2 WU

swers to

Chef Infrastructure
Automation Cookbook

Over 80 delicious recipes to automate your cloud and server
infrastructure with Chef

Foreword by Adam Jacob, Co-founder of Opscode and the Creator of Chef

Matthias Marschall | |

PUBLISHING
www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure
Automation Cookbook

Over 80 delicious recipes to automate your cloud and server infrastructure with Chef

Matthias Marschall

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure Automation Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1200813

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK

ISBN 978-1-84951-922-9

www . packtpub.com

Cover Image by Matthias Marschall (mmeagileweboperations.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author Project Coordinator
Matthias Marschall Anugya Khurana
Reviewers Proofreader
Robert Curth Jonathan Todd

Julian C. Dunn

Seth Vargo Indexer
Monica Ajmera Mehta

Acquisition Editor
Saleem Ahmed Production Coordinator

Kirtee Shingan

Lead Technical Editor

Azharuddin Sheikh Cover Work
Kirtee Shingan

Technical Editors
Sharvari Baet
Aparna Chand
Dylan Fernandes

Aparna K

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

From the beginning, Chef has been about a group of like-minded practitioners working
together to help one another build better infrastructure. We started small—just a few people
tinkering and experimenting. As we gained more and more comfort and conviction in the tools
we were building, and in one another, we expanded both in the scope of the infrastructures
we were automating, and in the scope of the tool we were building.

Writing a book about a technology that moves as quickly as Chef does is a brave endeavor
and one that can only really be undertaken by someone who has long been both a practitioner
and active member of our community. Matthias is both, and I'm proud that we've come so far
together that someone of his caliber would write a book about Chef.

If you're a first-time Chef, welcome to our community. May you build systems you are proud
of, and that your users love. If you're a long-time member of our community, congratulations!
Matthias has something to teach all of us, and you should take personal pride in the part
you've played in getting all of us here.

Best wishes,

Adam Jacob
Co-founder of Opscode and the Creator of Chef

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Matthias Marschall is a software engineer "Made in Germany". His four children
make sure that he feels comfortable in lively environments, and stays in control of chaotic
situations. A lean and agile engineering lead, he's passionate about continuous delivery,
infrastructure automation, and all things DevOps.

In recent years, Matthias has helped build several web-based businesses, first with Java
and then with Ruby on Rails. He quickly grew into system administration, writing his own
configuration management tool before moving his whole infrastructure to Chef in its early days.

In 2008, he started a blog (http://www.agileweboperations.com) together with Dan
Ackerson. There they shared their ideas about DevOps since the early days of the continually
emerging movement. You can find him on Twitter as @mmarschall.

Matthias is a CTO at gutefrage.net GmbH, helping run Germany's biggest Q&A site among
other high-traffic sites. He holds a Master's degree in Computer Science (Dipl.-Inf. (FH)) and
teaches courses on Agile Software Development at the University of Augsburg.

When not writing or coding, Matthias enjoys drawing cartoons and playing Go. He lives near
Munich, Germany.

My thanks go to my colleagues at gutefrage.net for all those valuable
discussions.

I thank Adam Jacob, Joshua Timberman, and all the other great people at
Opscode for your help with the book.

Special thanks go to my reviewers Seth Vargo, Julian Dunn, and Robert
Curth who made the book so much better.

Finally, thanks to my wife Stephanie. You paid the price when the pressure
rose and my thoughts circled around the book. Without you, this book would
not have happened. You have my love always!

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Robert Curth is a simple engineer working at gutefrage.net who reviewed this book through
the eyes of a Chef novice.

Julian C. Dunn is a Senior Consultant with Opscode, Inc., the developer of Chef. He has 15
years of experience in software development and infrastructure operations at companies of
various sizes across industries as diverse as finance, media/broadcasting, Internet security,
and advertising.

Prior to joining Opscode, Julian was a Senior Operations Engineer at SecondMarket, Inc.,
where he managed infrastructure in Amazon EC2 using Chef. Before SecondMarket, he
worked as web operations manager at the Canadian Broadcasting Corporation where he
managed content and streaming media delivery systems for Canada's largest website.

When not helping customers with automating all the things, he enjoys traveling, cycling,
and stopping his cat from clawing the furniture.

Seth Vargo is a solutions engineer at Opscode, the maker of Chef. Seth created and
currently leads the #learnchef campaign-a program designed to interactively teach

Chef to new users. A graduate of the Carnegie Mellon Information Systems program,

Seth has been a developer and systems administrator for more than 12 years. He is

a proponent of open source, and is the author of popular open source tools such as powify,
bootstrap_forms, strainer, fauxhai, and many Chef community cookbooks. When he's not

at home in Pittsburgh, Pennsylvania, Seth is traveling and evangelizing Chef at conferences,
meetup groups, and open training courses.

I'd like to thank Matthias for taking the initiative and making the effort to
produce this book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . PacktPub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . Packt Pub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content
» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents

Preface 1

Chapter 1: Chef Infrastructure 7
Introduction 8
Using version control 8
Installing Chef on your workstation 11
Using the Hosted Chef platform 12
Managing virtual machines with Vagrant 15
Creating and using cookbooks 19
Inspecting files on your Chef Server with Knife 21
Defining cookbook dependencies 23
Managing cookbook dependencies with Berkshelf 25
Downloading and integrating cookbooks as vendor branches
into your Git repository 29
Using custom Knife plugins 34
Changing organizations based on the current Git branch 36
Deleting a node from the Chef Server 39
Running Chef Solo 41
Using roles 44
Using environments 45
Freezing cookbooks 49
Running Chef Client as a daemon 50
Using the Chef console (Chef Shell) 51

Chapter 2: Evaluating and Troubleshooting Cookbooks and

Chef Runs 55
Introduction 56
Testing your Chef cookbooks 56
Flagging problems in your Chef cookbooks 58
Test Driven Development for cookbooks using ChefSpec 61

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Integration testing your cookbooks with Test Kitchen 67
Showing affected nodes before uploading cookbooks 73
Overriding a node's run list to execute a single recipe 75
Using why-run mode to find out what a recipe might do 77
Debugging Chef Client runs 79
Inspecting results of your last Chef Client run 81
Raising and logging exceptions in recipes 84
Diffing cookbooks with knife 87
Using community exception and report handlers 89
Creating custom handlers 91
Chapter 3: Chef Language and Style 95
Introduction 96
Using community Chef style 96
Using attributes to dynamically configure recipes 98
Using templates 101
Mixing plain Ruby with Chef DSL 104
Installing Ruby gems and using them in recipes 107
Using libraries 108
Using definitions 111
Creating your own Light Weight Resource Providers (LWRP) 113
Extending community cookbooks by using application wrapper cookbooks 118
Creating custom Ohai plugins 121
Creating custom Knife plugins 124
Chapter 4: Writing Better Cookbooks 129
Introduction 130
Setting environment variables 130
Passing arguments to shell commands 132
Overriding attributes 134
Using search to find nodes 137
Using data bags 140
Using search to find data bag items 143
Using encrypted data bag items 144
Accessing data bag values from external scripts 148
Getting information about the environment 150
Writing cross-platform cookbooks 152
Finding the complete list of operating systems you can use in cookbooks 155
Making recipes idempotent by using conditional execution 157

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 5: Working with Files and Packages 161
Introduction 161
Creating configuration files using templates 162
Using pure Ruby in templates for conditionals and iterations 164
Installing packages from a third-party repository 167
Installing software from source 170
Running a command when a file is updated 173
Distributing directory trees 175
Cleaning up old files 177
Distributing different files based on the target platform 180

Chapter 6: Users and Applications 183
Introduction 183
Creating users from data bags 184
Securing the Secure Shell Daemon (SSHD) 188
Enabling passwordless sudo 191
Managing NTP 194
Managing nginx 196
Creating nginx sites 200
Creating MySQL databases and users 204
Managing WordPress sites 207
Managing Ruby on Rails applications 210
Managing Varnish 215
Managing your workstation 218

Chapter 7: Servers and Cloud Infrastructure 223
Introduction 224
Creating cookbooks from a running system with Blueprint 224
Running the same command on many machines at once 227
Setting up SNMP for external monitoring services 228
Deploying a Nagios monitoring server 230
Building high-availability services using Heartbeat 234
Using HAProxy to load-balance multiple web servers 238
Using custom bootstrap scripts 240
Managing firewalls with iptables 242
Managing fail2ban to ban malicious IP addresses 245
Managing Amazon EC2 instances 248
Loading your Chef infrastructure from a file with spiceweasel and Knife 252

Index 255

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Irrespective of whether you're a systems administrator or a developer, if you're sick and tired
of repetitive manual work and not knowing whether you may dare to reboot your server, it's
time for you to get your infrastructure automated.

This book has all the required recipes to configure, deploy, and scale your servers
and applications, irrespective of whether you manage five servers, 5,000 servers,
or 500,000 servers.

It is a collection of easy-to-follow, step-by-step recipes showing you how to solve real-
world automation challenges. Learn techniques from the pros and make sure you get your
infrastructure automation project right the first time.

This book takes you on a journey through the many facets of Chef. It teaches you simple
techniques as well as fully fledged real-world solutions. By looking at easily digestible
examples, you'll be able to grasp the main concepts of Chef, which you'll need for automating
your own infrastructure. Instead of wasting time trying to get existing community cookbooks
running in your environment, you'll get ready-made code examples to get you started.

After describing how to use the basic Chef tools, the book shows you how to troubleshoot your
work and explains the Chef language. Then, it shows you how to manage users, applications,
and your whole cloud infrastructure. The book concludes by providing you, additional,
indispensable tools and giving you an in-depth look into the Chef ecosystem.

Learn the techniques of the pros by walking through a host of step-by-step guides to solve your
real-world infrastructure automation challenges.

What this book covers

Chapter 1, Chef Infrastructure, helps you to get started with Chef. It explains some key
concepts such as cookbooks, roles, and environments and shows you how to use some basic
tools such as Git, Knife, Chef Shell, Vagrant, and Berkshelf.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 2, Evaluating and Troubleshooting Cookbooks and Chef Runs, is all about getting
your cookbooks right. It covers logging, debugging, as well as the why-run mode and shows
you how to develop your cookbooks totally test driven.

Chapter 3, Chef Language and Style, covers additional Chef concepts such as attributes,
templates, libraries, and even Light Weight Resource Providers. It shows you how to use plain
old Ruby inside your recipes, and ends with writing your own Ohai and Knife plugins.

Chapter 4, Writing Better Cookbooks, shows you how to make your cookbooks more flexible.
It covers ways to override attributes, use data bags and search, and to make your cookbooks
idempotent. Writing cross-platform cookbooks is covered as well.

Chapter 5, Working with Files and Packages, covers powerful techniques to manage
configuration files and to install and manage software packages. It tells you how to install
software from source and how to manage whole directory trees.

Chapter 6, Users and Applications, shows you how to manage user accounts, securing SSH,
and configuring sudo. Then, it walks you through installing complete applications such as nginx,
MySQL, Wordpress, Ruby on Rails, and Varnish. It ends by showing you how to manage your own
OS X workstation with Chef.

Chapter 7, Servers and Cloud Infrastructure, deals with networking and applications spanning
multiple servers. You'll learn how to set up high-availability services and load-balancers and
how to monitor your whole infrastructure with Nagios. Finally, it'll show you how to manage
your Amazon EC2 cloud with Chef.

What you need for this book

To run the examples in this book, you'll need a computer running OS X or Ubuntu Linux 12.04.
The examples will use Sublime Text (http://www.sublimetext.com/) as the editor. Make
sure you've configured its command-line tool, sub1l, to follow along smoothly.

It helps if you've Ruby 1.9.3 with Bundler (http://bundler. io/) installed on your box as well.

Who this book is for

This book is for system engineers and administrators who have a fundamental understanding
of information management systems and infrastructure. It helps if you've already played around
with Chef; however, the book covers all the important topics you will need to know. If you don't
want to dig through a whole book before you can get started, this book is for you, as it features
a set of independent recipes you can try out immediately.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The Omnibus Installer will download Ruby and all
required Ruby gems into /opt/chef/embedded."

A block of code is set as follows:

name "web servers"
description "This role contains nodes, which act as web servers"
run list "recipe[ntp]"
default attributes 'ntp' => {
'ntpdate' => {
'disable' => true

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

name "web servers"
description "This role contains nodes, which act as web servers"
run list "recipel[ntpl"
default attributes 'ntp' => {
'ntpdate' => {
'disable' => true

}
Any command-line input or output is written as follows:
mma@laptop:~/chef-repo $ knife role from file web servers.rb

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes, for example, appear in the text like this: "Clicking the Next button
moves you to the next screen".

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub. com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http: //www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

"What made Manhattan Manhattan was the underground infrastructure, that
engineering marvel."

- Andrew Cuomo
In this chapter, we will cover the following:

» Using version control

» Installing Chef on your workstation

» Using the Hosted Chef platform

» Managing virtual machines with Vagrant

» Creating and using cookbooks

» Inspecting files on your Chef Server with Knife

» Defining cookbook dependencies

» Managing cookbook dependencies with Berkshelf

» Downloading and integrating cookbooks as vendor branches into your Git repository
» Using custom Knife plugins

» Changing organizations based on the current Git branch
» Deleting a node from the Chef Server

» Running Chef Solo

» Usingroles

» Using environments

» Freezing cookbooks

» Running Chef Client as a daemon

» Using the Chef console (Chef Shell)

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

Introduction

This chapter will cover the basics of Chef, including common terminology, workflow practices,
and various tools surrounding Chef. We will explore version control using Git, walk through
working with community cookbooks, and running those cookbooks on your own servers to
configure them the way you need them.

First, let's talk about the terminology used in the Chef universe.

A cookbook is a collection of recipes - codifying the actual resources, which should be
installed and configured on your node - and the files and configuration templates needed.

Once you've written your cookbooks, you need a way to deploy them to the nodes you want to
provision. Chef offers multiple ways for this task. The most widely used way is to use a central
Chef Server. You can either run your own or sign up for Opscode's Hosted Chef.

The Chef Server is the central registry where each node needs to get registered. The Chef
Server distributes the cookbooks to the nodes based on their configuration settings.

Knife is Chef's command-line tool called to interact with the Chef Server. You use it for uploading
cookbooks and managing other aspects of Chef.

On your nodes, you need to install Chef Client - the part that retrieves the cookbooks from
the Chef Server and executes them on the node.

In this chapter, we'll see the basic infrastructure components of your Chef setup at work
and learn how to use the basic tools. Let's get started with having a look at how to use Git
as a version control system for your cookbooks.

Using version control

Do you manually back up every file before you change it? And do you invent creative
filename extensions like _me and _you when you try to collaborate on a file? If you answer
yes to any of the preceding questions, it's time to rethink your process.

A version control system (VCS) helps you stay sane when dealing with important files and
collaborating on them.

Using version control is a fundamental part of any infrastructure automation. There are
multiple solutions (some free, some paid) for managing source version control including Git,
SVN, Mercurial, and Perforce. Due to its popularity among the Chef community, we will be
using Git. However, you could easily use any other version control system with Chef.

Don't even think about building your Infrastructure As Code without
L using a version control system to manage it!

—e1]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Getting ready

You'll need Git installed on your box. Either use your operating system's package
manager (such as Apt on Ubuntu or Homebrew on OS X), or simply download the installer
from www.git-scm.org.

Git is a distributed version control system. This means that you don't necessarily need a central
host for storing your repositories. But in practice, using GitHub as your central repository has
proven to be very helpful. In this book, I'll assume that you're using GitHub. Therefore, you need
to go to github. com and create a (free) account to follow the instructions given in this book.
Make sure that you upload your SSH key following the instructions at https://help.github.
com/articles/generating-ssh-keys, so that you're able to use the SSH protocol to
interact with your GitHub account.

As soon as you've created your GitHub account, you should create your repository by visiting
https://github.com/new and using chef -repo as the repository name.

How to do it...

Before you can write any cookbooks, you need to set up your initial Git repository on your
development box. Opscode provides an empty Chef repository to get you started. Let's see
how you can set up your own Chef repository with Git using Opscode's skeleton.

1. Download Opscode's skeleton Chef repository as a tarball:

mma@laptop $ wget http://github.com/opscode/chef-repo/tarball/
master

... TRUNCATED OUTPUT. ..
2013-07-05 20:54:24 (125 MB/s) - 'master' saved [9302/9302]

2. Extract the downloaded tarball:
mma@laptop $ tar zvf master

3. Rename the directory. Replace 2c42c6a with whatever your downloaded tarball
contained in its name:

mma@laptop $ mv opscode-chef-repo-2c42cé6a/ chef-repo

4. Change into your newly created Chef repository:
mma@laptop $ cd chef-repo/

5. Initialize a fresh Git repository:
mma@laptop:~/chef-repo $ git init .

Initialized empty Git repository in /Users/mma/work/chef-repo/.
git/

Bl

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

6. Connect your local repository to your remote repository on github . com. Make sure
to replace mmarschall with your own GitHub username:

mma@laptop:~/chef-repo $ git remote add origin git@github.
com:mmarschall/chef-repo.git
7. Add and commit Opscode's default directory structure:
mma@laptop:~/chef-repo $ git add .
mma@laptop:~/chef-repo $ git commit -m "initial commit™"
[master (root-commit) 6148b20] initial commit
10 files changed, 339 insertions(+), 0 deletions(-)
create mode 100644 .gitignore

... TRUNCATED OUTPUT...
create mode 100644 roles/README.md

8. Push your initialized repository to GitHub. This makes it available to all your co-
workers to collaborate on it.

mma@laptop:~/chef-repo $ git push -u origin master

... TRUNCATED OUTPUT...
To git@github.com:mmarschall/chef-repo.git
* [new branch] master -> master

You've downloaded a tarball containing Opscode's skeleton repository. Then, you've initialized
your chef -repo and connected it to your own repository on GitHub.

After that, you've added all the files from the tarball to your repository and committed them.
This makes Git track your files and the changes you make later.

As a last step, you've pushed your repository to GitHub, so that your co-workers can use your
code too.

Let's assume you're working on the same chef - repo repository together with your
co-workers. They cloned your repository, added a new cookbook called other cookbook,
committed their changes locally, and pushed their changes back to GitHub. Now it's time
for you to get the new cookbook down to your own laptop.

Pull your co-workers, changes from GitHub. This will merge their changes into your local
copy of the repository.

mma@laptop:~/chef-repo $ git pull

From github.com:mmarschall/chef-repo

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

* branch master -> FETCH_HEAD
.. .TRUNCATED OUTPUT. ..
create mode 100644 cookbooks/other cookbook/recipes/default.rb

In the case of any conflicting changes, Git will help you merge and resolve them.

See also

» Learn about Git basics at http://git-scm.com/videos

» Walk through the basic steps using GitHub at https://help.github.com/
categories/54/articles

» The Downloading and integrating cookbooks as vendor branches into your Git
repository section

Installing Chef on your workstation

If you want to use Chef, you'll need to install it on your local workstation first. You'll have
to develop your configurations locally and use Chef to distribute them to your Chef Server.

Opscode provides a fully packaged version, which does not have any external prerequisites.
This fully packaged Chef is called the Omnibus Installer. We'll see how to use it in this section.

Getting ready

Make sure you've curl installed on your box by following the instructions available at
http://curl.haxx.se/download.html.

How to do it...

Let's see how to install Chef on your local workstation using Opscode's Omnibus Chef installer:

1. Inyour local shell, run the following command:
mma@laptop:~/chef-repo $ curl -L https://www.opscode.com/chef/
install.sh | sudo bash

Downloading Chef...
.. .TRUNCATED OUTPUT. ..
Thank you for installing Chef!

2. Add the newly installed Ruby to your path:

mma@laptop:~ $ echo 'export PATH="/opt/chef/embedded/bin:$PATH"'
>> ~/.bash profile && source ~/.bash profile

s

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

The Omnibus Installer will download Ruby and all the required Ruby gems into /opt/chef/
embedded. By adding the /opt/chef/embedded/bin directory to your .bash profile,
the Chef command-line tools will be available in your shell.

There's more...

If you already have Ruby installed in your box, you can simply install the Chef Ruby gem by
running mma@laptop:~ $ gem install chef.

See also

» Find detailed instructions for OS X, Linux, and Windows at https://learnchef.
opscode.com/quickstart/workstation-setup/.

Using the Hosted Chef platform

If you want to get started with Chef right away (without the need to install your own Chef
Server) or want a third party to give you an Service Level Agreement (SLA) for your Chef
Server, you can sign up for Hosted Chef by Opscode. Opscode operates Chef as a cloud
service. It's quick to set up and gives you full control, using users and groups to control the
access permissions to your Chef setup. We'll configure Knife, Chef's command-line tool to
interact with Hosted Chef, so that you can start managing your nodes.

Getting ready

Before being able to use Hosted Chef, you need to sign up for the service. There is a free
account for up to five nodes.

Visit http://www.opscode.com/hosted-chef and register for a free trial or the
free account.

| registered as the user webops with an organization short-name of awo.

After registering your account, it is time to prepare your organization to be used with your
chef-repo repository.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Carry out the following steps to interact with the Hosted Chef:

Chapter 1

1. Navigate to http://manage.opscode.com/organizations. After logging in,

you can start downloading your validation keys and configuration file.
2. Select your organization to be able to see its contents using the web UL.

Cookbooks

All Categories

Seeall Cookbooks &

mysqgl

apache2

wewrn e

nginx

e ke

Databases Web Servers

mysqgl apache2

P ek

postgresqgl nginx

Y, o
See all @ database See all ©

- passenger_apache2
Process . Monitoring & .

runit . zabbix
Management P Trending PP

3. Regenerate the validation key for your organization and save it as <your-

organization-short-names>.peminthe .chef directory inside your

chef -repo repository.

Administrative

Organizations _ o
Showing All Organizations
Create Select All /
Regenerate Validation
. Organization Actions

Key
Generate Knife Config N
Leave Organization
Starter Kit
Users

Ll mma
Groups

steakhouse

agilewebops v

www.it-ebooks.info

[}

http://www.it-ebooks.info/

Chef Infrastructure

4. Generate the Knife config and put the downloaded knife.rb into the .chef
directory inside your chef -repo directory as well. Make sure you replace webops
with the username you chose for Hosted Chef and awo with the short-name you
chose for your organization:

current_dir = File.dirname(_ FILE_)

log level :info

log_location STDOUT

node_name "webops"

client key "#{current dir}/webops.pem"
validation client name "awo-validator"

validation key "#{current dir}/awo-validator.pem"
chef server url "https://api.opscode.com/organizations/
awo"

cache type 'BasicFile!

cache options(:path => "#{ENV['HOME'] }/.chef/checksums")
cookbook_path ["#{current dir}/../cookbooks"]

5. Use Knife to verify that you can connect to your hosted Chef organization. It should
only have your validator client so far. Instead of awo, you'll see your organization's
short-name:

mma@laptop:~/chef-repo $ knife client list

awo-validator

Hosted Chef uses two private keys (called validators): one for the organization and the other
for every user. You need to tell Knife where it can find these two keys in your knife. rb file.

The following two lines of code in your knife. rb file tells Knife about which organization to
use and where to find its private key:

validation client name "awo-validator"
validation key "#{current dir}/awo-validator.pem"

The following line of code in your knife. rb file tells Knife about where to find your users'
private key:

client key "#{current dir}/webops.pem"

And the following line of code in your knife. rb file tells Knife that you're using Hosted Chef.
You will find your organization name as the last part of the URL:

chef server url "https://api.opscode.com/organizations/awo"

Sz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Using the knife. rb file and your two validators Knife can now connect to your organization
hosted by Opscode.

You do not need your own, self-hosted Chef Server, nor do you need to use Chef Solo in
this setup.

There's more...

This setup is good for you if you do not want to worry about running, scaling, and updating
your own Chef Server and if you're happy with saving all your configuration data in the cloud
(under Opscode's control).

If you need to have all your configuration data within your own network boundaries, you might
sign up for Private Chef, which is a fully supported and enterprise-ready version of Chef Server.

If you don't need any advanced enterprise features like role-based access control or
multi-tenancy, then the open source version of Chef Server might be just right for you.

See also

» Learn more about the various Chef products at http://www.opscode.com/
chef/#which-chef

» You can watch a screencast about how to register for Hosted Chef at https://
learnchef.opscode.com/screencasts/register-for-hosted-chef/

Managing virtual machines with Vagrant

Developing Chef cookbooks requires you to run your work-in-progress cookbooks multiple
times on your nodes. To make sure they work, you need a clean, initial state of your nodes
every time you run them. You can achieve this by using Virtual Machines (VM). But manually
setting up and destroying VMs is tedious and breaks your development flow.

Vagrant is a command-line tool that provides you with a configurable, reproducible, and
portable development environment by enabling you to manage VMs. It lets you define and
use preconfigured disk images to create new VMs. Also, you can configure Vagrant to

use provisioners such as Shell scripts, Puppet, or Chef to bring your VM into the desired state.

In this recipe, we will see how to use Vagrant to manage VMs using VirtualBox and Chef Client
as the provisioner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

Getting ready

Download and install VirtualBox at https://www.virtualbox.org/wiki/Downloads
Download and install Vagrant at http://downloads.vagrantup.com/.

Install the Vagrant Omnibus plugin to enable Vagrant to install Chef Client on your VM by
running the following commands:

mma@laptop:~/chef-repo $ vagrant plugin install vagrant-omnibus

Installing the 'vagrant-omnibus' plugin. This can take a few
minutes. ..

Installed the plugin 'vagrant-omnibus (1.1.0)'!

How to do it...

Let's create and boot a virtual node by using Vagrant:

1. Visithttps://github.com/opscode/bento and choose a Vagrant box for basing
your VMs on. We'll use opscode-ubuntu-12. 04 in this example.

2. The URL of the opscode-ubuntu-12.04 box is https://opscode-vm-bento.
s3.amazonaws.com/vagrant/opscode_ubuntu—12.04_provisionerless.
box.

3. Edityour new vagrantfile. Make sure that you replace <YOUR-ORG> with the
name of your organization on the Chef Server. Use the name and URL of the box file
you noted down in the first step as config.vm.box and config.vm.box url:

mma@laptop:~/chef-repo $ subl Vagrantfile

Vagrant.configure ("2") do |config]|
config.vm.box = "opscode-ubuntu-12.04"

config.vm.box _url = https://opscode-vm-bento.s3.amazonaws.com/
vagrant/opscode ubuntu-12.04 provisionerless.box

config.omnibus.chef version = :latest

config.vm.provision :chef client do |chef |

chef .provisioning path = "/etc/chef"
chef.chef server url = "https://api.opscode.com/
organizations/<YOUR_ ORG>"
chef.validation key path = "/.chef/<YOUR ORG>-validator.pem"
chef.validation client name = "<YOUR ORG>-validator"
chef .node name = "server"
end

end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

4. Create your virtual node using Vagrant:
mma@laptop:~/chef-repo $ vagrant up

Bringing machine 'server' up with 'virtualbox' provider. ..
... TRUNCATED OUTPUT...
[server] Importing base box 'opscode-ubuntu-12.04"'...
... TRUNCATED OUTPUT...
[server] Installing Chef 11.4.4 Omnibus package...
[server] Running provisioner: chef client...
Creating folder to hold client key...
Uploading chef client validation key...
Generating chef JSON and uploading...
Running chef-client...

[2013-05-27T20:06:04+00:00] INFO: *** Chef 11.4.4 **x*
... TRUNCATED OUTPUT...

5. Login to your virtual node using SSH:
mma@laptop:~/chef-repo $ vagrant ssh

Welcome to Ubuntu 12.04.2 LTS (GNU/Linux 3.5.0-23-generic x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Wed Apr 24 07:30:09 2013 from 10.0.2.2
vagrant@server:~$

The vagrantfile is written in a Ruby Domain Specific Language (DSL) for configuring
the Vagrant virtual machines. We want to boot a simple Ubuntu VM. Let's go through the
Vagrantfile step-by-step.

First, we create a config object. Vagrant will use this config object to configure the VM:

Vagrant .configure ("2") do |config]

end
Inside the config block, we tell Vagrant which VM image to use, in order to boot the node:

config.vm.box = "opscode-ubuntu-12.04"
config.vm.box_url = "https://opscode-vm-bento.s3.amazonaws.com/
vagrant/opscode_ubuntu-12.04 provisionerless.box"

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

We want to boot our VM using a so-called Bento Box provided by Opscode. We use Ubuntu
version 12.04 here.

If you have never used the box before, Vagrant will download the image file
i (a few hundred megabytes) when you run vagrant up for the first time.

As we want our VM to have Chef Client installed, we tell the Vagrant Omnibus plugin to use
the latest version of Chef Client:
config.omnibus.chef version = :latest

After selecting the VM image to boot, we configure how to provision the box using Chef. The
Chef configuration happens in a nested Ruby block:

config.vm.provision :chef client do |chef |

end

Inside this chef block, we need to instruct Vagrant on how to hook up our virtual node to the
Chef Server. First, we need to tell Vagrant where to store all the Chef stuff on your node:

chef .provisioning path = "/etc/chef"

Vagrant needs to know the APl endpoint of your Chef Server. If you use Hosted Chef, it is
https://api.opscode.com/organizations/<YOUR_ ORG>. You need to replace
<YOUR_ORG> with the name of the organization you created in your account on Hosted Chef.
If you are using your own Chef Server, change the URL accordingly:

chef.chef server url = "https://api.opscode.com/
organizations/<YOUR_ORG>"

While creating your organization on Hosted Chef, you must have downloaded your private key.
Tell Vagrant where to find this file:

chef.validation key path = /.chef/<YOUR ORG>—validator.pem"
Also, you need to tell Vagrant as which client it should validate itself against the Chef Server:
chef.validation client name = "<YOUR ORG>-validator"
Finally, you should tell Vagrant how to name your node:
chef .node_name = "server"

After configuring your Vagrantfile, all you need to do is run the basic Vagrant commands
like vagrant up, vagrant provision, and vagrant ssh. To stop your VM, just run
the vagrant halt command.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There's more...

If you want to start from scratch again, you will have to destroy your VM as well as delete both
the client and the node from your Chef Server by running the following commands:

mma@laptop:~/chef-repo $ vagrant destroy

mma@laptop:~/chef-repo $ knife node delete server -y && knife client
delete server -y

Alternatively, you may use the Vagrant Butcher plugin found at https://github.com/
cassianoleal/vagrant-butcher

See also

» Find the Vagrant documentation at http://docs.vagrantup.com/v2/getting-
started/index.html

» You can use a Vagrant plugin for VMware instead of VirtualBox and find it at
http://www.vagrantup.com/vmware

» You can use a Vagrant plugin for Amazon AWS instead of VirtualBox and find the
same at https://github.com/mitchellh/vagrant-aws

Creating and using cookbooks

Cookbooks are an essential part of Chef. You can easily create them using Knife, Chef's
command-line tool. In this section (and many of the following sections), | will assume that
you're using a Chef Server to manage your infrastructure. You can either set up your own
or use the Hosted Chef as described previously.

In this section, we'll create and apply a simple cookbook using Knife.

Getting ready

Make sure you've Chef installed and a node available for testing. Check out the installation
instructions at http://learnchef . com if you need help here.

Edit your knife. rb file and add the following three lines to it, filling in your own values:

cookbook copyright "your company"
cookbook license "apachev2"
cookbook email "your email address™

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

. The Apache 2 license is the most commonly found in cookbooks,
% but you're free to choose whichever suits your needs. If you
L put none as the cookbook_license, Knife will put "A11
rights reserved" into your recipe's metadata file.

Knife will use the preceding values as default whenever you create a new cookbook.

How to do it...

Carry out the following steps to create and use cookbooks:

1. Create a cookbook by running the following with the name my cookbook:

mma@laptop:~/chef-repo $ knife cookbook create my cookbook

** Creating cookbook my cookbook

** Creating README for cookbook: my cookbook

** Creating CHANGELOG for cookbook: my_ cookbook
** Creating metadata for cookbook: my cookbook

2. Upload your new cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]
Uploaded 1 cookbook.

3. Add the your node's run list. In this example, the name of the node
is server:

mma@laptop:~/chef-repo $ knife node run list add server recipel[my
cookbook]

server:
run_list: recipe[my cookbook]

4. Run Chef Client on your node:

user@server:~$ sudo chef-client

Knife is the command-line interface for the Chef Server. It uses the RESTful API exposed by
the Chef Server to do its work and helps you to interact with the Chef Server.

The knife command supports a host of commands structured like the following:

knife <subject> <commands>

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The <subject> used in this section is either a cookbook or a node. The commands we use
are create or upload for the cookbook, and run_1list add for the node.

» The Using the Hosted Chef platform section

Inspecting files on your Chef Server with

Knife

Sometimes, you may want to peek into the files stored on your Chef Server. You might not
be sure about an implementation detail of that specific cookbook version, which is currently
installed on your Chef Server, and would want to look it up. Knife can help you out by letting
you show various aspects of the files stored on your Chef Server.

Getting ready

Make sure you have the iptables cookbook installed locally and uploaded to your
Chef Server.
1. Install the iptables community cookbook by executing the following command:

mma@laptop:~/work/chef helpster $ knife cookbook site install
iptables

Installing iptables to /Users/mma/work/chef-repo/cookbooks
... TRUNCATED OUTPUT...

2. Upload the iptables cookbook to your Chef Server by executing the
following command:

mma@laptop:~/work/chef helpster $ knife cookbook

Uploading iptables [0.12.0]
Uploaded 1 cookbook.

How to do it...

Let's find out how Knife can help you to look into a cookbook stored on your Chef Server:
1. First, you want to find out the current version of the cookbook you're interested in.
In our case, we're interested in the iptables cookbook:
mma@laptop:~/work/chef helpster $ knife cookbook show iptables
iptables 0.12.0

s

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

2. Then, you can look up the definitions of the iptables cookbook:

mma@laptop:~/work/chef helpster $ knife cookbook show iptables
0.12.0 definitions

checksum: 189188109499d68612a5b95b6809b580
name: iptables rule.rb
path: definitions/iptables_rule.rb

specificity: default
url: https://s3.amazonaws.com/opscode-platform. ..

3. Now, you can even show the contents of the iptables rule.rb definition file as
stored on the Chef Server:

mma@laptop:~/work/chef helpster $ knife cookbook show iptables
0.12.0 definitions iptables_rule.rb

#

Cookbook Name:: iptables

Definition:: iptables_ rule

#

#

define :iptables_rule, :enable => true, :source => nil, :variables
=> {} do

.. .TRUNCATED OUTPUT. ..

end

The knife show sub-command helps you understand what exactly is stored on the Chef
Server. It let's you drill down into specific sections of your cookbooks and see the exact
content of the files stored on your Chef Server.

Using Chef 11, you can pass patterns to the knife show command to tell it what exactly you
want to see. Showing the contents of the iptables rule definition can be done like this, in
addition to the way we used previously:

mma@laptop:~/work/chef helpster $ knife show cookbooks/iptables/
definitions/*

cookbooks/iptables/definitions/iptables_rule.rb:
#

Cookbook Name:: iptables

Definition:: iptables rule

#

#

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

define :iptables rule, :enable => true, :source => nil, :variables =>
{} do
... TRUNCATED OUTPUT. ..

See also

0]
=]
Q

» To find some more examples on knife show, visithttp://docs.opscode.com/
knife show.html

Defining cookbook dependencies

Quite often, you might want to use features of other cookbooks in your own cookbooks. For
example, if you want to make sure that all packages required for compiling the C software are
installed, you might want to include the build-essential cookbook that does just that.
When using Chef Server, it needs to know about such dependencies in your cookbooks. You
need to declare them in the cookbook's metadata.

Getting ready

Make sure you've a cookbook named my cookbook and the run_1ist command of your
node includes my cookbook, as described in the Creating and using cookbooks recipe.

How to do it...
Edit the metadata of your cookbook in the file cookbooks/my cookbook/metadata.rb to
add a dependency to the build-essential cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/metadata.rb

depends 'build-essential’
depends 'apache2', '>= 1.0.4'

If you want to use a feature of another cookbook inside your cookbook, you will need to
include the other cookbook in your recipe.

include recipe 'build-essential’

To tell the Chef Server that your cookbook requires the build-essential cookbook,

you need to declare that dependency in the metadata. rb file. If you've uploaded all the
dependencies on your Chef Server, the Chef Server will then send all the required cookbooks
to the node.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

~\l
Q Declaring dependencies is not necessary, if you're using Chef Solo.

The first depends call tells the Chef Server that your cookbook depends on the latest version
of the build-essential cookbook.

The second depends call tells the Chef Server that your cookbook depends on a version of
the apache2 cookbook, which is greater or equal to the version 1.0.4. You may use any of
these version constraints with your depends calls:

» < (lessthan)

» <= (lessthan or equal to)

» = (equalto)

» >= (greater than or equal to)

» ~> (approximately greater than)

v

> (greater than)

If you're using the foodcritic gem and include another recipe inside your recipe, without
declaring the cookbook dependency in your metadata. rb file, foodcritic will warn you:

mma@laptop:~/chef-repo § foodcritic my cookbook

FC007: Ensure recipe dependencies are reflected in cookbook metadata:
cookbooks/my cookbook/recipes/default.rb:9

Additionally, you can declare conflicting cookbooks through the conflicts call:
conflicts "nginx"

Of course, you can use version constraints exactly the way you did with depends.

» The Inspecting files on your Chef Server with Knife section

» Find out how to use foodcritic in the Flagging problems in your Chef cookbooks
section in Chapter 2, Evaluating and Troubleshooting Cookbooks and Chef Runs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Managing cookbook dependencies with

Berkshelf

It's a pain to manually ensure that you've installed all the cookbooks, which another cookbook
depends on. You've to download each and every one of them manually only to find out that
with each downloaded cookbook, you inherit another set of dependent cookbooks.

And even if you use knife cookbook site install, which installs all the dependencies
locally for you, your cookbook directory and your repository get cluttered with all those
cookbooks. Usually, you don't really care about all those cookbooks and don't want to see or
even manage them.

This is where Berkshelf comes into play. It works like Bundler for Ruby gems, managing
cookbook dependencies for you. It downloads all the defined dependencies recursively.

Instead of polluting your Chef repository, it stores all the cookbooks in a central location. You
just commit your Berkshelf dependency file (called Berksfile) to your repository, and every
colleague or build server can download and install all those dependent cookbooks based on it.

Let's see how to use Berkshelf to manage the dependencies of your cookbook.

Getting ready

Make sure you've a cookbook named my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section.

How to do it...

Berkshelf helps you to keep those utility cookbooks out of your Chef repository. This makes
it much easier to maintain the cookbooks, which really matter.

Let's see how to write a cookbook running a bunch of utility recipes and manage the required
cookbooks with Berkshelf:

1. Create a Gemfile containing the berkshelf gem:
mma@laptop:~/chef-repo $ subl Gemfile

source 'https://rubygems.org'
gem 'berkshelf!

2. Run Bundler to install the gem:
mma@laptop:~/chef-repo $ bundler install

Fetching gem metadata from https://rubygems.org/
.. . TRUNCATED OUTPUT...

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

Installing berkshelf (2.0.7)
Using bundler (1.3.5)
Your bundle is complete!
3. Edit your cookbook's metadata:
mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/metadata.rb

depends "chef-client"
depends "apt"
depends "ntp"

4. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

include recipe "chef-client"
include recipe "apt"
include recipe "ntp"
5. Create your Berksfile:
mma@laptop:~/chef-repo $ subl Berksfile

site :opscode

metadata

6. Run Berkshelf to install all the required cookbooks:
mma@laptop:~/chef-repo $ cd cookbooks/my cookbook
mma@laptop:~/chef-repo/cookbooks/my cookbook $ berks install

Using my cookbook (0.1.0) from metadata

Installing chef-client (3.0.4) from site: 'http://cookbooks.
opscode.com/api/vl/cookbooks'

Installing cron (1.2.4) from site: 'http://cookbooks.opscode.com/

api/vl/cookbooks'
Installing apt (2.0.0) from site: 'http://cookbooks.opscode.com/
api/vl/cookbooks'
Installing ntp (1.3.2) from site: 'http://cookbooks.opscode.com/
api/vl/cookbooks'

7. Upload all the cookbooks on the Chef Server:
mma@laptop:~/chef-repo/cookbooks/my cookbook $ berks upload

Using my cookbook (0.1.0)

.. .TRUNCATED OUTPUT. ..

Uploading ntp (1.3.2) to: 'https://api.opscode.com:443/
organizations/agilewebops'

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Berkshelf comes as a Ruby gem, which we need to install first.
Then, we create our cookbook and tell it to use a few other cookbooks.

Instead of manually installing all the cookbooks using knife cookbook site install,
we create a Berksfile besides the metadata. rb file.

The Berksfile is pretty simple. We tell Berkshelf to use the Opscode community site as the
default source for all cookbooks:

site :opscode

And we tell Berkshelf to read the metadata. rb file to find all the required cookbooks. This
is the simplest way when working inside a single cookbook. Please see the following There's
more... section to find an example of a more advanced usage of the Berksfile.

After telling Berkshelf where to find all the required cookbook names, we use it to install all
those cookbooks:

berks install

Berkshelf stores cookbooks in ~/ .berkshelf/cookbooks by default. This keeps your
Chef repository clutter free. Instead of having to manage all the required cookbooks
inside your own Chef repository, Berkshelf takes care of them. You simply need to check in
Berksfile with your cookbook, and everyone using your cookbook can download all the
required cookbooks using Berkshelf.

To make sure that there's no mix-up with different cookbook versions when sharing your
cookbook, Berkshelf creates a file called Berksfile. lock alongside Berksfile. There
you'll find the exact versions of all the cookbooks that Berkshelf installed:

{

"sha": "b7d5bdal8ccfaffe88a7b547420c670b8£922fFf1",
"sources": {
"my cookbook": {
"path": "."

b

"chef-client": {

"locked version": "3.0.4"
b
"cron": {

"locked version": "1.2.4"
et |

"locked version": "2.0.0"

b

e

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

"ntp": {
"locked version": "1.3.2"

}
}
}

Berkshelf will only use the exact versions specified in the Berksfile.lock file, if it finds
this file.

