WEBSITE

o 4pACHE

PACKAGING

B

7

(‘ll“" J])s
“ Isp m
Dby ACE,

///

James\ Turnbull

The Docker Book

James Turnbull

October 8, 2014
Version: v1.2.2 (19946fc)

Website: The Docker Book

http://www.dockerbook.com

[@lolse]

Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical or photocopying, recording, or otherwise, for commercial purposes
without the prior permission of the publisher.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of
this license, visit here.

© Copyright 2014 - James Turnbull <james@lovedthanlost.net >

8-0-9

7809887820203

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:james+thedockerbook@lovedthanlost.net

Contents

Page
List of Figures ix
List of Listings xxii

Foreword

Who is thisbook for?
Credits and Acknowledgments
Technical Reviewers i it

Scott Collier i e e e

JohnFerlito. e e

Paul Nasrat i ittt e e e e e e
Technical Illustrator ittt it
Proofreader e e e
Author e e e e
Conventionsinthebook
Codeand Examples
Colophon e e
Errata e e e e e e e e e e e e
Version e e e e e e e e e

G b~ S Db OWWDNMNNDNRE R =

Chapter 1 Introduction
Introducing Docker e
An easy and lightweight way to model reality
A logical segregationof duties
Fast, efficient development lifecycle
Encourages service orientated architecture

O© 0 0 0 N O

Contents

Docker components 9
Docker clientandserver 9
Dockerimages v ittt 11
Registries i i e e e 11
Containers it it i e e e e e e e 12

What can you use Docker for?., 13

Docker with configuration management 13

Docker's technical components 15

What'sinthebook?, 15

DOCKEI TESOUTCES . « v v v v v e e e e e e e e e e e e e e e e e e e 16

Chapter 2 Installing Docker 18

Requirements e e e 19

Installingon Ubuntu 20
Checking for prerequisites 21
Installing Docker. 23
Dockerand UFW. ittt it e 24

Installing on Red Hatand family 25
Checking for prerequisites 26
Installing Docker. 27
Starting the Docker daemon on the Red Hat family. 28

Boot2Docker installationon OS X 29
Installing Boot2Docker on OS X 30
Setting up Boot2Dockeron OS X 31
Testing Boot2Docker 32

Boot2Docker installation on Windows 32
Installing Boot2Docker on Windows 32
Setting up Boot2Docker on Windows 33
Testing Boot2Docker 34

Using Boot2Docker with thisbook 35

Docker installation script e 37

Binary installation e 38

The Dockerdaemon 38
Configuring the Docker daemon 39
Checking that the Docker daemon is running 40

Version: v1.2.2 (19946fc) ii

Contents

Upgrading Docker 42
Docker user interfaces 42
Summary e e e e 42
Chapter 3 Getting Started with Docker 44
Ensuring Dockerisready e 44
Running our first container 45
Working with our first container 48
Container NamMingt v vt it it e et e e e e e 51
Starting a stopped container 51
Attaching toacontainert nenen.. 52
Creating daemonized containers 53
Seeing what's happening inside our container 54
Inspecting the container's processes 55
Running a process inside a container 56
Stopping a daemonized container 57
Automatic containerrestarts. L L oL 58
Finding out more about our container 59
Deletingacontainer.ttt 61
Summary e e e 61
Chapter 4 Working with Docker images and repositories 62
What is a Dockerimage? 63
Listing Dockerimages. o i it i e e 65
Pulling images 69
Searching forimages 71
Building ourownimages., 72
Creating a Docker Hubaccount 73
Using Docker commit to create images 75
Building images with a Dockerfile 77
Building the image from our Dockerfile 80
What happens if an instruction fails? 83
Dockerfiles and the buildcache. 84
Using the build cache for templating 85
Viewing our new imageottt 86

Version: v1.2.2 (19946fc) iii

Contents

Launching a container from our new image 87
Dockerfile instructions 0. 90
Pushing images tothe Docker Hub 104
Automated Builds L L 106
Deleting animage ot v it i i e e e 112
Running your own Docker registry 115
Running a registry from acontainer 115
Testing the new registry 115
Alternative Indexes 117
Quay . . . o e e 117
Summary e e e e e 117
Chapter 5 Testing with Docker 118
Using Docker to test a staticwebsite 119
An initial Dockerfile for the Sample website 119
Building our Sample website and Nginx image 123
Building containers from our Sample website and Nginx image ... 125
Editing our website o 128
Using Docker to build and test a web application 129
Building our Sinatra application 129
Creating our Sinatra container 130
Building a Redis image and container 133
Connecting to the Redis container 135
Our Redisconnection 139
Linking Docker containers 141
Using our container link to communicate 146
Using Docker for continuous integration 149
Build a Jenkins and Dockerserver 150
Create anew Jenkinsjob. 155
Running our Jenkinsjob, 160
Next steps with our Jenkinsjob. 162
Summary of our Jenkinssetup 162
Multi-configuration Jenkins 163
Create a multi-configurationjob 163
Testing our multi-configurationjob 168

Version: v1.2.2 (19946fc) iv

Summary of our multi-configuration Jenkins
Other alternatives
Drone e
Shippable L
Summary e e e e e e e e e e e e

Chapter 6 Building services with Docker

Building our first application
The Jekyll baseimage
Building the Jekyll baseimage
The Apacheimage
Building the Jekyll Apache image
Launching our Jekyllsite
Updating our Jekyllsite
Backing up our Jekyll volume
Extending our Jekyll website example.

Building a Java application server with Docker
AWARfilefetcher
FetchingaWARfile.
Our Tomcat 7 applicationserver
Running our WARfile
Building on top of our Tomcat application server

A multi-container applicationstack
The Node.jsimage
The Redis baseimage
The Redis primary image
The Redis replicaimage
Creating our Redis back-end cluster
Creating our Node container
Capturing our applicationlogs
Summary of our Nodestack

Managing Docker containers without SSH

Summary e e

Chapter 7 Docker Orchestration and Service Discovery

Version: v1.2.2 (19946fc)

Contents

Installing Fig
Getting our sample application
The fig.ymlfile
Running Fig.
Using Fig i i e
Figinsummary,
Consul, Service Discovery and Docker
Building a Consulimage
Testing a Consul container locally
Running a Consul cluster in Docker
Starting the Consul bootstrapnode
Starting the remainingnodes

Running a distributed service with Consul in Docker

Orchestration alternatives and components.
Fleetandeted
Kubernetes
Apache MeSOS i ittt
Helios e
Centurion i e
Libswarm e

Summary

Chapter 8 Using the Docker API

The Docker APIs
First steps with the Remote API.
Testing the Docker Remote API
Managing images withthe APT
Managing containers with the API
Improving TProv e
Authenticating the Docker Remote API
Create a Certificate Authority
Create a server certificate signing request and key
Configuring the Docker daemon
Creating a client certificateand key

Version: v1.2.2 (19946fc)

Contents

Vi

Contents

Configuring our Docker client for authentication 291
Summary e e e e 293
Chapter 9 Getting help and extending Docker 294
Gettinghelp. L 295
The Docker user and dev mailing lists 295
Docker onIRC i e 295
Dockeron GitHub 296
Reporting issues for Docker 296
Setting up a build environment L L 0L, 297
Install Docker 297

Install source and buildtools 297
Checkoutthesource 297
Contributing to the documentation 298

Build the environment, 299
Running thetests 300

Use Docker inside our development environment 301
Submitting a pull request 302

Merge approval and maintainers 304
Summary e e e 305
Index 306

Version: v1.2.2 (19946fc) vii

List of Figures

1.1 Docker architecture 10
2.1 Installing Boot2Docker on OSX 30
2.2 Running Boot2Dockeron OSX 31
2.3 Installing Boot2Docker on Windows 33
2.4 Running Boot2Docker on Windows 34
3.1 Listing Docker containerscuuuun.n.. 50
4.1 The Docker filesystem layers 64
42 DockerHub 66
4.3 Creating a Docker Hub account. 74
4.4 Your image on the DockerHub. 106
4.5 The Add Repository button. 107
4.6 Account linking options. 108
4.7 Linking your GitHub account 109
4.8 Selecting your repoSitOry. v v v v v it e e e 110
4.9 Configuring your Automated Build. 111
4.10Creating your Automated Build. 112
4.11Deleting a repoSitory. . . . « v v v v it e e e e e e e e e 114
5.1 Browsing the Sample website.. 128
5.2 Browsing the edited Sample website. 129
5.3 Browsing the Jenkinsserver. 154
5.4 Creating anew Jenkinsjob. 155
5.5 Jenkinsjobdetailspart1. 156
5.6 Jenkins job detailspart2. 159
5.7 Running the Jenkinsjob.. 160

List of Figures

5.8 The Jenkins jobdetails. 161
5.9 The Jenkins job console output. 161
5.10Creating a multi-configurationjob. 163
5.11Configuring a multi-configuration job Part 1. 164
5.12Configuring a multi-configuration job Part2. 165
5.130ur Jenkins multi-configurationjob 167
5.14The centos sub-job., 168
5.15The centos sub-job details. 169
5.16The centos sub-job consoleoutput. 169
6.1 Our Jekyll website., 181
6.2 Our updated Jekyll website. 182
6.3 Our Tomcat sample application. 190
6.4 Our TProv web application. 192
6.5 Downloading a sample application. 193
6.6 Listing the Tomcat instances. 193
6.7 Our Node application., 207
7.1 Sample Fig application. 227
7.2 The Consul web interface. 238
7.3 The Consul service in the web interface. 250
7.4 The distributed_app service in the Consul web interface. 260
7.5 More distributed_app services in the Consul web interface. 261

Version: v1.2.2 (19946fc) ix

Listings

1 Samplecodeblock. 4
2.1 Checking for the Linux kernel version on Ubuntu 21
2.2 Installing a 3.8 kernel on Ubuntu Precise 21
2.3 Updating the boot loader on Ubuntu Precise 22
2.4 Reboot the Ubuntuhost 22
2.5 Checking for Device Mapper. v v v v i i vt 22
2.6 Checking for Device Mapper in procon Ubuntu 23
2.7 Loading the Device Mapper module 23
2.8 Adding the Docker APT repository 23
2.9 Testing for curl installation 23
2.10 Install curl ifneeded 24
2.11 Adding the Docker repository GPGkey 24
2.12 Updating APT sources. o v v v v it vt et et e e e 24
2.13 Installing the Docker packages on Ubuntu 24
2.14 Checking Docker is installed on Ubuntu. 24
2.15 Old UFW forwarding policy« 25
2.16 New UFW forwarding policy 25
2.17 Reload the UFW firewall 25
2.18 Checking the Red Hat or Fedorakernel 26
2.19 Checking for Device Mapper.« v v v v v v v ii e 26
2.20 Checking for Device Mapper in procon RedHat 26
2.21 Installing the Device Mapper package 27
2.22 Loading the Device Mapper module 27
2.23 Installing EPEL on Red Hat Enterprise Linux 6 and CentOS6 27
2.24 Installing the Docker package on Red Hat Enterprise Linux 6 and
CentOS 6 e 27

Listings

2.25 Installing Dockeron RHEL 7. 28
2.26 Installing the Docker package on Fedora19 28
2.27 Installing the Docker package on Fedora 20 and later 28
2.28 Starting the Docker daemononRedHat6 28
2.29 Ensuring the Docker daemon starts at boot on Red Hat6 29
2.30 Starting the Docker daemononRed Hat7 29
2.31 Ensuring the Docker daemon starts at boot on Red Hat7 29
2.32 Checking Docker is installed on the Red Hat family. 29
2.33 Downloading the Boot2Docker PKGfile 30
2.34 Testing Boot2Dockeron OS X 32
2.35 Downloading the Boot2Docker .EXE file 33
2.36 Testing Boot2Docker on Windows 35
2.37 Boot2Docker launch message 35
2.38 Getting the Boot2Docker IP address 36
2.39 Initial curl command L L. 36
240 Updated curlcommand 36
241 Testingforcurl 37
2.42 Installing curlon Ubuntu 37
2.43 Installing curlonFedora 37
2.44 Installing Docker from the installation script 37
2.45 Downloading the Docker binary 38
2.46 Changing Docker daemon networking 39
2.47 Using the DOCKER_HOST environment variable. 39
2.48 Binding the Docker daemon to a different socket 40
2.49 Binding the Docker daemon to multiple places 40
2.50 Turning on Docker daemondebug 40
2.51 Checking the status of the Docker daemon 41
2.52 Starting and stopping Docker with Upstart 41
2.53 Starting and stopping Docker on Red Hat and Fedora 41
2.54 The Docker daemon isn'trunning 41
2.55Upgradedocker 42
3.1 Checking the docker binary works 45
3.2 Creating our first container, 46
3.3 Thedocker runcommand 46
3.4 Our first container'sshell 47

Version: v1.2.2 (19946fc) Xi

Listings

3.5 Checking the container's hostname 48
3.6 Checking the container's /etc/hosts 48
3.7 Checking the container's interfaces 49
3.8 Checking container's processes 49
3.9 Installing a package in our first container. 49
3.10 Naming acontainer, 51
3.11 Starting a stopped container 51
3.12 Starting a stopped containerby ID 52
3.13 Attaching to a running container 52
3.14 Attaching to a running containerviaID 52
3.15 Inside our re-attached container 53
3.16 Creating a long running container 53
3.17 Viewing our running daemon_dave container 53
3.18 Fetching the logs of our daemonized container 54
3.19 Tailing the logs of our daemonized container 54
3.20 Tailing the logs of our daemonized container 55
3.21 Inspecting the processes of the daemonized container 55
3.22 The docker topoutput, 56
3.23 Running a background task inside a container 56
3.24 Running an interactive command inside a container 56
3.25 Stopping the running Docker container 57
3.26 Stopping the running Docker container by ID 57
3.27 Automatically restarting containers 58
3.28 On-failurerestartcount 58
3.29 Inspecting a container 59
3.30 Selectively inspecting a container 59
3.31 Inspecting the container's[Paddress 60
3.32 Inspecting multiple containers 60
3.33 Deletingacontainer. 61
3.34 Deleting all containers 61
4.1 Revisiting creating a basic Docker container 62
4.2 Listing Dockerimages. 65
4.3 Pulling the Ubuntuimage 67
4.4 Listing all the ubuntu Docker images 67
4.5 Running a tagged Dockerimage 68

Version: v1.2.2 (19946fc) xii

Listings

4.6 Docker run and the default latesttag 69
4.7 Pulling the fedoraimage 70
4.8 Viewing the fedoraimage 70
4.9 Pulling a tagged fedoraimage 71
4.10 Searching forimages 71
4.11 Pulling down the jamturO1/puppetmaster image 72
4.12 Creating a Docker container from the Puppet master image 72
4.13 Logging into the Docker Hub 74
4.14 Creating a custom container to modify 75
4.15 Adding the Apache package 75
4.16 Committing the custom container 76
4.17 Reviewing oUr New image« . v v v v v v v v v v v e o v 76
4.18 Committing another custom container. 76
4.19 Inspecting our committed image 77
4.20 Running a container from our committed image 77
4.21 Creating a sample repository 78
4.22 Our first Dockerfile L o oL 78
4.23 The RUN instruction inexec form 80
4.24 Running the Dockerfile 81
4.25 Taggingabuild 82
4.26 Building from a Gitrepository. oL L. 82
4.27 Uploading the build context to the daemon 82
4.28 Managing a failed instruction 83
4.29 Creating a container from the last successful step 84
4.30 Bypassing the Dockerfile build cache 84
4.31 A template Ubuntu Dockerfile. 85
4.32 A template Fedora Dockerfile 85
4.33 Listing our new Dockerimage 86
4.34 Using the docker history command 86
4.35 Launching a container from our new image 87
4.36 Viewing the Docker port mapping 88
4.37 The docker port command 88
4.38 Exposing a specificportwith-p. 88
4.39 Binding to a differentport oL ... 89
4.40 Binding to a specificinterface 89

Version: v1.2.2 (19946fc) xiii

Listings

4.41 Binding to a random port on a specific interface 89
4.42 Exposing a port with dockerrun 90
4.43 Connecting to the container viacurl 90
4.44 Specifying a specificcommandtorun 91
4.45 Using the CMD instructiono v v it v vt v e ... 91
4.46 Passing parameters to the CMD instruction 91
4.47 Overriding CMD instructions in the Dockerfile. 92
4.48 Launching a container with a CMD instruction 92
4.49 Overriding a command locally 92
4.50 Specifying an ENTRYPOINT 93
4.51 Specifying an ENTRYPOINT parameter 93
4.52 Rebuilding static web with a new ENTRYPOINT 94
4.53 Using docker run with ENTRYPOINT 94
4.54 Using ENTRYPOINT and CMD together 94
4.55 Using the WORKDIR instruction 95
4.56 Overridding the working directory 95
4.57 Setting an environment variable in Dockerfile 96
4.58 Prefixing a RUN instruction 96
4.59 Executing withan ENVprefix 96
4.60 Persisent environment variables in Docker containers 96
4.61 Runtime environment variables 97
4.62 Using the USER instruction 97
4.63 Specifying USER and GROUP variants 97
4.64 Using the VOLUME instruction 98
4.65 Using multiple VOLUME instructions 98
4.66 Using the ADD instruction 99
4.67 URL as the source of an ADD instruction 99
4.68 Archive as the source of an ADD instruction 99
4.69 Using the COPY instruction 100
4.70 Adding ONBUILD instructionso v v .. 101
4.71 Showing ONBUILD instructions with docker inspect 102
4.72 A new ONBUILD image Dockerfile 102
4.73 Building the apache2image 102
4.74 The webapp Dockerfile 103
4.75 Building our webappimage 103

Version: v1.2.2 (19946fc) Xiv

Listings

4.76 Trying to pusharootimage 104
4.77 Pushing a Dockerimage 105
4.78 Deleting a Dockerimage, 113
4.79 Deleting multiple Docker images 114
4.80 Deleting all imagesottt 114
4.81 Running a container-based registry 115
4.82 Listing the jamturO1 static web Docker image 116
4.83 Tagging our image for our new registry 116
4.84 Pushing an image to our new registry 116
4.85 Building a container from our local registry 117
5.1 Creating a directory for our Sample website Dockerfile 119
5.2 Getting our Nginx configuration files 120
5.3 Our basic Dockerfile for the Sample website 120
5.4 Theglobal.conf., 121
5.5 The nginx.conf configurationfile 122
5.6 Building our new Nginximage 123
5.7 Showing the history of the Nginx image. 124
5.8 Downloading our Sample website 125
5.9 Building our first Nginx testing container 125
5.10 Controlling the write status of a volume 126
5.11 Viewing the Sample website container 127
5.12 Editing our Sample website 128
513 0Id title e e e 128
514 Newtitle. e 128
5.15 Dockerfile for web application testing 130
5.16 Building our new Sinatraimage. 130
5.17 Download our Sinatra web application 131
5.18 Making webapp/bin/webapp executable 131
5.19 Launching our first Sinatra container 131
5.20 The CMD instruction in our Dockerfile 131
5.21 Checking the logs of our Sinatra container 132
5.22 Tailing the logs of our Sinatra container 132
5.23 Using docker top to list our Sinatra processes 132
5.24 Checking the Sinatra port mapping 132
5.25 Testing our Sinatra application 133

Version: v1.2.2 (19946fc) XV

Listings

5.26 Dockerfile for Redisimage 134
5.27 Building our Redisimage 134
5.28 Launching a Redis container 134
5.29 Launching a Redis container. 134
5.30 Installing the redis-tools package on Ubuntu 135
5.31 Testing our Redis connection 135
5.32 The dockerO interface 136
5.33 The veth interfaces 136
5.34 The ethO interface ina container 137
5.35 Tracing a route out of our container 137
5.36 Docker iptablesand NAT, 138
5.37 Redis container's networking configuration. 139
5.38 Finding the Redis container's I[P address. 139
5.39 Talking directly to the Redis container 140
5.40 Restarting our Redis container 140
5.41 Finding the restarted Redis container's IP address 140
5.42 Starting another Redis container 141
5.43 Linking our Redis container 142
5.44 Linking our Redis container 143
5.45 The webapp's /etc/hostsfile 144
5.46 Pinging thedb container 144
5.47 Showing linked environment variables 145
5.48 The linked via env variables Redis connection 146
5.49 The linked via hosts Redis connection 147
5.50 Starting the Redis-enabled Sinatra application 147
5.51 Testing our Redis-enabled Sinatra application 148
5.52 Confirming Redis containsdata 148
5.53 Jenkins and Docker Dockerfile 151
5.54 Building our Docker-Jenkinsimage 153
5.55 Running our Docker-Jenkinsimage 153
5.56 Checking the Docker Jenkins container logs 154
5.57 Checking that is Jenkins up and running 154
5.58 The Docker shell script for Jenkinsjobs 157
5.59 The Docker test job Dockerfile 158
5.60 Jenkins multi-configuration shell step 166

Version: v1.2.2 (19946fc) XVi

Listings

5.61 Our CentOS-based Dockerfile 167
6.1 Creating our Jekyll Dockerfile. 173
6.2 Jekyll Dockerfile 174
6.3 Building our Jekyllimage 175
6.4 Viewing our new Jekyll Baseimage 175
6.5 Creating our Apache Dockerfile 176
6.6 Jekyll Apache Dockerfile 176
6.7 Building our Jekyll Apacheimage 177
6.8 Viewing our new Jekyll Apacheimage 178
6.9 Getting a sample Jekyllblog. 178
6.10 Creating a Jekyll container 179
6.11 Creating an Apache container 180
6.12 Resolving the Apache container'sport 180
6.13 Editing our Jekyllblog 181
6.14 Restarting our james_blog container 181
6.15 Checking the james_blog containerlogs 182
6.16 Backing up the /var/www/html volume 183
6.17 Backupcommand o e 184
6.18 Creating our fetcher Dockerfile 185
6.19 Our war filefetcher 186
6.20 Building our fetcherimage 186
6.21 Fetchingawarfile. 187
6.22 Inspecting our Sample volume 187
6.23 Listing the volume directory 188
6.24 Creating our Tomcat 7 Dockerfile 188
6.25 Our Tomcat 7 Applicationserver 189
6.26 Building our Tomcat 7image 189
6.27 Creating our first Tomcatinstance 190
6.28 Identifying the Tomcat applicationport 190
6.29 InstallingRuby 191
6.30 Installing the TProv application. 191
6.31 Launching the TProv application 192
6.32 Creating our Node.js Dockerfile 195
6.33 0ur Node.jsimage i vt v it ittt e 196
6.34 Our Node.js server.js application 197

Version: v1.2.2 (19946fc) Xvii

Listings

6.35 Building our Node.jsimage 198
6.36 Creating our Redis base Dockerfile 198
6.37 Our Redisbaseimage 199
6.38 Building our Redis baseimage 199
6.39 Creating our Redis primary Dockerfile. 200
6.40 Our Redis primaryimage.t en... 200
6.41 Building our Redis primary image 200
6.42 Creating our Redis replica Dockerfile 201
6.43 Our Redisreplicaimage 201
6.44 Building our Redis replicaimage 201
6.45 Running the Redis primary container 202
6.46 Our Redis primarylogs 202
6.47 Reading our Redis primarylogs. 203
6.48 Running our first Redis replica container 203
6.49 Reading our Redis replicalogs 204
6.50 Running our second Redis replica container 205
6.51 Our Redisreplica2logs 206
6.52 Running our Node.js container 207
6.53 The nodeapp consolelog 207
6.54 Node application output, 208
6.55 Creating our Logstash Dockerfile 208
6.56 Our Logstashimage 209
6.57 Our Logstash configuration 210
6.58 Building our Logstashimage 211
6.59 Launching a Logstash container 211
6.60 The logstash container'slogs. 211
6.61 ANodeeventinlogstash 212
6.62 Using docker kill tosend signals 213
6.63 Installing nsenter 214
6.64 Finding the process ID of the container 214
6.65 Entering a container withnsenter 214
6.66 Running a command inside a container with nsenter 214
7.1 Installing FigonLinux0...... 218
7.2 Installing Figon OSX, 218
7.3 Imnstalling FigviaPip 218

Version: v1.2.2 (19946fc) xviii

Listings

7.4 Testing Figisworking 219
7.5 Creating the figapp directory 219
7.6 Theapp.pyfile 220
7.7 Therequirements.txtfile 220
7.8 The figapp Dockerfile 221
7.9 Building the figapp application 222
7.10 Creating the figymlfile 223
7.11 Thefig.ymlfile. L 224
7.12 The build instruction 224
7.13 The docker run equivalent command 225
7.14 Running fig up with our sample application 226
7.15 Fig servicelogoutput e 227
7.16 Running Fig daemonized 227
7.17 Restarting Fig as daemonized 228
7.18 Running the figpscommand 229
7.19 Showing a Fig serviceslogs 229
7.20 Stopping running Services v ittt e e e 229
7.21 Verifying our Fig services have been stopped 230
7.22 Removing Fig services 230
7.23 Showing no Fig services, 230
7.24 Creating a Consul Dockerfile directory 233
7.25 The Consul Dockerfile 234
7.26 The consul.json configuration file 235
7.27 Building our Consul image 236
7.28 Running alocal Consulnode 237
7.29 Pulling down the Consulimage 239
7.30 Assigning publicIPonlarry 239
7.31 Assigning publicIPoncurlyandmoe 240
7.32 Adding the cluster IPaddress 240
7.33 Getting the dockerO IP address 241
7.34 Original Docker defaults 241
7.35 New Docker defaultsonlarry 241
7.36 Restarting the Docker daemononlarry 242
7.37 Start the Consul bootstrapnode 242
7.38 Consul agent command line arguments 243

Version: v1.2.2 (19946fc) Xix

Listings

7.39 Starting bootstrap Consulnode 244
7.40 Cluster leadererror 245
7.41 Starting the agentoncurly. 245
7.42 Launching the Consul agentoncurly 245
7.43 Looking at the Curly agentlogs 246
7.44 Curly joining Larry it e e 246
7.45 Starting the agentoncurly. 247
7.46 Consul logsonmoe 248
7.47 Consul leader electiononlarry 249
7.48 Testingthe Consul DNS 251
7.49 Querying another Consul serviceviaDNS. 251
7.50 Creating a distributed_app Dockerfile directory 252
7.51 The distributed_app Dockerfile 253
7.52 The uWSGI configuration 254
7.53 The distributed_app config.rufile. 254
7.54 The Consul plugin URL 255
7.55 Building our distributed_appimage 255
7.56 Creating a distributed_client Dockerfile directory 255
7.57 The distributed_client Dockerfile 256
7.58 The distributed_client application 257
7.59 Building our distributed_client image 258
7.60 Starting distributed_apponlarry 259
7.61 The distributed_app log output 259
7.62 Starting distributed_apponcurly o L. 260
7.63 Starting distributed_clientonmoe 261
7.64 The distributed_client logsonmoe 262
8.1 Default systemd daemon startoptions 268
8.2 Network binding systemd daemon start options 268
8.3 Reloading and restarting the Docker daemon 268
8.4 Connecting to a remote Docker daemon 269
8.5 Revisiting the DOCKER_HOST environment variable 269
8.6 Using the info APIendpoint 270
8.7 Getting alistof imagesviaAPI 271
8.8 Getting a specificimage 272
8.9 Searching for images withthe APT 273

Version: v1.2.2 (19946fc) XX

Listings

8.10 Listing running containers 274
8.11 Listing all containers viathe API 274
8.12 Creating a container viathe API 275
8.13 Configuring container launch viathe APT 275
8.14 Starting a container viathe API. 276
8.15 API equivalent for docker run command 276
8.16 Listing all containers viathe API 277
8.17 The legacy TProv container launch methods 278
8.18 The Docker Ruby client. 279
8.19 Installing the Docker Ruby client API prerequisites 280
8.20 Testing our Docker API connection viairb 280
8.21 Our updated TProv container management methods 281
8.22 Checking foropenssl 283
8.23 Createa CA directory ittt i it e 283
8.24 Generating a privatekey L o oL 283
8.25 Creating a CA certificate 284
8.26 Creatingaserverkey, 285
8.27 Creatingourserver CSR 286
8.28 Signingour CSR 287
8.29 Removing the passphrase from the serverkey 287
8.30 Securing the key and certificate on the Docker server 287
8.31 Enabling Docker TLSonsystemd 288
8.32 Reloading and restarting the Docker daemon 288
8.33 Creatingaclientkey 289
8.34 Creatingaclient CSR 290
8.35 Adding Client Authentication attributes 290
8.36 Signing our client CSR L L. 291
8.37 Stripping out the client key passphrase 291
8.38 Copying the key and certificate on the Docker client 292
8.39 Testing our TLS-authenticated connection 292
8.40 Testing our TLS-authenticated connection 293
9.1 Installing gitonUbuntu 297
9.2 Installing giton Red Hatetal 297
9.3 Check out the Docker sourcecode 298
9.4 Building the Docker documentation 298

Version: v1.2.2 (19946fc) XXi

Listings

9.5 Building the Docker environment. 299
9.6 Building the Docker binary 299
9.7 TheDockerdevbinary 299
9.8 Using the developmentdaemon. 300
9.9 Using the developmentbinary 300
9.10 Running the Dockertests, 300
9.11 Docker testoutput i it e e e e e 301
9.12 Launching an interactive session 302
9.13TheDocker DCO ittt 303
9.14 Git commit signing e 304

Version: v1.2.2 (19946fc) xxii

Foreword

Who is this book for?

The Docker Book is for developers, sysadmins, and DevOps-minded folks who
want to implement Docker™ and container-based virtualization.

There is an expectation that the reader has basic Linux/Unix skills and is familiar
with the command line, editing files, installing packages, managing services, and
basic networking.

NOTE This books focuses on Docker version 1.0.0 and later. It is not generally
backwards-compatible with earlier releases. Indeed, it is recommended that for
production purposes you use Docker version 1.0.0 or later.

Credits and Acknowledgments

« My partner and best friend, Ruth Brown, who continues to humor me despite
my continuing to write books.

« The team at Docker Inc., for developing Docker and helping out during the
writing of the book.

* The folks in the #docker channel and the Docker mailing list for helping out
when I got stuck.

Foreword

 Royce Gilbert for not only creating the amazing technical illustrations, but
also the cover.

« Abhinav Ajgaonkar for his Node.js and Express example application.

« The technical review team for keeping me honest and pointing out all the
stupid mistakes.

Images on pages 38, 45, 48, courtesy of Docker, Inc.

Docker™ is a registered trademark of Docker, Inc.

Technical Reviewers

Scott Collier

Scott Collier is a Senior Principal System Engineer for Red Hat’s Systems Design
and Engineering team. This team identifies and works on high-value solution
stacks based on input from Sales, Marketing, and Engineering teams and develops
reference architectures for consumption by internal and external customers. Scott
is a Red Hat Certified Architect (RHCA) with more than 15 years of IT experi-
ence, currently focused on Docker, OpenShift, and other products in the Red Hat
portfolio.

When he's not tinkering with distributed architectures, he can be found running,
hiking, camping, and eating barbecue around the Austin, TX, area with his wife
and three children. His notes on technology and other things can be found here.

John Ferlito

John is a serial entrepreneur as well as an expert in highly available and scalable
infrastructure. John is currently a founder and CTO of Bulletproof, who provide
Mission Critical Cloud, and CTO of Vquence, a Video Metrics aggregator.

In his spare time, John is involved in the FOSS communities. He was a co-
organizer of linux.conf.au 2007 and a committee member of SLUG in 2007,

Version: v1.2.2 (19946fc) 2

http://colliernotes.com

Foreword

and he has worked on various open-source projects, including Debian, Ubuntu,
Puppet, and the Annodex suite. You can read more about John's work on his
blog. John has a Bachelor of Engineering (Computing) with Honors from the
University of New South Wales.

Paul Nasrat

Paul Nasrat works as an SRE at Google and is a Docker contributor. He's worked
on a variety of open source tools in the systems engineering space, including boot
loaders, package management, and configuration management.

Paul has worked in a variety of Systems Administration and Software Develop-
ment roles, including working as a Software Engineer at Red Hat and as an In-
frastructure Specialist Consultant at ThoughtWorks. Paul has spoken at various
conferences, from talking about Agile Infrastructure at Agile 2009 during the early
days of the DevOps movement to smaller meetups and conferences.

Technical Illustrator

Royce Gilbert has over 30 years' experience in CAD design, computer support, net-
work technologies, project management, and business systems analysis for major
Fortune 500 companies, including Enron, Compaq, Koch Industries, and Amoco
Corp. He is currently employed as a Systems/Business Analyst at Kansas State Uni-
versity in Manhattan, KS. In his spare time he does Freelance Art and Technical
Ilustration as sole proprietor of Royce Art. He and his wife of 38 years are living
in and restoring a 127-year-old stone house nestled in the Flinthills of Kansas.

Proofreader

Q grew up in the New York area and has been a high school teacher, cupcake icer,
scientist wrangler, forensic anthropologist, and catastrophic disaster response

Version: v1.2.2 (19946fc) 3

http://inodes.org/blog
mailto:ksuroyce@yahoo.com

Foreword

planner. She now resides in San Francisco, making music, acting, putting together
ng-newsletter, and taking care of the fine folks at Stripe.

Author

James is an author and open source geek. His most recent book was The LogStash
Book about the popular open source logging tool. James also authored two books
about Puppet (Pro Puppet and the earlier book about Puppet). He is the author
of three other books, including Pro Linux System Administration, Pro Nagios 2.0,
and Hardening Linux.

For a real job, James is VP of Engineering at Kickstarter. He was formerly at
Docker as VP of Services and Support, Venmo as VP of Engineering and Puppet
Labs as VP of Technical Operations. He likes food, wine, books, photography, and
cats. He is not overly keen on long walks on the beach and holding hands.

Conventions in the book

This is an inline code statement.

This is a code block:

This is a code block

Long code strings are broken with <.

Code and Examples

You can find all the code and examples from the book on the website, or you can
check out the Git repo.

Version: v1.2.2 (19946fc) 4

http://www.logstashbook.com
http://www.logstashbook.com
http://www.amazon.com/gp/product/1430230576/ref=as_li_ss_tl?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=217145&creative=399349&creativeASIN=1430230576
http://www.amazon.com/gp/product/1590599780?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590599780
http://www.amazon.com/gp/product/1430219122?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1430219122
http://www.amazon.com/gp/product/1590596099?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590596099
http://www.amazon.com/gp/product/1590594444?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590594444
http://www.dockerbook.com/code/index.html
https://github.com/jamtur01/dockerbook-code

Foreword

Colophon

This book was written in Markdown with a large dollop of LaTeX. It was then
converted to PDF and other formats using PanDoc (with some help from scripts
written by the excellent folks who wrote Backbone.js on Rails).

Errata

Please email any errata you find here.

Version

This is version v1.2.2 (19946fc) of The Docker Book.

Version: v1.2.2 (19946fc) 5

https://learn.thoughtbot.com/products/1-backbone-js-on-rails
mailto:james+errata@lovedthanlost.net

Chapter 1

Introduction

Containers have a long and storied history in computing. Unlike hypervisor vir-
tualization, where one or more independent machines run virtually on physical
hardware via an intermediation layer, containers instead run user space on top of
an operating system's kernel. As a result, container virtualization is often called
operating system-level virtualization. Container technology allows multiple iso-
lated user space instances to be run on a single host.

As a result of their status as guests of the operating system, containers are some-
times seen as less flexible: they can generally only run the same or a similar guest
operating system as the underlying host. For example, you can run Red Hat En-
terprise Linux on an Ubuntu server, but you can't run Microsoft Windows on top
of an Ubuntu server.

Containers have also been seen as less secure than the full isolation of hypervisor
virtualization. Countering this argument is that lightweight containers lack the
larger attack surface of the full operating system needed by a virtual machine
combined with the potential exposures of the hypervisor layer itself.

Despite these limitations, containers have been deployed in a variety of use
cases. They are popular for hyperscale deployments of multi-tenant services, for
lightweight sandboxing, and, despite concerns about their security, as process
isolation environments. Indeed, one of the more common examples of a container
is a chroot jail, which creates an isolated directory environment for running

Chapter 1: Introduction

processes. Attackers, if they breach the running process in the jail, then find
themselves trapped in this environment and unable to further compromise a host.

More recent container technologies have included OpenVZ, Solaris Zones, and
Linux containers like Ixc. Using these more recent technologies, containers can
now look like full-blown hosts in their own right rather than just execution envi-
ronments. In Docker's case, having modern Linux kernel features, such as control
groups and namespaces, means that containers can have strong isolation, their
own network and storage stacks, as well as resource management capabilities to
allow friendly co-existence of multiple containers on a host.

Containers are generally considered a lean technology because they require lim-
ited overhead. Unlike traditional virtualization or paravirtualization technologies,
they do not require an emulation layer or a hypervisor layer to run and instead
use the operating system's normal system call interface. This reduces the overhead
required to run containers and can allow a greater density of containers to run on
a host.

Despite their history containers haven't achieved large-scale adoption. A large
part of this can be laid at the feet of their complexity: containers can be complex,
hard to set up, and difficult to manage and automate. Docker aims to change that.

Introducing Docker

Docker is an open-source engine that automates the deployment of applications
into containers. It was written by the team at Docker, Inc (formerly dotCloud Inc,
an early player in the Platform-as-a-Service (PAAS) market), and released by them
under the Apache 2.0 license.

NOTE Disclaimer and disclosure: I work at Docker.

So what is special about Docker? Docker adds an application deployment engine
on top of a virtualized container execution environment. It is designed to provide

Version: v1.2.2 (19946fc) 7

http://openvz.org/
http://lxc.sourceforge.net/
http://www.docker.com/

Chapter 1: Introduction

a lightweight and fast environment in which to run your code as well as an efficient
workflow to get that code from your laptop to your test environment and then into
production. Docker is incredibly simple. Indeed, you can get started with Docker
on a minimal host running nothing but a compatible Linux kernel and a Docker
binary. Docker's mission is to provide:

An easy and lightweight way to model reality

Docker is fast. You can Dockerize your application in minutes. Docker relies on a
copy-on-write model so that making changes to your application is also incredibly
fast: only what you want to change gets changed.

You can then create containers running your applications. Most Docker contain-
ers take less than a second to launch. Removing the overhead of the hypervisor
also means containers are highly performant and you can pack more of them into
your hosts and make the best possible use of your resources.

A logical segregation of duties

With Docker, Developers care about their applications running inside containers,
and Operations cares about managing the containers. Docker is designed to en-
hance consistency by ensuring the environment in which your developers write
code matches the environments into which your applications are deployed. This
reduces the risk of "worked in dev, now an ops problem."

Fast, efficient development life cycle
Docker aims to reduce the cycle time between code being written and code being

tested, deployed, and used. It aims to make your applications portable, easy to
build, and easy to collaborate on.

Version: v1.2.2 (19946fc) 8

Chapter 1: Introduction

Encourages service orientated architecture

Docker also encourages service orientated and microservices architectures.
Docker recommends that each container run a single application or process. This
promotes a distributed application model where an application or service is
represented by a series of inter-connected containers. This makes it very easy to
distribute, scale, debug and introspect your applications.

NOTE Although you don't need to build your applications this way if you don't
wish. You can easily run a multi-processes application inside a single container.

Docker components

Let's look at the core components that compose Docker:

The Docker client and server
« Docker Images

+ Registries

 Docker Containers

Docker client and server

Docker is a client-server application. The Docker client talks to the Docker server
or daemon, which, in turn, does all the work. Docker ships with a command
line client binary, docker, as well as a full RESTful API. You can run the Docker
daemon and client on the same host or connect your local Docker client to a remote
daemon running on another host. You can see Docker's architecture depicted here:

Version: v1.2.2 (19946fc) 9

http://martinfowler.com/articles/microservices.html
http://docs.docker.com/reference/api/docker_remote_api/

Chapter 1: Introduction

Docker Client

Docker Client

Docker Client

| ||

Docker Host

vy

Docker Daemon

Docker
Container

Figure 1.1: Docker architecture

Version: v1.2.2 (19946fc)

10

Chapter 1: Introduction

Docker images

Images are the building blocks of the Docker world. You launch your containers
from images. Images are the "build" part of Docker's life cycle. They are a lay-
ered format, using Union file systems, that are built step-by-step using a series of
instructions. For example:

« Add a file.
* Run a command.
* Open a port.

You can consider images to be the "source code" for your containers. They are
highly portable and can be shared, stored, and updated. In the book, we'll learn
how to use existing images as well as build our own images.

Registries

Docker stores the images you build in registries. There are two types of registries:
public and private. Docker, Inc., operates the public registry for images, called
the Docker Hub. You can create an account on the Docker Hub and use it to share
and store your own images.

The Docker Hub also contains, at last count, over 10,000 images that other people
have built and shared. Want a Docker image for an Nginx web server, the Asterisk
open source PABX system, or a MySQL database? All of these are available, along
with a whole lot more.

You can also store images that you want to keep private on the Docker Hub. These
images might include source code or other proprietary information you want to
keep secure or only share with other members of your team or organization.

You can also run your own private registry, and we'll show you how to do that in
Chapter 4. This allows you to store images behind your firewall, which may be a
requirement for some organizations.

Version: v1.2.2 (19946fc) 11

http://hub.docker.com
https://hub.docker.com/account/signup/
https://hub.docker.com/search?q=nginx
https://hub.docker.com/search?q=Asterisk
https://hub.docker.com/search?q=Asterisk
https://hub.docker.com/search?q=mysql

Chapter 1: Introduction

Containers

Docker helps you build and deploy containers inside of which you can package
your applications and services. As we've just learned, containers are launched
from images and can contain one or more running processes. You can think about
images as the building or packing aspect of Docker and the containers as the
running or execution aspect of Docker.

A Docker container is:

* An image format.
* A set of standard operations.
+ An execution environment.

Docker borrows the concept of the standard shipping container, used to transport
goods globally, as a model for its containers. But instead of shipping goods, Docker
containers ship software.

Each container contains a software image -- its 'cargo' -- and, like its physical
counterpart, allows a set of operations to be performed. For example, it can be
created, started, stopped, restarted, and destroyed.

Like a shipping container, Docker doesn't care about the contents of the container
when performing these actions; for example, whether a container is a web server,
a database, or an application server. Each container is loaded the same as any
other container.

Docker also doesn't care where you ship your container: you can build on your
laptop, upload to a registry, then download to a physical or virtual server, test,
deploy to a cluster of a dozen Amazon EC2 hosts, and run. Like a normal shipping
container, it is interchangeable, stackable, portable, and as generic as possible.

With Docker, we can quickly build an application server, a message bus, a utility
appliance, a CI test bed for an application, or one of a thousand other possible ap-
plications, services, and tools. It can build local, self-contained test environments
or replicate complex application stacks for production or development purposes.
The possible use cases are endless.

Version: v1.2.2 (19946fc) 12

Chapter 1: Introduction

What can you use Docker for?

So why should you care about Docker or containers in general? We've discussed
briefly the isolation that containers provide; as a result, they make excellent sand-
boxes for a variety of testing purposes. Additionally, because of their 'standard'
nature, they also make excellent building blocks for services. Some of the exam-
ples of Docker running out in the wild include:

* Helping make your local development and build workflow faster, more ef-
ficient, and more lightweight. Local developers can build, run, and share
Docker containers. Containers can be built in development and promoted to
testing environments and, in turn, to production.

« Running stand-alone services and applications consistently across multiple
environments, a concept especially useful in service-oriented architectures
and deployments that rely heavily on micro-services.

+ Using Docker to create isolated instances to run tests like, for example, those
launched by a Continuous Integration (CI) suite like Jenkins CI.

+ Building and testing complex applications and architectures on a local host
prior to deployment into a production environment.

* Building a multi-user Platform-as-a-Service (PAAS) infrastructure.

+ Providing lightweight stand-alone sandbox environments for developing,
testing, and teaching technologies, such as the Unix shell or a programming
language.

 Software as a Service applications; for example, Memcached as a service.

+ Highly performant, hyperscale deployments of hosts.

You can see a list of some of the early projects built on and around the Docker
ecosystem here.

Docker with configuration management

Since Docker was announced, there have been a lot of discussions about where
Docker fits with configuration management tools like Puppet and Chef. Docker

Version: v1.2.2 (19946fc) 13

http://www.memcachedasaservice.com/
http://blog.docker.com/2013/07/docker-projects-from-the-docker-community/

Chapter 1: Introduction

includes an image-building and image-management solution. One of the drivers
for modern configuration management tools was the response to the "golden im-
age" model. With golden images, you end up with massive and unmanageable
image sprawl: large numbers of (deployed) complex images in varying states of
versioning. You create randomness and exacerbate entropy in your environment
as your image use grows. Images also tend to be heavy and unwieldy. This often
forces manual change or layers of deviation and unmanaged configuration on top
of images, because the underlying images lack appropriate flexibility.

Compared to traditional image models, Docker is a lot more lightweight: images
are layered, and you can quickly iterate on them. There is some legitimate argu-
ment to suggest that these attributes alleviate many of the management problems
traditional images present. It is not immediately clear, though, that this allevia-
tion represents the ability to totally replace or supplant configuration management
tools. There is amazing power and control to be gained through the idempotence
and introspection that configuration management tools can provide. Docker it-
self still needs to be installed, managed, and deployed on a host. That host also
needs to be managed. In turn, Docker containers may need be to be orchestrated,
managed, and deployed, often in conjunction with external services and tools,
which are all capabilities that configuration management tools are excellent in
providing.

It is also apparent that Docker represents (or, perhaps more accurately, encour-
ages) some different characteristics and architecture for hosts, applications, and
services: they can be short-lived, immutable, disposable, and service-oriented.
These behaviors do not lend themselves or resonate strongly with the need for
configuration management tools. With these behaviors, you are rarely concerned
with long-term management of state, entropy is less of a concern because contain-
ers rarely live long enough for it to be, and the recreation of state may often be
cheaper than the remediation of state.

Not all infrastructure can be represented with these behaviors, however. Docker's
ideal workloads will likely exist alongside more traditional infrastructure deploy-
ment for a little while. The long-lived host, perhaps also the host that needs to
run on physical hardware, still has a role in many organizations. As a result of
these diverse management needs, combined with the need to manage Docker it-
self, both Docker and configuration management tools are likely to be deployed

Version: v1.2.2 (19946fc) 14

https://web.archive.org/web/20090207105003/http://madstop.com/2009/02/04/golden-image-or-foil-ball
https://web.archive.org/web/20090207105003/http://madstop.com/2009/02/04/golden-image-or-foil-ball

Chapter 1: Introduction

in the majority of organizations.

Docker's technical components

Docker can be run on any x64 host running a modern Linux kernel; we recommend
kernel version 3.8 and later. It has low overhead and can be used on servers,
desktops, or laptops. It includes:

« A native Linux container format that Docker calls libcontainer, as well as
the popular container platform, Ixc. The libcontainer format is now the
default format.

« Linux kernel namespaces, which provide isolation for filesystems, processes,
and networks.

« Filesystem isolation: each container is its own root filesystem.

* Process isolation: each container runs in its own process environment.

* Network isolation: separate virtual interfaces and IP addressing between
containers.

 Resource isolation and grouping: resources like CPU and memory are allo-
cated individually to each Docker container using the cgroups, or control
groups, kernel feature.

+ Copy-on-write: filesystems are created with copy-on-write, meaning they
are layered and fast and require limited disk usage.

+ Logging: STDOUT, STDERR and STDIN from the container are collected, logged,
and available for analysis or trouble-shooting.

« Interactive shell: You can create a pseudo-tty and attach to STDIN to provide
an interactive shell to your container.

What's in the book?

In this book, we walk you through installing, deploying, managing, and extending
Docker. We do that by first introducing you to the basics of Docker and its com-

Version: v1.2.2 (19946fc) 15

http://lxc.sourceforge.net/
http://lwn.net/Articles/531114/
http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Copy-on-write

Chapter 1: Introduction

ponents. Then we start to use Docker to build containers and services to perform
a variety of tasks.

We take you through the development life cycle, from testing to production, and
see where Docker fits in and how it can make your life easier. We make use of
Docker to build test environments for new projects, demonstrate how to integrate
Docker with continuous integration workflow, and then how to build application
services and platforms. Finally, we show you how to use Docker's API and how to
extend Docker yourself.

We teach you how to:

« Install Docker.

« Take your first steps with a Docker container.

+ Build Docker images.

« Manage and share Docker images.

* Run and manage more complex Docker containers.

« Deploy Docker containers as part of your testing pipeline.
* Build multi-container applications and environments.

+ Introduce the basics of Docker orchestration with Fig.

+ Explore the Docker API.

* Getting Help and Extending Docker.

It is recommended that you read through every chapter. Each chapter builds on
your Docker knowledge and introduce new features and functionality. By the end
of the book you should have a solid understanding of how to work with Docker
to build standard containers and deploy applications, test environments, and stan-
dalone services.

Docker resources

* Docker homepage
* Docker Hub
+ Docker blog

Version: v1.2.2 (19946fc) 16

http://www.docker.com/
http://hub.docker.com
http://blog.docker.com/

Chapter 1: Introduction

» Docker documentation

* Docker Getting Started Guide

« Docker code on GitHub

+ Docker Forge - collection of Docker tools, utilities, and services.
* Docker mailing list

» Docker on IRC: irc.freenode.net and channel #docker

* Docker on Twitter

+ Get Docker help on StackOverflow

« Docker.com

In addition to these resources in Chapter 9 you'll get a detailed explanation of
where and how to get help with Docker.

