establishment timer (Figure 25.15).

Keepalive Packets

[image: Image] May provide keepalives.

Yes, they are provided.

[image: Image] Must allow process to turn keepalives on or off, and must default to off.

Yes: Default is off and process must turn them on with the SO_KEEPALIVE socket option.

[image: Image] Must send keepalives only when connection is idle for a given period.

Yes.

[image: Image] Must allow the keepalive interval to be configurable and must default to no less than 2 hours.

No and yes: The idle time before sending keepalive probes is not easily configurable, but it defaults to 2 hours. If the default idle time is changed (by changing the global variable tcp_keepidle), it affects all users of the keepalive option on the host it cannot be configured on a per-connection basis as many users would like.

[image: Image] Must not interpret the failure to respond to any given probe as a dead connection.

Yes: Nine probes are sent before the connection is considered dead.

IP Options

[image: Image] Must ignore received IP options it doesn’t understand.

Yes: This is done by the IP layer.

[image: Image] May support the timestamp and record route options in received segments.

No: Net/3 only reflects these options for ICMP packets that are reflected back to the sender (icmp_reflect). tcp_input discards any received IP options by calling ip_stripoptions in Figure 28.2.

[image: Image] Must allow process to specify a source route when a connection is actively opened, and this route must take precedence over a source route received for this connection.

Yes: The source route is specified with the IP_OPTIONS socket option. tcp_input never looks at a received source route when the connection is actively opened.

[image: Image] Must save a received source route in a connection that is passively opened and use the return route for all segments sent on this connection. If a different source route arrives in a later segment, the later route should override the earlier one.

Yes and no: Figure 28.7 calls ip_srcroute, but only when the SYN arrives for a listening socket. If a different source route arrives later, it is not used.

Receiving ICMP Messages from IP

[image: Image] Receipt of an ICMP source quench should trigger slow start.

Yes: The function tcp_quench is called by tcp_ctlinput.

[image: Image] Receipt of a network unreachable, host unreachable, or source route failed must not cause TCP to abort the connection and the process should be informed.

Yes and no: As described following Figure 27.12, Net/3 now completely ignores host unreachable and network unreachable errors for an established connection.

[image: Image] Receipt of a protocol unreachable, port unreachable, or fragmentation required and DF bit set should abort an existing connection.

No: tcp_notify records these ICMP errors in t_softerror, which is reported to the process if the connection is eventually dropped.

[image: Image] Should handle time exceeded and parameter problem errors the same as required previously for network and host unreachable.

Yes: ICMP parameter problem errors are just recorded in t_softerror by tcp_notify. ICMP time exceeded errors are ignored by tcp_ctlinput. Neither type of ICMP error causes the connection to be aborted.

Application Programming Interface

[image: Image] Must be a method for reporting soft errors to the process, normally in an asynchronous fashion.

No: Soft errors are returned to the process if the connection is aborted.

[image: Image] Must allow process to specify TOS for segments sent on a connection. Should let application change this during a connection’s lifetime.

Yes to both, with the IP_TOS socket option.

[image: Image] May pass most recently received TOS to process.

No: There is no way to do this with the sockets API. Calling getsockopt for IP_TOS returns only the current value being sent; it does not return the most recently received value.

[image: Image] May implement a “flush” call.

No: TCP sends the data from the process as quickly as it can.

[image: Image] Must allow process to specify local IP address before either an active open or a passive open.

Yes: This is done by calling bind before either connect or accept.

Bibliography

All the RFCs are available at no charge through electronic mail or by using anonymous FTP across the Internet as described in Appendix B.

Whenever the authors were able to locate an electronic copy of papers and reports referenced in this bibliography, its URL (Uniform Resource Locator, Appendix B) is included.

Almquist, P. 1992. “Type of Service in the Internet Protocol Suite,” RFC 1349, 28 pages (July).

Almquist, P., and Kastenholz, F. J. 1994. “Towards Requirements for IP Routers,” RFC 1716, 186 pages (Nov.). This RFC is an intermediate step to replace RFC 1009 [Braden and Postel 1987].

Auerbach, K. 1994. “Max IP Packet Length and MTU,” Message-ID <karl.3.000A4DD7@cavebear.com>, Usenet, comp.protocols.tcp-ip Newsgroup (July).

Boggs, D. R. 1982. “Internet Broadcasting,” Xerox PARC CSL-83-3, Stanford University, Palo Alto, Calif. (Jan.).

Braden, R. T., ed. 1989a. “Requirements for Internet Hosts—Communication Layers,” RFC 1122, 116 pages (Oct.). The first half of the Host Requirements RFC. This half covers the link layer, IP, TCP, and UDP.

Braden, R. T., ed. 1989b. “Requirements for Internet Hosts—Application and Support,” RFC 1123, 98 pages (Oct.). The second half of the Host Requirements RFC. This half covers Telnet, FTP, TFTP, SMTP, and the DNS.

Braden, R. T. 1989c. “Perspective on the Host Requirements RFCs,” RFC 1127, 20 pages (Oct.). An informal summary of the discussions and conclusions of the IETF working group that developed the Host Requirements RFC.

Braden, R. T. 1992. “TIME-WAIT Assassination Hazards in TCP,” RFC 1337, 11 pages (May). Shows how the receipt of an RST while in the TIME_WAIT state can lead to problems.

Braden, R. T. 1993. “TCP Extensions for High Performance: An Update,” Internet Draft, 10 pages (June). This is an update to RFC 1323 [Jacobson, Braden, and Borman 1992]. http://www.noao.edu/~rstevens/tcplw-extensions.txt

Braden, R. T. 1994. “T/TCP—TCP Extensions for Transactions, Functional Specification,” RFC 1644, 38 pages (July).

Braden, R. T., Borman, D. A., and Partridge, C. 1988. “Computing the Internet Checksum,” RFC 1071, 24 pages (Sept.). Provides techniques and algorithms for calculating the checksum used by IP, ICMP, IGMP, UDP, and TCP.

Braden, R. T., and Postel, J. B. 1987. “Requirements for Internet Gateways,” RFC 1009, 55 pages (June). The equivalent of the Host Requirements RFC for routers. This RFC is being replaced by RFC 1716 [Almquist and Kastenholz 1994].

Brakmo, L. S., O’Malley, S. W., and Peterson, L. L. 1994. “TCP Vegas: New Techniques for Congestion Detection and Avoidance,” Computer Communication Review, vol. 24, no. 4, pp. 24–35 (Oct.). Describes modifications to the 4.3BSD Reno TCP implementation to improve throughput and reduce retransmissions. ftp://ftp.cs.arizona.edu/xkernel/Papers/vegas.ps

Carlson, J. 1993. “Re: Bug in Many Versions of TCP,” Message-ID <1993Jul12.130854.26176@xylogics.com>, Usenet, comp.protocols.tcp-ip Newsgroup (July).

Casner, S., 1993. “Frequently Asked Questions (FAQ) on the Multicast Backbone (MBONE),” (May). ftp://ftp.isi.edu/mbone/faq.txt

Cheswick, W. R., and Bellovin, S. M. 1994. “Firewalls and Internet Security: Repelling the Wily Hacker”. Addison-Wesley, Reading, Mass. Describes how to set up and administer a firewall gateway and the security issues involved.

Clark, D. D. 1982. “Modularity and Efficiency in Protocol Implementation,” RFC 817, 26 pages (July).

Comer, D. E., and Lin, J. C. 1994. “TCP Buffering and Performance Over an ATM Network,” Purdue Technical Report CSD-TR 94-026, Purdue University, West Lafayette, Ind. (Mar.). ftp://gwen.cs.purdue.edu/pub/lin/TCP.atm.ps.Z

Comer, D. E., and Stevens, D. L. 1993. “Internetworking with TCP/IP: Vol. III: Client–Server Programming and Applications, BSD Socket Version”. Prentice-Hall, Englewood Cliffs, N.J.

Croft, W., and Gilmore, J. 1985. “Bootstrap Protocol (BOOTP),” RFC 951, 12 pages (Sept.).

Crowcroft, J., Wakeman, I., Wang, Z., and Sirovica, D. 1992. “Is Layering Harmful?,” IEEE Network, vol. 6, no. 1, pp. 20–24 (Jan.). The seven missing figures from this paper appear in the next issue, vol. 6, no. 2 (March).

Dalton, C., Watson, G., Banks, D., Calamvokis, C., Edwards, A., and Lumley, J. 1993. “Afterburner,” IEEE Network, vol. 7, no. 4, pp. 36–43 (July). Describes how to speed up TCP by reducing the number of data copies performed, and a special-purpose interface card that supports this design.

Deering, S. E. 1989. “Host Extensions for IP Multicasting,” RFC 1112, 17 pages (Aug.). The specification of IP multicasting and IGMP.

Deering, S. E., ed. 1991a. “ICMP Router Discovery Messages,” RFC 1256, 19 pages (Sept.).

Deering, S. E. 1991b. “Multicast Routing in a Datagram Internetwork,” STAN-CS-92-1415, Stanford University, Palo Alto, Calif. (Dec.). ftp://gregorio.stanford.edu/vmtp-ip/sdthesis.part1.ps.Z

Deering, S. E., and Cheriton, D. P. 1990. “Multicast Routing in Datagram Internetworks and Extended LANs,” ACM Transactions on Computer Systems, vol. 8, no. 2, pp. 85–110 (May). Proposes extensions to common routing techniques to support multicasting.

Deering, S., Estrin, D., Farinacci, D., Jacobson, V., Liu, C., and Wei, L. 1994. “An Architecture for Wide-Area Multicast Routing,” Computer Communication Review, vol. 24, no. 4, pp. 126–135 (Oct.).

Droms, R. 1993. “Dynamic Host Configuration Protocol,” RFC 1541, 39 pages (Oct.).

Finlayson, R., Mann, T., Mogul, J. C., and Theimer, M. 1984. “A Reverse Address Resolution Protocol,” RFC 903, 4 pages (June).

Floyd, S. 1994. Private Communication.

Forgie, J. 1979. “ST—A Proposed Internet Stream Protocol,” IEN 119, MIT Lincoln Laboratory (Sept.).

Fuller, V., Li, T., Yu, J. Y., and Varadhan, K. 1993. “Classless Inter-Domain Routing (CIDR): An Address Assignment and Aggregation Strategy,” RFC 1519, 24 pages (Sept.).

Hornig, C. 1984. “Standard for the Transmission of IP Datagrams over Ethernet Networks,” RFC 894, 3 pages (Apr.).

Hutchinson, N. C., and Peterson, L. L. 1991. “The x-Kernel: An Architecture for Implementing Network Protocols,” IEEE Transactions on Software Engineering, vol. 17, no. 1, pp. 64–76 (Jan.). ftp://ftp.cs.arizona.edu/xkernel/Papers/architecture.ps

Itano, W. M., and Ramsey, N. F. 1993. “Accurate Measurement of Time,” Scientific American, vol. 269, p. 56 (July). Overview of historical and current methods for accurate timekeeping. Includes a short discussion of international time scales including International Atomic Time (TAI) and Coordinated Universal Time (UTC).

Jacobson, V. 1988a. “Some Interim Notes on the BSD Network Speedup,” Message-ID <8807200426.AA01221@helios.ee.lbl.gov>, Usenet, comp.protocols.tcp-ip Newsgroup (July).

Jacobson, V. 1988b. “Congestion Avoidance and Control,” Computer Communication Review, vol. 18, no. 4, pp. 314–329 (Aug.). A classic paper describing the slow start and congestion avoidance algorithms for TCP. ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

Jacobson, V. 1990a. “Compressing TCP/IP Headers for Low-Speed Serial Links,” RFC 1144, 43 pages (Feb.). Describes CSLIP, a version of SLIP with the TCP and IP headers compressed.

Jacobson, V. 1990b. “4BSD TCP Header Prediction,” Computer Communication Review, vol. 20, no. 2, pp. 13–15 (Apr.).

Jacobson, V. 1990c. “Modified TCP Congestion Avoidance Algorithm,” April 30, 1990, end2endinterest mailing list (Apr.). Describes the fast retransmit and fast recovery algorithms. ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail

Jacobson, V. 1990d. “Berkeley TCP Evolution from 4.3-Tahoe to 4.3-Reno,” Proceedings of the Eighteenth Internet Engineering Task Force, University of British Columbia, Vancouver, B.C. p. 365 (Sept.)

Jacobson, V. 1993. “Some Design Issues for High-Speed Networks,” Networkshop ‘93, Melbourne, Australia. (Nov.). A set of 21 overheads. ftp://ftp.ee.lbl.gov/talks/vj-nws93-1.ps.Z

Jacobson, V., and Braden, R. T. 1988. “TCP Extensions for Long-Delay Paths,” RFC 1072, 16 pages (Oct.). Describes the selective acknowledgment option for TCP, which was removed from the later RFC 1323, and the echo options, which were replaced with the timestamp option in RFC 1323.

Jacobson, V., Braden, R. T., and Borman, D. A. 1992. “TCP Extensions for High Performance,” RFC 1323, 37 pages (May). Describes the window scale option, the timestamp option, and the PAWS algorithm, along with the reasons these modifications are needed. [Braden 1993] updates this RFC.

Jain, R., and Routhier, S. A. 1986. “Packet Trains: Measurements and a New Model for Computer Network Traffic,” IEEE Journal on Selected Areas in Communications, vol. 4, pp. 1162–1167.

Karels, M. J., and McKusick, M. K. 1986. “Network Performance and Management with 4.3BSD and IP/TCP,” Proceedings of the 1986 Summer USENIX Conference, Atlanta, Ga. pp. 182–188. Describes the changes made from 4.2BSD to 4.3BSD with regard to TCP/IP.

Karn, P., and Partridge, C. 1987. “Improving Round-Trip Time Estimates in Reliable Transport Protocols,” Computer Communication Review, vol. 17, no. 5, pp. 2–7 (Aug.). Details of Karn’s algorithm to handle the retransmission timeout for segments that have been retransmitted. ftp://sics.se/users/craig/karn-partridge.ps

Kay, J., and Pasquale, J. 1993. “The Importance of Non-Data Touching Processing Overheads in TCP/IP,” Computer Communication Review, vol. 23, no. 4, pp. 259–268 (Sept.).

Kent, C. A., and Mogul, J. C. 1987. “Fragmentation Considered Harmful,” Computer Communication Review, vol. 17, no. 5, pp. 390—401 (Aug.).

Kernighan, B. W., and Plauger, P. J. 1976. “Software Tools". Addison-Wesley, Reading, Mass.

Krol, E. 1994. “The Whole Internet, Second Edition". O’Reilly & Associates, Sebastopol, Calif. An introduction into the Internet, common Internet applications, and various resources available on the Internet.

Krol, E., and Hoffman, E. 1993. “FYI on ‘What is the Internet?’,” RFC 1462, 11 pages (May).

Lanciani, D. 1993. “Re: Bug in Many Versions of TCP,” Message-ID <1993Jul10.015938.15951@burrhus.harvard.edu>, Usenet, comp.protocols.tcp-ip Newsgroup (July).

Leffler, S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S. 1989. The Design and Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, Reading, Mass. An entire book on the 4.3BSD Unix system. This book describes the Tahoe release of 4.3BSD.

Lynch, D. C. 1993. “Historical Perspective,” in Internet System Handbook, eds. D. C. Lynch and M. T. Rose, pp. 3–14. Addison-Wesley, Reading, Mass. A historical overview of the Internet and its precursor, the ARPANET.

Mallory, T., and Kullberg, A. 1990. “Incremental Updating of the Internet Checksum,” RFC 1141, 2 pages (Jan.). This RFC is updated by RFC 1624 [Rijsinghani 1994].

Mano, M. M. 1993. Computer System Architecture, Third Edition. Prentice-Hall, Englewood Cliffs, N.J.

McCanne, S., and Jacobson, V. 1993. “The BSD Packet Filter: A New Architecture for User-Level Packet Capture,” Proceedings of the 1993 Winter USENIX Conference, pp. 259–269, San Diego, Calif. A detailed description of the BSD Packet Filter (BPF) and comparisons with Sun’s Network Interface Tap (NIT). ftp://ftp.ee.lbl.gov/papers/bpf-usenix93.ps.Z

McCloghrie, K., and Farinacci, D. 1994a. “Internet Group Management Protocol MIB,” Internet Draft, 12 pages (Jul.).

McCloghrie, K., and Farinacci, D. 1994b. “IP Multicast Routing MIB,” Internet Draft, 15 pages (Jul).

McCloghrie, K., and Rose, M. T. 1991. “Management Information Base for Network Management of TCP/IP-based Internets: MIB-II,” RFC 1213 (Mar.).

McGregor, G. 1992. “PPP Internet Protocol Control Protocol (IPCP),” RFC 1332, 12 pages (May).

McKenney, P. E., and Dove, K. F. 1992. “Efficient Demultiplexing of Incoming TCP Packets,” Computer Communication Review, vol. 22, no. 4, pp. 269–279 (Oct.).

Mogul, J. C. 1991. “Network Locality at the Scale of Processes,” Computer Communication Review, vol. 21, no. 4, pp. 273–284 (Sept.).

Mogul, J. C. 1993. “IP Network Performance,” in Internet System Handbook, eds. D. C. Lynch and M. T. Rose, pp. 575–675. Addison-Wesley, Reading, Mass. Covers numerous topics in the Internet protocols that are candidates for tuning to obtain optimal performance.

Mogul, J. C., and Deering, S. E. 1990. “Path MTU Discovery,” RFC 1191, 19 pages (Apr.).

Mogul, J. C., and Postel, J. B. 1985. “Internet Standard Subnetting Procedure,” RFC 950, 18 pages (Aug.).

Moy, J. 1994. “Multicast Extensions to OSPF,” RFC 1584, 102 pages (Mar.).

Olivier, G. 1994. “What is the Diameter of the Internet?,” Message-ID <1994Jan22.094832@mines.unancy.fr>, Usenet, comp.unix.wizards Newsgroup (Jan.).

Partridge, C. 1987. “Implementing the Reliable Data Protocol (RDP),” Proceedings of the 1987 Summer USENIX Conference, pp. 367–379, Phoenix, Ariz.

Partridge, C. 1993. “Jacobson on TCP in 30 Instructions,” Message-ID <1993Sep8.213239.28992@sics.se>, Usenet, comp.protocols.tcp-ip Newsgroup (Sept.). Describes a research implementation of TCP/IP being developed by Van Jacobson that reduces TCP receive packet processing down to 30 instructions on a RISC system. http://www.noao.edu/~rstevens/vanj.93sep07.txt

Partridge, C., and Hinden, R. 1990. “Version 2 of the Reliable Data Protocol (RDP),” RFC 1151, 4 pages (Apr.).

Partridge, C., Mendez, T., and Milliken, W. 1993. “Host Anycasting Service,” RFC 1546, 9 pages (Nov.).

Partridge, C., and Pink, S. 1993. “A Faster UDP,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 429–440 (Aug.). Describes implementation improvements to the Berkeley sources to speed up UDP performance about 30%.

Paxson, V. 1994. Private Communication.

Perlman, R. 1992. “Interconnections: Bridges and Routers.” Addison-Wesley, Reading, Mass.

Piscitello, D. M., and Chapin, A. L. 1993. Open Systems Networking: TCP/IP and OSI. Addison-Wesley, Reading, Mass.

Plummer, D. C. 1982. “An Ethernet Address Resolution Protocol,” RFC 826, 10 pages (Nov.).

Postel, J. B., ed. 1981a. “Internet Protocol,” RFC 791, 45 pages (Sept.).

Postel, J. B. 1981b. “Internet Control Message Protocol,” RFC 792, 21 pages (Sept.).

Postel, J. B., ed. 1981c. “Transmission Control Protocol,” RFC 793, 85 pages (Sept.).

Postel, J. B. 1981d. “Service Mappings,” RFC 795, 4 pages (Sept.).

Postel, J. B., and Reynolds, J. K. 1988. “Standard for the Transmission of IP Datagrams over IEEE 802 Networks,” RFC 1042, 15 pages (Apr.).

Rago, S. A. 1993. “UNIX System V Network Programming.” Addison-Wesley, Reading, Mass.

Reynolds, J. K., and Postel, J. B. 1994. “Assigned Numbers,” RFC 1700, 230 pages (Oct.).

Rijsinghani, A. 1994. “Computation of the Internet Checksum via Incremental Update,” RFC 1624, 6 pages (May). An update to RFC 1141 [Mallory and Kullberg 1990].

Romkey, J. L. 1988. “A Nonstandard for Transmission of IP Datagrams Over Serial Lines: SLIP,” RFC 1055, 6 pages (June).

Rose, M. T. 1990. “The Open Book: A Practical Perspective on OSI.” Prentice-Hall, Englewood Cliffs, N.J.

Salus, P. H. 1994. “A Quarter Century of Unix.” Addison-Wesley, Reading, Mass.

Sedgewick, R. 1990. “Algorithms in C.” Addison-Wesley, Reading, Mass.

Simpson, W. A. 1993. “The Point-to-Point Protocol (PPP),” RFC 1548, 53 pages (Dec.).

Sklower, K. 1991. “A Tree-Based Packet Routing Table for Berkeley Unix,” Proceedings of the 1991 Winter USENIX Conference, pp. 93–99, Dallas, Tex.

Stallings, W. 1987. “Handbook of Computer-Communications Standards, Volume 2: Local Network Standards.” Macmillan, New York.

Stallings, W. 1993. “Networking Standards: A Guide to OSI, ISDN, LAN, and MAN Standards.” Addison-Wesley, Reading, Mass.

Stevens, W. R. 1990. “UNIX Network Programming.” Prentice-Hall, Englewood Cliffs, N.J.

Stevens, W. R. 1992. “Advanced Programming in the UNIX Environment.” Addison-Wesley, Reading, Mass.

Stevens, W. R. 1994. “TCP/IP Illustrated, Volume 1: The Protocols.” Addison-Wesley, Reading, Mass. The first volume in this series, which provides a complete introduction to the Internet protocols.

Tanenbaum, A. S. 1989. “Computer Networks, Second Edition.” Prentice-Hall, Englewood Cliffs, N.J.

Topolcic, C. 1990. “Experimental Stream Protocol, Version 2 (SY-II),” RFC 1190, 148 pages (Oct.).

Torek, C. 1992. “Re: A Problem in Bind System Call,” Message-ID <27240@dog.ee.lbl.gov>, Usenet, comp.unix.internals Newsgroup (Nov.).

Waitzman, D., Partridge, C., and Deering, S. E. 1988. “Distance Vector Multicast Routing Protocol,” RFC 1075, 24 pages (Nov.).

OEBPS/html/graphics/11fig24.jpg
g 23 1516 .}
Ly enp_code temp_ckoum
tom sz |10 edam
rcur_snskrgorseLY]
iemp_ta icmp_seq
dentiier sequence number
scmp_naskc

32bit subret mask.

12 bytes

OEBPS/html/graphics/19fig37.jpg
sysctl
system call

Sysctl_rtable

builds routing message
in buffer and copies
‘back to process

OEBPS/html/graphics/20fig04.jpg
R s Aeactiptoy
1100 1100
orers_socksr | £_type T
Taats
socket() socket()
sock_aaw [s Sotvve
(. Sopeb. Sovcb
raven() raven() rawen()
Teb_next —f cbnex Tob_next
[. ceb_prev Tob_prev
veb_socker Tob_socker
veb_fagar Tob_tadar
Tob_1agdr Fob_iagar
Tob_proto ceb_proto

doubly linked circlarlst of

R AR

socet
et iy

OEBPS/html/graphics/24fig26.jpg
Lo
4294967295 0 1 0 e
greater : !
than 0 K :
2147483609 21474648 214748648

OEBPS/html/graphics/07fig25.jpg
IPCTL_FORWARDING
IPCTL_SENDREDIRECTS
TPCTL DEFTTL,

Bet_sysctl

pr_sysctl

cmmt D

TOHBOTL, MASKRERL,

UDPCTL_CHECKSUM

OEBPS/html/graphics/12fig05.jpg
identifies Ethemnet must be 0; 1 is

multicas address Feerved by the IANA
o 5 15 16] A

0559555105 85008 918 111 T

OEBPS/html/graphics/18fig44.jpg
e

search k(6 T e fe [oa e | m|
—eererr— +
radix_node() f cplin
a0 i
: =
e
e —|we_scrrve
e —
e
T
I
S,
e
e
o i
e p— e T
—crer—
eostacinr| |)

e

piony

OEBPS/html/graphics/0328_prog01.jpg
25 voia Sl
330 icmp_reflect (m)
331 struct abut m

32
333 struet ip tip - modin, stxuct ip 17

338 struet in_ifadar tia;

335 struct in_adar t;

336 atruer mbaf topta - 0, *ip_srcroutel):

337 int optlen - (ip-sip bl << 2) - sizeof (struct ip);

33 i€ (tin_canforvard(ip-xiperc) &

39 ((non) (ip->ip_sec.5_addr) & IN_CLASSA_NET)

300 (IN_LOOPBACKNET << IN_CLASSANSHIFT))] (

30 _treenin ; 7+ Bad return address +/

2 goto done 7% Tp_output () will check for broadcast */
33

34t ip-sipas

305 iposipdst - fpalp_sre:

s

37+ It the incoming packet was addressed directly to us,
38+ use dsc as the sre for the reply. Otherwice (broadcast
345+ or anonymous), use the address which corresponds

350+ to the incoming interface.

FEO)

352 for (ia = in_ifaddr; ia; ia = la->ianext) (

553 S (0.o_addr -- TA_SIN(ia)->sin_adds.5_addr)

354 break;

355 SE ((la->iaifp->if_flags & IFF_BROADCAST) &&

356 t.5_addr - satosin(kia->iabroadaddr)->sin_addr.s_addr)
357 breaks

38

359 lempdst . sin_addr

360 Lf (ia - (struee inifaddr %) 0)

361 ia = (struct in_ifaddr *) ifaof_ifpforaddr(

6 (struct sockaddr %) &icmpdst, m->m_pkehde.£cvif)
s e

368+ The following nappens if the packet was not addressed to us,
365+ and was recelved on an interface with no [P address

6 o/

367 A€ (ia - (stract in_ifaddr ©) 0)

368 fa < in_itaddr;

369t Iasmi(ia) sinaddr;

30 ip-siperc - tr

31 ipsipee) - wwerm

p_iwpc

OEBPS/html/graphics/02fig14.jpg
.12 N

e s et o
nonextpke | wLL ronextor it
rren 52 roten 55
rasts et
_tvpe r_oara tvpe ir_oar
rtiaos [pxmion mtiace 1 _rxmion
opkeRdr 1o |52 rpehar ien |85
pkthar - covipir npkehar -roviptr
1
(‘ll"llﬂdlby‘ﬁ
ssbytes
s2iy of data
s ating with
(saring with 7 header
IP header)
v s
(unused) fed iy

05 data length <84 85 < data length < 100

OEBPS/html/graphics/07fig11.jpg
Dr_usrreq
- (e, read, urite, etc)

pr_output
(e:g, routing domain output)

pr_ctloutput
(e:5. socket options)

or_input
(e, ariving TCP packets)

Br_ctlinput
(e, ICMP errors)

OEBPS/html/graphics/860equ03.jpg
t_rttvar nhcks+1
F TS

OEBPS/html/graphics/23fig29.jpg
mbuf {}

20 bytes

m_next,

m_nextpkt

m_len

m_data
m_type

m_flags

cmsg_len

cmsg_level

cmsg_type

cmsg_data

NULL
NULL
16

MT_CONTROL
0

16

IPPROTO_IP
IP_RECVDSTADDR
destination IP address

16 bytes
of control
information

OEBPS/html/graphics/11fig22.jpg
= B 3
TereoE
ICMP_TSTAMP "'“Pa“’d‘ K:hm:;k:::m
scus. T5mmiongrsy |
\crota prey
deier e mamber
25 ongae mesamp

Scmp_reine
32bit receive timestamp.

32bit transmit mestamp.

OEBPS/html/graphics/25fig17.jpg
B BB B BB

v !

BB

2 howss

Teonnection ie)

b

OEBPS/html/graphics/16fig28.jpg
EhN

PRU_RCVD or PRU_RCVOOB

through pr_usrreg

OEBPS/html/graphics/1077_prog01.jpg
fra e
345 bptread(dey, uio)

346 dov_t devs

347 struct uio “uios

30 ¢

369 struct bpf_d d = abpt_dtabininor (dev)];

30 ine errors

B e s

s s

353+ Restrict application to use a buffer the same size
358+ as kernel butfers.

3w

356 Lt (slo-suto_vesid 1= d-sbd bufsize)

357 rerurn (EDWAL);

358 s« splimwO:

39 /e

360+ 1t the hold butfer is empty, then do a timed sleep, which
361+ ends when the tineout expires or when enough packets
362+ have arrived to fil1 the store buffer.

F)

368 while (a->bdhbut == 0) [

165 i (a->bd_imediate L& d->bd_sien 1= 0) {

36 I

267 * A packet (s) either arrived since the previous
6 * read or arrived while we vere asleep.

369 * Rotate the bufers and return what's hers.
I .

3 ROTATE_BUPFERS (d)§

2 break;

373)

s error = teleep((caddr_t) d, PRINET | PCATCH, *bpf*, d-sbd_rtout);
375 it (error =x EINTR || error == ERESTART) {

376 splx(s)

am roturn (exror)

38)

a1 L€ (error == BWOULDBLOCK) (

380 ’

381 * 0n a timeout, return what’s in the bufer,
382 + which may be nothing. 1 there is something
383 * in the store buffer, we can rotate the buffers.
388 .

385 L€ (a->ba_bbur)

386 o

397 * Ve tilled up the buffer in between

388 * getting che tineout and arriving

38 * here, 50 ve don't need to rotate.

390 R

. bre

OEBPS/html/graphics/18fig21.jpg
o xadix_node()

bt 63
ragix_note()

Trliet

) !

G 0 sockadse_in()
E)

*n-flags —|mveacrve w1
Trver A o{T6[Z] 0 Teceefoafz0]
EECT

Tr-dupedkey |uLL

255,255 255,24
ciiin naskits S0 [eejee]eefeo]
G -60

n_unused |0

Tn_flags |0

Ta_mkTist | NULL

ok 3

Tn_refs o

OEBPS/html/graphics/0412_prog01.jpg
ip_mroute.c
297 static tne v

292 aad_lgrp(acp)
293 srict lgrpletl tgcp

Pt
295 struce vit vifes

26 e s

287 it (gep-ylge_viti >= numvits)
298 retun (EINVAL);

299 wifp = viftable + gep-slac_viti

300 if (vifp-v_icl addr.o_addr == 0 1 (vifp->v_flags & VIFF_TUNNEL))
301 Feturn (EADIRNOTAVALL) 7

302 /* It not enough space in existing list, allocate a larger one */
303 s - spinet);

306 it (vitpav lclgrpsn + 1 >= vifpev_lelgrpsman) (
505 int oum

306 struct in_acdr *ip;

307 fum « vip-sy_lel_grpe_nax;

308 it tnum <= 0)

309 num - 33 /+ initial number +/

310 else

m um o rum; /+ double last nusber +/
2 ip = (struct in_addr *) malloc(nun * sizeof('ip),
3 MRTABLE, MIOWAIT)
i SE (1p == W) (

35 splx(s)

s return (ENOBUFS) ;

I)

318 bzero((caddr_t) ip, num ¢ sizeof (*ip)): /* XKX paranoid ¢/
29 boopy ((caddr_t) vifp->v_lcl_geps, (caddr_t) ip,

320 Vifp->u_lcl_grpe_n + sizeof (+ip));

i Vitp->v_lcl_grps_max « nums

2 it (vifp->v_lel_grps)

n Fren(viip->y_lel_oron. WIRTARLS

24 vitp-sv icl grps = 1p

25 eplxiers

2)

327 vifp->v_lel_arps(vitp->v_icl_grpsnes] = gep->lor_gadd
328 it (gep->lge_gaddr.s_adds == vifp-sv_cached_growp)

529 Vifp-ov_cached_result = 1i

30 spixis)

31 retur (00
32

ipmroute.c

OEBPS/html/graphics/22fig35.jpg
ping client

redirect to 140.252.1.183

gateway

gemini,

| netb

ping destination 1.29

e

OEBPS/html/graphics/24fig15.jpg
starting poitnt

appl:passive open |

tmeout
en R8T

v SYN

Send SYN, ACK
Simianessopn

appt:dose
ortimeout

SN SENT
i pen

Sond| cnching> o anothing>

" " i
! (o o i
| AT (aome) |
| el wevlack

| (ARWAT 2)—Ep

e TIVEWATT) -

ISL et
e e

ot mtons ot
Sl e aians oo e pplistion s peraion
e e e o ™
Sond et ot for s o

OEBPS/html/graphics/09fig27.jpg
p_swextr |

ipoption(y

B

Srcopt (0]
Sreope (1)
et
ase [e 96
T
e ipopt_tisc(40) 46 |

OEBPS/html/graphics/05fig18.jpg
foidie s faidie—f 7O
= I = I ——
[PR——— T P e F—

OK) (discarded) (OK)

OEBPS/html/graphics/0685_prog02.jpg
105
106
107
108
109
10
)y

int error = 0;

ruct rawch *rp = sotorach(so):
int

L€ (req == PRUNTTACH) (
MALLOC(rp, struct rawch *, sizeof (rp), H_CB, NLWAITOK);
LE (s0->80_pcb = (caddr_t} rp)
bzero(so->s0_peb, sizeof (*rp));

)
1€ (req == PRU_DETACH &4 D) (

int af « rp->reh proto.sp_protocol;

i (at = AP_TNET)

route_ch. ip_count-

olse it (at ws APNS)
route_cb.ns_count -~
it (at <= AP_ISO)
route_cb. Lso_count
Foute_cb.any_count--;

o

)
5 = splneci)s
error raw_usereq(so, req, ®, nam, control);
b = sotorauch(so) s
AE (req == PRUNTTACH 44 tp) (
int af s rp->reh_proto.sp_protocol;
i€ erron) (
free((caddr_t) tp. H_FCB);
splxie) s
retuen (error

)

i€ (at == Ap_1ET)
route_ch. ip_countes

it (af we AENS)

route_cb.na_count s+
if (at we AE_ISO)

route_ch.any_countr:

rp->rch_taddr « troute_sxc:
soteconnected(s0)
80->80_opedons |= S0_USELOOPBACK;

)

spixta)s

raturn (error);

OEBPS/html/graphics/0685_prog01.jpg
ot

route_usrreq(so, req, m, nam, control)
stxuct socket so;

Sne rear

Eruct mbat *n, *nas, “control:

€

risock.c

OEBPS/html/graphics/0391_prog01.jpg
ipntee
S0 st Tt

55 e ipmens
i

51 st s viommr

I

G struee e viip + s ke ety
G etruce tamaich st

6 et i itadsr i

G meer inmiciaes e
6 p - sosin, stre ip s
G Lomsten < Tpsipciens

¢ tamten < rove e (
iaepatat. lape_rev_coosharcs

)

Linten - sghien » toue N

T e ags & 3T 11 mmten < minten) 6
@ 2 e putiupta, sintenn) <2 01 (
igentat. Lgpe_sev.teottarts

)
x
ia aca oe iphlens

e ikt

Tomp - meaate, seeuct tom)

£ ki, Somplenny
iampear igpe_scv.badsims
S treemian

)
Ao tata - iphien
Eomcten o tomlens
T e, et o

iten (gpmsigmp.tyve) |

7+ oviten casen 1

OEBPS/html/graphics/0391_prog02.jpg
158 /e

159+ pass all valid 1GNP packets up to ary process(es) listening
160+ ona raw 1GNP socket.

o

162 rip_tnput (el

1)

OEBPS/html/graphics/0260_tab01.jpg
674
675
676
677
678
679
680
681
662
683
684
685

686
687

688
689
630
691
692
693
694
695
696

Jnpul.c
IPOPT_TS: e

code « cp - (u_char *) ip;
ipt = (struct ip_timestamp *) cp:
i€ (ipt->ipt_len < 5)
goto bad;
£€ (ipt->ipt_ptr > ipt->ipt_len - sizeof(long)) (
it (eeipt->ipt_oflw ws 0)
goto bad;
. breax.
)
sin « (struct in_adde) (cp + ipt->iptptr - 1):
switeh (ipt->ipt_tlg) (

case 1POPT_TS_TSONLY
brea

case TPOPT_TS_TSANDADOR:
S€ (ipt-ript ptr + sizeot (n_time) «
sizeof (struct in_addr) > ipt->ipt_len)
goto bad;
ipaddr.sin_addr = ds
ia = (INA) ifaof_ifpforaddr((SA) & ipaddr.
->m_pkthdr.revit) :

i€ tia == 0)
continue;

OEBPS/html/graphics/0260_tab02.jpg
el
698
699
700

701
702
703
704
705
706
207
708
709
710

1
n2
73
74
75
16
n7
78
n9

Beopy((cadar_t) & IA_SIN(ia)->ain_addr,

(caddr_t) sin. sizeof (struct in_addr))

ipt->ipt_ptr s sizeof (struct in_addr):
break;

case TROPT_TS_PRESPEC:
L€ (ipt->ipt_ptr + sizeof(n_time) +

sizeof (struct in_addr) > ipt->ipt_len)

goto bad;

bopy((caddr._t) sin, (caddr_t) & ipaddr.sin_addr,

sizeof (struct in_addr)

L€ (ifa_ifwithaddr ((SA) & ipaddr)
contine.

ipte>ipt_ptr = sizeof (struct in_addr):

break;

detaie:
goto bad;

)

ntize = iptime():

beopy ((caddr_t) & ntime, (caddr_t) cp + ipt->ipt_ptr - 1.

sizeof (n_time))
ipe->ipt_ptr +x sizeof (n_time);

gt c

OEBPS/html/graphics/0139_tab01.jpg
B
3é0
261
262
26
268
366
e
B

27
27¢
275
H
281
28

—

e
sloutpuc (itp. . dac. rep)
struct itnet -itp:

atruct mbt -

truct rrentey trep:
<

atruce al_sofec tac - Lsl_softelifp-rif_unit);
atruce ip rip:

atruce ifquese tifa:

e

* Canot nappen (see ailocel). Someday we will extend
= Che Tiow protocol to mupport other address tamilie

s¢ ane ma_tamtry

ar_neT) ¢

Drinte(aitd: afvd not mupportedin®. sc-rsc_if.if_umit.

m_troenim ;
He-sac_if.it_noprotoss:

Camiiy);

1f (ac-me_ceyp s MULL) (
n_troemm):
Foturn (ERETDORN) - more ot =/

1€ ((se-rac_teyp->_ntate & Ts_cAm_om
(n rme_tiyp st cfiag & CLOCAL)
et S

o

o ¢

Psle

OEBPS/html/graphics/0139_tab02.jpg
bt
230
291
292
293
36
97
298
39
300
301
302
303

306
307
308
309
310
3
n2)

2vpRoTO_tCHP)

= troemtm ;
Toturn (RETRESET): /e XXX 7 o/

)
i€ (ip-ip_tos & IPTOS_LoWDELAY)
ieq < iacsnc_tasta:
s = eplinpl
e arorriiiiean
v onor (itar
. troemim
pixier s
aclie. st osrxorasss

1P_ENQUEUE (i, m);

se->sc_if.if_lastchange = time;

if (sc->sc_tiyp->t_outq.c_ce =
slstart (sc->sc_teyp) :

spix(s)

zeturn (0);

ifsle

OEBPS/html/graphics/14fig27.jpg

OEBPS/html/graphics/0655_prog01.jpg
7%
06
707
200
709
70
m
n2
73
74
75
76
77

78
79

syscel_rcable(nane, nanelen, where, given, new, newisn)
int namelon:
caddr_t where:
sizet “given;
Caddr_t *new,
sizet newiens
«

struct radix_node_head *rnhs
int i, s, error = BIWAL;
u_char af:

SEruct walkarg v;

i tnew)
return (EPEV)

OEBPS/html/graphics/0659_prog01.jpg
T
655 syserl_ifitseat, w
656 ine af;

657 struct walkarg *w;

68 (

659 struct ifnet *ifp;

660 struct ifaddr ifa;

861 struct re_addrinto info

62 nt len, exror »

663 brerol(caddr.t) & info, sizeof linfo)):

565 for (ifp = ifnet ifp; ifp = Afp->1NeXS) (
565 SE (w>w_arg & w-ow_arg 1= ifp->if_index)
665 continue;

667 ifa « ifp->if_adariist;

668 ifpadar = ifa->ifa_addr;

a6 len = re_nec2 (RDM_IFINFO, info, (caddr_t) 0. w):
70 iepadar = 0;

o £ (w-sw_uhexe Gk w-sw_cnem) (

A struct if_msghds “ifa;

7 ifn « (struct if_msghdr *) w->w_tmem;
7 itn->itn_indox = 1fp->it_index;

75 inosifn flags - 1fp-if_flags;

76 ifn>itn_daca = ifp->if_daca;

& ifa->ifn_addrs « info.rti_addrs;

78 L€ (orzor = copyout ((caddr_t) ifm, w-sw_vhere, len))
&7 recurn (erron 1

a0 wesw_uhere 4= lon:

a1)

a2 while (ifa = ifa->ifanext) (

683 SE (af i af 1= ifa>itaaddr->sa_tanily)
68 continues

685 ifaaddr - ifa->ifa_adar;

656 retmask = ifa->ita netnask;

587 braaaar - 1ta->ita_scacar;

688 Len = rt_nsg2 (RNBWADER, &info, 0, W)
689 § (u-suvhere G w->v_tmem) (

690 ‘stract ifausghdr vifam

OEBPS/html/graphics/0034_prog02.jpg
0
81
82
83

struct mbut (

struct mhdr mhdr;

union (
seruce (
struct pkthdr 16Lpkthdr; /* M_PKTHDR set */
union (
struct m_ext Miext; /* M_EXT set */
char MH_databuf (NHLEN);
) 1on_dat;
) o;
char M databuf(MLEN); /* IM_PKTHDR, INEXT */
) M_dat;
e
#detine mnext m_hdr..mh_next
#detine n_len m_hdr.sh_len
#detine n_data mhdr.mh_data
fdefine mtype mhdr.mh_type
fdetine m_flags m hdr.mh_lags
#define mnextpkt m_hdr.mh_nextpkt
#detine m_act m_nextpkt
#define mpkthdr M dat.Ml.IOLpkthdr
#detine m_ext H_dat.100.100_dat .10L_ext

#detine m pkedat
#detine m dat

H_dat .}t 101_dat .10(_databuf
M dat .M databut

mbufh

OEBPS/html/graphics/0655_prog02.jpg
720
2
2
72
724
725
726
m
28

29
730

1
2
733
724
735
76
m
738

79
%0
72
70
74
745
746
27
748
745
750
751
752
75
756

it (namelen 1» 3)
recum (EDWAL);
af = name(0];

Brero(aw, sizeot(w));
w_wors = whare;

w_given = “given;
w_needed = 0 - w.u_given;
“wCop = name(1];

w_axg = nane(2];

sz

s = splnec();
switeh (w.w_op) ¢

case NET_Rr_DUNP:
<ase NoTRR_riace:
for (1= 1; 1 ex AT MK Len)
A€ ((mmh = re_cables(i]) G (af == 0 |1 af == 1)
(extor = Frh->rnh_valkeree (nh.
sysct)_dumpentry,

bresks
break;

case NET_RT_IFLIST:
error = sysctliflist(af. &
)
splx(s)
LE w.w_trmem)
£rea(w.u_tnen, MRTABLE)
w._needed += wugiven;
it wwheze) (
*given = w.u_uhere - wher
S (*given < w.u_needed)
recurn [ENONEN);
¢
“given = (11 * w.u_needed) / 10;

) e
)

return (erzor);

w

win

OEBPS/html/graphics/05fig14.jpg
(-

(e
e [= w547
e i

T

OEBPS/html/graphics/0034_prog01.jpg
&
6

6
6
65
66
6
8

]
7
7
7
£

7
s
3
7
7
2

/* header at beginning of each mbuf: */ L

struce = hdr
struce mbu mh_next; /% next butter in chain */
struct mbuf *ah_nextpkt; /* next chain in queue/record */
int ' mhlen; /* amount of data in this mbuf */
caddr_t mh_data; 7* pointer to data */
short mn_type: 7% type of data (Pigure 2.10) */
shore mh_tlags: 7% flags (Pigure 2.9) */
n
/* record/packet header in first mbuf of chain; valid if M_PKTHDR set */

struct pkendr (
ine len; /* total packet length */
struct ifnet *revif; /% receive intertace */

i

/* description of external storage mapped into mbuf, valid if WEXT set */

struct mext (
caddr_t ext_but; /% staze of butter */
vold | (“ext_free) (); /* free routine if not the usual */

uint ext_size:

/% size of butfer, for ext_tree */

OEBPS/html/graphics/14fig42.jpg
‘mbuf packet

P header | nnel

m_next

| header options
28 bytes. f} 20bytes 12bytes’
1P header W data
options
20bytes =]
3
3
8
]
s options and data

20 bytes

OEBPS/html/graphics/14fig38.jpg
(73

s
e [,
p- R
o
3
D«\-F"v
e o
S— S

OEBPS/html/graphics/15fig01.jpg
|

function call

N

OEBPS/html/graphics/27fig22.jpg
ten=5

q% et [tirer [W[[B[W[
T
tiseq=1t

OEBPS/html/graphics/01fig01.jpg
4.2BSD (1983)
first widely available
release of TCP/IP

!

43BSD (1986)
TCP performance improvements

'

4.3BSD Tahoe (1988)
slow start,
congestion avoidance,
fast retransmit
BSD Networking Software i
Release 1.0 (1989): Net/1
43BSD Reno (1990)
fast recovery,
TCP header prediction,
/ SLIP header compression,
routing table changes
BSD Networking Software
Release 2.0 (1991): Net/2
44BSD (1993)

‘multicasting,
/ long fat pipe modifications

4.4BSD-Lite (1994)
ek 5 1h et de Mald

OEBPS/html/graphics/t0037-01.jpg
Mbuf | Used in Net/3 s Memory
m_type | TCP/IPcode Desctipton type
MI_CONTROL . extra-data protocol message | M_MBUF
¥_paTA . dynamic data allocation | M_BUF
M_rReE should be on freelist M_FREE
MI_FTABLE . fragment reassembly header | 1_FTABLE
MI_HEADER . packet header ¥ uBUR
y1_nTaBLE IMP host tables M_HTABLE
MT_1FADDR interface address M_IFADDR
MT_0OBDATA expedited (out-of-band) data | M_MBUF
u1_rca protocol control block w_pce
MI_RIGHTS access rights M_MBUF
M1_RTABLE fouting tables M_RTABLE
MT_SONAME . socket name M_MBUF
H_soopTs . socket options M_soopTs
MT_SOCKET socket structure M_SOCKET

OEBPS/html/graphics/t0034-02.jpg
Value

Comstant | i) Description

MCLBYTES | 2048 | size of an mbuf cluster (external bufer)

MHLEN 100 | maxamount of data in mbuf with packet header
MINCLSTZE | 208 | smallest amount of data to put into cluster
MLEN 108 | max amount of data in normal mbuf

MSIZE 128 | size of each mbuf

OEBPS/html/graphics/0107_prog01.jpg
I
50
51
52
53
54
55
56
57
8
59
60
6
62
6
4

65
66
6
68
6
2
n

ot

ether_output (ifp, m0, dst, re0)
struct ifnet *ifp:

struct mbut

0

struct sockaddr dst:

struct reentry *re0;
«
short type;
int s, error = 0;
u_char edst (6]
struct mbut ' = m0
struct rtentry rt
struce mbut *mcopy = (struct mbut *)
struct ether_header *oh:
int off, len = m->m pkthdr.len;
struct arpcon *ac = (struct arpcom *) ifp:
€ ((ifp->if_flags & (IFF_UP | IFF_RUNNING))
senderr (ENETOOWN) ;
i€p->if_lastchange = tis
i€ (re = reo) (
S€ ((re->re_tlags & RTF_UP) == 0) (

it (re0 = re = reallocl(dst, 1))
Te->rt_refent:

Yrinerouse.c

te (IFE_UP | IFP_RUNNING))

OEBPS/html/graphics/t0036-01.jpg
m_flags Description
M_BCAST sent/received as link-level broadcast
M_EOR end of record
M_EXT cluster (external buffer) associated with this mbuf
M_MCAST sent/received as link-level multicast
M_PKTHDR first mbuf that forms a packet (record)

M_COPYFLAGS

M_PKTHDR | M_EOR | M_BCAST | M_MCAST

OEBPS/html/graphics/09fig04.jpg
Single Byte:

“The offet feld does ot appear
in every multibyte option.

OEBPS/html/graphics/855equ01.jpg
t_srtt
RTO=—4

+t_rttvar
3

OEBPS/html/graphics/0107_prog02.jpg
nders (EHOSTUNREACH) ;
)
i€ (rt->re_flags & RTP_GATEWAY) (
L€ (reS>re_guroute == 0)
goto Lookup:
L€ (((rt = rt->re_guroute)->rt_flags & RTF_UP) =
retree(rt);
e = reo;
lookup: re->rt_gwroute = rtallocl (re->re

ateway, 1):

i€ ((rt = re->re_gwroute) == 0)
‘senderz (EHOSTUNREACH)

)
)
i€ (re->re_flags & RTP_REJECT)

1€ (re->re_rme. rmx_expire == 0 ||

time.tv_sec < rt->re_rmx.rmx_expire)
ndorr (rt == rt0 ? EHOSTDOWN : EHOSTUNREACH):

¢

if_ethersubr.c

OEBPS/html/graphics/0350_prog01.jpg
0 e st
651 ip_setmoptions (optname, inop, m)
652 it optname;
653 atruct.ip_noptions **inop:
654 atruct mhat -
65 ¢
656 n emor s 0
67 u_char loop
68 e 5
659 struct in addr adar
60 struct ip_nreq *nreq;
661 struct ifne *ifp;
62 scruct ip_noptions “imo = *inops
663 struct route x
664 struct sockaddr_in “aat;
665 it timo == ML) (
666 ”
667 * Mo multicast option buffer attached to the peb;
668 * allocate one and initialize to default values.
569 o
70 im0 = (struct ip_moptions *) malloc(sizeot (*inc). M_IPMOPTS,
e HwaTToK)
a2 i€ (ino we woLL)
n return (ENOBUFS);
67 “inop = im0
75 imo->imo_multicast_ifp = NULL;
676 imo->mo_multicast_tt1 = 1P_DEPAULT_MULTICAST_TTL:
o imo->imo_multicast_loop = IP_DEFAULT_MULTICAST. LOOP:
i i0->imo_nun_menberahips = 0;
@)
@0 sviteh (optnane) (
7+ switeh cases </
87 getaule:
a8 exror = EomoTSUPP;
859 break;
w0)
w1
82 '+ € all options have default values, no need to keep the structure.
s e
864 it (imo->imomulticast_ifp == NULL ik
865 imo->ino_multicast_ttl == IP_DEFAVLT_MULTICAST_TTL ik
865 imo-» o _multicast_loop <= IP_DEFAULT_MULTICAST_LOOF i
867 ifo->1no_nun_pesberahips «= 0) (
ase Eree (*inop, M_IPMOPTS) ;
869 *inop = NULL,
a0)
871 retum (error);
a2

ip_output.c

OEBPS/html/graphics/0872_prog01.jpg
43 dne PRI
44 tep_output (tp)
45 struce tepeb -t
1 ¢

47 scruct socker *so = tp-st_inpch->inp_socket;

48 dong len, win:

49 int off. flags, erro

50 seruct mbut m;

51 scruct tepiphdr *tis

52 uchar opt (MAX_TCROPTLEN 1

53 unsigned optlen, hdrlen;

S¢ m idle, sendalor;

s e

6+ Determine length of data that should be transmitted

57+ and flags that will be used.

58+ If there are some data or critical controls (W, RST)

59+ to send, then transmit: otherwise, investigate further.

I

51 idle = (tp-sand_rax - tp-ssnd_una);

52 if (idle 4k tp-st_idle > tp ot_rxteur)

6 ”

6 * Wo have been idle for *a while® and no acks are

65 + expected to clock out any data we send

56 * slow start to get ack -clocks running again.

5 .

66 Ep-ssnd_cwnd = tp-st_maxseq;

69 again:

70 sendalor /% set nonzer if more than one segment to output */
7% Look for a reason to send a segment; */
/% goto send if a segnent should be sent */.

as

215 '+ No reason to send a segment, just return.

20 4/

21 rerurn (0);

222 sena
7% form output segment, call ip_outpuc() */.

@85 it (sendalot)

490 goto again;

91 rerurn (0);

492)

PR

OEBPS/html/graphics/07fig22.jpg
ip_protox(]: inetsw(]:

).

o [g
| .

2 TCP

2 4 ubP
5 e
[¢ 1P raw)
; \ [WP
Gl ——] IGMP
: 3 6 1P (raw)
17 1 -

1 3

255 3 4

OEBPS/html/graphics/31fig09.jpg
bpt_nar() other_header() 1P packet $$
Wbyt Tyt

oo
bt _nar() SLIP pseudodink header 1 packet
Wyt e Tebyies

padding

{ Toopback pscudodink header

T

ot nar() 1P packet

Wbyt

s

OEBPS/html/graphics/26fig13.jpg
[space in receive buffer

rev_nxt=1 rcv_adv = 4097
next receive highest advertised
sequence number ‘sequence number

plus1

OEBPS/html/graphics/0079_prog01.jpg
106 leattach (hd) e
107 st roLaevice s

108 (
109
110
m
12
m
14
15

126
121
128
129
130
1
12
13
130
135
136
137

150
151
152
153
150
155
156
187
158
159
160
161
162)

struct leregd *lerd;
ruct lereg *ler;

struct lereg? *lemem = 07

struct le_softc *le = &le_softc(hd->hp_unit];

struct ifnet *ifp = &le->sc_if;
char *cp:
e i
/* Gevice-specitic code */
s

* Read the ethernet address off the board, one nibble at a time.
"
b = (char *) (lestd(3] + (int) hd->hp_addr);
for (i = 0; & < sizeof (lo->sc_addr); fee) {
le->sc_addr (1] = (*+4cp & OXF) << 41
cpees
La->welaBas (L) 1o “eibi e oumy
pres

)
Printf(*1erd: hardware addr
ether_sprintt (le->sc_addr)) ;

/+ device-specitic code */

i£p->L6_unit = hd->hp_unit;
4£p->i€_nane =
ifp->itonty = ETHERMTU;

Lep->Le_intt = leinit;

i£p->if_xeset = loroset;

i#p->if_toctl = lefoctl;

i£p->if_output = ether_output;

ifp->if_start = lestart;

ifp->if_flags « IFE_BROADCAST | IPF_SIMPLEX | IPE_MULTICAST;
bpfattach(sip->if bpf, ifp, DLT_ENIOMS, sizeof (struct ether header));
i€ _attach(itp)

return (1);

lec

OEBPS/html/graphics/02fig17.jpg
mbuf {}

m_next NULL
m_nextpkt NULL

m_len 296

m_data

m_type MT_DATA
m_flags M_PKTHDR | M_EXT

m_pkthdr.len |296
m_pkthdr . rcvif |ptr
tm_ext .ext_buf
m_ext .ext_free|NULL
m_ext.ext_size|2048

v
_doubly linked list - doubly linked list
oF IP frag; T0TT T of TP fragment
"IP hdr
276 bytes of data

2048-byte cluster

OEBPS/html/graphics/0369_prog01.jpg
Int {_ethersubrc

446 other_delmilei (iex, ac)
447 seruct ireq sifr:

struct ether_multi
struct ether_mulci
struce sockadde_in

u.char addrlols)
u_char adarhi (6]
P vt

456 suitch (Lfr-sife_addr. «

457 case aP_umseen:

s beopy (16551 tx_ader .ca_data, addrlo, 6

159 boopy (addrlo, addehi, 61

60 breaks

sin s (struct sockaddr_in +) &(ifr->Ler_addr);
i (sin->5in_addr.a_addr == INADDRLANY) (
m
* An 1P address of INADDRANY means stop listening

* €0 the rance of Echernet multicast addresses used
+ for 5.

