

Gitolite Essentials

Leverage powerful branch and user access control with
Git for your own private collaborative repositories

Sitaram Chamarty

BIRMINGHAM - MUMBAI

Gitolite Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2014

Production Reference: 1040414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-237-1

www.packtpub.com

Cover Image by Mohamed Raoof (raoofpmajeed@gmail.com)

Credits

Authors
Sitaram Chamarty

Reviewers
Javier Domingo Cansino

milki

Vinh Quốc Nguyễn

Hiren Patel

Giovanni Toraldo

Acquisition Editors
Owen Roberts

Erol Staveley

Content Development Editor
Poonam Jain

Technical Editor
Manal Pednekar

Copy Editors
Roshni Banerjee

Gladson Monteiro

Project Coordinator
Jomin Varghese

Proofreader
Ameesha Green

Indexer
Hemangini Bari

Graphics
Ronak Dhruv

Yuvraj Mannari

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

About the Author

Sitaram Chamarty has been in the software industry for a number of years. He is
a Linux and open source evangelist who has sometimes been called an "open source
bigot", which he takes as a compliment. He loves Perl enough to believe, or at least
insist, that xkcd 224 is actual fact.

His day job is with Tata Consultancy Services, and he lives and works in Hyderabad,
India. His job does not explicitly include evangelizing open source in general and Git
in particular, but he pretends it does. He has significant past experience in language
conversion and tools, as well as in data warehousing.

He has a postgraduate degree in Computer Science from the Indian Statistical
Institute, Kolkata, India.

Acknowledgments

Acknowledgments for this book must necessarily also include acknowledgments for
the success and popularity of Gitolite itself, because without that, this book would
not exist.

Most of Gitolite's power features were born from users asking for them, or
presenting their problems in a way that made me think about how Gitolite could
help. In particular, I would like to thank Jesse Keating (Fedora), Jeff Mitchell (KDE),
John "Warthog9" Hawley (kernel.org), and Prof. Hiren Patel (University of
Waterloo), for many such ideas as well as hours spent brainstorming about features.

The Git and Gitolite communities on IRC channels #git and #gitolite, which are part of
freenode, are comprised of a fantastic bunch of people. They've certainly helped more
people with Gitolite than I have; Gitolite's popularity is almost entirely because of
folks such as "milki", "bremner" (Prof. David Bremner), "ojacobson" (Owen Jacobson),
"EugeneKay" (Eugene E. Kashpureff Jr), and many others.

I would like to thank my supervisor and my colleagues at TCS for their
encouragement, not just in writing this book but with my involvement in Gitolite
itself. In particular, Gitolite's mirroring feature would not have been what it is
without some of their input and use cases.

I would also like to thank my reviewers milki, Javier Domingo Cansino, and Hiren
Patel for their tireless efforts at fixing up my writing and making me see reason in
several instances. Any errors that remain are, of course, entirely mine.

Finally, I would like to thank my wife and kids for putting up with me while writing
the book, especially my wife for keeping the chapter schedule on the fridge door!

About the Reviewers

Javier Domingo Cansino got started in University with the open source
community and got specialized in Git source code management and several
Linux tools.

Through his Git knowledge, which he gained by working on Gitolite projects from
the very beginning, he helps people to have a correct Gitolite installation together
with appropriate workflows.

With several developments during his career in various languages, and knowledge
on kernel networking design, now he is developing in C and Python. He can be
found over the Internet under the nickname "txomon".

milki is a recent graduate from the University of California, Berkeley, and now
works as a software engineer at Yelp, Inc. in San Francisco, California. During his
university years, milki mastered Git and FreeBSD as a software developer and
a system administrator. milki contributes to the open source project Dulwich,
which is a pure python implementation of the Git file formats and protocol.
milki also maintains the FreeBSD port of Gitolite, ensuring Gitolite remains
free of Linux-specific code. On freenode IRC, milki can be found in #git,
#gitolite, and #github, providing users with general advice from Git basics
and troubleshooting to best practices and Git internals.

Hiren Patel is an assistant professor in the Electrical and Computer Engineering
department at the University of Waterloo, Canada. His research interests are in
embedded software and hardware systems. This includes models of computation,
real-time systems, computer architecture, and system-level design methodologies.

Giovanni Toraldo is an open source enthusiast with in-depth knowledge about
system administration, cloud computing, and web application development. He
currently works as a lead developer for ClouDesire.

In the past, he wrote OpenNebula 3 Cloud Computing and reviewed Mastering Redmine
for Packt Publishing.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started with Gitolite	 5

Common Access Control needs	 5
Access Control example with Gitolite	 6
Sampling of Gitolite's power features	 7

Creating groups	 8
Personal branches	 8
Personal repositories	 9

Gitolite and the Git control flow	 9
Trying out Gitolite	 10

Preparing for the setup	 11
Installing and setting up a test instance	 11
Playing with Gitolite	 12

Summary	 14
Chapter 2: Installing Gitolite	 15

Gitolite users and the hosting user	 15
Distinguishing users from each other	 16

Preparing the server	 17
Getting the Gitolite source	 18
Installing the code	 18
Setting up Gitolite	 19

Creating an ssh key pair	 19
Running the setup command	 19
Checking over your new Gitolite server	 20
Adding a user	 21
Adding a repository	 22

Summary	 22

Table of Contents

[ii]

Chapter 3: Your Users and Gitolite	 23
Accessing Git repositories	 23

Git servers, SSH, and HTTP	 23
Accessing Gitolite repositories	 24

SSH key pairs	 24
Repository naming	 25

Getting information from Gitolite	 25
Gitolite commands	 26
Getting help for commands	 26
Troubleshooting SSH issues	 27

Authorization, not authentication	 27
Duplicate public keys	 28
Diagnosing public key problems	 28
SSH best practice	 29

Summary	 29
Chapter 4: Adding and Removing Users	 31

Adding users	 31
Behind the scenes	 32

Users with multiple key pairs	 33
Giving some users a shell	 35
Managing keys outside Gitolite	 36
Getting user group information from LDAP	 36
Removing users	 37
Summary	 38

Chapter 5: Managing Repositories	 39
Adding repositories	 39
Adding existing repositories	 40
Common problems and troubleshooting	 41

Ownership and permissions	 41
Converting a non-bare repository to a bare repository	 42
Gitolite and the update hook	 43

Summary	 43
Chapter 6: Getting Started with Access Control	 45

Basic access control examples	 45
Basic branch level access control	 46

Lexical syntax of the conf file	 47
The syntax of access control rules	 48
Branch level access control and refexes	 48

Using deny rules	 49
The permission field	 50

Table of Contents

[iii]

Defining user and repo groups	 51
Working with large groups	 52
The special @all group	 52

The include statement	 53
Rule accumulation and delegation	 53
Summary	 54

Chapter 7: Advanced Access Control and Configuration	 55
Making changes to the rc file	 55
Giving users their own branches	 56
Types of write operations	 57
Allowing Gitweb and Git-daemon access	 58

Locating the projects list file	 59
Unix permissions and the umask	 60

Specifying Git config values and Gitolite options	 61
Deleting a git-config key	 61
Substituting the repository name	 62
Overriding config values	 63
Gitolite options	 63

Applying deny rules to read access	 64
Understanding VREFs	 65
Summary	 66

Chapter 8: Allowing Users to Create Repos	 67
Putting repositories in Sub-directories	 68
Repository wildcards	 68

Creating a wildcard repository	 69
Giving access to other users	 70
Generalizing the ruleset	 72

Explaining wild repos to your users	 73
Managing with just wild repos	 74
Deleting wild repositories	 75
Summary	 76

Chapter 9: Customizing Gitolite	 77
Core and non-core Gitolite	 77
Types of non-core code and examples	 78

Commands	 78
Syntactic sugar	 80
Triggers	 80
Virtual refs	 81

Writing your own non-core code	 81
Summary	 84

Table of Contents

[iv]

Chapter 10: Understanding VREFs	 85
Migrating update hooks	 85
Passing arguments to the VREF code	 86
Using the permission field	 87

Maintaining the update hook function	 88
Default is success	 88
Example VREFs and their usage	 89
Writing your own VREF	 90
Summary	 92

Chapter 11: Mirroring	 93
Terminology and basic concepts	 93

Repository level mirroring	 93
The gitolite-admin repository	 94

Setting up mirroring	 94
Example setup	 95
Bootstrapping the mirroring process	 96
Mirroring other repositories	 96

Local repositories and hostname substitution	 97
Redirecting pushes	 98
Manual synchronization	 99
Switching to a different master	 99
Summary	 100

Index	 101

Preface
Gitolite is a very popular tool for fine-grained access control of Git repository
servers. It's fast, unobtrusive, and has a very small footprint, yet it provides several
features that make an administrator's life much easier.

This book helps you get up to speed with Gitolite. It is easy to read and flows
smoothly all the way from the basic installation process to advanced features such
as mirroring. In particular, the more powerful and complex features are built up
gradually to help you understand it more intuitively. Anyone who is using or
considering using Gitolite should benefit from this book.

What this book covers
Chapter 1, Getting Started with Gitolite, shows you why Gitolite is useful along with
some examples of basic access control rules as well as some advanced features. It also
shows you how to create a test instance of Gitolite to help you try it out safely.

Chapter 2, Installing Gitolite, talks about installing Gitolite and basic administration
tasks such as adding a new user and creating a new repository.

Chapter 3, Your Users and Gitolite, discusses how users see a Gitolite-managed system
and what they need to know to start using it. It also has useful information on
finding and fixing problems with ssh keys.

Chapter 4, Adding and Removing Users, goes into more detail on user management and
what happens behind the scenes when you add a user. Special case situations such as
users with multiple keys or users who need a full shell command line are discussed.

Chapter 5, Managing Repositories, talks about adding new repositories as well as
bringing existing repositories into Gitolite control.

Preface

[2]

Chapter 6, Getting Started with Access Control, shows most of Gitolite's basic access
control features, including various types of access rules and the configuration
file syntax.

Chapter 7, Advanced Access Control and Configuration, goes into advanced features
such as personal branches, setting Git config variables, and Gitolite options. It also
discusses how Gitolite can be made to affect the operation of gitweb and git-daemon.

Chapter 8, Allowing Users to Create Repos, talks about a feature that is probably one
of Gitolite's most popular and important features. It discusses how to allow users to
create their own repositories, how the access rules work, and what the creator of a
repository can do to allow others to access it.

Chapter 9, Customizing Gitolite, shows how administrators can add unique features to
their site using Gitolite's customization capabilities, such as commands and triggers.

Chapter 10, Understanding VREFs, talks about Gitolite's ability to use arbitrary factors
to make the allow/reject decision when a user pushes to a repository, with only a
few lines of code to be written in most cases.

Chapter 11, Mirroring, explores a Gitolite feature that is very useful in large multisite
setups that have developers in many locations around the world working on common
projects. Gitolite mirroring is very flexible, and this chapter will set you on your way
to make the best use of it.

What you need for this book
You will need a Unix system with a POSIX compatible "sh", Git Version 1.7.8 or
later, and Perl 5.8.8 or later. You will also need the Openssh server (or a compatible
ssh server).

Who this book is for
This book is ideal for anyone who is looking to install and use Gitolite. People who
are already using it and would like to go beyond the basics and understand its more
powerful features will also find a lot of useful information and insights.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"One way to convert a non-bare repository to a bare repository is to clone it using
the --bare option."

Any command-line input or output is written as follows:

repo gitolite-admin

 RW+ = adam

repo testing

 RW+ = @all

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Gitolite
Git is one of the most popular version control systems currently available,
and several thousands of projects, new and old, have started using it in the past
few years. You might have also used it, and shortly after, realized that Git does
not do much for Access Control by itself. You need an access control system
that is simple and quick to install and get running, yet flexible and powerful
enough for your future needs.

This chapter will describe what Gitolite is, and why you might need it. It shows a
few examples of the basic features, and also shows you how you can try out Gitolite
safely. It assumes that you have some basic knowledge of Git, and have used Git
both locally and with a remote repository.

Common Access Control needs
Git server administrators face a bit of a challenge. The high uptake rate of Git means
that there are thousands of developers who are not really familiar with Git, and who
therefore may be running Git commands that cause irreversible or highly disruptive
changes to the Git repository. Furthermore, Git itself does not help much with this;
whatever access controls it has, apply to the entire repository, and cannot be made
more fine-grained.

For instance, the master branch in most projects represents the most stable code.
Yet, a junior developer can easily run a command such as git push origin +master,
(which pushes the developer's local branch onto the server) and thus overwrite weeks
or months of hardwork by the rest of the team. People with deeper Git expertise can
probably recover the lost commits, but it would certainly take time and effort.

Worse, Git's command syntax sometimes makes it worse. For example, the command
to delete the master branch is only slightly different from a normal push, that is,
git push origin :master (notice the extra colon?).

Getting Started with Gitolite

[6]

The most common need, therefore, is to prevent these kinds of accidents: overwriting
(or rewinding) one or more commits, and deleting a branch or a tag.

Git itself does provide some measure of protection. You can set the config items
receive.denyDeletes and receive.denyNonFastForwards to true. Unfortunately,
this is a bit of a blunt instrument—now no one can delete or rewind any branch!

In larger setups with several repositories and several developers, you may also be
concerned about allowing everyone to read all repositories. Or it may be that some
roles (such as a test engineer) should not need to write to the repository; read-only
access is sufficient. Up to a certain point, this problem can be solved with Unix
permissions and user/group permissions applied judiciously. Perhaps even POSIX
ACLs can be used if you're comfortable with that sort of thing.

However, using POSIX ACLs and user/group permissions has several disadvantages:

•	 Each Git user needs a corresponding Unix user ID on the server.
•	 Managing access rights can only be done by using the usermod and

setfacl commands.
•	 Checking the current set of permissions is not straightforward. You will need

to run multiple commands and correlate their output manually.
•	 Auditing changes in permissions over time is impossible because no history

is kept by the system.
These disadvantages require a lot of effort to manage even a few repositories and
users, and even a modestly sized setup would quickly become unmanageable.

Access Control example with Gitolite
We will see how simple Access Control can be with Gitolite. First, here's an example
where the junior developers (let's call them Alice and Bob here) should be prevented
from rewinding or deleting any branches, while the senior developers (Carol and
David) are allowed to do so:

We will see this in more detail in later chapters, but Gitolite uses a
plain text file to specify the configuration, and these access rules are
placed in that file.

repo foo

 RW = alice bob

 RW+ = carol david

Chapter 1

[7]

You probably guessed that the RW stands for read and write. The + in the second rule
stands for force, just as it does in the push command, and allows you to rewind or
delete a branch.

Now, suppose we want the junior developers to have some specific set of branches
that they should be allowed to rewind or delete, a sort of "sandbox", if you will.
The following command will help you to implement that:

 RW+ sandbox/ = alice bob

Alice and Bob can now push, rewind, or delete any branches whose names start
with sandbox/.

Access Control at the repository level is even easier, and you may even have guessed
what that looks like:

repo foo

 RW+ = alice

 R = bob

repo bar

 RW+ = bob

 R = alice

repo baz

 RW+ = carol

 R = alice bob

As you can see, you have three users with different access permissions for each of
the three repositories. Doing this using the file systems' permissions mechanisms or
POSIX ACLs would be doable, but quite cumbersome to set up and to audit/review.

Sampling of Gitolite's power features
The access control examples show the most commonly used feature of Gitolite,
the repository and branch level access control, but of course Gitolite has many more
features. In this section, we will briefly look at a few of them while noting that there
are many more waiting in the wings for you to find as you read this book.

Getting Started with Gitolite

[8]

Creating groups
Gitolite allows you to create groups of users or repositories for convenience.
Think back to Alice and Bob, our junior developers. Let's say you had several rules
that Alice and Bob needed to be mentioned in. Clearly, this is too cumbersome;
every time a new developer joined the team, you'd have to change all the rules to
add him or her.

Gitolite lets you do this by using the following command:

@junior-devs = alice bob

Later, it lets you do this by using the following command:

repo foo

 RW = @junior-devs

 RW+ = carol david

 RW+ sandbox/ = @junior-devs

This allows you to add the junior developer in just one place at the top of the
configuration file instead of potentially several places all over. More importantly,
from the administrator's point of view, it serves as excellent documentation for the
rules themselves; isn't it easier to reason about the rules when a descriptive group
name is used rather than actual usernames?

Personal branches
Gitolite allows the administrator to give each developer a unique set of branches,
called personal branches, that only he or she can create, push, or delete. This is a very
convenient way to allow quick backups of work-in-progress branches, or share code
for preliminary review.

We saw how the sandbox area was defined:

 RW+ sandbox/ = alice bob

However, this does nothing to prevent one junior developer from accidentally
wiping out another's branches. For example, Alice could delete a branch called
sandbox/bob/work that Bob may have pushed. You can use the special word
USER as a directory name to solve this problem:

 RW+ sandbox/USER/ = alice bob

This works as if you had specified each user individually, like this:

 RW+ sandbox/alice/ = alice

 RW+ sandbox/bob/ = bob

Chapter 1

[9]

Now, the set of branches that Alice is allowed to push is limited to those starting
with sandbox/alice/, and she can no longer push or delete a branch called, say,
sandbox/bob/work.

Personal repositories
With Gitolite, the administrator can choose to let the user create their own repositories,
in addition to the ones that the administrator themselves creates. For this example,
ignore the syntax, which will be explained in a much later chapter, but just focus on
the functionality now:

repo dev/CREATOR/[a-z].*

 C = @staff

 RW+ = CREATOR

This allows members of the @staff group to create repositories whose names match
the pattern supplied, which just means dev/<username>/<anything starting
with a lowercase alphabetic character>. For example, a user called alice will
be able to create repositories such as dev/alice/foo and dev/alice/bar.

Gitolite and the Git control flow
Conceptually, Gitolite is a very simple program. To see how it controls access to a
Git repository, let us first look at how control flows from the client to the server in a
normal git operation (say git fetch) when using plain ssh:

User’s Workstation Git Server

Git client

(git clone/fetch/push)

git-upload-pack

(or git-receive-pack)

sshdssh

When the user executes a git clone, fetch, or push, the Git client invokes ssh,
passing it a command (either git-upload-pack or git-receive-pack, depending
on whether the user is reading or writing). The local ssh client passes this to the
server, and assuming authentication succeeds, that command gets executed on
the server.

Getting Started with Gitolite

[10]

With Gitolite installed, the ssh daemon does not invoke the git-upload-pack or
git-receive-pack directly. Instead, it calls a program called gitolite-shell,
which changes the control flow as follows:

User’s Workstation Git Server

Git client

(git clone/fetch/push)

(if access granted)

git-upload-pack

(or git-receive-pack)

sshdssh

gitolite-shell

First, notice that nothing changes on the Git client side in any way; the changes
are only on the server side. In fact, unless an access violation happens and an error
message needs to be sent to the user, the user may not even know that Gitolite
is installed!