Version: v1.2.2 (19946fc) 17

http://docs.docker.com/
http://www.docker.com/tryit/
https://github.com/docker/docker
https://github.com/dockerforge
https://groups.google.com/forum/#!forum/docker-user
http://twitter.com/docker
http://stackoverflow.com/search?q=docker
http://www.docker.com/

Chapter 2

Installing Docker

Installing Docker is quick and easy. Docker is currently supported on a wide
variety of Linux platforms, including shipping as part of Ubuntu and Red Hat En-
terprise Linux (RHEL). Also supported are various derivative and related distribu-
tions like Debian, CentOS, Fedora, Oracle Linux, and many others. Using a virtual
environment, you can install and run Docker on OS X and Microsoft Windows.

Currently, the Docker team recommends deploying Docker on Ubuntu or RHEL
hosts and makes available packages that you can use to do this. In this chapter,
I'm going to show you how to install Docker in four different but complementary
environments:

* On a host running Ubuntu.

* On a host running Red Hat Enterprise Linux or derivative distribution.
« On OS X using Boot2Docker.

* On Microsoft Windows using Boot2Docker.

TIP Boot2Docker is a tiny virtual machine shipped with a wrapper script to
manage it. The virtual machine runs the daemon and provides a local Docker
daemon on OS X and Microsoft Windows. The Docker client binary, docker, can
be installed natively on these platforms and connected to the Docker daemon

18

http://boot2docker.io
http://boot2docker.io

Chapter 2: Installing Docker

running in the virtual machine.

Docker runs on a number of other platforms, including Debian, SuSE, Arch Linux,
CentOS, and Gentoo. It's also supported on several Cloud platforms including
Amazon EC2, Rackspace Cloud, and Google Compute Engine.

I've chosen these four methods because they represent the environments that are
most commonly used in the Docker community. For example, your developers
and sysadmins may wish to start with building Docker containers on their OS X or
Windows workstations using Boot2Docker and then promote these containers to
a testing, staging, or production environment running one of the other supported
platforms.

I recommend you step through at least the Ubuntu or the RHEL installation to get
an idea of Docker's prerequisites and an understanding of how to install it.

TIP As with all installation processes, I also recommend you look at using tools
like Puppet or Chef to install Docker rather than using a manual process. For
example, you can find a Puppet module to install Docker here and a Chef cookbook
here.

Requirements

For all of these installation types, Docker has some basic prerequisites. To use
Docker you must:

 Be running a 64-bit architecture (currently x86_64 and amd64 only). 32-bit
is NOT currently supported.

* Be running a Linux 3.8 or later kernel. Some earlier kernels from 2.6.x and
later will run Docker successfully. Your results will greatly vary, though,
and if you need support you will often be asked to run on a more recent

Version: v1.2.2 (19946fc) 19

http://docs.docker.com/installation/openSUSE/
http://docs.docker.com/installation/archlinux/
http://docs.docker.com/installation/gentoolinux/
http://docs.docker.com/installation/amazon/
http://docs.docker.com/installation/rackspace/
http://docs.docker.com/installation/google/
http://www.puppetlabs.com
http://www.opscode.com
http://docs.docker.com/use/puppet/
http://community.opscode.com/cookbooks/docker

Chapter 2: Installing Docker

kernel.
+ The kernel must support an appropriate storage driver. For example,

— Device Mapper
- AUFS

- vfs.

- btrfs

— The default storage driver is usually Device Mapper.

+ cgroups and namespaces kernel features must be supported and enabled.

Installing on Ubuntu

Installing Docker on Ubuntu is currently officially supported on a selection of
Ubuntu releases:

Ubuntu Trusty 14.04 (LTS) (64-bit)
« Ubuntu Precise 12.04 (LTS) (64-bit)
Ubuntu Raring 13.04 (64-bit)
Ubuntu Saucy 13.10 (64-bit)

NOTE This is not to say Docker won't work on other Ubuntu (or Debian) ver-
sions that have appropriate kernel levels and the additional required support.
They just aren't officially supported, so any bugs you encounter may result in
a WONTFIX.

To begin our installation, we first need to confirm we've got all the required pre-
requisites. I've created a brand new Ubuntu 12.04 LTS 64-bit host on which to
install Docker. We're going to call that host darknight.example.com.

Version: v1.2.2 (19946fc) 20

http://en.wikipedia.org/wiki/Device_mapper
http://en.wikipedia.org/wiki/Aufs
http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/Btrfs
http://en.wikipedia.org/wiki/Cgroups
http://blog.dotcloud.com/under-the-hood-linux-kernels-on-dotcloud-part

Chapter 2: Installing Docker

Checking for prerequisites

Docker has a small but necessary list of prerequisites required to install and run
on Ubuntu hosts.

Kernel

First, let's confirm we've got a sufficiently recent Linux kernel. We can do this
using the uname command.

Listing 2.1: Checking for the Linux kernel version on Ubuntu

$ uname -a
Linux darknight.example.com 3.8.0-23-generic #34~precisel-Ubuntu <
SMP Wed May 29 21:12:31 UTC 2013 x86 64 x86 64 x86 64 GNU/Linux

We can see that we've got a 3.8.0 x86_64 kernel installed. This is the default for
Ubuntu 12.04.3 and later (and also for Ubuntu 13.04 Raring).

If, however, we're using an earlier release of Ubuntu 12.04 Precise, we may have
a 3.2 kernel. We can easily upgrade our Ubuntu 12.04 to the later kernel; for
example, at the time of writing, the 3.8 kernel was available to install via apt-<

get
Listing 2.2: Installing a 3.8 kernel on Ubuntu Precise

$ sudo apt-get update
$ sudo apt-get install linux-headers-3.8.0-27-generic linux-image<
-3.8.0-27-generic linux-headers-3.8.0-27

NOTE Throughout this book we're going to use sudo to provide the required
root privileges.

We can then update the Grub boot loader to load our new kernel.

Version: v1.2.2 (19946fc) 21

Chapter 2: Installing Docker

Listing 2.3: Updating the boot loader on Ubuntu Precise

$ sudo update-grub

After installation, we'll need to reboot our host to enable the new 3.8 kernel.

Listing 2.4: Reboot the Ubuntu host

$ sudo reboot

After the reboot, we can then check that our host is running the right version using
the same uname -a command we used above.

NOTE Remember: If installing on Ubuntu Raring, you won't need to update
the kernel, as it already comes with a 3.8 kernel.

Checking for Device Mapper

We're going to make use of the Device Mapper storage driver. The Device Mapper
framework has been in the Linux kernel since 2.6.9 and provides a method for
mapping block devices into higher-level virtual devices. It supports a concept
called 'thin-provisioning' to store multiple virtual devices, the layers in our Docker
images, on a filesystem. Hence, it is perfect for providing the storage that Docker
requires.

Device Mapper should be installed on any Ubuntu 12.04 or later hosts, but we can
confirm it is installed like so:

Listing 2.5: Checking for Device Mapper

$ s -1 /sys/class/misc/device-mapper
lrwxrwxrwx 1 root root O Oct 5 18:50 /sys/class/misc/device-<
mapper -> ../../devices/virtual/misc/device-mapper

We could also check in /proc/devices for a device-mapper entry.

Version: v1.2.2 (19946fc) 22

https://github.com/mirrors/linux/blob/master/Documentation/device-mapper/thin-provisioning.txt

Chapter 2: Installing Docker

Listing 2.6: Checking for Device Mapper in proc on Ubuntu

$ sudo grep device-mapper /proc/devices

If neither is present, we can also try to load the dm _mod module.

Listing 2.7: Loading the Device Mapper module
$ sudo modprobe dm mod
Both cgroups and namespaces have also been longtime Linux kernel residents since

the 2.6 version. Both are generally well supported and relatively bug free since
about the 2.6.38 release of the kernel.

Installing Docker

Now we've got everything we need to add Docker to our host. To install Docker,
we're going to use the Docker team's DEB packages.

First, we add the Docker APT repository. You may be prompted to confirm that
you wish to add the repository and have the repositories GPG automatically added
to your host.

Listing 2.8: Adding the Docker APT repository

$ sudo sh -c "echo deb https://get.docker.io/ubuntu docker main >«
/etc/apt/sources.list.d/docker.list"

First, we'll need to ensure the curl command is installed.

Listing 2.9: Testing for curl installation

$ whereis curl
curl: /usr/bin/curl /usr/bin/X11/curl /usr/share/man/manl/curl.l.<«
gz

Then install curl if it's not found.

Version: v1.2.2 (19946fc) 23

Chapter 2: Installing Docker

Listing 2.10: Install curl if needed

$ sudo apt-get -y install curl

Next, we need to add the Docker repository's GPG key.

Listing 2.11: Adding the Docker repository GPG key

$ curl -s https://get.docker.io/gpg | sudo apt-key add -

Now, we update our APT sources.

Listing 2.12: Updating APT sources

$ sudo apt-get update

We can now install the Docker package itself.

Listing 2.13: Installing the Docker packages on Ubuntu

$ sudo apt-get install lxc-docker

This will install Docker and a number of additional required packages.

We should now be able to confirm that Docker is installed and running using the
docker info command.

Listing 2.14: Checking Docker is installed on Ubuntu

$ sudo docker info
Containers: 0
Images: ©

Docker and UFW

If you use the UFW, or Uncomplicated Firewall, on Ubuntu, then you'll need to
make a small change to get it to work with Docker. Docker uses a network bridge

Version: v1.2.2 (19946fc) 24

https://help.ubuntu.com/community/UFW

Chapter 2: Installing Docker

to manage the networking on your containers. By default, UFW drops all for-
warded packets. You'll need to enable forwarding in UFW for Docker to function
correctly. We can do this by editing the /etc/default/ufw file. Inside this file,
change:

Listing 2.15: Old UFW forwarding policy

DEFAULT FORWARD POLICY="DROP"

Listing 2.16: New UFW forwarding policy

|H
Q

DEFAULT FORWARD POLICY="ACCEPT"

Save the update and reload UFW.

Listing 2.17: Reload the UFW firewall

$ sudo ufw reload

Installing on Red Hat and family

Installing Docker on Red Hat Enterprise Linux (or CentOS or Fedora) is currently
only supported on a small selection of releases:

* Red Hat Enterprise Linux (and CentOS) 6 and later (64-bit)

 Fedora Core 19 and later (64-bit)

* Oracle Linux 6 and 7 with Unbreakable Enterprise Kernel Release 3 (3.8.13)
or higher (64-bit)

TIP Docker is shipped by Red Hat as a native package on Red Hat Enterprise
Linux 7 and later. Additionally, Red Hat Enterprise Linux 7 is the only release on
which Red Hat officially supports Docker.

Version: v1.2.2 (19946fc) 25

Chapter 2: Installing Docker

Checking for prerequisites

Docker has a small but necessary list of prerequisites required to install and run
on Red Hat and the Red Hat-family of distributions.

Kernel

We need to confirm that we have a 3.8 or later kernel version. We can do this
using the uname command like so:

Listing 2.18: Checking the Red Hat or Fedora kernel

$ uname -a
Linux darknight.example.com 3.10.9-200.fc19.x86 64 #1 SMP Wed Aug<
21 19:27:58 UTC 2013 x86 64 x86 64 x86 64 GNU/Linux

All of the currently supported Red Hat and Red Hat-family platforms should have
a kernel that supports Docker.

Checking for Device Mapper

We're going to use the Device Mapper storage driver to provide Docker's storage
capabilities. Device Mapper should be installed on any Red Hat Enterprise Linux,
CentOS 6+, or Fedora Core 19 or later hosts, but we can confirm it is installed
like so:

Listing 2.19: Checking for Device Mapper

$ ls -1 /sys/class/misc/device-mapper
lrwxrwxrwx 1 root root O Oct 5 18:50 /sys/class/misc/device-<
mapper -> ../../devices/virtual/misc/device-mapper

We could also check in /proc/devices for a device-mapper entry.

Listing 2.20: Checking for Device Mapper in proc on Red Hat

$ sudo grep device-mapper /proc/devices

Version: v1.2.2 (19946fc) 26

Chapter 2: Installing Docker

If neither is present, we can also try to install the device-mapper package.

Listing 2.21: Installing the Device Mapper package

$ sudo yum install -y device-mapper

Then we can load the dm mod kernel module.

Listing 2.22: Loading the Device Mapper module

$ sudo modprobe dm_mod

We should now be able to find the /sys/class/misc/device-mapper entry.

Installing Docker

The process for installing differs slightly between Red Hat variants. On Red Hat
Enterprise Linux 6 and CentOS 6, we will need to add the EPEL package reposi-
tories first. On Fedora, we do not need the EPEL repositories enabled. There are
also some package-naming differences between platforms and versions.

Installing on Red Hat Enterprise Linux 6 and CentOS 6

For Red Hat Enterprise Linux 6 and CentOS 6, we install EPEL by adding the
following RPM.

Listing 2.23: Installing EPEL on Red Hat Enterprise Linux 6 and CentOS 6

$ sudo rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386<«
/epel-release-6-8.noarch.rpm

Now we should be able to install the Docker package.

Listing 2.24: Installing the Docker package on Red Hat Enterprise Linux 6 and CentOS 6

$ sudo yum -y install docker-io

Version: v1.2.2 (19946fc) 27

Chapter 2: Installing Docker

Installing on Red Hat Enterprise Linux 7

With Red Hat Enterprise Linux 7 and later you can install Docker using these
instructions.

Listing 2.25: Installing Docker on RHEL 7

$ sudo subscription-manager repos --enable=rhel-7-server-extras-<
rpms
$ sudo yum install -y docker

You'll need to be a Red Hat customer with an appropriate RHEL Server subscrip-
tion entitlement to access the Red Hat Docker packages and documentation.

Installing on Fedora

There have been some package name changes across versions of Fedora. For Fe-
dora 19, we need to install the docker-io package.

Listing 2.26: Installing the Docker package on Fedora 19

$ sudo yum -y install docker-io

On Fedora 20 and later, the package has been renamed to docker.

Listing 2.27: Installing the Docker package on Fedora 20 and later

$ sudo yum -y install docker

Starting the Docker daemon on the Red Hat family

Once the package is installed, we can start the Docker daemon. On Red Hat En-
terprise Linux 6 and CentOS 6 you can use.

Listing 2.28: Starting the Docker daemon on Red Hat 6

$ sudo service docker start

Version: v1.2.2 (19946fc) 28

https://access.redhat.com/articles/881893
https://access.redhat.com/articles/881893

Chapter 2: Installing Docker

If we want Docker to start at boot we should also:

Listing 2.29: Ensuring the Docker daemon starts at boot on Red Hat 6

$ sudo service docker enable

On Red Hat Enterprise Linux 7 and Fedora.

Listing 2.30: Starting the Docker daemon on Red Hat 7

$ sudo systemctl start docker

If we want Docker to start at boot we should also:

Listing 2.31: Ensuring the Docker daemon starts at boot on Red Hat 7

$ sudo systemctl enable docker

We should now be able to confirm Docker is installed and running using the
docker info command.

Listing 2.32: Checking Docker is installed on the Red Hat family

$ sudo docker info
Containers: 0
Images: ©

Boot2Docker installation on OS X

If you're using OS X, you can quickly get started with Docker using the
Boot2Docker tool. Boot2Docker is a tiny virtual machine with a supporting
command line tool that is installed on an OS X host and provides you with a
Docker environment.

Boot2Docker ships with a couple of prerequisites too:

* VirtualBox.
« The Docker client.

Version: v1.2.2 (19946fc) 29

http://boot2docker.io

Chapter 2: Installing Docker

Installing Boot2Docker on OS X

To install Boot2Docker on OS X we need to download its installer from Git Hub.
You can find it here.

Let's grab the current release:

Listing 2.33: Downloading the Boot2Docker PKG file

$ wget https://github.com/boot2docker/osx-installer/releases/<«
download/v1.2.0/Boot2Docker-1.2.0.pkg

Launch the downloaded installer and follow the instructions to install
Boot2Docker.

AT ETIN XV VPR VN T -0 A —

Welcome to the Boot2Docker for Mac OS X Installer

o Introduction Boot2Docker for Mac OS X
® Destination Select This installer will guide you through the steps to install Boot2Docker for
Mac OS X v1.0.1.

@ Installation Type

@ Installation To continue, click Continue.

® Summary

Co Back . Continue |

Figure 2.1: Installing Boot2Docker on OS X

Version: v1.2.2 (19946fc) 30

https://github.com/boot2docker/osx-installer/releases

Chapter 2: Installing Docker

Setting up Boot2Docker on OS X

Now that we've got all the pieces of Boot2Docker and its prerequisites installed,
we can set it up and test it. To set it up, we run the Boot2Docker application.

Navigate to your OS X Application folder and click on the Boot2Docker icon to
initialize and launch the Boot2Docker virtual machine.

[#] /Applications g“
mj|E-]() o] 2 (8- O]#-] 2 (Q
Name 4 Date Modified
Ead AUUDE nReduer May 17, £U1S, £03F FV
& Alfred 2 Apr 30, 2014, 8:45 AM
| In___lhmamn Feb 10, 2013, 1:48 AM
c Amazon Cloud Drive Mar 30, 2012, 9:05 PM
I . Amazon MP3 Downloader Oct 24, 2012, 6:42 PM
-@- App Store Jun 15, 2014, 11:06 PM
' Atom Jun 20, 2014, 1:22 PM
g Automator Apr 19, 2013, 1:15 PM
89 Bandito Apr 1, 2014, 10:49 AM
i BucketExplorer Dec 25, 2013, 1:.20 AM
@r Butler May 13, 2014, BE:43 AM
E Caffeine Sep 29, 2011, 4:36 PM
|| Calculator Aug 25, 2013, 4:05 AM
i Calendar Jun 3, 2014, 9:36 PM
B calibre Feb 13, 2014, 11:04 PM
A. Chess Aug 25, 2013, 3:17 AM
g CleanMyMac 2 Apr 1, 2014, 12:28 PM

|| Macintosh HD » [5] Applications » & boot2docker

1 of 143 selected, 207.53 GB available

Figure 2.2: Running Boot2Docker on OS X

Version: v1.2.2 (19946fc) 31

Chapter 2: Installing Docker

Testing Boot2Docker

We can now test that our Boot2Docker installation is working by trying to con-
nect our local client to the Docker daemon running on the Boot2Docker virtual
machine.

$ docker info

Containers: 0

Images: 0

Driver: aufs

Root Dir: /mnt/sdal/var/lib/docker/aufs
Dirs: 0

Kernel Version: 3.13.3-tinycore64

And presto! We have Docker running locally on our OS X host.

Boot2Docker installation on Windows

If you're using Microsoft Windows, you can quickly get started with Docker using
the Boot2Docker tool. Boot2Docker is a tiny virtual machine with a supporting
command line tool that is installed on a Windows host and provides you with a
Docker environment.

Boot2Docker ships with a couple of prerequisites too:

« VirtualBox.
» The Docker client.
Installing Boot2Docker on Windows

To install Boot2Docker on Windows we need to download its installer from Git
Hub. You can find it here.

Version: v1.2.2 (19946fc) 32

http://boot2docker.io
https://github.com/boot2docker/windows-installer/releases

Chapter 2: Installing Docker

Let's grab the current release:

Listing 2.35: Downloading the Boot2Docker .EXE file

$ wget https://github.com/boot2docker/windows-installer/releases/<«
download/v1l.2.0/docker-install.exe

Launch the downloaded installer and follow the instructions to install
Boot2Docker.

a Setup - Docker for Windows El@

Welcome to the Docker for
Windows Setup Wizard

d OCKErS M50

This will install Docker for Windows version 0.9 on your
computer,

It is recommended that you dose all other applications before
continuing.

Click Mext to continue, ar Cancel to exit Setup.

i Mext =][Cancel

Figure 2.3: Installing Boot2Docker on Windows

Setting up Boot2Docker on Windows

Once Boot2Docker is installed you can run the Boot2Docker Start script from the
Desktop or Program Files > Boot2Docker for Windows.

Version: v1.2.2 (19946fc) 33

Chapter 2: Installing Docker

' Boot2Docker Start

cing=no
1 D £ ocalhof
Permanently added ' calhost]:2022°
e
FE EFE oEE
B EE HE EE

Figure 2.4: Running Boot2Docker on Windows

Testing Boot2Docker
We can now test that our Boot2Docker installation is working by trying to con-

nect our local client to the Docker daemon running on the Boot2Docker virtual
machine.

Version: v1.2.2 (19946fc) 34

Chapter 2: Installing Docker

Listing 2.36: Testing Boot2Docker on Windows

$ docker info

Containers: 0

Images: ©

Driver: aufs

Root Dir: /mnt/sdal/var/lib/docker/aufs
Dirs: ©

Kernel Version: 3.13.3-tinycore64

And presto! We have Docker running locally on our Windows host.

Using Boot2Docker with this book

If you are following the examples in this book you will sometimes be asked to
connect to a container via its network interface or a network port. Often this will
be on the localhost or IP address of the Docker server. As Boot2Docker is a local
virtual machine it has its own network interface and IP address. You will need to
connect to that address rather than your localhost or host's own IP address.

To find the Boot2Docker IP address you can check the value of the DOCKER HOST
environment variable. You'll be prompted to set this variable when you start or
install Boot2Docker with a message similar to:

Listing 2.37: Boot2Docker launch message

$ boot2docker start

2014/07/31 05:59:40 Waiting for VM to be started...

2014/07/31 05:59:46 Started.

2014/07/31 05:59:46 To connect the Docker client to the Docker <«
daemon, please set:

2014/07/31 05:59:46 export DOCKER HOST=tcp<«
1//192.168.59.103:2375

Or you can find the IP address by running the boot2docker ip command.

Version: v1.2.2 (19946fc) 35

Chapter 2: Installing Docker

Listing 2.38: Getting the Boot2Docker IP address

$ boot2docker ip
The VM's Host only interface IP address is: 192.168.59.103

So with an example asking you to connect to a container on the localhost<«
, for example using the curl command, you would replace localhost with the IP
address provided.

So that:

Listing 2.39: Initial curl command

$ curl localhost:49155

Would become:

Listing 2.40: Updated curl command
$ curl 192.168.59.103:49155

Additionally, and importantly, any examples that use volumes or the docker run
command with the -v flag to mount a local directory into a Docker container will
not work with Boot2Docker. You can't mount a local directory on your OS X or
Windows host into the Docker host running in the Boot2Docker virtual machine
because they don't share a file system. Hence the current Boot2Docker release does
not support the use of volumes. If you want to use any examples with volumes,
such as those in Chapters 5 and 6, you will need to be running Docker on a Linux-
based host. This is also true if running Docker in any virtual machine on Windows
or OS X.

NOTE There is also a great blog post from Chris Jones that talks about these
issues and suggests some workarounds.

Version: v1.2.2 (19946fc) 36

http://viget.com/extend/how-to-use-docker-on-os-x-the-missing-guide

Chapter 2: Installing Docker

Docker installation script

There is also an alternative method available to install Docker on an appropriate
host using a remote installation script. To use this script we need to curl it from
the get.docker.io website.

NOTE The script currently only supports Ubuntu, Fedora, Debian, and Gentoo
installation. It may be updated shortly to include other distributions.

First, we'll need to ensure the curl command is installed.

Listing 2.41: Testing for curl

$ whereis curl
curl: /usr/bin/curl /usr/bin/X11/curl /usr/share/man/manl/curl.l.<«

gz

We can use apt-get to install curl if necessary.

Listing 2.42: Installing curl on Ubuntu

$ sudo apt-get -y install curl

Or we can use yum on Fedora.

Listing 2.43: Installing curl on Fedora

$ sudo yum -y install curl

Now we can use the script to install Docker.

Listing 2.44: Installing Docker from the installation script

$ curl https://get.docker.io/ | sudo sh

This will ensure that the required dependencies are installed and check that our
kernel is an appropriate version and that it supports an appropriate storage driver.

Version: v1.2.2 (19946fc) 37

https://get.docker.io

Chapter 2: Installing Docker

It will then install Docker and start the Docker daemon.

Binary installation

If we don't wish to use any of the package-based installation methods, we can
download the latest binary version of Docker.

$ wget http://get.docker.io/builds/Linux/x86 64/docker-latest.tgz

I recommend not taking this approach, as it reduces the maintainability of your
Docker installation. Using packages is simpler and easier to manage, especially if
using automation or configuration management tools.

The Docker daemon

After we've installed Docker, we need to confirm that the Docker daemon is run-
ning. Docker runs as a root-privileged daemon process to allow it to handle op-
erations that can't be executed by normal users (e.g., mounting filesystems). The
docker binary runs as a client of this daemon and also requires root privileges to
run.

The Docker daemon should be started by default when the Docker package is
installed. By default, the daemon listens on a Unix socket at /var/run/docker. <«
sock for incoming Docker requests. If a group named docker exists on our system,
Docker will apply ownership of the socket to that group. Hence, any user that
belongs to the docker group can run Docker without needing to use the sudo
command.

WARNING Remember that although the docker group makes life easier, it
is still a security exposure. The docker group is root-equivalent and should be
limited to those users and applications who absolutely need it.

Version: v1.2.2 (19946fc) 38

Chapter 2: Installing Docker

Configuring the Docker daemon

We can change how the Docker daemon binds by adjusting the -H flag when the
daemon is run.

We can use the -H flag to specify different interface and port configuration; for
example, binding to the network:

Listing 2.46: Changing Docker daemon networking

$ sudo /usr/bin/docker -d -H tcp://0.0.0.0:2375

This would bind the Docker daemon to all interfaces on the host. Docker isn't
automatically aware of networking changes on the client side. We will need to
specify the -H option to point the docker client at the server; for example, docker<

-H :4200 would be required if we had changed the port to 4200. Or, if we don't
want to specify the -H on each client call, Docker will also honor the content of
the DOCKER HOST environment variable..

Listing 2.47: Using the DOCKER_HOST environment variable

$ export DOCKER HOST="tcp://0.0.0.0:2375"

WARNING By default, Docker client-server communication is not authenti-
cated. This means that if you bind Docker to an exposed network interface, anyone
can connect to the daemon. There is, however, some TLS authentication available
in Docker 0.9 and later. You'll see how to enable it when we look at the Docker
API in Chapter 8.

We can also specify an alternative Unix socket path with the -H flag; for example,
to use unix://home/docker/docker.sock:

Version: v1.2.2 (19946fc) 39

Chapter 2: Installing Docker

Listing 2.48: Binding the Docker daemon to a different socket

$ sudo /usr/bin/docker -d -H unix://home/docker/docker.sock

Or we can specify multiple bindings like so:

Listing 2.49: Binding the Docker daemon to multiple places

$ sudo /usr/bin/docker -d -H tcp://0.0.0.0:2375 -H unix://home/<«
docker/docker.sock

We can also increase the verbosity of the Docker daemon by prefixing the daemon
start command with DEBUG=1. Currently, Docker has limited log output. Indeed, if
we are running on Ubuntu using Upstart, then generally only the output generated
by the daemon is in /var/log/upstart/docker.log.

Listing 2.50: Turning on Docker daemon debug
DEBUG=1 /usr/bin/docker -d
If we want to make these changes permanent, we'll need to edit the various startup

configurations. On Ubuntu, this is done by editing the /etc/default/docker file
and changing the DOCKER OPTS variable.

On Fedora and Red Hat distributions, this can be configured by editing the /usr<
/lib/systemd/system/docker.service file and adjusting the ExecStart line.

NOTE on other platforms, you can manage and update the Docker daemon's
starting configuration via the appropriate init mechanism.

Checking that the Docker daemon is running

On Ubuntu, if Docker has been installed via package, we can check if the daemon
is running with the Upstart status command:

Version: v1.2.2 (19946fc) 40

Chapter 2: Installing Docker

Listing 2.51: Checking the status of the Docker daemon
$ sudo status docker

docker start/running, process 18147

We can then start or stop the Docker daemon with the Upstart start and stop
commands, respectively.

Listing 2.52: Starting and stopping Docker with Upstart

$ sudo stop docker
docker stop/waiting
$ sudo start docker
docker start/running, process 18192

On Red Hat and Fedora, we can do similarly using the service shortcuts.

Listing 2.53: Starting and stopping Docker on Red Hat and Fedora

$ sudo service docker stop
Redirecting to /bin/systemctl stop docker.service
$ sudo service docker start
Redirecting to /bin/systemctl start docker.service

If the daemon isn't running, then the docker binary client will fail with an error
message similar to this:

Listing 2.54: The Docker daemon isn't running

2014/05/18 20:08:32 Cannot connect to the Docker daemon. Is '<«
docker -d' running on this host?

NOTE prior to version 0.4.0 of Docker, the docker binary had a stand-alone
mode, meaning it would run without the Docker daemon running. This mode has
now been deprecated.

Version: v1.2.2 (19946fc) 41

Chapter 2: Installing Docker

Upgrading Docker

After you've installed Docker, it is also easy to upgrade it when required. If you
installed Docker using native packages via apt-get or yum, then you can also use
these channels to upgrade it.

For example, run the apt-get update command and then install the new version
of Docker.

$ sudo apt-get update
$ sudo apt-get install lxc-docker

Docker user interfaces

You can also potentially use a graphical user interface to manage Docker once
you've got it installed. Currently, there are a small number of Docker user inter-
faces and web consoles available in various states of development, including:

« Shipyard - Shipyard gives you the ability to manage Docker resources, includ-
ing containers, images, hosts, and more from a single management interface.
It's open source, and the code is available here.

* DockerUI - DockerUI is a web interface that allows you to interact with the
Docker Remote API. It's written in JavaScript using the AngularJS frame-
work.

« maDocker - A Web UI written in NodeJS and Backbone (in early stages of
development).

Summary

In this chapter, we've seen how to install Docker on a variety of platforms. We've
also seen how to manage the Docker daemon.

Version: v1.2.2 (19946fc) 42

http://shipyard-project.com/
https://github.com/ehazlett/shipyard
https://github.com/crosbymichael/dockerui
https://github.com/izifortune/maDocker

Chapter 2: Installing Docker

In the next chapter, we're going to start using Docker. We'll begin with container
basics to give you an introduction to basic Docker operations. If you're all set up
and ready to go then jump onto Chapter 3.

Version: v1.2.2 (19946fc) 43

Chapter 3

Getting Started with Docker

In the last chapter, we saw how to install Docker and ensure the Docker daemon
is up and running. In this chapter we're going to see how to take our first steps
with Docker and work with our first container. This chapter will provide you with
the basics of how to interact with Docker.

Ensuring Docker is ready

We're going to start with checking that Docker is working correctly, and then
we're going to take a look at the basic Docker workflow: creating and managing
containers. We'll take a container through its typical lifecycle from creation to a
managed state and then stop and remove it.

Firstly, let's check that the docker binary exists and is functional:

44

Chapter 3: Getting Started with Docker

$ sudo docker info

Containers: 0

Images: 0

Storage Driver: aufs

Root Dir: /var/lib/docker/aufs

Dirs: 144

Execution Driver: native-0.1

Kernel Version: 3.8.0-29-generic
Registry: [https://index.docker.io/v1l/]

Here, we've passed the info command to the docker binary, which returns a list of
any containers, any images (the building blocks Docker uses to build containers),
the execution and storage drivers Docker is using, and its basic configuration.

As we've learned in previous chapters, Docker has a client-server architecture. It
has a single binary, docker, that can act as both client and server. As a client, the
docker binary passes requests to the Docker daemon (e.g., asking it to return in-
formation about itself), and then processes those requests when they are returned.

Running our first container

Now let's try and launch our first container with Docker. We're going to use the
docker run command to create a container. The docker run command provides
all of the "launch" capabilities for Docker. We'll be using it a lot to create new
containers.

TIP You can find a full list of the available Docker commands here or by typing
docker help. You can also use the Docker man pages (e.g., man docker-run).

Version: v1.2.2 (19946fc) 45

http://docs.docker.com/reference/commandline/cli/

Chapter 3: Getting Started with Docker

Listing 3.2: Creating our first container

$ sudo docker run -i -t ubuntu /bin/bash

Pulling repository ubuntu from https://index.docker.io/vl

Pulling image 8+«
dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868albbc8318clc <«
(precise) from ubuntu

Pulling 8«
dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868albbc8318clc «
metadata

Pulling 8+«
dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868albbc8318clc <«
fs layer

Downloading 58337280/? (n/a)

Pulling image <«
b750fe79269d2ec9a3c593ef05b4332b1d1lab2a62bdacch2¢c21d589ff2f5f2dc«

(quantal) from ubuntu
Pulling image 27cf784147099545 () from ubuntu
root@fcd78ela3569: /#

Wow. A bunch of stuff happened here when we ran this command. Let's look at
each piece.

Listing 3.3: The docker run command

$ sudo docker run -i -t ubuntu /bin/bash

First, we told Docker to run a command using docker run. We passed it two
command line flags: -i and -t. The -i flag keeps STDIN open from the container,
even if we're not attached to it. This persistent standard input is one half of what
we need for an interactive shell. The -t flag is the other half and tells Docker
to assign a pseudo-tty to the container we're about to create. This provides us
with an interactive shell in the new container. This line is the base configuration
needed to create a container with which we plan to interact on the command line
rather than run as a daemonized service.

Version: v1.2.2 (19946fc) 46

Chapter 3: Getting Started with Docker

TIP You can find a full list of the available Docker run flags here or by typing
docker help run. You can also use the Docker man pages (e.g., example man
docker-run.)

Next, we told Docker which image to use to create a container, in this case the
ubuntu image. The ubuntu image is a stock image, also known as a "base" image,
provided by Docker, Inc., on the Docker Hub registry. You can use base images
like the ubuntu base image (and the similar fedora, debian, centos, etc., images)
as the basis for building your own images on the operating system of your choice.
For now, we're just running the base image as the basis for our container and not
adding anything to it.

So what was happening in the background here? Firstly, Docker checked locally
for the ubuntu image. If it can't find the image on our local Docker host, it will
reach out to the Docker Hub registry run by Docker, Inc., and look for it there.
Once Docker had found the image, it downloaded the image and stored it on the
local host.

Docker then used this image to create a new container inside a filesystem. The
container has a network, IP address, and a bridge interface to talk to the local
host. Finally, we told Docker which command to run in our new container, in this
case launching a Bash shell with the /bin/bash command.

When the container had been created, Docker ran the /bin/bash command inside
it; the container's shell was presented to us like so:

root@f7cbdac22a02:/#

NOTE we'e going to see in Chapter 4 how to build our own images to use as
the basis for containers.

Version: v1.2.2 (19946fc) 47

http://docs.docker.com/reference/commandline/cli/#run
http://hub.docker.com
http://hub.docker.com

Chapter 3: Getting Started with Docker

Working with our first container

We are now logged into a new container, with the catchy ID of f7cbdac22a02, as
the root user. This is a fully fledged Ubuntu host, and we can do anything we like
in it. Let's explore it a bit, starting with asking for its hostname.

Listing 3.5: Checking the container's hostname

root@f7cbdac22a02:/# hostname
f7cbdac22a02

We can see that our container's hostname is the container ID. Let's have a look at
the /etc/hosts file too.

Listing 3.6: Checking the container's /etc/hosts

root@f7cbdac22a02:/# cat /etc/hosts
172.17.0.4 f7cbdac22a02

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

Docker has also added a host entry for our container with its IP address. Let's also
check out its networking configuration.

Version: v1.2.2 (19946fc) 48

Chapter 3: Getting Started with Docker

Listing 3.7: Checking the container's interfaces

root@f7cbdac22a02:/# ip a

1: lo: <LOOPBACK,UP,LOWER UP> mtu 1500 qdisc noqueue state <«
UNKNOWN group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host 1o

inet6 ::1/128 scope host

valid 1ft forever preferred 1ft forever

899: eth0O: <BROADCAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast <
state UP group default glen 1000

link/ether 16:50:3a:b6:f2:cc brd ff:ff:ff:ff:ff:ff

inet 172.17.0.4/16 scope global eth0

inet6 fe80::1450:3aff:feb6:f2cc/64 scope link

valid 1ft forever preferred 1ft forever

As we can see, we have the 1o loopback interface and the standard eth® network
interface with an IP address of 172.17.0.4, just like any other host. We can also
check its running processes.

Listing 3.8: Checking container's processes

root@f7cbdac22a02:/# ps -aux

USER PID %CPU SMEM VSZ RSS TTY STAT START TIME <«
COMMAND

root 1 0.0 0.0 18156 1936 ? Ss May30 0:00 <«
/bin/bash

root 21 0.0 0.0 15568 1100 ? R+ 02:38 0:00 <«
pS -aux

Now, how about we install a package?

Listing 3.9: Installing a package in our first container

root@f7cbdac22a02:/# apt-get update && apt-get install vim

We'll now have Vim installed in our container.

Version: v1.2.2 (19946fc) 49

Chapter 3: Getting Started with Docker

You can keep playing with the container for as long as you like. When you're done,
type exit, and you'll return to the command prompt of your Ubuntu host.

So what's happened to our container? Well, it has now stopped running. The
container only runs for as long as the command we specified, /bin/bash, is run-
ning. Once we exited the container, that command ended, and the container was
stopped.

The container still exists; we can show a list of current containers using the
docker ps -a command.
ubuntu@ip-10-33-10-145:~$ sudo docker ps -a

juj IMAGE ‘COMMAND CREATED STATUS PORTS NAMES
f7cbdac22a@2 ubuntu:12.04 /bin/bash 22 seconds ago Exit @ gray_cat

69d97e230d99 jamtur@l/wordpress:latest /bin/bash /start.sh 27 hours ago Up 27 hours 0.0.0.0:49153->22/tcp, 0.0.0.0:49154->88/tcp blue_bird
(aBef25127b65 jamtur@l/wordpress:latest /bin/bash /start.sh 27 hours ago Exit 137 blue_wol f

Figure 3.1: Listing Docker containers

By default, when we run just docker ps, we will only see the running containers.
When we specify the -a flag, the docker ps command will show us all containers,
both stopped and running.

TIP You can also use the docker ps command with the -1 flag to show the last
container that was run, whether it is running or stopped.

We can see quite a bit of information about our container: its ID, the image used
to create it, the command it last ran, when it was created, and its exit status (in
our case, 0, because it was exited normally using the exit command). We can
also see that each container has a name.

NOTE There are three ways containers can be identified: a short UUID (like
f7cbdac22a02), a longer UUID (like £7cbdac22a02e03c9438c729345e54db9d20cf
a2ac1fc3494b6eb60872e74778), and a name (like gray cat).

Version: v1.2.2 (19946fc) 50

Chapter 3: Getting Started with Docker

Container naming

Docker will automatically generate a name at random for each container we create.
We can see that the container we've just created is called gray cat. If we want to
specify a particular container name in place of the automatically generated name,
we can do so using the - -name flag.

Listing 3.10: Naming a container

$ sudo docker run --name bob the container -i -t ubuntu /bin/bash
root@aa3f365f0fde: /# exit

This would create a new container called bob the container. A valid container
name can contain the following characters: a to z, A to Z, the digits O to 9, the
underscore, period, and dash (or, expressed as a regular expression: [a-zA-Z0-<
9 .-1.

We can use the container name in place of the container ID in most Docker com-
mands, as we'll see. Container names are useful to help us identify and build
logical connections between containers and applications. It's also much easier to
remember a specific container name (e.g., web or db) than a container ID or even
a random name. I recommend using container names to make managing your
containers easier.

Names are unique. If we try to create two containers with the same name, the
command will fail. We need to delete the previous container with the same name
before we can create a new one. We can do so with the docker rm command.

Starting a stopped container

So what to do with our now-stopped bob the container container? Well, if we
want, we can restart a stopped container like so:

Listing 3.11: Starting a stopped container

$ sudo docker start bob the container

Version: v1.2.2 (19946fc) 51

Chapter 3: Getting Started with Docker

We could also refer to the container by its container ID instead.

Listing 3.12: Starting a stopped container by ID

$ sudo docker start aa3f365f0fde

TIP We can also use the docker restart command.

Now if we run the docker ps command without the -a flag, we'll see our running
container.

Attaching to a container

Our container will restart with the same options we'd specified when we launched
it with the docker run command. So there is an interactive session waiting on
our running container. We can reattach to that session using the docker attach
command.

Listing 3.13: Attaching to a running container

$ sudo docker attach bob the container

or via its container ID:

Listing 3.14: Attaching to a running container via ID

$ sudo docker attach aa3f365f0f4e

and we'll be brought back to our container's Bash prompt:

TIP You might need to hit Enter to bring up the prompt

Version: v1.2.2 (19946fc) 52

Chapter 3: Getting Started with Docker

Listing 3.15: Inside our re-attached container

root@aa3f365f0fde: /#

If we exit this shell, our container will again be stopped.

Creating daemonized containers

In addition to these interactive containers, we can create longer-running contain-
ers. Daemonized containers don't have the interactive session we've just used and
are ideal for running applications and services. Most of the containers you're likely
to run will probably be daemonized. Let's start a daemonized container now.

Listing 3.16: Creating a long running container

$ sudo docker run --name daemon dave -d ubuntu /bin/sh -c "while <«
true; do echo hello world; sleep 1; done"
1333bbla66atf402138485fe44a335b382c09a887aa9f95ch9725e309ce5b7db3

Here, we've used the docker run command with the -d flag to tell Docker to
detach the container to the background.

We've also specified a while loop as our container command. Our loop will echo
hello world over and over again until the container is stopped or the process
stops.

With this combination of flags, you'll see that, instead of being attached to a shell
like our last container, the docker run command has instead returned a container
ID and returned us to our command prompt. Now if we run docker ps, we can
see a running container.

Listing 3.17: Viewing our running daemon_dave container

CONTAINER ID IMAGE COMMAND CREATED <
STATUS PORTS NAMES
1333bbla66af ubuntu:14.04 /bin/sh -c 'while tr 32 secs ago Up 27«
daemon_dave

Version: v1.2.2 (19946fc) 53

Chapter 3: Getting Started with Docker

Seeing what's happening inside our container

We now have a daemonized container running our while loop; let's take a look
inside the container and see what's happening. To do so, we can use the docker<
logs command. The docker logs command fetches the logs of a container.

Listing 3.18: Fetching the logs of our daemonized container

$ sudo docker logs daemon dave
hello world
hello world
hello world
hello world
hello world
hello world
hello world

Here we can see the results of our while loop echoing hello world to the logs.
Docker will output the last few log entries and then return. We can also monitor
the container's logs much like the tail -f binary operates using the - f flag..

Listing 3.19: Tailing the logs of our daemonized container

$ sudo docker logs -f daemon dave
hello world
hello world
hello world
hello world
hello world
hello world
hello world

TIP Use ctr1-c to exit from the log tail.

Version: v1.2.2 (19946fc) 54

Chapter 3: Getting Started with Docker

You can also tail a portion of the logs of a container, again much like the tail

command with the -f --lines flags. For example, you can get the last ten lines

of a log by using docker logs --tail 10 daemon dave. You can also follow the

logs of a container without having to read the whole log file with docker logs<
--tail 0 -f daemon dave.

To make debugging a little easier, we can also add the -t flag to prefix our log
entries with timestamps.

Listing 3.20: Tailing the logs of our daemonized container

$ sudo docker logs -ft daemon dave
[May 10 13:06:17.934] hello world
[May 10 13:06:18.935] hello world
[May 10 13:06:19.937] hello world
[May 10 13:06:20.939] hello world
[May 10 13:06:21.942] hello world

TIP Again, use Ctrl1-C to exit from the log tail.

Inspecting the container's processes

In addition to the container's logs we can also inspect the processes running inside
the container. To do this, we use the docker top command.

Listing 3.21: Inspecting the processes of the daemonized container

$ sudo docker top daemon_dave

We can then see each process (principally our while loop), the user it is running

Version: v1.2.2 (19946fc) 55

Chapter 3: Getting Started with Docker

as, and the process ID.

Listing 3.22: The docker top output

PID USER COMMAND

977 root /bin/sh -c while true; do echo hello world; sleep 1; <«
done

1123 root sleep 1

Running a process inside a container

We can also run additional processes inside our containers using the docker <«
exec command. There are two types of commands we can run inside a container:
background and interactive. Background tasks run inside the container without
interaction and interactive tasks remain in the foreground. Interactive tasks are
useful for tasks like opening a shell inside a container. Let's look at an example of
a background task.

Listing 3.23: Running a background task inside a container

$ sudo docker exec -d daemon dave touch /etc/new config file

Here the -d flag indicates we're running a background process. We then specify
the name of the container to run the command inside and the command to be
executed. In this case our command will create a new empty file called /etc«
/new _config file inside our daemon dave container. We can use a docker <
exec background command to run maintenance, monitoring or management tasks
inside a running container.

We can also run interactive tasks like opening a shell inside our daemon dave<
container.

Listing 3.24: Running an interactive command inside a container

$ sudo docker exec -t -i daemon dave /bin/bash

Version: v1.2.2 (19946fc) 56

Chapter 3: Getting Started with Docker

The -t and -i flags, like the flags used when running an interactive container,
create a TTY and capture STDIN for our executed process. We then specify the
name of the container to run the command inside and the command to be executed.
In this case our command will create a new bash session inside the container
daemon _dave. We could then use this session to issue other commands inside our
container.

NOTE The docker exec command was introduced in Docker 1.3 and is not avail-
able in earlier releases. For earlier Docker releases you should see the nsenter
command explained in Chapter 6.

Stopping a daemonized container

If we wish to stop our daemonized container, we can do it with the docker stop
command, like so:

Listing 3.25: Stopping the running Docker container
$ sudo docker stop daemon dave
or again via its container ID.

Listing 3.26: Stopping the running Docker container by ID

$ sudo docker stop c2c4e57cl2c4

NOTE The docker stop command sends a SIGTERM signal to the Docker con-
tainer's running process. If you want to stop a container a bit more enthusiastically,
you can use the docker kill command, which will send a SIGKILL signal to the
container's process.

Version: v1.2.2 (19946fc) 57

Chapter 3: Getting Started with Docker

Run docker ps to check the status of the now-stopped container. Useful here is
the docker ps -n x flag which shows the last x containers, running or stopped.

Automatic container restarts

If your container has stopped because of a failure you can configure Docker to
restart it using the --restart flag. The - -restart flag checks for the container's
exit code and makes a decision whether or not to restart it. The default behavior
is to not restart containers at all.

You specify the - -restart flag with the docker run command.

Listing 3.27: Automatically restarting containers

$ sudo docker run --restart=always --name daemon_dave -d ubuntu /<
bin/sh -c "while true; do echo hello world; sleep 1; done"

In this example the --restart flag has been set to always. Docker will try to
restart the container no matter what exit code is returned. Alternatively, we can
specify a value of on-failure which restarts the container if it exits with a non-
zero exit code. The on-failure flag also accepts an optional restart count.

Listing 3.28: On-failure restart count
--restart=on-failure:5

This will attempt to restart the container a maximum of fives times if a non-zero
exit code is received.

NOTE The --restart flag was introduced in Docker 1.2.0.

Version: v1.2.2 (19946fc) 58

Chapter 3: Getting Started with Docker

Finding out more about our container

In addition to the information we retrieved about our container using the docker<
ps command, we can get a whole lot more information using the docker <«
inspect command.

Listing 3.29: Inspecting a container

$ sudo docker inspect daemon dave
[{
"ID": "<«
c2c4e57c12c4c142271c031333823af95d64b20b5d607970c334784430bchdOf«

n
r’

"Created": "2014-05-10T11:49:01.902029966Z7",
"Path": "/bin/sh",
"Args": [
"
"while true; do echo hello world; sleep 1; done"
1,
"Config": {
"Hostname": "c2c4e57cl2c4",

The docker inspect command will interrogate our container and return its con-
figuration information, including names, commands, networking configuration,
and a wide variety of other useful data.

We can also selectively query the inspect results hash using the -f or --format
flag.

Listing 3.30: Selectively inspecting a container

$ sudo docker inspect --format='{{ .State.Running }}' daemon dave
false

This will return the running state of the container, which in our case is false. We
can also get useful information like the container's IP address.

Version: v1.2.2 (19946fc) 59

Chapter 3: Getting Started with Docker

Listing 3.31: Inspecting the container's IP address

$ sudo docker inspect --format '{{ .NetworkSettings.IPAddress }}'<«
\

daemon_dave

172.17.0.2

TIP The --format or -f flag is a bit more than it seems on the surface. It's actually
a full Go template being exposed. You can make use of all the capabilities of a Go
template when querying it.

We can also list multiple containers and receive output for each.

Listing 3.32: Inspecting multiple containers

$ sudo docker inspect --format '{{.Name}} {{.State.Running}}' \
daemon dave bob the container

/daemon_dave false

/bob_the container false

We can select any portion of the inspect hash to query and return.

NOTE 1n addition to inspecting containers, you can see a bit more about how
Docker works by exploring the /var/lib/docker directory. This directory holds
your images, containers, and container configuration. You'll find all your contain-
ers in the /var/1ib/docker/containers directory.

Version: v1.2.2 (19946fc) 60

http://golang.org/pkg/text/template/
http://golang.org/pkg/text/template/

Chapter 3: Getting Started with Docker

Deleting a container

If you are finished with a container, you can delete it using the docker rm com-
mand.