'/
beopy (ecner_ipmilcice
boopy (ether_ipmilticast_nax, addeti, 6)

) else ¢
ETHER JMAP_1?_JULTICAST (ssin->sin_sdds, addrlo);
beopy (addrlo, addrhi, 6)1

)

break;
o Splxts)

e return (EAFROSUBPORT) ;
s

w

481t Look up the address in our list.
w2

) STHER_LoOKUPILTI (addrlo, addehi, ac, enmb;

486 AC (enn e NOLLY
a5 splx(e);

486 recum (2061017

wr

488 it (--onm->ennrefcome 1= 0) (

ass B

aso * 5t11 some clains to this record.
n2 splx(s);

s reuzn (01

OEBPS/html/graphics/24fig10.jpg
2 .
<r_eport cr_oport
it soure port mumber 16t destinion ort nmber
th_sea
32bit sequence number
chack
525t acknomdgment number
e UATPTR]S[F o
st ®[c|s|s|v]1 .
o | "o |G|K | TIN|N
ey o
1t TCP chckum Iehiturgentoffet
optons Gt any)

data Gfany)

OEBPS/html/graphics/21fig01.jpg
1iinfo Arpl) SLINOREDL]. €1 it

into_urp; Tanext Tanext Tanexc
Taprev Taprev Toprev
Tart Tare Tare
Tavold Tahota fre Ty
Tasored Ta-asked Ta-asked
sockasss a1y socxasse a1() sccxadss a1() socxades a1()
ey 1F7_emHeR
a1 s1en=0 Pty
obtare frareoscasamias ositan]
e e e teateyO)
0 gy e 0 ke = o oy = ey =
B 1332 ibeey e s
T EvT Ry E
\Fegatomy Fe_gateuy e garevsy Fgatenay
rofiags o [rthess o [vefles Jom [flage
eI R it it
Py Ey =y =y

stoar:

sotecto sost:
L) e
et indexsy
e
stnec asore: [asoree
prereny sessaco
S o
g (73 16
o [rvr_emen e sc0p
in_itesace) inteasece prT
 e— o oy
 — Thuamns oz 27001
022138 oz
s a2 sz

inicagsr

OEBPS/html/graphics/0372_prog01.jpg
pry
215
26

w
28
29
220
P
2
P
224
225
226
227
28
229
220
231
23
24
235
236

a7
238
25
20
20
22
203
204
205
25
28
205
250
251
252
253
254
255
256
257

TE (DRUTICAST(eohl (1p->1p_dt - 5_addr1)] (Rtz

struct inmilti *ine
extern struct socket *ip_mrouter:

i€ (ipmrouter) {
75
* € we are acting as & multicast router, all
* inconing multicast packets are passed to the
* kernel-level multicast forwarding function.
* The packet is returned (relatively) intact; if
* ipmlorvard() returns a non-zero valus, the packet
= MSC be Giscarded, else it may be accspred balow.

(The TP idenc £ie1d is put in the sams byte order
as expected when ip_nforward() is called from

+ ip_owpuc().)

.

ip->ip_ia = heons(ip->ip_id);

if (ip_nforvard(n, m-omokehdr.rcvif) 1= 0) (
ipatac. ips_cant torvaras+1

ip->4p_id « ntons(ip-sip_id);

e

* The process-Level routing demon needs to receive
© all muilticast XoWF packets, whether of not this
* host belongs to their destination groips.

i (ip->ip_p == IPBROTO_IGHP)
goto ours;
ipstat..ips_forvardss;
)
o
- see 1¢ we belong co the destination muLc:
* arrival intertace.
.
IN_LOOKUP_MULTL (ip->ip_det., m->n_okehds .ccvit, inm);
S€ (dnm ee L) (
ipstat..ips_cant forvardse;
m_treemim);
goto next:

st group on the

)
goto ours

ip_inputc

OEBPS/html/graphics/0858_prog01.jpg
input.c
300 voia F
1311 cep_enic_cimer (tp, rec)

1312 struct topeb °n
133 snort st

118 (
1315

116
1311
feet
1319
D20
12
122
121
1320
1325
1326
121
1328
1320
1m0
31
2
1535
1331
1335
1538
1337
1338
1339
1380
1341
1342
1343
18
345
136
1387
156
1239
1350
1181

short deltar

topstat. tcps_recupdatedss;
i€ (ep-seiartt 1= 0) (

* srtt ia stored as fixed point with 3 bits after the

* binary point (i.e., scaled by 8). The following magic

+ {s equivalent to the smoothing algorithm in rc793 with

* an alpha of L875 (artt - Ttt/S + SreceT/B in fixed

* pont). Adjust rtt to origin 0.

o

delta = ret - 1 - (tp-st_erer 5> TCR_RTT_SHIPT);

T ((sp->e_sree o= delta) <= 0)

tpost_oree

We accumilate a sroothed rtt variance (actually, a
amoothed nean difference), then set the retransmit
Fimer to amoothed ftt + 4 tines the snoothed variance.
rttvar (s stored as fixed point with 2 bits after the
binary point (scaled by 4). The following is
equivalent to rfc733 snoothing with an alpha of .75
(stevar = revar+3/d + ldelcal / 4). This replaces
+ vec7937s wired-in bera,

-

i (aelca < 0)
delta - -delts

delta = (rp->t_ritvar >> TCR_RTTVAR_SHIFT)

SE ((tpoot_rtevar +r delta) <= 0)

epoat_retvar = 11
)else
s
* o ree neasurement yet - use the unsmoothed rit.
» Set the variance to half the rtc (so cur first
* Tetransaic happens ac 30rte).
o
Ep-st_sstt - ret < TCR_RFT_SHIFT:
Epost_rttvar - rit << (FCP_RTIVAR_SHIFT - 1);

1cp_input.c

OEBPS/html/graphics/02fig16.jpg
mbuf {}

m_next NULL
m_nextpkt NULL
m_len 1500
—{m_data
m_type MT_DATA
m_flags M_PKTHDR | M_EXT

m_pkthdr.len |1500
m_pkthdr . rovif |pir

—{m_ext . ext_but
m_ext.ext_free|NULL
m_ext . ext_size|2048

88 bytes
(unused)

208 < data length <2048

2048-byte cluster
oo X

1500 bytes of data
(starting with IP header)

548 bytes (unused)

OEBPS/html/graphics/t0107-01.jpg
Range Description
0— 1500 | IEEE 8023 length field
1501 — 65535 | Ethernet type field:
2048 IP packet
2054 ARP packet

OEBPS/html/graphics/t0098-01.jpg
Interface table, index = <ifindex >

SNMP variable Tenot member Description
TtIndex SE_index uniquely identifies the interface
ifpescr if_nane text name of interface:
ifType i type type ofinterface (e, Ethernet, SLIP, etc)
ey prr MTU of the inerface in bytes
ifSpeed (seetext) ‘nominal speed of the interface in bits per
second
itPhysaaeress ac_enadar media address (from arpeon structure)
ifadminstatus (seetext) desired sate of the interface (IFF_UP flag)
ifoperstatus if_flags operational state o the interface (TFF_UP
fag)
ifLastChange (seetext) st time the staistcs changed
ifIncetets it ibytes total #input bytes
TfTnvcastexts T_ipackets - | finput unicast packets
it_imcasts
TeinNocastPkts | 1f_imcasts Finput broadcast or multicast packets
ifInDiscards i€ iqdrops #packets discarded because of
implementation limits
ifInerrors if_ierrors #packets with errors
ifInUnknownProtos | if_noproto #packets destined to an unknown protocol
ifoutocte if_obytes foutput bytes
TfouticastPkts | 1f_opackets - | Foutputunicast packets
i¢_omcasts
TeoutcastPkts | if_omcasts Foutput broadcast or multicas packets
ifoutbiscards € snd. 1fq_drops | output packets dropped because of
implementation limits
itouckrrors if_oerrors #output packets dropped because of errors
ifoutqen i¢_snd.ifq len | output queue!
ifspecitic wa SNMP objectID for media-specific

OEBPS/html/graphics/17fig19.jpg
[

input
output
woid

length

sroup.

number.

i

1y

OEBPS/html/graphics/t0128-01.jpg
ifnet Ethemet SLIP__ | Loopback Description
Teinic Teinit ol hardware

Stloutput | ether_output | slouput | looutput | acceptand queve packetfor ransmission
itlstare | lestare begin transmision offrame.

i€ done’ output complete (unused)

iflioctl | letoctl sliocel | lotoctl | handie Loct) commands from a process
i€ xesor | loreser reset the devicetoa known state

it vatcndog wateh the devie or failures orcolect

OEBPS/html/graphics/t0115-01.jpg
Command “Third argument | Function Description
SIOCGIFCONE | struct ifconf » | ifcont | retrieve listof interface configuration
SI0COIFFLAGS | struct ifreq * | ifioctl | getinterface flags
SI0COIFMBIRIC | struct ifreq * | ifioctl | getinterface metric
S10CSIFFLAGS | struct ifreq * | ifioctl | setinterface flags
STOCSIFMETRIC | struct ifreq * | ifioctl | setinterface metric

OEBPS/html/graphics/09fig17.jpg
ipintr To_dooptions

Tp_srcroute

e Comveree>

ip_srert:

OEBPS/html/graphics/25fig14.jpg
LA

12

A

60 seconds

YT

ry

OEBPS/html/graphics/t0097-01.jpg
netstat -i output

Tame Weu Networx | Address Tpkts ferrs Opkts Gerrs Coll
le0 1500 <Link>8.0.9.13.d.33 28680519 914 29234729 12 942758
1e0 150 128.32.33 128.32.33.5 28680519 814 20234729 12 942798
100 29 <vink> 54036 0 45402 0 0
s10t 296 128.32.33 128.32.33.5 s 0 45402 0 0
a1l 29 <uink> 4037 0 msaa 0 0
s 296 128.32.33 128.32.33.5 40397 0 s 0 0
s12¢ 296 <uink> o 0 o o o
s13t 295 <Lino o o o o o
10 1536 <Link> 493599 0 4s39 0 0
100 1536 127 127.0.0.1 493599 0 493599 0 0

OEBPS/html/graphics/t0096-02.jpg
ifnet member

Used by

SNMP
if_collisions #collisions on CSMA interfaces

total #bytes received .
if_ierrors #packets received with input errors .
if_incasts #packets received as multicasts or broadeasts | o
if_ipackets #packes received on interface .
if_iqdrops #packets dropped on input, by this interface .
if_lastchange time of last change to statistics. .
if_noproto #packets destined for unsupported protocol .
if_obytes total #bytes sent .
if_oerrors #output errors on interface .
if_omcasts #packets sent as multicasts .
if_opackets #packets sent on interface .
if_snd.ifq drops | #packets dropped during output .

if_snd.ifq len

#packets in output queue

OEBPS/html/graphics/11fig31.jpg
M

avngeam p— o
0 wopions [, F4 T o

ICMP e VP first
message| PR peager] 8 bytes,

N J b invalid datagram————»]

1P header 1P options

OEBPS/html/graphics/21fig25.jpg

OEBPS/html/graphics/t0033-03.jpg
mbstat member

Description

m_clfree
m_clusters
m_drain
m_drops
m_mbufs
m_mtypes [256]
m_spare
m_wait

#free clusters.

#elusters obtained from page pool

#times protocol’s drain functions called to reclaim space
#times failed to find space (not used)

#mbufs obtained from page pool (not used)

counter of current mbuf allocations: MT_xxx index
spare field (not used)

#times waited for space (not used)

OEBPS/html/graphics/t0034-01.jpg
netstat -m_output

mbstat member

55 muts in use:
1 mbufe allocated to data
43 mbuts allocated to packet headers
17 mbuts allocated to protocol control blocks
20 mbuts allocated to socket names and addresses
18 mbuts allocated to socket options

2/34 napped pages in use

80 Kbytes allocated to network (200 in use)

0 requests for memory denied

© requests for memory delayed

0 calls to protocol drain routine:

m_ntypes (MT_DATA]
m_ntypes (MT_HEADER)
)
m_ntypes (MT_SoNAE)
m_ntypes (MT_S00PTS)
(e tex))

(seetext)

m_drops

mvait

m_drain

OEBPS/html/graphics/t0033-01.jpg
File

Description

sys/mbuf .h

mbuf structure, mbuf macros and definitions

kern/uipc_mbuf.c

‘mbuf functions

OEBPS/html/graphics/t0033-02.jpg
Variable

Datatype

Description

mbstat

struct mbstat

‘mbuf statistics (Figure 2.5)

OEBPS/html/graphics/t0002-02.jpg
m_flags

Description

W_BCAST

Isent/received as link-level broadcast

OEBPS/html/graphics/t0022-01.jpg
Function Description

sp10 normal operating mode, nothing blocked _(lowest priority)
splsoftelock | low-priority clock processing

splnet network protocol processing

spltty terminal 1/0

splbio disk and tape 1/0

splimp network device /0

splclock high-priority clock processing

splhigh all interrupts blocked (highest priority)
splx(s) (see text)

OEBPS/html/graphics/15fig31.jpg

OEBPS/html/graphics/t0002-01.jpg
mbuf{}

m_next NULL

m_len 512

OEBPS/html/graphics/0119_prog02.jpg
ws
456
a7

a85
40
as1
492
493
s94
495
496
497
498
499
500
so1
s02
503
s0¢
505,
506
507
508
509
510
s11
512
513
s1¢
515)

A5 tovvoRd

sizeof (ifr), ifrps

for (; space > sizeof (ifr) & ifa; ifa = ifa->ifanext) (
struct sockaddr sa = ifa->ifa_addr:
L€ (sa->sa_len <= sizeot(*sa)) (

exzor = copyout ((caddr_t) & ifr, (caddr_t) ifrp,
sizeot (ifx)):
ifrpes;
) else (
space -= sa->sa_len - sizeot (
L€ (space < sizeof (1))
bre
oxror = copyout ((caddr_t) & ifr, (caddr_t) ifrp,
sizeot (itr.itr_nane))

it (exror == 0)
exror = copyout ((caddr_t) sa,
(caddr_t) & itrp->itr_addr, sa->sa_len):
ifrp « (struce ifreq *)
(sa->sa_len + (caddr_t) & ifrp->ifr_addr);
)
it (error)
break;

space -= sizeof(ifr):
)

)

ite->ife_len -= space:

return (error)

OEBPS/html/graphics/0276_tab01.jpg
267

268
269

270
271
272
273
274
275
276
277
278
279
260
261
282
283
284

289

poutpute

int shlen, tirstlen . len;
SLXUCE Bbuf **mRext = &m->n_nextpKt

”
* 100p through length of segent after first fragment,
* make new header and copy data of each part and link onto chain.
o
20« =
=nlen - sizeof (struct ip):
for (off - hlen + len: off < (u_short) ip-»ip_lens off += lem (
MGETHDR(m, M_DONTWALT, MT_WEADER):
i€ m ee 0
crror « ENOBUFS:
ipatat. ips_odroppedss;
goto sendor free:

)
sndata +o max_linkndr:
=hip « mtod(n, struct ip)
“zhip « *ip:
i€ (hlen > sizeof (struct ip)) (
=hlen - ip_optcopy (ip, =hip) + sizeof (struct ip):
hip->iphl = mhlen >» 2;

OEBPS/html/graphics/01fig09.jpg
process

sendto|system call

socket layer

protocol layer

interface layer

Ethernet frame

<opy destination socket address structure
and user data (150 bytes) into mbuf chain

UDP output
TP output

Ethernet output (ARP)
device driver output

OEBPS/html/graphics/0119_prog01.jpg
462 int e
363 Lecont (cnd. data)

$68 int cmd,

465 caddr_t data:

466 (

467 struct ifcont “ifc = (struct ifcont *) data:

468 struct ifnet ifp = ifnet;

469 struct ifaddr “ifa;

470 char cp, ep:

471 struct ifreq ifr, *itrp:

72 int space = ifc->ifc_len, error = 0;

473 itxp = Lfc->ite_req;

478 ep » ifr.ifr_name » sizeof(ifr.ifr_nane) -

475 for (; space > sizeof(ifr) Lk ifp; ifp = ifp->ifnext) (

476 stencpy (ifr.ifr_name, ifp->if_name, sizeof (ifr.ifr_name) - 2):
N for (cp » ifr.ifr_name; cp < ep Lk "cp: cpre)

a8 continue;

419 “epes = 10 4 ifp->if_unit:

a0 ep e \0°s

a8 L€ ((ifa = ifp->if_addrlist) we 0) (

a2 bzero((caddr_t) & ifr.ifr_addr, sizeof (ifr.ifr_addr)):
483 error = copyout ((caddr_t) & ifr. (caddr_t) ifrp,

Py sizeof (ifr));

OEBPS/html/graphics/02fig15.jpg
mbuf{)}

next mbuf in chain

m_next
m_nextpkt NuLL
m_Ten 100
n_data

m_type MT_DATA
n_flags M_PKTHDR

m_pkthdr . len |104
m_pkthdr . rovif |phr

100 bytes
of data
(starting with
IP header)

101 < data length < 207

mbuf{}

m_next

m_nextpkt

m_len

m_data

m_type

m_tlags

Ibytes of data

104 bytes
(unused)

oL
NuLL

vr_paTa

OEBPS/html/graphics/02fig18.jpg
sbuf() mbuf ()

PonextoRE |wuLL mnextprt e
ES—T] mten 256
rodata ndata

r_type ur_oara mtyee vr_paz
- flags H_pkrioR n_tlags i xr

m_pkthar-Ton 296
r_pkchar. reviE|pir

r_oxt.oxt_but

douly e it P header | doubly ke st e ext coxtfres|NuLL
* of IP fragments. of igmants [m_ext .ext_size|2048
next20byes

of datagram

=

next 25 bytes of datagram

048 byte cluster

OEBPS/html/graphics/10fig27.jpg
ipay

-
£ cluster

= ot o o]

C _
Z —m,. =
i b o

)
|
1)

Fragment 1

Fragment2

Fragment3

OEBPS/html/graphics/19fig21.jpg
i 2

[Fti_aadrs o sockadar_in()

i info(RAX boT] 1 TP address that was not found.
1 info (RTAX_GATERAY] | NULL,

L nfo [RTAX_NETHASK] | MULL,

1 info (RTAR_GENASK)|NULL,

e L_info(RIAX_Tre]__|MuLL

[t L_info (RIAX_IFAL _|MULL

e info (RAX_AUTHOR] |uLL.

[FEi_info[RTAR_BRD] _|NULL

OEBPS/html/graphics/0276_tab02.jpg
id
291
292
293
208
295
296
297
298
299
300
301
102
303
304
305
306
307
108
309
310
T
nz
3
4

>#_len - mhlen;

Ship->ip_off + ((0ff - hlen) »» 3) + (ip->ip.off & “IPMF):

i€ (ip->ipoff & 1P
hip->ip_off |- 1P MF:
€ (Off + len - (u_short) ip->ip_lem)
len + (u_short) ip->ip_len - off;
olse
hip sipoft - 16 s
ship->ip_len « htons((u_short) (len + =hlem)):
>m_next « m_copy (n0, off, len);
L (meom_next s 0) (
(void) m_tree(s
error - MOBUFS: /% 222 ¢/
ipatat . ips_odroppedse;
goto sendorfree:

m_pkthdr . len « shlen o len:
>m_pkthdr . rcvif = (struct ifnet *)
Bhip->ip_off + htons((u_short) ship->ip_otf):
ahip->ip_aua = 0;

Snip->ip_nus « in_cksun(m, shlen
ranext «

reXt + kmesm_nextpKe

ipstat. ips_otrageents.

ip_output.c

OEBPS/html/graphics/04fig25.jpg
x|

i)
§ secontor

Cotomn

st i
- T
s EE Ty s
e o]
iz e e
T | Tedr - -swe Socadds Teo0y]
e =
i | e e
2 = ey

o

oo

OEBPS/html/graphics/16fig20.jpg
e——uio_ottaet——sfe——— uio_resid —s]

o0 sovten
oo o
totovert |2 Lol motm-n
“io-ottset |n)

lo_resia |(m+m +TIR
io_seaflg | u10_uSERSPACE
iow vt wRrrs
wio_procp - - process

P —

s]

OEBPS/html/graphics/24fig17.jpg
Sod e = & oMo window
(advertised by receiver)

2 3) 0o
can'tsend unil.
sent and S ROUACKST " window moves
eknowledged : Carsend ASAP
snd_una=4 snd_ns
oldest next send
unacknowledged scquence number
sequence number

'

snd_nax =7
‘maximum send
‘sequence number

OEBPS/html/graphics/03fig18.jpg
sockadar()

osockadar ()

I fanily

1en aata
T Tabytes

fanily aaca
7 Tabytes

OEBPS/html/graphics/10fig10.jpg
" header timestamp opton LSRR opton
o - o
e Kk opion s
— i

OEBPS/html/graphics/28fig26.jpg
3 4 5 6 7 8 9 FN
old sequence numbers that TCP has

cknowledged and passed to socket ayer

received segment:| ti_len = 4, FIN flag set rev_nxc =11
next receive

} sequence number

[y

OEBPS/html/graphics/0563_prog01.jpg
133 stract fentl_args (e
s ine

135 ine
136 sneoarg:
1373

136 /+ ARGSUSED 7
139 fenc (p, uap, retval)
140 struct proc b

161 struer fontd_args *uaps
12 e erecval:

16 ¢
148 struct filedesc *dp - prop_fd:
s struee file o
146 struct viode *vp;
W7 e i, tp, errer, tlg - E_ROSIX:
18 seruer flock fls
145wt newmin:
150 if ((unsigned) uap->fd >= fdp->tdnfiles 11
151 (£p » tdp->£d_ofiles(uap->£d]) == NULL)
152 return (EBADF)
153 switch (uap-semd) (
/* comand processing */
253 aetau;
25 return (BDWAL);
255)
256 /e notReacHED +/
257)

Po—

OEBPS/html/graphics/09fig33.jpg
- [-lywlsau

loose source route

N

Jm

sl

OEBPS/html/graphics/10fig02.jpg
‘maximum datagram

o 78 116 mn essn g oM

TPheader
pooff=0 Mi

Wyies e

” Syt Shyies sh 3

TPheader
ip_0ff-0 ME=1

Whyies Fyies

TPheader
ipoft=1 MF=1
Wy Fhyies
TPheader
ip_off=2 MF=
Wy Fhyies
TPheader
fp_off=8188 MF=1
Wyies Ty
TPheader
ip_ofe=8I8 MF-0
Whyies

e g

OEBPS/html/graphics/0670_prog01.jpg
fregTy
114 route_output (n, s0)

115 aruct abat

126 struee socket *sos

17 (¢

18 etruce repeghdr trtm s 0;

119 struce reenty rt « 0;

120 struce reentry *saved_net = 07

121 struct re_addrinto info

122 dne len, error -

123 struce Stnot *itp - 0

120 struce itaddr *ifa = 0

125 4dotine senderr(e) (error = e; goto flushi)

16 if @es 0 11 ((me>mlen < sizeot (long)) &k

i (a = n_pallup(m, sizeof (long))) == 0))
128 return (BIOBUPS) 1

129 it ((mo>m_tlags & WPKTHDR) = 0)

130 panic{*route_outpuc

11 len - mesmpkendr.dens

12 1 (len < sizeot(rrtm) 11

13 len 1a mtod(a, struct re_nsghdr *)->rea_msglen) (
14 aoc < 0;

15 sendor (BWAL) ;

ne)

17 Rallocrts, struct rt_saghdr +, lenls

138 AT (xem e 0)

139 st « 0,

10 sendors (BNOBUFS) ;

w o)

142 mcopydatan, 0, len, (cadds_t) stm);

163 AT (remesren version 1= RDLVERSION) {

16 anc < 0

145 senders (EPROTONOSUPRORT) ;

s)

17 reasrenpid = curproc-sp.pids

18 info.rciaddra « rea->remaddrs:

169 rexaddrs((caddr_t) (rtm s 1), len + (caddr_t) rtm, &dnfo):
150 it (dse we 0)

15 ndors (EDVVAL) »

152 i (gemmask) (

153 struct radixnode *ts

154 © + rn_addmask((cadde_t) gensask, 1, 2)

155 £ (¢ ik Bomp(genmask, t->rn_key, *(u.char *) genmask) = 0)
156 Genmask = (struct sockadds *) (e->rnkey):
157 olse

158 senders (BIOBUFS) 1

159

OEBPS/html/graphics/0281_tab01.jpg
am
2m
273
27
275
276
m
278
279
280
281
282

284
285
286

287

289
290
291
292
293
294
295
295
297
298

1€ offset or 1PMF are set, must re
Otherwise, nothing need be don
(e could look in the reassembly queue to see
S€ the packet was previously fragmented,
* but it's not worth the time; just let them time out.)
o
L€ (ip-»ip_off & “IP_DF) {

if (nom_flags & M_EXT) (/% XRX °/

if ((m = m_pullup(m, sizeof (struct ip))) == 0) (

ipstat . ips_toosmalles:

struct ip *)

7
* Look for queue of fragments
* of this datagran.

o
€or (fp « ipq.next; fp 1s &ipa: fp = fp->next)
S€ (ip->ip_id == fp->ipaid 4k
ip->ip_sre £p->ipa_sre.s_addr u
ip->ip_dst £p->ipa_dt
ip-aipp =e p->ipap)
goto found;
-

found:

OEBPS/html/graphics/0281_tab02.jpg
299
300
301
302
303
304
305
306
307
308

309
310
31
312
3
3¢
s
316
nr
318
319
320
321
322

323
32¢

* Adjust ip_len to not reflect header,
* set ip_mf if more fragments are expected,
* convert offset of this to bytes.
o
ip->ip_len -» hlen;
((struct ipastrag +) ip)->ipLmet &= “1;
if (ip->ipoff & I1PMF)
((struct ipastrag *) ip)->iptmet I= 1;
ip->ip_off <<= 3
”
* 1f datagram marked as having more fragments
* or if this is not the first fragment,

* attempt reassembly: if it succeeds, proceed.
.

L€ ((tstruct ipastrag *) ip)->ipLALE & 1 11 ip->ip_off) (

ipstat . ips_tragnentses:
ip - ip_reass((struct ipastrag *) ip. o)
it (ip == 0)
goto nex
ipstat.ips_reassesbledss;
m = dcon(ip)
) else if (fp)
ip_treef (fp);

) else

ip->ip_len -= hlen;

ip_input.c

OEBPS/html/graphics/18fig35.jpg
JRALE Siwar

o = ‘head of routing tree:
L0 nlo. node for bit 32at.

B

Lumx_wh()

2

===

=

=

o

—

=

e

e

e

==

=

==

==

OEBPS/html/graphics/04fig12.jpg
0

78

1516

224

3132

3940

47

ether_anost (1 [

identifies Ethernet
e

PO
iBit Eihernet address

OEBPS/html/graphics/0142_tab01.jpg
37
m
2
m
3
5

76
37
8

75
380
381
382
383
8¢
385
386
387
388
389
390
391
392
393
398
395
396
397
398

a8

* this is a serial line, packets should be short
* and/or the copy should be negligible cost compared
* to the packet transmission time).

o
struct mbut 'l = m;
u_char *cp = bpfbuf + SLIP_HDRLEN;
len = 0
o (

ot mlen = ml->m_len;

beopy (stod(ml, caddr_t), cp, mien):
cp += mien;
len += mlen;
J while (Bl = ml->m next):
)
i€ ((ip = mtod(m, struct ip *))->ip_p == IPPROTOTCP) (
L€ (sc->ac_if.if_flags & SC_CONPRESS)
cod(m, u_char *) |= sl_compress_tcp(m, ip,
ssc->sc_comp.,

)
it (sc->sc_bpt) (
s
* Put the SLIP pseudo-*link header® in place. The
* compressed header is now at the beginning of the
- mbut.
.
bptbuf (SLX_DIR) = SLIPDIR_OUT;
beopy (mtod(m, caddr_t), &bpfbuf (SLX_CHOR), CHDRLEN) ;
bpt_tap(sc->sc_bpt, bpfbut, len + SLIP_HDRLEN

/* packet output code */.

:

ifste

OEBPS/html/graphics/0522_prog01.jpg
693

715 relea:
716 sbunlock(kso->so_revl
77 splxis)s

78 rerurn (error);

Lt

OEBPS/html/graphics/06fig05.jpg
loit

ifnet: le_softe(0]: s1_softe(0:
" temecn [T ttnet) G)
arpoon(y SLsofte(y
e_soreen)
raveey ifaqar() pre
roeraaarano] | Jaorasar_ar] | lsockasar ar0)
sockasar 10| [feocxadera10)] | |aockasar 10|
in_teagarq)
each tn_tzacar() Traifp
Starts with an Tea_next
iragar()
in_ifaddr.
in_teagar() in teagar() in_tradarq)
itaifo iraifp Thaitp
et 4 [Cifeen Tfanert 1
Tanext Tt T

Atagare,

traaar0)

OEBPS/html/graphics/0217_tab01.jpg
input.
867 void s

368 ip_forvard(m, srert)
369 struct mbuf

870 int srex
871 (

872 struct ip *ip = mtod(m, struct ip *):

873 struct sockaddr_in *sis

874 struct reentry -rt

875 int error, type = 0, code:

876 struct mbut *mcopy:

877 n_long dest

878 struct ifnet “destifp:

879 dest = 0;

880 if (m->m_flags & M_BGAST || in_canforward(ip->ip_dst) ‘
381 ipstat. ips_cantforwardes;

382 n_treem(m ;

883 return;

)
HIONS (ip->ip_id) ;
if (ip->ip_tel <= IPTTLDEC) (
icmp_error (m, ICHP_TDMXCEED, ICMP_TINXCEED_INTRANS, dest
return

)
ip->ip_eel

1PTTLDEC;

OEBPS/html/graphics/0217_tab02.jpg
#in = (struct sockeddr_in *) &ipforward_rt.ro_dsi
i€ ((rt = ipforward_rt.ro_rt) == 0 ||
ip->ip_dst.s_addr = sin->sin_addr.s_addr) (
i€ (ipforvara_re.ro_re) (
RTFREE (ipforward_rt.ro_rt) ;
ipforvard_rt.ro_rt = 0

)
sin->sin_fanily = AP_INET:
sin->ain_len = sizeof (*sin
sin->sin_addr = ip->ip_dst.

rralloc(uipforvard_zt)
if (ipforward_rt.ro_rt == 0) (
icwp_error (m, ICHP_UNREACH, ICMP_UNREACH_WOST, dest, 0):
return;

)
Tt = ipforward_re.ro_rt;

’
* Save at most 64 bytes of the packet in case

* we need to generate an ICHP message to the src.
o
mcopy = m_copy(m, 0. imin((int) ip->ip_len, 64)):

ip_ifmatrix(re->re_ifp->if_index +
if_index * me>m pkthdr.revif->if_index)es:

ip_input.c

OEBPS/html/graphics/23fig10.jpg
1516

3

un_sport uh_gport
16-bit source port number 16-bitdestination port number
uh_ulen un_sun
16:bit UDP length 16-bit UDP checksum

data G any)

—i—

OEBPS/html/graphics/05fig08.jpg
Tointra

s1_sofee(o]:

raees

[setasea
scbat
scmp
seep
ety

"

Q

input
characters

OEBPS/html/graphics/0305_tab02.jpg
#detine icmp_id icmp_hun.ih_idseq.icd_id
tdetine icmp_seq icep_hun.in_idseq.icd_seq
“detine icmp_void icmp_un.ih_void
“detine icmp_pewoid icup_bun. ih_pmtu. ipm_void
tdotine icmp_nextmtu icmp_hun.ih_potu. ipe_nextmtu
union {
struct sd_ts (
ntime its_otirer
ntine its_rtire:
ntime its_ttire:
) 1d_ts,
struct id_ip {
struet ip iai_ips
7+ options and then 64 bits of data
} idips
u_long id_mask;
char id_datall)
) icrp_dun;
sdetine icmp_otime icrp_dun.id_ts.its_otime
#detine icmp_rtime icep_dun.id_ts.its_xtime
#detine icmp_ttime icrp_dun.id_ts.its_ttime
tdetine icmp_ip icep_dun.id_ip.idi_ip
#detine icmp_rask icep_dun. id_mask
sdetine icmp_data lcmp_dun.id_data
i

ip_icop.h

OEBPS/html/graphics/0305_tab01.jpg
42 struct icap [el

)
s
5
P
o
a8
9
50
51
52
53

54
55
56
57
58
59

uchar icrp_type; 7+ type of message. see below */
uehar icmp_code 7% type sub code 7
u_short icmp_cksun; 7+ ones complement ckeum of struct ¢/
union {

uchar ih_pptr: 1% TCMP_PARAMPROB */

struct in_addr ih_gwaddr;

steset ih_idseq {
n_short icd_i
n_short icd_sea

) in_idseq:

it invoid:

7+ ToMP_REDIRECT */

/% ICMP_UNREACH_NEEDFRAG -~ Path MTU Discovery (RCLI91) +/
struct in_patu (
n_short ipm_void:
n_short ipm_nextatu;
) ih_pat
) icrp_hin;

60 sdetine icmp_pptr icrp_hun.inpptr
61 edefine icmp_gwaddr icmp_hun.ih_gwaddr

OEBPS/html/graphics/xivfig01.jpg
Chap. 2

15,16,17 22
mbufs domains focket PCBs
layer
24,25,26
3 22930 »
raw IP
ubr TCP sockets
18,19,20 TP multicast] 14
routing routing
u 68,9 13
jl@¥ig i 70,12 IGMP
21 Data [3,4,5 31
ARP Link BPF

media

OEBPS/html/graphics/0500_prog01.jpg
Fn
m
s
27
25
6
7
s

205
306
307
208

302
303
30
30
245
30
36
309
350

396

a2
a3

a
as
a1
a7
a8
as
a0
n
=

Sosend(z0, adar,
struce socket
seruce mbut addr,
stxuot. uio *ui,

struct mbut *top;
stxuct mbut *control;

ko, top, control, flags)

int flage
f
/+ inictalization (Figure 16.23) */
LE (orror = sblock(iso->80_snd, SELOCKWAT (£lags)))
goto out;
a0 ¢ 7% nain loop, unil resid ax 0 ¢/

/7 wait for space in

@ ¢

1€ (uio == wLL) (
T
* Data is prepackaged in “topr.
R
resia = 0,
i iflags & wso_EoR)

top->m_flags |= W goR;
) olee

i

/* 111 a single mbut or an but chain (Figure 15.25)

) while (space > 0 & atemic);

7+ pass sbut chain to prococol (Figure 16.26)

) while (resid & space > 0);
) while (resid)

release:
‘abunlock (sso->s0_snd) ;
ot
1€ (top)
m_freem(top;;
1€ (coneron)
m_freem(control)
return (erzor);
)

uipe_socket.c

nd butfer (Figure 16.24) +/

/

wioe_sockit.c

OEBPS/html/graphics/0465_prog01.jpg
156
157
158
159
160

161
162
163
164
165
166
167
168
169
170
m
172
173
7
75
176
m
178
1)

{ struct socket
i (soqzeaduot
panic(-accert®);

)

£0->£_type = DTVPE_SOCKET:
£p->£_flag = FREAD | FWRITE;
£p->£_ops = Gsocketops;
52t data = (caddr_t) 30
am = m_get (M_WAIT, WT_SONAE) 1
(void) soaccept (50, nam) ;
£ (vap-onane)
S€ (nanelen > nas->m_len)
nanelen - nan->_len:
7% SHOULD COPY OUT A CHAIN HERE */
i€ ((erzor + copyout (atod(nam, caddr_t), (caddr_t) uap->nase,
(u_int) namelen)) r= 0)
error « copyout ((caddr_t) & naselen,
(caddz_t) vap->anamelen, sizeof (*uap->anaselen)):

)
mtroomnam
spx o

recurn (error);

uipe_syscalls.c

OEBPS/html/graphics/19fig25.jpg
mbuf{} mbuf()

next nextmbufinchain ooy oLz
m_nextpkt NuLL m_nextpkt NuLL
n_Ten 100 m_len 24
m_data m_data
m_type ur_pata m_type MT_DATA
lags 1_pxTHDR m_flags 0
m_pkthdr . len |124 sockaddr_in()
m_pkthdr . TCViE | NULL (ast halk, 8 bytes)

sockaddr_in(}

(16 bytes)
rt_msghdr ()
(76 bytes)
(unused)
(84 byes)

sockadar_in()
(16 bytes)

sockaddr_in(}
(frst half, 8 bytes)

OEBPS/html/graphics/23fig23.jpg
IP datagram

-

P
header

UDP
header

UDP data

datanot |
available |

b

UDP Tength: uh_ulen

TP length: 1p_len plus IP header length

o

-

OEBPS/html/graphics/26fig17.jpg
received.
segment

transmited
“Segment

s e oo

Joxozo10s0s

Tmestamp
echoeply

Last_ack_sent

i

1

ts_val

!

ts_recent
ts_recent.

'

wrer ———

_age

tep_now—ts_ecr =RIT

Joxox010804

timestamp

fimestamp
echo reply.

OEBPS/html/graphics/24fig25.jpg

OEBPS/html/graphics/0223_tab02.jpg
962
963
964
965
966

969

/* shouldn‘t happen,

type = ICHP_UNREACH;
code = ICHP_UNREACH_HOST:
break

case EMSGSIZE:
type = ICHP_UNREACH;
Code = ICHP_UNREACK_NEEDFRAG:
if (ipforward_rt.ro_rt)
destifp = ipforward rt.ro_rt->re_if
ipstat.ips_cantfrages:
break;

case BNOBUFS:
Eype = ICHP_SOURCEQUENCH:
code = 0
break;

)

iemp_error (ncopy. type, code, dest, destifp

checked above */

ip_input.c

OEBPS/html/graphics/0223_tab01.jpg
‘error = ip_output(m, (struct mbuf *) 0, kipforward_rt, p-input
IP_FORWARDING | IP_ALLOWEROADCAST, 0);
it (error)
ipatat . ips_cantforwardss:
«
ipstat. ips_forward:
it (type)
ipstat.ips_redirectaentss;
else (
i€ (mcopy)
=_treen(scopy) ;
return;

)
1€ (moopy == NULL)

returs
destifp = WLL;

958 switch (error) (
959 case 0 /* forvarded, but need redirect */
960 /* type, code set above */

961 break

OEBPS/html/graphics/0193_tab02.jpg
9

92
9
%
95
96
97
98
99
100
101

102
103
100
108
106
107)

struct domain *dp;
struct protosw *pr:
struct protosw *maybe =

it (family == 0)
return (0)
for (dp = domains; dp; dp = dp->dom_next)
it (dp->dom_tamily == family)
goto found;
return (0):
found:
£or (pr = dp->dom_protos:
if ((pr->pr_protocol
return (pr);

L€ (type == SOCK_RAW &k pr->pr_type == SOCK_RAN &k
PE->pr_protocol == 0 & maybe == (struct protosw *) 0)
maybe = pr:

D < dp->dom_ProtoSWNPROTOSW; pree) {
protocol) & (pr->pr_type == type))

)
return (maybe) ;

sipe_dowatin.c

OEBPS/html/graphics/0193_tab01.jpg
wipe_domain.c
€9 struct protosw +
70 petindeype (tanily, type)

it family, type:

72 (

73 struct domain *dp;

76 struct protosw *pr;

75 for (dp = domains; dp; dp = dp->dom_next)
76 it (dp->dom_family == family)

7 goto found;

78 return (0):

79 found:

80 for (pr = dp->domprotosw; pr < dp->dom ProtoswNPROTOSW; pre+)
& 48 (pr->pr_type & Pr->pr_type == type)
82 return (pr):

83 return (0);

84)

85 struct protosw *
6 pfindproto(fanily, protocol, type)

87 int tamily, protocol, type:
ol

OEBPS/html/graphics/21fig07.jpg
-handwans type, ar_hed (ARDUAD_BTHER)

prtoclype, a_pzo (ETHERTYPE_1)
Hardvar length i)
me ength,or_pin 4

ether_dvose _ether_shost .r.vw st arpepa arptna arotes
Ehemet | et hu(Sender | sender | et | et

[destinaion | _sourceadde_[type, P | Ethemetadde | IPadd | Etemetacds | 1Padds
oyt g T T T 17 0 T % T

.

Ebemet hesder ARPhesder
eher _hader(y amhar () Eheret ARP clds
ey

OEBPS/html/graphics/0136_tab01.jpg
560
s61
s62
s63
564
565
566
567
568

569
570
571
572
573
578
575
576
57
578
579
580
s81

case FRAME_END: isle
if (sco>sc_flags & SC_ERROR) (
sc->sc_tlags &e “5C_ERROR:
Goto newpack:
)
len = sc-rscmp - sc-zsc_but
i€ (en < 3)
7+ less than min length packet - ignore */
goto nevpack:

it (scorscbpt) (

fo

* Save the compressed header. 50 we
can tack it on later. Note that we
will end up copying garbage in some
cases but this is okay. We remember
where the buffer started so we can
* compute the new header length.
.
beopy (sc->sc_but, chdr, CHOR_LEN) ;

)

A€ ((c = (*sc->sc_buf & Ox£0)) 1= (IPVERSION << 4)) (
if (c & 0x80)

© = TYPE_COMPRESSED_TCP:

©lse Lf (c == TYPE_UNCONPRESSED_TCP)

->8c_buf &= Ox: o w00 0/

”
* We've got something that’s not an IP packet.

* 1 compression is enabled, try to decompress it.
* Otherwise, if auto-enable compression is on and
* it's a reasonable packet, decompress it and then
* enable compression. Otherwise, drop it.

.

OEBPS/html/graphics/29fig20.jpg
received segment
= M_len=ti_len=5

4 iy

rcv_nxt out-of-band rcp_up
tilsea byte

tiurp=3
{urgent offset)

OEBPS/html/graphics/0514_prog01.jpg
s01
s02
508
s0s
506
507
508
s03
510
s
513
i
s15
s16
517
518
513
520
521
522
s23
524
525
526
s27
528
530
s
532
s
534
535
536
537
53
539
540
50
se2
543
se
545
546
47
548
5690

wipe_sysallsc
S (error = soreceivel (struct socket *) fp->f_daza, ifrom, Gauio,
(struct mbut *+) 0, mp->msg_cantrol ? icontrol : (struce mbaf +*) 0,
Enp-snea_flags)) (
4 (auo.uio_resid 1- len & (srror == ERESTART ||
orror == EINTR |1 arror == EWOULDBIOCK))

)
if (efror)
aoto out;
*retsize = len - auio.uic_resid;
i€ (mp->msg_name) (
len = mp->nsg_nameler
if tlen <= 0 11 from
len = 0;
else (
1€ (len > from->m_len)
len = trom->n_len;
/+ elae if len < Eromoon_len
i€ (error = copyout mtod(trom, cadde_c),
(cadde ¢} o >nsq_nae. (unsioned) len))

o

2 0/

goto out;
)
p->msq_nanelen = len;
i (nancleny &
(exror = copyout (caddr_t) & len, namelenp, sizeof (int)))) (
goto out:
)
)
ie (mp-mag_control) (
Ten = mp->nsq_controllen

if (len < 6 11 control == 0
len = 0,

else (
i€ (len >= control-m_len)

len « control->m_ier:
elee
mo->meg_tlags |« MSC_CTRUNC:
error = copyout {(caddr_t) ntod(control, caddr_t),
(caddr_t) mp->nsg_control, (unsigned) len):
)
mo->msg_controllen = len;
)
it (trom)
n_troen(£on) :
5 teanrral)
m_treen(control)
return (erzor) ;

wipe_syscalls.c

OEBPS/html/graphics/21fig12.jpg
sockaddr ()

mbut ()

16 Jspec]

Ethernet header

_nexepRe

m_len

oy T

TWhytes

s

r_data

otype

mflags

rpkenar Ton

m_pkenar rovit

ether_am)
Bbytes)

[vr_para
e
25

oz,

72bytes)

OEBPS/html/graphics/27fig14.jpg
mbuf (}

ti—a

Tnext oL
m_nextpkt NULL
m_len 44
tm_data
™ type u1_oATA
m_flags M_PKTHDR
m_pkthdr.len 44
T_pkthdr.rovif |pir
16 bytes
(unused)
tinext |pir
ot
ey | poviyo)
[[titen (20 bytes)
E1_sport [cioport
ti_seq 7
tephar()
T, e
[[|4bytesof data
0 bytes

(unused)

OEBPS/html/graphics/0364_prog01.jpg
W if_ethersubrc

401+ Verify that ve have valid Ethernet multicast addresses.
w02 v

403 A€ ((addriol0) & OO} f- 1 11 (addrhi(0) & OxO t- 1) (
108 spixis)

105 rotumn (BINAL) ;

a5)

w07

408 '+ See if the address range is already in the list.

w08 o

410 ETHER_LOOKUP_MUUTE (addrlo, addrhi, ac, enm);

A1 enm e NOLL) (

a2 ”

s * Found it; just increment the reference count.

e “

as +vonm-senn_retcount;

16 spix(s);

a7 return (01

as

as g

420+ New address or range; malloc a new multicast record
421+ and link it into the interface’s multicast list.

2

421 enn = (struct ether_multi *) malloc(sizeof (*enm), M_IFNADOR, H_NOHAIT);
420 LE (emm wn L) (

a5 splx(s);

426 rotum (ENOKUES) ;

@

428 bcopy(addrlo, eun->enn_addrlo, 6);

429 beopy(addrhi, enn->enm_adarhi, 65

430 enmsenn_ac - ac

431 enm-senm_rofcount = 1;

432 enn-enn_next = ac->ac_multiaddrs;

433 ac->ac_maltiaddrs = enm;

434 ac-sacpuiticnt.

35 eplxer

a6

437+ Return ENETRESET to inform the driver that the list has changsd
438+ ana irn receprion filter should be adjusted sccordinaly.
P

40 roturn (EnERESET);

a1

i cthersubre

OEBPS/html/graphics/0177_tab01.jpg
553 int

654 slioctl(itp, cmd, data)
855 atruct itner *itp:

656 int

657 caddr_t dat.

58 0
659
660
661

562
663
664
65
66
567
668

669
670
671
672

688
689
690
691
692
693)

cma,

struct ifadde *ifa - (struct ifaddr) data:
struct ifreq *itr:
int s e splimp(), error +

awiteh (cmd) (
case SIOCSIFADDR:
S€ (1fa->ita_addr-ssa_tanily =« AF_INET)
itp->it_flags 1+ IFP_U
else
orror = BAFNOSUPRORT.
break:

case SIOCSIFDSTADDR
AL (ifa->ifa_addr->sa_amily - AF_INET)
error « PAPNOSUPPORT;
break:

/% SIOCADMULTI and SIOCOEURLTI commands (Figure 12.29)%/

dotault:
error « EINVAL:

)
spix(s:
return (error);

Ysle

if sle

OEBPS/html/graphics/470equ01.jpg
3Xso_qglimit

so_qlen+so_qg0len> =

OEBPS/html/graphics/t0245-02.jpg
Type Length | o -
Constant D |-y oy Descript

TroPrBoL 600 0] 0-00-0000 | 1 |+ | endofoption it (EOL)

0P NoP. 001 1| 0-00-0001 | 1|+ | nooperationNOP)

TPOPRR 007 7| 0-00-o0mt | ecord route

ropr_1s 024 68 | 0-10-00100 o | tmestamp.

1POPT_sECURITY. 1-00-0010 basic securty

2r0P_ssR + | Toose e and record route (LSRR)

1-05 133 | 1-00-00101 extended securty
ropr_sATID | 1-0-8 136 | 1-00-01000 | 4 stream deniifer
IroPT_ssrR | 1-09 137 | 1 |ades. | # | seictuomimce und ruchad mosie 0obminy

OEBPS/html/graphics/t0237-01.jpg
optoal

mame Function Descri

opt fom inct ption

Te_ortions Void + | in_pabopts | setor get IP options o be included in outgoing
datagrams

1e_T08 int | tp_ccloutput | setorgetIP TOS for outgoing datagrams

o int [ip_ctloutput

16_RECYDSTADDR

ctloutput

setor gt IPTTL for utgoing datagrams
enableor disable queueing of IP destination
‘address (UDP only)

TP RECVOPTE

1P_RECVRETOPTS

To_ctioutput

ip_ctloutpu

‘enable or disable queueing of ncoming 1P optons.
‘s control information (UDP only, not
implemented)

enable or disable queueing of eversed source.
route associated with incoming datagram
(UDP only, not implemented)

OEBPS/html/graphics/t0241-01.jpg
sysctl constant

Net/3 variable

Description

IPCTL_FORWARDING
IPCTL_SENDREDIRECTS
IPCTL_DEFTTL

ipforwarding
ipsendredirects
ip_deftel

Should the system forward IP packets?
Should the system send ICMP redirects?
Default TTL for IP packets.

OEBPS/html/graphics/20fig06.jpg
data written
by process

destination
1P address
sockaddr_in()

teway
1P address
sockaddr_tn()

network
mask
sockaddr_ta()

Tti_addrs

rt_adarinto()

Fti_info(DST]

[Fe1_info (GATERRY]

TEI_nfo (NETWASK]

eI info GENASK]

Ei_infoliFRl

Ti_infolIFAI

FEi_infolAUTHO

processes
Selected by
rau_input

ox07
xe_msghdr ()

ox07

array of pointers formed
NULL pby rt_addrs from
o | s adacs bitmask

oL

e

OEBPS/html/graphics/t0244-01.jpg
File Description

netinet/ip.h ip_timestamp structure
netinet/ip_var.h ipoption structure

netinet/ip_input.c | option processing
netinet/ip_output.c | ip_insertoptions function

OEBPS/html/graphics/t0245-01.jpg
Variable

Datatype

Description

ip_nhops
ip_srert

int
struct ip_srert

hop count for previous source route
previous source route

OEBPS/html/graphics/t0131-01.jpg
don | Network | Line

Function | ¢ D Description

Clattach |+ inialize and attach s1_sof e structures o 1 fnet hst

slinit . initalze the SLIP data structures

sloutput | o queue outgoing packets for ransmission on associated TTY
device

sligetl . process socket {oct1 requests

1 bton . converta device buffer toan mbuf chain

slopen © [attach 1_sotte structure to TTY device and initalize
driver

siclose | « | detach s1_sofee structure from TTY device, mark interface
s down, and release memory

sitiocel | process TTY foct1 commands

Slstart B = [dequeue packet and begin transmitting data on TTY device.

slinput . | process incoming byte from TTY device, queue incoming

‘packet if an entire frame has been received

OEBPS/html/graphics/t0452-01.jpg
Request Description
PRUABORT bortany existing connection
FRu_AccEPT addrss wait for and accept a connection
PRUATTACH protocal a new socket has been created
PRU_BIID adnss bind the address tothe socket
PRU_conveCT. adress establish association or connection to address
~PRU_CONNECT2 sockt? connect two sockets together
PRU_DETACH Socket s being closed
break assacation betwoen socket and foreign address
begin lstening for connectons.
bufer retum foreign address asociated with socket
| fags process has accepted some data
PRU_RCVO0R bufer | fage recive OOB data
FR_sEND data | address | control | send regular data
bry_senoos | data | address | contrl | send OOBdata
PRU_sHTDOMY end communication with foreign address

PRU_SOCKADDR.

buffer

‘eturm Jocal widuess ssoclated with socket

OEBPS/html/graphics/t0134-01.jpg
Constant | Value Description

MCLBYTES 2048 | size of an mbuf cluster

SLBUFSIZE | 2048 | maximum size of an uncompressed SLIP packet—including
a BPF header

Su1e_HDRLEN | 16 | size of SLIP BPF header

BUFOFFSET 148 | maximum size of an expanded TCP/IP header plus room for
a BPF header

stunx 1900 | maximun size of a compressed SLIP packet stored ina
cluster

stumy 296 | optimal size of SLIP packet; results in minimal delay with
good bulk throughput

sure_avar | 100

maximum number of bytes to queue in TTY output queue

‘BUFOFFSET + SLMAX = SLBUFSIZE = MCLBYTES

OEBPS/html/graphics/t0450-01.jpg
Member Value
fo_read soo_read
fo_write soo_write
fo_ioctl | soo_ioctl
fo_select | soo_select
fo_close | soo_close

OEBPS/html/graphics/t0148-01.jpg
Command

Argument

Function

Description

SLIOCGUNIT

Sleioctl

‘associated with the TTY

OEBPS/html/graphics/860equ01.jpg
t_srtt

8

= nticks +1

OEBPS/html/graphics/t0446-01.jpg
Category Name Function
Socker ‘reate a new unnamed socket within a specified communication
setup domain
bind assign alocal address toa socket
Tisten prepare a socket {0 accept incoming, connections
server | accept wait for and accept connections.
client connect ‘establish a connection (0. forcign socket
Tead receive data nto a single buffer
ready receive data into multiple buffers
recy receive data spei i
toput recvfron | neccive data and address of sender
recvreg receive data into multiple buffers, controlinformation, and receive the
address ofsender; specify receive options
Viite ‘end data froma single buffer
writev send data from multple buffers
P——) send data specifying options.
P sendto send data o specified address
sendnsg. send data rom multiple bufers and control information to a specified
address;specify send options
) select ‘it or 1/0 conditions.
\ermination | “Rutdown | terminate connection n one or both directions
close terminate connection and release socket
Tonel ‘modify 170 semantics
ioct ‘miscellaneous socket operations
setaockopt | set socket or protocol options
SAmsTan. | G sockopt | et socket o protocol options
gersocknaze | getlocal address assigned to socket
getpeername | get foreign address assigned to socket

OEBPS/html/graphics/t0443-01.jpg
Name Description
osendaliatonce | Docs the protocol associated with s rquine cach sond sysem cll o el ina
single protocol equest?
int sosendallatencefstruct socke °s
Solsconmecting | Setihe sockettate o S5_TECOWECTING
int soksconnecting(struct sockor)
oisconnectad | SeeFigure 1530,

Willaread on 50 rturn information without Bocking?
int soresdable(struct secket ‘w0

Soerlteable

Willa wrie n 4 retorm without Bocking?
int sowekteablefstruct socket)

Socantaendsora

St the 35 CANTSENOHORE lag, Wak up any processes siping on e send
buther

int socantaendmore(struct socker)

Gl The 55_CANTRCUMORE g, Wake up processe Slecping on (he receve
butker

int socantrevmora(struct socket o)

Todtacommect

T the PRU_DTSCORIECT roquest.
int soaleconnect(acruct socket ')

Solsdisconnecting

Clear the 55_5COMIBETING g, 501 56_TS0TSCOMECTIRG,
55_CANTRCVMORE, and 55_CANTSENDHORE lags. Wake up any processes
sclecting on the socket

int soledisconnecting(struct socket)

“olsatscomected

Cler e 55_ISCOMECTING, 55_TSCOWECTED, nd 55_T5015COMMBCTING
fags. et the 55_CANTRCVMORE and 55 CANFSENGHORE fags. Wake up any.
rocessesseecting on the socket o waitng for <1050 to complete.

it sotsdisconnectedistruct socket ")

Soatnsaie

Tiert 0 on 3 queus ssocaied with s 11715 0, he socke 1 30d0d o heend
of 20_q0, which holdsincomplete connections. Orherwise, thesocket s added
totheend of so_g, which holds connections hatar ready o be accepted.
Net/1 incornetly placed sockets a he front of the queve.

int soqtasquelstruct socket o, struct socket s, nt g)

Searengue

Remove o from the quc ideniied by 4. Thesocket qucues re located By
folloving 20540_ o

int soqreaue(struct socket s, int g)

OEBPS/html/graphics/15fig10.jpg
process socket ()

arguments copied rom
userspace o kernel space

syscall 0

Kemel socket ()

l

l

|

args(0] | arosil | aces(2) args(7)
aorain type | protocol
-

socket_ares{)

OEBPS/html/graphics/t0441-01.jpg
Protocol Control block | Reference
ubP struct inpcb | Section223
TP struct inpcb | Section223

struct tcpcb | Section 245
ICMP, IGMP, raw IP_| struct inpcb | Section 223
Route struct rawch | Section 20.3

OEBPS/html/graphics/23fig22.jpg
1P datagram

I3
header

UDP
header

UDP data

UDP length: uh_ulen

TP length: 1

_Ten plus IP header length

OEBPS/html/graphics/29fig10.jpg
12 . 512 513 514 1024 1025

T Segment retransmitied T

4 4 4

snd_una snd_nxt snd_max

OEBPS/html/graphics/t0484-02.jpg
Variable | Datatype Description

Selwait | int “wait channel for select.
nselcoll | int flag used to avoid race conditions in select
sb_max | u_long | maximum number of bytes to allocate for a socket receive or send buffer

OEBPS/html/graphics/t0484-01.jpg
File Description

sys/socket.h structures and macro for sockets APL
sys/socketvar.h socket structure and macros
sys/uio.h uio structure definition

kern/uipc_syscalls.c | socket system calls
Kkern/uipc_socket.c | socket layer processing
kern/sys_generic.c | select system call
kern/sys_socket .c select processing for sockets

OEBPS/html/graphics/t0128-02.jpg
File Description

net/if_slvar.h | SLIP definitions

net/if_sl.c SLIP driver functions
net/if_loop.c | loopback driver

OEBPS/html/graphics/t0477-01.jpg
how hows+

Description

FREAD
FWRITE
FREAD|FWRITE

shut down the read-half of the connection
shut down the write-half of the connection
shut down both halves of the connection

OEBPS/html/graphics/t0128-03.jpg
Variable Datatype Description
sl_softc | struct sl_softc [] SLIP interface
loif struct ifnet loopback interface

OEBPS/html/graphics/t0464-01.jpg
tsleep()

Description

0
EWOULDBLOCK

ERESTART

EINTR

The process was awakened by a matching call o wakeup.