Second, notice the red link from Gitolite's shell program to the git-upload-pack
program. This call does not happen if Gitolite determines that the user does not
have the appropriate access to the repo concerned. This access check happens for
both read (that is, git fetch and git clone commands) and write (git push)
operations; although for writes, there are more checks that happen later.

Trying out Gitolite
It's very easy to try out Gitolite in a safe environment without affecting anything
else in the system in any permanent manner. Gitolite has a fairly complete set of
test scripts, and the officially supported method of trying out Gitolite simply uses a
couple of these test scripts to automatically install and set up Gitolite.

At the end of this process, you will have a version of Gitolite all set up and ready to
use. You will also have an "admin" user, and six "normal" users, using which you can
try out most of the features of Gitolite (with the exception of some advanced features
such as mirroring).

Chapter 1

[11]

Preparing for the setup
You will need the following in order to try out Gitolite:

•	 A Unix (Linux, BSD, HP-UX, AIX, Solaris, and so on) server
•	 Git version 1.7.1 or later installed on the server
•	 Perl 5.8.8 or later version installed on the server
•	 An OpenSSH-compatible SSH daemon installed and running on the server
•	 Root access to the server in order to create a new throw away user to do the

testing in

At the time of writing this book, Git 1.7.1 is over three years old, and Perl 5.8.8 is quite
a bit older than that, so almost any recent Linux or BSD system should work fine.

Installing and setting up a test instance
With the prerequisites at hand, here's how you would get yourself a test instance of
Gitolite to try out:

1.	 Log in as root (using whatever commands your OS/distro requires to do
that) and create a new throw away user. You can call this anything you want,
but we will use the name gitolite-test here. Please do not use an existing
user for this!

2.	 Log in as the gitolite-test user.
3.	 Get the Gitolite sources from the official repository, git clone git://

github.com/gitolite/gitolite.
You can get this from any other clone of the gitolite sources if your server
cannot directly access the internet. Just substitute the URL you have in the
preceding clone command.

4.	 Switch to the directory that was just cloned using the following command:
cd gitolite

5.	 Install and set up Gitolite in test mode using the following command:
env GITOLITE_TEST=y prove t/ssh*

6.	 Go back to the HOME directory:

cd

Getting Started with Gitolite

[12]

This will churn through two of the test scripts. You will see a warning about an
authorized_keys file being created, which you can ignore, and finally a message
saying All tests successful, with some statistics on the test run.

At the end of that process, you should have the following: one "admin" user (called
admin) and six normal users (named u1 through u6). These users are simulated using
an ssh feature. If you are familiar with ssh, you can look in ~/.ssh/config to see
how this is done.

Playing with Gitolite
You can now use the test setup of gitolite from the previous section. Here's a sample
set of commands with notes to start you off:

Clone the special gitolite-admin repository:

$ git clone admin:gitolite-admin

Cloning into 'gitolite-admin'...

remote: Counting objects: 8, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 8 (delta 1), reused 0 (delta 0)

Receiving objects: 100% (8/8), done.

Resolving deltas: 100% (1/1), done.

Examine the contents of the clone:

$ cd gitolite-admin/

$ ls -a

. .. conf .git

$ ls -a conf

. .. gitolite.conf

Edit the conf/gitolite.conf file and add the following lines, which tell Gitolite to
create a new repository called bar and allow users u1 and u2 all rights to it:

repo bar

 RW+ = u1 u2

Save the file, then add the change (git add) and commit the file (git commit):

$ git add conf/gitolite.conf

$ git commit -m 'added repo bar'

[master 1111cee] added repo bar

Chapter 1

[13]

 1 file changed, 3 insertions(+)

$ git push

Counting objects: 7, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (4/4), 338 bytes | 0 bytes/s, done.

Total 4 (delta 1), reused 0 (delta 0)

remote: Initialized empty Git repository in /home/gitolite-test/
repositories/bar.git/

To admin:gitolite-admin

 f226f28..1111cee master -> master

As you can see, we've just created a new repository called bar. If you look at the
output carefully, you might notice, among the familiar output of a git push
command, a line saying that an empty Git repository was initialized on the
server. This is useful because you don't have to log on to the server to create the
repository—Gitolite takes care of it.

Let's look at some access rights. Running ssh against the server and supplying info
as the command will show you what repositories you have access to:

$ ssh admin info

hello admin, this is gitolite-test@server running gitolite3 v3.5.3.1-6-
g5bdc750 on git 1.8.3.1

 R W gitolite-admin

 R W testing

$ ssh u1 info

hello u1, this is gitolite-test@server running gitolite3 v3.5.3.1-6-
g5bdc750 on git 1.8.3.1

 R W bar

 R W foo

 R W testing

$ ssh u3 info

hello u3, this is gitolite-test@server running gitolite3 v3.5.3.1-6-
g5bdc750 on git 1.8.3.1

 R W foo

 R W testing

Getting Started with Gitolite

[14]

The preceding command shows you a list of the repositories you have access to,
and for each of them, whether you can read and write to the repository, or you have
read-only access.

A note on command and URL syntax
Remember that we are running the Gitolite server, as well as simulating
the seven different users, on the same Unix user (which is gitolite-
test). As a result, you are able to use commands such as git clone
admin:gitolite-admin and ssh u1 info. In a real setup, you will
represent yourself, and the server will be elsewhere. The commands will
be of the form git clone gitolite-test@server:gitolite-
admin and ssh gitolite-test@server info.

Summary
In this chapter, we learned why Gitolite is useful, saw an example of access control
rules, and got a glimpse of some of its features. We also learned the basic ideas
behind Gitolite, and created a test instance of Gitolite in order to try it out safely.

In the next chapter, we will install Gitolite properly and learn the basics of
administering Gitolite.

Installing Gitolite
The previous chapter showed you how to set up what we might call a sandbox
installation of Gitolite, suitable for experimenting with the software and getting
comfortable with it. We did that using a script that hid most of the details of the
install process so that you could get to the good stuff.

In this chapter, we will actually perform a proper install of Gitolite. We will start with
the prerequisites on the server and move on to the actual install steps. By the end of
this chapter, you should have a working installation of Gitolite that is ready to support
users and serve up repositories to them securely, enforcing access restrictions as you
specify them.

Gitolite users and the hosting user
Gitolite provides access to several Gitolite users, using only one actual user ID on
the server. Before we start installing and setting up Gitolite, it's useful to have some
knowledge of what is actually going on behind the scenes and how this is achieved.

Gitolite uses one Unix user called the hosting user to provide repository access to
many Gitolite users. The hosting user can be any valid user on the system, though by
convention it is either git or gitolite. This is the only user ID that is used by Gitolite
on the server, and it is within the home directory of this user that Gitolite places its
files, its own configuration, as well as the repositories it manages.

Gitolite can support thousands of Gitolite users on one server. These users are not
real users as far as the server operating system is concerned, and they do not get
access to the shell command line on the server. A Gitolite user does, however,
get access to some of the repositories on the server so that they can run Git
commands against them.

Installing Gitolite

[16]

Distinguishing users from each other
Gitolite uses ssh to authenticate its users. However, while ssh normally allows
authentication using either a password or an ssh key pair, Gitolite requires that
a key pair be used for authentication; passwords are not accepted.

Each Gitolite user has an ssh key pair on their desktop or laptop. A key pair
consists of two files, typically called id_rsa (the private key), and id_rsa.pub
(the public key).

The public key file contains a single, very long line of text; here's a
shortened example:

ssh-rsa AAAAB3NzaC1[...]LBkU1XGGPnX adam@lab1.example.com

The key is actually too long to print here, so we removed about 350 characters from
the middle, replacing them with ellipsis, but this should still give you a good idea of
what it looks like.

Public Keys
Adam

ssh-rsa abc123[...]

Bob
ssh-rsa def456[...]

Carol
ssh-rsa ghi789[...]

Adam

Bob

Carol

Ssh daemon

Runs:
gitolite-shell bob

command="gitolite-shell adam" ssh-rsa abc123[...]

command="gitolite-shell bob" ssh-rsa def456[...]

command="gitolite-shell carol" ssh-rsa ghi789[...]

Users

Authorized Keys file

(1)

(2)

(3)

(4)

Chapter 2

[17]

The preceding figure illustrates the sequence of events that happens when a user
connects to a Gitolite server to access a Git repository, and how this sequence is
enabled. First, each user sends their public key to the Gitolite administrator.
When the Gitolite administrator adds these users to Gitolite, Gitolite adds the keys
to a file called .ssh/authorized_keys in the home directory of the hosting user.
It then prefixes to the beginning of each line a string that looks somewhat like the
following line (for the user Adam) and similarly for other users:

command="/home/gitolite/bin/gitolite-shell adam",[...] ssh-rsa [...]

This first step is what enables the access control. It is a one-time action, and needs to
be repeated only when the administrator adds or removes users. Notice the command
option, containing a program name (gitolite-shell using its full path), and its
argument (the username, adam in this example)—this will be relevant a bit later.

The second step shows what happens when, say, Bob tries to connect to the server.
Bob runs the ssh command, whether directly or via his local git client, in the form
of a clone, fetch, or push command. The ssh daemon on the server handles the
connection attempt. Bob's ssh client will offer a public key, and the ssh daemon will
go looking for it in the authorized keys file, finding it eventually. In our example, it
finds a match on the second line.

Next, the ssh daemon notices the command option on the matched line in the
authorized keys file. This tells the ssh daemon that, instead of running the program
that the client asked for, it should instead run the command mentioned in that
option, including any arguments supplied. This means the gitolite-shell
program is executed with the Gitolite username (in our example, Bob) as the first
argument. This is how the gitolite-shell program knows who is connecting.

For those who are wondering what happened to the original command
that the git client actually wanted, the ssh daemon stores it in an
environment variable called SSH_ORIGINAL_COMMAND and passes it to
the gitolite-shell program, which knows what to do with it.

Preparing the server
Gitolite can be installed on any Unix server. This includes Linux, any of the
BSDs, and the legacy Unix servers such as AIX and HP-UX. With that said,
here are the requirements:

•	 A Unix system with a POSIX-compatible sh (shell)
•	 Git Version 1.7.1 or higher

Installing Gitolite

[18]

•	 Perl 5.8.8 or higher
•	 OpenSSH 5.0 or higher
•	 A dedicated Unix user as the hosting user described previously, whose home

directory must be on a filesystem that supports symlinks, and allows
executables (that is, it is not mounted with the noexec mount flag)

Ideally, you should use a brand new user ID that has no existing
files or directories, except for whatever a newly created user gets
(such as the bashrc or similar files). This will ensure that any
leftover files don't interfere.

Getting the Gitolite source
The next step is to obtain the Gitolite source code. The simplest way to do this, if
your server can connect to the Internet, is to run git clone git://github.com/
sitaramc/gitolite.

If you do not have direct access to the Internet, simply use some other
machine in between. For example, you could run the previous command
on a server that can connect to the Internet. From that intermediate server,
you can zip the entire Gitolite repository, bring it over to the Gitolite
server, and unzip it.

Installing the code
The first step is to put the source code where you want it to go. Gitolite is designed in
a way that it doesn't require root (except to create the hosting user), so you can (and
usually should) put it somewhere within the home directory of the Gitolite hosting
user. For our discussion, we will pick $HOME/bin, because this is usually included in
the user's PATH setting.

Log in as the hosting user, and run the following commands:

cd $HOME

mkdir -p $HOME/bin

gitolite/install --to $HOME/bin

For people who are familiar with commands such as make prefix=/usr/local
install, this is conceptually not very different.

Chapter 2

[19]

Setting up Gitolite
Now that the code is in the right place, we need to set it up. Setting it up involves
adding an ssh public key for the main administrator of the Gitolite installation.
In this book, we will assume the administrator's name is Adam, thus his Gitolite
username will be adam, but as you follow along, please substitute your own name
wherever you see references to Adam or adam.

Ssh is a powerful and complex tool. To make things simpler in this chapter, we will
describe a set of steps that would surely work, along with suitable assumptions
and constraints. These constraints are not absolutely necessary, but they do serve
to simplify our procedure, as well as remove potential troublespots. If you're very
familiar with SSH, you will probably be able to get around them quite easily.

Creating an ssh key pair
The administrator needs to first create an ssh key pair for themselves at their main
workstation. In many cases, there may already be an ssh key pair, possibly generated
for some other purpose. You should look in $HOME/.ssh for a pair of files called
id_rsa and id_rsa.pub. If you don't find any such files, you can generate a key pair
by running the ssh-keygen command.

Ideally, you will choose a strong passphrase to protect your private key when
generating your ssh key pair. To use it without having to constantly type the
passphrase, you will then use the ssh-agent command or any of its derivatives,
such as the keychain package. However, these nuances are out of the scope of
this book.

Similarly, if you had previously created a non-default key type (that is, something
other than RSA for ssh protocol 2, which is the default), then it is assumed that you
know what you are doing. Gitolite should work fine with DSA and ECDSA key
pairs, but will probably not work with RSA protocol 1 keys.

Running the setup command
Now that you have your key pair at your workstation, you will need to get the public
key (and only the public key!) over to the Gitolite hosting user's home directory on
the server. One way to do this is to use the scp command, as in scp .ssh/id_rsa.
pub git@host:adam.pub. You can use any other method available to you, for
example rsync, or sftp, or even a USB stick. It doesn't matter how you do it as long as
the file gets there and is renamed as adam.pub.

A word of warning for ssh experts: do not be tempted to automatically add this key to
the Gitolite hosting user's authorized keys file using a command such as ssh-copy-id.

Installing Gitolite

[20]

Once you have copied the file, you are ready to run the actual setup command,
which is as follows:

gitolite setup -pk adam.pub

This command should produce an output similar to the following:

Initialized empty Git repository in /home/gitolite-test/repositories/
gitolite-admin.git/

Initialized empty Git repository in /home/gitolite-test/repositories/
testing.git/

WARNING: /home/gitolite-test/.ssh/authorized_keys missing; creating a new
one

You can ignore the warning about the authorized keys file being created—this is
quite normal for the first time you do this. And with that, your Gitolite installation
and setup are all done.

Checking over your new Gitolite server
Very few Gitolite administration tasks require logging on to the server and using
the command line. Most of the day-to-day maintenance tasks (especially adding
users and repositories) are done by making changes to a special repository called
gitolite-admin, and pushing those changes to the server; that is, the administrator
must perform the following:

1.	 Clone the gitolite-admin repository.
2.	 Add some files or make changes to existing files.
3.	 Commit the changes.
4.	 Push them to the server (an administrator is someone who is allowed to push

to the gitolite-admin repo). When the push completes, Gitolite on the
server side invokes specific scripts to effect the changes requested.

You should be able to clone the gitolite-admin repository from your workstation by
running git clone git@server:gitolite-admin. Git will use ssh to connect to the
"git" user on the "server". By default, it will look at your $HOME/.ssh directory, find
your ssh key pair, and offer the public key to the server to authenticate you. After
that, things proceed pretty much as described in the earlier section on distinguishing
users from each other, and Gitolite gives you access to the repository.

Chapter 2

[21]

You should now see the usual message from a successful git clone operation,
and you can enter cd gitolite-admin to see what came in:

$ cd gitolite-admin

$ ls -a

. .. conf .git keydir

$ ls -a conf keydir

conf:

. .. gitolite.conf

keydir:

. .. adam.pub

You can see where the public keys are stored. Note that Gitolite's notion of what
your Gitolite username is, comes solely from the name of the public key file in the
keydir directory. This is why when you copied the id_rsa.pub file from your
workstation you copied it as adam.pub.

Ssh experts may note that the comment field inside the public key file
is ignored; it would be against the conventional meaning of the word
"comment" to use it for anything that causes a behavioral change in a
system, despite the number of people on the Internet who appear to
think it has a higher purpose.

Adding a user
Although we will cover adding users in detail in a later chapter, you may want to add
a beta user right away. Let's say you want to add Bob; here's how you can do this:

1.	 Get his public key, rename it to bob.pub.
2.	 Copy it to the keydir directory you saw above (that is, in your local clone of

the gitolite-admin repository).
3.	 Add the file, commit, and push.

Installing Gitolite

[22]

Adding a repository
Looking inside the conf/gitolite.conf file shows us the following:

$ cat conf/gitolite.conf

repo gitolite-admin

 RW+ = adam

repo testing

 RW+ = @all

To add a new repository, edit this file and add a repo line similar to the ones that
were added previously, followed by an access rule line, sticking to the syntax shown
previously for now. Save the file, add it, commit the change, and push the commit.
You should immediately see the usual response from the remote git for a successful
push, but also something like the following:

remote: Initialized empty Git repository in /home/gitolite-test/
repositories/t2.git/

This indicates that the new repository is ready for use.

Summary
In this chapter, we installed Gitolite, learned about the special gitolite-admin
repository and its contents, and added a new user and a new repository. In the next
chapter, we will talk about what a Gitolite-managed Git repository server will look
like to your users and what they can do with it.

Your Users and Gitolite
Now that we have a working installation of Gitolite, it's time to talk about how users
interact with a Gitolite-managed system, and what they need to know to start using
it. This will allow you to get some of your advanced users to start using the system
while you continue to learn about Gitolite as we progress. As an administrator, you
will be making a lot of decisions in terms of things such as naming conventions for
repositories as well as branches, how tight or relaxed the access rules will be, and
many more aspects that you will learn going forward. These advanced users could
help by giving you feedback or acting as sounding boards for these decisions.

Accessing Git repositories
Before discussing how to access a Gitolite-managed repository, we will first need
some background on how Git repositories are normally accessed, that is, when you
aren't using Gitolite.

Git servers, SSH, and HTTP
We start by reviewing how a user views a normal Git server. Git repositories
use URLs as locators, so when a user clones, fetches from, or pushes to a remote
repository, it is done using a suitable URL. Git URLs are not very different from any
other URL, and the man page for git-clone has a section on them, so you can see all
the syntax variations that you can use.

However, for authenticated remote access, there are really only two protocols that
are of interest: SSH and HTTP. Of these, ssh-based access is a lot more common,
because it is quick and easy to set up; even on a freshly installed Unix, there's usually
no extra configuration required to get it working.

Your Users and Gitolite

[24]

As the main page mentioned previously says an ssh URL has the general form
ssh://[user@]host.xz[:port]/path/to/repo.git. When you type an URL, such
as ssh://git@server.example.com/repo to access a remote git repository, you
will usually be asked for a password, unless an ssh key pair has already been set up
for access to the remote host. Once access has been granted, the ssh daemon runs the
appropriate Git command on the remote side to talk to the Git client on the local side.