Finally, we use Berkshelf to upload all the required cookbooks on the Chef Server:

berks upload

There's more...

Berkshelf integrates tightly with Vagrant via the vagrant -berkshelf plugin. You can
set up Berkshelf and Vagrant in such a way that Berkshelf installs and uploads all the
required cookbooks on your Chef Server whenever you execute vagrant up or vagrant
provision. You'll save all the work of running berks install and berks upload
manually before creating your node with Vagrant.

Let's see how you can integrate Berkshelf and Vagrant.
First, you need to install the Berkshelf plugin for Vagrant:

mma@mma-mbp: ~/work/chef-repo (master)$ vagrant plugin install vagrant-
berkshelf

Installing the 'vagrant-berkshelf' plugin. This can take a few
minutes. ..

Installed the plugin 'vagrant-berkshelf (1.3.2)'!

Then, you need to tell Vagrant that you want to use the plugin. You do this by enabling the
plugin in your Vagrantfile

mma@mma-mbp: ~/work/chef-repo (master)$ subl Vagrantfile
config.berkshelf.enabled = true
Then, you need a Berksfile in the root directory of your Chef repository, to tell Berkshelf

which cookbooks to install on each Vagrant run:

cookbook 'my cookbook', path: 'cookbooks/my cookbook'

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Eventually, you can start your VM using Vagrant. Berkshelf will first download and install all
the required cookbooks in the Berkshelf, and upload them to the Chef Server. Only after all
the cookbooks are made available on the Chef Server by Berkshelf, will Vagrant go on:

mma@mma-mbp : ~/work/chef-repo $ vagrant up

Bringing machine 'server' up with 'virtualbox' provider...
... TRUNCATED OUTPUT. ..

[Berkshelf] Uploading cookbooks to 'https://api.opscode.com/
organizations/agilewebops'
.. . TRUNCATED OUTPUT...

This way, using Berkshelf together with Vagrant, you save a lot of manual steps and get faster
cycle times for your cookbook development.

» For the full documentation of Berkshelf, please visit http://berkshelf.com/

» Please find the Berkshelf source code at:
https://github.com/RiotGames/berkshelf

» Please find the Vagrant Berkshelf plugin source code at:
https://github.com/riotgames/vagrant-berkshelf

» The Managing virtual machines with Vagrant section

Downloading and integrating cookbooks as

vendor branches into your Git repository

The Opscode community offers a wide variety of ready-made cookbooks for many major
software packages. They're a great starting point for your own infrastructure. But, usually you
need to modify these cookbooks to suit your needs. Modifying your local copy of a community
cookbook leaves you in the dilemma of not being able to update to the latest version of the
community cookbook without losing your local changes.

Getting ready

You'll need to make sure that your local Git repository is clean and does not have any
uncommitted changes:

mma@laptop:~/chef-repo $ git status

On branch master
nothing to commit (working directory clean)

s

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

How to do it...

Carry out the following steps:

1. Gotohttp://community.opscode.com/cookbooks and search for the cookbook
you need. In our example, we will use the mysql cookbook, which is featured right there
on top under the All Categories list as well as above the Databases section. All we
need is to note down the exact name of the cookbook in this case it's simply mysqgl.

OPSCODE

AUNITY

“ Cookbooks

All Categories
mysql
i & & & 4
apache2
v 8 5 3 8
ngin
See all Cookbooks &3 .%]I..x
Databases Web Servers
mysql apache2
postgresql nginx
_ TR _ ok
See all @& database See all &
N passenger_apache2
Process) Monitoring &)
runit . zabbix
Management hhkk Trending P

2. Use Knife to pull down the cookbook and to integrate it with your local repository:
mma@laptop:~/chef-repo $ knife cookbook site install mysql
Installing mysgl to /Users/mma/work/chef-repo/cookbooks
..TRUNCATED OUTPUT...

Cookbook build-essential version 1.2.0 successfully installed

3. Verify the downloaded cookbooks:
mma@laptop:~/chef-repo $ cd cookbooks
mma@laptop:~/chef-repo/cookbooks $ 1ls -1

total 8
-YwW-r--r-- 1 mma staff 3064 23 Nov 22:02 README.md

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

drwxr-xr-x 12 mma staff 408 28 Nov 20:40 build-essential
drwxr-xr-x 13 mma staff 442 28 Nov 20:34 my cookbook
drwxr-xr-x 15 mma staff 510 28 Nov 20:39 mysql
drwxr-xr-x 7 mma staff 238 28 Nov 20:39 openssl

4. Validate the Git status:
mma@laptop:~/chef-repo/cookbooks $ git status

On branch master
Your branch is ahead of 'origin/master' by 3 commits.
#

nothing to commit (working directory clean)

5. You might have noticed that your local branch has received three commits. Let's have
a look at those:

mma@laptop:~/chef-repo/cookbooks $ git log

commit 766bd4098184f4d188c75daa49el2abb5b1£d360
Author: Matthias Marschall <mm@agileweboperations.com>
Date: Wed Nov 28 20:40:01 2012 +0100

commit 766bd4098184f4d188c75daa49el2abb5b1£d360
Author: Matthias Marschall <mm@agileweboperations.com>
Date: Wed Nov 28 20:40:01 2012 +0100

Import build-essential version 1.2.0

commit 6ad70f1fbbb96dflfc55c3237966c60d156d6026
Author: Matthias Marschall <mm@agileweboperations.com>
Date: Wed Nov 28 20:39:59 2012 +0100

Import openssl version 1.0.0

commit d03dd06£3c931078c2a9943a493955780e39bf22
Author: Matthias Marschall <mm@agileweboperations.com>
Date: Wed Nov 28 20:39:58 2012 +0100

Import mysqgl version 2.0.2

The knife command successfully downloaded and imported the mysqgl cookbook as well
as its dependencies: the build-essential and openssl cookbooks.

Es

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

Knife executes a set of commands to download the desired cookbook and to integrate it with
your local repository.

Let's have a look at the output of the knife cookbook site install command again
and go through it step-by-step.

First, the command makes sure that you're on the master branch of your repository:
Checking out the master branch.

The next step is to create a new vendor branch for the mysqgl cookbook if none exists so far:
Creating pristine copy branch chef-vendor-mysqgl.

Then it downloads the tarball, removes any older version, uncompresses the new tarball,
and removes it after successfully extracting its contents into a new cookbook directory:

Downloading mysqgl from the cookbooks site at version 2.0.2 to /Users/
mma/work/chef -repo/cookbooks/mysqgl.tar.gz

Cookbook saved: /Users/mma/work/chef-repo/cookbooks/mysqgl.tar.gz
Removing pre-existing version.

Uncompressing mysgl version 2.0.2.

Removing downloaded tarball

Now, it's time to commit the newly extracted files to the vendor branch:
1 files updated, committing changes

Finally, it tags it with the current version of the cookbook:
Creating tag cookbook-site-imported-mysgl-2.0.2

The knife cookbook site install command executes all the previous mentioned steps
for all the cookbooks the desired cookbook depends on, by default.

Eventually, you end up with a separate branch, the so-called vendor branch, for every
downloaded cookbook integrated into your master branch and nicely tagged. This approach
enables you to change whatever you like in your master branch and still pull down newer
versions of the community cookbook. Git will automatically merge both the versions or will
ask you to remove conflicts manually; all the standard Git procedures.

Downloading the example code

purchased from your account at http: //www.packtpub. com. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and regijster to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

=

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Chapter 1

There's more...

If you want to integrate the desired cookbook into another branch, use the - -branch
BRANCH NAME parameter.

mma@laptop:~/chef-repo [experimental] $ knife cookbook site install mysql
--branch experimental

Installing mysgl to /Users/mma/work/chef-repo/cookbooks

Checking out the experimental branch.

Pristine copy branch (chef-vendor-mysqgl) exists, switching to it.
Downloading mysqgl from the cookbooks site at version 2.0.2 to /Users/
mma/work/chef-repo/cookbooks/mysgl.tar.gz

Cookbook saved: /Users/mma/work/chef-repo/cookbooks/mysqgl.tar.gz
Removing pre-existing version.

Uncompressing mysgl version 2.0.2.

removing downloaded tarball

No changes made to mysqgl

Checking out the experimental branch.

..TRUNCATED OUTPUT..

As you can see, instead of checking out the master branch, the knife cookbook site
install command uses the experimental branch now.

You can use the -D switch when running the command to avoid downloading all the
cookbooks your desired cookbook depends on.

mma@laptop:~/chef-repo $ knife cookbook site install mysql -D

Installing mysgl to /Users/mma/work/chef-repo/cookbooks

Checking out the master branch.

Pristine copy branch (chef-vendor-mysqgl) exists, switching to it.
Downloading mysqgl from the cookbooks site at version 2.0.2 to /Users/
mma/work/chef-repo/cookbooks/mysgl.tar.gz

Cookbook saved: /Users/mma/work/chef-repo/cookbooks/mysql.tar.gz
Removing pre-existing version.

Uncompressing mysgl version 2.0.2.

removing downloaded tarball

No changes made to mysqgl

Checking out the master branch.

You see that the command stopped after dealing with the mysqgl cookbook. It did not get
the other cookbooks yet.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

See also

» You can use Berkshelf to manage cookbooks and their dependencies for you,
which makes the preceding approach obsolete. See the Managing cookbook
dependencies with Berkshelf section.

Using custom Knife plugins

Knife comes with a set of commands out of the box. The built-in commands deal with the basic
elements of Chef like cookbooks, roles, data bags, and so on. But, it would be nice to use Knife
for more than just the basic stuff. Fortunately, Knife comes with a plugin API, and there are
already a host of useful Knife plugins built by Opscode and the Chef community.

Getting ready

Make sure that you've Bundler installed on your local workstation:
mma@laptop:~/chef-repo $ gem install bundler

Fetching: bundler-1.3.5.gem (100%)
Successfully installed bundler-1.3.5
1 gem installed

Make sure you've got an account at Amazon AWS if you want to follow along and try out the
knife-ec2 plugin. There are Knife plugins available for most cloud providers. Go through
the There's more... section of this section for the list.

How to do it...

Let's see which Knife plugins are available, and try to use one for managing Amazon
EC2 instances:

1. List the Knife plugins that are shipped as Ruby gems:

mma@laptop:~/chef-repo $ gem search -r knife-

*** REMOTE GEMS ***
knife-audit (0.2.0)
knife-azure (1.0.2)

.. . TRUNCATED OUTPUT...
knife-ec2 (0.6.4)

.. . TRUNCATED OUTPUT...

S E

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Create a Gemfile containing the EC2 plugin:
mma@laptop:~/chef-repo $ subl Gemfile

source 'https://rubygems.org'

gem 'knife-ec2', '~>0.6.4"

Install the EC2 plugin for managing servers in the Amazon AWS cloud:
mma@laptop:~/chef-repo $ bundle install

Fetching gem metadata from https://rubygems.org/

.. . TRUNCATED OUTPUT...

Installing knife-ec2 (0.6.4)

Using bundler (1.3.5)
Your bundle is complete!

List all the available instance types in AWS using the knife ec2 plugin. Please use
your own AWS credentials instead of XXX and YYYYY:

mma@laptop:~/chef-repo $ knife ec2 flavor list --aws-access-key-id
XXX --aws-secret-access-key YYYYY

ID Name Arch RAM
Disk Cores
cl.medium High-CPU Medium 32-bit

1740.8 350 GB 5
..TRUNCATED OUTPUT...

m2.xlarge High-Memory Extra Large 64-bit
17510. 420 GB 6.5

tl.micro Micro Instance 0-bit 613
0 GB 2

Knife looks for plugins at various places.

First, it looks into the . chef directory located inside your current Chef repository, to find the
plugins specific to this repository:

./ .chef/plugins/knife/

Then, it looks into the . chef directory located in your home directory, to find the plugins that
you want to use in all your Chef repositories:

~/.chef/plugins/knife/

Finally, it looks for installed gems. Knife will load all the code from any chef /knife/
directory found in your installed Ruby gems. This is the most common way of using plugins
developed by Opscode or the Chef community.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

There's more...

There are Knife plugins for most of the major cloud providers as well as for most of the major
virtualization technologies.

At the time of the writing of this book, the following cloud providers were supported by
Knife plugins:

» Microsoft Azure

» BlueBox

» Brightbox

» Amazon EC2

» Eucalyptus

» HP Cloud Services

» OpenStack

» Rackspace Cloud

» Terremark

» VSphere

» Apache CloudStack

Virtualization technologies supported by Knife plugins are listed as follows:

» KVM
» VMware ESX
» Vagrant

» Xenserver

» The Creating custom Knife plugins recipe in Chapter 2, Evaluating and
Troubleshooting Cookbooks and Chef Runs

» Find a list of supported cloud providers at http: //docs.opscode.com/plugin
knife.html

Changing organizations based on the

current Git branch

Chef has this notion of environments to separate, for example, a staging environment from
a production environment. You can define specific cookbook versions to be used only in a
specific environment and a few more things.

NEQ

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

But for development, you might want to give everyone a separate organization on Hosted Chef,
to make sure that no one is stepping on one another's toes while doing heavy refactoring. This
is not possible by solely using the environments feature.

Please note that this is not a condoned behavior and has proven to be

difficult to manage. It fails for many companies supported directly by
Opscode. But, if this is the way to go for you, here you'll learn how.

If you're using separate organizations for each developer, you can automate choosing the
right organization, by making your knife.rb aware of your current Git branch. | assume
that you use the master branch for maintaining your production-ready cookbooks and the
development branch for playing around with your stuff.

Let's see how to let Knife autoselect the correct organization.

Getting ready

Additionally to your default organization in your Hosted Chef account, you need to create a
new organization for every totally sandboxed environment.

1. Create a new organization called YOUR_ORG-development, for example, awo-
development, using the Opscode management console at http://manage.
opscode. com.

2. Create a separate Git branch named development:
mma@laptop:~/chef-repo $ git checkout -b development
mma@laptop:~/chef-repo $ subl Gemfile

gem 'grit'
3. Run Bundler to install the Grit gem:

mma@laptop:~/chef-repo $ bundle install

.. . TRUNCATED OUTPUT. ..
Installing grit (2.5.0)

How to do it...

Let's create a knife. rb file, which evaluates your current Git branch and switches the
Hosted Chef organization accordingly.

1. Putthe following lines at the top of your knife. rb file. Replace "awo" with the value
you used for YOUR _ORG while getting ready:
organization base name = "awo"
require 'grit'

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

repository = Grit::Repo.new(Dir.pwd)
current branch = Grit::Head.current (repository) .name
organization = organization base name

organization << "-#{current branch}" unless current branch ==
'master’

2. Make sure that you set the chef server url correctly:

chef server url "https://api.opscode.com/
organizations/#{organization}"

3. Runthe knife command off your Git master branch, replacing "awo" with your
chosen short-name for your organization:

mma@laptop:~/chef-repo $ knife node list

awo

4. Switch to your development branch:
mma@laptop:~/chef-repo $ git checkout development

5. And, run the knife command again:
mma@laptop:~/chef-repo [development]$ knife node list

awo-development

To be able to use grit for getting the current branch name, we require the grit gem.

Next, we instantiate a Grit : : Repo object from the current working directory. We then use
this Grit : : Repo object to retrieve the current branch. From the current branch, simply take
the name and store it in the current branch variable.

Now, it's time to set our organization name to the name of our default organization.

After that, we amend the organization name with a - symbol along with the branch name, unless
the branch name equals master. This means that if we're currently in the master branch, Knife
will use our default organization (without any suffix). If it is on a git branch, it will attach the
suffix -branch name to our organization name.

Further down, we use the constructed organization name to connect to the Chef Server
by calling chef server url:

chef server url "https://api.opscode.com/
organizations/#{organization}"

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There's more...

Your knife.rb file is a plain Ruby file. You can put any Ruby code inside it using any gems
you want.

To be a little more flexible, we made our knife. rb file even read an environment variable,
CHEF_ORG, which overrides the git branch magic:

organization = ENV['CHEF ORG'] || begin
require 'grit!'
repository = Grit::Repo.new(Dir.pwd)
current branch = Grit::Head.current (repository) .name

chef org = "awo"
chef org << "-#{current branch}" unless current branch == 'master'
chef org

end

As long as you don't set the environment variable CHEF _ORG, everything works as before.
But if you call Knife in the following manner, it will use the given environment variable as the
organization name directly.

mma@laptop:~/chef-repo $§ CHEF ORG=experimental knife node list

experimental

» The Using the Hosted Chef platform section

Deleting a node from the Chef Server

Bootstrapping a node not only installs Chef on that node but also creates a client object on
the Chef Server as well. The client object is used by the Chef Client to authenticate against the
Chef Server on each run.

Additionally to registering a client, a node object is created. The node object is the main data
structure, which is used by the Chef Client to converge the node to the desired state.

Getting ready

Make sure you've at least one node registered at your Chef Server, which is safe to remove.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

How to do it...

Let's delete the node and the client object to completely remove your node from the Chef Server.

1. Delete the node object:
mma@laptop:~/chef-repo $ knife node delete my node

Do you really want to delete my node? (Y/N) y
Deleted node [my node]

2. Delete the client object:
mma@laptop:~/chef-repo $ knife node client my node

Do you really want to delete my node? (Y/N) y
Deleted client [my node]

To keep your Chef Server clean, it's important to not only manage your node objects but also
take care of your client objects.

Knife connects to the Chef Server and deletes the node object with the given name using the
Chef Server RESTful API.

The same happens while deleting the client object on the Chef Server.

After deleting both the objects, your node is totally removed from the Chef Server. Now, you
can reuse the same node name with a new box or virtual machine.

It is a bit tedious and error prone when you have to issue two commands. To simplify things,
you can use a Knife plugin called playground.

1. Addthe knife-playground plugin to your Gemfile:
mma@laptop:~/chef-repo $ subl Gemfile

gem 'knife-playground'
2. Run Bundler to install the Knife plugin:
mma@laptop:~/chef-repo $ bundle install

... TRUNCATED OUTPUT...
Installing knife-playground (0.2.2)

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1
3. Runtheknife pg clientnode delete sub-command
mma@laptop:~/chef-repo $ knife pg clientnode delete my node

Deleting CLIENT my node...

Do you really want to delete my node? (Y/N) y
Deleted client [my node]

Deleting NODE my node...

Do you really want to delete my node? (Y/N) y
Deleted node [my node]

» The Managing Virtual Machines with Vagrant section
» The Using the Hosted Chef platform section

Running Chef Solo

If running your own Chef Server seems like overkill and you're not comfortable with using
Hosted Chef, you can use Chef Solo to execute cookbooks on your server.

Getting ready

Before you're able to run Chef Solo on your servers, you will need to add two files to your local
Chef repository: solo.rb and node. json.

The solo.rb file tells Chef Solo where to find the cookbooks, roles, and data bags.
The node . json file sets the run list (and any other node-specific attributes if required).

1. Create a solo.rb file inside your Chef repository with the following contents:
current_dir = File.expand path(File.dirname(__ FILE_))
file _cache path "#{current dir}"
cookbook_path "#{current dir}/cookbooks"
role path "#{current dir}/roles"
data_bag path "#{current dir}/data bags"

2. Add the file to Git:
mma@laptop:~/chef-repo $ git add solo.rb

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

3. Create a file called node . json inside your Chef repository with the following contents:

{

"run list": ["recipe[ntpl"]
}

4. You might need to get the ntp cookbook into your Chef repository:
mma@laptop:~/chef-repo $ knife cookbook site install ntp
Installing ntp to /Users/mma/work/chef-repo/cookbooks
..TRUNCATED OUTPUT...

Cookbook ntp version 1.3.0 successfully installed

5. Add the node. json file to Git:

mma@laptop:~/chef-repo $ git add node.json

6. Commit and push your changes to GitHub so that your server will be able to pull
them:

mma@laptop:~/chef-repo $ git commit -m "initial setup for Chef
Solo"

mma@laptop:~/chef-repo $ git push

Counting objects: 4, done.

Delta compression using up to 4 threads.

.. .TRUNCATED OUTPUT...

To git@github.com:mmarschall/chef-repo.git
b930647..5bcfab6 master -> master

Now you should be ready to install NTP on your server using Chef Solo.

How to do it...

Let's install NTP on your node using Chef Solo:

Log in to your remote server, which you want to provision with Chef Solo.

Clone your Chef repository. Please replace mmarschall with your own
GitHub username:

user@server:~$ git clone git://github.com/mmarschall/chef-repo.git

3. Change into your Chef repository:

user@server:~$ cd chef-repo

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

4. Run Chef Solo to converge the node:
user@server:~/chef-repo$ sudo chef-solo -c solo.rb -j node.json

[2012-12-08T22:54:13+01:00] INFO: *** Chef 11.0.0 **=*
[2012-12-08T22:54:13+01:00] INFO: Setting the run list to
["recipe [ntp]l"] from JSON

.. .TRUNCATED OUTPUT...

[2012-12-08T22:54:16+01:00] INFO: Chef Run complete in 2.388374
seconds

[2012-12-08T22:54:16+01:00] INFO: Running report handlers
[2012-12-08T22:54:16+01:00] INFO: Report handlers complete

solo.rb configures Chef Solo to look for its cookbooks, roles, and data bags inside the
current directory: the Chef repository.

Chef Solo takes its node configuration from a JSON file, in our example we simply called
it node. json. If you're going to manage multiple servers, you'll need a separate file for
each node.

Then, Chef Solo just executes a Chef run based on the configuration data found in solo.rb
and node . json.

Chef Solo has limited functionality when compared to a Chef Server:
No node data storage

. >
» No search inside recipes

» No environments to manage cookbook versions (you could use Git
branches instead)

Instead of cloning a GitHub repository on your server, you can collect your cookbooks into

one file by using tar and make the resulting tarball available via HTTP. Your server can then
download the cookbooks tarball if you tell it where the tarball lives, by using the -r parameter
to Chef Solo.

To circumvent the limitations of Chef Solo, there exist various other tools such as
little-chef orknife-solo.

See also

» Read more about Chef Solo at http://docs.opscode.com/chef solo.html.

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

Roles are the Chef way to group nodes. Typical cases are to have roles for web servers,
database servers, and so on.

You can set custom run lists for all the nodes in your roles and override attribute values from
within your roles.

Let's see how to create a simple role.

Getting ready

For the following examples, | assume that you have a node named server and that you have
at least one cookbook (I'll use the ntp cookbook) registered with your Chef Server.

How to do it...

Let's create a role and see what we can do with it.

1. Create arole:
mma@laptop:~/chef-repo $ subl roles/web servers.rb
name "web servers"
description "This role contains nodes, which act as web servers"
run_list "recipe[ntp]"
default_attributes 'ntp' => {
'ntpdate' => {
'disable' => true

}
2. Upload the role to the Chef Server:

mma@laptop:~/chef-repo $ knife role from file web_ servers.rb
Updated Role web servers!

3. Assign the role to a node called server:
mma@laptop:~/chef-repo $ knife node edit server
"run list": [

"role [web servers]"

]

Saving updated run_list on node server

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

4. Run Chef Client:
user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

[2013-07-25T13:28:24+00:00] INFO: Run List is [role[web servers]]
[2013-07-25T13:28:24+00:00] INFO: Run List expands to [ntp]

.. . TRUNCATED OUTPUT...

You define a role in a Ruby file inside the roles folder of your Chef repository. A role consists
of a name and a description attribute. Additionally, a role usually contains a role-specific
run list and role-specific attribute settings.

Every node, that has a role in its run list will have the role's run list expanded into its own. This
means all the recipes (and roles) that are in the role's run list will be executed on your nodes.

You need to upload your role to your Chef Server using the knife role from file command.
Only then can you add the role to your node's run list.

Running Chef Client on a node having your role in its run list will execute all the recipes listed
in the role.

The attributes you define in your role will be merged with attributes from environments and
cookbooks according to the precedence rules described at http://docs.opscode.com/
essentials roles.html#tattribute-precedence

» The Using search to find nodes section in Chapter 4, Writing Better Cookbooks
» The Overriding attributes section in Chapter 4, Writing Better Cookbooks

» Read everything about roles at http://docs.opscode.com/essentials
roles.html

Using environments

Having separate environments for development, testing, and production is a good idea to
be able to develop and test cookbook updates and other configuration changes in isolation.
Chef enables you to group your nodes into separate environments to support an ordered
development flow.

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

Getting ready

For the following examples, | assume that you have a node named my_server in the
_default environment and that you have at least one cookbook (I'll use the ntp cookbook)
registered with your Chef Server.

How to do it...

Let's see how to manipulate environments using Knife.

~ Thisis only a good idea if you want to play around. For serious work,

please create files describing your environments and put them under
g version control as described in the There's more... section.

1. Create your environment on the fly using Knife. The following command will open your
shell's default editor so that you can modify the environment definition:

mma@laptop:~/chef-repo $ knife environment create book

{

"name": "book",

"description": "",

"cookbook versions": {

"json class": "Chef::Environment",
"chef type": "environment",

"default attributes": {

b

"override attributes": {

}
}

Created book

2. List the available environments:

mma@laptop:~/chef-repo $ knife environment list

_default
book

3. List the nodes for all the environments:
mma@laptop:~/chef-repo $ knife node list

my_ server

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1
Verify that the node my server is not in the book environment yet by listing nodes
in the book environment only:

mma@laptop:~/chef-repo $ knife node list -E book

mma@laptop:~/chef-repo $
Change the environment of the my server node by editing the node data and
changing the value of chef environment from default to book

mma@laptop:~/chef-repo $ knife node edit my server

{

"name": "my server",
"chef environment": "book",
"normal": {

b
"run list": [
"recipe [ntpl"

}

Saving updated chef environment on node my server
List the nodes of the book environment again:
mma@laptop:~/chef-repo $ knife node list -E book
my server

Use specific cookbook versions and override certain attributes for the environment:

mma@laptop:~/chef-repo $ knife environment edit book

{

"name": "book",
"description": "",
"cookbook versions": {
"mtp": "1.3.2"
b
"json class": "Chef::Environment",
"chef type": "environment",

"default attributes": {

b

"override attributes": {
nntpn . {
"servers": ["0.europe.pool.ntp.org", "l.europe.pool.ntp.
org", "2.europe.pool.ntp.org", "3.europe.pool.ntp.org"]
}
}
}
Saved book

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

A common use of environments is to promote cookbook updates from development to staging
and then into production. Additionally, they enable you to use different cookbook versions on
separate sets of nodes and also to use environment-specific attributes. You might have nodes
with lesser memory in your staging environment as in your production environment. By using
environment-specific default attributes, you can, for example, configure your MySQL service to
consume lesser memory on staging than on production.

The Chef Server always has an environment called _default
% which cannot be edited or deleted. All the nodes go in there if
T~ you don't specify any other environment.

Be aware that roles are not environment specific. You may use environment-specific run
lists, though.

The node's environment can be queried using the node . chef environment method inside
your cookbooks.

If you want your environments to be under version control (and you should!), a better way
to create a new environment is to create a new Ruby file in the environments directory
inside your Chef repository:

mma@laptop:~/chef-repo $ cd environments
mma@laptop:~/chef-repo $ subl book.rb

name "book"
You should add, commit, and push your new environment file to GitHub:

mma@laptop:~/chef-repo $ git add environments/book.rb
mma@laptop:~/chef-repo $ git commit -a -m "the book env"
mma@laptop:~/chef-repo $ git push

Now, you can create the environment on the Chef Server from the newly created file using Knife:

mma@laptop:~/chef-repo $ knife environment from file book.rb

Created Environment book
There is a way to migrate all the nodes from one environment to another using knife exec:

mma@laptop:~/chef-repo $ knife exec -E 'nodes.transform("chef
environment: default") { |n| n.chef environment ("book")}

You can limit your search for nodes in a specific environment:
mma@laptop:~/chef-repo $ knife search node "chef environment:book"

1 item found

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

See also

» The Managing virtual machines with Vagrant section

» Read more about environments at http://docs.opscode.com/essentials
environments.html

Freezing cookbooks

Uploading broken cookbooks overriding your working ones is a major pain and can result

in widespread outrage throughout your infrastructure. If you've a cookbook version known to
work, it is a good idea to freeze this version so that no one can overwrite the same version
with broken code. When used together with environments, freezing cookbooks

can keep your production servers safe.

Getting ready

Make sure you've at least one cookbook (I'll use the ntp cookbook) registered with your
Chef Server.

How to do it...

Let's see what happens if we freeze a cookbook.

1. Upload a cookbook and freeze it:

mma@laptop:~/chef-repo $ knife cookbook upload ntp --freeze

Uploading ntp [1.3.2]
Uploaded 1 cookbook.

2. Try to upload the same cookbook version again:

mma@laptop:~/chef-repo $ knife cookbook upload ntp

Uploading ntp [1.3.2]
Conflict: The cookbook ntp at version 1.3.2 is frozen. Use the
'force' option to override.

3. Change the cookbook version:

mma@laptop:~/chef-repo $ subl cookbooks/ntp/metadata.rb

version "1.3.3"

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

4. Upload the cookbook again:
mma@laptop:~/chef-repo $ knife cookbook upload ntp

Uploading ntp [1.3.2]
Uploaded 1 cookbook.

By using the - - freeze option when uploading a cookbook, you tell the Chef Server that it
should not accept any changes to the same version of the cookbook anymore. This is important
if you're using environments and want to make sure that your production environment cannot
be broken by uploading a corrupted cookbook with the same version number as used on your
production servers.

By changing the version number of your cookbook, you can upload the new version. Then
you can make, for example, your staging environment use that new cookbook version.

For supporting a more elaborate workflow, you can use the knife-spork Knife plugin. It helps
multiple developers work on the same Chef Server and repository without treading on each
other's toes. You can find more on itat https://github.com/jonlives/knife-spork.

» Check out Seth Vargo's talk about Chef + Environments = Safer Infrastructure
athttps://speakerdeck.com/sethvargo/chef-plus-environments-
equals-safer-infrastructure

Running Chef Client as a daemon

While you can run Chef Client on your nodes manually whenever you change something in
your Chef repository, it's sometimes preferable to have Chef Client run automatically ever so
often. Letting Chef Client run automatically makes sure that no box misses any updates.

Getting ready

You need to have a node registered with your Chef Server. It needs to be able to run
chef-client without any errors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

How to do it...

Let's see how to start Chef Client in daemon mode so that it runs automatically.

1. Start Chef Client in daemon mode, running every 30 minutes:

user@server:~$ sudo chef-client -i 1800
2. Validate that the Chef Client is running as a daemon:

user@server:~$ ps auxw | grep chef-client

The -1i parameter will start Chef Client as a daemon. The given number is the seconds
between each Chef Client run. In the previous example, we specified 1,800 seconds, which
results in Chef Client running every 30 minutes.

You can use the same command in a service startup script.

There's more...

Instead of running Chef Client as a daemon, you can use a cron job to run it every so often:
user@server:~$ subl /etc/cron.d/chef client

PATH=/usr/local/bin:/usr/bin:/bin
m h dom mon dow user command
*/15 * x * * root chef-client -1 warn | grep -v 'retrying [1234]/5 in'

This cron job will run Chef Client every 15 minutes and swallow the first four retrying warning
messages. This is important to avoid cron sending out e-mails if the Chef Server is a little slow
and the Chef Client needs a few retries.

It is possible to initiate a Chef Client run at any time by sending the

SIGUSR1 signal to the Chef Client daemon:
o

user@server:~$ sudo killall -USR1 chef-client

Using the Chef console (Chef Shell)

Writing cookbooks is hard. What makes it even harder is the long feedback cycle of uploading
them to the Chef Server, provisioning a Vagrant VM, checking how they failed there, rinse, and
repeat. It would be so much easier if we could try out some pieces of the recipes we're writing
before we've to do all this heavy lifting.

i

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

Chef comes with Chef Shell, which is essentially an interactive Ruby session with Chef. In
the Chef Shell, you can create attributes, write recipes, and initialize Chef runs, among
other things. It's there to evaluate parts of your recipes on the fly before you upload them
to your Chef Server and execute complete cookbooks on your nodes.

How to do it...

Running the Chef Shell is straightforward.

1.

=

Start the Chef Shell in standalone mode:
mma@laptop:~/chef-repo $ chef-shell

loading configuration: none (standalone chef-shell session)
Session type: standalone
Loading...[2012-12-12T20:48:01+01:00] INFO: Run List is []
[2012-12-12T20:48:01+01:00] INFO: Run List expands to []
done.

This is chef-shell, the Chef Shell.
Chef Version: 11.0.0
http://www.opscode.com/chef
http://wiki.opscode.com/display/chef/Home

run “help' for help, “exit' or “D to quit.

Ohai2u mma@laptop!
chef >

Switch to the attributes mode in the Chef Shell:

chef > attributes mode

Set an attribute value to be used inside the recipe later:
chef:attributes > set[:title] = "Chef Cookbook"

=> "Chef Cookbook"
chef:attributes > quit
=> :attributes
chef >

Switch to the recipe mode:

chef > recipe mode

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Create a £ile resource, using the title attribute as content:
chef:recipe > file "/tmp/book.txt" do
chef:recipe > content node.title

chef:recipe ?> end

=> <file[/tmp/book.txt] @name: "/tmp/book.txt" @noop: nil @

before: nil @params: {} @provider: Chef::Provider::File @allowed
actions: [:nothing, :create, :delete, :touch, :create_if missing]
@action: "create" @updated: false @updated by last action: false
@supports: {} @ignore failure: false @retries: 0 @retry delay:

2 @source line: " (irb#1):1:in “irb binding'" @elapsed time: 0 @
resource name: :file @path: "/tmp/book.txt" @backup: 5 @diff: nil
@cookbook name: nil @recipe name: nil @content: "Chef Cookbook"s>

chef:recipe >

Initiate a Chef run to create the file with the given content:
chef:recipe > run chef

[2012-12-12T21:07:49+01:00] INFO: Processing file[/tmp/book.txt]
action create ((irb#1) line 1)

--- /var/folders/1lr/ 35fx24d0y5g08gs131c33nw0000gn/T/chef-
tempfile20121212-11348-dwplzs 2012-12-12 21:07:49.000000000
+0100

+++ /var/folders/lr/ 35fx24d0y5908gsl31c33nw0000gn/T/chef-
diff20121212-11348-hdzcpl 2012-12-12 21:07:49.000000000 +0100
@ -0,0 +1 @@

+Chef Cookbook

\ No newline at end of file

[2012-12-12T21:07:49+01:00] INFO: entered create
[2012-12-12T21:07:49+401:00] INFO: file[/tmp/book.txt] created file
/tmp/book. txt

The Chef Shell starts an interactive Ruby (IRB) session enhanced with some Chef specific
features. It offers certain modes such as attributes mode or recipe mode, which enable
you to write commands like you would put them into an attributes file or recipe.

Entering a resource command into the recipe context will create the given resource, but

not run it yet. It's like Chef reading your recipe files and creating the resources but not yet
running them. You can run all the resources you created within the recipe context using

the run_chef command. This will execute all the resources on your local box and physically
change your system. For playing around with temporary files, your local box might do, but

if you're going to do more invasive stuff such as installing or removing packages, installing
services, and so on, you might want to use the Chef Shell from within a Vagrant VM.

-

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Infrastructure

You can not only run the Chef Shell in standalone mode but also in Chef Solo mode and Chef
Client mode. If you run it in Chef Client mode, it will load the complete run list of your node
and you'll be able to tweak it inside the Chef Shell. You start the Chef Client mode by using the
--client parameter:

mma@laptop:~/chef-repo $ chef-shell --client

You can configure which client your Chef Shell shall act as, as well as the Chef Server to
connect to in a file called chef _shell.rb.

Additionally to evaluating recipe code within your Chef Shell, you can even use it to manage
your Chef Server, for example, listing all nodes:

chef > nodes.list

=> [node[my server]]

» Read more about the Chef Shell at http://docs.opscode. com/
chef shell.html.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and
Troubleshooting
Cookbooks and
Chef Runs

"Most people spend more time and energy going around problems than in trying to
solve them."

- Henry Ford

In this chapter, we'll cover the following;:

vV vV v vV v v vV v vV v v Vv Y

Testing your Chef cookbooks

Flagging problems in your Chef cookbooks

Test Driven Development for cookbooks using ChefSpec
Integration testing your Chef cookbooks with Test Kitchen
Showing affected nodes before uploading cookbooks
Overriding a node's run list to execute a single recipe
Using why-run mode to find out what a recipe might do
Debugging Chef Client runs

Inspecting results of your last Chef Client run

Raising and logging exceptions in recipes

Diffing cookbooks with Knife

Using community exception and report handlers
Creating custom handlers

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

Introduction

Developing cookbooks and making sure your nodes converge to the desired state is a complex
endeavor. You need transparency about what is really happening. This chapter will cover a lot
of ways to see what's going on and to make sure that everything is going smoothly.

Testing your Chef cookbooks

You know how annoying this is: you tweak a cookbook, upload it to your Chef Server, start a Chef
run on your node and, boom! it fails. What's even more annoying is that it only fails because you
missed a mundane comma in the default recipe of the cookbook you just tweaked, not because
a black hole absorbed your node and the whole data center that node lives in. Fortunately,
there's a very quick and easy way to find such simple glitches before you go all in and try to run
your cookbooks on real nodes.

Getting ready

Install the ntp cookbook by running:
mma@laptop:~/chef-repo $ knife cookbook site install ntp

Installing ntp to /Users/mma/work/chef-repo/cookbooks
.. TRUNCATED OUTPUT..
Cookbook ntp version 1.3.2 successfully installed

How to do it...

Carry out the following steps to test your cookbooks:

1. Runknife cookbook test on a working cookbook, for example, the ntp
cookbook:

mma@laptop:~/chef-repo $ knife cookbook test ntp
checking ntp
Running syntax check on ntp

Validating ruby files
Validating templates

2. Now, let's break something in the ntp cookbook's default recipe by removing the
comma at the end of the node ['ntp'] ['varlibdir'], line:

mma@laptop:~/chef-repo $ subl cookbooks/ntp/recipes/default.rb

[node['ntp'] ['varlibdir']

g

56

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

node['ntp'] ['statsdir']].each do |ntpdir|
directory ntpdir do
owner node['ntp'] ['var owner']

group node['ntp'] ['var group']
mode 0755
end

end

3. Run the test command again:
mma@laptop:~/chef-repo $ knife cookbook test ntp

checking ntp

Running syntax check on ntp

Validating ruby files

FATAL: Cookbook file recipes/default.rb has a ruby syntax error:

FATAL: cookbooks/ntp/recipes/default.rb:25: syntax error,
unexpected tIDENTIFIER, expecting ']’

FATAL: node['ntp'] ['statsdir']].each do |ntpdir|
FATAL: »

FATAL: cookbooks/ntp/recipes/default.rb:25: syntax error,
unexpected ']', expecting S$Send

FATAL: node['ntp'] ['statsdir']].each do |ntpdir|
FATAL: »

knife cookbook test executes a Ruby syntax check on all Ruby files within the cookbook
as well as on all ERB templates. It loops through all Ruby files and runs ruby -c against each
of them. ruby -c causes Ruby to check the syntax of the script and quit without running it.

After going through all Ruby files, knife cookbook test goes through all ERB templates
and pipes the rendered version created by erubis -x through ruby -c.

There's more...

knife cookbook test does only a very simple syntax check on the Ruby files and ERB
templates. There exists a whole eco-system of additional tools such as Foodcritic (a lint check
for Chef cookbooks), ChefSpec, and Test Kitchen, and many more. You can go fully test driven
if you want!

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

See also

» The Test Driven Development for cookbooks using ChefSpec section
» The Integration testing your cookbooks with Test Kitchen section

Flagging problems in your Chef cookbooks

Writing solid Chef recipes can be quite challenging. There are a couple of pitfalls, which you
can easily overlook. And writing cookbooks in a consistent style is even harder. You might
wonder what the proven ways to write cookbooks are. Foodecritic tries to identify possible
issues with the logic and style of your cookbooks.

In this section we'll learn how to use Foodcritic on some existing cookbooks.

Getting ready

1. Addthe foodcritic gem to your Gemfile:
mma@laptop:~/chef-repo $ subl Gemfile
source 'https://rubygems.org'
gem 'foodcritic', '~>2.2.0'

2. Run Bundler to install the foodcritic gem:
mma@laptop:~/chef-repo $ bundle install
Fetching gem metadata from https://rubygems.org/
.. . TRUNCATED OUTPUT...
Installing foodcritic (2.2.0)

3. Install the mysgl cookbook by running:
mma@laptop:~/chef-repo $ knife cookbook site install mysql
Installing mysgl to /Users/mma/work/chef-repo/cookbooks

..TRUNCATED OUTPUT..
Cookbook mysgl version 3.0.2 successfully installed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

How to do it...

Let's see how Foodcritic reports findings:

1.

Run foodcritic on your cookbook:
mma@laptop:~/chef-repo $§ foodcritic ./cookbooks/mysql

FC002: Avoid string interpolation where not required: ./cookbooks/
mysqgl/attributes/server.rb:220
.. . TRUNCATED OUTPUT...

FC024: Consider adding platform equivalents: ./cookbooks/mysgl/
recipes/server.rb:132

Get a detailed list of the reported sections inside the mysgl cookbook by using the
-c flag:

mma@laptop:~/chef-repo $ foodcritic -C ./cookbooks/mysql

cookbooks/mysgl/attributes/server.rb
FC002: Avoid string interpolation where not required
[...]
85| default['mysgl'] ['conf dir'] = "#{mysql['basedir']}"
[...]
cookbooks/mysgl/recipes/client.rb

FC007: Ensure recipe dependencies are reflected in cookbook
metadata

40| end
41 |when "mac_os_x"

42| 1include recipe 'homebrew'
43 |end
a4 |

[...]