‘The process was awakened after sleeping for fimco clock ticks and before
the matching call o wakevp.

A signal was handled by the process during the sleep and the pending
system call should be restarted.

Asignal was handled by the process during the sleep and the pending
system call should fail

OEBPS/html/graphics/0235_tab01.jpg
9
95

97
98
99

100

101

102
103
106
105
106

107
108
109
110
1
12
13
114
1s

"
* Unroll the loop to make overhead from
* branches 4c small.
R
while ((len -+ 32) >= 0) (
sum += w(0]; sum = w(l]; sum o= w(2]; sum ox w(3];
sum += w(4]; sum += w(S); sum += w(6]; sum o= w(7);
sum += w(8]; sum += w(9); sum += w(10]; sum += w(11]
sum += w(12]; sum e= W(13); sum o= w(1d); sum o= w(1S);

W 18

)
mlen 4= 32,
while ((mlen -= 8) >= 0) (

sum +n w(0); sum ox W[1); sum o= w(2); sum +x w(3):

on += 8

if (mlen == 0 &k byte_swapped == 0)
continue:

REDUC

while ((len == 2) >= 0) (

P

OEBPS/html/graphics/t0129-01.jpg
Variable

Description

Used by

th_nin

Foytes received by any serial interface (updated by SLIP driver)

OEBPS/html/graphics/27fig18.jpg
i

e [eirer

previous

e
o

viseq=4

“

[eimere [eiorer [7 5 [9 [0 Joewsepment

q— tiseqa?

tilen=6

et [tipre |0 [0 [[B[W[5
' T

ti_seq=10

OEBPS/html/graphics/t0453-01.jpg
Function

Process [Socket Description Reference
Taconteol [nterface address, netmask, and destination Figureo1d
address assignment

in_control | broadeast address assignment Figure 622
in_pebbing [+ binding t0an Internet port less than 1024 Figure 2222
stioct) . interface configuration changes. Figure 429
Stioctl . multcast address configuration (see ex) Figure 12.11
rip_usrreq | o creating an ICMP, IGME, o raw IPsocket Figure 3210
Chonae - associating a SLIP device with a tty device

Figure 59

OEBPS/html/graphics/0235_tab02.jpg
116
17
18
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140)

it (byte_swapped) (

s_util.c(1] = *(char *) w;
sun += s_util.

) else if (mlen == -1)
s_util.c(0) = *(char *)

)
it Qem

printe (~cksun: out of data\n®);
i€ (mlen == -1) (

7% The last mbu has odd # of byt

Follow the standard (the odd

byte may be shifted left by 8 bits or not as determined by

endian-ness of the machine)
s_ucil.cll) = 0;
sum += 5_util.s

REDUCE;
return (“sum & OX££££);

OEBPS/html/graphics/0171_tab02.jpg
220
221
222

223
224
225
226
227

226
229
230
231
232

233
23
235

254
255
256
257
258

Case SIOCGIFADDR: =

“(struct sockaddr_in *) &ifr->
break;

f_addr) = ia->ia_addr;

case SIOCGIFERDADDR:
i€ ((ifp->if_flags & IFF_BROADCAST) =» 0)
return (EINVAL) :
*((struct sockaddr_in *) &ifr->ifr_dstaddr) = ia->ia_broadaddr:
brea)

case SIOCGIFDSTADDR:
S€ ((ifp->if_tlags & IFF_POINTOPOINT)
return (EINVAL);
*((struct sockaddr_in *) &ifr->ifr_dstaddr) « ia->ia_dstaddr;
break;

0

SIOCGIFNETHASK:
*((struct sockaddr_in *) &ifr->ifr_addr) = ia->ia_sockmask;
break;

/* processing for SIOCSIFDSTADDR command (Figure 6.21) */.

case SIOCSIFBRDADDR:
S€ ((ifp->L_flags & IFF_BROADCAST) == 0)
return (EINVAL);
ia->ia_broadaddr = *(struct sockaddr_in *) kifr->ifr_broadaddr;
breal

oy

OEBPS/html/graphics/0228_tab02.jpg
104 #define ifatoialifa) ((struct in_ifaddr *)(ifa))

105 #define sintosa(sin) {(struct sockaddr *) (sin))

106 it (flags & IP_ROUTETOI®) (

107 £€ ((ta = ifatoia(ifa_ifwithdstaddr (sintosa(dst)))) == 0 &&
108 (ia = ifatoia(ifa_ifwithnet (sintosa(dst)))) == 0) (
109 ipstat.ips_noroutese;

110 orror « ENETUNREACH;

m goto bad:

12)

m ifp « ta-sta_itp

14 p>ip_eel = 11

s «

116 i€ (ro->ro_rt == 0)

17 rtalloc(zo)

18 i£ (ro->ro_rt == 0) (

119 ipstat_ips_noroutese;

120 error - EHOSTUNREACH;

121 goto bad;.

122)

123 ia = ifatoia(ro->ro_rt->re_ita);

124 ifp = ro->ro_rt->rt_ifp;

125 0->ro_rt->rt_userer

126 if (ro->ro_rt->re_flags & RTF_GATEWAY)

127 dst = (struct sockaddr_in *) ro->ro_rt->rt_gateway:
126)

/* malticast destination (Figuze 12.40) */.

ip_outpute

OEBPS/html/graphics/0228_tab01.jpg
7
* Route packet.
.
it (ro == 0) (
¥o = &iproute;
bzero((caddr_t) ro, sizeof(*ro)):
)
dst = (struct sockaddr_in *) &ro->ro_dst;
7
* It there is a cached route,
* check that it is to the same destination
* and is still up. If not, free it and try again.
.
L€ (ro-sro_rt &k ((ro->ro_rt-rt_flage & RTEUP) == 0 ||
dst->sin_addr.c_addr t= ip->ip_dst.s_addr))
RTFREE (ro->ro_rt)
ro->ro_st = (struct rtentry *) 0:

)

i (zo->ro_rt == 0) {
dst->sin_fanily = AP_INET:
dst->sin_len = sizeof (*dst):
dst->sin_addr « ip->ip_dst.

)
#
+ If routing to interface only,
* short cireuit routing lookup.
wf

OEBPS/html/graphics/03fig21.jpg
ifnet{}

ifaddr() -

link-level address sockaddr_a1{}

sockaddr_d1{)}

[ifadarn
Internet address
in_ifaddr(}
T ifadaro iR
OSl address

iso_ifaddr{}

OEBPS/html/graphics/01fig03.jpg
7: application
process 6: presentation
5: session

system callsI(socket, bind, connect, etc.)

socket layer

protocol layer 4: transport
(TCP/IP, XNS, OSI, Unix) 3: network

interface layer

(Ethernet, SLIP, loopback, etc.) #datalink

'

media 1: physical

OEBPS/html/graphics/18fig28.jpg
AR

3 1
g i
wetaotares] 3 15
==
v
Feios
56 e 0 SLIP dtnet () |
o it _index B
‘
: o oty
e T DBOODO0 TG
i im0 T TSRS S TSTo TS5
Tty S ey
| [hemenes: ganent 1 oth sockaddr_a1()
== I
i mcrecipize | e
s Tianie
s T
e provey s o
iy | oW sl v 1
e e {0 Joclecleae] v]
i TR
- e

OEBPS/html/graphics/t0398-01.jpg
netstat -gs output

mrtstat members

milticast routing:
329569328 multicast route lookups
9377023 multicast route cache misses
242754062 group address lookups
159317788 group address cache misses
65648 datagrams with no route for origin

0 datagrans with malforned tunnel options
0 datagrams with no room for tunnel options

mrts_mrt_lookups
mrcs_mrt_misses
mrts_grp_lookups
mres_grp_nisses
mrts_no_route
mrts_bad_tunnel
mrts_cant_tunnel

OEBPS/html/graphics/32fig02.jpg
system initialization
main

socket
recive buffer

software interrupt

getsockopt various
setsockopt system calls
Tip_usrreg

FRU_SEND

OEBPS/html/graphics/t0397-03.jpg
mrestat member

Description

Used by
SNMP.

nrts_mrt_lookups
nrts_nrt_misses
nrts_grp_lookups
nrts_grp_misses
nres_no_route
nres_bad_tunnel
mrts_cant_tunnel

‘#multicast route lookups
#multicast route cache misses

#group address lookups

#group address cache misses

#multicast route lookup failures

#packets with malformed tunnel options
#packets with no room for tunnel options

OEBPS/html/graphics/t0232-01.jpg
Version

Source file

portable C
SPARC
68k

VAX
‘Tahoe

HP 3000
Intel 80386

sys/netinet/in_cksum.c
net3/sparc/sparc/in_cksum.c
net3/1una68k/1luna68k/in_cksum.c
sys/vax/vax/in_cksum.c
sys/tahoe/tahoe/in_cksum.c
sys/hp300/hp300/in_cksum.c
sys/i386/1386/in_cksum.c

OEBPS/html/graphics/860equ02.jpg

OEBPS/html/graphics/26fig10.jpg
}

rev_nxe =7
next recel
sequence number

highest advertised
sequence number
ey

13

1"

OEBPS/html/graphics/t0397-02.jpg
Variable Datatype Description
Cached_nrt Struct met ‘one-behind cache for multicast routing,
cached_origin u_tong ‘multicast group for one-behind cache
cached_originnask | u_long ‘mask for multicast group for one-behind cache

mrccable
nunvite
viftable

struct mee (1
struct vif(]

multicast routing statistics
hash table of pointers to multicast outes
‘number of enabled multicastinterfaces.

array of virtual multicast interfaces

OEBPS/html/graphics/t0236-01.jpg
Domain | Protocol level Function Reference
any | any SOL_SOCKET | sosetopt and Figures 17,5 and 17.11
sogetopt.
TP | UDP__ | 1pPROTO_IP | ip_ctloutput Figure 831
pe TPPROTO_TCP | tep_ctloutput Section 306
pPROTO_1P | ip_ctloutput Figure 831

raw P

IeMp | zpproro_rp | TiP-ctlouteut and | oo pg

IGMP

ip_ctloutput

OEBPS/html/graphics/t0397-01.jpg
File

Description

netinet/ip_mroute.h

‘multicast structure definitions

netinet/ip_mroute.c
netinet/raw_ip.c

‘multicast routing functions
‘multicast routing options

OEBPS/html/graphics/24fig02.jpg
Reisiyess various getsockopt

system iniialization "N Pufer system clls secsockopt

| e @

D D (T D

S
B ISR K

e o o

OEBPS/html/graphics/0102_prog02.jpg
558
559

se1
s62
563

s64
565

567
s68

569
570
s
512
573
574
575
576
577
578
579
s80
561

585)

”
* Check if there’s a bpt filter listening on this interface.
* If %o, hand off the raw packet to enet.
.
§E (le->sc_if.4€ bp0) (
bot_tap(le->ac_if.if bpt, but. len + sizeof (struct ether_header)):

* Xeep the packet if it
* physical ethernet addre:
* multicast and it's one).
o

broadcast or has our
tor 1t we support

A€ ((flags & (LBCAST | HMCAST)) «x O &6
bemp (ex->ether_dhost, le->sc_addr.
sizeof (et->ether_dnost)) 1= 0)
return:

)
i
* Pull packet oft interface. Off is nonzero if packet
* has trailing header; m_devget will then force this header
* inforsation to be at the front, but we still have to drop
* the type and length which are at the front of any trailer data.
.
8« ndevget((chor) (et =+ 1), len, off, &le->sc_if, 0):
i mee 0)
return:
>m_tlags |» flag:
ether_input (k1e->ac_if. et, =):

e

OEBPS/html/graphics/0102_prog01.jpg
528 Leread(unit, bat, lenm)

529 inc umit;

530 char

531 fne

532 (

533 struct le_softc *le = &le_softclunitl;

53
535
536

537
538
39
540
541
se2

543
544
s
546
547
548
549
550
51
552
553
ss¢
555
556
557

struct ether_header “et:
seruct mbut
it off, resid, flag

le->sc_if. i€ ipacketses:

ot = (atruct ether_header *) buf;
et->ether_type = ntohs((u_short) et->ether_type)
7+ adjust input length to account for header and CRC */
len = len - sizeof (struct ether_header) -

ott =

i€ (len <= 0) (
it (Ledebog)
Log (LOG_WARNING,
“leVd: ierror (runt packet): from ¥s: len=3d\n®,
unit, ether_sprinct (et->ether_shost), leni
le->sc_runces.
le->sc_if.if lerrorses;
return;

)
f1as = 0
if (bomp((caddr_t) etherbroadcastaddr,

(caddr_t) et->ether_dnost, sizeof (etherbroadcasteddr)) =

£lags |= ¥_BCAST:
SE (et->ether_dnost(0] & 1)
£lags |= KMCAST:

fdec

o

OEBPS/html/graphics/31fig14.jpg
bpt_iflist:

e toother bpe_ie
rexe -
it diist | st
Fpit_ariverp bpE_dtab():
biEaTe banext __|uiL
biE_harT asbut | — o savebulier
Foie i Bamber|uL
bd_tbut ree butier
1e_sotte(o basien 0
bdhlen 0
Tt | bdbutsize | 4096

bpt_dtabi(2) through
bpe. dtab (NBPFILTER-1]

babit

Ba_tbut
B_slen
Ba_hlen
B butsize
babit

OEBPS/html/graphics/t0440-01.jpg
Kernel

so_state o Description
Ss_aswc Socket should send asynchronous notication of 1/0 events
socket operations should not block the process.

= Socket cannot receive more data from poer
'SS_CANTSENDMORE | socket cannot send more data to peer
‘SS_ISCONPIRNING | socket i negotiating a connection request
'Ss_zscomvECTED | socketis comnected to a foreign socket
'SS_ISCONNECTING | socketis comnecting to a foreign socket
ss_rsorscomnEcTInG |+ | socketis disconnecting from peer
‘SS_NOFOREF | socketis not associated with a descriptor
Ss_eRIv o | socket was created by a process with superuser privileges.

'SS_RCVATMARK.

process has consumed all data received before the most
recent out-of-band data was received

OEBPS/html/graphics/t0438-01.jpg
s0_options

Description

So_ACCEPTCONN
'S0_BROADCAST
S0_pEBUG
So_ponTROUTE
'SO_KEEPALIVE
'S0_00BINLINE
'So_REUSEADDR
SO_REUSEPORT
'SO_USELOOPBACK

Socket accepts incoming connections

Socket can send broadcast messages

‘socket records debugging information

‘output operations bypass routing tables

socket probes idle connections

socket keeps out-of-band data inline

socket can reuse a local address

socket can reuse a local address and port

routing domain sockets only; sending process receives its
own routing requests

OEBPS/html/graphics/t0437-02.jpg
Variable

Datatype

Description

socketops
sysent

struct fileops
struct sysent(]

socket implementation of 1/0 system calls
array of system call entries

OEBPS/html/graphics/t0437-01.jpg
File Description

sys/socketvar.h socket structure definitions

kern/uipc_syscalls.c | system call implementation
kern/uipc_socket.c | socket-layer functions

OEBPS/html/graphics/t0403-01.jpg
IP header ‘Source route option "
Sy [oreip_dst | ofot | _addresses Description
HS HS G on network A
T HS T, 8 |T.e G |ontumnel
T, HS G 12| T, seetext |after ip_dooptions on router B
T HS. G after ip_mforward on router B

OEBPS/html/graphics/t0400-01.jpg
optname optval type Function Description
ve_IT Tomrouter_Init | mrouted s sarting

ovms_oone Lp_reouter done | routed s shuting down
ovme_apo_vie | strvce viterl | addvit dd virtalntertace

ovr_bEL_VIF | vitit e deee virtualintrface

owre_aoo_tre | sexuzt 1grplet1 | add iorp dd mulicast group enry foran inerface
ovRe_oEL_ic#p | struct lgrplecl | dellarp delete mltiast group ety fora inteface
oveRe_aDDRT | struce mrecel | add e 2dd mlicast route

ovMRe_pEL_wRT | struct in_addr | del_met delete mmlficest rouie:

OEBPS/html/graphics/1107equ01.jpg
72,786 - 349
657 4

OEBPS/html/graphics/12fig13.jpg
ifnet:

1o sortc(o)

senot0)
arpeont)
10_sotec0)
in_stasarr /
e om0)/ inmasio
Afobext 224.0.1.2 224.0.0.2
— e T
et 1
Lo mIHA00E— i otcomnt| [Tm_veteount| | Tmnreteout
Finer T cier
T iy T
st Z. Thn_next | inmnext Ton ot

OEBPS/html/graphics/08fig01.jpg
UDR, TCP,

Transport
Protocols ICMP, IGMP

--

stk

OEBPS/html/graphics/13fig01.jpg

OEBPS/html/graphics/0825_prog01.jpg
T sruct topeb (

tep_urh

ceassenbly queve of received seqments */
reassenbly queue of received seqmente */
connect ion state (Figure 24.16) */

7+ tep tiners (Chapter 25) +/

10912) of rexnt exp. backoff +/

current retransnission tineout (Vticks) *
bconsecutive duplicate ACKs received +/
Faxinun segment. size to send +/

L it forcing out a byte (persist/c0B) */

/+ skeletal packer for transait */
Back pointer o internet CB +/

send unacknoviedaed +/

sed urgent poiater */
window update seg seq nuRber */
window updace seg ack number +/
initial sond sequence number */

receive uzgent pointer */
initial receive sequence nusber */

42 strucs tcpiphdr *seqnexts /*
43 struct copiphdr “segprevi /*

4 snort ©_state ’

45 short c_timer(rcPr_NTHNERS):

36 shors cewcemifer s

31 short Creeeuns r”

@8 shore t_aupacke: i

@ ushore e

S0 char -

5t u_short t_tlage; 7+ (Figues 24.14) +/
52 struct tcpiphdr *c_tenplate;

55 struct inpch se_impobs /%

560

55 '+ The follouine fields are used as fn the protocol specification.
56+ Sea RRCTE3. Dec. 1981, page 21.

5+

58/ send sequence variables */

B snd_una, ’

s sna_nxt 7+ send next +/

@ snd_ups "

@ snawily "

& ndiz; e

6 topesq is i

55 ulong sndmd; 7+ send window */
66 /* receive sequence variables */

6 utong evnd: 7+ xecesve window +/
58 copseq rew e 7+ recaive noxt +/
6 top_seq ev_up: ”

70 cepseq irer -

e

72+ Aaditional variables for this implementation.

n .

74 7+ zoceive varistles */

75 top_seq rov_adv; -
76 /+ rerzansnit varlables +/
77 top.seq sad_rax; r

75 /+ congestion control (slow start,
8 u_iong snd_cwnd; ”
81 ullong snd_ssthresh: e
2 .
s

84+ trasenit riming state.

85+ “Variance is actually smooched
s

8 enor e _tdles ”
8 shorc trees "
8 topseq trtseqs ”
90 short Certes ’”
91 anort t_reeva ”
92 u_short C_rttming -
931 u_iong max_sndwnds I

advertised window by other end */

highest sequence murber sent:
used to recognize recransmics */
source quench, retransmit after loss) */
Congest ion-contzolled window /
nd_cund size threshhold for siow starc
exponential to linear switch +/

See below for scale of srtt and retvar.

Gitterence.

inactivity tine +/
round-trip tine +/

equence nunbor being tined */
anoothed round-teip tine */
variance in round-trip tine */
minioun st allowed +/

largest window peer has offered */

OEBPS/html/graphics/06fig15.jpg
B3

Cifa_addr

[ifa_netmask

[ifa_dstaddr

ia_addr

ia_sockmask

ia_dstaddr

ifadar(}

in_ifaddr{)

OEBPS/html/graphics/03fig32.jpg
itnet le_softc(0): s1_softc(0): loif:

e semeeo 5 tmero 35 temeco
arpeont) CEDEn
itnet_agdrs
itaaar0) pravre
‘ By
sockaaar_a10) socxasar_a10) Jsockadar_a10)
1

lsockaaar_a10)| lsockaaar_a10)| lsockadar_a10)

OEBPS/html/graphics/t0563-01.jpg
Description font ioctl

‘enable or disable nomblocking semantics by | FONBLOCH Hle status lag | 7104310 command
turning 55_NB10 on oroff in so._scate

‘enable or disable asynchronous notfication | FASYIC e status lag | FIOASYNC command
by turning S5_ASYC on oroff in
sb_tlags

et get <0_pg 14, which s the target F_SETOWI of F_GETON | ST0CSPGRE oF
process or process group for S1G10 and ‘SIocGPGRP
S1GURG signals commands

‘5ot number of bytes n receive buffer rturn FIONREAD
so_rcv.sb_co

return OOB synchronization mark; the STocATARK

S5_ReVATMARK flag in so_state

OEBPS/html/graphics/15fig12.jpg
:
write read
writev readv
sendto L readfrom
sendmsg readmsg

OEBPS/html/graphics/t0553-01.jpg
Protocol pr_ctloutput Function Reference

UDP Tp_ct loutput Section 8.8

cP tep_ctloutput Section 306

ICMP

IGMP | rip_ctloutput and ip_ctloutput | Section88and Section328

raw IP

OEBPS/html/graphics/t0551-02.jpg
optname optoal type Variable Description

So-swoauF S o snd.sb_niwat | send bufer highawater mark

So_Revaue. ine So_rew. b hiat. | mseive bulfe highavater mark

so_swowomnr | inc 2o and. b touat | send buffelowater mark.

o seviomar | inc o rev. b lovat. | meive bulfer low-water mark

So_swrinEo | struct timoval | o snd.ob_tineo | send imeout

SoRcvrMEO | struct timoval | so_rev.sb_timeo | rceiveimeout

‘so_osms int a0 options o debugging information for this socket

So_ksuseavon | int a0 options ochetcamrewse 3 ocal address

so_nsuserorr | int so_options socketcan reuse 3 localport

soxsseaLive | int so_options protocl probes dle connectons

so_powrsours | it S0 options ypassrouting bles

so_ssoancast | ine o options socketallows broadeast messages

so_usstoopaack | int o options outing domsin sockets anly sending,
proces receives i own routing
g

so_oomume | ine 2o options protocol queues outofband data inine

so_uvoew strvee lingor | so_linger sockelingers on close

so_ErRoR int so_error etror siatus and dlea; gt sockopt only

Ssorvee it so_type et socke ype; et sockopt only

i ExOPROTO0ET refurmed

OEBPS/html/graphics/15fig13.jpg
Jusetl Siledeceil ~sisgl)
=z Taotiter Su
sockecops
socker() Soo.read
Fsoprote Soo_select

protosn()

OEBPS/html/graphics/t0551-01.jpg
File Description

kern/kern_descrip.c | fentl system call
Kern/uipc_syscalls.c | setsockopt, getsockopt, getsocknane, and
getpeernane system calls

Kern/uipe_socket.c | socket layer processing for set sockopt and get sockopt
Kkern/sys_socket .c. ioct1 system call for sockets

OEBPS/html/graphics/866equ01.jpg
RTO

+t_rttvar

OEBPS/html/graphics/t0536-01.jpg
Detected by selecting for:

Descripti
stieten reading | writing | exceptions

data available for reading .

read:-half of connection is closed .

Listen socket has queued connection .

socket error s pending

space available for writing and a

‘connection exists or is not required
write-half of connection is closed
socket error is pending

OOB synchronization mark is pending.

OEBPS/html/graphics/t0530-01.jpg
Variable

Description

motE
offset
uio_resid
len

the offset of the next byte (o transfer when MSG_PEE is set
the offset of the OOB mark when 115G_PEEK is set
the number of bytes remaining to be transferred

the number of bytes to be transferred from this mbuf; may be less than

m_lenif uio_resid is small, or if the OOB mark is near

OEBPS/html/graphics/0619_prog02.jpg
308
309
310
2
313
31
315
516
n7
38
a9
20
m
32
m
2
325
326
32
328
329
330

switch (req) (
case KT pELETE:
L€ ((rn = roh->rnn_deladdr (dse, netmask, £nhi) == 0)
P —
i (rn->en_tlags & (RPACTIVE | RNF_ROOT))
panic(rtrequest delecer);
£t = (struct rtentry *) m;
rtosre_flage de “RFE_UL
5 (reoort_quroute) (
£t = reosre_guroute;
RTFREE(rt) 1
(rt = Gstruct rrentry *) rm)->re_owrute = 0;

)
S ((ifa = se>re_ifa) Gk ifa->ifa_rerequest)
§fa->ifa_rtrquest (RMUIELETE, rt, SA(0));
cecrashess
it (ret_nre)
“retnct = rt;
else if (re->rt_refent <= 0)
reosrt sefentes:
rttreetit);
)
break;

o

OEBPS/html/graphics/t0516-01.jpg
msg_tlags Description Reference
H5G._CTRUNC. | the contolinformalion receved was arger than the buffer provided Figare 1631
MSG_E0R | the data eceived marks the end of a logical record Figure 1648
4562008 | the bufferts) contansout-of-band data Figure 1645
NSG_TRUNC | the message received was larger than the buffer(s) provided Figure 1651

OEBPS/html/graphics/0619_prog01.jpg
290 inc s

291 rerequest (req, dst, gateway, netrask, flags, ret_nre)
292 int req, flags;

293 struct sockaddr *dst, “gateway, ‘netmask;

238 strct rtentry “rretinrt;

295 (
2% ine s = splret(

297 error «

298 rtencry et

299 radix_node *rn

300 radix_node_head *znh;
301 ifadar via;

302 struct sockaddr *ndst;

303 #detine senderr(x) (error = x ; goto bad:)

304 5f ((mh = re_tebles(dst->sa_tasily]) == 0)
305 Senderr (ESRCH) ;

306 if (flags & RTEHOST)

307 foscu g o

OEBPS/html/graphics/07fig16.jpg
Somaing

isodonain: inetdomain: routedonain: unixdonain.
omatn() | domatng) aomatn(y aomatny |
"

n

P datagram
o (defaull) |

T

TP eaw)

oM

GMP
E TP raw)

Wy
L

n

OEBPS/html/graphics/0230_tab01.jpg
m
213
210
215
216
217
218
219
220
221
22

223
224
225
226
227
228
229
230
231
232
233
23¢
238

7 ip_output.c

* 1f source address not specified yet, use addre:
* of outgoing interface.
/
L€ (ip->ip_src.s_addr == INADDR_ANY)
ip->ip_src = IA_SIN(ia)->sin_addr;

t address and
* verify user is allowed to send
* such a packet.

7

4f (4n_broadcast (dst->sin_addr, ifp)) (
iE ((ifp->if_lags & IFF_BROADCAST) == 0) (/* interface check */
exror = EADDRNOTAVALL:
goto bag;

)
S€ ((flags & IPALLOWBROADCAST) == 0) (/* application check */
ercor = EACCES;
goto bad;
)
/% Gon't gllow broadcast messages to be fragmented */
L€ ((u_short) ip->ip_len > ifp->ifmtu) (
error = BSGS1ZE;
goto bad;

OEBPS/html/graphics/29fig23.jpg

OEBPS/html/graphics/29fig29.jpg
Transmit Connection State Table
id flags mostrocent IP/TCP hdr

Receive Connection State Table
id flags mostrecent IP/TCP hdr

o

0

P [n28123,150,192345,25) 1] n28123,1500, 192345, 251
2 2
5 &

Receive Connection State Table: ‘Transmit Connection State Table

id flags mostrecent IP/TCP hdr

id flags _ mostrecent IP/TCP hdr
o

o

2| |no2345,25 128123, 1500,

2| |n92345,25 128123 1500)

5

15

OEBPS/html/graphics/14fig07.jpg
Transport
Protocol

ip_mforward

OEBPS/html/graphics/0230_tab02.jpg
bad ¥
237

>a_flags |= M_BCAST:

28) else
239 m->n_flags &= “MCAST;
200 sendit:
a1 e
242 * 1f small enough for interface, can just send directly.
263 .
208 it ((ushort) ip->ip_len <o ifp-sifmeu) {
245 ip->ip_len = htons ((u_short) ip->ip_len);
26 ip->ip_off = htons ((u_short) ip->ip_off);
207 ip->ip_sum « 0
248 ip->ip_sun = in_ckeun(m, hlen);
249 error = (*ifp->if_output) (ifp, m,
250 (struct sockaddr *) dst, ro->ro_rt!
251 goto done:
32)
/+ fragmentation (Section 10.3) */
339 done:
360 if (ro == Giproute &k (flags & TP_ROUTETOIF) == 0 & ro->ro_rt)
31 RTPREE(ro->ro_rt);
382 return (error);
343 bad:
344 m_treenn0);
345 goto done;
326)

ip_output.c

OEBPS/html/graphics/05fig28.jpg
BPF
header_.‘

address

family original packet

T bytes

OEBPS/html/graphics/09fig07.jpg
©p(1POPT_OLEN]

p(IPOPT_OPTVAL] = l I <p(IPOPT_OFFSET]

type | ten | offer data

- nbyes

OEBPS/html/graphics/t0574-01.jpg
search key =127.0.0.1

search key = 127.0.0.2

hostroute | netroute || host route | _net route
T | search key 7£000001 | 7£000001 || 76000002 | 7£000002
2 | routing table key 7£000001 | 7£000000 || 7£000001 | 7£000000
3 | routing table mask EEEEEEEE | ££000000 || EEEFEEEE | ££000000
4 | logical ANDof 1and 3 | 7£000001 | 7£000000 || 7£000002 | 7£000000
2and 4 equal? yes ves no yes

OEBPS/html/page-map.xml

OEBPS/html/graphics/t0572-01.jpg
Internet:
Destination
default

127

127.0.0.1
128.32.33.5
140.252.13.32
140.252.13.33
140.252.13.34
140.252.13.35
140.252.13.65
224
224.0.0.1

Gateway
140.252.13.33
127.0.0.1
127.0.0.1
140.252.13.33
1inkél
8:0:20:3:£6:42
0:0:¢0:¢2:9b:26
0:0:c0:6£:2d:40
140.252.13.66
Link#1

1ink#1

=
H
H
8

cecccaagagg

8=
&

mmzm

wn

a

o

=

ree

e

Refs Use
3

55
16

55146

12
a1

ccorofowmoo

Interface
1le0
100
100
1e0
1e0
1e0
1e0
100
510
1le0
le0

OEBPS/html/graphics/t0567-01.jpg
Macro

Description

TOCPARM_LEN (cmd)
TOCBASECHD (cmd)
TOCGROUP (cmd)

the length from cmd
the command with length set to 0
the group from cmd

OEBPS/html/graphics/24fig24.jpg
Lis greater than _ < lislessthan
these numbers S

OEBPS/html/graphics/03fig20.jpg
le_softc(0]):

ienet ||
Ethernet le_softc()
sl_softc(0]:
SLIP tnetO | sotec)
loif:
loopback ifnet)

OEBPS/html/graphics/t0490-01.jpg
Type of Number of ‘Specify Control
Funcion | geseriptor buffers destination address? | %8 | information?
write any T
writev any | [1.uo_uaxzov]
send | socketonly 1
sendto | socketonly 1 .
sendnsg | socketonly | [1..UTo_MAxTOV] . .

OEBPS/html/graphics/01fig16.jpg
Kern/uipe_domain.c Kern/uipe_socket?.c socket lyer
Xern/uipe_mbut.c Kern/uipc_syscalls.c

4000 ines of C code.

net/ netinet/ | netns/ netiso/ Kern/
(ouing | (rCP/P) o) ©5) | (Unix domainy (POt Yer
2100 B0 ey %0 7
not/ | mec/tee1e [neesie toops| necsvprs | Eihemet
Ehermet, ARR) | GUP) (oopback) @) | devicodriver [oyer

50 1750 50 000 1,000 per driver

OEBPS/html/graphics/t0488-01.jpg
Name Description

sbepace “The number of bytes that may be added to sb before it is considered full:
min((sb_hivat - sb_ce), (sb_mbmax - sb_mbent)).
long sbepace(struct sockbut *sh);

sballoc

m has been added to sb. Adjust sb_cc and sb_nbent in sb accordingly.
void sballoc(struct sockbuf *sh,struct mbuf *m);

‘mhas been removed from sb. Adjust sb_cc and sb_bent in 9b accordingly.
int sbtres(struct sockbuf *shstruct mbut m);

‘sbappend "Append the mbufs in m to the end of the last record in sb. Call sbcompress.
int sbappemd(struct sockbuf *sh,struct mbuf *m);
‘sbappendrecord | Append the record in m0 after the last record in sb. Call sbcompress.
int sbappendrecord(struct sockbuf *sb, struct mbuf *mo);
sbappendaddr Put address from asa in an mbuf. Concatenate address, control, and m0. Append
the resulting mbuf chain after the last record in sb.
int © sockbut *sb, struct ~asa,
struct mbuf *mo, struct mbuf *control);
Sbappendcontrol | Concatenate control and 0. Append the resuling mbuf chain afie the 1ast
record in sb.
int sbappendcontrol(struct sockbuf *sb, struct mbuf *ml,
struce mbuf *control);
sbinsertoob Insert m0 before first record in sb without out-of-band data. Call sbcompress.
int sbinsertoob(struct sockbuf *sh,struct mbuf *mo);
sbcompress ‘Append m to n squeezing out any unused space.
void sbcompress(struct sockbuf *sh,struct mbuf *m,
struct mbuf *n);
sbdrop Discard len bytes from the front of sb.
void sbarop(struct sockbuf *sb, intlen);
Sbaroprecord | Discard the first record in s, Move the next record £o the front.
void sbaroprecora(struct sockbuf *sh);
sbrelease Ca‘l)l ‘sbflush to release all mbufs in sb. Reset sb_hiwat and sb_mbmax values
0.
void sbrelease(struct sockbuf *sb);
shflush Release all mbufs in 5.

void sbflush(struct sockbuf *sb);

‘Set high-water and low-water marks. For the send buffer, call sbresexve with
sndce. For the receive buffer, all sbreserve with rewce. Initialize sb_lowat in
both buffers to default values, Figure 164, ENOBUFS s returned if any limits are
exceeded.

int soreserve(struct socket *w,int sndec, int revcc);

sbreserve

SetRigh-water mark for s 1o c. Also drop low-water mark to cc. No memory i
allocated by this function.

int sbreserve(struct sockbuf sh,int c);

OEBPS/html/graphics/0564_prog01.jpg
68
169
170

m
12
1

17
175
176
m

178
119
180
181

182
103
sne
185

186
187
168
189
150
191
192
193
19

195
196
197
198
199
200
200
202
203
200
205
206
207
208
209

case F_GETFL:

lern descripc.

“retval - OFLAGS (€p->E_£lag
return (01

case F_SETFL:

£p->_flag b “FONTLFLAGS
£o->£_flag I+ FFLAGS (uap->arg) & FNTLFLAGS:

R = p->€_flag & FHONBLOCK:
error » (+(5->(_ops->fo_ioccl) (fp, FIONBIO, (caddz_t) & tmp. p)s
it (orror)

return forror):
tmp + fp->¢_tlag & PASTNC:
error » (+£5->(_ops->fo_ioctl) (fp, PIOASVNC, (caddr_t) & tmp, D)
it (terzor)
rotumn ©);
tp->¢_flag ie “NONBLOCK:
e+ 0.
(i) (+Fp>f_opa-stoioctl) (fn. FIONRIO. (eddr_t) & tnp. B):
return (errer);
F_cEToms:
1€ (tp->£_type == DTYPE_SOCKET) {
“retval = ((struct socket *) fp->f_data)->s0_paid;
raturn ()

(£, (irt) TI0CGRGRI
“retval - -tretva;
rocumn (errer) ;

£_seromi:
S (fp->€_type == DTYPE_SOCKET) (

((stract socket) fp-(_data) ->00_901d = uap->ara;
return 10);

)
it (wap->arg <x) (
et footh o N
) else
struct proc *pl » ptindiusp->arg);
it 1 == 0)
return (BSKCH) ;
uap->az9 = pl->p_PaTp->pa_L

)
caturn ((+£p->£_ops->fo_ioctl)
(fp, (iAt) TIOCSPGRP, (caddr_t) & uap->arg. p)l:

Kern_descripsc

OEBPS/html/graphics/t0487-01.jpg
Name Description
Shlock “Acquires alock for s, 11 af s M_WATTOR, e process sleeps waltng or e lock,
otherwise EROULDBLOCK s feturned i the buffe cannot be locked
immediatel. EINTR of ERESTART s returned i the sleep is interrupted by
asignal;0is etumed otherwise.
int sblock(struct sockbuf *sb, int w)
Smuntock Releasesthelock on sb. Any olher process waitng to lock s awakened.
void sbunlock(struct sockbut *sby
Sheatt Call £51 067 to waltfor protocol activity on sb. Returns result of £5 e
int abwad(struct sockbu *sh);
Sovares Notiiessocket of protocol activity. Wakes up matehing call 1 sbwar Lt or 0
tsleep f any processesareseecting on s
void sowakeup(struct socket ' struct sockbuf “sb);
Sorvakeus Wakesup any process walting for ead events on <0 and sends the STGT0 sigral
fa process equested asynchronous notification o /0.
void sorvakeup(struct socket *s0);
Sowakeun Wakes up any process walting for writ events on 0 and sends he STGTO signal

ifa process equested asynchronous notiication of 1/,
void sowvakeup(struct socket o)

OEBPS/html/graphics/t0486-01.jpg
sb_flags

Description’

SB_LOCK | a process has locked the socket buffer

SB_WANT | a process is waiting to lock the buffer

SB_WAIT _| a process is waiting for data (receive) or space (send) in this buffer
SB_SEL | one or more processes are selecting on this buffer

sB_ASYNC | generate asynchronous 1/O signal for this buffer

SB_NOINTR | signals do not cancel a lock request

SB_NOTIFY | (SE_WAIT|SB_SEL|SB_ASYNC)

a process is waiting for changes to the buffer and should be notified by
wakeup when any changes occur

OEBPS/html/graphics/t0485-02.jpg
struct_sockbuf (
u_long sb_ce:

struct mbuf *sb_nb;

struct selinfo sb._e

short sb_flag:

short sb_timeo;
) so_rcv, so_snd;

actual chars in butfer */
max actual char count */
chars of mbufs used */
max chars of mbufs to us
low water mark *
the mbut chain */

process selecting read/write */
Pigure 16.5 */

timeout for read/write */

OEBPS/html/graphics/0553_prog01.jpg
wipe_socketc.

752 sosetopt (s0, level, optnans, m0)
753 struct socket *so

758 ine lovel, optname:
755 struct sbut a0
756 ¢
757 ine eror -
758 struct mbut 'm = 20;
759 if (level 1= S0L_SOCKET) (
760 LE (s0->80_proto 4k so->80_proto-spr_ctloutput)
761 return ((+80->80_proto->pr_ctloutput)
762 (PRCO_SETOPT, 50, level, optrae, &n0)):
763 errox = BNOPROTOORT;
766) else (
765 switeh (optnase) {
7+ sockat option processing */

sa1 detaut:
sz orror » ENOPROTOOPT:
8 break;
84t)
8es i£ (error =x 0 k& K0->80_proto Gk so->0_prota->pr_ctloutput) (
846 (vold) ((*50->00_proto->pr_ctloutput)
847 (PRCQ_SETOPT. s0, level, optname, in0)):
48 = L 7+ treed by protocol */
849)
850
851
82 it @
853 woid) m_tree(m);

4 rotum terron);

855)

uipe_socket.c

OEBPS/html/graphics/t0485-01.jpg
s0_snd so_rcv.
N >
Frowocol | iwat | _sb_towat | sbosbeax | _sb_hivat | ab_lowat | sbombmax
TDP | 9x104 | 2088 (gnored) | 2xsb hivat | 80x(0+16) | 1 | Zxsb_nivac
Tcp | sxao | 2 2xsbnivar | 8104 1| 2xennivar
T P

ICMP | 8x1024 | 2048 (gnored) | 2xsb hivat | 8x1024 1| 2xebnivar

IGMP

OEBPS/html/graphics/0843_prog01.jpg
T
121
12
124
125

126

256
257
258

Strice topen ©
top_timers (tp, tiner)
strict topeb +tp;

¢

swicen (cirer) |

)
return (tp);
)

/¢ weiten cases */

Iep_timerc

top_timere

OEBPS/html/graphics/t0515-01.jpg
flags Description Reference

MSG_DONTWAIT | do not wait for resources during this call Figure 1638
MSG_008 receive out-of-band data instead of regular data | Figure 16.39
MSG_PEEK receive a copy of the data without consuming it | Figure 1643
MSG_WAITALL | wait for data to fill buffers before returning Figure 1650

OEBPS/html/graphics/t0510-01.jpg
Typeof | Numberof [Returnsender’s [o . [Return control
Fanction | gesciptor buters ddrens? | P98 | oformation?
= = T

Teadv | n.uroaxiov

v | socenonty i .

Tecvtcom | scenonly 1 . 3

ecvaeg | soctasemty |/n:mrainarson) g g .

OEBPS/html/graphics/11fig13.jpg
ip_protox(]:

0
1

255

3

4

o s W o

inetsw(]:

ICMP

OEBPS/html/graphics/t0495-01.jpg
uio_segflg uio_rw Description
UZ0_USERSPACE n a fer
0 to_rzAp | S<aNeT W bytes from a kemnel buffer p o p
UTO_USERTSPACE bufers
UI0_USERSPACE ‘gather 1 bytes from process buffers into the kernel
uro_um1te
U10_USERISPACE buffer p
UIO_READ | scatter n bytes from the kerel buffer p to
To_sysspacE altiple kel butlers
= UTO_WRTTE | gather n bytes from multiple kernel buffers into

the kernel buffer cp

OEBPS/html/graphics/t0491-01.jpg
flags

Description

Reference

MSG_DONTROUTE
MSG_DONTWAIT
MSG_EOR
MSG_00B

bypass routing tables for this message
do not wait for resources during this message
data marks the end of a logical record

send as out-of-band data

Figure 1623
Figure 1622
Figure 1625
Figure 1626

OEBPS/html/graphics/0064_prog01.jpg
90 struct if_dat

T

91 /% generic interface information */

9
95
96
9

138 #detine

139 #detine
sdetine
sdetine

142 #detine

143 #detine

u_char ifi_type;
u_char ifi_addrlen;
u_char ifi_ndrien;
wlong ifimtu;

ulong ifimetric;
wllong ifi_baudra

e
7
7
7
7
7

Pigure 3.9 +/

media address length */

media header length */

maximum transmission unit */
routing metric (external only) */
Linespeed +/

i meu if_data.ifi mtu
iftype if data.ifi_type

i€ addrlen if_data.ifi_addrlen
ifhdrlen if_data.ifi_hdrlen
ifometric if_data.ifi_metric
i baudrate if_data.ifi_baudrate

ith

OEBPS/html/graphics/15fig28.jpg
= o e =
i
i
e
.

Soainegse oarenaie Soainegie ke

OEBPS/html/graphics/0385_prog02.jpg
7 igmp_varh

Macro to compute a randon Ciner value between 1 and (IGMP_MAX REPORTING_
DELAY + countdowr. froquency). We generate a “randon® number by adding
the total number of LF packes received, our primry iv agdress, and the
Fulticast address being timed-out. The 4.3 randoa() routine really
ought to be available in the kernel!

Hdetine TGHP_RANDOMDELAY (nult iaddr) \
/+ strter in_addr mulciaddes o/ \
« (ipstat. ips_tatal + \
ntoh (IA_STN lin_i faddr) ->sin_addr.s_addr) + \
ntan) imaltisdar) s_addr] \
"y
¥ (IGMP_MAX_HOST_REFORT_DELAY * PR_FASTHZ) + 1\
)

igp_yark

OEBPS/html/graphics/0668_prog01.jpg
rouce_output (1
¢
Rulloct) to allocate butters

_copydata() to copy from mbuf chain into butfer
e vaddrs () to huild re_addrinto()s

wicen (ne

case AT ADD:
rerequest (RTH_ADD) ;
re_setmecrica ()
eaak

ge type) (

OEBPS/html/graphics/0347_prog01.jpg
Came PROO_SETOPT: R

e
s switch {optnane) (
/2 other set cases +/
a8 e wLTICAST_IF:
87 1P MULTICAST L
ass 1P MULTICAST_LOOP:
489 LP_ADD_MEMBERSHIP:
as0 LP_DROP_MEMBERSHIP
a1 error = Lp_setnopt ions optnane, &inp->inp_moptions, m):
as2 broak;
193 freett:
04 detault:
155 ocror « EIWAL;
196 breaks
197)
08 i m
99 (void) m_tree(m) s
500 break;
so1 case pRco_GETORT:
s02 switch (optname) (
/2 other get cases */
539 case 1 MLTICAST_IFs
510 case TP MULTICAST_TTL:
sa1 Case IP_MULTICAST_LOOP:
562 case TP_ADD_MEMBERSHIP:
503 Case 15_DROP_MEMSERSHIP:
s44 exror - Lp_getnopt ions (optnane, inp->inp_moptions, mp):
545 break
545 detavies
sa7 error = ENOPROTOOPT;
548 break:
509)

ip_outpute

OEBPS/html/graphics/18fig39.jpg
vien:

ott=1

socrasas o[10 Jamiy] o | Wi e
et T v

.

yies are

OEBPS/html/graphics/01fig17.jpg
44BSD-Lite

vangogh

Ttmmas

a2 Solaris23 S0 413
cixo
a5z 113
Themer
it
e | Netblazer
|
P iatup)
moden]
BSD/386 11 BSD/38L1 Solris23 [129 svRs
sur
TP —— avee
o i

Thermer

OEBPS/html/graphics/05fig26.jpg
if_output

o8t
Protocols Cpiner >

ipintrqg: }_}—’_l

OEBPS/html/graphics/t0300-01.jpg
type_and code Duescription FRE_
Towr_scro o reguest
TONP_ECHORERLY echareply
TONP_TSTANY . imestamp request
FCMP_TSTANIRECLY. timestamp reply
CHP_NASRREQ ‘address mask request
CHE_MASKREPLY addrens mask reply
one_1RED nformation request (obslete)
fCMi_TREQRERLY information reply (obsolete)
TCNE_ROUTERATENT router advertisement
JCHP_ROUTERSOLICIT router solctation
ToWP_REOIAECT. better oute available
TCHI_REDIRRCT_NET. better oute avalable for network PHC_KEDIRBCT_HOST
1O KEDIRECT_HOST. better oute available for PRC_KEDIRECT_HOST
LCHP_REDIRECT_TOSNET better ot valable or TOS and network | 15C_KEDRECT_HOST
ICNP_REDIRECT_ T05HOST better route avaloble for TOS and host | PRC_KEDIRECT_HOST
other unrecognized cde
Tow_URREACH destination unrachable
TCMP_UNREACH_NET network un
LCAP_UNREACH_0ST host unmeachable
CHP_UNREACIL PROTOCOL protocol unavailable at destination
LCNE_UNREACH PORT port inactive at destination
ICNP_UNREACHLSRCFALL source ot faled
TONP_UNREACI_NEEDFRAG frogmentation newled and DF bit set PRCNS0S1Z8
0P UNREACH NET_Uknoied | destmation network unkaown. PRCLUNNEACH_NET
TCNE_UNREACH_0S7_UNRG | destination host unknown PRC_UNREACH HOST
ICHI_UNKEACH_{SOLATED) souree hontisolated FRC_ONREACH_HOST
ICHEUNREACH_NET_PROM communication with destination network | PRE_UFEACH ET
dminisiratively
TCME_GNKEACH_HOST_PRONIN | communication with destination hest | FHC_UNKEACH_HOST
adminisirativly prohibited
TCHE_UNREACH_TOSNET network uareachable for type of service | PEC_UNKEACH_ET.
KCNF_UNREACH TOSHOST st unreachable for ype of serviee PRCLUNREACH_HOST
1 commanication adminisratively
prohibited by filtring,
1 host procedence viokation
s prevedence cutoft i effoct
ather e
THT_TINRCEED. e excovded
ICNE_TAMKCEED. INTRANS 1P tme-to-ive expined i tcansit PRC_TIMNCEED_INTRANS
TCHI TINNCERD REAS: X ¥
other code

TCHe_ PARANFROR
o

‘problem with TP header

- e
LM ARAMPRONOPPANSENT | roquined option missing PRCPARANPROS
byte aifsct o inalid byie
TCHT_TOURCEGIENCH st 1o s tammision PRC_OURRCK
other unnognized type

OEBPS/html/graphics/09fig23.jpg
o
(¢
T T

Foad, o] o] Siermy | eimerar el
[es [2en " | =9 | Gre=s (ptr=4n8) | (prr=dnd) | (prr=dn)
T A B AR E R Tl e o lne

Y b e | eren) i))

T W R T Al ad Gl tine

P [e ond) | (e o)

T T Ty Tojie iy

OEBPS/html/graphics/t0304-02.jpg
SNMP variable icmpst at member Description

Torptrags et FICMP messages received.

Tempnkrrors icps_badcode + HICMP messages discarded because of an crror
icps_badien

icps_checksum +
icps_tooshort

TemptnbentUnreach
icapInTimexcds
icmplnParaProbs
scmpInsrcguencha
scmpInkedirects
icmpngchos
icmpInEchoReps
icmpInTinestanps
icmpInTinestaspReps
icmpInAddziasks
icmpInAddsNaskRops

ieps_inhist 1] counter

MICMP messages received for each type

TempOutiags
icmpout Errors

et
icps_oldicnp +
icps_oldshort

TP messages ent
FICMP crons notsent because of an rror

TorpOut Destunreachs
icmpout TimeExcds
icepout ParmProbs
icmpout SrcQuenchs
icepout Redirects
iempout Bchon

icmpout EchoReps.
icrpOut Timestanps
Sempout Tinest anpReps
scrpout AddrMasks.
icmpOut AddrMaskReps

icps_outhist (] counter

HCMP messages sent for each type

OEBPS/html/graphics/t0699-01.jpg
Variable Datatype Description

Tiinfoarp | struct ilinfo_arp | head of 1Linto_arp doubly linked It (Rgure21.1)
arpintra Struct ifqueue | ARPinput queue from Ethernet device drivers (Figure 19)
arpt_prune | int seconds between checking ARP st (5 60)
arpt_xeep inc seconds ARP entry vald once resove (20 60)
arpt_down int seconds between ARP floding algorithm (20)
arp_inuse Tnt FARP entries curently in use

arp_allocated | int AR entriesever allocated

arp_paxtries | int max iris for an IP address before pausing (5)
arpinic_done | int initalization.performed flag

useloopback | int use loopback for local host (default true)

OEBPS/html/graphics/t0304-01.jpg
netstat -s output

icnpstat member

4124 calls to lcmp_error

0 errors not generated 'cuz old message was icnp

output histogram
echo reply: 11770
destination unreachable: 84118
tine exceeded: &

6 messages with bad code fields

0 messages < minimum length

0 bad checksums.

143 messages with bad length

Input histogran:
echo reply: 793
destination unreachable: 305869
source quench: 621
routing redirect: 103
echos 11770
tine exceeded: 25296

11770 message responses generated

Teps_error
icps_oldicmp
icpa_outhist (1
1CMP_ECHOREPLY
ICHP_UNREACH,
LCHP_TINXCEED
icps_padcode
icps_badlen
icps_checksun
icps_tooshort
icps_inhist ()
TCHE_ECHORERPLY.
ICHE_UNREACH
TCHP_SOURCEQUENCH.
TCHP_REDIRECT
1oMP_ECHO
TCHP_TIHACEED
icps_reflect

OEBPS/html/graphics/t0700-01.jpg
1P address translation table, index = < ipNetToMedialfindex >.< ipNetToMediaNet Address >

Name Member Description
TptetroMedialf index Ti_index | comesponding inerface: L index
ipiecToNediaPhysaddress | r¢_gateuay | physical address
iptietToMediaNetaddzess | rekey | IPaddress
iphetToMediatype e flags | typeol mapping 1= other,2 = invalidated,

fynamic, 4 = static (see text)

OEBPS/html/graphics/t0303-02.jpg
icnpstat member

Description

Used by
SNMP

oldicmp
icps_oldshort

errors discarded because datagram was an ICMP message
errors discarded because IP datagram was too short

Teps_badeode
icps_badlen

icps_checksun
icps_tooshort

HICMP messages discarded because of an invalid code
HICMP messages discarded because of an invalid ICMP body
HICMP messages discarded because of 2 bad ICMP checksum
HICMP messages discarded because of ashort ICMP header

Teps_outhist [1
icps_inhist (]

‘array of output counters; one for each ICMP type
array of input counters; one for each ICMP type:

Teps_error
icps_refl

Hof calls to i crp_er+or (excluding redirects)
SICMP messages reflected by the kernel

OEBPS/html/graphics/t0705-01.jpg
Constant Value Description
ETHERTYPE_IP 0x0800 | IP frames
ETHERTYPE_ARP 0x0806 | ARP frames
ETHERTYPE_REVARP 0x8035 | reverse ARP (RARP) frames
ETHERTYPE_IPTRAILERS | 0x1000 | trailer encapsulation (deprecated)

OEBPS/html/graphics/t0303-01.jpg
Variable

Type

Description

Tompraskrepl
icmpstat

int
struct icmpstat

nables the return of ICMP address mask replies
ICMP statistics (Figure 11.7)

OEBPS/html/graphics/t0705-02.jpg
Constant Value Description
ARPOP_REQUEST T | ARP request to resolve protocol address
ARPOP_REPLY 2 | reply to ARP request
ARPOP_REVREQUEST | 3 | RARP request to resolve hardware address
ARPOP_REVREPLY 4 | reply to RARP request

OEBPS/html/graphics/t0302-03.jpg
File

Description

netinet/ip_icmp.h

ICMP structure definitions

netinet/ip_icmp.c

ICMP processing.