Accessing Gitolite repositories
With the background from the previous section, we're ready to see how things
change when a user goes through Gitolite to access a Git repository.

This section will contain the basic material that most administrators
would need to provide to their users, or to explain to them how
to access a Gitolite server. However, depending on your users'
familiarity with ssh and related topics, you may have to expand this
material with supplementary information, examples, or instructions
specific to your site.

SSH key pairs
The most significant change is that password access is no longer possible; users must
use a key pair and send the public key to the administrator so that they can be added
to Gitolite. If this does not happen, Gitolite has no way to recognize the user.

If they don't already have an ssh key pair, they should generate one on their
own workstations.

Your users will need to use the ssh-keygen command to create the key pair. This
creates two files, which are id_rsa containing the private key and id_rsa.pub
containing the public key, if they chose the default options. On a Windows system,
the command will respond with the full paths of where the files were created, while
on a Unix system they will be in $HOME/.ssh.

Ideally, users should set a passphrase on the private key for security
and then use ssh-agent for convenience; however, both of these
topics are out of the scope of this book. Any ssh-related text or website
should have sufficient details, as will the documentation that comes
with the OpenSSH package.

They will then send the public key (the file whose name ends in .pub) to you, so that
you may add them as a user.

Chapter 3

[25]

Repository naming
The second change is that the name of each repository will be whatever you, as
the administrator, have created in the conf/gitolite.conf file that we briefly
saw in the last section of the previous chapter. Gitolite actually creates all its
repositories inside $HOME/repositories in the hosting user account, but only you
(the administrator) need to know this. As far as the user is concerned, to access a
repository that is listed in the conf file as repo foo, the URL to use is simply git@
server:foo (or the longer form ssh://git@server/foo).

Also, note that the .git at the end of the repository name is optional for Git
commands (namely clone, fetch, push, ls-remote, and archive). Git itself works
fine with or without it, so Gitolite does the same in order to be consistent. However,
in interactions with Gitolite, such as when running Gitolite commands that refer to
repositories, you must use the bare name (without the trailing .git), which is the
name that Gitolite prints in its error messages or informational output.

Getting information from Gitolite
Once your users have access to Gitolite, they would probably like to see which
repositories they can access. The simplest way to do this is to run the info command,
which is available to all remote users:

$ ssh git@server info

hello adam, this is git@server running gitolite3 v3.5.3.1-7-g5f88a09 on
git 1.8.3.1

 R W gitolite-admin

 R W t2

 R W testing

This tells you what your Gitolite username is (in this case, adam), which repos you
have access to, and whether you are allowed to read and write, or only read but not
write to the repo. Apart from that, this command also tells you which version of
Gitolite and which version of Git is running on the server, which could be useful.

Your Users and Gitolite

[26]

Gitolite commands
The info command is not the only command available to your users, of course;
there are a few more. As you may have guessed from the preceding part, the general
format for running Gitolite commands is simply ssh git@server command-name
command-arguments, where the arguments are of course optional.

Conveniently, Gitolite also has a command to list all the available commands:

$ ssh git@server help

hello adam, this is gitolite3 v3.5.3.1-7-g5f88a09 on git 1.8.3.1

list of remote commands available:

 desc

 help

 info

 perms

 writable

As you can see, this gives the remote user the list of commands that they are allowed
to run. (Some of these commands can only be explained in later chapters).

Further, if you run this from the Gitolite hosting user command line, as gitolite
help, you will get a listing of all the available commands, and not just the ones that
are enabled for remote access.

Getting help for commands
Getting help for a command is easy. Every Gitolite command responds with a help
message when called with -h as the only argument. For example, the help message
for the info command is given as follows:

$ ssh git@server info -h

Usage: gitolite info [-lc] [-ld] [<repo name pattern>]

List all existing repos you can access, as well as repo name patterns you
can

Chapter 3

[27]

create repos from (if any).

 '-lc' lists creators as an additional field at the end.

 '-ld' lists description as an additional field at the end.

The optional pattern is an unanchored regex that will limit the repos

searched, in both cases. It might speed up things a little if you have
more

than a few thousand repos.

As before, some of these options pertain to features of Gitolite we have not yet
encountered, and will become clearer when that material is presented.

Troubleshooting SSH issues
When you start adding your first few users to a system, you may run into some
ssh-related issues. This section will discuss the possible issues in brief, and explain
how to recognize and fix them.

Authorization, not authentication
First, we need a couple of basic definitions. Authentication is the process of verifying
that you are who you claim to be. Authorization is the process of determining what
you want to do and deciding whether you're allowed to do it or not. Authorization
happens after authentication (the system can only decide what you are allowed to do
after establishing who you are!).

Gitolite is only concerned with authorization; it does not do authentication. It leaves
authentication up to an ssh server or a web server.

The HTTP mode is out of scope for this book;
please consult Gitolite's online documentation
to use that mode.

Once the ssh server has authenticated the user, it uses the command option in the ssh
authorized keys file ($HOME/.ssh/authorized_keys) to invoke Gitolite and pass
it the username. Gitolite then decides whether this user is allowed to access this
repository or not.

Your Users and Gitolite

[28]

Duplicate public keys
If the user's public key was already part of the authorized keys file before setting
up Gitolite (perhaps to allow him to get a login shell and run Unix commands),
the key will appear twice in the authorized keys file—once as is, and once with
the command option and other options that Gitolite adds to each public key in the
keydir directory.

However, if a key appears twice in the authorized keys file, the ssh server will only
look at the first occurrence. At the same time, Gitolite tries very hard to make sure
that a key that already had normal access to the server continues to have it, so it
will place the Gitolite line, which is more restrictive than the default access, after
the normal line. This means that users who have shell access to the Gitolite hosting
user will not be able to use Gitolite, since the key will not invoke Gitolite. They will
need to create and use a different ssh key pair for Gitolite (that is, repository) access.
They would then have to manage these two key pairs on their client, perhaps using
$HOME/.ssh/config to help. Further explanation of the ssh config file and how it
helps you choose which key to use, is out of scope for this book. However, almost
any decent book on ssh, as well as the main pages for ssh on your system, should
have this information.

Diagnosing public key problems
The best way to diagnose public key problems, such as in the previous section, is to
run the sshkeys-lint program that comes with Gitolite. Here is an example where
two problems with public keys were intentionally created. The first is that we reused
a key that already had shell access, adding it to Gitolite as u2.pub. The second is that
we copied the file u5.pub as u6.pub. The output of the sshkeys-lint command after
these changes is given as follows:

$ gitolite sshkeys-lint

sshkeys-lint: ==== checking authkeys file:

sshkeys-lint: WARNING: authkeys line 5 (user u2) will be ignored by sshd;
same key found on line 1 (shell access)

sshkeys-lint: WARNING: authkeys line 9 (user u6) will be ignored by sshd;
same key found on line 8 (user u5)

sshkeys-lint: ==== checking pubkeys:

sshkeys-lint: admin.pub maps to user admin

sshkeys-lint: u1.pub maps to user u1

sshkeys-lint: u2.pub maps to shell access

sshkeys-lint: u3.pub maps to user u3

Chapter 3

[29]

sshkeys-lint: u4.pub maps to user u4

sshkeys-lint: u5.pub maps to user u5

sshkeys-lint: WARNING: u6.pub appears to be a COPY of u5.pub

sshkeys-lint: u6.pub maps to user u5

3 warnings found

As you can see, the command lists potential problems, first in the authorized
keys file ($HOME/.ssh/authorized_keys), and then among the public keys that
Gitolite owns.

SSH best practice
We've now seen how to troubleshoot ssh issues. However, it's better to avoid such
problems in the first place, and a good rule of thumb for avoiding them is this: don't
give any user shell access to the server. Even you, as the administrator, should log on
to some other user ID, run su - git, and then provide a password when you need
to do anything on the Gitolite hosting user's command-line shell. Let all the keys in
the authorized keys file be Gitolite-managed keys unless you are really familiar with
ssh. That should eliminate most of the common issues with ssh keys.

Summary
In this chapter, we saw how to add users to your new Gitolite installation, and how
to find and fix problems with ssh keys. In the next chapter, we will talk about
creating new repositories.

Adding and Removing Users
Git supports two remote transports for general use—the ssh transport and the HTTP
transport. Of these, the ssh transport is much easier to set up, since most systems
already have an ssh server package installed, configured, and ready to accept
authenticated connections. This is generally not true for HTTP, and even if an HTTP
server was available, you'd still have to configure it for Gitolite.

Therefore, we will explore adding and removing users for a server using the ssh
transport. Some of the earlier chapters have already shown you the basics of how to
add a user. It is now time to dig a little deeper into this and explore a few nuances
and special cases.

Adding users
Strictly speaking, Gitolite doesn't know where users come from. If you recall
the section on authentication and authorization from the previous chapter, you
learned that Gitolite does not even do authentication—it leaves it up to the ssh
server (or perhaps the HTTP server). However, Gitolite does help with ssh-based
authentication, since that is the most common use of Gitolite, and the server and its
configuration are fairly standard and predictable, in most cases.

A word of warning: do not add new users manually on the server. Gitolite users,
repositories, and access rules are maintained by making changes to a special
repository called gitolite-admin and pushing those changes to the server, as
explained in Chapter 2, Installing Gitolite. Thus, almost everything you do will be
within a clone of the gitolite-admin repository.

Adding and Removing Users

[32]

To add a user, say Alice, obtain her public key (typically $HOME/.ssh/id_rsa.pub
on her workstation). Then copy it to the directory called keydir (in your clone of
the gitolite-admin repository), with the username as the basename (for example,
alice.pub for user alice). Finally, add the key using git add keydir/alice.pub,
then commit and push.

Here are some additional points to note in order to do this correctly:

• All public key files must have names ending in .pub, and must be in
openssh's default format.

• Usernames must start with an alpha-numeric character, and can then contain
alpha-numerics, hyphens, underscores, periods, and the @ sign. Examples
of valid usernames are sitaram, sitaram.chamarty, sitar amc@g mail.com,
and so on.

Behind the scenes
Here's how Gitolite on the server processes users and keys. These actions are
initiated from within a post-update hook for the gitolite-admin repository that
Gitolite installs.

1. Gitolite reads the authorized keys file ($HOME/.ssh/authorized_keys),
and makes a note of all the non-Gitolite keys (that is, keys that did not come
from Gitolite).

2. It then reads all the public keys in the keydir directory of the gitolite-admin
repository. This is recursive; you can have keys in subdirectories to any level.

3. As it reads each public key, it compares it to each of the public keys it has
processed so far, including the non-Gitolite keys. If there is a match, it prints
a warning to the effect that the ssh server will be ignoring the second and
subsequent occurrences of the key in the authorized keys file.

4. It then adds ssh options to each public key line. The options added are
no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty.
These security options are generally recommended for any ssh server that is
not meant to be serving interactive or shell users.

5. The command option is added, pointing to the installed gitolite-shell
location, along with an additional argument: the Gitolite username. The
username is usually the basename of the public key file (that is, removing
any directory prefixes, and the .pub suffix); see the section on Users with
multiple key pairs later when this may not be quite true.

Chapter 4

[33]

If you recall from Figure 1 in Chapter 2, Installing Gitolite (reproduced below for
convenience), this ensures that when the user accesses the server and offers the
corresponding public key for authentication, his connection, after the ssh daemon
has successfully authenticated him, will be passed onto the gitolite-shell
program, with his Gitolite username as a command-line argument.

Public Keys
Adam

ssh-rsa abc123[...]

Bob
ssh-rsa def456[...]

Carol
ssh-rsa ghi789[...]

Adam

Bob

Carol

Ssh daemon

Runs:
gitolite-shell bob

command="gitolite-shell adam" ssh-rsa abc123[...]

command="gitolite-shell bob" ssh-rsa def456[...]

command="gitolite-shell carol" ssh-rsa ghi789[...]

Users

Authorized Keys file

(1)

(2)

(3)

(4)

Users with multiple key pairs
Some users have multiple key pairs. For instance, they use a laptop as well as a
desktop at work. Some may have another machine at home, or work directly on
a server.

You might think it's best to use the same key pair on each machine—after all, they
all belong to the same user—but this is not a good idea. The risk of a private key
compromise increases with the number of machines that it is installed on, and that
would not be a good thing at all.

Adding and Removing Users

[34]

As a result, Gitolite allows a user to have multiple public keys. There are in fact
two ways to associate multiple public key files to the same Gitolite user.

The first way is to use subdirectories. Here's an example tree structure of the
gitolite-admin repository showing a set of keys in the keydir subdirectory:

As you can see, there are two files called carol.pub. Both of these will generate
lines in the authorized keys file as described earlier, with the username set to carol.
Whichever key she uses, Gitolite will see the authenticated Gitolite username as
carol, and authorize her access accordingly.

The second way to allow multiple public keys is to use a location suffix. A location
suffix is an @ sign followed by a single word consisting of alphanumerics, hyphens, or
underscores. For example, if Alice had one key for her laptop and one for her desktop,
she might send you the keys as alice @l aptop.pub and alice @d esktop.pub.

The location suffix must not contain a period; otherwise it looks like an
e-mail address. As far as Gitolite is concerned, a public key file called
alice @l aptop.pub pertains to a user called alice, but a file called
alice @l ap.top.pub pertains to a user called alice @l ap.top, which
is a perfectly valid email address at least as far as syntax is concerned.

Chapter 4

[35]

Giving some users a shell
Some of your users may have a legitimate need to log on to the server as the hosting
user and use a shell command line. If this is required for just one or two users,
the simplest way to deal with this is to have them use two different keys—one for
Gitolite access and one for shell access. The second key would be installed manually
in the authorized keys file on the server, and would not have the command and other
options that Gitolite keys have.

Non-Gitolite keys must be added right at the start of the
authorized keys file, or at least before the marker line that
says # gitolite start. Keys added in between Gitolite's
start and end marker lines will be deleted the next time the
gitolite-admin repository is pushed.

However, this requires careful handling of the second key on both the server side, as
well as the client side. Some users may not be interested in learning how to handle
multiple keys on their side, and how to present the correct key for each access.

There is another way to handle this problem, using a single key. Here's what you
need to do in order to give any user shell access.

First, determine who is to get this access and make a list of those users. The username
should be the bare username as used in the gitolite.conf file, for example, alice
and bob. Do not use alice.pub, alice@laptop.pub, or any such variants.

Next, add all these names to a simple file called $HOME/.gitolite.shell-users on
the server. Put just one name on each line, without any extra spaces before or after.

Then, edit the file $HOME/.gitolite.rc on the server, and uncomment the
following lines:

SHELL_USERS_LIST => "$ENV{HOME}/.gitolite.shell-users",

and

'Shell',

Finally, run the following command:

gitolite trigger POST_COMPILE

Adding and Removing Users

[36]

Managing keys outside Gitolite
You do not have to let Gitolite manage the keys if you have a different
method of managing them that you prefer. For example, you may be using an
LDAP-backed ssh daemon, which manages users' keys centrally for several
enterprise applications and systems, and therefore you wish to take advantage
of that for Gitolite user management.

Gitolite will work fine with any method as long as you ensure that these points
are covered:

•	 The SSH_ORIGINAL_COMMAND environment variable should contain the
original Git command that the client sent out. Typically, this will be
something like git-upload-pack 'repo.git' (including the single quotes)
or, for pushes, git-receive-pack 'repo.git'.
This variable is automatically set by the ssh daemon when the ssh
configuration specifies a forced command of some kind (please see the ssh
documentation for details on how to force commands).

•	 The command that is thus forced to run should be the full path to the
gitolite-shell program, wherever you may have installed it. For example,
it could be /home/git/gitolite/src/gitolite-shell.

•	 This program should get exactly one argument: the Gitolite username of the
ssh-authenticated user.

Getting user group information from
LDAP
Gitolite makes it possible to make some limited use of user data that may already be
available in the enterprise.

The most common use case for this is that the enterprise already has an LDAP
database that contains all the users and their roles in the organization. What the
administrator would like to do is to use this information to reduce the burden of
giving users rights to Gitolite repositories. It would be great if the administrator
could merely specify rights in terms of group-names and Gitolite were to somehow
figure out which groups a user is a member of.

Chapter 4

[37]

Gitolite can facilitate the querying of the LDAP database and somehow acquire the
information it needs. The solution involves writing a helper program, which does
the following:

•	 Accept one Gitolite user ID as the first (and only) argument
•	 If necessary, convert this user ID in some unspecified manner to make it

suitable for the LDAP query. For example, you may have to add specific
components to the name for the query to work.

•	 Use this user ID as a query parameter and query the LDAP database to get
user details. The program that does this will need to have credentials and
permission to query the LDAP database.

•	 Once the query returns, extract the user's role/group information from
the result.

•	 If required, again convert this group information to the names that you have
used in Gitolite's access rules.

•	 Print the list of groups that result, all on one line and separated by spaces.

Once this program is done, save it as $HOME/bin/ldap-query-groups and test it. It's
only taking one command-line argument and printing results to the terminal so there
is no real harm in doing so, as far as Gitolite is concerned.

After testing it, edit Gitolite's rc file ($HOME/.gitolite.rc) and add the following
line (including the trailing comma) somewhere within the definition of the %RC
variable, preferably close to the top:

GROUPLIST_PGM => "$ENV{HOME}/bin/ldap-query-groups",

Removing users
Removing Gitolite users is pretty simple. Just remove all the keys pertaining to the
user (in case they have more than one, as discussed in an earlier section) from a clone
of the gitolite-admin repository. This should be done using the git rm command,
not a plain rm command.

After that, commit the change and push it.

You can confirm the removal in a couple of different ways. First, the keys you just
removed should no longer be available in $HOME/.gitolite/keydir on the server.
Second, the user should not be found if you search for the name in the authorized
keys file ($HOME/.ssh/authorized_keys).

Adding and Removing Users

[38]

Summary
In this chapter, we saw how to add and remove users, as well as how to handle
several other unusual requirements that may come up once in a while. In the next
chapter, we will talk about adding and removing repositories.

Managing Repositories
One of the advantages of using Gitolite is that you do not need to create new
repositories manually, set their permissions, and so on. Gitolite does all this for you,
based on the contents of a specific file (conf/gitolite.conf) in the gitolite-admin
repository. In this chapter, we will show how you can add new repositories to
Gitolite, as well as how to bring in existing repositories in to Gitolite's ambit.

Adding repositories
To add a new repository, you will need to do the following in your clone of the
gitolite-admin repository.

First, edit the conf/gitolite.conf file. This file should have some content already,
for example:

repo gitolite-admin

 RW+ = adam

repo testing

 RW+ = @all

This basically says that only the user called adam has the permission to make changes
to the gitolite-admin repository, and all users have the permission to make
changes to the testing repository.