Foodcritic defines a set of rules and checks your recipes against each of them. It comes with
rules concerning various areas: style, correctness, attributes, strings, portability, search,
services, files, metadata, and so on. Running Foodcritic against a cookbook tells you which
of its rules matched a certain part of your cookbook. By default it gives you a short
explanation of what you should do along the concerned file and line number.

If you run foodcritic -C, it displays the excerpts of the places where it found the rules
to match.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

In the preceding example, Foodcritic raised the issue that the mysgl cookbook uses string
interpolation where it is not required:

85| default['mysgl'] ['conf dir'] "#{mysqgl['basedir']}"

This could be re-written as:
85| default['mysgl']['conf dir'] = mysqgl['basedir']

directly using the attribute value.

Some of the rules, especially the ones from the styles section, are opinionated. You're
able to exclude certain rules or complete sets of rules, such as the style rules when
running Foodcritic.

mma@laptop:~/chef-repo $ foodcritic -t ~style ./cookbooks/mysql

FC007: Ensure recipe dependencies are reflected in cookbook
metadata: ./cookbooks/mysgl/recipes/client.rb:42
FC024: Consider adding platform equivalents:
. /cookbooks/mysgl/recipes/server.rb:132
FC024: Consider adding platform equivalents:
. /cookbooks/mysgl/recipes/server.rb:134
FC028: Incorrect #platform? usage:
. /cookbooks/mysgl/attributes/server.rb:120

In this case, the tilde negates the tag selection to exclude all rules with the style tag.
Running without tilde would run the style rules exclusively:

mma@laptop:~/chef-repo $ foodcritic -t style ./cookbooks/mysql

FC002: Avoid string interpolation where not required:
. /cookbooks/mysgl/attributes/server.rb:85

FC019: Access node attributes in a consistent manner:
cookbooks/mysgl/libraries/helpers.rb:24

FC019: Access node attributes in a consistent manner:
cookbooks/mysgl/libraries/helpers.rb:28

FC023: Prefer conditional attributes:
. /cookbooks/mysqgl/recipes/server.rb:157

If you want to run foodcritic in a continuous integration (Cl) environment, you can use
the - £ parameter to indicate on which rules the build should fail:

mma@laptop:~/chef-repo $ foodcritic -f style ./cookbooks/mysql

FC001l: Use strings in preference to symbols to access node
attributes: ./cookbooks/mysqgl/templates/default/grants.sgl.erb:1

.. TRUNCATED OUTPUT..

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

FC028: Incorrect #platform? usage:
. /cookbooks/mysgl/attributes/server.rb:120

mma@laptop:~/chef-repo $ echo $?
3

In this example, we tell foodcritic to fail if any rule of the style group fails. In our case,
it returns a non zero exit code instead of zero, as it would if either no rule matches or we
omit the - £ parameter.

See also

» The Testing your Chef cookbooks section

» Check out strainer, a tool to test multiple things such as Foodcritic and Knife test
as well as other stuff at once at: http://github.com/customink/strainer.

Test Driven Development for cookbooks

using ChefSpec

Test Driven Development (TDD) is a way to write unit tests before writing any recipe code.
By writing the test first, you design what your recipe should do and you ensure that your test
is for real because it should fail as long as you haven't written your recipe code.

As soon as you've done your recipe, your unit tests should pass.

ChefSpec is built on the popular RSpec framework and offers a tailored syntax for testing
Chef recipes.

Let's develop a very simple recipe using the TDD approach with ChefSpec.

Getting started..

Make sure you've a cookbook called my cookbook and the run_1ist of your node includes
my cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef
Infrastructure.

How to do it...

Let's write a failing test first and then a recipe, which makes the test pass:

1. Create a Gemfile containing the chefspec gem:
mma@laptop:~/chef-repo $ subl Gemfile

[ei-

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

source 'https://rubygems.org'
gem 'chefspec!'

Run bundler to install the gem:
mma@laptop:~/chef-repo $ bundler install

Fetching gem metadata from https://rubygems.org/
.. .TRUNCATED OUTPUT. ..

Installing chefspec (1.3.1)

Using bundler (1.3.5)

Your bundle is complete!

Create the spec directory for your cookbook:
mma@laptop:~/chef-repo $ mkdir cookbooks/my cookbook/spec

Create your spec:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/spec/default spec.rb

require 'chefspec!'

describe 'my cookbook::default' do
let (:chef run) {
ChefSpec: :ChefRunner.new (
platform: 'ubuntu', version:'12.04"'
) .converge (described recipe)

it 'creates a greetings file, containing the platform
name' do

expect (chef run) .to
create file with content ('/tmp/greeting.txt', 'Hello!
ubuntu! ')
end
end
Run rspec to validate, that your spec fails (you've not written your recipe yet):
mma@laptop:~/chef-repo $ rspec
cookbooks/my cookbook/spec/default spec.rb

Failures:

1) my cookbook::default creates a greetings file, containing the
platform name
Failure/Error: expect (chef run.converge (described recipe)) .to
create file with content ('/tmp/greeting.txt', 'Hello! ubuntul!')

&

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

File content:
does not match expected:
Hello! ubuntu!

./cookbooks/my cookbook/spec/default spec.rb:11:in “block
(2 levels) in <top (required) >'

Finished in 0.11152 seconds
1 example, 1 failure

Failed examples:

rspec ./cookbooks/my cookbook/spec/default spec.rb:10 # my
cookbook: :default creates a greetings file, containing the
platform name
6. Edit your cookbook's default recipe:
mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

template '/tmp/greeting.txt' do
variables greeting: 'Hello!'
end

7. Create the template file:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

)

<%= @greeting %> <%= node['platform'] %>!

8. Run rspec again to see whether your test succeeds now:

mma@laptop:~/chef-repo $ rspec
cookbooks/my cookbook/spec/default spec.rb

Finished in 0.10142 seconds
1 example, 0 failures

First, you need to set up the basic infrastructure for using RSpec with Chef. You need the
chefspec Ruby gem and your cookbook needs a directory called spec where all your tests
will live.

When everything is set up, we're ready to start. Following the Test First approach of TDD,
we create our spec before we write our recipe.

(&5}

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs
Every spec needs to require the chefspec gem:
require 'chefspec'

The main part of every spec is a describe block, where you tell RSpec that you want to test
the default recipe of your cookbook:

describe 'my cookbook::default' do

end

Now it's time to create the object simulating the Chef run. Note that ChefSpec will not really
run your recipe, but simulate a Chef run so that you can verify whether certain expectations
you have about your recipe hold true.

By using RSpec's let call, you create a variable called chef run, which you can use later
to define your expectations.

The chef run variable is a ChefSpec: : ChefRunner object. We want to simulate a Chef run

on Ubuntu 12.04. The parameters platform and version, which we pass to the constructor

during the ChefSpec: : ChefRunner . new call, populate the automatic node attributes so that
it looks like we do our simulated Chef run on an Ubuntu 12.04 node. ChefSpec uses Fauxhai

to simulate the automatic node attributes as they would occur on various operating systems:

let (:chef run) ({
ChefSpec: :ChefRunner.new (
platform: 'ubuntu', version:'12.04'
) .converge (described recipe)

}

You can retrieve the recipe under test using the described recipe call instead of typing
my cookbook: :default again. Using described_ recipe instead of the recipe name will
keep you from repeating the recipe name in every it-block. It will keep your spec DRY:

ChefSpec: :ChefRunner.new(...) .converge (described recipe)
Finally, we define what we expect our recipe to do.

We describe what we expect our recipe to do with it-statements. Our description of the it-
call will show up in the error message, if this test fails:

it 'creates a greetings file, containing the platform name' do

end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Now it's finally time to formulate our exact expectations. We use standard RSpec syntax
to define our expectations:

expect (...) .to
Every expectation works on the simulated Chef run object, defined previously.

We use a ChefSpec specific matcher called create file with content with the filename
and the content as parameters to tell our spec what our recipe should do.

create_file with content ('/tmp/greeting.txt', 'Hello! ubuntu!"')

On the ChefSpec site you find the complete list of custom matchers you can use to test your
recipes in the ChefSpec README at:

https://github.com/acrmp/chefspecH#making-assertions
After defining our spec, it's time to run it and see it fail:
$ rspec cookbooks/my cookbook/spec/default spec.rb

Then we write our recipe. We use the template resource to create a file with the contents
as specified in the spec.

Finally, we run rspec again to see our spec pass!

You can modify your node attributes before simulating the Chef run:

it 'uses a node attribute as greeting text' do
chef run.node.override['my cookbook'] ['greeting'] = "Go!"
expect (chef run) .to
create_file with content ('/tmp/greeting.txt','Go! ubuntu!"')
end

Running rspec after adding the preceding test to our spec fails as expected, because our
recipe does not handle the node parameter ['my cookbook'] ['greeting'] yet:

F
Failures:

1) my cookbook::default uses a node attribute as greeting text
Failure/Error: expect (chef run.converge (described recipe)) .to
create_file with content ('/tmp/greeting.txt', 'Go! ubuntu!"')
File content:
Hello! ubuntu! does not match expected:
Go! ubuntu!

]

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

./cookbooks/my cookbook/spec/default spec.rb:16:in “block
(2 levels) in <top (required) >'

Finished in 0.25295 seconds
2 examples, 1 failure

Failed examples:

rspec ./cookbooks/my cookbook/spec/default spec.rb:14 #
my cookbook::default uses a node attribute as greeting text

Now, we modify our recipe to use the node attribute:

node.default ['my cookbook'] ['greeting'] = "Hello!"

template '/tmp/greeting.txt' do
variables greeting: node['my cookbook'] ['greeting']
end

And now, our tests pass again:

Finished in 0.25078 seconds
2 examples, 0 failures

See also

» The ChefSpec repository on GitHub:
https://github.com/acrmp/chefspec

» The source code of Fauxhai:

https://github.com/customink/fauxhai

» Atalk by Seth Vargo showing an example developing a cookbook test-driven:

http://www.confreaks.com/videos/2364-mwrc2013-tdding-tmux

» The RSpec website:
http://rspec.info/

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Integration testing your cookbooks with

Test Kitchen

Verifying that your cookbooks really work when converging a node is essential. Only if you
can trust your cookbooks are you ready to run them any time on your production servers.

Test Kitchen is Chef's integration testing framework. It enables you to write tests, which run
after a VM is instantiated and converged using your cookbook. Your tests run in that VM
and can verify that everything works as expected.

This is in contrast to ChefSpec, which only simulates a Chef run. Test Kitchen boots up
a real node and runs Chef on it. Your tests see the real thing.

Let's see how you can write such integration tests for your cookbooks.

Getting started

Make sure you have a cookbook hamed my cookbook as described in the Creating and
using cookbooks section in Chapter 1, Chef Infrastructure.

Make sure you have Vagrant installed as described in the Managing virtual machines with
Vagrant section in Chapter 1, Chef Infrastructure.

Make sure you have Berkshelf installed and hooked up with Vagrant as described in the
Managing cookbook dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

How to do it...

Let's create a very simple recipe and use Test Kitchen and Minitest to run a full integration
test with Vagrant:
1. Edit your cookbook's default recipe:
mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

file "/tmp/greeting.txt" do
content node['my cookbook'] ['greeting']
end
2. Edit your cookbook's default attributes:
mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/attributes/default.rb

default ['my cookbook'] ['greeting'] = "Ohai, Chefs!™"

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

3.

Edit your Gemfile to install the necessary Ruby gems:
mma@laptop:~/chef-repo $ subl Gemfile

gem 'test-kitchen', '~> 1.0.0.alpha.7'
gem 'kitchen-vagrant'

Install necessary Ruby gems:
mma@laptop:~/chef-repo $ bundle install

.. .TRUNCATED OUTPUT...

Installing test-kitchen (1.0.0.alpha.7)
Installing kitchen-vagrant (0.10.0)

.. .TRUNCATED OUTPUT...

Change into your cookbook directory:
mma@laptop:~/chef-repo $ cd cookbooks/my cookbook

Create a .kitchen.yml file in your cookbook:

mma@laptop:~/chef-repo/cookbooks/my cookbook $ subl
.kitchen.yml

driver_plugin: vagrant
driver_config:
require_chef omnibus: true

platforms:
- name: ubuntu-12.04
driver_config:
box: opscode-ubuntu-12.04
box url: https://opscode-vm.s3.amazonaws.com/vagrant/opscode
ubuntu-12.04_provisionerless.box

suites:
- name: default
run_list:
- recipe[minitest-handler]
- recipe[my cookbook test]
attributes: { my cookbook: { greeting: 'Ohai, Minitest!'} }

Create the test directory inside your main cookbook:
mma@laptop:~/chef-repo/cookbooks/my cookbook $ mkdir test

Create a test cookbook for the integration test:
mma@laptop:~/chef-repo/cookbooks/my cookbook $ cd test

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

10.

11.

12.

mma@laptop:~/chef-repo/cookbooks/my cookbook/test $ knife
cookbook create my cookbook test

** Creating cookbook my cookbook test

** Creating README for cookbook: my cookbook test

** Creating CHANGELOG for cookbook: my cookbook test
** Creating metadata for cookbook: my cookbook test

Exit the test directory:
mma@laptop:~/chef-repo/cookbooks/my cookbook/test $ cd ..

Edit your test cookbook's default recipe:
mma@laptop:~/chef-repo/cookbooks/my cookbook $ subl
test/cookbooks/my cookbook test/recipes/default.rb

include recipe 'my cookbook::default'

Create a Minitest Spec in your test cookbook:

mma@laptop:~/chef-repo/cookbooks/my cookbook $ mkdir -p
test/cookbooks/my cookbook test/files/default/tests/minitest

mma@laptop:~/chef-repo/cookbooks/my cookbook $ subl
test/cookbooks/my cookbook test/files/default/tests/
minitest/default test.rb

require 'minitest/spec’
describe recipe 'my cookbook::default' do
describe "greeting file" do

it "creates the greeting file" do
file("/tmp/greeting.txt") .must_exist
end

it "contains what's stored in the 'greeting' node
attribute" do
file('/tmp/greeting.txt') .must_include 'Ohai,
Minitest!'
end
end
end

Edit your main cookbook's Berksfile:
mma@laptop:~/chef-repo/cookbooks/my cookbook $ subl Berksfile

site :opscode

metadata

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

cookbook "apt"
cookbook "minitest-handler"

cookbook "my cookbook test", path:
"./test/cookbooks/my cookbook test"

13. Run Test Kitchen:
mma@laptop:~/chef-repo/cookbooks/my cookbook $ kitchen test

————— > Starting Kitchen (v1.0.0.alpha.7)

.. .TRUNCATED OUTPUT. ..

————— > Converging <default-ubuntu-1204>

————— > Installing Chef Omnibus (true)

.. .TRUNCATED OUTPUT. ..

Starting Chef Client, version 11.4.4
[2013-06-29T18:33:57+00:00] INFO: *** Chef 11.4.4 ***

[2013-06-29T18:33:58+00:00] INFO: Setting the run list to
["recipe [minitest-handler]", "recipe[my cookbook test]"]
from JSON

... TRUNCATED OUTPUT. ..
Running tests:

recipe::my cookbook::default::greeting
file#fitest_0001_creates the greeting file = 0.00 s =

recipe::my cookbook::default::greeting
file#ftest_0002_contains what's stored in the 'greeting'
node attribute = 0.00 s =

Finished tests in 0.011190s, 178.7277 tests/s, 178.7277
assertions/s.

2 tests, 2 assertions, 0 failures, 0 errors, 0 skips
.. .TRUNCATED OUTPUT. ..
————— > Kitchen is finished. (2m5.69s)

First, we create a very simple recipe, which writes the value of a node attribute to a file.

Then, we install the test-kitchen Ruby gem and the kitchen-vagrant gem to enable
Test Kitchen to use Vagrant for spinning up its test VMs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Then, it's time to configure Test Kitchen. You do this by creating a . kitchen.yml file in your
cookbook directory. It consists of three parts:

Part one defines that you want to use Vagrant to spin up VMs and that you want Test Kitchen
to install Chef using its Omnibus installer. This is necessary, because we'll use provisionerless
Vagrant boxes in part two.

driver_plugin: vagrant
driver_config:
require_chef omnibus: true

Part two defines on which platforms you want to test your cookbook. To keep things simple,
we only define Ubuntu 12.04 here. Test Kitchen will always create and destroy new instances.
You do not have to fear any side effects with Vagrant VMs you spin up using your Vagrant file.

platforms:
- name: ubuntu-12.04
driver_config:
box: opscode-ubuntu-12.04
box url: https://opscode-
vm.s3.amazonaws .com/vagrant /opscode ubuntu-
12.04_provisionerless.box

Part three defines the test suites. We define only one called default. We tell Test Kitchen
that we want to use the Minitest handler to run our specs and that it should use the

my cookbook test cookbook to converge the node. As we'll see below, we're only
including our my cookbook: :default recipe there so that we're able to test what that
one does. As the last part of our test suite, we define the cookbook attribute's value so that
we can make sure it is used:

suites:
- name: default
run_list:
- recipe[minitest-handler]
- recipe[my cookbook test]
attributes: { my cookbook: { greeting: 'Ohai, Minitest!'} }

Now it's time to create our test cookbook, which will contain our specs and run our
main cookbook.

The test cookbook is very simple in our case; it just calls our main cookbook. No further setup
for running reasonable tests is necessary in our simple example.

Then, we write our Minitest spec to verify that the /tmp/greeting. txt file exists after
the Chef run and that it contains the attribute value we defined when we described our
test suite in .kitchen.yml.

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

To make sure that Test Kitchen has all required cookbooks available, we need to add them
to our cookbook's Berksfile.

Finally, we can run Test Kitchen. It will first make sure that no old VMs are around and then
create a new one. It installs Chef on that brand new VM and starts a Chef run. The Minitest
handler hooks itself into the Chef run and executes our specs after the node converged.

If everything worked, Test Kitchen destroys the VM again.

If something fails, Test Kitchen keeps the VM around and you can poke around by running
kitchen login.

Test Kitchen does not only support Vagrant but also a host of other cloud providers such as
OpenStack, Amazon EC2, and so on. Just install the kitchen-<YOUR CLOUD PROVIDER>
gem instead of the kitchen-vagrant gem and make sure you put the corresponding
configuration into your .kitchen.yml.

You can define multiple different platforms such as other Ubuntu versions or CentOS, and
so on by adding to the platforms definition in .kitchen.yml:

platforms:

- name: centos-6.3
driver_config:
box: opscode-centos-6.3
box url: https://opscode-vm-
bgnto.s3.amazonaws.com/vagrant/opscode centos-
6.4 provisionerless.box a

You find Test Kitchen's log files inside your cookbook in
s the directory .kitchen/logs.

See also

» Read the official Getting Started guide for Test Kitchen here: https://github.
com/opscode/test-kitchen/wiki/Getting-Started

» Find the Test Kitchen source code on GitHub: https://github.com/opscode/
test-kitchen

» Read Joshua Timberman's detailed blog post explaining Test Kitchen using the
bluepill cookbook as an example: http://jtimberman.housepub.org/
blog/2013/03/19/anatomy-of-a-test-kitchen-1-dot-0-cookbook-
part-1/

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

http://jtimberman.housepub.org/blog/2013/03/19/anatomy-of-a-
test-kitchen-1-dot-0-cookbook-part-2/

» You can find a detailed example featuring all kinds of Minitest specs here: https://
github.com/calavera/minitest-chef-handler/blob/v1.0.0/examples/
spec_examples/files/default/tests/minitest/default test.rb

» The source code of the Minitest handler is available on GitHub as well:
https://github.com/calavera/minitest-chef-handler

Showing affected nodes before uploading

cookbooks

You know how it goes. You tweak a cookbook to support your new server and upload it to your
Chef Server. Your new node converges just fine and you're a happy pal. Well, until your older
production server picks up your modified cookbook during an automated Chef Client run and
spits its guts at you. Obviously, you forgot that your old production server was still using the
cookbook you tweaked. Luckily, there is the knife preflight command, which can show
you all nodes using a certain cookbook before you upload it to your Chef Server.

Getting ready

For the following example, we assume that you've at least one role using the ntp cookbook
in its run list and that you've multiple servers having this role and/or having the ntp
cookbook in their run list directly.

1. Addthe knife-preflight gem to your Gemfile:
mma@laptop:~/chef-repo $ subl Gemfile

source 'https://rubygems.org'

gem 'knife-preflight'

2. Run Bundler to install the knife-preflight gem:
mma@laptop:~/chef-repo $ bundle install
Fetching gem metadata from https://rubygems.org/

... TRUNCATED OUTPUT...
Installing knife-preflight (0.1.6)

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

How to do it...

Let's see how preflight works on the ntp cookbook:

Run the preflight command to find out which nodes and roles have the ntp cookbook
in their expanded run lists. You'll obviously see your nodes and roles in the output instead
of the exact ones listed below:

mma@laptop:~/chef-repo $ knife preflight ntp

Searching for nodes containing ntp OR ntp::default in their
expanded run list...
2 Nodes found

www-staging.example.com
cms-staging.example.com

Searching for roles containing ntp OR ntp::default in their
expanded run list...
3 Roles found

your cms_role
your www_role
your app_role

Found 6 nodes and 3 roles using the specified search
criteria

There are multiple ways for a cookbook to get executed on a node:

» You can assign the cookbook directly to a node by adding it to the node's run list
» You can add a cookbook to a role and add the role to the node's run list

» You can add a role to the run list of another role and add that other role to the node's
run list

» A cookbook can be a dependency of another used cookbook
» And many more...
No matter how a cookbook ended up in a node's run list, the knife preflight command

will catch it because Chef stores all expanded lists of roles and recipes in node attributes.
The knife preflight command issues a search for exactly those node attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Eventually, the knife preflight command is a nicer way to run knife search node
recipes:ntp -a name and knife search node roles:ntp -a name.

When using the knife preflight command (or trying to search for
» the recipes and roles attributes of a node) it is important to be aware
of the fact that those attributes are only filled after a Chef Client run.
If you change anything in your run lists but do not run Chef Client, neither
knife preflight norknife search will pick up your changes.

» The Using custom knife plugins section in Chapter 1, Chef Infrastructure
» The source code of the knife-preflight plugin is available on GitHub:

https://github.com/jonlives/knife-preflight

Overriding a node’s run list to execute a

single recipe

We all have those snowflake environments that are built using Chef but we're not
comfortable with running Chef Client anymore. We know that some cookbooks have been
enhanced but never tested against this specific environment. The risk of bringing it down
by a Chef Client run is pretty high.

But, even though we do not dare to do a full Chef Client run we might need to run, for example,
the users cookbook to add a new colleague to our snowflake environment. This is where
Chef Client's feature to override a run list to execute a single recipe comes in very handy.

Don't overuse this feature! Make sure you fix your environment so
s that you're comfortable to run Chef Client whenever you need to!

Getting ready

To follow along with the next example, you'll need a node hooked up to your Chef Server
having multiple recipes and/or roles in its run list.

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

How to do it...

Let's see how to run a single recipe out of a bigger run list on your node:

1. Show the data for your node. In this example, my node has the role base in its run
list. Depending on your setup, you'll find other data here of course:

mma@laptop:~/chef-repo $ knife node show www.example.com

.. . TRUNCATED OUTPUT...

Run List: role [base]
Roles: base
Recipes: chef-client::delete validation, runit, chef-client

.. . TRUNCATED OUTPUT...

2. Run chef-client, overriding its run list. In our example, we want to run the default
recipe of the users cookbook. Please replace recipe [users] with whatever you
want to run on your node:

user@server:~$ chef-client -o "recipelusers]™"
[Wed, 19 Dec 2012 22:27:02 +0100] INFO: *** Chef 11.2.0 ***

[Wed, 19 Dec 2012 22:27:09 +0100] INFO: Run List is [users]

[Wed, 19 Dec 2012 22:27:09 +0100] INFO: Run List expands to
[users]
..TRUNCATED OUTPUT...

Usually, the node uses the run list stored on the Chef Server. The -o parameter simply
ignores the node's run list and uses whatever the value of the -o parameter is, as the run
list for the current Chef run. It will not persist the passed-in run list. The next Chef Client
run (without the -o parameter) will use the run list stored on the Chef Server again.

» Read more about Chef run lists at:

http://docs.opscode.com/essentials node object run lists.html

» The Showing affected nodes before uploading cookbooks section

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Using why-run mode to find out what a

recipe might do

why-run lets each resource tell you, what it would do right now assuming certain
prerequisites. This is great because it gives you a glimpse about what might really happen
on your node when you run your recipe for real.

But, because Chef converges a lot of resources to a desired state, why-run will never be
accurate for a complete run. Nevertheless, it might help you during development while you're
adding resources step-by-step to build the final recipe.

In this section, we'll try out why-run to see what it tells us about our Chef runs.

Getting ready

To try out why-run mode you need a node where you can execute Chef Client and at least
one cookbook available to that node.

How to do it...

Let's try to run the ntp cookbook in why-run mode:

1. Override the current run list to run the ntp recipe in why-run mode on a brand
new box:

user@server:~$ sudo chef-client -o recipel['ntp'] --why-run

Converging 7 resources
Recipe: ntp::default
* package [ntp] action install[2012-12-22T20:27:44+00:00]
INFO: Processing package [ntp] action install
(ntp::default line 21)

- Would install version 1:4.2.6.p3+dfsg-lubuntu3.l1 of
package ntp

* package [ntpdate] action install[2012-12-
22T20:27:46+00:00] INFO: Processing package [ntpdate]
action install (ntp::default line 21)

(up to date)

* directory([/var/lib/ntp] action create[2012-12-
22T20:27:46+00:00] INFO: Processing
directory[/var/lib/ntp] action create (ntp::default
line 26)

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

- Would create new directory /var/lib/ntp
- Would change mode from '' to '0755!

... TRUNCATED OUTPUT. ..

Chef Client finished, 8 resources updated

2. Install the ntp package manually, to see the difference in a why-run:

user@server:~$ sudo apt-get install ntp

..TRUNCATED OUTPUT..

0 upgraded, 3 newly installed, 0 to remove and 3 not
upgraded.

..TRUNCATED OUTPUT...
* Starting NTP server ntpd [OK]
Processing triggers for libc-bin
ldconfig deferred processing now taking place

3. Run why-run for the ntp recipe again (now with installed ntp package):

user@server:~$ sudo chef-client -o recipel['ntp'] --why-run

..TRUNCATED OUTPUT...
Converging 7 resources
Recipe: ntp::default
* package [ntp] action install[2012-12-22T20:45:22+00:00]
INFO: Processing package [ntp] action install
(ntp::default line 21)

(up to date)

* package [ntpdate] action install[2012-12-
22T20:45:22+00:00] INFO: Processing package [ntpdate]
action install (ntp::default line 21)

(up to date)

* directory([/var/lib/ntp] action create[2012-12-
22T20:45:22+00:00] INFO: Processing
directory[/var/lib/ntp] action create (ntp::default
line 26)

(up to date)
.. .TRUNCATED OUTPUT. ..
Chef Client finished, 3 resources updated

@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The why-run mode is the no-op mode for Chef Client. Instead of providers modifying the
system, it tries to tell what the Chef Client run would attempt to do.

It's important to know that why - run makes certain assumptions; if it cannot find the command
needed to find out about the current status of a certain service, it assumes that an earlier
resource would have installed the needed package for that service and that therefore the
service would be started. We see this when the ntp cookbook tries to enable the ntp service:

* Service status not available. Assuming a prior action would
have installed the service.

* Assuming status of not running.

- Would enable service service[ntp]

Additionally, why - run shows diffs of modified files. In our example, those diffs show the
whole files as those files do not exist yet. This feature is more helpful if you already have ntp
installed and your next Chef run would only change a few configuration parameters.

. why-run mode will execute not_if and only_if blocks. Itis
% assumed that the code within not _if and only_ if blocks is
i only there to find out whether a resource should be executed and

it is not there to modify the system.

» Read more about the issues with dry runs in configuration management at:

http://blog.afistfulofservers.net/post/2012/12/21/promises-
lies-and-dryrun-mode/

Debugging Chef Client runs

Your Chef Client run fails and you don't know why. You get obscure error messages and
you've a hard time to find any clue about where to look for the error. Is your cookbook
broken? Do you have a networking issue? Is your Chef Server down? Only by looking
at the most verbose log output have you a chance to find out.

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

Getting ready

You need a Chef Client configured to use Hosted Chef or your own Chef Server.

How to do it...

Let's see how we can ask Chef Client to print debug messages:

1. Run Chef Client with debug output:

user@server:~$ sudo chef-client -1 debug

..TRUNCATED OUTPUT..

Hashed Path:A+WOcvvGul60cBO7IFKLYPhhOfI=

X-Ops-Content-Hash:2jmj715rSw0yVb/v1WAYKK/YBwk=

X-Ops-Timestamp:2012-12-27T11:14:072Z

X-Ops-UserId:vagrant'

Header hash: {"X—Ops—Sign"=>"algorithm=sha1;version:l.O;",
"X-Ops-Userid"=>"vagrant", "X-Ops-Timestamp"=>"2012-12-
27T11:14:07Z", "X-Ops-Content-
Hash"=>"2jmj715rSw0yVb/v1WAYKK/YBwk=", "X-Ops-
Authorization-
1"=>"HQmTt9oU/
LIJJVAJXWtyOu3GW8FbybxAIKp4rhiw90903wtGYVHYyVGuoilWDao",
"X-Ops-Authorization-
2"=>"2 /UUBPWX+YANOgl/
£D2854QAU2aUcnSavVMOcPNNrldoOocmAQUSHXkBJTKok" ,
"X-Ops-Authorization-
3"=>"6EXPrEJg5T+
ddWd5gHAN6zMgYc3untb41lt+eBpigGHPhtnlLLInMkPeIYwBm",
"X-Ops-Authorization-
4"=>"BOFwbwz2HVP3wEsYdBGu7yOatq7£ZBXHf IpeOiokn/
VnOP7HrucnOpONmMgU", "X-Ops-Authorization-
5"=>"RBmmbet FSKCYsdg2v2mW/
1fLIVemhsHyOQjffPYPpNIB3U2n7vji37NxRnBY",
"X-Ops-Authorization-
6"=>"Pb3VM7FmY60xKvWEZyahM8y8WVVIxPWsD1lvngihjFw=="}

[2012-12-27T11:14:07+00:00] DEBUG: Sending HTTP Request via
GET to api.opscode.com:443/organizations/agilewebops/
nodes/vagrant

[2012-12-27T11:14:09+00:00] DEBUG: ---- HTTP Status and
Header Data: ----

[2012-12-27T11:14:09+00:00] DEBUG: HTTP 1.1 200 OK

[2012-12-27T11:14:09+00:00] DEBUG: server: nginx/1.0.5

[2012-12-27T11:14:09+00:00] DEBUG: date: Thu, 27 Dec 2012
11:14:09 GMT

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[2012-12-27T11:14:09+00:00] DEBUG: content-type:
application/json

[2012-12-27T11:14:09+00:00] DEBUG: transfer-encoding:
chunked

[2012-12-27T11:14:09+00:00] DEBUG: connection: close

[2012-12-27T11:14:09+00:00] DEBUG: content-encoding: gzip

[2012-12-27T11:14:09+00:00] DEBUG: ---- End HTTP
Status/Header Data ----

..TRUNCATED OUTPUT...

The -1 option on the Chef Client run sets the log level to debug. In debug log level the Chef
Client shows more or less everything it does including every request to the Chef Server.

There's more...

The debug log level is the most verbose one. You're free to use any of these: debug, info,
warn, error, fatal with the -1 switch.

See also

» The Raising and logging exceptions in recipes section

Inspecting results of your last Chef

Client run

More often than we like to admit Chef Client runs fail. Especially when developing new
cookbooks we need to know what exactly went wrong.

Even though Chef prints all the details to stdout, you might want to look at it again, for
example, after clearing your shell window.

Getting ready

You need to have a broken cookbook in your node's run list.

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

How to do it...

Carry out the following steps:

1. Run Chef Client with your broken cookbook:

user@server:~$ sudo chef-client

Recipe Compile Error in /srv/chef/file store/cookbooks/my
cookbook/recipes/default.rb

NoMethodError

undefined method “each' for nil:NilClass

Cookbook Trace:

/srv/chef/file store/cookbooks/my cookbook/recipes/default.
rb:9:in “from file®

Relevant File Content:

/srv/chef/file store/cookbooks/my cookbook/recipes/default.rb:

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2 # Cookbook Name:: my cookbook

3 # Recipe:: default

4 #

5: # Copyright 2013, YOUR COMPANY NAME

6 #

7 # All rights reserved - Do Not Redistribute
8 #

9>> nil.each {} 10:

2. Look into the stracktrace file to find out what happened in more detail:
user@server:~$ less /srv/chef/file store/chef-stacktrace.out
Generated at 2013-07-21 18:34:05 +0000
NoMethodError: undefined method “each' for nil:NilClass

/srv/chef/file store/cookbooks/my cookbook/recipes/default.rb:9:in
“from file'

/opt/chef/embedded/1lib/ruby/gems/1.9.1/gems/chef-11.4.4/1ib/chef/
mixin/from file.rb:30:in “instance eval'

/opt/chef/embedded/lib/ruby/gems/1.9.1/gems/chef-11.4.4/1ib/chef/
mixin/from file.rb:30:in “from file'

/opt/chef/embedded/lib/ruby/gems/1.9.1/gems/chef-11.4.4/1ib/chef/
cookbook version.rb:346:in “load recipe’

Chef Client reports errors to stdout by default. If you missed that output, you need to look
into the files Chef generated to find out what went wrong.

If you provision a node using Vagrant, you'll find an additional file after a failed provisioning
run: /srv/chef/file store/failed-run-data.json. It contains detailed information
on the node attributes as well as the backtrace to the error location.

» The Logging debug messages section

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

Raising and logging exceptions in recipes

Running your own cookbooks on your nodes might lead to situations where it does not make
any sense to continue the current Chef run. If a critical resource is offline or a mandatory
configuration value cannot be determined, it is time to bail out.

But, even if things are not that bad, you might want to log certain events while executing your
recipes. Chef offers the possibility to write your custom log messages and to exit the current
run, if you choose to do so.

In this section, we'll learn how to add log statements and stop Chef runs using exceptions.

Getting ready

You need to have at least one cookbook you can modify and run on a node. The following
example will use the ntp cookbook.

How to do it...

Let's see how to add our custom log message to a recipe:

1. Add log statements to the ntp cookbook's default recipe:
mma@laptop:~/chef-repo $ subl cookbooks/ntp/recipes/default.rb

Chef::Log.info('** Going to install the ntp service

now...')

service node['ntp'] ['service'] do
supports :status => true, :restart => truetrue
action [:enable, :start]

end

Chef::Log.info('** ntp service installed and started
successfully!"')

2. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload ntp

Uploading ntp [1.3.2]
Uploaded 1 cookbook.

3. Run Chef Client on the node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[2012-12-27T13:53:19+00:00] INFO: Storing updated cookbooks/ntp/
TESTING.md in the cache.

[2012-12-27T13:53:19+00:00] INFO: ** Going to install the ntp
service now. ..

[2012-12-27T13:53:19+00:00] INFO: ** ntp service installed and
started successfully!

[2012-12-27T13:53:19+00:00] INFO: Processing package [ntp] action
install (ntp::default line 21)

.. .TRUNCATED OUTPUT...

Raise an exception from within the ntp default recipe:
mma@laptop:~/chef-repo $ subl cookbooks/ntp/recipes/default.rb

Chef: :Application.fatal! ('Ouch!!! Bailing out!!!")

Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload ntp

Uploading ntp [1.3.2]
Uploaded 1 cookbook.

Run Chef Client on the node again:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...
[2013-02-21T11:09:44+00:00] FATAL: 'Ouch!!! Bailing out!!!

Recipe Compile Error in
/srv/chef/file store/cookbooks/my cookbook/recipes/
default.rb

SystemExit

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

Cookbook Trace:

/srv/chef/file store/cookbooks/my cookbook/recipes/default.
rb:9:in “from file'

Relevant File Content:

/srv/chef/file store/cookbooks/my cookbook/recipes/default.

rb:

2 # Cookbook Name:: my cookbook

3 # Recipe:: default

4: #

5: # Copyright 2013, YOUR COMPANY NAME

6 #

7: # All rights reserved - Do Not Redistribute

8: #

9>> Chef::Application.fatal! ("'Ouch!!! Bailing out!!!")
10:

[2013-02-21T11:09:44+00:00] ERROR: Running exception
handlers

[2013-02-21T11:09:44+00:00] FATAL: Saving node information
to /srv/chef/file store/failed-run-data.json

[2013-02-21T11:09:44+00:00] ERROR: Exception handlers
complete

The fatal! (msg) method logs the given error message through Chef : : Log. fatal (msg)
and then exits the Chef Client process using Process.exit.

You might want to exit the Chef Client run without logging a fatal message. You can do
so by using the exit! (msg) method in your recipe. It will log the given message as debug
and exit the Chef Client.

~[ee]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

See also

» Read the documentation for the fatal! method here:

http://rdoc.info/gems/chef/Chef/Application#fatal%2l-class_
method

» Find a detailed description about how to abort a Chef Client run here:

http://stackoverflow.com/questions/14290397/how-do-you-abort-
end-a-chef-run

Diffing cookbooks with knife

When working with a Chef Server you often need to know what exactly is already uploaded
to it. You edit files like recipes or roles locally, and commit and push them to GitHub.

But, before you're ready to upload your edits to the Chef Server, you want to verify your
changes. To do that you want to run a diff between the local version of your files against the
version already uploaded to the Chef Server.

Getting ready

If you're using Chef 10.x or 0.10.x you need to install the knife-essentials gem by adding
it to your Gemfile and running bundle install.

How to do it...

After changing a recipe, you can diff it against the current version stored on the Chef Server.

Let Knife show you the differences between your local version of my cookbook and the
version stored on the Chef Server by running:

mma@laptop:~/chef-repo $ knife diff cookbooks/my cookbook

diff --knife remote/cookbooks/my cookbook/recipes/default.rb
cookbooks/my cookbook/recipes/default.rb

--- remote/cookbooks/my cookbook/recipes/default.rb 2012-11-26
21:39:06.000000000 +0100
+++ cookbooks/my cookbook/recipes/default.rb 2012-11-26

21:39:06.000000000 +0100
@@ -6,3 +6,4 @@
#
All rights reserved - Do Not Redistribute
#

+group "my group"

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

\ No newline at end of file

Only in cookbooks/my cookbook: attributes
Only in cookbooks/my cookbook: definitions
Only in cookbooks/my cookbook: files

Only in cookbooks/my cookbook: libraries
Only in cookbooks/my cookbook: providers
Only in cookbooks/my cookbook: resources
Only in cookbooks/my cookbook: templates

The diff verb for knife treats the Chef Server like a file server mirroring your local file system.
That way you can run diffs comparing your local files against files stored on the Chef Server.

If you want to show diffs of multiple cookbooks at once, you can use wildcards when running
knife diff:

mma@laptop:~/chef-repo $ knife diff cookbooks/*

diff --knife remote/cookbooks/backup gem/recipes/default.rb
cookbooks/backup gem/recipes/default.rb

... TRUNCATED OUTPUT...

diff --knife remote/cookbooks/backup gem/metadata.rb
cookbooks/backup gem/metadata.rb

... TRUNCATED OUTPUT...

In addition to the diff verb, knife understands the verbs download, 1ist, show, and
upload. And it does not only offer these verbs for cookbooks but for everything that is stored
on the Chef Server, such as roles, data bags, and so on.

See also

» Find some more examples on how to use knife diff here:
http://docs.opscode.com/knife diff.html

» Theknife-essentials gem lives here:

https://github.com/jkeiser/knife-essentials

(e

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Using community exception and report

handlers

When running your Chef Client as daemon on your nodes, you usually have no idea whether
everything works as expected. Chef comes with a feature named Handler, which helps you
to find out what's going on during your Chef Client runs.

There are a host of community handlers available, for example, for reporting Chef Client run
results to IRC, via e-mail, to Campfire, Nagios, Graphite, you name it.

In this section, we'll see how to install an IRC handler as an example. The same method is
applicable to all other available handlers.

For a full list of available community handlers go to:

http://docs.opscode.com/essentials handlers available
handlers.html

Getting ready...

1. In order to install community exception and report handlers, you need to get the
chef handler cookbook first:

A

mma@laptop:~/chef-repo $ knife cookbook site install
chef handler

.. .TRUNCATED OUTPUT. ..

Cookbook chef handler version 1.1.2 successfully installed
2. Upload the chef handler cookbook to your Chef Server:

mma@laptop:~/chef-repo $ knife cookbook upload chef handler

Uploading chef handler [1.1.2]
Uploaded 1 cookbook.

How to do it...

Let's see how to install and use one of the community handlers:

1. Create your own cookbook for installing community exception and report handlers:

mma@laptop:~/chef-repo $ knife cookbook create my handlers

** Creating cookbook my handlers

** Creating README for cookbook: my handlers

** Creating CHANGELOG for cookbook: my handlers
** Creating metadata for cookbook: my handlers

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

2.

Make your my handlers cookbook aware of the fact that it needs the
chef handler cookbook by adding the dependency to its metadata:

mma@laptop:~/chef-repo $ subl
cookbooks/my handlers/metadata.rb

depends 'chef handler'

Add the IRC handler to your my handlers cookbook (make sure you use your own
URI for the irc uri argument):

mma@laptop:~/chef-repo $ subl
cookbooks/my handlers/recipes/default.rb

include_recipe 'chef handler'
chef_gem "chef-irc-snitch"

chef_handler 'Chef::Handler::IRCSnitch' do
action :enable
arguments :irc uri => "irc://nick:password@irc.example.
com: 6667 /#admins"
source File.join(Gem: :Specification.find{|s| s.name ==
'chef-irc-snitch'}.gem_dir,
'lib', 'chef-irc-snitch.rb')
end

Upload your my handlers cookbook to your Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my handlers

Uploading my_ handlers [0.1.0]
Uploaded 1 cookbook.