OEBPS/html/graphics/t0302-02.jpg
. Incoming i Outgoing,

Tequest | kermel responds with reply “generated by a process.

bl ey St

r | i et protcts and v 7| Beeted b B o gt rotcss
el oot 5 Faneldbes

OEBPS/html/graphics/t0664-01.jpg
Member routesw(0] Description

or_type SOCK_RAW Taw sockel

pr_domain | &routedomain partof the routing domain

pr_protocol | 0

pr_tlags ER_ATOMIC) PR_ADDR | socket layer flags not used by protocol processing.
pr_inpu raw_input this entry not used; ra_input called directly
pr_outpur | route_output called for PRU_SEND requests

pr_ctlinput | raw ctlinput control input function

pr_ctloutput | 0 not used

prusrreq | route_usrreq tion requests from a process.
pr_init raw_inic

pr_tasttino | 0

pr_slowtino | 0

pr_drain 0

prosysctl | sysctl_rtable for sysct 1(8) system call

OEBPS/html/graphics/859equ02.jpg
t_rttvar e t_rttvar + deltal -

OEBPS/html/graphics/t0302-01.jpg
Function

Description Reference
Tcnp_reflect | generate reply to ICMP request Section 1112

Cin_rtenange | update IP routing tables Figure 2234
pectlinput | reporterror toall protocols Section 7.7
pr_ctlinput | reporterror to the protocol associated with the socket | Section 7.4
rip_input process unrecognized ICMP messages Section 325
tep_notity | ignore or report error to process Figure 27.12
tep_quench | slow down the output Figure 27.13
udp_rotify | report error to process Figure 2331

OEBPS/html/graphics/t0678-01.jpg
Constant Value Description

RTV_MTU 0x01 | initialize or lock rmx_mtu
RTV_HOPCOUNT | 0x02 | initialize or lock xmx_hopcount
RTV_EXPIRE | 0x04 | initialize or lock rmx_expire
RTV_RPIPE 0x08 | initialize or lock rmx_recvpipe
RTV_SPIPE 0x10 | initialize or lock rmx_sendpipe
RTV_SSTHRESH | 0x20 | initialize or lock rmx_ssthresh
RTV_RTT 0x40 | initialize or lock rmx_rtt
RTV_RTTVAR | 0x80 | initialize or lock rmx_rttvar

OEBPS/html/graphics/t0301-01.jpg
type and code

Lemp_input

Tow_oH0 Tomp_ratiect
rewr_ecHoRspiy sip o
Tawe o Som,_eot leet
o aARED Serp_rerioct
reur_nsarepLy el inpu
o neo Fip_iouc
rowe_zasorseLy ripinpur
T ROUTERADVERT Tip i
rowr_poursssoLscir rip i
‘zcwe_reptrecT_er pfctlinpur | ln_ctchange | in_rtchange
Zcne_smprazcriost preciinpu | i eeenasgo | in_rtchange
zoMe_meDIRECT. TOSNET bctlinpue | in_rtchange | in_rtchanae
zoue_sevinscr_toswost | pretlinput | L eterange | in_rtcnange
other Fip_input
T o -
Towp_uNREACH NET prctiioput | udprotity | ecp_notity | mostomeEACH
rewr_aREACH ST prctilnput | udporotity | tep_notity | EHOSTONREACH
owr_ReACH proTocoL | precdioput | wip_motity | top_nority | scommerusen
CHr_unREACHFoRT pr_eti g Crotity | copnotity | ecommerusso
oHr_NREACH_SCFATL pretilupu | uapneriey | top_notity | cHosToMeACH
Cur_nEACH weEoReAG | pr_ctinpue ity | cepnotity | ewsostze
TCur_EACH_ET_UeroRy | pr_ecdioput | op_ror ity | tep_nority | sHoSTMREACIL
CHE_NREACH_HOST_NRiow | pr_culinput | p_not €y | tep_nority | HOSTUNREACH
TCMPUNREACH_ISOLATED | pr_eclinut | weporority | tep_nority | SHOSTUNREACH
TCHP_NSEACH_ET_PRORTE | pr_ctlinput | weponotity | fep_nority | SHOSTUNREAEIC
Teur_mnEACH_Host_pRous | pr_cclinput | wip_nority | tep_ority | sHosTNREACH
scur_oREACH_TOSNET. prcttingue | wip_nority | tep_rority | eosTmERH
rows_meACH_ osHOST Prctlinue | udpnerity | tep_eority | EHOSTUNREACH
other rip_input
ToRP_TIRCEED
onp_ziwxcaso_tTRans | pe_eclinge | wpnotity | teprotity
SCHe_TawxCEso_REASS beettine | wdpnotity | tepnority
other o iopu
o proctlinput | udp_notify | tepnocify | ENOPROTOOPT
LCHE_paRANPROB0PTASSENT | pe_ctlinpt | udpnatify | toponority | EOPROEOOFT
other oot
T SOURCEUERCA, r_celtnput | dp_notity | Fepoauenen
e ip_tAper

OEBPS/html/graphics/t0698-01.jpg
File Description

net/if_arp.h ‘arphdr structure definition
netinet/if_ether.h | various structure and constant definitions

netinet/if_ether.c | ARP functions

OEBPS/html/graphics/18fig29.jpg
main() /* kernel initialization

omaininit ();

omaininit() /* Figure 7.15 */
«

ADDDOMATI(unix)

'ADDDOMATN (route) ;

'ADDDOMATN(inet)

'ADDDOMATN(o51) 1

for (ap = alldomains) (
(+dp->dom_init) ()5
for (pr = al potocols orthis domain)

/v;mpu“m 0

it /% Pr_init() function for SOCK_RAW/PF_ROUTE protocol */

initialize head of routing protocol control blocks;

Youte_init() /* dom_init() function for PF_ROUTE domain *
¢

e teie;
[o,

nit()

for (dp = alldomains)
i£ " (ap->dom maxrtkey > max_keylen)
rax_keylen = dp->dom_maxrtkey:
allocate and initialize tn_zeros, rn_ones, nasked_key;
n_inithead (umask_rnhead); /* allocate and init tree for masks */

)

Leable_tnit()
0
for (ap = alldomains)

(*dp->don_rtattach) (&rt_tables(dp->dom_fanily]):
)

W inithead) /* dom_rtattach() function for all protocol families */
«

allocate and nitalize one radix_node_head structure;
)

OEBPS/html/graphics/10fig17.jpg
-

514

Soastraa) §§ tpastras)

i SIS 16

0]

OEBPS/html/graphics/t0735-01.jpg
File Description
netinet/in_pcb.h | inpcb structure definition
netinet/in_pch.c | PCB functions

OEBPS/html/graphics/t0735-02.jpg
Variable

Datatype

Description

zeroin_addr

struct in_addr

32-bit IP address of all zero bits

OEBPS/html/graphics/t0737-01.jpg
inp_tlags Description

THR_WDRINGE | process supplics entie I header (raw socket only)
e RECVOPTS | receiveincoming IP options as control information (UDP only, not implemented)
536 8sCyRETOPTS | recoive IP options fo reply as control information (UDP only, not implemented)
12 RECYDSTADDR | receive IP destination address 35 control information (UDP only)

TNP_CONTROLOPTS | INP_RECVOPTS | INP_RECVRETOPTS | INP_RECVDSTADDR

OEBPS/html/graphics/04fig08.jpg
‘destination

address address|'YP<] e e
hytes Ghyies 2 T TS0 Byes Thyies
ypel 1P packet

801

T30 byies

OEBPS/html/graphics/10fig28.jpg
of "har [irag dluster
bar [ext
L cluster
1P header and

Gptions From fmgmant 1

OEBPS/html/graphics/0117_prog01.jpg
394 int
395 itioctl(so, cud, data, p)
396 struct socket *so;

397 int cna,

398 caddr_t data,

399 struct proc *p;

400 (

401 struct ifaet *ifp;

402 seruct ifreq *ifr;

3 ine error:

404 if (cmd == SIOCGIFCONF)

405 return (ifcont (ced, data));
406 ifr = (struct ifreq *) data;
407 ifp = ifunit(ifr->ifr_nane):
08 it (ifp == 0

409 return (ENXIO);

40 switeh (cnd) (

/% other interface foctl comands (Pigures 4.29 and 12.11) */

47 detawd

48 i€ (80->80_proto == 0)

a9 return (EOPNOTSUPP) :

50 return ((*50->80_proto->pr_usrreq) (so. PRU_CONTROL,
st cnd, data, §tp):
a2)

453 return (0);

454)

ife

OEBPS/html/graphics/0178_tab01.jpg
135 int
136 lotoctl(ifp, cnd, data)
137 struct ifnet *ifp:

136 int cma,
139 caddr_t data;

140 (

141 struct ifaddr vifa,

142 struct ifreq *ifr;

143 dnt error = 0

144 switeh (cad) (

145 case SIOCSIFADDR:

146 ifp->it_flags

147 ifa « (struct ifaddr *) data;

18 ”

149 * Bverything else is done at a higher level.
150 o

151 break;

/* SIOCADDMULTI and SIOCDELMULTI commands (Figure 12.30) */.

167 defauic:
168 error = EINVAL:
w9)

170 return (error):

m)

OEBPS/html/graphics/18fig05.jpg
bit:0

sockadar_in:

e e
R& s o
TR + .

OEBPS/html/graphics/1014_prog01.jpg
Ty
102
1053
1050
105
106
1057
1058
1059
1050
1061
1082
106
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
107
1075
1076
1077
1078
w79
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

I£ this sequent advances the known urgent polnter,
then mark the data stream. This should not happen

in cLose_wnIT,

CLOSING, LAST_ACK or TIME_WAIT states sis

& FIN has been received fron the remote side.
In these states we ignore the URG.

the urgent pointer points o the last octet
of urgont data. We contine, however,

to consider it to Lndicate the first octat

of data past the urgent section as the original
spec states (in one of two places) .

/

* According to RFC961 (Assigned Protocols),
¢

tpsrev_up

(5BQ_GT (i ->t1_seq + ti->ti_urp, tp->rev_upl)

Tiostiseq o Eisti_urp

0->0_cobmark - 80->80_rcv.sb_ce

(£p->rev_up - tp sroumet) -
4 (s0->50_oobrark

o

S0-s50_state |- 55_RCVATMARK:
sohasoucotband(so) ;
tp->t_oobtlags k= ~(TCPOOR_HAVEDATA | TCPOOB_HADDATA) :

tep_input.c

This can happen indepondent of advancing the URG pointer,
but if two URG's are pending at once, some out-of-band

.

data nay croep in... ick.

if (ti>tiurp <= tiostilen
Fitder 50_ooBTNLINE

&6 (s0->50_options & S0_OBINLINE)

tep_pulloucotband(eo, £, m;

* € no ouc-of-band data is expected, pull receive
* urgent. pointer along with the receive window,

AE (5B0_OT(tp->rev_nxt, tp->rev_up))

fenaie
) etse ¢
7
.
)

p-srev_up

psxevnets

* Remove out-of-band data so dosan’t get presented to user.

tep_input.c

OEBPS/html/graphics/02fig02.jpg
Tesd of queve.

[wirorquese

e

oty

e

\sfeonr

next mbufin chain

e

lecnoxtre

T

ooren

[roton

100 rton

50

PR iy

Foovpe

r_oara

Fofags

i pxmion

[Fopkenar-Ton

s bt

Etheret header,
I hesder,
UDP hesder

[moprenar.revrtlcs Pkt

e

frdnes

r_oaa

[n-tlage

0bytes
ot

(e

oTen

P o

ot [t:’;::

e

i ags

o Ter

rpwehar zevit

Ehemnet hesder,
P header,
TCPhesder

OEBPS/html/graphics/07fig24.jpg
crr_mw ors_user

crt_ner

Pr_INET

PF_0ST

1PPROTO_IGHP

IPCTL_FORWARDING | IPCTL_DEFTTL

IPCTL_SENDREDIRECTS

OEBPS/html/graphics/0722_prog01.jpg
52 void

93 arp_rerequest(req, xt, sa)

94 int

req:

95 scruce roencey res
96 atruce sockaddr “sar

18
19
120
121
12
123
124
126
12
128
129
130
m
132
m
1
135
136

struct sockaddr *gate = rt->r_gateway;

struct 1linfo_arp *1a = (struct 1linfo_arp *) re->re_llinfos
static struct seckaddr_al mullsal

(sizeof (null_sdl), AF_LINK);

it Gaxpinie_done) ¢
arpinit_done = 1;
Cineout (arptiner, (caddr_t) 0, ha):
)
S (rto>re_flags & RTE_GATEWAY)

switeh (req) (

ADDs

XXE: If this is a manvally added route to interface
* such as older version of routed or gated might provide,
* restore cloning bit
.
S ((rt->re_tlags & RIP_HOST) s 0 ik

SIN(ct_pask (rt))->sin_acdr .o_addr = OXEEEEEELE)
L€ (rto>re_flags & RTE_CLONING) (

This route should come from a route to iface.

re_setgatest, £t key(st),
(struct sockaddr +) anull_sdl);

gate « xe-sre_gateways

SL(gare) -safl_rype = rr-srr_ifp-sif_rype

SOL(gate) >adl_index = t-orE_ifp >if_indes

reort_exixe = time.tv_secr

break;

)

7+ Announce a new entxy if requested. */

i (rt->re_flags & RTE_ANONCE)

arprequest ((struct arpcan *) rt->rt_ifp,

ASIN(zE Xey (xe)1 ->¢
GSIN(zt Key (xt)) ->sin_adds
(u_char *) LIADDR (sDL{gate)) };

FALUTHROUGH *+/

if_ethere

OEBPS/html/graphics/26fig07.jpg
50_8nd.sh_cc = 1025 (send buffer)
12 52 513 su 1024 1025
‘one segment = one segment =
snd_una=1 snd_nxt =513
oldest next send
unacknowledged sequence number

e i i

OEBPS/html/graphics/t0743-02.jpg
Local address

Local port

Foreign address.

Foreign port

TCP state

#wildcard

‘matches
0252129 B B B LISTEN T

- 5 - . LISTEN 2
140252.1.29 2 140252111 1500 | ESTABLISHED

OEBPS/html/graphics/t0744-01.jpg
Local address

Local port | Foreign address | Foreign port Comment

0252129 77 0252111 1500

w022 1363 | 577 1402521335 1500 | connected; local IP = broadcast

1022136 | 577 . . unconnected, local IP = broadcast
5 a7 . .

unconnected, local IP = wildcard

OEBPS/html/graphics/t0744-02.jpg
Local address | Local port | Foreign address | Foreign port Delivered?
W1m | 7 10252111 T500 | no, local and foreign IP mismatch
1902206 | 577 14902521335 1500 | o, foreign IP mismatch
1022136 | 577 - . yes

& 57 5 . o]

OEBPS/html/graphics/t0744-03.jpg
Local address.

Local port | Foreign address | Foreign port Delivered?
o1 | w77 023211 1500 | yos, 0 wildcard matches
122186 | 77 1902521335 1500 | o, Tocal and foreign IP mismatch
102206 | 77 . . no,local IP mismatch

5 57 : :

1o, 2 wildcard matches

OEBPS/html/graphics/t0740-01.jpg
Local IP address | Local port Description
‘unicast or broadcast | nonzero | one local interface, specific port
multicast nonzero | one local multicast group, specific port
. nonzero | any local interface or multicast group, specific port
unicast or broadcast 0 one local interface, kernel chooses port
multicast 0 one multicast group, kernel chooses port
. 0 any local interface, kernel chooses port

OEBPS/html/graphics/0401_prog01.jpg
m
8
I
o
8
8
%0

0
92
9
%

as
%
9

s
99
100

102
103
108
105
106

107
108
109
10
m
112

ip_nrouter_cad(ced, 50, m)
int cnd

ezt vocker
seruer mbut
«

int error =

ip_mroute.c

S (cnd 1= DWRE_INIT 6 5o 1= ip_mrouter)

else
suicen (cna) (

EACCES:

case DVRP_INIT:
error = ip_mrouter_init (so
breaks

case DVRE_SONE:

rror = ip_nrouter_done |
brea
case oVHRE_ADD_VIF:
L€ (m == NOLL 11 me>mlen <
orror « DAL,
e1se
error = add_vif (ntodm,
broak:
case DVMRP_DEL_VIF:
L€ (n = NULL (1 mo>nlen <
rror = EINAL;
else
error = del_vit(atod(n,
O

sizeot (struce viteel))

struct vitetl 9

sizeof (short))

vigie)

OEBPS/html/graphics/t0742-01.jpg
Local socket | Foreign socket Description
TocallPport | foregnlP.fport | resticted toone peer:
socket (), bind (*, o), connect (foregnlP, fport)
socket (), bind UoallP, lport), connect (oreignlP o)
TocallP.Tport restriced to datagrams arriving on one local iterface: oallP
socket), bind ocallP, lport)
ot receves all datagrams sent o e

socket (), bind (*, Iport)

OEBPS/html/graphics/0401_prog02.jpg
13
14
s
116
17
18

1s
120
m
122
123
124

125
126
127
128
129
130

m
12
13
134
15
16

1w
18
19
10
101
12}

case DVMRP_ADD_LGRP:

S€ (m = UL |1 mon_len < sizeof (struct lorpletl))
orror = enwAL:
elee
error = add_lorp(meod(n, struct lgrplerl)
break:

case DVMRP_DEL_LGRP:
L€ (m - WILL | mo>m_len < sizeof (struct lgrplecl))

. error = EIWAL:
elce

orror = del_lgrpimtod(m, struct lgrpletl)
break;

case DVMRP_ADD_HRT:

A€ (m == NULL |1 mesm_len < sizeof (struct mrectl))
error « BOWAL;
e1se
error = add_nrt(mcod(n, struct mreerl *));
break;
case DMRP_DEL MT:
Sf (m o= NILL 1) mom_len < sizeof(struct in_addr))
error = BDWAL;
else
eror = delmrt (mtod(m, struct in_addr *1)7
break;
aetaute:

return (error);

ip_mroute.c

OEBPS/html/graphics/t0742-02.jpg
Local address | Local port | Foreign address | Foreignport | TCP state
140252129 23 B B LISTEN
* 23 B - LISTEN

140.2521.29 23 140252.1.11 1500 ESTABLISHED

OEBPS/html/graphics/t0743-01.jpg
#wildcard

Local address | Local port | Foreign address | Foregnport | TCPstate | mriieer
190252129 5 - R LISTEN 1
. 3 . . LISTEN 2
140252129 B 140252011 150 | ESTABLSHED | 0

OEBPS/html/graphics/14fig06.jpg
‘Transport
Protocols

il Ethernet

OEBPS/html/graphics/17fig01.jpg
getsockopt
sogetopt.

pr_ctloutput

Ecp_ctloutput Tip_ctloutput

OEBPS/html/graphics/0374_prog01.jpg
129 if (INULTICAST(ntom (ip->ip_dst.
130 struct inmlei *inms

m extern struct itnec loif;

2 Besn_flags = HHCAST:

133 ”

3¢ * b destiration address is milticast. Maks sure *dot®
15 * 5til1 points to the address in “ro*. (It may have been
136 * changed to point to a gateway address, above.)

17 .

18 ast = (scruct sockaddr_in) kro->ro_dst;

139 ”

100 * Seq t tre caller provided any multicast options

1 “

102 S (im0 1= L) (

10 ip->ip_ttl = imo->ino_milticast_ctl;

10 L€ (ino->imo_multicast_itp 1- NOLL)

s ifp = ino->ino_multicast_ifp;

14) else

107 ip->ip_te) = IP_DEFAVLTMULTICAST_TTI

4 ”

s * Contizm that the outgoing interface supporta multicast.
150 o

151 L€ (($fp->41_Elags & IFPIMLTICAST) == 0) (

152 ipsta.3ps_norouter

153 error ENBTUNREACH;

e goto bads

155)

155 ”

157 + If source address not specified yor, use address

158 * of outgoing inerface.

159

160 _adar == TRDOR) (

161 struct in_ifaddr *ia

w2 for (ia = in_ifaddr; ia; ia = ia->lanext)

163 S ia->la_itp == ifp) (

16 ipoinCare - TALATN(A)onin_nddrs

165 broak;

166)

167)

ip_outputc

i putputc

OEBPS/html/graphics/11fig26.jpg
78 1516 3
Lemp_type Lamp_code scmp_cksun
Tcup_REDIRECT 03 checksum
Scep_guaddx
1P address of preferred router
icmp_ip

IP header (including opions) and atleas firs § bytes of orginal P datagram data

—E—

OEBPS/html/graphics/0521_prog01.jpg
35 soreceive(so, paddr, uio, w0, concrolp, flagep

450 struct socket s

461 strace mbut *paddr;
442 strct uio uior
443 struct mbut *rapo;

444 strict mbut *-controlp

45 int +lagsp:

ass ¢
a
s
19
50
st
52

153
ase
155
156
57
ash
aso
450
461

T
o
165
h
w7

562
503
se
45

so1
552
55
394
sa5
596
5907

struct mbuf *m, *omp;

int flags, len, error, 5, offser;
Struct protosw *pr - s0-xs0_proto
Struce mbue nestrecord;

intmote, types
int origlresid « uio-suio_resid
= mpt;
it (padar)
*padar
it (eontrolp)
*concrolp
St (flagsp)
flags = flagep & “WSG_EOR:
ele
flags = 0:
+ w_008 procensing and .

i (error = sblock(uso->ao_rev, SBLOCKWAIT{fiags) 1)

return (error):
s = spinet();
7 - so-sso_rev.sb_sb

@ontblock
St (uio-suio_procp)
Ui6- Ui ProtD-p_etate->p_ri. ru_nedrevess
nextrecord « mon_nextpkis

+ process address and ¢

im
Lf ((€lags & MSG_PERK) 1x 0]
m-sr_nextpke = nextrecord;

type - mom_type:
S (eype
flags

Myt

OEBPS/html/graphics/0504_prog01.jpg
Y EX e

352 i (top == 0) (
353 MGETHDR (3, MMAIT, MT_DATA);

358 mien = BN,

355 m->n_pktnds. len =

356 m->m_pXEhdE ZCUif = (struct ifnet %) 0;
357) else

358 HGET (n, MLWATT, ME_DATA);

359 mlen = LN

360)

361 if (resid >= MINCLSIZE & space >» MCLBYTES) {
362 MCLGET (m, MVAIT);

363 i ((n->n_tlags & WEXT) == 0)

364

365

366 if (atomic & top == 0) (

367 len = min(MCLSYTES - max hdr, resid):
368 n->r_data += nax_hdr:

369) else

370 Len = min(MCLOVTES, resid);

n space = MCLBYTES;

an) else ¢

373 nopages:

374 len = min(nin(nlen, resid), space)

375 space = len;

376 ”

am * For datagran protocols, leave room
378 * for protocol headers in first mbuf.
379 o

380 it (atomic G top =s 0 & len < mlen)
38 MEALIGN(=, len)

382)

383 error = uiomove(stod(n, caddr_t), (int) len, uio);
380 rasid = ulo->uio resid;

385 mo>n_len = lens

386 np

387 top->n_pkthdr.len += len;

368 i€ (error)

389 goto release;

390 mp = Gm-om_nex

o if (resia <= 0) (

392 1f (flags & MsG_EoR)

) top->n_lags = H_EOR;

39 break;

3ss)

396 3 while (space > 0 && acomic):

wipe_socket.c

OEBPS/html/graphics/31fig07.jpg
EpLAtiioe

boe_20) boe 10 boe_te0)

Bitnext o bitnext Bit_rext

birdlst |wi. [biialst |wie | biediie |wiz 3
bit drivers Pt arivery bii_driver

Biiaic |oursviong iEATe oursite [BiEOTe |our i
Biiharien |16 Bit_harien |20 bii_parien |20
fric i Foicim Fririm
1e_sofre(o]: s1_sofec(o): 10ie:

T T

5= scmot

OEBPS/html/graphics/0287_tab01.jpg
337 /% ESEE
338 '+ Take inconing datagran fragment and try to
339+ reassemble it into whole datagram. If a chain for
340+ reassembly of this datagram already exists, then it
341+ is given as fp; otherwise have to make a chain.
32 s
343 struce ip +
344 ip_reass (ip, fp)
345 struct ipastrag +ip:
346 struct ipq *£p;
347 ¢
truct mbut *m « droa(ip);
389 atruct ipastrag a
350 atruct mbut ot
31 dnt hlen - ip-siponl < 2
32 dnc L nexts
3o
354+ Presence of header sizes in mbuts
35+ would confuse code below.
e
357 memdata +- hlen;
358 aomten -» hlens
465 droptrag:
466 ipstat. ips_tragdroppedss;
467 mtreentm;
468 return (0);
69

ip_input.c

OEBPS/html/graphics/0918_prog01.jpg
235 struct toped +
226 tep_close(cp)
227 seruct tepeb *tp:

228 ¢
25
230
peis
22
F

24
25
236
2
28
29
200
201
202
2
20
2s
26
247
28
s

250
21
252
25
250
255
256
257
258
259
260
261
262
263
268
265
265
267
268
263
0
m
2
)

sex

atruct mbuf *n,
seruce re.

23

.

$€ (SBQ_LT(tp->iss + so->00_snd.sb_hiwat * 16, tp->sndmax) &k

««

et cepiphdr
uct inpb +inp = tp->t_inped;
uct socket *so = inp->inp_socket;

I we sont enough data to get some meaningful chas
ave then in the routing entry. 'Enough is arbitrarily

defined as the sendpipesize (dofault 8K) ¢ 16. This would
Give us 16 rtt samples assuaing we only Get one sarple per
window (the usual case on a long haul net). 16 samples is

creristics,

tep_subme.

enough for the srtc filter to converge to within St of the correct

value; fewer samples and we could save a very bogus ftt.

Don’t update the default route’s characteristics and don't
update anything that the user *locked-.

(rt = inp-inp. route.ro_rt) &
struct sockaddr_in
ulong 1

S ((re->re_rme. o _locks & RTV_RTT)
4= tp-esree +
(RTI_RTTONIT / (PR_SLOWNZ * TCP_RTT_SCALE))1
L€ (rosre_emerme ree 46 4)
pis
* filter this update to half the old & half
* the new values, converting acale.
+ See route.h and top_var.h for a
+ description of the scaling constants.
-
rtosrt_omerme_ree =
(rE->rt_rme mx_ret + 4) /2

o

else
rtosrt_ et = 4
)
§€ ((rt->re_rmx. emx_locks & RIV_RTTVAR)
i= tpost_rievar +
(RTH_RTTUNIT / (PR_SLOWNZ * TCP_RTTVAR_SCALE))1
L€ (r-sre_rme.rex_rtevar 6 1)
Ftosrt_ome. mm_rttvar =
(resrt e, omx_cetvar + 4) /2

o ¢

elee
Ftosr_mmem_rtevar = 4

) e key (x6)) ->sin_addr.5_addr 1= TNADDRLANY) (

tep_subrc

OEBPS/html/graphics/10fig01.jpg
ip_off

0 [DFMK

fragment offset

13 bits

OEBPS/html/graphics/t0381-01.jpg
File. Description

netinet/igmp.h IGMP protocol definitions
netinet/ignp_var.h | IGMPimplementation definitions
netinet/in_var.h | IPmulticast data structures

netinet/igmp.c IGMP protocol implementation

OEBPS/html/graphics/t0354-01.jpg
imo_multicast-

Recipients

Outgoing | Local Remote Other
_loop | _ttl | Interface? | Network? | Networks? | Interfaces?
1 0
1 1 .
1 >1 . . see text

OEBPS/html/graphics/t0348-01.jpg
ip_ttl Application Scope
0 same interface
1 same subnet
31 | local event video
2 same site
63 | local eventaudio
64 same region
95 | IETF channel 2 video
127 | IETF channel 1 video
128 same continent
159 | IETF channel 2 audio
191 | IETF channel 1 audio
223 | IETE channel 2 low-rate audio
255 | IETF channel 1 low-rate audio

unrestricted in scope

OEBPS/html/graphics/16fig11.jpg
iow

sovent.-1]

T ——
2 E
" T)
e
Miovent1 syt]

e

OEBPS/html/graphics/0330_prog01.jpg
372 it (optlem> 0) { ks
373 u_char ~cp:

374 intopr, ents

375 wlint lem;

376 ”

57 + Retriove any source routing from the incoming packet:
378 * a0d on any record-route or timestamp options.

579 o

380 o (uchar %) Gip + 1);

s S ((opta - lp_srcroute() - 0 &6

352 (0pLs = m_gethdr (M_DONTWAIT, MT_HEADER))) (

303 opta->n_Len - sizeof (struct in_adde):

34 mtod(opts, struct in_addr *)->s_adds = 0;

385)

6 it optar

387 for (cot = optlen; cnt » 0; cnt - len, cp o= len) (
1 bt = eplLOPT_OPTVAL]

19 5 fopt - 1POP_EOL)

190 break;

11 §€ fopt = 1P0PT_NOP)

192 Ten - 1

193 etse ¢

9 2en « cplTpoPT_oLEN);

395 SE (len <= 0 11 Ten » ent)

196 break;

197)

398 ”

399 * Should check for overflow, but it “can't happen®
a0 o

a1 i1 (opt == IPOPT_RR |1 opt == 170PT.TS 11

a0z opt == TPOPT_SECORITY) {

w03 boopy ((cadde_t) ep,

sa atod(opts, caddr_t) + opts-om_len, len:
ws opta-sm_ten +- len;

106)

w07)

w08 7% Terminate & pad, if necessary */

w05 St fene - opta-m_ien % &) {

a0 for (; ent < 45 entrn) {

a1 *tatod(opts, caddr_t) + opts-sm_len) =

az TropT_BOLS

ai ops-m_ans s

a1)

as)

a6)

oy T

OEBPS/html/graphics/26fig06.jpg
4 3 & 7 85 7 ™

ol ek Iodged
4
S A
et neatsend

unacknowledged sequence
sequencenumber number

OEBPS/html/graphics/29fig30.jpg
1P datagram

tosend
Samine | nonTCP or wpery.
datagram __[“uncompresble TCP

omeTcy
each conmection fave uncompressd] .
table for matching [l "1/ TCP headers. compress | P CONPRESSED_TCE,
it ocke pir in tbleenty

canfcompress
m\hund
e oldest rave uncomy ype tnconsressep s
TP/TCP headers .

enty ntable e

OEBPS/html/graphics/16fig59.jpg
Cselwakeup

Sohasoutofband

receive bufer
has changed

send buffer
has changed

OEBPS/html/graphics/t0396-01.jpg
mrouted

: Description
version

12 modifies the 4.3BSD Tahoe release
20 included with 4.4BSD and Net/3
a3 ‘modifies SunOS 4.1.3

OEBPS/html/graphics/t0384-01.jpg
Member inetsw(5] Description

br_type SOCK_RAN TGMP provides raw packet services

pr_domain | éinetdomain IGMP s part of the Internet domain
pr_protocol | IPPROTO_IGHP (2) | appearsin the ip_p field of the IP header
Pr_flags BR_ATOMIC/ PR_ADDR | socket layer flags,not used by protocol processing
pr_input igmp_input receives messages from IP layer

pr_output | ripoutput sends IGMP message to IP layer

prctlinpue | 0 ot used by IGMP

pr_ctloutput | rip_ctloutput respond to administrative requests from a process
prusrreq | rip_usrreq respond to communication requests from a process
pr_init igmp_init initialization for IGMP.

pr_tasttino
pr_slowtino
pr_drain
pr_sysctl

igmp_tastt ino
0
0
0

process pending membership reports
not used by IGMP
not used by IGMP
not used by IGMP

OEBPS/html/graphics/0240_tab01.jpg
503 case TP_OPTIONS.

504 “Ep = m ¢ m_get (HLWAIT, MT_SOOPTS);

505 if (inp->inp_options)

506 m->m_len = inp->inp_options->m_len:

507 beopy (mtod (inp->inp_options, caddr_t),

s08 mtod(m, caddr_t). (unsigned) m->m_len
509) else

s10 o:

s

s12 case 1p_T0s!

513 case 1P_TTL:

sie case TP_RECVOPTS:

515 case IP_RECVRETOPTS:

516 case 1P_RECVDSTADDR

517 mp = m = m_get (MWAIT, MT_SOOPTS) :
518 mo>m_len = sizeof (int)

519 switch (optname) (

520 case 1p_T0!

s21 optval = inp-rinp_ip.ip_tos:
522 break:

523 case To_TTL:

20 optval ~ inp-sinp_ip.ip_ttl;
525 break:

526 #define OPTBIT(bit) (inp->inp_flags & bit 2 1 : 0}
527 case 1P_RECVOPTS:

528 optval = OPTBIT(INP_RECVOPTS):
529 break:

530 case TP_RECVRETOPTS:

531 optval = OPTBITIINP_RECVRETOPTS) ;
532 break;

533 case IP_RECVDSTADDR:

538 optval - OPTBIT(INP_RECVDSTADDR) ;
535 break;

536)

537 “atodin, int) = optval;

58 break;

ip_outpul.c

OEBPS/html/graphics/26fig28.jpg
4 S5 6 7 8 9 mN

Sentand acknowledged - '

snd_una=10 snd_nx =11
e ol

OEBPS/html/graphics/t0382-03.jpg
43 struct igmp (

uchar igmp_type
u_char, igmp_code
u_short igmp_cksua;
struct in_addr igmp_group:

”
”
7
7o
7o

version & type of 1GNP message
unused, should be zero
1p-style checkoun

qroup address being reported
(zero for queries)

.
.

igmp

OEBPS/html/graphics/0766_prog01.jpg
306 e trpche.
307 in_pebnotity(head, det, fpore_ara, laddr, lport_arg, cmd, motify)

308 struct inpeh *head;

309 seruce sockaddr dst:

310 wint fport_arg, Iport_arg:

311 struct in_addr ladds;

312 ine onas
313 void (notify) (struct impeb *, 1ac);

38 ¢

315 extern u_char inetctlermmapl);

316 scruct inpeb *imp, toinp:

317 struct inaddr fadar;

318 uwshorc fport = fport_arg, lport = lport_arg:

39 amr errmor

320 it ((unsigned) nd > PRONCKDS || dst->sa_tamily 1= AF_INET)
pry return;

322 faddr = ((struct sockaddr_in) dst)->sin_addr:

323 if (faddr.s_addz s INADDR_ANY)

324 return;

as e

326 medirects go to all references to the destination,
327+ and use in_rtchange to invalitate the rouce cache.

328 Dead host incications: notify all references to the destination.
329+ otherwise, if we have knowledse of the local ot and address,
330+ deliver only to that socket.

mo oy

332 Af (PRC_IS_REDIFECT(cnd) |1 ond == PRC_HOSTORAD) (

3 £port - 0;

354 1pore = 0

235 Taddr.s_ada = 0;

336 L€ (crd 1= FRC_HOSTDEAD)

H notify = in_rtchange;

aw

339 ermo - instetlermap(cndl;

340 for (inp = head->inpnext; inp 1= heads) (

0 4f (inp->inp_faddr .o_addr 1= faddr.o_addr ||

32 inp->inp_socket == 0 |1

30 (Iport & inp-sinp_lport t= lpoxt) ||

34 (1addr. ¢_addr &k inp->inp_laddr.s_addr "
s (£port & inp->inp_fport 1= fport)) (

346 inp = irp->inp_next:

307 cont inue; 7+ skip this BB +/

318)

s otnp = inpy

350 inp = inp-sinp_next:

e S€ tmorsey)

352 (notisy) (otn, errno):

3)

350

in_peh.c

OEBPS/html/graphics/t0382-02.jpg
Version | Type igmp_type Description
T T | Oxl1 (1GHP_HOST_MEMBERSHIP_QUERD) | membership query
1 2 | 0x12 (16uP_HoST MEMBERSHIE_REPORT) | membership report
1 3 | o3 DVMRP message (Chapter 14)

OEBPS/html/graphics/t0382-01.jpg
netstat -p igmp output

igmpstat member

18774 nessages received
0 nessages received wich too fow bytes
0 nessages received with bad checksun,
18774 mesbership queries received

0 nembersnip querics
0 nembership reports
0 nembership reports
0 nembership reports
0 membership reports

received with invalid Field(s)
received

received with invalid field(s)
received for groups to which we belong

Tops_rev_total
igps_rov_tooshort
Sops_rev_badsun
igps_rev_queries
igps_rov_badgqueries
Saps_rev_reports
igps_rcv_badreports
igps_rev_ourreports
1gps_snd_reports

OEBPS/html/graphics/t0381-03.jpg
igmpstat member

Description

igps_rcv_badqueries
igps_rcv_badreports
igps_rcv_badsum
igps_rev_ourreports
igps_rev_queries
igps_rcv_reports
igps_rev_tooshort
igps_rcv_total
igps_snd_reports

#messages received as invalid queries
#messages received as invalid reports
#messages received with bad checksum
#messages received as reports for local groups
#messages received as membership queries
#messages received as membership reports
#messages received with too few bytes

total #IGMP messages received

#messages sent as membership reports

OEBPS/html/graphics/t0381-02.jpg
Variable

Datatype.

Description

Tomp_all_hoate_grou
igp_tiners_are_running
igupstat

tons

Al hosts group addross in network by order
rueif any IGMP timer is active, false otherwise:

struct igmpstat | IGMP statistics (Figure 13.4).

OEBPS/html/graphics/71hfd.jpg
Author Royalty Attribution: 11539634

OEBPS/html/graphics/29fig34.jpg
#bytesi1[1| C| 1| P[s|A|W| U |fagbits first byte sent across link

01! connid (€) 1if C = 1: connection ID
unmodified
2 s 16-bit TCP checksum, always present
wrgoff (U) 1ifU = 1: TCP urgent offset
- 1
01,31 win (W) 156 W = 1 current - previous TCP window

2ack (4) 1if A= 1: current - previous TCP acknowledgments
= 1: current - previous TCP sequencet’

1 current - previous IP identification

OEBPS/html/graphics/t0182-02.jpg
File Description

netinet/domain.h | domain structure definition
netinet/protosw.h | protosw structure definition

netinet/in_proto.c | IP domain and protosw structures
kern/uipc_domain.c | initialization and search functions

OEBPS/html/graphics/t0182-01.jpg
Protocol family Address family Protocol
PF_INET AF_INET Internet
PF_0SI, PF_ISO AF_0SI, AF_ISO ost
PF_LOCAL, PF_UNIX | AF_LOCAL, AF_UNIX | local IPC (Unix)
PF_ROUTE AF_ROUTE routing tables
n/a AF_LINK link-level (e.g., Ethernet)

OEBPS/html/graphics/t0307-01.jpg
Member inetsw(d] Description

or_tvpe SocK_RAW TCMP provides raw packet services
pr_domain | &inetdomain ICMP s part o the Internet domain
pr_protocol | IPPROTO_ICHP (1) | appearsin the ip_p field of the IP header
pr_flags PR_ATOMIC/PR_ADDR | socket layer flags, not used by ICMP
pr_input iemp_input receives ICMP messages from the IP layer
pr_output | rip_output sonds ICMP messages o the IP layer

pr_ctlinpuc
pr_ctloutput
pr_usrreq
pr_inic
pr_tasttino
pr_slowtino
pr_drain
pr_sysctl

0
rip_ctloutput
rip_usrreq

0

0

0

o

icmp_sysctl

ot used by ICMP.
respond o administraive requests from a process
respond to communication requests from a process.
not used by ICMP

Dot used by ICMP

not used by ICMP.

ot used by ICMP.

modify ICMP parameters

OEBPS/html/graphics/25fig25.jpg
L] L3 L] 64 6lsec

s s aus oms sies
© a oy Ty
tep_arop)

s
o @ o A P

OEBPS/html/graphics/0439_prog01.jpg
o
a2
bt
“
P
€

8

Struct socket {

short so_type ”
short 80 options: /e
ahort 20 Lingor ”

b
struct protosw *soproto; /*

* Variables for connection queveing
Socket where accepts occur is so_head in all subsidiary sockets.

‘socketvarh

generic type. Figure 7.8 +/
£rom socket call. Figure 15.4 */
time to linger while closing */
incornal scate flags. Figure 15.6 */
protocol control block */

prococol handie */

I¢ so0_head is 0, socket s not related to an accept.

For head socket 50.q0 quo
while s0_C

partially completed connections,
is a quese of connections ready to be accepted.

it has to be pulled out of either s0.q0 or 80.q.
e allow connections to queve up based on current quese lengchs
and 1init on nusber of queued connections for this socket.

struct socket *so_head:
struct socket “s0_qf
struct socket “a:

/e
I

short so_qolen, o
snort so_qlen: s
short so_glimit: ”
short so_tineo: I
u_short -
pid_t ”

ulong so_ooteark:

”

* Variables for socket butfering.

struct sockbat (

u_long sbcer
ulong sb_hiwa
Wlong sbombent:
u_long sb_pbmax:
iong sb_lowat;
struct mbuf *sb_nb
struct selinto b,

72
i
7
I
I

ahort ob_tlage: ”
short sh_tineo: ”

) so_xev. wo_snd

caddr_t so_tpet ’”

void ~ (*ao_vpcall)
cadde_t so_upailarg:

s
5

* If a connection is aborted and it has so_head set. then

back pointer to accept socket */
ueve of partial connections */
Queue o incoming conneccions */
partials on s0.q0 */

husber of connactions on 30.q */
max nusber queued connections /
connection timeout */

error atfecting connection */
Poid for signals +/

chare to oob mark */

actual chare in butter */
max actual char count /

Chare of mbuts used /

max chars of mbufs o use */
low water mark */

tho bt chain +/

process selecting read/write */
Figure 16.5 +/

timeout for read/urite */

Wise, protocol concrol block XXK */

(struct socket * 50, caddr_t azg, int waicf):

Arg for above =/

oy

OEBPS/html/graphics/bull.jpg

OEBPS/html/graphics/16fig19.jpg
uio_resid

Hr
N

so0) Sovien iovbase
el [e

o tovent 3 m

wio_offset [0 iy

To_vesia [no+m+7
To_seafly | u10_USERSPACE
iorw |urowmirs
io_proce]

s 3 =

OEBPS/html/graphics/24fig28.jpg
step 1—|—client sends data segment with seq# 2 (becomes wandering duplicate) -
2 client retransmits data segment with seq# 2, delivered to server

3| client coses connection with server
4L client host crashes
10]sec

51— client host reboots, 1SS set to 1
61— clent-server stablish new incarnation of previous connection
7| wandering duplicatefrom step 1 delivered to server =-

Hade

]

[

<MsL

OEBPS/html/graphics/t0314-01.jpg
Constant

Description

PRC_HOSTDEAD
PRC_IFpOWN
PRC_MSGSIZE
PRC_PARANPROB
PRC_QUENCH
PRC_QUENCH2
PRC_REDIRECT_HOST
PRC_REDIRECT_NET
PRC_REDIRECT_TOSHOST
PRC_REDIRECT_TOSNET
PRC_ROUTEDEAD
PRC_TIMXCEED_INTRANS
PRC_TINMXCEED_REASS
PRC_UNREACH_HOST
PRC_UNREACH_NET
PRC_UNREACH_PORT
PRC_UNREACH_PROTOCOL
PRC_UNREACH_SRCFALL

host appears to be down

network interface shut down

invalid message size

header incorrect

someone said to slow down

congestion bit says slow down

host routing redirect

network routing redirect

redirect for TOS and host

redirect for TOS and network

select new route if possible

packet lifetime expired in transit
fragment lifetime expired during reassembly
o route available to host

0 route available to network
destination says portis not active
destination says protocol is not available
source route failed

OEBPS/html/graphics/t0310-01.jpg
Constant/Macro | Value Description

TCHP_MINLEN 5| minimum size of an ICMP message

Tewe_rsLEN 20| size of ICMP timestamp messages

TCHP_MASKLEN 12| size of ICMP address mask messages

Tewe_apvLEwNIy | 36 | minimum size of an ICMP error (advise) message
(IP+ICMP -+ BADIP =20-+8.+5 = 36)

1CHP_ADVLEN(p) | 36+ opisize | size of an ICMP error message including opisize bytes of IP

options from the invalid packet p.

OEBPS/html/graphics/0537_prog01.jpg
meric.c
550 seract setect_sras | sys.ger

I uin na
392 fdsec *in, tou, tex;
393 eckver timeval tevs
394)

395 selact (p, uap, recval)
395 sexact proc
397 stract aelect_args *usps
398 fne eretvals

399
40 tasec ibits(3, obits(3l:

401 struce timeval at

@2 int s, neoll, error = 0, tiro;

403 uline onir

08 brero((caddr_c) ibits, sizeof(itite))

405 brero((caddr_c) obits, sizeof(otital);

406 if (uap-and > F_SETSIZE)

s07 return (EIWVAL);

408 it (Lap-and > pop fd->dnfiles)

405 uap->nd = prsp_td->fdntiles; /* forgiving: slightly wrong */
410 ma = nowmany (uap ond, NFDBITS) * sizeot (famask

411 tdetine getbies(nane, x) \
i (wap->nane & \

an (exvor = copyin((cadds_t)uas-sname, (cadds_t)aibitalxl, ni)i \
a1 goto done;

415 getbics(in, 0

46 getbitaiow, 1

417 getbitsiex, 2);

a9 (e

a0 error = coprin((cadde_c) uag-st, (caddr_t) & atv,
a1 sizeotiatv)):

a2 i (error)

a3 goto done:

a2 i (tinertixtiatn)

azs error - EnwvaL;

a2 aoto done:

a2)

a2 s = splclock(

as Cimevaladd(iacy, (struce tiseval *) Stime);
430 tino = hetolsaty)

a1 ”

a2 * Avoid imaavertencly sleeping forever.
33

a4 o

s cire <1y

a6 aplx(e);

a3

a3 o

sys. generic.c

OEBPS/html/graphics/0234_tab02.jpg
° The first byte of this mbuf is the continuation of a
* word spanning between this mbuf and the last mbuf.

* s_util.c(0) is already saved when scanning previous sbuf.

o
sutilc(l) = *(char *) w
sum o= s_util.e;
w = (u_short *) ((char *) w+ 1);
mlen » me>mlen - 1
len-

) else
mlen = m->m_len;

if (len < mlen)
alen = lan;

len -= mlen;

sy

* Force to even boundary.

.

€ (& (in) W) & (mlen > 0)) (

s_util.c(o] = *(uchar) wi
W (ushort *) ((char *) w+ 1);
alen

byte_swapped « 1;

OEBPS/html/graphics/18fig34.jpg
Zv tablesi]: S et banai

Fhtrestop
o _sadrsize |0
wpresize [0
o _addadd | rn_addroute
Traddprt |t
Frih_de1a38F | rm_delroute
R dolpRe |MLt.
Frh_satchaddr | m_satch
FrhsathpRe_|NULL
v Tkeres
e

|—fme
b 33
e —
T_tlage _|acTavEIRoor
ke _zoros
[y Iwvz
Fr_dupediey _|nuLs, o
o yr—
s
) 32
ness | oxs0
[en_tiass—|acraveiroor
Tnott '+
fent
oy
AT

s
b 53
e |0
n_tlogs | acriveisoor
Tnxer r_ones
Fsask
T dvpediey

radix node()
£nh_nodes (0]
eimost o)

raatx node)

£nih_nodes (1]

Gnrnal node)
topofree

raatx nods)
£ _nodes (2]
gmost ea)

OEBPS/html/graphics/0234_tab01.jpg
) in_cksum.c.
(0] + 1_util.s(1); ADDCARRY (sum

42 #dotine ADDCARRY (x) (x > 65535 7 x —= 65535
43 #define REDUCE (1_util.l = sum; sum = 1_util.

44 ine
45 in_cksun(s, len)

46 struct sbut

@it len:

s

49 ushort w;

50 ant C sum= o0

51 inc mien=o;

52 int byt swapped = 0;
53 unten (

s char etz

s5 u_short

56) sueils

57 union (

58 u_short s(2];

59 long 1

60) Lueil

61 for (; m &k len m = m>mnext) (
3 L€ (m>m_len == 0)

6 ‘cont inu

6 = mod(m, u_short *)
65 i€ (mlen == -1) (

Py 7o

OEBPS/html/graphics/t0183-02.jpg
Variable

Datatype

Description

ip_ifmatrix

int(10]

two-dimensional array to count packets.
routed between any two interfaces

OEBPS/html/graphics/t0346-01.jpg
Command _ Argument Function Description

TAMULTICAST_IF | truct inadds | 1p_ctloutput | selectdefautinterface for ougoing
mulicasts

re_muricasTrTs | uchar ip_ctloutput | select deault TTL. for outgoing.
mulcass

P MULTICAST_L00P | v_char tp_ct loutput | enabie o disble loopback of outging
mulcass

1_apo_uespessure | sceue fp_neeq | ip_ctloucput | joina mulicastgroup.

16 DROP_NEMBERSHIP

ip_ot Loutput:

Teave o mulicast group

OEBPS/html/graphics/t0183-01.jpg
Variable Datatype Description

Gomatns Struct dorain + | Timked st of domains

inctaonain | struct domain | domain structurefor the Internet protocols

inetsw struct protose!) | armay of protosw structures or the Intemet protocols
max_Tinkhdr | int See Figure 717

max_protohdr | int sce Figure 717

max_hd int sce Figure 717

mex_datalen | int see Figure 717

OEBPS/html/graphics/t0342-01.jpg
Command Argument Function Description
STOCADDMULTI | struct ifreq + | ifioct] | add mullicest address o reception st
ST0CDELMULTI | struct ifreq * | ifioctl | delete multicast address from reception list

OEBPS/html/graphics/0559_prog01.jpg
§56 sogetopt (s0, level, optrane, 7D
857 seruce socket “so;
856 int

wipe_socket.c

Level, optnane;

859 atruce mout *wp:

860 (
861

862
563
as
865
066
867
as
869
70

an

916
913
920
021
922
923
92¢
925)

struce nbut n;

i (lovel 1= soL_sockem) (
£ (s0->s0_proto 4k so-»s0_proto->pr_ctloutput) [
return ((+s0->s0_proto—spr_ctloutput)
(PRCO_GETOPT, s0, level. optname. mo1):
) eree
eturn (ENOPROTOOPT)
) etse
m = m_get (WAIT, WT_S00PS);:
mo>m_len = sizeot (int)

switch (optrane) (

7 socket: option processing =/

dotauie:
(void) n_eroeim;
Feturn ENOPROTOOPT) ;

)

mp « m

roturn (01

wipe_socket.c

OEBPS/html/graphics/t0185-02.jpg
pr_flags

Description

PR_ATOMIC
PR_ADDR
PR_CONNREQUIRED
PR_WANTRCVD
PR_RIGHTS

ach process request maps to a single protocol request
protocol passes addresses with each datagram
protocol is connection oriented

notify protocol when a process receives data

protocol supports access rights

OEBPS/html/graphics/25fig12.jpg
1200 ticks

150 ticks

0 minutes)

oty

T

!

enter FIN_WAIT 2 state;
FIN_WAIT_2 tmer st to
1200 t5_raxidie)
¢ 141

t T

1 '

FIN.WAT 2 timer FIN_WAIT_2 imer expires;
expines; Lo = I C_idie = 19BIS0;
FINWAIT 2 timersettotep_close()

190 (tap. keapineva)

OEBPS/html/graphics/t0338-03.jpg
ipstat member

Description

ips_forward
ips_cant forward
ips_noroute

#packets forwarded by this system

#packets that cannot be forwarded—system is not a router

#packets that cannot be forwarded because a route is not
available

OEBPS/html/graphics/t0185-01.jpg
pr_type

Protocol semantics Internet protocols
SOCK_STREAN | reliable bidirectional byte-stream service TCP

SOCK_DGRAN best-effort transport-level datagram service | UDP

SocK_RAW besteffort network-level datagram service | ICMP, IGME, raw IP
SoCK_RDN reliable datagram service (not implemented) | n/a

SOCK_SEQPACKET

reliable bidirectional record stream service

n/a

OEBPS/html/graphics/t0338-02.jpg
Variable Datatype Description
Sther_ipmulticast_nin | u_char () minimum Elhernet multcas address reserved for P
ether_ipmulticast_pax | u_char () maximum Bthernet multicast addres eserved fo IP

i B

s

pointer to socket created by multicast routing daemon

OEBPS/html/graphics/t0338-01.jpg
File Description

netinet/if_ether.h | Ethernetmulticasting structure and macro definitions

netinet/in.h more Internet multicast structures
netinet/in_var.h Internet multicast structure and macro definitions
netinet/ip_var.h IP multicast structures.

net/if_ethersubr.c Ethernet multicast functions

netinet/in.c group membership functions

netinet/ip_input.c | input multicast processing
netinet/ip_output.c | output multicast processing

OEBPS/html/graphics/0176_tab01.jpg
614 leioctl (ifp, cad, data)
615 struct ifnet *ifp:

616 int

617 caddr_t data;

618 (
619
620
621
622

623
624
625
626
627
628
629
630
63
632
633
63
635
636
637

72
673
7
75
676
617

cna

struct ifaddr *ifa . (struct ifaddr *) data.
struct le_softc *le = &le_softc(itp->if_unit]
struct leregl *lerl « le->sc_r:

int s . splisp(), error »

switeh (cnd) (
case SIOCSIPADDR:
itp->it_flags |- IFF_UP:
switeh (ifa->ifa_addi->sa_tamily) (
case AP_INET:
leinit(ifp->if_unit): /* before arpehohas */
((struct arpcom *) ifp)->ac_ipaddr »
IA_SINGi(a) ->5in_addr:
arpuhohas ((struct arpcos *) ifp, &IASIN(ifa)->sin_addr);
break;
detaul:
leinit (ip->if_unit);
break;

/* SIOCSIFFLAGS command (Figure 4.31) */.
/* SIOCADDMULTI and SIOCOELMULTI commands (Figure 12.31) */

dotault:
error « EINVAL:

)

splx(s):

return (error):

if lec

OEBPS/html/graphics/t0337-01.jpg
Group Description Net/3 constant
224000 | reserved INADDR_UNSPEC_GROUP
224001 | allsystems on this subet | INADDR_ALLHOSTS_GROUP
224002 | all routers on this subnet
224003 | unassigned
224004 | DVMRP routers
22400255 | unassigned INADDR_MAX_LOCAL_GROUP
224011 | NTP Network Time Protocol
224012 | SGI-Dogfight

OEBPS/html/graphics/t0333-01.jpg
sysctl constant

Net/3 variable

Description

TCMPCTL_MASKREPL

cmpmaskrepl

‘Should system respond to ICMP.
address mask requests?

OEBPS/html/graphics/02fig25.jpg
SeuvtelL Lo

fm.nu»h e
e D s
e Y
e — L
o
ot —
[m_ext oxt_size| 2048
e
T)
e
V- e
e e S
| | [T 0e o
| | R o
T S
P .
T | mhart e, T
e

OEBPS/html/graphics/t0327-01.jpg
Function

Summary

Tcmp_input

Replace an all-0s source address in address mask requests
with the broadcast or destination address of the
receiving interface

Temp_error

Discard error messages caused by datagrams sent as link-
level broadcasts or multicasts. Should discard (but
does not) messages caused by datagrams sent to IP
broadcast or multicast addresses.

Temp_refloct

Discard messages instead of returning them (o a multicast or
experimental address.

Convert nonunicast destinations to the address of the
receiving interface, which makes the destination
address a valid source address for the return message.

Swap the source and destination addresses.