To add a new repository, you will need to add a repo line, as well as at least one
access control rule. For example:

repo my-repo-1

 RW+ = adam

This will create a repository called my-repo-1, making adam the only user who can
read or write it.

Managing Repositories

[40]

If you do not add an access rule, the repository is not created. For example, if you
had the following:

repo my-repo-1

repo my-repo-2

 RW+ = adam

then the my-repo-1 repository is neither created, not even recognized by Gitolite in
any way.

However, you can specify more than one repository name in the repo line, so the
following command is perfectly fine:

repo my-repo-1 my-repo-2

 RW+ = adam

Adding existing repositories
Adding a repository, as described in the previous section, will create an empty, bare,
repository on the server. You can then populate that repository by pushing whatever
content you like. This is certainly one way to bring existing content under Gitolite's
control, as long as those repositories did not have their own Git hooks in place earlier.

However, most sites will have several existing repositories that need to be brought
under Gitolite's control, and the technique of creating an empty repository and
pushing content from a workstation can be really slow, especially if the content is
already available on the server. This section will tell you how to do this quickly
and easily.

It is always advisable to have backups so that you can
recover if something unexpected happens while following
the procedure described.

First, make sure the existing repositories you are looking at are bare repositories.
A bare Git repository is a repository that does not have a working tree. You cannot
reliably push to a repository that has a working tree attached, so server repositories
must always be bare. A bare repository is usually created by passing the --bare
option to the git init or git clone commands. A later section in this chapter
describes how to convert non-bare repositories to bare repositories.

Chapter 3

[41]

Next, move or copy the bare repositories to $HOME/repositories, which is where
Gitolite expects to find all the repositories it is managing. When doing this, make
sure the name of the repository ends in .git.

In common Git usage, it is merely a convention to name bare repositories
with names ending in .git, while non-bare repositories do not have an
extension. With Gitolite however, the trailing .git is necessary; it is no
longer just a convention.

Once you have all the repositories in place, run the gitolite setup command.

Finally, in a clone of the gitolite-admin repository, add these repositories to the
conf/gitolite.conf file as described earlier, save the changes, add, commit,
and push.

Common problems and troubleshooting
You may need to modify the procedure described earlier under some circumstances.
This section will describe some of the problems that you may find and how to work
around them.

Ownership and permissions
Gitolite expects that all the files and directories inside $HOME/repositories are
owned by the Gitolite hosting user, and that this user is allowed to write to all of
them. If this condition is not met, both Git and Gitolite will be affected.

The most common reason for such a condition to be violated is that the administrator
has copied some files (such as a bunch of existing repositories perhaps) as root.
When files are copied as root, they are not usually given the owner and group ID of
the directory in which they are being placed, but that of the original owner or the
user executing the copy.

You can see this by running ls -alR on the repository in question; if the owner and
group of all the files and directories are not git (the hosting user), then you will need
to modify the ownership of that repository.

To fix this, run the following command: (As in earlier chapters, we assume the
Gitolite hosting user is git; if not, please substitute accordingly.)

as root

cd ~git

chown -R git:git repositories

chmod -R u+rwX repositories

Managing Repositories

[42]

If there are no ownership problems, but for some reason you do have permission
issues, you can omit the chown command and do the rest as git (that is, you do not
need to log in as root).

Converting a non-bare repository to a bare
repository
A bare repository is a repository without the working tree attached to it. Instead, the
files and directories that, in a non-bare repository, are contained within the special
.git directory are directly placed in the repository at the top level.

One way to convert a non-bare repository to a bare repository is to clone it using the
--bare option. The following command is the most generic way of doing this:

git clone –bare /somewhere/repo ~/repositories/repo.git

However, this makes a full copy of the source to the target, which might be a problem
if the repository is very large. But if the source repository is on the same filesystem as
the target, there is a very useful optimization that Git provides, which you can take
advantage of. This is affected by adding a -l option to the clone command:

git clone –bare -l ~/somewhere/repo ~/repositories/repo.git

The -l option tells Git to use hardlinks instead of copying the files over to the new
repository, and is almost instantaneous, regardless of how big the repository actually
is. Since it uses hardlinks (and not symlinks), you are free to delete the source
repository after the clone is done; it will not harm the newly created target repository.

Either way, at this point you will need to copy any hooks that already exist in your
repository from the hooks directory of the source to that of the destination. This is
because the clone method does not carry the hooks over.

Git experts will realize that another way to convert a non-bare
repo, say my-repo, is to promote the .git directory up one level,
renaming it my-repo.git. That is, by running the command
mv my-repo/.git my-repo.git. At this point, the old my-repo
directory can be deleted. As always, make sure you have backups
before deleting anything.

Chapter 3

[43]

Gitolite and the update hook
Gitolite's access control mechanism for a push operation involves hooking into
Git's update hook mechanism (see the man page for githooks to get details on the
various hooks that Git provides).

Therefore, if your existing repository already had an update hook, running the
gitolite setup described previously will wipe out this existing hook and install
Gitolite's own update hook in its place.

Gitolite does provide a mechanism that allows your old update hook to also run,
but it needs to be run by Gitolite. There is a supported mechanism for this called
VREF, which will be described briefly in Chapter 7, Advanced Access Control and
Configuration, and in detail in Chapter 10, Understanding VREFs.

Summary
This chapter showed you how to add your own repositories, and told you about
some common problems that may occur when bringing in existing repositories in
to Gitolite's control. The previous chapter has already covered adding users, so we
are now ready to start looking at access control. Access control is the reason Gitolite
exists, and the next chapter will (finally!) show you some basic access control syntax,
rules, and other details.

Getting Started with
Access Control

By now, you know how to add new users to the Gitolite system, as well as how to
create new repositories or bring existing repositories into Gitolite control. It's time
to tie those together now and look at access control, which is, for most sites, the main
reason to install Gitolite.

Basic access control examples
The aspect of access control that first comes to mind, for any Git administrator,
is the ability to prevent people from accessing repositories. We'll start with some
simple examples before describing the syntax. Here's a very simple set of rules for a
repository called foo:

repo foo

 R = alice

 RW = bob

 RW+ = carol

These rules establish what operations Alice, Bob, Carol, and any other Gitolite users
are allowed to execute against this repository. As you might guess from the simple R
permission given to Alice (or, to put it another way, the lack of a W in her permission
string), she is only allowed to read the repository, which means she can use the git
clone, git fetch, and git ls-remote commands, but cannot use git push in
any form.

Getting Started with Access Control

[46]

Bob and Carol are both allowed to push changes to the repository. As before,
you probably guessed this from the W character in each of their permission lines.
What may not be immediately obvious is the significance of the + character in
Carol's permission string. This extra character allows Carol to force a push, that is,
push a new object to a ref even if the new object is not a descendant of the old object.
This is called a non-fast forward push in Git parlance, and, even in normal Git use
(that is, even without an access control system in place), requires explicit action on
the user's part in order to succeed. If you're not familiar with this, please consult
man git-push and other Git resources.

The + character was chosen because it is a reminder of the + you have to use in
the git push command to selectively force-push some refs. (Please refer to the
description of the refspec field in the man page for the git push command for
more details). Although we will not encounter this use case in this chapter, for the
sake of completeness, we should also mention that the + character also allows a user
to delete a ref, even though the corresponding syntax in the git push command
does not use a + sign.

For a lot of installations, this basic example serves all their needs—namely,
to distinguish people who are only allowed to read but not to write, and among
those that are allowed to write, prevent some from dangerously force-pushing
(or worse, deleting) an important branch or tag.

Basic branch level access control
The next example will show another very common need: that of restricting some
people (perhaps junior developers or interns) to being able to push only branches in
a specific namespace. This is a fairly common situation, where the most important
branches (such as master, or maybe next, or whatever your branch naming and
workflow uses), can only be changed by trusted developers, who presumably have
reviewed the code and found it to be acceptable. Code written by junior developers
and/or interns is not deemed to be automatically acceptable, and it is often useful to
sandbox them in some way.

Interestingly, this particular use case appears to be more about developer
trust and maturity than about security per se. However, in terms of
controlling or preventing such behavior, there is no difference between
someone accidentally overwriting the master branch, and someone doing
it with malicious intent.

Chapter 6

[47]

Here's an example of an access control rule set that achieves such a restriction:

repo foo

 R = alice

 RW+ = bob

 RW+ dev/ = carol

This allows Carol to read the repository as well as to push to it, but it prevents her
from pushing anything except branches whose names start with dev/. In contrast,
Bob whose access rule does not specify anything after the permission field, can push
any branch.

Lexical syntax of the conf file
Now that we've seen a couple of useful, and immediately usable, examples, it is time
to look at the lexical syntax of the conf/gitolite.conf file (often called, in Gitolite,
the conf file).

The conf file is a plain text file, whose overall syntax is governed by a few simple rules.

Gitolite usernames (in our example, alice, bob, and so on) must start with an
alphanumeric character, and contain alphanumerics, periods, hyphens, underscores,
or the @ sign. If an @ sign is present, it must be followed by a domain name (that is,
something that has at least one period in it). This allows e-mail addresses to be used
as usernames, which is arguably very useful when you have several John Smith in
your organization!

Repository names must start with an alphanumeric character, and contain
alphanumerics, periods, hyphens, underscores, or slashes. However, they must
not start with a slash or end with a slash.

Comments are allowed; the syntax is the same as the shell, perl, and so on.
Anything following a # sign is taken to be a comment and discarded.

Continuation lines (in the C-style) are not allowed by default.
However, by editing the $HOME/.gitolite.rc file, which we
will see in more detail in Chapter 7, Advanced Access Control and
Configuration, you can enable this feature.

Getting Started with Access Control

[48]

The syntax of access control rules
The access control list has a simple structure. Briefly, it is structured like this:

repo <one or more repos or repo-groups>

 <permission> <zero or more refexes> = <one or more users or
user-groups>

A conf file has one or more repo lines. Each repo line contains the word repo,
followed by one or more repository names or repository-group names (we'll discuss
groups later in this chapter). These repository or group names must all be on the
same line.

Each repo line is followed by one or more access rules that apply to this set of
repositories or groups. An access rule consists of the following:

•	 A permission field (for example, R, RW, and so on)
•	 Zero or more refexes (refexes are detailed in the next section, but one

example refex you have already seen is dev/)
•	 An = sign to serve as a separator
•	 And finally a list of users or user-group names

Branch level access control and refexes
This section will talk about a very important part of Gitolite—specifying who
can make changes to which branch or tag. As a matter of historical interest, the
lack of this feature, in what was at that time the most popular tool for Git server
administration, was the sole motivation for Gitolite being created.

This section assumes some familiarity with
regular expressions.

To understand branch level access control and how to specify them in Gitolite, we
should first have a quick refresher of related concepts in Git itself, to make things
easier to understand.

Git uses the word ref to refer to both branches and tags. Branch names are usually
of the form refs/heads/something, while tag names are of the form refs/tags/
something. When a user pushes to a Gitolite managed repository, Gitolite helps
you determine whether the refs being updated are allowed to be updated by this
user or not.

Chapter 6

[49]

Thus, to allow Bob to push the branch called master, you might write:

RW+ refs/heads/master = bob

When a user pushes to the repository, Git supplies Gitolite with the name of the ref
being pushed. Gitolite then matches the ref with each of the refexes in the access rule
lines. If there is a match, and the user is also listed on the right side of the = sign, then
the push is allowed.

However, due to the fact that branches are far more frequently access controlled than
tags, Gitolite assumes anything that does not start with refs/ to be prefixed with
refs/heads/. Thus, you can just say:

RW+ master = bob

and that would be taken as refs/heads/master.

To be strictly accurate, the preceding data allows Bob to push any branch with a
name that starts with master. To restrict the rule to just master, you should actually
write the refex as master$. In practice, however, this is rarely required.

Controlling tags is just as easy. Let us say you want to allow a user to push any
tag with a name starts with the letter v, followed by a digit, optionally followed by
anything else. Here's the rule for it:

RW+ refs/tags/v[0-9] = bob

The regular expression pattern [0-9] represents the notion of any character between
0 and 9 inclusive.

Gitolite anchors this regex at the beginning only, not at the end. In regex terms, this
means a ^ character is implicitly added at the start, but a $ character is not added
at the end. This allows Bob to push tags like v1, v2.2, v3.4.5, and so on, but not
new-v1 and next-v2.

Thus we come to the definition of a refex: a refex is a regex (that is, a regular
expression) that is used to match the ref being pushed.

Using deny rules
So far, the rules we have seen allow you to specify which branches or tags a user is
allowed to push. However, we often need to be able to specify, for example, that a
user is allowed to push all branches except master.

To do that, we need to use what Gitolite calls deny rules. Here's how you might
implement the above restriction for a user:

- master = bob

RW+ = bob

Getting Started with Access Control

[50]

Gitolite checks rules in sequence when attempting to determine whether a branch is
allowed to be pushed or not. When Bob pushes a branch called next (that is, refs/
heads/next) to this repository, the first rule does not match at all, since refs/
heads/master is not a pattern that matches the string refs/heads/next. Gitolite
then checks the next rule. Since this rule does not specify a refex, all refs will match,
and since the permission field is RW+, the push is allowed.

However, when Bob pushes refs/heads/master, the ref matches the refex in the
first rule, and since the rule is a deny rule, the push is denied.

Observant readers will notice that the sequence of the rules is very important here.
Reversing the order of the two rules we looked at would remove the restriction we
want to implement. The first rule encountered will be:

RW+ = bob

This does not specify a refex and thus matches all refs. As a result, the operation is
allowed to proceed. In other words, the deny rule is never even checked!

The permission field
We have now seen examples of the four most common permissions used in access
rules, so it is a good idea to summarize them.

The R permission allows the user to read (clone, fetch) the repository, but not push.
RW allows the user to push, but only if it is a fast-forward push or a new branch is
being created. Non-fast forward pushes and deletions are not allowed. And RW+
allows non-fast forward pushes and deletions too.

As long as your rule set contains only these three types of rules, it does not matter
which order they appear in. However, as you saw in the previous section, the sequence
of rules becomes important when you use the fourth kind of rule—a deny rule,
denoted by a single minus sign.

While these are the most commonly used permissions, they are not all
there are. There are a few more permissions which will appear in the
section Types of Write Operations in Chapter 7, Advanced Access Control
and Configuration.

Chapter 6

[51]

Defining user and repo groups
Gitolite allows you to define groups of users or repositories for convenience. The
syntax is very simple, and does not distinguish between a user group and a repository
group. For example, take a look at the deny rule example in the previous section:

- master = bob

RW+ = bob

Let's say that, instead of just Bob, you had several more users who must be
prevented from pushing the master branch, perhaps because they are all junior
developers. One way is to add each of their usernames on both the rule lines,
after Bob's username, like this:

- master = bob carol dave

RW+ = bob carol dave

But this gets cumbersome, and will only get worse if there are more rules to be
applied to the same group of people.

With groups, however, you can do this:

@junior-devs = bob carol dave

- master = @junior-devs

RW+ = @junior-devs

As you can see, this is far more convenient, and also less error-prone. Even more
importantly, the group name can often serve as important documentation for the
ruleset—a future administrator may not know who Bob, Carol, and Dave are,
and may puzzle over why they were restricted, but the group name, if chosen
well, makes things very clear.

You can use group names for repositories also, for example:

@foss-repos = git linux apache gcc

repo @foss-repos

 R = @all

While in this case it may not look as critical, because the group name is being
used to replace only one occurrence of the repository names, it is still a lot
cleaner. Also, as with the user group names, the repository group name serves
as additional documentation of the nature of those repositories.

Getting Started with Access Control

[52]

Working with large groups
Sometimes you need a group which contains several members—far more than can
fit on one line comfortably to edit. To make this easier (and because Gitolite does
not, by default, allow continuation lines), Gitolite treats every definition of a group
as cumulative. This means that if the group was already defined earlier, the new
members are added to it rather than replacing the existing member list. This allows
you to say:

@foss-repos = git

@foss-repos = linux

@foss-repos = apache

This would have the same effect as the single line definition we saw earlier in
this section.

The special @all group
Gitolite also has a special, built-in group called @all, which refers to all repositories,
or all users, depending on where it is used. A common use for this is to allow certain
privileged users access to all repositories, perhaps as follows:

repo @all

 R = @QA-leads

 RW+ = @dev-leads

For another example, let us consider a situation where only Adam and Dave are
allowed to push the master branch. Here's how you might do that:

repo foo

 RW+ master = adam dave

 - master = @all

We have a deny rule here, so again, notice that the order of rules is important. If we
had placed the deny rule first, then—because Adam and Dave are implicitly members
of @all—they would also be denied rights to push the master branch.

Chapter 6

[53]

The include statement
You can also split up your access rules and group definitions into multiple files,
and include them into the main conf file (conf/gitolite.conf in your gitolite-admin
repository). For example, you can keep all group information (that is, which users
are members of which groups) in a separate file and include that. The syntax is very
simple; here's an example:

include "groups.conf"

This will look for a file called groups.conf in the conf directory and include its
contents at that point.

Advanced users may note that this command also accepts wildcards. For example,
you might have several individual conf files in a subdirectory of conf called foss.
If you don't want to name each of them separately, you can say:

include "foss/*.conf"

Rule accumulation and delegation
Gitolite allows you to split up access rules for repositories into multiple chunks which
are not necessarily contiguous. It will then combine all these chunks (in the order they
were read) and apply the combined set of rules to the repository in question.

There's a very good use for this behavior. Combining groups, that include statement,
and rule accumulation, makes Gitolite administration easier than it already is. Here's
an example, with some comments, to give you some idea of what can be done.

include "groups.conf"

contains definitions of all groups used in the rest of the conf file.
All

membership changes happen here

include "foss.conf"

contains rules for open source repositories. For example, "R = @all" is

pretty much expected for such repositories. There may be other rules

specific to different FOSS repositories that may also be specified here

include "boss.conf"

contains rules that define what kind of access management has to the

Getting Started with Access Control

[54]

development repositories. For example, some of the managers may have

read access to all repositories, so something like

repo @all

R = scott douglas

is probably quite useful.

repo-specific rules

At this point you could have repository specific rules that do not fit
neatly

into any of the previous include files. For example:

repo git

 RW+ = linus junio

As you can see, a repository can appear in any or all of the include files that the main
conf file pulls in. If we required all the rules for each repository to be in one place, it
would be impossible to organize your rules in this sort of manner.

Summary
We've now seen most of Gitolite's basic access control features, including various
types of access rules, the syntax of the conf file, and some convenient features that
make managing this easier. In the next chapter, we will discuss some advanced
access control features, such as personal branches and VREFs.