Run Chef Client on your node to install your handlers:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

[2012-12-28T11:02:57+00:00] INFO: Enabling chef handler [Chef::Han
dler::IRCSnitch] as a report handler B
[2012-12-28T11:02:57+00:00] INFO: Enabling chef handler [Chef::Hand
ler::IRCSnitch] as a exception handler B
[2012-12-28T11:02:58+00:00] INFO: Chef Run complete in 3.762220162
seconds
[2012-12-28T11:02:58+00:00] INFO: Running report handlers
[2012-12-28T11:02:58+00:00] INFO: Report handlers complete

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The chef handler Light Weight Resource Provider (LWRP) provided by the chef handler
cookbook helps you enable and configure any custom handler without the need to manually
modify the client . rb on all your nodes.

Typically, you install the desired community handler as a gem. You do this using the
chef gemresource.

You can pass an attributes hash to the Handler class and you need to tell the LWRP where
it can find the Handler class. The default should be chef /handlers/. .. but more often
than not, this is not the case. We're searching through all our installed Ruby gems to find the
right one and append the path to the . rb file where the Handler class is defined.

The LWRP will take care of enabling the handler, if you tell it so using enable true.

There's more...

If you want, you can install your handler manually by editing c1ient . rb on your nodes.

If your desired handler is not available as a Ruby gem, you can install it into /var/chef/
handlers and use this directory as the source when using the chef handler LWRP.

See also

» Read more about exception and report handlers at:

http://docs.opscode.com/essentials handlers.html

Creating custom handlers

Chef handlers can be very helpful to integrate Chef with your tool chain. If there is no handler
readily available for the tools you use, it's pretty simple to write your own.

We'll have a look how to create an exception handler reporting Chef Client run failures to
Flowdock, a web-based team inbox and chat tool.

Getting ready...

As we want to publish information to a Flowdock inbox, you need to sign up for an account
athttp://www.flowdock.com. And we need to install the API client as a Ruby gem to
be able to post to our team inbox from Chef.

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs
Install the £1owdock gem on your local development box:

mma@laptop:~/chef-repo $ subl Gemfile

gem 'flowdock'
mma@laptop:~/chef-repo $ bundle install

Fetching gem metadata from https://rubygems.org/
... TRUNCATED OUTPUT. ..
Installing flowdock (0.3.1)

How to do it...

Carry out the following steps to create a custom handler to post Chef run failures to Flowdock:

1. Create your handler class:

mma@laptop:~/work/chef-handler-flowdock $ mkdir -p
lib/chef/handler

mma@laptop: ~/work/chef-handler-flowdock $ subl
lib/chef/handler/flowdock handler.rb

require 'chef/handler’
require 'flowdock!'

class Chef
class Handler
class FlowdockHandler < Chef::Handler

def initialize(options = {})
@efrom = options[:from] || nil
@flow = Flowdock::Flow.new(:api_token =>
options[:api_token],
:source => options[:source] || "Chef Client")
end

def report
if run_status.failed?
content = "Chef Client raised an exception:
"
content << run status.formatted exception
content << "
"
content << run_status.backtrace.join("
")

@from = {:name => "root", :address =>
"root@#{run status.node.fgdn}"} if efrom.nil?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

@flow.push to team inbox(:subject => "Chef Client
run on #{run status.node} failed!",
:content => content,
:tags => ["chef",
run_status.node.chef environment,
run_status.node.name], :from => @from)

end
end
end
end
end

2. Copy the handler to your node:
user@server:~$ sudo mkdir -p /var/chef/handlers

mma@laptop:~/work/chef-handler-flowdock $ scp
lib/chef/handler/flowdock handler.rb
user@server:/var/chef/handlers/flowdock handler.rb

3. Enable the handler in your client . rb on your node. Replace FLOWDOCK API
TOKEN with your own token:

user@server:~$ subl /etc/chef/client.rb

require '/var/chef/handlers/flowdock handler'

exception handlers <<
Chef: :Handler: :FlowdockHandler.new(:api token =>
"FLOWDOCK API TOKEN")

If you've a failing Chef Client run on your node, your handler will report it to your Flowdock flow.

To create a Chef handler your class needs to extend Chef : :Handler. It should have two
methods: initialize and report. Chef will call the report method at the end of every
Chef Client run.

The handler class can access the run_status of the Chef Client run to retrieve information
about the run, for example, the current node object, success? or failure?, and the
exception (if any). You can find a full list of supported attributes here: http://docs.
opscode.com/essentials handlers properties.html

As we only want to report exceptions, we execute our logic inside the report method only
if the Chef run failed.

55}

www.it-ebooks.info

http://www.it-ebooks.info/

Evaluating and Troubleshooting Cookbooks and Chef Runs

There's more...

Instead of manually installing the handler on all your nodes, you can create a cookbook
(see the Using community exception and report handlers section in this chapter).

In our example, we create the Flowdock API client in the initialize method. If you use
the LWRP to install the handler, the initialize method will receive an options Hash from
the attributes call inside the chef handler provider.

See also

» The Using community exception and report handlers section

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language
and Style

"Style is what separates the good from the great."

- Bozhidar Batsov
In this chapter, we will cover the following:

» Using community Chef style

» Using attributes to dynamically configure recipes

» Using templates

» Mixing plain Ruby with Chef DSL

» Installing Ruby gems and using them in recipes

» Using libraries

» Using definitions

» Creating your own Lightweight Resources and Providers (LWRP)

» Extending community cookbooks by using application wrapper cookbooks
» Creating custom Ohai plugins

» Creating custom Knife plugins

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

Introduction

If you want to automate your infrastructure, you will end up using most of Chef's language
features. In this chapter, we will have a look at how to use the Chef Domain Specific
Language (DSL) from basic to advanced. We will end the chapter with creating custom plugins
for Ohai and Knife.

Using community Chef style

It's easier to read code that adheres to a coding style guide. Especially when sharing cookbooks
with the Chef community it is really important to deliver consistently styled code.

On the following pages, you'll find some of the most important rules (out of many more—enough
to fill a short book on its own) to apply to your own cookbooks.

Getting ready

As you're writing cookbooks in Ruby, it's a good idea to follow general Ruby principles for
readable (and therefore maintainable) code.

Opscode proposes lan Macdonald's Ruby Style Guide (http://www.caliban.org/ruby/
rubyguide.shtml#style) in its Cookbook Style Guide Draft (http://wiki.opscode.
com/display/chef/Cookbook+Style+Guide+Draft).

But, to be honest, | prefer Bozhidar Batsov's Ruby Style Guide (https://github.com/
bbatsov/ruby-style-guide) due to its clarity.

Let's have a look at the most important rules for Ruby in general and for cookbooks specifically.

How to do it...

Let's walk through a few Chef styling guideline examples:

1. Use two spaces per indentation level:

remote directory node['nagios'] ['plugin dir'] do
source 'plugins'
end

2. Use Unix-style line endings. Avoid Windows line endings by configuring Git accordingly:

mma@laptop:~/chef-repo $ git config --global core.autocrlf true

M For more options on how to deal with line endings in Git read
Q https://help.github.com/articles/dealing-with-
line-endings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

3. Align parameters spanning more than one line:

variables (
mon_host: 'monitoring.example.com',
nrpe directory: "#{node['nagios'] ['nrpe'] ['conf dir']}/nrpe.d"

)

4. Describe your cookbook in metadata . rb (you should always use the Ruby DSL
as the JSON version will be automatically generated from it).

5. Version your cookbook using Semantic Versioning (http://semver.org):

version "1.1.0"

6. List supported operating systems looping through an array using each:

$w(redhat centos ubuntu debian).each do |os|
supports os

end

7. Declare dependencies in your metadata.rb:
depends "apache2", ">= 1.0.4"
depends "build-essential"

8. Construct strings from variable values and static parts using string expansion:
my string = "This resource changed #{counter} files"

9. Download temporary files to Chef: :Config[:file cache path] instead of /tmp
or some local directory.

10. Use strings to access node attributes instead of Ruby symbols:

node['nagios'] ['users_databag group']

11. Set attributes in my cookbook/attributes/default.rb by using default:

default ['my cookbook'] ['version'] = "3.0.11"

12. Create an attribute namespace by using your cookbook name as a first level in your
my cookbook/attributes/default.rb:

"3.0.11"
"Mine"

default ['my cookbook'] ['version']
default ['my cookbook'] ['name']

Using community Chef style helps to increase the readability of your cookbooks. Your cookbooks
will be read much more often than changed. Because of that, it usually pays off to put a little
extra effort into following a strict style guide when writing cookbooks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

There's more...

Using Semantic Versioning (see: http://semver.org) for your cookbooks helps to
manage dependencies. If you change anything, which might break cookbooks depending
on your cookbook, you need to consider this as a backwards-incompatible API change.
Semantic Versioning demands in that case that you increase the major number of your
cookbook, for example, from 1.1.3 t0 2.0. 0, resetting minor and patch levels.

Using Semantic Versioning helps to keep your production systems stable if you freeze your
cookbooks (see the Freezing Cookbooks section in Chapter 1, Chef Infrastructure).

See also

» The Flagging problems in your Chef cookbooks section in Chapter 2, Evaluating and
Troubleshooting Cookbooks and Chef Runs.

Using attributes to dynamically configure

recipes

Imagine some cookbook author has hardcoded the path where the cookbook puts a
configuration file—but in a place, that does not comply with your rules. Now you're in trouble!
You can either patch the cookbook or rewrite it from scratch. Both options leave you with a lot
of work and headache.

Attributes are there to avoid such headaches. Instead of hardcoding values inside cookbooks,
attributes enable authors to make their cookbooks configurable. By overriding default values
set in cookbooks, users can inject their own values. Suddenly, it's next to trivial to obey your
own rules.

In the next section, we'll see how to use attributes in your cookbooks.

Getting ready

Make sure you have a cookbook called my cookbook, and the run_1ist of your node
includes my cookbook as described in the Creating and Using Cookbooks section in Chapter
1, Chef Infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

Let's see how to define and use a simple attribute:

1.

Create a default file for your cookbook attributes:

mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/attributes/
default.rb

Add a default attribute:

default ['my cookbook'] ['message'] = 'hello world!'

Use the attribute inside a recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

message = node['my cookbook'] ['message']
Chef::Log.info("** Saying what I was told to say: #{message}")

Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]
Run Chef Client on your node:
user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

[2013-01-13T20:48:21+00:00] INFO: ** Saying what I was told to
say: hello world!

... TRUNCATED OUTPUT...

Chef loads all attributes from the attribute files before it executes the recipes. The attributes
are stored with the node object. You can access all attributes stored with the node object from
within your recipes and retrieve their current values.

Chef has a strict order of precedence for attributes: default being the lowest, then comes
normal (which is aliased with set), and then override. Additionally, attribute levels set

in recipes have precedence over the same level set in an attribute file. And attributes defined
in roles and environments have highest precedence since Chef 11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

There's more...

You can set and override attributes within roles and environments as well. Since Chef 11
attributes defined in roles or environments have the highest precedence (on their respective
levels: default, normal, override).

1. Create arole:

mma@laptop:~/chef-repo $ subl roles/german hosts.rb

name "german hosts"

description "This Role contains hosts, which should print out
their messages in German"

run list "recipe[my cookbook]"

default_attributes "my cookbook" => { "message" => "Hallo Welt!" }

2. Upload the role to the Chef Server:

mma@laptop:~/chef-repo $ knife role from file german hosts.rb
Updated Role german hosts!

3. Assign the role to a node called server:
mma@laptop:~/chef-repo $ knife node edit server
"run list": [

"role [german hosts]"

]

Saving updated run list on node server
4. Run the Chef Client:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

[2013-01-13T20:49:49+00:00] INFO: ** Saying what I was told to
say: Hallo Welt!

.. . TRUNCATED OUTPUT...

Calculating values in attribute files

Since Chef 11, attributes set in roles and environments (as shown earlier) have the highest
precedence, and they're already available when the attribute files get loaded. This enables
you to calculate attribute values based on role or environment-specific values.

1. Setan attribute within a role:
mma@laptop:~/chef-repo $ subl roles/german hosts.rb
name "german hosts"
description "This Role contains hosts, which should print out

their messages in German"
run list "recipe[my cookbook]"

100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

default_attributes "my cookbook" => {
"hi" => "Hallo",
"world" => "Welt"

}

Calculate the message attribute based on the two attributes hi and wor1d:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/attributes/
default.rb

default ['my cookbook'] ['message'] = "#{node['my cookbook'] ['hi']}
#{node ['my_cookbook'] ['world']}!™"

Upload the modified cookbook to your Chef Server and run the Chef Client on your
node to see that it works as shown in the preceding example.

See also

4

Read more about attributes in Chef at: http://docs.opscode.com/chef
overview attributes.html

Learn all about how Chef 11 changed the way to deal with attributes here:
http://www.opscode.com/blog/2013/02/05/chef-11-in-depth-
attributes-changes/

Using templates

Configuration Management is all about, well, configuring your hosts. Usually, configuration
is carried out using configuration files. Chef is using templates to be able to fill configuration
files with dynamic values. It offers template as a resource you can use in your recipes.

You can retrieve such dynamic values from data bags, attributes, or even calculate them
on the fly before passing them into the template.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1ist of your
node includes my cookbook in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

How to do it...

Let's see how to create and use a template to dynamically generate a file on your node.

1.

102

Add a template to your recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

template '/tmp/message' do
source 'message.erb'
variables (
hi: 'Hallo',
world: 'Welt',
from: node['fgdn']
)

end

Add the ERB template file:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/templates/
default/message.erb

)

<%- 4.times do %>
<%= @hi %>, <%= @world %> from <%= @from %>!

)

<%- end %>

Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]
Run Chef Client on your node:
user@server:~$ sudo chef-client
.. . TRUNCATED OUTPUT...

[2013-01-14T20:41:21+00:00] INFO: Processing template[/tmp/
message] action create (my cookbook::default line 9)

[2013-01-14T20:41:22+00:00] INFO: template[/tmp/message] updated
content

... TRUNCATED OUTPUT...
Validate the content of the generated file:
user@server:~$ sudo cat /tmp/message

Hallo, Welt from vagrant.vm!
Hallo, Welt from vagrant.vm!
Hallo, Welt from vagrant.vm!
Hallo, Welt from vagrant.vm!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Chef uses Erubis as its template language. It allows embedding pure Ruby code inside special
symbols inside your templates.

You use <%= %> if you want to print the value of a variable or Ruby expression into the
generated file.

You use <%- %> if you want to embed Ruby logic into your template file. We used it to loop our
expression four times.

When you use the template resource, Chef makes all the variables you pass in available
as instance variables when rendering the template. We used @hi, @world, and @from
in our earlier example.

There's more...

The node object is available in a template as well. Technically, you could access node
attributes directly from within your template:

<%= node['fgdn'] %>

But, this is not a good idea because it will introduce hidden dependencies to your template.
It is better to make dependencies explicit, for example, by declaring the FQDN as a variable
for the template resource inside your cookbook:

template '/tmp/fgdn' do
source 'fgdn.erb'
variables (
fgdn:node ['fgdn']

end

M Avoid using the node object directly inside your templates
Q because this introduces hidden dependencies to node variables
in your templates.

If you need a different template for a specific host or platform, you can put those specific
templates into various subdirectories of the templates directory. Chef will try to locate
the correct template by searching through these directories from most specific (host)

to least (default).

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

You could put your message . erb into the directory cookbooks/my cookbook/templates/
host-server.vm ("host-#{node [:fgdn] } ") if it would be host specific. If it would be
specific to a certain platform version, you could put it into cookbooks/my cookbook/
templates/ubuntu-12.04 ("#{node[:platform] }-#{node[:platorm version] }"),
and if it would only be platform specific, you would put it into cookbooks /my cookbook/
templates/ubuntu ("#{node[:platform] }"). Only if your template is the same for any
host or platform would you put it into the default directory.

M Be aware of the fact that the templates/default directory
Q means that a template file is the same for all hosts and platforms—it
does not correspond to a recipe name.

» Read more about templates at: http://docs.opscode.com/essentials
cookbook_ templates.html

Mixing plain Ruby with Chef DSL

For creating simple recipes you only need to use resources such as template,

remote file, and service. But as your recipes become more elaborate, you'll discover
the need to do more advanced things such as conditionally executing parts of your recipe,
looping, or even complex calculations.

Instead of declaring the gem_package resource 10 times simply using different name
attributes, it is so much easier to loop through an array of gem names creating the gem_
package resources on the fly.

This is the power of mixing plain Ruby with Chef Domain Specific Language (DSL). We'll see
a few tricks in the following sections.

Getting ready

Start a Chef Shell on any of your nodes in client mode to be able to access your Chef Server:
user@server:~$ sudo chef-shell --client

loading configuration: /etc/chef/client.rb
Session type: client

... TRUNCATED OUTPUT. ..

run “help' for help, “exit' or "D to quit.

Ohai2u user@server!
chef >

104

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

Let's play around with some Ruby constructs in Chef Shell to get a feel for what's possible:
1. Getall nodes from the Chef Server using search from the Chef DSL:
chef > nodes = search(:node, "hostname:[* TO *]")
=> [node [server] ,node[alice]]
2. Sort your nodes by name using plain Ruby:
chef > nodes.sort! {|a,b| a.name <=> b.name }
=> [node[alice] ,node[server]]

3. Loop through the nodes printing their operating systems:
chef > nodes.each do |n|
chef > puts n['os']
chef ?> end
linux

windows
=> [node [server], nodelalice]]

4. Log only if there are no nodes:
chef > Chef::Log.warn("No nodes found") if nodes.empty?
=> nil

5. Install multiple Ruby gems using an array, a loop, and string expansion to construct
the gem names:
chef > %w{ec2 essentials}.each do |gem|
chef > gem package "knife-#{gem}"

chef ?> end

=> ["ec2", "essentials"]

Chef recipes are Ruby files, which get evaluated in the context of a Chef run. They can contain
plain Ruby code such as if statements and loops as well as Chef Domain Specific Language
(DSL) elements such as resources (remote file, service, template, and so on).

Inside your recipes you can simply declare Ruby variables and assign them any values. We
used the Chef DSL method search to retrieve an array of Chef : : Node instances and stored
that array in the variable nodes.

Because nodes is a plain Ruby array, we can use all methods the array class provides, such
as sort! or empty?.

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

And we can iterate through the array by using plain Ruby each, as we did in the third example
explained earlier.

Another common thing is to use if, else, or case for conditional execution. In the preceding
fourth example, we used if to only write a warning to the logfile, if the nodes array is empty.

In the last example, we combined an array of strings (holding parts of gem names) and the
each iterator with the Chef DSL gem package resource to install two Ruby gems. To take
things one step further we used plain Ruby string expansion to construct the full gem names
(knife-ec2 and knife-essentials)on the fly.

You can use the full power of Ruby combined with the Chef DSL in your recipes. Here
is an excerpt from the server. rb recipe from Opscode's nagios cookbook, which
shows what's possible:

Load search defined Nagios hostgroups from the nagios_hostgroups
data bag and find nodes
begin
hostgroup nodes= Hash.new
hostgroup list = Array.new
search(:nagios_hostgroups, '*:*') do |hg|
hostgroup list << hg['hostgroup name']
temp hostgroup array= Array.new
if node['nagios'] ['multi environment monitoring']
search(:node, "#{hg['search query']}") do |n]|
temp _hostgroup array << n['hostname']

end
else
search(:node, "#{hg['search query']} AND chef
environment :#{node.chef environment}") do |n|
temp_hostgroup array << n['hostname']
end
end
hostgroup nodes [hg['hostgroup name']] = temp hostgroup_ array.
join(",")
end

rescue Net::HTTPServerException

Chef::Log.info("Search for nagios hostgroups data bag failed, so
we'll just move on.")
end

First, they declare a few Ruby variables to use them later.

106

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Then, they try to retrieve data from a data bag called nagios hostgroups. To avoid the
recipe failing if that data bag is not available, they wrap their logic with begin, rescue, and
end—Ruby's way of exception handling.

Inside that block, you see a mix of plain Ruby stuff such as hostgroup nodes = Hash.
new and Chef DSL such as the usage of attributes or search.

» Find out more about how to use Ruby in recipes here: http://docs.opscode.
com/chef/dsl recipe.html

» The Using community Chef style section

» The Using attributes to dynamically configure recipes section

Installing Ruby gems and using them in

recipes

Recipes are plain Ruby files. It is possible to use all of Ruby's language features inside your
recipes. Most of the time the built-in Ruby functionality is enough but sometimes you might
want to use additional Ruby gems, for example, to connect to an external application via an
API or simply to access a MySQL database from within your recipe.

Chef lets you install Ruby gems from within a recipe so that you can use them inside the very
same recipe.

Getting ready

Make sure you've a cookbook named my cookbook, which is in your node's run list
in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.

How to do it...

Let's see how we can use the ipaddress gem in our recipe:

1. Edit the default recipe of your cookbook, installing a gem to be used inside the
recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

chef gem 'ipaddress'
require 'ipaddress'

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

ip = IPAddress("192.168.0.1/24")
Chef::Log.info ("Netmask of #{ip}: #{ip.netmask}")

2. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook
Uploading my cookbook [0.1.0]
3. Run Chef Client on your node to see whether it works:
user@server $ sudo chef-client

.. .TRUNCATED OUTPUT...

[2013-01-18T14:02:02+00:00] INFO: Netmask of 192.168.0.1:
255.255.255.0

.. .TRUNCATED OUTPUT...

A Chef run consists of a compile phase where it instantiates all resources and an execution
phase where Chef runs the resource providers to converge the node.

If you want to use the functionality of a Ruby gem inside your cookbook, you need to install
that gem during the compile phase. Otherwise it will not be available during the execute phase
(only afterwards).

The chef gem resource will exactly do that. And, if you're using Chef Omnibus, this is the only
way to make gems available to Chef itself.

The gem_package resource, in contrast, installs the gem into the system Ruby. It does that
during the converge phase of the Chef run. This means that gems installed by gem package
can not be used inside your recipes.

See also

» The Mixing plain Ruby with Chef DSL section

Using libraries

While you can use arbitrary Ruby code within your recipes, this might quickly get messy
if you're doing more complicated stuff like integrating existing infrastructure or doing
complicated API calls.

Libraries provide a place to encapsulate complicated logic so that your recipes stay clean
and neat.

In this section, we'll create a simple library to see how this works out.

108

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Getting ready

Make sure you have a cookbook called my cookbook and the run_1list of your node
includes my cookbook in the Creating and using cookbooks section in Chapter 1,
Chef Infrastructure.

How to do it...

Let's create a library and use it in a cookbook:

1. Create a helper method in your own cookbook's library:
mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/libraries/
ipaddress.rb

class Chef::Recipe

def netmask (ipaddress)

IPAddress (ipaddress) .netmask

end

end
2. Use your helper method:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

ip = '10.10.0.0/24"
mask = netmask(ip) # here we use the library method
Chef::Log.info ("Netmask of #{ip}: #{mask}")

3. Upload the modified cookbook to the Chef Server:

mma@laptop:~/chef-repo $ knife cookbook upload my cookbook
Uploading my cookbook [0.1.0]

4. Run the Chef Client on your node to see whether it works:
user@server $ sudo chef-client

... TRUNCATED OUTPUT...

[2013-01-18T14:38:26+00:00] INFO: Netmask of 10.10.0.0/24:
255.255.255.0

... TRUNCATED OUTPUT...

In your library code you can open the Chef : :Recipe class and add your new methods.

1
‘\Q This isn't the cleanest, but the simplest way of doing it. The

following paragraphs will help you to find out a cleaner way.

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

class Chef::Recipe
def netmask (ipaddress)

end
end

Chef automatically loads your library code in the compile phase that enables you to use the
methods you declare there inside your recipes:

mask = netmask (ip)

There's more...

Opening a class and adding methods pollutes the class' namespace. This might lead

to name clashes, for example, if you define a method inside a library of your own cookbook
and someone else defines a method with the same name in the library of another
cookbook. Another clash would happen if you accidentally use a method name, which
Chef defines in its Chef : : Recipe class.

It's cleaner to introduce your own subclasses inside your libraries and define your methods as
class methods. This avoids polluting the Chef : : Recipe namespace.

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/libraries/ipaddress.
rb

class Chef::Recipe::IPAddress
def self.netmask (ipaddress)
IPAddress (ipaddress) .netmask
end
end

You can use the method inside your recipes like this:
IPAddress.netmask (ip)

You can define library methods in Chef Shell directly in the root context:

user@server $ chef-shell --client

chef > class Chef::Recipe::IPAddress
chef ?> def self.netmask (ipaddress)

chef ?> IPAddress (ipaddress) .netmask
chef ?> end

chef ?> end

Now you can use the library method inside the recipe context:

chef > recipe
chef:recipe > IPAddress.netmask('10.10.0.0/24")
=> "255.255.255.0"

110

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

See also

» The Using the Chef console (Chef Shell) section in Chapter 1, Creating and Using
Cookbooks

» The Mixing plain Ruby with Chef DSL section

Using definitions

Your cookbooks grow and get pretty long. Silently some duplication sneak in as well. You'll come
to the point where it is time to group resources and give them names to regain readability for
your cookbook. And if you use the same set of resources again and again it is a good idea to
refactor this group of resources into a definition.

In this section, we'll group a set of resources into a definition to make it reusable.

Getting ready

Make sure you have a cookbook called my cookbook and the run_ 1ist of your node includes
my cookbook in the Creating and using cookbooks section in Chapter 1, Chef Infrastructure.

How to do it...

Let's see how to create and use a definition:

1. Create a definition in a new file in your cookbook's definitions folder:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/definitions/
capistrano deploy dirs.rb

define :capistrano deploy dirs, :deploy to => '' do
directory "#{params[:deploy to]}/releases"
directory "#{params[:deploy to] }/shared"
directory "#{params[:deploy to] }/shared/system"
end

2. Use the definition inside your cookbook's default recipe:
mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

capistrano deploy dirs do
deploy to "/srv"
end

3. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

4. Run Chef Client on your node to see whether it works:
user@server $ sudo chef-client

.. . TRUNCATED OUTPUT. ..

[2013-01-18T16:31:11+00:00] INFO: Processing directory[/srv/
releases] action create (my_ cookbook::default line 2)
[2013-01-18T16:31:11+00:00] INFO: directory[/srv/releases] created
directory /srv/releases

[2013-01-18T16:31:11+00:00] INFO: Processing directoryl[/srv/
shared] action create (my_cookbook::default line 3)
[2013-01-18T16:31:11+00:00] INFO: directory[/srv/shared] created
directory /srv/shared

[2013-01-18T16:31:11+00:00] INFO: Processing directoryl[/srv/
shared/system] action create (my cookbook::default line 4)
[2013-01-18T16:31:11+00:00] INFO: directory[/srv/shared/system]
created directory /srv/shared/system

.. . TRUNCATED OUTPUT. ..

Definitions in Chef are like macros: you group a collection of resources and give this group
a name. Chef reads the definition and expands its contents into the recipe during the
compile phase.

A definition has a name (here capistrano_deploy dirs) by which you can call it from your
recipe. And a definition has a list of parameters (here deploy to):

define :capistrano_deploy dirs, :deploy to => '' do

end

The code inside the definition has access to a hash called params. It contains all the keys you
defined after the definition name. Here, Chef will add the three directory resources
to the execution list:

define
directory "#{params[:deploy to]}/releases"
directory "#{params[:deploy to] }/shared"
directory "#{params[:deploy to]}/shared/system"
end

In your recipes you can use the definition name instead of putting all the three directory
resources. Inside the block you use dynamically generated methods to fill each parameter
with its value:

capistrano deploy dirs do
deploy to "/srv"
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

There's more...

Be aware that definitions are expanded into their containing resources. Definitions are not
available during the execution phase. You cannot notify a definition, but only the resources
it contains.

You could not address the definition:
notifies :delete, 'capsitrano deploy dirs', :immediately
But you could address the individual resources inside the definition:

notifies :delete, 'directoryl[/srv/releases], :immediately

See also

» Read more about definitions at: http://docs.opscode.com/essentials
cookbook definitions.html

Creating your own Light Weight Resource

Providers (LWRP)

Chef offers the opportunity to extend the list of available resources by creating a custom Light
Weight Resource Provider (LWRP). By creating your own custom resources, you can simplify
writing cookbooks because your own custom resources enrich the Chef DSL and make your
recipe code more expressive.

Many of the custom resources in Opscode's community cookbooks (and elsewhere)
are implemented as LWRPs. So there are many working examples in the real world such
as iptables rule or apt repository, and many more.

In this section, we will create a very simple LWRP to demonstrate the basic mechanics.

Getting ready

Make sure you've a cookbook named greeting and the run_1ist of your node includes
greeting inthe Creating and using cookbooks section in Chapter 1, Chef Infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

How to do it...

Let's see how to build a very simple LWRP to create a text file on your node:

1.

114

Create your custom resource in your greet ing cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/greeting/resources/
default.rb

actions :create, :remove

attribute :title, kind of: String, default: "World"
attribute :path, kind of: String, default: "/tmp/greeting.txt"

Create the provider for your resource in your greeting cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/greeting/providers/
default.rb

action :create do
log "Adding '#{new resource.name}' greeting as #{new resource.
path}"
file new resource.path do
content "#{new resource.name}, #{new resource.title}!"
action :create
end
end

action :remove do
Chef::Log.info "Removing '#{new resource.name}' greeting #{new_
resource.path}"
file new resource.path do
action :delete
end
end

Use your new resource by editing your greet ing cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/greeting/recipes/default.
rb

greeting "Ohai" do
title "Chef"
action :create
end
Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload greeting

Uploading greeting [0.1.0]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

5. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

2013-06-28T21:32:54+00:00] INFO: Processing greeting[Ohai] action
create (greeting::default line 9)

[2013-06-28T21:32:54+00:00] INFO: Adding 'Ohai' greeting as /tmp/
greeting. txt

[2013-06-28T21:32:54+00:00] INFO: Processing file[/tmp/greeting.
txt] action create (/srv/chef/file store/cookbooks/greeting/
providers/default.rb line 7) B

[2013-06-28T21:32:54+00:00] INFO: entered create
[2013-06-28T21:32:54+00:00] INFO: file[/tmp/greeting.txt] created
file /tmp/greeting.txt

.. .TRUNCATED OUTPUT...

6. Validate the content of the generated file:
user@server:~$ cat /tmp/greeting.txt

Ohai, Chef!

LWRPs live in cookbooks. A custom resource, which you define in a file called default.rb
in the resources directory of your cookbook, will be available under the cookbook name.

We create greeting/resources/default.rb and use it in our default recipe as follows:

greeting "..." do
end

Let's see how the resource definition in greeting/resources/default. rb looks like.
First, we define the actions, which our resource should support:
actions :Ccreate, :remove

Then, we define attributes you can pass to the resource when using it in your cookbook. In
our case, we define two string attributes with their default values:

attribute :title, kind of: String, default: "World"
attribute :path, kind of: String, default: "/tmp/greeting.txt"

Now, we can use those actions and attributes in our recipe:

greeting "Ohai" do
title "Chef"
action :create
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

We've defined the resource, now it's time to make it do something. The implementation

of a resource lives in one or many providers. You might find multiple providers for the same
resource for different operating systems. But we keep it simple here and create only one
provider in greeting/providers/default.rb.

The provider has to implement each action defined in the resource in our case we need
to implement two actions: create and remove.

action :create do

end
action :remove do

end

Now, you can use pure Ruby and existing Chef resources to make your provider do something.
First, we create a log statement and then we use the existing £ile resource to create a text
file containing the greeting:

log "Adding '#{new resource.name}' greeting as #{new resource.path}"
file new resource.path do

end

new_resource is a Ruby variable containing the resource definition from the recipe using
the resource. In our case, new_resource.name evaluates to "Ohai"

and new resource.path evaluates to the attribute's default value (because we did not
use that attribute when using the greeting resource in our cookbook).

Inside the £ile resource, we use our resource's title (new_resource.title) attribute
to fill the text file:

file new resource.path do
content "#{new resource.name}, #{new resource.title}!"
action :create

end

The remove action works similar to the create action, but calling the £ile resource's
delete action instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

There's more...

To simplify the usage of your custom resource, you can define a default action. You declare
it using the default _action call:

default action :create
Now you can use your new resource like this:

greeting "Ohai" do
title "Chef™"
end

If you're using plain Ruby code in your providers, you need to make sure

that your code is idempotent. This means that it only runs if it has to
/S modify something. You should be able to run your code multiple times on

the same machine, without executing unnecessary actions on each run.

If you want your resource to support the why-run, you need to add the following to it:

def whyrun supported?
true
end

Then, you can wrap your code with a converge by block. This will produce the message
it displays in why-run mode instead of executing the code inside.

converge by ("Doing something with #{ enew resource }") do

end

» Read more about what LWRPs are at http://docs.opscode.com/lwrp.html

» You find a more detailed explanation about how to create LWRPs at http://docs.
opscode.com/lwrp custom.html

» The Using why-run mode to find out what a recipe might do section, in Chapter 2,
Evaluating and Troubleshooting Cookbooks and Chef Runs

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

Extending community cookbooks by using

application wrapper cookbooks

Using community cookbooks is great. But sometimes they do not exactly match your use case.
You need to modify them. If you don't want to use Git vendor branches generated by knife
cookbook site install, you need to use the library versus application cookbook approach.

In this approach, you don't touch the community (library) cookbook. Instead, you include
it in your own application cookbook and modify resources from the library cookbook.

Let's see how to extend a community cookbook within your own application cookbook.

Getting ready

We'll use the ntp cookbook as a library cookbook and will change the ntpdate
configuration it installs.

1. Install the ntp cookbook:
mma@laptop:~/chef-repo $ knife cookbook site install ntp

Installing ntp to /Users/mma/work/chef-repo/cookbooks
.. .TRUNCATED OUTPUT. ..
Cookbook ntp version 1.3.2 successfully installed

2. Upload the ntp cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload ntp

Uploading ntp [1.3.2]

3. Create your own application cookbook:
mma@laptop:~/chef-repo $ knife cookbook create my-ntp

** Creating cookbook my-ntp

** Creating README for cookbook: my-ntp

** Creating CHANGELOG for cookbook: my-ntp
** Creating metadata for cookbook: my-ntp

4. Add the new my-ntp cookbook to the run list of your node:
mma@laptop:~/chef-repo $ knife node edit server
"run list": [

"recipe [my-ntp]"

]

You could use Berkshelf as described in the Managing cookbook

~ dependencies with Berkshelf section in Chapter 1, Creating and
Q Using Cookbooks, to manage the dependency on the ntp cookbook

within your my-ntp cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

Let's see how we can change the ntp cookbook's behavior from our own cookbook:

1.

Add the dependency on the ntp cookbook to the my-ntp metadata:
mma@laptop:~/chef-repo $ subl cookbooks/my-ntp/metadata.rb

version '0.1.0"
depends 'ntp'

Change the ntpdate recipe from the ntp cookbook to load the template for /etc/
default/ntpdate from your own cookbook instead of using the one provided by
the ntp cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/my-ntp/recipes/default.rb

include recipe 'ntp::ntpdate’
resources ("template [/etc/default/ntpdate] ") .cookbook "my-ntp"

Add our own version of the ntpdate template to your cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/my-ntp/templates/default/
ntpdate.erb

<% 1f @disable %$>exit 0<% end %>
NTPOPTIONS="-v"

Upload your cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my-ntp

Uploading my-ntp [0.1.0]

Run Chef Client on your node:

user@server $ sudo chef-client

... TRUNCATED OUTPUT. ..

[2013-01-19T22:14:31+00:00] INFO: Processing template[/etc/
default/ntpdate] action create (ntp::ntpdate line 28)
[2013-01-19T22:14:32+00:00] INFO: template[/etc/default/ntpdate]
updated content

[2013-01-19T22:14:32+00:00] INFO: template[/etc/default/ntpdate]
owner changed to 0

[2013-01-19T22:14:32+00:00] INFO: template[/etc/default/ntpdate]
group changed to 0

[2013-01-19T22:14:32+00:00] INFO: template[/etc/default/ntpdate]
mode changed to 644

[2013-01-19T22:14:32+00:00] INFO: Chef Run complete in 2.251344614
seconds

... TRUNCATED OUTPUT. ..

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

6. Validate that your own version of /etc/default/ntpdate has been installed (with
NTPOPTIONS="-v" instead of NTPOPTIONS=""):

user@server $ cat /etc/default/ntpdate

.. .TRUNCATED OUTPUT...
Additional options to pass to ntpdate
NTPOPTIONS="-v"

We retrieve and modify the template resource for the /etc/default/ntpdate file from
the ntp cookbook. First, we need to include the recipe, which defines the resource we want
to modify. This is necessary so that Chef creates the resource during the compile phase of the
Chef run.

include_recipe 'ntp::ntpdate’

The resources method retrieves the given resource. We can then call all the methods on it,
which we could call while defining it in a recipe. In our example, we want to tell the template
resource that it can find the ERB template in our cookbook instead of the original ntp cookbook.

resources ("template[/etc/default/ntpdatel ") .cookbook "my-ntp"

This modification of the resource happens during the compile phase. Only after Chef has
evaluated the whole recipe will it execute all resources it built during the compile phase.

If you're using any cookbook dependency management solution such as 1ibarian-chef
or berkshelf, or you're not using Git, this is currently the only way to modify parts of recipes,
which are not meant to be configured via attributes.

I don't like this approach too much. It is the exact same thing as monkey-patching any Ruby
class by reopening it in your own source files. This usually leads to brittle code as your code
now depends on implementation details of another piece of code instead of depending on
its public interface (in Chef recipes the public interface is its attributes).

You should be aware of the fact that what you're doing is dangerous. Keep such cookbook
modifications in a separate place so that you can easily find out what you did later. If you bury
your modifications deep inside your complicated cookbooks, you might experience very bad
debug issues later.

120

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

See also

» The Downloading and integrating cookbooks as vendor branches into your Git
repository section in Chapter 1, Creating and Using Cookbooks

» The Using templates section

Creating custom Ohai plugins

Ohai is the tool used by Chef Client to find out everything about the node's environment.
During a Chef Client run, it populates the node object with all the information it found out
about the node such as its operating system, hardware, and so on.

It is possible to write custom Ohai plugins to query additional properties about
a node's environment.

In this example, we will see how to query the currently active firewall rules using iptables
and make them available as node attributes.

Getting ready

Make sure you have iptables installed on your node. See the Managing firewalls with iptables
section in Chapter 7, Servers and Cloud Infrastructure.

Make sure you have the chef-client cookbook available:

1. Install the chef-client cookbook:

mma@laptop:~/chef-repo $ knife cookbook site install chef-client
Installing chef-client to /Users/mma/work/chef-repo/cookbooks

2. Upload the chef-client cookbook to your Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload chef-client

Uploading chef-client [3.0.4]
3. Addthe chef-client cookbook to your node's run list:

mma@laptop:~/chef-repo $ knife node run list add server 'chef-
client::config'

server:
run list:
recipe [chef-client: :config]

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

How to do it...

Let's write a simple Ohai plugin, which lists all currently active iptables rules:

1.

122

Install the ohai cookbook:

mma@laptop:~/chef-repo $ knife cookbook site install ohai

Installing ohai to /Users/mma/work/chef-repo/cookbooks

Add your plugin to the ohai cookbook:
mma@laptop:~/chef-repo $ subl cookbooks/ohai/files/default/
plugins/iptables.rb

provides "iptables"
iptables Mash.new

“iptables -S”.each line.with index do |line,i
iptables[i] = line

end

Upload the modified ohai cookbook to the Chef Server:

mma@laptop:~/chef-repo $ knife cookbook upload ohai

Uploading ohai [1.1.8]

Add the ohai cookbook to the run list of your node:

mma@laptop:~/chef-repo $ knife node run list add server ohai

server:
run list:
recipe [chef-client: :config]
recipe [ohai]

Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...
Recipe: ohai::default
* ohai[custom plugins] action reload
- re-run ohai and merge results into node attributes
... TRUNCATED OUTPUT...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

6. Validate that the iptables rules show up as node attributes, for example, by navigating
to your Chef Server's management console. The iptables rules should show up among
the other node attributes:

C' https://manage.opscode.com/nodes/server
Attributes
Attribute Value
" iptables
0 -P INPUT ACCEPT
1 -P FORWARD ACCEPT
10 -A FWR -p udp -j REJECT --reject-with icmp-port-unreachable

The chef-client cookbook configures Chef Client to look for additional Ohai plugins in
the directory /etc/chef/ohai plugins by adding this line to /etc/chef/client.rb:

Ohai::Config[:plugin path] << "/etc/chef/ohai plugins"

You can simply install the ohai cookbook and add your Ohai plugins to the cookbooks/
ohai/files/default/plugins directory. The ohai cookbook will then upload your
plugins to your node.

A custom Ohai plugin has only a few basic parts:

provides "iptables"

The preceding code tells Ohai that the node attributes you fill will be available under the
iptables key.

You collect the node attributes in a Mash—an extended version of a Hash.
iptables Mash.new
The preceding line of code creates an empty node attribute.

Then we run iptables -Sto list all currently loaded firewall rules and loop through the lines.
Each line gets added to the Mash with its line number as the key:

“sudo iptables -S> .each line.with index do |line,i]
iptables[i] = line
end

Ohai will add the contents of that Mash as node attributes during a Chef Client run. We can
now use the new iptables node attribute in our recipes:

node ['iptables']

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

There's more...