Tp_output

'Discards outgoing broadcasts at the request of ICMP G.c.,
discards errors generated by packets sent to a broadcast
address)

OEBPS/html/graphics/0683_prog02.jpg
61 la
& for (p - rauch.

iraveb; rp = rp-reb_nexc) (

& S (rp->rcb proto.sp_tanily i+ proto->sp_fanily)
6 cont inuor

& §€ (rp->rch_proto. sp_protocol ki

6 £p->xeb_proto.sp_protocol 1= proto->sp_protocol)
& continuer

6 ”

& + o asaune the lower level routines have

0 * placed the address in a canonical format

7 * suitable for a structure coparison.

72 .

7 * tote cthat if the lengths are not the sase

7 * the comparison will fail st the first byte.
75 o

76 tdetine equalial, a2) \
77 (bemp((caddz_t) (al), (caddr_c) (a2), al->sa_len) == 0)

7 $€ (rp->rcb_laddr 4k Joqual (rp->reb_laddr, dst))
79 cont inue:

80 L€ (rpe>rch_faddr &6 tequal (rp->reb_faddr, se))
8 cont i

82 S€ tase) (

5 struct mat *ns

5 S (n = n_copy(m, 0, (inc) H.COPYALL)) {

i€ (sbappendaddy (kLast ->s0_rev, sre,
n. (struct mbot %) 0) == 0)
/+ should notity about lost packet +/

a_treentn
otse |
sorwakeup (last);
Socketass:
)
9)
9)
9 last = rp-sreb_socket:
%
97 ir (lasn) (
9 it (sbappendaddr (&lase->s0_rov, sre,
99 . (struct mbut 1 0) we 0
100 n_treemim ;
101 otse (
102 sorakeup (last) ;
103 socketa:
100)
05) else
106 _treentm);

OEBPS/html/graphics/0683_prog01.jpg
51 void
52 raw_input (n0, proto, src, dst)
53 struct mbut +n0;

54 struct sockproto *proto;

55 struct sockadds *src, *dat;
56 (

57 struct rawch *rp

58 struct mbat *m - 80,

59 int sockets 0,

W aisidt dodee. TiEbey

OEBPS/html/page-template.xpgt

	

	

	
	

	

	
	

OEBPS/html/graphics/1108equ01.jpg
260,484 7"

OEBPS/html/graphics/0646_prog01.jpg
359
w00
w01
a0
408
405
406
s07
408

409
a0
a1
a2

a
e
as
as

awr
am
a9

20
a1
a2
a2
a2
azs
a2
a7
a2

a2
430
a3
Py
a3
a4
a5
436
Py
s
a9
400
s
@
s
s

static struct mbut +
re_nsgl (type, rtinfo)
int type:
strice e addrinto wtinto
¢
struct rc_msghdr *rt;
struct mbat *
e i
struct sockaddr
it len, dien

= _gethds (4_IONTWALT, NT_DATA);
it e o)

return ()7
switeh (type) (

case RTW_DELADDE:
case RTWNEWADDE:
len = sizeot(struct ifamsghir):
brea

case RTW_tFINFO:
len = sizeof(struct if_meghdr);
br

aetavie:
len = sizeot(struct re_msghdr);

)

i€ (len > waEw
panic(*xt_negl®):

s->n_pkthdr.1an = n->m_len = 1

Reom_pkthds eVt = 0

rtn = acod(m, struct rt_msghdr

bzero((caddz) rtm, len);

for (4= 0 & < RIAKIOX; 1eh) (
£ ((sa = reinfoosrti_infoli]) == WILL)
conttnues
stinfo->rtiaddrs 1= (1 << 117
dlen « ROUNTUP (sa->sa_len) ;
F_copyback(n, len, dlen, (cadr_t) sa);
lon <= dlens

)
i€ (moompkendr.den 1x len) (
m_tream(m ;
rotum (NULL) 5
)
rtn->rtamsglen = lens
etm srvmversion - MWLVERSION;
sta-szta_type = type:
rotuen (=)
)

rtsocke

steocke

OEBPS/html/graphics/557equ01.jpg
SHRT_MAX tv_usec _ SHRT_MAX tv_usec

tv_sec> —— T~ lickxhz - hz 1,000,000

OEBPS/html/graphics/556equ01.jpg
tv_usec
tv_secxhz + ————— > SHRT_MAX
tick

OEBPS/html/graphics/23fig02.jpg
sysetl socket
system call 2 rccive buer

o D
GeranaD> ComtniniD

D > G

Toiner

Ppr—r

various

Fio
)

PRU_SEND.

>

OEBPS/html/graphics/0962_prog01.jpg
ER
8
149
350
351
152
153
354
355
356
357
358
359
360
361
362
363
364
365
366

367
368
263
70
n
a2
s
374
5

T

o
it
(:

Header prediction: check for the two comon cases
Of & uni-directional data xfer. If the packet has

Po control flags, is in-sequence, the window didn't
change and we're not retransmitting, it's a

candidate. 1f the length Lo zexo and the ack roved
forward, we're the sender side of the xfer. Just
£roe the data acked & wake any higher-level proces:
that was blocked waiting for space. 1t the length

i non-zero and the ack dida’t move, we're the
roceiver side. If ve're gerting packets in order

(che reassenbly queue is empty), add the data to

the socket bufer and note chat we need 4 delayed ack.

(€p->t_state - TCPS_ESTABLISHED &
§flagy & (TH.SYN | TH_FIN | TH_RST | TH_URG | THACK))
(its_present |1 TSTMP_GEQ(ts_val, tp-sis_recent]) b
£i->Ti_seq == tp-srov_mxt 46

Ciwin & tiwin == tp->ond_nd 6&

tp-ssnd_nxt s tp->end_max) (

P

bep_input.c

THACK 46

* IE last ACK falls within this segment’s sequence murbers,

o

record the tinestamp.

£ (to_present 4& SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) ik

SEQ_LT (tp->1ast _ack_sent, ci->tiseq + ti->ti_lem)
tp->ts_recent_age = tep_how;
tpostarecent - ta_valr

‘

tep_input.c

OEBPS/html/graphics/01fig10.jpg
mbuf {}

m_next NULL
m_nextpkt NULL
m_len 54
tm_data

m_type MT_DATA
m_flags M_PKTHDR
m_pkthdr.len 54

m_pkthdr.rcvif

pr to interface structure

16 bytes allocated
(but not used)

20-byte IP header
8-byte UDP header
26 bytes of data

OEBPS/html/graphics/18fig46.jpg
Eadix pode!]

11

o T
5
= o
e
e acorvs wm s n
A 3 LD s)
T vlen - off=9
e | etrss

eeokdter I o] —

7

matart

OEBPS/html/graphics/18fig37.jpg
ZSix podat).

Fen_mitse
o
Gy o5
e] P——
T tiogs acrve (™%
noft i

Frn_tere

Tn_right _Z
rastx_node() - radix_sode() for 127001

ok tae

X

) 57

neaik o sockaddr._tn

o Clagn—|acrive 7o 0.0

ke {——o[W[Z] 0 Treoofoojoe] 0]
CTrR—

e dupediey

radix node()

sk Lot
g

b

v baagk
o_fags
ey
ek
n_dupodkey

r [EAROA
| —o{T] 2] 0 ¢ oo o0toeT T]

rastx mas)
mott

o unuied
T tTags
ek ot

OEBPS/html/graphics/862equ01.jpg
+t_rttvar

OEBPS/html/graphics/t0828-01.jpg
t_state value Description tep_outflags(]
Tcps_cLoseD 0 [dosed THLRST | THACK
TCps_LISTEN 1| lisening for connection (passive open) 0

Teps_su_sEnT 2| have sent SYN Gactive open) s
7eps_SO_RECETVED | 3| have sentand received SYN;awaiting ACK | Ti_sv | TH_ACK
crs_ESTABLISHED | 4| established (data ransfer) miack
cps_cLose_wAIT | 5| received FIN, waitng for application close T Ack
TCPS_FIN_WAIT 6| have closed, sent FIN; awaiting ACK and FIN. | mi_rzn | mi_Ack.
TCPS_CLOSING 7| simultaneous close awaiting ACK THEIN | THACK
TCPS_LAST_ACK 8| received FIN have closed; awaiting ACK TN | TH_ACK
TCPS_FIN_WAIT_Z 9| have cosed; awaiting FIN TH_ACK
TCPS_TINE_WAIT 10 | 2MSL wait state after active close TH_ACK

OEBPS/html/graphics/19fig10.jpg
. raaix sade)
e G
radix notety
iy
\e{is[20 Trofosior] o {t[#[o Treloofsor] @
sooxadar_ia Cockaiar_in
reoncry()
. P—
P G
rasix notet)
i
sa_tamtty
5 al_type
Etnemet
022133 | —

RO 5

LU 1]

]

TeTOT4 o [oeoozeeelea]

0

o Ty

g, Y

OEBPS/html/graphics/t0830-01.jpg
Value

Description

Tength of IP header + options in 32-bit words (= 28 bytes)
Tength of IP datagram in bytes (20+8+20+12+3)

length of TCP header + options in 32-bit words (= 32 bytes)
sequence number of first byte of data

o w|lewd

#bytes of TCP data: 1p_Len — (ip_hlx4) —(ti_off x4
sequence number of last byte of data: ti_seq+ ti_len—1

OEBPS/html/graphics/t0832-01.jpg
x || binary | two’s complement | 0-x | 1-x | 2-x
o[o000 000 000 | o001 | 010
1l oo1 111 111 | 000 | 001
2| o0 110 110 [111 | o000
3 o1 101 101 | 120 [111
4| 100 100 100 [101 | 110
5| 101 011 011 | 100 | 101
6| 110 010 o010 [011 | 100
7|21 001 001 | 010 [011

OEBPS/html/graphics/18fig11.jpg

OEBPS/html/graphics/14fig29.jpg
mreeable(]

el

L 1Y

e oriain

e parent

metcable(s)
axtranialon)

et next

e _next

mre0)

ey

e

OEBPS/html/graphics/t0850-01.jpg
time in

probet | pioredsy | E-idle

1 0 14399
2 75 14549
3 150 14699
4 25 14849
5 300 14999
6 375 15149
7 150 15299
8 525 15449
9 600 15599

675 15749

OEBPS/html/graphics/t0851-01.jpg
e | Unis ["Bt [e Description
TR) - oot KT st 55
T T] 5 smoothod mesn devition stimstor s
o |t || comen o ot K10
PR z T i vl for e .
TR e b tog. DeshetE (] sray GepeoerTal bedam)

OEBPS/html/graphics/t0852-01.jpg
Constant Value Description
TCP_RTT_SCALE 8 | multiplier: t_srtt =sritx8)
TCP_RTT_SHIFT 3 | shift t_srtt=st<<3
TCP_RTTVAR_SCALE | 4 | multiplier: t_rttvar = rffoar x4
TCP_RTTVAR_SHIFT | 2 | shift t_rttvar = ritoar <<2

OEBPS/html/graphics/t0838-01.jpg
Constant Value Description
TCPT_REXMT 0| retransmission timer
TCPT_PERSIST | 1 | persist timer
TCPT_KEEP 2| keepalive timer o connection-establishment timer
TCPT_2MSL 3 | 2MSL timer or FIN_WAIT_2 timer

OEBPS/html/graphics/t0838-02.jpg
estab,

rexmit

delayed
ACK

persist

eep- [FIN_-

alive | WAIT.2

2msL

Tt mex (TCPT_RERNT]
Cx tnex (TCPr_PERSIST)
¢ imex [TCPT_KEER)
tZciner [TCPT_2MsL]
t_flags & TF_DELACK

Cop_reepidle @M
top_keepintvl (75sec)
top_paxidle (10min)

2+ TorTsL (@)
TCPTV_KEEP_TNIT (75 sed)

OEBPS/html/graphics/t0839-01.jpg
Constant o | e Description,
TCPTVNEL & |3 | ML, maximum segment fetime

TePT_NIN 2 T minimum value ofrtransmmision fimer
TCPrV_REXYTHAX 128 | 61 | maximum value of retransmission timer

TCPTV_ PERSHIN 0 5[minimum value of persist fimer

repry_persuax 120 |60 | maximum value of perist timer

TCPr_REEr_NiT | 150 |75 | connection-cstablishment timer value

cPr_kgsr_ioi | 1400 | 7200 | idletime for connection befor firt probe (2 hours)
2cerv_ksseivrvi | 150 |75 | time between probes when no response.

TCPTV_ SRITBASE 0 ‘Special value to denote no messurements yetfor connecion
rcpm_sarToFLT 6 3 | default RT when o measurements yet for connection.

OEBPS/html/graphics/25fig11.jpg
119 clock ticks x 500 ms/tick = 59.5 seconds

wous 7 32 1 0
O A (ol O
L — N R E
) — 1]
somewhere in here. M owina ()
connection enters pertick all
TIME_WAIT state, 2MSL tep_slomtino()
timer set for 60 seconds “all
(120 cks) in the uture tep_usrreq(BRU_SLOTIHO)
alls
top_tiners (TcPT_2M5L)
alls

P X

OEBPS/html/graphics/29fig09.jpg
12 512 513 54

4

snd_una snd_nxt.
aur_ax

1024 1025

‘onc sogment ‘onc segment

OEBPS/html/graphics/t0839-02.jpg
Constant Value Description

TCP_LINGERTINE | 120 | maximum fseconds for SO_LINGER socket option
TCPMAXRXTSHIFT | 12 | maximum fretransmissions waiting for an ACK
TCPTV_KEEPCNT 8 | maximum #keepalive probes when no response received

OEBPS/html/graphics/0135_prog01.jpg
527 voia
526 slinput(c. tp)

529 ine

530 struct tey

531 (
532
533
53¢
535
536

537
538
539
540
sa1
a2
543
544
545
546

a1
S48

549
550
551
552

struct sl_softc *sc.
sgruct mbut

it lens
e s
u_char chdr (CHOR_LEN) ;

th_nine.
sc = (struct sl_softc *) tp->e_sc;
i€ (sc == NULL)
return;
L€ (c & TTY_ERRORMASK || ((tp->t_state & TS_CARR ON) == 0 &t
(tp->t_cflag & CLOCAL) == 0)) (
sc->sc_tlags |= SC_ERROR;
return;

)
© &= TTY_CHARMASK;

+esco>sc_it.if_ibytes:

switeh (o) (

Case TRANS_FRAME_ESCAPE:
if (sc->sc_escape)
© = PRAME_ESCAPE;
break:

ifsle

OEBPS/html/graphics/0135_prog02.jpg
553 case TRANS_FRAME_END:

554 if (sc->sc_vscape)
555 © FRAME_END;
556 break;

557 case FRAME_ESCAPE:
558 sc->sc_escape = 1;
5859 return;

560 case FRAME_END:

)
it (sc->scmp < sc->sc_ep) (
->8C_mpre = €

sc->ac_escape = 0;
return;

)
/% can’t put lower; would miss an extra frame */
sc->8c_flags |= SC_ERROR:

648 error:

645 sc->sc_if.if_ierrorses;

646 newpack:

647 sc->sc_np = 8c->8C_Duf = SC->sc_ep - SLMAX:
648

ifsle

OEBPS/html/graphics/1038_prog01.jpg
usrreq.c.
45 int .

46 cep_usrreqiso, zeq, m, nam, control)

47 ateuer. socket *s07

48 ine req

48 struct mbuf *m, *nam, *control;

500

51 struct inpeb tinp;

52 struer tepch stpr

5 e s

56 tn error = 0;

55 mt ostate,

56 1€ (req == PRUCONTROL]

57 retum (in_control (s0, (int) m, (caddr_t) nam,
56 (struct itnet) control));
5 if (control &k control-m_len) (

& m_treem(control)

@ sy

& m_treen(m)

& return (BINVAL)

s)

6 o= splnet(s

6 inp = sotoinpebiso):

P

68 When a fCP s attached to a socket, then thera will ba
6 *a (struct inpch) pointed at by the socket. and this
70+ structure will point at a subsidary (struct tcpeb)
e

72 if (inp == 0 G req t= PRUATTACH) (

7 Splx(s)

2 caturn (BINVAL) 1 1o

s

%6 it G |

i tp » intotepch (inp

7 /% wAT 1 T2 15 07 +/

7 ostate « tp->t_stat

8) else

0 ostate = 0:

2 switen (rew) (

276 detaule

m panic(*tep_usrrea®)

e

215 it (tp G (s0->s0_options k 50_DEBUG))

280 tep_trace (TA_USER, ostate, tp, (struct topiphdr *) 0, red
00 spixia;

262 retumn (erzor):

263)

T

OEBPS/html/graphics/14fig12.jpg
| ——
arbitrary collection of unicast
1P routers that implement LSRR

»
datagram] hardware multcast P unicast hardware multcast
o LSRR LSRR = (TS G} noLSRR

OEBPS/html/graphics/1071_prog01.jpg
T ataric int
222 bot_serit(d, 1tx)
723 struct bpt d va;

724 struct ifraq *ifrs

725 ¢
726
721
8

29
730
71
2
7
74
75
76
m
78
79
0
71
%2
73
7
75
746
I
8
%9
750
751

752
75
754
255
756
%1
258
259
60
760
762
763
768
765
766
761
768
769
70
m
m
2]
774
75

776
m
8
779
780
781
2
783
788)

Btruct bpt_it *bp;

char repr
int unit, s, error
P

* Separate scring into name part and unit musber. Put a null
* byt at the ond of the nam part, and compute the mumber.

+ If the a unit nusbor 1o unspecified, the default is 0,
* an initialized above. KKK This should be comson code.
-

unit = 0

€p - itrosite name:

Cplatzeot (ite->itr_nase) - 1) = "\0%s

while (scpes) (

i (vcp = 10" ta tep
unit = cp - +0%;
fepra = 0%y
while (vcp)

nit - 10+ unit + sepee -
break;

e

)

I

* Look through attached interfaces for tho naned one.

-

for (bp = bpt_itissc; bp 1= 0i bp = bp-sbifnext) (
struct ifnet *ifp = bp->bif_ifp:

S€ (ifp == 0 11 unit 1o ifp-siunit

11 stecnp(itp->it_nase, ife->itr_nase) 1= 0)
P
* We founa the requested interface.
*If 1t's not up, return an error.
* Allocate the packet butfers it we need co.
© If warre already attached to requested interface,
* juac £lush the butfor.
-
S ((3€p->16_rlags & 1FPU) == 0)

rotuen (BXETOOM) 1
A (dbdabut o 0) (

error - bpt_allocuta(d);

it (essor 1= 0)

return (exron);

)
o « sprimp0)1
§E (bp 1= dosbabin) (

resec_ata;
apLx(a);
return ()1

)

7% ot found, +/

recum (BNKIO)

OEBPS/html/graphics/19fig22.jpg
ES_MAEIREet)
[Feiaadrs

o

sockaddr_in()

[Fei_nfolwmm ot 3

—

estnation TP ddress thatcaused redivet

[FEi_ino (FTA%_GRTEWAY

eI o (RToC e UL socxasdr_in()
Lo (FTAT_ GEWASKI| NULL TP address o new gateway o wse]
[FEimfolRrRCTFRT [wuis

Ty sockadar_int)

L in o (RTAT_AUTHOR] |———+f TP addressof roter tha genersted redit]

(£t i info RTAX_BRD]

e

OEBPS/html/graphics/23fig14.jpg
GaoLoutput

OEBPS/html/graphics/17fig15.jpg
Taw_usrreq

OEBPS/html/graphics/28fig32.jpg
SN
receive SYN: 153 150 155 state = SYN_RCVD

OEBPS/html/graphics/1075_prog01.jpg
s
a7
948
949
950
951
952
953
954
955
956
957
ase
959
960
961
962
963
964

965
966
967
968
969
970
om
972
973
974
975
976
977
978
919
980
981
952
983
984
985
986
967
988
989
a0
991
992
993
994
995
996
597
598

ratic void
catchpacket (d, pkt, pktlen, snaplen, cpfn)
struct bpt_d v

u_char *pE;
uint pktlen, snaple
void (*cpfn) {const void *, void *, u_int);
¢

struct bpt_hdr *hp;
int totlen, curlen;

int Mdrlen - d--bd_bif-sbif_hdrlen;

* Figure out how many byces to move, If the packet is
+ greater or equal to the snapshot length, tranafer that
* much. Otherwise, transter the whole packet (unless
* wo hit the butfer size Linit).
.
totlen = harlen + min(snaplen, pktlen);
i (totlen > d->bd_butsize)
totlen - d-sba_butsize;

* Round up the end of the previous packet to the next longword.
.
curlen « BPF_WORDALIGN(d-bd_olen) 1
i€ (curlen + totlen » d-obd_butsize) (
s
* This packet will overtlow the storage buffer.
* Rotate the buffers 1t we can, then akeup any
* pending reads.
-/
16 (@-sba_ttut == 0) (
7
* Mo havent comploted the previous read yet,
* 50 drop the packet.
)
++d->bd_deount
)
ROTATE_BUFFERS(a) 1
bpt_vakeup (d)
curlen = 0;
) elae if (d->bd_immediate)
b3
* Tmediate mode s set. A packet arrived so any
* xcads should be woken up.
“
bof_wakeup (@) ;

/”
* Append the bpt header.

-

hp + (struct bpf_hde *) (d->bd_sbut + curlen);
microtine (shp->bh_tatanp) ;

hp->bh_datalen - pktier

np-sbh_hdrlen = hrlen;

OEBPS/html/graphics/18fig33.jpg
e kaylen

tes. max_keylen bytes

o0 PR N YO 5 W (IR NP

! t

S i g vy ke

OEBPS/html/graphics/08fig07.jpg
o
T A
=
i —— -
link | 1P |upp [*PPlcation|
(o o [] [aa [
dta .

OEBPS/html/graphics/t0866-01.jpg
i RIT [achl | ot | tosree [e_recvar]c_exten]
e | | % | tmer | aonm | ang | | s | iy [0
w | e = o 7
0365 omacc| ot | w2 | . [4 o
oxs | ack

o [-

125 sasy | ot | s |2 | o | 4 s
30| B

120 | sisy -

2 iy | o | ww | o | w | 4 .
22 | Twaw B

27 | et

2 | 250

3 s | o | o |3 | w | s s
31 | s B

315 | s

37 e

375 | awmas

377 | s

a7 soms

a7 | sasen

370 | s

ot | s i WS o T
1264 | saases w 6 [3| o» 2
2ttes | omaases a w3 | w 3
s2tet | s o ol s | ® i
et | s o o [s [om H
10621 | rsases o o | s | m i
27am | omsass o o s | m 7
20754 sk

270w | G -

20005 | as7en

prey sosw | o | w0 |3 | a | 9
Tiwss | TR -

218 | 7om1819n

219209 wne

210209 | swsass

219700 s |oa | o | 2| = | 7 5
W0 | G059 -

0 s

20103 | sawrsms

2005 | sz

20106 | 12010755

m swow | ot | wn |3 | = | 5
T | RS -

Z130 koms

2130 | msawrr

z ko

2130 | w7

e sckio7sy

mes sones | o | wu []| = | s i

OEBPS/html/graphics/t0910-01.jpg
Arguments

5 o ack seq flags
generate RST without ACK | to tn o Tiack | mareT
Tiseq ¢ THRST 1
generate RSTWith ACK | tp e w [t o e
“generate keepalive 53 NULL | rcv_nxt | snd_una 0

OEBPS/html/graphics/t0916-01.jpg
Function errmo Description

Tep_inpur | ENOR0FS SN arives on lsening socket, but kereloutof s for
_template.

Cop_input | BCOUREFUSED | FST eceived in renporae 0 STN.

tep_input_| BCOWRESET | RST rocived o eising connetion

Cep_ciners | ETINEDOUT | Retansmision imer hasexpired 13 s i row with o ACK Fom
other en (Figure 2525)

Cep_clners | EFINEDOUT | Comnecion esablishment mer hasexpired (Fgore 35 15), or
hocpalive timer has expired with no response o ine consecutive
probes (Fgure 25.17)

op usrreq | BCOWABORTED | PRUABORE request

tepitreq |0 “Socket closed and 56_LNGER socket option set with linger ime of 0.

OEBPS/html/graphics/t0917-01.jpg
rt_metrics | savedby | usedby | route(®)
‘member tep_close? | top_mss? | modifier
rmx_expire -expire
rmx_hopcount ~hopcount
mx_mtu . -meu
rmx_recvpipe . -recvpipe
mx_ret . . -ree
rmx_rttvar . -rttvar
‘rmx_sendpipe . -sendpipe
rmx_ssthresh . . -ssthresh

OEBPS/html/graphics/02fig23.jpg
head of list

next > next > next

prev e prev_ e prev

OEBPS/html/graphics/t1031-01.jpg
L ‘Structure
B | pecrpion | S Meaning f g = 1
i oD

T | Waitoton | 510 | Tty | Sy oo
b | T it i

§ |Gt inose | et eequhe

0 | T egmens | 55 | S

| Term el sttt

e e

OEBPS/html/graphics/t1033-01.jpg
Rlogin FIP
frame type input | output || input | output
1 1 1 5 5
'UNCOMPRESSED_TCP 3 F 2 3
COMPRESSED_TCP
“SA special case 75 75 0 0
*S special case 2 1 1| a5
nonspecial -4 93 337 13
Total 13 172 345 346

OEBPS/html/graphics/0687_prog01.jpg
T e

120 raw_usreoaisc

121 struct socket "o
122 ine rear

123 struct abat

124 ¢
125
126
1

128
129
120
131
12
133
16
135
136
17
138

262
263
268
265
267
268
269)

*nas, sconteol;

struct rawch *rp + sotoraw!
it error = 0
e lems

S8 (req =x PRU_CONTROL)
retumm (BOPMOTSUPP) ;

46 (control Lo conerod a1
error = BOPOTSUPR;
goto release;

)

it (p e 0) (
orror = EINALY
goto releaser

)
switen (rea) (

detauie:
panic(*raw_usrreas) s

)
el
e e i
A treeaa) s
return (error);

coq, m, nan, control)

bisors

om

7+ oviten cases */

row_uesrog.c

OEBPS/html/graphics/t0942-01.jpg
td_act Description Reference
TA_DROP | from top_input, when input segment s dropped Figure 2927
TALINPUT | after input processing complete, before call to tep_output. | Figure 29.26
7A_ouTeuT | before calling ip_output to send segment Figure 2632
TA_USER | from tcp_usrreq, after processing PRU_Yxx request Figure 30.1

OEBPS/html/graphics/0309_tab01.jpg
3
12
133
14

15
136
17
18
139
140
101
142
142
144
145
145
107

148
149
150
151
152
153
154
155
156
157
158
159

p_icmp.c
static struct sockaddr_in icepnre « (sizeof (scruet sockedde_in), AP INEL 11
Static struct sockaddr_in icepast | (siseof (struct sockeddenint . AFCINET)}
Satic truct sockaddr_in icmba = (Sizeol (oiruct Socrodde.inys ARLINEF 1}
SEruct sockadarin Lesmask + {8, 0

void
icep_input im, hlen)
struce mbuf

int nlen;
¢

struct icmp *icp;

struct ip *ip - mtod(m, struct ip *1;

ot icaplen - ip-sip_ten:

fne iy

struct in_ifadds *ia;

vold (*ctlfune) (int, scruct sockaddr *, struct ip *);

int coder

extern u_char ip_protox():

o
* Locate icrp structure in mouf, and check
* that not corrupted and of at ieast mininum length.
o
it (icmplen < 1oMp_wMrvew) |

scmpstat . icps_tooshort s

goto freeit;

'
i hlen + minicmplen, 1CMP_ADYLENMIN);
it tn-em_len < i 4k (m = m_pulluptm, i) =« 0) (
Scmpstat . icps_tooshort 1s:
vetuen:

OEBPS/html/graphics/t0943-01.jpg
0.0

0.362719 (0.3627)

0.360316 (0.0016)
0.415859 (0.0515)

bsdi.1025 > vangogh.discard:

vangogh.discard > badi.1025:

b5di. 1025 > vangogh.discard:
bsdi.1025 > vangogh.discard:

S 20288001:20288001(0)
win 4096 <nss 512>

s 3202722617:32027228170)
ack 20268002 win 8192
“nss 512>

ack 1 win 4096
1:513(512) ack 1 win 4096

OEBPS/html/graphics/0309_tab02.jpg
160
161
162
163
168
165
166
167
168
169
170

m
1m2
13
170
175

3w
i)
39
320
321
322

323
324
325)

+

ip - modim, struct ip)

A->n_len = hlen
a-sn_data - hlen:
icp
it tin_cksun(n,

Rtodin, struct icap 1
crplen)) (

icrpstat..icps_checksumsr:

goto freeits
)

A-sm_len o hlens
n->m_data = hlen

Sf (icp-aicmp_type > ICHE_MAKTYPE)

goto raw;

icnpstat. icps_innist licp-

cmp_typel

code = icp->icrp_codes
switeh (icp-ricmp_type) (

detauie:
break;:
)
rip_input (m) ;
return:

ereei:
m_treem(m ;

/% 1cHP message processing */

ip_icmp.c

OEBPS/html/graphics/t0945-01.jpg
953738

953739

954103

954103

954153

SYN_SENT: output 20288001:20288005(4) @0 (win=4096)
<SYN> -> SYN_SENT

rev_pxt 0, rev_nd 0

snd_una 20288001, snd_nxt 20288002, snd_max 20288002
snd_wll 0, snd_wl2 0, snd_wnd O

RENMT=12 (t_rxtshife=0), KEEP=150

t_rtes1, teree=0, t_rtvars24, t_rxtcurs12

CLOSED: usex CONNECT -> SYN_SENT
rev_nxt 0, revynd 0

snd_una 20288001, snd_nxt 20288002, snd_max 20288002
snd_wll 0, snd_wl2 0, snd_wnd O

REXWT-12 (t_rxtshift=0), KEEP-150

treesl, £ srees0,

SYN_SENT: input 3202722817:3202722817(0) 920288002 (win=8192)
<SYN,ACK> -> ESTABLISHED

rcv_nxt 3202722818, rov_wnd 4096

snd_una 20288002, snd_nxc 20288002, snd_max 20288002

snd_wll 3202722818, snd_wi2 20288002, snd_wnd 8152
KEEP-14400
t_rte=o, t_srt:

6, torttvarsd, t_extow

ESTABLISHED: output 20288002:20288002(0) 83202722818 (win=4096)
<ACK> -> ESTABLISHED

rev_nxe 3202722818, rev_und 4096

snd_una 20288002, snd_nxt 20288002, snd_max 20288002

snd_wll 3202722818, snd_wl2 20288002, snd_wnd 8152

KEEP=14400

t_rte=0, c_srt

6, t_rttvarsd, trxeow

ESTABLISHED: output 20288002:20288514(512) 83202722818 (wil
<ACK> -> ESTABLISHED

rev_nxt 3202722818, rev_wnd 4096

snd_una 20288002, snd_nxt 20288514, snd_max 20288514
snd_wll 3202722818, snd_wl2 20288002, snd_wnd 8192
REXMT=6 (t_rxtshift=0), KEEP=14400

t_rteel, t_srtts16, t_rttvarsd, t_rxccur=6

OEBPS/html/graphics/t1025-01.jpg
RST segment generated

reccived segment seqf ack.field flags
contains ACK | received ack. field 0 TH_RST
ACK-less. 0 received seq# field | TH_RST | TH_ACK

OEBPS/html/graphics/11fig14.jpg
transport
protocols

ICMP errors

- ICMP__{ ICMP output |
mp_input - replies "1 processing
oM (Figure 11.29)

messages

)pintr>

OEBPS/html/graphics/0992_prog01.jpg
77
748
79
750
751
752
753
754
55
756
257
258

59
760
761

762
763
764
765
767
768
269
710
m

m
i)
75
776

P inpse.
1E the BST bit is set examine the state:
SL_RECETVED state:
1€ vassive coen. return to LISTEN state
I active ofen, inform user that connection was refused.
ESTABLISHED, FIN_MALT_1, FIN_WAIT2, CLOSE_NAIT states.
Inforn user that connection was resst, and close tcb.
CLOSING, LAST_ACK, TINEWNIT states
Close the teb.

(€iflage & ThRST)
siten (tp-ot_state) |

case TCPS_SWLRECEIVEL
50->0_crror = ECONVREFUSED:
goto clese;

case TCPS_ESTABLISHED:
case TCPS_PIN_WAIT 2
case TCPS_CLOSE_WATT:
closer
©p-sc_state = TCPS_CLOSED;
tepstat teps_dropser
th = top_close(tp);
qoto arop:

case TCPS_CLOSING:
case TCPS_LAST_ACK:
to = tep_close(tp);
gota arop

top_inpute

OEBPS/html/graphics/t0747-01.jpg
PCBlocal IP | laddr argument Description
not - wildcard:+
not not + compare IP addresses, skip PCB if not equal

not

can't compare
wildcardss

OEBPS/html/graphics/0162_tab02.jpg
il it (1a->ia_ifp == ifp)
152 break;

183 switen (emd) (

28)
219 switch (end) (

326 defauit:

327 Af (ifp == 0 11 ifp->if_octl == 0)

328 return (EOPNOTSUPP) ;

329 return ((*ifp->if_ioctl) (ifp, cnd, data));
B0)

B return (0);

n2)

OEBPS/html/graphics/0676_prog01.jpg
risocke
F RRCCRGE:

m L€ (gate 4t re_setgate(rt, £t koy(rt), gate)

23 sendors (ESQUOT) 1

23 7% new Gateway could require new ifaddr, ifp; flags may also be
25 ditterant; ifp may be specitied by 11 sockaddr when prococol
26 adaress is ambiguous */

e A€ (ifpoddr ik (ifa » ifa_ifwichnot (1fpadde)) G&
28 (A5 = tfa-sita_itp))

29 ifa « itaof_itploradis (ifaaddr 7 ifaaddr : gate,
20 it

201 ©l6e 1€ ((Lfoaddr 66 (ifa = LEa_ifwithaddr(ifaaddr))) ||
22 (ifa = Lfa_ifuithoute(rt >rt_flags.

200 etkey(zt), qate)))
204 ip - Lta-sitatips

25 it gt

26 strice ifaddr voifa « rereifa

267 it foita e tta) (

218 A€ (0ito 4L oita>ita_rtrequest)

28 oifa->ifa_rtroauost (KTM_DELETE.

250 rt. gate)

251 TEAFREB (st ore_ita)

252 reosre_ita « it

25 itacsifa_retentert

25¢ reort_itp - itp

255)

256)

267 Feeotmetrice (rtnort_inite, Crimosrenrm,

258 Lrtosre_m s

259 S€ (rtoort_ifo b6 rt->re_ifa->ifa_rcroquest)

260 Ttoort_ifa->ifo_rtrequest (RTKADD, 1t, gate);
200 5t (gennask)

262 Feosre_genmask « germask:

263 ”

260 * Fall dnto

205

266 case K100

267 Ft>rt_rmx. mx_locks ke ~(rtmesrtainita);

268 reosrt_rmx.xmx_locks |+

269 (rin->rta_inite & rume>rtn_smx. oax_locks) ;

0 break:

m)

m break

23 dotaute:

0 ‘sendore (BOPIOTSUPP) |

ws

OEBPS/html/graphics/t0747-02.jpg
PCB foreign IP | faddr argument Description
not + B Wildcardsr
not + not + compare IP addresses and ports, skip PCB f not equal
. . can't compare
- ot + wildcardss

OEBPS/html/graphics/10fig22.jpg
fragment 1 fragment 2 fragment 3 fragment 4
(] s !] []

(=]] B
Tragment Tragment 7 rogment
T L] [27 7 [i]

Y

OEBPS/html/graphics/1011_prog01.jpg
To1s
1016
1017
1018
1019
1020
1021
1022
1023

1020
1025
1026
1027

1026
1029
1030
1031
1032
1033
103

=y tep_input.c

s
* Update window infornation.
« Don't Lok <t window if no ACK: TAC's send garbage on first SIN.
B
L€ ((tiflags & THACK) 46
(SEQ_LT(tp->end_wll, ti->ti_seq) || tp->andull
(SBQ_UT(tp-send w12, ti->tiack) ||
Ep->ond 12 == ti-sti_ack & tiwin > tp->sndmd))) {

/4 keep track of pure window updates */

S (tistilen == 0 44
posend w12 < ti-sti_ack &k tiwin > tp->endwnd)
tepatat.tops_ccvinupdess

tp->ond_wnd = tiwing
Ep-ssna_ull - cisti_seq;
Ep-sond_wl2 = ti->ti_ack;

i€ (tp->snd_wnd > tp->max_endvnd)
tp-snax_sndwnd = tp->ard_wnd:
nesdoutput = 17

o

OEBPS/html/graphics/28fig23.jpg
_recent. 1
ta_recent_age = tep_now=N

timestamp = 1 data, fiossetomp = 1)

for 25 days
4320000 ticks.

timestamp = 2,147,483,649 | timestamp.
timestamp = 21147483650 { changes sign

<te_racent
tep_nows N+ 4,320,000

mestamp = 216000001 481, Emestamp = 2160000001 >u_m =2,160000,001

OEBPS/html/graphics/0237_tab01.jpg
output.c
431 int -

432 {p_ctloutput (op, 5o, level, optnave, mp)
a3 e opr

434 struct socket *so;

435 int lovel, optname;

436 struct mbut *emp;

a7 (

struct inpch *inp = sotoinpeb(so);
struct’mbut *m = ‘mpr

int optval;

it error - 0;

SE (level 1= TPPROTO_IP) (
error = ETNAL;
iE (op == PROO_SETOPT &k *mp)
(void) m_tree(mp);

) else
switch (op) (

40 case PRCo_SETOPT:
switch (optnase) (

OEBPS/html/graphics/0237_tab02.jpg
bkl
dotauie:
ercor = EINVAL;
break;
)
it (@
(void) m_tcee(n);
breax;

case PRCO_GETOPT:
switch (optnase) (

-ip_output.c

OEBPS/html/graphics/11fig38.jpg
before beopy |

after beopy |

discarded

b [kt o hender | P oPORS
header | hdr| A2 heade (opt 1en bytes) sol
‘y
bl [kt
Pk P header o

OEBPS/html/graphics/01fig04.jpg
proc()

vnode{)}

socket ()

OEBPS/html/graphics/26fig21.jpg
Teceive window

rev_nxt
last_ack_sent

received segment:| 4 5

t

T

OEBPS/html/graphics/26fig22.jpg
: receive window

4 5 6 7 8

last_ack_sent rcv_mxt

received segment:| 6 7

ti_seq

10

1

OEBPS/html/graphics/t0748-01.jpg
PCB values

14« d
Local address | Local port | Foreign address | Foreign port | "
140252129 % B g 1
: 2 : : 2
140252129 2 140252111 1500 0

OEBPS/html/graphics/02fig22.jpg
mbuf () mbuf ()
Fead noxt mnext _|wuLL
il m_nextpRE “m_nextpRE | NULL
mbut() mbue () mbue()
Ronext Fnext m_next
NeXCDKE [NULL [Mnextpkt |NULL | m_nextpkt

wLs
s

OEBPS/html/graphics/15fig08.jpg
S

Sorvesd
Ex)
xy skt startan i
P
(E—— -
cet mov ol quese
When TCPSYN is ACKe, socket) _] socker0) _J P
eeapt emoves ke Sochead T Foohead
o s que X _/' o _/' oy
=i =5 s

OEBPS/html/graphics/09fig20.jpg
ip_nhops:

ip_srert:

nop (IPOPT_NOP)

scopt (0] (IPOPT_LSRR or IPOPT_SSRR)

Thyles srcopt (1) (option-length)
- sxeepei2) onaf)
ws [1Phsd 4 [m | o B
dst Toutel0] routel1] route(2] route(3-91
& P e T s et 48

l— Sourcerouteoption —|

OEBPS/html/graphics/t0776-01.jpg
Variable Datatype Description
3 Serect tnpeh head o the UDP PCB it

udp_lase_inpeb | struct inpeb * | pointertoPCB forlast rceived datagram: one-behind cache
wdpckeun Tae fag for calculating and verfying UDP checksum

uap_in atruee sockaddr_in | holds sender's P addressand porton nput

sdpstar udpstar UDP satsis (Figure 234)

Sdp_recvapace defaultsize ofsocket receive bulfer, 41 600 bytes
vy default size of socket send buffer, 9216 bytes

OEBPS/html/graphics/04fig27.jpg
Afnet: A8 softelo] s1_softc(0] loif:
P . stnoro |
) Saotec)
tnet_addrs 10 sotecq)
[o, ssaen s
socxagar_a10) Jsockadar_a10) sockadsr a10)
T facekeasr) sockaass_a10) sockadar_a10)

OEBPS/html/graphics/t0776-02.jpg
udpstat member Descrption
ape_badien received doagrarms with data engih arger than packet.

udps_badsun receved dotagrams withchecksum error

udps_tullsock received dtagrams o deivered because input socket full

udps_hdcops received datagrams with packe shoterthan hesder .
udps_ipackets total frceived datagrams. .
udps_noport. received datagams with no processon destination port .
idps_noportbeast | received broadcast/multicast datagrams with no process on st port |+
udps_opackets totalfoutput datagrams .
udpps_pcbeacheniss | received input datagrams missing peb cache

OEBPS/html/graphics/0782_prog01.jpg
E)
e
s
36
w7
38
3
30
3
32

30
e

s
346
30
s
349
350
31
32
33
35
355
356
357
358
359
360
36
62
363
364
365
366
367
368
369
370
m
2
373

09
a0
iy
i)

T Sl
udp_output (inp, m, addr, concrol)

atruce inped *inp;

atruct abut

Btruct sbaf *addr, control:
¢

struct wipiphde *uis

int jen = m->npkendr.lens
struct in_sddr ladde:
inc s, error = 0
it (concrol)
_treen(control e

it (adan) ¢
laddr = inp->inp_laddr;
S (inp->inp_taddr.s_addr 1+ INADORANY) (
error » BiscoNN;
goto releaser

)
b
* wust block input while tesporarily connected.
.
o
error » in_pobconnect (inp, addr);
it (erzor) (
spixe
goto release;

)
) erse

S (inp->inp_taddr .s_addr s INADORLANY) (
orror » ENoTCONN;
oto xelease;

)
2
* Calculate data length and get an mbuf for UD? and 1P headers.
.
MPREPEND(2, sizeof (struct udpiphdr), N_DONTWAIT)
om0 (
error « BioRES:
goto releaser

/+ rematnder of function shown in Figure 23.20 4/

release:
n_treen(a)

)

dp_marrege

OEBPS/html/graphics/02fig24.jpg
socket (} mbuf ()}

m_next NULL
f m_nextpkt NULL
so_snd. sb_mb m_len 2048

m_data
m_type wT_pATA
m_flags M_PKTHDR | M_EXT

T_pkthar.len |2048
m_pKthar . rcvif |NULL
m_ext . ext_buf
m_ext.ext_free|NULL
m_ext.ext_size|2048

2048-byte cluster

2048 bytes of data

OEBPS/html/graphics/11fig11.jpg
[« ICMP message
e o IRl el
e

1P header

5%

1P datagram

OEBPS/html/graphics/t0777-01.jpg
5 _output

udpstat member

15,575, 142 datagrans recolved
0 with inconplete heador
18 with bad data lengeh tield
58 with bad checksun.
84,079 dropped due to no socket
446 broadcast/multicast datagrans dropped due to no socket
5.356 dropped due to full socket butfe
15,485,185 delivred
18,676,277 datagrams output

udps_ipackets
udps_hdrops
udpe_baden
udpe_badsun
udps_nopore.
udps_noportbeast
udps_tullsock
(seetex)
udps_opackets.

OEBPS/html/graphics/t0777-02.jpg
SNMP variable | udpstat member Description

[Sapinbatagrams |udps_ipackets |Mreceived daiagrams deliversd to processes
[idpinbrrors [udps_ndrops + | undeliverable UDP datagrams for reasons ther than o

sdps_badsun + ‘applicationat destnation port .8, UDP checksum error)
sdpa_badion
[Savororts [udps_nopore + [Wreceived datagrams for which no applicaion process was a the

udps _noporcbease| _destination port

[udpOutDatagrans |udps_opackets |Wdatagrams sent

OEBPS/html/graphics/0162_tab01.jpg
132 in_control(so, ced, data, ifp)
133 struct socket *so;

134 inc

crd;

135 caddr_t data;
136 struct ifnet *ifp;

137 (
138
139
140
141
142
143
100
145

146
147
148
149
150

struct ifreq *ifr « (struct lfreq *) data:

struct in_ifaddr *ia = 0;

struct ifaddr *ifa;

struct in_ifadde -oia;

struct in_aliasreq *ifra = (struct in_aliasreq *) data:
struct sockaddr_in oldaddr;

int error, hostlsNew, maskisNew:

uilong i

”
* Find address for this interface, if it exists.
.
it (itp)

tor {ia = in ifadd:

121 10 b So-sBi ekt

OEBPS/html/graphics/14fig36.jpg
Transport

Frooos
packetaceped only it
arives ona physca trace

discarded datagrams
(Figure 1439)

Gploophack: T output

acketarived on tunnel
| andis now queued forinput
: "o the physical interface

bvsioun. § Py S

OEBPS/html/graphics/t0751-01.jpg
nam argument:

PCB member gets set to:

Comment

TocallP | iport inp_lport
not + 0 ‘ephemeral port | locallP” must be local interface
not+ | nonzero Iport subject to in_pcblookup

. 0 ephemeral port
| nonzero - Iport subject to in_pchlookup

OEBPS/html/graphics/t0755-01.jpg
Eising PCB | Tytobind [oo 0 Description

T T e e pe PSS e

Tl | s | OF | OF | cow s e et

R | I | e | O | oneseres o ne et b v o remaing et
| et [e | O | nwovt oo o, e e o i o
: T | e | | oot s ot s e e et s

ki |t [| oo | e

OEBPS/html/graphics/t0773-01.jpg
Tocladdies | loclpo | fordgnaddras | foreignport
Applaton Trpotaser | smpipor | “impoiadsr | imetgore

i e =
et e, o) (ol toinocn |G smopein o]

By [dm—

[regntP. Local [port.

]

e
v =3 o i o
i, o
o e o
rd: I e o
et R
o e, o et

[foreigniP. Local

ot

P
e = e fror
it o) (i cremes
ot g o o
e = e o s [y o
Lot o i e
Soeean
s
T i s o7 o s [
et o e i e
priiy
sceepty
v e e e
A el e Ll R

Scmimcs o amen onmgmsn

[P, Toct por. Nt changed

it [l

e ens

ot

g
or e o
ot i, o |l cottogts [l m peminato
et ommiesy o emer

[foreigniP. Local [ort. Not changed

R)

=i ey

mon

et

s

OEBPS/html/graphics/t0775-01.jpg
File Description

netinet/udp.h udphdr structure definition
netinet/udp_var.h other UDP definitions

netinet/udp_usrreg.c | UDP functions

OEBPS/html/graphics/0727_prog01.jpg
o7
138
19
140
et
102
10
14
105
15
7
13
150
151
152
153
154
155
157
158

159
160
161

16
16
165
165
167
168
169
m
m
m
e
115
176
m
78

19
180

if_etherc
S€ (Gate-ssa_tanily 1a AELINK (1

Gate-sea_len < sizeof (null_sdl)) (
109(10G_BEBUG, *arp._rtrequest: bad gateway value');
break;

)
SDL(gate) ->sdl_type = rt->ri_ifp->if_type
SDL(gate) -»sdl_index = rt-srtifp-~if_index;
i€ (a 1= 01

break; /* This happens on a route change */
7o
- Gase 2: nis route may come from cloning, or 4 manual roite
* add with a i addres
B
RMalloc(la, scruct 11info_

1+, sizeot (+1a))s

ceo>re_llino - (caddr_s) lar
if a0
105 (L0G_DESUG, *arp_rerequest: ralloc failedin')

break:
)

arp_inusess, arp_allocatede:
Bzero(la, sizeof(*lal):

la->lase = re;
Ftoart_lagr |+ RTF_LLINFO;
insquella, Mlinfo_arp):

56 (SIlrt ey (et)) nein_aaie =_asar

(TASTN(Et-ost_ifa)) sin_addr.5_adds) |

b

* This tost used to be

+ St oif.if clags & 1er.u)

* 1t alloued local tratfic to be forced

* throigh the hardvare by configuring the loopback down.
However, it causes problens during network configuration
for noards thar can't recaiva packers thay aand
I is now necessary to clear *useloopback and remove
the route to force traffic out to the harduare.

rtosrt_expire « 0;
Boopy (1{struce arpeon *| re-sre_ifp)->ac_enaddr,
LLADOR (SDL(gate)), DL (gate) ->sdl_alen = 61
i (useloopback)
ctoart ifo = dloifs

)
break:

ethere

OEBPS/html/graphics/03fig39.jpg
N o

if_indexlim-1

ifnet:

le_softc{}

if_next

if_addrlist

ifnet_addrs:
| ifadar()
v T ifa_ifp
J—»{ ifa_next |

sockaddr_d1{)

sockaddr_dl{)

OEBPS/html/graphics/06fig11.jpg
semats > o >

Taw_usrreq

OEBPS/html/graphics/28fig31.jpg
send SYN:

b
153 154

t ot

snd_una snd_nxc
sy

155

State = SYN_SENT

OEBPS/html/graphics/t0777-03.jpg
UDP listener table, index = < udpLocal Address >.< udpLocalPort >

SNMP variable | PCB variable Description
udpLocaladdress | inp_laddr | local [P address for this listener
udpLocalPort inp_lport | local port number for this listener

OEBPS/html/graphics/appafig03.jpg
host

wilticas!
router

OEBPS/html/graphics/t0778-01.jpg
Member inetsw(l] Description
or_tve SocK oA "UDP provides datagram packet services
pr_donain | Ginocdomain UDPis part of the Internet domain
pr_protocol | IPPROTOUDP (17) | appears in the ip_p feldof the IP header
pr_tlags PR_ATOMIC) PR_ADDR | socketayer lags, not used by protocol processing
pr_input udp_input receives messages fom IP layer

prouput | 0 not used by UDP

pr_ctlinpuc
pr_ctloutput
pr_usrreq
pr_init
pr_tasttino
pr_slowtino
pr_drain
pr_sysctl

udp_ct Linput
ip_ctloutput
udp_usrreq
udp_init

o

o

0

udp_sysctl

control input unction for ICMP errors
respond to administrative requests from a process
respond to communication request from a process
initalization for UDP

notused by UDP

not used by UDP

notused by UDP

for sysct 1(8) system call

OEBPS/html/graphics/01fig14.jpg
spinet
spitey

splimp

P

o010 [socket |

preempted

protocol
P input)

protocal
(P input)

[

OEBPS/html/graphics/t0817-01.jpg
File

Description

etinet/tep.h
netinet /tcp_debug.h
net/top_tsm.h

©/tcp_tiner.h
tinet/tep_var.h
netinet /tcpip.h

ephar structure definition
ep_debug structure definition

defnitions for TCP's finite state machine

macros for comparing TCP sequence numbers

defnitions for TCP timers

eped (control block) and cpstat (statstics) structure definitions
TCP plus IP header definition

netinet/tep_debug.c
netinet/tcp_input..c
net inet /tcp_output.c
netinet/tcp_subr.c
netinet /tep_tiner.c

| netinet /tcp_usrreq.c

Support for 50_DEBUG socket debugging (Section 27.10)
tep_tnput and ancillary functions (Chapters 28 and 29)
tep_output and ancillary functions (Chapter 26)
‘miscellaneous TCP subroutines (Chapter 27)

TCP timer handling (Chapter 25)

‘PRU_xxx request handling (Chapter 30)

OEBPS/html/graphics/t0821-02.jpg
index = < tepConnLocal Address > < tepConnLocalPort >.< tepConnRem Address >.< tcpComnRemPort >

SNMPariable | PCB variable Description

Topconnstate “otate | sateof comection:1 - CLOSED, 2 = LISTEN,
3= SYN SENT, 4 = SYN RCVD, 5 = ESTABLISHED,
6= FINWAIT 1,7 = FIN_WAIT 2,8 = CLOSE_WAIT,
9= LAST_ACK, 10= CLOSING, 11 = TIME-WAIT,
12 delete TCP controlblock.