NOTE 1ts important to note that you can't delete a running Docker container.
You must stop it first using the docker stop command or docker kill command.

Listing 3.33: Deleting a container

$ sudo docker rm 80430f8d0921
8043018d0921

There isn't currently a way to delete all containers, but you can slightly cheat with
a command like the following:

Listing 3.34: Deleting all containers

docker rm “docker ps -a -q°

This command will list all of the current containers using the docker ps command.
The -a flag lists all containers, and the -q flag only returns the container IDs rather
than the rest of the information about your containers. This list is then passed to
the docker rm command, which deletes each container.

Summary

We've now been introduced to the basic mechanics of how Docker containers work.
This information will form the basis for how we'll learn to use Docker in the rest
of the book.

In the next chapter, we're going to explore building our own Docker images and
working with Docker repositories and registries.

Version: v1.2.2 (19946fc) 61

Chapter 4

Working with Docker images and
repositories

In Chapter 2, we learned how to install Docker. In Chapter 3, we learned how to
use a variety of commands to manage Docker containers, including the docker<
run command.

Let's see the docker run command again.

$ sudo docker run -i -t --name another container mum ubuntu \
/bin/bash
root@b415b317ac75:/#

This command will launch a new container called another container mum from
the ubuntu image and open a Bash shell.

In this chapter, we're going to explore Docker images: the building blocks from
which we launch containers. We'll learn a lot more about Docker images, what
they are, how to manage them, how to modify them, and how to create, store,
and share your own images. We'll also examine the repositories that hold images
and the registries that store repositories.

62

Chapter 4: Working with Docker images and repositories

What is a Docker image?

Let's continue our journey with Docker by learning a bit more about Docker im-
ages. A Docker image is made up of filesystems layered over each other. At the
base is a boot filesystem, bootfs, which resembles the typical Linux/Unix boot
filesystem. A Docker user will probably never interact with the boot filesystem.
Indeed, when a container has booted, it is moved into memory, and the boot
filesystem is unmounted to free up the RAM used by the initrd disk image.

So far this looks pretty much like a typical Linux virtualization stack. Indeed,
Docker next layers a root filesystem, rootfs, on top of the boot filesystem. This
rootfs can be one or more operating systems (e.g., a Debian or Ubuntu filesys-
tem).

In a more traditional Linux boot, the root filesystem is mounted read-only and
then switched to read-write after boot and an integrity check is conducted. In the
Docker world, however, the root filesystem stays in read-only mode, and Docker
takes advantage of a union mount to add more read-only filesystems onto the
root filesystem. A union mount is a mount that allows several filesystems to be
mounted at one time but appear to be one filesystem. The union mount overlays
the filesystems on top of one another so that the resulting filesystem may contain
files and subdirectories from any or all of the underlying filesystems.

Docker calls each of these filesystems images. Images can be layered on top of
one another. The image below is called the parent image and you can traverse
each layer until you reach the bottom of the image stack where the final image
is called the base image. Finally, when a container is launched from an image,
Docker mounts a read-write filesystem on top of any layers below. This is where
whatever processes we want our Docker container to run will execute.

This sounds confusing, so perhaps it is best represented by a diagram.

Version: v1.2.2 (19946fc) 63

http://en.wikipedia.org/wiki/Union_mount

Chapter 4: Working with Docker images and repositories

Writeable Cont

Image
Add Apache
Image
Add emacs

Base Image

Ubuntu

bootfs

cgroups, hamespace,
device mapper

Kernel

Figure 4.1: The Docker filesystem layers

When Docker first starts a container, the initial read-write layer is empty. As
changes occur, they are applied to this layer; for example, if you want to change
a file, then that file will be copied from the read-only layer below into the read-
write layer. The read-only version of the file will still exist but is now hidden
underneath the copy.

Version: v1.2.2 (19946fc) 64

Chapter 4: Working with Docker images and repositories

This pattern is traditionally called "copy on write" and is one of the features that
makes Docker so powerful. Each read-only image layer is read-only; this image
never changes. When a container is created, Docker builds from the stack of im-
ages and then adds the read-write layer on top. That layer, combined with the
knowledge of the image layers below it and some configuration data, form the con-
tainer. As we discovered in the last chapter, containers can be changed, they have
state, and they can be started and stopped. This, and the image-layering frame-
work, allows us to quickly build images and run containers with our applications
and services.

Listing Docker images

Let's get started with Docker images by looking at what images are available to
us on our Docker host. We can do this using the docker images command.

$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu latest ¢4ff7513909d 6 days ago 225.4 MB

We can see that we've got an image, from a repository called ubuntu. So where
does this image come from? Remember in Chapter 3, when we ran the docker<

run command, that part of the process was downloading an image? In our case,
it's the ubuntu image.

NOTE Local images live on our local Docker host in the /var/lib/docker di-
rectory. Each image will be inside a directory named for your storage driver;
for example, aufs or devicemapper. You'll also find all your containers in the
/var/lib/docker/containers directory.

That image was downloaded from a repository. Images live inside repositories,

Version: v1.2.2 (19946fc) 65

Chapter 4: Working with Docker images and repositories

and repositories live on registries. The default registry is the public registry man-
aged by Docker, Inc., Docker Hub.

TIP The Docker registry code is open source. You can also run your own registry,
as we'll see later in this chapter.

£ hitps:/registry.hub.docker.com

.
wall
ganaz Search... Q, Browse Repos Documentation Community Help ?\ jamtur01 »

SEARCH

name, namespace or description] m

Top Contributors Popular Repositories
. clue D 158 ubuntu 171
~Aachen, Germany Official Ubuntu base image
I cpuguy83 Ty 153 & stackbrew
Florida
: centos 89
'3:#’:{“ radial 126)
Icial Gen mage as of pri
Official CentOS 6 | f 12 April 2014
Los Angeles .
.) @ library
& pinterb D 116
Wisconsin, USA phusion/baseimage _ 72
guilhem 78 A special image that Is configured for correct use within Docker
Paris containers. It is Ubuntu, plus some modifications fo...

Q joaodubas ~ 15 ephus'on

Sao Paulo, Brazil

Figure 4.2: Docker Hub

Inside Docker Hub (or on a Docker registry you run yourself), images are stored
in repositories. You can think of an image repository as being much like a Git
repository. It contains images, layers, and metadata about those images.

Version: v1.2.2 (19946fc) 66

https://hub.docker.com
https://hub.docker.com

Chapter 4: Working with Docker images and repositories

Each repository can contain multiple images (e.g., the ubuntu repository contains
images for Ubuntu 12.04, 12.10, 13.04, 13.10, and 14.04). Let's get the rest of
the images in the ubuntu repository now.

Listing 4.3: Pulling the Ubuntu image

$ sudo docker pull ubuntu
Pulling repository ubuntu
c4ff7513909d: Pulling dependent layers
3db9c44t4520: Pulling dependent layers
75204fdb260b: Pulling dependent layers

Here we've used the docker pull command to pull down the entire contents of
the ubuntu repository.

Let's see what our docker images command reveals now.

Listing 4.4: Listing all the ubuntu Docker images

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ubuntu 13.10 5e019ab7bf6d 2 weeks ago 180 MB
ubuntu saucy 5e019ab7bféed 2 weeks ago 180 MB
ubuntu 12.04 74fe38d11401 2 weeks ago 209.6 MB
ubuntu precise 74fe38d11401 2 weeks ago 209.6 MB
ubuntu 12.10 a7cfB8ae4e998 2 weeks ago 171.3 MB
ubuntu quantal a7cfB8ae4e998 2 weeks ago 171.3 MB
ubuntu 14.04 99ec81b80c55 2 weeks ago 266 MB
ubuntu latest c4ff7513909d 6 days ago 225.4 MB
ubuntu trusty 99ec81b80c55 2 weeks ago 266 MB
ubuntu raring 316b678ddf48 2 weeks ago 169.4 MB
ubuntu 13.04 316b678ddf48 2 weeks ago 169.4 MB
ubuntu 10.04 3db9c44f4520 3 weeks ago 183 MB
ubuntu lucid 3db9c44f4520 3 weeks ago 183 MB

You can see we've now got a series of ubuntu images. We can see that the ubuntu
image is actually a series of images collected under a single repository. In this

Version: v1.2.2 (19946fc) 67

Chapter 4: Working with Docker images and repositories

case, when we pulled the ubuntu image, we actually got several versions of the
Ubuntu operating system, including 10.04, 12.04, 13.04, and 14.04.

NOTE we call it the Ubuntu operating system, but really it is not the full oper-
ating system. It's a very cut-down version with the bare runtime required to run
the distribution.

We identify each image inside that repository by what Docker calls tags. Each
image is being listed by the tags applied to it, so, for example, 12.10, 12.04«
, quantal, or precise and so on. Each tag marks together a series of image layers
that represent a specific image (e.g., the 12.04 tag collects together all the layers
of the Ubuntu 12.04 image). This allows us to store more than one image inside
a repository.

We can refer to a specific image inside a repository by suffixing the repository
name with a colon and a tag name, for example:

$ sudo docker run -t -i --name new container ubuntu:12.04 /bin/<
bash
root@79e36bff89b4: /#

This launches a container from the ubuntu:12.04 image, which is an Ubuntu 12.04
operating system. We can also see that some images with the same ID (see image
ID 74fe38d11401) are tagged more than once. Image ID 74fe38d11401 is actu-
ally tagged both 12.04 and precise: the version number and code name for that
Ubuntu release, respectively.

It's always a good idea to build a container from specific tags. That way we'll know
exactly what the source of our container is. There are differences, for example,
between Ubuntu 12.04 and 14.04, so it would be useful to specifically state that
we're using ubuntu:12.04 so we know exactly what we're getting.

There are two types of repositories: user repositories, which contain images con-
tributed by Docker users, and top-level repositories, which are controlled by the

Version: v1.2.2 (19946fc) 68

Chapter 4: Working with Docker images and repositories

people behind Docker.

A user repository takes the form of a username and a repository name; for example,
jamtur@l/puppet.

* Username: jamturol
* Repository name: puppet

Alternatively, a top-level repository only has a repository name like ubuntu. The
top-level repositories are managed by Docker Inc and by selected vendors who pro-
vide curated base images that you can build upon (e.g., the Fedora team provides
a fedora image). The top-level repositories also represent a commitment from
vendors and Docker Inc that the images contained in them are well constructed,
secure, and up to date.

WARNING User-contributed images are built by members of the Docker com-
munity. You should use them at your own risk: they are not validated or verified
in any way by Docker Inc.

Pulling images

When we run a container from images with the docker run command, if the image
isn't present locally already then Docker will download it from the Docker Hub.
By default, if you don't specify a specific tag, Docker will download the latest
tag, for example:

$ sudo docker run -t -i --name next container ubuntu /bin/bash
root@23a42cee9lc3: /#

will download the ubuntu:latest image if it isnt already present on the host.

Version: v1.2.2 (19946fc) 69

Chapter 4: Working with Docker images and repositories

Alternatively, we can use the docker pull command to pull images down our-
selves. Using docker pull saves us some time launching a container from a new
image. Let's see that now by pulling down the fedora base image.

Listing 4.7: Pulling the fedora image

$ sudo docker pull fedora
Pulling repository fedora
5cc9e91966f7: Download complete
b7de3133ff98: Download complete
511136ea3c5a: Download complete
ef52fb1fe610: Download complete

Let's see this new image on our Docker host using the docker images command.
This time, however, let's narrow our review of the images to only the fedora<
images. To do so, we can specify the image name after the docker images<
command.

Listing 4.8: Viewing the fedora image

$ sudo docker images fedora

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
fedora rawhide 5cc9e91966f7 6 days ago 372.7 MB
fedora 20 b7de3133ff98 3 weeks ago 372.7 MB

fedora heisenbug b7de3133ff98 3 weeks ago 372.7 MB
fedora latest b7de3133ff98 3 weeks ago 372.7 MB

We can see that the fedora image contains the development Rawhide release as
well as Fedora 20. We can also see that the Fedora 20 release is tagged in three
ways -- 20, heisenbug, and latest -- but it is the same image (we can see all three
entries have an ID of b7de3133ff98). If we wanted the Fedora 20 image, therefore,
we could use any of the following:

* fedora:20

* fedora:heisenbug
* fedora:latest

Version: v1.2.2 (19946fc) 70

Chapter 4: Working with Docker images and repositories

We could have also just downloaded one tagged image using the docker pull
command.

Listing 4.9: Pulling a tagged fedora image

$ sudo docker pull fedora:20

This would have just pulled the fedora:26 image.

Searching for images

We can also search all of the publicly available images on Docker Hub using the
docker search command:

Listing 4.10: Searching for images

$ sudo docker search puppet

NAME DESCRIPTION STARS OFFICIAL AUTOMATED
wfarr/puppet-module. ..

jamtur@l/puppetmaster

TIP You can also browse the available images online at Docker Hub.

Here, we've searched the Docker Hub for the term puppet. It'll search images and
return:

* Repository names

+ Image descriptions

« Stars - these measure the popularity of an image

« Official - an image managed by the upstream developer (e.g., the fedora
image managed by the Fedora team)

« Automated - an image built by the Docker Hub's Automated Build process

Version: v1.2.2 (19946fc) 71

https://hub.docker.com
https://hub.docker.com

Chapter 4: Working with Docker images and repositories

NOTE well see more about Automated Builds later in this chapter.

Let's pull down one of these images.

Listing 4.11: Pulling down the jamtur01/puppetmaster image

$ sudo docker pull jamtur@l/puppetmaster

This will pull down the jamtur@l/puppetmaster image (which, by the way, con-
tains a pre-installed Puppet master).

We can then use this image to build a new container. Let's do that now using the
docker run command again.

Listing 4.12: Creating a Docker container from the Puppet master image

$ sudo docker run -i -t jamtur@l/puppetmaster /bin/bash
root@4655dee672d3: /# facter

architecture => amd64

augeasversion => 1.2.0

root@4655dee672d3: /# puppet --version
3.4.3

You can see we've launched a new container from our jamtur0l/puppetmaster im-
age. We've launched the container interactively and told the container to run the
Bash shell. Once inside the container's shell, we've run Facter (Puppet's inventory
application), which was pre-installed on our image. From inside the container,
we've also run the puppet binary to confirm it is installed.

Building our own images

So we've seen that we can pull down pre-prepared images with custom contents.
How do we go about modifying our own images and updating and managing them?

Version: v1.2.2 (19946fc) 72

Chapter 4: Working with Docker images and repositories

There are two ways to create a Docker image:

» Via the docker commit command
» Via the docker build command with a Dockerfile

The docker commit method is not currently recommended, as building with a
Dockerfile is far more flexible and powerful, but we'll demonstrate it to you for
the sake of completeness. After that, we'll focus on the recommended method
of building Docker images: writing a Dockerfile and using the docker build
command.

NOTE Wwe don't generally actually "create" new images; rather, we build new
images from existing base images, like the ubuntu or fedora images we've already
seen. If you want to build an entirely new base image, you can see some informa-
tion on this here.

Creating a Docker Hub account

A big part of image building is sharing and distributing your images. We do this
by pushing them to the Docker Hub or your own registry. To facilitate this, let's
start by creating an account on the Docker Hub. You can the join Docker Hub
here.

Version: v1.2.2 (19946fc) 73

https://docs.docker.com/articles/baseimages/
https://hub.docker.com
https://hub.docker.com/account/signup/

Chapter 4: Working with Docker images and repositories

*docker What is Docker? Use Cases Tryltl Explore Install & Docs

Create your Docker account

Already have an account? Login instead.

Username:

B

Required. 4 to 30 lower case characters. Letters and digits only.

Password:

Password confirmation:

Enter the same password as above, for verification.

Email:

Mailing List:

& Subscribe to the Docker Weekly mailing list.

m P O Sign up with Github

Figure 4.3: Creating a Docker Hub account.

Create an account and verify your email address from the email you'll receive after
signing up.

Now let's test our new account from Docker. To sign into the Docker Hub you can
use the docker login command.

Listing 4.13: Logging into the Docker Hub

$ sudo docker login

Username: jamtur@l

Password:

Email: james@lovedthanlost.net
Login Succeeded

Version: v1.2.2 (19946fc) 74

Chapter 4: Working with Docker images and repositories

This command will log you into the Docker Hub and store your credentials for
future use.

NOTE vour credentials will be stored in the $HOME/ . dockerctg file.

Using Docker commit to create images

The first method of creating images used the docker commit command. You can
think about this method as much like making a commit in a version control system.
We create a container, make changes to that container as you would change code,
and then commit those changes to a new image.

Let's start by creating a container from the ubuntu image we've used in the past.

Listing 4.14: Creating a custom container to modify

$ sudo docker run -i -t ubuntu /bin/bash
root@4aab3ce3cb76:/#

Next, we'll install Apache into our container.

Listing 4.15: Adding the Apache package

root@4aab3ce3cb76:/# apt-get -yqq update

root@4aab3ce3cb76:/# apt-get -y install apache2

We've launched our container and then installed Apache within it. We're going
to use this container as a web server, so we'll want to save it in its current state.
That will save us from having to rebuild it with Apache every time we create a
new container. To do this we exit from the container, using the exit command,
and use the docker commit command.

Version: v1.2.2 (19946fc) 75

Chapter 4: Working with Docker images and repositories

Listing 4.16: Committing the custom container

$ sudo docker commit 4aab3ce3cb76 jamtur0l/apache2
8celea7al528

You can see we've used the docker commit command and specified the ID of the
container we've just changed (to find that ID you could use the docker ps -1«
-g command to return the ID of the last created container) as well as a target
repository and image name, here jamtur0l/apache2. Of note is that the docker<
commit command only commits the differences between the image the container
was created from and the current state of the container. This means updates are
very lightweight.

Let's look at our new image.

Listing 4.17: Reviewing our new image

$ sudo docker images jamtur@l/apache2

jamtur@l/apache2 Tlatest 8ce@ea7al528 13 seconds ago 90.63 MB

We can also provide some more data about our changes when committing our
image, including tags. For example:

Listing 4.18: Committing another custom container

$ sudo docker commit -m="A new custom image" --author="James <«
Turnbull" \

4aab3ce3cb76 jamtur@l/apache2:webserver

f99ebb6fed1f559258840505a015d5bh6173177623946815366F3e3acffOladef

Here, we've specified some more information while committing our new image.
We've added the -m option which allows us to provide a commit message explain-
ing our new image. We've also specified the - -author option to list the author of
the image. We've then specified the ID of the container we're committing. Finally,
we've specified the username and repository of the image, jamtur0l/apache2, and
we've added a tag, webserver, to our image.

Version: v1.2.2 (19946fc) 76

Chapter 4: Working with Docker images and repositories

We can view this information about our image using the docker inspect com-
mand.

Listing 4.19: Inspecting our committed image

$ sudo docker inspect jamtur0l/apache2:webserver

[{
"Architecture": "amd64",
"Author": "James Turnbull",
"Comment": "A new custom image",
ha

TIP You can find a full list of the docker commit flags here.

If we want to run a container from our new image, we can do so using the docker<
run command.

Listing 4.20: Running a container from our committed image

$ sudo docker run -t -i jamtur@l/apache2:webserver /bin/bash

You'll note that we've specified our image with the full tag: jamtur@l/apache2«
:webserver.

Building images with a Dockerfile

We don't recommend the docker commit approach. Instead, we recommend that
you build images using a definition file called a Dockerfile and the docker <«
build command.. The Dockerfile uses a basic DSL with instructions for building
Docker images. We then use the docker build command to build a new image
from the instructions in the Dockerfile.

Version: v1.2.2 (19946fc) 77

http://docs.docker.com/reference/commandline/cli/#commit

Chapter 4: Working with Docker images and repositories

Our first Dockerfile

Let's now create a directory and an initial Dockerfile. We're going to build a
Docker image that contains a simple web server.

Listing 4.21: Creating a sample repository

$ mkdir static web
$ cd static web
$ touch Dockerfile

We've created a directory called static web to hold our Dockerfile. This di-
rectory is our build environment, which is what Docker calls a context or build
context. Docker will upload the build context, as well as any files and directories
contained in it, to our Docker daemon when the build is run. This provides the
Docker daemon with direct access to any code, files or other data you might want
to include in the image.

We've also created an empty Dockerfile file to get started. Now let's look at an
example of a Dockerfile to create a Docker image that will act as a Web server.

Listing 4.22: Our first Dockerfile

Version: 0.0.1

FROM ubuntu:14.04

MAINTAINER James Turnbull "james@example.com"

RUN apt-get update

RUN apt-get install -y nginx

RUN echo 'Hi, I am in your container' \
>/usr/share/nginx/html/index.html

EXPOSE 80

The Dockerfile contains a series of instructions paired with arguments. Each
instruction, for example FROM, should be in upper-case and be followed by an
argument: FROM ubuntu:14.04. Instructions in the Dockerfile are processed from
the top down, so you should order them accordingly.

Each instruction adds a new layer to the image and then commits the image.

Version: v1.2.2 (19946fc) 78

Chapter 4: Working with Docker images and repositories

Docker executing instructions roughly follow a workflow:

* Docker runs a container from the image.

+ An instruction executes and makes a change to the container.

+ Docker runs the equivalent of docker commit to commit a new layer.

* Docker then runs a new container from this new image.

« The next instruction in the file is executed, and the process repeats until all
instructions have been executed.

This means that if your Dockerfile stops for some reason (for example, if an
instruction fails to complete), you will be left with an image you can use. This is
highly useful for debugging: you can run a container from this image interactively
and then debug why your instruction failed using the last image created.

NOTE The pockerfile also supports comments. Any line that starts with a #
is considered a comment. You can see an example of this in the first line of our
Dockerfile.

The first instruction in a Dockerfile should always be FROM. The FROM instruction
specifies an existing image that the following instructions will operate on; this
image is called the base image.

In our sample Dockerfile we've specified the ubuntu:14.04 image as our base
image. This specification will build an image on top of an Ubuntu 14.04 base
operating system. As with running a container, you should always be specific
about exactly from which base image you are building.

Next, we've specified the MAINTAINER instruction, which tells Docker who the au-
thor of the image is and what their email address is. This is useful for specifying
an owner and contact for an image.

We've followed these instructions with three RUN instructions. The RUN instruction
executes commands on the current image. The commands in our example: updat-
ing the installed APT repositories, installing the nginx package, then creating the

Version: v1.2.2 (19946fc) 79

Chapter 4: Working with Docker images and repositories

/usr/share/nginx/html/index.html file containing some example text. As we've
discovered, each of these instructions will create a new layer and, if successful,
will commit that layer and then execute the next instruction.

By default, the RUN instruction executes inside a shell using the command wrapper
/bin/sh -c. If you are running the instruction on a platform without a shell or
you wish to execute without a shell (for example, to avoid shell string munging),
you can specify the instruction in exec format:

RUN ["apt-get", " install", "-y", "nginx"]

We use this format to specify an array containing the command to be executed
and then each parameter to pass to the command.

Next, we've specified the EXPOSE instruction, which tells Docker that the applica-
tion in this container will use this specific port on the container. That doesn't mean
you can automatically access whatever service is running on that port (here, port
80) on the container. For security reasons, Docker doesn't open the port automati-
cally, but waits for you to do it when you run the container using the docker run
command. We'll see this shortly when we create a new container from this image.

You can specify multiple EXPOSE instructions to mark multiple ports to be exposed.

NOTE Docker also uses the EXPOSE instruction to help link together containers,
which we'll see in Chapter 5.

Building the image from our Dockerfile

All of the instructions will be executed and committed and a new image returned
when we run the docker build command. Let's try that now:

Version: v1.2.2 (19946fc) 80

Chapter 4: Working with Docker images and repositories

$ cd static web
$ sudo docker build -t="jamtur@l/static web"
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
---> ba5877dc9bec
Step 1 : MAINTAINER James Turnbull "james@example.com"
---> Running in b8ffa06f9274
---> 4c66c9dcee35
Removing intermediate container b8ffa06f9274
Step 2 : RUN apt-get update
---> Running in f331636c84f7
---> 9d938b9e0090
Removing intermediate container f331636c¢84f7
Step 3 : RUN apt-get install -y nginx
---> Running in 4b989d4730dd
---> 93fb180f3bc9
Removing intermediate container 4b989d4730dd
Step 4 : RUN echo 'Hi, I am in your container' >/usr/share/<
nginx/html/index.html
---> Running in b51lbacc46eb9
---> b584f4acldef
Removing intermediate container b51bacc46eb9
Step 5 : EXPOSE 80
---> Running in 7ff423bd1f4d
---> 22d47c8ch6e5
Successfully built 22d47c8cb6e5

We've used the docker build command to build our new image. We've specified
the -t option to mark our resulting image with a repository and a name, here the
jamtur0l repository and the image name static web. I strongly recommend you
always name your images to make it easier to track and manage them.

You can also tag images during the build process by suffixing the tag after the

Version: v1.2.2 (19946fc) 81

Chapter 4: Working with Docker images and repositories

image name with a colon, for example:

Listing 4.25: Tagging a build

$ sudo docker build -t="jamtur@l/static web:v1l"

TIP 1f you don't specify any tag, Docker will automatically tag your image as
latest.

The trailing . tells Docker to look in the local directory to find the Dockerfile.
You can also specify a Git repository as a source for the Dockerfile as we can see
here:

Listing 4.26: Building from a Git repository

$ sudo docker build -t="jamtur@l/static web:v1" \
git@github.com:jamtur@l/docker-static web

Here Docker assumes that there is a Dockerfile located in the root of the Git
repository.

But back to our docker build process. You can see that the build context has
been uploaded to the Docker daemon.

Listing 4.27: Uploading the build context to the daemon

Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon

TIP If a file named .dockerignore exists in the root of the build context then
it is interpreted as a newline-separated list of exclusion patterns. Much like a
.gitignore file it excludes the listed files from being uploaded to the build context.
Globbing can be done using Go's filepath.

Version: v1.2.2 (19946fc) 82

http://golang.org/pkg/path/filepath/#Match

Chapter 4: Working with Docker images and repositories

Next, you can see that each instruction in the Dockerfile has been executed with
the image ID, 22d47c8cb6e5, being returned as the final output of the build pro-
cess. Each step and its associated instruction are run individually, and Docker has
committed the result of each operation before outputting that final image ID.

What happens if an instruction fails?

Earlier, we talked about what happens if an instruction fails. Let's look at an
example: let's assume that in Step 4 we got the name of the required package
wrong and instead called it ngin.

Let's run the build again and see what happens when it fails.

$ cd static web
$ sudo docker build -t="jamtur@l/static web"
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 1 : FROM ubuntu:14.04
---> 8dbd9e392a96
Step 2 : MAINTAINER James Turnbull "james@example.com"
---> Running in d97e0clcf6ea
---> 85130977028d
Step 3 : RUN apt-get update
---> Running in 85130977028d
---> 997485f46ec4
Step 4 : RUN apt-get install -y ngin
---> Running in ffcal6d58fd8
Reading package lists...
Building dependency tree...
Reading state information...
E: Unable to locate package ngin
2014/06/04 18:41:11 The command [/bin/sh -c apt-get install -y <«
ngin] returned a non-zero code: 100

Version: v1.2.2 (19946fc) 83

Chapter 4: Working with Docker images and repositories

Let's say I want to debug this failure. I can use the docker run command to create
a container from the last step that succeeded in my Docker build, here the image
ID 997485f46ec4.

Listing 4.29: Creating a container from the last successful step

$ sudo docker run -t -i 997485f46ec4 /bin/bash
dcgel2e59fe8: /#

I can then try to run the apt-get install -y ngin step again with the right pack-
age name or conduct some other debugging to determine what went wrong. Once
I've identified the issue, I can exit the container, update my Dockerfile with the
right package name, and retry my build.

Dockerfiles and the build cache

As a result of each step being committed as an image, Docker is able to be really
clever about building images. It will treat previous layers as a cache. If, in our
debugging example, we did not need to change anything in Steps 1 to 3, then
Docker would use the previously built images as a cache and a starting point.
Essentially, it'd start the build process straight from Step 4. This can save you a
lot of time when building images if a previous step has not changed. If, however,
you did change something in Steps 1 to 3, then Docker would restart from the first
changed instruction.

Sometimes, though, you want to make sure you don't use the cache. For example,
if you'd cached Step 3 above, apt-get update, then it wouldn't refresh the APT
package cache. You might want it to do this to get a new version of a package. To
skip the cache, we can use the - -no-cache flag with the docker build command..

Listing 4.30: Bypassing the Dockerfile build cache

$ sudo docker build --no-cache -t="jamtur0l/static web"

Version: v1.2.2 (19946fc) 84

Chapter 4: Working with Docker images and repositories

Using the build cache for templating

As a result of the build cache, you can build your Dockerfiles in the form of
simple templates (e.g., adding a package repository or updating packages near
the top of the file to ensure the cache is hit). I generally have the same template
set of instructions in the top of my Dockerfile, for example for Ubuntu:

Listing 4.31: A template Ubuntu Dockerfile

FROM ubuntu:14.04

MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED AT 2014-07-01

RUN apt-get -qq update

Let's step through this new Dockerfile. Firstly, I've used the FROM instruction to
specify a base image of ubuntu:14.04. Next I've added my MAINTAINER instruction
to provide my contact details. I've then specified a new instruction, ENV. The ENV
instruction sets environment variables in the image. In this case, I've specified
the ENV instruction to set an environment variable called REFRESHED AT, showing
when the template was last updated. Lastly, I've specified the apt-get -qq <«
update command in a RUN instruction. This refreshes the APT package cache when
it's run, ensuring that the latest packages are available to install.

With my template, when I want to refresh the build, I change the date in my ENV
instruction. Docker then resets the cache when it hits that ENV instruction and runs
every subsequent instruction anew without relying on the cache. This means my
RUN apt-get update instruction is rerun and my package cache is refreshed with
the latest content. You can extend this template example for your target platform
or to fit a variety of needs. For example, for a fedora image we might:

Listing 4.32: A template Fedora Dockerfile

FROM fedora:20

MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED AT 2014-07-01

RUN yum -q makecache

which performs a very similar function for Fedora using Yum.

Version: v1.2.2 (19946fc) 85

Chapter 4: Working with Docker images and repositories

Viewing our new image

Now let's take a look at our new image. We can do this using the docker images
command.

Listing 4.33: Listing our new Docker image

$ sudo docker images jamtur@l/static web

REPOSITORY TAG ID CREATED SIZE

jamtur@l/static web latest 22d47c8cb6e5 24 seconds ago 12.29 kB«
(virtual 326 MB)

If we want to drill down into how our image was created, we can use the docker<
history command.

Listing 4.34: Using the docker history command

$ sudo docker history 22d47c8cb6e5

IMAGE CREATED CREATED BY <«
SIZE
22d47c8cb6e5 6 minutes ago /bin/sh -c #(nop) EXPOSE map[80/tcp<
H{H 0B

b584f4acldef 6 minutes ago /bin/sh -c echo 'Hi, I am in your <«
container' 27 B

93fb180f3bc9 6 minutes ago /bin/sh -c apt-get install -y nginx <

18.46 MB
9d938b9%e0090 6 minutes ago /bin/sh -c apt-get update <«
20.02 MB

4c66c9dcee35 6 minutes ago /bin/sh -c #(nop) MAINTAINER James <

Turnbull " 0 B

We can see each of the image layers inside our new jamtur0l/static_web image
and the Dockerfile instruction that created them.

Version: v1.2.2 (19946fc) 86

Chapter 4: Working with Docker images and repositories

Launching a container from our new image

We can also now launch a new container using our new image and see if what
we've built has worked.

$ sudo docker run -d -p 80 --name static web jamtur@l/static web <«
\

nginx -g "daemon off;"

6751b94bb5c001a650c918e9a7f9683985c3eb2b026c2f1776€61190669494a8

Here I've launched a new container called static web using the docker run<

command and the name of the image we've just created. We've specified the
-d option, which tells Docker to run detached in the background. This allows
us to run long-running processes like the Nginx daemon. We've also specified a
command for the container to run: nginx -g "daemon off;". This will launch
Nginx in the foreground to run our web server.

We've also specified a new flag, -p. The -p flag manages which network ports
Docker exposes at runtime. When you run a container, Docker has two methods
of assigning ports on the Docker host:

» Docker can randomly assign a high port from the range 49000 to 49900 on
the Docker host that maps to port 80 on the container.

* You can specify a specific port on the Docker host that maps to port 80 on
the container.

This will open a random port on the Docker host that will connect to port 80 on
the Docker container.

Let's look at what port has been assigned using the docker ps command.

Version: v1.2.2 (19946fc) 87

Chapter 4: Working with Docker images and repositories

Listing 4.36: Viewing the Docker port mapping

$ sudo docker ps -1

CONTAINER ID IMAGE ... PORTS <«
NAMES
6751b94bb5c0 jamtur@l/static web:latest ... 0.0.0.0:49154->80/«

tcp static web

We can see that port 49154 is mapped to the container port of 80. We can get the
same information with the docker port command.

Listing 4.37: The docker port command
$ sudo docker port 6751b94bb5c0O 80
0.0.0.0:49154
We've specified the container ID and the container port for which we'd like to see

the mapping, 80, and it has returned the mapped port, 49154.

The -p option also allows us to be flexible about how a port is exposed to the host.
For example, we can specify that Docker bind the port to a specific port:

Listing 4.38: Exposing a specific port with -p

$ sudo docker run -d -p 80:80 --name static web jamtur@l/<
static_web \
nginx -g "daemon off;"

This will bind port 80 on the container to port 80 on the local host. Obviously,
it's important to be wary of this direct binding: if you're running multiple contain-
ers, only one container can bind a specific port on the local host. This can limit
Docker's flexibility.

To avoid this, we could bind to a different port.

Version: v1.2.2 (19946fc) 88

Chapter 4: Working with Docker images and repositories

Listing 4.39: Binding to a different port

$ sudo docker run -d- p 8080:80 --name static web jamtur@l/<
static web \
nginx -g "daemon off;"

This would bind port 80 on the container to port 8080 on the local host.

We can also bind to a specific interface.

Listing 4.40: Binding to a specific interface

$ sudo docker run -d -p 127.0.0.1:80:80 --name static web <«
jamtur@l/static web \
nginx -g "daemon off;"

Here we've bound port 80 of the container to port 80 on the 127.0.0.1 interface
on the local host. We can also bind to a random port using the same structure.

Listing 4.41: Binding to a random port on a specific interface

$ sudo docker run -d -p 127.0.0.1::80 --name static web jamtur@l/<
static _web \
nginx -g "daemon off;"

Here we've removed the specific port to bind to on 127.0.0.1. We would now
use the docker inspect or docker port command to see which random port was
assigned to port 80 on the container.

TIP You can bind UDP ports by adding the suffix /udp to the port binding.

Docker also has a shortcut, -P, that allows us to expose all ports we've specified
via EXPOSE instructions in our Dockerfile.

Version: v1.2.2 (19946fc) 89

Chapter 4: Working with Docker images and repositories

Listing 4.42: Exposing a port with docker run

$ sudo docker run -d -P --name static web jamtur0l/static web \
nginx -g "daemon off;"

This would expose port 80 on a random port on our local host. It would also
expose any additional ports we had specified with other EXPOSE instructions in
the Dockerfile that built our image.

TIP You can find more information on port redirection here.

With this port number, we can now view the web server on the running container
using the IP address of our host or the localhost on 127.0.0.1.

NOTE You can find the IP address of your local host with the ifconfig or ip
addr command.

Listing 4.43: Connecting to the container via curl

$ curl localhost:49154
Hi, I am in your container

Now we've got a very simple Docker-based web server.

Dockerfile instructions

We've already seen some of the available Dockerfile instructions, like RUN and
EXPOSE. But there are also a variety of other instructions we can put in our
Dockerfile. These include CMD, ENTRYPOINT, ADD, COPY, VOLUME, WORKDIR, USER,
ONBUILD, and ENV. You can see a full list of the available Dockerfile instructions
here.

Version: v1.2.2 (19946fc) 90

http://docs.docker.com/userguide/dockerlinks/#network-port-mapping-refresher
http://docs.docker.com/reference/builder/

Chapter 4: Working with Docker images and repositories

We'll also see a lot more Dockerfiles in the next few chapters and see how to
build some cool applications into Docker containers.

CMD

The CMD instruction specifies the command to run when a container is launched. It
is similar to the RUN instruction, but rather than running the command when the
container is being built, it will specify the command to run when the container
is launched, much like specifying a command to run when launching a container
with the docker run command, for example:

Listing 4.44: Specifying a specific command to run

$ sudo docker run -i -t jamtur@l/static web /bin/true

This would be articulated in the Dockerfile as:

Listing 4.45: Using the CMD instruction

CMD ["/bin/true"]

You can also specify parameters to the command, like so:

Listing 4.46: Passing parameters to the CMD instruction

CMD ["/bin/bash", "-1"]

Here we're passing the -1 flag to the /bin/bash command.

WARNING You'll note that the command is contained in an array. This tells
Docker to run the command 'as-is'. You can also specify the CMD instruction without
an array, in which case Docker will prepend /bin/sh -c to the command. This
may result in unexpected behavior when the command is executed. As a result, it
is recommended that you always use the array syntax.

Lastly, it's important to understand that we can override the CMD instruction using

Version: v1.2.2 (19946fc) 91

Chapter 4: Working with Docker images and repositories

the docker run command. If we specify a CMD in our Dockerfile and one on the
docker run command line, then the command line will override the Dockerfile's
CMD instruction.

NOTE 1ts also important to understand the interaction between the CMD instruc-
tion and the ENTRYPOINT instruction. We'll see some more details of this below.

Let's look at this process a little more closely. Let's say our Dockerfile contains
the CMD:

Listing 4.47: Overriding CMD instructions in the Dockerfile

CMD ["/bin/bash" 1]

We can build a new image (let's call it jamtur@l/test) using the docker build
command and then launch a new container from this image.

Listing 4.48: Launching a container with a CMD instruction
$ sudo docker run -t -i jamtur@l/test
root@e643e6218589: /#

Notice something different? We didn't specify the command to be executed at the
end of the docker run. Instead, Docker used the command specified by the CMD
instruction.

If, however, I did specify a command, what would happen?

Listing 4.49: Overriding a command locally

$ sudo docker run -i -t jamtur@l/test /bin/ps

PID TTY TIME CMD
17 00:00:00 ps
$

You can see here that we have specified the /bin/ps command to list running
processes. Instead of launching a shell, the container merely returned the list

Version: v1.2.2 (19946fc) 92

Chapter 4: Working with Docker images and repositories

of running processes and stopped, overriding the command specified in the CMD
instruction.

TIP You can only specify one CMD instruction in a Dockerfile. If more than one
is specified, then the last CMD instruction will be used. If you need to run multiple
processes or commands as part of starting a container you should use a service
management tool like Supervisor.

ENTRYPOINT

Closely related to the CMD instruction, and often confused with it, is the
ENTRYPOINT instruction.. So what's the difference between the two, and why are
they both needed? As we've just discovered, we can override the CMD instruction
on the docker run command line. Sometimes this isn't great when we want
a container to behave in a certain way. The ENTRYPOINT instruction provides
a command that isn't as easily overridden. Instead, any arguments we specify
on the docker run command line will be passed as arguments to the command
specified in the ENTRYPOINT. Let's see an example of an ENTRYPOINT instruction.

Listing 4.50: Specifying an ENTRYPOINT
ENTRYPOINT ["/usr/sbin/nginx"]

Like the CMD instruction, we also specify parameters by adding to the array. For
example:

Listing 4.51: Specifying an ENTRYPOINT parameter

ENTRYPOINT ["/usr/sbin/nginx", "-g", "daemon off;"]

NOTE As with the cMD instruction above, you can see that we've specified the
ENTRYPOINT command in an array to avoid any issues with the command being

Version: v1.2.2 (19946fc) 93

http://supervisord.org/

Chapter 4: Working with Docker images and repositories

prepended with /bin/sh -c.

Now let's rebuild our image with an ENTRYPOINT of ENTRYPOINT ["/usr/sbin/<
nginx"].

Listing 4.52: Rebuilding static web with a new ENTRYPOINT

$ sudo docker build -t="jamtur0l/static web"

And then launch a new container from our jamtur0l/static web image.

Listing 4.53: Using docker run with ENTRYPOINT

$ sudo docker run -t -i jamtur0l/static web -g "daemon off;"

As we can see, we've rebuilt our image and then launched an interactive container.
We specified the argument -g "daemon off;". This argument will be passed to
the command specified in the ENTRYPOINT instruction, which will thus become /<
usr/sbin/nginx -g "daemon off;". This command would then launch the Nginx
daemon in the foreground and leave the container running as a web server server.

We can also combine ENTRYPOINT and CMD to do some neat things. For example,
we might want to specify the following in our Dockerfile.

Listing 4.54: Using ENTRYPOINT and CMD together

ENTRYPOINT ["/usr/sbin/nginx"]
CMD ["-h"]

Now when we launch a container, any option we specify will be passed to the
Nginx daemon; for example, we could specify -g "daemon off"; as we did above
to run the daemon in the foreground. If we don't specify anything to pass to the
container, then the -h is passed by the CMD instruction and returns the Nginx help
text: /usr/sbin/nginx -h.

This allows us to build in a default command to execute when our container is run
combined with overridable options and flags on the docker run command line.

Version: v1.2.2 (19946fc) 94

Chapter 4: Working with Docker images and repositories

TIP If required at runtime, you can override the ENTRYPOINT instruction using
the docker run command with --entrypoint flag.

WORKDIR

The WORKDIR instruction provides a way to set the working directory for the con-
tainer and the ENTRYPOINT and/or CMD to be executed when a container is launched
from the image.

We can use it to set the working directory for a series of instructions or for the
final container. For example, to set the working directory for a specific instruction
we might:

Listing 4.55: Using the WORKDIR instruction

WORKDIR /opt/webapp/db
RUN bundle install
WORKDIR /opt/webapp
ENTRYPOINT ["rackup" 1]

Here we've changed into the /opt/webapp/db directory to run bundle install and
then changed into the /opt/webapp directory prior to specifying our ENTRYPOINT
instruction of rackup.

You can override the working directory at runtime with the -w flag, for example:

Listing 4.56: Overridding the working directory

$ sudo docker run -ti -w /var/log ubuntu pwd
/var/log

This will set the container's working directory to /var/log.

Version: v1.2.2 (19946fc) 95

Chapter 4: Working with Docker images and repositories

ENV

The ENV instruction is used to set environment variables during the image build
process. For example:

Listing 4.57: Setting an environment variable in Dockerfile

ENV RVM PATH /home/rvm/

This new environment variable will be used for any subsequent RUN instructions,
as if we had specified an environment variable prefix to a command like so:

Listing 4.58: Prefixing a RUN instruction

RUN gem install unicorn

would be executed as:

Listing 4.59: Executing with an ENV prefix

RVM_PATH=/home/rvm/ gem install unicorn

These environment variables will also be persisted into any containers created
from your image. So, if we were to run env in a container build with the ENV <
RVM PATH /home/rvm/ instruction we'd see:

Listing 4.60: Persisent environment variables in Docker containers

root@bf42aadc7f09:~# env

RVM PATH=/home/rvm/

You can also pass environment variables on the docker run command line using
the -e flag. These variables will only apply at runtime, for example:

Version: v1.2.2 (19946fc) 96

Chapter 4: Working with Docker images and repositories

Listing 4.61: Runtime environment variables

$ sudo docker run -ti -e "WEB PORT=8080" ubuntu env

HOME=/
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=792b171c5e9f

TERM=xterm

WEB PORT=8080

We can see that our container has the WEB PORT environment variable set to 8080.

USER
The USER instruction specifies a user that the image should be run as; for example:

Listing 4.62: Using the USER instruction

USER nginx

This will cause containers created from the image to be run by the nginx user. We
can specify a username or a UID and group or GID. Or even a combination thereof,
for example:

Listing 4.63: Specifying USER and GROUP variants

USER user

USER user:group
USER uid

USER uid:gid
USER user:gid
USER uid:group

You can also override this at runtime by specifying the -u flag with the docker<
run command.

TIP The default user if you don't specify the USER instruction is root.

Version: v1.2.2 (19946fc) 97

Chapter 4: Working with Docker images and repositories

VOLUME

The VOLUME instruction adds volumes to any container created from the image.
A volume is a specially designated directory within one or more containers that
bypasses the Union File System to provide several useful features for persistent or
shared data:

* Volumes can be shared and reused between containers.

+ A container doesn't have to be running to share its volumes.

+ Changes to a volume are made directly.

+ Changes to a volume will not be included when you update an image.
+ Volumes persist until no containers use them.

This allows us to add data (like source code), a database, or other content into an
image without committing it to the image and allows us to share that data between
containers. This can be used to do testing with containers and an application's
code, manage logs, or handle databases inside a container. We'll see examples of
this in Chapters 5 and 6.

You can use the VOLUME instruction like so:

Listing 4.64: Using the VOLUME instruction

VOLUME ["/opt/project”]

This would attempt to create a mount point /opt/project to any container created
from the image.

Or we can specify multiple volumes by specifying an array:

Listing 4.65: Using multiple VOLUME instructions

VOLUME ["/opt/project", "/data"]

Version: v1.2.2 (19946fc) 98

Chapter 4: Working with Docker images and repositories

TIP well see a lot more about volumes and how to use them in Chapters 5 and
6. If you're curious in the meantime, you can read more about volumes here.

ADD

The ADD instruction adds files and directories from our build environment into our
image; for example, when installing an application. The ADD instruction specifies
a source and a destination for the files, like so:

Listing 4.66: Using the ADD instruction

ADD software.lic /opt/application/software.lic
This ADD instruction will copy the file software. lic from the build directory to /<«
opt/application/software.lic in the image. The source of the file can be a URL,

filename, or directory as long as it is inside the build context or environment. You
can cannot ADD files from outside the build directory or context.

When ADD'ing files Docker uses the ending character of the destination to deter-
mine what the source is. If the destination ends in a /, then it considers the source
a directory. If it doesn't end in a /, it considers the source a file.

The source of the file can also be a URL; for example:

Listing 4.67: URL as the source of an ADD instruction

ADD http://wordpress.org/latest.zip /root/wordpress.zip

Lastly, the ADD instruction has some special magic for taking care of local tar<
archives. If a tar archive (valid archive types include gzip, bzip2, xz) is specified
as the source file, then Docker will automatically unpack it for you:

Listing 4.68: Archive as the source of an ADD instruction

ADD latest.tar.gz /var/www/wordpress/

This will unpack the latest.tar.gz archive into the /var/www/wordpress/ direc-
tory. The archive is unpacked with the same behavior as running tar with the

Version: v1.2.2 (19946fc) 99

http://docs.docker.com/userguide/dockervolumes/

Chapter 4: Working with Docker images and repositories

-x option: the output is the union of whatever exists in the destination plus the
contents of the archive. If a file or directory with the same name already exists in
the destination, it will not be overwritten.

WARNING Currently this will not work with a tar archive specified in a URL.
This is somewhat inconsistent behavior and may change in a future release.

Finally, if the destination doesn't exist, Docker will create the full path for us,
including any directories. New files and directories will be created with a mode
of 0755 and a UID and GID of 0.

NOTE 1t's also important to note that the build cache can be invalidated by ADD
instructions. If the files or directories added by an ADD instruction change then
this will invalidate the cache for all following instructions in the Dockerfile.

COPY

The COPY instruction is closely related to the ADD instruction. The key difference
is that the COPY instruction is purely focused on copying local files from the build
context and does not have any extraction or decompression capabilities.

COPY conf.d/ /etc/apache2/

This will copy files from the conf.d directory to the /etc/apache2/ directory.

The source of the files must be the path to a file or directory relative to the build
context, the local source directory in which your Dockerfile resides. You cannot
copy anything that is outside of this directory, because the build context is up-
loaded to the Docker daemon, and the copy takes place there. Anything outside

Version: v1.2.2 (19946fc) 100

Chapter 4: Working with Docker images and repositories

of the build context is not available. The destination should be an absolute path
inside the container.

Any files and directories created by the copy will have a UID and GID of 0.

If the source is a directory, the entire directory is copied, including filesystem
metadata; if the source is any other kind of file, it is copied individually along
with its metadata. In our example, the destination ends with a trailing slash /, so
it will be considered a directory and copied to the destination directory.

If the destination doesn't exist, it is created along with all missing directories in
its path, much like how the mkdir -p command works.

ONBUILD

The ONBUILD instruction adds triggers to images. A trigger is executed when the
image is used as the basis of another image (e.g., if you have an image that needs
source code added from a specific location that might not yet be available, or if
you need to execute a build script that is specific to the environment in which the
image is built).

The trigger inserts a new instruction in the build process, as if it were specified
right after the FROM instruction. The trigger can be any build instruction. For
example:

ONBUILD ADD . /app/src
ONBUILD RUN cd /app/src && make

This would add an ONBUILD trigger to the image being created, which we can see
when we run docker inspect on the image.

Version: v1.2.2 (19946fc) 101

Chapter 4: Working with Docker images and repositories

Listing 4.71: Showing ONBUILD instructions with docker inspect

$ sudo docker inspect 508efaded4bf8

"OnBuild": [
"ADD . /app/src",
"RUN cd /app/src/ && make"

For example, we'll build a new Dockerfile for an Apache2 image that we'll call
jamtur@l/apache2.