You can use your Ohai plugin as a library. This enables you to use the functionality of your
Ohai plugins in arbitrary Ruby scripts. Fire up IRB in the /etc/chef/ochai_plugins
directory and run the following commands:

user@server: /etc/chef/ohai plugins$ /opt/chef/embedded/bin/irb
>> require 'ohai'
>> Ohai::Config[:plugin path] << '.'
>> o0 = Ohai::System.new
>> o.all plugins
>> o.iptables

=> {O:>"—P INPUT ACCEPT\n", 1=>"-P FORWARD ACCEPT\n", 2=>"-P OUTPUT
ACCEPT\n", 3=>"-N FWR\n", 4=>"-A INPUT -3j FWR\n", 5=>"-A FWR -i lo
-j ACCEPT\n", 6=>"-A FWR -m state --state RELATED,ESTABLISHED -j
ACCEPT\n", 7=>"-A FWR -p icmp -j ACCEPT\n", 8=>"-A FWR -p tcp -m
tcp --dport 22 -j ACCEPT\n", 9=>"-A FWR -p tcp -m tcp --tcp-flags
SYN,RST,ACK SYN -j REJECT --reject-with icmp-port-unreachable\n",
10=>"-A FWR -p udp -j REJECT --reject-with icmp-port-unreachable\n"}

» Read more about Ohai at: http://docs.opscode.com/ohai.html

» Read more about how to distribute Ohai plugins here: http://docs.opscode.
com/ohai.html#use-the-ohai-cookbook

» Find the source code of the Ohai cookbook here: https://github.com/
opscode-cookbooks/ohai

Creating custom Knife plugins

Knife, the command-line client for the Chef Server, has a plugin system. This plugin system
enables us to extend the functionality of Knife in any way we need it. The knife-ec2 plugin
is a common example: it adds commands such as ec2 server create to Knife.

In this section, we will create a very basic custom Knife plugin to learn about all the required
building blocks of Knife plugins. As Knife plugins are pure Ruby programs, which can use any
external libraries, there are no limits for what you can make Knife do. This freedom enables
you to build your whole DevOps workflow on Knife, if you want to.

Now, let's teach Knife to tweet in your name!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Getting ready

Make sure you have a Twitter user account and you have created an application with Twitter
(https://dev.twitter.com/apps/new).

While creating your Twitter application, you should set the OAuth access level to "Read and
write" to enable your application to post in your name.

Create an access token by connecting the application to your Twitter account. This will enable
your Twitter application (and therefore your Knife plugin) to tweet as your Twitter user.

Make sure you have the twitter gem installed. It will enable you to interact with Twitter from
within your Knife plugin:

1. Addthe twitter gem to your Gemfile:
mma@laptop:~/chef-repo $ subl Gemfile

source 'https://rubygems.org'
gem 'twitter'

2. Run Bundler to install the twitter gem:
mma@laptop:~/chef-repo $ bundle install

Fetching gem metadata from https://rubygems.org/
.. . TRUNCATED OUTPUT...
Installing twitter (4.8.1)

How to do it...

Let's create a Knife plugin so that we can tweet using Knife using the following command:

$ knife tweet "having fun building knife plugins"

1. Create a directory for your Knife plugin inside your Chef repository:
mma@laptop:~/chef-repo $ mkdir -p .chef/plugins/knife

2. Create your Knife plugin:
mma@laptop:~/chef-repo $ subl .chef/plugins/knife/knife twitter.rb

require 'chef/knife'
module KnifePlugins
class Tweet < Chef::Knife
deps do
require 'twitter'
end

banner "knife tweet MESSAGE"

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

def run
Twitter.configure do |config]
config.consumer key = "Your Twitter app consumer key"
config.consumer secret = "Your Twitter app consumer
secret"
config.ocauth token = "Your OAuth token for your Twitter
app"
config.ocauth token secret = "Your OAuth token secret for
your Twitter app"
end
Twitter.update ("#{name args.first} #opschef")
end
end
end

3. Send your first tweet:

mma@laptop:~/chef-repo $ knife tweet "having fun with building
knife plugins"

4. Validate whether the tweet went live:

Tweets

Matthias Marschall @ mmarscha 23h
having fun with building knife plugins “opschef

Expand

There are three ways to make your Knife plugins available: in your home directory under

~/ .chef/plugins/knife (so that you can use them for all your Chef repositories), in your
Chef repository under .chef /plugins/knife (so that every co-worker using that repository
can use them), or as a Ruby gem (so that everyone in the Chef community can use them).

We chose the second way so that everyone working on our Chef repository can download and
use our Twitter Knife plugin.

First, we need to include Chef's Knife library into our Ruby file in order to be able to create
a Knife plugin:

require 'chef/knife'
Then, we define our plugin as follows:

module KnifePlugins

class Tweet < Chef::Knife

end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The preceding code creates the new Knife command tweet. The command is derived from
the class name we give our plugin. Each Knife plugin needs to extend Chef : :Knife.

The next step is to load all required dependencies. Instead of simply putting multiple require
calls at the beginning of our Ruby file, Knife provides the deps method (which we can override)
to load dependencies lazily on demand:

deps do
require 'twitter'
end

Putting require 'twitter' inside the deps method makes sure that the twitter gem
only gets loaded if our plugin gets run. Not doing so would mean that the twitter gem would
get loaded on each Knife run, no matter whether it would be used or not.

After defining the dependencies, we need to tell the users of our plugin what it does and how
to use it. Chef : : Knife provides the banner method for defining the message users see
when they call our plugin with the - -help parameter:

banner "knife tweet MESSAGE"
Let's see how this works:
mma@laptop:~/chef-repo $ knife tweet --help
knife tweet MESSAGE

Finally, we need to actually do something. The run method is the place to put the code
we want to execute. In our case, we connect to our Twitter application by calling configure
on the Twitter class, passing our authentication credentials. Then we send our tweet:

Twitter.update ("#{name args.first} #opschef")

The name args variable contains the command-line arguments. We take the first one as the
message we send to Twitter and add the #opschef hash tag to every message we send.

There's more...

You can add simple error handling to make sure that the user doesn't send empty tweets
by adding this block right at the beginning of the run method:

run
unless name_args.size == 1
ui.fatal "You need to say something!"
show usage
exit 1
end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chef Language and Style

This piece of code gets executed if there isn't exactly one command-line argument available
to the knife tweet call. In that case it will print the error message, and the user would get
same message when using the - -help parameter. Then, this block will exit with the error
code 1 without doing anything else.

See also

» Read more about how to write custom Knife plugins at: http://docs.opscode.
com/plugin knife custom.html

» Findthe twitter gemat: https://github.com/sferik/twitter

128

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better
Cookbooks

"When you know better, you do better"

- Maya Angelou

In this chapter, we will cover the following:

Setting environment variables

Passing arguments to shell commands

Overriding attributes

Using search to find nodes

Using data bags

Using search to find data bag items

Using encrypted data bag items

Accessing data bag values from external scripts

Getting information about the environment

Writing cross-platform cookbooks

Finding the complete list of operating systems you can use in cookbooks
Making recipes idempotent by using conditional execution

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

Introduction

In this chapter, we'll see some of the more advanced topics in action. You'll see how to make
your recipes more flexible using search and data bags and how to make sure your cookbooks
run on different operating systems. You'll gain critical knowledge to create extensible and
maintainable cookbooks for your infrastructure.

Setting environment variables

You might have experienced this: you try out a command on your node's shell and it works
perfectly. Now, you try to execute the very same command from within your Chef recipe but

it fails. One reason might be that there are certain environment variables set in your shell,
which are unset during the Chef run. You might have set them manually or you might have set
them in your shell startup scripts—it does not really matter. You'll need to set them again in
your recipe.

In this section, you will see how to set environment variables needed during a Chef run.

Getting ready

Make sure you have a cookbook called my cookbook, and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Let's see how we can set environment variables from within Chef recipes:

1. Setan environment variable to be used during the Chef Client run:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

ENV['MESSAGE'] = 'Hello from Chef'

execute 'print value of environment variable $MESSAGE' do
command 'echo $MESSAGE > /tmp/message’
end

2. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

3. Run Chef Client to create the tmp file:

user@server:~$ sudo chef-client

... TRUNCATED OUTPUT...

[2013-01-25T15:01:57+00:00] INFO: Processing execute [print
value of environment variable $SMESSAGE] action run
(my cookbook::default line 11)

[2013-01-25T15:01:57+00:00] INFO: execute [print value of
environment variable SMESSAGE] ran successfully

.. . TRUNCATED OUTPUT...

4. Validate that it worked:

user@server:~$ cat /tmp/message

Hello from Chef

Ruby exposes the current environment via ENV—a hash to read or modify environment
variables. We are using ENV to set our environment variable. It is valid for the Ruby process
in which Chef Client runs as well as all child processes.

The execute resource is spawning a child process of the Ruby process running Chef Client.
Because it is a child process, the environment variable we set in the recipe is available to the
script code the execute resource runs.

We simply access the environment variable by $SMESSAGE as we would do on the command
line as well.

The execute resource offers a way to pass environment variables to the command it
executes.

1. Change the my cookbook default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

execute 'print value of environment variable S$MESSAGE' do
command 'echo $MESSAGE > /tmp/message’
environment 'MESSAGE' => 'Hello from the execute resource'
end

2. Upload the modified cookbook to your Chef Server and run Chef Client as shown in
the How to do it... section.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

3. Validate the contents of the tmp file:

user@server:~$ cat /tmp/message

Hello from the execute resource

Setting an environment variable using ENV will make that
s . . .
~ variable available during the whole Chef run. In contrast,
passing it to the execute resource will only make it available
for that one command executed by the resource.

» Read more about handling Unix environment variables in Chef at:

http://docs.opscode.com/essentials environment variables.html

Passing arguments to shell commands

Chef Client enables you to run shell commands by using the execute resource. But how can
you pass arguments to such shell commands? Let's assume you want to calculate a value you
need to pass to the shell command in your recipe. How can you do that? Let's find out...

Getting ready

Make sure you have a cookbook called my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Let's see how we can pass Ruby variables into shell commands:

1. Edit your default recipe. You'll pass an argument to a shell command using an
execute resource:

mma@laptop:~/chef-repo § subl
cookbooks/my cookbook/recipes/default.rb

max mem = node['memory'] ['total'].to i * 0.8
execute 'echo max memory value into tmp file' do

command "echo #{max mem} > /tmp/max mem"
end

132

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

2. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]

3. Run Chef Client on your node to create the tmp file:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

[2013-01-25T15:01:57+00:00] INFO: Processing execute[echo max
memory value into tmp file] action run (my_ cookbook::default line
11)

[2013-01-25T15:01:57+00:00] INFO: execute[echo max memory value
into tmp file] ran successfully

.. . TRUNCATED OUTPUT...
4. Validate that it worked:
user@server:~$ cat /tmp/max mem

299523.2

We calculate a value, which we want to pass to the command we want to execute. The
node ['memory'] ['total'] call returns a string. We need to convert it to integer by calling
to_1i on the returned string to be able to multiply it with 0. 8.

As recipes are Ruby files, you can use string expansion if you need it. One way to pass
arguments to shell commands defined by execute resources is to use string expansion in the
command parameter:

command "echo #{max mem} > /tmp/max_mem"

In the preceding line, Ruby will replace #{max_mem} with the value of the max_mem variable
just defined. The string, which we pass as a command to the execute resource could look
like this (assuming that node ['memory'] ['total'] returns 1000):

command "echo 800 > /tmp/max_mem"

1
‘\Q Be careful! You need to use double quotes if you want

Ruby to expand your string.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

There's more...

String expansion works in multiline strings as well. You can define them like this:

command <<EOC
echo #{message} > /tmp/message
EOC

\ EOC is the string delimiter. You're free to use whatever you
~ want here. It can be EOF, EOH, STRING, FOO, or whatever
Q you want it to be. Just make sure to use the same delimiter
at the beginning and the end of your multiline string.

We've seen another way to pass arguments to shell commands by using environment
variables in the previous section.

» The Mixing plain Ruby with Chef DSL section in Chapter 3, Chef Language and Style
» The Setting environment variables section

Overriding attributes

You can set attribute values in attribute files. Usually, cookbooks come with reasonable
default values for attributes. But the default values might not suit your needs. If they don't fit,
you can override attribute values.

In this section, we'll look at how to override attributes from within recipes and roles.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Let's see how we can override attribute values:

1. Edit the default attributes file to add an attribute:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/attributes/default.rb

default ['my cookbook'] ['version'] = '1.2.6'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

2. Edit your default recipe. You'll override the value of the version attribute and print
it to the console:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

node.override['my cookbook'] ['version'] = '1.5"'
execute 'echo the path attribute' do

command "echo #{node['my cookbook'] ['version']}"
end

3. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]

4. Run Chef Client on your node to create the tmp file:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT. ..

* execute[echo the path attribute into a temp file]
action run([2013-02-08T11:27:19+00:00] INFO: Processing
execute [echo the path attribute into a temp file]
action run (my_ cookbook::default line 9)

1.5
[2013-02-08T11:27:19+00:00] INFO: execute[echo the path
attribute into a temp file] ran successfully

- execute echo 1.5

You set a default value for the version attribute in your cookbook's default attributes file.
Chef evaluates the attributes file early in the Chef run and makes all defined attributes
available via the node object. Your recipes can use the node object to access the values
of the attributes.

The Chef DSL provides various ways to modify attributes once they are set. In our example,
we used the override method to change the value of the attribute inside our recipe. After
that call, the node will carry the newly set value for the attribute instead of the old value set
via the attributes file.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

There's more...

You can override attributes from within roles and environments as well. In the following
example, we set the version attribute to 2. 0. 0 (instead of keeping the default value
of 1.2.6).

1. Edit the default attributes file to add an attribute:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/attributes/default.rb

default ['my cookbook'] ['version'] = '1.2.6"'

2. Use the attribute in your default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

execute 'echo the path attribute' do
command "echo #{node['my cookbook'] ['version']}"
end

3. Create a role named upgraded_hosts by creating a file called roles/upgraded_
hosts.rb:

mma@laptop:~/chef-repo $ subl roles/upgraded hosts.rb

name "upgraded hosts"

run list "recipe[my cookbook]"
default_attributes 'my cookbook' => { 'version' => '2.0.0' }

4. Upload the role to the Chef Server:

mma@laptop:~/chef-repo $ knife role from file
upgraded hosts.rb

Updated Role upgraded hosts!

5. Change the run_1list of your node
mma@laptop:~/chef-repo $ knife node edit server
"run list": [
"role [upgraded hosts]"
]

Saving updated run list on node server

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

6. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT. ..
Recipe: my_ cookbook: :default
* execute[echo the path attribute into a temp file]
action run([2013-02-08T10:23:48+00:00] INFO: Processing
execute [echo the path attribute into a temp file]
action run (my_ cookbook::default line 9)

/opt/my_ cookbook-2.0.0
[2013-02-08T10:23:48+00:00] INFO: execute[echo the path
attribute into a temp file] ran successfully

- execute echo /opt/my cookbook-2.0.0

[2013-02-08T10:23:49+00:00] INFO: Chef Run complete in
2.483312728 seconds

» Learn more about roles at:
http://docs.opscode.com/essentials roles.html
» Read more about attribute files and attribute precedence at:

http://docs.opscode.com/essentials cookbook attribute files.
html

Using search to find nodes

If you are running your infrastructure in any type of virtualized environment like a public or
private cloud, the server instances you use change frequently. Instead of having a well-known
set of servers, you destroy and create virtual servers regularly.

In this situation, your cookbooks cannot rely on hard coded server names when you need
a list of available servers. You might need such a list to add them to monitoring or building
firewall rules for your nodes.

Chef provides a way to find nodes by their attributes, for example, their roles. In this section,
we'll see how you can retrieve a set of nodes to use them in your recipes.

Getting ready

Make sure you have a cookbook called my cookbook as described in the Creating and using
cookbooks section in Chapter 1, Chef Infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

How to do it...

Let's see how we can find all nodes having a certain role:

1. Create a role called web having my cookbook in its run list:
mma@laptop:~/chef-repo $ knife role create web
"run list": [
"recipe [my cookbook] "
1,
Created role [web]
2. Create at least one node having the new role in its run list:
mma@laptop:~/chef-repo $ knife node create webserver
"run list": [
"role [web] "
1,
Created node [webserver]
3. Edit your default recipe to search for all nodes having the web role:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

servers = search(:node, "role:web")
servers.each do |srv]|

log srv.name
end

4. Upload your modified cookbook:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]

5. Run Chef Client on one of your nodes:

user@server:~$ sudo chef-client

... TRUNCATED OUTPUT...
[2013-02-19T21:32:00+00:00] INFO: webserver
... TRUNCATED OUTPUT...

138

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The Chef Server stores all nodes with their attributes. The attributes are partly auto-detected
using ohai (such as name, IP address, CPUs, and so on) and partly configured by you (such
as run_list). The Chef DSL offers the search method to look up nodes based on your
search criteria. In the preceding example, we simply used a role as the search criteria. But,
you can use any combination of available node attributes to construct your search.

The search method returns a list of node objects, which you can use in your recipe. In the
preceding example, we looped through the list of nodes using the standard Ruby each
iterator. The current element is available as the variable you declare between the | after the
do. In our case, it is a full-blown node object and you can use it to retrieve its attributes or
even modify it.

There's more...

Search is a very powerful tool for dynamically identifying nodes. You cannot only search for
roles but for all node attributes, you can use Boolean operators to craft more complex queries
and you can use search in your cookbooks as well as with Knife. Let's see how you take
search a bit further:

Using Knife to search for nodes

Knife offers the very same search syntax as the search method within your recipes. It lets
you search for nodes via the command line:

mma@laptop:~/chef-repo $ knife search node "role:web"

3 items found

Node Name: web

.. . TRUNCATED OUTPUT...
Node Name: webl

.. . TRUNCATED OUTPUT...
Node Name: web2

.. . TRUNCATED OUTPUT...

Searching for arbitrary node attributes

In addition to searching for roles, you can search for any attribute of a node. Let's see how you
can search for a node having ubuntu as its platform using knife:

mma@laptop:~/chef-repo $ knife search node "platform:ubuntu"

3 items found

Node Name: web
.. . TRUNCATED OUTPUT...
Node Name: vagrant

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

.. .TRUNCATED OUTPUT. ..
Node Name: db
.. .TRUNCATED OUTPUT. ..

Using Boolean operators in search

If you want to combine multiple attributes in your search query, you can use Boolean
operators such as NOT, AND, and OR:

mma@laptop:~/chef-repo $ knife search node 'platform:ubuntu AND
name:v*!

1 items found
Node Name: vagrant
.. .TRUNCATED OUTPUT. ..

See also

» Read more about search at:

http://docs.opscode.com/essentials search.html

» Read more about how to use search from within a recipe here:

http://docs.opscode.com/dsl recipe method search.html

Using data bags

There are situations where you have data, which you do neither want to hard code in your
recipes nor store as attributes in your cookbooks. Users, external servers, or database
connections are examples of such data. Chef offers the so called data bags to manage
arbitrary collections of data, which you can use with your cookbooks.

Let's see how we can create and use a data bag and its data bag items.

Getting ready

In the following example, we want to send HTTP requests. To be able to follow along with the
example, you'll need an HTTP end point.

One way to establish an HTTP end point is to just runnc -1 80 on any server accessible by
your node and use its IP address below.

140

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Another way to establish an HTTP end point, which shows us the requests we make, is a free
service called RequestBin. To use it, follow these steps:

1. Openhttp://requestb.in in your browser and create a new RequestBin.

2.

RequestBin s Hol

Recent Bins
1abdOkf1 (1)

Inspect HTTP requests.

RequestBin lets you create a URL that will collect requests made to 1t, then let you ing|
Use RequestBin to see what your HTTP client is sending or to look at webhook requg

Create a RequestBin »

[_ Make it a private bin

Note the URL for your new RequestBin. We'll call it from within our recipe below:

RequestBin BETA http://requestb.in/1abdOkf1

How to do it...

Let's create a data bag holding our HTTP end point URL and use it from within our recipe:

1.

Create a directory for your data bag;:
mma@laptop:~/chef-repo $ mkdir data bags/hooks
Create a data bag item for RequestBin. Make sure to use your own RequestBin URL
you noted in the Getting ready section:
mma@laptop:~/chef-repo $ subl data bags/hooks/request bin.json
{
"id": "request_bin",
"url": "http://requestb.in/labd0kfl"
}
Create the data bag on the Chef Server:
mma@laptop:~/chef-repo $ knife data bag create hooks

Created data_bag[hooks]

Upload your data bag item to the Chef Server:

mma@laptop:~/chef-repo $ knife data bag from file hooks
requestbin.json

Updated data bag item[hooks::RequestBin]

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

5. Edit the default recipe of my cookbook to retrieve the RequestBin URL from your
data bag:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

hook = data bag item('hooks', 'request bin')
http request 'callback' do

url hook['url']
end

6. Upload your modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]

7. Run Chef Client on your node to test whether the HTTP request to your RequestBin
gets executed:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT. ..

[2013-02-22T20:37:35+00:00] INFO: http request [callback]
GET to http://requestb.in/labdOkfl successful

.. . TRUNCATED OUTPUT. ..

8. Check your RequestBin. The request should show up there:

GET /1abd0kf1

GET /labd@kfl?message=callback HTTP/1.1

X-Chef-Version: 11.2.@

User-Agent: Chef Client/11.2.@ (ruby-1.9.3-p286; ohai-6.16.0; x86_64-1inux; +http://opscode.com)
Host: requestb.in

Accept-Encoding: gzip;q=1.0,deflate;q=0.6,1dentity;q=0.3

Accept: application/json

Connection: close

A data bag is a named collection of structured data entries. You define each data entry, called
a data bag item, in a JSON file. You can search for data bag items from within your recipes to
use the data stored in the data bag.

In our example, we created a data bag called hooks. A data bag is a directory within your Chef
repository, and you can use knife to create it on the Chef Server.

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Then, we created a data bag item with the name request_bin in a file called request__
bin.json inside the data bag's directory and uploaded it to the Chef Server as well.

Our recipe retrieves the data bag item using the data_bag_ item method, taking the data
bag name as first parameter and the item name as second parameter.

Then, we create an http request resource passing it the url attribute of the data
bag item. You can retrieve any attribute from a data bag item using the Hash notation
hook['url'].

» Read more about data bags at:

http://docs.opscode.com/essentials data bags.html

Using search to find data bag items

You might want to execute code in your recipe multiple times—once for every data bag item
like for each user or each HTTP end point.

You can use search to find certain data bag items and loop through search results to execute
code multiple times.

Let's see how we can make our recipes more dynamic by searching for data bag items.

Getting ready

Follow the Getting ready and How to do it... (steps 1-4) sections, in the Using data
bags section.

How to do it...

Let's create a recipe searching for data bag items and calling the http_request resource
for everyone:

1. Edit the default recipe of my cookbook to retrieve all HTTP hooks, which should be
called by our recipe from your data bag:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

search(:hooks, '*:*').each do |hook]|
http request 'callback' do
url hook['url']
end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

2. Upload your modified recipe to the Chef Server, run Chef Client on your node, and
verify that your HTTP end point received the HTTP request as described in steps 6-8
in the preceding Using data bags section.

Our recipe is using the search method to retrieve all items from the data bag called hooks.
The first parameter to the search method is the name of the data bag (as Ruby symbol).
The second parameter is the search query—in our case we're looking for all data bag items by
using * : x. Using the each iterator, we loop through all found data bag items. Inside the Ruby
block, which gets executed for each item, we can access the item using the variable hook.

We create an http request resource for each data bag item, passing the URL stored in the
item as the url parameter to the resource. You can access arbitrary attributes of your data
bag item using a Hash-like notation.

You can use various search patterns to find certain data bag items, for example:

search(:hooks, "id:request bin")

search (:hooks, "url:*request*)

See also

» The Using data bags section
» The Using search to find nodes section
» Find out what else is possible with data bag search at:

http://docs.opscode.com/chef/essentials data bags.html
#using-search

Using encrypted data bag items

Data bags are a great way to store user and application-specific data. Before long you'll want
to store passwords and private keys in data bags as well. But, you might (and should) be
worried about uploading confidential data to a Chef Server.

Chef offers encrypted data bag items to enable you to put confidential data into data bags,
reducing the implied security risk.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Make sure you have a Chef repository and can access your Chef Server.

How to do it...

Let's create and encrypt a data bag item and see how we can use it:

1.

Create a directory for your encrypted data bag:
mma@laptop:~/chef-repo $ mkdir data bags/accounts

Create a data bag item for a Google account:

Chapter 4

mma@laptop:~/chef-repo $ subl data bags/accounts/google.json

" idu . " google" ,
"email": "some.one@gmail.com",

"password": "Oh! So secret?"

}
Create the data bag on the Chef Server:

mma@laptop:~/chef-repo $ knife data bag create accounts
Created data bag[accounts]

Upload your data bag item to the Chef Server, encrypting it on the fly:

. Becarefull Using the - -secret command line switch is
% dangerous, because it will show up in your shell history and in log
L files. Have a look at the following There's more... section to find out
how to use a private key instead of a plain text secret.

mma@laptop:~/chef-repo $ knife data bag from file accounts
google.json --secret 'Open sesame!'

Updated data _bag item[accounts::google]

Verify that your data bag item is encrypted:

mma@laptop:~/chef-repo $ knife data bag show accounts google

email:
cipher:
aes-256-cbc
encrypted data:
DgYu8DnI8E1XQ5I/
jNyaFZ7LVXIzRUzuFjDHIGHYymgxd9cbUJQ48nYJ3QHx1

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

3xyE
iv: B+eQlhD35PfadjUwe+el8g==
version: 1
id: google
password:
cipher: aes-256-cbc

encrypted data:
m3bGPmp6cObnmHOPGipZYHNACxJIYkIfx4udsM8GPt7cTlecOw+

TuLZk0OQ9F8
2pXo0
iv: Bp5jEZG/CPYMRWiUXlUPQA==
version: 1

6. Now, let's have a look at the decrypted data bag by providing the secret:
mma@laptop:~/chef-repo $ knife data bag show accounts google

--secret 'Open sesame!'

email: some .one@gmail . com
id: google
password: Oh! So secret?

Passing - -secret to the knife command creating the data bag item encrypts the contents
of the data bag.

1
‘\Q The ID of the data bag item will not be encrypted, because

the Chef Server needs it to work with the data bag item.

Chef uses a shared secret to encrypt and decrypt data bag items. Everyone having access to
the shared secret will be able to decrypt the contents of the encrypted data bag item.

Accessing encrypted data bag items from the command line with kni fe is usually not what
you want. Let's have a look at how to use encrypted data bag items in real life.

146

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Accessing encrypted data bag items from within recipes
To use encrypted data bag items in your recipe, use a code similar to the following:
google account = Chef::EncryptedDataBagItem.load("accounts",

"google", "Open sesame!")
google account ["password"] # will give you the decrypted password

Using a private key file
Instead of passing the shared secret via the command line or hard coding it into your recipe

(which is a really bad idea anyways), you can create an openssl format private key and pass
its file location to the knife command:

mma@laptop:~/chef-repo $ knife data bag from file accounts
google.json --secret-file .chef/data bag secret key.pem

You can create an openssl format private key like this:

$ openssl genrsa -out data bag secret key.pem 1024

The preceding command assumes that you have a file called data_bag secret key.pem
in the . chef directory.

To enable your node to decrypt the data bag item, you need to scp your secret key file to your
node and put it in the /etc/chef/ directory.

The initial bootstrap procedure for a node will put the key in the right
s place on the node, if one already exists in your Chef repository.

Make sure that /etc/chef/client.rb points to your data_bag secret key.pemnfile:
encrypted _data bag secret "/etc/chef/data bag secret key.pem"

Now, you can access the decrypted contents of your data bag items in your recipes without

passing the secret to the 1oad call:

google account = Chef::EncryptedDataBagItem.load("accounts",
n google n)

Chef will look for the file configured in client . rb and use the secret given there to decrypt
the data bag item.

See also

» The Using data bags section
» Learn more about encrypted data bag items at:

http://docs.opscode.com/essentials data bags encrypt.html

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

Accessing data bag values from external

scripts

Sometimes you cannot put a server under full Chef control (yet). In such cases, you might
want to be able to access values managed in Chef data bags from scripts, which are not
maintained by Chef. The easiest way to do this is to dump the data bag values (or any node
values for that matter) into a JSON file and let your external script read them from there.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in Chapter
1, Chef Infrastructure.

Create a data bag so that we can use its values later:

1. Create the data bag:
mma@laptop:~/chef-repo $ mkdir data bags/servers

mma@laptop:~/chef-repo $ knife data bag create servers
Created data bagl[servers]

2. Create the first data bag item:
mma@laptop:~/chef-repo $ subl data bags/servers/backup.json

{
llidll . "backup" ,
"host": "10.0.0.12"

}

mma@laptop:~/chef-repo $ knife data bag from file servers
backup.json

Updated data bag item[servers::backup]

How to do it...

Let's create a JSON file containing data bag values using our cookbook so that external scripts
can access those values:

1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

file "/etc/backup config.json" do

148

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

owner "root"

group "root"

mode 0644

content data bag item('servers', 'backup')['host'].to json
end

2. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]

3. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

[2013-03-14T20:30:33+00:00] INFO: Processing
file[/etc/backup config.json] action create
(my cookbook::default line 9)

[2013-03-14T20:30:34+00:00] INFO: entered create

[2013-03-14T20:30:34+00:00] INFO:
file[/etc/backup config.json] owner changed to 0

[2013-03-14T20:30:34+00:00] INFO:
file[/etc/backup config.json] group changed to 0

[2013-03-14T20:30:34+00:00] INFO:
file[/etc/backup config.json] mode changed to 644

[2013-03-14T20:30:34+00:00] INFO:
file[/etc/backup config.json] created file
/etc/backup config.json

.. . TRUNCATED OUTPUT. ..

4. Validate the content of the generated file:

user@server:~$ cat /etc/backup config.json
"10.0.0.12"

5. Now, you can access the backup_config.json file from within your external
scripts, which are not managed by Chef.

The file resource creates a JSON file in the /etc directory. It gets the file's content directly
from the data bag by using the data_bag_item method. This method expects the name of
the data bag as first argument and the name of the data bag item as second argument. We
then access the host value from the data bag item and convert it to JSON.

The file resource uses this JSON-converted value as its content and writes it to disk.

Now any external script can read the value from that file.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

There's more...

If you are sure that your data bag values don't get modified by the Chef Client run on the node,
you could use the Chef API directly from your script.

See also

» Read more about how to do this at:

http://stackoverflow.com/questions/10318919/how-to-access-
current-values-from-a-chef-data-bag

» The Using data bags section

Getting information about the environment

Sometimes your recipes need to know details about the environment they are modifying.
I'm not talking about Chef environments but about things like Linux kernel versions, existing
users, or network interfaces.

Chef provides all this information via the node object. Let's have a look how to retrieve it.

Getting ready

Log in to any of your Chef-managed nodes and start the Chef Shell:
user@server:~$ sudo chef-shell --client

chef >

How to do it...

Let's play around with the node object and have a look at which information it stores:

1. List which information is available. The example shows the keys available on a
Vagrant VM. Depending on what kind of server you work, you'll find different data.

chef > node.keys.sort

=> ["block device", "chef packages", "command", "counters",
"cpu", "current user", "dmi", "domain", "etc", "filesystem",
"fgdn", "hostname", "idletime", "idletime seconds", "ipé6address",
"ipaddress", "kernel", "keys", "languages", "lsb", "macaddress",
"memory", "network", "ntp", "ohai time", "os", "os version",
"platform", "platform family", "platform version", "recipes",
"roles", "root group", "tags", "uptime", "uptime seconds",

"virtualization"]

150

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Get a list of available network interfaces:
chef > nodel['network'] ['interfaces'].keys.sort

=> ["10", nethon]

List all existing user accounts:

chef > nodel['etc'] ['passwd'] .keys.sort

=> ["backup", "bin", "daemon", "games", "gnats", "irc", "libuuid",
"list", "lp", "mail", "man", "messagebus", "news", "nobody",

n l'ltp n s "proxy" , "root" , n SShd" , n sync n , n SyS n S n SySlOg" S "chp n s
"vagrant", "vboxadd", "www-data"]

Get the details of the root user:

chef > node['etc'] ['passwd'] ['root']

=> {"dir"=>"/root", "gid"=>0, "uid"=>0, "shell"=>"/bin/bash",
"gecos"=>"root"}

Get the code name of the installed Ubuntu distribution:

chef > node['lsb'] ['codename']

=> "precise"

Find out which kernel modules are available:

chef > nodel['kernel'] ['modules'] .keys.sort

=> ["dm_crypt", "drm", "elO00", "ext2", "i2c_piix4", "lp", "mac_
hid", "microcode", "parport", "parport pc", "ppdev", "psmouse",
"serio_raw", "vboxguest", "vboxsf", "vboxvideo", "vesafb"]

Chef uses Ohai to retrieve a node's environment. It stores the data found by Ohai with the
node object in a Hash-like structure called a Mash. In addition to providing key-value pairs, it
adds methods to the node object to query the keys directly.

Instead of using node ['1sb'] ['codename'] you could use node.1lsb.codename as well.

There's more...

You can use the exact same calls we used in Chef Shell inside your recipes.

See also

Ohai is responsible for filling the node with all that information. Read more about Ohai at:

http://docs.opscode.com/ohai.html

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

Writing cross-platform cookbooks

Imagine you have written a great cookbook for your Ubuntu node and now you need to run

it on that CentOS server. Ouch. It will most probably fail miserably. Package names might be
different, you need to use YUM instead of APT, and configuration files are in different places.
Things get even worse if you want to run your cookbook on a Windows box.

Luckily, Chef provides you with a host of features to write cross-platform cookbooks. With just
a few simple commands, you can make sure that your cookbook adapts to the platform your
node is running on. Let's have a look how to do this.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Retrieve the node's platform and execute conditional logic in your cookbook depending on
the platform:
1. Loga message only if your node is on ubuntu:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

Log.info ("Running on ubuntu") if node.platform['ubuntu']

2. Upload the modified cookbook to your Chef Server:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

Uploading my_ cookbook [0.1.0]
Uploaded 1 cookbook.

3. Login to your node and run Chef Client to see whether it works:

user@server:~$ sudo chef-client

... TRUNCATED OUTPUT...
[2013-03-03T20:07:39+00:00] INFO: Running on Ubuntu
.. . TRUNCATED OUTPUT...

152

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Alternatively, if you are not interested in the specific platform but you only need to know
whether you run on a Debian derivative, you can put the following line into your default recipe:

Log.info ("Running on a debian derivative") if
platform family? ('debian')

Upload, the modified cookbook and running Chef Client on a Ubuntu node would show:

[2013-03-03T20:16:14+00:00] INFO: Running on a debian
derivative

Ohai discovers the current node's operating system and stores it as platform attribute with the
node object. You can access it like any other attribute using either Hash syntax:

node ['platform']
or you can use method style syntax:
node.platform

Chef knows which operating systems belong together. You can use this knowledge by using
the platform family method from the Chef DSL.

You can then use basic Ruby conditionals, such as i f, unless, or even case to make your
cookbook do platform specific things.

Let's have a closer look at what else is possible.

Avoiding case statements to set values based on platform

The Chef DSL offers the convenience methods value for platformand value for
platform family. You can use them to avoid complex case statements and use a simple
Hash instead. The runit cookbook, for example, uses value for platformto pass the
start command for the runit service to the execute resource:

execute "start-runsvdir" do
command value_for_platform(
"debian" => { "default" => "runsvdir-start" },
"ubuntu" => { "default" => "start runsvdir" },
"gentoo" => { "default" => "/etc/init.d/runit-start start" }
)
action :nothing
end

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks
The command will be runsvdir-start on Debian, start runsvdir on Ubuntu, and will

use an init.d script on Gentoo.

Some of the built-in resources have platform-specific providers. For
example, the group resource uses one of the following providers
depending on the platform:

-~y
Q Chef: :Provider: :Group: :Dscl on Mac OS X

Chef: :Provider: :Group: : Pw on FreeBSD

Chef: :Provider: :Group: : Usermod on Solaris

Declaring support for specific operating systems in your
cookbook's metadata

If your cookbook is written for a well-defined set of operating systems, you should list the
supported platforms in your cookbook's metadata:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/metadata.rb

supports 'ubuntu'

If your cookbook supports multiple platforms, you can use a nice Ruby shortcut to list all the
platforms as a Ruby array of strings (using the $w shortcut) and loop through that array to call
supports for each platform:

$w(debian ubuntu redhat centos fedora scientific amazon oracle) .each
do |os]|

supports os
end

See also

» The Mixing plain Ruby with Chef DSL section in Chapter 3, Chef Language and Style
» Find the runit cookbook at:

https://github.com/opscode-cookbooks/runit/blob/master/recipes/
default.rb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Finding the complete list of operating

systems you can use in cookbooks

You want to write cookbooks, which work on different operating systems such as Ubuntu,
RedHat, Debian, or Windows.

Inside your cookbooks, you need to distinguish between those different platforms. And you
need to tell your cookbook which platforms it supports. But, you don't know which platform
values you can use inside your metadata . rb Or your recipes.

In this section, we'll look at a very simple way to ask Chef which values for platform it defines.

How to do it...

Let's use plain Ruby to find out all possible values for plat form and use a subset of those in
our metadata. rb:

1. Print a list of supported platforms by querying the Chef : : Plat form class:

mma@laptop:~/chef-repo/cookbooks $ ruby -rubygems -rchef -e
'puts Chef::Platform.platforms.keys.sort.join(", ")'

aix, amazon, arch, centos, debian, default, fedora,
.. .TRUNCATED OUTPUT. ..
ubuntu, windows, xenserver

2. Tell the users of your cookbook which platforms it supports:

mma@laptop:~/chef-repo/cookbooks $ subl
my cookbook/metadata.rb

$w(debian ubuntu mac_os_x).each do |os|
supports os
end

Chef maintains a set of supported operating system platforms it runs on in the
Chef: :Platform class. To query this class for the list of platforms, we use the Ruby
command line.

We need to require rubygems and the chef by adding two -r parameters to the ruby call.

The -e parameter contains the Ruby code we want to execute. In our case, we use puts to
print the result of our query to your console.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

The Chef: : Platform class holds a collection called platforms. We get its keys, sort them,
and join the contents of the resulting Ruby array to a comma-separated string:

Chef::Platform.platforms.keys.sort.join(", ")

Each platform in the Chef : : Platforms collection has not only the platform name as key
(this is what we used to display all supported platforms in the preceding example) but also
a set of default providers.

Providers contain the platform-specific implementation details for resources. For example, the
package resource has providers to use Apt on Ubuntu, but Yum on RedHat.

% Instead of using the Ruby command line, we can use the
s Chef classes in the Interactive Ruby shell (IRB) as well.

mma@laptop:~/chef helpster $ irb

1.9.3p194 :001 > require 'chef'

=> true

1.9.3p194 :002 > Chef::Platform.platforms/[:ubuntu]

=> {:default=>{:package=>Chef::Provider: :Package: :Apt,
:service=>Chef: :Provider: :Service: :Debian,
:cron=>Chef: :Provider: :Cron, :mdadm=>Chef::Provider: :Mdadm}}

You can change how your recipe works depending on the platform it runs on (example taken
from Opscode's apache cookbook):

service "apache2" do
case node[:platform]
when "centos", "redhat", "fedora", "suse"
service name "httpd"
.. .TRUNCATED OUTPUT..
when "arch"
service name "httpd"
end
supports value for platform(
"debian" => { ... },
"ubuntu" => { ... },
.. .TRUNCATED OUTPUT...
"default" => { ... }
)
action :enable
end

156

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

This version of the apache cookbook sets up the apache service with different names and
commands depending on the platform and tells Chef which actions may be called to manage
the apache service.

Chef sets the node attribute : platform according to the underlying operating system. You
can use this node attribute to tailor your recipe code for each platform you need to.

» To see some examples on how to use the platform values go to:

http://docs.opscode.com/dsl recipe.html

Making recipes idempotent by using

conditional execution

Chef manages the configuration of your nodes. It is not simply an installer for new software
but you will run Chef Client on existing nodes as well as new nodes.

If you run Chef Client on an existing node, you have to make sure that your recipes do not try
to re-execute resources that have already reached the desired state.

Running resources repeatedly will be a performance issue at best and will break your servers
at worst. Chef offers a way to tell resources to not run or only if a certain condition is met.
Let's have a look how conditional execution of resources works.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Let's see how to use conditional execution in our cookbooks:

1. Edit your default recipe to trigger a callback only if the node knows about the callback
URL:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/recipes/default.rb

http request 'callback' do

url node['my cookbook'] ['callback'] ['url']
only if { node['my cookbook'] ['callback'] ['enabled'] }
end

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Better Cookbooks

2. Add the attributes to your cookbook:

mma@laptop:~/chef-repo $ subl
cookbooks/my cookbook/attributes/default.rb

default ['my cookbook'] ['callback'] ['url'] =
'http://www.opscode.com'
default ['my cookbook'] ['callback'] ['enabled'] = true

3. Upload your modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]

4. Run Chef Client on your node to test whether the HTTP request gets executed:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...
[2013-03-04T20:28:01+00:00] INFO: Processing http
request [callback] action get (my_cookbook::default line 9)

[2013-03-04T20:28:02+00:00] INFO: http request[callback] GET to
http://www.opscode.com successful
.. .TRUNCATED OUTPUT...

You can use only if and not_if with every resource. In our example we passed it a
Ruby block. The Ruby block simply queried a node attribute. Because we set the enabled
attribute to true, the Ruby block evaluates to true. And, because we used only if, the
resource executes.