Advanced Access Control
and Configuration

The basic access control methods described in the previous chapter are sufficient for
most sites, and there are many that do not go further than that. However, Gitolite
has a lot more features waiting for people who need them. We'll go through some
of these advanced features in this chapter. In each case, we'll attempt to describe a
practical scenario that demonstrates a need and then explain how the feature fulfills
that need.

Making changes to the rc file
Many of Gitolite's advanced features and configuration options are managed by
editing the rc file. This is a file named .gitolite.rc, which is present in the home
directory of the Gitolite hosting user.

The file is liberally commented and it is generally easy to see where things go.

The bulk of the file is within a top-level definition that looks as follows:

%RC = (

...several variables defined...

)

If you're familiar with Perl, you might realize that this is a Perl hash, but it is not
necessary to know Perl in order to edit this file.

The file has several simple variables defined, for example:

 UMASK => 0077,

Advanced Access Control and Configuration

[56]

When the Gitolite documentation (or this book) tells you to edit a variable in the rc
file, it's best to look for such a variable first—most of the important ones are already
in the file but may be commented out, waiting to be un-commented and the value
edited as needed.

One of the variables within the %RC block is a list variable called ENABLE, whose
definition looks as follows:

 ENABLE => [

 ...several features listed...

]

An example feature is as follows:

 'info',

This enables the info command.

Again, most features are already listed here, but may be commented out.

Giving users their own branches
When there are more than a few developers in a project, it is often necessary for them
to share code that is still under development, for comments, discussion, preliminary
testing, and so on. The obvious solution is for each developer to push to a branch on
the Gitolite server and inform his colleagues of the branch name. A branch namespace
dedicated to this can be created, giving all developers access to it, as follows:

repo foo

 RW+ sandbox/ = @developers

This works fine, but it could lead to a situation where one developer accidentally
overwrites or deletes another developer's branch if the branch naming within the
sandbox namespace is not strictly controlled.

What is required, ideally, is something as follows:

 RW+ sandbox/alice/ = alice

 RW+ sandbox/bob/ = bob

and so on, for each user who should be given access to the repository.

Clearly, this is not at all scalable—you'd have to add one line for each user if
you did this. In fact, it's a step backward because we've suddenly lost all the
advantages of managing users in groups, since we are forced to use a separate
rule for each developer.

Chapter 7

[57]

This situation is what led to the development of what are called personal branches
in Gitolite. This feature works on a simple idea, and is best described with the
following example rule:

 RW+ sandbox/USER/ = @developers

The idea is that the word USER, surrounded by slashes, stands for the authenticated
username from the connection information, as long as the user is listed on the
right-hand side (or a group he/she belongs to is listed). Thus, if the user ID alice
is a member of the @developers group, and Alice attempts to access the repository,
this rule effectively becomes the following:

 RW+ sandbox/alice/ = alice

This allows Alice to write to her own sandbox branches; that is, branches whose
names start with sandbox/alice/. Note that this does not allow a branch called
sandbox/alice—the sandbox is meant to be a set of branches not just one branch.

Since Gitolite does not allow limiting read access by branch, every user who is a
member of the @developers group has read access to the repository, which means
they can read each other's development branches, but only write (push to) their own
sandbox branches.

Types of write operations
So far, we have restricted ourselves to the RW and RW+ permissions while talking about
permissions. The former gives users permission to create new branches and tags, and
make fast forward pushes to the branches, while the latter allows users to also make
non-fast forward pushes and rewrite tags, as well as delete branches and tags.

This is by far the most common situation, and this syntax serves for
the vast majority of access control needs. A push to an existing tag,
even if the new commit is a descendent of the current commit the tag is
pointing to, is still considered a non-fast forward push. This is because,
unlike branches, tags are not meant to be moved; once written, they're
supposed to be fixed and never change.

However, in some situations, you may need to explicitly specify the ability to create
a branch, separating it from that of pushing a new commit to it. Similarly, you may
want to explicitly specify permission to delete a branch or tag, separating it from that
of pushing a non-fast forward commit; or, you may want to do both.

Advanced Access Control and Configuration

[58]

In order to achieve this, Gitolite has an extended syntax for the permissions field
to let you specify explicit create and/or delete permissions. Using these extended
permissions in any rule applicable to a repository has the effect of limiting the power
of the normal RW and RW+ permissions, in terms of creating or deleting refs.

This extended syntax consists of the following new permissions: RWC, RW+C, RWD, RW+D,
RWCD, and RW+CD. When a rule specifying a permission containing a C is added to a
repository, the RW and RW+ rules for that repository no longer permit creating a branch
or a tag. Similarly, when any rule specifies a permission containing a D, the RW+ rules
for that repository no longer allow deleting a ref. For ease of discussion, we can call
these the explicit create and explicit delete modes, respectively.

It is useful to summarize these rules in a tabular form, for ready reference in case you
ever need to use these special permission modes. The following table shows you the
minimum required permission "characters" to allow a given operation, in each of the
three modes (strictly speaking, there is a fourth mode, where both explicit create and
explicit delete are used, but that is just a combination of the two):

Default mode Explicit create mode Explicit delete mode
Create new branch RW RW and C RW

Create new tag RW RW and C RW

Fast forward push
existing branch

RW RW RW

Non-fast forward
push a branch

RW+ RW+ RW+

Overwrite an
existing tag

RW+ RW+ RW+

Delete branch RW+ RW+ RW and D
Delete tag RW+ RW+ RW and D

Allowing Gitweb and Git-daemon access
Gitweb (and, to a lesser extent, git-daemon) are popular tools that provide alternative,
read-only access to Git repositories. Git-daemon provides completely unauthenticated
access to Git repositories, suitable for open source or similar projects. Gitweb displays
repositories, their branches, commit history, and many more details on a web browser.
Gitweb itself does not do any authentication, but relies on the web server to
authenticate users.

Chapter 7

[59]

Gitweb and git-daemon have ways to determine which repositories are allowed to
be made available to clients. For gitweb, the list of permitted repositories is placed
in a specific format (at its simplest, one repository name per line) in a specific file
at a configurable location (see the documentation for gitweb for details). On the
other hand, git-daemon looks inside each individual repository for a file called
git-daemon-export-ok, to determine if the repository should be made accessible
to clients. Of course, both tools have other one-time configuration that needs to be
handled and set up before they can be used. Gitweb, in particular, may not even run
as the Gitolite hosting user, and the one-time setup will probably involve allowing it
to read files owned by the Gitolite hosting user.

Although Gitolite cannot help in the one-time configuration of these tools, it can
certainly help in managing the access list. It does this by designating two special
Gitolite usernames: gitweb and daemon. These users do not have public keys, so
they're not actual users in the same sense as Adam, Alice, or Bob in our examples.
However, they determine which repositories are accessible by gitweb and git-daemon.

The idea is very simple. If you want a repository to be readable by gitweb, you give
the gitweb user read access. Similarly, if you want the repository to be accessible via
git-daemon, you give the daemon user read access. Here's an example that does both:

repo foo

 R = gitweb daemon

Of course, instead of specifying each repository, you can use any repository group
name that you may have defined, or even the special group name @all.

When the gitolite-admin repository is pushed, Gitolite checks each repository to see
if these special users have been given read access. For each such repository, Gitolite
adds the name to the projects list file mentioned previously if the gitweb user can
read it, and creates a file called git-daemon-export-ok if the daemon user can. Also,
if you previously allowed access and then decided to remove it, Gitolite will delete
the entry from the projects list file, and/or remove the git-daemon-export-ok file,
as applicable.

Locating the projects list file
We mentioned earlier that Gitweb consults a file containing a list of permitted
repositories, and that Gitolite creates this file. Of course, Gitweb and Gitolite must
agree on where this file is. Gitolite places it, by default, in $HOME/projects.list, but
this can be changed to any other location if needed; simply add a line like the following
to the $HOME/.gitolite.rc file, substituting whatever path you want of course.

GITWEB_PROJECTS_LIST => "/path/to/projects.list",

Advanced Access Control and Configuration

[60]

The syntax of the preceding statement includes the trailing
comma. This line must be placed in the section marked rc
variables used by various features.

Unix permissions and the umask
Gitweb is invoked by your web server (such as Apache), which is almost certainly
running under a different user ID than your Gitolite hosting user. Depending on
your OS and your web server, this could be a user called apache, www-data, or
something else.

This means you need to make sure that this user can read the files it needs (mainly
the projects list file, and everything under $HOME/repositories). There are usually
two ways of doing this. The simplest way is to do the following:

1.	 Identify the primary group that your Gitolite hosting user belongs to (usually
the same as the username). You can find this by running the id command
after logging in to the server as the Gitolite hosting user. On most systems,
it is the same as the user ID, so for our discussion let's say it is git.

2.	 Identify the Unix user ID under which your web server is running. For our
discussion, let's say it is apache.

3.	 Add the apache user to the git group using the usermod command.
(You need to run this as root on your server.) The exact syntax may vary
depending on your OS and OS version. As an example, the command on a
Red Hat system is usermod -G git apache.

4.	 Change the UMASK value in $HOME/.gitolite.rc from the default 0077
to 0027.

5.	 Fix up existing files manually. This is a one-time operation, required because
umask only affects permissions on newly created files, not existing ones. Log
in as the Gitolite hosting user and run the command chmod -R g+rX $HOME/
projects.list $HOME/repositories.

The second method to deal with this involves running gitweb as the Gitolite hosting
user. Most web servers provide mechanisms to run specific programs under some
other user ID than the user ID under which the web server is running, such as
the suexec feature in the Apache web server. Configuring these features is out
of scope for this book; please check the documentation of your web server for
more information.

Chapter 7

[61]

Specifying Git config values and Gitolite
options
If you're familiar with Git, you probably know the git config command, which
allows you to set repository options. Example of config variables that may be
useful for server-side (bare) repositories are core.logAllRefUpdates, receive.
fsckObjects, and various performance-related config variables. (Please see the man
page for git-config for details)

Gitolite aims to allow almost all administration remotely, so it would be
unreasonable to expect the admin to log on to the server and run the git config
command. Therefore, Gitolite allows the admin to specify config settings within
the conf file, as follows:

repo foo

 RW+ = adam

 config receive.fsckObjects = true

However, before you can use this feature, you need to enable the config
keys you wish to use in the rc file ($HOME/.gitolite.rc). Look in this
file for a line that contains the word GIT_CONFIG_KEYS and edit the
value, which is empty by default, to contain a space separated list of the
config keys you are planning to use.

In general, the syntax is config sectionname.keyname = value. On the server,
this is executed as git config sectionname.keyname value. Gitolite does not
support any of the other forms of the git config command, especially keys with
multiple values.

Deleting a git-config key
Unfortunately, once a git config key has been created by Gitolite, simply removing
the line from the conf file will not, on the next push, delete the key from the
repository config file. This is because you are permitted to add keys directly on
the server if you choose to (or your repository may have inherited some useful
settings when you migrated it into Gitolite's control). Gitolite has no simple way of
distinguishing config keys you created manually from those that were deleted in
the conf file; that is, it can be done but it's complicated and potentially error-prone.

Advanced Access Control and Configuration

[62]

Therefore, Gitolite requires the following syntax in order to explicitly delete a config
key from the repository config file on the server:

 config sectionname.keyname = ""

This is the only way to delete a config key using Gitolite.

Substituting the repository name
Sometimes you need the same config setting for multiple repositories, but you
only need to vary the repository name itself. The obvious way seems to be to do
the following:

repo foo

 config hooks.mailinglist = foo-commits@example.tld

 config hooks.emailprefix = "[foo] "

repo bar

 config hooks.mailinglist = bar-commits@example.tld

 config hooks.emailprefix = "[bar] "

But, of course, this does not scale at all!

Gitolite allows you to do the following instead:

repo foo bar

 config hooks.mailinglist = %GL_REPO-commits@example.tld

 config hooks.emailprefix = "[%GL_REPO] "

Gitolite expands the token %GL_REPO into each repository's name when actually
applying the config lines.

Don't forget that in the repo line, you can have one or more
repository groups, or a combination of repositories and groups.
You can also use @all if you wish.

Chapter 7

[63]

Overriding config values
Sometimes, you want to add a config value to all the repositories, except one or two.
For example, consider the hooks.mailinglist config variable shown earlier, and
imagine that, while the setting is correct for most repositories, one specific repository
needs a completely different mailing list.

Gitolite allows you to do this as follows. First the general setting applicable to all
repositories is added. Then, specific settings for specific repositories are added.
Gitolite will ensure that for any repository, the last seen config setting will be the one
used (and therefore, the order of these statements matters):

repo @all

 config hooks.mailinglist = %GL_REPO-commits@example.tld

 config hooks.emailprefix = "[%GL_REPO] "

repo foo

 config hooks.mailinglist = foo-list@users.example.tld

You can even use an empty value for the last line, if you wish that the special
repository mentioned does not even have the corresponding entry in its config file.

Gitolite options
Similar to Git's config keys and values, Gitolite also has its own set of internal
options, which are used to modify its default behavior in some way or provide
additional information that some feature may need. For example, if you use Gitolite's
mirroring feature (discussed in Chapter 11, Mirroring), you will need to specify, for
each repository, which server is the master server and which are the slaves. These
server names are specified using Gitolite options, as follows:

repo foo

 option mirror.master = mars

 option mirror.slaves = phobos

When the mirroring code runs, it interrogates Gitolite for the value of these options
in order to do its job.

Gitolite options behave just like the config entries, shown earlier, do in terms of
later entries overriding earlier values.

Advanced Access Control and Configuration

[64]

Applying deny rules to read access
In the previous chapter, when we looked at the deny rules, we showed them only in
the context of a write operation, controlling whether a certain branch or tag can be
pushed or not.

By default, the deny rules are not examined when checking read access. So
something like the following:

@junior-devs = alice bob carol

repo foo

 - = bob

 RW+ = @junior-devs

will not prevent Bob from at least reading the repository (that is, using git clone or
git fetch), even though the deny rule appears first.

However, it is possible to make Gitolite act on deny rules in this case also. This is
achieved by specifying a Gitolite option called deny-rules, as follows:

repo foo

 - = bob

 RW+ = @junior-devs

 option deny-rules = 1

Now Bob will not even be able to clone the repository.

It is also important to understand that, for read access, specifying
an actual branch in the deny rule, shown as follows:
 - master = bob

 RW+ = @junior-devs

is the same as not having a branch in the rule. This is because Git
(and therefore Gitolite) does not distinguish between branches for
read access control, so any specified refex is ignored.

The deny-rules option will prevent write access the same way it prevents read
access. It does not make sense to allow a user to write what they cannot read!

Chapter 7

[65]

Understanding VREFs
The previous chapter introduced us to the concept of a refex, which is a regular
expression that is used to match the ref being pushed. This allows us to make
decisions on allowing or rejecting the push based on the name of the ref (branch or
tag) being pushed.

However, we might have other criteria for deciding whether to allow or deny the
push. The most common example is whether specific files have been changed, and if
they have, to disallow the push.

A VREF is a special kind of refex; the "V" stands for "Virtual". This is a refex that
will not match the ref that Git knows about (which is a branch name or a tag name).
Rather, it will attempt to match against some other characteristic of the commit or
series of commits being pushed.

Here's an example. Let's say you are running a project where the build system, and
in particular the Makefile, is a rather critical component and has been finely tuned
to play nicely with all the environments for which your product is built and sold.
As a result, you really don't want anyone but the most experienced people messing
with that file (and perhaps others related to it). You would, therefore, like to prevent
your junior developers from being able to push changes to it. Here's how you would
do that:

repo foo

 RW+ = @developers

 - VREF/NAME/Makefile = @junior-developers

That is basically all you have to do. First, the ruleset is checked for the ref that is being
pushed (in this example, we simplified all that by allowing all developers—which
includes junior developers—to push any branch). Once this succeeds, the VREFs
specified are checked in the order they appear in the list of rules.

A VREF rule has a simple structure, consisting of the word VREF, followed by the
name of the VREF (in this case, NAME, which is a VREF that checks the names of
changed files and directories), followed by an argument of some kind. The list of
changed file names is matched against that argument, and if a match is found, it is
just as if you were trying to push a branch and the refex matched, which is to say the
permission in the rule line drives what happens next. In this example, that results in
the push being denied.

This gives you a simple preview of the VREF feature. Chapter 10, Understanding
VREFs, will go into much more detail about this powerful feature of Gitolite.

Advanced Access Control and Configuration

[66]

Summary
In this chapter, we looked at some of Gitolite's advanced features, such as personal
branches, Git config variables, Gitolite options, and so on. The next chapter will focus
on another very powerful and popular feature of Gitolite, allowing your users to
create their own repositories without having to add anything new to the conf file.

Allowing Users to
Create Repos

Until now, everything we have seen indicates that the administrator is the only
person who can create new repositories. He can share the load of doing this,
simply by giving some trusted users the right to read and write the gitolite-admin
repository, but that's as far as it goes.

In some environments, your users may need more flexibility. You could have several
users who need not be administrators, in the sense that they neither want nor need to
manage all repositories, but they do wish to be able to create their own repositories
and control access to those repositories. In fact, we would like the administrator's
role in this to be a one-time setup, after which no more changes to Gitolite's conf file
would be required.

If there are several users who need to do this, it seems like a good idea to think about
how we could allow this and still maintain the required security over the repositories
that were created by the administrator in the usual way.

In this chapter, we'll work out a solution to the problem described in the
introduction. We'll begin by talking about some features that help us with parts of
the solution, and then add the missing pieces one by one to build up a solution.

Allowing Users to Create Repos

[68]

Putting repositories in Sub-directories
The first part of the solution is that, as was hinted at in the first chapter, Gitolite
allows you to group repositories in subdirectories, just like you can do with files in a
filesystem. For example, you could put all the open source projects you're managing
under a subdirectory called foss, like the following:

repo foss/apache

 ...access rules for the apache repo...

repo foss/linux

 ...access rules for the linux repo...

...etc...

We can make use of this in solving our current problem. Let's say we had users Alice
and Bob, and we wanted to let them create and manage repositories. We could come
up with a way by which Alice's repositories would be in a subdirectory called, say
dev/alice, and Bob's repositories would, similarly, be within dev/bob.

Repository wildcards
A repository wildcard is a regular expression that describes a whole range of possible
repository names. For example, the line repo dev/alice/[a-z].* represents all
repositories whose names start with dev/alice/, followed by an alphabetic character,
followed optionally by anything else. The repository dev/alice/foo would qualify,
but dev/alice/123 would not, nor would just dev/alice.

