3% @‘\\ /%//’ lf/t/w %

,,W m; & \\ i
@T}\ @g&\ W///w?”'}\\.‘é ‘ '/ 7% i 2 v Z
\?:EF[

AVINSRR 1A%) /// "
“‘: i “\\\ Bya, o r[",'-' / ///,ﬁlﬁ'r(@; b

5‘\\ ”' ‘.’v\.'. & ”’7’””’7& &
s '//W’\\«\\ ﬂwuf'm‘ﬂf Ol

rofeSS|onaI Expertise Dlstllled

Learning Perforce SCM

Robert Cowham

enter rlse'
Neal Ralph Firth [PACKT] enterprise

PUBLISHING

Learning Perforce SCM

A comprehensive guide to the world's leading
enterprise configuration management system

Robert Cowham
Neal Ralph Firth

enterprise &

PUBLISHING

BIRMINGHAM - MUMBAI

Learning Perforce SCM

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013
Production Reference: 1170913

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-764-5
www.packtpub.com

Cover Image by Jarostaw Blaminsky (milak6@wp.pl)

Credits

Authors Project Coordinator
Robert Cowham Apeksha Chitnis
Neal Ralph Firth

Proofreader

Reviewers Joel Johnson
Roel Coucke
Mykhailo Moroz Indexer

Rekha Nair

Acquisition Editor

Edward Gordon Graphics
Abhinash Sahu

Lead Technical Editor
Madhuja Chaudhari Production Coordinator

Prachali Bhiwandkar

Technical Editors

Mrunmayee Patil Cover Work

Sonali Vernekar Prachali Bhiwandkar

About the Authors

Robert Cowham is from a software development background with experience in
roles from programming to testing and project management. He came across Perforce
as a user in the early days of the company when there were only four employees. He
subsequently became one of the two pre-qualified Perforce Consulting Partners, and
became a Perforce Certified Trainer as soon as that program was implemented. Since
then he has consulted for many companies and organizations, and trained thousands
of users around the globe, from California to Japan, including giving training courses
in German, French, and Italian.

He has also written a number of integrations with Perforce. This includes P4OFC,
which integrates with Microsoft Office, and is still provided as an officially-supported
public download. APIs developed by him include P4ACOM, a COM based API for

use on Windows, and P4Python which he subsequently handed over to Perforce to
support. He has also written various full history migration tools for customers to get
them into Perforce.

He has long had an interest in all aspects of configuration management and was for
several years a coauthor with Brad Appleton and Steve Berczuk of the Agile SCM
column in the online CM Journal. He was Chair of the specialist group for Change,
Configuration and Release Management of the British Computer Society for seven
years, organizing many events and conferences, and is still active on the committee.
He regularly speaks at industry events.

As Services Director for Square Mile Systems, Robert now also works with
configuration management of infrastructure and data centers, applying the
same principles to the physical world.

Robert has practiced the Japanese martial art of Aikido for over 20 years, and
runs a dojo near his home in London. He has even managed to combine his
interests with a well-received presentation on "Black belt SCM techniques,"
including physical demonstrations of the principles involved!

I would like to thank my family for their love and support during
the writing of this book. My wife Phoebe covered for the many
hours spent closeted away, and my sons Benedict and Dominic
also coped admirably with the competition for my attention.

I have worked together with Neal many times over the years. We
have different but complementary strengths and writing styles,
and it has been a pleasure to work with him on this book.

Neal Ralph Firth assumed both individual contributor and management roles
during the design, test, and development of both hardware and software used in
stand-alone, embedded system, and real-time environments in his early career. Since
the late 90's he has focused on source control and the automation of test and build
systems. He first encountered Perforce in its early days while investigating source
control solutions for one of his first consulting customers. He subsequently became
a Perforce Consulting Partner and a Perforce Certified Trainer as soon as those
certifications were available to him. He has consulted for hundreds of companies
and organizations, and trained thousands of Perforce users and administrators
across the US and Canada.

His career has had a focus on automation and the tools that make people more
productive. His early work with hardware microcode simulation was chronicled as
part of Tracy Kidder's Pulitzer prize winning book "The Soul of a New Machine". He
has presented papers and has spoken at conferences in the US, the United Kingdom,
and Germany. He has published articles on hardware, software, and business topics.
Hardware topics include peer reviewed IEEE articles on microcode. Software articles
have dealt with the application of automated processes with a focus on legacy tool
integrations and tool migrations.

As the principal provider of Perforce related services for VIZIM Worldwide, Neal's
focus is on the migration of information between SCM products and integrations
with legacy systems. He developed the framework for VIZIM's full history migration
tool sets and authored the ClearCase and VSS-specific versions of those tools. He has
created many Perforce-specific integrations for features such as the Perforce Defect
Tracking gateway and IDEs such as JDeveloper.

I would like to thank my family for their support during the writing
of this book. My wife Lynn for being a loving supportive partner, my
son Eric for reminding me there is life beyond the keyboard, and my
daughter Carolyn for reminding me to watch Dr. Who.

Robert and I have worked together many times over the years. Our
different yet complementary skills have made for a pleasurable and
dynamic interaction while working on this book.

About the Reviewers

Roel Coucke is a 3D generalist, specializing in developing hard surface assets,
environments, advanced shaders, and tools for videogames. He graduated at
Howest University College in Belgium with a Bachelor's Degree in Game
Development, a parallel study in 3D art and programming,.

He worked at Guerrilla Games, Amsterdam on Killzone 3, and is an instructor
in the Creative Development Series on Digital-Tutors.

I would like to thank the authors of this book with whom I had the
honor to collaborate.

Mykhailo Moroz is a software development engineer with seven years of
professional experience. During his career he has been working for different
projects from very small to very large companies architecting, building, and
maintaining test automation frameworks.

His background includes deep knowledge in computer networks, programming,
and test automation. Active and everyday usage of tools like Perforce was a
prerequisite for successful completion of his projects.

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt Pub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub. com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[a]PACKT)

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents

Preface 1
Chapter 1: Getting Started with Perforce 7
Version control 7
Software configuration management 9
Centralized and distributed version control 9
Understanding Perforce clients and servers 10
Servers 11
Client programs 11
Introducing the core Perforce concepts 12
Depots 12
Workspaces 12
Changelists 13
Dealing with installation 15
Client and server version compatibility 15
Perforce platforms 15
Perforce interfaces 16
The Perforce mindset 16
Following along 17
Summary 17
Chapter 2: The P4V GUI 19
Understanding the P4V display 20
Accessing P4V actions 21
Command menus 21
Shortcut key combinations 22
The Toolbar 22

The Address bar 23

Table of Contents

Exploring the tree pane 23
The depot tree tab 24
The workspace tree tab 24

Exploring the view pane 25
Closing, undocking, or docking information views 26
Viewing tabs with detail panes 26
Filtering view tabs 27
Right (context) click menus 28

Reviewing activities 29
The Log tab 30
The Dashboard tab 30

Summary 31

Chapter 3: Basic Functions 33

Getting something to work with 33
Connecting (log in) 34
Passwords 35
You're done (log off) 35
Specifying a workspace 36

Creating an initial workspace 37
Updating a workspace — populating it with files 39
Populating a workspace from the depot tab 40
Workstation files 41

Basic SCM actions 42
Selecting a changelist 43
Modifying existing files (check out) 43
Adding files (mark for add) 44
Deleting files (mark for delete) 45
Reverting an action 45
Which files are you working on? 47
Identifying local changes (diff against have revision) 47
Submit — updating the server 49

Fast access file information 50
Icons 51
Versions and type 52
File status tool tips 52

Getting help 52
The help menu 53
Help buttons 53
The Perforce website 53

Summary 54

Lii]

Table of Contents

Chapter 4: Changelists 55
Creating useful changelists 55
Associating files with a changelist 56
Effective descriptions 56
Updating descriptions for submitted changelists 58
Using changelists for an organization 58
The default changelist 59
Other pending changelists 59
The select pending changelist dialog 60
Moving files between pending changelists 61
Dynamic organization at submit 63
Limits to multiple pending changelists 64
File management at submit 65
Handling unmodified files 65
Making multiple changes to the same set of files 66
Failed submits 66
Changelist numbering 68
How submitted changelists are numbered 68
Implications for changelist numbering 69
Deleting pending changelists 71
Shelving 7
Shelving files in a changelist 72
Unshelving files 74
Deleting shelved files 74
Finding shelved files 75
Modifying shelved files 75
Managing shelved files 76
Summary 76
Chapter 5: File Information 77
File properties 77
Customizing the tabular display 79
Explaining the # characters 79
Showing deleted files 80
Type and filetype 81
Understanding file versions and history 82
Getting different revisions of files 82
How file revisions relate to changelists 83
Potentially surprising get revision results! 84
Changelists and folders 85
Get revision options 86

[iii]

Table of Contents

Referencing a specific date and/or time 87
Referencing a label 87
Files in another workspace 88
Depot paths 88
Finding files — an introduction to wildcards 89
Showing history 91
File history 91
Folder history 92
Showing differences between file revisions 93
The P4V diff tool — P4Merge 93
Navigating between diffs 94
More P4Merge options 94
Showing folder/directory differences 94
The folder diff tool — recursive folder differences 95
Filtering the folder diff view 96
Showing individual file diffs 96
Other options for comparing files or folders 97
Showing local changes for edited files 97
Ctrl + D as a useful shortcut for diffing 97
Diff against for files 98
Using Diff against for different files 99
Diff against for folders 99
P4V time-lapse view 99
Summary 101
Chapter 6: Managing Workspaces 103
What does workspace mean? 103
Actions within a workspace context 104
A workspace — the specification 105
Classic workspaces versus stream workspaces 105
Managing workspaces 106
Switching workspaces 108
Creating workspaces by copying 108
Editing workspaces 109
Deleting workspaces 109
Specifying a workspace 109
Workspace names 1M1
Workspace location 112
Relating repository files to workspace files 113

A workspace specification example 114
What the ... (ellipsis) notation means 117
How to exclude files 118

[iv]

Table of Contents

Can | reference more than one depot in a workspace? 119
The potential of workspace mappings 120
Population characteristics 120
Line endings 121
Submit options 122
Perforce filetypes 123
Common best practice questions 123
Changelists and open files 123
More than one workspace 123
Sharing workspaces 124
Summary 124
Chapter 7: Dealing with Conflicts 125
The origin of a conflict 125
Working with conflicts 126
Conflicts and submit 127
Base, Source, and Target: a 3-way merge 130
An introduction to the P4Merge tool 130
Differences from base 131
Dealing with content conflicts 132
Editing in the merge pane 133

File content during merge 134
Overwriting or discarding changes on purpose 134
Other P4Merge options 135
What if you miss a conflict? 136
Delaying resolution 137
Automatic resolution 137
Avoiding conflicts 137
Priority modifications — locking files 138
Files that can't be merged 139
Summary 140
Chapter 8: Classic Branching and Merging 141
Understanding branching 141
Why you should branch 142
Using classic branching in Perforce 142
The basic branching pattern 143
Viewing classic branches in Perforce 144
Creating our first branch 145
An introduction to Options 146
Propagating changes between branches 146

Resolving our merge conflicts 148

[v]

Table of Contents

Perforce only propagates changes once 149
The meaning of integrate in merge/integrate 150
Automatic resolve 150
More on P4V Revision Graph 152
Diffing and other actions 154
Compressing the history 154
Selectively propagating changes 155
Using branch mappings 157
The power of branch mappings 158
Merging — the gory details 159
Merges and file content 159
How selective merges are done and tracked 160
Dealing with renames and deletes 161
Dealing with deletes 161
Using branch mappings to ignore deletes 162
Dealing with renames 163
When renames cause complications 163
Other branching patterns 164
Characteristics of a branching pattern 164
The mainline pattern — why it is better than alternatives 165
Release branches 166
The integration pattern 167
OS copy is not a branching activity 167
Summary 167
Chapter 9: Perforce Streams 169
Understanding streams 169
The primary stream models 170
Branch stability 170
The merge-down, copy-up paradigm 171
Creating a stream 172
Stream workspaces 174
Moving your workspace between streams 175
Communicating the status of changes to be propagated 177
Merging changes from the Mainline 178
Copying our changes to the Mainline 178
Migrating from classic branches to streams 180
Creating a new Mainline stream 180
Populating our Mainline stream 181
Other standard types of stream 182
Release streams 183
Change propagation for Release streams 184

[vil

Table of Contents

Virtual streams 184
Task streams 185
Managing streams 187
Applying the stream filter 187
Mapping stream files 187
Paths/access levels 189
Remapping of files 189
Ignoring files 189
Re-parenting streams 190
Propagating changes across the stream hierarchy 190
Moving groups of development streams 191
Directly editing versus drag-and-drop 191
How streams handle renames 192
Summary 193
Chapter 10: The P4V User Experience 195
Navigating large trees of folders 195
Bookmarks 195
Custom P4V tools 197
P4V preferences 200
Reconciling offline work 202
Summary 203
Appendix A: A Demo Server 205
Examples in the book 205
Sample repository 205
Platform specific executables 206
Install it 206
The contents of the zip file 206
Detailed installation instructions for Windows 207
Detailed installation instructions for
non-Windows operating systems 208
Windows privileges and details 208
Appendix B: Command Line 211
What is P4V using? 211
The Perforce API 212
Command-line help is always available 213
P4 Command Reference Guide 213
Setting environment variables 214
P4 help 215
Basic notes on using commands 217
Command options 217

[vii]

Table of Contents

Command input and output
Logging in — an interactive command
Action commands
Reporting commands
An editor form command — submitting a changelist

Command summary
Tree reporting commands
File information — chapter 2
Basic operations — chapter 3
Changelists — chapter 4
Detailed file information — chapter 5
Workspaces — chapter 6
Dealing with conflicts — chapter 7
Branching — chapter 8
Streams — chapter 9

Some basic best practices
Scripting Perforce

Summary

Index

217
218
218
219
220

221
222
222
222
222
223
223
223
223
223
224
224
225

227

[viii]

Preface

This book is about using Perforce. There are many tools within the Perforce
ecosystem ranging from clients, to plug-ins for IDEs (Integrated Development
Environments), such as Eclipse or Microsoft's Visual Studio.

The focus of this book is the P4V client (Perforce Visual Client). P4V has many
graphical and presentation features that make it an ideal client for new users,
and can be used on a variety of different operating systems including Windows,
Unix/Linux, and Macs.

What this book covers

Chapter 1, Getting Started with Perforce, is an introduction to the technology,
terminology, and concepts at the core of Perforce operation. A basic knowledge
of these core factors will make it easier to relate your actions to the results you're
trying to achieve.

Chapter 2, The P4V GUI, introduces the P4V interface. The chapter focuses on the
mechanisms for viewing status, performing actions, and viewing the results of
those actions.

Chapter 3, Basic Functions, covers the techniques for adding, modifying, and
deleting files within a workspace. It discusses how to do this as an individual
and as a member of a team.

Chapter 4, Changelists, describes changelists which are the core record of change
within Perforce. The chapter covers how to use changelists for organizing work,
communicating with other users, and avoiding problems.

Chapter 5, File Information, is the key to understanding the history of a repository,
how a code base has evolved, and what is happening to it now. This chapter covers
how to make the most efficient use of the Perforce reporting commands to examine
the information associated with a file.

Preface

Chapter 6, Managing Workspaces, describes the Perforce model where client programs
work with copies of repository files in local storage areas called workspaces. This
chapter covers how to establish and maintain the relationship between server copies
of files and workspace copies of those same files.

Chapter 7, Dealing with Conflicts, covers how conflict in Perforce refers to the need
for a human to resolve issues that may arise from independent modifications of
the same repository file. Conflict scenarios are a natural consequence of the flow
of development and this chapter addresses the origins of conflicts, and ways of
predicting future conflicts, identifying current conflicts, resolving conflicts, and
avoiding them.

Chapter 8, Classic Branching and Merging, introduces branching as the key version
control technology for managing parallel development. This chapter covers the
classic Perforce branching interface that provides you with complete control over
the entire range of branching features supporting almost any branching pattern
that you can envision.

Chapter 9, Perforce Streams, describes Perforce streams which use the mainline model
to support parallel development. This chapter looks at the concept of branch stability
and how streams use the merge-down, copy-up paradigm to support stability.

Chapter 10, The P4V User Experience, covers various ways that you can adapt P4V to
make your work easier and more productive.

Appendix A, A Demo Server, provides a straightforward, step-by-step setup for
running examples that align with the contents of this book. Only a limited level of
experience is required to follow these steps.

Appendix B, Command Line, documents the underlying Perforce interfaces and
the common set of commands used. This appendix relates P4V features to the
underlying commands that implement them as an aid to understanding the
automation associated with builds and other activities.

What you need for this book

This book does not require the P4V software. Many of the concepts and best practices
have standalone descriptions.

However, it is best to have an operational copy of P4V available for follow-along
exploration. You can download P4V and server software for free from the Perforce
website. A license is not required for the examples in the book. Appendix A, A Demo
Server provides straightforward, step-by-step instructions for establishing your own
server, a test repository, and the client software.

[2]

Preface

Who this book is for

This book is intended for Perforce beginners although it includes concepts and
information that advanced users will find educational. People in our training courses
with years of basic user experience are often pleasantly surprised at the number of
things they learn or perhaps realize that they hadn't properly understood previously.

Version control tools such as Perforce are traditionally thought of as the domain of
software developers. However, anyone who deals with electronic files or "digital
assets" can benefit from version control. Digital assets include source code, XML
configuration files, documents, graphic files, web pages, IC test patterns, router
configurations or almost anything. This means that Perforce and the concepts in this
book apply to a wide range of users such as quality assurance engineers, hardware
developers, analysts, documentation writers, artists, and designers.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

Any command-line input or output is written as follows:

Perforce client error:
Connect to server failed; check $P4PORT.
TCP connect to 1248 failed.
connect: 127.0.0.1:1248: WSAECONNREFUSED

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
on the Next button moves you to the next screen".

% Warnings or important notes appear in a box like this.
.

a1

~Q Tips and tricks appear like this.

[31]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[4]

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.comif you are having a problem
with any aspect of the book, and we will do our best to address it.

[51]

mailto:copyright@packtpub.com

Getting Started with Perforce

This chapter introduces the technology, terminology, and concepts at the core of
Perforce operation. A basic knowledge of these core factors will make it easier to relate
interface activities to the results you're trying to achieve. These high-level introductions
provide the basic framework for their specific application later in this book.

In this chapter we will cover:

* Version control and Software Configuration Management (SCM)

* The roles of Perforce servers and clients

* What repositories and depots are and how they relate to workspaces
* The core Perforce concept of a changelist

* Practical issues when using Perforce

* Tips for understanding the Perforce mindset

Version control

What is version control and what does a version control tool such as Perforce do
for us? To many people version control is self-evident. They use it and talk about

it without giving it much thought. Yet, like other self-evident activities, a little
knowledge and experience can help you avoid problems and become a significantly
more successful user.

When most people are asked to define version control they typically start by saying
something along the lines of "tracking changes to files". This is followed by a long,
disjointed list of features and buzzwords. Others attempt to abstract the details and
talk about concepts or tasks. However, we have found that it is usually easier to
describe what version control provides by imagining life without a version control
tool such as Perforce.

Getting Started with Perforce

The basic usage of any computer includes sets of files. These files might represent the
source code of a program, or a website, or be the test data for an integrated circuit,
and many other collections of files. Without version control, you have to manage the
files using just the operating system tools. Version control makes the management of
these collections both easier and less risky.

If you have a set of files you might want to change them. This might mean adding
new files, modifying existing files, and deleting files that are no longer required.

But you might also want to track why you made these changes in some form of a
change log or even a document or spreadsheet. That introduces potential sources for
ambiguity and error as you attempt to transfer information between the different
tools. Don't forget the complexities associated with files and directories that are
renamed or moved. Version control tracks all of these changes, without error, using a
single tool.

At some point you realize that you might want to recover older versions of files in
your collection. So you start to make copies of individual files or even the entire
collection, for example, when you make a release. Another reason for copying files
is when you might want to isolate changes to your files because you're not sure if
what you want to do is possible or appropriate. Deciding what to copy, individual
files or entire collections, isn't always particularly obvious, especially when you try
to account for renames and moves. Version control manages storage space concerns
and gives you access to older file versions quickly and easily. It also helps you
integrate the changes you made in a copy with the primary versions of the files.

All of this was just considering the needs of a single user. What would happen if
more than one user wanted to make changes to the same set of files? How would
they avoid or resolve conflicts when working concurrently? How would they share
work? Without a version control tool the answers to these questions get complicated
very quickly.

So whatever your problem, version control is the solution, well perhaps that's a
minor exaggeration, but it is incredibly useful!

[8]

Chapter 1

Software configuration management

The terms version control and software configuration management have been in
use for many years. Within the software development community they are often
used interchangeably. Outside the realm of software development people often
refer to SCM as a specifically software related activity. All of which can lead to
reader confusion.

To reduce this, we avoid using the phrase SCM in this book. When necessary, the
phrase version control will refer to Perforce features dealing with the versions of a
single file; and the phrase configuration management will refer to Perforce features
dealing with a collection of files.

Centralized and distributed version
control

Centralized version control and distributed version control are phrases commonly
used to differentiate version control systems. Centralized systems (including
Subversion, Perforce, and many other commercial tools) have a central, shared
master repository of version information. Distributed systems (such as Git and
Mercurial) provide each individual user with their own private copy of a repository.

Each technology has strengths and weaknesses relating to performance,
communication, and security. Centralized systems often provide a way to operate
even when they cannot access the central repository, and distributed systems still
need a master repository if more than one user is doing work on the same code
base. Perforce further blurs this distinction by being a centralized system with full
support for distributed users. It now includes a bidirectional interface called Git
Fusion in its recent versions. This allows developers to use Git if they wish, and
then use Perforce as the master repository for sharing with other people and the
rest of the organization.

[o]

Getting Started with Perforce

Understanding Perforce clients and
servers

The basic Perforce architecture is client and server. There is a single server program
(P4D) managing a repository and typically many client programs (such as P4V or
P4) which communicate with that server as shown in the following diagram:

User’'s Machine

Perforce

Client (P4V)

Server Machine

Manages

Y

Repository

Meta-data

4
Mangges
Perforce D W
Server WorkspaceX

Another User's Machine

~S< Perforce

_________ B Client (P4V)
DepotB 4
CI Manages

4
WorkspaceY

The server is responsible for maintaining the history of the contents of files, and

for all of the information that describes the events that created that content (the
metadata). Each client program is responsible for managing files and their contents
within a particular workspace, and for communicating status changes to the server.
In order to manage files a client program must connect to a server. Connecting to a
server is covered in Chapter 2, The P4V GUI.

[10]

Chapter 1

Servers

Users and client programs have no direct access to the repository managed by the
server, so it is best to view the server as a black box. It is still useful to understand
some of the services that the server provides.

The obvious services are to track the historic content of all the files managed by the
server. The most visible part of this tracking is the actual content of all the versions of
every file. An equally important part of this tracking is the metadata that the server
maintains about file versions. Metadata describes details such as user, workspace,
time, date, and check in comments, these are all part of the context in which the
historic content was created.

Another service provided by the server is to track the state of files within each
workspace, which it does in coordination with the client program. The state includes
things such as whether files are present in the workspace, which version is present,
whether the user has checked out particular files or versions, and so on.

The most important service provided by the server is to control and coordinate
change, so having the server store information, rather than the client program, makes
it available to everyone. This supports good engineering practice in the modern
dynamic development environment. For example, when you check out a file the
server tells you if the same file is checked out in other workspaces. A file checked

out in multiple workspaces at the same time may or may not be a problem. Only a
human can make that decision.

Client programs

Client programs manage workspaces. At any one time, a client program manages a
single workspace. It is a straightforward and fast operation for a client program to
manage another workspace as necessary. It is common for users to have multiple
workspaces on their local workstations such as their PC or laptop.

Terminology warning - the word "client" has three meanings!

The word client is used in three different ways when talking about
. Perforce: to mean a client program, a client machine, or a client
% workspace. The first two meanings are fairly standard, but you
= will see the "client workspace" meaning in some of the Perforce
documentation and in warning or error messages within P4V. The
context usually makes it clear which meaning is intended. Unless
otherwise specified, we use client to mean a client program.

[11]

Getting Started with Perforce

Clients and their workspaces are isolated and independent. Clients must
communicate with the server to determine what is going on in other workspaces
(whichever machine those workspaces might be on). This is true even if there is more
than one client running on a single machine. If you tell the server about changes that
you intend to make within a workspace such as an edit, add, delete, or rename, this
information can be communicated to other clients and thus to other users.

Clients can operate even if they are not connected with the server. This can be useful
at customer sites, in airplanes, and at times when communication with the server

is either not available or unstable. Because of their specific roles, the client and the
server can always determine how to bring the client context up-to-date when they
next communicate.

Introducing the core Perforce concepts

This section introduces the core Perforce concepts and the contexts they apply to.

Depots

Depot is a word that you will frequently see within this book, Perforce
documentation, and in the P4V interface. In general, it refers to a directory structure
that the server uses to store the historic content of files.

The repository that the server manages consists of one or more depots. Each depot
has a unique name. A depot acts like a hierarchical file system containing folders and
files. It is very common for a repository to have multiple depots. Creating depots is
an administrator function.

M The word depot is sometimes used to mean the repository, and
Q sometimes to mean a particular depot within the repository. We
will refer to repository or depot specifically.

Workspaces

Workspace is a common word within the source control community. Unfortunately,
there seem to be more definitions for workspace than there are tools that support them.
For Perforce, the term workspace refers to a collection of files, usually on a user's local
machine, that the user wants Perforce to manage. Implicit to the Perforce concept of
workspace is the relationship between repository files and the files in that workspace.

[12]

Chapter 1

Workspaces usually contain a copy of a small subset of all the files in the repository,
for example, only the files relevant to a particular project. Users operate on the copies
of the files in their workspace, and submit their changes back to the repository.

If another user has their workspace configured to see the same project, they can
update their workspace to receive the latest copies of any updated files whenever
they are ready to do so. In the following diagram, two developers (Fred and Wilma)
exchange changes between their workspaces via the repository:

Workspaces map a subset of the
repository down to the local machine.
People work on their own copies of files
independently and exchange updates via
the repository.

Fred’s
1. Submits Workspace
changes

Repository

Meta-data
e

Wilma’s
\ Workspace

2. Updates H— D

workspace thus
getting Fred’s
changes

There are many aspects of workspaces that a user may want to manage. However,
for basic operations a single workspace on your workstation may be all that you
need. Managing workspaces is covered in Chapter 6, Managing Workspaces.

Changelists

Changelist is a core Perforce concept. It is the fundamental unit of change to the
repository, you don't check in files one-by-one, you check in changelists one-by-one.
Each changelist contains one or many files. Changelists with thousands, tens of
thousands, and even more files are not uncommon. In each workspace, it is possible
to have multiple active changelists that are not yet checked in.

[13]

Getting Started with Perforce

Changelist refer to a specific set of content and metadata changes made to the files
managed by the server. Changelists have a unique numerical identifier and other
attributes such as status, description, date and time of submission, and the user who
submitted it. More than just a set of changes, changelists are also atomic. That is,
changelists don't overlap with each other. Two changelists might be submitted at the
same time, but the server will ensure that processing is completed for one changelist
entirely before it starts processing the second changelist; changelists will never be
intermingled by the server. Furthermore, once the server has successfully completed
processing a changelist that changelist becomes immutable. That is, users can't add,
remove, or modify any of the file changes represented by the changelist.

A reasonable analogy is to think of a changelist as a transaction. The Perforce
equivalent is that if your changelist contains ten files, then either all ten will be
submitted, or none of them. You will never get only a part of the total files submitted.

Many Perforce customers have servers handling thousands of users, and millions or
more changelists. Changelists are ideal reference points for build systems, release
processes, validation audits, and myriad other uses where a reproducible and
verifiable set of managed sources is required.

In the following diagram, two files from the workspace are submitted as a single
changelist to the repository. The changelist will automatically be assigned a unique
number from an increasing sequence by the server. We cover this in more detail in
Chapter 4, Changelists, including changelist states such as pending and submitted.

2. Changelist is
created

Fred’s
Workspace

B
Yo\

1. One or more 3. The submit action is

files are atomic and the latest

submitted number is assigned by
the server

[14]

Chapter 1

Dealing with installation

Perforce is a very straight forward system to install on various operating systems. It
is not deeply embedded and thus it is relatively independent of different versions of
operating systems.

Client and server version compatibility

Unlike many version control systems, Perforce does not require that clients and
servers be at the exact same version. When a client connects with a server, they both
determine the set of features they have in common and act accordingly. Some clients
require a minimum server version. The 2013.2 version of P4V requires a server that is
version 2008.1 or later.

The examples and images in this book are based on the 2013.2 version of P4V and the
2013.2 version of the Perforce server. If your P4V or server versions are not the same,
you may see slightly different choices and options. The information you'll find in this
book is still applicable.

Perforce platforms

Perforce servers and clients are available for a wide range of operating systems.

The 2013.2 release of P4V is available for Windows, Linux, and Macintosh. You can
download any of these from the Perforce website. However, some organizations
have standardized on specific (older) releases. Check with your system administrator
as appropriate.

Clients and servers can be running on different operating systems and still be able
to work together. The servers take care of the differences between client and server
host machines. The clients take care of issues that are specific to the host machine on
which they operate such as text file line endings and directory separator characters.