“eptonniocairdaress | inp_iadar | lowlIPaddress

“epconniocaizore | inp_ipore | local port number

“epconnernddress | inp_faddr | forcignIP address

TepConnRePOTt inp_fport | foreign port number

OEBPS/html/graphics/05fig21.jpg
END ESCAPE
=)

header

data data data

[EET o (JMC.....,.,,‘,A%“"MLM

pute (FRav_sscase, pute (PRRE_BSCARE,)
Mo Ag s e SRR i s iy

OEBPS/html/graphics/t0822-01.jpg
Member inetew(2) Description
Tetype | Socomann TP providesa bytetram sevice

prdomain | sinecdomain TCP b prtof e Iernt domain
Deprorocol | TreRome. P (5) appear it 1o ekl of the I hesder
Defings | PR_COWRIGUIRED FR_AANTRCYD | socke ye g ot e by proocl processing
Dlimme | cepirit ecivs mesages om 1P yer

peouepue |0 oty 7O

Drettimue | cep_ctlinpue Cotrotinput fanctonfor ICMP erors

D et loweput | copctloutput espond o dminitrtive e fom proces
Deverrea | tonousteed epond o commuricaion requess rom 4 proces
Dlini | cepinic ntatatonfor TCP

Prtasctino | cop-tasccino ot tmeout unction, clled every 200 ms
Delelowing | copisionting o imeout funcon,caled vty 00 ms
Tiieain | cepcarein Clled b ke s ot of it

e meeer: | ot wsed by TCP

OEBPS/html/graphics/t0823-01.jpg
th_flags Description

TH_ACK | the acknowledgment number (-h_ac) s valid

T_EzN | the senderis finished sending data

TH_pUSH | receiver should pass the data to application without delay
TH_RST | reset the connection

TH_SYN | synchronize sequence numbers (establish connection)
TH_URG | the urgent offset (ch_urp) is valid

OEBPS/html/graphics/0996_prog01.jpg
switch (ep->t_state) (

case TCPS_STILRECEIVED:

complete processing of passive coen and process
simulcancous open or self-comect;
7+ tall dnto .. +/

case TcPs_EsTABLISHED:
TCPS_FIN VAT

TCPS_FINNAIT_2:
TCPS_CL0SE_WATT:
Tes_cLosIHG:
TeRS_LAST_ACK:
case TCPS_TIME WAIT:

process duplicate ACK

update RTT estinators:

if all outstanding data ACKed, turn off retransmission tiner;

remove ACKed data fron socket send butfer;

swiceh (tp->t_state) (

case TCPS_EIN_MAIT_1:
i (FIN is scKed) (

move to FINWAIT2 state

Start FIN.WAIT_2 timer;

)
breaks

case Teps_cLosING:
1F (FIN 15 icKed) (
move to TIME_WAIT state;

Stare TINE_WAIT tine:

I}
breaks

case T0PS_LAST_ACK:
L€ (FIN 15 AcKed)
move to CLOSED state:
broak;
case TCPS_TINE_WAIT:
restare TINEWAIT timer;
goto dropafterack;

OEBPS/html/graphics/924equ01.jpg
EoBEEE o B=tEbvar
8 4
t_srtt

RTO

+t_rttvar
o

OEBPS/html/graphics/t0826-01.jpg
t_flags Description

TE_ACKNOW send ACK immediately

TF_DELACK send ACK, but try to delay it

TF_NODELAY don't delay packets to coalesce (disable Nagle algorithm)
TE_NoOPT don't use TCP options (never set)

TF_SENTFIN have sent FIN

TF_RCVD_SCALE
TF_RCVD_TSTMP
TF_REQ_SCALE
TF_REQ_TSTMP

set when other side sends window scale option in SYN
set when other side sends timestamp option in SYN
have/will request window scale option in SYN|
‘have/will request timestamp option in SYN

OEBPS/html/graphics/t0818-01.jpg
Variable Datatype Description
e Seruct inpeb | head of the TCP Internet B st
“cp_last _inpeb | atruct inpeh + | pointer to PCB for as receive sogment one-behind cache

TCP statitis (Figure 24141

cop_ourfiage

_char

rtay ofoutput flags,indexed by connection stae (Figure 24.16)

tep_sendspace

defaul sz of socket receive ulfer (5192 bytcs)
default size of socket send bufer (5192 bytes)

“op_isn “op_seq nital send sequence number 155
Teprexsithresh | nt miber of duplicate ACKS o trgger fstreransmit ()
tep_mesdfic | int et ISS (512 bytes)

rep_eeearle | ine deault RTT if no data (3 seconds)

tep_do_rec1izt | int Tt (defaul), request window scle 3nd mestamp optons
tep_now u_tong 500 ms counterfor RFC 1323 timestamps

Tep_eopiaie
ecp_keepintvl

tep_misidie

Keepalive: dle tie befor first probe (2 hour
Keepalives intervalbetyeen probes when no response (75 sec)
Gl wsed s timeout for ccrnect)

OEBPS/html/graphics/t0819-01.jpg
Used by

cepatat member Duscription g
Tepe_sccepts VNS eived i LISTEN sute .
tepa_closed sconnectionscase (includes drogs)

tepe_connattempt | dconnectons intated alls 10 connoct) .
cepe_conndrops sembryonic conmections dropped (bedore SYN recived) .
tepa_connects scomnections established actively or pasively

tepa_delack dcayed ACKs sent

cepa_drope sconnections dropped (fer SYN received) .
tcpa_Keepdrops connectionsdropped n kecpalive (cstablished or waiing SYN)
cepe_Keopprobe shecpalive probes sent

ccps_keeptineo imes ecpaliv timer o connecton-establishment timer xpire
cope_pawsdrop segments dropped due to PAWS

“cps_pebeachemias | Mimes PCBcache comporison fais

Ccps_persisttines | Mimes penisttimer xpies

Seps_predack imes header predicion comect for ACKs

ceps_presdac imes header rediction coret fo dsa packets

ceps_revackbrte bytes ACKod by received ACKs.

cepi_revackpack received ACK packets

“cps_revacktoomich
ceps_revattercioss
ceps_revbadott
ceps_rcvbadeun
ceps_reviyte.
Eeps_revbyteattenin
ecps_revaupack
ecps_revaupbrte
ccps_revauppack
ceps_revoobyte
ceps_revoopack
ecps_revpack
ecps_revpackatterin
cops_revpartdipbyte
tcps_rcvpartduppack
tepe_rovatore
tepe_rcviotal
tepe_scveinprobe
tepa_seveinupd
tcpa_recupdated
tcpe_segstined
tepa_sndacks
teps_sndbyte

eeps_sndpack
tops_sndprobe
Ecps_sndremnitbyte
teps_sndremmitpack
eeps_sndtotal
teps_sndur
teps_sndwinup
tope_tinsoutieen

received ACKs or uncent dota
packes rceived after connction cosed
packets receivod with invalid header ength
packets reeivod withchechou erros.

s eived nsequence

oyt ceiv beyond dertised window
duplicate ACKs mceived.

oytes rceived in completly duplcae packets
opschet reervod vith completly duplicate byt
Rout of-oder byes eeived

Rout ofonder packes reeived

Fpackets received insequence

packess with some dats beyond advertised window
Aduplicate bytes in put-dupicat packets
Epackess with some duplcae da

sscgments for which TCP red measure KT
#ACK.ony packets st (dsa ength = 0)

s ytessent

Scontaol (SYN, FIN, RST)packets snt (dst ength =0)
data packes sent (data ength >0)

window probes sent (1 byie o dota forced by persisttmer)
i —

daa packes retransmitied

totalApackets sent
packetssent with URG-only (dota henth =)

indon update-only packets st (data length = 0)
scensactions deepped in strenemission Saeout

OEBPS/html/graphics/t0820-01.jpg
netstat o oulput

cpatat members

10, 655,599 packers seme
9,177,823 Gaca packets (22,194,928 byces)
257,295 data. packets (51,075,086 bytes) sesranenisted
862,900 ack-only packes’ (511,285 delayed

Tops_snazoral
ccpe_snaipack,byze)

ccpe_snazexnit (pack, byts)
Copa_sndacks, tepe. Setack

225" uRG-only packats scps_sndurg
3453 window probe packets ccpe_sndprobe
74,925 window update packsts tcps_snduinup
25,367 control packets tepaeraceer
501,553 packees received Teparevoral
6,617,075 acks (for -21.264,360 byces) t<pe_cevackipack, yte)
235,301 duplicae acks tepe_rovdupack
0 acka tor unsent dat tepa_revackzosauch

4,670,615 packets (324,365,351 byces) rovd {n-sequence
46,953 complecely duplicate packecs (1,549,765 byes)

220la Gupticate packers

5,442 packets with some dup. data (34,483 bytes duped)
77,114 out-ot -order packes (13,938, 856 byros)

1,892 packets (1,755 bytes) of data atter vindow

tepeeevipack, byte)
cepe_ccvaup(pack, byte)
tepe_pavedrop
tepa_cevparcaupipack, byce)
terecevoaipack,byte]
Eepare(pack,byre)atervin

11755 window protes tepa_rominprobe
175,476 window update packets. cepa_rovindup
1,017 packats received atcer close teps_rcvateerciose
80,370 aiscardes for bad chacksums copa_rovbadsun
275 discarded for bad header offeet fields tepa_scvbadort
0 discarded because packe too snoct “epa_cevanort

T35, 520 comnest ton requests “epa_commattenst

92,595 connsction aceepte sepa_accepes

126,820 connect lone established (including accepts) teps_comnects

237743 connect tons closed (including 1,061 dxops)
110,016 embryonic connet ions dropped

ccpa_closed. cps_drops
cep_conndrops

363,516 segmonts updated rit (of &, 44,667 ateenpre]
114,757 rotransnit cimoucs
86 connection dropped by remit timeout

Tepa_(reeupaated, seget ined]
cope_cemnttinee
e ——

1,173 persist cinsouts tepapersistt ineo
16,415 kespaiive tinesics. ceps_keept ino
£,839 keepalive probes sent cepe_kecpprobe
3,219 connections dropped by kespaive cops_keepdzops
733,130 correct ACK hesder predictions Topa_preaack
3,266,889 correct data packet header predictions tepa_predaa

1,851,557 cache misses

tcpe_vcheasheniss

OEBPS/html/graphics/07fig06.jpg
domains:

inetdonain:

routedomains

unixdonain:

domain()

aomatn()

domain()

aomain()

OEBPS/html/graphics/14fig15.jpg
numvi £

vigtable(0)

viftable(1)

viftable(z)

viftable(3)
through
vittable(31]

{ I

vittable(

pxry - SRS P,

Vel inad&r()
_icl_grpe_max | 32 in_sdar()y
el gmen |4 in_sdar()

in_sdar()

vien

vito

3

iener()

OEBPS/html/graphics/14fig24.jpg

OEBPS/html/graphics/14fig25.jpg

OEBPS/html/graphics/t0821-01.jpg
cepatat members.

SNMP variable oy Description
Copreoniaoritnm O Slgorith used 10 lculae retransmisson Gmeout value.
1= none o the followin,
222 constant RTO,
3= MIL-STD-1778 Appendix 8,
4= Van Jcobon'salgorthm.
FepRanin To00 i retransmission timeout vlue, in miliseconds
cepreovax 4000 maximum retransmission imeout value, in millseconds
Foptascont = maximum ATCP connections (-1 if dyramic)
Fopnet tveopens | Cepd_comnattarpt | Mransiions from CLOSED to SYN_ SENT states

Feppassiveopens

Tops_accepts

Ftransitions from LISTEN 10 SYN_RCVD states

Copattemptrails

teps_conndrops

Wtransitions from SYN_SENT or SYN_RCVD to CLOSED,
plus Htransitions from SYN_RCVD (o LISTEN

EErra andiions om ESTABLISHED or CLOSE WATT i
losn

B e Fenections carely T ESTABLIHED o7 CLOSE WATT
e

et [roerevioral —[ioal heprans motied

Fepoutsegs | cepe-sndtora ~ ol egmets e, exciuding ess o oy

et by
CeoRetEarSega | Eops sniseraltpack| Al frremiied segmans

Coptngres “ope_rcumaasin - | toal Begments eceived withan eror
tepa_rcvbadott
teps_rcvshort

Cpouiraie ot implemented) | oral Fsegments sent with RST flg sét

OEBPS/html/graphics/t0069-01.jpg
Function Description
TroroLL | bl
int TP_QrULMstruct ifqueve *i);
TF_DROP | TP_DRO only increments the 1 _dxops counter associated with 7.
‘The name is miskeading;the caller drops the packet.
void TP_DROM(struct. ifqueve *if);
TP_ENGUEUE | Add the packet i 1o the end of the g queue. Packets are inked
together by m_nextpkt. in the mbuf header.
Void TF_EMUEE(struct ifqueve *f, struct mbut “m);
T7_PREPEND | Insert he packetm atthe Front of the queve.
void IP_PREPEND(struct ifquese i, struct mbut *m);
T7_DEGUEE | Take the st packet off the] quewe. pointsto the dequened packet
oris nulli the queve was empty
Void IF_DRQUEUR(struct ifqueve . struct mbuf *m);
if_qflush | Discard all packets on the queue i, for example, when an interface is

shutdown.
vold 1€ gfiush(struct ifqueve *if);

OEBPS/html/graphics/t0067-01.jpg
Function Description
if_init initialize the interface
if_output | queue outgoing packets for transmission
if_start initiate transmission of packets
if_done cleanup after transmission completes (not used)
if_ioctl process 1/0 control commands
if_reset reset the interface device

if_watchdog

periodic interface routine

OEBPS/html/graphics/03fig36.jpg
ifaddr{}

_ifa_addr

ifa_netmask—|

sockaddr_dl{}

sockaddr_dl{}

OEBPS/html/graphics/t0065-01.jpg
if_type

Description

IFT_OTHER
IFT_ETHER
IFT_IS088023
IFT_IS088025
IFT_FDDI
IFT_LOOP
IFT_SLIP

unspecified

Ethernet

IEEE 802.3 Ethernet (CMSA/CD)
IEEE 802.5 token ring

Fiber Distributed Data Interface
loopback interface

serial line IP

OEBPS/html/graphics/t0155-01.jpg
File Description

netinet/in.h Internet address definitions.
netinet/in_var.h | Internet interface definitions
netinet/in.c Internet initialization and utility functions

netinet/if.c Internet interface utility functions

OEBPS/html/graphics/t0063-01.jpg
Kernel

if_flags Sy Description
IFF_BROADCAST the interface is for a broadcast network
IFF_MULTICAST the interface supports multicasting
IFE_POINTOPOINT the interface is for a point-to-point network
IFE_LOOPBACK the interface is for a loopback network
1FF_oACTIVE | atransmission is in progress

IFF_RUNNING | resources are allocated for this interface
IFF_SIMPLEX | the interface cannot receive its own transmissions
TFF_LINKO see text | defined by device driver

IFF_LINKI seetext | defined by device driver

IFF_LINKZ see text | defined by device driver

TFF_ALLMULTT the interface is receiving all multicast packets
IFE_DEBUG debugging is enabled for the interface
IFF_NOARP don't use ARP on this interface
IFF_NOTRAILERS avoid using trailer encapsulation
IFF_PROMISC the interface receives all network packets
IFF_UP the interface is operating

OEBPS/html/graphics/t0154-01.jpg
Class. Range Type
A 0000 to 127.255255255
B | 128000 to 191255255255 | unicast
C | 192000 to 223255255255
D | 224000 to 239255255255 | multicast
E

240.0.0.0 to 247.255.255.255

experimental

OEBPS/html/graphics/t0160-01.jpg
Command Argument Function Description
SToCGIFADIR | struet 1tzeq © Trcontrol | g erface address
StocormEmusk | struct itreq + incontrol | getinterface netmask
stocarepsTaADDR | struet ifreq * incontrol | et inerlce desination address
StocorraRoADDR | struct itreq + incontrol | getinlerfac broadcas adress
StocsIFAbDR | struct ifrea © Tn—control | setnterface adress
stocstnEmuss | struet ifxeq + incontrol | setinteface netmask
Stocsirostanon | struct itreq + inZcontrol | setntefacedestinaton address
stocsrraraoos | struct ifrea * in_control | setinterface broadeastaddress
SIocoIFADDR | struct ifreq © Th_control | deltenteface addrss|
Srocatraroe | stauet inalieszeq ¢ | inconteol | add imterface addeess

OEBPS/html/graphics/t0155-02.jpg
Variable

Datatype

Description

in_tfaddr
in_interfaces

Struct in_ifaddr -
int

head of in_i faddr structure list
number of IP capable interfaces

OEBPS/html/graphics/18fig41.jpg
radix node()

100 35213 - 00

search key:[16]]

Toefe[oa]3e] [

n_mklist

tnp

b

-60

n_bmask

o

n_tlags

o

2

o st

Tn_ker

1

Tec]feoa]20] 0

Tn_nask

Tn_dupediey

258255255 2

77——15\1

Teefeefeefeo] 0

P2

OEBPS/html/graphics/t0180-01.jpg
Function

Description

Ttaitwithaddr

Search the § fnot st or an interface with a unicast or brosdcast address of
addr. Return a pointe t the matching 1 £add structure or a null
pointer ifno match s found.

Struct ifaddr * ifa dfwithaddx(struct sockadds addr);

Search the § £net listfor the interface with a destination address of addr.
Return a pointer to the matching & €ad structure or a null ointer if
o match s found,

Struct ifaddr -+ da Lewithdstadds(strict sockaddr ‘adh);

Teaifwithnot

Search the § ot st for e address on the same network as i Returna |

pointr o the st specic matehing 1 £ad stmcturor nll poinee
Foamait i o

Struct ifaddr * ifa fwiehast(struct sockadds addr)

TEa itwithat

Search the 1 ot st for the first address n e same address famly as ddr.
Retun a pointer tothe matching i €aci structure or null pointer if
o match s found.

Struct ifadds * ife_tewiehat(struct sockaddr “adr);

Traof_ifotoradar

Scarch the address st of 7 or e address that matches add The order of
preference i for an oxact mateh,the destination address on a point1o-
pointlink,an address on the same network, and fnally an address in
the same address family. Return a pointer o the matching €addr
structure or a null pointer if o match i found.

Struct ifaddr - Afaot_ifpforadar(struct sockaddr “aidr,
struct ifnet)

TEaifuithroute

Retums a pointe to the 1 £aaa structure for e appropriae local inerface
for the destination (4st), and gateway (gat away) specified

Struct ifaddr * ita_itwithroute(int fligs,
struct sockaddr *ds, struc sockaddr “gatevay)

Tamit

Return a pointerto the et structure ssociated with .

Struct ifnet + ifunieichar ‘mame);

OEBPS/html/graphics/t0073-01.jpg
sa_family Protocol
AF_INET Internet
AF_IS0,AF_0ST | O8I
AF_UNIX Unix
AF_ROUTE routing table
AF_LINK data link
AF_UNSPEC (see text)

OEBPS/html/graphics/t0179-01.jpg
Function

Description

Tnnetof

Returns network and subnet portions of in. The host bis are set (00,
For class D addresses, returns the class D prefix bits and 0 bits for
the multicast group.

u_long in_netof(struct in_addr in);

in_canforward

Returns true if an IP packet addressed to i is eigible for forwarding,
Class D and E addresses, loopback network addresses, and
addresses with a network number of 0 must not be forwarded

int in_canforward(struct in_addr in);

in_localaddr

Returns true if the Rost i is located on a directly connected network.
1 the global variable subnetsarelocal is nonzero, then
subnets of all directly connected networks are also considered
local

int in localeddr(struct in_addr in);

in_broadcast

Return true i i is broadeast address associated with the interface
pointed to by ifp.

int in_broadcast(struct in_addr in,struct ifnet “if);

OEBPS/html/graphics/t0587-02.jpg
Constant

Description

RNF_ACTIVE
RNF_NORMAL
RNF_ROOT

this node is alive (for rtfree)
leaf contains normal route (not currently used)
node is in the radix_node_head structure

OEBPS/html/graphics/0669_prog01.jpg
RTI_DELAVE:
rtrequast (RTX_OSLETE)
broak:

case RTLGET:

case KDL CHANGS:

case KILL0CH
realloci (s

switch (ossage type) (
case RTN_GBT:
re_mog2 (RTI.GET) :
break;

case AT CHANGE:
change spprepeiate ticldes
72 ta12 thrcugh

case RT_LocK:
et rmx_lock
broak:

)
Dreak:
)

set rem_orror if orror, ele et RTDONE flags
m_copyback() to copy from buffer into sbut chain;

Faw_input(); /* sbuf chain to appropriate processes */

OEBPS/html/graphics/0798_prog01.jpg
121 Af (INMULTICAST(ntohl (ip->ip_dst.s_addr)) |1 iy
i in_broadcant (ip->ip_dat, a->m phthde.revit)) {
i seruce socket +lasts
120 /-
12 + Deliver a multicast or broadcast datagram to ‘all* sockets
126 + for vhich the local and renote addresses and orcs match
b Chose of the inconing dtegren. This allove rore than
e procest to receive multi/broadcasts on the same POLt.

{This Teally cusnt co be done for unicast daticrans as
w1, ot that wou1a cause problens with existing
Soplications that open both address-speciic focketa and

iideard socker 1{atening co the same port - they would
0 up receiving duplicates of every unicast dacagran.
Thase appiications epen the miltiple sockets to overceme an
inadecuacy of the UDF socket intexface, bt for backacds
comutibiiity we avoid the problen here rathor than
Eixing the incertace. Mayhe 4.5050 will rosedy this?)

128

udo_in.sin_port = uh->uh_sport;
udp_in.sin_sddr = ip->ip_src;

‘sizeot (atruct udpiphde);
sizeot (struct udpiphdr);

* Locate peb(s) for datagram.
* (Algoritha copied from raw_incr().)
.
last « oL
for (imp = udb.inp_next; inp = Gudbs inp = inp-inp_next) {
£ (np->inp_iport = uh->uh_dport)
continue;
S (inp->inp_laddr.s_addr tx TNADDRLAN) (
i (inp->inp_laddr..s_addr 1=
ip->ip_dax.a_addr)
continuer
)
A€ (inp->inp._faddr..s_addr 1= INADDRANY) (

165 L€ (ast 1a Ly (
166 atruct mbut *n;

167 1€ U(n = m_copy(m, 0, M.COPYALLY) 1= MULL) (

168 i (sbappendadar (last->s0_rcv,

169 (struct sockaddr *) &udp_in,
170 . (struct sbot +) 0) =e 0)
m n_treenta) ;

2 udpstat.udp_tullsockse;

173) otee

178 aorakeup(last) ;

18)

176)

1 last - inp->inp_sockets

178 ’

119 « Don"t look for additional matches i€ this one does
180 * hot have elthor the SO_REUSEFORT or SO_REISEADDR
181 + socket options ser. This heuristic avoids searching
182 “chrough all pebs in the comeon case of a non-shared
18 * port. it assuses that an application will never
186 * Cloat these options after sesting thes

165 .

186 ((1ast->s0_0ptions & (SO_REUSEPOKT | SO_REUSEADDR) wx 0))
187 break;

188)

189 4 Gane o i) (

190 ’”

191 * o matehing peb found; discard datagran.

192 * (o need to end an ICHP Fort Unreachable

193 * for a broadcast of multicase datorem.)

19

195

196

197)

298 £ (aboppendadds (ilast->s0_rcv, (struct sockadds *) Gudp_
12 o (atruct bet 4) 01 - 03 (

200 udpstot..udps_tullsockess

200 oo bod:

202)

203 soruakeup (1ast) s

208 roturn:

08)

pon

OEBPS/html/graphics/t0062-01.jpg
80 struct ifnet (
81
82

struct ifnet *1f_next;
struct ifaddr *if_addrlist:

ith
a1l struct itnets are chained */

linked list of addresses per if */

nane, e.9. ‘le’ or ‘1o’ */

sub-unit for lover level driver */
nuneric abbreviation for this if +/
Figure 3.7 +/

tine *til 1€ watchdog called */

nuber of promiscucus listeners */
packet filter structure */

OEBPS/html/graphics/t0653-01.jpg
mib(] __ arp route | netstat]| routed gated xwhod
O [omiwr [omiwer [criwr [omwer [criwer [orier
1 |erfoure [erroure |eeioute [lesovre [voure |er_sovrs
2 o o o o o o
3 e o o ewer o Iae_er.
s [NET_re_ruacs|Ner.xe_powe wer_Rr_ouwe{er_rr_tevrs ver_re_teList{wer_Rr_tsuist
5 |rreteineo o o lo o o

OEBPS/html/graphics/01fig08.jpg
mbut(}

ecct bk

UDP header

}mmam
P header and

mbut () mbut()
e nextmbufinchin_y e inchain_ o5 et
Fonexcpre e [ronextor s [ronexcpR
oten 26 [rten 100 [rten
C¥Ty n_aaa n_anca
m_cype jr_oaza [r_cvpe r_oama [[acype
motlass P [m_flags o [r-flags
roprthar Ton 176 | U
r_prenar.rovit|wie S Eicket Sbyes
ofdts
10bytes
ofdis

s
50

OEBPS/html/graphics/t0651-01.jpg
calledfrom | cp .w_where | second_time Description
e [wants return ength
FouReOUERSE | T wants result
ol il o process wantsrturn length
syscel_reaple [mll onml o st time around toclcubte engih
omsall sl T “ocond tane svound Vo sors revult.

OEBPS/html/graphics/t0637-01.jpg
L Aowy ndex.
Comtant | Vo | Comsnt | v | NS Duscrpion
T oo [Fa | 0 || dimeen et i s
Fonaarmay | outz | A cacmay [1| ate | gewsy ket adires s
Roncumack | Ouch | AUCNEIASK | 2| eceask | hemak et i e
R Gimmaon | oue | Aot G | 3| ek | doning sk ochet s s
S| o [frcrr | 3| T | e rame it adarn e
Tt | oo [R |5 | (fieas | imerac adaras ket sdarem e
fraomion | ouad | Frecaron | & ot et ool st
St | outo | rewcono | 5| brassse | immdcmorpoma o detanonsdanes
s 5 et s T afo T g’

OEBPS/html/graphics/21fig03.jpg
hen AR request
o eply reccived

Talior

imelnce
output funcion
(tHor_ontput)

A
e e
FnCresoLve

a—

tta_reroquest funcion
it e s

OEBPS/html/graphics/t0623-01.jpg
Destination Gateway Flags Rets
Use Interface

140.252.12.32 link#1 vc 0
0 1leoO

OEBPS/html/graphics/09fig30.jpg
mbuf () mbuf (}

n— monext s additional
‘mbufs
20bytes 20bytes
Sbytes
ax_1inkhdr
(16 bytes)
—— e -
P header beopy
(20 bytes)
fe—— m_data
TCP header
1P options (20 bytes)

(opt 1en bytes)

OEBPS/html/graphics/12fig08.jpg
le_sofec(0):

ienec()

fac_muiciadara]

10_sotecn)

othor muict()

other meio

other mici()

omn_ac omm_ac o _ac
G _refcowt| [ennvofcowt| |enmrafcomt
nm ot onn_noxc onm_next

OEBPS/html/graphics/t0616-01.jpg
report [Rre_- | Rmu_- | RTF_- [routing retum.
angument | CLONING | RESOLVE | XRESOLVE | message | re_retent | value
fog | rewm | oy | gencrated

0 al

sy metond [—5 RIHCATES ol
0 = pw

0 EEEN

entry found T T oK 0 ~ ew
T T oK T [wmiresowvE| e | pwr

T T emor RIS - &

OEBPS/html/graphics/t0606-01.jpg
search key = 140.252.13.60 | search key = 140.252.13.188

Search key byte (*cp): 0011 1100 = 3¢ To11 1100 = be
routing table key byte (*cp2): | 0010 0000 = 20 0010 0000 = 20
exclusive OR: 0001 1100 T001 1100

network mask byte (*cp3): 1110 0000 = €0 1110 0000 = €0

Togical AND: 0000 0000 1000 0000

OEBPS/html/graphics/t0593-01.jpg
st Intemet [Routing | Unix XNS

Méskd value value vlse | value value | Comment
Gomtanily |AFIS0 | ArNeT | PrRoUTe | AP owix| ArS
on_init |0 o rouce_inic 0 o
don_xtattach | rn_inichead| rn_inichoad | 0 o rn_inithead
aom_reottsot | 45 72 o o 16 inbits
dom_maxrtkey | 32 16 0 0 16 inbyles

OEBPS/html/graphics/t0591-01.jpg
netstat

Constant i Description

RIF_BLACKHOLE iscard packets without error (loopback driver: Figure 5.27)
RTE_CLONING © | generate new routes on use (used by ARP)

R1F_pONE a | Kemel confirmation that message from process was completed.
RIF_DYNANIC o | created dynamically (by redirect)

RIF_GATEWAY G| destination isa gateway (indirect route)

RTE_HOST | hostentry (el network entry)

RTF_LLINFO L | setby ARP when rc_11info pointer valid

R ASK | subnet mask present (not used)

RTE_MODIFIED ¥ | modified dynamically (by redirect)

RrE_PROTOL 1| protocolspecific routing flag

RIE_pROTO2 2| protocol-specific outing flag (ARP uses)

RE_REVECT ® | discard packets with error (loopback driver: Figure 527)
RTF_STATIC s | manually added entry (out e program)

RTE_UP v | route usable

RTF_XRESOLVE % | external daemon resolves name (used with X.25)

OEBPS/html/graphics/0473_prog01.jpg
180 struct connect_args (g tee

181
182
163
184

ine s
caddr_ nam
inc namelen:

185 comect (p, uap, retval)
186 serace proc, by

187 struct con
185 inc eretval:

189

191
192
193

194
195
196
197
198
159
200

200
202
203
208
206
207
208
209
210
a
22
214
a5
26
27
218
219
220
221
222
23
24

o0 uap:

struct socket +for
struct mbut nan,
interror, s

it (error « getock(p->p_td, vap->s, &fp))
cetuen (orcor)

S0 = (struct mocker *) fp->f_dato.

$ ((50->50_scate & S5NB10) k& (s0->50_state & 55_ISCOMNECTING))
return (BALIZADY) 5

§€ (orror + nockargs(énan, usp-sname, usp->namelen, MT_SONAME))
coturn (orror);

error = aoconnect (s0, nam
it (orror)
Goto bads
L€ {(s0->s0_state & SSNBIO) & (so->so_state & SS_ISCOMNECTING)) (
Feturn (EINPROGRESS) :
)

5 = apinet s
While ((s0->so_state & SS_ISCONWCTING) &4 80->80_orror == 0)
§€ (orcor - talecp((cadde_t) & so->s0_tineo, PSOCK | FCATCH,
netcon, 01)
brea

§¢ torcor <2 0 ©
So->s0_error = 0
)
aplxs
bd
0->80_state L "5S_ISCONMECTING:
_treennan)
5 (error «x ERESTART)
roturn (error);

uipe_syscalls.c

OEBPS/html/graphics/26fig15.jpg
1025

rev_nxt = 2049 rev_adv = 4097
next receive highest advertised
sequence number sequence number

plus 1

OEBPS/html/graphics/04fig28.jpg
fokohncd

steont()

36 bytes

stx_same(] ser_asar
Gébyie) Qb]
Fhemer
o efofs[ofo] et
1o ofofs/[o
o[o olo

36 bytes

36 bytes

OEBPS/html/graphics/0944_prog01.jpg
& void o debuge

4 top_trace(act, ostate, tp, ti, req)
50 short act, ostate:

51 strict tepch

52 struct topiphdr +ti;
53 int req

55 top.seq seq, ack;
5 int den, flage
57 struct tcp_debug *td = Gtcp_debug(tcp_debres];

58 i (tcp_debx == TCP_NDEBUG)
s tep_debx = 17 7+ cizele back to start +/

50 ta->ta_cime = iprime():
61 ca-tdact = act

8 ta->ta ostate = ostate:

8 ta-stdceh = (caddrt) tpr
6 it (tm)

& td->ta_ch = *tp; 7 structure assignasnt +/
& e

@ bzero (caddr_t) & ta->tdch, sizeof(*tp));

6 ar e

6 ra-ta et = el; 7+ structure assianasnt */
0 else

7 beero((caddr_t) & td->tdti, sizeof(*ti));

72 eastaxeq - req

73 #itdet TeromRUG
74 it (tcpconsdebug == 0)
s zeturn;

132 sentie
183

OEBPS/html/graphics/16fig15.jpg
= o ——

maghaz()

[FSo_nane

[mso_nameten

R

[mso_tovien } sovien sov_base S ~—E:nu—-

[mso_control —— 0|) 3

[msg_controllen 1 m "]

imeo_flage 2 s ,_< e

——

<cmsg Ten | cmsg level | cmsg_type | date

g L

OEBPS/html/graphics/t0663-01.jpg
Member value Description
Gor_tanily PF_ROUTE | protocol family for domain
dor_name route name

dor_init route_init | domain initalization, Figure 1830
don_externalize 0 not used in routing domain
don_dispose 0 Rt used in routing domain
don_protosw routesw | protocol switch structure, Figure 202
don_protoswPROTOSH pointer past end of protocol switch structure
don_next filled in by domaininit, Figure 715
don_rtattach 0 not used in routing domain
don_rtoffset 0 not used in routing domain
dom_maxrtkey 0 ot used in routing domain

OEBPS/html/graphics/0903_prog01.jpg
00
401
“wz
w03
“01
ws

405
407
w8
w05
a0
a1
az
a3
au
as
a6
a7
ae
as
a0
a1
22
ey
a2
a2s
a6
a7
a0
a9
a0
a1
a2
a3

g
* In transmit state, tine the transmission and arrange for
* the retransmit. In persist state, just set snd_max.

b

S (tp->t_force == 0 || tp->t_tiner(TCPT_PERSIST) == 0) (
tcp_seq startseq = tp-oendnxt;
” ¢
* Advance snd_nxt over sequence space of this segment.
-

if (flags & (mLsw | mLrm)) (
i (flags & TS
p->and_nxtes:
if (flags & THFIN) (
Ep->and_nxees:
tp->t_rlags |- Te_swTFIN;
)
)
tp-sand_nxt += len;
i (SBO_OT(tp->and_nxt, tp->sndmax)) (
tp->snd_max = tp->endnct;
7
* Tine this transmission if not a retransmission and
* not currently tining anything.
.
i€ (spoeree
Ep->t_rte
tp->t_rtaeq = startseq:
tepatat. tops_segstinedse;

)
e
* Set retramsmit timer if not currencly set,
* and not doing an ack or a keepalive probe.
* Initial valus for retransmit timer is smoothed
* round-trip time + 2 + round-trip time variance.
* Initialize counter which is used for backoff
* of retxanemit time.
o
L€ (tp->t_timer [TCPT_REXNT) == 0 4&
tp->ond_pxe 1= tp->snd_una) (
tp->t_timer [TCPT_REXNT) = tp-st_rxtcur;
Af (tp->t_tiner (TCPT_PERSIST]) (
tp->t_tinex (TCPT_PERSIST] =
post_matanite

)
)

) else if (S0 GT(tp->snd_nxt + len, tp->sndmax))
tp->and_max = tp-sand_nxt + len;

fep_output.c

fp. pitputic

OEBPS/html/graphics/0790_prog01.jpg
55 void
56 udp_input (n, iphler

57 strict mbut *m;

58 int
591

iphien;

struct 1p *is
struct udphdr *uh;
struct inpch *inp:
sruct mbut topts = 07
it len

seruct b save_io;
udpatat. udps_ipacketss
”

* Strip Ip options, it any; should skip this,
+ make available to user, and tse on returmed packets,
* but we don't yet have a way to check the checksun

* with options still present.
i (iphlen > siseof (struct ip)) (

ip_stripoptions (m, (struct sbut *) 0);

iphlen = sizeof(struct ip);
)
o

* Get TP and UDP header together in first mbut.

o
ip = mtodin, struct Ip);

if (m->m_len < iphlen + sizeof (struct udphdr)) (

udp_usrreq.c.

L€ (in = moullup(n, iphlen + sizeof (struct udphdr))) == 0) [

‘udpstat. udps_hdropa+e;
roturn;
)
ip = mcod(n, struct ip %)
)

un = (scruct udnar) ((cadar_t) 1p + ipmien)s

i

* Make mbut data length reflect UDP length.
* Tt not enougn data to reflect UDP length, drap.

*
len = ntohs (u_short) uh->uh_ulen);
if (ip->ip_len L= lom (

L€ Gon > dposiptem (

m_adi(n, len - ip->ip_len);
/% ip->ip ton = len; +/

)
Y

“ Save a copy of the 1P header in case we vant to restore
* i for sending an ICHP error message in respense.

.
save_ip = *ip:

OEBPS/html/graphics/13fig08.jpg
f———— 1GMPmessage ——

eypecode| ckoun arouw,
T e oy

P header
1P datagram -

OEBPS/html/graphics/28fig28.jpg
rev_wnd = 6: receive window_
Tadvertsed tosender)

n

12 s s s e 7 8 9w
o sequencemombers
e bomscknowedg | +
- covadva

reccivedsegment| 6 7 8 9 10

Py

OEBPS/html/graphics/08fig08.jpg
Dbytes

[1516 3
Version [hexderlengi| type ofservice ot Tength
ipv | ipml ip_tos ip_ten
dentification T flags and fragment ofset
ip_ia H ip ot
fme tolive protocal Teader checksum
ip_tel oy ip_sum
2bitsource TP address
ip_sre
T2bit destination [P address
ip_dst
opions (i any)

data

OEBPS/html/graphics/0113_prog01.jpg
325 Testarc(itp)
326 struct ifnet *itp:

327 ¢
328 scruct, le_softe *lo = klesoftclifp->if_unit];
320 scruct letmd *ted;
330 scruct mbuf *m;
3 int len,
32 4f ((e->scif.if_flags & IFF_RUNNING) == 0)
m rerurn (07
/# davice-specific code */

35 o

/* device-specitic code */
340 IF_DEQUEVE (s1e->sc_4€ . 1€ and, m);
341 i€ tm == 0)
382 return (0);
363 len = leput (le->sc_r2->ler2_thut [le->sc_ted], =11
344 ”
345 * If bt is listening on this interface, let it
346 * see the packet bofore we commit it to the wire.
37 .
348 S€ (itp->if_bpt)
349 bpe_tap(ifp->1t_bpt, le->sc_r2->ler2_tbut (le-nc_tmd],
350 len

/* device-specitic code */
359) while (sele->sc_txcnt < LETBUF)
360 le->sc_if.if_flags |+ IFF_OACTIVE:
361 return (0

362)

OEBPS/html/graphics/0253_tab01.jpg
563
s
ses.
56
587
ses
589
590
s91
592
593
594
595
596
597
598
599
600
601
602
503
604
605
606
607
608
609
610

case TPOPT_LSRR

~ ip-input.c
+ Source routing with record.

* Find interface wich current destination address.
* 1€ none on this machine then drop f strictly routed,
+ or do nothing it loosely routed.

+ Record interface address and bring up next addres
+ comonent. It strictly routed make sure next

* address is on directly accessible net.

IPOPT_SSRR;
if ((off = CpIPOPT_OFFSET)) < IPOPT_MINOFF) (
code = &Cp(IPOPT_OFFSET] - (u_char *) i
goto bad;

)
ipaddr sin_addr = ip->ip dst;
ia = (struct in_ifaddr *)
ifa_ifwithaddr ((struct sockaddr *) kipaddr):
it (a==0) (
L€ (opt == IPOPTSSRR) (
type = ICHP_UNREACH;
Code = ICHP_UNREACH_SRCFAIL;
goto bad;

)
I

* Loose routing, and not at next destination
* yet; nothing to do except forward.

.

OEBPS/html/graphics/0253_tab02.jpg
611
612
13
610
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
63
635

636
637
638
639
640
41
642
64
P
645
646

detine TNA
tdetine SA

break:
)
ote. 7+ 0 origin =/
if (off > optlen - sizeof (struct in_addr)) (
je
* End of source route. Should be for us.
s
save_rte(cp, ip->ip_src
break;
)
A
* locate outgoing interface
-

boopy ((caddr_t) (cp + off), (caddr_c) & ipaddr.sin_addr,
sizeof (ipaddr.sin_addr)) ;
i€ (opt == IPOPT_SSRR) (
struct in_ifadar +
struct sockaddr *
4f ((a = (INA) ifa_ifwithdstaddr((SA) & ipaddr)) == O)
{a = (INA) ifa_{fwithnet((SA) & ipaddr);

)e
ia = ip_rtaddr (ipaddr.sin_addr);
it (ia == 0) (
type = ICMP_UNREACH;
Code = ICMP_UNREACH_SRCPAIL:

goto ba
)
ip->ip_dst = ipaddr.sin_addr;
beopy (caddr_t) & (IA_SIN(ia)->ain_addr) .

(caddr_t) (cp + off), sizeof (struct in_addr)):
CPIPOPT_OFFSET] += sizeot (struct in_addr):

* Let ip_inte’s mcast routing check handle mcast pkes
~/

forward = | TN MULTICAST(ntohl (ip->ip_
break:

adar)

o_jnpul.c

OEBPS/html/graphics/01fig15.jpg
Intel 80x86-specific

kernel headers

Unix flesystem

virtual memory

OEBPS/html/graphics/t0584-02.jpg
IP routing table, index = <ipRouteDest >
SNNIP variable Nariable Description
ToRoutebast |zt ey Destination [P addres. A value of 010,00 indicates a default
entry
tpRoutertIndex | rt_ifp.i Interface number: ¢ 1rde
SpRoutemetricl Primary routing metric. The meaning of the metric depends.

ipRoutaMerricz
ipRouteMotricd
ipRoutaMotrict
ipRoutetiextiop
ipRouteType

ipRouterroto
tpRouteage
ipRouteask

ipRouteretrics
ipRoutelnto

=t

rt_gatoway
(e tex)

Gseetex)
(not implemented)
et _pask

-
i

o the routin protocol (ipRoute2zoco). A valueof
i means itis not used.

Alterntive routing metric.

‘Alternative routing meric

Altenative rooting metric

1P address of next-hop router,

Route type: 1 = other, 2 = invalidated route, 3 = direct,

Number o seconds snce oute was st upeated or
determined o be corect.

Mask o be logically ANDed with destinatin I address
before b compared with pRout evest.

Allemative routing metric

Referenceto MIB defnitions specfc o tis paticular
routing protocol.

OEBPS/html/graphics/t0584-01.jpg
netstat -rs output

rtstat member

1029 bad routing redirects

0 dynamically created routes

0 new gateways due to redirects
0 destinations found unreachable
0 uses of a wildcard route

rts_badredirect
rts_dynamic
rts_newgateway
rts_unreach
rts_wildcard

OEBPS/html/graphics/16fig34.jpg

OEBPS/html/graphics/t0583-02.jpg
rtstat member

Description

Used by
SNMP

rts_badredirect
rts_dynamic
rts_newgateway
rts_unreach
rts_wildcard

#invalid redirect calls

#routes created by redirects

#routes modified by redirects

#lookups that failed

#lookups matched by wildcard (never used)

OEBPS/html/graphics/859equ01.jpg

OEBPS/html/graphics/t0583-01.jpg
Variable Datatype Description
Trotabies | strect radinode hesd 11 | amayof panter o heads of routing bles
Sasi_mhead | steuct zadix_node_nead + | pointertohead of mask able

en_skereelist | scruce radixnask * ead o lnked st ofavalble xaci x_sack srucures
e erien | dn Tongest ronting table key i bics

m_zores enar ary of allzeo bis,of engthma_xey Lo,

oo Cnac ray of ll one i, o ngih s ey e
moskedkey | cna + aray for masked sarch ke of length ey en
reetat et outing ot (gure 1815

sterash G 0wt not in bl but o o

=y FEaeey Thead o doubly ke s of rowting cofro locks
cav_zecuspace | u_long defaulsizeof routing scket rceive bulfer 192 bytes
ra_sendspace | u_long defaut i of routingsocke send bufer, 8192 byes
Toutecb Struct Toutech Wronting socke steners, pr protocl nd foal.
routegst | atruct sockadar tmporary for destinaion of routing message
route_ “teuet sockadar emporany for source o outing mescage
pitengze S {rrednio sl semporary for peotocol of rouling taeseege

OEBPS/html/graphics/t0581-01.jpg
File Description
net/radix.h radix node definitions
net/raw_cb.h routing control block definitions
net/route.h routing structures
net/radix.c radix node (Patricia tree) functions
net/raw_cb.c routing control block functions.
net /raw_usrreq.c | routing control block functions
net /route.c routing functions

net /rtsock.c routing socket functions

OEBPS/html/graphics/t0580-01.jpg
To | From ‘Structure
rntype | oo, | oo, Description e
FCADD 0 o addroue T _naghar
FnComce | o | change gaeway, metrcs, or fags r_naghar
R DELADDR | address being removed from intrface ia_nsghar
R DELETE . o | deleteroute rt_nsghds.
RmCoET . | report mtrics and other route information. re_nsghdr.
RmTEINED o | inteface going up,down, ec. i naghar
RnCLo0K . o | lock specifed metrics repsghds
10510 | Rernel suspectsroute s filng. e msghdr
RnCuiss | lookupfiled on this address rt_nsghds
RCaEADOR + | addres bing added o nerface ia_peghar
R rsoRECT o | Rorneltold o use different route rt_rsghdr
RTM_RESOLVE o | request 00 resolve destination to ink Jayer sddress | rt _meghar

OEBPS/html/graphics/11fig20.jpg
[

ne a
iom-tme 1cap_codo Lerp_cksum
1enp_scto e o worgas
soue_schoRgRLY
1emp_id
identifcr
iemp_aca()

optional data

OEBPS/html/graphics/t0578-01.jpg
Destination Gateway Flags Refs
Use Interface

224.0.0.5 1link#l UHL °
0 leb

OEBPS/html/graphics/0844_prog01.jpg
7
128
129
120
m
12
1
14
15
136
m
18
139

0 tep_timerc.

* 2 MSL tineout in shutdown went Off. IE we're closed but
* till waiting for peer to close and connection has baen idle
* oo long. or if 2WSL time is up from TTMEWAIT, delete comnection
* control block. Otherwise, check again in a bit.
.
TcPr_awst:
S (tp->t_state 1= TCPS_TIMEWAIT k&

tp->t_idle <= tep_maxidle)

cp->c_tiner(1CPT.245L)
else

© = tep_close(tp) ;
broak:

iepLitere

OEBPS/html/graphics/t0576-01.jpg
32-bit IP address (bits 32-63) dotted-decimal

i | 3333 3333 4444 4444 4455 5555 5355 G66es
2345 6789 0123 4567 8901 2345 6789 0123
0000 1010 0000 0001 0000 0010 0000 0011 | 10123
0111 0000 0000 0000 0000 0000 0000 0001 | 112001
0111 1111 0000 0000 0000 0000 0000 0000 | 127.00.0
0111 1111 0000 0000 0000 0000 0000 0001 | 127001
0111 1111 0000 0000 0000 0000 0000 0011 | 127.003
1000 0000 0010 0000 0010 0001 0000 0101 | 12832335
1000 0000 0010 0000 0010 0001 0000 0110 | 12832336
1000 1100 1111 1100 0000 1101 0010 0000 | 1402521332
1000 1100 1111 1100 0000 1101 0010 0001 | 1402521333
1000 1100 1111 1100 0000 1101 0010 0010 | 1402521334
1000 1100 1111 1100 0000 1101 0010 0011 | 1402521335
1000 1100 1111 1100 0000 1101 0100 0001 | 1402521365
1110 0000 0000 0000 0000 0000 0000 0000 | 224000
1110 0000 0000 0000 0000 0000 0000 0001

OEBPS/html/graphics/25fig15.jpg
establishment bl s
S — |,
han E § EY l 7
s ke e
b b ot

OEBPS/html/graphics/0407_prog01.jpg
207 araric ine ip_mroute.c
203 add_vit (vitep)

204 serucr viferl *vifep:

205
206 struet VA *vifp « viftable + vifepoviteviels

207 seue itaddr +ifa;

208 struet ifmer tifp;

209 struct ifreq itri

20 inc error, s

211 seatic struce sockaddr_in sin

212 (sizeot(sin), AP_INET)

23 A€ (ifep-oviLe Vit »u HAXVIES)

a1 eturn (BINVAL)

215 i€ (vifpow_icl_adde.aaddr 1- 0)

26 roturm (BADDRINUSE)

217/ Find the interface with an address in AP_INET fanily */
218 sin.sineddr - vitep-svite_icl addrs

29 ifa s ifeifuithedde((struct sockadds *) Lain):

20 it (ifa = 0)

o Feturm (EADDRNOTAVATL);

22 e aplnecis
223 it (vifepovite_flage & VIFF_TUREL)

224 Vi fp-su_emt_addr = vifep->vifc_emt_sddr;
25 ese (

226 7+ Make sure the interface supports multicast */

2 itp - ifa-sifaitpr

228 S€ ((ifp->it_flags & TFEIRLTIONST) =x 0) (

229 spix(a):

230 Feturn (B0PNOTSUZP)

31)

232 ”

2 * Enable proaiscuous reception of all Ip multicasts
24 + from che interfaca.

255 B

236 satosin kit Er_adde) ->sin_tanily = AP_ING

2 Satosin(Gits .ifr_addr) ->sin_oddr.s_odds = INADDR_ANY:
2 error = (+ifp->ifloctl) (ifp, SIOCADDWLAI, (caddr_t) & iff):
29 S (erzor) (

200 oplx(a);

201 retumn (esror) s

202)

w)

200 vifpeov_tlags = vifcp-vite_flags;

205 vifpoov_threshold - vifcp-ovife_threshol

206 vifpauicl_adde - vifep-sviteicl_addes
207 vitpswlifp - ita-sitaitp:

+ Adjust munvits up if the vifi is higher than mumvifs */
29 Gt (mumite <o vifepovitevich)

250 fumvis « vifep-avife vifd + 1y
31 splxte .

22 rerum (011

)

iR

OEBPS/html/graphics/t0587-01.jpg
32-bit IP mask (bits 32-63)

index | rn_b

3333 3333 4444 4444 4455 5555 5555 6666
2315 6789 0123 4567 8901 2345 €789 0123
0000 0000 0000 0000 0000 0000 0000 0000 | O | -1
1111 1111 0000 0000 0000 0000 0000 0000 | 40 | ~41
£EEEff0: | 1111 1111 1111 1111 1111 1111 1110 0000 | 59 | 60

OEBPS/html/graphics/0375_prog01.jpg
6
169
1m0
Ut
172
3
176
s
176
177
e
179
180
101
102
18
188
185
167
188
189
190
151
192
15
19
195
196
197
198
199
200
202
203
204
205
206
207
208
209
20
a

ip.output.c
TH_LOOKUP_ULAL 1p->1p_dst, 169, 1nm s oty

i€ (dom 10 WL 66
(o == NULL 1| ino->ino_multicast_loop) ! (
prs
+ If we belong to the dsstination multicast group
+ on the outgoing interface, and the caller did not
* forbid loophack, loop back a copy.
o
ip_mloogback (1£p, m, dat):
) elae §

1 we are acting as a multicast router, perform
* multicast forvarding as it the packet had just

+ arrived on the interface to which we are about

* to send. The multicast forwarding fuiction

+ recursively calls chis function, using the

* IP_EORAARDING flag o provent infinits recursion.

Multicasts tnat are looped back by ip_mloopoack().
above, will be forwarded by the ip_inut() routine,
+ i neces

wy.

extern struct socket *ip_mrouter:
S (ip_nroucer & (flags & TP_FORWARDING)
L€ i ntoraaratm, itp) 2 0) (
n_treemin) ;
goto don

Multicasts with a tine-tc-live of zero may be Looped-

back, above, but st not be transmitted on a network.

Alao, muiticasta addresscd to the loopback intertase

are not sent - the above call to ipmloopback () will

Loop back a copy Lf this host actually belongs to the

+ destination group on the loopback interface.

-

1 (ip-sip el
m_treen(m ;

goto dones

<01 it - sloin) (

)
goto sendic:

ip_output.c

OEBPS/html/graphics/29fig21.jpg
t_iobc

rev_nxt
ti_seq

OEBPS/html/graphics/t0586-01.jpg
Initialized to

Member (by rn_inithead)
rnh_addaddr | rn_addroute
rnh_addpkt NULL
rnh_deladdr rn_delete
rnh_delpkt NULL
rnh_matchaddr | rn_match
rnh_matchpkt | NULL

rnh_walktree

rn_walktree

OEBPS/html/graphics/24fig23.jpg
0is greater than _ Qs less than

These numbers these numbers

OEBPS/html/graphics/0247_tab01.jpg
ip_mput.c
553 int -

554 ip_dooptions (m)

555 struct mbut *m;

556 (

557 struct ip *ip = mtod(m, struct ip *);

558 uchar *cp;

89 scruct ip_timestamp *ipt;

560 struct in_ifaddr *3

S61 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = O.
562 struct in_addr *sin, dst;

563 n_time ntime;

563 st « ip->ip.dsts
565 cp = (uchar *) (ip + 1)

566 cnt = (ip-»ip_hl << 2) - sizeof (struct ip)s
567 for (; cnt » 0; cnt -= optlen, cp += optien) {
68 Pt « CPIIPOPTOPTVAL];

569 i€ (opt = IPOPT_EOL)

570 break;

511 i€ (opt == TPOPT_NOP)

512 optien = 1;

573 else

570 optlen = cp(IPOPT_OLEN)

575 it (optlen <= 0 |1 optlen > cnt) (

576 code = &cp(IPOPT_OLEN) - (u_char *) ip:

OEBPS/html/graphics/0356_prog01.jpg
733 case TP_ADD MENBERSHTE: e
74 ”

735 * Add & multicast group mesbership.

736 * Group must be a valid IP multicast address.

77 “

738 S€ (m == WULL || meom_len fa sizeof (struct ip_area)) {
739 error = EINVAL;

70 break:

i)

72 mreq » mtods, struct ipareq *);

743 L€ (INWLTICAST (ntoh (mreq->inz_mitiaddr.s_adde))) (
744 error - BINAL;

745 break;

746)

747 ”

748 * 1f no interface addross vas provided, use the interface of
749 * the route to the given multicast addr

750 -

5 S (nreq-sine_incerface.s_addr =« INADDRLANY) (

75 Fo.ro_xt - wuL

753 st = (struct sockaddr_in) &ro.ro_dst:

750 dst->sin_len = sizeof (vdst);

755 et->sin_tanily = AE_INET;

756 dot->sin_addr = mroq->ine_multiaddr:

757 reallocero)t

758 it (ro.ro_re == WULL) (

759 EADDRNOTAVATL

760

761)

762 itp = ro.ro_rt->re_itp;

763 rttroe(ro.rort);

268) else (

765 INADDR_TO_1#P (mreq->ine_interface, 1fp):

766)

67 ”

768 * See if we found an interface, and confirm that it
769 .

770

m NULL |1 (ifp->1f_€lags & IPF_MULTICAST) == 0) (
72 error = EADDRNOTAVALL;

773 break:

774)

75 I

776 * Seo 1€ the membership already exists or if all the
7 * emborship slote are full.

778 .

79 for, (1 « 01 1 < imo->ino_nun senberships; +ed) (

780 L€ (1n0->imo_monbershipli]->inm_itp = 1fp ik
78 ino->ino_neabership(1] ->inn_adds .s_adds

782 = mreq-sime_multiaddr.s.addr)

783 break;

788)

785 A€ (4 < imo->im0_nun_menberships) (

706 ersor - EADORTIGE)

78 break;

788)

89 SE (5 == TP CEBIRSHIPS) (

750 rror = ETOOMANYREFS:

9 breaks

92)

793 ”

75 * Everything looks goods add a new record to the multicast
795 * address list for the given interface.

796 .

797 A€ ((1mo->iso_pembershiplil =

298 in_addmlt (knreq->inr_mltiaddr, 1fp)) == NOLL) {
799 oror = ENOBUFS:

800 breaks

801)

802 ++in0->ir0_nua_nenberships;

803 broak;

ip_outputc

OEBPS/html/graphics/0359_prog01.jpg
197

459
500
so1
s02
503
504
s05
506
507
s08
509
s10
s
512
513
516
515
s16
517
518
s19
520
sa1
522
523
524
525
526
527
s28
s29
500

allocate a e mlticast record
« and link it into the interface’s multicast list.
.
iom + (struct in_multi) malloc(sizeot (*inm,
H_IPHADDR, W NOWAIT) 1
L€ (inm = L) (
oplxio) s
retumn GWLL) ;
)
inm->inm_adcr = *ap
inn->inn_itp = if
inn->inn_refcount
1PP_T0_IA(ifp, ia
i€ la == iy (
Ero(ion, M_IPADDR) ;
splx(s)
retumn UL 1

)
inmesin_ia = la;
inm-sinn_next = la->ia_multiaddrs;
ia->1a maltiaddrs = inn;
"
* Ask the network driver to update its milticast reception
* Tilter appropriately for the now address.
D)
((struct sockadde_in *) &ifr.ifr_addr)->sin_fanily = AF_INET,
((struct sockaddr_in *) &ifr,ifr_addr) sin_addr = *ap;
SE ((ifp->1e_foet] == MLL) |1
(+1fp->T_toctl) (ifp, SIOCADDMULTI, (caddr_t) & ifr) 1= 0)
ia->la_mtiaddrs = nm->inm_next:
£roe (inn, M_TBMADDR);
apix(s)
retum (NULL) ¢

)

I
* Let TOMP know that we have joined a new TP milticast grou.
o
igmp_joingroup (inn

splx(s);

retum (inm);

OEBPS/html/graphics/03fig16.jpg
ifnet{}
if_next

if_addrlist—

more
interfaces

ifaddr(}
[ifa_ifp
ifa_next

ifaddr(}
[ifa_ifp
ifa_next

ifaddr{}
[ifa_ifp

ifa_next =

OEBPS/html/graphics/0392_prog01.jpg
57 case TGHPHOST_NENBERSRIP_QUERY: e

% ++igmpstat . igps_rcv_queries:
5 i€ (itp == eloif)

100 break;

101 1€ (ip->ip_dst.s_addr 1= igp_all hosts_growp) (

102 +igmpatat . gps_rcv_badquerie:

0 a_treemin) ;

104 rotumn;

105)

106 ”

107 * Start the timers in all of our nesbership records for
108 * the interface on which the query arrived, except those
109 * that are already running and those that belong to the
10 * all-hosts group.

m)

12 ILPIRST_MULTL (step, inm);

u while (imm 1= NULL) (

11¢ i€ (nnosinn ifp «x 10 4k imno>inm_cimer == 0 Gk
15 inm->inm_addr.5_addr 1= igwp_all hosts_group) |
116 inm->inm_timer -

m IGHP_RANDOM_DELAY (inm->inn_addr)

18 igup_tinars_aze_running = 11

19)

120 N NEXT LTS (step, inm);

ot)

m broak:

po—

OEBPS/html/graphics/23fig19.jpg
e

§
i

i
ge s

some filds,

i

waddr

wadr

Forder

55 3E [

15|--f21
§

{ g~
ESEERE

§

OEBPS/html/graphics/29fig18.jpg
received segment

3
4 5 6
rev_nxt
rcv_up
ti_seq
ti_urp=3

(urgent offset)

OEBPS/html/graphics/01fig06.jpg
128 bytes

mbuf{}

m_next

m_nextpkt

m_len

m_data

m_type

m_flags

NULL
NULL
16

MT_SONAME
0
16-byte sockaddr_in(}

with destination IP address
and port number

OEBPS/html/graphics/01fig11.jpg
socket's

et pointertonextmbufinchain__—=WE0

i e

= o E B

o oy

S — T —

e o —
ORI = - r—

il sender's P address

nd port umber

npweha . revit

it et structure

4 bytes (umused)

Jbmeotana

OEBPS/html/graphics/27fig20.jpg
t

et [ciprev “[7]s

o

tisequd

onlist

iclen=2

s Eiment [eiprev

e,

i

Cinext [tiprev [0 [T [2 B[W] B

v

ti_seq=10

OEBPS/html/graphics/0247_tab02.jpg
577 goto bad;

578)
579)
580 switeh (opt) (
581 dotaule:
82 break:
7% option processing */
ne)
720 it (forward) ¢
721 ip_forvard(m, 1);
122 roturn (1);
23)
726 return (0):
725 bad:
726 ip->ip_len -= ip->iphl << 2; /* XXX icwp_error adds in hdr length */
727 icwp_error(m, type, code, 0, 0};
728 ipstat.ips_badoptionsess
729 return (1);
730)

ip_input.c

OEBPS/html/graphics/t1054-01.jpg
optname | Variable | Access Description
TCP_NODELAY | t_flags | read,write | Nagle algorithm (Figure 26.8)
TCP_MAXSEG | t_maxseg | read, write | maximum segment size TCP will send

OEBPS/html/graphics/09fig29.jpg
100 bytes

44 bytes

mbuf(}

20bytes

8bytes

max_linkhdr
(16 bytes)

m_pktdat }

1P header
(20 bytes)

le—— m_data

TCP header
(20 bytes)

allocated for
Ethernet header

OEBPS/html/graphics/18fig08.jpg
IR U RAsR() Thourayl) A50b0)

. Tadix notaty
S azaen PN\
Tatix notely soutal)
el noday e
et
Faaix note -
| [
Fadix noda(
ightend) sepeb0)
costen)
mask rheads xadix sods_besd()
pr—
Tadix_node(s
L olEnm
[EeTep— Tadix nodels sapeb)
i [y
casix noto)
rostal)
caix nota)
stnas te_sotec(on: £ soeciols toit:
 E— 1tmec 4 temero seme0)
= i aoteen)
ttnor scars: | tesetten)
stasaz) oy stasaze)
t

4
-

lsocxasar_a10) lsocxadar_a10) lsockacar_a10)

socxagar_a10) lsocxagaz_a10) sockadar_a10)

OEBPS/html/graphics/t1059-01.jpg
File Description

net/bpf.h BPF constants
net/bpfdesc.h | BPF structures

net/bpf.c 'BPF device support

OEBPS/html/graphics/12fig34.jpg
1e_sofcelo)

other milti()

itne)

ip moptions()
marticast it

femnac]
en_retcount

[renbershipior |

[ac_muTttadar;

e sotecq)

in trasar()

et

i mieiq)

724.0.0.1
fion_ifp
o ia
Ton_refcount
Tnn_timer

[fa_mu1ciaddrs)

| [~D

e Sy

erbership(19)

OEBPS/html/graphics/t1060-01.jpg
Variable Datatype Description

bpf_iflist | struct bpf_if * | linked list of BPF-capable interfaces
bpf_dtab struct bpf_d (] | array of BPF descriptor structures
bpf_bufsize | int default size of BPF buffers

OEBPS/html/graphics/0634_prog01.jpg
-route.c

T
187+ Don't Listen to the redirect if it's

19+ for a rowte to an interface.