You can use the full power of Ruby to find out whether the resource should run or not. Instead
of using the curly braces, you can use do .. end to surround a multiline Ruby block.

Instead of passing a Ruby block, you can pass a shell command as well:

http request 'callback' do

url node['my cookbook'] ['callback'] ['url']
only if "test -f /etc/passwd"
end

In this example, Chef will execute the test command in a shell. If the shell command returns
the exit code 0, the resource will run.

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

See also

» The Using attributes section in Chapter 3, Chef Language and Style
» Learn more about conditional execution at:

http://docs.opscode.com/resource common conditionals.html

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and
Packages

"The file is a gzipped tar file. Your browser is playing tricks with you and trying to
be smart."
- Rasmus Lerdorf

In this chapter, we will cover the following:

» Creating configuration files using templates

» Using pure Ruby in templates for conditionals and iterations
» Installing packages from a third-party repository

» Installing software from source

» Running a command when a file is updated

» Distributing directory trees

» Cleaning up old files

» Distributing different files based on the target platform

Introduction

Moving files around and installing software are the most common tasks when setting up your
nodes. In this chapter, we'll have a look at the various ways Chef supports you in dealing with
files and software packages.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

Creating configuration files using templates

The term Configuration Management already says it loud and clear: your recipes manage
the configuration of your nodes. This means managing configuration files in most cases.
Chef uses templates to dynamically create configuration files from given values. It takes such
values from data bags or attributes, or even calculates them on the fly before passing them
into the template.

Let's see how we can create configuration files using templates.

Getting ready

Make sure you have a cookbook named my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Let's use a template resource to create a configuration file:

1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

template "/etc/logrotate.conf" do
source "logrotate.conf.erb"
variables(
how often: "daily",
keep: "31"
)

end

2. Add an Embedded Ruby (ERB) template file to your recipe in its default folder:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/templates/
default/logrotate.conf.erb

<%= @how_often -%>

rotate <%= @keep -%>

create

3. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]

162

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

[2013-03-05T21:40:58+00:00] INFO: Processing template[/etc/
logrotate.conf] action create (my_ cookbook::default line 9)
[2013-03-05T21:41:04+00:00] INFO: template[/etc/logrotate.
conf] backed up to /srv/chef/cache/etc/logrotate.conf.chef-
20130305214104

[2013-03-05T21:41:04+00:00] INFO: templatel[/etc/logrotate.conf]
updated content

.. .TRUNCATED OUTPUT...

Validate the content of the generated file:
user@server:~$ cat /etc/logrotate.conf

daily
rotate 31
create

If you want to manage any configuration file with Chef, you have to follow the given steps:

1.

Copy the desired configuration file from your node to your cookbook's default
directory under the templates folder.

Add the extension .erb to that copy.

Replace any configuration value you want to manage with your cookbook, with an
ERB statement printing out a variable. Chef will create variables for every parameter
you define in the variables call in your template resource:

<%= @variable_name -%>
Create a template resource in your recipe using the newly created template as
source, and pass all the variables you had introduced in your ERB file to it.

Running your recipe on the node will now back up the original configuration file
and replace it with the dynamically generated version.

1
‘\Q Whenever possible, try using attributes instead of hardcoding

values in your recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

There's more...

Be careful when a package update makes changes to default configuration files. You
need to be aware of those changes and merge them manually into your hand-crafted
configuration file template.

Otherwise, you'll lose all the configuration settings you did using Chef.

M It's usually a good idea to add a comment at the top of
Q your configuration file, saying it is managed by Chef, to
avoid accidental changes.

» Read everything about templates at http: //docs.opscode.com/essentials_
cookbook templates.html

» The Using templates section in Chapter 3, Chef Language and Style

Using pure Ruby in templates for

conditionals and iterations

Switching options on and off in a configuration file is a pretty common thing. Since Chef
is using ERB as its template language, you can use pure Ruby to control the flow in your
templates. You can use conditionals or even loops in your templates.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in Chapter
1, Chef Infrastructure.

How to do it...

Let's create a hypothetical configuration file listing the IP addresses of a given set of backend
servers. We only want to print that list if the flag called enabled is set to true:

1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

template "/tmp/backends.conf" do

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

mode "0444"
owner "root"
group "root"
variables ({
:enabled => true,
:backends => ["10.0.0.10", "10.0.0.11", "10.0.0.12"]
3]

end

Create your template:

mma@laptop:~/chef-repo § subl cookbooks/my cookbook/templates/
default/backends.conf.erb

<%- if @enabled %>
<%- @backends.each do |backend| %>
<%= backend %>

)

<%- end %>
<%- else %>
No backends defined!

)

<%- end %>

Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]

Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT. ..

[2013-03-18T20:40:43+00:00] INFO: Processing template[/tmp/
backends.conf] action create (my cookbook::default line 9)
[2013-03-18T20:40:44+00:00] INFO: template[/tmp/backends.conf]
updated content

[2013-03-18T20:40:44+00:00] INFO: template[/tmp/backends.conf]
owner changed to 0

[2013-03-18T20:40:44+00:00] INFO: template[/tmp/backends.conf]
group changed to 0

[2013-03-18T20:40:44+00:00] INFO: template[/tmp/backends.conf]
mode changed to 444

.. .TRUNCATED OUTPUT. ..

Validate the content of the generated file:
user@server:~$ cat /tmp/backends.conf

10.0.0.10
10.0.0.11
10.0.0.12

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

You can use plain Ruby in your templates. We mix two concepts in our example. First, we use an
if-else block to decide whether we should print a list of IP addresses or just a message. Second,
if we are going to print the list of IP addresses, we will use a loop to go through all of them.

Let's have a look at the conditional:

<%- 1f @enabled %>

<%- else %>
No backends defined!
<%- end %>

We pass either true or false as the value of the variable called enabled. You can access
the given variables directly in your template. If we pass true, the first block of Ruby code
will be executed while rendering the template. If we pass false, Chef will render the string
No backends defined! as the content of the file.

1
‘Q You use <%- %> if you want to embed Ruby logic into your

template file.

Now, let's see how we loop through the list of IPs:

<%- @backends.each do |backend| %>
<%= backend %>

<%- end %>

We pass an array of strings as the value of the backend variable. In the template, we use the
each iterator to loop through the array. While looping, Ruby assigns each value to the variable
we define as the looping variable between the | characters. Inside the loop, we simply print
the value of each array element.

While it is possible to use the full power of Ruby inside your templates, it is a good idea

to keep them as simple as possible. It is better to put more involved logic into your recipes
and pass pre-calculated values to the templates. You should limit yourself to simple
conditionals and loops to keep templates simple.

There's more...

You can use conditionals to print strings such as in the following example:
<%= "Hello world!" if @enabled -%>

If you use this in your template, the string Hello wor1d! will be printed only if the variable
enabled is set to true.

166

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

See also

» The Using templates section in Chapter 3, Chef Language and Style

» Find more explanations and examples at http://docs.opscode.com/
essentials cookbook templates.html

Installing packages from a third-party

repository

Even though the Ubuntu package repository contains many up-to-date packages, you
might bump into situations where either the package you need is missing or is outdated.

In such cases, you can either use third-party repositories or your own (containing self-
made packages). Chef makes it simple to use additional package repositories with the apt
cookbook,if you're on Debian or Ubuntu.

1
~ Chef provides a yum resource, if you're on RedHat/Cent0S/
Fedora/Scientific

Getting ready

Make sure you've a cookbook called my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

Retrieve the apt cookbook:
mma@laptop:~/chef-repo $ knife cookbook site install apt

.. .TRUNCATED OUTPUT. ..
Cookbook apt version 1.9.0 successfully installed

How to do it...

Let's have a look at how you can install the s3cmd tool from the repository at s3tools.org:

1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

include recipe "apt"

apt repository "s3tools" do
uri "http://s3tools.org/repo/deb-all"
components ["stable/"]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

168

key "http://s3tools.org/repo/deb-all/stable/s3tools.key"
action :add

end

package "s3cmd"

Edit your cookbook's metadata to add a dependency on the apt cookbook:
mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/metadata.rb

depends "apt"
Upload the apt cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload apt

Uploading apt [1.9.0]
Uploaded 1 cookbook.

Upload the modified my cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]

Validate that the s3cmd package is not yet installed:

user@server:~$ dpkg -1 s3cmd
No packages found matching s3cmd.

Validate that the default repository would install an older version of s3cmd (1.0.0-1):

user@server:~$ apt-cache showpkg s3cmd

Package: s3cmd
Versions:

1.0.0-1 (/var/lib/apt/lists/us.archive.ubuntu.com ubuntu dists_
precise universe binary-amdé4 Packages)

Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT. ..

[2013-03-18T21:07:14+00:00] INFO: Processing apt
repository[s3tools] action add (my cookbook::default line 11)
[2013-03-18T21:07:14+00:00] INFO: Processing remote filel[/srv/
chef/file store/s3tools.key] action create (/srv/chef/file store/
cookbooks/apt/providers/repository.rb line 53)

.. .TRUNCATED OUTPUT. ..

[2013-03-18T21:07:19+00:00] INFO: execute[apt-get update] ran
successfully

[2013-03-18T21:07:19+00:00] INFO: Processing package[s3cmd] action

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

install (my cookbook::default line 18)
.. . TRUNCATED OUTPUT...

8. Validate that the s3tools repository will install a newer version (1.0.0-4 instead
of1.0.0-1):

user@server:~$ apt-cache showpkg s3cmd

Package: s3cmd

Versions:

1.0.0-4 (/var/lib/apt/lists/s3tools.org repo deb-all stable
Packages) (/var/lib/dpkg/status)

9. Validate that the s3cmd package is installed:

user@server:~$ dpkg -1

.. .TRUNCATED OUTPUT...

ii s3cmd 1.0.0-4 The ultimate Amazon S3 and CloudFront command
line client

The apt cookbook provides an easy way to deal with additional APT repositories. We install it
from the community cookbook site using Knife before getting started.

M You could use Berkshelf as described in the Managing cookbook
Q dependencies with Berkshelf section in Chapter 1, Chef Infrastructure
instead of using knife cookbook site install.

We need to tell Chef that we want to use it by adding the depends call to our cookbook's
metadata.rb file.

The apt cookbook defines the apt repository resource. To be able to use it, we need
to include the apt recipe in our default recipe:

include recipe "apt"

As soon as we've the apt cookbook available, we can add the third-party repository using
the apt _repository resource:

apt repository "s3tools" do
uri "http://s3tools.org/repo/deb-all"
components ["stable/"]
key "http://s3tools.org/repo/deb-all/stable/s3tools.key"
action :add
end

In our case, we choose to add the stable branch only.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

After adding the third-party repository, we can install the desired package:

package "s3cmd"

» Find more on the s3cmd package at http://s3tools.org/debian-ubuntu-
repository-for-s3cmd

Installing software from source

If you need to install a piece of software that is not available as a package for your platform,
you will need to compile it yourself.

In Chef, you can easily do this by using a script resource. What is more challenging is
to make such a script resource idempotent.

In the following section, we will see how to do both.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Let's take nginx as a well-known example for installing it from source:

The nginx community cookbook has a recipe for installing nginx
% from source. The following example is only to illustrate how you can
’ install any software from source.

1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

version = "1.3.9"
bash "install nginx from source" do
cwd Chef::Config['file cache path']
code <<-EOH
wget http://nginx.org/download/nginx-#{version}.tar.gz
tar zxf nginx-#{version}.tar.gz &&
cd nginx-#{version} &&
170

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

./configure && make && make install
EOH
not if "test -f /usr/local/nginx/sbin/nginx"
end
Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]

Run Chef Client on your node:
user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

[2013-03-19T21:21:18+00:00] INFO: Processing bash[compile nginx
source] action run (my cookbook::default line 15)

[2013-03-19T21:21:44+00:00] INFO: bash[compile nginx source] ran
successfully

.. .TRUNCATED OUTPUT. ..
Validate that nginx is installed:
user@server:~$ /usr/local/nginx/sbin/nginx -v

nginx version: nginx/1.3.9

The bash resource executes only if the nginx executable is not found in the /usr/local/
nginx/sbin directory. Our not if block tests for this.

Before it runs the script given as code, it changes into the working directory given as
cdw. We use Chef's file cache directory instead of /tmp because /tmp might get deleted
between reboots. To avoid downloading the source tarball again, we want to keep it at

a permanent location.

M . . .
‘Q Usually, you would retrieve the value for the version variable from an

attribute defined in my cookbook/attributes/default.rb.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

The script itself simply unpacks the tarball, configures, prepares, and installs nginx. We chain
the commands using && to avoid running all the later commands if an earlier one fails.

<<-EOH

Q EOH

The preceding code is a Ruby construct for denoting multiline strings.

There's more...

Right now, the recipe will download the source tarball repeatedly even if it is already there

(at least as long as the nginx binary is not found). You can use the remote file resource
instead of calling wget in your bash script. remote file is idempotent—it will only download
the file if it needs to.

Change your default recipe in the following way to use the remote file resource:

version = "1.3.9"

remote file "fetch nginx source" do

source "http://nginx.org/download/nginx-#{version}.tar.gz"

path "#{Chef::Config['file cache path']}/nginx-#{version}.tar.gz"
end

bash "install nginx from source" do
cwd Chef::Config['file_cache_path']
code <<-EOH
tar zxf nginx-#{version}.tar.gz &&
cd nginx-#{version} &&
./configure --without-http rewrite module &&
make && make install
EOH
not if "test -f /usr/local/nginx/sbin/nginx"
end

See also

» Find the full nginx: : source recipe on GitHub at https://github.com/
opscode-cookbooks/nginx/blob/master/recipes/source.rb

» Read more about thisat http://stackoverflow.com/questions/8530593/
chef-install-and-update-programs-from-source

172

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Running a command when a file is updated

If your node is not under complete Chef control, it might be necessary to trigger commands
when Chef changes a file. For example, you might want to restart a service that is not
managed by Chef, when its configuration file (which is managed by Chef) changes. Let's see
how you can achieve this with Chef.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Let's create an empty file as trigger and run a bash command, if that file changes:

1. Edit your cookbook's default recipe:
mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

template "/tmp/trigger" do
notifies :run, "bash[run on trigger]", :immediately
end

bash "run on trigger" do
user "root"
cwd "/tmp"
code "echo 'Triggered'"
action :nothing

end

2. Create an empty template:

mma@laptop:~/chef-repo § touch cookbooks/my cookbook/templates/
default/trigger.erb

3. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]

4. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

[2013-03-20T20:29:32+00:00] INFO: Processing template[/tmp/
trigger] action create (my cookbook::default line 9)

[2013-03-20T20:29:33+00:00] INFO: template[/tmp/trigger] updated
content

[2013-03-20T20:29:33+00:00] INFO: template[/tmp/trigger] sending
run action to bash[run on trigger] (immediate)
[2013-03-20T20:29:33+00:00] INFO: Processing bash[run on trigger]
action run (my cookbook::default line 13)

[2013-03-20T20:29:33+00:00] INFO: bash[run on trigger] ran
successfully

.. .TRUNCATED OUTPUT...

5. Run Chef Client again to verify that the run_on_trigger script does not get
executed again:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

[2013-03-20T20:29:58+00:00] INFO: Processing template[/tmp/
trigger] action create (my cookbook::default line 9)

[2013-03-20T20:29:58+00:00] INFO: Processing bash[run on trigger]
action nothing (my cookbook::default line 13)

.. .TRUNCATED OUTPUT...

We define a template resource and tell it to notify our bash resource immediately. Chef will
notify the bash resource only if the template resource changed the file. To make sure that
the bash script runs only when notified, we define its action as nothing.

We see in the output of the first Chef Client run (which created the trigger file) that the bash
script was executed:

bash[run on trigger] ran successfully

We see in the output of the second Chef Client run that in the preceding message is missing.
Chef did not execute the script because it did not modify the trigger file.

There's more...

Instead of a template, you can let a file or remote_file resource trigger a bash script.
When compiling programs from source, you will download the source tarball using
aremote file resource. This resource will trigger a bash resource, which will then
extract, compile, and install the program.

174

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

See also

>

The Installing software from source section

Distributing directory trees

You need to upload a complete directory structure to your nodes. It might be a static website
or some backup data, which is needed on your nodes. You want Chef to make sure that all the
files and directories are there on your nodes. Chef offers the remote directory resource
to handle this case. Let's see how you can use it.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Let's upload a directory with some files to our node:

1.

Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

remote directory "/tmp/chef.github.com" do
files backup 10
files_owner "root"
files group "root"
files_mode 00644
owner "root"
group "root"
mode 00755
end

Create a directory structure with files to upload to your node. In this example, | use
a plain GitHub pages directory:

mma@laptop:~/chef-repo $ mv chef.github.com cookbooks/my cookbook/
files/default

Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

4. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

[2013-03-22T08:36:45+00:00] INFO: Processing remote_ directoryl[/
tmp/chef.github.com] action create (my cookbook::default line 9)
[2013-03-22T08:36:45+00:00] INFO: remote directory[/tmp/chef.
github.com] created directory /tmp/chef.github.com
[2013-03-22T08:36:45+00:00] INFO: remote directory[/tmp/chef.
github.com] owner changed to 0

[2013-03-22T08:36:45+00:00] INFO: remote directory[/tmp/chef.
github.com] group changed to 0

[2013-03-22T08:36:45+00:00] INFO: remote directory[/tmp/chef.
github.com] mode changed to 755

.. .TRUNCATED OUTPUT...

[2013-03-22T08:36:46+00:00] INFO: Processing cookbook_ file[/tmp/
chef.github.com/images/body-bg.png] action create (dynamically
defined)

[2013-03-22T08:36:46+00:00] INFO: cookbook file[/tmp/chef.github.
com/images/body-bg.png] owner changed to 0
[2013-03-22T08:36:46+00:00] INFO: cookbook file[/tmp/chef.github.
com/images/body-bg.png] group changed to 0
[2013-03-22T08:36:46+00:00] INFO: cookbook file[/tmp/chef.github.
com/images/body-bg.png] mode changed to 644
[2013-03-22T08:36:46+00:00] INFO: cookbook file[/tmp/chef.github.
com/images/body-bg.png] created file /tmp/chef.github.com/images/
body-bg.png

... TRUNCATED OUTPUT...

5. Validate that the directory and its files are there on the node:

user@server:~$ ls -1 /tmp/chef.github.com

total 16

4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 images

4 -rw-r--r-- 1 root root 3383 Mar 22 08:36 index.html
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 javascripts
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 stylesheets

You need to put the directory that you want to distribute to your nodes into your cookbook
under the default of your cookbook's £iles directory. The remote directory resource
picks it up from there and uploads it to your nodes. By default, the name of the resource (in
our example /tmp/chef .github. com) will act as the target directory.

176

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

M Be careful not to put very heavy directory structures into your
Q cookbooks. You will not only need to distribute them to every
node but also to your Chef Server.

There's more...

While you could use the remote directory resource for deploying your applications, there
are better ways to do the same. Either you could use any of Chef's application cookbooks
that are available, for example, for Ruby or PHP applications, or you use tools such as
Capistrano or Mina for deployment.

See also

>

>

The Distributing different files based on target platform section
Find out more about GitHub pages at http://pages.github.com/

The documentation for the remote directory resource can be found at http://
docs.opscode.com/chef/resources.html#fremote-directory

Find out more about Capistrano at http://www.capistranorb.com/
Find out more about Mina at http://nadarei.co/mina/

Cleaning up old files

What happens if you want to remove a software package from your node? You have to be
aware of the fact that Chef is not automatically removing stuff from your nodes. Removing
a resource from your cookbook does not mean that Chef will remove the resource from your
nodes. You need to do this by yourself.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

Make sure you have a remote_directory resource in my cookbook as described in the
Distributing directory trees section.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

How to do it...

Let's remove the remote directory resource from my cookbook and see what happens:

1. Edit your cookbook's default recipe and remove the remote directory resource:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

there used to be the remote_ directory resource

2. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]

3. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

.. .TRUNCATED OUTPUT...
4. Validate that the directory and its files are still there on the node:
user@server:~$ ls -1 /tmp/chef.github.com

total 16

4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 images
-rw-r--r-- 1 root root 3383 Mar 22 08:36 index.html
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 javascripts
4 drwxr-xr-x 2 root root 4096 Mar 22 08:36 stylesheets

N

Now, let's explicitly remove the directory structure:

1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

directory "/tmp/chef.github.com" do
action :delete
recursive true

end

2. Upload the modified cookbook on the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my cookbook [0.1.0]

178

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

2013-03-25T21:05:20+00:00] INFO: Removing cookbooks/my cookbook/
files/default/chef.github.com/javascripts/main.js from the cache;
it is no longer needed by chef-client.

[2013-03-25T21:05:20+00:00] INFO: Removing cookbooks/my cookbook/
files/default/chef.github.com/stylesheets/print.css from the
cache; it is no longer needed by chef-client.

.. .TRUNCATED OUTPUT...

4. Validate that the directory and its files are gone from the node:
user@server:~$ ls -1 /tmp/chef.github.com

ls: cannot access /tmp/chef.github.com: No such file or directory

Removing a resource from your cookbook will lead to Chef not knowing anything about it
anymore. Chef does not touch the things that are not defined in cookbooks, even if Chef
created them once.

To clean up stuff you created using Chef, you need to put the reverse actions into your
cookbooks. If you created a directory using Chef, you need to explicitly delete it by using
the directory resource with action :delete in your cookbook.

The directory resource is idempotent. Even if the directory is already deleted, it will run fine
and simply do nothing.

If you upload a directory structure using the remote_directory resource, you can use the
purge parameter to delete files within that directory structure, if they are no longer in your
cookbook. In this case, you do not need to delete each file by using a file resource with the
delete action:

remote directory "/tmp/chef.github.com" do

purge true
end

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Files and Packages

See also

» The Distributing directory trees section

» Learn more about the directory resource at http://docs.opscode.com/
resource_directory.html

» Learn more about the remote directory resource at http://docs.opscode.
com/chef/resources.html#fremote-directory

Distributing different files based on the

target platform

If you have nodes with different operating systems such as Ubuntu and CentOS, you might
want to deliver different files to each of them. There might be differences in the necessary
configuration options and the like. Chef offers a way for files and templates to differentiate
which version to use based on a node's platform.

Getting ready

Make sure you have a cookbook called my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

How to do it...

Let's add two templates to our cookbook and see which one gets used:

1. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

template "/tmp/message" do
source "message.erb"
end

2. Create a template as default:

mma@laptop:~/chef-repo § subl cookbooks/my cookbook/templates/
default/message.erb

Hello from default template!

3. Create a template only for Ubuntu 12.04 nodes:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/templates/
ubuntu-12.04/message.erb

Hello from Ubuntu 12.04!

180

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

4. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ knife cookbook upload my cookbook

Uploading my_ cookbook [0.1.0]

5. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

[2013-03-25T21:31:02+00:00] INFO: template[/tmp/message] updated
content

.. .TRUNCATED OUTPUT...

6. Validate that Chef uses the platform specific template:
user@server:~$ sudo cat /tmp/message

Hello from Ubuntu 12.04!

Chef tries to use the most specific template for a given platform by looking for templates in the
following order, if the given platform would be Ubuntu 12.04:

my cookbook/templates/my node.example.com/message.erb
my cookbook/templates/ubuntu-12.04/message.erb

my cookbook/templates/ubuntu-12/message.erb

my cookbook/templates/ubuntu/message.erb

my cookbook/templates/default/message.erb

Chef takes the first hit. If there is a file in a directory with the same name as the fully qualified
domain name (FQDN) of the node, it will take that one.

If not, it will look through the other directories (if existing) like ubuntu or ubuntu-12. 04, and
so on.

The only directory that is mandatory, is the default directory.

» The Using templates section in Chapter 4, Writing Better Cookbooks

» Find more details about file specificity at http: //docs . opscode . com/resource
template.html#file-specificity

www.it-ebooks.info

http://docs.opscode.com/resource_template.html#file-specificity
http://docs.opscode.com/resource_template.html#file-specificity
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

"The system should treat all user input as sacred."
- Jef Raskin

In this chapter, we will cover the following:

» Creating users from data bags

» Securing the Secure Shell Daemon (SSHD)
» Enabling passwordless sudo

» Managing NTP

» Managing nginx

» Creating nginx sites

» Creating MySQL databases and users
» Managing WordPress sites

» Managing Ruby on Rails applications
» Managing Varnish

» Managing your local workstation

Introduction

In this chapter, we'll see how to manage the user accounts on your nodes with Chef. This
is one of the fundamental things you can start your infrastructure automation efforts with.

After dealing with users, we'll have a look at how to install and manage more advanced
applications. Our examples are mainly covering a web application stack using nginx as a web
server, MySQL as the database, and WordPress or Ruby on Rails for the web application.

We'll close the chapter with showing you how to manage your local workstation with Chef.

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

Creating users from data bags

When managing a set of servers it's important to make sure that the right people (and only
them) have access to them. You definitely don't want a shared account whose password

is known by everyone. You don't want to hardcode any users into your recipes either because
you want to separate logic and data.

Chef helps you to manage users on your nodes using data bags for your users and to let
a recipe create and remove the users accordingly.

Let's have a look at how you can do that.

Getting ready

Make sure you've a cookbook named my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in Chapter
1, Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my cookbook', path: './cookbooks/my cookbook'

Make sure you've a public SSH key available for your user by following the instructions at:
http://git-scm.com/book/en/Git-on-the-Server-Generating-Your-SSH-
Public-Key

How to do it...

First, we need to set up the data bag and at least one data bag item for our first user:

1. Create a data bag for your users:

mma@laptop:~/chef-repo $ knife data bag create users
Created data bag[users]

2. Create a directory for your data bag item's JSON files:
mma@laptop:~/chef-repo $ mkdir data bags/users

3. Create a data bag item for your first user. Use the username as filename (here: mma):

mma@laptop:~/chef-repo $§ subl data bags/users/mma.json

184

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

4.

n idu - "mma" s
"ssh keys": [
"ssh-rsa AAA345...bla== mma@laptop"

1,
"groups": ["staff"],
"shell": "\/bin\/bash"

}
Upload the data bag item to the Chef Server:
mma@laptop:~/chef-repo $ knife data bag from file users mma.json

Updated data bag item[users::mma]

Now it's time to set up the recipe to manage our users:

1.

2.

3.

M Because the Chef Server indexes data bags, it can take a few
Q minutes until a new data bag is available for use. If you encounter
an error, please wait a few minutes and then try again.

Edit your cookbook's metadata. rb to include the dependency on the users
cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/metadata.rb
depends "users"

Install your cookbooks dependencies:

mma@laptop:~/chef-repo $ berks install

Using my cookbook (0.1.0) at './cookbooks/my cookbook'
.. .TRUNCATED OUTPUT. ..

Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

include recipe "users"
users_manage "staff" do

group_id 50
action [:remove, :create]

4. Upload the modified cookbook to the Chef Server:

mma@laptop:~/chef-repo $ berks upload

.. .TRUNCATED OUTPUT...

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizations/agilewebops'
.. .TRUNCATED OUTPUT. ..

5. Run Chef Client on your node:
user@server:~$ sudo chef-client
.. .TRUNCATED OUTPUT. ..
- create user user [mmal
.. .TRUNCATED OUTPUT. ..
- alter group group[staff]

- replace group members with new list of members
.. . TRUNCATED OUTPUT. ..

6. Validate that the user mma exists:

user@server:~$ fgrep mma /etc/passwd
mma:x:1000:1001:: /home/mma: /bin/bash

7. Validate that the user mma belongs to group staff now:
user@server:~$ fgrep staff /etc/group

staff:x:50:mma

The users cookbook requires that you create a users data bag and one data bag item
for each user. In that data bag item, you define the attributes of the user: groups, shell, and
so on. You even can include an "action" attribute, which defaults to "create" but could be
"remove" as well.

To be able to manage users, you need to include it as a dependency in your cookbook's
metadata. In your recipe you include the users cookbook default recipe to be able to use the
manage users Light Weight Resource Provider (LWRP) provided by the users cookbook.

The manage users LWRP takes its name attribute "staff" as the group name it should
manage. It searches for data bag items having that group in their groups entry and uses
every entry found to create those users and groups.

M The manage users LWRP replaces group members—existing
Q (non-Chef managed) users will get thrown out of the given group
(bad, if you manage the sudo group on Vagrant).

By passing both actions : create and : remove into the LWRP, we make sure that it searches
for both: users to remove and users to add.

186

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

There's more...

Let's have a look at how you can remove a user:

1. Edit the data bag item for your first user, setting the action to remove:

mma@laptop:~/chef-repo $ subl data bags/users/mma.json

{
"id": "mma",
"ssh keys": [
"ssh-rsa AAA345...bla== mma@laptop"

1,

"groups": ["staff"],
"shell": "\/bin\/bash",
"action": "remove"

}
2. Upload the data bag item to the Chef Server:

mma@laptop:~/chef-repo $ knife data bag from file users mma.json
Updated data bag item[users::mma]

3. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

- remove user user [mma]

.. . TRUNCATED OUTPUT...

- alter group group [staff]

- replace group members with new list of members
.. . TRUNCATED OUTPUT...

4. Validate that the user mma does not exist anymore:
user@server:~$ fgrep mma /etc/passwd
...NO OUTPUT...
M If the user you want to remove is currently logged in, you will get an

Q error. This happens because the underlying operating system command
userdel cannot remove the user (and exits with return code 8):

userdel mma returned 8, expected 0

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

See also

» Find the users cookbook on GitHub: https://github.com/opscode-
cookbooks/users

» The Using data bags section in Chapter 4, Writing Better Cookbooks

Securing the Secure Shell Daemon (SSHD)

Depending on your Linux flavor, the ssh daemon might listen on all network interfaces on the
default port and allow root and password logins.

This default configuration is not very safe. Automated scripts can try to guess the root
password. You're at the mercy of the strength of your root passwords.

It's a good idea to make things stricter. Let's see how you can do this.

Getting ready

Create a user who can log in using his ssh key instead of a password. Doing this with Chef
is described in the Creating users from data bags section.

Make sure you have a cookbook named my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'my cookbook', path: './cookbooks/my cookbook'
M Attention: Configuring sshd might lock you out of your system.

Q Make sure you've an open ssh connection with root access to fix
what an error in your cookbook might have broken!

188

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

We'll secure sshd by disabling root login (you should use sudo instead) and by disabling
password logins. Users should only be able to log in using their ssh key.

1.

Edit your cookbook's metadata.rb and add a dependency on the
openssh cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb

depends "openssh"
Install your cookbook's dependencies:
mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT...

Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

node.default ['openssh'] ['server'] ['permit root login'] = "no"
node.default ['openssh'] ['server'] ['password authentication'] =
n no n

include recipe 'openssh'

Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. . TRUNCATED OUTPUT...

Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizations/agilewebops'

.. . TRUNCATED OUTPUT...

Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

* template[/etc/ssh/sshd config] action create[2013-03-
29T19:42:38+00:00] INFO: Processing template[/etc/ssh/sshd config]
action create (openssh::default line 66)

.. . TRUNCATED OUTPUT...

[2013-03-29T19:42:38+00:00] INFO: service[ssh] restarted

... TRUNCATED OUTPUT...

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications
6. Validate the content of the generated file:

user@server:~$ cat /etc/ssh/sshd config

Generated by Chef for server

AuthorizedKeysFile %h/.ssh/authorized keys
ChallengeResponseAuthentication no
PermitRootLogin no

PasswordAuthentication no

UsePAM yes

.. . TRUNCATED OUTPUT...

The openssh cookbook offers attributes for most configuration parameters in ssh_config
and sshd config. We override the default values in our cookbook and include the openssh
default recipe.

The order is significant here because this way the openssh recipe will use our overridden
values instead of its defaults.

The openssh cookbook writes the /etc/ssh/sshd _config file and restarts the sshd
service. After running this recipe, you will no longer be able to SSH into the node using
a password.

If your nodes are connected to a Virtual Private Network (VPN) by using a second network
interface, it's a good idea to bind sshd to that secure network only. That way you block anyone
from the public Internet trying to hack your sshd.

You can override the 1isten address attribute in your cookbook:
node.default ['openssh'] ['server'] ['listen_address']

If your nodes need to be accessible via the Internet, you might want to move sshd to a higher
port to get rid of the automated attacks:

node.default ['openssh'] ['server'] ['port'] = '6222'

In this case, you need to use -p 6222 with your ssh commands to be able to connect to
your nodes.

Moving your sshd to a non-privileged port is adding one layer of security, but comes at the
cost that you move from a privileged port to a non-privileged port on your node. This holds
the risk that someone on your box highjacks that port. Read more about the implications at:
http://www.adayinthelifeof.nl/2012/03/12/why-putting-ssh-on-another-
port-than-22-is-bad-idea/

190

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

» Find the openssh cookbook on GitHub: https://github.com/opscode-
cookbooks/openssh

» Find a detailed list of all attributes the openssh cookbook offers to configure sshd:
https://github.com/opscode-cookbooks/openssh/blob/master/
attributes/default.rb

Enabling passwordless sudo

You've secured your sshd so that your users can only log in with their own user accounts
instead of root. Additionally, you've made sure that your users do not need a password but
are forced to use their private keys for authentication.

But once authenticated, they want to administer the system. That's why it is a good idea to
have sudo installed on all boxes. Sudo enables non-root users to execute commands as root,
if they're allowed to. Sudo will log all such command executions.

To make sure that your users don't need passwords here either you should configure sudo
for passwordless logins. Let's have a look at how to do that.

Getting ready

Make sure you've a cookbook named my cookbook and the run_1list of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

How to do it...

Let's make Chef modify the sudo configuration to enable passwordless sudo for the staff group:

1. Edit your cookbook's metadata.rb and add the dependency on the sudo cookbook:
mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/metadata.rb

depends "sudo"

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

2. Install your cookbook's dependencies:
mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT...

3. Edit your cookbook's default recipe:

M Vagrant users: If you are working with a Vagrant-managed VM, make
Q sure to include the vagrant group in the sudo configuration.
Otherwise, your vagrant user will not be able to sudo anymore.

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/

default.rb
node.default ['authorization'] ['sudo'] ['passwordless'] = true
node.default ['authorization'] ['sudo'] ['groups'] = ['staff',

'vagrant ']

include_recipe 'sudo'

4. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. .TRUNCATED OUTPUT...

Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizationg/agilewebops'

.. .TRUNCATED OUTPUT...

5. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

[2013-04-12T19:48:51+00:00] INFO: Processing template[/etc/
sudoers] action create (sudo::default line 41)
[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] backed up
to /srv/chef/cache/etc/sudoers.chef-20130412194851
[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] updated
content

[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] owner
changed to 0

[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] group
changed to 0

[2013-04-12T19:48:51+00:00] INFO: template[/etc/sudoers] mode
changed to 440

.. .TRUNCATED OUTPUT...

192

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6
6. Validate the content of the generated sudoers file:

user@server:~$ sudo cat /etc/sudoers

Members of the group 'staff' may gain root privileges

$staff ALL=(ALL) NOPASSWD:ALL

Members of the group 'vagrant' may gain root privileges
$vagrant ALL=(ALL) NOPASSWD:ALL

The sudo cookbook rewrites the /etc/sudoers file using the attribute values we set in the
node. In our case, we set:

node.default ['authorization'] ['sudo'] ['passwordless'] = true

This will tell the sudo cookbook that we want to enable our users to sudo without
any password.

Then, we tell the sudo cookbook which groups should have passwordless sudo rights:
node.default ['authorization'] ['sudo'] ['groups'] = ['staff', 'vagrant']

The last step is to include the sudo cookbook's default recipe to let it install and configure
sudo on your nodes:

include_recipe 'sudo'

There's more...

By using the LWRP from the sudo cookbook, you can manage each group or user individually.
The LWRP will place configuration fragments inside /etc/sudoers.d. You can use this to
use your own template for the sudo configuration:

sudo 'mma' do

template 'staff _member.erb' # local cookbook template
variables :cmds => ['/etc/init.d/ssh restart']
end

This snippet assumes that you have my cookbook/templates/default/staff
member.erb in place.

See also

» The Creating users from a data bags section

» Find the sudo cookbook at GitHub: https://github.com/opscode-
cookbooks/sudo

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

Managing NTP

Your nodes should always have synchronized clocks, if nothing else because Chef Server
requires clients' clocks to be synchronized with it. This is required because the authentication
of clients is based on a time window to prevent man-in-the-middle attacks.

NTP is there to synchronize your nodes' clocks with its upstream peers. It usually uses a set
of trusted upstream peers so that it gets a reliable timing signal.

It's a good idea to put the installation of NTP into a role, which you assign to every node. Bugs
caused by clocks running are not nice to track down. Better avoid them in the first place by
using NTP on every node.

Getting ready

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including the ntp cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'ntp'
Install the ntp cookbook:
mma@laptop:~/chef-repo $ berks install --path cookbooks/

Using ntp (1.3.2)
.. .TRUNCATED OUTPUT...

Upload the ntp cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. .TRUNCATED OUTPUT...

Uploading ntp (1.3.2) to: 'https://api.opscode.com:443/organizations/
agilewebops'

.. .TRUNCATED OUTPUT...

How to do it...

Let's create a role called "base", which ensures that your nodes will synchronize their clocks
using NTP:

1. Create a base.rb file for your role:
mma@laptop:~/chef-repo $ subl roles/base.rb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

name "base"
run list "recipe[ntp]l"

default_attributes ("ntp" => {
"servers" => ["0.pool.ntp.org", "l.pool.ntp.org", "2.pool.ntp.
org n]

3]

Upload the new role to the Chef Server:

mma@laptop:~/chef-repo $ knife role from file base.rb
Updated Role base!

Add the base role to your node's run list:

mma@laptop:~/chef-repo $ knife node edit server

"run list": [
"role [base]l"

Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT. ..
[2013-04-16T18:22:36+00:00] INFO: service[ntp] restarted
.. .TRUNCATED OUTPUT. ..

Validate that ntp is installed correctly:

user@server:~$ /etc/init.d/ntp status

* NTP server is running

The ntp cookbook installs the required packages for your node's platform and writes

a configuration file. You can influence the configuration by setting default attributes in the ntp
namespace. In our preceding example, we configured the upstream NTP servers for our node
to query.

M If you're on Debian or Ubuntu, the ntp cookbook installs
Q ntpdate as well. ntpdate is there to quickly synchronize
and set a node's date and time.

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

There's more...

The ntp cookbook contains an ntp: :disable recipe and an ntp: :undo recipe as well. You
can disable the NTP service by adding ntp: : disable to your node's run list, and you can
completely remove NTP from your node by adding ntp: : undo to your node's run list.

See also

» You find the ntp cookbook on GitHub at: https://github.com/opscode-
cookbooks/ntp

» The Overriding attributes section in Chapter 4, Writing Better Cookbooks

Managing nginx

Suppose you need to set up a website that handles a lot of traffic simultaneously. nginx is
a web server designed to handle high loads and is used by a lot of big web companies such
as Facebook, Dropbox, and WordPress.

You'll find nginx packages in most major distributions, but if you want to extend nginx using
modules, you'll need to compile nginx from source.

In this section, we'll configure the nginx community cookbook to just do that.

Getting ready

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including the nginx cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'nginx'
Install the nginx cookbook:
mma@laptop:~/chef-repo $ berks install --path cookbooks/

Using nginx (1.7.0)
.. . TRUNCATED OUTPUT. ..

Upload the nginx cookbook to your Chef Server:
mma@laptop:~/chef-repo $ berks upload

Using nginx (1.7.0)

196

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

... TRUNCATED OUTPUT. ..

Uploading nginx (1.7.0) to: 'https://api.opscode.com:443/
organizations/agilewebops'

.. . TRUNCATED OUTPUT. ..

How to do it...

Let's set up a role and configure how we want to build nginx:

1.

Create a new role called web_server with the following contents:

mma@laptop:~/chef-repo $ subl roles/web server.rb

name "web server"
run list "recipe[nginx::source]"

default_attributes ("nginx" => {
"init style" => "init",
"enable default site" => false,
"upload progress" => {
"url" => "https://github.com/masterzen/nginx-upload-progress-
module/tarball/v0.9.0"

1
"source" => {
"modules" => ["upload progress module"]

}
1)

Upload the role to the Chef Server:

mma@laptop:~/chef-repo $ knife role from file web server.rb
Updated Role web_ server!

Add the web_server role to your node's run list:

mma@laptop:~/chef-repo $ knife node edit server

"run list": [
"role [web server]"

Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT. ..
[2013-04-19T07:40:35+00:00] INFO: Loading cookbooks [apt, build-

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

essential, nginx, ohai, yuml]

... TRUNCATED OUTPUT. ..

[2013-04-19T07:41:47+00:00] INFO: service[nginx] restarted
... TRUNCATED OUTPUT. ..

5. Validate that nginx is installed with the upload progress module:
user@server:~$ sudo nginx -V

nginx version: nginx/1.2.6

built by gcc 4.6.3 (Ubuntu/Linaro 4.6.3-lubuntu5)

TLS SNI support enabled

configure arguments: --prefix=/opt/nginx-1.2.6 --conf-path=/etc/
nginx/nginx.conf --with-http ssl module --with-http gzip static_
module --add-module=/srv/chef/file store/nginx upload progress/7b3
£81d30cd3e8af2c343b73d8518d2373b95aeb3d0243790991873a3d91d0c5

We configure how we want to use nginx in our new role, web_server. First, we decide that
we want to install nginx from source, because we want to add an additional module. We do
this by adding the nginx: : source recipe to the run list:

run list "recipe[nginx::source]"
Then, we set the attributes necessary for our source build. They all live in the nginx namespace:
default_attributes ("nginx" => {
b
As we want to use the default way of starting the nginx service on Ubuntu, we set the init
style to init. That will create startup scripts for init.d.
"init style" => "init",
Other options would have been to use runit or bluepill among others.