As a user you may need to deal with character case sensitivity in directory paths
and filenames. This typically comes up when a Windows-based client connects
with a Perforce server that is not Windows-based. We discuss this in more detail
in Chapter 6, Managing Workspaces, which focuses on workspaces. That chapter also
addresses settings to handle different line endings between Windows and Linux/
Unix operating systems.

[15]

Getting Started with Perforce

Another issue that may come up is internationalization. The server is responsible
for the character set used for the names of files or any part of their path. This allows
you to store files with Unicode names, such as 7 71 7> b #—/3€7 /L . doc which is
the Japanese name for a file which would be called client-server model.doc in
English. Consult with your Perforce administrator for further details. The client is
responsible for dealing with the character set used within the contents of files.

Perforce interfaces

This book uses P4V as the client interface. P4V is a good choice as it has many
presentation and graphical features. These features help to manage the large
amount of information that typically describes files in a project.

P4 is the command-line client: p4 . exe on Windows or just p4 on Linux/Unix.

P4 is available for all of the operating systems supported by Perforce. The p4

client is ideal for automation and scripting. To assist with automation, there are
language-specific interfaces providing optimized ways to execute p4 commands
and process their results. These include interfaces for Perl, Ruby, Python, .NET,
and Java. There is a logging option in P4V that shows the basic p4 commands
being used to provide the P4V functionality. This can be very useful for individuals
learning to how to automate actions or processes.

Appendix B, Command Line helps to relate the p4 commands to the P4V operations
described in the various chapters.

Perforce integrations with IDEs such as Visual Studio and Eclipse are also common.
All of the concepts and command features described within this book apply to

the IDE integrations. It is not uncommon for users to use both P4V and an IDE
integration. P4V provides access to the advanced information management features
that don't always fit within the context of an IDE.

There are many more interfaces and integrations to Perforce. See the Perforce website
(www .perforce. com) for the current list.

The Perforce mindset

Unlike some other version control tools, the Perforce clients and the server do not
perform actions unless they are told explicitly to do them. So your workspace files
will not be updated unless you select an action or run a command to do so. Your
files will not be submitted to the server unless you, the user, select that action.

[16]

Chapter 1

It is also expected that users inform the server about changes they intend to make
to workspace files by running specific client commands such as add or edit. This
allows the server to communicate those status changes to other users. It is a slightly
different way of working to tools such as Git or Subversion, where users just start
editing files locally and then resolve the status later at the time of commit.

Following along

You can get a lot of valuable information by just reading this book. You don't
have to touch a keyboard, move a mouse, or click on a button. However, the
authors have found that trying the described actions, experimenting with what
ifs, and making a few mistakes, is a far better way to learn and will help you
retain the information. Unfortunately, even if there weren't licensing and resource
considerations, experimenting with source files on a production server is not
usually encouraged. So it can be hard to get the hands-on experience that makes
you a more effective tool user.

Fortunately, a Perforce server doesn't need extraordinary resources or licensing to
operate. A server and client can easily be run on the same host machine including
laptops. Appendix A, A Demo Server of this book describes how to obtain and install
your own Perforce server and a test repository. All of the examples within this book
were created using such a configuration.

Summary

This chapter has presented some of the key concepts that are important to understand
when learning about Perforce such as version control, workspaces and changelists.

In the next chapter we will introduce the P4V interface.

[17]

The P4V GUI

P4V is a Graphical User Interface (GUI). Just as a picture is worth a thousand
words, a GUI provides an excellent mechanism for displaying all the information
associated with software configuration management tasks.

This chapter introduces the P4V interface. Like many GUIs, P4V uses system menus,
context menus, tool tips, tabs, and other common features. We assume that the
reader has some familiarity with these features, so we don't cover them in detail.
Rather, this chapter covers the organization and presentation characteristics of the
GUI and relates them to basic Perforce terminology. We provide interface usage
details where we've found that our training students typically have questions about
control functionality or location.

In this chapter we will cover:

e The layout of the P4V display

* Finding information within the display

* Accessing commands via menus, the toolbar, or shortcut keys
* An overview of the depot and workspace tabs on the tree pane
* View pane tabs and filters

* The log and dashboard tabs in the log pane

The P4V GUI

Understanding the P4V display

The P4V display is organized into four general areas plus the title bar. Each of these
areas is identified in the following screenshot:

! bruno_main, 1666, brunc - Perforce P4 =nE =

File Edit 5Search View Actions Connection Jools Window Help
B Y 4B R E2 BB 20AELDOISe @2 O
Jfdepot/ Menu ~ (4.
EIJ:E Depot EEE Workspace JE, \Z 2 Files A Pending @ 1@_
[@bruno_main T Al B Fiter: User is ®brunc™and Workspace is bn 1match ¢ ¢ ¥
> |2l depot =
> [k jam hange User Description
> @ spec A default bruno <enter description here>
Tree View

2 Log [(%) Dashboard

Log

We say

general areas because you as a user can adjust the boundaries of the areas

and control when they appear. Each of the P4V display areas is dedicated to a specific

activity

or type of information. The title bar shows the current workspace, server we

are connected to, and our Perforce username. As a quick overview of the others:

Menu: Coordinates actions and provides control over the details presented
Tree: References the files being managed by P4V
View: Presents information views about managed files on various tabs

Log: Provides information about actions that have happened (Log) or are
recommended (Dashboard)

Each of these areas is detailed in the following sections.

[20]

Chapter 2

Accessing P4V actions

Like most GUI applications, P4V allows actions via command menus, tools bars,
and shortcut keys.

Command menus

All of the features provided by P4V can be accessed through command menus.
However, many users find that most of the features they use are better accessed
through more direct methods such as context menus. We'll cover those methods
throughout this book. The organization of the menus is as follows:

* File: Used for creating new Perforce objects and accessing file content.

* Edit: Provides standard copy-paste editor features and access to
preferences via Edit | Preferences. Preferences are covered in
Chapter 10, The P4V User Experience.

* Search: Used for searching for files, text strings, and managing filters.
More on managing filters is covered later in this chapter.

* View: Used for controlling information presented by the GUI such
as tabs, filters, and sort orders.

e Actions: Provides source control activities relative to a selected item
including Get Latest, Add, Edit, and Submit.

* Connection: Provides connections to the server including user and
workspace management. We'll go into detail on connections and users
in Chapter 3, Basic Functions. Workspaces are covered in Chapter 6,
Managing Workspaces.

* Tools: Provides access to P4V custom tools. Also used for defining and
managing bookmarks as discussed in Chapter 10, The P4V User Experience.

* Window: Mostly used for controlling information tabs.

* Help: Provides general help including the Am I connected to the server
query by going to Help | System Info.

[21]

The P4V GUI

Shortcut key combinations

A selection of shortcut key combinations is available for users who are more
comfortable or efficient with a keyboard interface. Common editor, search,
action, and view functions are supported with shortcuts as shown in this menu:

Actions | Connection Tools Window Help
=] Get Latest Revision Ctrl+5Shift+G
Get Revision...
Remove from Workspace

Delete Local File

.8

Check Qut Ctrl+E
Check Out and Open

Mark for Add

Mark for Delete

Submit... Ctrl+5

5 F ® ®

Revert Unchanged Files

On the left-hand side of the menu we also see the equivalent toolbar icons where
these exist for the command.

The Toolbar

The toolbar is a collection of buttons that provide one-click access to the most common
actions and view tabs. When present, the toolbar resides just under the menus.

The buttons on the left-hand side of the toolbar provide access to common display
management and source control actions:

B aE 8RR B9 R

The buttons on the right-hand side of the toolbar control the presentation of the tree,
view tab, and log panes:

BE 204A0BEBVI S ©Z

[22]

Chapter 2

Finally, the button at the right end of the toolbar attempts to cancel the current
operation (this also shows an example tool tip):

N

| Cancel operaticn |

Cancel operation can be useful when you make a request that is running for an
unusually long time or consuming more bandwidth than the network has available.
We'll discuss reasons you might want to cancel an operation and the consequences
of doing so at several points within this book.

The Address bar

The address bar optionally appears under the toolbar:

| J{depotMisc/scripts/ - [,

The address bar identifies the currently selected object in the tree pane. This might
be a directory or a file that other menu actions operate on. The book icon at the
end of the address bar provides a bookmark navigation feature for frequently
accessed tree pane structures. The bookmark feature is discussed in Chapter 10,
The P4V User Experience.

Exploring the tree pane

The depot (repository) tree and the workspace tree share the tree pane. However,
only one of them is visible at a time. Many actions can be performed from either
tree view. As we see, there are certain context specific actions that reference
information specific to either a depot or a workspace (but not both).

u This is an example of Perforce using the word depot to mean the
~ repository (which can contain multiple depots). We will call it a
Q depot tree for consistency with P4V and Perforce documentation,
even though it is better to think of it as a repository tree.

[23]

The P4V GUI

The depot tree tab

The depot tree tab presents information about files as the server understands them.
In the following screenshot we see a depot called depot at the top, and then a tree
of folders and files under that depot. The icon and version information #0/4 <text>
associated with files provides a quick source of information about the status of files.
The details will be explained in Chapter 3, Basic Functions.

4 5] depot
- dir
-3 Jam
- Jamgraph
- Misc
- 3 perfrmerge
4 33 www

5 index.html #2073 <text=

5 Jam.htrnl 2002 <texts
5 Jambasehtml #0/2 <text>
& Jamfilehtml 20/3 <texts
5 Jlamlang.html 20,2 <texts

2 review
© 128 jam
+ L) spec

The depot tree is not restricted by your current workspace and allows you to see
anything you have access to in the repository. Sometimes it is useful to focus only
on the items in your workspace, and sometimes you want to be able to view other
areas of the repository, and even the contents of those files.

The workspace tree tab

The workspace tree tab presents information about files in your workspace.

In the following screenshot we see a workspace tree. The tree starts at the top
level directory of the workspace under which a structure of directories and files
is presented. The icon and version information associated with the files in the
workspace tree tab match those found in the depot tree tab.

[24]

Chapter 2

T2 Depot T2 Workspace B’
IIE] bruna_main 7‘

] Ij chwork\bruno_main -
4 [Jam
4 [MaIN
43 sre

Build.com #7/7 <text>

Build.mpw #1/1 «text>

[s

command.c #8/8 <text>
command.h £5/5 <text>

compile.c #25/25 <text> -

0w e O

The workspace tree tab only shows files as they currently exist in your workspace,
which is typically on your workstation. As we can see in the preceding screenshot,
the directory is displayed in the syntax of your operating system, in this case relative
to the workspace root on a Windows machine of c:\work\bruno_main. Displaying
information about all of the files in your workspace allows you to identify files that
you may need to add to the depot such as c.txt in the preceding screenshot.

Exploring the view pane

The view pane presents information for the files managed by Perforce. In general,
you select a file in the tree pane then select an action from either the menus or tool
bar to make the information visible in the view pane. Each information view is a
separate tab in the pane.

Although each of the individual tab views is unique, tabs have many common
characteristics. Most allow you to select and customize the information presented. The
following screenshot shows a view pane with the files and pending changelist tabs:

I3y Files A Pending B8 1@7
B Filter: Useris "bruno” and Waorkspace is "bruno_main™ 2 matches V Tl
=
Change User Description
» [default bruno <enter description here>

» [EREYE] bruno Fix for bug 287

Change: 2323 User; bruno
Date: 18/02/2013 09:09:30 Status: pending 3
Workspace: bruno_main Access type: public
Description: Fix for bug 287 il

Edit

[25]

The P4V GUI

Closing, undocking, or docking information
views

When you no longer need a view you can close it. Closing view tabs does not cause
information to be lost or changed.

Undocking a view tab is controlled from the tab's context menu as shown in the
following screenshot:

3 Files A Pending [0
:| B Filter: User Undock Tab }space
Clase Tab
_(Change |W0rkspace
F— L 1l i

Undocking a tab creates a new window separate from P4V that contains only the
information for that tab. You can move undocked tabs to other parts of your screen.
Although undocked, the information is still connected to operations being performed
by P4V.

When you no longer want a tab to be in a separate window you dock the
tab by selecting the docking arrow in the lower-left corner, as shown in the
following screenshot:

]|

o Closing an undocked tab does not return it to the view pane the next
~ time it is requested. P4V remembers that you wanted the tab undocked,
Q so it saves you the positioning overhead and automatically brings it
back undocked. To return a tab to the view pane you must dock it!

Viewing tabs with detail panes

Many tabs show multiple items. Additional information about a selected item in the
tab is presented in an optional detail pane at the bottom of the tab. In the following
screenshot, there is a detail pane for the file information tab:

[26]

Chapter 2

i Fles] = A Pending =l
MNarme . Revision Latest Changelist Size i
command.c #8/8 548 17Kl
command.h #5/5 548 10K
compile.c #25/25 619 17.7 Kl
compile.h #5/5 619 1.6 Kl
execemid.h #2/2 30 349 Byte
EXECIMAC.C #1/1 452 15K~
4 m 3

Details Checked Out By Preview

Workspace location: ¢;work\bruno_main'JamMAIM\srclcommand. c

Depot location: f{depot/JamMAIN/srcfcommand.
Revision: =5 of 8

Date modified: 17/02/2013 13:31:51

File size: 1.7KE

Type: C Source

Perforce filetype: text

When there is a lot of possible detail information, the detail panes may use sub-tabs
within the tab. In the preceding example there are sub-tabs for Details, Checked Out
By, and Preview. Unlike view tabs, the sub-tabs cannot be undocked or closed.

M Detail pane information is available through other interfaces. To
Q recover the screen space used by the detail panes hide them using
the Show/Hide option in the View menu.

Filtering view tabs

When appropriate, view tabs provide a filtering mechanism to limit the information
presented in that view. Although each tab has a unique set of filter criteria, all filters
use common interface mechanisms. We'll work through a single set of filters to
demonstrate these mechanisms:

B Filter: User is "brunc™ and Works

=]

ace is “bruno_main® 1 match "{}7 R

The filter icons are shown on the right-hand side of the preceding screenshot.

[27]

The P4V GUI

In the following example, we see that pending changelist views have a filter:

3 Fles A\ Pending [i,
B Filter: User is "bruno™ and Workspace is "bruno_main™ 2 matches V \Z e
Change? User Description
- A default bruno <enter description here>
Y/ 823 bruno Fixe for bug 287

To hide or access the filter select the right pointing triangle button in front of the
word Filter:. An expanded filter specification is shown as seen in the following
screenshot (the triangle points downwards):

I Files A Pending x| l«tﬂ-
W Filter: User iz "bruno™ and Workspace iz "bruno_main™ 2 matches :§7 \J‘Z ey
User is Currentuser A E] 4+ i
Workspace is Current workspace - EJ + p

Each filter specification has a summary and a set of control buttons. The summary
identifies the filter parameters and the total number of view items that match that
filter. The control buttons provide ways to save and recover saved filter definitions,
as well as forcing a refresh of the view display. The control buttons are shown in the
following screenshot:

2matches 9 W 9

Like most parts of the P4V interface the filter control buttons have tool tips. The
display of unused filter parameters is controlled with the add (+) and remove (-)
buttons at the end of the parameters. Removing a filter parameter is the same as
that parameter not having any effect.

Right (context) click menus

These menus are available by context-clicking on a directory or file: in Windows this
is a mouse right-click. Rather than using a toolbar or action menu, you get an item-
specific menu which only shows the actions available for that item in its current state.

These are available in both the tree pane and view pane. The following screenshot
shows a context menu in the workspace tree pane:

[28]

Chapter 2

EF:E Depot rT':ﬁ Workspace Open
Open With 3
||El bruno_main
4 [c\work\bruno_main Get Revision...
4 [Jam Remove from Werkspace
4 O maN
4 o o1 Check Out Ctrl+E
Build.com #7/7 < Check Out and Open
Build.mpw #1/1 -
0 ot AW Mark for Delete
command.c 3878 o File History Ctrl+T
command.h #5/5 .)
compile.c £25/25 Revision Graph Ctrl+Shift+R
- : Time-lapse View CtrlShiftsT
=L Log X e Diff Against Have Revision Ctrl+D

Any actions which are not available are not shown (they are not just greyed out or
disabled). Different items may have different options available depending on their
states. We will address specific examples throughout the book.

.t

_ Open
command.c #5

command.h £5 Open With »

compilec #25/ pejete Local File
compile.h #5/5

execend.h 2270 @ Mark for Add
execmac.c #1/1

(R P8 I T TP R I R T e

execunine #2214 54 Diff Against... Ctrl+Shift+D
execvms.c 777 e —
expand.c #12/1 Bl
expand.h #2/2 Show in Explorer Ctrl+Shift+5
i ———— Open Command Window Here

p_mainJam' MAINY =g

e e — Befresh 'c.but’

In the preceding example, we have right-clicked on a file which is not in Perforce.
Therefore, we have the option to Mark for Add, this would not be available in the
context menu for a file already in Perforce. Note the differences to the context menu
in the previous screenshot.

1
‘\Q If you expect to see a specific menu option and it is not available, this is

an indication that the status of the item is not what you think!

Reviewing activities
The log pane presents information related to your activities. There are two possible
tabs within the log pane: Log and Dashboard, each of which is optional.

[29]

The P4V GUI

The Log tab

The Log tab shows Perforce commands that have been used by P4V in response
to the actions you have carried out. The contents of the Log tab are controlled
by going to the Edit | Preferences | Logging menu option as shown in the
following screenshot:

21 Preferences [—J'
Connections Log pane options:
streams /| show p4 reporting commands (dirs, filelog, fstat, etc.)
Server Data
. Behavior | Show p4 command output for file operations
Double Click
Logging to a file:
Shortcuts e
Legging /| Enable logging to file
Displ —————
F.Tp ay Name: C:/Users/Robert/.pdqt/log. bet Selects;
iles e
Features Size: 500 KB
Tools
File Editors
Diff
Merge
Applets

An action such as pressing F5 (or going to View | Refresh All) refreshes the current
view, this will result in various p4 commands being executed, and their results can
be seen in the log tab.

In the following log example we see the command p4 sync and the fact that it added
1 file to the workspace:

:(: LogD

@ p4svnc cipddimorkspacesipastrean'classicidepat2ysrci dicEh,. . #head
3 [ldepotzfsrc/dirEffilea.txt added c\pddiworkspaces|p4streamclassicidepot2sroidirBfiled . bxt
= 1 file added

Users often review log entries for details that are not otherwise found in other places.
Logs are also useful for reviewing error and warning details. You can save log results
to a file for analysis by your support team.

Another popular use of log entries is to identify Perforce commands that can be used
in automation. Appendix B contains a summary of the Perforce commands used by
P4V, related by book chapter.

The Dashboard tab

The Dashboard tab has two modes: display and definition. An example of the
dashboard in display mode is shown in the following screenshot:

[30]

Chapter 2

=) Log | (X)) Dashboard £)

Workspace folder: c:\work'pruno_main ~ @

Dashboard last updated: 18/02/2013 09:56:07 Update now

Tasks: Folder status: Mot updated with the following changelists {1)
A View 1 pending changelist (2 files) Changelist Potential Conflict Date Submitted Submitted By E
B\ Getlatest revisions (1 file) . (&) 818 30/05/2007 21:4... gale

In the preceding example we see that one file in the current workspace is not at the
latest revision known to the server, and that there is one changelist that impacts
workspace files and has not been applied.

The gear button at the top-right of the dashboard toggles between the dashboard
display mode we saw and the dashboard definition mode.

In definition mode, the dashboard looks like the following:

(3 Dashboard [£]

Check For updakes:
(¢ Manual user refresh © Every 0 minutes

[—

Display a task when: Folder status:
W "l My stream or its parent may receive merges v Show changelists when the Folder is out of date
W 4 My stream or its parent may be copied [Display the number of Files with patential corflicts

v Files in my warkspace need to be resolved

it

Save | Caneel

Many users specify manual refresh to cut down on the potential distraction
associated with new display updates. When they are ready to work they request
a refresh to guide their activities. Your system administrator will recommend
appropriate settings for your site.

Summary

In this chapter we've introduced the functionality of the P4V interface and the
terminology used to describe it. Some people may be concerned that the interface
offers several ways to accomplish the same task. Not to worry. You will find that
you quickly adapt to using the interface features that best fit your personal style.

In the next chapter we'll be looking at the basic Perforce functionality.

[31]

Basic Functions

The basic functionality of any SCM system is to track the files that are added,
modified, and deleted within a workspace. This chapter demonstrates how to
use the Perforce features as an individual and as the member of a team.

In this chapter we will cover:

* Accessing the server

* Populating a workspace

* Adding, editing, and deleting files

* Changing your mind

* Updating the server

* Understanding icons and file information

* Getting help

Getting something to work with

You need to connect to a Perforce server in order to have Perforce manage the

files you work with. Connecting to a Perforce server involves several pieces of
information, some of which are optional, so establishing your first connection can
be a little intimidating. Not to worry, a failed connection attempt can't damage the
repository or your user profile. The worst that happens is that you'll fail to connect
and that you'll need to try again.

You will get a lot more from this book if you follow along using P4V.
The test repository detailed in Appendix A is ideal for follow along
activities. If the test repository is not available, you may find that your

%‘ organization has a standard test repository, or test area within the
repository, for experimental activities. Ask your administrator. We
strongly recommend against experimenting with activities that may
make changes to files in a production repository.

Basic Functions

Connecting (log in)

When you start P4V it needs information so that it can connect with a server. If you
have previously connected, P4V will remember that information and provide it as
the defaults for your new connection. If this is your first connection you will need to
specify at least the server to connect to and your Perforce username.

o The default installation of P4V usually causes it to launch a connection
~ wizard when you first try to connect. In our experience users are
Q just as happy if they skip the wizard and progress directly to the
connection dialog.

The information you'll need to know in order to connect to a Perforce server is

as follows:
* The network identifier for the server, for example, perforce.abc_inc.com.
* The port number the server listens on, for example, 1777.

* Your Perforce user name. This may be different from your network login ID,
although most administrators keep them the same, for example, bruno.

* An optional workspace specification. You don't need a workspace to log in
and look around. An example is bruno_main.

The network identifier for the server and the port number are always specified as

a pair separated with the : (colon) character. For example, perforce.abc_inc.
com:1777. If you are not using the test repository your system administrator should
provide you with the correct server, port, and Perforce user name.

An example connection dialog for connecting to the test repository detailed in
Appendix A, A Demo Server is shown in the following screenshot:

Type in connection settings or choose a recent or favorite connection:

SErver: localhost: 1666

User: brun0| [Browse... J l MNew... I

Workspace: {optional) [Browse... J l Mew... I

Show dialog at startup [oK l [Cancel I I Help I

Version: Perforce Visual Client/NTX64/2013. 2/685045

[34]

Chapter 3

You can safely ignore the various buttons such as Connections, Browse..., and
New.... They are intended for experienced users. Everything they provide is
available through the standard P4V interface.

Passwords

If your Perforce user account has a password, you will be required to enter that
password before a valid connection will be established between P4V and the
server. Passwords are entered using the following password dialog, which is
displayed automatically:

#| Perforce Password Requim I,ﬁr

A password is reguired for user ‘bruno’ on server localhost: 1666,

Flease enter the password:

[OK l | Cancel |

Enter your password and click on OK. If your password is correct then the P4V screen
as shown in Chapter 2, The P4V GUI, will be displayed and you can perform activities.

If you have installed the test repository from Appendix A, A Demo Server, then it is
set up so that users do not have passwords. If you are connecting to a production
server, your administrator can provide you with the password for your Perforce
user account.

If you leave P4V running for a long period of time your connection
%\ may expire. If this happens, you will be prompted to enter your
g password before P4V will allow you to continue.

You're done (log off)

Perforce does not require that you log off when you are done. You can simply exit
P4V and let the connection expire. By default, password login sessions expire after
12 hours, so you usually only need to log in once per day, unless it is a long day!
Your administrator can adjust this default if required, depending on your company's
security requirements.

[35]

Basic Functions

Log off is one of the few actions that can only be accomplished one way. You log off
from P4V via the Connection menu:

Connection | Jools Window Help
Open Connection... Ctrl+0
Open Recent 3
Favorite Connections 3
Set Up Connection...

Environment Settings...
Close Connection
% Log Off

Reconnect

Log off does not close P4V. It simply invalidates the current connection. If you need
to reconnect, go to the Connection | Open Connection... menu to bring up the
connection dialog discussed previously.

If you exit P4V without logging off, your password login session
M for the server is valid until it expires. If you launch P4V and it
Q detects a valid password login session, it won't prompt you for your
password. While this is a convenience for you, it may not meet the
security standards of your organization.

Specifying a workspace

To work with files managed by Perforce you use a workspace. A workspace is a
directory structure with a root directory, usually somewhere on the file system of your
workstation. You must specify the workspace you want to use. Once specified, the
workspace becomes part of the context for your current connection with the server.

o You don't need a workspace to explore most of the repository
~ information using P4V. Now, before you specify a workspace,
Q it would be a good time to click on various items to explore the
information that is available without a workspace context.

There are various ways to select a workspace in P4V. However, many users find that
selecting workspaces from the workspace dropdown in the depot pane is the most
convenient. The dropdown provides one-click selection of workspaces you have
recently used, as well as one-click access to workspace creation and selection.

As we can see in the following screenshot, there is currently (no workspace selected)
so the user has expanded the dropdown and selected New Workspace...:

[36]

Chapter 3

EEE Depot EEE Workspace IE, \WZ
{ (no workspace selected) vJ

(no workspace selected)
Switch to Workspace...

Creating an initial workspace

This section covers briefly the need to create a basic workspace in order to try some
Perforce commands.

Trust us for now, if we keep to a basic level of detail, we will discuss all of the gory
details about workspaces in Chapter 6, Managing Workspaces.

When you first create a workspace, it might look like the following;:

E‘ Workspace: New (localhost:1666, brung
Basic | Advanced

Workspace name: bruno_Mylaptop_3524

Workspace root: C:YUsers\Bruno'Perforce\bruno_MylLaptop_3524

Stream at change:

W Workspace Mappings:

vZ ¥2 o
Depot Tree Client Expression
i+ iv =] depot J/bruno_Mylaptop_3524/depat/...
b2 jam

[v E_E spec [fbruno_Mylaptop_3524/spec/...

Switch to new workspace immediately

7] automatically get all revisions

Perforce defaults to the name of the workspace as:

e <Username> such as bruno
e <Host machine name> such as MyLaptop

* <Unique numeric suffix> such as 3524

[37]

Basic Functions

And as you can see in the preceding screenshot, the root directory is usually under
your user directory (this is valid for Windows 7, other versions of Windows or other
operating systems may vary).

Your administrator may have recommended default settings for the workspace name
and the root directory. Our recommendation is to use simple values such as:

®* bruno_jam main

* 30 <Username>_<description>

Q Workspace: New (1666, bruno) @

Workspace name: bruno_jam_main

Workspace root: C:'\work\bruno_jam_man

Stream: -

Stream at change:

W Workspace Mappings: M
E=AE

Jidepotfjam/main/... Jfbruno_jam_main jam/mainy}..

Switch to new workspace immediately
[automatically get all revisions

OK][Cancel][Help

In this example, we have changed both the name (to bruno_jam main) and also the
root directory (to c¢: \work\bruno_jam main).

You may also have noticed that the Workspace Mappings: has been changed to have
a single line, after selecting the View workspace mapping as text icon:

//depot/Jam/MAIN/. .. //bruno_jam main/depot/Jam/MAIN/. ..

Managing workspace mappings is explained in Chapter 6, Managing Workspaces. We
have also checked the Switch to new workspace immediately option.

When the workspace creation dialog closes we see that the only workspace tab
information that has been updated is the workspace name and a directory path:

EEE Depot T:t Workspace @T BT
|Q bruno_jam_main - ‘

2 cworkibruno_jam_main

[38]

Chapter 3

The path is the top level, or root, of the workspace area on your workstation.
However, you don't see any workspace file information in the workspace tab of the
tree pane. And if you try to explore C:\work\bruno_jam main you probably won't
even find the directory structure.

So where are the workspace files? You want to work on them! Well, you need to
populate the workspace.

Updating a workspace — populating it with
files

So far, you have only specified a workspace. You haven't requested an update of
your local workstation with the server files referenced by that workspace.

If you right-click on the directory in the workspace tab, you will see a menu offering
a range of activities. We're interested in the Get Latest Revision choice at the top of
the menu:

@d = 8B R B! == I:‘?get Latest Revision Ctrl+5Shift+G
Get Revision...
c:work'bruno_jam_main',

EIJ:E Depot LE: Workspace

E',:l bruno_jam_main

Rermove from Workspace

o Check Qut Ctrl+E
4 Mark for Add

= chworkibruno_jam_main

When you select Get Latest Revision your workstation is updated with the latest
revisions of the workspace files. As you can see in the following screenshot, after
the get latest has completed, file information is now visible in the workspace tab of
the tree pane:

[EE Depat LI‘:“: Workspace @. AT

| Q bruno_jam_main -

a0 chwerk\bruno_jam_main -
4 [depot
2 [Jam

a [man

4 [src

m

Build.mpw #1/1 <text>
command.c #F8/8 <text>
command.h #5/5 <text>
compile.c #25/25 <text>
compile.h #5/5 <text=

(Y T TR TR 7

[39]

Basic Functions

If you explore C:\work\bruno_jam main on your workstation you'll also find that
the expected files are now present.