Listing 4.72: A new ONBUILD image Dockerfile

FROM ubuntu:14.04

MAINTAINER James Turnbull "james@example.com"
RUN apt-get update

RUN apt-get install -y apache2

ENV APACHE RUN USER www-data

ENV APACHE RUN GROUP www-data

ENV APACHE LOG DIR /var/log/apache2
ONBUILD ADD . /var/www/

EXPOSE 80

ENTRYPOINT ["/usr/sbin/apache2"]
CMD ["-D", "FOREGROUND"]

Now we'll build this image.

Listing 4.73: Building the apache2 image

$ sudo docker build -t="jamtur@l/apache2"

Step 7 : ONBUILD ADD . /var/www/
---> Running in Qell7f6eadba
---> a79983575b86

Successfully built a79983575b86

Version: v1.2.2 (19946fc) 102

Chapter 4: Working with Docker images and repositories

We now have an image with an ONBUILD instruction that uses the ADD instruction
to add the contents of the directory we're building from to the /var/www/ directory
in our image. This could readily be our generic web application template from
which I build web applications.

Let's try this now by building a new image called webapp from the following
Dockerfile:

Listing 4.74: The webapp Dockerfile

FROM jamtur@l/apache2

MAINTAINER James Turnbull "james@example.com"
ENV APPLICATION NAME webapp

ENV ENVIRONMENT development

Let's look at what happens when I build this image.

Listing 4.75: Building our webapp image

$ sudo docker build -t="jamtur@l/webapp"

Step 0 : FROM jamtur@l/apache2

Executing 1 build triggers

Step onbuild-0 : ADD . /var/www/

---> 1a018213a59d

---> 1a018213a59d

Step 1 : MAINTAINER James Turnbull "james@example.com"

Successfully built 04829a360d86

We can see that straight after the FROM instruction, Docker has inserted the ADD
instruction, specified by the ONBUILD trigger, and then proceeded to execute the
remaining steps. This would allow me to always add the local source and, as I've
done here, specify some configuration or build information for each application;
hence, this becomes a useful template image.

The ONBUILD triggers are executed in the order specified in the parent image and
are only inherited once (i.e., by children and not grandchildren). If we built an-

Version: v1.2.2 (19946fc) 103

Chapter 4: Working with Docker images and repositories

other image from this new image, a grandchild of the jamtur@l/apache2 image,
then the triggers would not be executed when that image is built.

NOTE There are several instructions you can't ONBUILD: FROM, MAINTAINER, and
ONBUILD itself. This is done to prevent inception-like recursion in Dockerfile
builds.

Pushing images to the Docker Hub

Once we've got an image, we can upload it to the Docker Hub. This allows us to
make it available for others to use. For example, we could share it with others in
our organization or make it publicly available.

NOTE The Docker Hub also has the option of private repositories. These are a
paid-for feature that allows you to store an image in a private repository that is
only available to you or anyone with whom you share it. This allows you to have
private images containing proprietary information or code you might not want to
share publicly.

We push images to the Docker Hub using the docker push command.

Let's try a push now.

Listing 4.76: Trying to push a root image

$ sudo docker push static web

2013/07/01 18:34:47 Impossible to push a "root" repository. <«
Please rename your repository in <user>/<repo> (ex: jamtur@l/<
static web)

Version: v1.2.2 (19946fc) 104

https://hub.docker.com

Chapter 4: Working with Docker images and repositories

What's gone wrong here? We've tried to push our image to the repository
static web, but Docker knows this is a root repository. Root repositories are
managed only by the Docker, Inc., team and will reject our attempt to write to
them. Let's try again.

Listing 4.77: Pushing a Docker image

$ sudo docker push jamtur@l/static web

The push refers to a repository [jamtur@l/static web] (len: 1)

Processing checksums

Sending image list

Pushing repository jamtur@l/static web to registry-1l.docker.io (1<«
tags)

This time, our push has worked, and we've written to a user repository, jamtur@l<
/static_web. We would write to your own user ID, which we created earlier, and
to an appropriately named image (e.g., youruser/yourimage).

We can now see our uploaded image on the Docker Hub.

Version: v1.2.2 (19946fc) 105

https://registry.hub.docker.com/u/jamtur01/static_web/

Chapter 4: Working with Docker images and repositories

w Browse Repos Documentation Community Help ?‘ jamtur01 \
Updated 9 seconds ago
jamturU1 / static_web Pull this repository docker pull jamtur01/static_web
4
0
. Settings
Information Tags 9

Description
Webhooks
Collaborators
Make Private
Delete Repository

Properties
Created

2014-07-26 15:00:15

Maintained by

et
Comments

No comments available, be the first to comment.

Status Security Education Resources Blogs Forums Feedback Contact

Figure 4.4: Your image on the Docker Hub.

TIP You can find documentation and more information on the features of the
Docker Hub here.

Automated Builds

In addition to being able to build and push our images from the command line,
the Docker Hub also allows us to define Automated Builds. We can do so by con-
necting a GitHub or BitBucket repository containing a Dockerfile to the Docker
Hub. When we push to this repository, an image build will be triggered and a new
image created. This was previously also known as a Trusted Build.

Version: v1.2.2 (19946fc) 106

http://docs.docker.com/docker-hub/
https://www.github.com
https://bitbucket.com
https://hub.docker.com
https://hub.docker.com

Chapter 4: Working with Docker images and repositories

NOTE Automated Builds also work for private GitHub and BitBucket reposito-
ries.

The first step in adding an Automated Build to the Docker Hub is to connect your
GitHub account or BitBucket to your Docker Hub account. To do this, navigate to
Docker Hub, sign in, click on your profile link, then click the Add Repository <«
-> Automated Build button.

Repository

1 wee Automated Build

sinatra

Figure 4.5: The Add Repository button.

You will see a page that shows your options for linking to either GitHub or Bit-
Bucket.

Version: v1.2.2 (19946fc) 107

Chapter 4: Working with Docker images and repositories

£ https://registry.hub.docker.com/builds/add/ [T
L1}
w Search Browse Repos Documentation Community Help ? jamtur01

Select the source you want to use for your Automated Build

-
GitHub Bitbucket

You are connected as jamtur01

Figure 4.6: Account linking options.

Click the Select button under the GitHub logo to initiate the account linkage. You
will be taken to GitHub and asked to authorize access for Docker Hub.

Version: v1.2.2 (19946fc) 108

Chapter 4: Working with Docker images and repositories

https:/ /registry.hub.docker.com/builds /link/github/?next=/builds/github/select/ [k
wal
v"“" Search... Q, Browse Repos Documentation Community Help ? jamtur0l s

» &

Pick how you would like to connect to GitHub

We let you choose how much access we have to your GitHub account.

Public and Private (recommended)

Read and Write access to Public and Private
repositories. We only use write access to add

Limited
Public read only access.

Only works with public repositories and

service hooks and deploy keys.
organizations.

Required if you want to build trusted builds from a

private GitHub repo You will need to manually make changes to your

repositories in order to use trusted builds
Required if you want to use a private organization.

We will automatically configure the service hooks
and deploy keys for you.

Select Select

Figure 4.7: Linking your GitHub account

You have two options: Public and Private (recommended) and Limited. Select
Public and Private (recommended), and click Allow Access to complete the au-
thorization. You may be prompted to input your GitHub password to confirm the
access.

From here, you will be prompted to select the organization and repository from
which you want to construct an Automated Build.

Version: v1.2.2 (19946fc) 109

Chapter 4: Working with Docker images and repositories

https://registry.hub.docker.com/builds/github/select/ 9
o8, i
v’ Search... Q, Browse Repos Documentation Community Help ? jamtur01 »

GitHub: Add Automated Build

We currently only support public repositories. If you want to have more than one Dockerfile per Github repo, you will need to create more than one
build, each targeting a different docker repository. Same goes with building multiple branches on the same Github repo. For more information
please read the Automated Build documentation.

Select a Repository to build

li’!'amturm
adamhjk/iclassify Select
auxesis/squiggle-proposal & Select
eLobato/minivenmo & Select
eshamow/prosvc-ci & Select

Figure 4.8: Selecting your repository.

Select the repository from which you wish to create an Automated Build by click-
ing the Select button next to the required repository, and then configure the
build.

Version: v1.2.2 (19946fc) 110

Chapter 4: Working with Docker images and repositories

& https://registry.hub.docker.com/builds/github/jamtur01/docker-puppetmaster/ [
@ Search... Q, Browse Repos Documentation Community Help ? jamtur01 ~v
README.md

If you have a README.md file in your repository, we will use that as the repository full description. We will look for the README.md in the

same directory where your Dockerfile lives.

Warning: if you change the full description after a build, it will be rewritten the next time the Automated Build, has been built. To make

changes, change the README.md in the git repo. For more information please read the Automated Build documentation.

Repo Name

jamtur01 4 ; docker-puppetmaste[f] ,

New unigue Repo name; 1 - 30 characters. Only lowercase letters, digits and _ - . characters are allowed

Tags

Type Name Dockerfile Location
Branc! % master !

© public

o' Anyone can pull, and is listed and searchable on the docker index.
' Private

& Only you can pull, and is not listed on the docker index.
Active

™ When active we will build when new pushes occur

Create Repository

Docker Tag Name

latest n

Figure 4.9: Configuring your Automated Build.

Specify the default branch you wish to use, and confirm the repository name.

Specify a tag you wish to apply to any resulting build, then specify the location of
the Dockerfile. The default is assumed to be the root of the repository, but you

can override this with any path.

Finally, click the Create Repository button to add your Automated Build to the

Docker Hub.

Version: v1.2.2 (19946fc)

111

Chapter 4: Working with Docker images and repositories

L C & | O https://registry.hub.docker.com/builds /github/jamtur01/docker-puppetmaster/ Q’j
w Browse Repos Documentation Community Help ?\ jamtur01 ~
What's Next

You have successfully configured a Automated Build with Github repo jamtur01/docker-puppetmaster.

Visit your bulld status page, to track your builds

Make sure your Automated Build builds correctly. If it doesn’t, look at the error logs to see what is causing your problem. If you have any questions
or issues, please let us know.

My Automated Builds

Status Secuwrity Education Resources Blog Forums Feedback Contar

Figure 4.10: Creating your Automated Build.

You will now see your Automated Build submitted. Click on the Build Status<

link to see the status of the last build, including log output showing the build
process and any errors. A build status of Done indicates the Automated Build is
up to date. An Error status indicates a problem; you can click through to see the
log output.

NOTE You can't push to an Automated Build using the docker push command.
You can only update it by pushing updates to your GitHub or BitBucket repository.

Deleting an image

We can also delete images when we don't need them anymore. To do this, we'll
use the docker rmi command.

Version: v1.2.2 (19946fc) 112

Chapter 4: Working with Docker images and repositories

Listing 4.78: Deleting a Docker image

$ sudo docker rmi jamtur@l/static web
Untagged: 06c6c1f81534

Deleted: 06c6c1f81534

Deleted: 9f551a68e60f

Deleted: 997485f46ecd

Deleted: al01d806d694

Deleted: 85130977028d

Here we've deleted the jamtur0l/static web image. You can see Docker's layer
filesystem at work here: each of the Deleted: lines represents an image layer
being deleted.

NOTE This only deletes the image locally. If you've previously pushed that
image to the Docker Hub, it'll still exist there.

If you want to delete an image's repository on the Docker Hub, you'll need to sign
in and delete it there using the Delete repository link.

Version: v1.2.2 (19946fc) 113

https://registry.hub.docker.com/u/jamtur01/static_web/

Chapter 4: Working with Docker images and repositories

[https:/ /registry.hub.docker.com/u/jamtur01/sshd/ [Tk
—— |

Updated an hour ago

jamturQ1/sshd Pull this repository docker pull jamtur01/sshd

No description set g

00 o2
X Settings
Information Tags
Description
V4 Webhooks
Collaborators

Make Private
Delete repository

No description set Properties
Created

2014-06-04 19:12:57

Maintained by

g jamturo1

Comments

No comments available, be the first to comment.

Figure 4.11: Deleting a repository.

We can also delete more than one image by specifying a list on the command line.

Listing 4.79: Deleting multiple Docker images

$ sudo docker rmi jamtur@l/apache2 jamtur@l/puppetmaster

or, like the docker rm command cheat we saw in Chapter 3, we can do the same
with the docker rmi command:

Listing 4.80: Deleting all images

$ sudo docker rmi “docker images -a -q°

Version: v1.2.2 (19946fc) 114

Chapter 4: Working with Docker images and repositories

Running your own Docker registry

Obviously, having a public registry of Docker images is highly useful. Sometimes,
however, we are going to want to build and store images that contain information
or data that we don't want to make public. There are two choices in this situation:

« Make use of private repositories on the Docker Hub.
* Run your own registry behind the firewall.

Thankfully, the team at Docker, Inc., have open-sourced the code they use to run
a Docker registry, thus allowing us to build our own internal registry.

NOTE The registry does not currently have a user interface and is only made
available as an API server.

Running a registry from a container

Installing a registry from a Docker container is very simple. Just run the Docker-
provided container like so:

$ sudo docker run -p 5000:5000 registry

This will launch a container running the registry application and bind port 5000
to the local host.
Testing the new registry

So how can we make use of our new registry? Let's see if we can upload one of
our existing images, the jamtur@l/static web image, to our new registry. First,
let's identify the image's ID using the docker images command.

Version: v1.2.2 (19946fc) 115

https://registry.hub.docker.com/plans/
https://github.com/docker/docker-registry

Chapter 4: Working with Docker images and repositories

Listing 4.82: Listing the jamtur01 static_ web Docker image

$ sudo docker images jamturQl/static web

REPOSITORY TAG ID CREATED SIZE

jamtur@l/static web Tlatest 22d47c8cb6e5 24 seconds ago 12.29 <«
kB (virtual 326 MB)

Next we take our image ID, 22d47c8cb6e5, and tag it for our new registry. To
specify the new registry destination, we prefix the image name with the hostname
and port of our new registry. In our case, our new registry has a hostname of
docker.example. com.

Listing 4.83: Tagging our image for our new registry

$ sudo docker tag 22d47c8chb6e5 docker.example.com:5000/jamtur0l/«
static web

After tagging our image, we can then push it to the new registry using the docker<
push command:

Listing 4.84: Pushing an image to our new registry

$ sudo docker push docker.example.com:5000/jamtur@l/static web

The push refers to a repository [docker.example.com:5000/jamtur@l«
/static web] (len: 1)

Processing checksums

Sending image list

Pushing repository docker.example.com:5000/jamtur@l/static web (1<«

tags)

Pushing 22«
d47c8cb6e556420e5d58ca5cc376ef18e2de93b5¢cc90e868albbc8318clc

Buffering to disk 58375952/7 (n/a)

Pushing 58.38 MB/58.38 MB (100%)

The image is then posted in the local registry and available for us to build new
containers using the docker run command.

Version: v1.2.2 (19946fc) 116

Chapter 4: Working with Docker images and repositories

$ sudo docker run -t -i docker.example.com:5000/jamtur0l/<
static web /bin/bash

This is the simplest deployment of the Docker registry behind your firewall. It
doesn't explain how to configure the registry or manage it. To find out details
like configuring authentication, how to manage the backend storage for your im-
ages and how to manage your registry see the full configuration and deployments
details in the Docker Registry documentation.

Alternative Indexes

There are a variety of other services and companies out there starting to provide
custom Docker registry services.

Quay

The Quay service provides a private hosted registry that allows you to upload both
public and private containers. Unlimited public repositories are currently free.
Private repositories are available in a series of scaled plans. The Quay product
has recently been acquired by CoreOS and will be integrated into that product.

Summary

In this chapter, we've seen how to use and interact with Docker images and the
basics of modifying, updating, and uploading images to the Docker Index. We've
also learned about using a Dockerfile to construct our own custom images. Fi-
nally, we've discovered how to run our own local Docker registry and some hosted
alternatives. This gives us the basis for starting to build services with Docker.

We'll use this knowledge in the next chapter to see how we can integrate Docker
into a testing workflow and into a Continuous Integration lifecycle.

Version: v1.2.2 (19946fc) 117

https://github.com/docker/docker-registry/blob/master/README.md
https://quay.io/
https://coreos.com/

Chapter 5

Testing with Docker

We've learned a lot about the basics of Docker in the previous chapters. We've
learned about images, the basics of launching, and working with containers. Now
that we've got those basics down, let's try to use Docker in earnest. We're going
to start by using Docker to help us make our development and testing processes a
bit more streamlined and efficient.

To demonstrate this, we're going to look at three use cases:

+ Using Docker to test a static website.
« Using Docker to build and test a web application.
+ Using Docker for Continuous Integration.

NOTE we're using Jenkins for CI because it's the platform I have the most
experience with, but you can adapt most of the ideas contained in those sections
to any CI platform.

In the first two use cases, we're going to focus on local, developer-centric devel-
oping and testing, and in the last use case, we'll see how Docker might be used in
a broader multi-developer lifecycle for build and test.

118

Chapter 5: Testing with Docker

This chapter will introduce you to using Docker as part of your daily life and
workflow. It also contains a lot of useful information on how to run and manage
Docker in general, and I recommend you read it even if these use cases aren't
immediately relevant to you.

Using Docker to test a static website

One of the simplest use cases for Docker is as a local web development environ-
ment. An environment that allows you to replicate your production environment
and ensure what you develop will run in the environment to which you want to
deploy it. We're going to start with installing Nginx into a container to run a
simple website. Our website is originally named Sample.

An initial Dockerfile for the Sample website

To do this, let's start with a simple Dockerfile. We start by creating a directory
to hold our Dockerfile first.

$ mkdir sample
$ cd sample
$ touch Dockerfile

We're also going to need some Nginx configuration files to run our website. Let's
create a directory called nginx inside our sample directory to hold them. We can
download some example files I've prepared earlier from Git Hub.

Version: v1.2.2 (19946fc) 119

Chapter 5: Testing with Docker

Listing 5.2: Getting our Nginx configuration files

$ cd sample

$ mkdir nginx && cd nginx

$ wget https://raw.githubusercontent.com/jamtur@l/dockerbook-code<
/master/code/5/sample/nginx/global.conf

$ wget https://raw.githubusercontent.com/jamtur@l/dockerbook-code<
/master/code/5/sample/nginx/nginx.conf

$ cd ..

Now let's look at the Dockerfile for our Sample website.

Listing 5.3: Our basic Dockerfile for the Sample website

FROM ubuntu:14.04

MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED AT 2014-06-01

RUN apt-get update

RUN apt-get -y -q install nginx

RUN mkdir -p /var/www/html

ADD nginx/global.conf /etc/nginx/conf.d/

ADD nginx/nginx.conf /etc/nginx/nginx.conf
EXPOSE 80

Here we've written a simple Dockerfile that:

Installs Nginx.

+ Creates a directory, /var/www/html, in the container.

Adds the Nginx configuration from the local files we downloaded to our
image.

« Exposes port 80 on the image.

Our two Nginx configuration files configure Nginx for running our Sample website.
The nginx/global.conf file is copied into the /etc/nginx/conf.d/ directory by
the ADD instruction. The global.conf configuration file specifies:

Version: v1.2.2 (19946fc) 120

Chapter 5: Testing with Docker

Listing 5.4: The global.conf

server {
listen 0.0.0.0:80;
server_name s

root /var/www/html/website;

index index.html index.htm;

access log /var/log/nginx/default access.log;
error_log /var/log/nginx/default error.log;

¥

This sets Nginx to listen on port 80 and sets the root of our webserver to /var/<
www/html/website, the directory we just created with a RUN instruction.

We also need to configure Nginx to run non-daemonized in order to allow it to
work inside our Docker container. To do this, the nginx/nginx. conf file is copied
into the /etc/nginx directory and contains:

Version: v1.2.2 (19946fc) 121

Chapter 5: Testing with Docker

user www-data;
worker processes 4;
pid /run/nginx.pid;
daemon off;

events { }

http {
sendfile on;
tcp _nopush on;
tcp _nodelay on;
keepalive timeout 65;
types hash max size 2048;
include /etc/nginx/mime.types;
default type application/octet-stream;
access log /var/log/nginx/access.log;
error _log /var/log/nginx/error.log;
gzip on;
gzip disable "msie6";
include /etc/nginx/conf.d/*.conf;

}

In this configuration file, the daemon off; option stops Nginx from going into
the background and forces it to run in the foreground. This is because Docker
containers rely on the running process inside them to remain active. By default,
Nginx daemonizes itself when started, which would cause the container to run
briefly and then stop when the daemon was forked and launched and the original
process that forked it stopped.

This file is copied to /etc/nginx/nginx.conf by the ADD instruction.

You'll also see a subtle difference between the destinations of the two ADD instruc-
tions. The first ends in the directory, /etc/nginx/conf.d/, and the second in a
specific file /etc/nginx/nginx.conf. Both styles are accepted ways of copying

Version: v1.2.2 (19946fc) 122

Chapter 5: Testing with Docker

files into a Docker image.

NOTE vYou can find all the code and sample configuration files for this at The
Docker Book Code site or the GitHub repository. You will need to specifically
download or copy and paste the nginx.conf and global.conf configuration files
into the nginx directory we created to make them available for the docker build.

Building our Sample website and Nginx image

From this Dockerfile, we can build ourselves a new image with the docker <
build command; we'll call it jamtur@1l/nginx.

Listing 5.6: Building our new Nginx image
$ sudo docker build -t jamtur@l/nginx .

This will build and name our new image, and you should see the build steps
execute. We can take a look at the steps and layers that make up our new image
using the docker history command.

Version: v1.2.2 (19946fc) 123

http://www.dockerbook.com/code/index.html
http://www.dockerbook.com/code/index.html
https://github.com/jamtur01/dockerbook-code

$ sudo docker history jamtur@l/nginx
CREATED BY <«

SIZE

7eae7a24daba 2 minutes ago /bin/sh -c #(nop) EXPOSE map[80/tcp<

IMAGE CREATED

] 0B
bfea®1lc931f1l 2 minutes ago /bin/sh
adee791201a 415 B
3dd97f7c6e01 2 minutes ago /bin/sh
c22f6adlb04b40761 286 B
9e2bal@dbebce 2 minutes ago /bin/sh
0B
a34fb588afa3 2 minutes ago /bin/sh
18.43 MB
8df0d38229b7 3 minutes ago /bin/sh
75.49 MB
51e7ele3a370 3 minutes ago /bin/sh
=2014-06-01 0 B
2e4137blb4ae 3 minutes ago /bin/sh
Turnbull " 0 B
99ec81b80c55 6 weeks ago /bin/sh
install 73.33 MB
d4010efcfd86 6 weeks ago /bin/sh
universe\)$/ 1.903 kB
4d26dd3ebclc 6 weeks ago /bin/sh
sbin/polic 194.5 kB
5e66087f3ffe 6 weeks ago /bin/sh
bb3b959f73e9 192.5 MB
511136ea3c5a 11 months ago <«

Chapter 5: Testing with Docker

#(nop) ADD file:5545063<«
#(nop) ADD file:3<«

mkdir -p /var/www/html <
apt-get -y -g install nginx<«
apt-get update «

#(nop) ENV REFRESHED AT+«
#(nop) MAINTAINER James <
apt-get update && apt-get <«
-i

sed 's/"#\ s*| (deb. ¥«

echo '#!/bin/sh' > /usr/<

#(nop) ADD file:175959<«

0B

The history starts with the final layer, our new jamtur01l/nginx, image and works
backward to the original parent image, ubuntu:14.04. Each step in between shows
the new layer and the instruction from the Dockerfile that generated it.

Version: v1.2.2 (19946fc)

124

Chapter 5: Testing with Docker

Building containers from our Sample website and Nginx image

We can now take our jamtur0l/nginx image and start to build containers from
it, which will allow us to test our Sample website. Firstly, though we need that
Sample website to test. Let's download some code for that now.

Listing 5.8: Downloading our Sample website

$ cd sample

$ mkdir website && cd website

$ wget https://raw.githubusercontent.com/jamtur@l/dockerbook-code<«
/master/code/5/sample/website/index.html

$ cd ..

This will create a directory called website inside the sample directory. We then
download an index.html file for our Sample website into that website directory.

Now let's look at how we might create a container using the docker run command.

Listing 5.9: Building our first Nginx testing container

$ sudo docker run -d -p 80 --name website \
-v $PWD/website:/var/www/html/website \
jamtur@l/nginx nginx

NOTE vYou can see we've passed the nginx command to docker run. Normally
this wouldn't make Nginx run interactively. In the configuration we supplied to
Docker, though, we've added the directive daemon off. This directive causes
Nginx to run interactively in the foreground when launched.

You can see we've used the docker run command to build a container from our
jamtur0l/nginx image called website. You will have seen most of the options
before, but the -v option is new. This new option allows us to create a volume in
our container from a directory on the host.

Let's take a brief digression into volumes, as they are important and useful in

Version: v1.2.2 (19946fc) 125

Chapter 5: Testing with Docker

Docker. Volumes are specially designated directories within one or more contain-
ers that bypass the layered Union File System to provide persistent or shared data
for Docker. This means that changes to a volume are made directly and bypass
the image. They will not be included when we commit or build an image.

TIP Volumes can also be shared between containers and can persist even when
containers are stopped. We'll see how to make use of this for data management
in later chapters.

In our immediate case, we can see the value of volumes when we don't want to
bake our application or code into an image. For example:

« We want to work on and test it simultaneously.

« It changes frequently, and we don't want to rebuild the image during our
development process.

+ We want to share the code between multiple containers.

The -v option works by specifying a source directory or mount on the local host
separated from the destination on the container with a :. If the destination direc-
tory doesn't exist Docker will create it.

We can also specify the read/write status of the destination by adding either rw
or ro after that destination, like so:

$ sudo docker run -d -p 80 --name website \
-v $PWD/website:/var/www/html/website:ro \
jamtur0l/nginx nginx

This would make the destination /var/www/html/website read-only.

In our Nginx website container, we've mounted a local website we're developing.
To do this we've mounted, as a volume, the directory $PWD/website to /var/<
www/html/website in our container. In our Nginx configuration (in the /etc/<

Version: v1.2.2 (19946fc) 126

Chapter 5: Testing with Docker

nginx/conf.d/global.conf configuration file), we've specified this directory as
the location to be served out by the Nginx server.

TIP The website directory we're using is contained in the source code for this
book here and on GitHub. You can see the index.html file we downloaded inside
that directory.

Now, if we look at our running container using the docker ps command, we can
see that it is active, it is named website, and port 80 is mapped to port 49161.

Listing 5.11: Viewing the Sample website container

$ sudo docker ps -1

CONTAINER ID IMAGE ... PORTS <
NAMES

6751b94bb5cO0 jamtur0l/nginx:latest ... 0.0.0.0:49161->80/tcp <«
website

If we browse to port 49161 on our Docker host, we'll be able to see our Sample
website displayed.

Version: v1.2.2 (19946fc) 127

http://dockerbook.com/code/5/sample/
https://github.com/jamtur01/dockerbook-code/tree/master/code/5/sample

Chapter 5: Testing with Docker

& - C A [localhost:49161

This is a test website

Figure 5.1: Browsing the Sample website.

Editing our website

Neat! We've got a site live. Now what happens if we edit our website? Let's open
up the index.html file in the website folder on our local host and edit it.

Listing 5.12: Editing our Sample website

$ vi $PWD/website/index.html

We'll change the title from:

Listing 5.13: Old title

This is a test website

| H
Q

Listing 5.14: New title

This is a test website for Docker

Version: v1.2.2 (19946fc) 128

Chapter 5: Testing with Docker

Let's refresh our browser and see what we've got now.

€ > C A | localhost:49161

This is a test website for Docker.

Figure 5.2: Browsing the edited Sample website.

We can see that our Sample website has been updated. Obviously, this is an in-
credibly simple example of editing a website, but you can see how you could easily
do so much more. More importantly, you're testing a site that reflects production
reality. You can now have containers for each type of production web-serving
environment (e.g., Apache, Nginx), for running varying versions of development
frameworks like PHP or Ruby on Rails, or for database back ends, etc.

Using Docker to build and test a web application

Now let's look at a more complex example of testing a larger web application.
We're going to test a Sinatra-based web application instead of a static website and
then develop that application whilst testing in Docker. Our application is going
to take incoming parameters and output them as a JSON hash.

Building our Sinatra application

Let's start with a Dockerfile to build the basic image that we will use to develop
our Sinatra web application.

Version: v1.2.2 (19946fc) 129

Chapter 5: Testing with Docker

Listing 5.15: Dockerfile for web application testing

FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED AT 2014-06-01

RUN apt-get update
RUN apt-get -y install ruby ruby-dev build-essential redis-tools
RUN gem install --no-rdoc --no-ri sinatra json redis

RUN mkdir -p /opt/webapp
EXPOSE 4567

CMD ["/opt/webapp/bin/webapp" 1

You can see that we've created another Ubuntu-based image, installed Ruby and
RubyGems, and then used the gem binary to install the sinatra, json, and redis
gems. We've also created a directory to hold our new web application and exposed
the default WEBrick port of 4567.

Finally, we've specified a CMD of /opt/webapp/bin/webapp, which will be the bi-
nary that launches our web application.

Let's build this new image now using the docker build command.

Listing 5.16: Building our new Sinatra image

$ sudo docker build -t jamtur@l/sinatra .

Creating our Sinatra container

We've built our image. Let's now download our Sinatra web application's source
code. You can find the code for this Sinatra application here or in the GitHub
repository. The application is made up of the bin and 1ib directories from the
webapp directory.

Version: v1.2.2 (19946fc) 130

http://dockerbook.com/code/5/sinatra/webapp/
https://github.com/jamtur01/dockerbook-code
https://github.com/jamtur01/dockerbook-code

Chapter 5: Testing with Docker

Let's download it now.

Listing 5.17: Download our Sinatra web application

$ wget --cut-dirs=3 -nH -r --no-parent http://dockerbook.com/code<«
/5/sinatra/webapp/
$ ls -1 webapp

We also need to ensure that the webapp/bin/webapp is executable prior to using it
using the chmod command.

Listing 5.18: Making webapp/bin/webapp executable

$ chmod +x $PWD/webapp/bin/webapp

Now let's create a new container from our image using the docker run command.

Listing 5.19: Launching our first Sinatra container

$ sudo docker run -d -p 4567 --name webapp \
-v $PWD/webapp:/opt/webapp jamtur@l/sinatra

Here we've launched a new container from our jamtur0l/sinatra image, called
webapp. We've specified a new volume, $PWD/webapp, that holds our new Sina-
tra web application, and we've mounted it to the directory we created in the
Dockerfile: /opt/webapp.

We've not provided a command to run on the command line; instead, we provided
the command in the CMD in the Dockerfile of the image.

Listing 5.20: The CMD instruction in our Dockerfile

CMD ["/opt/webapp/bin/webapp" 1]

This command will be executed when a container is launched from this image.

We can also use the docker logs command to see what happened when our com-
mand was executed.

Version: v1.2.2 (19946fc) 131

Chapter 5: Testing with Docker

Listing 5.21: Checking the logs of our Sinatra container

$ sudo docker logs webapp

[2013-08-05 02:22:14] INFO WEBrick 1.3.1

[2013-08-05 02:22:14] INFO ruby 1.8.7 (2011-06-30) [x86 64-linux<
]

== Sinatra/l.4.3 has taken the stage on 4567 for development with<

backup from WEBrick

[2013-08-05 02:22:14] INFO WEBrick::HTTPServer#start: pid=1 port<

=4567

By adding the - f flag to the docker logs command, you can get similar behavior
to the tail -f command and continuously stream new output from the STDERR
and STDOUT of the container.

Listing 5.22: Tailing the logs of our Sinatra container

$ sudo docker logs -f webapp

We can also see the running processes of our Sinatra Docker container using the
docker top command.

Listing 5.23: Using docker top to list our Sinatra processes

$ sudo docker top webapp

UID PID PPID C STIME TTY TIME CMD
root 21506 15332 0 20:26 ? 00:00:00 /usr/bin/ruby /opt/<
webapp/bin/webapp

We can see from the logs that Sinatra has been launched and the WEBTrick server
is waiting on port 4567 in the container for us to test our application. Let's check
to which port on our local host that port is mapped:

Listing 5.24: Checking the Sinatra port mapping

$ sudo docker port webapp 4567
0.0.0.0:49160

Version: v1.2.2 (19946fc) 132

Chapter 5: Testing with Docker

Right now, our basic Sinatra application doesn't do much. As we saw above, it
just takes incoming parameters, turns them into JSON, and then outputs them.
We can now use the curl command to test our application.

$ curl -i -H 'Accept: application/json' \

-d 'name=Foo&status=Bar' http://localhost:49160/json
HTTP/1.1 200 OK

X-Content-Type-Options: nosniff
Content-Length: 29

X-Frame-Options: SAMEORIGIN

Connection: Keep-Alive

Date: Mon, 05 Aug 2013 02:22:21 GMT
Content-Type: text/html;charset=utf-8

Server: WEBrick/1.3.1 (Ruby/1.8.7/2011-06-30)
X-Xss-Protection: 1; mode=block
{"name":"Foo", "status":"Bar"}

We can see that we've passed some parameters to our Sinatra application and seen
them returned to us as a JSON hash: {"name":"Foo", "status":"Bar"}.

Neat! But let's see if we can extend our example application container to an actual
application stack by adding a service running in another container.

Building a Redis image and container

We're going to extend our Sinatra application now by adding a Redis back end
and storing our incoming parameters in a Redis database. To do this, we're going
to build a whole new image and container to run our Redis database, then we'll
make use of Docker's capabilities to connect the two containers.

To build our Redis database, we're going to create a new image. We start with a
new Dockerfile on which Redis will run.

Version: v1.2.2 (19946fc) 133

Chapter 5: Testing with Docker

Listing 5.26: Dockerfile for Redis image

FROM ubuntu:14.04

MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED AT 2014-06-01

RUN apt-get update

RUN apt-get -y install redis-server redis-tools
EXPOSE 6379

ENTRYPOINT ["/usr/bin/redis-server"]

CMD T[]

We've specified the installation of the Redis server, exposed port 6379, and speci-
fied an ENTRYPOINT that will launch that Redis server. Let's now build that image
and call it jamtur0l/redis.

Listing 5.27: Building our Redis image

$ sudo docker build -t jamtur@l/redis .

Now let's create a container from our new image.

Listing 5.28: Launching a Redis container
$ sudo docker run -d -p 6379 --name redis jamtur@l/redis
022062611079

We can see we've launched a new container named redis from our jamtur0l/<
redis image. Note that we've specified the -p flag to expose port 6379. Let's see
what port it's running on.

Listing 5.29: Launching a Redis container

$ sudo docker port redis 6379
0.0.0.0:49161

We can see our Redis port is exposed on port 49161. Let's try to connect to that
Redis instance now.

We'll need to install the Redis client locally to do the test. This is usually the

Version: v1.2.2 (19946fc) 134

Chapter 5: Testing with Docker

redis-tools package.

Listing 5.30: Installing the redis-tools package on Ubuntu

$ sudo apt-get -y install redis-tools

Then we can use the redis-cli command to check our Redis server.

Listing 5.31: Testing our Redis connection

$ redis-cli -h 127.0.0.1 -p 49161
redis 127.0.0.1:49161>

Here we've connected the Redis client to 127.0.0.1 on port 49161 and verified
that our Redis server is working.

Connecting to the Redis container

Let's now update our Sinatra application to connect to Redis and store our incom-
ing parameters. In order to do that, we're going to need to be able to talk to the
Redis server. There are several ways we could do this; let's explore and see the
pros and cons of each.

The first method involves Docker's own network stack. So far, we've seen Docker
containers exposing ports and binding interfaces so that container services are
exposed on the local Docker host's external network (e.g., binding port 80 inside
a container to a high port on the local host). In addition to this capability, Docker
has a facet we haven't yet seen: internal networking.

Every Docker container is assigned an IP address, provided through an interface
created when we installed Docker. That interface is called docker0. Let's look at
that interface on our Docker host now.

Version: v1.2.2 (19946fc) 135

Chapter 5: Testing with Docker

Listing 5.32: The docker0 interface

$ ip a show docker0
4: dockerO: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc <«
noqueue state UP
link/ether 06:41:69:71:00:ba brd ff:ff:ff:ff:ff.ff
inet 172.17.42.1/16 scope global docker0
inet6 fe80::1ch3:6eff:fee2:2df1l/64 scope link
valid lft forever preferred 1ft forever

We can see that the docker0 interface has an RFC1918 private IP address in the
172.16-172.30 range. This address, 172.17.42.1, will be the gateway address for
the Docker network and all our Docker containers.

TIP Docker will default to 172.17.x.x as a subnet unless that subnet is already
in use, in which case it will try to acquire another in the 172.16-172.30 ranges.

The dockero interface is a virtual Ethernet bridge that connects our containers and
the local host network. If we look further at the other interfaces on our Docker
host, we'll find a series of interfaces starting with veth.

Listing 5.33: The veth interfaces

vethec6a Link encap:Ethernet HWaddr 86:el1:95:da:e2:5a
inet6 addr: feB80::84el:95ff:feda:e25a/64 Scope:Link

Every time Docker creates a container, it creates a pair of peer interfaces that are
like opposite ends of a pipe (i.e., a packet send on one will be received on the
other). It gives one of the peers to the container to become its eth0 interface and
keeps the other peer, with a unique name like vethec6a, out on the host machine.
You can think of a veth interface as one end of a virtual network cable. One end is
plugged into the docker0 bridge, and the other end is plugged into the container.

Version: v1.2.2 (19946fc) 136

Chapter 5: Testing with Docker

By binding every veth* interface to the docker® bridge, Docker creates a virtual
subnet shared between the host machine and every Docker container.

Let's look inside a container now and see the other end of this pipe.

Listing 5.34: The ethO interface in a container

$ sudo docker run -t -i ubuntu /bin/bash
root@b9107458fl6a:/# ip a show ethO
1483: ethO: <BROADCAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast <«
state UP group default glen 1000
link/ether f2:1f:28:de:ee:a7 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.29/16 scope global eth0
inet6 fe80::f01f:28ff:fede:eea7/64 scope link
valid 1ft forever preferred 1ft forever

We can see that Docker has assigned an IP address, 172.17.0.29, for our container
that will be peered with a virtual interface on the host side, allowing communica-
tion between the host network and the container.

Let's trace a route out of our container and see this now.

Listing 5.35: Tracing a route out of our container

root@b9107458fl6a: /# apt-get -yqq update && apt-get install -yqq <
traceroute

root@b9107458f1l6a:/# traceroute google.com

traceroute to google.com (74.125.228.78), 30 hops max, 60 byte <«
packets

1 172.17.42.1 (172.17.42.1) 0.078 ms 0.026 ms 0.024 ms

15 1iad23s07-in-f14.1el100.net (74.125.228.78) 32.272 ms 28.050 <«
ms 25.662 ms

We can see that the next hop from our container is the docker0 interface gateway
IP 172.17.42.1 on the host network.

But there's one other piece of Docker networking that enables this connectivity:

Version: v1.2.2 (19946fc) 137

Chapter 5: Testing with Docker

firewall rules and NAT configuration allow Docker to route between containers
and the host network. Let's look at the IPTables NAT configuration on our Docker
host.

$ sudo iptables -t nat -L -n
Chain PREROUTING (policy ACCEPT)

target prot opt source destination
DOCKER all -- 0.0.0.0/0 0.0.0.0/0 ADDRTYPE match dst-<«
type LOCAL

Chain OUTPUT (policy ACCEPT)

target prot opt source destination
DOCKER all -- 0.0.0.0/0 1127.0.0.0/8 ADDRTYPE match dst-<
type LOCAL

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 172.17.0.0/16 1172.17.0.0/16

Chain DOCKER (2 references)

target prot opt source destination

DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:49161 to<«
:172.17.0.18:6379

Here we have several interesting IPTables rules. Firstly, we can note that there
is no default access into our containers. We specifically have to open up ports to
communicate to them from the host network. We can see one example of this in
the DNAT, or destination NAT, rule that routes traffic from our container to port
49161 on the Docker host.

TIP To learn more about advanced networking configuration for Docker, this
article is useful.

Version: v1.2.2 (19946fc) 138

https://docs.docker.com/articles/networking/
https://docs.docker.com/articles/networking/

Chapter 5: Testing with Docker

Our Redis connection

Let's examine our new Redis container and see its networking configuration using
the docker inspect command.

Listing 5.37: Redis container's networking configuration

$ sudo docker inspect redis

"NetworkSettings": {
"Bridge": "docker0",
"Gateway": "172.17.42.1",
"IPAddress": "172.17.0.18",
"IPPrefixLen": 16,
"PortMapping": null,

"Ports": {
"6379/tcp": [
{
"HostIp": "0.0.0.0",
"HostPort": "49161"
¥
]
}

I

The docker inspect command shows the details of a Docker container, including
its configuration and networking. We've truncated much of this information in
the example above and only shown the networking configuration. We could also
use the - f flag to only acquire the IP address.

Listing 5.38: Finding the Redis container's IP address

$ sudo docker inspect -f '{{ .NetworkSettings.IPAddress }}' redis
172.17.0.18

We can see that the container has an IP address of 172.17.0.18 and uses the

Version: v1.2.2 (19946fc) 139

Chapter 5: Testing with Docker

gateway address of the docker0 interface. We can also see that the 6379 port is
mapped to port 49161 on the local host, but, because we're on the local Docker host,
we don't have to use that port mapping. We can instead use the 172.17.0.18«
address to communicate with the Redis server on port 6379 directly.

Listing 5.39: Talking directly to the Redis container

$ redis-cli -h 172.17.0.18
redis 172.17.0.18:6379>

NOTE Docker binds exposed ports on all interfaces by default; therefore, the
Redis server will also be available on the localhost or 127.0.0.1.

So, while this initially looks like it might be a good solution for connecting our
containers together, sadly, this approach has two big rough edges: Firstly, we'd
need to hard-code the IP address of our Redis container into our applications.
Secondly, if we restart the container, Docker changes the IP address. Let's see this
now using the docker restart command (we'll get the same result if we kill our
container using the docker kill command).

Listing 5.40: Restarting our Redis container

$ sudo docker restart redis

Let's inspect its IP address.

Listing 5.41: Finding the restarted Redis container's IP address

$ sudo docker inspect -f '{{ .NetworkSettings.IPAddress }}' redis
172.17.0.19

We can see that our new Redis container has a new IP address, 172.17.0.19«
, which means that if we'd hard-coded our Sinatra application, it would no longer
be able to connect to the Redis database. That's not very helpful.

So what do we do instead? Thankfully, Docker comes with a useful feature called

Version: v1.2.2 (19946fc) 140

Chapter 5: Testing with Docker

links that allows us to link together one or more Docker containers and have them
communicate.

Linking Docker containers

Linking one container to another is a simple process involving container names.
Let's start by creating a new Redis container (or we could reuse the one we created
earlier).

Listing 5.42: Starting another Redis container

$ sudo docker run -d --name redis jamtur@l/redis

TIP Remember that container names are unique: if you recreate the container,
you will need to delete the old redis container using the docker rm command
before you can create another container called redis.

Here we've launched a Redis instance in our new container. We've named the new
container redis using the - -name flag.

NOTE You can also see that we've not exposed any ports on the container. The
"why" of this will become clear shortly.

Now let's launch a container with our web application in it and link it to our new
Redis container.

Version: v1.2.2 (19946fc) 141

Chapter 5: Testing with Docker

$ sudo docker run -p 4567 \

--name webapp --link redis:db -t -i \

-v $PWD/webapp:/opt/webapp jamtur@l/sinatra \
/bin/bash

root@811bd6d588chb: /#

TIP You'l have to stop and remove any previous webapp containers you have
running with docker rm.

There's a lot going on in this command, so let's break it down. Firstly, we're expos-
ing port 4567 using the -p flag so we can access our web application externally.

We've also named our container webapp using the --name flag and mounted our
web application as a volume using the -v flag.

This time, however, we've used a new flag called --link. The --link flag cre-
ates a parent-child link between two containers. The flag takes two arguments:
the container name to link and an alias for the link. In this case, we're creating a
child relationship with the redis container with an alias of db. The alias allows us
to consistently access the exposed information without needing to be concerned
about the underlying container name. The link gives the parent container the abil-
ity to communicate with the child container and shares some connection details
with it to help you configure applications to make use of the link.

We also get a security-related benefit from this linkage. You'll note that when we
launched our Redis container, we didn't expose the Redis port with the -p flag.
We don't need to. By linking the containers together, we're allowing the parent
container to communicate to any open ports on the child container (i.e., our parent
webapp container can connect to port 6379 on our child redis container). But even
better, only containers explicitly linked to this container using the - - link flag can
connect to this port. Given that the port is not exposed to the local host, we now
have a very strong security model for limiting the attack surface and network
exposure of a containerized application.

Version: v1.2.2 (19946fc) 142

Chapter 5: Testing with Docker

TIP 1f you wish, for security reasons (for example), you can force Docker to only
allow communication between containers if a link exists. To do this, you can start
the Docker daemon with the --icc=false flag. This turns off communications
between all containers unless a link exists.

You can link multiple containers together. For example, if we wanted to use our
Redis instance for multiple web applications, we could link each web application
container to the same redis container.

Listing 5.44: Linking our Redis container

$ sudo docker run -p 4567 --name webapp2 --link redis:db ...

$ sudo docker run -p 4567 --name webapp3 --link redis:db ...

TIP Container linking currently only works on a single Docker host. You can't
link between containers on separate Docker hosts.

Finally, instead of running the container as a daemon, we've launched a shell.
We've done this so we can see how our containers are now linked. Docker links
populate information about the parent container in two places:

» The /etc/hosts file.
« Environmental variables that contain connection information.

Let's look first at the /etc/hosts file.

Version: v1.2.2 (19946fc) 143

Chapter 5: Testing with Docker

Listing 5.45: The webapp's /etc/hosts file

root@811bd6d588cb: /# cat /etc/hosts
172.17.0.33 811bd6d588cbh

172.17.0.31 db

We can see that we have some useful entries in here. The first one is the container's
own IP address and hostname (here, the short ID of the container). The second
entry has been generated by our link; it's the IP address of the redis container
with the hostname db derived from the link alias. Let's try and ping that container
now.

TIP The container's hostname doesn't have to be the short ID. You can use the
-h or —--hostname flag with the docker run command to set a specific hostname
for the container.

Listing 5.46: Pinging the db container

root@811bd6d588cb: /# ping db

PING db (172.17.0.31) 56(84) bytes of data.

64 bytes from db (172.17.0.31): icmp seq=1 ttl=64 time=0.623 ms
64 bytes from db (172.17.0.31): icmp seq=2 ttl=64 time=0.132 ms
64 bytes from db (172.17.0.31): icmp seq=3 ttl=64 time=0.095 ms
64 bytes from db (172.17.0.31): icmp seq=4 ttl=64 time=0.155 ms

TIP Remember how we mentioned that container IP addresses change when a
container is restarted? Well since Docker version 1.3 if the linked container is
restarted then the IP address in the /etc/hosts file will be updated with the new
IP address.

Version: v1.2.2 (19946fc) 144

Chapter 5: Testing with Docker

We have connectivity to our Redis database, but before we make use of it, let's
look at the other connection information contained in our environment variables.

Let's run the env command to see the environment variables.

root@811bd6d588cb:/# env
HOSTNAME=811bd6d588ch
DB_NAME=/webapp/db
DB_PORT 6379 TCP_PORT=6379

DB PORT=tcp://172.17.0.31:6379

DB PORT 6379 TCP=tcp://172.17.0.31:6379
DB_ENV_REFRESHED AT=2014-06-01

DB_PORT 6379 TCP_ADDR=172.17.0.31

DB PORT 6379 TCP_PROTO=tcp
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
REFRESHED AT=2014-06-01

We can see a bunch of environment variables here, including some prefixed with
DB. Docker automatically creates these variables when we link the webapp and
redis containers. They start with DB because that is the alias we used when we
created our link.

The automatically created environment variables include a variety of information:

* The name of the child container.

« The protocol, IP, and port of the service running in the container.

« Specific protocols, IP, and ports of various services running in the container.
« The values of any Docker-specified environment variables on the container.

The precise variables will vary from container to container depending on what is
configured on that container (e.g., what has been defined by the ENV and EXPOSE
instructions in the container's Dockerfile). More importantly, they include infor-
mation we can use inside our applications to consistently link between containers.

Version: v1.2.2 (19946fc) 145

Chapter 5: Testing with Docker

Using our container link to communicate

So how can we make use of this link? Let's look at our Sinatra application and add
some connection information for Redis. There are two ways we could connect the
application to Redis:

+ Using some of the connection information in our environment variables.
+ Using DNS and the /etc/hosts information.

Let's look at the first method by seeing how our web app's lib/app.rb file might
look using our new environment variables.

require 'uri
uri=URI.parse(ENV['DB PORT'])
redis = Redis.new(:host => uri.host, :port => uri.port)

Here, we are parsing the DB _PORT environment variable using the Ruby URI mod-
ule. We're then using the resulting host and port output to configure our Redis
connection. Our application can now use this connection information to find Re-
dis in a linked container. This abstracts away the need to hard-code an IP address
and port to provide connectivity. It's a very crude form of service discovery.