Due to the need to properly represent repositories such as gtk+ and
c++, if the + character is the only regular expression metacharacter in the
repo name, it will be taken to be a normal repository, not a repository
wildcard. To specify foo.+, you should instead say foo..*. You can
also say [f]oo.+—the presence of the bracket tells Gitolite it is a
regular expression.

Gitolite allows repo lines to use wildcards instead of individual repository names.
This gives us the next step to our solution; we can now write:

repo dev/alice/[a-z].*
 RW+ = alice
 RW = bob
 R = @all
repo dev/bob/[a-z].*
 RW+ = bob
 RW = alice
 R = @all

Chapter 8

[69]

This says that Bob can push (but not rewind or delete) branches to all of Alice's
repositories, and vice versa, and that other authenticated users of the system can
clone both those sets of repositories.

Sadly, though, a wildcard repository specification by itself does not actually create any
repositories, since the pattern itself can match billions of possible repository names!

Creating a wildcard repository
Now it's time to introduce the first part of the additional syntax that Gitolite provides
to help in solving the problem we started this chapter with. As we noted, the wildcard
specification lines don't actually create the repositories that Alice or Bob need.

To enable that, we add a new line to the access rules specification:

repo dev/alice/[a-z].*

 C = alice

 ...other rules stay the same...

repo dev/bob/[a-z].*

 C = bob

 ...other rules stay the same...

This is different than the create branch permission we saw in the Types
of write operations section in Chapter 7, Advanced Access Control and
Configuration. The one described here is the single letter C by itself,
while the other can only exist as a modifier to RW or RW+.

This access rule says that, merely by cloning or pushing a repository with a matching
name, Alice can cause repositories to be created on the server! In other words, Alice can
run the following command:

$ git clone git@host:dev/alice/my-new-repo

Cloning into 'my-new-repo'...

Initialized empty Git repository in /home/git/repositories/dev/alice/my-
new-repo.git/

warning: You appear to have cloned an empty repository.

Allowing Users to Create Repos

[70]

It would be as if the administrator had added a new set of rules as follows:

repo dev/alice/my-new-repo

 RW+ = alice

 RW = bob

 R = @all

except that the administrator doesn't have to!

Don't miss the Initialized empty... line in the preceding output; that came from
the server, telling you a brand new repository was created as a result of this clone! In
addition, if Alice ran the info command, she might see something as follows:

$ ssh git@host info

hello alice, this is git@host running gitolite3 v3.5.3.1-7-g31d11b9 on
git 1.8.3.1

 C dev/CREATOR/..*

 R W dev/u1/my-new-repo

 R W testing

which shows you the repository that was just created.

A downside is that a simple typo can cause useless repositories to be
created. If you wish to prevent this, edit $HOME/.gitolite.rc and
uncomment the create command as well as the no-auto-create
option. Then your users can run the more explicit create command,
for example: ssh git@host create dev/alice/my-new-repo.

Giving access to other users
We have so far simply hardcoded the permissions—Alice and Bob have some access
to each other's repositories, and everyone else can read both sets of repositories. This
is clearly not flexible enough, Alice may want some repositories to be writable by
David, and some should not be readable by @all, and so on.

On the face of it, this is a difficult problem because it seems to imply that Alice
might want to actually make changes or additions to the rules themselves, and thus,
directly or indirectly, touch Gitolite's conf file.

Chapter 8

[71]

The way Gitolite solves these problems is to allow the administrator to define roles,
and then allow the user to specify which users she wants in each role. The following
is an example using role names that are defined by default in Gitolite:

repo dev/alice/[a-z].*

 C = alice

 RW+ = alice

 RW = WRITERS

 R = READERS

READERS and WRITERS are role names that are predefined in Gitolite. Note that the
role names themselves don't have any special meaning in terms of what access rights
a role has—that is entirely up to the administrator.

At the moment, however, this is not complete. The rules do not actually say that Bob
is a writer (and thus has RW permission on Alice's repositories) or that everyone else
(@all) can read it.

This is where the perms command comes in. Here's how Alice would use it to add
Bob to the WRITERS role:

ssh git@host perms dev/alice/my-new-repo + WRITERS bob

Similarly, to add @all to the READERS role, she would run the following command:

ssh git@host perms dev/alice/my-new-repo + READERS @all

If she wishes to check what the current role assignments for her repository are,
she can run.

ssh git@host perms -l dev/alice/my-new-repo

which will dutifully print:

READERS @all

WRITERS bob

One advantage you should see right away is that now the role assignment is per
repository. That is, Alice can have completely different role assignments for other
repositories she owns. In fact, if she does not run the perms command on a
repository, no one else will have any access—it becomes her private repository.
Or she can add multiple people to each role too if she wishes. The perms command
can only be used to add one user to one role in one go. So Alice may have to run this
multiple times. If she added someone whom she now wishes to remove, that is also
possible. As normal for all Gitolite commands, perms responds to a single argument
of -h to provide a usage message.

Allowing Users to Create Repos

[72]

Generalizing the ruleset
We'll now look at the ruleset as it stands for each user, and then discuss how to
generalize it to any number of users. At this point, if you recall from the previous
section, the rules look as follows:

repo dev/alice/[a-z].*

 C = alice

 RW+ = alice

 RW = WRITERS

 R = READERS

You might notice that other than the word alice in the first three lines being replaced
by Bob, this is precisely what you need for Bob's repositories as well. It certainly does
not make sense to have to repeat this for every user who might need this feature!

The final part of the solution to allowing users to create, and (to some extent)
manage, their own repositories is the CREATOR keyword. Here's the canonical
example again:

repo dev/CREATOR/[a-z].*

 C = alice bob carol dave

 RW+ = CREATOR

 RW = WRITERS

 R = READERS

Notice the changes we made. First, the C permission line now lists all the users who
are allowed to create their own repositories and manage it as we have described
earlier. Only these four users can do this, in this ruleset. Alternatively, you can
replace the four usernames with some group name that you may have defined, or
even use @all to allow all authenticated users to use the facility of creating private
repositories they can selectively open up to others.

Next, the repository name pattern contains CREATOR instead of alice, as does the
RW+ line. For repositories that do not yet exist, these are effectively treated as the
name of the user who's trying to create the repository. For existing repositories,
this is treated as the name of the user who created it, which is recorded and kept
track of.

Chapter 8

[73]

When a repository does not exist, the only permission that Gitolite cares
about is the C permission that allows creating a repository. Whoever is on
the right side of such a rule is allowed to create repositories matching the
pattern. One error to watch out for is to put in C = CREATOR, instead
of a list of actual users or user groups. Because, as described above, this is
treated as the name of user attempting to create the repository, this allows
any authenticated user to create such a repository. If that is what you
want, it's better to be clear and actually use @all instead of CREATOR; the
latter is just a side-effect and not supported behavior.

Explaining wild repos to your users
Your users, of course, do not need all of this explanation! In fact, one of the goals of
this feature is that Gitolite users (as opposed to Gitolite administrators) should not be
burdened with learning the nuances of RW, RW+, deny rules, and so on.

The example setup we have been using till now is the canonical example: it contains
an owner (who is the only user allowed to rewind or delete branches), a set of writers
(who can push/create but not rewind/delete), and a set of readers who cannot push
at all.

The only thing left to do is to explain to the user what repositories she is allowed
to create (most users do not know regular expressions very well, so it's best to keep
your patterns simple enough to be explained in English), and that she can add or
remove people from each of those lists of users.

The list names (in our example, READERS and WRITERS) should be supplied, and
explained as representing what the users in each list can do.

Finally, show them three examples of the perms command used to maintain these
user lists:

•	 ssh git@host perms dev/alice/repo + WRITERS dave to add a user
•	 ssh git@host perms dev/alice/repo - WRITERS dave to remove a user

(notice the minus sign instead of the plus sign)
•	 ssh git@host perms -l dev/alice/repo to list current user lists

Allowing Users to Create Repos

[74]

Managing with just wild repos
If you think about the example we've been working on throughout this chapter, it
does not allow the user to trust anyone else with RW+ permissions; if any rewinding or
deleting of branches is required it has to be the owner herself that does it.

We can rectify this by changing the RW+ permission line to:

 RW+ = CREATOR TRUSTED

Thus, defining a new role (or list of users, if you will) called TRUSTED. Of course,
for this to work, you—as the administrator—must log on to the server and edit
$HOME/.gitolite.rc to add this new role to the list of roles defined in that file
under the ROLES hash. Then you can tell your user that there is a third list of users,
called TRUSTED, which she can use to specify users she would like to allow to
rewind or delete branches or tags.

Now that we have started going this route, we can go a little further and then a little
more, until we end up with something that is essentially a one-time setup of Gitolite,
requiring little to no further maintenance, from the administrator, once it has been set
up. This can be very useful in sites where most of the users are somewhat autonomous.

Here's a comprehensive example of such a ruleset. To make things easier to copy
and use, we've added the description of the rulesets as comments so you can copy
them too:

completely private repo; no sharing even possible

repo private/CREATOR/..*

 C = @all

 RW+ = CREATOR

public template; anyone can read but writes only by owner

repo public/CREATOR/..*

 C = @all

 RW+ = CREATOR

 R = @all

a controlled repo with 3 roles allowing RW+, RW, and R

repo controlled/CREATOR/..*

 C = @all

 RW+ = CREATOR

 RW+ = TRUSTED

Chapter 8

[75]

 RW = WRITERS

 R = READERS

a "corporate" type template with managers, testers, etc.

Junior devs cant write 'master', can't rewind. Testers

(and *only* testers) can push versioned tags. Managers

can read any repo.

repo corporate/CREATOR/..*

 C = @all

 RW+ = CREATOR

 RW refs/tags/v[0-9] = TESTERS

 - refs/tags/v[0-9] = @all

 RW+ = SENIOR_DEVS

 - master = JUNIOR_DEVS

 RW = JUNIOR_DEVS

 R = MANAGERS

Deleting wild repositories
With the example in the previous section, the administrator's job is much lightened
(albeit at the expense of some loss of control). However, there still remains one
feature that your users will eventually want: deleting repositories that have served
their purpose.

In order to allow users to delete repositories that they have created (it need not be
said that a user cannot delete anything else!), the administrator needs to enable the
D command by uncommenting the corresponding line in the list of commands in
$HOME/.gitolite.rc. Then the user can run the D command to delete repositories.

Repositories are locked against accidental deletion by default, so every delete is
actually two steps—the unlock sub-command, then the rm sub-command:

ssh git@host D unlock dev/alice/my-new-repo

ssh git@host D rm dev/alice/my-new-repo

Allowing Users to Create Repos

[76]

Summary
This may be one of the most important chapters in this book, since it talks about
a very popular feature of Gitolite. While it is not suitable in sites where strict
control and auditability are required, it is very useful in most other sites, not only
saving the administrator a lot of time, but the users also do not have to wait on the
administrator for something they need quickly.

In the next chapter, we will talk about what core Gitolite is and what non-core is,
look at some non-core programs that come with Gitolite, and discuss customizing
Gitolite by adding our own non-core code.

Customizing Gitolite
It must be clear by this time that Gitolite is a pretty powerful tool for managing Git
repositories on a server. The most powerful tools, however, allow the administrator
to add features that are unique to their site, and thus cannot be expected to be added
to the product itself. For example, consider Git itself, its hooks mechanism (see man
githooks for details) contains several predefined hooks, which the user can install
on their repositories to customize Git's behavior at various points in the lifecycle of a
commit, a rebase, a push, and so on. In fact, Gitolite's ability to perform branch level
access control (as opposed to merely repository level access control) is entirely done
by using Git's update hook.

Core and non-core Gitolite
Gitolite goes a little further than merely allowing you to customize it for your
location-specific needs. Gitolite actually ships with customizations already
in place for several optional features. Some of these customizations are enabled
by default, while others are disabled, though requiring only a quick edit of
$HOME/.gitolite.rc to enable them.

As a result, Gitolite makes a distinction between core and non-core Gitolite code.
If you happened to look into the Gitolite source tree (under src if you cloned the
Gitolite source code), you will notice several directories at the top level, and a couple
of files. Of these, gitolite considers the following directories to contain non-core
code: commands, syntactic-sugar, triggers, lib/Gitolite/Triggers, and VREF.
Everything else is considered core.

Making this distinction also helps in deciding whether a new feature is to be added or
not. If the feature requires change to core Gitolite, a lot more careful consideration and
thought will go into it, and even then it will only happen if the change is really needed
by several users. In practice, however, Gitolite's customization feature is so powerful
that it has become increasingly rare that any change to core Gitolite is required.

Customizing Gitolite

[78]

Types of non-core code and examples
Gitolite allows four types of customizations you can develop for your site. This
might sound somewhat intimidating, but in practice most people use only two of
them. We'll describe each of them now.

Commands
Gitolite allows remote users to run some specific commands on the server, in the
form ssh git@host command-name. Commands need to be enabled before they
can be used remotely; see the section on making changes to the rc file in Chapter 8,
Allowing Users to Create Repos. One way to look at this is to view it as giving users a
very restricted shell to use, which allows only specific commands to be executed.

We've already encountered some Gitolite commands, the perms and D commands in
Chapter 8, Allowing Users to Create Repos, for instance, and info and help in earlier
chapters. Gitolite ships with more than twenty commands, although only five are
enabled for remote use by default. A few more are listed in $HOME/.gitolite.rc,
but left disabled by being commented out. It only takes a removal of the comment
marker in the line to enable them.

Many of the commands that Gitolite comes with, however, are not meant for remote
use at all and thus, they are not listed (even in commented out form) in $HOME/.
gitolite.rc. These commands are meant as helpers to server-side scripts or other
non-core programs. One of the most convenient of these is the access command,
which has the following help message:

Usage: gitolite access [-q] <repo> <user> <perm> <ref>

Print access rights for arguments given. The string printed has the word

DENIED in it if access was denied. With '-q', returns only an exit code

(shell truth, not perl truth -- 0 is success).

 - repo: mandatory

 - user: mandatory

 - perm: defauts to '+'. Valid values: R, W, +, C, D, M

 - ref: defauts to 'any'. See notes below

Notes:

 - ref: Any fully qualified ref ('refs/heads/master', not 'master') is
fine.

Chapter 9

[79]

 The 'any' ref is special -- it ignores deny rules (see docs for what
this

 means and exceptions).

Batch mode: see src/triggers/post-compile/update-git-daemon-access-list
for a

good example that shows how to test several repos in one invocation.
This is

orders of magnitude faster than running the command multiple times;
you'll

notice if you have more than a hundred or so repos.

As you can see, this is of great use in rolling your own code, where you would like to
check a user's access rights to a repository or several repositories.

Running gitolite help on the server will list all available commands; just as
running ssh git@host help will list all commands available remotely. In addition,
Gitolite comes with several commands that are implemented internally in Gitolite.
They are, in effect, part of the "core". Run gitolite -h to get a list of them with
brief descriptions.

All Gitolite commands respond with a usage message when invoked with a single
argument of -h. If you write your own commands, it would be a good idea to adhere
to this convention.

Here's a list of some of the existing commands in Gitolite with a brief description
of each:

•	 access: This prints or tests access rights on a repository for a user. This is
useful when you write your own commands. See the description of the fork
command below for one example.

•	 D: This lets a user delete a repository that they created (see Chapter 8,
Allowing Users to Create Repos).

•	 desc: This shows or sets a description for a user-created repository.
•	 fork: This forks a repo on the server. This takes a repository and creates a

new one with the same content. It checks to make sure the reader has read
access to the source repository, and is allowed to create the destination
repository (see Chapter 8, Allowing Users to Create Repos). This command uses
the -l option to git clone, so it runs really fast. (Without this command,
the alternative would be for the user to clone the source repository, and then
use that to create and push to the destination repository. For large
repositories, this could take a while).

Customizing Gitolite

[80]

•	 git-config: This prints (or tests existence of) 'config' values in the repo.
•	 help: This prints a list of all the available commands.
•	 info: This prints your username, the git/gitolite version numbers, and any

repositories you have access to.
•	 perms: This lists or sets permissions for a user-created repository.

In a subsequent section, we will see how to create your own commands.

Syntactic sugar
Syntactic sugar scripts are a form of customization that most people will rarely,
if ever, have to write, or even encounter. They are useful for situations where the
administrator would like some additional, purely syntax-related feature added to
Gitolite's access control language. In such situations, a syntactic sugar helper script
can be written that changes what the administrator writes into something Gitolite
can parse.

Gitolite ships with a few syntactic sugar helper scripts. For example, one is to allow
C-style continuation lines in Gitolite's conf file, since normally Gitolite does not
allow that. Another is to provide a simple macro facility.

Triggers
Arguably, the most powerful of Gitolite's customization features is the trigger feature.
Gitolite triggers are the equivalent of Git's hooks. Just as Git provides hooks that run at
various points (for example, pre-commit, pre-receive, and post-receive, to name a
few), similarly Gitolite's triggers also run at specific points in the lifecycle of a Gitolite
managed push or fetch.

There is a difference between Git hooks and Gitolite trigger programs though. Git
defines several hooks and requires that your hook code be named exactly one of
those (for example, post-receive or update). Gitolite on the other hand allows you
to define a list of trigger programs, which it will invoke in sequence when the trigger
point is reached. It is only the name of the trigger point that is fixed. This also means,
of course, that your programs can be called whatever you like.

The important trigger points, from a customization point of view, are INPUT,
POST_CREATE, and POST_COMPILE, although there are several other trigger
points supported.

Chapter 9

[81]

The purpose of an INPUT trigger is to manipulate the input arguments or the
environment in some way. Since a child program cannot affect the parent's
environment, INPUT triggers need to be written in Perl and installed as modules in
lib/Gitolite/Triggers (as opposed to being plain programs in any language, that
are installed in the triggers directory). Examples of features using the INPUT trigger
are giving some users full shell access and allowing repositories to have aliases.

This chapter will contain references to many non-core features
that are out of scope for this book. Please refer to Gitolite's online
documentation for details.

The POST_CREATE trigger point is useful to run any housekeeping or reporting tasks
that need to be performed after a new repository is created. For example, Gitolite uses
this trigger point to run code that updates the access lists for gitweb and git-daemon
whenever a user creates a wild repository.

The POST_COMPILE trigger point helps you perform additional tasks when the
gitolite-admin repository is pushed. This trigger point is associated with the
maximum number of programs shipped with Gitolite. Most of them have to do
with with ssh keys, or updating access lists for gitweb and git-daemon.

Virtual refs
The final type of non-core customization available is Gitolite's ability to make access
decisions based on what Gitolite calls virtual refs. The scripts that do this are called
VREFs; they are complex and important enough to have the next chapter be devoted
entirely to them.