If you have the log pane open when you request get latest you can see a detailed list
of the transfer activities:

= log B (X) Dashboard

:/ LS _ TN T OIS DL DT T W U S LS
@ pdsync cwork'bruno_jam_main', .. #head
/fdepot/Jam/MAIN/src/Build.mpw added C:\work\oruno_jam_main\depot\JamMAINsrc\Build. mpw
/fdepot/JamMAIN srcfcommand.c added C:\work\bruno_jam_main\depot!JamMAIN'src\command. c
/fdepot/Jam/MAIN/srcjcommand.h added C:iwork\bruno_jam_maindepotiJamMAIN\src\command.
{fdepot/JamMAIN/srcfcompile.c added C:iwork'bruno_jam_mainidepot'\JamMAIM\srccompile.c
//depot/Jam/MAIN/srcjcompile.h added C:\work\bruno_jam_mainidepot\Jam\MAIMN\src\compile.h

LR S VR S

M The time required to update the log for a large number of files can
Q have a noticeable impact on performance. Consider going to Edit |
Preferences... | Logging to hide the optional details in the log output.

Populating a workspace from the depot tab

Workspace population from the depot tab is very similar to population from the
workspace tab. The right-click menu choices, the generated log information, icons,
file information, and other factors are effectively the same.

The biggest difference is that the depot tab shows all of the files that the server
knows about. In the depot tab, files don't have to be local to your workspace or your
workstation to appear in the P4V display. This allows you to selectively populate a
workspace with subsets of the files known to the server. There are many advanced
usage scenarios where this comes in handy.

However, there is a downside to populating from the depot tree. If you select a
part of the depot not mapped by the current workspace and request Get Latest,
nothing happens. A lack of an icon and version information changes is the clue that
something didn't happen as you expected. Perforce only considers this a warning,
it does not consider this an error: your request was valid, it just didn't result in any
changes. You need to look in the log to see warnings. If you did, you might see
something like the following;:

_-?:LDQD

@ P sync ffdepotflamgraphy).. . #head
= o files updated
1 warning reported
I1depotyJamaraphy/.. . #head - file(s) not in client view,

b

[40]

Chapter 3

Don't worry that you don't see the words get latest in any of the log text. Get latest is
actually a special case of the Perforce sync command.

o The text file(s) not in client view appears in many warning and
~ error messages. This is your clue that you are referencing files that
Q aren't mapped by your workspace. The word client is a legacy name
for workspace.

Workstation files

There are a few details about populating files on the workstation from the repository
that we should note at this point.

First, the default action is to bring the files down from the server to your workstation,
make them read-only, and make their last modified time be the workstation's current
time and date. Making them read-only helps protect files from unintended changes
or deletion.

It is possible to have files in your workspace always writable by
setting a workspace option (see Chapter 6, Managing Workspaces).
This is the default behavior for tools such as Git and Subversion. The
Y advantage of having files read-only is that it reminds users to check
them out, which communicates to the Perforce server and thus other
users the change of status of those files. Meanwhile, just because a file
is read-only in the local workspace tree doesn't mean it is in Perforce.
There are files which are created by tools in the local tree that do not
belong in version control, but which happen to be read-only.

Secondly, the Perforce server is tracking the versions and status for the files in your
workspace. As you will see throughout this book, server tracking is important to
many of the features provided by Perforce. For example, we just did a Get Latest
Revision to populate our workspace. The log entry in the example indicated 71
files were copied to the workspace. So what would you expect to happen if you
immediately tried a Get Latest Revision of the same files? Well, make sure the log
view is open and try it. You should see something like the following in the log;:

= Log D (%) Dashboard

[=] P a - frAdepotiig
= no files updated

[41]

Basic Functions

Nothing happened (no files updated). This is because the server knew that the files
in your workspace were up-to-date since it tracks all changes to the repository made
by you and other users. The server didn't need to spend time verifying content or just
blindly updating files, as it knew there was nothing to transfer. Server knowledge of
workspace contents is one of the reasons Perforce can operate efficiently, even when
accessed across a relatively slow network connection.

Basic SCM actions

Now that you have populated your workspace with files from the repository
you'll want to work with them. As with other SCM tools, the basic Perforce
actions for files include:

* Modifying a file (check out)

* Adding afile

* Deleting a file

* Reverting actions

* Identifying local changes

* Committing actions to the repository (submit)

Remember that Perforce does not allow you to directly modify the repository files
(on the server). Instead, you modify your copies locally in your workspace. Then,
when you're ready, you commit your changes to the repository. It's this commit that
updates the repository.

At this point, it occurs to some people that you could avoid a lot of overhead by
simply letting Perforce detect what has changed in your workspace. Why not work
along until you are ready, and then let Perforce determine what has changed? After
all, we've told you that the server knows what should be in your workspace.

There are technical reasons this approach doesn't work well, if you think about
features such as renaming and moving files. But more importantly, this approach
doesn't work well because it means you are working in isolation. By coordinating
your intent to change files with the server, you are communicating with other
users. Nothing demonstrates the value of communication like working on a task

in isolation for a week only to find that changes made by others invalidate your
work. And when we get to more advanced usage, you'll find that you can use these
same communication mechanisms as a reminder and as part of your own personal
organizational techniques.

1
~ Having said that, there is a relevant P4V action called Reconcile Offline
Work, which we will cover in Chapter 10, The P4V User Experience.

[42]

Chapter 3

Selecting a changelist

As you may remember from Chapter 2, The P4V GUI, Perforce tracks and organizes
all changes made to the repository using changelists. So, to reference the actions,
we'll talk about in this section they need to be associated with a changelist. By
default, every action you perform will bring up the changelist selection dialog, as
shown in the following screenshot:

B{ Select Pending Changelist u

Add files to pending changelist:

T -

Changelist description

[™ Dan't show this dialog again (always use default changelist)

(a4 | Cancel |

At this point, it is best to use the default changelist. Other choices are for more
advanced usage as we cover in Chapter 4, Changelists. You can also select the
checkbox next to Don't show this dialog again (always use default changelist).
When you need to use this dialog later you can always restore it by going to the
Edit | Preferences... | Behavior menu option.

The prefix phrases open for and pending can be found in Perforce
documentation, error messages, and log entries. These prefix phrases

indicate actions in progress, for example, open for edit. Don't worry
R
about what is open. Just know that the action described is referenced

by a changelist that is pending but not yet reflected in the repository.

Modifying existing files (check out)

You can check out an existing file in your workspace by selecting it in either the
depot tab or workspace tab of the tree pane. The most common method is the
Check Out option on the right-click menu, but notice the toolbar icon and the
shortcut key: Ctrl + E.

-
Q bruno_main
a 3 MmN Get Revision...
4 B3 src Remove from Workspace
B Build.com #7/7 <{
B Buildmpw£1/1 < Check Out Ctrl+E
9 cbd) Check Out and Open

[43]

Basic Functions

Some tools such as Subversion, use check out to mean what in Perforce is done by

Get Latest. As you might notice in the log window, the P4V check out action results
in a command called p4 edit, which is hinted at by the shortcut key being Ctrl + E,
you are opening the file for editing, or declaring your intent to edit (modify) the file.

After a successful check out, the icon for the file will be updated with a red tick
similar to the toolbar icon (also shown in the preceding menu screenshot). The
file in your workspace will also be made writable and be added to a pending
changelist. You can examine the contents of pending changelists using the
Pending Changelists tab.

Although, the server now knows that you intend to modify a file, the server doesn't
monitor the content of files in your workspace. As we will see, Perforce provides
several techniques for saving important intermediate versions of work in progress.
The best technique for your organization depends on a number of factors that we
will cover throughout this book.

Adding files (mark for add)

This menu option is only available when you are in the workspace tab. Since the file
is new to the repository there is nothing to display in the depot tab. The depot tab
only displays information about repository files known to the server. Once the file to
add is selected, the most common method is the Mark for Add option on the right-
click menu as shown in the following screenshot:

a3 src E
Build.com £7/7 <text>
Build.mpw #1/1 <text>
et Open
command.c]
command.h Open With 3
CDmp?:e';#ﬁ; Delete Local File
compile.h &
B eecomdhd § Markfor Add
b J

After a successful mark for adding the icon, the file will be updated with a red
cross as per the toolbar icon. The file will also be added to a pending changelist.
However, unlike some other actions, no changes are made by Perforce to the local
file. You can continue to modify the contents of files being added up until the time
you request a submit.

[44]

Chapter 3

You may also have noticed that before Mark for add, the file in the display had only
a name and a blank icon. After a P4V successful mark for add the file has a new icon
and a Perforce file type indicator, such as <text> or <binary>. Don't worry about file
types for now, Perforce does a good job of automatically determining the type. User
intervention in type determination is only required for special or advanced situations
and we will cover those in Chapter 5, File Information.

Deleting files (mark for delete)

You may delete a file using either the depot tab or the workspace tab in the tree view.
Once the file to delete is selected, the most common method is the Mark for Delete
option on the right-click menu as shown in the following screenshot:

expand.h #2/2 <tg
filemac.c #2/2 <te W Mark for Delete

TEINESELL & Remaove from Workspace

execunix.c #21/21

execvms.c #7/7 <1 @@ Check Out Ctrl+E
expand.c ¥12/12 < Check Out and Open

After a successful mark for delete the icon for the file, it will be updated with a

red cross. The file will also be added to a pending changelist. And since you have
specified that the file should be deleted, Perforce has supported engineering best
practices by actually removing it from your workspace. This avoids the all too
common mistake of saying that the file should be deleted then forgetting to actually
delete it. This can lead to the age old problem of: "it works in my workspace"!

If you perform this action in the workspace tab, you will notice that the file
immediately disappears from the tree view. However, the file does not disappear
when you perform this action from the depot tab. It disappears from the workspace
tab because the file is no longer in your workspace. It doesn't disappear from the
depot tab because you have not yet submitted the change, so the server still knows
the file still exists. This allows you to test what would happen if the file were deleted,
and if you are happy, you can submit the delete action.

Reverting an action

So far we've shown you how to modify, add, and delete files from your workspace.
However, what if you change your mind about the action you requested? Not to
worry, you can revert any pending action.

[45]

Basic Functions

You revert by selecting a file then using Revert from the right-click menu from

either tab in the tree pane. However, if you're trying to revert multiple files, it can be
problematic to find files in the tree pane with a large scroll region. For this reason,
most users coordinate reverts from the Pending tab in the view pane. The Pending
tab lists all of the open files in one convenient place. Like the tree pane, you select the
file then use Revert from the right-click menu as shown in the following screenshot:

A Pending x|

B Filter: Lser is "bruna and Workspace is "bruno_c_jam_main"
Change | User Drescription

= A default brunao <enter description here =

B 11depot) JamMAIN/srefBuild. com #7)7 <texts
*B IidepotfJamiMalrfsrcc, bxh hok=
’@. I1depotflam/MAIN/srcfexe Open

Open With
=# Submit,.. Chrl+5
Rewvert Chrl+R.

Note the shortcut key (Ctrl + R) which we tend to use frequently.

A revert removes the file from the pending changelist and updates view icons. What
happens to the local file depends on the action being reverted:

* If yourevert a file currently Marked for Add, there are no local changes to
that file. It becomes one of the files in the workspace that is no longer under
the control of Perforce.

* If yourevert a file currently Marked for Delete, a read-only copy of the file
contents that existed when you marked the file for delete are restored to your
workspace.

* If yourevert a check out for a file, you may be presented with a dialog to
confirm your choice. This dialog only appears if you made local changes
to the file and you haven't selected Don't warn me about file changes in a
previous instance of the dialog;:

Reeverting will undo the Following file changes:

r4 | File: | Pending Action |
Hidepot/JamyMal... edi

Do you wank to proceed with the revert of the selected files?

[Don't warn me about: file changes Revert | Cion't Resert

[46]

Chapter 3

If you choose Don't Revert there are no local file changes and the file stays in the
pending changelist. If you choose Revert, or this dialog does not appear, any local
changes are discarded and a read-only copy of the file contents that existed when
you checked the file out is restored to your workspace.

Now is a good time to thoroughly explore the actions we've talked
M about, their impact on local workspace files, and what happens when
Q you revert an action. If you select Don't warn me about file changes
in the check out confirmation dialog you can restore the dialog by
going to Edit | Preferences... | Behavior menu.

Which files are you working on?

The answer to this question is always available in the Pending changelists tab in the
view pane:

A pending [£] 1,
B Fiter: User is "bruno™ and Workspace is "bruno_jam_main® 1match 4§ W
Change\ User Description

aldy default bruno <enter description here>

B s epot/lam/MAIN/src/Build.com #7/7 «<text>
B fidepot/lam/MAIN/src/c.bt <text=

@ fidepot/lam/MAIN/src/command.h #5/5 <text>
= epot/lam/MAIN/src/execrmac.c #1/1 <text>

In the preceding screenshot we see the files that are checked out for edit, marked for
add, and marked for delete. They are also in the default changelist for the workspace
as suggested earlier.

N If you have been doing follow along, you'll see that these are the files
we have been using in the preceding examples.

Identifying local changes (diff against have
revision)

At some point, you are likely to want to know what changes you've made to a file
that you've checked out. There are a number of offline techniques that you could use,
but they tend to require a lot of work on your part. Fortunately, P4V can leverage
server knowledge and save you a lot of effort.

[47]

Basic Functions

From anywhere you can select a file that has been checked out and you can bring up
a right-click menu. Although menus depend on the context you will see a sequence
similar to the following within that menu:

) File History Chrl+T
Revision @raph Chrl+Shift+R
Time-lapse View Chrl+Shift+T
Diff Against Have Revision Chrl+D

4 Diff Against... Ctrl+Shift+0

Select Diff Against Have Revision or use the shortcut (Ctrl + D). The other selections
are for advanced features that we'll cover later.

What happens when you make this selection is that P4V makes a local temporary
copy of the contents of the file as it existed before the check out and launches the
difference tool to compare the local copy with that temporary copy. If there are no
changes, or you made changes and then manually backed them out, you'll see the
following dialog telling you about that fact:

R] P4V Diff x|

' The files are identical,
-

But, if there are differences, you'll see the Perforce difference tool showing you all
the differences. The difference tool is part of the standard Perforce distribution and is
installed along with P4V. The following is a typical difference tool display showing
lines that have been modified, added, and deleted:

@ command.h#5 and command.h (workspace file) - Perforce PAMerge = | B

Fle Edt View Search Help
2H ey Da e 28 =[F =

3 diffs (Ignare line ending differences) | Tab spacing: 4 | Encoding: System

@ J/depot/1amMAIN/src/command.h5 @ c:\workibruno_main\Jam\MAIN\src\command.h (workspace file) -
7= i

* Copyright 1994 Christopher Seiwald. * Copyright 1994 Christopher Seiwald.

* This file is part of Jam — see jam.c for Copyright information. * This file is part of Jam — see LICENSE.txt for Copyrils
- =7

/* /=

command.h - the CMD structure and routines to manipulate them #* command.h - the CMD structure and routines to manipu]

* Both ACTION and CMD contain a rule, targets, and sources. RAn Some changes have been made.
* RCTION describes a rule to be applied to the given targets and

* spurces; a CMD is what actually gets executed by the shell. The
* differences are due to: Both ACTION and CMD contain a rule, targets, and sow
- ACTION describes a rule to be applied to the given t:
- sources; a CMD is what actually gets executed by the
- differences are dus to:

ACTIONS must be combined if 'actions together' is given.
ACTIONS must be split if 'actions piscemeal' is given.

ACTIONS must have current sources omitted for 'actions updated'.
ACTIONS must be split if 'actions piscemeal’ is give
ACTIONS must have current sources omitted for 'actic
I # o
« [B

L

[48]

Chapter 3

The difference tool has many useful features, but we don't want to take too much
space in this book describing them exhaustively. It is an important tool and we
have found that the best way to learn about it is to use it. Check out a file, make
some changes to it then launch the difference tool to see the results. Then close

the tool make more changes and see the new results. See what changes make the
various buttons active. Click on the buttons to see what happens. Don't worry about
mistakes, you can always revert the file when you're done.

Submit — updating the server

You've completed your work. Now, you want to update the server so that there
is a permanent record of your changes that others can access. So where's the check
in button?

Don't worry, you didn't miss it. Perforce uses the term submit rather than check in.
There are several reasons Perforce uses submit. But, they basically boil down to the
fact that people associate check out with edits. Likewise, they associate check in with
check out. Yet Perforce accounts for all differences: edits, adds, deletes, and other
actions that we'll see later. So Perforce uses the submit term to remind you that all
changes are being submitted to the server.

[Q Most people use the words check in and submit interchangeably.]

P4V has been tracking your changes in a default pending changelist. So, the best
place to coordinate submit is from the pending tab in the view panel. Select a pending
changelist (in this case default) then right-click and select the top item Submit:

A Pending [£] [
B Filter: User iz "bruno” and Workspace i "bruno_jam_main® 1match 9§ 0
Change‘ User Description

4|4 default bruno
"@. //depot/lam/MAIN/|
B /fdepot/lam/MAIN/| View Pending Changelist 'default’

B /d epot/Jam/MAIN/| .
5 //depot/Jam/MAIN/ £ Revert Unchanged Files

@ Submit... L\s Ctrl+S

[49]

Basic Functions

After selecting Submit, the submit dialog opens:

A Submit Changelist: default (bruno_jam_main, 1666, bruno) EI@

Write a changelist description:

Examples of basic actions|

Choose files to submit:

name E In Folder Resolve Sta Type Pending
7| YB Buildcom //depot/lam/MAIN/src MS-DOS Applic... edit
7 OB okt /{depot/lam/MAIN/src Text Docurmnent add
7| *B command.h //depot/Jam/MAIN/src C/C++ Header edit
7| *E eecmacc //depot/lam/MAIN/src CSource delete

B Choose additional options:
B Link jobs to changelist {optional):

Submit]| Save H Cancel

You'll need to enter a description and confirm the files to submit. The additional
options are for special case scenarios that we'll explore later. There may be a jobs
option. Jobs are an interface to external tools, such as defect tracking or issue
management and relate to productions environments. Your project manager will tell
you if you need to concern yourself with jobs.

You must enter a description. Make the description significant within the first 32
characters. Many P4V displays present the first 32 characters of these descriptions as
summaries. Workspace name, time, date, file lists, and user identification are already
available through other P4V interfaces. As you can see in the preceding example,
we've entered the description: Examples of basic actions. It's short and clearly
states the submit purpose.

Fast access file information

As we'll see in Chapter 5, File Information, PAV provides access to a broad range of
detailed file information. However, for general operations you don't usually require
that level of detail. Nor do you want to go through the effort of accessing detailed file
information to figure out the general status of files in your workspace.

Fortunately, there are a number of interface features that provide fast access to
general file information. Some of these you've already seen. If you've been following
along, you've probably encountered others. Now that we've covered basic actions it's
time to review the information sources in context.

[50]

Chapter 3

Icons

Icons are used to convey information about files, directory elements, depots, and
changelists. There is an extensive set of these icons. We'll cover the icons here that
apply to basic operations. You will encounter more icons as we deal with more
advanced operational topics.

As an example, let's look at the default pending changelist presentation we saw in
the preceding submit topic:

a| /) default bruno <enter description here>
B Jsd epot/Jam/MAIN/src/Build.com #7/7 «text>
*B //depot/lam/MAIN/sre/cet <texts
B d epot/lam/MAIN/src/command.h #5/5 <text>
*F /d epot/Jam/MAIN/src/execmac.c #1/1 <text>

Note that there are unique decorations on the left-hand side of the icons indicating
edit, add, and delete. The file icons themselves indicate modified and current
content. The red triangle associated with the default changelist is also significant and
indicates a changelist ready to submit.

Icons are used consistently everywhere a reference to an element is displayed. For
example, if we look at the depot pane in the tree view for the default preceding
changelist, we'll see the same icons conveying the same information:

E Src

YB Build.com #7/7 <text>
Build.mpw #1/1 <text>
cbvt <text>
command.c #F8/8 <text»
command.h #5/5 <text=
compile.c #£25/25 <text>
compile.h #5/5 <text>
execcmnd.h #2/2 «text»
execmac.c #1/1 <text>

+
g

mmm'ﬁ

#
e}

If you look in P4V you would see a blue folder (check this in P4V itself) next to the
src directory name: it indicates a folder in the Perforce depot.

And there's more. Let's look at the default changelist after some of the same files
have been opened in another workspace:

= 4 default brurio <enter description here=
'TET’ Iidepot Jam/MAINSsrcfBuild. com #7117 <kext=
B Iidepot JamMAaIN srofc.bxk <text>
x IidepotfJamfMAaIN/srclexecmac. c #171 <kext=

[51]

Basic Functions

Note that the icons we saw now have blue check mark decorations on the right-hand
side of the icon. Decorations on the right-hand side of an icon indicate a pending
action to that file in another workspace, usually made by another person.

Versions and type

The default pending changelist screenshot also shows other information.

Look at the #7/7 <text> after Build.com. Don't worry, advanced math is not
required! The #7/7 indicates that version 7 of the 7 versions of the file Build.com
was in your workspace when you did the check out. The <text> is the Perforce
file type for the file.

Note that there is a type <text> after c.txt, but there is no #1/0 or other numbers.
There is no versioning information for the file because the file does not currently
exist within the repository.

File status tool tips

So far we've covered information presentations that are always visible. While
useful, sometimes you need more details, such as who else has the file checked out.
Additional information is available through file tips. These appear when you hover
over the icon for the file. For example, let's look at the tool tip that would appear

if you were to hover over the icon for Build.com in the preceding scenario where
Build.com is checked out in another workspace:

5 A default Brunao <enter description here>
"@" JidepotilamiMAINsrcfBuild, com #7,7 <text:
+ . Lo bk bk

B delemnb 4o IRAR TR,

* Build. com
+ checked out in default changelist
« checked out by bruno@bruno_SRLTZ 4212
latest revision of File (#7 of 7)

Type: M3-DOS Application
Size: 751 Bytes

In addition to the always visible icon, version, and type information, the file tip
contains additional information such as the size of the file, the meaning of the icon
decorations, and information about the other workspace where the file is checked out.

Getting help
Details that you aren't familiar with, new features, and the features you haven't tried

before, all need the support of a good help system. The help system built into P4V is
dedicated to P4V and is often context sensitive.

[52]

Chapter 3

The help menu

The Help menu can be used to access a full range of help features. Most of the time
you will be using the P4V Help selection. This brings up the P4V help viewer. The
P4V help viewer provides search, bookmarks, and a host of other features:

o | Help
b P4y Help F1 q
[Getting Started with P4y

System Info Chrl+L

‘What's Mew in P4y

About P4y

The System Info selection provides operational information that may be required by
support or your administrator.

Help buttons

Many dialogs have a help button. Selecting the help button will bring up the P4V
help viewer focused on the topic that relates to that dialog:

a4 | Cancel | Apply | Help |

The Perforce website

From documentation to user forums the Perforce website (www.perforce.com)
contains a wealth of information for Perforce users. The search interface is a powerful
resource. Results are organized by origin to help isolate the style of information
you'll find.

Although the Perforce website contains a wealth of information, the amount of
information available can be intimidating to new users. Moreover, the range of
versions covered is broad. The topics, information, and screenshots you find may not
be appropriate to the version of P4V that you're using.

\ Take the opportunity to investigate a topic using the built-in P4V help,
~ then search for the same topic on the Perforce website. Icon is a good
Q topic choice. This will help you to appreciate the differences between
the two resources.

[53]

Basic Functions

Summary

Because add, edit, and delete are self-evident, people have rarely taken the time

to actually identify all the steps required to accurately track and reproduce such
changes. Moreover, it's even less likely that they would have considered interacting
with other users or providing a seamless baseline for more advanced activities.

Thus, many first time users make the observation that there seems to be far too much
overhead for tracking simple file activities. They don't appreciate that Perforce is
providing a rich set of features in a very efficient interface.

In the next chapter we will cover details about changelists and related concepts.

[54]

Changelists

Changelists are a record of change. Before it is submitted, that record represents
pending actions that are not yet permanent. After submit, changelists become an
immutable record of what changed.

In this chapter we will look beyond using changelists as a simple record of change.
We'll see how to use them for organizing work, communicating with other users,
and avoiding problems.

In this chapter we will cover:

* Creating useful changelists
* Using changelists for organization
* File management at submit

* Changelist numbering

Creating useful changelists

As we will see throughout this book, changelists are the primary mechanism for
change tracking within Perforce. We submit our changes to the repository changelist
by changelist, not file by file.

In and of themselves, the myriad change details automatically tracked by Perforce
are just details. It is up to you to give purpose to these details. You are the one that
makes the difference between changelists that are useful and changelists that are
just collections of details. If you think changelists are overhead that make you less
efficient, that might be a sign that your changelists aren't as useful as they could be!

The good news is that useful changelists are easy to create. You just need to follow
some straightforward best practices.

Changelists

Associating files with a changelist

The user has total control over the choice of file(s) to submit with a changelist.
Following the simple best practice of creating changelists of related files will reap
you and your team large rewards. Not doing so can create significant extra work
in the future!

For example, let's say you fix 10 bugs, each of which requires changes to several
files. While it is possible to submit a single changelist with all of the changed files
in it, that is not usually the best practice. A single changelist implies that all of the
tile modifications are interrelated. Or, said in another way: these aren't 10 separate
bugs, they are actually just one large bug. This is unlikely to be true. Moreover, a
single changelist makes it hard to isolate the files required to fix a specific bug in
the future. So, the best practice is to submit the modified files for each bug fix in
its own separate changelist, one by one. This uses changelists to isolate the files
required to resolve a specific bug and makes the history easier to understand.

In a similar way, if you need to modify 10 files to fix a bug, you could submit these
modifications using 2, 3, or even 10 separate changelists. But, determining that those
separate changelists are related in the future may require manual overhead and it
introduces a higher likelihood of error. The most useful changelist would contain all
10 file modifications. This useful changelist not only reduces future overhead, but
also creates a record of relationships that might otherwise be lost.

These are ideal scenarios. They are not always achievable in the real world. For
example, you think you have fixed a bug so you submit the changelist. You then
realize you missed an aspect of the bug fix and need to make further modifications.
These new modifications will have to go into a separate changelist, you can't add
them to the previously submitted changelist.

1
~ When in doubt, think about trying to re-create your current work in

the future. Make sure those are the files in your changelist.

Effective descriptions

In the previous chapter we introduced the need for effective changelist descriptions.
We stated reasons without providing specific details. Now it's time to take a closer
look at how those reasons apply.

[56]

Chapter 4

Perhaps the best way to see what we're talking about is to look at the submitted
changelist tab view. We see an example as follows:

£ submitted [

P Fiter: none applied 100+ matches
Changelist | Date Submitted Warkspace Subniitted By | Description
+) 812 2{23/2006 7:23:07 PM jw_admin John_Wakem... Propagate license information to release br
+ 4 811 2123/2006 7:15:45 PM jw_admin Jobhn_‘Wakem... Walkerbros license information,
-1) 510 212312006 70007 PM quinn-inkeg quinn Propagate licensing information to developn

[Idepotilamgraph/DEY) src/README# 1
}idepotilamgraph/RELL.OfsrcfREADME#1

+- () 803 2123/2006 6:46:55 PM quinn-main quinn License and distribution statement For Jamg
+- () 808 2{23/2006 4:49:53 PM ona-fig ana Sample Depot notes modified, reflecting ne
+ () 807 2{23/2006 4:48:47 PM ona-build ana Jamgraph release build, Mext skep is bo auk

As you can see, Perforce tracks date, workspace, and user information. We've
expanded changelist 810 to show that information about the files involved is also
readily available. There is no need to duplicate this information in a description.

Now look at the Description column. The text comes from the first few lines of the
description entered by the user. If you look at these descriptions, you can imagine
looking back months from now to quickly identify changelists of interest. You can
do that because the description starts with the submit purpose. Additional details
are fine, but useful descriptions start with a summary of this purpose.

. Many organizations have standards for changelist descriptions.
% For compatibility with legacy procedures and tools these standards
= sometimes conflict with the recommendations in this book. Always
use the standards of your organization.

[57]

Changelists

Updating descriptions for submitted
changelists

While useful descriptions are the objective, we're all human. Typographical errors,
missing details, incorrect details, and other problems are inevitable. Not to worry.
You can modify the description of a submitted changelist. This is an option on

the right-click menu in the submitted Changelists tab view as shown in the
following screenshot:

2 Files A Pending &) submitted [£]

P Filter: none applied 100+ matches 7]
Chang‘elist Date Submitted Submitted By Description

! g :ii View Submitted Changelist ‘825"

-) B22 Get Revizion... I
- @ 821 - - e |

) 820 Merge/Integrate Using Submitted Changelist '825'"...

. r
@ 819 Copy Using Submitted Changelist '825"... i
. (@) B18 Branch Files... (!
. 43 816 K
@ s Rollback... |
. ack Out Submitte: angelist

@ 812 Back Out Submitted Changelist '825'

- 4 811 Label... n
- @3 810 b
. @) 809 Diff Files Against Previous Revisions Ctrl+D H
. (4% 808 54 Diff Against... Ctrl+Shift+D

. 4 807 t

h Edit Submitted Changelist '825° E

This option will only be available to you if you have selected a changelist that
you have submitted. You are not allowed to update another person's changelists
unless you are an administrator.

Using changelists for an organization

So far we've only talked about the default changelist associated with a workspace.
However, workspaces can have one or more pending changelists in addition to their
default changelist. Among other uses, these additional pending changelists provide
a mechanism for organizing your work in progress.

For example, separate pending changelists might be used to organize the files
involved in separate bug fixes. A less obvious organizational technique is to use
pending changelists as file action notepads. For example, you might need to modify
files to insert temporary trace features. Collecting all of the check out actions for
these files in a separate changelist makes them easy to identify and revert.