Alternatively, we could use local DNS.

TIP You can also configure the DNS of your individual containers using the
--dns and --dns-search flags on the docker run command. This allows you to
set the local DNS resolution path and search domains. You can read about this
here. In the absence of both of these flags, Docker will set DNS resolution to
match that of the Docker host. You can see the DNS resolution configuration in
the /etc/resolv.conf file.

Version: v1.2.2 (19946fc) 146

https://docs.docker.com/articles/networking/

Chapter 5: Testing with Docker

Listing 5.49: The linked via hosts Redis connection

redis = Redis.new(:host => 'db', :port => '6379')

NOTE You can see and download our updated Redis-enabled Sinatra applica-
tion here or in the GitHub repository. You'll need to download or edit the existing
code for the example to work.

This will cause our application to look up the host db locally; it will find the
entry in the /etc/hosts file and resolve the host to the correct IP address, again
abstracting away the need to hard-code an IP address.

Let's try it with the DNS local resolution by starting our application inside the
container.

Listing 5.50: Starting the Redis-enabled Sinatra application

root@811bd6d588cb: /# nohup /opt/webapp/bin/webapp &
nohup: ignoring input and appending output to 'nohup.out’

Here we've backgrounded our Sinatra application and started it. Now let's test our
application from the Docker host using the curl command again.

Version: v1.2.2 (19946fc) 147

http://dockerbook.com/code/5/sinatra/webapp_redis/
https://github.com/jamtur01/dockerbook-code

Chapter 5: Testing with Docker

Listing 5.51: Testing our Redis-enabled Sinatra application

$ curl -i -H 'Accept: application/json' \

-d 'name=Foo&status=Bar' http://localhost:49161/json
HTTP/1.1 200 OK

X-Content-Type-Options: nosniff
Content-Length: 29

X-Frame-Options: SAMEORIGIN

Connection: Keep-Alive

Date: Mon, 01 Jun 2014 02:22:21 GMT
Content-Type: text/html;charset=utf-8

Server: WEBrick/1.3.1 (Ruby/1.8.7/2011-06-30)
X-Xss-Protection: 1; mode=block

{"name" :"Foo", "status":"Bar"}

And now let's confirm that our Redis instance has received the update.

Listing 5.52: Confirming Redis contains data

$ curl -i http://localhost:49161/json
II[{\IIname\ll:\IIFOO\II'\IIStatus\II:\IIBar\II}]II

Here we've connected to our application, which has connected to Redis, checked
a list of keys to find that we have a key called params, and then queried that key
to see that our parameters (name=Foo and status=Bar) have both been stored in
Redis. Our application works!

We now have a fully functional representation of our web application stack con-
sisting of:

« A web server container running Sinatra.
+ A Redis database container.

A secure connection between the two containers.

You can see how easy it would be to extend this concept to provide any number
of applications stacks and manage complex local development with them, like:

Version: v1.2.2 (19946fc) 148

Chapter 5: Testing with Docker

« Wordpress, HTML, CSS, JavaScript.

* Ruby on Rails.

+ Django and Flask.

* Node.js.

+ Play!

+ Or any other framework that you like!

This way you can build, replicate, and iterate on production applications, even
complex multi-tier applications, in your local environment.

Using Docker for continuous integration

Up until now, all our testing examples have been very local, single developer-
centric examples (i.e., how a local developer might make use of Docker to test a
local website or application). Let's look at using Docker's capabilities in a multi-
developer continuous integration testing scenario.

Docker excels at quickly generating and disposing of one or multiple containers.
There's an obvious synergy with Docker's capabilities and the concept of continu-
ous integration testing. Often in a testing scenario you need to install software or
deploy multiple hosts frequently, run your tests, and then clean up the hosts to be
ready to run again.

In a continuous integration environment, you might need these installation steps
and hosts multiple times a day. This adds a considerable build and configuration
overhead to your testing lifecycle. Package and installation steps can also be time-
consuming and annoying, especially if requirements change frequently or steps
require complex or time-consuming processes to clean up or revert.

Docker makes the deployment and cleanup of these steps and hosts cheap. To
demonstrate this, we're going to build a testing pipeline in stages using Jenkins
CI: Firstly, we're going to build a Jenkins server that also runs Docker. To make
it even more interesting, we're going to be very recursive and run Docker INSIDE
Docker. Turtles all the way down!

Version: v1.2.2 (19946fc) 149

http://en.wikipedia.org/wiki/Continuous_integration
http://jenkins-ci.org/
http://jenkins-ci.org/

Chapter 5: Testing with Docker

TIP You can read more about Docker-in-Docker here.

Once we've got Jenkins running, we'll demonstrate a basic single-container test
run. Finally, we'll look at a multi-container test scenario.

TIP There are a number of continuous integration tool alternatives to Jenkins,
including Strider and Drone.io, which actually makes use of Docker.

Build a Jenkins and Docker server
To provide our Jenkins server, we're going to build an Ubuntu 14.04 image from

a Dockerfile that both installs Jenkins and Docker. Let's take a look at that
Dockerfile now.

Version: v1.2.2 (19946fc) 150

https://github.com/jpetazzo/dind
http://stridercd.com/
https://drone.io/

Chapter 5: Testing with Docker

FROM ubuntu:14.04
MAINTAINER james@example.com
ENV REFRESHED AT 2014-06-01

RUN apt-get update -qq && apt-get install -qqy curl

RUN curl https://get.docker.io/gpg | apt-key add -

RUN echo deb http://get.docker.io/ubuntu docker main > /etc/apt/<«
sources.list.d/docker.list

RUN apt-get update -qq && apt-get install -qqy iptables ca-<
certificates lxc openjdk-6-jdk git-core 1lxc-docker

ENV JENKINS HOME /opt/jenkins/data
ENV JENKINS MIRROR http://mirrors.jenkins-ci.org

RUN mkdir -p $JENKINS HOME/plugins
RUN curl -sf -o /opt/jenkins/jenkins.war -L $JENKINS MIRROR/war-<
stable/latest/jenkins.war
RUN for plugin in chucknorris greenballs scm-api git-client git <
ws-cleanup ;\
do curl -sf -o $JENKINS HOME/plugins/${plugin}.hpi \
-L $JENKINS MIRROR/plugins/${plugin}/latest/${plugin}.hpi <

; done

ADD ./dockerjenkins.sh /usr/local/bin/dockerjenkins.sh
RUN chmod +x /usr/local/bin/dockerjenkins.sh

VOLUME /var/lib/docker
EXPOSE 8080

ENTRYPOINT ["/usr/local/bin/dockerjenkins.sh"]

Version: v1.2.2 (19946fc) 151

Chapter 5: Testing with Docker

We can see that our Dockerfile inherits from the ubuntu:14.04 image and then
does a lot of other stuff. Indeed, it is probably the most complex Dockerfile we've
seen so far. Let's walk through what it does.

Firstly, it sets up the Ubuntu and Docker APT repositories we need and adds the
Docker repository GPG key. We then update our package list and install the pack-
ages required to run both Docker and Jenkins. We've followed the same instruc-
tions that we used in Chapter 2 and added some additional packages we need for
Jenkins.

Next, we've created a directory, /opt/jenkins, and downloaded the latest version
of Jenkins into it. We also need some Jenkins plugins. Plugins provide support
for additional capabilities for Jenkins (e.g., for Git version control).

We've also set the JENKINS HOME and JENKINS MIRROR environment variables to the
location of our Jenkins data directory and mirror site using the ENV instruction.

We've then specified a VOLUME instruction. Remember, the VOLUME instruction adds
a volume from the host launching the container. In this case, we're 'faking out'
Docker and specifying /var/lib/docker as a volume. This is because the /var/<
lib/docker directory is where Docker stores its containers. This location must be
a real filesystem rather than a mount point like the layers in a Docker image.

So, using the VOLUME instruction, we tell the Docker daemon that we're going to be
running inside our container to use the host's filesystem for its container storage.
Hence, the /var/lib/docker directory of the nested Docker will live somewhere
in the /var/lib/docker/volumes directory on the host system.

We've exposed the Jenkin's default port of 8080.

Lastly we've specified a shell script that will run when our container is launched.
This shell script (specified as an ENTRYPOINT instruction) helps configure Docker on
our host, enables Docker in Docker, starts the Docker daemon, and then launches
Jenkins. There is a bit more information about why the shell script does what it
does to allow Docker-in-Docker here.

NOTE The pockerfile and the shell script are available as part of this book's
code here or in the GitHub repository.

Version: v1.2.2 (19946fc) 152

http://dockerbook.com/code/5/jenkins/dockerjenkins.sh
https://github.com/jpetazzo/dind
http://dockerbook.com/code/5/jenkins
https://github.com/jamtur01/dockerbook-code

Chapter 5: Testing with Docker

Now that we have our Dockerfile, let's build a new image using the docker «
build command.

Listing 5.54: Building our Docker-Jenkins image

$ sudo docker build -t jamtur@l/dockerjenkins .

We've called our new image, somewhat unoriginally, jamtur0l/dockerjenkins.
We can now create a container from this image using the docker run command.

Listing 5.55: Running our Docker-Jenkins image

$ sudo docker run -p 8080:8080 --name jenkins --privileged \
-d jamtur0l/dockerjenkins
190f5c6333576T017257b3348cf64dfcd370acl0721c1150986abldb3e3221ff8

We can see that we've used one new flag, --privileged, to run this container.
The - -privileged flag is special and enables Docker's privileged mode. Privileged
mode allows us to run containers with (almost) all the capabilities of their host
machine, including kernel features and device access. This enables the special
magic that allows us to run Docker inside Docker.

WARNING Running Docker in --privileged mode is a security risk. Con-
tainers with this enabled have root-level access to the Docker host. Ensure you
appropriately secure your Docker host and only use a Docker host that is an ap-
propriate trust domain or only runs containers with similar trust profiles.

We can also see that we've used the -p flag to expose port 8080 on port 8080 on
the local host, which would normally be poor practice, but we're only going to
run one Jenkins server.

We can see that our new container, jenkins, has been started. Let's check out its
logs.

Version: v1.2.2 (19946fc) 153

Chapter 5: Testing with Docker

Listing 5.56: Checking the Docker Jenkins container logs

$ sudo docker logs jenkins

Running from: /opt/jenkins/jenkins.war

webroot: EnvVars.masterEnvVars.get("JENKINS HOME")
Sep 8, 2013 12:53:01 AM winstone.Logger logInternal
INFO: Beginning extraction from war file

INFO: HTTP Listener started: port=8080

You can keep checking the logs, or run docker logs with the -f flag, until you
see a message similar to:

Listing 5.57: Checking that is Jenkins up and running
INFO: Jenkins is fully up and running

Excellent. Our Jenkins server should now be available in your browser on port
8080, as we can see here:

.
Jenkins Qeorcr 1o |
Jenkins DISABLE AUTO REFRESH
[Z2dd description
& New Job Welcome to Jenkins! Please create new iobs to get started.
a Peaple
"= Build History
/ Manage Jenkins
S
Build Queue
No builds in the queue.
Build Executor Status
Status

1 Idle

2 Idle

Page generated: Aug 17, 2013 B:32:26 PM REST API Jenkins ver. 1.527

Figure 5.3: Browsing the Jenkins server.

Version: v1.2.2 (19946fc) 154

Chapter 5: Testing with Docker

Create a new Jenkins job

Now that we have a running Jenkins server, let's continue by creating a Jenkins

job to run. To do this, we'll click the create new jobs link, which will open up
the New Job wizard.

Jenkins
Job name

& New Job

& eeopte () Build a free-style software project

— This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for something

= Bulld History other than software build.

. Manage senkins () Build a maven2/3 project

Build a maven 2/3 project. Jenkins takes advantage of your POM files and drastically reduces the canfiguration.

Build Queue

() Build multi-configuration project
No builds in the queue. Suitable for projects that need a large number of different configurations, such as testing on multiple environments, platform-specific builds, etc.

Build Executor Status () Monitor an external job

Status This type of job allows you to record the execution of a process run outside Jenkins, even on a remote machine. This is designed so that you can use
1 1die Jenkins as a dashboard of your existing autamation system. See the documentation for more details.
2 Idle
B Help us localize this page Page generated: Aug 17, 2013 B:44:25 PM REST APl Jenkins ver. 1.527

Figure 5.4: Creating a new Jenkins job.

Let's name our new job Docker test job, select a job type of Build a free-<«
style software project, and click OK to continue to the next screen.

Now let's fill in a few sections. We'll start with a description of the job. Then
click the Advanced. . . button under the Advanced Project Options, tick the
Use Custom workspace radio button, and specify /tmp/jenkins-buildenv/${<

JOB_NAME}/workspace as the Directory. This is the workspace in which our Jenk-
ins job is going to run.

Under Source Code Management, select Git and specify the following test reposi-
tory: https://github.com/jamtur@l/docker-jenkins-sample.git. This is a sim-
ple repository containing some Ruby-based RSpec tests.

Version: v1.2.2 (19946fc) 155

Chapter 5: Testing with Docker

Jenkins Docker_test_job configuration

Project name -
4 Back to Dashbaard Docker_test_job

Description This is a Docker test job.

Q] status

" Chanaes

I8 workspace —
[Raw HTML] Breview

Build N
@ e (] Discard OId Builds
() Delete project
() This build is parameterized
Configure
4 () Disable Build (No new builds will be executed until the project is re-enabled.)
Build History (trend) [CJ Execute concurrent builds if necessary
[2).RSS for all) RSS for failures d d Project Options
O Quiet period

(] Retry Count
() Block build when upstream project is building

) Block build when downstream project is building

2009®® ©O®0 @

@ Use custom workspace

Directory ftmpfjenkins-buildenv/${10B_NAME}/workspace

]

Display Name

Source Code

O cvs
() cvs Projectset
@® Git

Repositories ;
P Repository URL [, 1github. com/jamturd1/docker-jenkins-sample.git (2] @

Delete Repository

Figure 5.5: Jenkins job details part 1.

Now we'll scroll down and update a few more fields. First, we'll add a build step
by clicking the Add Build Step button and selecting Execute shell. Let's specify
this shell script that will launch our tests and Docker.

Version: v1.2.2 (19946fc) 156

Chapter 5: Testing with Docker

Listing 5.58: The Docker shell script for Jenkins jobs

Build the image to be used for this job.
IMAGE=$(docker build . | tail -1 | awk '{ print $NF }')

Build the directory to be mounted into Docker.
MNT="$WORKSPACE/. ."

Execute the build inside Docker.
CONTAINER=$(docker run -d -v "$MNT:/opt/project" $IMAGE /bin/bash<
-c 'cd /opt/project/workspace && rake spec')

Attach to the container so that we can see the output.
docker attach $CONTAINER

Get its exit code as soon as the container stops.
RC=$(docker wait $CONTAINER)

Delete the container we've just used.
docker rm $CONTAINER

Exit with the same value as that with which the process exited.
exit $RC

So what does this script do? Firstly, it will create a new Docker image using a
Dockerfile contained in the Git repository we've just specified. This Dockerfile
provides the test environment in which we wish to execute. Let's take a quick look
at it now.

Version: v1.2.2 (19946fc) 157

Chapter 5: Testing with Docker

FROM ubuntu:14.04

MAINTAINER James Turnbull "james@example.com"

ENV REFRESHED AT 2014-06-01

RUN apt-get update

RUN apt-get -y install ruby rake

RUN gem install --no-rdoc --no-ri rspec ci reporter rspec

TIP 1f we add a new dependency or require another package to run our tests,
all we'll need to do is update this Dockerfile with the new requirements, and the
image will be automatically rebuilt when the tests are run.

As we can see, we're building an Ubuntu host, installing Ruby and RubyGems,
and then installing two gems: rspec and ci reporter rspec. This will build an
image that we can test using a typical Ruby-based application that relies on the
RSpec test framework. The ci reporter rspec gem allows RSpec output to be
converted to JUnit-formatted XML that Jenkins can consume. We'll see the results
of this conversion shortly.

Back to our script. We're building an image from this Dockerfile. Next, we're
creating a directory containing our Jenkins workspace (this is where the Git repos-
itory is checked out to), and it is this directory we're going to mount into our
Docker container and from which we're going to run our tests.

Next we create a container from our image and run the tests. Inside this con-
tainer, we've mounted our workspace to the /opt/project directory. We're also
executing a command that changes into this directory and executes the rake <«
spec command which actually runs our RSpec tests.

Now we've got a container started and we've grabbed the container ID.

TIP Docker also comes with a command line option called --cidfile that cap-
tures the container's ID and stores it in a file specified in the --cidfile options,

Version: v1.2.2 (19946fc) 158

Chapter 5: Testing with Docker

like so: --cidfile=/tmp/containerid.txt

Now we want to attach to that container to get the output from it using the
docker attach command. and then use the docker wait command. The docker<

wait command blocks until the command the container is executing finishes and
then returns the exit code of the container. The RC variable captures the exit code
from the container when it completes.

Finally, we clean up and delete the container we've just created and exit with the
container's exit code. This should be the exit code of our test run. Jenkins relies
on this exit code to tell it if a job's tests have run successfully or failed.

Next we click the Add post-build actionandadd Publish JUnit test result<«

report. In the Test report XMLs, we need to specify spec/reports/*.xml; this
is the location of the ci reporter gem's XML output, and locating it will allow
Jenkins to consume our test history and output.

Finally, we must click the Save button to save our new job.

Jenkins Docker_test_job configuration
Poll SCM (2]

Build

Execute shell ®

Command (442 Build the image to be used for this runm.
IMAGE=$ {docker build . | tail -1 | awk '{ primt $NF }')

Build the directory to be mounted into Docker.
MNT="$WORKSPACE/ . . *

Execute the build inside Docker.
CONTATNER=${docker run -d -v "$MNT:/opt/project" $IMAGE /bin/bash -c 'cd fopt/project/workspace && rake spec')

Attach to the container's streams so that we can see the output.
docker attach SCONTATNER

As soon as tl ss exits, get its return value.
RC=$ (doc! wait SCONTAINER)
Delete the container we'we just used to free unuse d disk space.
docker rm SCONTAINER
Exit with the same lue that the process exited with.
exit $RC 4
See the list of il
Add build step ¥
Post-build Actions
Publish JUnit test result report 3]
Test report XMLS [oo oo e/ xml
Filesat ‘includes’ setting that specifies the generated raw XML report files, such as ‘myprojact/target/test-reports/*.xml. Basedir of the fileset is the workspace root
Retain long standard output/error (7]

Add post-build action

Version: v1.2.2 (19946fc) 159

Chapter 5: Testing with Docker

Figure 5.6: Jenkins job details part 2.

Running our Jenkins job

We now have our Jenkins job, so let's run it. We'll do this by clicking the Build<
Now button; a job will appear in the Build History box.

Jenkins & -

Jenkins Docker_test_job DISABLE AUTG REFRESH

4 Back to Dashboard

Project Docker_test_job

This is a Docker test job.

O status

"> Changes

n
Disable Project
[workspace

4'9 Build Now
Workspace

() Delete Project

/0000000,

Confi ‘
7o E / Recent Changes
S}

Build History (trend)

[F RSS for all) RSS for failures. Parmalinks

Figure 5.7: Running the Jenkins job.

NOTE The first time the tests run, it'll take a little longer because Docker is
building our new image. The next time you run the tests, however, it'll be much
faster, as Docker will already have the required image prepared.

We'll click on this job to get details of the test run we're executing.

Version: v1.2.2 (19946fc) 160

L L

Docker_test_job

Jenkins

L

0\ Status

Back to Project

= Chenges

B console output

[Edit Buid Information
(9 Delete Buid

0 Git Build Data

No Taas

E] Test Result

E Help us localize this page

Chapter 5: Testing with Docker

DISABLE AUTC REFRESH

#30

Started 1 min 44 sec ago
Took 4.2 sec

Q Build #30 (Aug 18, 2013 3:07:05 AM)

@adﬂ description
{00000,

|=#" No changes.

e

<3>
 git

E

Started by anonymous user

Revision: 5491972404ee395ea12b4696c464cabdb0074575

« origin/HEAD
+ origin/master

Test Result (no failures)

REST APT Jenkins ver. 1.527

Page generated: Aug 18, 2013 3:08:50 AM

Figure 5.8: The Jenkins job details.

We can click on Console Output to see the commands that have been executed as
part of the job.

Docker_test_job

Jenkins

4+

0% Status

Back to Project

"> Changes

B console output

View as plain text

"> Edit Build Information

() Delete Build

0 Git Build Data

No Tags

E] Test Result

#30

@ Console Output

Started by user anonymous
Building in workspace /tmp/jenkins-buildenv/Docker_test_job/workspace

Checkout :workspace / /tmp/jenkins-buildenv/Docker_test_job/workspace - hudson.remoting.LocalChanneld219c9a58
Using strategy: Default

Petching changes from 1 remote Git repository

Petching upstream changes from origin

Seen branch in repository origin/EEAD

Seen branch in repository origin/master

Seen 2 remote branches

Commencing build of Revision 5491972404ee3952al2b4696ci64cabdb074575 (origin/HEAD, origin/master)

Checking out Revision 5491972404ee395eal?bi696ci64cabdb0074575 (origin/HEAD, origin/master)

No change to record in branch origin/EEAD

Mo change to record in branch origin/master

[workspace] § /bin/sh -xe /tmp/hudson8685468789888540037.5h

+ docker build .

+ tail -1

+ awk { print $NF }

Uploading context 532480 bytes

Uploading context 665600 bytes

IMAGE=82db04bf £b89
MNT=/tmp/jenkins-buildenv/Docker_test_job/workspace/..

docker run -d -v /tmp/jenkins-buildenv/Docker_test_job/workspace/..:/opt/project B82db04bffb89 /bin/bash -c cd fopt/project/workspace && rake spec
CONTATNER=aed8cEab22£d

+ docker attach eed4fcéeb22fd

rm -rf spec/reports

fusr/binfrubyl.g -8 repec spec/sample spec.rb --colour --format progress

PR

Finished in 1.44 seconds
501 examples, 0 failures
+ docker wait ee4Bcéeb22fd
+ Re=0

+ docker rm eed8céeb22fd
eedBc6eb22fd

+ exit
Recording test results
Finished: SUCCESS

Figure 5.9: The Jenkins job console output.

We can see that Jenkins has downloaded our Git repository to the workspace. We
can then execute our Shell script and build a Docker image using the docker<
build command. Then, we'll capture the image ID and use it to build a new

Version: v1.2.2 (19946fc)

161

Chapter 5: Testing with Docker

container using the docker run command. Running this new container executes
the RSpec tests and captures the results of the tests and the exit code. If the job
exits with an exit code of 0, then the job will be marked as successful.

You can also view the precise test results by clicking the Test Result link. This
will have captured the RSpec output of our tests in JUnit form. This is the output
that the ci_reporter gem produces and our After Build step captures.

Next steps with our Jenkins job

We can also automate our Jenkins job further by enabling SCM polling, which
triggers automatic builds when new commits are made to the repository. Similar
automation can be achieved with a post-commit hook or via a GitHub or Bitbucket
repository hook.

Summary of our Jenkins setup

We've achieved a lot so far: we've installed Jenkins, run it, and created our first
job. This Jenkins job uses Docker to create an image that we can manage and
keep updated using the Dockerfile contained in our repository. In this scenario,
not only does our infrastructure configuration live with our code, but managing
that configuration becomes a simple process. Containers are then created (from
that image) in which we then run our tests. When we're done with the tests, we
can dispose of the containers, which makes our testing fast and lightweight. It is
also easy to adapt this example to test on different platforms or using different
test frameworks for numerous languages.

TIP You could also use parameterized builds to make this job and the shell script
step more generic to suit multiple frameworks and languages.

Version: v1.2.2 (19946fc) 162

https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Configuringautomaticbuilds
https://wiki.jenkins-ci.org/display/JENKINS/Parameterized+Build

Chapter 5: Testing with Docker
Multi-configuration Jenkins

We've now seen a simple, single container build using Jenkins. What if we wanted
to test our application on multiple platforms? Let's say we'd like to test it on
Ubuntu, Debian, and CentOS. To do that, we can take advantage of a Jenkins job
type called a "multi-configuration job" that allows a matrix of test jobs to be run.
When the Jenkins multi-configuration job is run, it will spawn multiple sub-jobs
that will test varying configurations.

Create a multi-configuration job

Let's look at creating our new multi-configuration job. Click on the New Job from
the Jenkins console. We're going to name our new job Docker matrix_job, select
Build multi-configuration project, and click OK.

Jenkins
= New lab 9B name [pocer_matrix_job
&. People ") Build a free-style software project

— This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and this can be even used for something other
. Build History than software build.

5 Menage Jenkins ") Build a maven2/3 project
Build a maven 2/3 project. Jenkins takes advantage of your POM files and drastically reduces the configuration.
Build Queue

(=) Build multi-configuration project
gonitoeioie afels, Suitable for projects that need a large number of different configurations, such as testing an multiple environments, platform-specific builds, etc.

Build Executor Status _) Monitor an external job

Status This type of job allows you to record the execution of a process run outside Jenkins, even on a remate machine. This is designed so that you can use Jenkins as a
1 Idie dashboard of your existing automation system. See the documentation for more detalls.
2 Idie
I Help us localize this page Page generated: Aug 20, 2013 9:58:08 PM RESTAPL Jenkins ver. 1.528

Figure 5.10: Creating a multi-configuration job.

We'll see a screen that is very similar to the job creation screen we saw earlier.
Let's add a description for our job, select Git as our repository type, and spec-

ify our sample application repository: https://github.com/jamtur@l/docker-<«
jenkins-sample.git.

Version: v1.2.2 (19946fc) 163

Chapter 5: Testing with Docker

Jenkins = o
Jenkins Docker_matrix_job configuration

Multi-configuration project name
3 Back to Dashboard Docker_matrix_job

r'{‘ Status Description This is a Docker multi-configuration job.

"= Changes

[workspace —

. [Raw HTML] Preview
‘2) Build how Discard Old Builds

(S Delete Multi-confiauration project _
This build is parameterized ®
Configure _
& Disable Build (No new builds will be executed until the project is re-enabled.} @
Build History (trend) Execute concurrent builds if necessary ®
[E) RSS for all [} RSS for failures d d Project Options
Source Code Management
Jcvs
() CVS Projectset
@ cit
Repaositories 5 @
P Repository URL [ps. 4/github.com/jamtur01/docker-jenkins-sample © ®
Delete Repository
Add
Branches to build Branch Specifier (blank for default): @
Delete Branch
Add
Repository browser At (2]

Figure 5.11: Configuring a multi-configuration job Part 1.

Next, let's scroll down and configure our multi-configuration axis. The axis is
the list of matrix elements that we're going to execute as part of the job. We'll
click the Add Axis button and select User-defined Axis. We're going to specify
an axis named 0S (which will be short for operating system) and specify three
values: centos, debian, and ubuntu. When we execute our multi-configuration
job, Jenkins will look at this axis and spawn three jobs: one for each point on the
axis.

You'll also note that in the Build Environment section we've ticked Delete <«
workspace before build starts. This option cleans up our build environment
by deleting the checked-out repository prior to initiating a new set of jobs.

Version: v1.2.2 (19946fc) 164

Chapter 5: Testing with Docker

Jenkins Docker_matrix_job configuration
_) subversion

Build Triggers

Build after other projects are built
Build periodically
Poll SCM

Confi ion Matrix

User-defined Axis
Name [gg

Values [centos debian ubuntu

Combination Filter
Run each configuration sequentially

Execute touchstene builds first

Build

(v @

 Delete workspace before build starts

Build

Execute shell

Command (444 pelete the container
docker rm $CONTAINER

Exit with the same value that the process

exit $RQ|

See the list of available environment varishles

we've just used to free unuse d disk

exited with.

space.

Figure 5.12: Configuring a multi-configuration job Part 2.

Lastly, we've specified another shell build step with a simple shell script. It's a

modification of the shell script we used earlier.

Version: v1.2.2 (19946fc)

165

Chapter 5: Testing with Docker

Build the image to be used for this run.
cd $0S && IMAGE=$(docker build . | tail -1 | awk '{ print $NF }')

Build the directory to be mounted into Docker.
MNT="$WORKSPACE/. ."

Execute the build inside Docker.
CONTAINER=$(docker run -d -v "$MNT:/opt/project" $IMAGE /bin/bash<
-c "cd /opt/project/$0S && rake spec")

Attach to the container's streams so that we can see the output<

docker attach $CONTAINER

As soon as the process exits, get its return value.
RC=$(docker wait $CONTAINER)

Delete the container we've just used.
docker rm $CONTAINER

Exit with the same value as that with which the process exited.
exit $RC

We can see that this script has a modification: we're changing into directories
named for each operating system for which we're executing a job. We can see
inside our test repository that we have three directories: centos, debian, and
ubuntu. Inside each directory is a different Dockerfile containing the build in-
structions for a CentOS, Debian, or Ubuntu image, respectively. This means that
each job that is started will change into the appropriate directory for the required
operating system, build an image based on that operating system, install any re-
quired prerequisites, and launch a container based on that image in which to run
our tests.

Let's look at one of these new Dockerfile examples.

Version: v1.2.2 (19946fc) 166

Chapter 5: Testing with Docker

Listing 5.61: Our CentOS-based Dockerfile

FROM centos:latest

MAINTAINER James Turnbull "james@example.com"

ENV REFRESHED AT 2014-06-01

RUN yum -y install ruby rubygems rubygem-rake

RUN gem install --no-rdoc --no-ri rspec ci_reporter rspec

We can see that this is a CentOS-based variant of the Dockerfile we were using as
a basis of our previous job. It basically performs the same tasks as that previous
Dockerfile did, but uses the CentOS-appropriate commands like yum to install
packages.

We're also going to add a post-build action of Publish JUnit test result <«
report and specify the location of our XML output: spec/reports/*.xml. This
will allow us to check the test result output.

Finally, we'll click Save to create our new job and save our proposed configuration.

We can now see our freshly created job and note that it includes a section called
Configurations that contains sub-jobs for each element of our axis.

Jenkins e

Jenkins Docker_matrix_job centos DISABLE AUTO REFRESH
Back to Dashboard -

4 Backto Dashboarg Configuration centos

O‘* Status

- (Zadd description

. Changes

5 workscare = Worksoace
Build History (trend) .

& #1 Aug 20, 2013 11:05:34 PM | ﬂ Recent Changes

[Z)RSS for all) RSS for failures
Permalinks
« Last build (#1), 2 days 12 hr ago

s Last stable build (#1), 2 days 12 hr ago
* Last successful build (#1), 2 days 12 hr ago

Page generated: Aug 23, 2013 12:03:44 PM REST API Jenkins ver. 1.528

Figure 5.13: Our Jenkins multi-configuration job

Version: v1.2.2 (19946fc) 167

Chapter 5: Testing with Docker

Testing our multi-configuration job

Now let's test this new job. We can launch our new multi-configuration job by
clicking the Build Now button. When Jenkins runs, it will create a master job.
This master job will, in turn, generate three sub-jobs that execute our tests on
each of the three platforms we've chosen.

NOTE Like our previous job, it may take a little time to run the first time, as
it builds the required images in which we'll test. Once they are built, though, the
next runs should be much faster. Docker will only change the image if you update
the Dockerfile.

We can see that the master job executes first, and then each sub-job executes. Let's
look at the output of one of these sub-jobs, our new centos job.

Jenkins @ 2

Jenkins Docker_matrix_job centos DISABLE AUTO REFRESH

3 Back to Dy st Configuration centos
O status

— [#2dd description
- Changes

R

Build History (trend)
@ #1 Aug 20,2013 11:05:34 PM |=#" Recent Changes
S
[E) RSS for all () RSS for failures

Permalinks

« Last build (#1), 2 days 12 hr ago
stable build (#1), 2 days 12 hr ago
successful build (#1), 2 days 12 hr ago

Last
» Last

Page generated: Aug 23, 2013 12:03:44 PM REST API Jenkins ver. 1.528
Figure 5.14: The centos sub-job.

We can see that it has executed: the green ball tells us it executed successfully.
We can drill down into its execution to see more. To do so, click on the #1 entry
in the Build History.

Version: v1.2.2 (19946fc) 168

Jenkins

E

O\% Status

Back to Project

2 Changes

B console output

= Edit Buid Information
® Delete Build

0 Git Build Data

No Tags

E Help us localize this page

Docker_matrix_job

Chapter 5: Testing with Docker

DISABLE AUTO REFRESH

centos #1

Started 2 days 13 hr ago
Took 2 min 15 sec

@ Build #1 (Aug 20, 2013 11:05:34 PM)

[#add description

ey
|=——#" No changes.
=

2

Started by upstream project Docker matrix job build number 1
ariginally caused by:

+ Started by anonymous user
Revision: ff3711ac93d5e091 25 eb5Sfacd686b446938e5

@glt + origin/HEAD

+ origin/master

Page generated: Aug 23, 2013 12:06:03 PM REST API Jenkins ver. 1.528

Figure 5.15: The centos sub-job details.

Here we can see some more details of the executed centos job. We can see that
the job has been Started by upstream project Docker matrix job and is build
number 1. To see the exact details of what happened during the run, we can check

the console

Jenkins
4 Back to Project
8

0, status

"> Changes

Console Output

View as plain text

"> Edit Build Information

(© Delete Build
Q} Git Build Data

i e me

B Help us localize this page

Version: v1.2.2 (19946fc)

Docker_matrix_job

output by clicking the Console Output link.

centos #1

Q Console Output

Started by upstream project
originally caused by:

Started by user anonvmous
Building in workspace /opt/jenkins/data/jobs/Docker matrix_job/workspace/0S/centos

Docker matrix_job" build number 1

Deleting project workspace... Checkout:centos / /opt/jenkins/data/jobs/Docker matrix job/workspace/0S/centos - hudson.remoting.LocalChanneld452263dé
Using strategy: Default

Cloning the remote Git repository

Cloning repository https://github.com/jamtur0l/docker-ienkins-sample

git --version

git version 1.7.9.5

Fetching upstream changes from origin

Commencing build of Revision ££9711ac93d5e09125ffeb59facd686b446938e5 (origin/HEAD, origin/master)
Checking out Revision ££971lac93d5e09125ffeb59facd68eb4d6938e5 (origin/HEAD, origin/master)

No change to record in branch origin/HEAD

No change to record in branch origin/master

[centos) $ /bin/sh -xe /tmp/hudson7673589354054128693.8h

+ cd centos

+ docker build .

+ tail -1

+ awk { print $NE }

Uploading context 10240 bytes

IMACE=d2d0d39a6£2e
MNT=/opt/jenkins/data/jobs/Docker matrix_job/workspace/OS/centos/..

docker run -d -v /opt/jenkins/data/jobs/Docker matrix_job/workspace/0S/centos/..:/opt/project d2d0d3%aéfle /binfbash -c cd fopt/project/centos && 1
CONTAINER=482acallbfd0

+ docker attach ¢82acal7bfdl

¥m -rf spec/reports

tin /opt/project/centos)

fusr/binfruby -8 rspec spec/sample_spec.rb --colour --format progress

+
+
+
+

Finished in 2.85 seconds
501 examples, 0 failures
+ docker wait 482acal7bfdo
+ RC=0

+ docker rm 482acal7lbfd0
482acal7bfdd

+ exit

Finished: SUCCESS

Page generated: Aug 23, 2013 12:30:39 PM REST API Jenkins ver. 1.528

Figure 5.16: The centos sub-job console output.

169

Chapter 5: Testing with Docker

We can see that the job cloned the repository, built the required Docker image,
spawned a container from that image, and then ran the required tests. All of the
tests passed successfully (we can also check the Test Result link for the uploaded
JUnit test results if required).

We've now successfully completed a very simple, but powerful example of a multi-
platform testing job for an application.

Summary of our multi-configuration Jenkins

These examples show very simplistic implementations of Jenkins CI working with
Docker. You can enhance both of the examples shown with a lot of additional
capabilities ranging from automated, triggered builds to multi-level job matrices
using combinations of platform, architecture, and versions. Our simple Shell build
step could also be rewritten in a number of ways to make it more sophisticated or
to further support multi-container execution (e.g., to provide separate containers
for web, database, or application layers to better simulate an actual multi-tier
production application).

Other alternatives

One of the more interesting parts of the Docker ecosystem is continuous integra-
tion and continuous deployment (CI/CD). Beyond integration with existing tools
like Jenkins, we're also seeing people build their own tools and integrations on
top of Docker.

Drone

One of the more promising CI/CD tools being developed on top of Docker is Drone.
Drone is a SAAS continuous integration platform that connects to GitHub, Bit-
bucket, and Google Code repositories written in a wide variety of languages, in-
cluding Python, Node.js, Ruby, Go, and numerous others. It runs the test suites
of repositories added to it inside a Docker container.

Version: v1.2.2 (19946fc) 170

http://drone.io

Chapter 5: Testing with Docker

Shippable

Shippable is a free, hosted continuous integration and deployment service for
GitHub and Bitbucket. It is blazing fast and lightweight, and it supports Docker
natively.

Summary

In this chapter, we've seen how to use Docker as a core part of our development
and testing workflow. We've looked at developer-centric testing with Docker on a
local workstation or virtual machine. We've also explored scaling that testing up
to a continuous integration model using Jenkins CI as our tool. We've seen how
to use Docker for both point testing and how to build distributed matrix jobs.

In the next chapter, we'll start to see how we can use Docker in production to
provide containerized, stackable, scalable, and resilient services.

Version: v1.2.2 (19946fc) 171

https://www.shippable.com/

Chapter 6

Building services with Docker

In Chapter 5, we saw how to use Docker to facilitate better testing by using con-
tainers in our local development workflow and in a continuous integration envi-
ronment. In this chapter, we're going to explore using Docker to run production
services.

We're going to build a simple application first and then build some more complex
multi-container applications. We'll explore how to make use of Docker features
like links and volumes to combine and manage applications running in Docker.

Building our first application

The first application we're going to build is an on-demand website using the Jekyll
framework. We're going to build two images:

« An image that both installs Jekyll and the prerequisites we'll need and builds
our Jekyll site.
« An image that serves our Jekyll site via Apache.

We're going to make it on demand by creating a new Jekyll site when a new
container is launched. Our workflow is going to be:

172

http://jekyllrb.com/
http://jekyllrb.com/

Chapter 6: Building services with Docker

Create the Jekyll base image and the Apache image (once-off).

+ Create a container from our Jekyll image that holds our website source
mounted via a volume.

+ Create a Docker container from our Apache image that uses the volume con-
taining the compiled site and serve that out.

+ Rinse and repeat as the site needs to be updated.

You could consider this a simple way to create multiple hosted website instances.
Our implementation is very simple, but you will see how we can extend it beyond
this simple premise later in the chapter.

The Jekyll base image

Let's start creating a new Dockerfile for our first image: the Jekyll base image.
Let's create a new directory first and an empty Dockerfile.

Listing 6.1: Creating our Jekyll Dockerfile

$ mkdir jekyll
$ cd jekyll
$ vi Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.2 (19946fc) 173

Chapter 6: Building services with Docker

FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-06-01

RUN apt-get -ygq update
RUN apt-get -yqq install ruby ruby-dev make nodejs
RUN gem install --no-rdoc --no-ri jekyll

VOLUME ["/data/", "/var/www/html"]
WORKDIR /data

ENTRYPOINT ["jekyll", "build", "--destination=/var/www/html"]

Our Dockerfile uses the template we saw in Chapter 3 as its basis. Our image
is based on Ubuntu 14.04 and installs Ruby and the prerequisites necessary to
support Jekyll. It creates two volumes using the VOLUME instruction:

« /data/, which is going to hold our new website source code.
* /var/www/html/, which is going to hold our compiled Jekyll site.

We also need to set the working directory to /data/ and specify an ENTRYPOINT<«
instruction that will automatically build any Jekyll site it finds in the /data/
working directory into the /var/www/html/ directory.

Building the Jekyll base image

With this Dockerfile, we can now build an image from which we can launch
containers. We'll do this using the docker build command.

Version: v1.2.2 (19946fc) 174

Chapter 6: Building services with Docker

Listing 6.3: Building our Jekyll image

$ sudo docker build -t jamtur0l/jekyll .

Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon

Step 0 : FROM ubuntu:14.04

---> 99ec81b80c55

Step 1 : MAINTAINER James Turnbull <james@example.com>

Step 7 : ENTRYPOINT ["jekyll", "build" "--destination=/var/www/<
html"]
---> Running in 542e2de2029d
---> 790096911408

Removing intermediate container 542e2de2029d

Successfully built 79009691408

We can see that we've built a new image with an ID of 790096911408 named
jamturel/jekyll that is our new Jekyll image. We can view our new image using
the docker images command.

Listing 6.4: Viewing our new Jekyll Base image

$ sudo docker images

REPOSITORY TAG ID CREATED SIZE

jamtur0l/jekyll latest 79009691f408 6 seconds ago 12.29 kB (<«
virtual 671 MB)

The Apache image

Finally, let's build our second image, an Apache server to serve out our new site.
Let's create a new directory first and an empty Dockerfile.

Version: v1.2.2 (19946fc) 175

Chapter 6: Building services with Docker

Listing 6.5: Creating our Apache Dockerfile

$ mkdir apache
$ cd apache
$ vi Dockerfile

Now let's populate our Dockerfile.

Listing 6.6: Jekyll Apache Dockerfile

FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-06-01

RUN apt-get -ygq update
RUN apt-get -yqq install apache2

VOLUME ["/var/www/html"]
WORKDIR /var/www/html

ENV APACHE RUN USER www-data

ENV APACHE RUN GROUP www-data

ENV APACHE LOG DIR /var/log/apache2

ENV APACHE PID FILE /var/run/apache2.pid
ENV APACHE RUN DIR /var/run/apache2

ENV APACHE LOCK DIR /var/lock/apache2

RUN mkdir -p $APACHE RUN DIR $APACHE LOCK DIR $APACHE LOG DIR
EXPOSE 80

ENTRYPOINT ["/usr/sbin/apache2"]
CMD ["-D", "FOREGROUND"]

This final image is again based on Ubuntu 14.04 and installs Apache. It creates a
volume using the VOLUME instruction, /var/www/html/, which is going to hold our

Version: v1.2.2 (19946fc) 176

Chapter 6: Building services with Docker

compiled Jekyll website. We also set /var/www/html to be our working directory.

We'll then use some ENV instructions to set some required environment variables,
create some required directories, and EXPOSE port 80. We've also specified an
ENTRYPOINT and CMD combination to run Apache by default when the container
starts.

Building the Jekyll Apache image

With this Dockerfile, we can now build an image from which we can launch
containers. We do this using the docker build command.

$ sudo docker build -t jamtur@l/apache .
Sending build context to Docker daemon 2.56 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
---> 99ec81b80c55
Step 1 : MAINTAINER James Turnbull <james@example.com>
---> Using cache
---> Cc444e8ee0058

Step 11 : CMD ["-D", "FOREGROUND"]

---> Running in 7aa5cl27b4le

---> fc8e9135212d

Removing intermediate container 7aa5cl27b4le
Successfully built fc8e9135212d

We can see that we've built a new image with an ID of fc8e9135212d named
jamtur@l/apache that is our new Apache image. We can view our new image
using the docker images command.

Version: v1.2.2 (19946fc) 177

Chapter 6: Building services with Docker

Listing 6.8: Viewing our new Jekyll Apache image

$ sudo docker images

REPOSITORY TAG ID CREATED SIZE

jamtur@l/apache latest fc8e9135212d 6 seconds ago 12.29 kB (<«
virtual 671 MB)

Launching our Jekyll site

Now we've got two images:

+ Jekyll - Our Jekyll image with Ruby and the prerequisites installed.

« Apache - The image that will serve our compiled website via the Apache web
server.

Let's get started on our new site by creating a new Jekyll container using the
docker run command. We're going to launch a container and build our site.

We're going to need some source code for our blog. Let's clone a sample Jekyll
blog into our $HOME directory (in my case /home/james).

Listing 6.9: Getting a sample Jekyll blog

$ cd $HOME
$ git clone https://github.com/jamtur®l/james blog.git

You can see a basic Twitter Bootstrap-enabled Jekyll blog inside this directory. If
you want to use it, you can easily update the config.yml file and the theme to
suit your purposes.

Now let's use this sample data inside our Jekyll container.

Version: v1.2.2 (19946fc) 178

http://getbootstrap.com/

Chapter 6: Building services with Docker

$ sudo docker run -v /home/james/james blog:/data/ \
--name james blog \jamtur0l/jekyll
Configuration file: /data/ config.yml
Source: /data
Destination: /var/www/html
Generating...
done.

We've started a new container called james blog and mounted our james blog<

directory inside the container as the /data/ volume. The container has taken
this source code and built it into a compiled site stored in the /var/www/html/
directory.

So we've got a completed site, now how do we use it? This is where volumes
become a lot more interesting. When we briefly introduced volumes in Chapter
4, we discovered a bit about them. Let's revisit that.

A volume is a specially designated directory within one or more containers that
bypasses the Union File System to provide several useful features for persistent or
shared data:

* Volumes can be shared and reused between containers.

+ A container doesn't have to be running to share its volumes.

+ Changes to a volume are made directly.

Changes to a volume will not be included when you update an image.
« Volumes persist until no containers use them.

This allows you to add data (e.g., source code, a database, or other content) into
an image without committing it to the image and allows you to share that data
between containers.

Volumes live on your Docker host, in the /var/lib/docker/volumes directory.
You can identify the location of specific volumes using the docker inspect com-
mand; for example, docker inspect -f "{{ .Volumes }}".

Version: v1.2.2 (19946fc) 179

Chapter 6: Building services with Docker

So if we want to use our compiled site in the /var/www/html/ volume from another
container, we can do so. To do this, we'll create a new container that links to this
volume.

Listing 6.11: Creating an Apache container

$ sudo docker run -d -P --volumes-from james blog jamtur@l/apache
09a570cc2267019352525079fbba9927806f782ach88213bd38dde7e2795407d

This looks like a typical docker run, except that we've used a new flag: --<
volumes-from. The - -volumes-fromflag adds any volumes in the named container
to the newly created container. This means our Apache container has access to
the compiled Jekyll site in the /var/www/html volume within the james blog<«
container we created earlier. It has that access even though the james blog
container is not running. As you'll recall, that is one of the special properties
of volumes. The container does have to exist, though. If you had deleted the
james blog container using the docker rm command, then the volume would be
gone.

WARNING 1f you delete the last container that uses a volume, the volume
will disappear. Be careful about deleting containers that might hold volumes with
data you need. We'll see how to backup a volume shortly to help you avoid this
issue.

What is the end result of building our Jekyll website? Let's see onto what port our
container has mapped our exposed port 80:

Listing 6.12: Resolving the Apache container's port

$ sudo docker port 09a570cc2267 80
0.0.0.0:49160

Now let's browse to that site on our Docker host.

Version: v1.2.2 (19946fc) 180

Chapter 6: Building services with Docker

& - C [9 docker.example.com:49160

James' Docker-Driven Blog ~ Archive Categories ~ Pages Tags

Hello World! supporting tagiine

Read Jekyll Quick Start
Complete usage and documentation available at: Jekyll Bootstrap

Update Author Attributes

In _config.yml remember to specify your own data:
title : My Blog =)

author :
name : MName Lastname
email : blahgemail.test
github : username
twitter : username

The theme should reference these variables whenever needed.

Figure 6.1: Our Jekyll website.

We have a running Jekyll website!

Updating our Jekyll site

Things get even more interesting when we want to update our site. Let's say we'd
like to make some changes to our Jekyll website. We're going to rename our blog
by editing the james blog/ config.yml file.

Listing 6.13: Editing our Jekyll blog
$ vi james blog/ config.yml

And update the title field to James' Dynamic Docker-driven Blog.

So how do we update our blog? All we need to do is start our Docker container
again with the docker start command..

Listing 6.14: Restarting our james_blog container

$ sudo docker start james blog
james blog

Version: v1.2.2 (19946fc) 181

Chapter 6: Building services with Docker

It looks like nothing happened. Let's check the container's logs.

Listing 6.15: Checking the james_blog container logs

$ sudo docker logs james blog
Configuration file: /data/ config.yml
Source: /data
Destination: /var/www/html
Generating...
done.
Configuration file: /data/ config.yml
Source: /data
Destination: /var/www/html
Generating...
done.

We can see that the Jekyll build process has been run a second time and our site
has been updated. The update has been written to our volume. Now if we browse
to the Jekyll website, we should see our update.

& - C' [} docker.example.com:49160

James's Dynamic Docker-Driven Blog ~ Archive Categories Pages Tags

Hello World! supporting tagiine

Read Jekyll Quick Start
Complete usage and documentation available at: Jekyll Bootstrap
Update Author Attributes
In _config.yml remember to specify your own data:
title : My Blog =)
author
name : Name Lastname
email : blahgemail.test

github : username
twitter : username

The theme should reference these variables whenever needed.

Figure 6.2: Our updated Jekyll website.

This all happened without having to update or restart our Apache container, be-

Version: v1.2.2 (19946fc) 182

Chapter 6: Building services with Docker

cause the volume it was sharing was updated automatically. You can see how easy
this workflow is and how you could expand it for more complicated deployments.