190 i€ (re-sre_flags & RTE_GHTENAY) |

191 A€ (({Fo->ri_flags & KTE_HOST) == 0) & (flags & RTF_HOST)) (
192 ”

193 + Chancing from route to net => route to host.
194 * Create now foute, rather than smashing route to net.
195 o

196 create.

el Elage 1+ Ree_owtrae | ner_prnic:

198 exror « rroquest ((int) KNLADD, det, gateay,
199 necnask, flag

200 (seruct reentry <1 01

0 stat = ircarac res_dynanic:

202) else (

200 ”

200 * Smash the current notion of the gateway to
205 © Cnis descination. Should shach sbout sctmaskiil
206 Y

207 Ft-see_flags 1= KTE_MODIFIED:

208 flags |+ RT_YODIFIED;

209 stat = irtocat ris_newgatouay:

20 Tt setgitalrt, rikey(stl, gateway):

a1)

22) etse

m exvor - EHosTINREACH:

36 cone:

25 i o

216 it (xep 4a torror)

a7 trep 1

28 elze

29 retreetin);

20)

21 s

2 " (erron)

2 Fratar cta nadeedsizectsi;

26 else it (star 1. WOLL)

223 (ratat) oo,

226 brero((caddr_t) & info, sizeof (nfo));

227 info.rti_inolMAKDST) = det

228 infolrtiinfo(RIAX GATERRY] = gatevay:

228 into resinfolamuEnask] nemazk:

230 info.reiinfo(RACAUTIOR) = sre.

231 xt_nissmag (RIWIEDIRECT, &info, (lags, error):

223

o

OEBPS/html/graphics/t1060-02.jpg
bpf_d member Description

bd_rcount. #packets received from network interface
bd_dcount #packets dropped because of insufficient buffer space

OEBPS/html/graphics/07fig18.jpg
[max_nr bytes ——»f

I e -
R A e

e v
B o e e

128 bytes

OEBPS/html/graphics/11fig17.jpg
unreachable
time excooded

source quench

need|
fragmentation

parameter

probiem,

o void ip
(mustben) (0 headerand dota from bad packer)
Tyt
e B . =
(mustbe) 0P hesderand dota fom b packet
by Ty
ckoun [optr] 0| (1 heador and data from bad packet)
T g T T byies

OEBPS/html/graphics/t1034-01.jpg
Rlogin FIP
#bytes [input | output || input | output
3 12 | w4 2 | 20
4 9% 7
s 7 2 5 2
6 6 || 325 B
7 13 2! 1
8 1
9 4 1
Total | 109 | 169 | 338 | 338

OEBPS/html/graphics/t1084-01.jpg
Used by

ipstat member Description s

ibs_noproto | Apackets with an unknown or unsupported protocol |+
ips_rawout | total #raw ip packets generated

OEBPS/html/graphics/t1061-01.jpg
bif_dlt Description
DLT_EN10M5 | 10Mb Ethernet interface
DLT_SLTP | SLIP interface
DLT_NULL | loopback interface

OEBPS/html/graphics/06fig09.jpg
[rp—

sz

network and subret
umber

)) B oo

network broadesst
‘address

dincted broadeast
‘ddrse

detination address

ke ta_subnetmack
bt n network

byteonder

| _Tpe | Fthemet PP Toopbeck | Descripon |
ta_addr kadds _in| = Inetwork, subnet, and |
o) SRR oo | Wmemic
C |network number
ket S Sorom—|
pR—

OEBPS/html/graphics/t1068-01.jpg
Command

Third argument Function Description
FIoWRERD i Bofioctl | rtum fbyte in hokdbufferand sor buffers.
biocceuen | uint bpriocel | retumsizeof packet buffers
rocssuen « | uint bptiocel | stsize of packet bufers
brocsere struct bpt_progran | bpe_sect | install BPF program

BroceLusn reset_d | disard pending packets
BlocrRoNISC ifpronise | enable promiscuous mode
Brocoour wine botioeel | rewmbie_dlc

BrocomTIr | struct bpt_inane | retum name of atached interface
brocsstir | struct bpf_setit | attach network intrface o device
rocsRTINEOUT | struct bofioctl | setread timeout vlue
rocoRTINEOUT | struce bptioctl | retum read timeout value
Brocesmrs | struce bptioctl | retum BPF satsics
srocmeennas | u_int bptioctl | enableimmediate mode
BIOCVERSION | struct bpt_version | bpfioctl | retum BPF version information

OEBPS/html/graphics/t1082-01.jpg
File Description

netinet/raw_ip.c | raw IP functions

OEBPS/html/graphics/556equ02.jpg
tick= 10(:‘0;000 and SHRT_MAX = 32767
™

OEBPS/html/graphics/t1083-01.jpg
Variable Datatype Description
Fawinpch struct_inpch ‘head of the raw IP Internet PCB list
ripere Struct sockaddr_in | contains sender's IP address on input

Tip_recvapace
rip_sendspace

u_long
w_long

defaultsize of socke reccive buffe, 192 byes
default size of socket send buffer, 8192 bytes

OEBPS/html/graphics/23fig18.jpg
1516 1
uinext
uiprev
uix uipr ui_ten
Sbittimetolive (1T | &:it protocol 16-bit header checksum
32:bitsource IP address.
wi_dst
32-bit destnation IP address.
ui_sport ui_dport
16-bit source port number 16-bit destnation port number
ui_vlen wi_sun
16-bit UDP length 16-bit UDP checksum

OEBPS/html/graphics/08fig14.jpg
Lines

Variable Ethernet sup Loopback | 0% 1)

ta_adac S T e | e
N o

Le brostades 80
s

ia_netbroadcast M 201-202
!
i

ia_net L 210-211

A — o

INADDR_ANY 260-261

OEBPS/html/graphics/18fig47.jpg
saaix nodat)

Mo.2%2. 13 . 108

i TecTecTod be]

Er_pkiiet

Gy

32

sk

oxs0

F_tTags

lacrrve1roor

Tt

i

_tefe

EEsT

saaix masx0)

ot £

[r_unued

. fiage

[k Tse

[rm_pask

[Eorets

F—ser=r e eTEeT

-1

lacrava: 0.0.0.0

e

[
I =,

OEBPS/html/graphics/t0191-01.jpg
Variable | Value Description

max Linkbar | 16 | maximum number of bytes added by ink ayer

max_protohdr | 40 | maximum number of bytes added by network and transport layers

max_hdr 56| max_Linkhdr + max_protohds

max_datalen | 4 | numberof data bytes available in packet header mbuf after accounting for
Y Yok s peniocal hesidics

OEBPS/html/graphics/appafig02.jpg
St () L {4}

bt onextpRe | oLt e
et s [acten w0 n_ton 18
onoxepke | ni —Indata —ndata
rten o oo sr_pard [mtype wr_oaza
s wou | [fiags okmion o tiagy et
mtype r_praBLs [pkenarten | 221
n_flage o n_pwehdr vevi| pir

et Tieos] Ton m_ext ext_but

b |, ia [atr et ext_fros| MuLL
e [a=7] "™ s [oew m_oxt_oxc_size| 2048

Tpanoxt fa——| o iptnext

Toaprov e Tt prov

Tpesre st Wbyies

Ty of datagram

et 52887

e

next 184 bytesof datagram

00bye usier

OEBPS/html/graphics/t0200-01.jpg
pr_protocol | inetsw(] | pr_sysctl | Description | Reference
0 0 ip_sysctl 3 Section 8.9

1IPPROTO_UDP 1 udp_sysct1 UDP | Section23.11
IPPROTO_ICHP 4 icmp_sysctl | ICMP | Section 11.14

OEBPS/html/graphics/t0203-01.jpg
File Description

net/route.h route entries
netinet/ip.h IP header structure

netinet/ip_input.c | IPinput processing
netinet/ip_output.c | IP output processing
netinet/in_cksum.c | Internet checksum algorithm

OEBPS/html/graphics/0566_prog01.jpg
55 500_ioctl (tp, ced, data, B
56 struct. file +fp;

57 inc

ced:

58 cadar_t cata:

59 struct proc

60 0

struct socket *so = (struct sockst *) (p->{_dat
owicen (cat) (
<ase FIONBIO:
L€ (Gt *) data)
somsso_state |+ SSWTOr
else’

s0->80_state &e “SSNBIO:
roturn (0)

case Fronsmc:
1€ tine +) data) ¢
s0->s0_state |+ SSASHC:
so-sno_rew sh_flags 1+ ShASTC;
50->50_end.ab_t1egs |+ SIASTNC:
«
80->50_state ke "S5 ASYIC:
80-350_xCv.5b_t1ags ke "SBASTNC:
80-350_and.ab_{1ogs 4e "SBASYNC

) e

)

return (01

FIONREAD:

“(int +) data « so-smo_rev.sbcc

return (0)

case s10cspoRP:
s0-380_paid = *(int *) da
cotumn (00

case s10CGRGRP:
“(int *) data = so-s0_paid:
zeturn (0);

case SIOCATWARK:
“lint +) data = (s0->s0.
roturn (0}

ate & SS_RCVATIARK) 1= 0

)
T
- Tntertace/coucing/protocol upecitic loccia:
* interface and routing loctls should have a
* different entry since a socket s unnecessary
-
£ (10CGROUP (cmd) == +14)
roturn (itioctl (o, cnd, data, p))
L€ (10CGROUP(cnd) == *£*)
roturn (ztioct(ced, data. p)):
Feturn ({50->s0_proto-3pr_usrreq) (5o, PRU_CONTROL,

sy _socket.c

(struct abut *) cad, (struct sbUt *) data, (sEruct mbut %) 0)):

sys _sockel.c

OEBPS/html/graphics/0906_prog01.jpg
)
a3
aso
as1
52

a53
e
455
a6
457
ass
459
450
161
462
463
a5
465
156
187
a8
469
a0
an
a2
an
an
415
a76
an
s

a7
480
81
2
463
a8
P
a6
8

189
50
191
92)

7 fep_outpute
- Trace.
.
i (s0->30_0pt 1006 & 50_DEBUG)
top_trace(TAOUTRUT, tp->t_state, tp, ti, 01

#

* Fill in 1P length and desired time to live and

* sedd to 17 level. There should be a better way

* to handle ttl and tos; we could kesp them in

¢ the cemplae. but need a way to checksum without them.

.

m->r_pkehde. len = hdrlen + len;

({struce ip +) ti)->ip_len = meon_pkihds.len;

({struct. ip *) ©6)->ip_ted = tp->t_inpch-inp_ip.ipccls /* KKK */

((sEruct ip) ti)->1p_tos = tp-st_inpch ainp_ip.ip_cos; /* XKK */

error = ip_output (m, tp->t_inpc->inp_options, &tp->t_inpeb->inp_route,
50->s0_options & SO_DONTROUTE, 0);

it ferror) |

1€ (error =« BIOBUFS) (
Cp_quench (tp->t._inpcb, 0);
return (0)

)

i€ (lerror == EHOSTUNREACH || error
46 TCPS_HAVERCVDSN(tp->t _atate)) (
tp->t_softerror - error;
roturn (01

Do)

)
roturn ferror);

ndotalsss

Data sent (as far as ve can tell).

If this advertises a larger window than any other segnent,

then ramenber the size of the advertised window.

+ Any pending ACK has now been sent..

.

S (Win > 0 Lk SEQGT(tp->rev_nxt + win, tp->rcv_adv))
tpsrev_ady = tp-srev_nixt + wing

Ep->last_ack_sent = tp-srov_nkt:

tp->t_tlags b= - (TE_ACKNOH | TF_DELACK) ;

it (sendatot)
goto again;
return (01

tep_output.c

OEBPS/html/graphics/t0186-01.jpg
PR_ Record Example

pr_type | ADoR | Arowic | commeguiaep | boundaries? | Relible? [Tntemet | Other

SocK_sTReAt D none D T | s

SOCK_SEQPACKET g oxplct B i

3 . implicit . e

SocK D g B implit | seetext ROF
SocKpaRA B 0 mplcit wor
SOCK_RAW . 5 implicit oM

OEBPS/html/graphics/t0188-01.jpg
inetsw(] | pr_protocol | pr_type Description Acronym
v o 7 nternet Profocol v
1 IPROTO_UDP | SOCK_DGRAM | User Datagram Protocol uor
2 | zeeroronce | sockstrems | Transmission Control Protocol Tcp
3| zeeroromaw | sockCaw | Intemet Protocol raw) 1P (rav)
N TpPROTO_ICMP | SocK_RAW | Intemmet Control Message Protocol | ICMP.
5 | eeroro sowp | sock raw | Intemet Group Management Protocol | IGMP
6 o SOCK_RAW | Internet Protocol (raw, default) IP (raw)

OEBPS/html/graphics/1087_prog01.jpg
55 void
50 rip_input (n)
61 strict abuf m

&0
&
s
65

56
&
5
6
7
”n
2
7
7
7
%
”
7
7
I
I
@
o
8
o
8
o
o
50
91
02
9
%

struct ip *ip = mtod(n, struct i)
struct inpeb *im;
struct socket *last = 0

ripsrc.sin_addr = ip->ip_sre
for (inp = rawinpeb. inp_next; im
$E (p-aiog 155 &4 iop-rine p.ip b 1= ip-rip.o)
continue;
SE (inp-sing laddr .5 addr ik
inp->ing_laddr 5_adar =
continuer
S€ (inp->ing fadar..
inp->ing_toddz .
i ast)
struct st ny
Sf (n = mcopy(n, 0, (int) M.COPYALL)) (
L6 (sbappandadar (¢1ast ->mn_vev, Lripare,
B, (struct byt 4)) == 0)
/+ should notify abouc lost packet +/
n_ereen(n);

ip->ip._dst..5_adir)

acde 4
acar

ip->ip_see.s_adir)

soruakeup (Last) ;
)
)
last = inp->inp_socket:
)
it (ase) (
it (sbeppencadds (ilast->so_rcy, iripsre,
. (struct abut +) 0) == 0)
n_treomin s
else
‘sorwakeup (1
) else ¢
m_treemm)
ipotat.ipe_roprotor)
ipstat . ips_celiverea:

=

raw_ipc.

Grawinpeb; inp + inp-sinp_next) (

row_ipc

OEBPS/html/graphics/t0189-01.jpg
protosw inetsw(0] | inetsw(3 and 6] Description
br_type o SOCK_RAW TP provides raw packet services
pr_domain | &inetdomain | &inetdomain both protocols are part of the
Internet domain
pr_protocol | 0 IPPROTO_RAW or 0 | both TPPROTO_RAW (255) and O are
reserved (RFC 1700) and
should never appear in an IP
datagram
pr_tlags 0 PR_ATONIC] PR_ADDR | socket layer flags, not used by IP
pr_input nu1 rip_input receive unrecognized data
from IF, ICMP, or IGMP
pr_output | ip_output | rip_output prepare and send datagrams to the
1P and hardware layers
respectively
pr_ctlinput | null nui2 not used by IP
pr_ctloutput | null rip_ctioutput respond to configuration requests
from a process
prusrreq | null rip_usrreq respond to protocol requests from a
process
pr_init ip_init null or rip_init | ip_init doesallinitialization
null null not used by IP
ip_slowtino | null slow timeout is used by IP
reassembly algorithm
ip_drain | nu1l release memory if possible
null ‘modify systemwide parameters

OEBPS/html/graphics/0188_tab01.jpg
in_proto.c
39 struct protosw inetewl] =

20 (
a
a
o
a0
s
16
o
5
a9
50
51
52
53
56
55
6
7
58
59
50
6
62
63
P
65
66
&

69
70
7
72
73
7
75
26
)

8 st
79 ¢
80
s

(0, uinetdomain, 0, 0,
0, ip_output, 0, 0,

o,

ip_init, 0, ip_slowtimo, ip_drain, ip.
5

(SOCK_DGRAM, &inetdomain, IPPROTO_UDP, PRATONIC | PRLADDR,
udp_input, 0, udp_ctlinput, ip_ctloutpu,

udp_usrreq,

udp_init, 0, 0, 0, udp_sysctl

)

(SOCK_STREAM, &inetdomain, TPPROTO_TCP, PR_CONNREQUIRED | PR_WANTRCVD,
tep_input, 0, tep_ctlinput, tep_ctloutput,

tep_usrreq,

ccp_init, top_fastuino, tep_slowtimo, top drain,

)

(SOCK_RAW, &inetdomain, IPPROTO_RAW, PRLATOMIC | PRADDR,

Fip_input, rip output, 0, rip_ctloutput,

rip_usrreq,

0.0, 0, 0,

)

(SOCK_RAW, &inetdomain, IPPROTO_ICHP, PRATOMIC | PRADDR,
icmp_input. rip_output, 0, rip_ctloutput,

rip_usrreq,

0.0, 0, 0, icmp_sysctl

3

(SOCK_RAW, &inetdomain, IPPROTO_IGNP, PRATONIC | PRLADDR,
igup_input, rip_output, 0, rip_ctloutput,

rip_usrreq,

igup_init, igep_tasttimo, 0, 0,

2

cer

aw wildcard */

(SOCK_RAW, Linetdomain, 0, PRLATOMIC | PRADDR,
rip_input, rip_output, 0, rip_ctloutput,
rip_usrreq,
ip_init, 0, 0, 0,

)

truct domain inetdosain =

(AP_INET, *internet*, 0, 0, 0,

inetsw, &inetsw(sizeof (inetsw) / sizeof (inetsw(0))]. 0.

n_inithead, 32, sizeof (struct sockaddr_in));

in_proto.c

OEBPS/html/graphics/t1113-01.jpg
row 1 2 3 1&3 4 6&3
search key | table key | table mask
1 0 0 0 0 yes 0O=yes
2 0 0 1 0 yes 0O=yes
3 0 1 0 0 no 0O=yes
4 0 1 1 0 no 1=no
5 1 0 0 0 yes 0O=yes
6 1 0 1 1 no 1=no
7 1 1 0 0 no 0O=yes
8 1 1 1 1 yes 0O=yes

OEBPS/html/graphics/0164_tab01.jpg
166
167
168
169
170

m
172
173
17
175
176
m
178
179
180
181
182
183
186
185
186
187
188
189
190
191

192
193
190
195
196
197
198
199
200
201
202
203
204
205
206

hnnd
Case SIOCSIPADDR:

case SIOCSIFNETMASK

case SIOCSIFDSTADDR

if ((s0->s0_state & SS_PRIV)
return (EPERM);

i€ (ifp == 0)
panic(+in_control);
if (ia = (struct in_ifaddr *) 0) {
ofa = (struct in_ifaddr *)
malloc(sizeof “oia, M_IFADDR, M_WAITOK);
if (oia =+ (struct in_ifaddr *) NULL)
return (ENOBUPS);
bzezo((caddr_t) ola, sizeof "oia
SE (ia = in_ifaddr) (
for (; ia->ianext: ia = ia->ia_next)
continue
Sa->la_next
) else
in_ifaddr = oia;

ola

ddrlist) (

ifa->ifa_next: ifa = ifa->ifanext)
continue;

= (struct ifaddr *) fa:

>la_ifa.ifa addr = (struct sockaddr *) Gia->ia_addr:

>la_ifa.ifa_dstaddr

= (struct sockaddr *) &ia->ia dstaddr;

>ia_ifa.ifa_netmask

= (struct sockaddr *) &ia->ia_sockmask:

>ia_socknask.sin_len = 8

€ (ifp->if_flags & IPP_BROADCAST) {
ia->ia_broadaddr..sin_len = sizeof (ia->ia_addr);

ia->ia_broadaddr..sin_family = AP_INET;

>ia_ifp = ifp:
(ifp ta &loif)
in_interfacesss;

oy

OEBPS/html/graphics/0389_prog01.jpg
214 staric void L
215 igmp_sendreport (inm)
216 struet inpulel ~inm

27 (
28
219
220
E
F

a3
24
25
226
27
228
23
220
21
32

23
24
235
256
m
23
29

20
201
202
203
208
s

26
207
28
249

30
251
252
25
254
255
256
257
258

259
260)

steuct mbat ns
struct iomp *ignp;
steuct ip *ip:

struct ip poptions *iso;
strude Lp_poptions sima;

HGETHOR (m, ¥_DONTHALT, T_EADER) 1
iF (m == BOLL)
ceturn;

i
* Assume max_Linkhdr + aizeof (struct ip) + IGHP_MINLEN
* ia smaller than sbuf size returned by MGETHDR.

om data o= max_linkhde;

msm_len = §izeof (struct ip) o IGMPMINLEN;
ST_pKthdr. Len - §3300f (SETUCE ip) + IGNPMINLEN

ip = mcodin, struct p *);
1p->ip_cos - 0

iposip_len - sizeof(struct ip) + IGHP_MINLEN:
sp-sip_ott » 0.

ip-sip.p = 18ROTO_1GHP:
{posip_sre.s_adde - TNADDRANY
{praip_det - inmoion_ada

Sgnp = (seruct lgm 4 (1o + 117
Lamp-igmp_type = IGHP_HOST MENBERSHIP_REPORT:

ignp->igmp_code - 0

Lgnp-~iomp_oroup = Lom->inm_adds;

sqmp->iamp_cksom « 0;

igmp->igwp_cksum = in_ckeun(m, LGYP_MINLEN) ;

ino - Gainos

braro((caddr_t1 imo, sizaot(*ino)):

o~ simo_multlcast_L€p - Lnm-sine L£pr

ipa->iro_pulticast_tel « 1

i

* Request loophack of the report if we ate acting as a multicast
* couter, so that the process-level routing demon can hear it.
o

¢

extern atruct sockat *ip_mrouter;
iro-stme_multicast_loop - ip_mroucer

- s
)
ip_output (n, WL, NULE, 0, ino);

++igmpstat igps_snd_reporcs;

OEBPS/html/graphics/09fig13.jpg
k addres 1 i ? s
{f“ lon jofet] ofise=4) offet =8) offt =)
T Ty TH oy

OEBPS/html/graphics/18fig07.jpg
o ires |20)

24000 224001
0x££000000

OEBPS/html/graphics/t1085-01.jpg
Member inetsw(3] Description

br_tvoe “SOCK_RAM. Taw socket

pr_donain | &inetdomain raw IPis partof the Internet domain
br_protocol | IPPROTO_RAW (255) | appears in the ip_p field of the IP header
pr_flage PR_ATOMIC/ PR_ADDR | socket ayer flags, not used by protocol processing.
pr_input rip_input receives messages from IP layer

prooutput | 0 ot used by raw IP

pr_ctlinput | 0 ot used by raw IP

pr_ctloutput | rip_ctloutput respond to administrative requests from a process
prusrreq | rip_usrreq respond to communication requests from a process
pr_init 0 Rot used by raw IP

pr_tasttino | 0 Rot used by raw IP

pr_slowtimo | 0 Rot used by raw IP

pr_drain o Rot used by raw IP

prosysctl | 0 ot used by raw [P

OEBPS/html/graphics/t1085-02.jpg
protosw SOCK_RAW protocol type
ey TerroTo_icwr (1) | TerRoTo_towr () | TepRoto_aw @59 | wideard ©)
r_inpuc Lomp_inpuc gmp_input ip_input ip_inpuc
pr_output | rip_outpuc rip_output rip_output rip_output
pr_ctioutput | rip_ctloutput | rip_ctioutpu | rip_celoutpuc | rip_celoucpuc
prousrreq | rip_usrreq rip_usrreq rip_usrreq rip_usreq
prinic o igmp_tnie 0 ip_inte
proyscel | sompayactl o o o
pr_fasttino | 0 sgmp_tasteino | 0 o

OEBPS/html/graphics/09fig12.jpg

OEBPS/html/graphics/14fig26.jpg

OEBPS/html/graphics/26fig16.jpg
End of opton s

Nooperation:

Maximum segment size:

Window scale facto:

Timestamp:

Kind=0

Thyte
Kinde1
Thyte
i
Kinds2 | lened | segment
size (M)
Thyie Thye by
shift
Kinds3 [denes | 2Nt
Ty Thyie Thyie
Kind=8 | lene10 | timestamp value timestamp ocho reply
I T T

OEBPS/html/graphics/0852_prog01.jpg
T67 struer topch +

tap_subre

168 tep_newtcpeb (inp)
169 struct. inpeb *inp:

170 (
m

m2
173
174
115
176
m
178
179
180
101
162
183
106
165
186
187
168
189
19

191
192

193
196
195
196)

struct tepeb *tpr

tp = malloc(sizeot (*tp), MLECH, HNGHAIT)
iF (tp == wLL)
retumn ((struct topcd *) 0

bzerol (char *) tp, sizeof (struct tepeb));

tp->seg_next = tproseg_prov = (struct tepiphdr) tp;

tp->t_maxseg = tcp_nssdfits

tp->t_flags = top_do_rfcl32) 7 (TF_REQ_SCALE | TE_REQ_TSTHP) : 0.

tp->t_inpcb = inp

"

* Init srtt to TCPTV_SRTTEASE (0), 8o we can tell that we have no

* Et estimate. Set ritvar so that srtt + 2+ rEtvar gives

* reasonable initial retransmit time.

o

Cpr>t_sree = TCPTV_SRITBASE:

tp->t_rttvar = top_recdflt + PRLSLOWHE << 2;

tp->t_rttnin = TCPTV_MIN;

TCPT_RANGESET (p->t_rxteur,
((ICPTV_SRTTBASE >» 2) + (TCPTV_SRTTDFLT << 2)) »» 1,
TCPTV_MIN, TCPTV_REXMTHAX) ;

tp->snd_cvnd « TCP_MAKWIN << TCP_MAK_WINSHIFT;
tp->end_sathresh = TCP_MAXWIN << TCR_MAX_WINSHIFT;

inp->inp_ip.ip_tel = ip_deftel;
inp->inp_ppcb = (caddr_c) tp:
return (tp);

tep_subrec

OEBPS/html/graphics/18fig04.jpg
0000

HOBETIR 14035

OEBPS/html/graphics/0141_tab01.jpg
318 veia Yosic

OEBPS/html/graphics/14fig20.jpg
DVMRP_ADD_LGRP option

Setsockopt

sosetopt

P
IGMP_HOST_MEMBERSHIP_REPORT w
datagram

OEBPS/html/graphics/t0049-01.jpg
Macro

Description

WCLGET

Get cluster (an externul buffr) and st the data pointer (n_daa) o the exising mbul
pointed 10by i to point o the chuster. If memory for a cluster i not availabl, the ¥_EXT.
g in the mbuf i ot seton returm.

void WCLGEE(struct mbut tm, int nowa);

WEREE

Free he single mbuf pointed by m_1{ 1 poins o & chster (_E37 i e, e chster’s
eference count s decremented but thecluster i not released untl s eference count
reaches 0 (s discussed in Section 29). OR retun, the pointe to ' successor (pointed o
by m->m_next, which can be nul) s stored n .

void WFREE(struct mbuf *m, struct mbut *m):

GETHDR

‘Allocate an mibuf and iniilize t a3 3 packet header. This macra s sl 10 HGET (Fig-
e 212) except the M_PKTHDR flg s set and the data pointer (s_data) points to the
10-byte buffe just beyand the packet header.

void MGETHDR (struct mbut “m, int nowdit, int tpe):

WALIGN

“Setth =_data pointer o an mibuf conaining a packet header to provide room for an
bject o size I bytes at the end of the mbuf's daa arca. The data pointer i lso
Tongword aligned.

void MEALTGNstruct mbut *m, int lon);

WeRERED

Frepend o byt of data i ront o the data i the bl ponied 1 by i1 oo exits
in the mbul,justdectement he poiner () and increment the ngth (n_1er) by
fonbyts. 1 thene s notenawgh room, new bl s llocated, s _next poiner s set
0, pointer o the new mbu s tord in 1, and th datspoiner of the new mbaf i et
o that the o byt of data ot the end o e mbu 1, 4_ALI s clled). Ay 2
v mbut s llocate and theexisting mbol ha s packet header flag e, the packet
eader i move from the existing bt o he new one

void WPREPEND (struct sbut *m, int I, inc nowat);

aton

Convertthe pointer =, which must point someshere within the data area of 3n b, into
a pointer to the beginning of the mbu.

struct nbuf satoa(void

wod

“Type cast the pointer {0 the data area o the mbuf pointed 1 by 7 0 .
Iype meod(struct mbut m, type):

OEBPS/html/graphics/0366_prog01.jpg
TP_DROP_WEMBERSHI?:
s

* Drop a multicast oroup membership.
* Group must be a valld TP multicast addre
.

1 (m v NULL 11 mosm_len

error = SINVAL;
breaks

sizeof (struct ip_rea)) (

)
Breq = meod(m, struct ipareq *);
§€ (1IN MULTICAST (ntoh (mreq->inr_miltiaddr.5_adde))) {
orror = EINVAL:
breaks
)
43
* It an incerface address was specified, get a pointer
* to its itnet structure.
-/
i€ (nreq->ine_interface.s_addr =+ INADDRANY)
iep = woLis
etoe (
TNADDR_T0_IFP (nreq->inx_intertace, 4fp);
A€ (16w NOLL) (

’e

* Find the meabership in the memborship array.

R

for (4 = 0; i < imo->imo_num mesborshipa ++i) (

S€ ((ifp == UL 11

im6->imo_sesbership (1] ->ina_ifp == ifp) &4
im0->im0_nesbership(1]->ina_addr..c_adds =
sceq->inr_miltiadds.s_addr)
break;

)
L€ (1 =2 imo-»imo_nun mosberships) (
error + EADDRNOTAVALL:
break;
)
}e
* Give up the multicast address record to which the
+ memborship points.
.
in_delmalts (imo->ino_senbership(i])
»
* Remove the gap in the membership array.
o
for (vods i < ivo->ino_num_nenberships; ++i)
imo->imo_nesbership(i - 1] = imo->ino_menbership(i]:
--§80->§m0_num_memberahips;
broak:

ip_outputc

s

OEBPS/html/graphics/854equ01.jpg
LSBTt o torttvar
8 4
t_srtt

I

RTO =

+t_rttvar
2

OEBPS/html/graphics/03fig38.jpg
type

len
alen
E-mly ({_.n.,..

sockaadr_a10) [Terf | s..m Ethemnet
(ifa_ifader) [20 o 1 |oxs] 1efo address |

e B e alen. bytes

P byte T Tebyted

sockaaar_aL() [Ter] a
(ifanetmask) 11| 0| o [ofofofoer|ec|ee ki)

ey
et]
raskien
e

OEBPS/html/graphics/23fig16.jpg
1516

3

T e soopsee pom

et et

F— T mpmtote
oo | o 7 =
e R i b et

32bitsource IP address

32bit destination P address

16-bit source port number

16:bit destination port number

16-bit UDP length. 165t UDP checksum

OEBPS/html/graphics/0137_tab01.jpg
592
593
594
595
596
597
598
599
600
601
02
603
604
605
606
607
08
o
610
a1
a2
613

4t (sc->sc_if.if_flags & SC_COMPRESS) (

len « s} uncompres

i€ (len <= 0)
goto error:

teplksc->sc_but, len,
(u_int) . bsc->nc_comp):

) eise if ((sc->sc_if.if_flags & SC_AUTOCOP) &

) e

)

i (se-rsebpt)

i

- TYPE_UNCOMPRESSED.

P Gk den >» 40) (

len = s)_uncompress_tcp(ksc->sc_but. len.

S€ (len <= 0)
goto error:

(u_int) <, 4ac->sc_comp) ;

sc->sc_it.4f_tlags |= SC_COMPRESS:

goto error:

Put the SLIP preudo-

link header® in place.

We couldn't do this any earlier since
decorpression probably moved the butfer

pointer.

Ther

inwoke BPF.

OEBPS/html/graphics/0137_tab02.jpg
614

615
616
617
618
619
620
621

622
623
62¢
625
626
627
628
629
630
63
632
633
634
65

u_char *hp = sc->sc_buf - SLIP_HORLEN:

hpISLX_DIR] + SLIPDIR_IN:
beopy (chdr, hp[SLX_CHDR], CHOR_LEN) :

bpe_tap(sc->sc_bpt. hp. len o SLIP_HDRLEN):

)
= sibton(sc, len):
i€ (m = NULL)

goto error:

se->ac_if i ipacket:

sc->sc_if i€ lastchange « time:

3« splizpO;

it (1P_oRuLL(siptatea)) (
IF_DROP (kipintra)
scosc_if. i terror
sc->se_if.1¢_iqdropas.
=_treen(s) ;

) olse ¢
P_ENQUEVE (kipintrq, =);
achednet isr (NETISR_IP);

)
spixis):
goto newpack:

ifsle

OEBPS/html/graphics/0497_prog01.jpg
341 sendit (o, 5, w, flags, reteize)

362 seruct. proc

wipe_syscals.c

30 me s

364 struct meghdc mp:

35 e flags, *retsize;

366 ¢

30 seree file vtp

348 stret uio auio

368 stxuee fovee *iowr

350 e

381 struct mbut to, *controls

32 dncden, exror

353 if (error = getsock(p->p_fd, 5, 4fp))

354 return (eror);

355 auto.uio_fov « mp-neg_tov:

356 auioluio_tovent = mp-smeg_iovien;

357 auio.uio_segfly = ULO_USERSPACE:

356 auio.uiorw - UIO_WRITE:

369 awioluio procp - ps

360 aulo.uio offset = 0; sexax ey

36 auio.uio xesid = 0;

362 iov - mpoomsg_iov:

363 for (1 - 0; i <rpomsg_tovien; fer, foves) {

36 £ (ov-stov_len < 0)

365 ceturn GIWAL);

368 i€ ((auio.uio_resid += iov->iov_lea) < 0)

267 soturn @OWALY:

})

39 it (sp->msg_nase) (

30 S (error + sockargs(6to, mp->sg_name, wp->5sg_nanelen,
m wr_sone))

2 roturn (error)

33) etse

) o= 0;

375 46 tmp smeg_control)

376 1€ (mp->msg_controllen < sizeof (struct cmsghir)
7 e

378 exzor = BINVAL:

319 goto bac

380)

1 it (error = sockargs (bcontrol, mp->nsg_contral,
w2 mp->meg_cont rollen, MT_CONTROL))
383 soto bacy

38) else

385 concro1

386 len - avio.uio_resid:

387 Lt (error sosend((struct socke: *) fp->f_data, to, Gauio,
388 (struct mbut *) 0, control, flags)) (
389 S (auio.uio_resid 1« len k& (error += ERESTART ||
%0 excor == EINTR || error == EWOULDBLCK))
o exror « 0

392 i (orror - EPIPE)

353 peianalip, SI1GPIFE);

FTR

395 it (error =s 0)

396 “retaize = len - auio.ulo_resids

397 ma:

38 it (o)

399 =_treen(to);

400 roturn (orror);

401)

uipe_syscallsc

OEBPS/html/graphics/t0061-01.jpg
SNMP variable | Net/3 variable Description

TeNumber | Lf_index + 1 | LE_indexis the index of the last interface i the system and
startsat 0; 1 is added to get ENunber, the number of
interfaces in the system.

OEBPS/html/graphics/t0060-01.jpg
Variable Data type Description

Ddevinit | struct pdevinit] | amay of itialization parameters for pseudo-devices
such as SLIP and loopback interfaces

ienet struct ifnet * head of s of § fnet structures

ifnet_addrs | struct ifaddr *+ | amay of pointers to link-leve interface addresses

if_indexlim | int size of L net_addrs array

iflindex | int index ofthe last configured interface

ifguaxien | int maximum size ofinerface output queues

bz int

the clock-tick frequency for this system (ticks,/second)

OEBPS/html/graphics/t0060-02.jpg
SNMP Group

Description

System
Interfaces
Address Translation

ig

ICMP

TCP

upr

EGP
Transmission
SNMP

general information about the system

network interface information

network-address-to-hardware-address-
translation tables (deprecated)

IP protocol information

ICMP protocol information

TCP protocol information

UDP protocol information

EGP protocol information

‘media-specific information

SNMP protocol information

OEBPS/html/graphics/t0050-01.jpg
m;.;u-..y.ma...:m-}:..;umm-w;. ¥ on s poiive, that
byt e o h st of ot i h bl i e he
e et o ot bk

o1 m o (struct sbut m. inc o

Comcaaetoe b i i b 8 e o e i e 5
N encounte this fuction when we desrbe F ressembly (Chopte 10
oid m_oat (seruct shut m, seruce st m):

A hrangurentversion of »_copym Nt mpiis 3 fourh SRument o W GENTHATT
struct mbut *mcopystruct sbat tm, int ofet, int in):

“Copy I byies f data from th il cho e 1 by o th B pomied 1oy
7 The copying stat frm the specibed byt fctfrom he e o o ot n the.
moutchan,

701 m copydata(struct sbuf m. int ofel. int len. cadde_t @)

Copy byt of o from e buffr poinid 5y ik the il chai poined By
. The s st taring ot i the mbol hain. The mbut
pichervurniye i ph i

w10 sommbuaistrnt s om ot o ot o . cast o1

Cremeanew aring o i o
o ity A Amh»u....m.,..‘.m....m_a.

oo e equle e ot oA, e i o e it i
e e e vy et o i i 350
atruct sbut *a_copymistruct mbut “m. int ofiet. in im. ine mowsit):

et

struct sbut *a_devget char b, int ln, int of. seruct itne .
voia (-apy) (const void . void . uint)):

R fanion verion of e ke WFREE.
struct sbut ‘afres(struct sbut *m)

e

Free il the mbufs n the chain poimied Yoy .
void m_ tremmistruct sbut “mi:

A funcion verion of the G maco. We showed i anction i P 212
struce mbut m_get (ine st int tye):

et

o call e VG s 5t a bl T 7 h 1055y B
struct sbut “m getele ine nonst. ine hyw):

aetar

‘A functon version of the WG ETHOR macr.
struct sbul 'm guehde (ine mowwi, int tye):

oo

[.

Rerage e xiing o e et e b e T e
dataare sored contguousty i the s mbol nthe chain. 1 hisfunction scceeds hen
henod s e Pt ety et A of o b W
i thisfunction n Sechion 26.

ruct wbut *m peliwpistroct abef *w, int b,

OEBPS/html/graphics/t0059-01.jpg
File Description
sys/socket.h address structure definitions
net/if.h interface structure definitions
net/if_dl.h link-level structure definitions
kern/init_main.c | system and interface initialization
net/if.c generic interface code
net/if_loop.c loopback device driver
net/if_sl.c SLIP device driver
hp300/dev/if_le.c | LANCE Ethemet device driver

OEBPS/html/graphics/t0274-01.jpg
File Description

netinet/ip_var.h reassembly data structures

netinet/ip_output.c | fragmentation code
netinet/ip_input.c | reassembly code

OEBPS/html/graphics/t0259-01.jpg
ipt_flg Value Description

[1POPT_Ts_TSONLY 0| record timestamps
1p0P7_7S_TSANDADDR | 1 | record addresses and timestamps.
2| reserved
1POPT_TS_PRESPEC | 3 | record timestamps only at the prespecified systems
4-15 | reserved

OEBPS/html/graphics/05fig05.jpg
o

[P [
o]

T T

e B
[[eerseo [

L] d k
1 P —— v

OEBPS/html/graphics/t0274-03.jpg
ipstat member

Description

ips_cantfrag

ips_odropped
ips_ofragments
ips_fragmented

#datagrams not sent because fragmentation was
required but was prohibited by the DF bit

#output packets dropped because of a memory shortage

#iragments transmitted

#packets fragmented for output

OEBPS/html/graphics/t0274-02.jpg
Variable

Type

Description

ipq

struct ipg *

reassembly list

OEBPS/html/graphics/t0252-01.jpg
IP Header ‘Source Route Option
System —
ip_src__ip_dst | offset addresses
HS HS A3 T |+B G HD
A HS B 8 Ay e C; HD
B HS) 2 A, By * HD
c HS HD | 16 A B, G o
HD HS HD | 16 A

OEBPS/html/graphics/0926_prog01.jpg
T
162
1463
ey
1465
1a6e
167
1468
1469
1470
un
172
1473
1474
1475
1076
17
178
1079
1480
ey
preey
1483
ey
1085
146
1087
1488
1489
1490

141
prees
1453
1434
145
136
1497
1498
149
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1119

7 tep_input.c

* The current mes, t_naxseq, was initialized to the default value
* of 512 (tcp_nesdfit) by tep_newtepehi .

* If we compute a smaller valse, reduce the current mas.

* 1f we compute a larger value, retumm it for use in seading

* a max seg size option, but don’t store it for use

* unless we received an offer at least that large from peer

* Hoyever, do not accept offers under 32 bytes.

.
if (otter)
nes « min(nss, offer):
mes = maximes, 32} I+ sanity +/
§€ mes < tn-ot_maxaeq || offer 1= 0) (
3

* 1f there's a pipesize, change the socker buffer
* to that size. Make the socket buffers an integral
* number of mes units; LE che mss is larger than
* tne socket butfer, decrease the mes.

-

S ((butaize = rtort_rmx, mx_sendpipe)

buteize - so->s0_snd. sb_hiuats

if (butsize < nss)

mes = busize
etse (
butsize = roundup(butsize, mss);
£t (butoize > sb_max)
butsize - sb_rax;
(void) sbreservelkso->so_snd, butsize);

o

)
SE ((buaize = re-sre_mx.rme_cecvpipe)
butsize = so->so_rov.sb_hiwats

i (butaize 5 mas) (
butsize = roundup(bufsize, mss);
if butsize > sbnax)
butsize - sb_nax;
(votd) sbreserve(iso->so_rcv, butsize)

y
)
tp->snd_cund = mas:
§E (reosre_em.vme_sschresh) (

* There's some sort of gateway or interface

* butter linit on the pach. Use this to set

« fhe slow start threshhold, but set the

* threshold to no less than 2'mss.

“

tp->snd_ssthresh = max(2 * mes, rt->rt_mx.mmx_ssthresh);
)
return (nas) ¢

tep_input.c

OEBPS/html/graphics/t0246-01.jpg
class Description
0| control
1| reserved
2 | debugging and measurement
3 | reserved

OEBPS/html/graphics/28fig34.jpg
Eoomet.. (yswiiel

v

tep_outmt tep_tnput.
ip_output. ipiner
l T (software interrupt)
1ooutpur
addto ipincra
action: send SYN process SYN
starting state: - CLOSED SYN_SENT

ending state: SYN_SENT SYN_RCVD

top_outpur

ot

ip_outpu.

.

1ooutput

pot

addto ipintra

send SYN, ACK
SYN_RCVD
SYN_RCVD

top_input

.

iptner
(software interrupt)

process SYN, ACK
SYN_RCVD
ESTABLISHED

OEBPS/html/graphics/04fig09.jpg
1€ output

Sther_input

OEBPS/html/graphics/16fig08.jpg
PRU_SEND or PRU_SENDOOB.

OEBPS/html/graphics/0215_tab01.jpg
325
326
327
328
329
330
31
32

o
* 1f control reaches here, ip points to a complete datagran.
* Otherwise, the reassembly code jumps back to next (Pigure 8.11)
* Switch out to protocol’s input routine.
.
ipstat. ips_deliveredss;
(*inetsw(ip_protox(ip->ip_p)).pr_input) (m, hlen);
goto next;

gt

OEBPS/html/graphics/09fig09.jpg
[y

Tor [opl] a1 alirss7 i
3| sy (offet =) Goffet=4n)

T Abyies e Thyies

OEBPS/html/graphics/23fig17.jpg
1516

n

32bit source 1P address

32bi destination IP address.

20 it proocol (17)

165 UDP length.

16t source port umber

165t destination port umber

165 UDP lengeh

164t UDP checksum

i

fs

OEBPS/html/graphics/0268_tab01.jpg
oy

s0s
606

607
608
609
610
611
612
61
61¢
615
616
617
618
619
620
621
622
623
62¢
prey

case TPOPT_LSRS
case TPOPT_SSRR:

suiven fopsl
dotauit

break;

* user process specities route a
¢ sA-BoCsD

* D kust be our final destination (but we can't

* check that since we may not have connected yet)

* A is first hop destination. which doesn’t appear in
* actual Ip option, but is stored before the options.
Sf (optien < IPOPT_MINOFF - 1 + sizeof (struct in_addr))

goto bad:

m->m_len -+ sizeof (struct in_addr):

ent a aizeof (struct in_addr):

optlen -- sizeof (struct in_addr);

CPIIPOPT_OLEN) = optlen

* Move first hop before start of options.

L

OEBPS/html/graphics/0268_tab02.jpg
ae beopyl(caddr_t) & cp(IPOPT_OPFSET « 1). mted(m. caddr_t).

627 sizeof (struct in_addr)):

628 -

529 * Then copy rest of options back

530 “ to close up the deleted entry.

631 o

632 ovbcopy((caddr_t) (kcp{IPOPT_OFFSET + 1] +

63 sizeof (struct in_addr)),

632 (caddr_t) & cp[IPOPT_OPPSET + 1).
635 (unsigned) cnt + sizeof (struct in_adde)):
636 break:

617)

g8)

639 if (mo>mlen > MAX_IPOPTLEN + sizeof (struct in_addr))
640 goto bad;

641 *pcbopt = m

642 retura (0);

533 bad:

638 (void) m_tree(m)

645 return (EDNVAL):

646)

ip_outpul.c

OEBPS/html/graphics/0208_tab01.jpg
100 voia inputc
101 ipinte()

102 (

100 stret ip, ips

100 struce mbut m

105 struer ipq tpr

106 struct inifaddr ia;

107 it hlen, s

108 next:

109 /e

110 * Get next datagram off input queve and get IP header
m * in tirst mbut.

12 .

13 s = splimp()s

114 IP_DEQUEVE(kipintrg, m)
15 splx(s);

116 if (m == 0)

7 return;

32 goto mext;

333 bad:
34 mtreenm;
335 goto next;

336)

o

OEBPS/html/graphics/t0289-01.jpg
Function Description
Tnaque | Insert node just after prev

void insque(void *node,void *prev);
Temque | Remove node from it

void remque(void *node);
Tp_ena | Tnsert ragment p just after fragment preo.

void 1p_enq(struct ipasfrag *p,struct ipasfrag *prev);
Tp_deq | Remove fragment .

void ip_deqlstruct ipasfrag *p)

OEBPS/html/graphics/0746_prog01.jpg
05 struct inpeb + L
406 in_pcblookup (head, faddr, fport_arg, laddr, lport_arg, flags)
407 struce inpcb *heads

408 otruct in_sddr faddr. laddrs

409 wiat fport_arg, lport_arg:

40 int flagsy
a

412 struct inpeb *imp, *macch = 07

43 int matchwild - 3, wildcara

416 u_short fport = fport arg, lport = lport_arg:

415 for (inp = head->inpnext; inp i- head; inp = imp->inp_next) (
a6 if (inp-sinp_iport s port)

a7 cont inue; 7+ lgnore if local ports are unequal +/
as wilacard = 0;

as 1€ (inp->inp_laddr.s_addr 1+ TNADDRANY) {

a0 iF (laddr.s_addr == INAEDRANY)

a1 wildcardes:

a2 else if (inp aino laddr.s addr 1= ladar.s addr)

a3 continue;,

a2) etse

azs SE (laddr.s_addr 1= INADDR_ANY)

a2 wildcardes

a2)

azs A€ (inp->inp._fadar.

a9 S (faddr . s_addr —- TNADRANY)

30 wildcararer

a else it (inp->inp_fadas

a2 inp->inp_tport 1= fport)

a3 continuer

a3) else ¢

35 L€ (fadtr.s_addr 1= TNADDR Aa)

36 wildcardes

a7)

a3 if (wildcard 46 (fags & INPLOOKUP_WILDCARD) == 0)

a9 continue; /+ vilacara match not allowed */
w0 if (wildcard < matchwild) (

s mateh = inp;

oy matchuild = wildeard;

P it (matehwild == 0)

P bres /% exact match, all done */

s)

s

447 retumn (maten;

a8)

PO

OEBPS/html/graphics/26fig05.jpg
[—
sent, not ACKed

t 4

snd_una=7 snd_nxt =10
oldest next send
unacknowledged sequence number
‘sequence number

OEBPS/html/graphics/t0283-01.jpg
ipote | iptmet Description Action

O Tabe complete datagram o assembly required

o false, completedatagram discard the previous fragments

[Fragment of new daiagram nitalze new fragment st
with this ragment

any | e | nonnull | fragment o incomplete datagram | nsertintoexisting fragment
s, attempt reassembly

onzers | alse | null | tal fragment of new datagram nfialze new fragment st

nonzero | false | nonnall

il fagment o incomplte datagram

inset intoexistin fragment
Mot attempt seasoembly

OEBPS/html/graphics/18fig45.jpg
maskedKey:

[a0]

off

For e

OEBPS/html/graphics/0999_prog01.jpg
tep_input.c

e i
* In ESTABLISHED state: drop duplicate ACKs; ACK out-of-range
+ AKa. If the ack is in the range
+ tp-sand_una < ti->ti_ack <= tp->end_pax
+ then advance tp->snd_una to ti->ti_ack and drop

data fron the recxansnission queue. If this ACK reflects

+ more up-to-date window infornation we update our window infornation.

-
case TCPS_FIN_WATT. 1
case Tops PIN WAIT 2.
Case TCPS_CLOSE_WAIT:
case TcPS_cLosTIG:
case TCPS_LAST_ACK:
case Tops_Fiue_WAIT:

$€ (5E0_L8Q(ti->ti_ack, tp->anduna)) {
§€ (Hi>ti_lon - 0 bk Ciwin +e tp->andmd)
cpatat . teps_rcvdupackss:
* 1f we have outstanding data (other than
a window probe)., this Ls o completely
duplicate ack (e, window info didn’t
change) . the ack is the biggest we've
seen and we've seen oxactly our remt
threshold of then, assume a packet
has been dropped and retransmit it
Kludgo snd_nxt & the congestion
window 0 we send only this one

59
840

+ packet.

* e know we’xe losing at the current
7 + window size o do congestion avoidance
ais + Tset sathresh to half the current window
a6 * and pull our congestion window back to
850 + the new ssthresh) .
a5 .
52 * Dup acks mean that packets have left the
853 + network (they're now cached at the recoiver)
85 + 5o bump cund by the aount in the receiver
855 * to Keep a constant cvnd packets in the
a5 + natwork.
057 -

e

OEBPS/html/graphics/26fig14.jpg
space in receive buffer = 3072

[e C R

1024

rcv_nxt = 1025 rev_adv = 4097
next receive highest advertised
Sequence number sequence number

plus 1

OEBPS/html/graphics/0321617649.jpg
TCP/IP
[Tustrageds
Volu g

The L

Gar e
W AR - (o (1S

OEBPS/html/graphics/03fig05.jpg
ifnet{} —

ifaddr{} —

ifaddr{} *‘7

| ifaddr() SiE

OEBPS/html/graphics/26fig19.jpg
+LARE_Bak_pant.