Writing your own non-core code
It's reasonably easy to write your own code to add features that are specific to your
site. For example, suppose we want an e-mail to be sent to the administrator every
time a developer creates a wild repository. We will assume that the standard Unix
utilities exist and are available. In particular, we will assume the Unix mail command
is available. This command takes the message from standard input, and the subject
and recipient data from command-line arguments, and sends the e-mail, thus suits
our purposes very well.

Customizing Gitolite

[82]

Since this is an action that needs to run when a repository is created, it needs to be
added to the POST_CREATE trigger list. According to the Gitolite documentation,
when a wild repository is created, each program in the POST_CREATE trigger list
is called with the second argument being the name of the repository that was just
created, while the third argument is the name of the user who created it. (If this is
empty, this is not a wild repository creation but a normal repository creation; that is,
by the administrator adding the repository to the Gitolite conf file and pushing
the change.)

As a result, this code could be as simple as follows:

#!/bin/bash

[-n $3] && echo | mail -s "new repo $2 created" admin_group@example.com

Now we've written this code, we need to put it somewhere that Gitolite will find it
and use it at the right time.

We decide to create a new directory called $HOME/local to hold all our local
customizations. In this directory, we add a subdirectory called triggers, and into
this we place this script, naming it new-repo-alert. (Don't forget to chmod +x
the script!)

Now, we edit Gitolite's rc file($HOME/.gitolite.rc). In this file, we find a line
that defines the LOCAL_CODE variable commented out but conveniently pointing to
precisely where we chose to place our customizations, so we simply uncomment it.

We then add the following lines of code immediately after the LOCAL_CODE variable:

POST_CREATE => [

 'new-repo-alert',

],

Did you note the trailing comma after the closing bracket? And that's really all
you need to do. From now on, any time a user creates a new "wild" repository;
the new-repo-alert script will be executed.

As a second example, we will create a small command. The example we use
will allow a user to check the size of a repository using the git count-objects
command. Our command will default to running it with the -v option because
that is the most generic and useful.

Chapter 9

[83]

To do that, create a directory called $HOME/local/commands, and put a script called
count-objects in that directory. Make sure the script is executable (chmod +x).
The code for the script is as follows:

#!/bin/bash

repo=$1

gitolite access -q $repo $GL_USER W any || {

 echo Sorry $GL_USER, you are not authorized

 exit 1

}

cd $GL_REPO_BASE/$repo.git

git count-objects -v

The interesting part of this code is not the actual count-objects command.
The most generic, and thus most usable for your needs, is the gitolite access
command, whose usage message we have already seen in an earlier section.
Here, we are using it to ensure that the user running the command has at least got
write access to the repository in question before allowing the command to run.

Finally, add this command to the list of commands in rc file's ENABLE list, preferably
in the COMMANDS section.

Note that count-objects is a harmless command, so it may not
need to be protected. However, if you then stretch the use case a little
and allow the user to start a git gc operation, or even a git fsck,
you need to be more careful. Some of those commands don't deal well
with being run too many times or simultaneously by multiple people.
Ensure your command does some rate limiting or serializing.
Other commands require arguments to be supplied. If your script takes
arguments from the user, be sure to sanitize them before running the
command. You can undermine all of Gitolite's access control with one
carelessly written command!

Customizing Gitolite

[84]

As you can see from these two examples, the most important aspect of adding a new
feature to your site is to decide when and how the feature should be invoked—should
it be a user command, or a trigger that runs at specific points, or perhaps a VREF that
can influence the outcome of the overall command, and so on. In some cases, it could
even be a combination, for instance, a command and a VREF working together. As an
extreme example, Gitolite's mirroring feature, which is written entirely as non-core
code, is implemented as one command, and one Perl module is added to each of the
INPUT, PRE_GIT, and POST_GIT trigger lists.

Summary
In this chapter, we have seen an introduction to how Gitolite can be customized
or new features can be added that are specific to your site. This is a fairly complex
topic, but if you get your hands dirty and start writing programs, you will soon get
very comfortable with the idea, as well as get a very good feel for how powerful the
feature actually is.

The next chapter will focus on VREF, a powerful feature for even more fine-grained
access control, as well as access control based on factors other than what Gitolite
normally uses.

Understanding VREFs
We looked at VREFs briefly in Chapter 7, Advanced Access Control and Configuration,
including a small example to illustrate how Gitolite can allow or reject pushes based
on which files have been modified in commits being pushed. In this chapter, we will
explore VREFs in much greater detail, since this is one of the most powerful features
of Gitolite. We will start small, describing the simplest use for VREFs, then move on
to more complex uses.

Migrating update hooks
Some sites may already have been using update hooks in their existing (pre-Gitolite)
repository setups. Since Gitolite reserves the update hook for itself, this presents a bit
of a problem in terms of switching over.

If your site has such update hooks, the VREF mechanism can help replace them.
Replacing update hooks is one of the simplest uses of VREFs, but understanding
how that is done is also a good first step to understanding the full power of
Gitolite's VREF mechanism.

To convert your existing update hooks to VREFs, you first create a directory
called VREF within $HOME/local (we're continuing the convention from
Chapter 9, Customizing Gitolite, that the LOCAL_CODE variable in the rc file points
here). Then, copy each unique update hook into this newly created directory,
renaming each update hook in some way.

As an example, say you had one repository that was frequently worked on by novice
users using Windows, and so the update hook was used to make sure there were no
line-ending problems. You might rename this to check-crlf.

Understanding VREFs

[86]

Now, for each repository that needs this check to be made (that is, each repository
that had used that specific update hook in the pre-Gitolite setup), add a rule like this:

- VREF/check-crlf = @all

When Gitolite's update hook is processing a push, it will encounter this VREF rule
and it will call the check-crlf program. The first three arguments passed are the
same that Git itself has passed to the update hook, and if the program exits with a
non-zero exit code, Gitolite will reject the push. No changes to the check-crlf code
are needed to make all this happen; it just works.

Astute readers will have noticed that they could, instead of the rule shown above, use:

- VREF/check-crlf = @junior-developers

This helps to limit the checking to only those users named in the rule. In other words,
Gitolite allows a plain old update hook to be selectively applied, which could be very useful.

Passing arguments to the VREF code
Now let us suppose we had an update hook (in our pre-Gitolite setup) that
prevented certain users from making changes to certain files. One way would be to
write an update hook that checks for such files and use it as a VREF, as shown in
the previous section. However, the list or pattern of files to be checked will need to
somehow be encoded within the VREF code, or some other method of passing that
information needs to be found.

Gitolite allows you to pass additional arguments to the VREF code. Let's say the
VREF used is called NAME, then instead of merely saying:

- VREF/NAME = @junior-developers

and making sure that the code for the NAME VREF knows which files we are talking
about, you can say:

- VREF/NAME/.*\.h$ = @junior-developers

You'll see how this becomes really useful if you later find that another group of users
needs to be restricted in a similar way, but for a different set of files. Let's say we
have a set of technical writers who are working on the documentation; there's no
reason for them to be touching the files that make up the source code:

- VREF/NAME/.*\.[ch]$ = @tech-writers

Chapter 10

[87]

Of course, the VREF code is now not quite the same as it was when it was an update
hook. Apart from the first three arguments (which are the same as those listed in man
githooks for the update hook), there are now several other arguments, and the file
patterns we just added are one of those (specifically, the eighth argument). The VREF
code must get that pattern out of the incoming arguments and use it to decide whether
the push is to be allowed or denied.

Using the permission field
Let us say we have several different kinds of source code files, and listing all of them
in the rule for the technical writer is not only cumbersome, but error prone because
we might miss something. We do know, however, that technical writers only work
on documents, so we'd prefer to simply restrict them to *.odt files.

Until now, we have considered the NAME VREF to behave in a certain way: receive
a filename pattern, and if any file has been changed (in the push) that matches that
pattern, exit with a non-zero return code to signal Gitolite to reject the push. As you
can see, this behavior completely ignores the permission field; that is, even this rule
would have the same effect:

RW+ VREF/NAME/.*\.[ch]$ = @tech-writers

What we need is a way to consider the permission field as well. Our first impulse
might be to develop some way to pass this field to the VREF code, perhaps with
some new syntax, and let the VREF code reverse the check when required.

However, this complicates the VREF code, while at the same time not making use of
Gitolite's rule processing logic.

Gitolite processes access control rules based on matching a ref (typically something
like refs/heads/master or refs/tags/v1.0) against each rule in turn. So one
way to make use of this is to not have the VREF code actually make a decision,
but merely output something that Gitolite can capture and run through its access
control rules, just like a normal ref would be.

You could call this a virtual ref, too!

Let us briefly recap the terminology, a VREF is the code that
runs, and a virtual ref is what it might send back to Gitolite.

Understanding VREFs

[88]

Maintaining the update hook function
However, we do not want to affect the behavior of a standard (Git) update hook when
used as a VREF, as described earlier in this chapter. This is easy enough—Gitolite
treats any lines in the VREF's output as virtual refs only if they start with VREF/, and
even that only if the VREF has exited with zero status.

Default is success
At this point we need to change the NAME VREF. Instead of making a decision, it should
merely print all the files that have been changed, each prefixed with VREF/NAME/.

Once that is done, it might then seem that the following rule is all we need:

RW+ VREF/NAME/.*\.odt$ = @tech-writers

However, that's not quite the end of it.

There's a slight difference in how virtual refs are treated compared to real refs. With
real refs, if no access rule matches the ref (and the user, and the actual type of write),
the default is to reject the push.

However, virtual refs are designed as additional rules, adding checks that the normal
Gitolite access rules cannot. Thus it makes more sense that if no VREFs match, it
should be as if no additional checks apply to this push, and so the default is to allow
the push.

As a result, we need one more rule, which brings our final ruleset to this:

RW+ VREF/NAME/.*\.odt$ = @tech-writers

- VREF/NAME/ = @tech-writers

Loosely speaking, what this does is, for each file that has been changed, generate a
virtual ref by prefixing VREF/NAME/ to it, and passing that virtual ref through the
ruleset. The rest is obvious, for example, changing a file called foo.c creates a virtual
ref called VREF/NAME/foo.c, which will match only the second rule and this push gets
denied. Files whose names end in .odt will match the first rule and not cause a reject.

Chapter 10

[89]

Example VREFs and their usage
The Gitolite source tree comes with a few VREFs ready to be used. To use them, you
simply add rules similar to the ones we saw at the end of the previous section. We
will look at a couple of them to get a feel for how they are used, and then design one
from scratch so we know how to add our own.

If you look in the Gitolite source tree, you won't actually find a
VREF called NAME. This is because NAME is special and the code
for that is built in to Gitolite.

Newcomers to Git may sometimes end up creating a commit that changes a lot more
files than are strictly necessary for the change being made. Perhaps they added
debugging statements to some other files, or perhaps they accidentally saved some
files with a different line-ending (Unix LF versus Windows CRLF), and so on.

If you are sure that your new developers are given relatively simple tasks, and at
no time should any particular task touch more than, say, five files, you can use the
COUNT VREF to prevent them from pushing more, and thus protect the repository
from wide-ranging changes of the kind discussed in the previous paragraph. Here's a
rule that achieves that:

- VREF/COUNT/5 = @new-devs

The COUNT VREF essentially counts all the files changed in the commits that
constitute the current push (and do not exist on any other branch or tag).

If that last bit sounds complicated, consider what happens when a developer merely
makes a new branch out of an existing one and pushes it. We don't want the COUNT
VREF to basically see all the files in the branch as changed, simply because the old
value of the branch pushed was empty. This is why the COUNT code looks at commits
that do not appear in any other ref.

The MAX_NEWBIN_SIZE VREF is similar in concept. This addresses the issue that
sometimes developers unintentionally or unknowingly commit, say, a JAR file or
the executable file produced by a build step. Executable files like this tend to be a
bit larger than normal source files, so if you have some idea of a reasonable limit,
you can use this VREF to enforce it.

Understanding VREFs

[90]

Writing your own VREF
Here's an example use case where VREFs come in handy. We'll use this to design a
very simple VREF, in a way that cannot be done with the existing rules.

The requirement is simple: for any repository foo, if a repository called l10n
contains a directory called foo, then you cannot push any files called *.po to foo.

This has been adapted from a more complex, real-life use case,
but for our purposes we don't need more than this. As you might
guess, this is a multi-repository system that is gradually moving
toward centralizing the local language files so that translators only
have to deal with one repository. Each repository's local language
files are moved over when they are deemed ready and from that
point on, localization files must go to the single repository that
was created for the purpose.

Because this is a very specific use case, we can write a simple VREF that does not
take any arguments. Our rule can look like this:

repo @all

- VREF/l10n-check = @all

As you can see, we're applying this rule to all repositories. (This is slightly inefficient
if you have several repositories for which this will never be true—the VREF will be
invoked for each of them, on every push. If so, replace @all in the repo line with a
group name that contains only those repositories for which this check is required)

There may be individual rules for each of those repositories
elsewhere—we need not put this VREF rule in each repository
section. This is an example of the Rule Accumulation and Delegation,
discussed in Chapter 6, Getting Started with Access Control in action.

Here's one way to code this VREF (some familiarity with basic shell syntax and Git
concepts is required to understand this code):

#!/bin/bash

see Gitolite documentation for arguments and meanings

oldtree=$4

Chapter 10

[91]

newtree=$5

refex=$7

no *.po files changed? No problem!

git diff --name-only $oldtree $newtree | grep '.*\.po$' >/dev/null ||
exit 0

cd $GL_REPO_BASE/l10n.git

no directory with the same name as $GL_REPO in the l10n repo? No
problem!

git ls-tree master | grep "\sGL_REPO" >/dev/null || exit 0

echo $refex "sorry, PO files must be added to '$GL_REPO' subdirectory in
'l10n' repo"

As you can see, the first check uses the git diff command to check whether this push
has changed any po files. If not, there's nothing to check and we exit without doing
anything. The second check moves to the l10n repository, then runs an ls-tree on
that repository to check whether it contains a file or directory whose name is the same
as the repository that the user is pushing. If it does not, we can exit without complaint.

If those two checks succeed, we need to signal the error. One way would be to simply
exit 1; Gitolite would catch the VREF code dying and reject the push. On the other
hand, we could print the refex itself (which in this case is just VREF/l10n, but it's a
good habit to use the argument instead). It will then match the access rule we set up,
and because the permission is "-", the push will be rejected.

But the VREF feature offers a little more. If, after the refex, you print a space and then
some explanatory message, this message will be printed when the push is rejected:

$ git push

Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 351 bytes | 0 bytes/s, done.

Total 3 (delta 0), reused 0 (delta 0)

remote: FATAL: W VREF/l10n t2 u1 DENIED by VREF/l10n

Understanding VREFs

[92]

remote: sorry, PO files must be added to 't2' subdirectory in 'l10n' repo

remote:

remote: error: hook declined to update refs/heads/master

To u1:t2

 ! [remote rejected] master -> master (hook declined)

error: failed to push some refs to 'u1:t2'

If you write VREFs to catch rarely occurring conditions, then you may find it useful
to augment Gitolite's rather spartan error reporting with something in plain English,
so your users can scratch their heads a little less!

Summary
In this chapter, we explored one of Gitolite's most powerful features—the ability to
use arbitrary external factors for access control decisions by writing VREFs. The next
chapter will conclude our exploration of Gitolite by talking about mirroring—a feature
which large multi-site setups could find very useful.

Mirroring
While most installations are happy to install Gitolite on a single server accessible
to all their developers, some of them have developers in several cities around the
world, and it is often useful to provide local mirrors in each city for fast access.
Gitolite's mirroring feature caters to these needs in a very flexible manner.

Mirroring can be as simple or as complex as you want it. You can have one server
be the master server for all repositories, with one or more slave servers carrying
copies of them. You can have different servers be the master servers for different
repositories, and select only some of the remaining servers as slaves instead of all of
them. You can even keep some repositories out of the mirroring process if you wish.

Terminology and basic concepts
A mirrored repository has a writable copy on one server, often called the master
server for that repository, and read-only copies on one or more servers, similarly
called slave servers. The slave repositories are updated near instantaneously, subject
to network speed, when the master repository is updated.

Repository level mirroring
The primary purpose of most mirroring is to make read access (over the network)
faster, by providing a copy on a nearby server for fetches and clones. One might,
therefore, expect a single server to be designated as the master and several others as
slave servers.

However, Gitolite mirroring is defined at the repository level, not for the entire server
as a whole. For each repository, the administrator decides which server holds the
master (writable) copy, and which of the other servers, if any, should make slave
copies available to their local users. (This is why we speak of master repository and
slave repository, not master server and slave server.)

Mirroring

[94]

This is a very important idea that brings several advantages over mirroring the entire
server as a whole.

Firstly, repositories need not be made available on servers where there are no local
users of that repository. If there are very few (say one or two) users, depending on
how actively developed the repository is, it might still make sense, from a network
utilization point of view, to let those few users directly pull from the master or one
of the other slaves. This allows branch offices with less resources to still be part of
the Gitolite mirroring network if they have enough projects their local users will be
working on.

Secondly, since you do not have to put all the master repositories on the same server,
you can choose where to place the master copy of any specific repository. Usually,
you'll want to place it on whichever server is closest (from a network speed point of
view) to the majority of the developers who will be working on it.

Finally, repositories can be purely local to a particular server, that is, they need not
be mirrored at all.

There can only be one master repository—you cannot have different
users pushing to different servers because that would lead to a merge
issue, which cannot be reliably automated. (However, Gitolite does
have a workaround for convenience, as we will see later.)

The gitolite-admin repository
From the point of view of Gitolite's mirroring feature, the gitolite-admin repository
is just another repository. There is nothing special about it as far as mirroring
is concerned – like all other repositories, one of the servers will hold the master
(writable) copy. The only difference is that all the other servers must be mentioned in
the slave list; if a server is not mentioned, it cannot receive updates to this repository.

Setting up mirroring
Setting up mirroring has quite a few manual steps, although each step in itself is
quite simple. The first step is to give each host a name, and make sure that the hosts
can all talk to one another by these names. The second step is to enable mirroring on
each server.

We start by installing Gitolite as normal on all the servers. Then, we edit each
server's $HOME/.gitolite.rc file and uncomment the line defining the HOSTNAME,
choosing a simple hostname as the value.

Chapter 11

[95]

The hostname should be a simple word; it is of interest only to
Gitolite and does not have any relation to the server's hostname
as known by the operating system and DNS records.

Gitolite mirroring works by allowing the servers to communicate with each other
using ssh keypairs named after these hostnames. This is the same mechanism that
users use, except that the public key file for a server is named server-, followed
by the hostname of that server. All the keys will need to be provided to all the
servers, added to their gitolite-admin repositories, and pushed. Finally, each server's
$HOME/.ssh/config will need a host alias to refer to all the other machines.