Then, we have to tell the nginx recipe where to find the source code for the upload
progress module:

"upload progress" => {
"url" => "https://github.com/masterzen/nginx-upload-progress-
module/tarball/v0.9.0"

b

198

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Finally, we've to instruct the nginx recipe to compile nginx with the upload progress_
module enabled:

"source" => {
"modules" => ["upload progress module"]

}

After defining the role, we have to upload it to the Chef Server and to add it to the node's run
list. Running Chef Client on the node will now create all necessary directories, download all
required sources, and build nginx with the module enabled.

The nginx cookbook will create a default site by default. You can check its configuration here:

user@server:~$ sudo nginx -V

If you only want to use your distribution's default nginx package, you can use the nginx
default recipe instead of nginx: : source in your role's run list:

run_list "recipe[nginx]"
If you want to disable the default site, you need to set the attribute accordingly:
"default site enabled" => false

You'll find all tunable configuration parameters in the nginx cookbook's attributes file. You
can modify them according to preceding examples.

The nginx cookbook sets up handling of sites and its configuration
M similar to Debian's way of configuring Apache2. You can use
Q nxdissite and nxensite to disable and enable your sites, which
you find under /etc/nginx/sites-available and /etc/
nginx/sites-enabled respectively

You can set up nginx as reverse proxy using the application nginx cookbook.

» Find the nginx cookbook on GitHub at: https://github.com/opscode-
cookbooks/nginx

» Find the application nginx cookbook on GitHub at: https://github.com/
opscode-cookbooks/application nginx

» Find the HTTP Upload Progress Module at: http://wiki.nginx.org/
HttpUploadProgressModule

» The Overriding attributes section in Chapter 4, Writing Better Cookbooks

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

Creating nginx sites

Assuming you've nginx installed, you want to manage your websites with Chef. You need to
create an nginx configuration file for your website and upload your HTML file(s). Let's see how
to do this.

Getting ready

Make sure you've a cookbook named my cookbook as described in the Creating and using
cookbooks section in Chapter 1, Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

1.

200

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

Create or edit a role called web_server with the following contents:

mma@laptop:~/chef-repo $ subl roles/web server.rb

name "web_ server"
run_list "recipe[my cookbook]™"

default attributes "nginx" => {
"init style" => "init",
"enable default site" => false

}
Upload the role to the Chef Server:

mma@laptop:~/chef-repo $ knife role from file web server.rb
Updated Role web_ server!
Add the web_server role to your node's run list:

mma@laptop:~/chef-repo $ knife node edit server

"run list": [
"role [web server]"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

Let's put together all the code to configure your site in nginx and to upload a sample index.
html file:

1.

Edit your cookbook's metadata. rb to include the dependency on the nginx
cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb

depends "nginx"
Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT...

Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

include recipe "nginx::source"

app_name "my app"

app_home "/srv/#{app_name}"

template "#{node[:nginx] [:dir]}/sites-available/#{app name}" do
source "nginx-site-#{app name}.erb"
owner "root"
group "root"
mode "0644"
variables :app home => app home
notifies :restart, resources(:service => "nginx")
end

directory "#{app home}/public" do
recursive true

end

file "#{app home}/public/index.html" do
content "<hl>Hello World!</hls>"

end

nginx_site "#{app name}"

201

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

4. Create a template for your nginx configuration:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/templates/
default/nginx-site-my app.erb

server {
listen 80;
server name _;
root <%= @app_home %>/public;

}

5. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. . TRUNCATED OUTPUT...

Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizations/agilewebops'

.. . TRUNCATED OUTPUT...

6. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT. ..
[2013-04-22T20:18:46+00:00] INFO: Processing execute[nxensite my
app] action run (my cookbook::default line 23) -
.. . TRUNCATED OUTPUT...

7. Validate whether the nginx site is up and running by requesting index.html from
the web server:

user@server:~$ wget localhost

--2013-04-22 20:18:59-- http://localhost/

Resolving localhost (localhost)... 127.0.0.1

Connecting to localhost (localhost)|127.0.0.1]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 21 [text/html]

Saving to: “index.html'

21 --.-K/s in Os

2013-04-22 20:18:59 (1.47 MB/s) - “index.html' saved [21/21]
8. \Validate whether the downloaded index.html contains the text we set:
user@server:~$ cat index.html

<hls>Hello World!</hls>

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

After setting two variables, the recipe installs a template for the nginx configuration file. The
template ends up as /etc/nginx/sites-enabled/my app.

Next, we create the directory and the index.html file in /srv/my app/public. Thisis the
directory our nginx configuration template uses as its root location.

Finally, we enable the site we just created using the nginx_ site resource, which is defined
by the nginx cookbook.

The configuration file template nginx-site-my app.erb makes nginx listen on port 80
and defines the root location as /srv/my app/public.

There's more...

If you want to disable your site, you simply replace:

nginx_site "#{app name}"

with:
nginx_site "#{app name}" do
enable false
end

After uploading the modified cookbook and running Chef Client again, you should not be able
to retrieve index.html anymore:

user@server:~$ wget localhost

--2013-04-22 20:50:44-- http://localhost/
Resolving localhost (localhost)... 127.0.0.1
Connecting to localhost (localhost)|127.0.0.1]:80... failed:

Connection refused.

See also

» The Managing nginx section

» Read more about the nginx site resource at: https://github.com/opscode-
cookbooks/nginx/blob/master/definitions/nginx_site.rb

203

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

Creating MySQL databases and users

You need to use two different cookbooks for managing MySQL (or any other database) on your
nodes: the generic database cookbook and the mysgl cookbook.

The database cookbook provides resources for managing databases and database users for
MySQL, PostgreSQL, and Microsoft SQL Server. The mysgl cookbook installs a MySQL Client
and server.

Let's see how we can install a MySQL server and create a database and a database user.

Getting ready

Make sure you've a cookbook called my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

How to do it...

We'll install MySQL server with a database and a user:

1. Edit your cookbook's metadata. rb file to include the dependencies on the
database and the mysqgl cookbooks:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/metadata.rb

depends "database"
depends "mysqgl"

2. Install your cookbook's dependencies:
mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT...

204

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

include_recipe 'mysqgl::server'
include_recipe 'mysqgl::ruby'

include_recipe 'database'

connection params = {
:username => 'root',
:password => node['mysqgl'] ['server root password']

mysgl database 'my db' do
connection connection params
action :create

end

mysgl database user 'me' do
connection connection params
password 'my password 11'
privileges [:all]
action [:create, :grant]

end

Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. .TRUNCATED OUTPUT...

Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizationg/agilewebops'

.. .TRUNCATED OUTPUT...

Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

[2013-04-23T19:32:07+00:00] INFO: Processing chef gem[mysqgll]

action install (mysqgl::ruby line 36) B
[2013-04-23T19:32:07+00:00] INFO: Processing mysgl database[my

db] action create (my cookbook::default line 25) a a
[2013-04-23T19:32:07+00:00] INFO: Processing mysgl database

user [me] action create (my_ cookbook::default line 30) a

.. . TRUNCATED OUTPUT. ..

205

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

6. Validate that we can log in to our MySQL server with the user we just created and see
the database my db:

user@server:~$ mysqgl -u me -p

mysgl> show databases;

| information schema |
| my_db |

First, we include the mysql : : server recipe to install MySQL:
include_recipe 'mysqgl::server'

Additionally we need the msgl Ruby gem to create the database and the user:
include_recipe 'mysqgl::ruby'

Then it's time to include the database recipe to be able to use the database and
database_user resources later in our recipe:

include_recipe 'database'

As we want to connect to our MySQL server multiple times, we define the connection
parameters as a variable called connection params in our recipe:

connection params = {
:username => 'root',
:password => node['mysqgl'] ['server root password']

}

The mysql: : server recipe creates a random root password and stores it in the node under
the key ['mysqgl'] ['server root password'].

Then we use the mysqgl database resource from the database cookbook to create
a database called my db:

mysgl database 'my db' do
connection connection params
action :create

end

206

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

And finally, we use the mysgl database user resource to create a user called me and
grant him all privileges:

mysgl database user 'me' do
connection connection params
password 'my password 11'
privileges [:all]
action [:create, :grant]

end
There's more...

It's quite common to have things such as a database name or users with their privileges
stored in data bags. You can find out how to do this in the Using search to find data bag
items section in Chapter 4, Writing Better Cookbooks.

See also

» The Using data bags section in Chapter 4, Writing Better Cookbooks

» Find the database cookbook on GitHub at: https://github.com/opscode-
cookbooks/database

» Find the mysqgl cookbook on GitHub at: https://github.com/opscode-
cookbooks/mysqgl

Managing WordPress sites

You need to enable your business users to manage their own website. WordPress has come
a long way providing all necessary features. You might have seen it as a simple blogging tool.
But, it has grown to a fully featured content management system in recent years. Fortunately,
managing WordPress with Chef is pretty straightforward.

Let's have a look how to do it.

Getting ready

Make sure you've a cookbook called my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section
in Chapter 1, Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

207

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

How to do it...

We'll install WordPress using the community cookbook:

1. Edit your cookbook's metadata to make sure it depends on all necessary cookbooks:
mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/metadata.rb

depends "apt"
depends "wordpress"

2. Install your cookbook's dependencies:
mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook!'
.. .TRUNCATED OUTPUT...

3. Edit your cookbook's default recipe to set some attributes for the wordpress
cookbook and to include the required cookbooks:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/

default.rb

node.default ['wordpress'] ['db'] ['database'] = "my wordpress"
node.default ['wordpress'] ['db'] ['user'] = "me"

node.default ['wordpress'] ['db'] ['password'] = "my_ password_ 11"

include_recipe "apt"
include recipe 'wordpress'
4. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload
.. .TRUNCATED OUTPUT...
Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/

organizations/agilewebops'
.. .TRUNCATED OUTPUT...

208

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

5. Run Chef Client on your node:

user@server:~$ sudo chef-client

... TRUNCATED OUTPUT...

[2013-04-27T19:29:44+00:00] INFO: Navigate to 'http://vagrant.vm/
wp-admin/install.php' to complete wordpress installation

.. . TRUNCATED OUTPUT...

6. Validate whether WordPress is installed on your host by firing up your browser and
navigating to the WordPress install page:

@WORDPRESS

Welcome
Welcome to the famous five minute WordPress installation process! You may want to browse
the ReadMe documentation at your leisure. Otherwise, just fill in the information below and

you'll be on your way to using the most extendable and powerful personal publishing platform
in the world.

Information needed

Please provide the following information. Don't worry, you can always change these settings
later.

Site Title

The wordpress cookbook installs a full Apache-MySQL-PHP-stack. That's why when you're
installing it into your repository, it will install quite a few supporting cookbooks as well.

To use the wordpress cookbook, you simply include it in your own cookbook's recipe:

include recipe 'wordpress'

Because the wordpress cookbook will install software from your operating system's package
repository (using apt in our case on Ubuntu), we include the apt cookbook right before
including the wordpress cookbook. That way we make sure that the package list on your
node is up-to-date. If you omit this step, the wordpress cookbook might fail because some
outdated packages do not fit together.

include recipe 'apt'
include recipe 'wordpress'

209

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

And, because we do not like the default values for the database name, database user, and
the password for the database user, we override those attributes in the beginning of our
default recipe:

node.default ['wordpress'] ['db'] ['database'] = 'my wordpress'
node.default ['wordpress'] ['db'] ['user'] = 'me'
node.default ['wordpress'] ['db'] ['password'] = 'my password 11'

You can look up the default values in cookbooks/wordpress/attributes/default.rb

The wordpress cookbook installs the complete stack but does not set up your first blog. It
asks you to call the WordPress installation page with your browser to set up your first blog.

If you already have a tarball of your blog available, you could deliver it to your node as described
in the Distributing Directory Trees section in Chapter 5, Working with Files and Packages.

See also

» You find the wordpress cookbook on GitHub at: https://github.com/
opscode-cookbooks/wordpress

Managing Ruby on Rails applications

Ruby on Rails helps you to quickly get up and running with your web applications. But,
deployment is not an issue solved by the framework. In this section, we'll see how to write the
simplest possible recipe to deploy a Rails application, using unicorn as the application server
and SQLite as the database.

Getting ready

Make sure you've a cookbook called my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure..

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

Let's get our Ruby on Rails application up and running on our node:

1.

Edit your cookbook's metadata . rb, to make it depend on the
application_ruby cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/metadata.rb

depends "application ruby"

Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'

... TRUNCATED OUTPUT...

Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

application "rails-app" do
packages $wlrubyl.9.3 runit git sqglite3 libsglite3-dev]

path "/usr/local/www/rails-app"
owner "www-data"
group "www-data"

environment name "development"
repository "https://github.com/mmarschall/rails-app.git"

rails do
gems %w[bundler]

database template "sqglite3 database.yml.erb"

database do
adapter "sqglite3"
database "db/rails-app.sglite3"
end
end

unicorn do
end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

4.

Add your own template file for your database.yml:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/templates/
default/sqglite3 database.yml.erb

<%= @rails_env %>:
adapter: <%= @database['adapter'] %>
host: <%= @host %>
database: <%= @database['database'] %>
pool: 5
timeout: 5000

Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. . TRUNCATED OUTPUT...

Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizations/agilewebops'
.. .TRUNCATED OUTPUT...

Run Chef Client on your node:
user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...

[2013-05-09T20:36:40+00:00] INFO: executel[/etc/init.d/rails-app
hup] ran successfully

... TRUNCATED OUTPUT...

Validate whether your Rails application is up and running by hitting your node at port
8080:

user@server:~$ wget localhost:8080
2013-05-10 20:08:41 (16.4 MB/s) - “index.html' saved [14900]

Then, you can have a look at the downloaded file to verify whether the Welcome page
of your Rails app shows up:

user@server:~$ cat index.html

<!DOCTYPE htmls>
<html>
<head>
<title>Ruby on Rails: Welcome aboard</title>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Opscode provides the abstract application cookbook for deploying web applications.
We call our application "rails-app":

application "rails-app" do

end

Inside the application block, we define the details of our web app. First, we need to install
a few operating system packages. In our case, we assume an empty node, not even having
Ruby installed.

packages %$wlrubyl.9.3 runit git sqglite3 libsglite3-dev]

rubyl. 9.3 will make sure that we have a Ruby runtime installed. If you installed your
Chef Client using the Omnibus installer, it comes with an embedded Ruby, which you might
not want to use for running your Rails application.

As we're going to use unicorn to run our Rails application, we need to install runit, because
that's the way unicorn is installed at the writing of this book.

Git is required to be able to checkout our repository from github. com.
Finally, we're using SQLite for our Rails application and need to install it first.

The next step is to configure the deployment details. Where should our app go (path)? Which
user and group should own the application (owner, group), and where do we find the source
code of our app (repository)?

path "/usr/local/www/rails-app"
owner "www-data"
group "www-data"

repository "https://github.com/mmarschall/rails-app.git"

1
‘Q Make sure you've enabled therubyracer and

the unicorn gems in your Rails application's Gemfile:

gem 'therubyracer', platforms: :ruby
gem 'unicorn'

If you don't want to run your application in a production environment, you can specify the
desired environment name in your cookbook, like we do:

environment name "development"

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

Your application will be fetched from github.com and the cookbook will install it in
a directory structure you are familiar with from using Capistrano. It will put the current
revision of your app into the releases directory and create a symlink to it as current.

Now, it's time to define the Rails-specific things. First of all, we want to install the bundler
gem because our Rails application is using a Gemfile for its dependencies:

rails do
gems %w[bundler]

end

The $w[] syntax creates an array of strings. You could write ["bundler"] instead. It doesn't
make any difference for one element, but when putting multiple elements into your array, you
save a lot of double quotes and commas with the $w syntax.

As our Rails application uses SQLite as its persistence store, we need to use our own template
for the database.yml file.

database template "sqglite3 database.yml.erb"
Then, we can use a database block to populate it with the values we need:

database do

adapter "sglite3"

database "db/rails-app.sglite3"
end

We're telling our Rails application that we're using an SQLite database and want it to store
its data in a file called db/rails-app.sglite3.

Finally, we need to tell our cookbook that we want to run our Rails application using unicorn.
An empty block will suffice as long as we don't want to change any default attributes like port
or number of workers.

unicorn do
end

There's more...

Usually, the application cookbook's deploy resource will only deploy new revisions of your
Rails app. If you want to ensure that it grabs the same revision again and again, you need to
call the force deploy action on your application resource:

application "rails-app" do

action :force_ deploy
end

214

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If you want to use a new or existing MySQL server, you can assign it a role, for example,
rails database master and pass that role name to the application resource. It will
then search for the node and use its IP address in the database .yml:

application "rails-app" do

database master role " rails database master"
end

In this case, you don't need to use your own database.yml template.

If you want to run a cluster of nodes, each one installed with your Rails application, you can
use the application nginx cookbook to install an nginx load balancer in front of your
application server cluster.

» Find the application cookbook on GitHub at: https://github.com/opscode-
cookbooks/application

» Findthe application_ ruby cookbook on GitHub at: https://github.com/
opscode-cookbooks/application ruby

» The Using search to find nodes section in Chapter 4, Writing Better Cookbooks

Managing Varnish

Varnish is a web application accelerator. You install it in front of your web application to
cache generated HTML files and serve them faster. It will take a lot of burden from your

web application and can even provide you with extended uptime—covering up for application
failures through its cache while you are fixing your application.

Let's see how to install varnish.

Getting ready

You need a web server running on your node at port 8080. We'll set up Varnish to use
localhost:8080 as its backend host and port. You can achieve this by installing a Ruby on
Rails application on your node as described in the Managing Ruby on Rails applications section.

Make sure you've a cookbook called my cookbook and the run_1ist of your node
includes my cookbook as described in the Creating and using cookbooks section in
Chapter 1, Chef Infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:

mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

How to do it...

Let's install varnish with its default parameters. We will use the Vvarnish provided apt
repository to have access to the latest versions of varnish:

If you don't have the apt cookbook in your node's run list

~ (which you should have), you need to add depends "apt"
to your cookbook's metadata and include recipe
"apt" in your cookbook's default recipe.

Edit your cookbook's metadata to add the dependency on the varnish cookbook:
mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/metadata.rb

depends "varnish"

Install your cookbook's dependencies:

mma@laptop:~/chef-repo $ berks install

Using my cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT. ..

Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

include recipe "varnish::apt repo"

node.set ['varnish'] ['storage file'l = '/var/lib/varnish/vagrant/
varnish storage.bin'
include recipe "varnish"

Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. . TRUNCATED OUTPUT. ..

Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizations/agilewebops'

.. .TRUNCATED OUTPUT. ..

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

5. Run Chef Client on your node:

user@server:~$ sudo chef-client

... TRUNCATED OUTPUT...
[2013-05-11T19:23:37+00:00] INFO: service[varnish] restarted
... TRUNCATED OUTPUT...

6. Validate whether your varnish cache is up and running by hitting your node at port
6081:

user@server:~$ wget localhost:6081

2013-05-10 20:08:41 (16.4 MB/s) - “index.html' saved [14900]

As we want to use the latest Version of varnish (and not the usually outdated one from the
default Ubuntu package repository), we set up the varnish apt repository first:

include_recipe "varnish::apt_ repo"

By default, the varnish cookbook uses " /var/lib/varnish/$INSTANCE/varnish
storage.bin" as its file storage location. This does not work on a Vagrant box. That's why
we override the default attribute and set our own path:

node.set['varnish'] ['storage file'l = '/var/lib/varnish/vagrant/
varnish storage.bin'

Finally, we include the Vvarnish recipe itself to install, configure, and start the varnish
server listening to its default port 6081:

include_recipe "varnish"

There's more...

You can connect to the Varnish admin interface by logging in to your node and running
telnet:

user@server:~$ sudo telnet localhost 6082

See also

» Find out more about Varnish at: https://www.varnish-cache.org/

» You find the varnish cookbook on GitHub at: https://github.com/opscode-
cookbooks/varnish

» The Managing Ruby on Rails applications section

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

Managing your workstation

You know the drill. You get a brand new MacBook and need to set up all your software—again.
Chef can help here, too.

We will have a look at how to install applications and tweak settings on your local
development box with Chef.

1
‘Q This example is based on recipes for OS X only, but

you can tweak it to run on Windows or Linux, too.

Getting ready

Follow the instructions given in the Installing Chef on your workstation section in Chapter 1,
Chef Infrastructure, to get the basic Chef environment working on your box.

First, we need to prepare our own repository for our individual setup:

1. Fork the github.com/mmarschall/osx-workstation repository:

& C |8 CitHub, Inc. [US]| https://github.com/mmarschall/osx-waorkstation ey | = Ej oq P =
O ° This repository 9 @ Explore Gist Blog Help E? mmarschall Ef 3¢
mmarschall / osx-workstation [') Pull Request GSUnwatch - Star 0 | [Fork
s Code Network Pull Requests o Issues 0 Wiki Graphs Settings
Opscode Chef recipes to manage an OS X workstation - based on pivetal-sprout — Read more

2. Clone it to your local development box, replacing <YOUR GITHUB USER> with the
name of your GitHub account:

mma@laptop:~/ $ git clone https://github.com/<YOUR GITHUB USER>/
osx-workstation.git
3. Gointo your clone of the osx-workstation repository:

mma@laptop:~/ $ cd osx-workstation

4. Make sure you've the soloist gem installed by running:
mma@laptop:~/osx-workstation $ bundle install
.. .TRUNCATED OUTPUT...

Installing soloist (1.0.1)
.. .TRUNCATED OUTPUT. ..

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Let's set up Soloist to use a few readymade recipes provided by the folks at PivotalLabs:

1.

Create a Cheffile in your local repository:
mma@laptop:~/osx-workstation $ subl Cheffile

site 'http://community.opscode.com/api/v1'

cookbook 'pivotal workstation',
:git => 'git://github.com/pivotal-sprout/sprout.git’
:path => 'pivotal workstation'

cookbook 'sprout-osx-apps',
:git => 'git://github.com/pivotal-sprout/sprout.git’
:path => 'sprout-osx-apps'

cookbook 'sprout-osx-settings',
:git => 'git://github.com/pivotal-sprout/sprout.git’
:path => 'sprout-osx-settings'

cookbook 'osx',
:git => 'git://github.com/pivotal-sprout/sprout.git’
:path => 'osx!'

Create a configuration for Soloist telling it, what to install on your box:

mma@laptop:~/osx-workstation $ subl soloistrc

recipes:
- sprout-osx-apps::freeruler
- sprout-osx-settings::dock preferences

node attributes:
dock preferences:
orientation: left

Run Soloist on your development box:

mma@laptop:~/osx-workstation $ sudo soloist

Installing dmg (1.1.0)

Installing osx (0.1.0)

Installing sprout-osx-apps (0.1.0)
Installing sprout-osx-settings (0.1.0)
Installing pivotal workstation (1.0.0)
Starting Chef Client, version 11.4.4

’

’

’

’

Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

Users and Applications

.. .TRUNCATED OUTPUT. ..

Recipe: sprout-osx-apps::freeruler

.. .TRUNCATED OUTPUT. ..

Chef Client finished, 3 resources updated

4. Now your dock should be located at the left-hand side of the screen and the
application Free Ruler should show up in your Applications folder.

Soloist is a quick and easy way to configure Chef Solo on your box. It uses Librarian to
manage cookbook dependencies. You define which cookbooks to use by including them into
your Cheffile

cookbook 'sprout-osx-apps',
:git => 'git://github.com/pivotal-sprout/sprout.git',
:path => 'sprout-osx-apps'

You define the cookbook name, tell Librarian in which Git repository this cookbook lives, and
tell it a pathname, where to install it locally. Librarian will install all cookbooks defined in the
Cheffile to the local cookbook's directory.

The other part we need to configure is what Soloist should run. We do this in the soloistrc
file. First, we tell Soloist, which recipes it should converge on our local development box:

recipes:
- sprout-osx-apps::freeruler
- sprout-osx-settings::dock preferences

Then, we set some attributes, further finetuning the setup on our box:

node attributes:
dock preferences:
orientation: left

Here we set the attribute node ['dock preferences'] ['orientation'] = 'left'.
This attribute is used by the sprout-osx-settings: :dock preferences cookbook.

Soloist will use Librarian to install all cookbooks defined in the Cheffile and then converge
all recipes listed in the soloistrc file. Before converging, it will set all given node attributes
to be used by the recipes.

The sprout repository holds a huge amount of cookbooks to install OS X apps and
configure settings.

The sprout osx cookbook provides us with the osx_defaults provider used by the
sprout-osx-settings cookbook. To install applications, the sprout -osx-applications
cookbook uses either the standard Chef dmg package resource or a mixture of

remote file and execute blocks to install a tarball.

220

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If you want to create your own cookbooks to be used by Soloist, just create a directory in your
osx-workstation repository:

mma@laptop:~/osx-workstation $ mkdir site-cookbooks

And add that new cookbook path to your Cheffile for Librarian to find your new cookbooks:

cookbook 'meta',
:path => 'site-cookbooks/meta’

Now you can use your own cookbooks in your soloistrc file.

Instead of using dmg_package and osx_default resources for OS X, you can use the
default package providers for your own operating system. You might want to create your own
provider for settings specific to your platform, if not available already in Chef.

» Find Soloist at: https://github.com/mkocher/soloist
» Find sprout at: https://github.com/pivotal-sprout/sprout

» Look at the Free Ruler recipe at: https://github.com/pivotal-sprout/
sprout/blob/master/sprout-osx-apps/recipes/freeruler.rb

» You find the dock_preferences recipe here: https://github.com/pivotal-
sprout/sprout/blob/master/sprout-osx-settings/recipes/dock
preferences.rb

» Librarian lives here: https://github.com/applicationsonline/librarian

221

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud
Infrastructure

"The interesting thing about cloud computing is that we've redefined cloud
computing to include everything that we already do."

- Richard Stallman
In this chapter, we will cover the following:

» Creating cookbooks from a running system with Blueprint
» Running the same command on many machines at once
» Setting up SNMP for external monitoring services

» Deploying a Nagios monitoring server

» Building high-availability services using Heartbeat

» Using HAProxy to load-balance multiple web servers

» Using custom bootstrap scripts

» Managing firewalls with iptables

» Managing fail2ban to ban malicious IP addresses

» Managing Amazon EC2 instances

» Loading your Chef infrastructure from a file with Spiceweasel and Knife

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

Introduction

In the preceding chapters, we mostly looked at individual nodes. Now, it's time to consider
your infrastructure as a whole. We'll see how to manage services spanning multiple machines
like load balancers and how to manage the networking aspects of your infrastructure.

Creating cookbooks from a running system

with Blueprint

Everyone has it: that one server in the corner of the data center that no one dares to touch
anymore. It's like a precious snowflake: unique and infinitely fragile. How do you get such a
server under configuration management?

Blueprint is a tool to find out and record exactly what's on your server. It records all
directories, packages, configuration files, and so on.

Blueprint can spit out that information about your server in various formats; one of them
is a Chef recipe. You can use such a generated Chef recipe as a basis to rebuild that one
unique snowflake server.

Let's see how to do that.

Getting ready

Make sure you've Python and Git installed on the node you want to run Blueprint on:

user@server:~$ sudo apt-get install git python

How to do it...

Let's see how to install Blueprint and create a Chef cookbook for our node:

1. Install Blueprint using the following command line:

user@server:~$ pip install blueprint

2. Create Blueprint. Replace my-server with any name you want to use for your
Blueprint. This name will become the name of the cookbook in the following step:

user@server:~$ sudo blueprint create my-server

[blueprint] using cached blueprintignore(5) rules
[blueprint] searching for Python packages
[blueprint] searching for PEAR/PECL packages
[blueprint] searching for Yum packages

[

H H HF H HF

blueprint] searching for Ruby gems

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

blueprint] searching for npm packages

blueprint] searching for software built from source

blueprint] searching for configuration files

blueprint] /etc/ssl/certs/AC_Ra\xc3\xadz_ Certic\xc3\

xalmara S.A..pem not UTF-8 - skipping it

[blueprint] /etc/ssl/certs/NetLock Arany =Class_Gold=_F\xc5\
x91tan\xc3\xbas\xc3\xadtv\xc3\xalny.pem not UTF-8 - skipping it
[blueprint] /etc/ssl/certs/EBG_Elektronik Sertifika Hizmet Sa\
xc4\x9flay\xc4\xblc\xc4\xbls\xc4\xbl.pem not UTF-8 - skipping it
[blueprint] /etc/ssl/certs/Certinomis - Autorit\xc3\xa9 Racine.
pem not UTF-8 - skipping it

[blueprint] /etc/ssl/certs/T\xc3\x9cB\xc4\xb0TAK UEKAE K\xc3\
xb6k Sertifika Hizmet Sa\xc4\x9flay\xc4\xblc\xc4\xbls\xc4\xbl - S\
xc3\xber\xc3\xbem 3.pem not UTF-8 - skipping it

[blueprint] searching for APT packages

[blueprint] searching for service dependencies

H H HF HF

Create a Chef cookbook from your blueprint:

user@server:~$ blueprint show -C my-server

my-server/recipes/default.rb

Validate the content of the generated file:

user@server:~$ cat my-server/recipes/default.rb

#
Automatically generated by blueprint (7). Edit at your own risk.
#
cookbook file('/tmp/96468£fdlcc36927a027045b223¢c61065de6bc575.tar!)
do
backup false
group 'root'
mode '0644'
owner 'root'
source 'tmp/96468fd1cc36927a027045b223¢c61065de6bc575.tar’
end
execute (' /tmp/96468£fd1cc36927a027045b223¢c61065debbec575.tar') do
command 'tar xf "/tmp/96468fd1lcc36927a027045b223¢c61065de6bc575.
tar"!
cwd '/usr/local’
end
directory('/etc/apt/apt.conf.d') do
.. .TRUNCATED OUTPUT. ..
service('ssh') do
action [:enable, :start]
subscribes :restart, resources ('cookbook file[/etc/default/
keyboard] ', 'cookbook file[/etc/default/console-setup]',
'cookbook file[/etc/default/ntfs-3gl', 'package[openssh-server]',
'execute [96468fd1cc36927a027045b223¢c61065de6bc575.tar] ')
end

225

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

Blueprint is a Python package that finds out all the relevant configuration data of your node
and stores it in a Git repository. Each Blueprint has its own name.

You can ask Blueprint to show the contents of its Git repository in various formats. Using the
-c flag to the blueprint show command creates a Chef cookbook containing everything
you need in that cookbook's default recipe. It stores the cookbook in the directory from
where you run Blueprint and uses the Blueprint name as the cookbook name as shown in
the following code:

user@server:~$ ls -1 my-server/

total 8

drwxrwxr-x 3 vagrant vagrant 4096 Jun 28 06:01 files
-rw-rw-r-- 1 vagrant vagrant 0 Jun 28 06:01 metadata.rb
drwxrwxr-x 2 vagrant vagrant 4096 Jun 28 06:01 recipes

There's more...

You can inspect your Blueprints using specialized show commands in the following way:
user@server:~$ blueprint show-packages my-server

.. . TRUNCATED OUTPUT...

apt wireless-regdb 2011.04.28-1lubuntu3l
apt zliblg-dev 1:1.2.3.4.dfsg-3ubuntu4
python2.7 distribute 0.6.45

python2.7 pip 1.3.1

pip blueprint 3.4.2

pip virtualenv 1.9.1

The preceding command shows all kinds of installed packages. Other show commands
are as follows:

» show-files
» show-services

» show-sources

Blueprint is able to output your server configuration as a shell script as shown in the following
command line:

user@server:~$ blueprint show -S my-server
You can use this script as a basis for a knife bootstrap as described in the Using custom

bootstrap scripts section.

226

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

See also

Read about all you can do with Blueprint at http://devstructure.com/
blueprint/

You find the source code of Blueprint at https://github.com/devstructure/
blueprint

Running the same command on many

machines at once

A simple problem with so many self-scripted solutions is logging in to multiple servers in parallel
executing the same command on every server at once. No matter whether you want to check
the status of a certain service or look at some critical system data on all servers, being able

to log in to many servers in parallel can save you a lot of time and hassle (imagine forgetting one
of your seven web servers when disabling the basic authentication for your website).

How to do it...

Let's try to execute a few simple commands on multiple servers in parallel:

1.

Retrieve the status of the nginx processes from all your web servers:

mma@laptop:~/chef-repo $ knife ssh 'roles:webserver' 'sudo sv
status nginx!'

wwwl.prod.example.com run: nginx: (pid 12356) 204667s; run:
log: (pid 1135) 912026s

www2 .prod.example.com run: nginx: (pid 19155) 199923s; run:
log: (pid 1138) 834124s

www.test.example.com run: nginx: (pid 30299) 1332114s;
run: log: (pid 30271) 1332117s

Display the uptime of all your nodes in your staging environment running on Amazon
EC2:

mma@laptop:~/chef-repo $ knife ssh 'chef environment:staging AND
ec2:*' uyptime

ec2-XXX-XXX-XXX-XXX.eu-west-1.compute.amazonaws.com
21:58:15 up 23 days, 13:19, 1 user, load average: 1.32,
1.88, 2.34
ec2-XXX-XXX-XXX-XXX.eu-west-1.compute.amazonaws.com
21:58:15 up 10 days, 13:19, 1 user, load average: 1.51,
1.52, 1.54

227

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

First, you have to specify a query for finding your nodes. It is usually a good idea to test your
queries by running a command such as uptime (instead of dangerous commands like sudo
restart now). Your query will obviously use the node index and the complete Knife query
syntax is available.

Knife will run the search and connect to each found node executing the given command on
every single one. It will collect and display all outputs received by the nodes.

There's more...

You can open terminals to all the nodes identified by your query by using either tmux
or screen as commands.

If you don't want to use a search query, you can list the desired nodes using the -m option:

mma@laptop:~/chef-repo $ knife ssh 'wwwl.prod.example.com www2.prod.
example.com' uptime -m

wwwl.prod.example.com 22:10:00 up 9 days, 16:00, 1 user, load
average: 0.44, 0.40, 0.38

www2 .prod.example.com 22:10:00 up 15 days, 10:28, 1 user,
load average: 0.02, 0.05, 0.06

See also

» The Knife query syntax is described at the following location: http://docs.
opscode.com/knife search.html.

» Find more examples at http://docs.opscode.com/knife ssh.html.

Setting up SNMP for external monitoring

services

Simple Network Management Protocol (SNMP) is the standard way to monitor all your
network devices. You can use Chef to install the SNMP service on your node and configure it
to match your needs.

228

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Getting ready

Make sure you've a cookbook named my cookbook and run_1list of your node includes
my cookbook as described in the Creating and using cookbooks section in Chapter 1,
Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

How to do it...

Let's change some attributes and install SNMP on our node:

1. Add the dependency on the snmp cookbook to your cookbook's metadata. rb file:
mma@laptop:~/chef-repo $ subl cookbooks/my_cookbook/metadata.rb

depends "snmp"

2. Install the dependent cookbooks:
mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT...

3. Edit your cookbook's default recipe:
mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/

default.rb

node.default['snmp'] ['syslocationVirtual'] = "Vagrant VirtualBox"
node.default['snmp'] ['syslocationPhysical'] = "My laptop"
node.default ['snmp'] ['full systemview'] = true

include recipe "snmp"

4. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. . TRUNCATED OUTPUT...

Uploading my cookbook (0.1.0) to:
'https://api.opscode.com:443/organizations/agilewebops’
.. . TRUNCATED OUTPUT...

229

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

5. Run Chef Client on your node:
user@server:~$ sudo chef-client
.. .TRUNCATED OUTPUT...
- restart service service [snmpd]
.. .TRUNCATED OUTPUT...
6. Validate whether you can query snmpd:

user@server:~$ snmpwalk -v 1 localhost -c public
iso.3.6.1.2.1.1.5.0

is0.3.6.1.2.1.1.5.0 = STRING: "vagrant"

First, we need to tell our cookbook that we want to use the snmp cookbook by adding a
depends call to our metadata file. Then, we modify some of the attributes provided by the
snmp cookbook. The attributes are used to fill the /etc/snmp/snmp . conf file, which is
based on the template provided by the snmp cookbook.

The last step is to include the snmp cookbook's default recipe in our own recipe. This will
instruct Chef Client to install snmpd as a service on our node.

You can override ['snmp'] ['community'] and ['snmp'] ['trapcommunity'] as well.

» Find the snmp cookbook on GitHub at https://github.com/atomic-penguin/
cookbook-snmp

Deploying a Nagios monitoring server

Nagios is one of the most widely spread monitoring packages available. Opscode provides
you with a cookbook for installing a Nagios server as well as Nagios clients. It provides ways
to configure service checks, service groups, and so on using data bags instead of manually
editing Nagios configuration files.

230

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Getting ready

Make sure you've a cookbook named my cookbook and run_1list of your node includes
my cookbook as described in the Creating and using cookbooks section in Chapter 1,
Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including the nagios cookbook:
mma@laptop:~/chef-repo $ subl Berksfile
cookbook 'nagios'

Install the nagios cookbook:
mma@laptop:~/chef-repo $ berks install --path cookbooks/

Using nagios (4.1.4)
... TRUNCATED OUTPUT...

Upload the nagios cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

... TRUNCATED OUTPUT...

Uploading nagios (4.1.4) to: 'https://api.opscode.com:443/
organizations/agilewebops'
.. . TRUNCATED OUTPUT...

How to do it...

Let's create a user for the Nagios web interface and set up a Nagios server with a check
for SSH.

1. Create a password hash for your Nagios user:

/ You may want to use an online htpasswd generator like

http://www.htaccesstools.com/htpasswd-generator/

if you don't have htpasswd installed on your system.

mma@laptop:~/chef-repo $ htpasswd -n -s mma

New password:
Re-type new password:
mma : { SHA}AcrFI+aFgjxDLBKctCtzW/LkVxg=

231

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

2.

232

Create a data bag for your Nagjos user, using the password hash from the preceding step:

mma@laptop:~/chef-repo $ subl data bags/users/mma.json

{

n idn . "mma" S
"htpasswd": "{SHA}AcrFI+aFqgqjxDLBKctCtzW/LkVxg=",
"groups": "sysadmin"

}
Upload the user data bag to your Chef Server:

mma@laptop:~/chef-repo $ knife data bag from file users mma.json

Updated data_bag item[users::mma]

Create a data bag for your service definitions:

mma@laptop:~/chef-repo $ knife data bag create nagios_ services
Created data bag item[nagios_service]

Create a role for your Nagios server node:
mma@laptop:~/chef-repo $§ subl roles/monitoring.rb
name "monitoring"

description "Nagios server"

run_list(

"recipe [apt]",
"recipe [nagios: :server]"

default attributes(
"nagios" => {
"server auth method" => "htauth"

}
)

Upload your monitoring role to your Chef Server:

mma@laptop:~/chef-repo $ knife role from file monitoring.rb
Updated Role monitoring!

Apply the monitoring role to your node called server:

mma@laptop:~/chef-repo $ knife node edit server

"run list": [
"role [monitoring]"

saving updated run_list on node server

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

8. Create a data bag item for your first service:

mma@laptop:~/chef-repo $ subl data bags/nagios service/ssh.json

{

nidn . "SSh" S
"hostgroup name": "linux",
"command line": "$SUSER1S$S/check ssh $HOSTADDRESSS"

}

9. Upload your service data bag item:
mma@laptop:~/chef-repo $ knife data bag from file nagios services
ssh.json

Updated data_bag item[nagios_services::ssh]

10. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT...

[2013-06-12T20:50:09+00:00] INFO: Processing service[nagios]
action start (nagios::server line 284)

.. . TRUNCATED OUTPUT...

11. Validate the Nagios web interface by navigating to your node on port 80. Use the
user/password combination you set for your user in the users data bag:

N a i o s"' Current Network Status
g Last Updated: Thu Jun 13 18:11:12 UTC 2013
Updated every 80 seconds

Magice® Core™ 3.2.3 - www.nagios.org
Logged 25 mma

i Home - Motifications are disabled

% Documentation Wiew History For all hosts
iew Notifications For All Hosts

Current Status WView Host Status Detail For All Hosts

S
mE|EE

% Tactical Overview .
& Map Service
Hosts
% Services
Host G
. ;um:a"r:' vagrant Nagios oK 2013-06-13 18:10:11 0d
) ssh oK 2013-068-12 18:10:58 0Od
+ Grid
233

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

First, we set up a user for managing the Nagios web interface. We create a data bag called
users and a data bag item for your user (in the preceding example, the user is called mma.
You will change that to the usernames you desire).

By default, Nagios will set up web access for every user in the sysadmins group.

As we want to use HTTP basic authentication for the Nagios web interface, we need to create
a password hash to put into our users data bag.

To make Nagios use HTTP basic authentication, we need to set the server auth method
attribute to htauth when defining the monitoring role, which we assign to our node.

Then, we configure a service check for SSH using a default template for the Nagios
configuration file. To do so we create a data bag and a data bag item for our service.

Finally, we run Chef Client on our node and validate that we can log in with our user/
password to the Nagios web frontend running on our node and make sure that the SSH
service check is running.

There's more...

You can change that default group to choose users for the Nagios web interface by modifying
the ['nagios'] ['users databag group'] attribute in the role you use to configure your
Nagios server.

You can set up your checks using your own templates and you can configure the contact
groups and so on.

See also

» Find the nagios cookbook on GitHub at: https://github.com/opscode-
cookbooks/nagios.

Building high-availability services using

Heartbeat

If you want to offer any IP-based service with automatic failover to provide high availability
(HA), you can use Heartbeat to create an HA cluster.

Heartbeat will run on two or more nodes and ensure that the IP address you chose to make
highly available will switch to a working node, if one of them goes down. That way, you have a
failover IP address, which is guaranteed to reach a running host as long as there is one left.

Let's have a look at how to install Heartbeat on your nodes and configure it with a failover
IP address.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Getting ready

Make sure you've a cookbook called my cookbook and run_ 1list of all the nodes you want
to add to your HA cluster including my cookbook as described in the Creating and using
cookbooks section in Chapter 1, Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

How to do it...