Backing up our Jekyll volume

You're probably a little worried about accidentally deleting your volume (although
we can prettily easily rebuild our site using the existing process). One of the
advantages of volumes is that because they can be mounted into any container,
we can very easily create backups of them. Let's create a new container now that
backs up the /var/www/html volume.

$ sudo docker run --rm --volumes-from james blog \
-v $(pwd):/backup ubuntu \

tar cvf /backup/james blog backup.tar /var/www/html
tar: Removing leading '/' from member names
/var/www/html/

/var/www/html/assets/

/var/www/html/assets/themes/

$ ls james blog backup.tar
james blog backup.tar

Here we've run a stock Ubuntu container and mounted the volume from
james blog into that container. That will create the directory /var/www/html
inside the container. We've then used the -v flag to mount our current directory,
using the $(pwd) command, inside the container at /backup. Our container then
runs the command.

TIP we've also specified the --rm flag, which is useful for single-use or throw-
away containers. It automatically deletes the container after the process running
in it is ended. This is a neat way of tidying up after ourselves for containers we
only need once.

Version: v1.2.2 (19946fc) 183

Chapter 6: Building services with Docker

tar cvf /backup/james blog backup.tar /var/www/html

This will create a tarfile called james blog backup.tar containing the contents of
the /var/www/html directory and then exit. This process creates a backup of our
volume.

This is obviously an incredibly simple example of a backup process. You could
easily extend this to back up to storage locally or in the cloud (e.g., to Amazon S3
or to more traditional backup software like Amanda).

TIP This example could also work for a database stored in a volume or similar
data. Simply mount the volume in a fresh container, perform your backup, and
discard the container you created for the backup.

Extending our Jekyll website example

Here are some ways we could expand on our simple Jekyll website service:

« Run multiple Apache containers, all which use the same volume from the
james blog container. Put a load balancer in front of it, and we have a web
cluster.

* Build a further image that cloned or copied a user-provided source (e.g., a
git clone) into a volume. Mount this volume into a container created from
our jamtur0l/jeykll image. This would make the solution portable and
generic and would not require any local source on a host.

« With the previous expansion, you could easily build a web front end for our
service that built and deployed sites automatically from a specified source.
Then you would have your very own GitHub Pages.

Version: v1.2.2 (19946fc) 184

http://aws.amazon.com/s3/
http://www.amanda.org/

Chapter 6: Building services with Docker

Building a Java application server with Docker

Now let's take a slightly different tack and think about Docker as an application
server and build pipeline. This time we're serving a more "enterprisey" and tra-
ditional workload: fetching and running a Java application from a WAR file in a
Tomcat server. To do this, we're going to build a two-stage Docker pipeline:

+ An image that pulls down specified WAR files from a URL and stores them
in a volume.

« An image with a Tomcat server installed that runs those downloaded WAR
files.

A WAR file fetcher

Let's start by building an image to download a WAR file for us and mount it in a
volume.

Listing 6.18: Creating our fetcher Dockerfile

$ mkdir fetcher
$ cd fetcher
$ touch Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.2 (19946fc) 185

Chapter 6: Building services with Docker

Listing 6.19: Our war file fetcher

FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-06-01

RUN apt-get -yqq update
RUN apt-get -ygq install wget

VOLUME ["/var/lib/tomcat7/webapps/" 1]
WORKDIR /var/lib/tomcat7/webapps/

ENTRYPOINT ["wget"]
CMD [||_?||]

This incredibly simple image does one thing: it wgets whatever file from a URL
that is specified when a container is run from it and stores the file in the /var/<
lib/tomcat7/webapps/ directory. This directory is also a volume and the working
directory for any containers. We're going to share this volume with our Tomcat
server and run its contents.

Finally, the ENTRYPOINT and CMD instructions allow our container to run when no
URL is specified; they do so by returning the wget help output when the container
is run without a URL.

Let's build this image now.

Listing 6.20: Building our fetcher image

$ sudo docker build -t jamtur@l/fetcher .
Fetching a WAR file

Let's fetch an example file as a way to get started with our new image. We're going
to download the sample Apache Tomcat application from here.

Version: v1.2.2 (19946fc) 186

https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/

Chapter 6: Building services with Docker

Listing 6.21: Fetching a war file

$ sudo docker run -t -i --name sample jamtur@l/fetcher \

https://tomcat.apache.org/tomcat-7.0-doc/appdev/sample/sample.war

--2014-06-21 06:05:19-- https://tomcat.apache.org/tomcat-7.0-doc<
/appdev/sample/sample.war

Resolving tomcat.apache.org (tomcat.apache.org)... <
140.211.11.131, 192.87.106.229, 2001:610:1:80bc:192:87:106:229

Connecting to tomcat.apache.org (tomcat.apache.org)<«
|140.211.11.131|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 4606 (4.5K)

Saving to: 'sample.war'

100%[>] 4,606 --.-K/s in<
0s

2014-06-21 06:05:19 (14.4 MB/s) - 'sample.war' saved [4606/4606]

We can see that our container has taken the provided URL and downloaded the
sample.war file. We can't see it here, but because we set the working directory in
the container, that sample.war file will have ended up in our /var/lib/tomcat7«
/webapps/ directory.

We can find our WAR file in the /var/lib/docker directory. Let's first establish
where the volume is located using the docker inspect command.

Listing 6.22: Inspecting our Sample volume

$ sudo docker inspect -f "{{ .Volumes }}" sample

map[/var/lib/tomcat7/webapps:/var/lib/docker/vfs/dir/<
€59cd92502663adf6e76ae57a49c0d858950cd01f32415ab6a09b44eafd8727e«
]

We can then list this directory.

Version: v1.2.2 (19946fc) 187

Chapter 6: Building services with Docker

Listing 6.23: Listing the volume directory

$ 1s -1 /var/lib/docker/vfs/dir/<«
€59cd92502663adf6e76ae57a49c0d858950cd01f32415ab6a09b44eafd8727e

total 8

-rw-r--r-- 1 root root 4606 Mar 31 2012 sample.war

Our Tomcat 7 application server

We have an image that will get us WAR files, and we have a sample WAR file down-
loaded into a container. Let's build an image that will be the Tomcat application
server that will run our WAR file.

Listing 6.24: Creating our Tomcat 7 Dockerfile

$ mkdir tomcat7
$ cd tomcat?
$ touch Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.2 (19946fc) 188

Chapter 6: Building services with Docker

Listing 6.25: Our Tomcat 7 Application server

FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-06-01

RUN apt-get -yqq update
RUN apt-get -yqq install tomcat7 default-jdk

ENV CATALINA HOME /usr/share/tomcat7

ENV CATALINA BASE /var/lib/tomcat?7

ENV CATALINA PID /var/run/tomcat7.pid

ENV CATALINA SH /usr/share/tomcat7/bin/catalina.sh
ENV CATALINA TMPDIR /tmp/tomcat7-tomcat7-tmp

RUN mkdir -p $CATALINA TMPDIR
VOLUME ["/var/lib/tomcat7/webapps/" 1]
EXPOSE 8080

ENTRYPOINT ["/usr/share/tomcat7/bin/catalina.sh", "run"]

Our image is pretty simple. We need to install a Java JDK and the Tomcat server.
We'll specify some environment variables Tomcat needs in order to get started,
then create a temporary directory. We'll also create a volume called /var/lib<
/tomcat7/webapps/, expose port 8080 (the Tomcat default), and finally use an
ENTRYPOINT instruction to launch Tomcat.

Now let's build our Tomcat 7 image.

Listing 6.26: Building our Tomcat 7 image

$ sudo docker build -t jamtur@l/tomcat7 .

Version: v1.2.2 (19946fc) 189

Chapter 6: Building services with Docker

Running our WAR file

Now let's see our Tomcat server in action by creating a new Tomcat instance
running our sample application.

Listing 6.27: Creating our first Tomcat instance

$ sudo docker run --name sample app --volumes-from sample \
-d -P jamtur@l/tomcat7

This will create a new container named sample app that reuses the volumes
from the sample container. This means our WAR file, stored in the /var/lib/<«
tomcat7/webapps/ volume, will be mounted from the sample container into the
sample app container and then loaded by Tomcat and executed.

Let's look at our sample application in the web browser. First, we must identify
the port being exposed using the docker port command.

Listing 6.28: Identifying the Tomcat application port

sudo docker port sample app 8080
0.0.0.0:49154

Now let's browse to our application (using the URL and port and adding the /<
sample suffix) and see what's there.

€& = C M [) docker.example.com:49154/sample/

Sample "Hello, World" Application

> This is the home page for a sample application used to illustrate the source directory organization of a web application utilizing the principles outlined
Developer's Guide.

To prove that they work, you can execute either of the following links:

« ToaISP page.
* To aservlet.

Figure 6.3: Our Tomcat sample application.

We should see our running Tomcat application.

Version: v1.2.2 (19946fc) 190

Chapter 6: Building services with Docker

Building on top of our Tomcat application server

Now we have the building blocks of a simple on-demand web service. Let's look
at how we might expand on this. To do so, we've built a simple Sinatra-based web
application to automatically provision Tomcat applications via a web page. We've
called this application TProv. You can see its source code here or on GitHub.

Let's install it as a demo of how you might extend this or similar examples. First,
we'll need to ensure Ruby is installed. We're going to install our TProv application
on our Docker host because our application is going to be directly interacting with
our Docker daemon, so that's where we need to install Ruby.

NOTE we could also install the TProv application inside a Docker container
using the Docker-in-Docker trick we learned in Chapter 5.

Listing 6.29: Installing Ruby

$ sudo apt-get -qqy install ruby make ruby-dev

We can then install our application from a Ruby gem.

Listing 6.30: Installing the TProv application

$ sudo gem install --no-rdoc --no-ri tprov

Successfully installed tprov-0.0.4

This will install the TProv application and some supporting gems.

We can then launch the application using the tprov binary.

Version: v1.2.2 (19946fc) 191

http://dockerbook.com/code/6/tomcat/tprov/
https://github.com/jamtur01/dockerbook-code/tree/master/code/6/tomcat/tprov

Chapter 6: Building services with Docker

Listing 6.31: Launching the TProv application

$ sudo tprov

[2014-06-21 16:17:24] INFO WEBrick 1.3.1

[2014-06-21 16:17:24] INFO ruby 1.8.7 (2011-06-30) [x86 64-linux<
]

== Sinatra/l.4.5 has taken the stage on 4567 for development with<

backup from WEBrick

[2014-06-21 16:17:24] INFO WEBrick::HTTPServer#start: pid=14209 <

port=4567

This command has launched our application; now we can browse to the TProv
website on port 4567 of the Docker host.

&« C # [docker.example.com:4567

Welcome to TProv

TProv or the Tomeat Provisioner is a Sinatra app that demonstrates how to build a simple PAAS with Docker. It allows you to provision Tomcat applications in Docker containers.

It was written for The Docker Book.
Add a new Tomcat Application

Tomcat Application

Enter name of the Tomeat application.
Enter the URL of a WAR file you wish to run.

Submit

@ James Turnbull 2014

Figure 6.4: Our TProv web application.

As we can see, we can specify a Tomcat application name and the URL to a Tomcat
WAR file. Let's download a sample calendar application from here and call it
Calendar.

Version: v1.2.2 (19946fc) 192

https://gwt-examples.googlecode.com/files/Calendar.war

Chapter 6: Building services with Docker

TProv Home List current ins

Welcome to TProv

TProv or the Tomcat Provisicner is a Sinatra app that demonstrates how to build a simple PAAS with Docker. It allows you to provision Tomcat applications in Docker containers.

It was written for The Docker Book.
Add a new Tomcat Application

Tomcat Application

Enter name of the Tomcat application.

Calender|

Enter the URL of a WAR file you wish to run.

https://gwt-examples.googlecode.cc

Submit

@ James Turnbull 2014

Figure 6.5: Downloading a sample application.

We click Submit to download the WAR file, place it into a volume, run a Tomcat
server, and serve the WAR file in that volume. We can see our instance by clicking
on the List instances link.

This shows us:
» The container ID.
» The container's internal IP address.

 The interface and port it is mapped to.

Tomcat Applications

Container ID IPAddress Port Delete?
e04a4fd54305 172.17.0.10 0.0.0.0:49154
Submit

Figure 6.6: Listing the Tomcat instances.

Version: v1.2.2 (19946fc) 193

Chapter 6: Building services with Docker

Using this information, we can check the status of our application by browsing to
the mapped port. We can also use the Delete? checkbox to remove an instance.

You can see how we achieved this by looking at the TProv application code. It's a
pretty simple application that shells out to the docker binary and captures output
to run and remove containers.

You're welcome to use the TProv code or adapt or write your own !, but its primary
purpose is to show you how easy it is to extend a simple application deployment
pipeline built with Docker.

WARNING The TProv application is pretty simple and lacks some error han-
dling and tests. It is also built on a very simple code: it was built in an hour to
demonstrate how powerful Docker can be as a tool for building applications and
services. If you find a bug with the application (or want to make it better), please
let me know with an issue or PR here.

A multi-container application stack

In our last service example, we're going full hipster by Dockerizing a Node.js ap-
plication that makes use of the Express framework with a Redis back end. We're
going to demonstrate a combination of all the Docker features we've learned over
the last two chapters, including links and volumes.

In our sample application, we're going to build a series of images that will allow
us to deploy a multi-container application:

+ A Node container to serve our Node application, linked to:

+ A Redis primary container to hold and cluster our state, linked to:
« Two Redis replica containers to cluster our state.

+ A logging container to capture our application logs.

1Really write your own - no one but me loves my code.

Version: v1.2.2 (19946fc) 194

https://github.com/jamtur01/dockerbook-code/blob/master/code/6/tomcat/tprov/lib/tprov/app.rb
https://github.com/jamtur01/dockerbook-code

Chapter 6: Building services with Docker

We're then going to run our Node application in a container with Redis in primary-
replica configuration in multiple containers behind it.

The Node.js image

Let's start with an image that installs Node.js, our Express application, and the
associated prerequisites.

Listing 6.32: Creating our Node.js Dockerfile

$ mkdir nodejs

$ cd nodejs

$ mkdir -p nodeapp

$ cd nodeapp

$ wget https://raw.githubusercontent.com/jamtur0l/dockerbook-code<«
/master/code/6/node/nodejs/nodeapp/package. json

$ wget https://raw.githubusercontent.com/jamtur@l/dockerbook-code<«
/master/code/6/node/nodejs/nodeapp/server.js

$ cd ..

$ vi Dockerfile

We've created a new directory called nodejs and then a sub-directory, nodeapp, to
hold our application code. We've then changed into this directory and downloaded
the source code for our Node.JS application.

NOTE vou can get our Node application's source code here or on GitHub.

Finally we've changed back to the nodejs directory and now we can populate our
Dockerfile.

Version: v1.2.2 (19946fc) 195

http://dockerbook.com/code/6/node/
https://github.com/jamtur01/dockerbook-code/tree/master/code/6/node/

Chapter 6: Building services with Docker

Listing 6.33: Our Node.js image

FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-06-01

RUN apt-get -yqq update

RUN apt-get -ygq install nodejs npm
RUN 1n -s /usr/bin/nodejs /usr/bin/node
RUN mkdir -p /var/log/nodeapp

ADD nodeapp /opt/nodeapp/

WORKDIR /opt/nodeapp
RUN npm install

VOLUME ["/var/log/nodeapp" 1
EXPOSE 3000

ENTRYPOINT ["nodejs", "server.js"]

Our Node.js image installs Node and makes a simple workaround of linking the
binary nodejs to node to address some backwards compatibility issues on Ubuntu.

We then add our nodeapp code into the /opt/nodeapp directory using an ADD<«
instruction. Our Node.js application is a very simple Express server and contains
both a package. json file holding the application's dependency information and
the server.js file that contains our actual application. Let's look at a subset of
that application.

Version: v1.2.2 (19946fc) 196

Chapter 6: Building services with Docker

Listing 6.34: Our Node.js server.js application

var logFile = fs.createWriteStream('/var/log/nodeapp/nodeapp.log<
', {flags: 'a'});

app.configure(function() {

app.use(express.session({
store: new RedisStore({
host: process.env.REDIS HOST || 'redis primary',
port: process.env.REDIS PORT || 6379,
db: process.env.REDIS DB || O
},

cookie: {

app.get('/', function(req, res) {
res.json({
status: "ok"
3
3

var port = process.env.HTTP_PORT || 3000;
server.listen(port);
console.log('Listening on port ' + port);

The server.js file pulls in all the dependencies and starts an Express application.
The Express app is configured to store its session information in Redis and exposes

Version: v1.2.2 (19946fc) 197

Chapter 6: Building services with Docker

a single endpoint that returns a status message as JSON. We've configured its
connection to Redis to use a host called redis primary with an option to override
this with an environment variable if needed.

The application will also log to the /var/log/nodeapp/nodeapp. log file and will
listen on port 3000.

NOTE vou can get our Node application's source code here or on GitHub.

We've then set the working directory to /opt/nodeapp and installed the prereq-
uisites for our Node application. We've also created a volume that will hold our
Node application's logs, /var/log/nodeapp.

We expose port 3000 and finally specify an ENTRYPOINT of nodejs server.js that
will run our Node application.

Let's build our image now.

Listing 6.35: Building our Node.js image

$ sudo docker build -t jamtur0l/nodejs .

The Redis base image

Let's continue with our first Redis image: a base image that will install Redis. It
is on top of this base image that we'll build our Redis primary and replica images.

Listing 6.36: Creating our Redis base Dockerfile

$ mkdir redis base
$ cd redis base
$ vi Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.2 (19946fc) 198

http://dockerbook.com/code/6/node/
https://github.com/jamtur01/dockerbook-code/tree/master/code/6/node/

Chapter 6: Building services with Docker

Listing 6.37: Our Redis base image

FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-06-01

RUN apt-get -yqq update

RUN apt-get install -yqq software-properties-common python-<
software-properties

RUN add-apt-repository ppa:chris-lea/redis-server

RUN apt-get -ygq update

RUN apt-get -yqq install redis-server redis-tools

VOLUME ["/var/lib/redis", "/var/log/redis/"]

EXPOSE 6379
CMD []

Our Redis base image installs the latest version of Redis (from a PPA rather than
using the older packages shipped with Ubuntu), specifies two VOLUMEs (/var/lib<
/redis and /var/log/redis), and exposes the Redis default port 6379. It doesn't
have an ENTRYPOINT or CMD because we're not actually going to run this image.
We're just going to build on top of it.

Let's build our Redis primary image now.

Listing 6.38: Building our Redis base image

$ sudo docker build -t jamtur@l/redis .

The Redis primary image

Let's continue with our first Redis image: a Redis primary server.

Version: v1.2.2 (19946fc) 199

Chapter 6: Building services with Docker

Listing 6.39: Creating our Redis primary Dockerfile

$ mkdir redis primary
$ cd redis primary
$ vi Dockerfile

Now let's populate our Dockerfile.

Listing 6.40: Our Redis primary image

FROM jamtur@l/redis
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-06-01

ENTRYPOINT ["redis-server", "--logfile /var/log/redis/redis-<
server.log" 1]

Our Redis primary image is based on our jamtur0l/redis image and has an
ENTRYPOINT that runs the default Redis server with logging directed to /var/<
log/redis/redis-server.log.

Let's build our Redis primary image now.

Listing 6.41: Building our Redis primary image

$ sudo docker build -t jamtur@l/redis primary .

The Redis replica image
As a complement to our Redis primary image, we're going to create an image

that runs a Redis replica to allow us to provide some redundancy to our Node.js
application.

Version: v1.2.2 (19946fc) 200

Chapter 6: Building services with Docker

Listing 6.42: Creating our Redis replica Dockerfile

$ mkdir redis replica
$ cd redis replica
$ touch Dockerfile

Now let's populate our Dockerfile.

Listing 6.43: Our Redis replica image

FROM jamtur@l/redis
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-06-01

ENTRYPOINT ["redis-server", "--logfile /var/log/redis/redis-<
replica.log", "--slaveof redis primary 6379"]

Again, we base our image on jamtur01l/redis and specify an ENTRYPOINT that runs
the default Redis server with our logfile and the slaveof option. This configures
our primary-replica relationship and tells any containers built from this image
that they are a replica of the redis primary host and should attempt replication
on port 6379.

Let's build our Redis replica image now.

Listing 6.44: Building our Redis replica image

$ sudo docker build -t jamtur0l/redis replica .
Creating our Redis back-end cluster

Now that we have both a Redis primary and replica image, we can build our own
Redis replication environment. Let's start by building the Redis primary container.

Version: v1.2.2 (19946fc) 201

Chapter 6: Building services with Docker

Listing 6.45: Running the Redis primary container

$ sudo docker run -d -h redis primary \
--name redis primary jamtur@l/redis primary
d21659697baf56346cc5bbe8d4631f670364ffddf4863ec32ab0576e85a73d27

Here we've created a container with the docker run command from the
jamtur0l/redis primary image. We've used a new flag that we've not seen
before, -h, which sets the hostname of the container. This overrides the default
behavior (setting the hostname of the container to the short container ID) and
allows us to specify our own hostname. We'll use this to ensure that our container
is given a hostname of redis primary and will thus be resolved that way with
local DNS. We've also specified the --name flag to ensure that our container's
name is redis_primary, too. We're going to use this for our container linking, as
we'll see shortly.

Let's see what the docker logs command can tell us about our Redis primary
container.

Listing 6.46: Our Redis primary logs

$ sudo docker logs redis primary

Nothing? Why is that? Our Redis server is logging to a file rather than to standard
out, so we see nothing in the Docker logs. So how can we tell what's happening to
our Redis server? To do that, we can use the /var/log/redis volume we created
earlier. Let's use this volume and read some log files now.

Version: v1.2.2 (19946fc) 202

Chapter 6: Building services with Docker

Listing 6.47: Reading our Redis primary logs

$ sudo docker run -ti --rm --volumes-from redis primary \
ubuntu cat /var/log/redis/redis-server.log

[11 25 Jun 21:45:03.074 # Server started, Redis version 2.8.12

[1] 25 Jun 21:45:03.074 # WARNING overcommit memory is set to 0! <«
Background save may fail under low memory condition. To fix this<
issue add 'vm.overcommit memory = 1' to /etc/sysctl.conf and <
then reboot or run the command 'sysctl vm.overcommit memory=1' <
for this to take effect.

[1] 25 Jun 21:45:03.074 * The server is now ready to accept <«
connections on port 6379

Here we've run another container interactively. We've specified the --rm flag,
which automatically deletes a container after the process it runs stops. We've
also specified the --volumes-from flag and told it to mount the volumes from
our redis primary container. Then we've specified a base ubuntu image and
told it to cat the cat /var/log/redis/redis-server.log log file. This takes ad-
vantage of volumes to allow us to mount the /var/log/redis directory from the
redis_primary container and read the log file inside it. We're going to see more
about how we can use this shortly.

Looking at our Redis logs, we see some general warnings, but everything is looking
pretty good. Our Redis server is ready to receive data on port 6379.

So next, let's create our first Redis replica.

Listing 6.48: Running our first Redis replica container

$ sudo docker run -d -h redis replical \

--name redis replical \

--link redis primary:redis primary \

jamtur@l/redis replica
0ae440b5c5614813190332b4151c40f775615016bf781fc817f631db5af34ef8

We've run another container: this one from the jamtur@l/redis replica image.
We've again specified a hostname (with the -h flag) and a name (with - -name<

Version: v1.2.2 (19946fc) 203

Chapter 6: Building services with Docker

) of redis replical. We've also used the --1link flag to link our Redis replica
container with the redis primary container with the alias redis primary.

Let's check this new container's logs.

$ sudo docker run -ti --rm --volumes-from redis replical \
ubuntu cat /var/log/redis/redis-replica.log

[1] 25 Jun 22:10:04.240 # Server started, Redis version 2.8.12
[1] 25 Jun 22:10:04.240 # WARNING overcommit memory 1is set to 0! <
Background save may fail under low memory condition. To fix this<
issue add 'vm.overcommit memory = 1' to /etc/sysctl.conf and <
then reboot or run the command 'sysctl vm.overcommit memory=1' <
for this to take effect.
[1] 25 Jun 22:10:04.240 * The server is now ready to accept <«
connections on port 6379
[1] 25 Jun 22:10:04.242 * Connecting to MASTER redis primary:6379
[1] 25 Jun 22:10:04.244 * MASTER <-> SLAVE sync started
[1] 25 Jun 22:10:04.244 * Non blocking connect for SYNC fired the<«
event.
[1] 25 Jun 22:10:04.244 * Master replied to PING, replication can<«
continue...
[1] 25 Jun 22:10:04.245 * Partial resynchronization not possible <«
(no cached master)
[1] 25 Jun 22:10:04.246 * Full resync from master: 24«
a790df6bf4786a0e886bed4b34868743f6145cc: 1485
[1] 25 Jun 22:10:04.274 * MASTER <-> SLAVE sync: receiving 18 <
bytes from master
[1] 25 Jun 22:10:04.274 * MASTER <-> SLAVE sync: Flushing old <«

data

[1] 25 Jun 22:10:04.274 * MASTER <-> SLAVE sync: Loading DB in <«
memory

[1] 25 Jun 22:10:04.275 * MASTER <-> SLAVE sync: Finished with <«
success

Version: v1.2.2 (19946fc) 204

Chapter 6: Building services with Docker

We've run another container to query our logs interactively. We've again spec-
ified the --rm flag, which automatically deletes a container after the process it
runs stops. We've specified the - -volumes-from flag and told it to mount the vol-
umes from our redis replical container this time. Then we've specified a base
ubuntu image and told it to cat the cat /var/log/redis/redis-replica.log log
file.

Woot! We're off and replicating between our redis primary container and our
redis replical container.

Let's add another replica, redis replica2, just to be sure.

Listing 6.50: Running our second Redis replica container

$ sudo docker run -d -h redis replica2 \

--name redis replica2 \

--link redis primary:redis primary \

jamtur@l/redis replica
72267cd74c412c7b168d87bba70f3aaa3b96d17d6e€9682663095a492bc260357

Let's see a sampling of the logs from our new container.

Version: v1.2.2 (19946fc) 205

Chapter 6: Building services with Docker

$ sudo docker run -ti --rm --volumes-from redis replica2 ubuntu \
cat /var/log/redis/redis-replica.log

[1] 25 Jun 22:11:39.417 # Server started, Redis version 2.8.12
[1] 25 Jun 22:11:39.417 # WARNING overcommit memory is set to 0! <
Background save may fail under low memory condition. To fix this<
issue add 'vm.overcommit memory = 1' to /etc/sysctl.conf and <
then reboot or run the command 'sysctl vm.overcommit memory=1' <
for this to take effect.
[1] 25 Jun 22:11:39.417 * The server is now ready to accept <«
connections on port 6379
[1] 25 Jun 22:11:39.417 * Connecting to MASTER redis primary:6379
[1] 25 Jun 22:11:39.422 * MASTER <-> SLAVE sync started
[1] 25 Jun 22:11:39.422 * Non blocking connect for SYNC fired the<«
event.
[1] 25 Jun 22:11:39.422 * Master replied to PING, replication can<«
continue...
[1] 25 Jun 22:11:39.423 * Partial resynchronization not possible <«
(no cached master)
[1] 25 Jun 22:11:39.424 * Full resync from master: 24«
a790df6bf4786a0e886bed4b34868743f6145cc: 1625
[1] 25 Jun 22:11:39.476 * MASTER <-> SLAVE sync: receiving 18 <«
bytes from master
[1] 25 Jun 22:11:39.476 * MASTER <-> SLAVE sync: Flushing old <«
data
[1] 25 Jun 22:11:39.476 * MASTER <-> SLAVE sync: Loading DB in <«
memory

And again, we're off and away replicating!

Version: v1.2.2 (19946fc) 206

Chapter 6: Building services with Docker

Creating our Node container

Now that we've got our Redis cluster running, we can launch a container for our
Node.js application.

Listing 6.52: Running our Node.js container

$ sudo docker run -d \

--name nodeapp -p 3000:3000 \

--link redis primary:redis primary \

jamtur@l/nodejs
929dd33957c136€98295de7405386ed2c452e8ad263abecla2af8h24f80fd175

We've created a new container from our jamtur01l/nodejs image, specified a name
of nodeapp, and mapped port 3000 inside the container to port 3000 outside. We've
also linked our new nodeapp container to the redis primary container with an
alias of redis primary.

We can use docker logs to see what's going on in our nodeapp container.

Listing 6.53: The nodeapp console log

$ sudo docker logs nodeapp
Listening on port 3000

Here we can see that our Node application is bound and listening at port 3000.

Let's browse to our Docker host and see the application at work.

& - C [} docker.example.com:3000

"atatuz": "ok"

Figure 6.7: Our Node application.

Version: v1.2.2 (19946fc) 207

Chapter 6: Building services with Docker

We can see that our simple Node application returns an OK status.

Listing 6.54: Node application output

{

"status": "ok"

}

That tells us it's working. Our session state will also be recorded and stored in our
primary Redis container, redis primary, then replicated to our Redis replicas:
redis replical and redis replica2.

Capturing our application logs

Now that our application is up and running, we'll want to put it into production,
which involves ensuring that we capture its log output and put it into our logging
servers. We are going to use Logstash to do so. We're going to start by creating
an image that installs Logstash.

Listing 6.55: Creating our Logstash Dockerfile

$ mkdir logstash
$ cd logstash
$ touch Dockerfile

Now let's populate our Dockerfile.

Version: v1.2.2 (19946fc) 208

http://logstash.net/

Chapter 6: Building services with Docker

Listing 6.56: Our Logstash image

FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-06-01

RUN apt-get -yqq update

RUN apt-get -ygq install wget

RUN wget -0 - http://packages.elasticsearch.org/GPG-KEY-<«
elasticsearch | apt-key add -

RUN echo 'deb http://packages.elasticsearch.org/logstash/1.4/«
debian stable main' > /etc/apt/sources.list.d/logstash.list

RUN apt-get -yqq update

RUN apt-get -yqq install logstash

ADD logstash.conf /etc/
WORKDIR /opt/logstash

ENTRYPOINT ["bin/logstash" 1]
CMD ["--config=/etc/logstash.conf"]

We've created an image that installs Logstash and adds a logstash.conf file to
the /etc/ directory using the ADD instruction. Let's quickly look at this file.

Version: v1.2.2 (19946fc) 209

Chapter 6: Building services with Docker

Listing 6.57: Our Logstash configuration

input {
file {
type => "syslog"
path => ["/var/log/nodeapp/nodeapp.log", "/var/log/redis/<
redis-server.log"]

}
output {
stdout {
codec => rubydebug
}
}

This is a very simple Logstash configuration that monitors two files: /var/log<
/nodeapp/nodeapp.log and /var/log/redis/redis-server.log. Logstash will
watch these files and send any new data inside of them into Logstash. The second
part of our configuration, the output stanza, takes any events Logstash receives
and outputs them to standard out. In a real world Logstash configuration we
would output to an Elasticsearch cluster or other destination, but we're just using
this as a demo, so we're going to skip that.

NOTE if you don't know much about Logstash, you can learn more from my
book or the Logstash documentation.

We've specified a working directory of /opt/logstash. Finally, we have specified
an ENTRYPOINT of bin/logstash and a CMD of --config=/etc/logstash.conf«

to pass in our command flags. This will launch Logstash and load our /etc/<«
logstash.conf configuration file.

Let's build our Logstash image now.

Version: v1.2.2 (19946fc) 210

http://www.logstashbook.com
http://www.logstashbook.com
http://logstash.net

Chapter 6: Building services with Docker

Listing 6.58: Building our Logstash image

$ sudo docker build -t jamtur@l/logstash .

Now that we've built our Logstash image, we can launch a container from it.

Listing 6.59: Launching a Logstash container

$ sudo docker run -d --name logstash \
--volumes-from redis primary \
--volumes-from nodeapp \
jamtur@l/logstash

We've launched a new container called logstash and specified the --volumes<«
-from flag twice to get the volumes from the redis primary and nodeapp. This
gives us access to the Node and Redis log files. Any events added to those files
will be reflected in the volumes in the logstash container and passed to Logstash

for processing.

Let's look at that now by examining the logs of the logstash container with the
-f flag to follow the log.

Listing 6.60: The logstash container's logs

$ sudo docker logs -f logstash

{:timestamp=>"2014-06-26T00:41:53.273000+0000", :message=>"Using <«
milestone 2 input plugin 'file'. This plugin should be stable, <
but if you see strange behavior, please let us know! For more <«
information on plugin milestones, see http://logstash.net/docs<
/1.4.2-modified/plugin-milestones"”, :level=>:warn}

Let's browse to our web application again and refresh it to generate an event. We
should see that event reflected in our logstash container output.

Version: v1.2.2 (19946fc) 211

Chapter 6: Building services with Docker

Listing 6.61: A Node event in Logstash

{
"message" => "63.239.94.10 - - [Thu, 26 Jun 2014 01:28:42 <
GMT] \"GET /hello/frank HTTP/1.1\" 200 22 \"-\" \"Mozilla<«
/5.0 (Macintosh; Intel Mac 0S X 10 9 4) AppleWebKit<«
/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari<
/537.36\"",
"@version" => "1",
"@timestamp" => "2014-06-26T01:28:42.5937",
"type" => "syslog",
"host" => "cfa96519ba54",
"path" => "/var/log/nodeapp/nodeapp.log"
}

And now we have our Node and Redis containers logging to Logstash. In a produc-
tion environment, we'd be sending these events to a Logstash server and storing
them in Elasticsearch. We could also easily add our Redis replica containers or
other components of the solution to our logging environment.

NOTE we could also do Redis backups via volumes if we wanted to.

Summary of our Node stack

We've now seen a multi-container application stack. We've used Docker links to
connect our application together and Docker volumes to help manage a variety
of aspects of our application. We can easily build on this foundation to produce
more complex applications and architectures.

Version: v1.2.2 (19946fc) 212

Chapter 6: Building services with Docker

Managing Docker containers without SSH

Lastly, before we wrap up our chapter on running services with Docker, it's impor-
tant to understand some of the ways we can manage Docker containers and how
those differ from some more traditional management techniques.

Traditionally, when managing services, we're used to SSHing into our environment
or virtual machines to manage them. In the Docker world, where most containers
run a single process, this access isn't available. As we've seen much of the time,
this access isn't needed: we can use volumes or links to perform a lot of the same
actions. For example, if our service is managed via a network interface, we can
expose that on a container; if our service is managed through a Unix socket, we
can expose that with a volume. If we need to send a signal to a Docker container,
we can also use the docker kill command, like so:

$ sudo docker kill -s <signal> <container>

This will send the specific signal you want (e.g., a HUP) to the container in question
rather than killing the container.

Sometimes, however, we do need to sign into a container. To do that, though, we
don't need to run an SSH service or open up any access. We can use a small tool
called nsenter.

NOTE The use of nsenter generally applies to Docker 1.2 and earlier releases.
The docker exec command introduced in Docker 1.3 replaces much of this func-
tionality.

The nsenter tool allows us to enter into the kernel namespaces that Docker uses to
construct its containers. Technically, it can enter existing namespaces, or spawn
a process into a new set of namespaces. The short version is this: with nsenter,
we can get a shell into an existing container, even if that container doesn't run
SSH or any kind of special-purpose daemon. We can install nsenter via a Docker

Version: v1.2.2 (19946fc) 213

Chapter 6: Building services with Docker

container.

Listing 6.63: Installing nsenter

$ sudo docker run -v /usr/local/bin:/target jpetazzo/nsenter

This will install nsenter in /usr/local/bin, and you will be able to use it imme-
diately.

TIP The nsenter tool might also be available in your Linux distribution (in the
util-linux package.)

To use nsenter, we'll first need to get the process ID, or PID, of the container we
wish to enter. To do so, we can use the docker inspect command.

Listing 6.64: Finding the process ID of the container

PID=$(sudo docker inspect --format {{.State.Pid}} <container>)

We can then enter the container:

Listing 6.65: Entering a container with nsenter

$ sudo nsenter --target $PID --mount --uts --ipc --net --pid
This will launch a shell inside the container, without needing SSH or any other
special daemon or process.

We can also run commands inside a container by appending the command to the
nsenter command line.

Listing 6.66: Running a command inside a container with nsenter

$ sudo nsenter --target $PID --mount --uts --ipc --net --pid 1s
bin boot dev etc home 1ib 1ib64 media mnt opt proc . . <«

This will run the 1s command inside our target container.

Version: v1.2.2 (19946fc) 214

Chapter 6: Building services with Docker

Summary

In this chapter, we've seen how to build some example production services using
Docker containers. We've seen a bit more about how we can build multi-container
services and manage those stacks. We've combined features like Docker links and
volumes and learned how to potentially extend those features to provide us with
capabilities like logging and backups.

In the next chapter, we'll look at orchestration with Docker using the Fig and
Consul tools.

Version: v1.2.2 (19946fc) 215

Chapter 7

Docker Orchestration and Service
Discovery

Orchestration is a pretty loosely defined term. It's broadly the process of auto-
mated configuration, coordination, and management of services. In the Docker
world we use it to describe the set of practices around managing applications run-
ning in multiple Docker containers and potentially across multiple Docker hosts.
Native orchestration is in its infancy in the Docker community but an exciting
ecosystem of tools is being integrated and developed.

In the current ecosystem there are a variety of tools being built and integrated
with Docker. Some of these tools are simply designed to elegantly "wire" together
multiple containers and build application stacks using simple composition. Other
tools provide larger scale coordination between multiple Docker hosts as well as
complex service discovery, scheduling and execution capabilities.

Each of these areas really deserves their own book but we've focussed on a couple
of useful tools that give you some insight into what you can achieve when or-
chestrating containers. They hopefully provide some useful building blocks upon
which you can grow your Docker-enabled environment.

In this chapter we've focused on two areas:

« Simple container orchestration. Here we've looked at Fig. Fig is an open
source Docker orchestration tool developed by the Orchard team and then

216

http://www.fig.sh/

Chapter 7: Docker Orchestration and Service Discovery

acquired by Docker Inc in 2014. It's written in Python and licensed with the
Apache 2.0 license.

+ Distributed service discovery. Here we've introduced Consul. Consul is also
open source, licensed with the Mozilla Public License 2.0, and written in
Go. It provides distributed, highly available service discovery. We're going
to look at how you might use Consul and Docker to manage application
service discovery.

TIP we'l talk about many of the other orchestration tools available to you later
in this chapter.

Fig
Now let's get familiar with Fig. With Fig, we define a set of containers to boot up,

and their runtime properties, all defined in a YAML file. Fig calls each of these
containers "services" which it defines as:

A container that interacts with other containers in some way and that
has specific runtime properties.

We're going to take you through installing Fig and and then using it to build a
simple, multi-container application stack.

Installing Fig

We start by installing Fig. Fig is currently available for Linux and OS X. It can be
installed directly as a binary or via a Python Pip package.

Version: v1.2.2 (19946fc) 217

http://www.consul.io/

Chapter 7: Docker Orchestration and Service Discovery

NOTE Fig doesn't currently work with Boot2Docker. This is being worked on
but it is not quite ready for prime time yet!

To install Fig on Linux we can grab the Fig binary from Git Hub and make it exe-
cutable. Like Docker, Fig is currently only supported on 64-bit Linux installations.
We'll need the curl command available to do this.

Listing 7.1: Installing Fig on Linux

$ sudo bash -c "curl -L https://github.com/docker/fig/releases/<«
download/0.5.2/1linux/ > /usr/local/bin/fig"
$ sudo chmod +x /usr/local/bin/fig

This will download the fig binary from Git Hub and install it into the /usr/<
local/bin directory. We've also used the chmod command to make the fig binary
executable so we can run it.

If we're on OS X we can do the same like so:

Listing 7.2: Installing Fig on OS X

$ curl -L https://github.com/docker/fig/releases/download/0.5.2/<«
darwin > /usr/local/bin/fig
$ chmod +x /usr/local/bin/fig

Fig is also available as a Python package if you're on another platform or if you
prefer installing via package. You will need to have the Python-Pip tool installed
to use the pip command. This is available via the python-pip package on most
Red Hat, Debian and Ubuntu releases.

Listing 7.3: Installing Fig via Pip

$ sudo pip install -U fig

Once you have installed the fig binary you can test it's working using the fig
command with the --version flag:

Version: v1.2.2 (19946fc) 218

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.4: Testing Fig is working

$ fig --version
fig 0.5.2

Getting our sample application

To demonstrate how Fig works we're going to use a sample Python Flask applica-
tion that combines two containers:

« An application container running our sample Python application.
+ A Redis container running the Redis database.

Let's start with building our sample application. Firstly, we create a directory and
a Dockerfile.

Listing 7.5: Creating the figapp directory

$ mkdir figapp
$ cd figapp
$ touch Dockerfile

Here we've created a directory to hold our sample application, which we're calling
figapp. We've changed into that directory and created an empty Dockerfile to
hold our Docker image build instructions.

Next, we need to add our application code. Let's create a file called app.py and
add the following Python code to it.

Version: v1.2.2 (19946fc) 219

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.6: The app.py file

from flask import Flask
from redis import Redis
import os

app = Flask(__name_)
redis = Redis(host="redis 1", port=6379)

@app.route('/")
def hello():
redis.incr('hits"')
return 'Hello Docker Book reader! I have been seen {0} times'<«
.format(redis.get('hits'))

if name_ == " main_ ":
app.run(host="0.0.0.0", debug=True)

TIP You can find this source code on Git Hub here or on the Docker Book site.

This simple Flash application tracks a counter stored in Redis. The counter is
incremented each time the root URL, /, is hit.

We also need to create a requirements.txt file to store our application's depen-
dencies. Let's create that file now and add the following dependencies.

Listing 7.7: The requirements.txt file

flask
redis

Now let's populate our Fig Dockerfile.

Version: v1.2.2 (19946fc) 220

https://github.com/jamtur01/dockerbook-code/tree/master/code/7/figapp
http://www.dockerbook.com/code/

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.8: The figapp Dockerfile

Fig Sample application image
FROM python:2.7
MAINTAINER James Turnbull <james@example.com>

ADD . /figapp
WORKDIR /figapp

RUN pip install -r requirements.txt

Our Dockerfile is very simple. It is based on the python:2.7 image. We add our
app.py and requirements. txt files into a directory in the image called /figapp<
. The Dockerfile then sets the working directory to /figapp and runs the pip
installation process to install our application's dependencies: flask and redis.

Let's build that image now using the docker build command.

Version: v1.2.2 (19946fc) 221

Chapter 7: Docker Orchestration and Service Discovery

$ cd figapp
$ sudo docker build -t="jamtur@l/figapp"
Sending build context to Docker daemon 16.9 kB
Sending build context to Docker daemon
Step 0 : FROM python:2.7
---> 1c8df2f0clob
Step 1 : MAINTAINER James Turnbull <james@example.com>
---> Using cache
---> aabo4fe8beba
Step 2 : ADD . /figapp
---> c33aal47elof
Removing intermediate container 0097bc79d37b
Step 3 : WORKDIR /figapp
---> Running in 76e5ee8544b3
---> d9da3105746d
Removing intermediate container 76e5ee8544b3
Step 4 : RUN pip install -r requirements.txt
---> Running in e71d4bb33fd2
Downloading/unpacking flask (from -r requirements.txt (line 1))

Successfully installed flask redis Werkzeug Jinja2 itsdangerous <
markupsafe

Cleaning up...
---> bf0fe6a69835

Removing intermediate container e71d4bb33fd2

Successfully built bf0fe6a69835

This will build a new image called jamturel/figapp containing our sample appli-
cation and its required dependencies. We can now use Fig to deploy our applica-
tion.

NOTE well be using a Redis container created from the default Redis image

Version: v1.2.2 (19946fc) 222

Chapter 7: Docker Orchestration and Service Discovery

on the Docker Hub so we don't need to build or customize that.

The fig.yml file

Now we've got our application container setup we can configure Fig to create
both the services we require. With Fig, we define a set of services (in the form
of Docker containers) to boot up. We also define the runtime properties we want
these services to start with, much as you would do with the docker run command.
We define all of this in a YAML file. We then run the fig up command. Fig boots
the containers, executes the appropriate runtime configuration, and multiplexes
the log output together for us.

Let's create a fig.yml file for our application.

Listing 7.10: Creating the fig.yml file

$ cd figapp
$ touch fig.yml

Let's populate our fig.yml file. The fig.yml file is a YAML file that contains
instructions for running one or more Docker containers. Let's look the instructions
for our example application.

Version: v1.2.2 (19946fc) 223

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.11: The fig.yml file

web:
image: jamtur@l/figapp
command: python app.py
ports:
- "5000:5000"
volumes:
- .:/figapp
links:
- redis
redis:
image: redis

Each service we wish to launch is specified as a YAML hash here: web and redis.

For our web service we've specified some runtime options. Firstly, we've specified
the image we're using. In our case the jamtur0l/figapp image. Fig can also
build Docker images. You can use the build instruction and provide the path to
a Dockerfile to have Fig build an image and then create services from it.

Listing 7.12: The build instruction

web:
build: /home/james/figapp

This build instruction would build a Docker image from a Dockerfile found in
the /home/james/figapp directory.

We've also specified the command to run when launching the service. Next we
specify the ports and volumes as a list of the port mappings and volumes we want
for our service. We've specified that we're mapping port 5000 inside our service
to port 5000 on the host. We're also creating /figapp as a volume. Finally, we
specify any links for this service. Here we link our web service to the redis service.

If we were executing the same configuration on the command line using docker<
run we'd do it like so:

Version: v1.2.2 (19946fc) 224

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.13: The docker run equivalent command

$ sudo docker run -d -p 5000:5000 -v .:/figapp --link redis:redis<

\
--name jamtur@l/figapp python app.py

Next we've specified another service called redis. For this service we're not setting
any runtime defaults at all. We're just going to use the base redis image. By
default, containers run from this image launches a Redis database on the standard
port. So we don't need to configure or customize it.

TIP You can see a full list of the available instructions you can use in the fig.yml
file here.

Running Fig

Once we've specified our services in fig.yml we use the fig up command to exe-
cute them both.

Version: v1.2.2 (19946fc) 225

http://www.fig.sh/yml.html

Chapter 7: Docker Orchestration and Service Discovery

$ cd figapp

$ sudo fig up

Creating figapp redis 1...

Creating figapp web 1...

Attaching to figapp redis 1, figapp web 1

redis 1 | | -. "-._ el L IR

redis 1 | | - - IR

redis 1 |

redis 1 | .

redis 1 | - L

redis 1 | X

redis 1 |

redis 1 |
2.8.13

redis 1 | [1] 13 Aug 01:48:32.218 # WARNING overcommit memory 1is <
set to 0! Background save may fail under low memory condition. <
To fix this issue add 'vm.overcommit memory = 1' to /etc/sysctl.<
conf and then reboot or run the command 'sysctl vm.<
overcommit memory=1' for this to take effect.

redis 1 | [1] 13 Aug 01:48:32.218 * The server is now ready to <«
accept connections on port 6379

web 1 | * Running on http://0.0.0.0:5000/

web 1 | * Restarting with reloader

[1] 13 Aug 01:48:32.218 # Server started, Redis version<

TIP You must be inside the directory with the fig.yml file in order to execute
most Fig commands.

We can see that Fig has created two new services: figapp redis 1 and
figapp web 1. So where did these names come from? Well, to ensure our
services are unique, Fig has prefixed and suffixed the names specified in the
fig.yml file with the directory and a number respectively.

Version: v1.2.2 (19946fc) 226

Chapter 7: Docker Orchestration and Service Discovery

Fig then attaches to the logs of each service, each line of log output is prefixed with
the abbreviated name of the service it comes from, and outputs them multiplexed:

Listing 7.15: Fig service log output

redis 1 | [1] 13 Aug 01:48:32.218 # Server started, Redis version<
2.8.13

The services (and Fig) are being run interactively. That means if you use Ctrl-C
or the like to cancel Fig then it'll stop the running services. We could also run Fig
with -d flag to run our services daemonized (similar to the docker run -d flag).

Listing 7.16: Running Fig daemonized

$ sudo fig up -d

Let's look at the sample application that's now running on the host. The applica-
tion is bound to all interfaces on the Docker host on port 5000. So we can browse
to that site on the host's IP address or via localhost.

€& - C [Y docker.example.com:5000

Hello Docker Book reader! I have been seen 1 times

Figure 7.1: Sample Fig application.

We can see a message displaying the current counter value. We can increment the
counter by refreshing the site. Each refresh stores the increment in Redis. The
Redis update is done via the link between the Docker containers controlled by Fig.

TIP By default, Fig tries to connect to a local Docker daemon but it'll also honor

Version: v1.2.2 (19946fc) 227

Chapter 7: Docker Orchestration and Service Discovery

the DOCKER_HOST environment variable to connect to a remote Docker host.

Using Fig

Now let's explore some of Fig's other options. Firstly, let's use Ctrl-C to cancel
our running services and then restart them as daemonized services.

Press Ctrl-C inside the figapp directory and then re-run the fig up command,
this time with the -d flag.

Listing 7.17: Restarting Fig as daemonized

$ sudo fig up -d

Recreating figapp redis 1...
Recreating figapp web 1...

$.

We can see that Fig has recreated our services, launched them and returned to the
command line.

Our Fig-managed services are now running daemonized on the host. Let's look at
them now using the fig ps command; a close cousin of the docker ps command.