. wciine

OEBPS/html/graphics/0104_prog02.jpg
419
220
221
222
223

224
225
226
227

228
229
230
231
232

107

308
309
30
m
n2
3y
e
s)

owitch (eh->ethertype) (
case ETHERTYPE_I
chednet iar (NETISR_IP);
inq = &ipintra:
break;

case ETHERTYPEARF:
‘schednet Lz (NETISRARP) ;
inq + Larpintra:
break:

dotauie:

it (eh->ether_type > ETHERNTU) {

n_troom(m) ;
return:

)

s = splispl):

€ (IP_OFULLURG)) (
1P_DROP(inq) 1
=_freea(s

) else
IP_ENQUEVE(ing. m):

pix(s);

/° OST code */

if_cthersubr.c

OEBPS/html/graphics/0104_prog01.jpg
196
197
198
199
200
201
202
203
204
205

206
207
208
209
210
m
a2
m
a4
a1s
216
a7
218

void - e
“oher ot 56p, oh, =)

prevrgteotgitiy

SERuer other_hesger rah

prewiieon

{

struct ifqueue *ing;
struct 1lc *1
struct arpeon
int

= (struct arpeom *) ifp;

L€ (ifp->if_tlags & IPP_UP) == 0) (
m_treen(m ;
return;

ifp->ie

tchange = time;
§£p-»if_ibytes +» no>m_pithdr.len + aizeot (*eh);
§€ (bemp((caddr_t) etherbroadcastaddr, (caddr_t) eh->ether_dhost,
sizeof (atherbroadcastadds)) == 0)
->2_f1ags |+ M_BCAST:
150 1€ (eh->ether_dhost (0] & 1)
a->e_tlags |+ XMCAST:
i€ (a->a_flags & (XBCAST | MMCAST))
p-ait_imcastare:

OEBPS/html/graphics/0371_prog01.jpg
7%
a7
I
9
850
881
852
88
884
8ss

886
887

a8
889
890
ao1
892
803
896
895
896
897
ase

899
300
s01
902
503
904

505
906
507
908
509
910

a1
912
923
s

o ip_output.c
ip_getnopt Lons (optnane, iso, mp)

int optname;

struct ip wptions *ino;

struct mbat +

«

u_char stel;
w_char *loop:
struct in_addr taddr;
struct in_ifeddr *L

M = n_get (HVATT, MT_S00PTS);

switch (optnane) (

case TEMULTICAST_IF:
addr = mtod(+p, struct in_addr *);
(*mp) ->n_len = sizeof(struct in_addr);
A€ (100 =x NULL || imo->ino_milticast ifp == NULL)
addr->5_adde = INADDRANY:
«
178_10_1A (imo->Lmo_nulticast_ifp, ia):
addz->5_addr = (1a == NULL) 7 INADDRANY
+ TASIN(ia) ->sin_addr.e_addr;

o

)
return (0)

case 1B MILTICAST_TIL:
teL = meod(emp, u_char *);
(+mp)->m_len = 1
*tl = (ino == NULL) 7 TP_DEFAULT MULTICAST_TTL
imo->ino_multicast_tel;
return (00

case 1P MILTICAST_L0OP:
100p = mtod(*ap, w_char *);
(vmp)>mten = ir
“l00p = [imo == NULL) 7 IP_DEFAULT MULTICAST_LOOP
+ ino->ino_mulcicase_10op;
rotumn (0);

aefaue:
roturn (EOPNOTSUPE) ;
)
)

ip_output.c

OEBPS/html/graphics/18fig01.jpg
BSD/38 11

A

BSD/38611 Solaris23 [129

SVRS

avee

e

OEBPS/html/graphics/0806_prog02.jpg
522 default:

521 panic*udp_usrrea) s
20)

525 release:

526 i€ (control) (

527 prince (“udp control data unexpectedly retainedin®)
s28 Atreenconteol ;

29)

s0 it @

s _treenim;

532 rewwrn (oreor):

5330

udp_usrreq.c

OEBPS/html/graphics/0312_tab01.jpg
176
177
178
179
150
1
152
183
18

185
186
187

188
189
190
191
192

193
196
195
196
197
198

199
200
201
202

203
200
205
206
207

Case 1CHP_UNREACH:

switeh (code) (

case 1CHP_UNREACH_NET:

case TCHP_UNREACH_HOST

case ICHP_UNREACH_PROTOCOL:

case 1CHP_UNREACH_PORT

case ICHP_UNREACH_SKCFAIL:
code += PRC_UNKEACH_NET:
break;

case ICHP_UNREACH NEEDFRAG:
code = PRC_MSGSIZE:
break;

case ICHP_UNREACH_NET_UNKNOWS

case ICHMP_UNREACH_NET_PROHI

case ICMP_UNREACH_TOSET:
code = PRC_UNREACH_KET;
break;

can
case ICMP_UNREACH_ISOLATED:
case ICMP_UNREACH_HOST_PRONIB:
case ICHP_UNREACK_TOSHOST
code = PRC_UNREACH_KOST:
breax:

detait:
goto badcode;

)

goto deliver;

case TCHP_TIMXCEED:
i€ (code > 1)
goto badcode;
Code += PRC_TIMXCEED_INTRANS:
goto deliver:

LCHP_UNREACK_HOST_UNKNOWN:

ip_icmp.c

OEBPS/html/graphics/0806_prog01.jpg
w
a1e
as
a0
a2
22
e
a2
a2s

a6
a2
aze
429
0
o
a2
Y
s
a3
a6
ar

udp_usrreqso,

req, m, addr, control)

strict socket *so;
strict sbuf ta, taddr, “control;
¢
struct inpeb *imp = sotoinpcbisol
interror - 0
1€ troq =e PRUCONTAOL)
return (in_control tso, (int) =, (caddr_t) adde,
(struct itner +) contxol))
§€ (inp s WULL Gk req ta PRUATIACH) {
error = BINAL:
goto release;
)
* Note: need co block udp_input while changing
* the udp peb queve and/or peb addre
-
suiteh (xea (

/+ witen cases +/

udp_usrreq.c

OEBPS/html/graphics/0076_prog02.jpg
70 main(framep) %
7 e,

72 (

172
173
174

175
176
i
178
179
180

182

231
232
233
234)

cpu_startup(); /% locate and initialize devices */

/* Attach pseudo-devices. (e.g., SLIP and loopback interfaces) */
for (pdev = pdevinit; pdev->pdev_attach = NULL; pdeves)
(*pdev->pdev_attach) (pdev->pdev_count) ;

* Initialize protocols. Block reception of incoming packets
* until everything is ready.

°

s = splimp();

itinic s /% initialize network interfaces */
domaininit (); /* initialize protocol domains */
splx(e);

7+ The scheduler is an intinite loop. */
scheduler();

/* NOTREACHED */

init_main.c

OEBPS/html/graphics/06fig02.jpg
140 252 13 33
(0001100 [111111006 00001101]0070000

CassBretwork | subnet host
130252 105 1

25 255 255
[ENEEIEENN SIS EESEEEEEN Y1

network subnet host

—
ST —
s
-
w o m o
5, network subnet “a 3
140252 b 105

directed
horrlcaie.

OEBPS/html/graphics/0267_tab01.jpg
559 iat Ip_output.c

S60 ip_pcbopts (pcbopt, =)
561 struct mbut
s62 struct mbut

563 (
S6¢ int cnt. optlen:

565 u_char

566 u_char

567 /v turn off any old options */

S68 if (*pcbopt)

569 (void) m_free(*pebopt) ;

570 *pcbopt « 0:

S70 if (m =+ (struct mbat %) O || a->a_len == 0) (
572 ”

573 * Only turning off any previous options
574 o

575 it

576 (void) m_tree(m);

577 return (0):

78)

$79 it (m->len V sizeof(long))

580 goto bad;

se1 /e

OEBPS/html/graphics/01fig07.jpg
Buti)

mnext E

[m_nextokt

mlen

m_data

m_type

inter to next mbuf i chain

m_flags

[m_pkchar len

m_pkchdr rovi

100 bytes
ofdata

o
e

n_oans
reri

o Vatut
e JE

LA}

monext

m_nextpKt

mlen

mdata

m_type

m_flags

0bytes
of data

nuLE
L
50

ur_nata

OEBPS/html/graphics/01fig12.jpg
function call

function call
tostart output

process

system calls

socket layer

e

protocol layer

(TCP, UDE, I7, ICMP, IGMP)

software interrupt @ spinet
(caused by interface layer)

interface|
quetes.

interface layer

protocol quetie
P input queue)

hardware interrupt @ sp1 imp
(caused by network device)

OEBPS/html/graphics/29fig33.jpg
)

: 3810
oferves | ES
o T St | ot iy
- BT ke
T — [ree— p.
it P s
FIT—
P PPE—
[R——
[— e
TS
e el [—
ength RN
p—— PP——
%

OEBPS/html/graphics/0267_tab02.jpg
s82 * IP tirst-hop destination address will be stored before

583 * actual options: move other options back
584 * and clear it when none present.

565 o

$86 it (m->m.data + m>m_len + sizeof(struct in_addr) >e 4m->m_dat(MLEN))
587 goto bad;

588 cnt + momlen;

$89 me>m_len +- sizeof (struct in_addr):

590 cp » mtod(m. u_char *) + sizeof (struct in_addr);

591 ovbcopy(stod(n, caddr_t), (caddr_t) cp. (unsigned) cat):

$92 brero(mtod(m, caddr_t), sizeof (struct in_addr)):

$95 for (: cnt > 0, cnt -« optlen, cp += optlen) (

594 Opt = cpIIPOPT_OPTVALI:

595 i€ (opt == IPOPT_EOL)

596 break.

597 i€ (opt == IPOPT_NOP)

598 optien = 1:

599 else (

600 optien = cplIPOPT_OLEN]:

601 if (optlen <= IPOPT_OLEN || optlen > cnt)

602 goto bad:

603)

OEBPS/html/graphics/0145_tab02.jpg
440
W
w2
“w
e
s
6
a6
s
449
50
1
a2
453
ase
ass
456
57
as8
59
60
w61
2
)
e
165
166
67

* Put n characters at once
* into the try output que:
o

S€ (b_to_ql(char *) bp. cp - bp.

ep->t_outq))

break:
sc->8c_if.1_obytes +x cp - bp;

)

’

* It there are characters left in the mbuf,

* the first one must be special..

“ Put it out in a different form.

“

it (cp < ep) (

Sf (puCC(PRANE_BSCAPE. 4tp->t_outa))

break:

Sf (putc(tcpes == PRAME_ESCAPE 7
TRANS_FRAME_ESCAPE : TRANS_FRAME_END,
4tp->t_outal) (

(void) unpute (kep->t_outa):
break:

sc->sc_if. it obytes ox 2:

w2

if sle

OEBPS/html/graphics/12fig25.jpg
Setsockopt getsockopt

first join request

OEBPS/html/graphics/0145_tab01.jpg
s
420

@
22
a3
a2
a5
a6
a7
28

429
430
o1
2
)
o
a5
436
a
a3
as

While =) (
u_char “ep:

p = mtod(a, u_char *):
o = cp + mom_len:
while (cp < ep) {
7
“ Find out how many bytes in the string we can
* handle without doing something special.
o
u_char *bp = cp:

while (cp < ep) (
switch (rcpes) {

OEBPS/html/graphics/02fig21.jpg
sockbuf () mbuf() sbuf()
mnext mnext |wuLL
m_nextpkt ‘m_nextpkE | NULL
sb_nb
mbue() mbur() mbue ()
next next next
TROXEPKE |NULL [mnextpkE|NULL |m_nextpkt

s
oL

OEBPS/html/graphics/31fig15.jpg
S

ot 120

p—
g
=
5N e
e e
e L —
= e
e s
B
B
e— B,
= N | B
L
o
e
e .
g
B
==
bpi-dubulw\ .
S,

OEBPS/html/graphics/08fig10.jpg
fe———— (ip_h1 x4) bytes——»]

[Standard header]

(@0bytes)

options.
(40 bytes max)

5%

—

1p Tenbytes
TP o e ey

OEBPS/html/graphics/16fig35.jpg
Seshen{l

so_snd |

- soxev

datagram 1L FIADOR }—of WOV o WA

datagram 2, WT_ADDR —»{__ WT_DNTA [WI_OATA e _HIDATA 41

datagram o[FIADOR —}—f _FCOVROL e[WNTR 3~

OEBPS/html/graphics/0426_prog01.jpg
6

ip_mroute.c

517 ip_atorvard(n, ifp)
518 struct mbut om
519 struce ifnet *ifp;

520 ¢
s
2
523
24
525
525

527
528
s23
530
i
532
533
s34
535
s
537
a8
539
540
a1
62
543
ses
55
si6
547
58
549
550
ss1
552
55
ssa
555
556
557
558
553
s60
s61
562
62
56
565

atruct
u_char.
ulleng

it (ip-

i *1p = meod(n, seruce ip 41
Vi *vitp;

reies

“spoptions:

cunnel _sze:

>ip_hil < (IP_HDRLLEN + TUNNEL LEN) >> 2 ||

(ipoptions = (uchar *) (ip + 1)] (1] i= TPOPLLSRR) {

i

tunnel_sre

) etae

-

2
i

)

ovbcopy ({caddr_t) (ipoptions + TURNEL LEN)

Packet arrived via a physical interface. */
o

¢

Packet arrived throush a tunnel.

A tunneled packet has a single NOP option and &
“wo-elenent loose-source-and-record-route (LSER)
option immediately following the fixed-size part of
the IP header. At this point in processing the IF
headsx should contain the following 1 addzesses:

original source - in the source address tield
Gestination group - in the destination address field
remote tumnel end-point - in the first element of LSRR
one of this hosc’s addes - in the second element of LSRR

NOTE: RFC-1075 would have the original source and
renote tunnel end-point addresses swapped. However,
that could ceuse delivery of ICMP error nessages to
innocent applications on intermediate routing
hoste: Theretore, we hereby change the spec.

Verify that the tumnel options are well-formed. */
(ipoptions(0] t= TPOPT_NOP |1

ipoptions(2] 1= 11 | /* LSRR option lesgth */
ipoptions(3] 1= 12 (| /* LSKR address pointer *+/
(tunnel _src = +(u_long *) (Lipoptiona(¢])) == 0)
Arcstat.mrts_bad_tunnelse;

Teturn (1)1

Delete the tunnel options from the packet. */
lcada_c) tpoptions,
(uneioned) (n->m_len - (IP_KDR_LEN + TOMNEL_LEN))) ¢

meon_len -- TUNVEL_LaN:

o

>ip_len -- ToWEL_LEN;
Sipnl = TUMNEL LEX >> 25

fpmmoutee

OEBPS/html/graphics/22fig01.jpg
Seacatplor Gusphr Lo I o

en enen e ey

orvee_socusr| e v
Tanta A

sooxay | socxecny (oo | masece

socr oo e socx_swaean [Totype eovme
sosen P e P oy

ey
v orev

saen) e ey sspens

I tocar | | - [otasar lproda | | [mmtadir
re_too frpctore [io_tpore | | [io_tpore
frocipore | | [fmmoioore frecioore | | [fopotoore

o soche
o0

tepony copeny

ol e | ol cinpe

e - bty kel Sl Tt o TCT
ool i ks
W ot i I

OEBPS/html/graphics/02fig01.jpg
n_nextpke.

[mten = bax()
n_gata @bytes)

_cvpe
n_t1ags
mokthar len | pyenart)

e_okenar.revie Bbyies)

m_exc.ex_but

nexc0)
(12bytes)

[moxt ext_tree!

next. oxt_size|

bt () LIt abut() bt ()
= =0 B N
o [=5 o
o ormon [i
T, 200
e
o] 10bye
s buffer:
P
20
peid
is-byte. (external
e buffer)
(et

bufer)

OEBPS/html/graphics/0313_tab01.jpg
o
209
210
211
212

213
210
215
216

217
218
219
220
221
222
223
226
225
226
227
228
229
230
2

232
233
23

cone ICHF_PARNENOD:
it (code » 1)
aoto badcode:
code - PRC_PARAMPROB:
goto dediver:

case 1CHP_SOURCEQUINCH:
it tcoder
goto badeode
code « PRC_QUENCH,

deivers
* Problen with datagram; advise higher level routines.
it (iceplen < ICHP_ADVLENMIN |1 icmplen « ICHP_ADVLEN(icp) ||
tep-ricmp_ip.ip.hl < (sizeof(struct ip) »» 2)) (
icrpatat . icps_ba
oto freeit:

)
NTONS (icp-icmp_ip. ip_len]
icrparc.sin_addr - icp-»icap.ip.
it (ctitunc - inetaw(ip_protox(icp

(sctitunc) (code, (atruct

wiepicrp_ip)

dnt s
icmp_ip.ip_p)).pr_ctlinput)
ockaddr 1 Licrpsc,

brea

badcode:
icrpstat . icps_badeod
break:

ip_lomp.c

OEBPS/html/graphics/24fig18.jpg
o2 3 [s s 6 7 s 9w o

N - [—
T TCP b sekoIeTge ™ ') TRy

revnxe =4 rev_adv=10
next receive Highestadvertised
sequence number sequence number

ey

OEBPS/html/graphics/01fig05.jpg
_—
s

—_—

o

e — SRy
 sloubly Tnked cirulr
7 internet protocol control Blocks:

_—

g
o R

OEBPS/html/graphics/26fig04.jpg
sent, not ACKed
snd_una=4 snd_nxt =10
oldest next send
unacknowledged sequence number

‘sequence number

OEBPS/html/graphics/0539_prog01.jpg
160
61
162
163
168
165
16
167
168
an
n
an
n

e
75
426
s
s
80

= RN
neoll = nselcolls
P->p_tlag |= P_SELECT:
T (orror 11 retval)
goto done;
s+ splnigh():
/7 this should be tinercmp (ktime, katv, >s) */
S (uabosty &k (time.tv_sec > atv.tv_sec ||
Cine.tv_sec +2 atv.tv_sec &4 tine.tv_usec
spixis) :
goto done;

atv.cv_usec)) (

)
1€ ((p->p_flag & P_ssrecT)
spix(s);
goto retsy:

011 nselcolt

)

->p_flag & “P_SELECT;

error - taleep(icaddr_c) & selwait, PSOCK | FCATCH, *select®, tim);
splxis)

if (error == 0)

an
p->p_flag &= “P_SELECT;
7+ select is not restarted atter signals... */
i€ (error == ERasTART)
i€ (error
Adetine putbitsnane, x) \
it (uap->name & \
(error2 = capyout ((caddz_t)obits[x), (cadde_c)uap->nave, ni1)) \
erzor - error2;
i torzor == 0) (
e error2;

putbics(in, 0);
putbis(ou, 1
puthits(ex, 2);

)
recurn (error);

)

sys_genericc

OEBPS/html/graphics/0387_prog01.jpg
o
148
149
151
152
159

in_varh

* Macro to step thioush all of the inmlci records, one at a time.
“he current position is remenbered in *step:, which the caller must

/

provide. TFIRSTULT
and get the first recor
ire o remaining record

20, below, most be calied Lo

4. Both macros raturn a MILL *inn when there

15¢ #detine TN NEKTMULTI (step, inm) \

155
156
157 ¢
150
159
160
161
162
163
168
165
166
17
166
169)

\

7+ struct inmitistep

steps +/\

7+ struct inmilci vinm; */ \

L€ ((Unm) - {step).d_inm) 1~ ML) \
(step) . _ina (i) >inm_next \
else \
while ({step).ifa 1= NULL) (\
(inm) = (step).i_ta->ia_multiaddrs;
(step) i_ia = (step) .i_ia->ia_next.
A€ () te WL (\
(step).i_inm = (inm)->inm_next;
breaks \
I
IR

170 ddetine TNFIRST_ILTI (step, inm) \

m
1m2

173 (2

175
176
)

7+ struct inmitist

9

Steps +/ 1\

77 struct inmics sinm */ \

(otep) i_ia « in_iteddrs \

(Step) i_inm - WLL; \
INNEXT_HULTI (step)

ISP

\

o

OEBPS/html/graphics/860equ04.jpg
RTO-er+4x%

OEBPS/html/graphics/26fig30.jpg
send queue
so_snd.sb_cc=3

4 5 6
snd_una snd_up=7
snd_nxt setby
PRU_SENDOOB

urgent offset
'Set by tep_output

OEBPS/html/graphics/0150_tab02.jpg
101

& nr_piackoLe 2 o

Lfp_sit obyees <= mo>m_pkehdr.lens

otauic

tamiivs t

ir_mwouEuE(ica. m
chednacinr (ier)
o oie ipackarares

e tareass

if_loop.c

OEBPS/html/graphics/0150_tab01.jpg
57 int
58 looutput (ifp, m, dst, rt)
59 struct ifnet *ifp;

60 struct mbuf *m;

61 struct sockaddr *dst;

62 struct reentry *re:

6 0

64 inc s, fer;

65 struct ifqueue *ifg = 0;

66 if ((m->m_flags & M_PKTHDR) == 0)
6 panic(*1ooutput no HDR"
68 ifp->if lastchange = time:
6 if (loif.if bpf) (

20 ”

2 * We need to prepend the address family as

72 * a four byte field. Cons up a dumy header
» © to pacity bpe. Thia is sate because bt

i S D01y Cead from the mhar (1e.. it won't
k) uint af - det-rea_tamilys

mO.m_data = (char *) saf:

e meap(lote. 1€ ppE. wm0);
)
m->m_pkehdr.revit = ifp:

OEBPS/html/graphics/0796_prog01.jpg
P
232
e
24
235
26

237
28

239
200
22
203
24

7o wdp_usrreq.c

* Construct sockaddr forrat sovrce address.
+ Stuft source address and datagram in user buffer.
udp_in.sin_port = uh->uh_sport:

udp_in sin_addr - ip->ip_er

$€ (inp->inp_flags & IN_CONTROLOPTS) (
struct sbuf +rmp = Gopts:

S (inp->inp_flags & INE_RECVDSTADDR) |
1D udp._saveopt (caddz_t) & ip->ip_dst,
aiteoilsteuct in_adas), IE_RECVDITAGORI .
it (npi
T+ &(*mp) >m_next;
)

265 biedet notyer

25
27
28
29
250
251
252
253
254
255
256
257
ase
259

7% Tp options were tossed above +/
Sf (inp->imp_flage & INP_RECVOPTS) (
*mp = udp_saveopt ((cadds_t) ops_deleced_above,
sizeof (struct in_addr), IE_RECVOPTS):
i€ (rmp
D+ &(%0p) ->n_next

)
7 ip_sreroste doesn’t do wrat we want here, need to fix */
i (inp->inp_flags & IN_RECVRETOPTS) (
*5p < udp_saveopt ((caddz_t) ip_srcrouce(),
sizeot(struct in_addr), IP_RECVRETOPTS);

ie (mpl
™ & np) om_nencs

260 tensie

261
262
263
264
265
265
267
268
265
2
m
m

s
a7
275
276
)

B-omdata +- iphlen,
£ (sbappendaddr (iinp->inp_socket->80_rcv, (struct sockaddr *) &adp_in,
=, opto) == 0) (
udpstat..udps_fullsockss;
goto bad:

)
sorvakeup{inp->np_socket) :

b
n_freen(a);
5t (opts)
m_treen(opte) s

udy_usrreg.c

OEBPS/html/graphics/06fig07.jpg
sockaaar()

sockagar_in()

Fomily

m |~ —t

asta
tanily o Tbytes
= oas zero
L in_atarcy
1 Thytes oyt
u_tong| addr.s_adar

OEBPS/html/graphics/0660_prog01.jpg
691
62
693
694
695
696
67
69
700
701
702
703
204)

)
)

ifam = (struct ifamsghdr *) w->w_tmem;

ifam>ian index = ifa->ifa_ifp-1f_index;

ifan->ian_tlags - ifa->ifa_flags:

ifam-si fan petric - ifa->ifa_setric

Stan-ifan_addra « info.rti_addrs;

S (erzor = copyout (4-v_tnem, w-sw_vhere,
return (orror)

wesw_unere 4= len;

ifasddr = netmask = brdaddr = 0;

)
ceturn (0);

1en))

OEBPS/html/graphics/24fig19.jpg
e byelPdatgam]

P TP
options TCRheader: options
S0 bytes 5 20 T TTT

IP header

OEBPS/html/graphics/28fig33.jpg
SYN
receive SYN, ACK: 153 154 155

rev_nxt

OEBPS/html/graphics/0758_prog01.jpg
o
162

166
165
166
167

202
203
208
205

TE (inp->inp_iacar.

TRASR A {

Sa - (orruet in_ifadde) 0

”

* If route is known or can be allocated now,

* our src addr is taken fron the /€, else punt.

-

2o = ainp->inp_rout

i (ro>ro_re &
(satosin(aro->ro_dst) ->sin_addr.s_aadr I«
ein soin_adar.o_adae |1
inp->imp_socket—>s0_opt ions & SO_DONTROUTE)) {
RTFREE (ro>r0_rt) ;
romsro_st = (struct reentzy) 0

)
1€ ((inp->im_socket->80_options & SO_DONTROUTE) == 0 &&
(ro->r0xt =s (struct rtentry *) 0 ||
o->ro_rt->rt_ifp == (atruct ifnet *) 0N (
7+ N0 zaute yor. a0 try to acquire ono +/
Fo->ro_dst .sa_fanily = AF_INET;
zo->ro_dst sa_len = sizest (struct sockadér_in);
({struct sockaddr_in *) iro->ro_dst) ->sin_addr =
sin->sin_addr)
rralloctro)s

+ 16 ua fond & route, use the sddress
+ corresponding to the outgoing interface
+ unless it is the loopback (in case a oute
* to our address on another net goes co loopback)
-

in_pebe.

7oxeey

L€ (ro-sro_st & 1(xo->ro_rt->rt_ifp->if flags & IFF_LOOPEACKI)

a « ifatola (ro->ro_re-
i€ (a =01 (
Wshore fpore « ain->sinports

ita);

sin-ssinport = 0
i = ifatola(ifa_ifuithdstaddr (sintosa(sim) ;
i (a0

ia - ifacoia(ifa_ifuithnet (sintosa(sin))
sin->sir_port = fport;

i€ (1a = 0)
ia -+ in_tfadar;
i (a1 07

retim (BADDRNOTAVAL) ¢

in_peb.c

OEBPS/html/graphics/02fig26.jpg
{1

fAmoxt

[EnextpRe

[Aten

imdaca

[Atyoe

[Atiage. !

[nopkehar-Ter

[Apienar revie]

[mpkehdrcevi

frextoxt_bit

[noxc. oxe_but

[rext-oxt_treq]

[rext. oxt_treg]

(Aot oxt_s izo]

20byte cluster

[Foex -ont_sze]

1440 bytesof data

SSbyiesof data

2088 bytesof dota

abuety

oot

[ronetot e

ton 500

facoats

[atype Jwr_oama

[nFloge ey

oo ot ot

w_oxt oxt_trea]

et ox_siza)

OEBPS/html/graphics/0622_prog01.jpg
0
1
2

3
341
345
246
47
348
349
351
352
353
354
355
356
397

358
359
360
361
362
363
360
365
366
367
368
369
3
m
n
)
e
35
376
a
e
379
00
381
382
383

ase RTWADD:

i€ ((ifa = ifa_itwithrouce(flags, dst, gateway))

‘senders (ENETUNREACH) ;

sakeroute:
Ralloc(st, struct rtentry *
S (re == 0)

Senderr (BNOBUFS) 1
Baero(r, sizeof (+rt)):
rto>re_tlags « RTE_UP | flags:

tre,"dst, gateway))

sizeof (rre)):

sender (ENOBUFS)

)
ndst + re_key(st);
i (netmask) (

t_maskedcopy (dst, ndst, netmask);
) else’

Boopy (dst, ndst, dst->salen)

n « rah->ron_addadde ((caddr_t) ndst, (caddr_t)
b, ri->rt_nodes)
S (en == 0) 0
i (xe-sre_guroute)
rtfree(zeosre_guroute) ;
Free(xt_key (<t));
Free(rt):
‘senders (BEXIST) ;

)
ifa->ito_retentess
re->re_ifa - ifa;
re-sre_ifp - ifa->itaifp;
i€ (req - KTH_RESOLVE)

‘routec

netrask,

re-srt_mmx - (vret_net)rtmx; /% copy metrics */

it Gifa:
i

it (retnrt) (
*ret_net = rt;
re-sTe_refentess

iEarexequest)

)
break;
)

ade

spixs);
return (error);

i€ reroquest (req, £t, SA(ret_nrt ? *ret_nrc : 0));

OEBPS/html/graphics/16fig36.jpg
R —

so_snd

so_rev

| N e 7 N o 7

[N e X2 N B

OEBPS/html/graphics/23fig27.jpg
clent process
connectsto | bedi
100252129

Ethemet, 14025213

a

!

PPP link

2

3300

EC|

server process
unconnected
UDP socket

=2

OEBPS/html/graphics/0948_prog01.jpg
void
ecp_input ()
‘
checksun TCP header and data;
Eindpcb:

locate BCB for segment;
£ (not found)

+ goto dropwithreset;

reset idle tine to 0 and keepalive timer to 2 hours;
Dprocess options if not LISTEN state;

1f (packet matched by header prediction) (

complotely process received segment;
return;
)

switeh (tp->¢_state) (

case 1CPS_LISTEN:
£ SYN flag set, accept new comnection request;
goto trinthensteps

case TCPS_sy_sENT:
1 ACK of our SYN, connection completed;
trinthensteps:
trin any data not within window;
goto steps;
)

process RFC 1323 timestamp;
check if some data bytes are within the receive window;
trin data segment to £it within window;
1£ (RST flag set) (
process depending on state;

goto drop:
) /* Chapter 28 finishes here

if (acK flag set) (/* Chapter 29 starts here */
if (S_RCVD state)
passive open or simultanous open complete;
it (Quplicate ACK)
fast recovery algorithm;
update RIT estimators if segment timed;
open congestion window;
remove ACKed data from send buffer;

change state if in FINWAIT_1, CLOSING, or LASTACK state;
)

steps:
update window information;

Process URG £1ag;

OEBPS/html/graphics/t0077-01.jpg
Device Initialization Function
LANCE Ethemet | leattach
SLIP slattach
loopback. loopattach

OEBPS/html/graphics/t0081-01.jpg
Constant

sc_softc member

Description

SC_COMPRESS | sc_if.if_flags | IFF_LINKO; compress TCP traffic
SC_NOTCMP | sc_if.if_flags | IFF_LINKL; suppress ICMP traffic
SC_AUTOCOMP | sc_if.if_flags | TFF_LINK2; auto-enable TCP compression
SC_ERROR sc_flags ‘error detected; discard incoming frame.

OEBPS/html/graphics/17649.jpg
Teep
Ilhnstryeds
il

OEBPS/html/graphics/t0094-01.jpg
Device File

DEC DEUNA Interface vax/if/if_de.c
3Com Ethernet Interface vax/if/if_ec.c
Excelan EXOS 204 Interface vax/if/if_ex.c
Interlan Ethernet Communications Controller vax/if/if_il.c
Interlan NP100 Ethernet Communications Controller | vax/if/if_ix.c
Digital Q-BUS to NI Adapter vax/if/if_ge.c
CMC ENP-20 Ethernet Controller tahoe/if/if_enp.c
Excelan EXOS 202(VME) & 203(QBUS) tahoe/if/if_ex.c
ACC VERSAbus Ethernet Controller tahoe/if/if_ace.c
AMD 7990 LANCE Interface hp300/dev/if_le.c
NE2000 Ethernet 1386/isa/if ne.c
Western Digital 8003 Ethernet Adapter i386/isa/if_we.c

OEBPS/html/graphics/0126_prog01.jpg
614 leioctl{itp, cad, data) e
615 struct itnet *itp:

616 inc

cmd;

617 cadde_t datar

618 (
619
620
a1
a2

623

638
639
640
641
642
643
44
645
646
67
648
549
650
651
652
653
654
655
656

672
673
7
75
%6
617)

struct ifaddr *ifa - (struct ifaddr *) data:
struct le_softc *le = ile_softc(ifp->if_unit);
struce leregl *lerl = le->se_rls

int s = spliep(), error = 0,

switeh (end) (

/* SICSITADDR code (Figure 6.28) */

case SIOCSIFFLAGS:
€ ((4fp->Lt_tlags & IFEUP) == 0 Gk
ifp->if_flags & IPE_RUNNING) (
LERDAR (1e->8¢_x0, LE_STOP, lerl->lerl_rdp);
$tp->1t_(lags b “IFF_RUNNING:
) else if (ifp->if_flags & IFE_UP &
(ifp->4€_{1ags & IPF_RUNNING) == 0)
leinit (ip->if_onit);
"
* It the state of the promiscuous bit changes, the interface
* must be reset to effect the change,
o
§f (((8p->if_flags * le->sc_iflags) & IFF_PRONISC) &&
{itori o b e sw | ¢
_iflags = ifp->if_tlags;
et e
lestart (itp)1

)
break:

/+ SIOEADMILEE and SIOCOBIALTY code (Figure 12.31) +/ |

detauit:
error = EINVAL

)

splxis):

return (error):

if dec

OEBPS/html/graphics/t0095-01.jpg
ifnet Ethernet SUP | Loopback Description

TEinic Teinit ardveare falzation

ie output | ether_output | sloupuc | looutput | acceptand queue framefor transmission

istare | lestare begin transmission of frame.

16 done output complete (unused)

itliccrl | lesoctl shtocel | loiocel | handle oct) commands froma
process

if roset | lereset resetthe deviceto known state-

if_vatchdog wateh the devicefor faluresor collct

‘statistics

OEBPS/html/graphics/14fig35.jpg
Transport
Protocols

packetaccpted by ipincr

discarded datagrams
Figure 1439

e Tovedd koot

OEBPS/html/graphics/t0095-02.jpg
File Description

netinet/if_ether.h | Ethernet structures
net/if.h ioct1 command definitions

net/if_ethersubr.c | generic Ethernet functions
1hp300/dev/if_le.c | LANCE Ethemet driver
net/if.c ioctl processing

OEBPS/html/graphics/t0096-01.jpg
Variable Datatype Description
arpintrq Struct ifqueue "ARP input queue
clnlintrg struct ifqueue CLNP input queue
ipintrg struct ifqueue IP input queue
Te_softc struct le_softc (1 | LANCE Ethemetinterface
etherbroadcastaddr | u_char (] Ethernet broadcast address.

OEBPS/html/graphics/10fig16.jpg
m_datal]

15a0| next | prev fufp] ia |ipa_next|ipaprev]
m

taseragr[] fe ren [0 [ore [o] sum [ipe_next | ipe_prev]
n

100 fof 1en | 1a [ore fofo] sum ip_ast

OEBPS/html/graphics/09fig31.jpg
72bytes

mbuf{}

20 bytes

8 bytes

le—— m_pktdat

IP header
(20 bytes)

le—— m_data

UDP header
(8 bytes)

room here for 16 bytes
of Ethernet header and
56 bytes of IP options.

OEBPS/html/graphics/0480_prog01.jpg
129 sociose(so) ot

130 sexact socket *a0;

1 (
12
m

14
135
136
1
18
19
100
10
2
10
108
s
146
s
13
150
151
152
153
154
156
157
158
159
160
161
162
163
168
165
166
167
168
169
10
m
m
m)

e s s spinecos 7+ conservative +/
i error = 0;

L (s0->80_opticna & SO_ACCEVCOR) (
while (s0->s0_a0)
(void) soabort (80->80_a01 1
while (s0->s0_a)
(void) soabort (s0->s¢

=
)
5 (s0-280_peb == 0)
goto aiscard;
4 (80->80_state & SS_ISCORECTED) (
i€ ((s0->80_state & SS_ISDISYRNECTING) == 0) (
eror = sodiaconnect (s0)1
it (errer)
otc drops
)
it (s0-80_cptions & SO_LINGER) (
£ ((50->50_state & SS_ISDISCONNECTING) 4&.
(s0->50_state & S5_I0))
goto drop:
hile (so->s0_state & SS_ISCONNECTED)
S (error + tsleep((zaddr_t) & so->sc_tineo,
PSOCK | PCATCH, netels, so->so_linger))

break;
)
)
acop:
£ (s0->80_9¢b)
ineerrer2 «

(*60->80_proco->pr_usrreq) (s, PRU_DETACH,
(struee sbut *) 0, (struct sbut) O, (struct sbut %) 0);
i€ (erzor =)

)
aiscar
§¢ (s0->s0_state & SS_NOFOREP)
panic(“socicae: NOFOREE);
80->80_state I+ SS_NOFDREF;
sotreeiso)
aplx(a);
rocum ferror);

OEBPS/html/graphics/0213_tab02.jpg
204
205
206
207
208
209
210
21
212
a3

* Look for all-0’s host part (old broadcast addr).
* either for subnet or net.
.
© = ntohl (ip->ip_dst.s_addr);
i€ (t == ia->ia_subner)
goto ours;
42 (¢ «n fa->ia_net)
oto ours;

if (ip->ip_dst.s_addr == (u_long) INADDR_BROADCAST)
goto ours
1€ (1p->ip_dst.s_addr == INADDR_ANY)
goto ours
”»
* Mot for us; forward if possible and desizable.
-
if (ipforwarding == 0) (
ipstat.ips_cantforwardes;
n_troen(m) ;
) etse
ip_forward(m, 0);
goto next:

ours:

ip_input.c

OEBPS/html/graphics/0213_tab01.jpg
e
179
180

81

183
184
185
186

187
188
189
150
191

192
193

198
195
136
197

198
199
200
201
202
203

7

* Process options and, if not destined for w

* ship it on. ip dooptions returns I when an

* error was detected (causing an icwp message
* to be sent and the original packet to be freed).

.

ip_nhops = 0
if (hlen > sizeof (struct ip) &k ip_dooptions(m)}

”

* Check our list of addre

<)

goto next;

/+ tor source routed packets */

5. to see if the packet is for us.

for (ia » in_ifaddrs ia; ia = ia->ia_next) (
#detine satosin(sa) ((struct sockaddr_in *) (sa))

i€ (IASIN(ia)->sin_addr.s_addr == ip->ip_dst.

goto ours:

7+ Only examine broadcast addre:

if (ta->iaifp ==
(1a->$a_ifp->1¢_tlags & IFF_BROADCAST)) (
wleng €

it (satosin(ui,
1p->ip_det.5_addr)

goto our

if (ip->ip_dst.

e

goto ours;

adr)

5 for the receiving interface */
m_pkthdz . revif &

>ia_broadaddr) ->ain_addr.s_addr

addr == ia->ia_netbroadcast.s_addr)

OEBPS/html/graphics/22fig32.jpg
the protocol’s pctlinput:allprotocol’s
control input function control input function

(software interrupt)

OEBPS/html/graphics/0388_prog01.jpg
57 vo e
188 Sgup_taserino()

19
190
192

193
194
195
196
197
198

199
201
202
203
204
205
206
207
208
209
210
a
12
a3)

struct in_multi *inm;
struct in_multistep steps

* Quick check to see if any work needs to be dne, in order
* co mininize the overhead of fasttimo processing.

-

L€ (1igp_tiners_are_running)

s = splneci;
Samp_timers_are_running - 0
I8_PIRST_MULTL (step, inm)
while (inn 1= WLL) (
Y (nmsina_tiner
/* 2o noching */
} else if (-inm->inn tiner
iomp_sendzeport (inm ¢
) elee (
igmp_tiners_are_running = 1

o«

ot

)
IN_NEXT UL (step, inm)

)
splxis

OEBPS/html/graphics/04fig21.jpg

OEBPS/html/graphics/16fig37.jpg
Bt}

| so_spa

so_rev

MT_CONTRO! HT_DATA

MT_DATA T_DATA HI_DATA

OEBPS/html/graphics/05fig19.jpg
fe—idie—af £

packet END‘ packet lej
gt —— gy

e
(discarded)

OEBPS/html/graphics/0257_tab02.jpg
796
797
798
799
800
801
802
803
804

7
* Copy option fields and padding (nop) to mbuf.
.
ip_srcrt.nop = IPOPT_NOP:
ip_srcrt . arcopt (IPOPT_OPFSET] = IPOPT_MINOF!
beopy((caddr_t) & ip_srcrt.nop.

atod(m, caddr_t) + sizeof (struct in_addr), OPTSIZ):
q = (struct in_addr *) (ntod(m, caddr_t) «
sizeof (struct in_addr) + OPTSIZ);

805 #undet OPTSIZ

806
807
808
809
810
a11
812
a1
814
815
816
817
818)

* Record return path as an IP source route,
* reversing the path (pointers are now aligned) .
o
while (p >= ip_srert.xoutel (
qes = op-

)
”

* Last hop goes to final destination.
o

vq = ip_srere.det;

return (m):

OEBPS/html/graphics/09fig01.jpg
o ipmlxdbytes ———————

Standard header options
(20 bytes) (0-40 bytes)

e cobytes maximum —————— &

OEBPS/html/graphics/0257_tab01.jpg
777
778
79
780
781

782
783
788
785
786

7%

78
79
790

791
792
793
79¢
795

struct mbut +
ip_sreroute()
i
struct in_addr *p, *
struct mbut 'm

if (ip_nhops == 0)

return ((struct mbut *) 0)
= 7 3ot (M_DONTWAIT, MT_SOOPTS) ;
if mes 0)

return ((struct mbut ") 0);

Vdefine 0PTSIZ (sizeof (ip_srcrt.nop) + sizeof (ip_srert.srcopt))

7+ length is (nhops+1)*sizeof (addr) + sizeof (nop + srcrt header) */
m_len = ip_nhops * sizeof (struct in_addr) + sizeof (struct in_addr)

oprsiz;
.
* Pirst save first hop for return route
o

P = 4ip_srert.routelip_nhops - 11
“(mtod(m, struct in_addr *)) = *p-

OEBPS/html/graphics/28fig19.jpg
SYN

*

snd_una =365
snd_up =365

366 367
snd_nxt =366

snd_max = 366

OEBPS/html/graphics/25fig26.jpg
delta = nticks - srit
St ¢ srit + g x delta
rttvar < rttvar + h(delta| - rttoar)
RTO = srit + 4 x ritvar

OEBPS/html/graphics/18fig36.jpg
off on

(50

((end) off Mt 63 |0
default OxEEEEEEO0
5000 0x££000000
0x00000000
127001
127000
OxEEFEEE00

0xE£000000

OEBPS/html/graphics/05fig06.jpg
slateach

[y

line
discpline

OEBPS/html/graphics/29fig32.jpg
;—ﬁmohiuunr datagram

1
nonTCp[o100] protocol TP 0-68515 byte of I dta

o
20-60 byt IP header
® TR0yt Phesder g
-

TePsegment[0100] protocol =TCP | 20-60byte TCP header | 0-68495 bytes of TP data

o
20-60byte IPheader

- .
crmonsso resfinn] | IO | oo crieier | -esosbyesortcrams
"
" .
commassen s o ol TCrdon
. S
FET

TCP header

OEBPS/html/graphics/0210_tab02.jpg
ue
@7

49
150
151
152
153
150
155
156
157
158
159
160

16
162
16
168
165
166
167
168
169
170

m
172
3
17
175
176
m

)

i€ (ip->ip_sum = in_cksun(m, hlen)) {

ipstat. ips_badsuse.

goto bad;
)
”

* Convert tields to host representation.

-
NTOHS (ip->ip_len)

Lf (ip->ip_len < hlem) {
ipstat.ips_badlenss;

goto bad;
)
TOHS (1p->ip_td) :
NTOHS (ip->ip_off)

e

* Check that the anount of data in the butfers
* is as at least much as the IP header would have us expect.

* Trim mbufs if longer than we expect.
* Drop packet if shorter than we expect.

s
1€

ipstat. ips_tooshortes;

goto bad;

sm_pkthdr. len < ip->ip len) (

if (m->m_pkehdr.len > ip->ip_len) (

it (n>m_len
n->m_len

m->m_pkthdr. len = ip->ip_l

) else
m_ad3

= ip->ip_len;

ip->ip_len -

n->m_pkthdr.len) (

>m_pkehdr. len) ;

p_input.c

OEBPS/html/graphics/0315_tab01.jpg
255
236
23

a7
278
279
280
281
282

Case_1CMP_ECHO+
icp->icmp_type - ICMP_ECHOREPLY.
goto reflact;

/% other IcHP request processing */

roflect:

ip->ip_len - hlen; /* since ip_input deducts this */

icnpatat..icps_reflectse
icnpstat .icps_outhist (icp->icmp_type]
icnp_retlect (m)
return;

ipiempc

ip_icmp.c

OEBPS/html/graphics/0210_tab01.jpg
i
119
120
121
122
123
120
125
126
127
128
129
130
11
132
133
134
135
136
137
138
139
160
141
142
143
104
145

* are receiving, can’t do anything with incoming packets yet.

.
i€ (in_ifaddr == NOLL)
goto bad;
ipstat. ips_total.

it (n>m_len < sizeof (struct ip) &k

(m = mpullup(m, sizeof(struct ip))) == 0) (

ipstat. ips_toosmalles:
goto next:

)

ip = meod(m, struct ip *

if (ip->ip_v te IPVERSION) (
ipstat . ips_badvers.
goto bad:

)
Blen = ip->ip_hl << 2;
if (hlen < sizeof (struct ip)) (
ipstat.ips_badnlenes;
goto bad

)
if (nlen > mo>m_len) (

7+ minimum header length */

if ((m = mpullup(m, hlen)) == 0) (

ipstat.ips_badnlenss;
goto next;

)

25 o kA

e i

OEBPS/html/graphics/0464_prog01.jpg
ipe _syscalls.c.
106 sorvet accept_aras (e

107
108
109
w0 s

cadar_t pane:

111 aceept (p, vap, recval)
112 ateactrproc “pr
113 struct accept_args *uap;

14 e
115 ¢
16

18

s

120
ey
12
12
124
126
12
128
129
10
m
132
1
130
15
16
17
18
19
160
101
102
163
16
15
106
10
18
13
150
151
152
153
150
185

Frotvals

stret file *to;
fne namelen, orror, s
atcuct socket “aor

L€ (uap-snane &6 (error = copyin((caddr_t) uap->ammelen,
(caddr_t) & nanelen, sizeof (nanelen))))
rotuen (eror)
St (error = gecsck(p-ap_fd. uap->a. G191}
Foturn (orror
50 = (struce socket *) fp-sf_data:
¥ (1s0-550_options & SO_ACCEPICOM) = 0) (
Spix(s)s
caturn (EIAL);

)
it ((s0->s0_state & SS_NBIO) &4 so->so_alen
apix(s)
return (EWOULDBLOCK

While (so->s0_len == 0 Lk So->so_error
££ (30 250_state & SS_CANTRCWORE) (
s0-~s0_ercor = ECONNAORTED:
brask;

)
i€ fexror = tsleap((cadde_c) & so->so_cineo, FSOCK | POATCH,
netcon, 0))

spixsrs
Fotun tezeor s

20-2s0_error = 0;
spixs)
securn torzer s

y
it (exror = falloc(p, &fp, revall) {
Splxsr;
return (exeee) s

OEBPS/html/graphics/appafig01.jpg
sup

z....m

fLenar | indnx

e 2 Joad]

family

Tndex

HEF

OEBPS/html/graphics/29fig31.jpg
first byte
transmitted
across link

UNCOMPRESSED_TCP

4bit 4bit

version header length
0100 - - - ey
61 1 1 - - -
1co1e

S A W U COMPRESSED_TCP

OEBPS/html/graphics/0109_prog01.jpg
o1

92
9

95
96
9
98

100
101

102
163
146
165
146

107
148
149
150
151

switch (dst->sa_family) (Lo <
case A®_tue:
i€ Ctarpresolvetac, e, m, dat, edat))
cotuen (01 7% 8t not et xesotved /
/+ 1€ broadcasting on a sisplex intertace, loopback a copy */
S ((meomtlags & XBCAST) ke (itp-sif Clags & IFP_SINPLER))
scopy + acopy (h, 0. (in€) M_COPYALLY:
off = mesm_pkihdr.lon - moom_lens
Cype - EmERTYPEiP:
break:
case AP_TS0:

/* 0I code */

case AP_UNSPEC:
eh = (struct other_header *) dst->sa_data:
beopy ((caddr._t) eh->ether_dhost, (caddr_t) edst, sizeof (edst)):
type = eh-sether_type:

1d: can‘t handle af¥d\n", ifp->if_name, ifp->if_unit,
dst ->sa_tamily
‘senderr (EAPNOSUPPORT:

if_ethersubr.c

OEBPS/html/graphics/10fig15.jpg
ipal)

o0 [
obl o ity
e R
e P orrbed
o
[E————
w30 sttty fislod
=

o pre ey

oo | Tt_next Tornexe
Towprov e Tpiprev ot prov
: bt o
ipa0) ipastragl)
prev St rceved
ot fgmen
ot | datgnm

OEBPS/html/graphics/27fig16.jpg
tepeb() mbut() mbut()

e s s T s
e peer T e
e 1500 e 1500
rey Feny
e o puon | (Tactvee e
tis P | oo riags Koee
moskenarTen] 106 Sepkinar T g
Septnar E e o penar EeuTE
e 1 | | oo oo et
oo et s po i)
oo oxestae] 200s oo e oatie | 2008
e (et
P sy
vl ey
e o
e =] s
ko o
Ties e i 2021
e 46 o -
T T ‘e
a e
o s
Sty by

OEBPS/html/graphics/11fig29.jpg
Application

icmp_error

TP and transport
protocols

OEBPS/html/graphics/t0203-02.jpg
Variable Datatype Description

in_ifadar Struct in_ifaddr + | IP addresslist

ip_deftel int default TTL for IP packets

ip_ia int last ID assigned to.an outgoing IP packet
ip_protox ine() demultiplexing array for IP packets
ipforvarding | int should the system forward IP packets?
ipforward_rt | struct route cache of most recent forwarded route
ipintra struct ifqueue TP input queue

ipqnaxien int maximum length of IP input queue
ipsendredirects | int should the system send ICMP redirects?
ipstat struct ipstat 1P statistics

OEBPS/html/graphics/t0204-02.jpg
netstat -s_output

ipstat members

27,881,978 total packets received

6 bad header checksuns

9 with size smaller than minimun

14 with data size < data length

0 with header length < data size

0 with data length < header length

0 with bad options

0 with incorrect version number

72,786 fragnents received

0 fragnents dropped (dup or out of space)
349 ragments dropped after timeout
16,557 packets reassembled ok

27,390,665 packets for this host

330,882 packets for unknown/unsupported protocol

ips_total
ips_badsun
ips_tooshort
ips_toosmall
ips_badhlen
ips_badlen
ips_badoptions
ips_badvers
ips_fragnents
ips_tragdropped
ips_ragtimeout
ips_reassenbled
ips_delivered
ips_noproto

97,939 packets forwarded
6,228 packets not forwardable
0 redirects sent

ips_torward
ips_cant forward
ips_redirectsent

29,447,726 packets sent from this host
769 packets sent with fabricated ip header

0 output packets dropped due to no bufs, etc.
0 output packets discarded due to no route
260,484 output datagrams fragmented

796,084 fragments created

0 datagrams that can’t be fragmented

ips_localout
ips_rawout
ips_odropped
ips_noroute
ips_fragnented
ips_ofragnents
ips_cantfrag

OEBPS/html/graphics/t0204-01.jpg
Used by

ipstar member Description el
Tps_badhlen Fpackets with invalid IP header ength g
ips_badlen #packets with inconsistent IP header and IP data lengths |+
ips_badoptions | Apackets discovered with errrs in option processing, .
ips_badsun #packets with bad checksum .
ips_badvers #packets with an IP version other than 4 .
ips_cantforward | fpackets received for unreachable destination .
ips_delivered | fdatagrams delivered to upper lovel .
ips_torward #packets forwarded .
ips_fragaropped | firagments dropped (duplicatesor outof space) .
ips_fragnencs | Hragments received .
ips_fragtineout | Hiragments timed out .
ips_noproto #packets with an unknown or unsupported protocol .
ips_reassenbled | #datagrams reassembled .
ips_tooshort #packets with invald data length .
ips_toosmall #packets oo small o contain IP packet .
ips_total total #packes received .
Tps_canttrag #packets discarded because of the don't fragment bit .
ips_fragmented | Adatagrams successully ragmented .
ips_localout #datagrams generated at system (., ot forwarded) .
ips_noroute #packets discarded—no route o destination .
ips_odropped #packets dropped because of resource shortages .
ips_ofragrents | firagments created for output .

ips_rawour
ips_redirectsent.

total fraw ip packets generated
#redirect messages sent

OEBPS/html/graphics/t0224-01.jpg
‘Error code ICMP message:

from ip_output generated Duecsipton

BS0SIZE TCHP_UNREACH_NEEDFRAG | The outgoing packet was too lage for the selected
interface and fragmentation was prohibited
(Chapter 10).

£ TCHP_SOURCEQUENCH “The interface queue is ful o the kemel is running
short offree memory. This message is an
indication to the source host tolower the data
rate.

EROSTONREACH A route to the host could o be found.

ENETOOMY The outgoing interface specified by the route i not
operating.

EHOSTOOM TCHP_UNREACH_HOST The interface could not send the packet t the
selected host.

detauie

Any unrecognized error s reported as an
ICMP_UNREACH_HOST error.

OEBPS/html/graphics/t0205-01.jpg
SNMP variable ipstat member Dexcription
TpoetavierTL To_detees defaalt TTL for datagrams (4 hops’)
ipForuarding iptoruaraing s system acing s router?
ipReasmTimeout | TPFRAGTTL reassembly timeout for fragments (30 seconds)
TpToReceives ips_toral ol TP packets reeived
Totnsdrrrors Tps_badsum + packets witherrors in P header
ips_tooshort +
ips_coosnall +
ips_badnlen +
ips_badlen +
ips_badoptions +
ips_badvers
Totaddrerrors | ipa_cantiorvard FIP packets discanded bocause of misdelivery
(1p_outpuc filurealso)
ipForvDatagrans | ips_torward 1P packetsforwarded
ipReasmieads ips_tragrents Hiragments rceived.
ipReamrails ips_tragdropped + | Hiragments dropped
ips_tragtiseou
ipReasnors ips_reasaenbled datagrams successully reassembled
iptmpiscards (notimplemented) datagrams discarde because of resource
limitatons.
Sptnbnknomerotos | ips_noproto datagrams withan unknown or unsupported
protocol
spnbelivers ips_derivered datagrams delivered to ransportlyer
Ipoutrequests ips_tocalout ‘datagrams generated by transportLayers
ipFragoxs ips_tragnented datagrams successully fragmented
ipFragrails ips_cantfrag 1P packets discarded becatise of don't fragment
bit
ipFragoreates ips_ofzagnents Sfcagmentscreated for output
ipoutbiscards ips_odropped HIP packets dropped becauseofresource shorages
ipOutioRoutes. ips_naroute #IP packets discarded because of no route

OEBPS/html/graphics/19fig06.jpg
Creatio

Ttredirect

OEBPS/html/graphics/05fig29.jpg
..

ion at oien mien
m_aata r_data n_data

Sllocated on sack
W lcoatans

allocated in
St ot pecl

OEBPS/html/graphics/t0226-01.jpg
Flag Description

TP_FORWARDING “This is a forwarded packet.

IP_ROUTETOIF Ignore routing tables and route directly to interface.
IP_ALLOWBROADCAST | Allow broadcast packets to be sent.
IP_RAWOUTPUT Packet contains a preconstructed IP header.

OEBPS/html/graphics/0077_prog01.jpg
ifJec

69 struct le_softc (
70 struct arpcom sc_ac; 7+ common Ethernet structures */
71 #define sc_if sc_ac.ac_if /* network-visible interface */.
72 #detine sc_addr sc_ac.ac_enaddr /* hardware Ethernet address */

95) le_softe(NLe]; e

OEBPS/html/graphics/08fig18.jpg
HS

redirect

default network ‘destination network

OEBPS/html/graphics/0066_prog01.jpg
58 7+ veratile statistics +/ ih

9 u_long ifi_ipackets; /* #packets received on interface */
100 ullong ifiterrors; /* #input errors on interface */

101 ullong ifiiopackets; /* #packets sent on interface */

102 ullong ifi_oerrors; /* output errors on interface */
103 ulong ifi_collisions; /* #collisions on coma interfaces */
106 ullong ifi_ibytes; /* Abytes received */

105 ullong ifiiobytes; /* fbytes sent */

106 ulong ifi_imcasts; /* #packets received via multicest */
107 ullong ifi_omcasts; /* packets sent via multicast */
108 ullon ifi_igdrops; /* #packets dropped on imput, for this
109 intertace */

110 ulong ifinoproto; /* #packets destined for unsupported
m protocol */

m struct timeval ifi_lastchange: /* last updated */

1m3) iedata;

7% other itnet mesbers */

#detine if_ipackets Lt data.iti_ipackets

145 #dotine if ierrors if data.ifi ierrors

146 #dotine if opackets i data.iti_opackets

147 #detine it oerrors i data.iti oerrors

148 #define if_collisions ~ if_data.ifi_collisions
149 Wdetine if_ibytes if_data.ifi_ibyes

150 detine Lf_obytes if data.ifi obyts
151 #detine i€ incasts if data.ifi_iscasts

152 #define if oncasta if_data.ifi_omcasts

153 #detine if_igdrops if_data.ifi_iqdrops

15¢ #detine it noproto if_data.ifi_noproto

155 #detine if lastchange it data.ifi_lastchange

ifh