[58]

Chapter 4

Pending changelists also have a communication role. Other users can identify the
files you have open for some action. They can also see the descriptions associated
with your pending changelists. This allows users to identify overlaps or potential
conflicts in work effort, and even previously unknown relationships between
different work activities.

The list of files associated with a pending changelist can be changed,
% whereas the list of files associated with a submitted changelist is
immutable and cannot be changed.

The default changelist

Every workspace has a pending changelist called default. You don't have to do
anything to create it, it is always there. You can't change its name, nor can you delete
it. Always having a default changelist assures that pending actions can always be
associated with a changelist.

The downside to the default changelist is that you can't pre-establish its description.
This removes a potentially vital piece of communication detail. For example, another
user can see you have a file checked out in your workspace's default changelist.
However, there is no description for the default changelist so they can't tell if you're
working on a bug, adding a feature, or doing some other type of work.

Other pending changelists

While a workspace has only one default changelist, it can have any number of
pending changelists. Pending changelists, other than the default, are assigned a
unique number by the server. You can't choose that number and you can't change it
after it is assigned.

There are many interfaces that allow you to create new pending changelists. You can
navigate to the File | New | Pending Changelist... menu shown in the following
screenshot, or use the Ctrl + N shortcut, and the New Pending Changelist... option
choice from the right-click menu that appears when you select a changelist in the
Pending tab view:

#| bruno_jam_main, 1666, bruno - Perforce P4V
Edit Search View Actions Connection Tools Window Help

Mew 4] Folder..

Open
Pending Changelist...

Open With J
&l Branch Mapping...

[59]

Changelists

Regardless of the interface used you will be presented with the pending changelist
creation dialog:

A Pending Changelist: New (bruno_jam_main, 1666, bmno‘l&lﬂ

Changelist: New Workspace: bruno_jam_main

Date: User: bruno

[Restrict access to changelist (more info)

W Description:

W Files (3):

| name = In Folder Resolve Sta Type Pending Action
yp g

] Y Build.com //depot/iam/MAIN/src M5-DOS Applic.. edit

[*B obt //depot/lam/MAIN/src Text Document add

[*B execmacc //depot/lam/MAIN/src C Source delete

P Jobs (0):

Save as Mumbered Changelist] [Cancel

You had a reason for creating this pending changelist. Be sure to record that
reason in the Description: area. If you don't provide a description P4V will
provide a default. However, keep in mind that a default description has limited
communication value.

So where did the files in the Files list come from? They came from the default
changelist. Files in the default changelist are used because people are typically
trying to organize files that are already open. However, you aren't forced to put
these files into the new pending changelist. In fact, you must explicitly select files
to be in the new changelist by selecting the checkbox next to the file name. If there
are no files in the default changelist or you don't select any of the files in the Files
list, then an empty pending changelist is created. This is actually quite handy.

You should not select Restrict access to changelist. This is an advanced feature
supporting scenarios that require restricted information communication.

The select pending changelist dialog

As we saw in the previous chapter, you can elect to make action requests such as
Check Out, Mark for Add, and Mark for Delete prompt you to select a pending
changelist to associate with the action.

If you want to allocate a new pending changelist select New from the Add files
to pending changelist: dropdown and enter a description, as shown in the
following screenshot:

[60]

Chapter 4

Select Pending Changeli 1

Add files to pending changelist:

New

Changelist description

Temporary trace modifications|

[Don't show this dialog again (always use default changelist)

[QK][Cancel]

Or, if an appropriate changelist already exists in the Add files to pending changelist:
dropdown you can select it as shown in the following screenshot:

| Select Pending Changelisl- i)

Add files to pending changelist:

[defauit -]
Mew

default

12107 Temporary trace modifications k‘

[] Don't show this dialog again (always use default changelist)

[OK H Cancel l

Unlike the general case of creating a new pending changelist, these dialogs do not
involve the files already open in the default changelist. They only add the file you are
checking out, marking for add, or marking for delete to the changelist selected.

o If you previously selected Don't show this dialog again, you can
~ always restore this dialog by going to the Edit | Preferences... |
Q Behavior menu option and selecting Prompt for changelist when
checking out, adding, or deleting files.

Moving files between pending changelists

Perhaps you've changed your mind about the changelist you want to associate an
action with. Or maybe you want to consolidate the actions from several separate
changelists into a single changelist. Not to worry, there are ways to move files
between changelists.

[61]

Changelists

P4V is a GUL So, you can simply select the files you're interested in moving and then
drag them to the target changelist row, with the (red) triangle icon, and drop them:

Change User ‘ Description
s Jy default brunc <enter description heres
"@. //depot/lam/MAIN/src/Build.com £7/7 <text>
NE] Jfdepot/larm/MAIN/src/c bt <text>
‘ Sldepot/lam/MAIN/src/execrmac.c #1/1 «text>
4 J4 12107 . bruno Temporary trace modifications
fid -1 fam/MAIN/src/command.c #8/8 <text>
Sl depot/larm/MAIN/src/command.h #5/5 <texts
Shelved Files (0)

While drag-and-drop is convenient, it doesn't always provide you with the level of
control that you desire. Equally, drag-and-drop may not fit your work style.

M Be careful where you drop files you're trying to move between
Q changelists. If you drop them on top of other files you may launch the
difference tool, which is the default action for file-to-file drag-and-drop.

You can always select one or more files in the Pending changelists tab view and then
select Move to Another Changelist... from the right-click menu, as shown in the
following screenshot:

Change User Description
4 (b default brunc <enter description heres
B f/depot/lam/MAIN/src/Build.com #7/7 <texts>

B //depotflam/MAIN/src/cbet <texts

o Gpen
//depot/lam/MAIN/src/execmac.c #] 0 With D
a & 12107 brune Temporary| pen
{/depot/lam/MAIN/src/command.ci & 5ubmit... Ctil+S
/fdepot/lam/MAIN/src/command.h Revert Ctrl+R

Shelved Files (0)
Move to Another Changelist...

Shelve...

Move to Another Changelist... is also found in tree pane right-click menus. One
advantage of the right-click menus is that you can select multiple files from different
changelists for consolidation activities.

After you've identified the files to move, you will be prompted with the Select
Pending Changelist dialog as shown in the following screenshot:

[62]

Chapter 4

| Select Pending Changelist S

Mave selected files to pending changelist

lNew -]
Mew
12107 Temporary trace modifications

L

This is the same Select Pending Changelist dialog we've seen before. It just doesn't
have a Don't show this dialog again check box.

experiment with the various ways to create new pending changelists

M If you haven't done so already, now is a good time to follow along and
Q and move files between them.

Dynamic organization at submit

There are times when you need to submit a subset of the files in a pending
changelist. As we saw earlier in this chapter, creating a new pending changelist
to select some files for submitting would usually be the best practice. However,
there may be restraints that make new pending changelists impractical. For
example, some third-party tools or IDE integrations that can interact with
Perforce do not support multiple workspace changelists.

Not to worry, the submit dialog provides you with a mechanism for specifying
selective submits. By default, all files in a changelist are selected when you request
submit. However, you can click on the triangle next to the Choose files to submit:
area to expose the selection list. Using the selection list you can explicitly identify
the files that you want to submit. The exposed selection list for a submit dialog is
shown in the following screenshot:

W Choose files to submit:
[| Marme | In Folder Resolve Status
Build. com [1depoki1am MAT ..
g bt idepatfdam/MaL...
BEY execmac.c [fdepotilam/MAILL..
. | ol

[63]

Changelists

To include a file in a submit you select the checkbox next to its name. To exclude a
file from the submit you clear the checkbox next to its name. The checkbox at the top
of the column is a check/uncheck all mechanism.

So what happens to files you don't select for submit? They are moved to the default
changelist and remain open. If they were already in the default changelist they just
remain open.

o Be careful about submitting a subset of the files in your pending
~ changelist as it may make it hard for other users to re-create your
Q work. This is the "works in my workspace" dilemma. Use the
Description: to reflect the selective nature of the submit.

Limits to multiple pending changelists

The ability to create multiple pending changelists is potentially very useful. These
pending changelists allow you to use one workspace to work on different tasks in
parallel. However, there are limits to what you can do in a single workspace.

The key limitation is that a workspace cannot have the same file in two different
pending changelists at the same time. This makes sense if you think about it. There is
only one copy of the file on disk in your workspace. Therefore, you can't update that
single copy differently in two different ways at the same time!

One common approach to addressing this limitation is to combine the previously
independent changelists into a single changelist. This resolves the interdependence
issue. However, it creates potential future issues if the files and modifications you
have combined do not really belong together.

If you realize after starting the two tasks that they depend on each other, then
another common approach is to work on the two tasks one after the other. Revert
the files for the conflicting task, continue to work on the current task, and submit
that changelist. After the submit check out the files for the next task, including any
files which were in common with the previous task.

More advanced options are to: shelve a changelist (covered at the end of this
chapter), or create a new workspace and do the other task in that (covered in
Chapter 6, Managing Workspaces).

. Interdependence is a source control problem that has no magic silver
% bullet solution. Find the solution or set of solutions that best addresses
= the needs of your environment and stick with them. Always recognize
that there will be exceptions that require extra effort to support.

[64]

Chapter 4

File management at submit

Much of the time you're dealing with files effectively on an individual basis.
However, submit is a time where you're working with files collectively.

Until now, we've ignored the Choose additional options section of the submit
dialog. This section of the submit dialog deals with files collectively using the
default changelist as a catch-all for files that don't conform to specific requirements.
Now that we've covered multiple changelists it's time to look at these options, as
outlined in the following screenshot:

W Choose additional options:
[Do not submit if resolved files have been modified
[Check out submitted files after submit

[Restrick access bo changelist (rmore infol

On submit: |Submit all selected files -

Submit: all selected files
Don't submit unchanged files
Rewvert unchanged files

Subrmit | Save | Cancel |

The various scenarios are covered in the following subsections.

this dialog, a new numbered pending changelist is created, but the

* Additional options only apply to an actual submit. If you Save from
! options won't persist to when you submit that pending changelist.

Handling unmodified files

So what is an unmodified file and how did it get that way? An unmodified file is a
file that you have checked out but never changed. There are many ways that this
might happen. Maybe a tool required that the file be checked out just in case. Or
perhaps you checked it out thinking you would need to modify it. Ultimately the
reasons aren't important. Unmodified files can and do exist in the course of normal
development activities.

The On submit: dropdown provides you with the ability to handle unmodified files
at the time of submit. You can achieve the same results with individual P4V actions
prior to submit. However, dealing with them at submit time can be more efficient.

1
~J The default On submit: action can be set in your workspace options
as covered in Chapter 6, Managing Workspaces.

[65]

Changelists

Submit all selected files as a choice submits all files whether or not they've been
modified. If you submit using this option, the version number of unmodified files
changes, even though there is no content change between versions. Occasionally
you might have a set of files that you always want to submit together, even if some
of the files have not changed. However, most of the time this option just creates
unnecessary history for the unmodified files.

Don't submit unchanged files as a choice only applies to files that are checked out.
If they have not changed then they remain checked out in the default changelist
after submit. This is probably the most common choice for users, and the option we
use ourselves.

Revert unchanged files as a choice reverts files that are checked out, but have not
changed. After submit, the previously unmodified files will no longer be checked out.

Choosing between the latter two options is usually a matter of personal preference,
find a style of working and stick to it!

Making multiple changes to the same set of
files

It is quite common to make multiple changes to basically the same set of files. You
are adding features one by one. It can be annoying to check out the files, make
modifications, submit them, and then have to remember which files to check out
again ready for the next change. This is particularly true if the files are in various
different directories within the repository structure.

Using the Check out submitted files after submit selection solves this problem.
After the successful submit, the files are immediately checked out again and will be
in the default pending changelist.

Any files in the changelist that you marked for add will be checked out (for edit).
Files you have marked for delete are gone and won't be checked out.

Failed submits

There are various reasons that the server will fail a submit request. Typically, these
reasons relate to context inconsistencies that you may not be aware of. An example
of inconsistency would be a file marked for add that was deleted from the workspace
before submit. The server was expecting a file which was not available. That's a
consistency problem that will cause a submit to fail.

[66]

Chapter 4

If the submit fails, you will be presented with a warning dialog detailing the reason
for the failure. A dialog for being unable to add a file would look like the following;:

open for read: C:\work\bruno_jam_main'depot\Jam{MAIN\srclc. tet: The
system cannot find the file spedified.

Submit aborted — fix problems then use 'p4 submit - 12108",

Some file(s) could not be transferred from dient.

Perforce command run:

p4 submit -f submitunchanged -

As you can see, there are a lot of details in the dialog. You can ignore most of them
as they are intended for support or advanced users. However, even a general user
should be able to identify that the cause of the failure was a missing file.

Remember when we mentioned in Chapter 1, Getting Started with Perforce that the
submission of changelists is an atomic action? This is an example of where we see
this happening. There was a problem with submitting one file in the changelist, so
the whole changelist submission fails.

So what happens now? If we were submitting the default changelist then it will have
been assigned a number. If the pending changelist already had a number, then that
number will not have changed. What we should do is fix the problem and resubmit
the changelist.

Let's look at the Pending tab view:

A Pending x|

B Filter: User iz bruno” and Workspace iz "bruno_jam_main”
Change’ User Description

A default bruno <enter description here=
- M 12107 bruno Temporary trace modifications
4 A 12108 bruno Basic actions edit, add & delete

B //depot/lam/MAIN,src/Build.com #7/7 «<text>
B ffdepot/lam/MAIN/src/c.bt <text>

i85 //depot/Jlam/MAIN/src/execmac.c #1/1 <text>
[Shelved Files (0)

a =Lock decoration

[67]

Changelists

Notice that a lock decoration (identified in the callout box) has been added to
bottom-left of the icons for all of the files in the changelist. This assumes you can
resolve the problem quickly and re-submit the changelist. If you can't do this, then
we suggest you unlock the files (from the right-click menu), to allow other people to
submit changes. This may create conflicts, but those are normally easily resolved as
we will cover in Chapter 7, Dealing with Conflicts.

M Locking files does not prevent other people from checking those files
Q out, but it does prevent them from submitting any changes. This can
be disruptive to good teamwork.

When you have fixed the problems, don't forget to submit the changelist!

Changelist numbering

So far, we've avoided some of the details associated with changelist numbering. If
you've been doing follow along, you're likely to have encountered some aspects of
this. In this section we go a little deeper into the subject.

How submitted changelists are numbered

A key characteristic of changelist numbers is that changelists with a higher number
have always been submitted after a changelist with a lower number. This creates a
direct relationship between increasing numbers and the date/time of submission. This
is very useful when it comes to reporting as we will see in Chapter 5, File Information.

If we look at the Submitted tab view with no filter, we can see a list of all
submitted changelists:

A Pending @ submitted [
B Filter: none applied
Changel‘ist Date Submitted Submitted By Description
| 12108 31/07/2013 22:24:48 bruno Basic actions edit, add & delete
. @ 12106 29/07/201312:27:21 brunc Exarmples of basic actions
-) 12104 08/11/2011 15:46:46 Joe_Coder Copying //gwt-streams/earl-dev to
- @ 12103 07/11/2011 18:05:58 Joe_Coder Mew class schedule at 55 minutes
. @ 12099 03/11/2011 19:46:36 rgronkowski removed a syntax error,
. 9 12098 03/11/2011 19:44:36 rgronkowski Made the code compile by adding

The relationship between changelist numbers and submit date is clear.

[68]

Chapter 4

When a changelist is successfully submitted, the server ensures the number is the
next changelist number in sequence. Exactly what this number will be is not always
easy to predict, especially if you have hundreds or thousands of colleagues all
submitting changes to the same Perforce server.

Implications for changelist numbering
The sharp-eyed reader will have noted gaps in the number sequence (for example,

12107 is missing) in the preceding Submitted tab view example. This is not a mistake.

Let's walk through a scenario to demonstrate how changelist numbering works in
practice. You can follow along with the following sequence of actions:
1. Create two pending changelists with numbers

2. Submit them in reverse order, so the one with a higher number is
submitted first

3. Take a guess as to what the numbers will be before you submit them (and
then verify your guess!)

Let's have a look step-by-step:

A pending £ |) submitted

B Filter: User iz "bruno”™ and Workspace is "bruno_jam_main”
Change» User Description

A default brunc <enter description here>
. A 12109 brunc Mew feature-12109

| 12110 brunc Urgent bug fix-12110

In the preceding diagram we are going to submit first changelist 12110 and then
changelist 12109. What do you think the numbers will be? What might change in
this scenario if other users are also submitting changes to the server at this time?

If we try this, then the results in the log window might be:

__2 Leg £ (%% Dashboard

@ p4submit -f submitunchanged -
2 edit /{depotflam/MAIN/src/command. h#6
Submitted change 12110
= 1file edited

2 edit /fdepotflam/MAIN/src/compile. c#26
Submitted change 12111
= 1fie edited

[69]

Changelists

M If you don't see exactly this output, then go to Edit | Preferences |
Q Logging settings. We have checked Show p4 command output for
file operations.

So we see here that changelist 12110 was submitted with the same number, and

yet changelist 12109 became 12111 when it was submitted. If you don't believe us,
then you try it! The order the pending changelists was submitted in is shown in the
submitted changelists tab:

A Pending @ submitted [£)
B Fiter: none applisd
Changel\ist Date Submitted Submitted By Description
711 31/07/2013 22:35:24 bruno Mew featurds] 2109
- 12110 31/07/2013 22:34:03 brunc Urgent bug fil 12110
- @ 12108 31/07/2013 22:24:49 brunc Basic actions edit, add 8 delete

In our training classes, people are often a little surprised when we show them
this scenario. If we ask for a show of hands before we do it, opinion can be evenly
divided as to what changelist number will be assigned!

But what about the numbers assigned to the pending changelists you've been
creating? Since these are pending changelists, there is no need for the numbers
to meet the relationship criteria outlined earlier. When you submit a pending
changelist, the server, if needed, will assign it a new reference number before
submit completion.

Note that the precise number allocated by the server for a submitted changelist
will vary depending on who else is submitting changelists at the same time. In the
preceding scenario, pending changelist 12110 kept the same number when it was
submitted. If someone else had submitted a changelist in the meantime, then it
would have been renumbered as well.

You may also have noticed that there is now a gap in the numbering sequence,
changelist 12109 no longer exists (since it was pending but was renumbered on
submission). This makes no difference to reporting, but you need to be aware of
this behavior.

Don't rely on the number of pending changelist being the same after
submit, it is likely to change. When you need a specific changelist
g number, P4V provides you with many ways to find that number.

[70]

Chapter 4

Deleting pending changelists

Having created pending changelists, you may have moved files out of them and
into others. There is no harm in having empty changelists. However, they do tend
to create visual clutter within the P4V display, so you can delete empty changelists.

Select the changelist in the Pending tab view, right-click and select Delete
Changelist as shown in the following screenshot:

Changee User Description
A default bruno <enter description here»
[y 12112 &» Submit... Ctrl+5

View Pending Changelist 12112

2 Rgr- - B
Dn ales gaine daw dev, ons AL
Mew Pending Changelist... Ctrl+M

Edit Pending Changelist 12112
Delete Pending Changelist '12112"
Change Ownership...

This option is only available on the right-click menu if the pending changelist is
empty (has no files in it).

N To delete a pending changelist that isn't empty, either move all its
files to another pending changelist, or revert them.

Shelving

So far, we've seen that changes to files in your workspace are made available to other
workspaces through the submit process. However, there are times when you want
file changes to be available without having to submit those changes. One method

for achieving this would be to manually recreate the desired changes. This of course
would be time consuming and error prone. The best practice is to use Perforce's
shelving feature.

Shelving associates your file changes with a changelist and creates a copy of the
contents of the files on the server. With a changelist for reference and the server
as a common storage area, any user can access the shelved changes and recreate
them in another workspace. In effect, you are using the server as a shelf to
exchange file changes.

[71]

Changelists

Common uses of shelving are as follows:

* Saving a copy of work in progress so that you can revert your current
workspace to perform an urgent task. Then restoring the work in progress
after the urgent task has been completed.

* Reviewing changes prior to a submit.
* Automated build validation prior to a submit.

* Transferring work in progress between workspaces, such as between
office and home, or office and test station.

Submit is an action that creates a permanent record that can
% be examined and traced. Shelving activities are temporary and
T create no permanent records.

Shelving files in a changelist

In order to shelve files, their associated activity (add, edit, delete, and so on) must
already be associated with a pending changelist. To shelve a file, you select it in a
pending changelist, then right-click and select Shelve Files... as we can see in the
following screenshot:

A Pending D @ submitted

B Filter: User is "brune™ and Workspace is *bruno_jam_main™

Change! User Description
4|4 default bruno
YBl //depot/Jam/MAINy:
B [/depot/lam/MAIN/ View Pending Changelist 'default’

2 Submit.. Ctrl+5

) 7 evalhl Inglienggh Filgy
sove All Fues to . snottor Cheigeli..,

Shelve Files...

s

Making the shelve request will prompt you with a dialog that allows you to verify
the files involved and to specify optional actions as we see:

[72]

Chapter 4

Select files in the default pending changelist to shelve:

=

File Type Pending Action

Shelved™

‘B //depot/lam/MAIN/src/command.c € Source edit

"Ia //depot/Jam/MAIN/src/command.h C/C++ Header edit

*A shelved version of the file already exists in the changelist and will be replaced if selected
Options:
[7] Revert checked out files after they are shelved

Clear changelist of all previously shelved files before shelving

[shelve J[Cancel]

The Revert checked out files after they are shelved option provides a one-step
mechanism for saving work in progress and restoring a workspace. By reverting,
you make your workspace clean so that changes can be made independently of
work in progress that has now been shelved. The work in progress is restored
when you unshelve the files.

The results of the shelve action are shown in the Pending tab, and might be as follows:

A Pendng B | @ submitted

4 [Shelved Files (2)
[+ /7d epot/lam/MAIN/src/command.c #8 <text»
[//d epot/lam/MAIN/src/command.h #5 <text=

B Fiter: User is "bruno® and Warkspace is "bruno_jam_main”
=
Change User Description
A default brunc <enter description here>
a Jh 12113 brunc Saved versions before fixing urgent bug

In the preceding example, the shelved files were initially associated with the
default changelist. However, for reference reasons, shelved files require a
numbered changelist. The shelving dialog sequence would have provided you
with an opportunity to specify or create a numbered changelist to shelve the files.

a1

Q

If you're following along, check out a file, modify it, then shelve it with and
without the revert option. Then look at the right-click menu options for
shelved files, including Diff Against Source Revision and Diff Against
Workspace File. Make sure the contents are what you were expecting!

[73]

Changelists

Unshelving files

When you want to restore the contents of a workspace file to the shelved contents,
you unshelve the file. The request to Unshelve... is available on the right-click
menus for both changelists and individual files. This results in the following dialog:

Select shelved files in pending changelist ‘12113 to unshelve:

=

I File Shelved Action Checked Out
|| //depot/lam/MAIN/src/command.c 28 edit
[#] #/depot/lam/MAIN/src/command.h #6 edit

Add to pending changelist: | 12113 Saved versions before fixing urgent bug

Options:
Delete shelved files after they are unshelved
[] Revert checked out files before unshelving

[] Owerwrite workspace files even if they are writeable

[Unshelve ” Cancel]

The result will be that the action associated with the file when it was shelved (as
shown in the Shelved Action column) will be recreated in the current workspace.
The Overwrite workspace files even if they are writeable option allows you

to override the normal protections provided by P4V. Use it with care as files
overwritten can't be recovered. The other options provide for one-step support of
delete and update activities that we'll discuss next.

Deleting shelved files

When the shelved file action no longer needs to be retained, the owner of the
changelist must delete the shelved files from the changelist. A changelist with
shelved files when right-clicked has a Delete Shelved Files... option. This allows
you to delete them without having to unshelve the files first. There is also the
Delete shelved files after they are unshelved option in the unshelve dialog.

Keep in mind that shelved file content is transient. Deletion of a shelved file action
without an unshelve discards any shelved file content. This may be what you
want. However, it is rarely the desired result for the common use scenarios
described previously.

> If you are the owner of the shelved changelist, but you aren't
presented with delete capabilities, check your current workspace.

[74]

Chapter 4

Finding shelved files

We initially said that a common use of shelved files was to pass them over to
colleagues for code reviews. This implies that other people can unshelve files

into a different workspace. However, first they need to be able to find the shelved
changelist, this is done in the Pending changelists tab.

The default filter for this tab is to show pending changelists for the current user
and workspace. To view another person's shelved changelists we need to modify
the filter options as shown in the following screenshot:

L Files A rending [

W Filter: Filz paths are "f/depot/Jam/MAIN/..."
|Files - | match any of the following file paths:

[fdepot/JamMAIN/...

Change» User Description
. 12113 bruno Saved versions before fixing urgent bug
4 A 12114 bruno Bug fix 829 for review
4 [Shelved Files (2)
|« //depot/lam/MAIN/src/execcmd.h £2 <text>
|#] /idepot/lam/MAIN/src/execunine 21 <text>

In this instance, Gale is looking to review Bruno's changelist 12114. By changing the
filter to be only on a depot file path, she can see the shelved changelist, and the files
within it.

She can then use the changelist by right-clicking and then selecting the Unshelve
Files... option, or she can open or diff the files directly from the right-click menu for
the individual files.

Note that you may need to change your filter options in order to see shelved files in
other workspaces, even other workspaces you own.

Modifying shelved files

A file can be both checked out for edit and shelved. So you might wonder what
happens if you modify that file in your workspace. The answer is that you have a
modified file in your workspace. The shelved contents of the file known to the server
are unchanged until you shelve the file again. This also means that you need to
explicitly unshelve files in different workspaces in order to get more recent versions of
those file contents. There is no automatic update of shelved or unshelved file content.

[75]

Changelists

Likewise, you may wonder what happens to a file that you unshelve and then
modify in a different workspace. Let's call the original workspace X and the other
one Y. If you are in workspace Y, the changelist from which you unshelve belongs
to workspace X, so you are not allowed to shelve a file into it. You have two ways
to transfer these changes to workspace X. The first option is to shelve the file in

a new changelist in workspace Y, then unshelve files from that new changelist in
workspace X. The other option is to submit the changes from workspace Y then, in
workspace X, you perform a get latest to receive Y's changes (to keep things tidy
you should also delete the shelved files from the original changelist).

If you are doing follow along, now is a good time to experiment with the
M various characteristics of shelve and unshelve. Although they appear
Q simple, shelving can lead to some very advanced usage scenarios. You
should plan to revisit shelving after we cover workspaces in Chapter 6,
Managing Workspaces and conflicts in Chapter 7, Dealing with Conflicts.

Managing shelved files

You can't submit a changelist that has a shelved file. If you want to submit the
unshelved files of a changelist with shelved files, you can delete the shelved files
or delete them as you unshelve them. You could also move the files that aren't
shelved to a new or existing changelist and submit that changelist. This technique
completes the submit and retains the shelved files in a changelist that others may
be familiar with.

Shelved files consume server resources. Treat shelving as a transient activity. Be sure
to delete when the shelved file activity is no longer of interest.

A workspace can have only one instance of a file open in any of the pending
changelists associated with it. However, the same file can be shelved in more than
one changelist associated with a workspace. Even with good changelist descriptions
this can lead to confusion if you want to submit a version of the file. Best practice is
to avoid this scenario.

Summary

Changelists are a fundamental tracking and organizational mechanism. Used
haphazardly, they will be a source of aggravation and errors. However, following
the basic best practice changelist techniques outlined in this chapter will make
development, test, production, and support more efficient and less error prone.

In the next chapter we'll look at using the file information tracked by the server to
answer questions common to development and support activities.

[76]

File Information

File information is the key to understanding the history of a repository, how a code
base or set of files has evolved, and what is happening to it now.

File information is exposed in many parts of the P4V interface. In this chapter, we
will cover how to make the most efficient use of the Perforce reporting commands to
examine the information associated with a file. More importantly, we'll explain how
to interpret this information to maximize the value it provides you.

In this chapter we will cover:

* Properties of files

* File versions and their relationship to changelists
* Finding files in the repository

* The many ways of referencing file versions

* Comparing different versions of files and folders

* Examining how file content has evolved over time

* Perforce file types and how they impact usage and workspaces

File properties
Every file has properties. Some of these properties relate to how files are represented

in your workspace. Some relate to the history of the file. Still others will impact how
Perforce can manage that file.

While various file properties are exposed in different parts of the P4V interface, the
Files tab in the view pane provides you with the maximum amount of detail with the
minimum effort.

File Information

The following screenshot shows a file selected in the tree panel along with the
information that would be presented in the Files tab:

EEE Depat ‘T':ﬁ Workspace @v N 2 Files [& Pending =H. &
|Q bruno_main M | Name Revision Date Modified Size Type it
Pl chworkibruno_main || B commandh #5/6 13/04/2013 09:1.., 1.0 KB C/C++ Header
4 [Jam B compilec #25/25 13/04/2013 09:1.., 17.7 KB C Source
4 [MAIN || B compileh #5/5 13/04/2013 09:1... 16KB C/C++ Header ™
4 d cre 4 L} 3
B Buid.com #8/8 <ted> Details Checked Qut By Preview
B Buildmpw #1/1 <text>

B cbt2l/1 <text> Workspace location: c:\work\bruno_main'JamMAIN\src\compile.c
B command.c#9/9 <text>

’ Depot location: f{depot{lam MAIN fsrc/compile.c
B command.h #6/6 <text>
B compile.c #25/25 <text> Revision: #250f 25
compileh #5/5 <text> Date modified: 13/04/2013 09:12:43
execemd.h #2/2 <text>
execunix.c #22/22 <text> File size: 17.7KB
execvms.c 77 <text> Type: C Source

expand.c #12/12 <text>
expand.h 22/2 <text>
filemac.c #2/2 <text> %

Perforce filetype: text

e R 1 e T e

The Files tab presentation has two primary sections. The upper section presents
information for the files in a folder using a tabular format. This provides a useful,
easy to use, and comparative presentation. The lower section provides information
specific to a single file selected in the upper tabular section. This provides you with
the ability to focus on additional details once you've identified files of interest using
the tabular upper section.