Example setup
An example will make this clearer. Say you have three servers jupiter, ganymede,
and callisto. These servers are on IP addresses 10.1.1.1, 10.2.1.1 and 10.3.1.1.

1.	 First, install Gitolite on all three servers. On Jupiter, edit $HOME/.gitolite.rc,
and uncomment the HOSTNAME line, changing it as follows (don't miss the
trailing comma!):
HOSTNAME => "jupiter",

2.	 Do the same on the other two servers.
3.	 Run ssh-keygen on each server to create a key pair for the server.

Collect all three $HOME/.ssh/id_rsa.pub files (one from each server),
naming them server-jupiter.pub, server-callisto.pub, and
server-ganymede.pub respectively.

4.	 Add these public keys to all the servers, just as you would add normal
users (that is, for each server, clone the gitolite-admin repo from that server,
add all these keys to the keydir, then add, commit, and push).

5.	 Next, add the following lines to all three servers' $HOME/.ssh/config
files (assuming the hosting user on all three servers is git):

host jupiter

 user git

 hostname 10.1.1.1

host ganymede

 user git

 hostname 10.2.1.1

host callisto

 user git

 hostname 10.3.1.1

Mirroring

[96]

When you're done with all this, you should be able to test your setup by running ssh
ganymede info from jupiter. You should get an output similar to the following:

hello server-jupiter, this is git@ganymede.example.com running gitolite3
v3.5.3.1-7-g31d11b9 on git 1.8.3.1

Similar commands from any server to any other should generate similar responses.
It is best to test all the possible combinations to avoid confusing errors later.

Bootstrapping the mirroring process
The previous step establishes communication and authentication between all servers.
Once that is done and checked, the next step is to bootstrap the mirroring process by
setting up mirror options for the gitolite-admin repository and pushing them.

On each server, add the following lines to the conf file:

repo gitolite-admin

 option mirror.master = jupiter

 option mirror.slaves = callisto ganymede

Once you add, commit, and push this change to all the repositories, Gitolite mirroring
is set up and ready to go. From here on, you administer everything by pushing to the
gitolite-admin repository on its master server (in our case, jupiter).

Mirroring other repositories
By now you can guess what you need to do for each of the other repositories.
Just add option lines as in the previous section for each of them. For example,
a simple mirroring setup, where all the repositories are mirrored the same way,
can be as follows:

repo @all

 option mirror.master = jupiter

 option mirror.slaves = callisto ganymede

If that's all you want, you're pretty much done with mirroring. Otherwise, add the
options as required, giving each repository the correct master server name and the
correct set of slave servers. Note that any repositories that don't have these settings
are considered local.

Chapter 11

[97]

If you're allowing your users to create their own repositories (see Chapter 8, Allowing
Users to Create Repos), just add mirroring option lines to those repository definitions
too. The following restrictions apply to mirroring user-created repositories.

The creation of such a repository is propagated only when the first push happens to
the repository on the master server. A repository created as the result of a clone or
fetch will not immediately propagate to the slaves.

Changes in permissions (using the perms command; see Chapter 8, Allowing Users to
Create Repos, specifically the Giving access to other users section) also propagate only
on the next push.

Local repositories and hostname
substitution
We mentioned earlier that some servers can have local repositories, say if the conf
file does not specify Gitolite mirror options for those repositories. However, local
repositories are really of interest only if each server can have its own set of them.
For example, say the folks on Ganymede wish to have a local repository called
ganymede-news that they intend to use internally. Adding that to the conf file
would create such a repository on Jupiter and Callisto as well; even if no one used it,
it's ugly, unnecessary, and cause for future confusion. We would like to prevent this,
but since the same gitolite-admin repository, with the same conf/gitolite.conf
file and other files, is pushed to all the slave servers, it seems difficult to do so.

The feature that makes this possible is HOSTNAME substitution. Specifically, whenever
Gitolite encounters the string %HOSTNAME (followed by a non-word character; that
is, a character other than alphabets, digits, and underscore) in the conf file, it will
replace it with the HOSTNAME of the server, as given in $HOME/.gitolite.rc, before
processing it.

Using the include statement capability we saw in Chapter 6, Getting Started with
Access Control, you can now provide server-specific Gitolite configuration, while still
keeping everything in one repository. Just add the following line to the main conf file
(conf/gitolite.conf):

include "%HOSTNAME.conf"

Then, create conf/jupiter.conf, conf/callisto.conf and so on for each of your
servers. Within those files, specify repo statements and rules that are unique to the
respective server.

Mirroring

[98]

It is important to understand that when you use such an include statement in your
main conf file and push, each server will see that line differently. For example,
Jupiter will see it as the following line (and similarly for other servers):

include "jupiter.conf"

This means that the other two files (ganymede.conf and callisto.conf), while they
are certainly physically present in the conf directory, are not actually processed at all.

Redirecting pushes
We mentioned earlier that there can only be one master repository. However, this
makes things a little inconvenient from the developers' point of view. Say you would
like some of your developers to take advantage of a geographically close slave server
to pull updates from. This means they would have to use push to a different server
than the one they presumably cloned from and regularly pull/fetch from. While
Git does allow this (see man git-config and look for pushurl, for one possible way),
it is still something that requires each user to do something on their machines. In
addition, remember Gitolite allows different repositories to have different master
servers; this is more scope for confusion on the part of the developer.

Therefore, Gitolite has a feature that makes this restriction much less onerous. If the
administrator chooses, a developer can push to a slave server, and the push will
transparently be forwarded to the master server for that repository. In fact, the user may
not even know that this is happening unless the network speed makes it obvious.

This makes things very convenient for administrators; there is no longer any need
to confuse developers with detailed information about where to clone and where to
push for each repository they need. In fact, you can set it up so that all developers in
a particular site use their local Gitolite server for all their clones, without even having
to even know that Gitolite mirroring is being used!

This feature is called redirected push, since that is exactly what happens behind the
scenes. Here's how to use it. Let us say you want to allow redirected pushes (to a
repository foo) from ganymede (but not callisto), you add the following lines to
the conf file:

repo foo

 option mirror.redirectOK = ganymede

That's it. Just list all the slaves that you trust and add them, space-separated, as a
value to this option. If you trust all of them, just use the single word all instead.

Chapter 11

[99]

Manual synchronization
Sometimes you will find that a slave server has not been updated, perhaps due to
some transient network problem. One way to get it back in sync, after the network
problem has been resolved, of course, is to make some change to the repository and
make a push. However, this feels clumsy and inelegant.

At present, Gitolite does not have any way of reporting on push
failures, although it does log whatever messages Git itself sends
back in the log files. This means admins have to actively monitor
the log files for failure, or wait for users to report issues with
slaves getting out of sync.

For the aesthetically sensitive, Gitolite has the mirror command. Just log on to
the server that contains the master repository, and run gitolite mirror push
slavename reponame. This will immediately bring the slave up to date.

If you would like remote users to invoke such updates, simply enable the command
for remote use by uncommenting the corresponding line in $HOME/.gitolite.rc.

Switching to a different master
The biggest day-to-day benefit of mirroring is clearly that it can make read
access more network-efficient for projects where the development team is widely
distributed, albeit at the cost of an extra server at each slave location.

However, there's obviously one more advantage. If the main server for a repository
should fail, one of the mirrors can easily be removed from the list of slaves and be
made the master. As long as there are no network problems, the slave should be in
the same state as the master, so no commits are lost.

Mirroring is not the same as backup. It is outside the scope of this book
to discuss the differences, but you should always have a reliable backup
system in place for all your servers and possible workstations as well.

This simple strategy breaks down when the server that died contains the gitolite-
admin repository itself. This is a bit of a catch-22 situation; you cannot push the
change (in mirror options for the gitolite-admin repository) to the current master
server since it is down. Yet, you cannot push to the slave server that you decided to
promote to "master" status, because it does not yet know that it is the new master!
(Needless to say, as a security feature, slave servers do not accept pushes from just
anywhere – they will only do so from the server that they have been told is the
master for the repository concerned.)

Mirroring

[100]

The correct way to resolve this is as follows:

1.	 On each slave, edit $HOME/.gitolite/gitolite.conf. Change the master
and slave options for the gitolite-admin repository. If you used repo @all for
these options, they will change for everyone. However, it's best to change it
only for the gitolite-admin repository if at all possible.

2.	 After saving the change to this file, run gitolite setup. This will override
the restriction and force the change on the local server. (This cannot be done
remotely, again for security reasons.)

3.	 Now, on the administrator's workstation, clone the gitolite-admin repository
from the new master, change the mirroring options for the rest of the
repositories (if required), then push the change.

Summary
This concludes our exploration of Gitolite's mirroring feature. While it is not something
that everyone will need, for the larger sites this has some very visible benefits.

I hope you have enjoyed this exploration of Gitolite and its features. As you
use Gitolite more and more, you might also have the need to look at the official
documentation on http://gitolite.com. We hope that this book has helped you
understand the concepts and rationale behind Gitolite so that you can understand
the official documentation better and get your job done faster.

Index
Symbols
@all group 52

A
Access Control example, Gitolite 6, 7
access control rules

syntax 48
arguments

passing, to VREF code 86
authentication 27
authorization 27

B
bare repository 42
branches

providing, to users 56, 57
branch level access control

about 48
deny rules, using 49
permission field 50
specifying, in Gitolite 48, 49

C
chown command 42
commands, non-core Gitolite code

about 78
access command 78
D command 78
desc command 79
fork command 79
git-config command 80
help command 80

info command 80
perms command 78, 80

common access control needs, Git
about 5, 6
POSIX ACLs, using 6

conf file
lexical syntax 47

core Gitolite code 77
count-objects command 83
count-objects script 83
COUNT VREF 89

D
deny rules

applying, to read access 64
different master

switching to 99, 100

F
fast forward pushes 57

G
Git

about 5
common access control needs 5, 6

Git client side 10
Git config values

git-config key, deleting 61
overriding 63
repository name, substituting 62
specifying 61

Git control flow 9
git count-objects command 82

[102]

git-daemon
about 58
access, providing 58, 59

git-daemon-export-ok 59
Gitolite

about 5, 10
Access Control example 6, 7
basic access control examples 45, 46
basic branch level access control 46
commands 26
commands, getting help for 26
groups, creating 8
hosting user 15
info command, running 25
installing 11
keys, managing outside Gitolite 36
personal branches 8
personal repositories 9
playing with 12-14
power features 7
repositories, adding 39
sandbox installation 15
setup, preparing 11
test instance, setting up 11, 12
user group information,

getting from LDAP 36, 37
users 15
users, adding 31, 32
users and keys, processing 32
users, distinguishing 16, 17
users, removing 37
users, with multiple key pairs 33, 34

gitolite access command 83
gitolite-admin repository 39 94
Gitolite configuration

performing 19
repository, adding 22
server, checking 20, 21
setup command, running 19, 20
ssh keypair, creating 19
user, adding 21

Gitolite control flow 9, 10
Gitolite installation

code, installing 18
server, preparing 17
source code, obtaining 18

Gitolite options 63

Gitolite repositories
accessing 24
naming 25
SSH key pairs 24

Git repositories
accessing 23
Git servers 23
HTTP 23
SSH 23

Gitweb
about 58
access, providing 58, 59
projects list file, locating 59
umask 60
Unix permissions 60

groups, Gitolite
creating 8

H
hosting user 15
HOSTNAME substitution 97

I
include statement 53

L
lexical syntax, conf file 47
local repositories 97

M
manual synchronization 99
MAX_NEWBIN_SIZE VREF 89
mirroring

about 93
example setup 95, 96
setting up 94, 95

N
non-bare repository 42
non-core Gitolite code

about 77
commands 78, 79
syntactic sugar 80

[103]

triggers 80, 81
types 78
virtual refs 81
writing 81-84

P
permission field

using 87
personal branches 8, 57
personal repositories, Gitolite 9
pushes

redirecting 98

R
rc file

modifying 55, 56
read access

deny rules, applying to 64
redirected push 98
repo groups

defining 51
repositories

adding 22, 39, 40
existing repositories, adding 40, 41
mirroring 96, 97
putting, in sub-directories 68
troubleshooting 41

repository level mirroring 93, 94
repository wildcard 68
rule accumulation 53

S
setup command, Gitolite

running 19, 20
source code, Gitolite

installing 18
obtaining 18

SSH best practice 29
SSH issues, troubleshooting

authorization 27
performing 27
public key problems, diagnosing 28
public keys, duplicating 28

ssh-keygen command 24

ssh keypair, Gitolite
creating 19

syntactic sugar, non-core Gitolite code 80
syntax, access control rules 48

T
terminology, mirroring

gitolite-admin repository 94
master server 93
mirrored repository 93
repository level mirroring 93, 94
slave repository 93
slave servers 93

triggers, non-core Gitolite code
about 80, 81
INPUT trigger point 80
POST_COMPILE trigger point 80
POST_CREATE trigger point 81

troubleshooting
SSH issues 27

troubleshooting, Gitolite repositories
non-bare repository, converting to

bare repository 42
ownership 41
performing 41
permissions 41
update hook mechanism 43

U
update hook function

maintaining 88
update hooks

migrating 85, 86
user groups

@all group 52
defining 51
large groups, working with 52

users, Gitolite
adding 21, 31
group information, getting from

LDAP 36, 37
keys, managing outside Gitolite 36
removing 37
shell, providing 35
with multiple key pairs 33, 34

[104]

V
virtual refs, non-core Gitolite code 81
VREFs

about 65
arguments, passing to VREF code 86
examples 65, 89
permission field, using 87
rule 65
update hooks, migrating 85, 86
usage 89
writing 90, 91

W
wild repos (wild repositories)

access, providing 70, 71
creating 69, 70
deleting 75
explaining, to users 73
managing 74
ruleset, generalizing 72

write operations
types 57, 58

Thank you for buying
Gitolite Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

GitLab Repository Management
ISBN: 978-1-78328-179-4 Paperback: 88 pages

Delve into managing your projects with GitLab,
while tailoring it to fit your environment

1.	 Understand how to efficiently track and
manage projects.

2.	 Establish teams with a fast software
developing tool.

3.	 Employ teams constructively in a
GitLab environment.

Git: Version Control for Everyone
ISBN: 978-1-84951-752-2 Paperback: 180 pages

The non-coder's guide to everyday version control for
increased efficiency and productivity

1.	 A complete beginner's workflow for version
control of common documents and content.

2.	 Examples used are from non-techie, day to day
computing activities we all engage in.

3.	 Learn through multiple modes – readers learn
theory to understand the concept and reinforce
it by practical tutorials.

4.	 Ideal for users on Windows, Linux, and Mac
OS X.

Please check www.PacktPub.com for information on our titles

Instant RubyMine Assimilation
ISBN: 978-1-84969-876-4 Paperback: 66 pages

Utilize the RubyMine IDE to develop your own
Ruby on Rails applications

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Incorporate features of RubyMine into
your everyday Ruby and Ruby on Rails
development workflow.

3.	 Learn about the integrated testing and
debugging tools to make your coding
bulletproof and productive.

4.	 Become an expert at deploying Rails
applications directly from RubyMine.

Cloning Internet Applications
with Ruby
ISBN: 978-1-84951-106-3 Paperback: 336 pages

Make your own TinyURL, Twitter, Flickr,
or Facebook using Ruby

1.	 Build your own custom social networking,
URL shortening, and photo sharing websites
using Ruby.

2.	 Deploy and launch your custom high-end
web applications.

3.	 Learn what makes popular social networking
sites such as Twitter and Facebook tick.

4.	 Understand features of some of the
most famous photo sharing and social
networking websites.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Getting Started with Gitolite
	Common Access Control needs
	Access Control example with Gitolite
	Sampling of Gitolite's power features
	Creating groups
	Personal branches
	Personal repositories

	Gitolite and the Git control flow
	Trying out Gitolite
	Preparing for the setup
	Installing and setting up a test instance
	Playing with Gitolite

	Summary

	Installing Gitolite
	Gitolite users and the hosting user
	Distinguishing users from each other

	Preparing the server
	Getting the Gitolite source
	Installing the code
	Setting up Gitolite
	Creating an ssh key pair
	Running the setup command
	Checking over your new Gitolite server
	Adding a user
	Adding a repository

	Summary

	Your Users and Gitolite
	Accessing Git repositories
	Git servers, SSH, and HTTP

	Accessing Gitolite repositories
	SSH key pairs
	Repository naming

	Getting information from Gitolite
	Gitolite commands
	Getting help for commands
	Troubleshooting SSH issues
	Authorization, not authentication
	Duplicate public keys
	Diagnosing public key problems
	SSH best practice

	Summary

	Adding and Removing Users
	Adding users
	Behind the scenes

	Users with multiple key pairs
	Giving some users a shell
	Managing keys outside Gitolite
	Getting user group information from LDAP
	Removing users
	Summary

	Managing Repositories
	Adding repositories
	Adding existing repositories
	Common problems and troubleshooting
	Ownership and permissions
	Converting a non-bare repository to a bare repository
	Gitolite and the update hook

	Summary

	Getting Started with
Access Control
	Basic access control examples
	Basic branch level access control

	Lexical syntax of the conf file
	The syntax of access control rules
	Branch level access control and refexes
	Using deny rules
	The permission field

	Defining user and repo groups
	Working with large groups
	The special @all group

	The include statement
	Rule accumulation and delegation
	Summary

	Advanced Access Control
and Configuration
	Making changes to the rc file
	Giving users their own branches
	Types of write operations
	Allowing Gitweb and Git-daemon access
	Locating the projects list file
	Unix permissions and the umask

	Specifying Git config values and Gitolite options
	Deleting a git-config key
	Substituting the repository name
	Overriding config values
	Gitolite options

	Applying deny rules to read access
	Understanding VREFs
	Summary

	Allowing Users to
Create Repos
	Putting repositories in Sub-directories
	Repository wildcards
	Creating a wildcard repository
	Giving access to other users
	Generalizing the ruleset

	Explaining wild repos to your users
	Managing with just wild repos
	Deleting wild repositories
	Summary

	Customizing Gitolite
	Core and non-core Gitolite
	Types of non-core code and examples
	Commands
	Syntactic sugar
	Triggers
	Virtual refs

	Writing your own non-core code
	Summary

	Understanding VREFs
	Migrating update hooks
	Passing arguments to the VREF code
	Using the permission field
	Maintaining the update hook function

	Default is success
	Examples VREFs and their usage
	Writing your own VREF
	Summary

	Mirroring
	Terminology and basic concepts
	Repository level mirroring
	The gitolite-admin repository

	Setting up mirroring
	Example setup
	Bootstrapping the mirroring process
	Mirroring other repositories

	Local repositories and Hostname substitution
	Redirecting pushes
	Manual synchronization
	Switching to a different master
	Summary

	Index