TIP You can get help on Fig commands by running fig help and the command
you wish to get help on, for example fig help ps.

The fig ps command lists all of the currently running services from our local
fig.yml file.

Version: v1.2.2 (19946fc) 228

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.18: Running the fig ps command

$ cd figapp
$ sudo fig ps
Name Command State Ports
figapp _redis 1 redis-server Up 6379/tcp
figapp web 1 python app.py Up 5000->5000/tcp

This shows some basic information about our running Fig services. The name of
each service, what command we used to start the service, and the ports that are
mapped on each service.

We can also drill down further using the fig logs command to show us the log
events from our services.

Listing 7.19: Showing a Fig services logs

$ sudo fig logs

fig logs

Attaching to figapp redis 1, figapp web 1

redis 1 | (: , R) Running in <«
stand alone mode

redis 1 | |'-. "-...-7 o= - - Port: 6379

redis 1 | | T T / L | PID: 1

This will tail the log files of your services, much as the tail -f command. Like
the tail -f command you'll need to use Ctrl-C or the like to exit from it.

We can also stop our running services with the fig stop command.

Listing 7.20: Stopping running services

$ sudo fig stop
Stopping figapp web 1...
Stopping figapp redis 1...

This will stop both services. If the services don't stop you can use the fig kill

Version: v1.2.2 (19946fc) 229

Chapter 7: Docker Orchestration and Service Discovery

command to force kill the services.

We can verify this with the fig ps command again.

Listing 7.21: Verifying our Fig services have been stopped

$ sudo fig ps

Name Command State Ports
figapp_redis 1 redis-server Exit 0
figapp web 1 python app.py Exit 0

If you've stopped services using fig stop or fig kill you can also restart with
again with the fig start command. This is much like using the docker start
command and will restart these services.

Finally, we can remove services using the fig rm command.

Listing 7.22: Removing Fig services

$ sudo fig rm

Going to remove figapp redis 1, figapp web 1
Are you sure? [yN] y

Removing figapp redis 1...

Removing figapp web 1...

You'll be prompted to confirm you wish to remove the services and then both
services will be deleted. The fig ps command will now show no running or
stopped services.

Listing 7.23: Showing no Fig services

$ sudo fig ps
Name Command State Ports

Version: v1.2.2 (19946fc) 230

Chapter 7: Docker Orchestration and Service Discovery

Fig in summary

Now in one file we have a simple Python-Redis stack built! You can see how much
easier this can make constructing applications from multiple Docker containers.
This, however, just scratches the surface of what you can do with Fig. There are
some more examples using Rails, Django and Wordpress on the Fig website that
introduce some more advanced concepts. You can also use Fig in conjunction with
Shipyard to provide a graphical user interface.

TIP You can see a full command line reference here.

Consul, Service Discovery and Docker

Service discovery is the mechanism by which distributed applications manage
their relationships. A distributed application is usually made up of multiple com-
ponents. These components can be located together locally or distributed across
data centres or geographical regions. Each of these components usually provides
or consumes services to or from other components.

Service discovery allows these components to find each other when they want
to interact. Due to the distributed nature of these applications, service discovery
mechanisms also need to be distributed. As they are usually the "glue" between
components of distributed applications they also need to be dynamic, reliable,
resilient and able to quickly and consistently share data about these services.

Docker, with its focus on distributed applications and service orientated and mi-
croservices architectures, is an ideal candidate for integration with a service dis-
covery tool. Each Docker container can register its running service or services
with the tool. This provides the information needed, for example an IP address or
port or both, to allow interaction between services.

Our example service discovery tool, Consul, is a specialized datastore that use
consensus algorithms. Consul specifically uses the Raft consensus algorithm, to

Version: v1.2.2 (19946fc) 231

http://www.fig.sh/rails.html
http://www.fig.sh/django.html
http://www.fig.sh/wordpress.html
https://github.com/shipyard/shipyard
http://www.fig.sh/cli.html
http://www.consul.io/
http://en.wikipedia.org/wiki/Raft_(computer_science)

Chapter 7: Docker Orchestration and Service Discovery

require a quorum for writes. It also exposes a key value store and service catalog
that is highly available, fault-tolerant, and maintains strong consistency guaran-
tees. Services can register themselves with Consul and share that registration
information in a highly-available and distributed manner.

Consul is also interesting because it provides:

« A service catalog with an API instead of the traditional key=value store of
most service discovery tools.

+ Both a DNS-based query interface through in inbuilt DNS server and a HTTP-
based REST API to query the information. The choice of interfaces, especially
the DNS-based interface, allows you to easily drop Consul into your existing
environment.

* Service monitoring AKA health checks. Consul has powerful service moni-
toring built into the tool.

To get a better understanding of how Consul works, we're going to see how to
run distributed Consul inside Docker containers. We're then going to register
services from Docker containers to Consul and query that data from other Docker
containers. To make it more interesting we're going to do this across multiple
Docker hosts.

To do this we're going to:

+ Create a Docker image for the Consul service.

* Build three hosts running Docker and then run Consul on each. The three
hosts will provide us with a distributed environment to see how resiliency
and failover works with Consul.

* Build services that we'll register with Consul and then query that data from
another service.

NOTE You can see a more generic introduction to Consul here.

Version: v1.2.2 (19946fc) 232

http://www.consul.io/intro/index.html

Chapter 7: Docker Orchestration and Service Discovery

Building a Consul image

We're going to start with creating a Dockerfile to build our Consul image. Let's
create a directory to hold our Consul image first.

Listing 7.24: Creating a Consul Dockerfile directory

$ mkdir consul
$ cd consul
$ touch Dockerfile

Now let's look at the Dockerfile for our Consul image.

Version: v1.2.2 (19946fc) 233

Chapter 7: Docker Orchestration and Service Discovery

FROM ubuntu:14.04
MAINTAINER James Turnbull <james@example.com>
ENV REFRESHED AT 2014-08-01

RUN apt-get -qgqy update
RUN apt-get -qgqy install curl unzip

ADD https://dl.bintray.com/mitchellh/consul/0.3.1 linux amd64.zip<
/tmp/consul.zip

RUN cd /usr/sbin && unzip /tmp/consul.zip && chmod +x /usr/sbin/<
consul && rm /tmp/consul.zip

ADD https://dl.bintray.com/mitchellh/consul/0.3.1 web ui.zip /tmp<
/webui.zip
RUN cd /tmp/ && unzip webui.zip && mv dist/ /webui/

ADD consul.json /config/
EXPOSE 53/udp 8300 8301 8301/udp 8302 8302/udp 8400 8500
VOLUME ["/data"l

ENTRYPOINT ["/usr/sbin/consul", "agent", "-config-dir=/config"]
CMD []

Our Dockerfile is pretty simple. It's based on an Ubuntu 14.04 image. It installs
curl and unzip. We then download the Consul zip file containing the consul«
binary. We move that binary to /usr/sbin/ and make it executable. We also
download Consul's web interface and place it into a directory called /webui. We're
going to see this web interface in action a little later.

We then add a configuration file for Consul, consul. json, to the /config directory.
Let's look at that file now.

Version: v1.2.2 (19946fc) 234

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.26: The consul.json configuration file

{
"data dir": "/data",
"ui dir": "/webui",
"client addr": "0.0.0.0",
"ports": {
"dns": 53
},
"recursor": "8.8.8.8"

}

The consul. json configuration file is JSON formatted and provides Consul with
the information needed to get running. We've specified a data directory, /data,
to hold Consul's data. We also specify the location of the web interface files: /<
webui. We use the client addr variable to bind Consul to all interfaces inside our
container.

We also use the ports block to configure on which ports various Consul services
run. In this case we're specifying that Consul's DNS service should run on port
53. Lastly, we've used the recursor option to specify a DNS server to use for
resolution if Consul can't resolve a DNS request. We've specified 8.8.8.8 which
is one of the IP addresses of Google's public DNS service.

TIP You can find the full list of available Consul configuration options here.

Back in our Dockerfile we've use the EXPOSE instruction to open up a series of
ports that Consul requires to operate. I've added a table showing each of these
ports and what they do.

Table 7.1: Consul's default ports.

Port Purpose

53/udp DNS server

Version: v1.2.2 (19946fc) 235

https://developers.google.com/speed/public-dns/
http://www.consul.io/docs/agent/options.html

Chapter 7: Docker Orchestration and Service Discovery

Port Purpose

8300 Server RPC
8301 + udp Serf LAN port
8302 + udp Serf WAN port
8400 RPC endpoint
8500 HTTP API

You don't need to worry about most of them for the purposes of this chapter. The
important ones for us are 53/udp which is the port Consul is going to be running
DNS on. We're going to use DNS to query service information. We're also going
to use Consul's HTTP API and its web interface, both of which are bound to port
8500. The rest of the ports handle the backend communication and clustering
between Consul nodes. We'll configure them in our Docker container but we don't
do anything specific with them.

NOTE You can find more details of what each port does here.

Next, we've also made our /data directory a volume using the VOLUME instruction.
This is useful if we want to manage or work with this data as we saw in Chapter
6.

Finally, we've specified an ENTRYPOINT instruction to launch Consul using the
consul binary when a container is launched from our image.

Let's step through the command line options we've used. We've specified the
consul binary in /usr/sbin/. We've passed it the agent command which tells
Consul to run as an agent and the -config-dir flag and specified the location of
our consul.json file in the /config directory.

Let's build our image now.

$ sudo docker build -t="jamtur@l/consul"

Version: v1.2.2 (19946fc) 236

http://www.consul.io/docs/agent/options.html

Chapter 7: Docker Orchestration and Service Discovery

NOTE vYou can get our Consul Dockerfile and configuration file here or on
GitHub.

Testing a Consul container locally

Before we run Consul on multiple hosts, let's see it working locally on a single
host. To do this we'll run a container from our new jamtur®l/consul image.

$ sudo docker run -p 8500:8500 -p 53:53/udp \
-h nodel jamtur@l/consul -server -bootstrap
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Consul agent running!

Node name: 'nodel'

Datacenter: 'dcl'

2014/08/25 21:47:49 [WARN] raft: Heartbeat timeout reached, <«
starting election

2014/08/25 21:47:49 [INFO] raft: Node at 172.17.0.26:8300 [«
Candidate] entering Candidate state

2014/08/25 21:47:49 [INFO] raft: Election won. Tally: 1

2014/08/25 21:47:49 [INFO] raft: Node at 172.17.0.26:8300 [Leader<
] entering Leader state

2014/08/25 21:47:49 [INFO] consul: cluster leadership acquired

2014/08/25 21:47:49 [INFO] consul: New leader elected: nodel

2014/08/25 21:47:49 [INFO] consul: member 'nodel' joined, marking<
health alive

We've used the docker run command to create a new container. We've mapped
two ports, port 8500 in the container to 8500 on the host and port 53 in the con-

Version: v1.2.2 (19946fc) 237

http://dockerbook.com/code/7/consul/
https://github.com/jamtur01/dockerbook-code/tree/master/code/7/consul/

Chapter 7: Docker Orchestration and Service Discovery

tainer to 53 on the host. We've also used the -h flag to specify the hostname of
the container, here nodel. This is going to be both the hostname of the container
and the name of the Consul node. We've then specified the name of our Consul
image, jamtur01l/consul.

Lastly, we've passed two flags to the consul binary: -server and -bootstrap. The
-server flag tells the Consul agent to operate in server mode. The -bootstrap flag
tells Consul that this node is allowed to self-elect as a leader. This allows us to
see a Consul agent in server mode doing a Raft leadership election.

WARNING 1t is important that no more than one server per datacenter be
running in bootstrap mode. Otherwise consistency cannot be guaranteed if mul-
tiple nodes are able to self-elect. We'll see some more on this when we add other
nodes to the cluster.

We can see that Consul has started nodel and done a local leader election. As
we've got no other Consul nodes running it is not connected to anything else.

We can also see this via the Consul web interface if we browse to our local host's
IP address on port 8500.

« C' [1 docker.example.com:8500/ui/#/dc1/services

G SERVICES NODES KEY/VALUE DC1~

any status . EXPAND

Figure 7.2: The Consul web interface.

Running a Consul cluster in Docker

As Consul is distributed we'd normally create three (or more) hosts to run in sep-
arate data centres, clouds or regions. Or even add an agent to every application

Version: v1.2.2 (19946fc) 238

Chapter 7: Docker Orchestration and Service Discovery

server. This will provide us with sufficient distributed resilience. We're going to
mimic this required distribution by creating three hosts each with a Docker dae-
mon to run Consul. We've created three new Ubuntu 14.04 hosts: larry, curly,
and moe. On each host we've installed a Docker daemon. We've also pulled down
the jamtur01/consul image.

Listing 7.29: Pulling down the Consul image

$ sudo docker pull jamtur@l/consul

On each host we're going to run a Docker container with the jamtur0l/consul
image. To do this we need to choose a network to run Consul over. In most cases
this would be a private network but as we're just simulating a Consul cluster I
am going to use the public interfaces of each host. To start Consul on this public
network I am going to need the public IP address of each host. This is the address
we're going to bind each Consul agent too.

Let's grab that now on larry and assign it to an environment variable,
$PUBLIC UP.

Listing 7.30: Assigning public IP on larry

larry$ PUBLIC IP="$(ifconfig ethO® | awk -F ' *|:' '/inet addr/{«
print $4}')"

larry$ echo $PUBLIC IP

104.131.38.54

And then create the same $PUBLIC IP variable on curly and moe too.

Version: v1.2.2 (19946fc) 239

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.31: Assigning public IP on curly and moe

curly$ PUBLIC IP="$(ifconfig eth® | awk -F ' *|:' '/inet addr/{<«
print $4}')"

curly$ echo $PUBLIC IP

104.131.38.55

moe$ PUBLIC IP="$(ifconfig eth® | awk -F ' *|:' '/inet addr/{<«
print $4}')"

moe$ echo $PUBLIC IP

104.131.38.56

We can see we've got three hosts and three IP addresses, each assigned to the
$PUBLIC_IP environmental variable.

Table 7.2: Consul host IP addresses

Host IP Address

larry 104.131.38.54
curly 104.131.38.55
moe 104.131.38.56

We're also going to need to nominate a host to bootstrap to start the cluster. We're
going to choose larry. This means we'll need larry's IP address on curly and
moe to tell them which Consul node's cluster to join. Let's set that up now by
adding larry's IP address of 104.131.38.54 to curly and moe as the environment
variable, $JOIN IP.

Listing 7.32: Adding the cluster IP address

curly$ JOIN IP=104.131.38.54
moe$ JOIN IP=104.131.38.54

Finally, we've made one network configuration change to the Docker daemon on
each host to make it easier to use Consul. We've configured the DNS lookup of
the Docker daemon to use:

» The local Docker IP address so we can use Consul to resolve DNS.

Version: v1.2.2 (19946fc) 240

Chapter 7: Docker Orchestration and Service Discovery

« Google DNS to resolve any other queries.
+ Specified a search domain for Consul queries.

To do this we first need the IP address of the Docker interface dockero.

Listing 7.33: Getting the docker0 IP address

larry$ ip addr show docker@
3: docker®: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc <
noqueue state UP group default
link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff.ff
inet 172.17.42.1/16 scope global docker0
valid 1ft forever preferred lft forever
inet6 fe80::5484:7aff:fefe:9799/64 scope link
valid lft forever preferred 1ft forever

We can see the interface has the IP of 172.17.42.1.

We've taken this address and altered Docker's startup options in the /etc/<«
default/docker file from:

Listing 7.34: Original Docker defaults
#DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4"

Listing 7.35: New Docker defaults on larry

|H
Q

DOCKER OPTS='--dns 172.17.42.1 --dns 8.8.8.8 --dns-search service<
.consul'

We now do the same on curly and moe, finding the docker0 IP address and updat-
ing the DOCKER_OPTS flag in /etc/default/docker.

TIP 0On other distributions you'd updated the Docker daemon defaults using the
appropriate mechanism. See Chapter 2 for further information.

Version: v1.2.2 (19946fc) 241

Chapter 7: Docker Orchestration and Service Discovery

We then restart the Docker daemon on each host, for example:

Listing 7.36: Restarting the Docker daemon on larry

larry$ sudo service docker restart

Starting the Consul bootstrap node

Let's start our initial bootstrap node on larry. Our docker run command is going
to be a little complex because we're mapping a lot of ports. Indeed, we need to
map all the ports listed in Table 7.1 above. And, as we're both running Consul in
a container and connecting to containers on other hosts, we're going to map each
port to the corresponding port on the local host. This will allow both internal and
external access to Consul.

Let's see our docker run command now.

Listing 7.37: Start the Consul bootstrap node

larry$ sudo docker run -d -h $HOSTNAME \

-p 8300:8300 -p 8301:8301 \

-p 8301:8301/udp -p 8302:8302 \

-p 8302:8302/udp -p 8400:8400 \

-p 8500:8500 -p 53:53/udp \

--name larry agent jamtur@l/consul \

-server -advertise $PUBLIC IP -bootstrap-expect 3

Here we've launched a daemonized container using the jamtur@l/consul image
to run our Consul agent. We can see we've set the -h flag to set the hostname of
the container to the value of the $HOSTNAME environment variable. This sets our
Consul agent's name to be the local hostname, here larry. We're also mapped a
series of eight ports from inside the container to the respective ports on the local
host.

We've also specified some command line options for the Consul agent.

Version: v1.2.2 (19946fc) 242

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.38: Consul agent command line arguments

-server -advertise $PUBLIC IP -bootstrap-expect 3

The -server flag tell the agent to run in server mode. The -advertise flag tells
that server to advertise itself on the IP address specified in the $PUBLIC IP environ-
ment variable. Lastly, the -bootstrap-expect flag tells Consul how many agents
to expect in this cluster. In this case, 3 agents. It also bootstraps the cluster.

Let's look at the logs of our initial Consul container with the docker logs com-
mand.

Version: v1.2.2 (19946fc) 243

Chapter 7: Docker Orchestration and Service Discovery

larry$ sudo docker logs larry agent
==> Starting Consul agent...

==> Starting Consul agent RPC...
==> Consul agent running!

Node name:
Datacenter:
Server:

Client Addr:
Cluster Addr:
Gossip encrypt:

"larry'

'dcl’

true (bootstrap: false)

0.0.0.0 (HTTP: 8500, DNS: 53, RPC: 8400)
104.131.38.54 (LAN: 8301, WAN: 8302)
false, RPC-TLS: false, TLS-Incoming: false

2014/08/31 18:10:07 [WARN] memberlist: Binding to public address <
without encryption!
2014/08/31 18:10:07 [INFO] serf: EventMemberJoin: larry <

104.131.38.54

2014/08/31 18:10:07 [WARN] memberlist: Binding to public address <
without encryption!
2014/08/31 18:10:07 [INFO] serf: EventMemberJoin: larry.dcl <«

104.131.38.54

2014/08/31 18:10:07 [INFO] raft: Node at 104.131.38.54:8300 [«
Follower] entering Follower state
2014/08/31 18:10:07 [INFO] consul: adding server larry (Addr: <
104.131.38.54:8300) (DC: dcl)
2014/08/31 18:10:07 [INFO] consul: adding server larry.dcl (Addr:<
104.131.38.54:8300) (DC: dcl)
2014/08/31 18:10:07 [ERR] agent: failed to sync remote state: No <«

cluster leader

2014/08/31 18:10:08 [WARN] raft: EnableSingleNode disabled, and <«
no known peers. Aborting election.

We can see that the agent on larry is started but because we don't have any
more nodes yet no election has taken place. We can see this from the only error

returned.

Version: v1.2.2 (19946fc)

244

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.40: Cluster leader error

[ERR] agent: failed to sync remote state: No cluster leader

Starting the remaining nodes
Now we've bootstrapped our cluster we can start our remaining nodes on curly
and moe. Let's start with curly. We use the docker run command to launch our

second agent.

Listing 7.41: Starting the agent on curly

curly$ sudo docker run -d -h $HOSTNAME \

-p 8300:8300 -p 8301:8301 \

-p 8301:8301/udp -p 8302:8302 \

-p 8302:8302/udp -p 8400:8400 \

-p 8500:8500 -p 53:53/udp \

--name curly agent jamtur@l/consul \

-server -advertise $PUBLIC IP -join $JOIN IP

We see our command is very similar to our bootstrapped node on larry with the
exception of the command we're passing to the Consul agent.

Listing 7.42: Launching the Consul agent on curly

-server -advertise $PUBLIC IP -join $JOIN IP

Again we've enabled the Consul agent's server mode with -server and bound the
agent to the public IP address using the -advertise flag. Finally, we've told Consul
to join our Consul cluster by specifying larry's IP address using the $J0IN IP<
environment variable.

Let's see what happened when we launched our container.

Version: v1.2.2 (19946fc) 245

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.43: Looking at the Curly agent logs

curly$ sudo docker logs curly agent
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Joining cluster...
Join completed. Synced with 1 initial agents
==> Consul agent running!
Node name: 'curly'
Datacenter: 'dcl'
Server: true (bootstrap: false)
Client Addr: 0.0.0.0 (HTTP: 8500, DNS: 53, RPC: 8400)
Cluster Addr: 104.131.38.55 (LAN: 8301, WAN: 8302)
Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false

2014/08/31 21:45:49 [INFO] agent: (LAN) joining: [104.131.38.54]

2014/08/31 21:45:49 [INFO] serf: EventMemberJoin: larry <«
104.131.38.54

2014/08/31 21:45:49 [INFO] agent: (LAN) joined: 1 Err: <nil>

2014/08/31 21:45:49 [ERR] agent: failed to sync remote state: No <«
cluster leader

2014/08/31 21:45:49 [INFO] consul: adding server larry (Addr: <
104.131.38.54:8300) (DC: dcl)

2014/08/31 21:45:51 [WARN] raft: EnableSingleNode disabled, and <«
no known peers. Aborting election.

We can see curly has joined larry, indeed on larry we should see something like
the following.

Listing 7.44: Curly joining Larry

2014/08/31 21:45:49 [INFO] serf: EventMemberJoin: curly <«
104.131.38.55

2014/08/31 21:45:49 [INFO] consul: adding server curly (Addr: <
104.131.38.55:8300) (DC: dcl)

Version: v1.2.2 (19946fc) 246

Chapter 7: Docker Orchestration and Service Discovery

But we've still not got a quorum in our cluster, remember we told -bootstrap-<
expect to expect 3 nodes. So let's start our final agent on moe.

Listing 7.45: Starting the agent on curly

moe$ sudo docker run -d -h $HOSTNAME \

-p 8300:8300 -p 8301:8301 \

-p 8301:8301/udp -p 8302:8302 \

-p 8302:8302/udp -p 8400:8400 \

-p 8500:8500 -p 53:53/udp \

--name moe_agent jamtur@l/consul \

-server -advertise $PUBLIC IP -join $JOIN IP

Our docker run command is basically the same as what we ran on curly. But this
time we have three agents in our cluster. Now, if we look at the container's logs,
we will see a full cluster.

Version: v1.2.2 (19946fc) 247

Chapter 7: Docker Orchestration and Service Discovery

moe$ sudo docker logs moe agent
==> Starting Consul agent...
==> Starting Consul agent RPC...
==> Joining cluster...
Join completed. Synced with 1 initial agents
==> Consul agent running!
Node name: ‘'moe'
Datacenter: 'dcl’
Server: true (bootstrap: false)
Client Addr: 0.0.0.0 (HTTP: 8500, DNS: 53, RPC: 8400)
Cluster Addr: 104.131.38.56 (LAN: 8301, WAN: 8302)
Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false

2014/08/31 21:54:03 [ERR] agent: failed to sync remote state: No <«
cluster leader

2014/08/31 21:54:03 [INFO] consul: adding server curly (Addr: <
104.131.38.55:8300) (DC: dcl)

2014/08/31 21:54:03 [INFO] consul: adding server larry (Addr: <«
104.131.38.54:8300) (DC: dcl)

2014/08/31 21:54:03 [INFO] consul: New leader elected: larry

We can see from our container's logs that moe has joined the cluster. This causes
Consul to reach its expected number of cluster members and triggers a leader
election. In this case larry is elected cluster leader.

We can see the result of this final agent joining in the Consul logs on larry too.

Version: v1.2.2 (19946fc) 248

Chapter 7: Docker Orchestration and Service Discovery

2014/08/31 21:54:03 [INFO] consul: Attempting bootstrap with <«
nodes: [104.131.38.55:8300 104.131.38.56:8300 <«
104.131.38.54:8300]

2014/08/31 21:54:03 [WARN] raft: Heartbeat timeout reached, <«
starting election

2014/08/31 21:54:03 [INFO] raft: Node at 104.131.38.54:8300 [«
Candidate] entering Candidate state

2014/08/31 21:54:03 [WARN] raft: Remote peer 104.131.38.56:8300 <
does not have local node 104.131.38.54:8300 as a peer

2014/08/31 21:54:03 [INFO] raft: Election won. Tally: 2

2014/08/31 21:54:03 [INFO] raft: Node at 104.131.38.54:8300 [«
Leader] entering Leader state

2014/08/31 21:54:03 [INFO] consul: cluster leadership acquired

2014/08/31 21:54:03 [INFO] consul: New leader elected: larry

2014/08/31 21:54:03 [INFO] consul: member 'larry' joined, marking<
health alive

2014/08/31 21:54:03 [INFO] consul: member 'curly' joined, marking<
health alive

2014/08/31 21:54:03 [INFO] consul: member 'moe' joined, marking <
health alive

We can also browse to the Consul web interface and select the Consul service to
see the current state

Version: v1.2.2 (19946fc) 249

Chapter 7: Docker Orchestration and Service Discovery

[104.131.38.54:8500/ui/#/dcl/services/consul?status=passing

G: SERVICES NODES KEY/VALUE 3 CHECKS PASSING DC1~

. consul
Filter by name passing 5 EXPAND
. consul 3 passing TAGS
No tags
NODES
Iarry 104.131.38.5: 1 passing
Serf Health Status serfHealth passing
curly 104.131.38.55 1 passing
Serf Health Status serfHealth passing
mMOoe 104.131.38.56 1 passing
Serf Health Status seriHealth passing

Figure 7.3: The Consul service in the web interface.

Finally, we can test the DNS is working using the dig command.

Version: v1.2.2 (19946fc) 250

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.48: Testing the Consul DNS

larry$ dig @172.17.42.1 consul.service.consul

; <<>> DiG 9.9.5-3-Ubuntu <<>> @172.17.42.1 consul.service.consul

; (1 server found)

;7 global options: +cmd

;3 Got answer:

;7 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13502

;7 flags: qr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, <
ADDITIONAL: ©

;3 QUESTION SECTION:
;consul.service.consul. IN A

;+ ANSWER SECTION:

consul.service.consul. 0 IN A 104.131.38.55
consul.service.consul. 0 IN A 104.131.38.54
consul.service.consul. 0 IN A 104.131.38.56

;5 Query time: 2 msec
;5 SERVER: 172.17.42.1#53(172.17.42.1)
;35 WHEN: Sun Aug 31 21:30:27 EDT 2014
;7 MSG SIZE rcvd: 150

Here we've queried the IP of the local Docker interface as a DNS server and asked
it to return any information on consul.service.consul. This format is Consul's
DNS shorthand for services: consul is the host and service.consul is the domain.
Here consul.service.consul represent the DNS entry for the Consul service itself.

For example:

Listing 7.49: Querying another Consul service via DNS

larry$ dig @172.17.42.1 webservice.service.consul

Would return all DNS A records for the service webservice.

Version: v1.2.2 (19946fc) 251

Chapter 7: Docker Orchestration and Service Discovery

TIP You can see more details on Consul's DNS interface here.

We now have a running Consul cluster inside Docker containers running on three
separate hosts. That's pretty cool but it's not overly useful. Let's see how we can
register a service in Consul and then retrieve that data.

Running a distributed service with Consul in Docker

To register our service we're going to create a phony distributed application writ-
ten in the uWSGI framework. We're going to build our application in two pieces.

« A web application, distributed app. It runs web workers and registers
them as services with Consul when it starts.

* A client for our application, distributed client. The client reads data
about distributed app from Consul and reports the current application
state and configuration.

We're going run the distributed app on two of our Consul nodes: larry and
curly. We'll run the distributed client client on the moe node.

Building our distributed application

We're going to start with creating a Dockerfile to build distributed app. Let's
create a directory to hold our image first.

$ mkdir distributed app
$ cd distributed app
$ touch Dockerfile

Now let's look at the Dockerfile for our distributed app application.

Version: v1.2.2 (19946fc) 252

http://www.consul.io/docs/agent/dns.html
http://uwsgi-docs.readthedocs.org/en/latest/

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.51: The distributed_app Dockerfile

FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED AT 2014-06-01

RUN apt-get -qqy update

RUN apt-get -qqy install ruby-dev git libcurl4-openssl-dev curl <
build-essential python

RUN gem install --no-ri --no-rdoc uwsgi sinatra

RUN uwsgi --build-plugin https://github.com/unbit/uwsgi-consul

RUN mkdir -p /opt/distributed app
WORKDIR /opt/distributed app

ADD uwsgi-consul.ini /opt/distributed app/
ADD config.ru /opt/distributed app/

ENTRYPOINT ["uwsgi", "--ini", "uwsgi-consul.ini", "--ini", "<«
uwsgi-consul.ini:serverl", "--ini", "uwsgi-consul.ini:server2"]
CMD []

Our Dockerfile installs some required packages including the uWSGI and Sinatra
frameworks as well as a plugin to allow uWSGI to write to Consul. We create a
directory called /opt/distributed app/ and make it our working directory. We
then add two files, uwsgi-consul.ini and config. ru to that directory.

The uwsgi-consul.ini file configured uWSGI itself. Let's look at it now.

Version: v1.2.2 (19946fc) 253

https://github.com/unbit/uwsgi-consul

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.52: The uWSGI configuration

[uwsgil]

plugins = consul

socket = 127.0.0.1:9999
master = true
enable-threads = true

[serverl]

consul-register = url=http://%h.node.consul:8500, name=<«
distributed app,id=serverl,port=2001

mule = config.ru

[server2]

consul-register = url=http://%h.node.consul:8500, name=<«
distributed app,id=server2,port=2002

mule = config.ru

The uwsgi-consul.ini file uses uWSGI's Mule construct to run two identical ap-
plications that do "Hello World" in the Sinatra framework. Let's look at those in
the config. ru file.

Listing 7.53: The distributed_app config.ru file

require 'rubygems'
require 'sinatra’

get '/' do
"Hello World!'"
end

run Sinatra::Application

Each application is defined in a block, labelled serverl and server2 respectively.
Also inside these blocks is a call to the uWSGI Consul plugin. This call connects
to our Consul instance and registers a service called distributed app with an ID

Version: v1.2.2 (19946fc) 254

Chapter 7: Docker Orchestration and Service Discovery

of serverl or server2. Each service is assigned a different port, 2001 and 2002
respectively.

When the framework runs this will create our two web application workers and
register a service for each on Consul. The application will use the local Consul
node to create the service with the %h configuration shortcut populating the Consul
URL with the right hostname.

Listing 7.54: The Consul plugin URL
url=http://%h.node.consul:8500...

Lastly, we've configured an ENTRYPOINT instruction to automatically run our web
application workers.

Let's build our image now.

Listing 7.55: Building our distributed_app image

$ sudo docker build -t="jamtur@l/distributed app"

NOTE vYou can get our distributed_app Dockerfile and configuration and
application files here or on GitHub.

Building our distributed client

We're now going to create a Dockerfile to build our distributed client image.
Let's create a directory to hold our image first.

Listing 7.56: Creating a distributed_client Dockerfile directory

$ mkdir distributed client
$ cd distributed client
$ touch Dockerfile

Now let's look at the Dockerfile for the distributed client application.

Version: v1.2.2 (19946fc) 255

http://dockerbook.com/code/7/consul/
https://github.com/jamtur01/dockerbook-code/tree/master/code/7/consul/

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.57: The distributed_client Dockerfile

FROM ubuntu:14.04
MAINTAINER James Turnbull "james@example.com"
ENV REFRESHED AT 2014-06-01

RUN apt-get -qqy update
RUN apt-get -qqy install ruby ruby-dev build-essential
RUN gem install --no-ri --no-rdoc json

RUN mkdir -p /opt/distributed client
ADD client.rb /opt/distributed client/

WORKDIR /opt/distributed client

ENTRYPOINT ["ruby", "/opt/distributed client/client.rb"]
CMD T[]

The Dockerfile installs Ruby and some prerequisite packages and gems. It creates
the /opt/distributed client directory and makes it the working directory. It
copies our client application code, contained in the client.rb file, into the /<
opt/distributed client directory.

Let's take a quick look at our application code now.

Version: v1.2.2 (19946fc) 256

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.58: The distributed_client application

require "rubygems"
require "json"

require "net/http"
require
require "resolv"

uri = URI.parse("http://consul.service.consul:8500/v1l/catalog/+«
service/distributed app")

http = Net::HTTP.new(uri.host, uri.port)
request = Net::HTTP::Get.new(uri.request uri)

response = http.request(request)

while true

if response.body == "{}"
puts "There are no distributed applications registered in <«
Consul"
sleep(1l)
elsif

result = JSON.parse(response.body)
result.each do |service]
puts "Application #{service['ServiceName']} with element #{<«
service["ServiceID"]} on port #{service["ServicePort"]} <
found on node #{service["Node"]} (#{service["Address"]})."
dns = Resolv::DNS.new.getresources("distributed app.service<
.consul", Resolv::DNS::Resource::IN::A)
puts "We can also resolve DNS - #{service['ServiceName']} <«
resolves to #{dns.collect { |d| d.address }.join(" and ")«
b
sleep(1l)
end
end
end

Version: v1.2.2 (19946fc) 257

Chapter 7: Docker Orchestration and Service Discovery

Our client checks the Consul HTTP API and the Consul DNS for the presence of
a service called distributed app. It queries the host consul.service.consul<«
which is the DNS CNAME entry we saw earlier that contains all the A records of
our Consul cluster nodes. This provides us with a simple DNS round robin for our
queries.

If no service is present it puts a message to that effect on the console. If it detects
a distributed app service then it:

« Parses out the JSON output from the API call and returns some useful infor-
mation to the console.

« Performs a DNS lookup for any A records for that service and returns them
to the console.

This will allow us to see the results of launching our distributed app containers
on our Consul cluster.

Lastly our Dockerfile specifies an ENTRYPOINT instruction that runs the client<«
.rb application when the container is started.

Let's build our image now.

$ sudo docker build -t="jamtur0l/distributed client"

NOTE You can get our distributed_client Dockerfile and configuration and
application files here or on GitHub.

Starting our distributed application

Now we've built the required images we can launch our distributed app applica-
tion container on larry and curly. We've assumed that you have Consul running
as we've configured it earlier in the chapter. Let's start by running one application
instance on larry.

Version: v1.2.2 (19946fc) 258

http://dockerbook.com/code/7/consul/
https://github.com/jamtur01/dockerbook-code/tree/master/code/7/consul/

Chapter 7: Docker Orchestration and Service Discovery

Listing 7.60: Starting distributed_app on larry

larry$ sudo docker run -h $HOSTNAME -d --name larry distributed \
jamtur@l/distributed app

Here we've launched the jamtur0l/distributed app image and specified the -h
flag to set the hostname. This is important because we're using this hostname to
tell uWSGI what Consul node to register the service on. We've called our container
larry distributed and run it daemonized.

If we check the log output from the container we should see uWSGI starting our
web application workers and registering the service on Consul.

Listing 7.61: The distributed_app log output

larry$ sudo docker logs larry distributed
[uWSGI] getting INI configuration from uwsgi-consul.ini
*** Starting uWSGI 2.0.6 (64bit) on [Tue Sep 2 03:53:46 2014] <«

>k k&

[consul] built service JSON: {"Name":"distributed app","ID":"<«
serverl","Check":{"TTL":"30s"},"Port":2001}

[consul] built service JSON: {"Name":"distributed app","ID":"<«
server2","Check":{"TTL":"30s"}, "Port":2002}

[consul] thread for register url=http://larry.node.consul:8500/vl<«
/agent/service/register check url=http://larry.node.consul:8500/<«
vl/agent/check/pass/service:serverl name=distributed app id=<«
serverl started

Tue Sep 2 03:53:47 2014 - [consul] workers ready, let's register<
the service to the agent

[consul] service distributed app registered successfully

We can see a subset of the logs here. We see that uWSGI has started. The Consul
plugin has constructed a service entry for each distributed app worker and then
registered them with Consul. If we now look at the Consul web interface we
should be able to see our new services.

Version: v1.2.2 (19946fc) 259

http://www.consul.io/docs/agent/services.html

Chapter 7: Docker Orchestration and Service Discovery

[104.131.38.54:8500/ui/#/dc1/services/distributed_app w B E
Filter by name any status H EXPAND d IStrlbUted*app
consul 3 passing TAGS
No tags
l distributed_app 4 passing NODES

larry 104.131.38.54 2 passing
Service 'distributed_app' check service:server2 passing
Serf Health Status serfHealth passing
larry 104.131.38.54 2 passing
Service 'distributed_app' check service:serveri passing
Serf Health Status serfHealth passing

Figure 7.4: The distributed_app service in the Consul web interface.

Let's start some more web application workers on curly now.

Listing 7.62: Starting distributed_app on curly

curly$ sudo docker run -h $HOSTNAME -d --name curly distributed \
jamtur@l/distributed app

If we check the logs and the Consul web interface we should now see more services
registered.

Version: v1.2.2 (19946fc) 260

Chapter 7: Docker Orchestration and Service Discovery

[104.131.38.54:8500/ui/#/dc1/services/distributed_app \j\g n I
. distributed_app
Filter by name any status B EXPAND
consul 3 passing TAGS
No tags
' distributed_app 8 passing NODES
Iarry 104.131.38.54 2 passing
Service 'distributed_app' check service:server2 passing
Serf Health Status serfHealth passing
larry 104.131.38.54 2 passing
Service 'distributed_app' check service:server1 passing
Serf Health Status serfHealth passing
curly 104.131.38.55 2 passing
Service 'distributed_app' check service:serverz passing
Serf Health Status serfHealth passing

Figure 7.5: More distributed_app services in the Consul web interface.

Starting our distributed application client

Now we've got web application workers running on larry and curly let's start our
client on moe and see if we can query data from Consul.

Listing 7.63: Starting distributed_client on moe

moe$ sudo docker run -h $HOSTNAME -d --name moe distributed \
jamtur@l/distributed client

This time we've run the jamtur0l/distributed client image on moe and created
a container called moe distributed. Let's look at the log output to see if our
distributed client has found anything about our web application workers.

Version: v1.2.2 (19946fc) 261

Chapter 7: Docker Orchestration and Service Discovery

moe$ sudo docker logs moe distributed

Application distributed app with element server2 on port 2002 <«
found on node larry (104.131.38.54).

We can also resolve DNS - distributed app resolves to <«
104.131.38.55 and 104.131.38.54.

Application distributed app with element serverl on port 2001 <«
found on node larry (104.131.38.54).

We can also resolve DNS - distributed app resolves to <«
104.131.38.54 and 104.131.38.55.

Application distributed app with element server2 on port 2002 <
found on node curly (104.131.38.55).

We can also resolve DNS - distributed app resolves to <«
104.131.38.55 and 104.131.38.54.

Application distributed app with element serverl on port 2001 <
found on node curly (104.131.38.55).

We can see that our distributed client application has queried the HTTP API
and found service entries for distributed app and its serverl and server2<
workers on both larry and curly. It has also done a DNS lookup to discover the
IP address of the nodes running that service, 104.131.38.54 and 104.131.38.55.

If this was a real distributed application our client and our workers could take
advantage of this information to configure, connect, route between elements of
the distributed application. This provides a simple, easy and resilient way to build
distributed applications running inside separate Docker containers and hosts.

Orchestration alternatives and components

As we mentioned earlier, Fig and Consul aren't the only games in town when it
comes to Docker orchestration tools. There's a fast growing ecosystem of them.
This is a non-comprehensive list of some of the tools available in that ecosystem.
Not all of them have matching functionality and broadly fall into two categories:

Version: v1.2.2 (19946fc) 262

Chapter 7: Docker Orchestration and Service Discovery

* Scheduling and cluster management.
+ Service discovery.

NOTE All of the tools listed are open source under various licenses.

Fleet and etcd

Fleet and etcd are released by the CoreOS team. Fleet is a cluster management tool
and etcd is highly-available key value store for shared configuration and service
discovery. Fleet combines systemd and etcd to provide cluster management and
scheduling for Docker containers. Think of it as an extension of systemd that
operates at the cluster level instead of the machine level.

It's a fairly new project and it is currently only available as a preview release.

Kubernetes

Kubernetes is a container cluster management tool open sourced by Google. It
allows you to deploy and scale applications using Docker across multiple hosts.
Kubernetes is primarily targeted at applications comprised of multiple containers,
such as elastic, distributed micro-services.

It's a relatively new and lacks comprehensive documentation but is rapidly grow-
ing a community around it.

Apache Mesos
The Apache Mesos project is a highly-available cluster management tool. Since

Mesos 0.20.0 it has built-in Docker integration to allow you to use containers with
Mesos. Mesos is popular with a number of startups, notably Twitter and AirBnB.

Version: v1.2.2 (19946fc) 263

https://coreos.com/
https://github.com/coreos/fleet
https://github.com/coreos/etcd
https://github.com/GoogleCloudPlatform/kubernetes
http://mesos.apache.org/
http://mesos.apache.org/documentation/latest/docker-containerizer/

Chapter 7: Docker Orchestration and Service Discovery

Helios

The Helios project has been released by the team at Spotify and is a Docker orches-
tration platform for deploying and managing containers across an entire fleet. It
creates a "job" abstraction that you can deploy to one or more Helios hosts running
Docker.

Centurion

Centurion is focussed on being a Docker-based deployment tool open sourced by
the New Relic team. Centurion takes containers from a Docker registry and runs
them on a fleet of hosts with the correct environment variables, host volume map-
pings, and port mappings. It is designed to help you do continuous deployment
with Docker.

Libswarm

Docker Inc's own orchestration efforts are focussed around Libswarm. Libswarm is
more of a library or toolkit and is designed to help you compose network services.
It provides standard interfaces for connecting services across distributed systems.
It's got some initial, Docker-focussed services, but is building a library of services
to allow you to integrate a variety of other services, including many of those listed
in this section.

Summary

In this chapter we've introduced you to orchestration with Fig. We've shown you
how to add a Fig configuration file to create simple application stacks. We've
shown you how to run Fig and build those stacks and how to perform basic man-
agement tasks on them.

Version: v1.2.2 (19946fc) 264

https://github.com/spotify/helios
https://github.com/newrelic/centurion
https://github.com/docker/libswarm

Chapter 7: Docker Orchestration and Service Discovery

We've also shown you a service discovery tool, Consul. We've installed Consul
onto Docker and created a cluster of Consul nodes. We've also demonstrated how
a simple distributed application might work on Docker.

Finally, we've seen some of the other orchestration tools available to us in the
Docker ecosystem.

In the next chapter we'll look at the Docker API, how we can use it, and how we
can secure connections to our Docker daemon via TLS.

Version: v1.2.2 (19946fc) 265

Chapter 8

Using the Docker API

In Chapter 6, we saw some excellent examples of how to run services and build
applications and workflow around Docker. One of those examples, the TProv
application, focused on using the docker binary on the command line and cap-
turing the resulting output. This is not a very elegant approach to integrating
with Docker; especially when Docker comes with a powerful API you can use to
integrate directly.

In this chapter, we're going to introduce you to the Docker API and see how we
can make use of it. We're going to take you through binding the Docker daemon
on a network port. We'll then take you through the API at a high level and hit on
the key aspects of it. We'll also look at the TProv application we saw in Chapter 6
and rewrite some portions of it to use the API instead of the docker binary. Lastly,
we'll look at authenticating the API via TLS.

The Docker APIs

There are three specific APIs in the Docker ecosystem.

« The Registry API - provides integration with the Docker registry, which
stores our images.
* The Docker Hub API - provides integration with the Docker Hub.

266

http://docs.docker.com/reference/api/
http://hub.docker.com

Chapter 8: Using the Docker API
« The Docker Remote API - provides integration with the Docker daemon.

All three APIs are broadly RESTful. In this chapter, we'll focus on the Remote API
because it is key to any programmatic integration and interaction with Docker.

First steps with the Remote API

Let's explore the Docker Remote API and see its capabilities. Firstly, we need
to remember the Remote API is provided by the Docker daemon. By default, the
Docker daemons binds to a socket, unix:///var/run/docker.sock, on the host on
which it is running. The daemon runs with root privileges so as to have the access
needed to manage the appropriate resources. As we also discovered in Chapter 2,
if a group named docker exists on your system, Docker will apply ownership of
the socket to that group. Hence, any user that belongs to the docker group can
run Docker without needing root privileges.

WARNING Remember that although the docker group makes life easier, it
is still a security exposure. The docker group is root-equivalent and should be
limited to those users and applications that absolutely need it.

This works fine if we're querying the API from the same host running Docker, but
if we want remote access to the API, we need to bind the Docker daemon to a
network interface. This is done by passing or adjusting the -H flag to the Docker
daemon.

On most distributions, we can do this by editing the daemon's startup configura-
tion files. For Ubuntu or Debian, this would be the /etc/default/docker file; for
those releases with Upstart, it would be the /etc/init/docker.conf file. For Red
Hat, Fedora, and related distributions, it would be the /etc/sysconfig/docker
file; for those releases with Systemd, it is the /usr/lib/systemd/system/docker<
.service file.

Version: v1.2.2 (19946fc) 267

http://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 8: Using the Docker API

Let's bind the Docker daemon to a network interface on a Red Hat derivative
running Systemd. We'll edit the /usr/lib/systemd/system/docker.service file
and change:

Listing 8.1: Default systemd daemon start options

ExecStart=/usr/bin/docker -d --selinux-enabled

| '_]
e

Listing 8.2: Network binding systemd daemon start options
ExecStart=/usr/bin/docker -d --selinux-enabled -H tcp<«
://0.0.0.0:2375

This will bind the Docker daemon to all interfaces on the host using port 2375.
We then need to reload and restart the daemon using the systemctl command.

Listing 8.3: Reloading and restarting the Docker daemon

$ sudo systemctl --system daemon-reload

TIP You'l also need to ensure that any firewall on the Docker host or between
you and the host allows TCP communication to the IP address on port 2375.

We can now test that this is working using the docker client binary, passing the
-H flag to specify our Docker host. Let's connect to our Docker daemon from a
remote host.

Version: v1.2.2 (19946fc) 268

Chapter 8: Using the Docker API

Listing 8.4: Connecting to a remote Docker daemon

$ sudo docker -H docker.example.com:2375 info

Containers: 0

Images: ©

Driver: devicemapper
Pool Name: docker-252:0-133394-pool
Data file: /var/lib/docker/devicemapper/devicemapper/data
Metadata file: /var/lib/docker/devicemapper/devicemapper/<

metadata

This assumes the Docker host is called docker.example.com; we've used the -«
H flag to specify this host. Docker will also honor the DOCKER _HOST environment
variable rather than requiring the continued use of the -H flag.

Listing 8.5: Revisiting the DOCKER_HOST environment variable

$ export DOCKER HOST="tcp://docker.example.com:2375"

WARNING Remember this connection is unauthenticated and open to the
world! Later in this chapter, we'll see how we can add authentication to this
connection.

Testing the Docker Remote API

Now that we've established and confirmed connectivity to the Docker daemon via
the docker binary, let's try to connect directly to the API. To do so, we're going to
use the curl command. We're going to connect to the info API endpoint, which
provides roughly the same information as the docker info command.

Version: v1.2.2 (19946fc) 269

Chapter 8: Using the Docker API

Listing 8.6: Using the info API endpoint

$ curl http://docker.example.com:2375/info
{

"Containers": 0O,

"Debug": 0,

"Driver": "devicemapper",

"IPv4Forwarding": 1,
"Images": 0O,
"IndexServerAddress": "https://index.docker.io/v1l/",
"InitPath": "/usr/libexec/docker/dockerinit",
"InitShal": "dafd83a92eb0fc7c657e8eaebbf493262371a7a",
"KernelVersion": "3.9.8-300.fc19.x86 64",
"LXCVersion": "0.9.0",
"MemoryLimit": 1,
"NEventsListener": 0,
"NFd": 10,
"NGoroutines": 14,
"SwapLimit": 0

}

We've connected to the Docker API on http://docker.example.com:2375 using
the curl command, and we've specified the path to the Docker API: docker.<«
example.com on port 2375 with endpoint info.

We can see that the API has returned a JSON hash, of which we've included a sam-
ple, containing the system information for the Docker daemon. This demonstrates
that the Docker API is working and we're getting some data back.

Managing images with the API

Let's start with some API basics: working with Docker images. We're going to start
by getting a list of all the images on our Docker daemon.