The tabular section presents a selected set of the information available for a file. As
you'll see shortly, the information selected is under your control.

The Details tab provides all of the available information, and shows in addition
the explicit mapping between the Workspace and Depot locations of the file. These
locations can be seen in various parts of the P4V interface.

The Checked Out By tab provides details about all of the workspaces that have a file
checked out. These are the full details. You will see summaries of this information in
the tree panel hover tips.

The Preview tab shows the contents of text files. This is particularly useful when
browsing repository files that are not currently present in your workspace.

[78]

Chapter 5

Customizing the tabular display

While the tabular section of the Files tab is useful, without order it is still just
a collection of data. P4V allows you to sort on any of the displayed columns. It
also allows you to select which columns are displayed to help you focus on
important factors.

You can reorder the columns by clicking on a column header, dragging it, and
dropping it in the position you desire. You can also select the column displayed
in the table by right-clicking on the header bar and then checking the columns
you want displayed, as shown in the following screenshot:

l=h Files D A Pending 2} History

Name Revizion I/\\"s Plmbn fn oliind Fimn
timestam... #3/3 Rle

timestam... £8/8 Workspace Location
search.h #2/2 Depot Location
search.c #6/6 7 ||| i

scanh il Revision Status

E scanc #15/18

rules.h 14,14 v Date Modified
rules.c #5/5 v Size

RELMOTES #77,77 v | Type

regeph - #A v Filetype

regexp.c #2/2) i

README £26/26 Dimensions

Porting #1/7 Format

Note the triangle indicator in the Name column header. This specifies that the
table entries are sorted based on the value in the Name column. A triangle
pointing upwards sorts in ascending order, a triangle pointing downwards
sorts in descending order.

M Sorting on either the Latest Changelist or Date Last Submitted
Q columns allows you to quickly identify more recently or least
recently changed files.

Explaining the # characters

The # character is the Perforce notation indicating the file revision. So foo. txt#3
indicates revision (or version) 3 of the file foo. txt. Using this notation saves a lot
of screen space and reduces visual clutter. It's also the versioning notation you'll
see in the log panel or which you would use on the command line.

[79]

File Information

But what about things like #5/5, #3/5, #0/5 or even #25 of 25? Not to worry, long
division and set theory are not involved. This is simply a notation that indicates

the version of the file in your workspace and the maximum number of file versions
the server knows about. So #5/5 would indicate that you have version 5 of the file
in your workspace and that is the most up-to-date version the server knows about.
Likewise, #3/5 would indicate that you have version 3 of the file in your workspace,
yet the server knows about two more recent versions: 4 and 5. While #0/5 indicates
that you have no version of the file in your workspace. Finally, the #25 of 25
notation has replaced the "/" with "of" to increase readability.

0 is the workspace version of deleted files and files marked for add,
s but not yet submitted.

Showing deleted files

The deleted files are visible in the depot tree only if you turn on the filter to show
them, as we see in the following screenshot:

EEE Depot EEE Waorkspace 1:@, A Pending D
[Q bruno_jam_main v . Show Deleted Depot Files

B compile.c #26/26 <text> Hide Deleted Depot Files
B compileh #5/5 <text=

B eeccmd.h #2/2 <text>
execmac.c 072 <text> Tree Restricted to Workspace View

=] ecnt.c #0/10 <text>
E EXECMAC.C

v Entire Depot Tree

v Mo Folder Filter

E * deleted at head revision
E
{ Type: C Source

The filter Show Deleted Depot Files has been checked. As a result, we can see a file
execmac.c where the latest revision is 2, and the tooltip (as well as the icon) shows us
that it is deleted at head revision. As we will discuss later in this chapter, the head
revision is the latest revision in the repository.

This filter is not available if you have selected the Workspace tab since deleted files
do not exist locally.

[80]

Chapter 5

Type and filetype

P4V understands two separate type concepts relating to files. Knowing the difference
and how they apply will come in handy.

One concept is known as type and refers to an association based on the file name
extension. This is managed by the operating system on the local workstation. For
example, Windows might associate the . docx extension with the Microsoft Word
application. The server maintains no information about type. By default, this
relationship is used by P4V to select the tool to use when it opens a file for you.
For example, if you ask P4V to open a file called foo.html and you have a web
development tool installed, it may launch that tool. If you don't have such a tool,
then it might launch a browser. Not to worry, you can override this behavior. We'll
cover this and other productivity topics in Chapter 10, The P4V User Experience.

The other concept is known as filetype, and refers to the information Perforce
uses to define workspace population characteristic, control P4V processing, and
define server storage parameters. The server maintains filetype information on a
per-revision basis. When a file is first added it is assigned a filetype. That filetype
persists until it is explicitly changed. Most of the time, you will not need to worry
about specifying a particular filetype. P4V uses several techniques to assure that
the appropriate filetype is established when a file is first added (including defaults
configured by your administrator). Of course you can always explicitly specify a
filetype, but that is for advanced users.

The two basic filetypes are text and binary. Perforce knows that text files have line
endings. When it populates your workspace with a text file it automatically adapts
the line endings within the file to the encoding appropriate for your operating
system. It is also understood that text files can be compared in ways that humans can
understand. On the other hand, binary files are treated as a collection of bytes. They
receive no special processing when populating your workspace, and it is understood
that they can't usually be compared in ways that humans would understand.

Filetype can also specify other attributes of files, such as making files
M always writable in workspaces. They can also set the executable bit
Q on Linux/Unix for shell scripts or executable binaries. Full details on
filetypes are documented at the end of the Command Reference Guide
(See Appendix B, Command Line for how to access this).

[81]

File Information

Understanding file versions and history

In Chapter 4, Changelists, we saw how to submit a modification to a file as a new
revision, and how submitted changelists were numbered. In this chapter, we are
going to first look at how to get older revisions of files into our workspace and how
to understand the history of a file or a set of files. That includes understanding how
file revisions relate to changelists, and the state of the repository as of a particular
date and time.

We often need to have a look at older versions of files. When looking at a project, you
may need to reproduce an older release, or understand a particular baseline which is
a set of files or a complete folder or tree.

Getting different revisions of files

On the right-click menu for a file or folder there is a Get Revision... option, as
shown in the following screenshot:

expand.h #2/2 <text>

Open
filerac.c 22/2 <text= i
Open With »
filent.c 218/18 <text> pen T
fileosd.c #3/3 <text> Get Revision...
fflesys-.h _Jr3._f3 texts Remove from Workspace
fileuniz.c #18/18 <text>

Clicking on the preceding option brings up the following dialog;:

= 5
21 Get Revision &J
Get or replace the following files/folders:
[#] /fdepot/lam/MAIN/src Add...
Remove

) Getlatest revision

@ Spedify revision using: £} Changelist «

Options:
[Force Operation {replace file even if you already have the revision specified)
[only get revisions for files listed in changelist

Remove files from workspace if they are not in labe

Preview IGetRevisionJ I Cancel I

Various actions are possible with this dialog. For now, we will focus on choosing
between Get latest revision and Specify revision using:.

[82]

Chapter 5

Get latest revision updates the workspace files with the highest revision of the files
known to the server. This is also known as getting or syncing to the head revision.
The head version is a special version with its own reference #head. You will see
#head in the log pane and in various error and status reports.

Specify revision using: updates the workspace files with either explicit revisions or
revisions that are implied from a context such as date/time, label, or changelist.

o Don't worry that you don't know what all of the Specify revision
~ using: choices are or what they do. Take a moment to scan through
Q the choices. Note the Browse... results. They are designed to reduce
typing errors to get you the specific revision you're interested in.

How file revisions relate to changelists

The following screenshot shows the history of £ileos2.c using the Revision Graph
tool, which is available on the right-click menu for the currently selected file within
the tree pane (right-click, then select Revision Graph). Note that for clarity we

have turned off various panes within the tool to show the minimum necessary, and
included the Legend option to explain the shapes:

| Revision Graph - //depot/Jam/MAIN/src/fileos2.c (1666, bmnom

File Edit View Highlight Tools Window Help
- = -~ na {_

220 279 294
| Changlist 234 | Edit

I depotiJamMaTi)src fileos2.c

w 1]z | R,

This shows us the association between revisions of a file and the changelists in which
those revisions were submitted to the repository. In this example, revision 3 was part
of changelist 294, and revision 2 was part of changelist 279. The file was first created
and thus added to the repository as revision 1 in changelist 220.

It is fairly clear that a Get latest would give us revision 3 of the file in our workspace.
Similarly, if we Specify revision using: changelist 279 we would get revision 2 of
the file.

[83]

File Information

So what would you expect if we chose changelist 280? Doing a get which specifies
a changelist gives us the state of the repository at the point of that changelist. In this
case, it will give us revision 2. Revision 2 is the latest revision up to or including the
specified changelist. In fact for this file, getting any changelist between 279 and 293
inclusive, will give us revision 2.

What would we expect if you do a get which specifies changelist 100? The preceding
history shows us that this file did not exist in the repository as of that changelist.
Therefore, a get of that changelist would remove the file from our workspace because
it didn't exist as of that changelist. Using Perforce terminology, we would have
revision 0, or the revision which does not exist, in our workspace.

M Removing version 0 files from a workspace is designed to avoid
Q the inevitable user errors that would occur if you had to delete
the file yourself.

Potentially surprising get revision results!

Following on from the preceding examples, what would you expect if you tried to
get changelist 9999999 or some equally large number, for which a changelist doesn't
yet exist? Hopefully, it is not a big surprise that we just get the latest revision of

the file. In the preceding case, revision 3. As we saw previously, even though the
changelist doesn't directly contain this file, the file still associates revisions with
every changelist, even those that don't yet exist.

1
‘\Q This large changelist technique is actually just an obscure version

of get latest. Obscure is not usually a good engineering practice.

But watch out! What will happen if we try to get revision 5 of this file? For this file,
revision 5 does not exist. Therefore the get request treats this as if you requested
revision 0 so it will remove the file from the workspace.

R Be very careful getting more than one file as of a specific version
~ number. When more than one file is involved, this gets that
Q version of every file that has that many versions or more and
removes (#0) the rest. This is usually not what you want.

[84]

Chapter 5

Changelists and folders

People don't always realize that the Revision Graph... right-click option can also
apply to folders. The folder view shows all of the files at one time, as seen in the
following screenshot:

| Revision Graph - //depot/www/dev/* (1666, bruna) -

File Edit View Highlight Tools Window Help
@y Q 2 &
364 366 369 (G 383 386 389 -
[Changelist 370 | 2
Jidepot e deyfindes, html
a A
idepot e dew Jam, html

1
Iidepat v devy Jambase. il
G (200 3
Hidepat v dew Jamfile. html

1

idepot e dew) Jamlang]

In the preceding screenshot, the cursor is hovering over changelist 370, and the 3
files in the folder that had new versions created by that changelist are highlighted.

What would we get if we synced the entire folder to changelist 370? By default,

we would get the files in that particular changelist and the version for every other
file in the folder as of that changelist. In the preceding screenshot that would be
version 3 of Jamfile.html, which was submitted in changelist 369. But, index.
html at version 0 would be removed from the workspace because it didn't exist until
changelist 383.

Therefore, we can see that a changelist can be used in two ways:

* To refer to the set of files submitted in that changelist
* To refer to the state of the entire repository (or any part of it such as a folder),
up to and including that changelist

When waxing philosophical, we sometimes refer to this as the particle nature versus
the wave nature of changelists!

[85]

File Information

Get revision options

We haven't yet covered the options in the Get Revision... dialog shown in the
following screenshot. They provide functionality that can be difficult to achieve
using other techniques.

[2| Get Revision [ér
Get or replace the following files/folders:
= sd epot/lam/MAIN/src Add...
1 Get latest revision
@ Spedfy revision using: 400
Options:

[Force Operation (replace file even if you already have the revision specified)

[only get revisions for files listed in changelist

Remove files from workspace if

Preview: (46)

[fdepot/JamMAIN/fsrcfscan.c#15 -
[fdepaot/JamMAIN/srcfscan.h#11

[fdepot{JamMAIN/srcfsearch. c4

{/depot{Jam/MAIN src/timestamp.c#6

[/depot/Iam/MAIN srcfyyacc#3 -

[Preview ”Hide Preview] ’GetRevision][Cancel]

The preceding screenshot shows the output on clicking Preview. We see what the
results would be, without actually affecting anything in our workspace. This can
help avoid surprises and perhaps prevent unnecessary mistakes.

The Force Operation (replace file even if you already have the revision specified)
checkbox, if checked, will update the files in our workspace to the specified revisions,
even if P4V thinks we already have those revisions. You need to force operations
when files have been removed from the workspace without coordinating that
removal with Perforce.

Following on from the discussion in the previous section about a Get Revision,
always getting files up to or including the changelist, we can modify this behavior
by checking Only get revisions for files listed in changelist. With this option you
update your workspace with only the file versions created by that changelist. If the
following changelist is discovered to cause a problem, then it can be very useful to
get a workspace into the state immediately before that changelist.

[86]

Chapter 5

Referencing a specific date and/or time

The Get Revision dialog allows us to specify a date and time, as shown in the
following screenshot:

@ Spedify revision using: I;'L-'-'_,Datefl'lme v | 13/04/2013 14:19:45 |5

Every submitted changelist has an associated date and time of submission. The value
specified in this dialog will give the same results as if you were to do a get specifying
the changelist that was submitted precisely at or most closely before the specified

date and time.

Most people prefer to reference using changelist numbers rather
than date and time. Changelists are unique and unambiguous.
More than one changelist may be submitted within the one second
granularity of date and time tracking. And communicating date
and time across time zones is error prone at best.

a1

Q

Referencing a label

As stated in the preceding section, we can also do a get relative to a particular label:

@ Spedfy revision using: " Label -

You can type the name of the label in directly. However, most people prefer to
select an appropriate label from the choices presented when you click on the

Browse... button.

2] Select Label =
B Fiter: none applied Tmatches 7 7 @
Label Last accessed Owner i
S‘\'> jam-11.0 04,/02/200519:2... earl L
¥ jam-2.0.1 11/10/2005 21:0... earl i
S jam-2.05 18/09/2006 22:2... earl N

5‘\'> jam-2.1.0 04,/02/20051%:2... earl
‘\'> jam-21.0-mac-e.. 11/10/2005 21:0... earl -
Details | Files

Label:

Description:

Pindinme:

jam-2.0.1

Date modified: 10/01/1999 22:04:47

Last accessed: 11/10/2005 21:05:53

Owner: earl

Created by earl,

»

l..m

[87]

File Information

Most Perforce users don't use labels. They use changelists, the latest versions of
branches or streams as we will cover in Chapter 9, Perforce Streams and Chapter 10,
The P4V User Experience.

Files in another workspace

You can also reference file versions in another workspace:

@ Specify revision using: n,‘—:I Workspace - Browse...

As previously stated, we can type the workspace name in the field or browse to
select a workspace.

This feature is most useful when you're trying to resolve scenarios where it works/
fails in my workspace. Most people use it with Preview so that they don't impact
their current workspace. However, it does require that both workspaces reference
the same depot files. This is only likely to be true for continuous build and code
review environments.

Depot paths

The path of currently selected files or folders is shown in the address bar at the top
of the screen, as per the following screenshot:

{fdepot{JamMAIN fsrc/Build.com
EIJ:E Depot ‘T':Z Workspace @. \If:
|IE,—| bruno_main hd
4 |2 depot -
4 [Jam
4] MAIN

4 3 src L
B Build.com #8/8 <text> 7

B Buildmpw #1/1 <text>

You can turn off the address bar by right-clicking on it and unchecking the option.

There is also a shortcut key (Ctrl + C) which copies the full path of the currently
selected file or folder to the clipboard. This can be useful for documentation
purposes. Depending on whether you have the depot or workspace tab showing,
you might get:

//depot/Jam/MAIN/src/Build.com

[88]

Chapter 5

Or, depending on your workspace definition:

c:\work\bruno main\Jam\MAIN\src\Build.com

Finding files — an introduction to
wildcards

It is easy to find files with certain characters in their names by going to the Search
| Find File... menu option. This will give you the Find File tab, as shown in the
following screenshot:

EEE Depot ‘E: Waorkspace @v \& 2 Files ﬁ Pending)-) Find File E]
|'II§| bruno_main v| W Searchin: no matches &) &
4 2 depot
4 3 Jam /{depot{Jam/MAIN/... - G,
 EE of t folowing:
- REL21 “eme matehes d -
- & REL2.2 contains v - ||+
= Jar_’ngraph Submission date or changelist:
- & Misc
- O Talkhouse | 4} Changelist ~ | |is M M
> J -
& Jaguar Indude deleted depot files Find
© L[E) specs
MName In Folder Revision Date Modified Size

In the preceding screenshot, we had a particular folder selected, and that is copied to
the Search in: field. Sharp eyed readers will have noticed that the full path contains
some extra characters: //depot/Jam/MAIN/ In this instance, P4V has added the
... wildcard to the directory path (this wildcard is also known as an ellipsis).

This wildcard means that all subfolders should be included in the search. We will
look at more wildcard options in the next section of this chapter.

M You can also drag-and-drop directory paths from the tree pane on
Q the left-hand side to the Search in field and the contents will be
appropriately updated.

[89]

File Information

If we enter, for example, unix into the Names matches any of the following field
and click on Find, we might get results as shown in the following screenshot:

3 matches)& ‘;-! 5
/fdepot/JamMAIN/... + G,

W Searchin: [fdepot/Jam/MAIN/... and Mam

Mame matches any of the following:

contains T [unix -

Submission date or changelist:

’ &) Changelist +] [is - -
[] tndude deleted depot files
Name InFolder Revision Date Modified Size
B execuninc /fdepot/lam/MAIN/src #24/22 13/04/2013 09:1...

B fileunix.c //depot/lam/MAIN/src #18/18 13/04/2013 09:1...

B pathunice /fdepot/lam/MAIN/src #6/6 13/04/2013 09:1...

In this particular example, we can see that there are three files in that folder (or in
any subfolders) containing unix in their filename.

By default, the results do not include any files where the latest revision is marked as
deleted. You can change this by checking Include deleted depot files.

Note that it is possible to filter the results further using the Submission date or
changelist option:, for example:

Submission date or changelist:

[T pate I is on > | 13/04/2013 xR

is before

[Include deleted of® 27 °r before
is on or after

Mame Injis between Revision Date Modified Size

When working with dates you can search for particular periods of time, as seen here:

Submission date or changelist:

[pate v |[sbetween | orpyziz @ [\2nd 31/03/2013 D -

< 1 <
7] Include deleted depot fles -u_n Mon Tue Wed Thu Fri Sat d
20 2 3 4+ s
Mame In Folder = & 7 8 9 w n 12 Size

B execunicec //depot/Jam/MAIN/: 13 14 15 16 17 18 19
@ fileunix.c //depot/lam/MAIN/s 20 21 22 23 24 25 26
B pathunicc //depot/lam/MAIN/G 27 28 29 30 31

3 4 5 6 7

oo
+]

[90]

Chapter 5

[Q We invite you to explore this powerful feature on your own!]

Showing history
The history of both files and folders can be seen via the History tab. You can go to
the View | History menu option or click on the appropriate toolbar icon.

This tab can show the history for the currently selected file or folder in the tree pane.
You can right-click on a file in the tree pane and select File History. If you have a
folder selected the menu option is Folder History.

File history

The history for a file might be:

TS Depot BE workspace B, % i Files A Pending 2 History [3. 2. &
|Q bruno main « | | Revision Changelist Date Submitted Submitted By Filetype
- depot I {/depot/Jam/MAIN/src/Build.com
Jﬁ ‘j FE &35 85575013 1653350 Brane tod
" :
- ﬁamMAIN L a7 620 37173001 06:15:50 " eari text
s v 6 410 21/12/2000 00:54:27 earl text
sre i 461
i | 33 B Bmbem o
Build.mpw #1/1 <text> : 3 81 0R/12/1000 181727 ear| e
et £/ <ted> “ 2 36 11"'01!1999 08‘35‘38 ear| ::
command.c £/3 <ted> “ 1 1 23!'09!’1998 22:19:47 ear|
command.h 26/6 «text> 4 il e ear text
B comnile £ 23525 ctevt

In this example, we can see the basic history information for the selected file. For
each revision we see information such as Changelist and Date Submitted. As
previously seen with the File Properties tab, by right-clicking the column headers
you can select other columns to be displayed.

When this tab is displayed, clicking to select another file in the tree pane will cause
the tab to be updated dynamically.

The icon for revision 8 in the preceding screenshot has a highlight around it, this
shows that this revision is the one currently present in the workspace.

[91]

File Information

The History tab also has a details tab which can be shown if you wish, by dragging
the splitter bar upwards with the mouse, as shown here:

when a rule is defined to be empty.

& Files A Pending 2 History [[}gv H. &
Revision Changelist Date Submitted Submitted By Filetype
‘ Bl //depot/lam/MAIN/src/compile.h
5 619 12/11/2001 09:18:12 earl text
4 4 277 02/04/2000 06:51:56 earl text
4 3 272 19/03/2000 06:38:35 earl text
4 2 30 10/01/1999 08:51:47 earl text
#1 1 23/09/1998 22:19:47 earl text

4 m

Details Integrations Labels Preview

Revision: /{depot/Iam/MAINsrc/compile.h#5

Date submitted: 12/11/2001 09:18:12 Changelist: 615

Submitted by: earl Perforce fletype: text

Warkspace: earl-dev-guava File size: 16KB

Action: edit

Description: Fix jam's handling of empty £ blocks so that it can recogrise

Folder history

For a folder, the History tab shows all changelists that have affected files in that
folder or any of its subfolders. This acts in the same way for a depot (which is like
a top level folder, as discussed in Chapter 1, Getting Started with Perforce). An example

is shown here:

A Pending 2 History [
Revisiorl\ (Change Date Submitted
@ 12111 31/07/2013 22:3...
[12110 31/07/2013 22:3..,
[12108 31/07/2013 22:2..,
(2 358 24/12/2002 01:0...
@ 357 19/12/2002 20:5...
[356 15/12/2002 19:0...
[355 17/11/2002 19:1..,
(2 354 15/11/2002 0L:1..,

Submitted By Description

bruno
bruno
bruno
dai
earl
gale
earl
raj

Mew feature-12109
Urgent bug fix-12110

Basic actions edit, add & delete

Upgrade to latest metrowerks on Beos - the L.,
Put in fix for jam's NT handle leak.

Fix URL in & jam doc
Radstone's lynx port.
Meore jam twiddling, for MT.

m

Notice that there is no column for revisions as they only apply to files, not to folders.

If you drag-and-drop a column header onto another one (left or right), you can
change the order they are displayed in.

[92]

Chapter 5

Showing differences between file

revisions

The easiest way to compare two revisions of a file is to drag-and-drop one revision
onto another from the History tab for a file, as shown here:

L Files A Pending & History &2_ H. 8
Revision Changelist Date Submitted Submitted By Filetype =
4 [F //depot/lam/MAIN/src/RELNOTES

B 77 705 L\‘ﬁ 19/12/2001 20:57:56 earl text =
4 78 624 12/11/2001 21:56:01 earl text
j 12/11/2001 09:19:50
(4 74 601 28/10/2001 19:19:57 gale text
|4 73 504 23/10/2001 17:12:35 earl text

In the preceding example, I have clicked on revision 75 of the file RELNOTES and am

about to drop it on to revision 77.

If I complete the drop, then P4V runs the diff tool P4Merge on those 2 revisions.

The P4V diff tool — P4Merge

This is the built-in diff tool which is installed with P4V. Following on from the
previous section we can see an example diff:

(ﬁ, RELNOTES#75 and RELNOTES#77 - Perforce P4Merge

= | B |

File Edit View Search Help

@

Tab spacing: 4 | Encoding: System

BEH e 9a
7 diffs (Ignore line ending differences)

@ J/depot/lam MAIN src/RELNOTES £75

PR EE.

1. Release info:

Jam/MR 2.2
October 22,
VERSION 2.2

1997

@ //depot/lam MAIN/src/RELNOTES #77 hiis
1. Release info:

Jam/MR 2.2
2z

Cctober 22,
VERSION 2.2
PATCHLEVEL 1

1997

PATCHLEVEL 0

2. Compatibility
Jam/MR 2.2
in the jam.2.l.plus.tar ball.

The m/ME 2.2 Jlancumace i

is a roll-up of 'Jam - make(l) redux' releas|
Most of the changes described below were available befo)

sperset of the

2.1 lanon

Bug fixes since 2.2 patchlewvel 0

The NT handle leak in execunix.c has been
Gurusamy Sarathy. (Patchlewvel 1).
2. Compatibilicy

Jam/MR 2.2 is a roll-up of "Jam - make (1)
Most of the changes deacribed below were

4| I

*

The title bar shows which revisions are being compared (#75 and #77 in this case).

[93]

File Information

In this example, we can see lines and blocks of text which have been changed,
including particular parts of those lines which are highlighted in grey.

The summary is shown in the status bar at the top: 7 diffs.

Navigating between diffs

You can scroll through the two files, or click on the arrow icons in the toolbar to go to
the next or previous diff, as shown:

File Edit View Search Help
SHd YYD e ARy PR EE %
7 diffs (Ignare line ending differences) | Tab spaﬂnﬂ.'_‘I_EnmdinT System
| Next diff (Ctrl+2)

You can also find the Next Diff and Previous Diff options in the Search menu

More P4Merge options

Navigate to the Edit | Preferences menu option and consult the help information
for more details.

We recommend you explore the tool further on your own. In our experience it is
powerful and capable. However, personal preference may lead you to want to use
a different tool, this can be easily configured by going to P4V's Edit | Preferences |
Diff menu option.

Showing folder/directory differences

In a similar way as for files, drag-and-drop of one changelist on top of another in
the History tab will show us a folder diff, as shown:

i3 Fles | A Pendng | (@ History 3 [
Revision‘((:hange Date Submitted Submitted By Description g
& 830 18/03/2013 16:23:45 bruno Pending change 828
(7 829 18/03/2013 16:23:34 brunc Pending change 829 E
@ 825 16/03/2013 09:17:57 bruno Example of basic actions
[824 16/03/2013 09:17:19 brunc Fixed path path problem
(24 709 I:ﬁ 24/12/2001 01:08:32 dai Upgrade to latest metrowerks on Beos -- ..,
_d 705 19/12/2001 20:57:56 earl Put in fix for jam's NT handle leak.
(23 694 15/12/2001 19:08:37 gale Fix URL in a jam doc

[94]

Chapter 5

In the preceding example, I clicked on changelist 830 and am about to drop it onto
changelist 709. Completing the drop action causes P4V to run the Folder Diff tool,
which performs a recursive diff on all files in the folder and any sub-folders.

The folder diff tool — recursive folder
differences

This is a very powerful tool which works well and performs quickly even for folders
with tens of thousands of files in them.

Following on from the previous section we can see an example diff:

2! Folder Diff (bruno_main, 1666, brunc) l‘:' = éw
' . Diff: 0of 3 = = @ Unigue files: 2 [] File differences: 1
Path: [/depot/Jam/MAIN/fsrc/...(@changelist 709) Unigue files: 1 Path: //depot/lam/MAIN/srcf...(@changelist 830) Unigue files: 1

T T S

| Build.com#7 |« Build.com#3

\# Buid.mpw#1 \# Build.mpw#1

........ _ﬁcommandc:& B coun _

|v] command.h#5 |4 command.c#9

| compile.c#25 &l command.h#6

& compile.h#5 ¢ compile.c#25

8 execcmd.h#2 | compile.h#5

|# execmac.c#1 4 execand.h#2

Qoo _ﬁexecunlxc:ll ...
8 execvms.c#7 gl execvms.c#7

¥ expand.c#12 | expand.c¥12

o expand.h#x2 ¢ expand.h#2

The two Path: options show which folders are being compared. In this case, the same
folder is being compared against itself, but at two different points in time. As this
statement implies, it is also possible to compare two different folders (we will cover
this later in the chapter).

The summary information at the top-right gives us an overall idea of how many files
are different. In this example, only one file has different contents.

However, there are two unique files which means they have either been added or
deleted. On the right-hand side c. txt#1 (highlighted) has been added between
changelist 709 and 830. The file execmac. c#1 on the left-hand side has been deleted
between the changelists.

[95]

File Information

Filtering the folder diff view

We can filter the view to only show the files that are actually different. This can be
very useful when there are lots of files which are the same and we want to focus
only on the differences.

2! Folder Diff (bruno_main, 1666, brunc) [E=YEER =
-,=-_3] ¥ . Dif:20f3 @ @ = @ [unigue files: 2 [] File differences: 1
Paﬁ'1:| Show identical file pairs (Alt+Up) it 709) Unigue files: 1 Path: /fdepot/lam/MAIN/src/...(Echangelist 830) Unigue files: 1
4 [/fdepot/lam/MAIN/src 4) ffdepot/Iam/MAIN/src
@ oozl
|# execmac.c#1 |4 command.h#6

As shown in the screenshot, the toolbar icon in the top left condenses the view and
removes identical file pairs.