Let's use the community-provided heartbeat cookbook and configure it to work with
our nodes:

1. Edit your cookbook's metadata.rb to add the dependency on the heartbeat
cookbook:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

depends "heartbeat"

2. Install your cookbooks dependencies:
mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT...

3. Edit your cookbook's default recipe, replacing 192.168.0.100 with the IP address
that should be highly available (your failover IP address) and eth1 with the network
interface you want to use:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

include recipe "heartbeat"

heartbeat "heartbeat" do
authkeys "MySecrectAuthPassword"
autojoin "none"
warntime 5
deadtime 15

235

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

initdead 60
keepalive 2
logfacility "syslog"
interface "ethl™"
mode "bcast"

udpport 694

auto failback true

resources "192.168.0.100"

search "name:ha*"
end

4. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. .TRUNCATED OUTPUT. ..

Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizations/agilewebops'

.. .TRUNCATED OUTPUT. ..

5. Run Chef Client on both nodes:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT. ..
[2013-06-14T20:02:26+00:00] INFO: service[heartbeat] restarted
.. .TRUNCATED OUTPUT. ..

6. Validate that your first node holds the failover IP address:

user@hal:~$ cl status rscstatus -m
This node is holding all resources.

7. Validate that your second node does not hold the failover IP address:

user@ha2:~$ cl status rscstatus -m
This node is holding local resources.

8. Stop the Heartbeat service on your first node and validate that the failover IP address
moves to your second node:

user@hal:~$ sudo service hartbeat stop

user@ha2:~$ cl status rscstatus -m

This node is holding all resources.

236

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The heartbeat cookbook installs the Heartbeat service on all your nodes. In this example,
we assume that your hostnames are hal, ha2, and so on.

Then, we need to configure our HA-cluster. In the preceding example, we do this within our recipe.

First, you need to define a password. The nodes will use this password to authenticate
themselves to each other.

Setting autojoin to none will make it impossible that new nodes get added outside of your
Chef Client runs.

Next, we set the timeouts to tell Heartbeat when to act, if something seems wrong. The
timeouts are given in seconds.

In the preceding example, we ask Heartbeat to use the broadcast method on the network
interface ethi.

resources is your failover IP address. This IP address will be highly available in your setup.

The search call contains the query to find all the nodes to include in the Heartbeat setup.
In our example, we search for nodes having their name starting with ha.

After uploading all cookbooks and running Chef Client, we can verify our setup by querying
the Heartbeat status on both the nodes.

By stopping the Heartbeat service on the node currently having the failover IP address
assigned to it, the second node will take over automatically.

There's more...

You can configure the Heartbeat by setting attributes in a role as well. In this case, it would
make sense to set the search attribute to find all the nodes having the role.

See also

» Find the heartbeat cookbook on GitHub at https://github.com/opscode-
cookbooks/heartbeat

» Read more about how to configure heartbeat at http://www.linux-ha.org/
doc/users-guide/ creating an initial heartbeat configuration.
html

» Find the complete reference of the Heartbeat configuration file at http://linux-
ha.org/wiki/Ha.cf

237

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

Using HAProxy to load-balance multiple web

servers

You've a successful website and it is time to scale out to multiple web servers to
support it. HAProxy is a very fast and reliable load-balancer and proxy for TCP and
HTTP-based applications.

You can put it in front of your web servers and let it distribute the load. If you configure it
on a HA cluster using Heartbeat (see the Building high-availability services using Heartbeat
section), you have a fully high-availability solution available.

Getting ready

Make sure you've at least one node registered at your Chef Server having the role web
server in its run list. The following example will set up HAProxy so that it routes all requests
to all your nodes having the web_server role.

Make sure you've a cookbook called my cookbook and run_1list of your node includes
my cookbook as described in the Creating and using cookbooks section in Chapter 1, Chef
Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

How to do it...

Let's see how to set up a simple HAProxy balancing to all nodes having the web_server role:

1. Edit your cookbook's metadata. rb:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

depends "haproxy"
2. Install your cookbooks dependencies:

mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT...

238

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

3. Edit your cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

node.default ['haproxy'] ['httpchk'] = true
node.default ['haproxy'] ['x_forwarded for'] = true
node.default ['haproxy'] ['app_server_role']

"web_server"

include_recipe "haproxy::app_ lb"

4. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. .TRUNCATED OUTPUT...
Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/

organizations/agilewebops'
.. .TRUNCATED OUTPUT...

5. Run Chef Client on your node:
user@server:~$ sudo chef-client
.. .TRUNCATED OUTPUT...

[2013-06-16T18:57:07+00:00] INFO: service[haproxy] reloaded
.. .TRUNCATED OUTPUT...

6. Validate that the HAProxy admin interface is running on your node:

HAProxy version 1.4.18, released 2011/09/16
Statistics Report for pid 2050

= General process information

id = 2050 #1,nb 1 active UP backup UP
Epﬂ:ne =0‘}%’ﬁ§iﬁfﬂag nbprec = 1) active UP, going down || backup UP, gaing dawn
system limits: memmax = unlimited; ulimit-n = B206 active DOWN, going up backup DOWN, going up

maxsock = B208; maxconn = 4005; maxpipes =0 active ar backup DOWN not checked
cumant conns = 1; curent pipes = 0/0

Running tasks: 1/3 active or backup DOWN for maintenance [MAINT)
MNote: UP with load-balancing disabled is reported as "MOLB".

Frantend

servers-hitp

Backend 0 0 0 1 0 1 0 2 o 218| 424 0 0 2 a 0 0

239

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

First, we download the haproxy cookbook provided by Opscode.

Then, we change some of the default values: setting ht tpchk to true makes sure that
HAProxy takes backend servers out of the cluster, if they don't respond anymore.

The x_forwarded for attribute tells HAProxy to set the X-Forwarded-For HTTP header. It will
contain the client IP address. If you don't set that header, your web servers will only see the IP
address of your HAProxy server in their access logs instead of your client's IP addresses. This
would make it very difficult to debug problems with your web applications.

The third attribute that we change is app_server role. You can set whatever role your
backend application servers have. The haproxy cookbook will include every node (using its
ipaddress node attribute as returned by Ohai) having this role into the cluster.

After overriding those attributes, we run the app_1b recipe from the haproxy cookbook. The
app_ 1b recipe will install HAProxy from a package and run a search for all nodes having the
configured role.

After uploading all cookbooks and running Chef Client, you'll find the HAProxy admin interface
on your node at port 22002. Hitting your HAProxy node at port 80 will forward your
request to one of your web servers.

See also

» The Managing Rails applications section in Chapter 6, Users
and Applications

» Find HAProxy at http://haproxy.lwt.eu/

» Find the haproxy cookbook on GitHub at https://github.com/opscode-
cookbooks/haproxy

Using custom bootstrap scripts

While creating a new node, you need to make sure that it has Chef installed on it. Knife offers
the bootstrap subcommand to connect to a node via Secure Shell (SSH) and run a bootstrap
script on the node.

The bootstrap script should install Chef Client on your node and register the node with your
Chef Server. Opscode comes with a few default bootstrap scripts for various platforms. There
are options to install Chef Client using the Opscode Omnibus installer, packages, or Ruby gems.

If you want to modify the way your Chef Client gets installed on your nodes, you can create and
use custom bootstrap scripts.

Let's have a look how to do this.

240

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Getting ready

Make sure you've a node ready to become a Chef Client and can SSH into it. In the following
example we'll assume that you'll have a username and password to log in to your node.

How to do it...

Let's see how to execute our custom bootstrap script with Knife to install Chef Client on
our node:

1.

Create your basic bootstrap script from one of the existing Opscode scripts:

mma@laptop:~/chef-repo $ curl https://raw.github.com/opscode/chef/
master/lib/chef/knife/bootstrap/chef-full.erb -o bootstrap/my-
chef-full.erb

2013-06-17 13:59:24 (23.4 MB/s) - 'chef-full.erb' saved
[1495/1495]

Edit your custom bootstrap script:

mma@laptop:~/chef-repo $ subl bootstrap/my-chef-full.erb

mkdir -p /etc/chef

cat > /etc/chef/greeting.txt <<'EOS'
Ohai, Chef!
EOS

Bootstrap your node using your modified custom bootstrap script. Replace
192.168.0.100 with the IP address of your node and user with your SSH
username:

mma@laptop:~/chef-repo $ knife bootstrap 192.168.0.100 -x user
--template-file bootstrap/my-chef-full.erb --sudo

192.168.0.100 [2013-06-17T11:54:27+00:00] WARN: Node bootstrapped
has an empty run list.

Validate the content of the generated file:

user@server:~$ cat /etc/chef/greeting.txt

Ohai, Chef!

241

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

The chef-full.erb bootstrap script uses the Omnibus installer to install Chef Client and
all its dependencies on your node. It comes packaged with all dependencies so that you don't
need to install a separate Ruby or additional gems on your node.

First, we download the bootstrap script coming as part of Chef. Then, we customize it as we
like. Our example of putting an additional text file is trivial, so feel free to change it to whatever
you need.

After changing our custom bootstrap script, we're only one command away from a fully
bootstrapped Chef node.

| If you want to bootstrap a virtual machine you started with Vagrant for
% testing your bootstrap script, you might need to use 1localhost as
i the node's IP address, and add -p 2222 to your command line to tell
knife to connect through the forwarded SSH port of your VM.

There's more...

If you already know the role your node should play or which recipes you want to run on your
node, you can add a run list to your bootstrapping call:

mma@laptop:~/chef-repo $ knife bootstrap 192.168.0.100 -x user
--template-file bootstrap/my-chef-full.erb --sudo -r 'role[web server]'

Here, we added the role web_server to the run list of the node using the -r parameter.

See also

» Read more about bootstrapping nodes with Knife at: http://docs.opscode.com/
knife bootstrap.html

» Find the chef-full bootstrap script here: https://github.com/opscode/
chef/blob/master/lib/chef/knife/bootstrap/chef-full.erb

Managing firewalls with iptables

Securing your servers is very important. One basic way of shutting down quite a few attack
vectors is running a firewall on your nodes. The firewall will make sure that only those network
connections are accepted, which hit the services you decide to allow.

On Ubuntu, iptables is one of the tools available for the job. Let's see how to set it up to make
your servers more secure.

242

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Getting ready

Make sure you've a cookbook called my cookbook and run_1ist of your node includes
my cookbook as described in the Creating and using cookbooks section in Chapter 1,
Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

How to do it...

Let's set up iptables so that it blocks all network connections to your node and only accepts
connections to the SSH and HTTP ports:

1. Edit your cookbook's metadata. rb:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

depends "iptables"

2. Install your cookbook's dependencies:
mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT...

3. Edit your own cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

include recipe "iptables™"
iptables rule "ssh"
iptables rule "http"

execute "ensure iptables is activated" do
command "/usr/sbin/rebuild-iptables"
creates "/etc/iptables/general"
action :run

end

243

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

4.

Create a template for the SSH rule:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/templates/

default/ssh.erb

Allow ssh access to default port
-j ACCEPT

-A FWR -p tcp -m tcp --dport 22

Create a template for the HTTP rule:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/templates/

default/http.erb

-A FWR -p tcp -m tcp --dport 80 -j ACCEPT

Upload the modified cookbook to the Chef Server:

mma@laptop:~/chef-repo $ berks upload

.. . TRUNCATED OUTPUT. ..
Uploading my cookbook (0.1.0)
organizationg/agilewebops'

.. . TRUNCATED OUTPUT. ..

to:

Run Chef Client on your node:

user@server:~$ sudo chef-client

.. . TRUNCATED OUTPUT...
[2013-06-17T19:26:25+00:00]
successfully

.. . TRUNCATED OUTPUT...

INFO:

'https://api.opscode.com:443/

execute [rebuild-iptables]

Validate that the iptables rules have been loaded:

user@server:~$ sudo iptables -L

Chain FWR (1 references)
target prot opt source
ACCEPT all -- anywhere
ACCEPT all -- anywhere
state RELATED, ESTABLISHED
ACCEPT icmp -- anywhere
ACCEPT tep -- anywhere
dpt:http

ACCEPT tep -- anywhere
dpt:ssh

REJECT tecp -- anywhere

tcpflags: SYN,RST,ACK/SYN reject-with icmp-port-unreachable

REJECT udp -- anywhere
reject-with icmp-port-unreachable

destination
anywhere
anywhere

anywhere
anywhere

anywhere

anywhere

anywhere

ran

tep

tep

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

First, we download the iptables cookbook from the Opscode community site.

Then, we modify our own cookbook to install iptables. This will set it up in such a way that
all network connections get refused by default.

To be able to access the node via SSH afterwards, we need to open up port 22.To do so,
we create the template my cookbook/templates/default/ssh.erb and include the
required iptables rule.

We do the same for port 80 to accept HTTP traffic to our node.

The iptables cookbook will drop off those templates in /etc/iptables.d and configure
iptables so that it loads all those files on startup. It installs the script rebuild-iptables
to do that.

Finally, we make sure that iptables has been activated. We add this step because | saw that
the iptables cookbook ran, but did not load all the rules. That is fatal because you deem
your box secured whereas in fact it is wide open.

After doing all our modifications, we upload all cookbooks and run Chef Client on our node.

We can validate whether iptables is running by listing all the active rules using the -L
parameter to an iptables call on our node. You see the ACCEPT lines for ports http and
ssh. That's a good sign. The last two lines shut down all other services.

See also

» Find the iptables cookbook on GitHub at: https://github.com/opscode-
cookbooks/iptables.

Managing fail2ban to ban malicious IP

addresses

Brute-force attacks against any of your password-protected services like SSH or break-in
attempts against your web server are happening frequently for every public-facing system.

The fail2ban tool monitors your logfiles and acts as soon as it discovers malicious behavior
in the way you told it to. One common use case is blocking malicious IP addresses by
establishing firewall rules on the fly using iptables.

In this section, we'll have a look at how to set up a basic protection for SSH using fail2ban
and iptables.

245

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

Getting ready

Make sure you've a cookbook nhamed my cookbook and run_1ist of your node includes
my_cookbook as described in the Creating and using cookbooks section in Chapterl,
Chef Infrastructure.

Make sure you've the berkshelf gem installed as described in the Managing cookbook
dependencies with Berkshelf section in Chapter 1, Chef Infrastructure.

Create your Berksfile in your Chef repository including my cookbook:
mma@laptop:~/chef-repo $ subl Berksfile

cookbook 'my cookbook', path: './cookbooks/my cookbook'

How to do it...

Let's install fail2ban and create a local configuration enabling one additional rule to
protect your node against SSH DDos attacks. This approach is easily extensible for various
additional services.

1. Edit your cookbook's metadata. rb:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

depends "iptables"
depends "fail2ban"

2. Install your cookbook's dependencies:
mma@laptop:~/chef-repo $ berks install

Using my_ cookbook (0.1.0) at './cookbooks/my cookbook'
.. . TRUNCATED OUTPUT...

3. Edit your own cookbook's default recipe:

mma@laptop:~/chef-repo $ subl cookbooks/my cookbook/recipes/
default.rb

include recipe "iptables"
iptables rule "ssh"

include recipe "fail2ban"

file "/etc/fail2ban/jail.local" do
content <<-EOS
[ssh-ddos]

246

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

enabled = true

port = ssh

filter = sshd-ddos

logpath = /var/log/auth.log

maxretry = 6
EOS
owner "root"
group "root"
mode 0644
notifies :restart, "service[fail2ban]"
end

4. Upload the modified cookbook to the Chef Server:
mma@laptop:~/chef-repo $ berks upload

.. .TRUNCATED OUTPUT...

Uploading my cookbook (0.1.0) to: 'https://api.opscode.com:443/
organizations/agilewebops'
... TRUNCATED OUTPUT. ..

5. Run Chef Client on your node:

user@server:~$ sudo chef-client

.. .TRUNCATED OUTPUT. ..
[2013-06-19T12:25:40+00:00] INFO: servicel[fail2ban] started
.. .TRUNCATED OUTPUT. ..

6. Validate, that your local fail2ban configuration has been created:

user@server:~$ cat /etc/fail2ban/jail.local

[ssh-ddos]

enabled = true
.. .TRUNCATED OUTPUT. ..

First, we need to install iptables because we want fail2ban to create iptables rules to
block malicious IP addresses. Then, we pull the fail2ban cookbook down into our
local Chef repository.

In our cookbook's default recipe, we install iptables and fail2ban.

247

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

Then, we create a custom configuration for fail2ban to enable the ssh-ddos protection. fail2ban
requires you to put your customizations into a file called /etc/fail2ban/jail.local.

It first loads /etc/fail2ban/jail.conf and then loads jail.local overriding the
jail.conf settings. That way, setting enabled=true for the ssh-ddos section in jail.
local will enable that section after restarting the fail2ban service.

There's more...

If you want to protect more services, just keep copying the desired sections from the /
etc/fail2ban/jail.conf file into your cookbook, changing enabled=false to
enabled=true on the way and tweaking any other parameters you want to change.

If you've a bigger set of settings, you might want to create a file in my cookbook/files/
default and use this instead of adding it to the string in your recipe.

See also

» The Managing firewalls with iptables section

» Find the fail2ban manual at: http://www.fail2ban.org/wiki/index.php/
MANUAL 0 8

» Find the fail2ban cookbook on GitHub at https://github.com/opscode-
cookbooks/fail2ban

Managing Amazon EC2 instances

Amazon Web Services (AWS) include the Amazon Elastic Compute Cloud (EC2) where you
can start virtual machines running in the cloud. In this section, we will use Chef to start a new
EC2 instance and bootstrap Chef Client on it.

Getting ready

Make sure you have an account at AWS.

To be able to manage EC2 instances with Knife, you need security credentials. It's a good
idea to create a new user in the AWS Management Console using AWS Identity and Access
Management (IAM) by following Amazon's documentation: http://docs.aws.amazon.
com/IAM/latest/UserGuide/Using SettingUpUser.html

Note down your new user's AWS Access Key ID and AWS Secret Access Key.

248

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Additionally, you will need to create an SSH key pair and download the private key to enable
Knife to access your node via SSH.

To create a key pair, log in to AWS Console and navigate to EC2 service (https://
console.aws.amazon.com/ec2/home). Then, choose Key Pairs under the Network &
Security section in the navigation. Click on the Create Key Pair button and enter something
like aws knife key asthe name. Store the downloaded aws knife key.pem private
key in your ~/ . ssh directory.

How to do it...

Let's use the knife-ec2 plugin to instantiate and bootstrap an EC2 node with Ubuntu 12.04:

1.

Install the knife-ec2 plugin to be able to use the AWS API via Knife:
mma@laptop:~/chef-repo $ gem install knife-ec2

Use /opt/chef/embedded/bin/gem install

knife-ec2 if you've installed Chef on your local workstation

using the Omnibus installer.

Create your EC2 instance:

You need to look up the most current AMI ID for your node at
: http://cloud-images.ubuntu.com/locator/ec2/
% and use it in your knife call instead of ami-cf5e2ba6. See
the following How it works... section for more details about
how to identify the correct AMI.

mma@laptop:~/chef-repo $ knife ec2 server create -d 'chef-full'

-r 'recipelapt]' -S 'aws knife key' -x ubuntu -i ~/.ssh/aws_knife
key.pem -I 'ami-cf5e2ba6é' -f 'ml.small' -A 'Your AWS Access Key
ID' -K 'Your AWS Secret Access Key'

Instance ID: i-70165011
Flavor: ml.small

Image: ami-cf5e2ba6

Region: us-east-1
Availability Zone: us-east-1b
Security Groups: default
Tags: {"Name"=>"1-70165011"}
SSH Key: aws_knife key

Waiting for server.......
Public DNS Name: ec2-54-226-232-107.compute-1.amazonaws.com

249

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

Public IP Address: 54.226.232.107
Private DNS Name: ip-10-191-185-138.ec2.internal
Private IP Address: 10.191.185.138

Waiting for sshd...done

Bootstrapping Chef on ec2-54-226-232-107.compute-1.amazonaws.com
.. . TRUNCATED OUTPUT...

ec2-50-17-112-73.compute-1.amazonaws.com Chef Client finished, 3
resources updated

.. .TRUNCATED OUTPUT. ..

Log in to your new EC2 instance:

mma@laptop:~/chef-repo $ ssh -i ~/.ssh/aws knife key.pem ubuntu@
ec2-54-226-232-107.compute-1.amazonaws.com

First, we need to install the EC2 plugin for Knife. It comes as a Ruby gem.

Then, we need to make a few decisions on which type of EC2 instance we want to launch and
where it should run:

1.

Decide on the node size. You'll find a complete list of all available instance types at:
http://aws.amazon.com/ec2/instance-types/. In this example, we'll just
spin up a small instance (m1.small).

Choose the Availability Zone to run your node in. We're using the AWS default zone
US East (N. Virginia) in this example. The shorthand name for it is us-east- 1.

Find the correct Amazon Machine Image (AMI) by navigating to http://cloud-
images.ubuntu.com/locator/ec2/ and selecting the desired one based on the
Availability Zone, the Ubuntu version, the CPU architecture, and the desired storage
mode. In this example, we'll use the 64-bit version of Ubuntu 12.04 LTS code named
precise, using instance-store. At the time of this writing, the most current version was
ami-cf5e2basb.

As soon as you know what you want to achieve, it's time to construct the launch command. It
consists of the following parts:

The knife-ec2 plugin adds a few subcommands to Knife. We use the ec2 server
create subcommand to start a new EC2 instance.

The initial parameters we use are dealing with the desired Chef Client setup:

4

250

-d 'chef-full' asks Knife to use the bootstrap script for the Omnibus installer. It is
described in more detail in the Using custom bootstrap scripts section in this chapter.
-r 'recipe [apt] ' defines the run list in this case we install and run the apt
cookbook to automatically update the package cache during the first Chef Client run.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7
The second group of parameters deals with SSH access to the newly created instance:

» -S 'aws_knife key' lists the name of the SSH key pair you want to use to access
the new node. This is the name you have defined in the AWS console while creating
the SSH key pair.

» -x ubuntu is the SSH username. If you are using a default Ubuntu AMI, it is usually
ubuntu

» -1 ~/.ssh/aws_knife key.pemis your private SSH key, which you downloaded
after creating your SSH key pair in the AWS console.

The third set of parameters deals with the AWS API:

» -I 'ami-cf5e2baé' namesthe AMI ID. You need to take the latest one as
described in the preceding section.

» -f 'ml.small' isthe instance type as described in the preceding point.
» -A 'Your AWS Access Key ID' isthe ID of your IAM user's AWS Access Key.

» -K 'Your AWS Secret Access Key' isthe secret part of your IAM user's AWS
Access Key.

The AWS Access Key ID and AWS Secret Access Key are the security
credentials of a user who is allowed to use the AWS API. You create
such users in the IAM section of the AWS management console.

a The SSH key pair is there for securing the access to your nodes. By
et defining the name of the key pair in the Knife command, the public
key of your SSH key pair will be installed for the SSH user on your
new node. You create such SSH key pairs in the EC2 section of the
b AWS management console. -

The command will now start a new EC2 instance via the AWS API using your AWS credentials.
Then it will log in using the given SSH user and key and run the given bootstrap script on your
new node to make it a working Chef Client and register it with your Chef Server.

There's more...

Instead of adding your AWS credentials to the command line (which is unsafe as they will end
up in your shell history), you can put them into your knife. rb:

knife[:aws_access key id] = "Your AWS Access Key ID"
knife[:aws_secret access key] = "Your AWS Secret Access Key"

Instead of hard coding it there, you can even use environment variables to configure knife:

knife[:aws_access key id] = ENV['AWS ACCESS KEY ID']
knife[:aws_secret access key] = ENV['AWS SECRET ACCESS KEY']

251

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

The knife-ec2 plugin offers additional subcommands. You can list them by just typing the
following command line:

mma@laptop:~/chef-repo $ knife ec2

** EC2 COMMANDS **

knife ec2 flavor list (optiomns)

knife ec2 instance data (options)

knife ec2 server create (options)

knife ec2 server delete SERVER [SERVER] (options)
knife ec2 server list (optiomns)

» The Using custom Knife plugins section in Chapter 1, Chef Infrastructure
» The Using custom bootstrap scripts section

» Find the knife-ec2 plugin on GitHub at https://github.com/opscode/
knife-ec2

Loading your Chef infrastructure from a file

with spiceweasel and Knife

Having all your cookbooks, roles, and data bags as code under version control is great, but
having your repository alone is not enough to be able to spin up your complete environment
from scratch again. Starting from the repository alone, you will need to spin up nodes, upload
cookbooks to your Chef Server, and recreate data bags there.

Especially when you are using a cloud provider for spinning up your nodes, it would be great
if you could spin up your nodes automatically and hook them up to your freshly created and
filled Chef Server.

The Spiceweasel tool lets you define all your cookbooks, data bags, and nodes and generates
all necessary knife commands to recreate your complete environment including spinning up
nodes and populating your empty Chef Server or organization on Hosted Chef.

Let's see how to dump our current repository and how to recreate our infrastructure with it.

Getting ready

Make sure you are able to spin up Amazon EC2 instances using Knife as described in the
Managing Amazon EC2 instances section.

252

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

How to do it...

Let's use Spiceweasel to dump our current configuration, add some EC2 nodes, and recreate
our complete environment:

1.

Install the spiceweasel Ruby gem:

mma@laptop:~/chef-repo $ gem install spiceweasel

Fetching: ridley-0.12.4.gem (100%)
Fetching: berkshelf-1.4.6.gem (100%)
Fetching: spiceweasel-2.4.0.gem (100%)
Successfully installed ridley-0.12.4
Successfully installed berkshelf-1.4.6
Successfully installed spiceweasel-2.4.0
3 gems installed

Let spiceweasel dump your current repository into an infrastructure.yml file:

mma@laptop:~/chef-repo $§ spiceweasel --extractyaml >
infrastructure.yml

Look into your new infrastructure.yml file (the contents depend on the current
state of your Chef repository):

mma@laptop:~/chef-repo $ cat infrastructure.yml

berksfile:
cookbooks :
- my_cookbook:
version: 0.1.0
roles:
- base:
data bags:
- users:
items:

- mma

Print out all Knife commands, which spiceweasel will run:

mma@laptop:~/chef-repo $ spiceweasel infrastructure.yml

berks upload -b ./Berksfile

knife cookbook upload my cookbook

knife role from file base.rb

knife data bag create users

knife data bag from file users mma.json

253

www.it-ebooks.info

http://www.it-ebooks.info/

Servers and Cloud Infrastructure

5. Let Spiceweasel run the Knife commands as follows:
mma@laptop:~/chef-repo $ spiceweasel -e infrastructure.yml
Uploading my cookbook [0.1.0]

Updated Role base!

Data bag users already exists
Updated data bag item[users::mma]

The Spiceweasel scans your local Chef repository and notes down everything as a YAML file.

When reading a given YAML file, it generates Knife commands to make the contents of the
Chef repository available on the Chef Server.

There's more...

You can define nodes in your infrastructure.yml file: either local nodes, which
Spiceweasel will then bootstrap, or nodes for cloud providers. Spiceweasel will then
create knife <providers> server create commands for each specified node.

Using nodes in your infrastructure.yml file enables you to recreate a complete
environment including all the necessary VMs using Spiceweasel.

You can use Spiceweasel to delete your setup from your Chef Server by using the --delete
flag when running Spiceweasel:

mma@laptop:~/chef-repo $ spiceweasel --delete infrastructure.yml

See also

» You find the source code of Spiceweasel on GitHub at https://github.com/
mattray/spiceweasel

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

-i parameter 51
-1 option 81

A

Amazon Elastic Compute Cloud (EC2) 248
Amazon Machine Image (AMI) 250
Amazon Web Services (AWS) 248
application wrapper cookbooks
used, for extending community cookbooks
118-120
apt cookbook 168
apt_repository resource 169
arbitrary node attributes
searching for 139
arguments
passing, to shell commands 132, 133
attribute files
URL 137
attributes
files, values calculating in 100
overriding 134-137
URL 101
using, to dynamically configuring
recipes 98-100
Availability Zone 250
AWS Identity and Access
Management (IAM) 248

backend variable 166
bash resource 171,174

Index

Bento Box 18
Berkshelf
cookbook dependencies, managing 25-28
source code, URL 29
URL 29
Blueprint
about 224, 226
installing 224, 225
source code, URL 227
URL 227
used, for creating cookbook from running
syatem 224
blueprint show command 226
Boolean operators
using, in search 140
bootstrap scripts
custom bootstrap scripts, using 240-242

C

Capistrano
URL 177
Chef
handler 89
installing, on workstation 11, 12
styling 96
styling guideline, examples 96, 97
Chef::Recipe class 110
Chef Client
about 8
running, as daemon 50, 51
chef-client cookbook 123
Chef Client run
debugging 79, 81
results, inspecting 81-83

www.it-ebooks.info

http://www.it-ebooks.info/

Chef console (chef-shell)

using 51-54
Chef cookbooks. See cookbook
chef-full bootstrap script

URL 242
chef-full.erb bootstrap script 242
chef_gem resource 108
chef_handler cookbook 89
chef_handler Light Weight Resource Provider

(LWRP) 91

chef_handler provider 94
Chef handlers 91
Chef infrastructure

loading from file, knife used 252-254

loading from file, spiceweasel used 252, 253
Chef run

URL 76
chef_run variable 64
Chef server

about 8

files inspecting, with knife 21, 22

node, deleting 39, 41
Chef Solo

running 41-43
ChefSpec

repository on GitHub, URL 66

TDD, for cookbook 61-65
ChefSpec::ChefRunner object 64
command

running, on file updation 173, 174

running, on multiple machines 227, 228
command parameter 133
community cookbook

extending, application wrapper cookbooks

used 118-120

community handlers

URL 89

using 89-91
conditional execution

URL 159

used, for making recipes 157, 158
configuration files

creating, templates used 162-164
Configuration Management 101, 162
continuous integration (Cl) 60
converge_by block 117

256

cookbook
about 56
affected nodes, displaying before updation
73-75
creating 19, 20
creating from running system, Blueprint used
224-226
dependencies, defining 23, 24
dependencies, managing with
Berkshelf 25-29
downloading as vendor branches, with git
repository 29-33
freezing 49, 50
integrating as vendor branches, with git
repository 29-33
integration testing, Test Kitchen used 67-72
library, creating 109
ntp cookbook, installing 56
operating systems list, finding 155-157
problems, flagging 58-60
TDD, ChefSpec used 61-65
testing 56, 57
using 19, 20
Cron job 51
cross-platform cookbooks
writing 152, 153

D

daemon
Chef Client, running as 50, 51
data_bag_item method 149
data bags
users, creating from 184-187
using 140-143
data bag values
accessing, from external scripts 148-150
definition
creating 111-113
URL 113
Diffing cookbooks
with knife 87, 88
directory resource
URL 180
directory trees
distributing 175, 176

www.it-ebooks.info

http://www.it-ebooks.info/

dock_preferences recipe
URL 221
Domain Specific Language (DSL) 17, 96, 104,
105

E

enabled variable 166
encrypted data bag items
accessing, from recipes 147
private key file, using 147
using 144-146
environment
information, getting 150, 151
manipulating, knife used 46-48
using 45
environment variables
setting 130, 131
Erubis 103
exceptions
in recipes, logging 84-86
in recipes, raising 84-86
execute resource 131
exit!(msg) method 86

F

fail2ban
managing, to ban malicious IP addresses
245, 246
on Github, URL 248
URL 248
fatal! method
URL 87
Fauxhai
about 64
URL 66
files
distributing, target platform based 180, 181
old files, cleaning up 177-179
specificity, URL 181
firewalls
managing, iptables used 242-245
Flowdock 91
Foodcritic 58, 59
foodcritic -C 59

Free Ruler recipe
URL 221
fully qualified domain name (FQDN) 181

G

gem_package resource 104,108
Git
about 9
basics 11
Git branch
organizations based on current Git branch,
changing 36-39
GitHub
nginx source recipe, URL 172
pages, URL 177
URL 11

H

HAProxy
using, to load-balance multiple web servers
238-240
heartbeat
used, for building high-availability services
234-237
heartbeat cookbook 237
high-availability services
building, heartbeat used 234-237
hooks 142
Hosted Chef platform
about 8
using 12-15

initialize method 94
interactive Ruby (IRB) session 53, 156
IP addresses

malicious IP addresses banning, fail2ban

used 245-248

iptables

about 121

used, for managing firewalls 242-245
iptables cookbook

on GitHub, URL 245
it-block 64

251

www.it-ebooks.info

http://www.it-ebooks.info/

J
JSON file 142

K

kitchen-vagrant gem 70, 72
Knife
about 8
Diff-ing cookbooks 87, 88
used for inspecting files, with Chef server 21,
22
knife cookbook test 57
knife diff
URL 88
knife-ec2 plugin
about 124, 249, 250
on GithHub, URL 252
knife-essentials gem 88
Knife plugins
creating 124-128
custom knife plugins, using 34, 35
URL 128
knife preflight command 73-75
knife show sub-command 22
knife syntax 228

L

Librarian lives
URL 221
library
creating 108
using, in cookbook 109
Light Weight Resource Provider. See LWRP
LWRP
about 113, 186
building 114-117
URL 117

Mina
URL 177
Minitest 67, 69
multiple web servers
load-balancing, HAProxy used 238-240

258

my_cookbook 130
my_handlers cookbook 90
MySQL databases

creating 204-207

Nagios monitoring server
deploying 230-234
name_args attribute 127
new_resource attribute 116
nginx
managing 196-199
sites, creating 200-203
node
deleting, from Chef server 39, 40
finding, knife used 139
finding, search used 137-139
run list, overriding 75, 76
node.json file 41
NTP
managing 194, 195
ntp cookbook
installing 56

0

Ohai plugins
creating 121-124
distributing, URL 124
source code, URL 124
URL 124
Opscode 9
organization
based on current Git branch, changing 37, 38

P

packages
installing, from third-party repository 167-170
passwordless sudo
enabling 191-193
preflight command 74
private key file
using 147

www.it-ebooks.info

http://www.it-ebooks.info/

README
URL 65
recipe
exceptions, logging 84-86
exceptions, raising 84-86
single recipe, running on node 76
remote_directory resource
about 175, 176
URL 177,180
remote_file resource 172,174
report handlers
using 89, 91
resources method 120
roles
about 44
creating 44, 45
URL 137
RSpec framework
about 61
unning 65
RSpec website
URL 66
Ruby
in Chef Shell 105, 107
using, in templates for conditionals 164-166
using, in templates for iterations 164-166
ruby -¢ 57
Ruby gems 107,108
Ruby on Rails applications
managing 210-214
Ruby Style Guide
URL 96
runit cookbook 153
run_status 93

S

s3tools repository 169
search
Boolean operators, using 140
for arbitrary node attributes 139
URL 140
using, to find data bag items 143, 144
using, to find nodes 137-139
Secure Shell Daemon (SSHD)
securing 188-191

Secure Shell (SSH) 240
Semantic Versioning

URL 98
services

monitoring, SNMP used 228-230
shell script

about 226
SNMP

setting up, for external monitoring

services 228, 229

software

installing, from source 170-172
Soloist

URL 221
source

software, installing from 170-172
spiceweasel

on GithHub, URL 254
sprout

URL 221
ssh DDos attacks 246
stracktrace file 83
strainer

URL 61

T

target platform based files
distributing 180, 181
TDD 61
templates
about 101, 103
URL 104, 164
Test Kitchen
cookbook, integration testing 67-72
source code on GitHub, URL 72
URL 72
test-kitchen Ruby gem 70
third-party repository
package, installing from 167-170

U

Unix environment variables
URL 132
users
creating 204, 205
creating, from data bags 184-187

259

www.it-ebooks.info

http://www.it-ebooks.info/

'}

Vagrant
URL 19
used, for managing virtual machines 15-18
Vagrant Berkshelf plugin source code
URL 29
Vagrantfile 17
validators 14
Varnish
managing 215-217
version attribute 135
version control
using 8-10
version control system (VCS) 8
virtual machines
managing, with Vagrant 15-18
Virtual Private Network (VPN) 190

260

w

why-run mode
ntp cookbook, running 77, 78
using 77-79
WordPress sites
managing 207-209
workstation
Chef, installingon 11, 12
managing 218-221

X

x_forwarded_for attribute 240

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Chef Infrastructure Automation
Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should

be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Raspberry Pi Home
Automation with Arduino

Raspberry Pi Home

Automation with Arduino

ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects for
the Raspberry Pil

1. Learn how to dynamically adjust your living
environment with detailed step-by-step examples

2. Discover how you can utilize the combined power
of the Raspberry Pi and Arduino for your own
projects

3. Revolutionize the way you interact with your home
on a daily basis

Guiek &

Windows Server 2012
Automation with PowerShell
Cookbook

Ed Goad

[PACKT] enterprise L

Windows Server 2012
Automation with PowerShell

Cookbook

ISBN: 978-1-84968-946-5 Paperback: 372 pages

Over 110 recipes to automate Windows Server
administrative tasks using PowerShell

1. Extend the capabilities of your Windows
environment

2. Improve the process reliability by using well
defined PowerShell scripts

3. Full of examples, scripts, and real-world best
practices

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Instant Autolt Scripting

ISBN: 978-1-78216-578-1 Paperback: 60 pages

Learn how to master Autolt, an open source Basic-like
programming language for automating Windows GUI

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2. Read and write apps instantly using the Autolt
freeware programming language

Short | Fast | Focused

Autolt Scripting

3. Execute or compile scripts and share your own
Unic software

4. Organise and automate mundane and repetitive
tasks

Emilio Aristides de Fez Laso

Oracle SOA Infrastructure
Implementation Certification
Handbook (1Z20-451)

ISBN: 978-1-84968-340-1 Paperback: 372 pages

Successfully ace the 1Z0-451 Oracle SOA Foundation
Practitioner exam with this hands on certification guide

Ovacls SO Tish 1. Successfully clear the first stepping stone towards
lrr;'[a)fe?nentatigr:acs;:?i?'ltgz:gon becoming an Oracle Service Oriented Architecture
Handbook (120-451) Infrastructure Implementation Certified Expert

2. The only book available to guide you through the
prescribed syllabus for the 1Z0-451 Oracle SOA
Kathiravan Udayakumar ~ [11(|] enterprize® Foundation Practitioner exam

3. Learn from a range of self-test questions to fully
equip you with the knowledge to pass this exam

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Chef Infrastructure
	Introduction
	Using version control
	Installing Chef on your workstation
	Using the Hosted Chef platform
	Managing virtual machines with Vagrant
	Creating and using cookbooks
	Inspecting files on your Chef Server with Knife
	Defining cookbook dependencies
	Managing cookbook dependencies with Berkshelf
	Downloading and integrating cookbooks as vendor branches into your Git repository
	Using custom Knife plugins
	Changing organizations based on the current Git branch
	Deleting a node from the Chef Server
	Running Chef Solo
	Using roles
	Using environments
	Freezing cookbooks
	Running Chef Client as a daemon
	Using the Chef console (Chef Shell)

	Chapter 2: Evaluating and Troubleshooting Cookbooks and
Chef Runs
	Introduction
	Testing your Chef cookbooks
	Flagging problems in your Chef cookbooks
	Test Driven Development for cookbooks using ChefSpec
	Integration testing your cookbooks with Test Kitchen
	Showing affected nodes before uploading cookbooks
	Overriding a node's run list to execute a single recipe
	Using why-run mode to find out what a recipe might do
	Debugging Chef Client runs
	Inspecting results of your last Chef
Client run
	Raising and logging exceptions in recipes
	Diffing cookbooks with knife
	Using community exception and report handlers
	Creating custom handlers

	Chapter 3: Chef Language
and Style
	Introduction
	Using community Chef style
	Using attributes to dynamically configure recipes
	Using templates
	Mixing plain Ruby with Chef DSL
	Installing Ruby gems and using them in recipes
	Using libraries
	Using definitions
	Creating your own Light Weight Resource Providers (LWRP)
	Extending community cookbooks by using application wrapper cookbooks
	Creating custom Ohai plugins
	Creating custom Knife plugins

	Chapter 4: Writing Better Cookbooks
	Introduction
	Setting environment variables
	Passing arguments to shell commands
	Overriding attributes
	Using search to find nodes
	Using data bags
	Using search to find data bag items
	Using encrypted data bag items
	Accessing data bag values from external scripts
	Getting information about the environment
	Writing cross-platform cookbooks
	Finding the complete list of operating systems you can use in cookbooks
	Making recipes idempotent by using conditional execution

	Chapter 5: Working with Files and Packages
	Introduction
	Creating configuration files using templates
	Using pure Ruby in templates for conditionals and iterations
	Installing packages from a third-party repository
	Installing software from source
	Running a command when a file is updated
	Distributing directory trees
	Cleaning up old files
	Distributing different files based on the target platform

	Chapter 6: Users and Applications
	Introduction
	Creating users from data bags
	Securing the Secure Shell Daemon (SSHD)
	Enabling passwordless sudo
	Managing NTP
	Managing nginx
	Creating nginx sites
	Creating MySQL databases and users
	Managing WordPress sites
	Managing Ruby on Rails applications
	Managing Varnish
	Managing your workstation

	Chapter 7: Servers and Cloud Infrastructure
	Introduction
	Creating cookbooks from a running system with Blueprint
	Running the same command on many machines at once
	Setting up SNMP for external monitoring services
	Deploying a Nagios monitoring server
	Building high-availability services using Heartbeat
	Using HAProxy to load-balance multiple web servers
	Using custom bootstrap scripts
	Managing firewalls with iptables
	Managing fail2ban to ban malicious IP addresses
	Managing Amazon EC2 instances
	Loading your Chef infrastructure from a file with spiceweasel and Knife

	Index