Version: v1.2.2 (19946fc) 270

Chapter 8: Using the Docker API

Listing 8.7: Getting a list of images via API

$ curl http://docker.example.com:2375/images/json | python -mjson<
.tool

“Created": 1404088258,
IIIdII: "2@
e9e5fdd46221b6d83207aa62b3960a0472b40a89877ba71913998ad9743e065+«

n
’

"ParentId": "7«
cd0eb092704d1be04173138be5caee3a3edbea5838dcde9ced504cdclf24cbb«

n
r

"RepoTags": [
"docker:master"

1,

"Size": 186470239,

"VirtualSize": 1592910576

I

“Created": 1403739688,
IIIdII: "15@
d0178048e904fee25354db77091b935423a829f171f3e3cf27f04ffcf7cf56+«

n
’

"ParentId": "74830<«
af969b02bb2cec5fe04bb2e168a4f8d3db3ba504e89cacha99a262baf48" «
"RepoTags": [
"jamtur0l/jekyll:latest"
i
"Size": 0O,
"VirtualSize": 607622922

]
Version: v1.2.2 (19946fc) 271

Chapter 8: Using the Docker API

NOTE we've passed the output through Python's JSON tool to prettify it.

We've used the /images/json endpoint, which will return a list of all images on the
Docker daemon. It'1l give us much the same information as the docker images<
command. We can also query specific images via ID, much like docker inspect
on an image ID.

Listing 8.8: Getting a specific image

curl http://docker.example.com:2375/images/15«
d0178048e904fee25354db77091b935423a829f171f3e3cf27f04ffcf7cf56/«
json | python -mjson.tool

{
"Architecture": "amd64",
"Author": "James Turnbull <james@example.com>",
"Comment": "",
"Config": {
"AttachStderr": false,
"AttachStdin": false,
"AttachStdout": false,
"Cmd": [
"--config=/etc/jekyll.conf"
Ir
}

Here we can see a subset of the output of inspecting our jamtur0l/jekyll image.
And finally, like the command line, we can search for images on the Docker Hub.

Version: v1.2.2 (19946fc) 272

Chapter 8: Using the Docker API

Listing 8.9: Searching for images with the API

$ curl "http://docker.example.com:2375/images/search?term=<«
jamtur@l" | python -mjson.tool
[

{
"description": "",
"is official": false,
"is trusted": true,
"name": "jamtur@l/docker-presentation",
"star count": 2
}
{
"description": "",
"is official": false,
"is trusted": false,
"name": "jamtur@l/dockerjenkins",
“star count": 1
}

]
Here we've searched for all images containing the term jamtur0l and displayed a

subset of the output returned. This is just a sampling of the actions we can take
with the Docker API. We can also build, update, and remove images.

Managing containers with the API
The Docker Remote API also exposes all of the container operations available to

us on the command line. We can list running containers using the /containers
endpoint much as we would with the docker ps command.

Version: v1.2.2 (19946fc) 273

Chapter 8: Using the Docker API

Listing 8.10: Listing running containers

$ curl

[

]

-s "http://docker.example.com:2375/containers/json" | <
python -mjson.tool

"Command": "/bin/bash",

"Created": 1404319520,

"Id": "<«
cf925ad4t3b9fea231laee386et122f8199375a90d47fc7cbed43facld962dc51b<«

n
’

"Image": "ubuntu:14.04",
"Names": [

"/desperate euclid"
1,
"Ports": [1,
"Status": "Up 3 seconds"

Our query will show all running containers on the Docker host, in our case, a
single container. To see running and stopped containers, we can add the all flag
to the endpoint and set it to 1.

Listing 8.11: Listing all containers via the API

http://docker.example.com:2375/containers/json?all=1

We can also use the API to create containers by using a POST request to the /<
containers/create endpoint. Here is the simplest possible container creation API

call.

Version: v1.2.2 (19946fc) 274

Chapter 8: Using the Docker API

Listing 8.12: Creating a container via the API

$ curl -X POST -H "Content-Type: application/json" \
http://docker.example.com:2375/containers/create \
-d '{
"Image":"jamtur0l/jekyll"
3
{"Id":"591«
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3", "«
Warnings":null}

We call the /containers/create endpoint and POST a JSON hash containing an
image name to the endpoint. The API returns the ID of the container we've just
created and potentially any warnings. This will create a container.

We can further configure our container creation by adding key/value pairs to our
JSON hash.

Listing 8.13: Configuring container launch via the API

$ curl -X POST -H "Content-Type: application/json" \
"http://docker.example.com:2375/containers/create?name=jekyll" \
-d '{
"Image":"jamtur@l/jekyll",
"Hostname":"jekyll"
3
{"Id":"591«
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3", "«
Warnings":null}

Here we've specified the Hostname key with a value of jekyl1l to set the hostname
of the resulting container.

To start the container we use the /containers/start endpoint.

Version: v1.2.2 (19946fc) 275

Chapter 8: Using the Docker API

Listing 8.14: Starting a container via the API

$ curl -X POST -H "Content-Type: application/json" \
http://docker.example.com:2375/containers/591«
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3/ «
start \
-d '{
"PublishAllPorts":true
}

In combination, this provides the equivalent of running:

Listing 8.15: API equivalent for docker run command

$ sudo docker run jamtur0l/jekyll

We can also inspect the resulting container via the /containers/ endpoint.

Version: v1.2.2 (19946fc) 276

Chapter 8: Using the Docker API

Listing 8.16: Listing all containers via the API

$ curl http://docker.example.com:2375/containers/591«
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3/ <«
json | python -mjson.tool
{
"Args": [
"build",
"--destination=/var/www/html"

1,

"Hostname": "591ba02d8d14",
"Image": "jamtur@l/jekyll",

"Id": "591«
ba02d8d149e5ae5ec2ea30ffe85ed47558b9a40b7405e3b71553d9e59bed3+«

n
’

“Image": "29<«
d4355e575cff59d7b7ad8370551231970296846ab58a037dd84be520d1cc31+«

n
’

"Name": "/hopeful davinci",
}

Here we can see we've queried our container using the container ID and shown a
sampling of the data available to us.

Improving TProv

Now let's look at the methods inside the TProv application that we used in Chapter
6. We're going to look specifically at the methods which create and delete Docker
containers.

Version: v1.2.2 (19946fc) 277

Chapter 8: Using the Docker API

Listing 8.17: The legacy TProv container launch methods

def get war(name, url)
cid = “docker run --name #{name} jamtur@l/fetcher #{url} 2>&1 .«
chop
puts cid
[$?.exitstatus == 0, cid]
end

def create instance(name)
cid = “docker run -P --volumes-from #{name} -d -t jamtur@l/<
tomcat7 2>&1°.chop
[$?.exitstatus == 0, cid]
end

def delete instance(cid)
kill = “docker kill #{cid} 2>&1°
[$?.exitstatus == 0, kill]

end

NOTE You can see the previous TProv code at here or on Git Hub.

Pretty crude, eh? We're directly calling out to the docker binary and capturing its
output. There are lots of reasons that that will be problematic, not least of which
is that you can only run the TProv application somewhere with the Docker client
installed.

We can improve on this interface by using the Docker API via one of its client
libraries, in this case the Ruby Docker-API client library.

TIP You can find a full list of the available client libraries here. There are client
libraries for Ruby, Python, Node.JS, Go, Erlang, Java, and others.

Version: v1.2.2 (19946fc) 278

http://dockerbook.com/code/6/tprov/
https://github.com/jamtur01/dockerbook-code/tree/master/code/6/tprov
https://github.com/swipely/docker-api
http://docs.docker.com/reference/api/remote_api_client_libraries/

Chapter 8: Using the Docker API

Let's start by looking at how we establish our connection to the Docker API.

Listing 8.18: The Docker Ruby client

require 'docker’

module TProv
class Application < Sinatra::Base

Docker.url = ENV['DOCKER URL'] || 'http://localhost:2375"'
Docker.options = {
:ssl _verify peer => false

}

We've added a require for the docker-api gem. We'd need to install this gem first
to get things to work or add it to the TProv application's gem specification.

We can then use the Docker.url method to specify the location of the Docker
host we wish to use. In our code, we specify this via an environment variable,
DOCKER URL, or use a default of http://localhost:2375.

We've also used the Docker.options to specify options we want to pass to the
Docker daemon connection.

We can test this idea using the IRB shell locally. Let's try that now. You'll need
to have Ruby installed on the host on which you are testing. Let's assume we're
using a Fedora host.

Version: v1.2.2 (19946fc) 279

Chapter 8: Using the Docker API

Listing 8.19: Installing the Docker Ruby client API prerequisites

$ sudo yum -y install ruby ruby-irb

$ sudo gem install docker-api json

Now we can use irb to test our Docker API connection.

Listing 8.20: Testing our Docker API connection via irb

$ irb
irb(main):001:0> require 'docker'; require 'pp'
=> true
irb(main):002:0> Docker.url = 'http://docker.example.com:2375'"
=> "http://docker.example.com:2375"
irb(main):003:0> Docker.options = { :ssl verify peer => false }
=> {:ssl verify peer=>false}
irb(main):004:0> pp Docker.info
{"Containers"=>9,
"Debug"=>0,
"Driver"=>"aufs",
"DriverStatus"=>[["Root Dir", "/var/lib/docker/aufs"], ["Dirs", <
"882"11,
"ExecutionDriver"=>"native-0.2",

irb(main):005:0> pp Docker.version

{"ApiVersion"=>"1.12",
"Arch"=>"amd64",
"GitCommit"=>"990021a",
"GoVersion"=>"gol.2.1",
"KernelVersion"=>"3.8.0-29-generic",
"0s"=>"1inux",
"Version"=>"1.0.1"}

Version: v1.2.2 (19946fc) 280

Chapter 8: Using the Docker API

We can see that we've launched irb and loaded the docker gem (via a require<
) and the pp library to help make our output look nicer. We've then specified
the Docker.url and Docker.options methods to set the target Docker host and
our required options (here disabling SSL peer verification to use TLS, but not
authenticate the client).

We've then run two global methods, Docker.info and Docker.version, which
provide the Ruby client API equivalents of the binary commands docker info
and docker version.

We can now update our TProv container management methods to use the API via
the docker-api client library. Let's look at some code that does this now.

def get war(name, url)
container = Docker::Container.create('Cmd' => url, 'Image' => '+«
jamtur0l/fetcher', 'name' => name)
container.start
container.id
end

def create instance(name)
container = Docker::Container.create('Image’' => 'jamtur0l/<
tomcat7')
container.start('PublishAllPorts' => true, 'VolumesFrom' => <«
name)
container.id
end

def delete instance(cid)
container = Docker::Container.get(cid)
container.kill

end

You can see we've replaced the previous binary shell with a rather cleaner im-
plementation using the Docker API. Our get war method creates and starts our

Version: v1.2.2 (19946fc) 281

Chapter 8: Using the Docker API

jamtur@l/fetcher container using the Docker::Container.create and Docker<
: :Container.start methods. The create instance method does the same for the
jamtur0l/tomcat7 container. Finally, our delete instance method has been up-
dated to retrieve a container using the container ID via the Docker: :Container<
.get method. We then kill the container with the Docker::Container.kill<«
method.

NOTE You can see the updated TProv code at here or on Git Hub.

Authenticating the Docker Remote API

Whilst we've shown that we can connect to the Docker Remote API, that means
that anyone else can also connect to the API. That poses a bit of a security issue.
Thankfully, the Remote API has an authentication mechanism that has been avail-
able since the 0.9 release of Docker. The authentication uses TLS/SSL certificates
to secure your connection to the API.

TIP This authentication applies to more than just the APL By turning this au-
thentication on, you will also need to configure our Docker client to support TLS
authentication. We'll see how to do that in this section, too.

There are a couple of ways we could authenticate our connection, including using
a full PKI infrastructure, either creating our own Certificate Authority (CA) or
using an existing CA. We're going to create our own certificate authority because
it is a simple and fast way to get started.

WARNING This relies on a local CA running on your Docker host. This is
not as secure as using a full-fledged Certificate Authority.

Version: v1.2.2 (19946fc) 282

http://dockerbook.com/code/8/tprov_api/
https://github.com/jamtur01/dockerbook-code/tree/master/code/8/tprov_api

Chapter 8: Using the Docker API

Create a Certificate Authority

We're going to quickly step through creating the required CA certificate and key,
as it is a pretty standard process on most platforms. It requires the openss1 binary
as a prerequisite.

Listing 8.22: Checking for openssl

$ which openssl
/usr/bin/openssl

Let's create a directory on our Docker host to hold our CA and related materials.

Listing 8.23: Create a CA directory

$ sudo mkdir /etc/docker

Now let's create our CA.

We first generate a private key.

Listing 8.24: Generating a private key

$ cd /etc/docker

$ echo 01 | sudo tee ca.srl

$ sudo openssl genrsa -des3 -out ca-key.pem
Generating RSA private key, 512 bit long modulus
P SLE ol o ot ol o ol o o o o

................. =

e is 65537 (0x10001)

Enter pass phrase for ca-key.pem:

Verifying - Enter pass phrase for ca-key.pem:

We'll specify a passphrase for the CA key, make note of this phrase, and secure it.
We'll need it to create and sign certificates with our new CA.

Version: v1.2.2 (19946fc) 283

Chapter 8: Using the Docker API

This also creates a new file called ca-key.pem. This is our CA key; we'll not want
to share it or lose it, as it is integral to the security of our solution.

Now let's create a CA certificate.

$ sudo openssl req -new -x509 -days 365 -key ca-key.pem -out ca.<«
pem

Enter pass phrase for ca-key.pem:

You are about to be asked to enter information that will be <«
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished <«
Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) [1:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:docker.example.com

Email Address []:

This will create the ca.pem file that is the certificate for our CA. We'll need this
later to verify our secure connection.

Now that we have our CA, let's use it to create a certificate and key for our Docker
server.
Create a server certificate signing request and key

We can use our new CA to sign and validate a certificate signing request or CSR
and key for our Docker server. Let's start with creating a key for our server.

Version: v1.2.2 (19946fc) 284

Chapter 8: Using the Docker API

Listing 8.26: Creating a server key

$ sudo openssl genrsa -des3 -out server-key.pem
Generating RSA private key, 512 bit long modulus
................... Y

............... ++++++++++++

e is 65537 (0x10001)

Enter pass phrase for server-key.pem:

Verifying - Enter pass phrase for server-key.pem:

This will create our server key, server-key.pem. As above, we need to keep this
key safe: it's what secures our Docker server.

NOTE specify any pass phrase here. We're going to strip it out before we use
the key. You'll only need it for the next couple of steps.

Next let's create our server certificate signing request (CSR).

Version: v1.2.2 (19946fc) 285

Chapter 8: Using the Docker API

$ sudo openssl req -new -key server-key.pem -out server.csr

Enter pass phrase for server-key.pem:

You are about to be asked to enter information that will be <«
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished <«
Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) [1]:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:*

Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

This will create a file called server.csr. This is the request that our CA will sign
to create our server certificate. The most important option here is Common Name or
CN. This should either be the FQDN (fully qualified domain name) of the Docker
server (i.e., what is resolved to in DNS; for example, docker.example.com) or *,
which will allow us to use the server certificate on any server.

Now let's sign our CSR and generate our server certificate.

Version: v1.2.2 (19946fc) 286

Chapter 8: Using the Docker API

Listing 8.28: Signing our CSR

$ sudo openssl x509 -req -days 365 -in server.csr -CA ca.pem \
-CAkey ca-key.pem -out server-cert.pem

Signature ok

subject=/C=AU/ST=Some-State/0O=Internet Widgits Pty Ltd/CN=*
Getting CA Private Key

Enter pass phrase for ca-key.pem:

We'll enter the passphrase of the CA's key file, and a file called server-cert.pem
will be generated. This is our server's certificate.

Now let's strip out the passphrase from our server key. We can't enter one when
the Docker daemon starts, so we need to remove it.

Listing 8.29: Removing the passphrase from the server key

$ sudo openssl rsa -in server-key.pem -out server-key.pem
Enter pass phrase for server-key.pem:
writing RSA key

Now let's add some tighter permissions to the files to better protect them.

Listing 8.30: Securing the key and certificate on the Docker server

$ sudo chmod 0600 /etc/docker/server-key.pem /etc/docker/server-<«
cert.pem \
/etc/docker/ca-key.pem /etc/docker/ca.pem

Configuring the Docker daemon

Now that we've got our certificate and key, let's configure the Docker daemon to
use them. As we did to expose the Docker daemon to a network socket, we're
going to edit its startup configuration. As before, for Ubuntu or Debian, we'll edit
the /etc/default/docker file; for those distributions with Upstart, it's the /etc<
/init/docker.conf file. For Red Hat, Fedora, and related distributions, we'll edit

Version: v1.2.2 (19946fc) 287

Chapter 8: Using the Docker API

the /etc/sysconfig/docker file; for those releases with Systemd, it's the /usr/<
lib/systemd/system/docker.service file.

Let's again assume a Red Hat derivative running Systemd and edit the /usr/lib<
/systemd/system/docker.service file:

Listing 8.31: Enabling Docker TLS on systemd

ExecStart=/usr/bin/docker -d -H tcp://0.0.0.0:2376 --tlsverify --<«
tlscacert=/etc/docker/ca.pem --tlscert=/etc/docker/server-cert.<
pem --tlskey=/etc/docker/server-key.pem

NOTE You can see that we've used port number 2376; this is the default TLS/SSL
port for Docker. You should only use 2375 for unauthenticated connections.

This code will enable TLS using the --tlsverify flag. We've also specified the
location of our CA certificate, certificate, and key using the --tlscacert, --<
tlscert and - - tlskey flags, respectively. There are a variety of other TLS options
that we could also use.

TIP You can use the --t1s flag to enable TLS, but not client-side authentication.

We then need to reload and restart the daemon using the systemctl command.

Listing 8.32: Reloading and restarting the Docker daemon

$ sudo systemctl --system daemon-reload

Version: v1.2.2 (19946fc) 288

http://docs.docker.com/articles/https/

Chapter 8: Using the Docker API

Creating a client certificate and key

Our server is now TLS enabled; next, we need to create and sign a certificate and
key to secure our Docker client. Let's start with a key for our client.

Listing 8.33: Creating a client key

$ sudo openssl genrsa -des3 -out client-key.pem
Generating RSA private key, 512 bit long modulus
++++++H+ -+

Y

e is 65537 (0x10001)
Enter pass phrase for client-key.pem:
Verifying - Enter pass phrase for client-key.pem:

This will create our key file client-key.pem. Again, we'll need to specify a tem-
porary passphrase to use during the creation process.

Now let's create a client CSR.

Version: v1.2.2 (19946fc) 289

Chapter 8: Using the Docker API

Listing 8.34: Creating a client CSR

$ sudo openssl req -new -key client-key.pem -out client.csr

Enter pass phrase for client-key.pem:

You are about to be asked to enter information that will be <«
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished <«
Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) [1:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

We next need to enable client authentication for our key by adding some extended
SSL attributes.

Listing 8.35: Adding Client Authentication attributes

$ echo extendedKeyUsage = clientAuth > extfile.cnf

Now let's sign our CSR with our CA.

Version: v1.2.2 (19946fc) 290

Chapter 8: Using the Docker API

Listing 8.36: Signing our client CSR

$ sudo openssl x509 -req -days 365 -in client.csr -CA ca.pem \
-CAkey ca-key.pem -out client-cert.pem -extfile extfile.cnf
Signature ok

subject=/C=AU/ST=Some-State/0O=Internet Widgits Pty Ltd

Getting CA Private Key

Enter pass phrase for ca-key.pem:

Again, we use the CA key's passphrase and generate another certificate: client«
-cert.pem.

Finally, we strip the passphrase from our client-key.pen file to allow us to use
it with the Docker client.

Listing 8.37: Stripping out the client key pass phrase

$ sudo openssl rsa -in client-key.pem -out client-key.pem
Enter pass phrase for client-key.pem:
writing RSA key

Configuring our Docker client for authentication

Next let's configure our Docker client to use our new TLS configuration. We need
to do this because the Docker daemon now expects authenticated connections for
both the client and the API.

We'll need to copy our ca.pem, client-cert.pem, and client-key.pen files to the
host on which we're intending to run the Docker client.

TIP Remember that these keys provide root-level access to the Docker daemon.
You should protect them carefully.

Let's install them into the .docker directory. This is the default location where

Version: v1.2.2 (19946fc) 291

Chapter 8: Using the Docker API

Docker will look for certificates and keys. Docker will specifically look for key<
.pem, cert.pem, and our CA certificate: ca.pem.

Listing 8.38: Copying the key and certificate on the Docker client

mkdir -p ~/.docker/

cp ca.pem ~/.docker/ca.pem

cp client-key.pem ~/.docker/key.pem

cp client-cert.pem ~/.docker/cert.pem

chmod 0600 ~/.docker/key.pem ~/.docker/cert.pem

B2 2 S -2 S 2 R L

Now let's test the connection to the Docker daemon from the client. To do this,
we're going to use the docker info command.

Listing 8.39: Testing our TLS-authenticated connection

$ sudo docker -H=docker.example.com:2376 --tlsverify info
Containers: 33

Images: 104

Storage Driver: aufs

Root Dir: /var/lib/docker/aufs

Dirs: 170

Execution Driver: native-0.1
Kernel Version: 3.8.0-29-generic
Username: jamtur@l
Registry: [https://index.docker.io/v1l/]
WARNING: No swap limit support

We can see that we've specified the -H flag to tell the client to which host it should
connect. We could instead specify the host using the DOCKER HOST environment
variable if we didn't want to specify the -H flag each time. We've also specified the
--tlsverify flag, which enables our TLS connection to the Docker daemon. We
don't need to specify any certificate or key files, because Docker has automatically
looked these up in our ~/.docker/ directory. If we did need to specify these files,
we could with the --tlscacert, --tlscert, and - -tlskey flags.

So what happens if we don't specify a TLS connection? Let's try again now without

Version: v1.2.2 (19946fc) 292

Chapter 8: Using the Docker API

the - -tlsverify flag.

Listing 8.40: Testing our TLS-authenticated connection

$ sudo docker -H=docker.example.com:2376 info
2014/04/13 17:50:03 malformed HTTP response "\x15\x03\x01\x00\x02<«
\x02"

Ouch. That's not good. If you see an error like this, you know you've probably not
enabled TLS on the connection, you've not specified the right TLS configuration,
or you have an incorrect certificate or key.

Assuming you've got everything working, you should now have an authenticated
Docker connection!

Summary

In this chapter, we've been introduced to the Docker Remote API. We've also seen
how to secure the Docker Remote API via SSL/TLS certificates. We've explored the
Docker API and how to use it to manage images and containers. We've also seen
how to use one of the Docker API client libraries to rewrite our TProv application
to directly use the Docker API.

In the next and last chapter, we'll look at how you can contribute to Docker.

Version: v1.2.2 (19946fc) 293

Chapter 9

Getting help and extending Docker

Docker is in its infancy -- sometimes things go wrong. This chapter will talk about:

« How and where to get help.
+ Contributing fixes and features to Docker.

You'll find out where to find Docker folks and the best way to ask for help. You'll
also learn how to engage with Docker's developer community: there's a huge
amount of development effort surrounding Docker with hundreds of committers
in the open-source community. If you're excited by Docker, then it's easy to make
your own contribution to the project. This chapter will also cover the basics of
contributing to the Docker project, how to build a Docker development environ-
ment, and how to create a good pull request.

NOTE This chapter assumes some basic familiarity with Git, GitHub, and Go,
but doesn't assume you're a fully fledged developer.

294

Chapter 9: Getting help and extending Docker

Getting help

The Docker community is large and friendly. There's a central Help page on the
Docker site that provides a list of all the places to get help. Generally, however,
most Docker folks congregate in three places:

NOTE Docker, Inc. also sells enterprise support for Docker. You can find the
information on the help page.

The Docker user and dev mailing lists

These mailing lists are here:

» Docker user list
» Docker developer list

The Docker user list is generally for Docker usage or help questions. The Docker
dev list is for more development-focused questions and issues.

Docker on IRC

The Docker community also has two strong IRC channels: #docker and #docker<
-dev. Both are on the Freenode IRC network

The #docker channel is generally for user help and general Docker issues, whereas
#docker-dev is where contributors to Docker's source code gather.

You can find logs for #docker here and for #docker-dev here.

Version: v1.2.2 (19946fc) 295

http://www.docker.com/resources/help/
http://www.docker.com/resources/help/
https://groups.google.com/forum/#!forum/docker-user
https://groups.google.com/forum/#!forum/docker-dev
http://freenode.net/
https://botbot.me/freenode/docker/
https://botbot.me/freenode/docker-dev/

Chapter 9: Getting help and extending Docker

Docker on GitHub

Docker (and most of its components and ecosystem) is hosted on GitHub. The
principal repository for Docker itself is here.

Other repositories of note are:

* docker-registry - The stand-alone Docker registry.
« libcontainer - The Docker container format.
» libswarm - Docker's orchestration framework.

Reporting issues for Docker

Let's start with the basics around submitting issues and patches and interacting
with the Docker community. When reporting issues with Docker, it's important to
be an awesome open-source citizen and provide good information that can help
the community resolve your issue. When you log a ticket, please remember to
include the following background information:

+ The output of docker info and docker version.
» The output of uname -a.
* Your operating system and version (e.g., Ubuntu 14.04).

Then provide a detailed explanation of your problem and the steps others can take
to reproduce it.

If you're logging a feature request, carefully explain what you want and how you
propose it might work. Think carefully about generic use cases: is your feature
something that will make life easier for just you or for everyone?

Please take a moment to check that an issue doesn't already exist documenting
your bug report or feature request. If it does, you can add a quick "+ 1" or '"T have
this problem too", or if you feel your input expands on the proposed implementa-
tion or bug fix, then add a more substantive update.

Version: v1.2.2 (19946fc) 296

http://www.github.com
https://github.com/docker/docker/
https://github.com/docker/docker-registry
https://github.com/docker/libcontainer
https://github.com/docker/libswarm
https://github.com/docker/docker/issues

Chapter 9: Getting help and extending Docker

Setting up a build environment

To make it easier to contribute to Docker, we're going to show you how to build
a development environment. The development environment provides all of the
required dependencies and build tooling to work with Docker.

Install Docker

You must first install Docker in order to get a development environment, because
the build environment is a Docker container in its own right. We use Docker to
build and develop Docker. Use the steps from Chapter 2 to install Docker on your
local host. You should install the most recent version of Docker available.

Install source and build tools

Next, you need to install Make and Git so that we can check out the Docker source
code and run the build process. The source code is stored on GitHub, and the build
process is built around a Makefile.

On Ubuntu, we would install the git package.

Listing 9.1: Installing git on Ubuntu

$ sudo apt-get -y install git make

On Red Hat and derivatives we would do the following:

Listing 9.2: Installing git on Red Hat et al

$ sudo yum install git make

Check out the source

Now let's check out the Docker source code (or, if you're working on another
component, the relevant source code repository) and change into the resulting

Version: v1.2.2 (19946fc) 297

Chapter 9: Getting help and extending Docker

directory.

Listing 9.3: Check out the Docker source code

$ git clone https://github.com/docker/docker.git
$ cd docker

You can now work on the source code and fix bugs, update documentation, and
write awesome features!

Contributing to the documentation

One of the great ways anyone, even if you're not a developer or skilled in Go, can
contribute to Docker is to update, enhance, or develop new documentation. The
Docker documentation lives on the Docs website. The source documentation, the
theme, and the tooling that generates this site are stored in the Docker repo on
GitHub.

You can find specific guidelines and a basic style guide for the documentation
here.

You can build the documentation locally using Docker itself.

Make any changes you want to the documentation, and then you can use the
make command to build the documentation.

Listing 9.4: Building the Docker documentation

$ cd docker
$ make docs

docker run --rm -it -e AWS S3 BUCKET -p 8000:8000 "docker-docs:<
master" mkdocs serve

Running at: http://0.0.0.0:8000/

Live reload enabled.

Hold ctrl+c to quit.

You can then browse to a local version of the Docker documentation on port 8000.

Version: v1.2.2 (19946fc) 298

http://docs.docker.com
https://github.com/docker/docker/tree/master/docs
https://github.com/docker/docker/tree/master/docs
https://github.com/docker/docker/blob/master/docs/README.md

Chapter 9: Getting help and extending Docker

Build the environment

If you want to contribute to more than just the documentation, you can now use
make and Docker to build the development environment. The Docker source code
ships with a Dockerfile that we use to install all the build and runtime dependen-
cies necessary to build and test Docker.

Listing 9.5: Building the Docker environment

$ sudo make build

TIP This command will take some time to complete when you first execute it.

This command will create a full, running Docker development environment. It
will upload the current source directory as build context for a Docker image, build
the image containing Go and any other required dependencies, and then launch
a container from this image.

Using this development image, we can also create a Docker binary to test any fixes
or features. We do this using the make tool again.

Listing 9.6: Building the Docker binary

$ sudo make binary

This command will create a Docker binary in a volume at ./bundles/<version<
>-dev/binary/. For example, we would create a binary like so:

Listing 9.7: The Docker dev binary

$ ls -1 ~/docker/bundles/1.0.1-dev/binary/docker
lrwxrwxrwx 1 root root 16 Jun 29 19:53 ~/docker/bundles/1.0.1-dev<
/binary/docker -> docker-1.0.1-dev

You can then use this binary for live testing by running it instead of the local
Docker daemon. To do so, we need to stop Docker and run this new binary instead.

Version: v1.2.2 (19946fc) 299

Chapter 9: Getting help and extending Docker

Listing 9.8: Using the development daemon

$ sudo service docker stop
$ ~/docker/bundles/1.0.1-dev/binary/docker -d

This will run the development Docker daemon interactively. You can also back-
ground the daemon if you wish.

We can then test this binary by running it against this daemon.

Listing 9.9: Using the development binary

$ ~/docker/bundles/1.0.1-dev/binary/docker version
Client version: 1.0.1-dev

Client API version: 1.12

Go version (client): gol.2.1

Git commit (client): d37c9a4

Server version: 1.0.1-dev

Server API version: 1.12

Go version (server): gol.2.1

Git commit (server): d37c9a

You can see that we're running a 1.0.1-dev client, this binary, against the 1.0. 1<«
-dev daemon we just started. You can use this combination to test and ensure any
changes you've made to the Docker source are working correctly.

Running the tests

It's also important to ensure that all of the Docker tests pass before contributing
code back upstream. To execute all the tests, you need to run this command:

Listing 9.10: Running the Docker tests

$ sudo make test

This command will again upload the current source as build context to an image
and then create a development image. A container will be launched from this

Version: v1.2.2 (19946fc) 300

Chapter 9: Getting help and extending Docker

image, and the test will run inside it. Again, this may take some time for the
initial build.

If the tests are successful, then the end of the output should look something like
this:

Listing 9.11: Docker test output

[PASSED]: save - save a repo using stdout

[PASSED]: load - load a repo using stdout

[PASSED]: save - save a repo using -o

[PASSED]: load - load a repo using -i

[PASSED]: tag - busybox -> testfoobarbaz

[PASSED]: tag - busybox's image ID -> testfoobarbaz

[PASSED]: tag - busybox fooo/bar

[PASSED]: tag - busybox fooaa/test

[PASSED]: top - sleep process should be listed in non privileged <«
mode

[PASSED]: top - sleep process should be listed in privileged mode

[PASSED]: version - verify that it works and that the output is <«
properly formatted

PASS

PASS github.com/docker/docker/integration-cli 178.685s

TIP You can use the $TESTFLAGS environment variable to pass in arguments to
the test run.

Use Docker inside our development environment

You can also launch an interactive session inside the newly built development
container:

Version: v1.2.2 (19946fc) 301

Chapter 9: Getting help and extending Docker

$ sudo make shell

To exit the container, type exit or Ctrl-D.

Submitting a pull request

If you're happy with your documentation update, bug fix, or new feature, you
can submit a pull request for it on GitHub. To do so, you should fork the Docker
repository and make changes on your fork in a feature branch:

« If it is a bug fix branch, name it XXXX-something, where XXXX is the number
of the issue.

- If it is a feature branch, create a feature issue to announce your intentions,
and name it XXXX-something, where XXXX is the number of the issue.

You should always submit unit tests for your changes. Take a look at the existing
tests for inspiration. You should also always run the full test suite on your branch
before submitting a pull request.

Any pull request with a feature in it should include updates to the documentation.
You should use the process above to test your documentation changes before you
submit your pull request. There are also specific guidelines (as we mentioned
above) for documentation that you should follow.

We have some other simple rules that will help get your pull request reviewed and
merged quickly:

« Always run gofmt -s -w file.go on each changed file before committing
your changes. This produces consistent, clean code.

+ Pull requests descriptions should be as clear as possible and include a refer-
ence to all the issues that they address.

« Pull requests must not contain commits from other users or branches.

Version: v1.2.2 (19946fc) 302

Chapter 9: Getting help and extending Docker

« Commit messages must start with a capitalized and short summary (50 char-
acters maximum) written in the imperative, followed by an optional, more
detailed explanatory text that is separated from the summary by an empty
line.

« Squash your commits into logical units of work using git rebase -i and
git push -f. Include documentation changes in the same commit so that a
revert would remove all traces of the feature or fix.

Lastly, the Docker project uses a Developer Certificate of Origin to verify that you
wrote any code you submit or otherwise have the right to pass it on as an open-
source patch. You can read about why we do this here. The certificate is very
easy to apply. All you need to do is add a line to each Git commit message.

Docker-DCO-1.1-Signed-off-by: Joe Smith <joe.smith@email.com> (<«
github: github handle)

NOTE You must use your real name. We do not allow pseudonyms or anony-
mous contributions for legal reasons.

There are several small exceptions to the signing requirement. Currently these
are:

* Your patch fixes spelling or grammar errors.

* Your patch is a single-line change to documentation contained in the docs
directory.

* Your patch fixes Markdown formatting or syntax errors in the documentation
contained in the docs directory.

It's also pretty easy to automate the signing of your Git commits using Git hooks.
You can customize your Git commit.template by adding a prepare-commit-msg

hook to your Docker checkout:

Version: v1.2.2 (19946fc) 303

http://blog.docker.com/2014/01/docker-code-contributions-require-developer-certificate-of-origin/
http://git-scm.com/book/en/Customizing-Git-Git-Hooks

Chapter 9: Getting help and extending Docker

Listing 9.14: Git commit signing

$ cd docker

$ curl -o .git/hooks/prepare-commit-msg \

https://raw.githubusercontent.com/docker/docker/master/contrib/<«
prepare-commit-msg.hook

$ chmod +x .git/hooks/prepare-commit-msg

NOTE The signing script expects to find your GitHub user name in git
config --get github.user. You can set this option with the git config --set
github.user username command.

Merge approval and maintainers

Once you've submitted your pull request, it will be reviewed, and you will po-
tentially receive feedback. Docker uses a maintainer system much like the Linux
kernel. Each component inside Docker is managed by one or more maintainers
who are responsible for ensuring the quality, stability, and direction of that com-
ponent. The maintainers are supplemented by Docker's benevolent dictator and
chief maintainer, Solomon Hykes. He's the only one who can override a main-
tainer, and he has sole responsibility for appointing new maintainers.

Docker maintainers use the shorthand LGTM (or Looks Good To Me) in comments
on the code review to indicate acceptance of a pull request. A change requires
LGTMs from an absolute majority of the maintainers of each component affected
by the changes. If a change affects docs/ and registry/, then it needs an ab-
solute majority from the maintainers of docs/ and an absolute majority of the
maintainers of registry/.

TIP For more details, see the maintainer process documentation.

Version: v1.2.2 (19946fc) 304

https://github.com/shykes
https://github.com/docker/docker/blob/master/hack/MAINTAINERS.md

Chapter 9: Getting help and extending Docker
Summary

In this chapter, we've learned about how to get help with Docker and the places
where useful Docker community members and developers hang out. We've also
learned about the best way to log an issue with Docker, including the sort of
information you need to provide to get the best response.

We've also seen how to set up a development environment to work on the Docker
source or documentation and how to build and test inside this environment to
ensure your fix or feature works. Finally, we've learned about how to create a
properly structured and good-quality pull request with your update.

Version: v1.2.2 (19946fc) 305

Index

.dockerignore, 82 Bypassing the Dockerfile cache, 84
/etc/hosts, 48, 143, 146, 147
/var/lib/docker, 45, 60, 65, 152, 179~ ©€NtOS, 25
cgroups, 15, 20, 23
Apache, 172, 177 Chef, 13, 19
API, 266 chroot, 6
/containers, 273 CI, 13, 149
/containers/create, 274 Consul, 232
/images/json, 270 configuration, 235
/info, 270 DNS, 232, 235, 258
Client libraries, 278 HTTP API, 232, 236, 258
containers, 276 ports, 235
info, 269 Consule
API documentation, 266 web interface, 236
AUFS, 20 container
Automated Builds, 106 linking, 141
Automatically restarting containers, 58 logging, 54
names, 51, 141
Back up volumes, 183 container ID, 48, 50--53, 57
Boot2Docker, 18, 29, 32 containers
booFZdocker introduction, 6
1p, 35 Context, 78
btrfs, 20

Continuous Integration, 13, 118, 149
Copy-on-write, 15
curl, 133

Build content, 100

Build context, 78, 82, 299
.dockerignore, 82

Building images, 77 DCO, 303

306

Debian, 20
Debugging Dockerfiles, 84
default storage driver, 20

Developer Certificate of Origin, see also

DCO
Device Mapper, 20, 22, 26
dind, 149, 191
DNS, 146, 202
Docker
API, 266, 282
Client libraries, 278
List images, 270
APT repository, 23
Authentication, 282
automatic container restart, 58
binary installation, 38
Bind UDP ports, 89
build context, 299
build environment, 297, 299
Configuration Management, 13
container ID, 48, 50--53, 57
container names, 51
curl installation, 37
daemon, 38, 241
--tls, 288
--tlsverify, 292
-H flag, 39
defaults, 40
DOCKER_HOST, 39, 269, 292
DOCKER_OPTS, 40
icc flag, 143
network configuration, 39
systemd, 40
Unix socket, 39
Upstart, 40

Version: v1.2.2 (19946fc)

Index

DCO, 303
dind, 191
DNS, 146, 202, 241
environment variables, 143
docker binary, 38
docker group, 38, 267
Docker Hub, 66
Docker-in-Docker, see also dind
docker0, 135
Dockerfile
ADD, 99
CMD, 91, 130, 131
COPY, 100
ENTRYPOINT, 93, 134
ENV, 96, 145, 152
EXPOSE, 80, 89, 90, 145
FROM, 79
MAINTAINER, 79
ONBUILD, 101
RUN, 79, 80
USER, 97
VOLUME, 98, 152
WORKDIR, 95
Documentation, 298
Fedora
installation, 28
Getting help, 295
Hub API, 266
installation, 20, 25
iptables, 138
IRC, 296
kernel versions, 19
launching containers, 45
license, 7
limiting container communication,

307

143
linking containers, 141
links, 141
listing containers, 50
Mailing lists, 295
naming containers, 51, 141
NAT, 138
networking, 135
0S X, 18
installation, 29
packages, 23
privileged mode, 153
Red Hat Enterprise Linux
installation, 25
registry, 47
Registry API, 266
Remote API, 267
remote installation script, 37
required kernel version, 21
Running your own registry, 115
set container hostname, 202
setting the working directory, 95
signals, 213
SSH, 213
tags, 68
testing, 118
TLS, 283
Ubuntu
installation, 20
Ubuntu firewall, 24
ubuntu image, 47
UFW, 24
upgrading, 42
use of sudo, 21
volumes, 125, 179, 183

Version: v1.2.2 (19946fc)

Index

deleting, 180
Windows, 18
installation, 32
docker
attach, 52, 159
build, 77, 80, 81, 123, 130, 153,
161, 174,177, 221
--no-cache, 84
context, 78
commit, 75
exec, 56, 213
-d, 56
-i, 57
-t, 57
history, 86, 123
images, 65, 70, 86, 115, 175, 177,
272
info, 24, 29, 45, 269, 281
inspect, 59, 77, 89, 101, 139, 214,
272
kill, 61, 140, 213
signals, 213
links
environmental variables, 145
login, 74
logs, 54, 131, 202, 207
--tail, 55
-f, 54, 132, 211
-t, 55
port, 88, 89, 190
ps, 50, 53, 58, 61, 87, 127, 228, 273
-a, 50, 61
-1, 50
-n, 58
-q, 61

308

pull, 67, 70, 239
push, 104, 112, 116
restart, 52, 140
rm, 61, 114, 159, 180
rmi, 112, 114
run, 45, 53, 58, 62, 69, 72, 80, 84,
87, 91, 92, 116, 125, 131, 162,
178, 224, 276
--cidfile, 159
--dns, 146
--dns-search, 146
--entrypoint, 95
--hostname, 144, 202
--link, 142, 204, 207
--name, 51, 190, 204, 207
--privileged, 153
--restart, 58
--rm, 183, 203, 205
--volumes-from, 180, 190, 203,
205
-P, 89
-d, 53
-e, 96
-h, 144, 202
-p, 142
-u, 97
-v, 142, 179, 183
-w, 95
set environment variables, 96
search, 71
start, 51, 181, 230
stop, 57, 61
tag, 116
top, 55, 132
version, 281

Version: v1.2.2 (19946fc)

Index

wait, 159
Docker API, 9
docker group, 38, 267
Docker Hub, 66, 71, 104, 106, 266
Logging in, 74
Private repositories, 104
Docker Inc, 7, 69, 295
docker run
-h, 238
Docker user interfaces
DockerUI, 42
Shipyard, 42
Docker-in-Docker, see also dind, 149,
191
docker0, 135
DOCKER_HOST, 39, 269, 292
DOCKER_HOST, 35, 227
DOCKER_OPTS, 241
Dockerfile, 77, 102, 106, 117, 119, 124,
129, 133, 145, 150, 157, 158,
162, 173, 174, 176, 177, 185,
188, 195, 198, 200, 201, 208,
299
ADD, 120, 122, 196, 209
CMD, 177, 186
ENTRYPOINT, 174, 177, 186, 189,
198, 200, 201, 236, 255
ENV, 177
exec format, 80
EXPOSE, 120, 177, 189
RUN, 121
template, 85
VOLUME, 174, 176, 186, 199, 236
WORKDIR, 174, 186, 187
DockerUI, 42

309

Documentation, 298
dotCloud, 7
Drone, 170

EPEL, 27
exec format, 80

Fedora, 25

Fig, 217
Boot2Docker, 218
Installation, 217
services, 217

--version, 218
kill, 230

logs, 229

ps, 228

rm, 230

start, 230
stop, 229

up, 225

Getting help, 295
GitHub, 106
gofmt, 302
Golden image, 14

Image management, 14
iptables, 138
IRC, 296

jail, 6

Jekyll, 172, 175

Jenkins CI, 13, 118, 149
automated builds, 162
parameterized builds, 162
post commit hook, 162

Version: v1.2.2 (19946fc)

JSON, 133
kernel, 19, 21

libcontainer, 15

license, 7

Links, 141

logging, 54
timestamps, 55

Ixc, 7, 15

Mailing lists, 295
Microservices, 9

names, 51
namespaces, 20, 23
NAT, 138

Nginx, 119
nsenter, 57, 213

openssl, 283
OpenVzZ, 7
Orchestration, 217

PAAS, 7,13
Platform-as-a-Service, 13
Port mapping, 80
Private repositories, 104
Puppet, 13, 19

Red Hat Enterprise Linux, 25
Redis, 133, 135
Registry
private, 115
Registry API, 266
Remote API, 267
REST, 267
RFC1918, 136

Index

310

Service Oriented Architecture, 9
Shipyard, 42

Signals, 213

Sinatra, 132

SOA, 9

Solaris Zones, 7

SSH, 213

SSL, 282

sudo, 21

Supervisor, 93

tags, 68

Testing applications, 118
Testing workflow, 118
TLS, 266, 282

Trusted builds, 106

Ubuntu, 20
Union mount, 63
Upstart, 40

vfs, 20

Volumes, 125, 179
backing up, 183, 212
deleting, 180
logging, 208

Version: v1.2.2 (19946fc)

Index

311

Thanks! I hope you enjoyed the book.

© Copyright 2014 - James Turnbull <james@lovedthanlost.net >

ISBN 978-0-9888202-0-3

9 7809887820203

mailto:james+thedockerbook@lovedthanlost.net

	List of Figures
	List of Listings
	Foreword
	Who is this book for?
	Credits and Acknowledgments
	Technical Reviewers
	Scott Collier
	John Ferlito
	Paul Nasrat

	Technical Illustrator
	Proofreader
	Author
	Conventions in the book
	Code and Examples
	Colophon
	Errata
	Version

	Introduction
	Introducing Docker
	An easy and lightweight way to model reality
	A logical segregation of duties
	Fast, efficient development life cycle
	Encourages service orientated architecture

	Docker components
	Docker client and server
	Docker images
	Registries
	Containers

	What can you use Docker for?
	Docker with configuration management
	Docker's technical components
	What's in the book?
	Docker resources

	Installing Docker
	Requirements
	Installing on Ubuntu
	Checking for prerequisites
	Installing Docker
	Docker and UFW

	Installing on Red Hat and family
	Checking for prerequisites
	Installing Docker
	Starting the Docker daemon on the Red Hat family

	Boot2Docker installation on OS X
	Installing Boot2Docker on OS X
	Setting up Boot2Docker on OS X
	Testing Boot2Docker

	Boot2Docker installation on Windows
	Installing Boot2Docker on Windows
	Setting up Boot2Docker on Windows
	Testing Boot2Docker

	Using Boot2Docker with this book
	Docker installation script
	Binary installation
	The Docker daemon
	Configuring the Docker daemon
	Checking that the Docker daemon is running

	Upgrading Docker
	Docker user interfaces
	Summary

	Getting Started with Docker
	Ensuring Docker is ready
	Running our first container
	Working with our first container
	Container naming
	Starting a stopped container
	Attaching to a container
	Creating daemonized containers
	Seeing what's happening inside our container
	Inspecting the container's processes
	Running a process inside a container
	Stopping a daemonized container
	Automatic container restarts
	Finding out more about our container
	Deleting a container
	Summary

	Working with Docker images and repositories
	What is a Docker image?
	Listing Docker images
	Pulling images
	Searching for images
	Building our own images
	Creating a Docker Hub account
	Using Docker commit to create images
	Building images with a Dockerfile
	Building the image from our Dockerfile
	What happens if an instruction fails?
	Dockerfiles and the build cache
	Using the build cache for templating
	Viewing our new image
	Launching a container from our new image
	Dockerfile instructions

	Pushing images to the Docker Hub
	Automated Builds

	Deleting an image
	Running your own Docker registry
	Running a registry from a container
	Testing the new registry

	Alternative Indexes
	Quay

	Summary

	Testing with Docker
	Using Docker to test a static website
	An initial Dockerfile for the Sample website
	Building our Sample website and Nginx image
	Building containers from our Sample website and Nginx image
	Editing our website

	Using Docker to build and test a web application
	Building our Sinatra application
	Creating our Sinatra container
	Building a Redis image and container
	Connecting to the Redis container
	Our Redis connection
	Linking Docker containers
	Using our container link to communicate

	Using Docker for continuous integration
	Build a Jenkins and Docker server
	Create a new Jenkins job
	Running our Jenkins job
	Next steps with our Jenkins job
	Summary of our Jenkins setup

	Multi-configuration Jenkins
	Create a multi-configuration job
	Testing our multi-configuration job
	Summary of our multi-configuration Jenkins

	Other alternatives
	Drone
	Shippable

	Summary

	Building services with Docker
	Building our first application
	The Jekyll base image
	Building the Jekyll base image
	The Apache image
	Building the Jekyll Apache image
	Launching our Jekyll site
	Updating our Jekyll site
	Backing up our Jekyll volume
	Extending our Jekyll website example

	Building a Java application server with Docker
	A WAR file fetcher
	Fetching a WAR file
	Our Tomcat 7 application server
	Running our WAR file
	Building on top of our Tomcat application server

	A multi-container application stack
	The Node.js image
	The Redis base image
	The Redis primary image
	The Redis replica image
	Creating our Redis back-end cluster
	Creating our Node container
	Capturing our application logs
	Summary of our Node stack

	Managing Docker containers without SSH
	Summary

	Docker Orchestration and Service Discovery
	Fig
	Installing Fig
	Getting our sample application
	The !fig.yml! file
	Running Fig
	Using Fig
	Fig in summary

	Consul, Service Discovery and Docker
	Building a Consul image
	Testing a Consul container locally
	Running a Consul cluster in Docker
	Starting the Consul bootstrap node
	Starting the remaining nodes
	Running a distributed service with Consul in Docker

	Orchestration alternatives and components
	Fleet and etcd
	Kubernetes
	Apache Mesos
	Helios
	Centurion
	Libswarm

	Summary

	Using the Docker API
	The Docker APIs
	First steps with the Remote API
	Testing the Docker Remote API
	Managing images with the API
	Managing containers with the API

	Improving TProv
	Authenticating the Docker Remote API
	Create a Certificate Authority
	Create a server certificate signing request and key
	Configuring the Docker daemon
	Creating a client certificate and key
	Configuring our Docker client for authentication

	Summary

	Getting help and extending Docker
	Getting help
	The Docker user and dev mailing lists
	Docker on IRC
	Docker on GitHub

	Reporting issues for Docker
	Setting up a build environment
	Install Docker
	Install source and build tools
	Check out the source
	Contributing to the documentation
	Build the environment
	Running the tests
	Use Docker inside our development environment
	Submitting a pull request
	Merge approval and maintainers

	Summary

	Index