Explore the other toolbar icons yourself or consult the help.

Showing individual file diffs

If a row is highlighted (in blue) then it means the file contents are different. In this
case, there will be a Diff Row option on the right-click menu:

| compile.c#25 Select Row
[compile.h#5 -
@ execcmd.hz2 P
Open With 4

lﬂ execmac.c¥1

@ exeauni.cx21 Get this Revision

| execvms.c#7

|4 expand.c#12 | (3 File History Ctrl+T

g :rpand-hﬂ Revision Graph Ctrl+ Shift+R
emac.c¥2

@ flent.c#18 Time-lapse View Ctrl+5Shift+T

@ fleos2.c#3 &4 Diff Against... Ctrl+Shift+D

| filesys.h#3 Diff Row

[fileunix.c18 View Changelist

[3 fleume =43

Clicking that option will run P4Merge on the two file versions.

Q Double-clicking the row is a shortcut action to perform the same diff.

[96]

Chapter 5

Other options for comparing files or
folders

We have seen the basic use of drag-and-drop for comparing files or folders, primarily
from the History tab. It is worth noting that you can change drag-and-drop behavior
by going to Edit | Preferences | Behavior | Enable diff comparisons on file-to-file
drag and drop.

There are a number of other useful options for comparisons which we will discuss in
this section.

Showing local changes for edited files

In Chapter 3, Basic Functions, we saw the Diff Against Have Revision option (with
shortcut Ctrl + D). This option makes more sense now that we know that the have
revisions (or #have) is the revision currently synced to our workspace. So we are
comparing any local changes we have made with the revision we last synced to.
Note that this is not necessarily the same as the latest (or #head revision), since
someone might have checked in a new revision since we checked our revision out.

Ctrl + D as a useful shortcut for diffing

The Ctrl + D shortcut is useful in other situations than just for diffing edited files.
As we can see in the following screenshot, on the right-click menu for the History
tab, Ctrl + D is a shortcut for Diff Against Previous Revision:

12 Files A Pending 2 History [
Revision Changelist Date Submitted Submitted By
4 /{depot/lam/MAIN/src/filent.c
18 Qpen
FRY _
4 16 Open With 4
o b Get this Revision
[14
|« 13 Revision Graph Ctrl+Shift+ R
4 12 Time-lapse View Ctrl+ShiftsT
1
L Diff Against Previcus Revision Ctrl+D
9 10 0
v
99 % Diff Against Workspace File
& 8 &3 Diff Against... Ctrl+Shift+D
7

The same shortcut key also works if you click on a revision in Revision Graph.

[97]

File Information

Diff against for files

On several right-click menus, including the screenshot in the previous section, you
can see Diff Against... as an option. This will show you the following dialog:

21 Diff = &S|
1st Path: /fdepotflam/MAIM/srcfcommand.c Browse...

Workspace version on local disk
@) Latest revision (#9)
Have revision (#3 - ast revision retrieved from depot)

Specify revision

[patefmime + | 15/04/2013 23:00:02 | %

2nd Path: [/depot/lamMAINsrc/command.c Browse...

Workspace version on local disk
@ Latest revision (#9)
Have revision (#9 - last revision retrieved from depot)

Spedify revision

[T patefTime v | 16/04/2013 23:00:02 | %
Wl Revision

&) Changelist Diff] | Cancel
=0 Datef

o Label
|5 workspace

As you can see in this screenshot, there are many powerful options for comparing
the same file against itself. All of the various ways of designating a revision can
be compared against other revisions. For example, you can compare the #head
(latest) revision of a file against the revision valid at a particular date and time.
You could also compare the file at one date against the version valid at another
date, for example, the beginning and end of a month.

Behind the scenes, P4V translates each revision specifier such as date/time or
label or workspace, into a valid revision and compares one revision against
another. Obviously, if you end up comparing the same revision against itself,
there will be no differences to see and you will see a warning message instead.

[98]

Chapter 5

Using Diff against for different files

In the following example I used Ctrl + click to select two different files, and can then
select Diff Against... on the right-click menu:

command.c #3/9 <text>
command.h #6/5 <text>
compile.c #25/25 <text>
compile.h #5/5 <text>
execcmd.h #2/2 <text>

o Check Out Ctrl+E
Check Qut and Open

A Mark for Delete

gy Rl g R R g v e

execuninc #22/22 <text> Revision Graph Ctrl+Shift+R
execvms.c #1/7 <text> Time-lapse View Ctrl+ Shift+T
expand.c #12/12 <text> "3 Diff Selected

expandh 82/2 <text> | 0 O O0ECE

filemac.c £2/2 <text> Diff Against Have Revision Ctrl+D
filent.c #18/18 <text> &4 Diff Against... [:\? Chrl+Shift+D

e

In this instance, the two files will be put in the 1st Path: and 2nd Path: fields for
the dialog in the previous screenshot. All of the other options remain the same.

Diff against for folders

The same Diff Against... action is on the right-click menu for folders. In a similar
way as for files, this allows you to compare the same folder against itself at a
different point in time. Thus you could see what happened in the month of March.

Equally, we can Ctrl + click on two folders and compare them from the right-click
menu (or the standard shortcut key).

P4V time-lapse view

The Time-lapse View tool is available on the right-click menu for files.

It is a bit like a diff on steroids! It allows you to see how a file has evolved since it
was first added to the repository.

[99]

File Information

We encourage you to play with this tool and work out how it will best help you to
understand how a file has changed over time.

[5
21 Time-lapse View - //depot/Jam/MAIN/src/README (1666, brunc) [EEE
e Mode: Contentrange: |25 = |to 26 [Scale: [& i | &'2 % }) »
‘\ T 1 1 T T 9
2 4 7 9 2 4 7 g5 2 2 22 2 24 = 26
22 1| Jam/MR (formerly "jam - make(l) redux") Il
6 : £
3 FH\ |4
22 4 +% Copyright 1993, 1997 Christopher Seiwald.
6 5 \+/
6
22 7 Thi=z i= Release 2.2 of Jam/MR, a make-like program.
6 8
] License is hereby granted to use this software and distribu
10 freely, as long as this copyright notice is retained and mc
11 are clearly marked.
4 12
6 13 ALL WARRANTIES ARE HEREBY DISCLATMED.
1 14
1 ... 15 FEATURES
16
22 17 - Jam/MR i= a make(l) replacement that makes building =sin
8 18 simple and building complicated things manageable. -
4 | i | 3
N 4

Every line in the file is shown (line numbers are displayed here, they can be toggled
off) and the boxes on the left-hand side show which revision was the last one to
affect that line or block of lines. In this example, there are 26 revisions, but the first
line was last modified as part of revision 22 (the figure on the left-hand side of the
line). The block consisting of lines 2 and 3 was last changed in revision 6.

In the preceding screenshot, Mode: Single revision and Scale: Revisions show us
everything in terms of revisions. We can change these options, for example:

21 Time-lapse View - //depot/Jam/MAIN/src/README (1666, brunc) [E=REER
e

L Mode: Contentrange: | 12/11/2001 |+ |to 12/11/2001 (% Scale: & | E »

12/11/2001
23/10/2001 i 1 Jam/MR (formerly "jam - make (1) redux") i
h 08/02/1999 i 2 =
! 3 F+\
23/10/2001 E 4 +\ Copyright 1993, 19397 Christopher Seiwald.
08/02/1999 i £ \+/

[100]

Chapter 5

We have now changed the scale to Dates, and can see in the toolbar how the file
has evolved over time (rather than over revisions as per the previous screenshot).
Alternatively, we can set the scale to Changelists and colour the text (in green):

21 Time-lapse View - //depat/Jam/MAIN/src/README (1666, bruno) [E=EE
L% Mode: Contentrange: [621 |+ to 621 [2] Scale: [Changelists +| & |]! §E|=’é [},—2 ‘% »
Least recent . Most recent
‘ | Show aging of text
T T T T T I T L T T T T T I I T T T T T 1 T I I T
1 41 46 47 75 76 80 85 97 100 106 122 123 128 136 140 144 224 253 255 334 595 597 598 €0 621

| P L =
76 2 |E|

3 FEAY | 4
e 4 |
76 5 \+/
{ 6
76 8
] License i=s hereby granted to use this software and distrik i
10 freely, as long a=s this copyright notice is retained and n
11 are clearly marked.
47 ! 12

The tool now has the toolbar icon toggled to Show aging of text. The more recent
blocks of text are colored in a darker shade of green than the older ones, it can
almost start to look psychedelic! How much you like this view depends on your own
personal tastes.

Play around with some of the other modes and toolbar icons and find out which
options you prefer.

\ Some people swear by the Time-lapse View, and others seldom
~ go near it, see how well it works for you. In our experience it can
Q be incredibly useful at times, even if we tend to use ordinary diffs
between two revisions most of the time.

Summary

This chapter provided in-depth coverage of some key concepts. Once you grasp
these concepts, you can really start to appreciate the power of the reporting options
available to you. The ability of Perforce to show comparisons between a folder tree
that contains a thousand or more files can be hugely valuable. Precision file diffs
and the time-lapse view make the analysis of changes a straightforward task that
would be hard to accomplish using other methods.

In the next chapter, we'll look at modifying, creating, or otherwise managing
your workspaces.

[101]

Managing Workspaces

In the Perforce model, you don't directly access or modify files in the server
repository. Instead, client programs work with copies of repository files in local
storage areas called workspaces. This chapter is about establishing and maintaining
the relationship between server copies of files and workspace copies of those files.

Used properly, workspaces can save you hours of time and eliminate tedious and
error prone workspace population tasks. Used improperly, workspaces will add to
your workload and potentially impact overall server performance. Not to worry,
workspace best practices are easy to apply once you know them.

In this chapter we will cover:

* The functions that workspaces enable

* Managing workspaces

* Working with workspace specifications

* Exchanging file content between clients and the server
* Workspace features for reducing your workload

* Workspace best practices

What does workspace mean?

The word workspace has several meanings in Perforce. The appropriate meaning
is almost always implied by the usage context. Even then, most people are not very
specific. They just say workspace to cover a range of meanings.

That won't do for this chapter, we need to be explicit about context and usage. There
are some important points that are easy to miss if you aren't explicit. But don't worry,
once you've seen the details, they'll quickly become second nature.

Managing Workspaces

The concepts implied by the term workspace are fairly consistent
within the SCM communities of today. However, this has not always
\l been the case. Perforce originally used the word client to differentiate
~ its explicit workspace definitions from the implicit definitions of other
Q tools. Because of legacy compatibility, you'll often see the word client
instead of workspace in error messages and the command output in
the log pane. We often use the term client workspace in our training
sessions to reinforce the linkage between the terms.

Actions within a workspace context

Some actions are independent of any current workspace context, such as some of
the reporting commands. However, various actions only have meaning within the
context of a specific workspace: the current workspace. These actions include get
latest, edit, mark for add or delete, and submit, indeed any action which potentially
modifies a file.

When modifying files, we accessed and modified local copies within a workspace.
When we were done with our activities and submitted our changes, the server
updated its repository files with the contents of the files from our workspace.

Among other things, a workspace includes a mapping between files in the repository
to files in our local file system as shown in the following screenshot:

Jfdepot/JamMAIN fsrc/Build. com c:work'\bruno_jam_main'depot\JamMAIN\src\Build. com
EEE Depot "EE Waorkspace QEL EEE Depot L_EE Workspace l@v
|Q bruno_jam_main |Q bruna_jam_main
4 [depot | chwork\brune_jam_main
4 ﬁ Jam PR depot
4 O MAIN 4 [Jam
4 O src 4 3 mam
B Build.com #9/9 <text> a3 src
B Build.mpw #1/1 <text> | B Build.com #3/9 <text>
B cbd /1 <text> E Build.mpw #1/1 <text>
5 cbd#L/1 <text>

The preceding screenshot shows the Depot and Workspace tabs in the tree panel
for the same workspace view. We can see that files under //depot/Jam/MAIN/ have
been mapped to local directory c:\work\bruno_jam main\. In this case,

the folder and file structure is similar in both views.

As we will see later in this chapter, it is very common to map only a small subset

of the repository into our workspace. This is not too surprising, as a repository may
contain hundreds or thousands of projects, and developers tend to work on only
one project at a time.

[104]

Chapter 6

A workspace — the specification

What we haven't talked about before this point are the specifics of how the client
and server know what to do when transferring files between the repository and

a workspace. We have implied that these specifications exist. And if you're doing
follow-along, you selected a workspace based on available local storage. But beyond
a relationship with the local file system (the mapping discussed in the previous
section), we haven't provided any details about what a workspace name and its
associated specification impacts.

The details of file transfer between server and workspace are defined in a workspace
specification. Current versions of P4V have dropped the word specification. P4V
simply refers to workspace names. You are expected to know from the context whether
that name refers to the files in a workspace, a workspace specification, or both.

You've already seen examples of workspace names under the tabs in the tree pane.
For example, bruno_jam main, as we see here:

EI]:E Depot E Waorkspace @_ R

| Q bruno_jam_main -

3 c\werk\brune_jam_main

We will explore other ways of accessing and working with workspace specifications
throughout this chapter.

Classic workspaces versus stream
workspaces

In this chapter we deal with classic workspaces. When we cover the streams
interface in Chapter 9, Perforce Streams, we'll see that stream workspace specifications
look, on the surface, very different from classic workspace specifications. However,
under the covers, most of the stream specification features are classic workspace
specification features. Thus, most of the information in this chapter will apply when
we get to streams.

[105]

Managing Workspaces

Managing workspaces

Every user has at least one workspace. Often users have more than one. Thus, a
repository may have many hundreds, or even thousands, or tens of thousands

of workspaces. While the various filters available within P4V can reduce the
visual clutter, there are still the server and client resources dedicated to managing
workspaces that we should consider. From the client perspective, workspaces
occupy local storage (on the local file system). The server, on the other hand, uses
resources to track workspace content even if there is no local storage involved.
Thus, proper management of workspaces is a user activity that can impact both
server and client resources.

M Because of the potential for a workspace to use server resources,
Q and thus impact performance, some organizations have quite
restrictive policies regarding creating and editing workspaces.

In this section we're going to talk about selecting, creating, deleting, and editing
workspaces. In the next section we'll cover the details of the workspace specification
itself. Since workspaces have a broad set of implied functionalities, the various
workspace management interfaces focus on providing the most likely features for
their context.

So far, you've been exposed to the workspace selection dropdown at the top of the
tree pane as we see in the following screenshot:

EI:':E Depot LE: Workspace @- BT
Q bruna_jam_rmain -
I:|‘ # + [=

Ol bruno_main
Switch to Workspace...
Mew Workspace. ..

The currently active workspace is shown in the dropdown, in the preceding case it is
bruno_jam_main.

From this dropdown you can select previously active workspaces, switch to other
workspaces, and even create a new workspace. These are all features consistent with
presenting the relationship between repository storage and local storage.

The Workspaces view panel tab has a workspace related context menu:

[106]

Chapter 6

L Files

B Filter: ©

A. Pending

ner is "bruno™

IE,—' Workspaces [£]

2 matches 7 N7 @y

Workspace

Q bruno_ws

Q bruno_jam_main

Last acceszed

View Workspace 'brunc_jam_main’
Get Revision...

New Workspace...

Owner

Ctri+M

Create/Update Workspace frem 'brunc_jam_main'...

Edit Workspace 'bruno_jam_main’

Delete Workspace 'brunc_jam_main'

-

From this right-click menu you can select activities that apply to a specific workspace.

Note that there is a filter. As previously mentioned, without a filter, you must
be prepared to sort through the hundreds or even thousands of workspace

specifications that are present in typical Perforce server installations.

M If you're doing follow-along, now is a good time to experiment with the

Q

various workspace filter options. Consider why you would want to use
the variations you come up with.

Finally, you will find workspace management related features under the Connection

menu, such as Switch to Workspace..., as we see in the following screenshot:

Actions | Connection | Jools Window Help
(< " Open Connection...
Open Recent
[JamiMAIN
Favorite Connections
1]

~ Set Up Connection...

Environment Settings...

Close Connection
Log Off

Reconnect
Choose Character Encoding...

L\, Switch to Workspace...
Edit Current Workspace...
New Workspace...

Ctrl+O

3

3

These features apply to establishing a workspace context for the connection between

P4V and the server.

[107]

Managing Workspaces

We are often asked why workspace creation isn't found under the File | New menu.
It's under the Connection menu to emphasize that workspace context is part of what
defines a connection between P4V and the server.

Switching workspaces

Switching to a particular workspace simply establishes a context for the relationship
between P4V and the server. It does not change or update the locally stored files
associated with that workspace, for example, by automatically doing a Get Latest....
You must explicitly specify an appropriate get action to update local files within

the workspace.

Some people find it inconvenient that P4V doesn't automatically update local storage
when you select a workspace. We, on the other hand, find that this behavior provides
a valuable buffer in time. First, it avoids the transfer of data and the resulting need
for local clean up if you switch to the wrong workspace. Second, it allows you to use
the Preview feature of the Get Revision... dialog to assess what is going to happen.

Creating workspaces by copying

When a user creates a workspace, they will typically create a new workspace. A new
workspace does not use local resources until you select and populate it. However,

a new workspace always uses server resources. The server tracks what's in a
workspace from the moment it is created.

Creating a new workspace can be a source of confusion for new users. When the
relationship between repository and workspace files is complex, workspace creation
can be a source of errors for even advanced users. For these reasons, Perforce
provides the ability to use one workspace as a template, as we see in the context
menu of the Workspaces tab in the view panel:

MNew Workspace... Ctrl+M
Create/Update Workspace from 'brunc_jam_main'...
Edit Workspace 'brunc_jarm_main’

Delete Workspace 'brunc_jam_main’

You can use this template to create new workspaces: this copies the workspace
definition and views as we cover in the following sections. You can also use it to
verify that a workspace is consistent with a master template.

[108]

Chapter 6

Editing workspaces

Exactly what editing involves is covered in the next section.

The important point here is to note that like selection, changes made by editing
a workspace are not automatically applied. You need to do something, such as
populate the workspace or submit a file, that references the modified workspace
context, before anything will change.

Don't overlook the value of the Preview feature of the Get Revision... dialog if your
edits have modified the relationship between server and local files. In addition to the
normal value, errors reported by the Preview process will expose typos and other
problems with your specification.

Deleting workspaces

When a workspace is no longer needed, it should be deleted. This frees both server
and client resources. Simply removing the files from local storage is not enough.
As long as a workspace exists, the server is using resources to track the contents

of that workspace.

Although you can remove locally stored files using standard file system features,
such as deleting a directory, that isn't the best practice. Best practice is to use
Remove from Workspace from the tree panel context menu to remove files from
local storage. The benefit of using Perforce to remove the files is that anything left
after the removal was not under source control. Stories of users deleting workspaces
using operating system features only to discover that a critical file or test harness
component had been forgotten and never added to source control are legend. Learn
from the mistakes of others!

Specifying a workspace

Creation and modification of workspace specifications are coordinated through a
two-tab dialog. The features accessed through the Basic tab are concerned with the
relationship between server repository files and workspace files. The Advanced tab
features provide control over the characteristics of population and the relationship
between workspaces and the submit process.

[109]

Managing Workspaces

Here, we see the Basic tab panel for a new workspace:

Basic | Advanced |

Workspace name: bruno_Foghorn_g942

Workspace root: C:\work\bruno_Fogharn_6342

Stream at change:
W Workspace Mappings:

¥Z ¥ 6=

Depot Tree Client Expression

> 2] depot //brunoc_Foghorn 6942/depot/...
> g8 jam

> LEﬁ spec

Switch to new workspace immediately
[] Automatically get all revisions

The Workspace name:, Workspace root:, and Workspace Mappings: are the most
common values that users need to specify when creating or editing workspaces.

Note the options at the bottom of the panel. These concern selection and population
as we discussed in the workspace management section.

Switch to new workspace immediately
[Automatically get all revisions

By default, you must explicitly request the population of your workspace. This
behavior reflects best practice workspace management techniques.

The Advanced tab mixes standard Perforce object features, such as Owner: and
Description:, with workspace population and submit characteristics:

[110]

Chapter 6

Basic | Advanced |

Cwner: bruno

[Locked: only the owner can edit workspace settings

Descriplion: cpeated by bruno.

Host: Foghorn
Alt roots:

[] Restrict to Server ID:
File Options:
[allwrite: leave all workspace files writeable when getting revisions
[Clobber: averwrite writeable workspace files when getting revisions
[compress: speed up slow connections by compressing files when submitting or getting re
[] Modtime: set file modification times to what they were in the submitter's workspace
[Rmdir: delete workspace directories when empty

Line ending characters for text files: [Local: defaults to the current operating system

On submit; [Submit all selected files - l [chedk out submitted files after submit

Be careful when modifying these values. As we will see, there are consequences
to these values that may not be immediately obvious.

Workspace names

When you create a new workspace, Perforce will assign a default name:

Basic Adwvanced

Workspace name: bruno_Foghorn_6942

Workspace root: C:work\bruno_Foghorn_6942 | Browse... |

This default is intended to avoid workspace name conflicts on larger systems. While
the default name is almost certainly unique, most people don't find it particularly
meaningful. In this case, bruno is our username and Foghorn is the name of the

PC on which we are running P4V. We suggest using workspace names that mean
something to you. These typically start with your Perforce username, for uniqueness,
followed by project and branch names. If more uniqueness is required, append that
after a common root name.

[111]

Managing Workspaces

Most organizations have a workspace naming convention. If your
M organization is small and you don't have a workspace naming
Q convention, establish one now while there are fewer non-conforming
names. A commonly seen example is <username>-<project name>-
<branch or task name>, so for example, bruno-projectX-main.

Workspace location

The top level directory of the local storage structure that contains workspace files
is specified as the Workspace root.

In the preceding example, this was c: \work\bruno_Foghorn_6942.

The default workspace root is rarely what you want. You can use the Browse...
button to find an existing structure or you can enter a path by hand. Don't worry
if some or all of the directories in the path don't exist. P4V will create these path
elements when it populates the workspace.

\ You may have noticed that you can't expand or contract the path at

~ the top of the workspace tab in the tree panel. That's because it's the

Q workspace root. A workspace is not concerned with files that aren't
under the root.

If you are operating on a Windows platform be careful with the length of the

root path. The root is pre-pended to every workspace file path. If you are using

an application such as SQL that tends to create verbose path and file names, or a
language such as Java that tends to create deep directory structures, the combination
of working path, filename, and root may exceed the path length limit imposed by
Windows (which is usually 260 characters in total). Likewise, be aware that if you
are using such a system, the need for extremely short workspace roots may make it
difficult for others to create workspaces that can access your work.

\ Many people use a common top-level directory for workspaces.
~ Be sure that your workspace root path is unique enough so that
Q you can add additional workspaces later without running into

naming conflicts.

[112]

Chapter 6

Relating repository files to workspace files

Specifying the relationship between repository files and workspace files is known
as workspace mapping. You will find the mapping specification at the bottom of
the Basic tab panel. If, as shown in the following screenshot, you see Workspace
Mappings: but no mapping interface, simply click on the arrow head before
Workspace Mappings: to display the mapping interface:

Stream at change:

3 Workspace Mappings:

Most of the time you don't need to map every repository file to your workspace.
However, the default is mapping everything you currently have read access to,

because the server doesn't know what you want. Even if your current repository
is small, don't accept the default of mapping everything. Get in the habit of only
mapping what you want to use now and it won't be hard to adjust in the future.

M If your administrator is on the ball, he or she will have created a
Q trigger to set the default mapping to something more sensible than
everything in the repository!

P4V provides two modes for specifying mappings: tree mode and text mode. The
tree mode interface is appropriate for users who need to create basic repository to
workspace mappings. It presents depot structures in a graphical format similar to the
presentation used in the depot tree pane. Text mode is for advanced users. Select the
mode using the buttons at the top-right of the Workspace Mapping panel:

vZ %3 6 HE]Lg “‘

W Workspace Mappings:

D?thTrEE Client Expression | View workspace mapping as tree
v] depot /fbruno_Foghorn 8942/depot/.., El|

£ jam

LF] spec

Like other parts of the P4V interface, hover tips are available to remind you of
available functionality.

o Before you create a workspace you should plan the mapping. This
~ plan needs to identify the root directory and the repository files that
Q you want in your workspace. The interface is deceptively easy to use.
Having a plan avoids problems.

[113]

Managing Workspaces

A workspace specification example

At this point we could present you with a long list of the features available through
the mapping interface. However, without context, this would mostly be just words
on a page. Instead, let's create a workspace for the user bruno, which will align with
the follow-along workspace.

The first thing we need to do is create a plan. The plan identifies:

* The repository files we want in the workspace
* The workspace name

* The root directory for local workspace storage

In this case, we identify that we wanted to work with files in the MAIN branch of the
Jam project. And we identify that the gam project is found in the depot called depot.
We'll cover depot structure and naming in Chapter 8, Classic Branching and Merging.
For now, you only need to know that depot folder structures are determined by

the user (and depots are created by administrators). In this case, users followed the
common convention of using the project name (Jam) as the top level depot folder
under which folders for each branch are created (in this case MAIN).

1
~ Determine the repository files first. They tend to influence the
workspace name and root directory.

The workspace name bruno_jam_main follows the common convention of starting
with the Perforce user name (bruno) followed by a project name (jam) and a branch
or task name (in this case a branch name main).

Likewise, the Workspace root (c: \work\bruno_jam_main) was determined by
following the common convention of creating a project subdirectory (jam) under
a local top level directory (c: \work), then creating a directory under the project
directory based on a branch or task name (in this case the branch main). This path
is likely to be unique relative to other root directories that we might specify at a
later time.

You can move workspace roots. However, it's messy and error prone.
o Even if it's a little extra work, start with a structure that ensures
~ workspace root directories never overlap with other workspaces. For
Q example, don't have one workspace root directory be a sub-directory
of another workspace. The convention of using the local top-level
directory mentioned in the previous paragraph ensures this.

[114]

Chapter 6

Now that we have a plan, we request a new workspace. When presented with the
workspace specification dialog we selected the Basic tab and entered values for
Workspace name: and Workspace root: as shown in the following screenshot:

Basic Advanced

Workspace name: bruna_jam_main

Workspace root: C:\workibruno_jam_main | Browse... |

Now it's time to specify the mappings of repository files to workspace files. When we
look at the Workspace Mappings: panel we see that the default selection of all depot
files had been made for us:

W ‘Workspace Mappings:

vz %2 &F E

S

Depot Tree Client Expressicn
4 ¥ [z depot ffbrunc_jam_main/depot/...
a] Jam
-+ +3) MAIN
-+ REL21
- 3 REL22

m

We know that everything has been included because there is a blue check mark
next to each name. Further, we know that the mapping specification only explicitly
references the depot because only the line for the depot node has a Client
Expression. The other folders are included by implication because they are children
of the depot node, this is why they have a gray check mark.

But we only want files from the main branch of the gam project. When we examine
the available action buttons, it's obvious that we want the include feature. So what is
the best way to eliminate the other nodes? We find that there are two possible ways
that might achieve this: exclude and clear. While exclude would work, it's not the
best way. The best way is to clear the depot mapping and start fresh as we see in the
following screenshot:

Depot Tree Client Expressicn it
4 [z depot Exclude Tree iruno_jam_main/depot/... L
a [lam 3
-3 Mal Clear%
-« REL

[115]

Managing Workspaces

Now we simply select the MAIN node under the Jam project node and right-click and
select Include Tree. This includes that folder and any files and sub-folders in
our workspace:

Depot Tree Client Expression
4 [z depot
4 & lam
- 3 REL21
- [REL22
- i) MAIN ffbrunao_jam_main/Jam/MAIN/...

However, we're not quite done. Look at the Client Expression (//bruno_jam main/
Jam/MAIN/ .. .) for the MAIN node. This is known as either workspace syntax or
client syntax. We'll go with client syntax since client is the word most commonly
used. When P4V interprets client syntax the workspace name (//bruno_jam_main)
is substituted by the root directory of the workspace. In this case, that means that
files are going to the workspace directory: c:\work\bruno_main_jam\Jam\MAIN. In
this instance, we might want to change this to remove one or more elements of the
directory name.

There are three ways to deal with this. One way is to modify the workspace root
directory, but this is rarely the best option. So let's find another way. For example,
it would be convenient if we could modify the Client Expression in the panel,
and this is what we will do. To modify the Client Expression you first click on
the node name then move your cursor over the Client Expression and click again.
This will put the panel into edit mode and allow us to change it as we see in the
following screenshot:

W Workspace Mappings:

Depot Tree Client Expression
4 =] depot
- O dir
4 & Jam -
v MAIN |
- 3 REL21
- 3 REL22
- 3 Jamgraph

We delete the extraneous /depot /Jam/MAIN and we're done. Of course we could
have also changed to text mode by clicking the button on the right-hand side above
the tree. This shows a panel that allows us to directly edit the mapping values in a
text format:

[116]

Chapter 6

W Workspace Mappings:

==

[ii]

[fdepotfJamMAIn/... Jfbrune_jam_main /depot/lam,MaIN/.. |

However, values are presented in two columns. Which do we modify? Well, let's
look at the columns. The left-hand side column has what is known as depot syntax
path (//depot/Jam/MAIN/ . . .) which specifies what we want to get from the
repository. The right-hand side column has the client syntax path we saw in tree
mode. This is where we specify where the files should be put locally. The workspace
name component (//bruno_jam_main) is mandatory, as it represents the workspace
root directory. So let's modify the client syntax path and eliminate the /depot/Jam/
MAIN. This leaves us with //bruno_jam main/....

Al

~ Remember the tips about using preview to identify mapping
specification issues? This is exactly why we identified those tips.

After you remove the /depot/Jam/MAIN and transition back to the tree mode you
will see that the Client Specification has changed. This is because tree mode and
text mode are simply different ways of looking at the mapping information.

What the ... (ellipsis) notation means

Remember from Chapter 5, File Information, that the ... (or ellipsis) notation is a
Perforce wildcard that matches all characters including the directory separator
character. It is the way to specify every file in this directory and all subdirectories.

Let's look at the resulting text mode for the example we just completed:

W Workspace Mappings:

==

]

[fdepot/Jam/MAIN/... Jfbruno_jam_main/...|

We can read this as: all files in the repository depot called depot (//depot) that exist
in or under (/. . .) the directory /Jam/MAIN are mapped to the root directory for the
workspace bruno_jam main.

[117]

Managing Workspaces

Note that both expressions end with /. . .. The rule of thumb for specifications is that
wildcards used in the depot syntax (on the left-hand side) must match the wildcards
in the client syntax (on the right-hand side).

How to exclude files

Using the current depot structure, consider how we would include both Jam/
MAIN and Jam/REL2.2 in the same workspace. One solution would be to create
a workspace mapping that explicitly included both Jam/MAIN and Jam/REL2. 2.
You would wind up with a workspace mapping that looked like this:

W Workspace Mappings:

vz %= & =
-

Depot Tree Client Expression

a4 =] depot
- O dir
4 & Jam
- = MAIN Sfbruno_jarm_main/Jam/MAIN/...
- O ReL22
- v[=| REL2.2 /fbruno_jam_main/Jam/REL2.2/...

m

As an alternative, you could include Jam and explicitly exclude gam/REL2 . 1 which
would result in a workspace mapping that looks like this:

W Workspace Mappings:

%
1]
5
1]
&
1]
i

Depot Tree Client Expression i
4 [depot
- O dir
4 =] Jam //brunc_jam_main/lam/...
- MAIN
- [¥=] REL2] /fbrunc_jam_main/lam/REL2.1/...
-/ REL22

m

The different techniques yield workspaces with the same set of files. However,
there is a significant difference between the workspaces that are created. In the first
case your workspace is always limited to just the two branches MAIN and REL2. 2.
However, in the exclusion case new branches added under Jam would be implicitly
added to your workspace because they would be children of Jam which is explicitly
included together with its descendants. Keep the effects of future additions in mind
when you're working with more complex workspace mappings.

[118]

Chapter 6

A particular folder might have ten subfolders, including one named
_ binaries which you don't want to map to your workspace. It is
a possible to specify that the nine subfolders you want are mapped
= onhe at a time. Alternatively, it is often easier to map the higher-level
folder and then just exclude the binaries subfolder. The result in
the workspace would be the same.

Can | reference more than one depot in a
workspace?

Say you want to create a workspace that has the sources from the MAIN branch

as well as the available project manuals. Since the project manuals are under the
misc directory you might think you're in for manual activities. Not to worry, you
simply include both MAIN and manuals as we see in the following screenshot:

W Workspace Mappings:

[ii]

%
i
»
i
L

13

Depot Tree Client Expression
4 |3 depot
- 3 dir
a = Jam
- w= MAIN #fbruno_jam_main/Jam/MAIN/...
- O REL21
- [REL22
- & Jamgraph
a & Misc

+[=| manuals /fbruno_jam_main/Misc/manuals/...

m

You may want to modify the Client Expressions to create a more consistent
workspace structure. Perhaps in your workspace you want the manuals as a
directory under MAIN. No problem, just modify the Client Expression for the
manuals node to be //bruno jam main/MAIN/manuals/....P4V and the
server use the mapping specification to relate files in the workspace to the
appropriate files in the repository. You get the workspace structure you want
and it's all under source control without an ongoing effort on your part.

Referencing directories or files from more than one depot is the same as referencing
multiple directories. The only difference is likely to be including the name of the depot
in the right-hand side mappings in order to distinguish between the multiple depots.

[119]

Managing Workspaces

Isn't this going to make finding the depot version of a workspace file hard? It can if
you look at the entire depot in the depot tab of the tree pane. However, the depot tab
filter of the tree pane has a Tree Restricted to Workspace View option, as we see in
the following screenshot:

T2 Depot B workspace i, 2 Files A Pending B
v Show Deleted Depot Files
Hide Deleted Depot Files

| Q bruno_jam_main

a5 depot
2 gélmMMN Entire Depot Tree
4 B Misc v I:}Tree Restricted to Workspace View
- manuals v Mo Folder Filter

This causes the depot display to reflect only those files that are found within the
currently selected workspace.

The potential of workspace mappings

The preceding section covered what most users need to know. However, it has only
scratched the surface of what is possible with workspace mappings. Among other
things, advanced usage can restructure and rename down to the file-level.

Other wildcards can be used in mappings such as the asterisk (*). It is also possible
to map individual files one at a time. These are more advanced usages and are
discussed in the online Perforce Command Line Reference manual as mentioned in
Appendix B, Command Line.

M Now is a good time to try some examples. Create a workspace and work
Q with include and exclude. If you're feeling adventuresome, you might
try multiple structure references with edits of the Client Expression.

Population characteristics

Most of the time, the default File Options: are appropriate. However, there are
times when you will need to change them. These options are displayed here:

[120]

Chapter 6

File Options:
Allwrite: leave all workspace files writeable when getting revisions
Clobber: overwrite writeable workspace files when getting revisions
Compress: speed up slow connections by compressing files when submitting or getting revisions

Maodtime: set file modification times to what they were in the submitter's warkspace

REmdir: delete workspace directories when empty

While the implications of selecting most of the File Options: are obvious from the
descriptions, some have implications that most people overlook.

Normally when a workspace is populated with a file, that file is set to be read-only.
For Perforce, read-only does not indicate under source control. A file is set to
read-only to protect it against uncontrolled modification. However, some IDE
tools assume that files that aren't read-only are either not under source control

or are already checked out. If you select the Allwrite option and use such tools
you might miss modifications.

Normally, directories are not removed once they are created even if they are empty.
However, setting the Rmdir option can be useful. If you use P4V to Remove from
Workspace, then the only files remaining in your workspace are files not under
source control. If you select the Rmdir option it's easier to identify the files that are
not under source control. It is also neater and tidier, and the one option that the
authors invariably turn on!

Line endings

When a text file is synced down to a workspace on a Unix server or a Windows

PC, the line endings will normally be different and appropriate to the operating
system. Likewise, when a text file is submitted to the server, the line endings are
normalized to the server format. This allows the server to use a common repository
file to support multiple potential client environments. It's best to ignore server
representation and concentrate on what is the appropriate text file line ending in
your workspace.

This line ending transformation process is specified by Line ending characters for
text files: within the File Options: section of the Advanced tab:

Line ending characters for text fles: |Local: defaults to the current aperating system

On submit: | Submit all selected files U:ﬂ;ﬁ: L;N-I;R st;l;line%e:ad
Mac: Macintosh style carriage return

icall Il revisi Win: Windows style carriage return linefeed

o tanalic=tyjoetaE e Shared: writes UNIX style and reads local style

2Nt Oper: 1 =

[121]

Managing Workspaces

Most of the time Local: defaults to the current operating system is appropriate. If
you choose something else, be alert to editors and other tools that may create line
endings that are inconsistent with the expected local text file line ending format.
Shared: writes UNIX style and reads local style is a special choice for exactly this
case. With shared, text files are synced into a workspace with Unix line endings.
If there are any Windows style line endings that are created in a text file, they are
converted to Unix style line endings before the file is passed to the server.

Submit options

The submit options set the default action for every submit within a workspace.
Setting them sensibly can save you making a mistake each time you perform a
submit. These values can always be overridden when submitting, so select values
that are the best choice:

[check out submitted files after submit

I Apply Help

On submit:

Submit all zelected files

= S (20 -
Don't submit unchanged files
Revert unchanged files

The On submit: options are as follows:

* Submit all selected files: Submit checked out files even if they haven't
changed. This is unlikely to be your best choice, in most cases there is little
point in submitting a new version of a file if it hasn't changed.

* Don't submit unchanged files: Files that are checked out, but have not been
changed, are left behind in the default changelist. The assumption is that you
checked these files out for a reason so they should remain checked out until
they are modified. This is probably our preferred option.

* Revert unchanged files: Files that were checked out, but have not been
changed, are reverted and thus not one of the files submitted. This setting
accounts for tools that are overly aggressive with auto-check out.

* Check out submitted files after submit: This is useful if you tend to always
work on the same set of files and don't want to need to check them out
individually after each submit. It can be useful when working with some
projects or technologies.

1
‘Q This is a good time to try some submit actions. Look for override

options in the submit dialog and try the various options.

[122]

Chapter 6

Perforce filetypes

There are some cases where individual files require special handling when
you populate a workspace with them. Rather than adjusting the workspace
characteristics to handle these special cases, consider using Perforce filetypes.

For example, certain tools require files to exist, but they always overwrite the file
contents as part of their processing. It is hard to coordinate check out and revert
for these files. The bad choice is to select the Allwrite option for the workspace.
The better alternative is to use the Perforce filetype (see Chapter 5, File Information)
to always populate the workspace with a writeable version of that file.

Common best practice questions

For the most part, workspace best practices boil down to variations on the
following rules:

* Map only what you need
* Use straightforward mappings
* Avoid content changes you can't control

* (lean up when done

This is not to say that there aren't valid exceptions to these rules. However, such
exceptions are rare in typical development scenarios.

Changelists and open files

Remember that a pending changelist belongs to only one workspace and that an
open file belongs to only one changelist. If you find that you need the same file to
be open in more than one changelist then consider multiple workspaces. Multiple
workspaces provide a controlled environment for the management of potential
conflicts. We'll talk more about conflicts in Chapter 7, Dealing with Conflicts.

More than one workspace

It is very common for users to have more than one workspace. So long as you follow
the good workspace management practices outlined previously this shouldn't be a
problem. However, one workspace per feature or bug fix is usually overkill. When
you've completed a task, reuse the workspace for the next task.

[123]

Managing Workspaces

M
‘Q If you are in an environment where each feature or bug fix requires

a unique workspace, then consider the streams feature.

Sharing workspaces

Sharing a workspace is usually a recipe for mistakes. It is very likely that sharing a
workspace will result in the loss of content modifications. There are two variations
on this theme.

In the first variation, the same workspace is used on more than one client machine.
The problem is that the server is tracking contents relative to a workspace, and it
assumes that the same workspace always refers to precisely the same directory on
disk, independently of which machine the workspace is being used on. Thus this
option only makes sense if the workspace root is on a network file share, which is
accessible from both machines! If that is not the case, then both you and the server
are likely to get confused as to which files are synced on which machines. Even if
you are referring to a network file share, it is not a recommended practice as there
is a much greater risk of edits being lost and similar problems.

The one exception to the no workspace sharing rule is a build farm, where multiple
hosts use a common workspace for read-only workspace population. This build
scenario requires that you follow very specific use rules.

Summary

In this chapter we covered the basics of workspace management and its definition.
We've also looked at the best practices associated with workspaces. In general,
workspaces might look complex, but they are actually very straightforward. If
you find significant complexity in your workspace mappings, or find that you
constantly need to edit your workspaces, you are probably doing things the hard
way. In such cases it is worth talking to your administrator and trying to work
out how to permanently change your repository structure in order to keep the
workspaces simpler.

In the next chapter we'll look at handling conflicts when working with files,
including merging your changes with the work of others.

[124]

Dealing with Conflicts

To Perforce, conflict does not indicate a problem. Rather, it refers to the need for
a human to resolve issues that may arise from independent modifications of the
same repository file. If there is more than one user, branch, or workspace there
are conflict scenarios.

As we will see, conflict scenarios are a natural consequence of the flow of development.
In this chapter, we'll review the origins of Perforce conflicts, predicting future conflicts,
identifying current conflicts, resolving conflicts, and ways to avoid them.

In this chapter we will cover:

* File conflicts

e Content conflicts

* Interactive resolution
* Automatic resolution

* Avoiding conflicts

The origin of a conflict

Conflicts arise from concurrent changes to the same file.

Let's consider what happens when two people concurrently modify the same file
without tool support. The second person to save their changes risks overwriting
the other person's changes. Most of us have experienced this at one time or another!
This is the essence of a conflict.

P4V detects and manages conflicts so users can coordinate their changes effectively
and avoid losing their work.

Dealing with Conflicts

M Other systems sometimes refer to conflicts and the actions to resolve them
Q as merge. Since Perforce allows you to manage more than a simple merge
of content they use the more accurate conflict and resolve terminology.

Working with conflicts

When using Perforce, users Bruno and Gale both make changes to the same
repository file //depot /dir/README. txt, but independently, each using their
own workspace copy as shown here:

Gale’s Bruno’s
Workspace Repository Workspace

#1

/l' \""h -----

/ "’ /
...... ~ #?2 /
T "-’ ------ 3 way merge of
H i -1 Bruno’s and Gale’s
& Lt 1 changes with
""" S:_——/ common ancestor
""" S ~— of #1

Both Bruno and Gale checked out and modified version #1 of the file. When Gale
submitted her changes she created revision #2, which in turn created a conflict for
Bruno. Because of the conflict, any attempt by Bruno just to submit his changes
will not be allowed by the server. Instead, Bruno needs to resolve the conflict

by combining his changes with Gale's changes using a standard version control
technique known as a 3-way merge. Only once the conflict is resolved does the
server allow Bruno to submit his file which creates version #3.

How the server detects conflicts, and the details of a 3-way merge, are explained in
detail in the following section.

[126]

Chapter 7

Conflicts and submit

In the preceding example, both users started with version #1 of the file in their
workspace which is the #head revision. Both users checked the file out and modified
it. The checkout and modification did not create the conflict. The conflict was created
when one user submitted their changes; in this example Gale. When the server
creates version #2 of the file it knows that Bruno is working on an older version of
the file (which is no longer the #head), and thus there is a conflict.

So, how does Perforce communicate the conflict situation, and what will happen if
Bruno tries to submit his changes without resolving the conflict? When P4V performs
a refresh of the display it shows that there is a newer version of the file Bruno is
working on. Since Bruno's version is out of date, a (yellow) triangle decorates the
icon to indicate the version status. The tooltip provides Bruno with additional
information about the conflict, as seen here:

EI:':E Depot EEE Workspace l@_ R4

[Ig bruno_depot -

Pl c\pdbook\workibruno_depot
4 [dir

>ﬂJa

README.txt
¥ checked out in default changelist
A not latest revision of file (£1 of 2)

Type: Text Document
Size: 132 Bytes

The tooltip is explaining that he now has an "old" version of the file.

If Bruno attempts to submit his changes he will get this dialog;:

A Submit Changelist: default (bruno_depot, 1666, bruno]

W Write a changelist description:

Bruno's change|

Choose files to submit:

@ Out of date: Get latest revision to setup a resalve (this will not overwrite your copy of the file).

Name In Folder Resolve Status Type
YE\ README.bd //depot/dir Text Docume

1 3

Choose additional options:

Link jobs to changelist {optional):

[127]

Dealing with Conflicts

He sees the warning that the file is Out of date and the Submit option is disabled.
This will happen even if he has hundreds of files in his pending change list and only
one of them has a conflict.

He has several options at this point. The first is to revert his changes, get the latest
version from the repository, check it out, and redo his changes. While possible, this
is potentially time consuming and seldom the best option. The second is to cancel the
attempted submit and perform resolve actions on the files in the pending change list.
However, when a small number of files are involved, it is also possible and indeed
easy, to do everything without quitting the submit dialog:

Open
W Choose files to submit: Open With »
B\ outof date:fet latest &3 . Get Latest Revision Ctrl+Shifteg I the file).
Name Get Revision... Pending
7] YE\ READMEbdt —

Directly from the submit dialog, he can right-click and perform the Get Latest
Revision action which P4V is suggesting.

As noted in the original submit dialog warning message, this "Get Latest" will not
update the local copy (since that would mean his changes getting lost). Instead, the
file is marked as being in the conflict state. Conflicts need to be resolved, hence, the
needs resolve tooltip is then displayed:

W Choose files to submit:

B Unresolved: Resalve file(s) before submitting.

Name In Folder Resolve Status Type Pending
E REAkIA)ME.hct //depot/dir Text Document edit

Ll

README. txt
P Chooseadditionalof ¢ checked out in default changelist
B Linkjobs to changeli ? needs resolve

Note that the icon decoration has changed from a (yellow) triangle to a (red)
question mark. This indicates that a potential conflict has now become an
acknowledged conflict that needs resolution. The server will not allow a submit
if the pending change list is based on out of date files or contains a file with an
acknowledged conflict.

An acknowledged conflict does not imply anything about the actual content of the
file. It just means there were independent updates which need a human to resolve, or
at least be consulted!

[128]

Chapter 7

By right-clicking on the file and selecting Resolve... you will get the following dialog:

| Resolve (brunc_depet, 1666, bruno_)

Resolve method:

(7 Auto resolve multiple files @) Interactively resolve files one at a time

Files to resolve:

D Resolve (tar’getj @ Resolve With (source) Resolve Type
B c\pdbookiwork\bruno.. B //depot/dir/README.tx... content

[Merge binary files as text when resolving content

Recommended action:
Click the "Accept Merged” button below.
Both files differ from comman base file, but with no conflicts.

Common base B [{depot/dir [README. txt#1

Source file Differences from base: 2 unique
Target file Differences from base: 1unique

Merged result Conflicts: 0
Resolve options:
Replace target file with a copy of source file Accept Source
Leave target file unchanged Accept Target

Replace target file with the merged result of source and target Accept Merged

Manually merge source and target before accepting Run Merge Tool
Additional Actions ¥

This dialog appears complex on the surface, but the basics are fairly straightforward:

* Perforce has detected a conflict state and a decision is required.
* The status information shown is guiding the user.

* The user needs to perform one of the Accept actions. This will tell Perforce
that a decision has been made, and to change the state of the file so that it is
no longer marked as "in conflict".

* The recommended Accept action is highlighted. Which one it is, depends on
the specific file changes that have been made.

* Closing the dialog box will abort the resolve and leave all of the files
unchanged.

In our preceding example, if Bruno clicks on Accept Merged and submits the file,
he will get a clean merge result, and most likely all will be well. That is because
his changes are able to be merged cleanly with Gale's changes (we cover other
possibilities later in the File content during merge section of this chapter).

[129]

Dealing with Conflicts

Base, Source, and Target: a 3-way merge

When merging the contents of a file, Perforce and many other source control tools use
a technique known as 3-way merge. A 3-way merge provides users with difference
information relative to a version of the file both users had in common. As we will see,
this difference information makes it easier to identify and combine changes.

3-way merge uses three significant terms that relate to Perforce objects:

* Target: the workspace file that needs to be resolved.
* Source: the repository file version causing the conflict.

* Base: the repository file version that Target and Source have as
a common ancestor.

3-way merge and 3-way merge tools pre-date P4V and include the
M command-line version of P4. These tools use the terminology Theirs
Q instead of Source, and Yours instead of Target. For compatibility
reasons you still see references to Yours and Theirs in error, log, and
other messages within P4V.

An introduction to the P4Merge tool

It is also an option for Bruno to click on Run Merge tool as shown in the
following example:

, ,

File Edit Wiew Search Help

LR 2R =Ex.
4 diffs (Ignore line ending differences) | Tab spacing: 4 | File format { Encoding: System Line endings: Windows)
Base: README. txt#1
Source: README. tut=2 Differences from base: 2 unique
} +1 common to both
Target: README. txt Differences from base: 1 unique
o Merge: Merge file used for resolve Conflicts: 0
@ //depot/dir [README. txt#2 | depot/dir/README. txt1 @ _depot\dir README. bt~
Line 1A Line 1 Line 1
Line 2 Line 2 Line 2
Line 4 Line 3 Line 3
Line 5A Line 4 Line 4
Line & Line § Line SA
Line 7 Line 6 Line & =
Line 3 Line 7A

<@ Merge file used for resolve

Line 1A DQ r
Line 2
Line 4
Line 5 4
Line &
Line 72 dc

|

[130]

Chapter 7

This shows the base (common ancestor) in the middle pane, and source and target
file version changes to the left and right respectively. The bottom pane shows the
default merge results. The default results are also the automatic results.

The status bar at the top contains a summary of the differences. The tool bar icons
allow you to step through the file, one difference at a time (shown below). These
options also appear on the Search menu.

File Edit Wew Search Help

Sl v Da 2R =EFx.

4 diffs {Ignore line ending differences) | Tab Sacing: 4 | File format { Encoding: System Line endings: Windows)
| Mext diff (Cirl+2) |

" E— Base: README. txt#1

We will revisit this tool with an expanded example shortly. For now Bruno can just
close the tool, and click on OK to the prompt Do you want to save your changes to
the merge file? Alternatively he could use File | Save and File | Exit or click the
appropriate toolbar icons. P4V saves the new merged file on top of his file in the
workspace, and he can submit it without any further problems.

1
‘Q Saving the merge results overwrites the workspace copy of the file.

There is no automatic backup of the original contents.

Differences from base

Differences from base is what allows 3-way merges to determine a default set
of merge actions. Differences are a sequence of one or more consecutive lines
within a file. The following diagram shows a basic example. For simplicity in
this example, all differences are a single line rather than the typical multi-line
sequences normally encountered.

Base file Source (theirs) file Target (yours) file Differences summary Merge result
P | v Q
Line 1 Line 1A Line 1 Source (only) Line 1A
Line 2 Line 2 Line 2 Line 2
Line 3 LHnre3 Line 3 Source (only) Lne3
Line 4 Line 4 Line 4 Line 4
Line s Line 5A Line 5A Common to both Line 5A
Line 6 Line 6 Line 6 Line 6
Line 7 Line 7 Line 7A Target (only) Line 7A
Base: MergeFile. txt#1
Source: MergeFile, txt#2 Differences from base: 2 unique
Target: MergeFile, txt Differences from base: 1 unique } RN L)
. Merge: Merge file used for resolve Conflicts: 1]

[131]

Dealing with Conflicts

As we can see in the Differences summary column and the combined screenshot
excerpt from P4Merge, there are two places where the source file differs from the
base, and just one place where the target file differs from the base. Where a difference
is common to both (Line 5A as shown in the preceding screenshot), it means that

the same character-for-character change was made in both the source and target.
Note that a deletion (Line 3 as shown in the preceding screenshot) is just treated

as a difference, it is not a special type of difference.

In the preceding example, P4V will merge the changes to give us the result shown.
Because none of the changes overlap with each other the merge is easy to understand
and in most (but not all) cases is going to be correct!

Dealing with content conflicts

So far we've dealt with merges where every difference is either common to both
files or unique to one file. But what happens when different changes are made
to the same section in both files? This is known as content conflict and requires
human resolution.

An example of content conflict is shown as follows:

Base file Source (theirs) file Target (yours) file Differences summary Merge result
J : y

Line 1 Line 1A Line 1 Source (only) Line 1A

Line 2 Line 2 Line 2 Line 2

Line 3 Line 3 Line 3A Target (only) Line 3A

Line 4 Line 4 Line 4 Line 4

Line 5 Line SAAAA Line 5BBBB Conflict 2222227

Recommended action:
Click the "Run Merge Tool" button below.

Conflicts exist between target file and source file.
L Common base o //depot/dir MergeFile 2. txt#1
Source file Differences from base: 1
‘@ Target file Differences from base: 1
Merged result Conflicts: 1

As we can see, there are conflicting changes to line 5 and the summary shows
Conlflicts: 1 (in red). Perforce will merge the non-conflicting changes (lines 1 and 3)
but the recommendation to Run Merge Tool means the user needs to decide what
the appropriate action to take should be.

When there are conflicts present, the (pink) toolbar icon to go forward and backward
to the next conflict is enabled, as shown in the following screenshot:

[132]

Chapter 7

File Edit View Search Help

Sl oY 9e ¢ a2l =F
3 diffs (Ignore line ending differences) | Tab spacing: 4 |“File format { Encoding: System Line endings: Windows)

[MNext conflict (Ctrl+4) |

» Base: MergeFile2. txt#1

In this instance the merge pane shows the merged lines and has the conflict lines
highlighted (in pink):

P Merge file used for resolve
Line 1& [P Q c
Line 2
Line 332 a4 -9
Line 4
Line 5§ J9 ‘]g
Line 5&
Line 3B | Click to show only corresponding text. Shift-dick for multiple selection. |

By clicking on the appropriate icon: (yellow) square for base, (blue) triangle for
source, or (green) circle for target, the user can select the content for the merge result:

@ Merge file used for resolve
Line 12 P -
Line 2
Line 3R d -
Line 4
Line 5B 9D

In this example he has chosen to include only the target version. Notice that for lines
1 and 3, the respective icons are highlighted to show which version was selected.

Editing in the merge pane
Sometimes the best thing to do is to click in the merge pane and directly edit the file
to get the results that you want:

\) Merge file used for resalve
Line 1A 9P -
Line 2
Line 32 -
Line 4
Line 5h and Line 5B I 49

In this instance the icons for Line 5 are all greyed because none of them is directly
being used. Instead, the resulting text is marked (also in grey).

[133]

Dealing with Conflicts

u If you're doing follow-along, set up this conflict example and explore it.
~ You can create the conflict using two users and two workspaces. Or, you
Q can have one user use two workspaces to create the correct sequence of

checkout and submit.

File content during merge

The interpretation of file content is a human activity. Perforce just looks for blocks of
text, without considering any possible meaning or semantics, and merges them.

How often does the automatic merge do the right thing? It will all depend on the
types of files being merged and their content. In our experience, the majority of
merges give the correct semantic result. Of course, especially with source code, what
looks like a correct result may not actually be correct.

Any time you do a merge, it is always a good idea to test the result. If a
M merge breaks the build because the resulting source file won't compile,
Q then that is easy to spot. It is more dangerous when a merge looks OK,
compiles successfully, but has introduced a subtle bug. Good automated
unit and functional tests can really pay dividends in such situations.

Some files are inherently difficult to merge in such a textual fashion (for example,
xML files). With experience, you will understand what types of code or changes
will merge easily and safely. When in doubt, step through the merge manually,
difference by difference.

Overwriting or discarding changes on purpose

We discussed the resolve actions earlier in the chapter, but didn't cover what
Accept Source or Accept Target did:

Resolve options:

Replace target file with a copy of source file Accept Source

Leave target file unchanged | Accept Target |

Replace target file with the merged result of source and target | Accept Merged |

Manually merge source and target before accepting | Run Merge Tool |

In the earlier scenario, Gale's changes are in the repository as revision #2. These
changes are also the source of a 3-way merge. Bruno's changes are still in his
workspace as the target of the merge.

[134]

Chapter 7

If Bruno selects Accept Target, what happens? P4V will leave his file unchanged,
consider the conflict resolved and allow him to submit his file. The contents from
Bruno's workspace will overwrite Gale's version in the repository. It's up to Bruno to
determine if this is appropriate, and Gale may have an alternate opinion!

On the other hand, if he selects Accept Source, what happens? P4V will overwrite
the file in Bruno's workspace, consider the conflict resolved and allow him to
submit his file. It's up to Bruno to determine if that is appropriate (as we discussed
in Chapter 6, Managing Workspaces, workspace defaults may result in no file being
submitted if his file is not different to the latest version in the repository). Of course
in this case he could also simply revert the file and there would be no conflict and
nothing to submit.

In some circumstances, a merge can appear too complex to merge
M using P4Merge. In such situations it may help to save a copy of your
Q changes locally, do an Accept Source, and then reapply your changes
on top. With experience you will know which option works well in
which situation.

Other P4Merge options

At the bottom of the resolve dialog is an Additional Actions button which offers a
variety of potentially useful options:

wH

F’“

Additional Actions T |I[

Open File 4

Diff I:}

L Source vs Target

File History L Base vs Source
Time-lapse View » Base vs Target
Revision Graph + Base vs Merged Result
- Source vs Merged Result
. - Target vs Merged Result
=== : -

If you are trying to work out what to do about a conflict, you can perform
comparisons between various combinations of files. When it refers to Merged
Result, this is a temporary file that P4V creates, which contains the results of
an automatic 3-way merge.

This can be very helpful in understanding the history of the file and also what
might be the most appropriate way to resolve the conflict.

[135]

Dealing with Conflicts

You can go to Open File | Merged Result to see the contents of the temporary
merge in your favorite editor:

| 1150123526 tmp(MERGE)[0] ot [CAUsers\Robert\,. 5= =la e
File Edit View Settings 7

DEH2¢ | ¥R AL EIQQ]
1 |ine-1a
2 Line-2
3 Line- 3A
4 Line -4

g »»»»- ORIGINAL - //depot/dir/MergeFilel. txt#l
& Line 5
====-THEIRS - //depot/dir/MergeFile2. txt#2

] Line-5A

E] ====-YOURS - //brunc_depot/dir/MergeFile2.txt

1@ Line-5B

11
] I ;
Ln1:11 Coll:80 Sel(191 bytes UTF-8 CR+LF IN

However, note that P4V is showing us special conflict markers around the blocks of
text. These markers are used by legacy merge tools so don't expect them to change
from ORIGINAL (base), THEIRS (source), and YOURS (target). Although this
option can be useful, most users stick with the graphical merge tool.

The way to resolve conflicts when shown like this is to manually edit the file,
removing the markers and leaving behind the desired file contents. When you save
and exit, the file will be assumed to be the results of the merge that you want to keep.

What if you miss a conflict?

Despite due diligence, you are bound to sometimes miss conflicts that exist in

a pending change list prior to submission. After all, P4V can only create icon
decorations and tooltips based on what it knows. If the version information known
to the server changes after the most recent P4V request for status information there
will be conflicts you don't know about.

Not to worry. The worst case scenario is that the server rejects your submit. You
will need to resolve the conflicts before the submit will be allowed, but there are no
changes to the repository to deal with.

u If your submit fails, then the files in the pending change list may be
~ locked. We recommend that to avoid issues with your colleagues,
Q you either unlock the files or you resolve the conflicts as soon as you
can. See the discussion on locking next.

[136]

Chapter 7

Delaying resolution

There is nothing that requires that a conflict be resolved as soon as it is detected.
You can delay resolution until just before you submit. However, keep in mind that
conflict resolution can change file content. Also remember content changes impact
your workspace environment, which in turn has a potential impact on testing that
happens with content from before the conflict resolution.

1
‘\Q Delays are fine, but conflicts must be resolved before you can submit

a file. Best practice is to resolve conflicts as soon as possible.

Automatic resolution

To this point in the chapter, we have been discussing interactive resolves which
work well when you are dealing with a small number of files.

There is an Auto resolve option which is selected at the top of the resolve dialog,
shown below:

.&'{ Resolve (brunc_depot, 1666, bru

Resolve method:

@) Auto resolve multiple files Interactively resolve files one at a time

This option allows you to perform the same resolve action on all of the files in the
pending change list. This can be a major time saver when lots of files are involved.

However, we tend to find that this option is most useful, indeed essential, when
dealing with merging between branches, so we will cover the details in Chapter 8,
Classic Branching and Merging.

Avoiding conflicts

While we encourage you to allow Perforce to manage conflicts, there are times
when it is best to avoid them. In particular, this can be true when your changes have
priority over other peoples' or when a file cannot easily be merged. We'll cover both
of these scenarios in this section.

[137]

Dealing with Conflicts

Priority modifications — locking files

Sometimes you need to take priority when modifying a file. In Perforce, this equates
to guaranteeing that you are the next person to submit a file. The mechanism is
called locking a file. Note that needing priority is common after a failed submit, so
P4V automatically locks all of the files in a failed submit.

Although it is not a best practice, you can always explicitly lock any file you have
checked out. The most common way is to select Lock from the context menu in the
tree panel or the pending change lists view panel.

Next, we see the result of Bruno locking a file for both himself and Gale:

Bruneo's View Gale's View

ffdepat/dir README. txt

EEE Depot EEE Workspace

c\work'bruno_depotidir\README. bt

l:IJ:E Depot EEE Workspace QE_

’Q bruno_depot IQ gale_depot
4] c\work\bruno_depot 4[| depot
4 [dir 4 3 dir

;% README. et £1/1 <texts ‘%3 README.bet #1/1 <text>

README. bt README. bt

¥ checked out in default changelist ¥ checked out in default changelist

¥ checked out by gale@gale_depot ¥ checked out by bruno@bruno_depot
® |atest revision of file (#1 of 1) ® |atest revision of file (¥1 of 1)

& Jocked a

locked by bruno@bruno_depot

Type: Text Document
Size: 13 Bytes

Type: Text Document
Size: 13 Bytes

Notice the padlock icon decoration indicating a locked file (the decoration is on the
left or right of the file icon depending on who is viewing it). The tooltip provides
valuable information about the lock.

If a file is locked, then only the person who locked it is able to submit the file. Other
people can check out the file, but will not be able to submit their changes until the
lock is released.

Locks are not intended for general use. If everyone immediately locks files when
they are checked out overall team productivity will suffer. The best practice is to lock
a file for the shortest time possible. If you can't resolve your issues quickly, it is best
to unlock the file and let Perforce manage conflicts in the usual way.

Locked files are automatically unlocked if the file is reverted or the file is part of
a successful submit. Files can also be explicitly unlocked using the Unlock menu
option in the context menus of the tree panel or the pending change lists view panel.

[138]

Chapter 7

. Unlike some other SCM tools with lock capabilities, Perforce allows
~ users to checkout a file locked by another user. This behavior allows
Q the Perforce server to track intended changes. Better to track a
pending change than potentially lose track of it.

Files that can't be merged

Some files don't have effective merge tools. Spreadsheets, documents, graphics,

and other binary formats are common examples of these files. Because they can't be
merged, you can only sensibly resolve conflicts by accepting either the source or the
target. This makes it important to avoid conflicts with these files. Otherwise, you might
have a potentially significant amount of work manually merging content changes.

Closely monitoring the checking out of such files might avoid conflicts, but it's not a
viable strategy. You could attempt to lock such files one-by-one as discussed earlier,
but that only tends to delay the conflict discovery. A better solution is the exclusive
checkout Perforce file type.

You change the file type by right-clicking on the file and then selecting Change
Filetype... option (also on the Actions menu this option is only available if the file is
open for some action) shown as follows:

@ Change base filetype and/or file attributes
Add additional file attributes
Base Filetype:

binary -

Workspace related attributes:

+m Preserve local modification times

+w Always writable in workspace

+x Exec bit set in workspace

+k RCS keyword expansion

+ko RCS keyword expansion of §I1ds, $Headers only

%-H Exdusive checkout (don't allow concurrent checkouts)

[139]

Dealing with Conflicts

Check the +1 Exclusive checkout attribute, leaving the base file type unchanged. The
base type is likely to be binary since 3-way binary merge tools are relatively rare.
However, any file type can be exclusively checked out. Submit the file once you have
changed its file type. Another user (such as Gale) might see this result:

EIJ:E Depot LIJ:E Workspace LE:L v
| Q gale_depot - |
4 c\pdbookigale_depot
a [dir

aE” README.docx #2/2 <binary+Fl>

README.docx
checked out by bruno@bruno_depot]
latest revision of file (#2 of 2)
exclusive checkout

E s % [

Type: Microsoft Word Document
Size: 13 KB

In the preceding example, Bruno has checked out a file which has the Perforce
exclusive lock file type. The tooltip tells Gale that an exclusive checkout is in force,
and she will get an error message if she attempts to check the file out.

Summary

Conflicts are a natural consequence of concurrent development. In this chapter,
we've seen that dealing with conflicts only looks complex. In most cases, the
identification and resolution of conflicts is actually rather straightforward. Most
users only need to apply a small set of the available Perforce features for most of
their conflict resolution needs. However, when more advanced techniques are
required, those are available too. Perhaps most importantly, Perforce does not allow
accidents. The server ensures that users acknowledge and resolve conflicts before it
allows updates to the repository.

In the next chapter, we'll look at classic branch and merge operations, and we
will see how merging between branches builds on the conflict resolution we went
through in this chapter.

[140]

Classic Branching
and Merging

Branching is the key version control technology for managing parallel development.
Classic Perforce branching gives you complete control over the entire range of
branching features. This supports almost any branching pattern that you can envision.

In this chapter, we'll cover the principles behind branching and merging. Then, we'll
apply those principals to the branching patterns that you're most likely to encounter.

In this chapter we will cover:

* Branching principles

* Creating branches

* Maintaining branches

* Conflicts and branches

* Exploring branching history

* Branching patterns

Understanding branching

If you've been exposed to version control then you are probably familiar with

the term branching. This is an area within the SCM community where both the
terminology and the technology have evolved over time, which has generally
been positive for users. An unfortunate side-effect is that, when you think

about branching, it is very likely that you're thinking about the implementation
characteristics of a particular tool. If this is your situation then clear your thoughts!
Attempting to mentally equate classic Perforce branching to the implementation of
another version control tool can be very confusing.

Classic Branching and Merging

Branching is about managing the relationship between the files in two or more
branches. This is a great definition except that it requires you know the definition of
branch: a branch is a set of files that originated as an exact copy of another set of files
and has evolved independently since the copy was made.

Before we finish our exploration of definitions, we need to address two additional
terms that are often associated with branching: codeline and mainline. Technically, the
term codeline refers to how a set of files is related. Most people use the terms codeline
and branch interchangeably. A mainline is the equivalent of the trunk in some other
tools such as Subversion. In classic Perforce branching, any branch can be the mainline
for a project. It is just about being classified as, and used as, the mainline by the users.
Common practice is to call it MAIN or a similar name. We will discuss this and other
related branching patterns in more detail at the end of this chapter.

Why you should branch

Branching enables controlled parallel development. As such, it's the key to
supporting important development activities such as:

* Multiple releases of software products
* Experimental feature development
* Isolating high risk development

* Concurrent feature development

There is overhead associated with managing branches. Without good tool support
this overhead can impact productivity. Fortunately, Perforce was designed with
class-leading branching capabilities from the start. With Perforce, the branching
overhead is easily managed.

Using classic branching in Perforce

Classic Perforce branching gives you complete control over all aspects of branch
management. The upside to this level of flexibility is that you can implement almost
any branching pattern that you can envision. The downside is that there is nothing
that keeps you from creating bad branching patterns! If you stick to the patterns we
discuss in this chapter, you should be safe.

[142]

Chapter 8

The basic branching pattern

While there is some commonality within the SCM community, the names
associated with the various branching patterns tend to vary by tool and from
organization to organization. Each branching pattern has a particular process
associated with these activities:

* Creating the branch (from its parent)

* Making changes on the branch

* Updating a branch by propagating changes from its parent

* Propagating branch changes to its parent
The branching pattern that you are most likely to encounter is typically used to isolate
changes until they are ready for a wider distribution. Such branches are often called
project, feature, task, personal, or private branches. One or more developers may have
workspaces that refer to such a branch. We will be talking about this pattern in most
of this chapter, because it is the most common pattern used in most organizations. For

example, release branches tend to be created and managed by only a small team within
the organization. This makes release branches a less useful example.

Such a personal branching pattern might look like this:

Changes made directly
on the parent branch

A A
\ \ Parent brancr>

.. | Bruno’s changes are
i merged back to the
parent branch

Bruno’s branch>

* Personal changes

Changes from the { .
Parent are merged in
To the personal branch

We can see in this diagram that Bruno's branch is created from the Parent branch.
Bruno makes changes to files in his branch. He also updates his branch from the
parent to accommodate changes that others have made to the parent. Finally, when
ready, Bruno propagates his changes back to the parent branch.

[143]

Classic Branching and Merging

This pattern provides Bruno with several advantages:

* Heisisolated from changes in the parent until he is ready to bring those
changes into his branch.

* Changes to his branch are isolated from other developers who are using the
parent or other branches.

* He decides when to expose his changes to other users of the parent branch
(by propagating them to the parent).

Of course this does not imply that Bruno is free from any overhead. As we will see,
Bruno still needs to be involved with decisions about when to update or propagate
branch content.

The major challenge for using this branching pattern is deciding the frequency
with which you update your branch from the parent. Updating too frequently
potentially wastes time. On the other hand, if you don't update often enough,
your work can be destabilized when an update involves files that you have been
working with in your branch. This being said, there is no hard and fast rule about
update frequency. The appropriate update frequency may also change during the
life of a project. We recommend doing it as often as you can, while taking into
account the overhead required in doing so. It is fairly rare to find a situation
where updates shouldn't be made at least once a week. Once a day, usually at

the start or end of the day, is very common.

Viewing classic branches in Perforce

Perforce does not have a branch object per se. In fact, classic branching tracks
individual file relationships. The fact that there are commands that aggregate

a group of files and calls them a branch is a convenience for the user. It is not a
requirement of the tool. You may see the words branch and merge in the P4V
interface, but you will not see branch icons or other similar artifacts within the
P4V GUI. We will discuss branch mappings, which have their own tab, later in the
chapter (they are not directly branch objects).

So what do you see? Well, you see folders. It's only by convention that you know
that a folder represents a branch. This is actually a very powerful system that allows
an organization to adopt conventions and structures that meet their specific needs.
Within a branch, each file will have a complete branching history, as shown in the
following diagram:

4 [depot i AT
G | (O EEE N O N GO O B
- ©3 BRUNO | Hidepot)Jam/MATN srciBuild. com
O man i
i 1
1

Tidepot[Jam/BRUNG stc/Build. com

[144]

Chapter 8

The preceding diagram combines a screenshot of the tree view and the Revision
Graph for a file. We see two folders //depot/Jam/MAIN and //depot/Jam/BRUNO.
We also see how one of the files in the code line, //depot /Jam/MAIN/src/Build.
com, has been branched into the //depot /Jam/BRUNO code line as //depot /Jam/
BRUNO/src/Build.com.

Creating our first branch

Let's start by creating a branch within Perforce.

M You will get a lot more from following along if you try the various
Q actions as you read about them. Branching is one of those follow along
activities where your mistakes will teach you more than your successes!

On the right-click menu for the folder we wish to branch, select the option Branch
Files... to give the following dialog:

Branch method: [Speciﬁd source and target files]

Source files folders:
O /rdepotflam/MAIN/... Add...

Remove

Choose target files/folders:

J/depat/lam/ERUNGY... Browse...
Generate branch mapping from above paths for use in future integrations: Save...

B Options: (Current settings: auto submit, filtered by files)

Branch]’ Preview]’SetDefﬁuIts...][Cancel

In this dialog we have chosen Branch method as Specify source and target files, and
we have edited the target files/folders to be //depot /Jam/BRUNO/... We want to use
a simple repository structure convention where all code line branches for the Jam
product are in the same folder in the repository (immediately under //depot/Jam).
Such a simple convention works surprisingly well, but don't use it if you are going
to have large numbers of branches (many tens or hundreds) at that level. Remember,
the ... (ellipsis) wildcard means all files and sub-folders below that path.

[145]

Classic Branching and Merging

When we click on Branch, everything is done for us and is submitted to the
repository. That is because the Options include auto submit.

We can check if the branch action has completed by looking in the depot tree,
making sure we have set the filter to Entire Depot Tree (rather than Tree Restricted
to Workspace View), and if necessary running Revision Graph on any of the files
will confirm it has been branched.

Versions of the Perforce server before the 2012.1 release required you to

add the target files to your workspace before you are able to complete
= this action. Otherwise you would get the error message No target file(s)

in both client and branch view.

An introduction to Options

The Options can be expanded by clicking on the triangle icon, as shown in the
following screenshot:

W Options: {Current settings: auto submit, fitered by files)
Submit Filter Advanced
Add files to pending changelist @ Automatically submit after branching files

Pending changelist: | e

Changelist description:

Branching »
[/depot/Iam/MAaIN/... =
to ffdepot/Jam/BRUNC/. .. =

This shows the description of the changelist that will be automatically created by the
Branch command. We will look at the other tabs later in this chapter.

Propagating changes between branches

In order to be able to propagate changes, we need to make some changes on the
branch first!

We can only modify the newly branched files by adding a view mapping to our
current workspace view (Connection | Edit Current Workspace...) and then doing a
Get Latest on them:

[146]

Chapter 8

W Workspace Mappings:
vZ %= &3 a
Depot Tree Client Expression
4 |5 depot
- 3 dir
4 [E Jam
>] BRUNO ———
> »= MAIN nelude free _jam_main/Jam/MAIN/...
- O3 REL2L Exclude Tree
> [ReEL22
. [REL23

Include Files

If we modify a file on the branch (checkout, edit it, and submit), the Revision Graph

might be similar to:
S
2

HidepotlamBRUNG srcfBuild. com

We can see that revision 2 has been made and submitted. Don't forget that you can
drag-and-drop one revision on to another to get a diff, or right click on the file and
select Diff Against Previous Revision.

We start the process of propagating the changes by right-clicking and selecting
Merge/Integrate... on the folder which is our source branch (//depot /Jam/BRUNO)
to get this dialog:

Merge method: [Specify source and target files +]

Source files/folders:
0 //depot/lam/BRUNOY...

Remove

Choose target files/folders:
fidepot/JamMAIN/... Browse...

Generate branch mapping from above paths for use in future integrations: Save...

B Options: (Current settings: submit later, resolve later, filtered by files)

[Merge J[Preview l[SetDefauIts...][Cancel

Note that this time the target is //depot/Jam/MAIN/

[147]

Classic Branching and Merging

We can click on the Preview button to get a list of all possible changes to be merged:

1integration @ 0 branches Derrors | <@ Cpp | <@ O 8=
= i

| Build.com#2

In this case, we see there is a single change to a file (Build.com#2) which will
be propagated.

We can close the preview dialog, and by clicking on the Merge button we will get a
changelist with the file marked as in the conflict state and thus needing to be resolved:

2 Files A Pending B @ submitted (@ History

B Filter: User is "bruno® and Workspace is “bruno_jam_main™

Change} User Description
Pl /2 default bruno <enter description here>
2 //depot/lam/MAIN/src/Build.com 28/8 <text=

Resolving our merge conflicts

This is the same resolve that we saw in Chapter 7, Dealing with Conflicts on conflict
resolution. Right-click on the file in the pending changelist and click on Resolve...

to get:

.
2 7.

idepotJam/E O srcfBuild. com

‘ Resolve method:

Auto resolve multiple files @) Interactively resolve files one at a time

(D Resolve (tarIg et) @ Resolve With (source) Resolve Type

cpdbookiworkibruno.. B //depot/lam/BRUNGO/s... content

[Merge binary files as text when resolving content

Facommended action:
Click the "Accept Source” button below.
Only sobwge file differs from the common base file.
Common base 4] //depat/Jam/BRUNO,src/Build, com#1
Source file Differences from base: 1
Target file Differences from base: 0
d Merged result Conflicts: 0

[148]

Chapter 8

It's a standard 3-way merge, and as we can see in the diagram, the definitions are:

Common base: which is //depot /Jam/BRUNO/src/Build. com#l
Source: which is //depot /Jam/BRUNO/src/Build. com#2

Target: the workspace file which will be checked in as //depot /Jam/MAIN/
src/Build.com#9

In this example, the recommended action is to click on the Accept Source button,
because only the source file has changed. If we do that and submit our change, the
Revision Graph will now look as follows:

ZB 9 |

1 2

idepot/Jam/BRUNG src/Build. com

Revision 9 has been created and the icon shows that it is a copy of revision 2.

Perforce only propagates changes once

Normally, Perforce will only propagate a change or revision once. When a
change has been propagated, successfully resolved, and submitted, Perforce
will remember that it does not need to propagate that change in the future.
If, after having propagated changes successfully between two code lines,
we try to do it again, we will get this result:

Integration errors: //depot/Jam/BRUNOY ... - all revision(s) already integrated.

There are a total of 1 errors,

This is very useful because we want Perforce to track what has been done on
our behalf. Propagating changes would very quickly become impossible to
manage at any scale without good tool support.

[149]

Classic Branching and Merging

The meaning of integrate in merge/integrate

In today's SCM environment, merge and integrate are effectively synonyms for
Perforce users. However, this hasn't always been the case. Perforce has supported
classic branching and merging since its earliest days. Since the internal Perforce
command that performs both branching and merging actions is called integrate
that's the term that many Perforce users are familiar with. In those early days, merge
was typically a reference to content. Yet the Perforce integrate command would

also account for track added and deleted files. As the term merge has grown within
the SCM community to encompass actions similar to what the integrate command
provides, Perforce has adapted the wording within their user interfaces.

Automatic resolve

We deferred talking about the automatic resolve options in Chapter 7, Dealing
with Conflicts because it really comes in to its own when propagating changes
between branches.

It is not uncommon to change a large number of files on a branch. If we had to
manually resolve conflicts, file-by-file, in order to propagate changes between
branches, the overhead would quickly consume most of a developer's time. Yet
we know that most of the time there will be no content conflicts that require
human intervention. This is where the automatic resolve actions come into play.
They provide the power of automation, and with the safety and control of human
supervision. What does this look like?

On our pending changelist (not an individual file) we use the right-click option
and click on Resolve... to get the dialog shown as follows:

[150]

Chapter 8

ril‘j Resolve (brunc_jam_main, 1666, brunui_ ﬁ1

| Resolve method:

@ Auto resolve multiple files (7)) Interactively resalve files one at a time

Files to resolve:

3 of 3 items selected

(D Resolve (tg rget) J Resolve With (source) Resolve Type
c\pdbookiwork\bru... //depot/lam/BRUNO/src/Build.com #3, #3 content
c\pdbookiwork\bru... //depot/lam/BRUNO/src/Build.mpw #2, #£2 content
c\pdbookiworkibru... //depot/Jam/BRUNO/ src/c.tut 2, #2 content

4| 11

[] Merge binary files as text when resolving content

Auto resolve options:
@ safe ic resolve (no ging)
Accept source if only the source file has changed. Accept target if only the target file has changed.
Don't resolve file if both source and target have changed.

") Automatic resolve (allow merging)
Accept source if only the source file has changed. Accept target if only the target file has changed.
Merge changes if both source and target have changed and there are no conflicts,
) Accept source
All changes made to the source file are replicated in the target file.
) Accept target
Leave target file unchanged.
") Automatic resolve (allow merging with conflicts)

Accept source if only the source file has changed. Accept targetif only the target file has changed.
Merge changes if both source and target have changed, even if there are conflicts.

Set As Auto Default Auto Resolve

This shows all of the files in that changelist that need resolving, three files in this
case. Remember, we are propagating changes from source to target files, in this
case from //depot/Jam/BRUNO/... t0 //depot /Jam/MAIN/....

The Safe automatic resolve option will copy any necessary changes from the source
to the target files, but only if the corresponding target file has not been modified.
This is considered safe because the file was only changed on one code line and not
on both. If a file has been modified on both source and target code lines, then it will
be necessary to merge changes, which is much less likely to be safe.

The Automatic resolve option will also perform any clean automatic merges that
are necessary, so it does not process any files where there is a conflicting change.
Remember that Perforce is only performing textual merges and doesn't understand
the contents or meaning of any files, so you need to think about when this option
is appropriate.

[151]

Classic Branching and Merging

The Accept source option will result in any changed source files being copied to the
target so that the target is character-for-character the same file. This will overwrite
any changes in the target files, and you need to make sure you mean to do this! By
contrast, the Accept target option is also known as the discard or ignore option. It
leaves the target file unchanged, but marks the source file revision as having been
propagated and will not consider them again in the future.

We use automatic merging all the time, and typically recommend a three step process:
* Safe automatic resolve: will typically process more than 50 percent of the

files to be merged.

* Automatic resolve: we use this option when we have reasonable belief that
the changes will merge cleanly and correctly. This depends on the code base
we are merging.

* Interactively resolve: which we use for any remaining conflicts, one-by-one.

The results of a Safe automatic resolve might be as follows:

2 of the files could not be resclved using the Auto reselve option chosen, Please
use a different Aute reselve method or the Interactive reselve option on the
remaining files,

This then prompts the user to select the next level of resolve: either automatic resolve
or interactive.

More on P4V Revision Graph

We have already seen some sample screenshots from Revision Graph earlier in the
chapter. It is a powerful tool which conveys a lot of information.

[152]

Chapter 8

r.a; Revision Graph - //depot/Jam/MAIN/src/Build.com (1666, bruno

| File Edit Wiew Highlight Tools Window Help
foom
w@v a0 —aTE)
£ File Filter Tree x| Lt
; - Gz B JE 1B _JE] lE_1
[Filter Options... {fdepat]Jam{MATN/ s Build. c 1
a3y - i
4 [7]2 depot i srcfBuild, carn i
2 [7E Jam
4] MAIN 3 jamfrelz. 3 src/Build. com
4 ﬁ SrC
o Bu... [— Hiam/deyz 3 srofBuild, com
> | RELZ2.1 e
s [7] 2 REL2.2 - ||« r

Details | Integrations | Labels | Preview |

Mavigator | Legend |

Revision: f{depot{Iam/MAINferc/Build. com#8

Date submitted: 13 22:24:49 Changelist: 12108

Submitted by: bruno Perforce flletype: text
Workspace: o_jam_main File size: 706 Bytes
Action: edit

Description:

Basic actions edit, add & delete

R

Add Branch Merge
N =y
IS
C]]
Edit Add (branch v edit) Merge wy Edit
Delete Copy Ignore

The File Filter Tree in the top-left is made visible via the relevant toolbar icon

(also controlled via View | Show/Hide

| File Filter Tree). It is very useful in

deciding which code lines to make visible. It is not uncommon for there to be
tens or hundreds of code lines for a single file and this allows you to focus on
the ones that are interesting to your current activity.

The Details tab shows information for the currently selected file revision which
is highlighted (in yellow) in the right-hand pane. It is very similar to the Files
tab discussed in Chapter 5, File Information. The Legend tab describes each of
the revision icons and their associated meanings. We will discuss these shortly.
Note also the Zoom options to control the size of the right-hand pane.

[153]

Classic Branching and Merging

Diffing and other actions

There are lots of actions available on the right-click menu for a revision, as shown in
the following screenshot:

Open
JarnfRELZ. 2fsre fBuild.cd Open With 5
8 - Get this Revision
AVl 42 s File History Ctrl+ T
{depot) JanmyBRUNO sk Time-lapse View Ctrl+Shift+T

Diff Against Previous Revision Ctrl+D
Diff Against Workspace File
5§ Diff Against... Ctrl+Shift+D
~,
- View Changelist

Merge Show in Depot Tree

The most commonly used ones are the various Diff options. However, most people
just drag-and-drop one revision onto another to do a basic diff.

The Highlight | Ancestors of selection will color all ancestor revisions green, which
starts to be very helpful when we look into the diagram to understand more complex
graphs and branching history.

21 109 139 410 g20 749 752 829 847 848 849

Jidepot/JamfRELZ . 1/src/Build. com

HidepotflamyRELZ. 2 srcfBuild.com
[E0 E (5] (6 [| 6 e
[depotilamitaIN/sro/Build. com f
\ 2

,I',I'dBth,I'JaI‘n,I'BRLll'\jO,I'SrEII'BLlIiH.EDm)

It is not obvious from the printed screenshot, but revision 2 in the bottom right
corner has been selected, and thus revision 1, and then from 8 down to 3 are all
highlighted as ancestors.

Compressing the history

Another very useful feature for helping to understand complex histories is the View
| Compressed Integration History. An example of this is shown as follows:

[154]

Chapter 8

,i',l'depot,I'Jam,l'BRLINO,I'src,I'FiIent.u:

(1 g |18 |

,I'II'dBth,I'jal‘n,I' IN,IiSrE,I'Fi

1

II&BDDtIJamIREL2. 3fsrcffilent.c

Il'Il'chapoI:,I'Ja'mII'RELZ.2||'src,l'FiIent.c

1

,l',l'élepot,l']am,l'RELZ. 1fsrcffilent.c

This shows that revisions between 1 and 9 and between 9 and 18 have been hidden.
They are edits, which are considered less interesting (in this case) than revisions
which have contributed to the branching history of the file.

M Whether or not you're doing follow along, now is a good time to
Q explore the Revision Graph tool. Most people miss most of the power
within this tool because they haven't taken the time to explore it.

Selectively propagating changes

It is quite common for people to want to be able to select a single changelist to

be propagated from one code line to another, instead of all the un-propagated
changelists. Bruno might have fixed bug 3242 on his branch, which has modified
several files. He is doing some other work on his branch as well, which he does not
want to propagate back to MAIN yet. Meanwhile, Fred has been affected by the same
bug and it would help him to have the bug fix.

The first solution that occurs to many people is to just email the particular file
revisions with the bug fix to the requesting person (slightly more advanced, and
more common on Unix/Linux, is to email patch files generated by the diff tool).

If the changelist is a single file, then this appears superficially as a simple solution.
But don't do it! It doesn't scale well to changelists with multiple files, and it also
stores up trouble and makes future merges more complicated.

[155]

Classic Branching and Merging

The Perforce way to handle this situation is to selectively merge that bug fix only,
without any of the other changes to the other code line. Perforce will track this
action and remember it when changes are propagated, which avoids a nasty type of
duplicate merge problem.

This is a very useful feature, and as we see in the following section,
M it is not difficult. However, it depends on how you commit changes,
Q and will only work well if you are careful to keep each bug fix in its
own changelist. If you mix things up, then this sort of action becomes
much harder.

What are the steps to do this? We do a standard Merge/Integrate, selecting source
and target files. We then use the Filter tab to be specific about the changelist to be
merged. This filter option is:

W Options: (Current settings: submit later, resolve later, filtered by revisions and files)
Resolve and Submit Filter Advanced

Filter method: @ Revision range and files/folders Selected changelists

Revisions to merge: |F'.E'u'i5il.'.|l'|5 equal to - |

|1'_i Changelist v| a51 | Browse. .. |

You can click on the Browse... button to interactively select a particular changelist,
or you can just type it in as shown in the preceding screenshot.

Then click on Merge and repeat the steps to resolve all changes before submitting
your change.

While selective propagation (also known as "cherry picking") can be
M very useful, and is often quite easy to do, it should not be something
Q that you do all the time. If you find you are using it too frequently,
then start thinking about your processes and branching patterns, and
how you are organizing work between people.

[156]

Chapter 8

Using branch mappings

In our examples so far in this chapter we have specified source and target files
directly. It is quite common to use a branch mapping instead.

You create a mapping from the Branch Mappings tab or File | New | Branch
Mapping..., seen here:

'ﬂ‘j Branch Mapping: Jam-MAIN-BERUNO (1666, bmnuﬁl&lﬂ

Branch Mapping: Jam-MAIN-BRUNO Date accessed: 12/06/2013 20:59:57
Date modified: 12062013 20:53:57 Cwner: bruna|
Description: Created by bruno. i
Options: D locked
WView: [fdepotflamMAIN/. .. (fdepot/Iam/BRUNO/...

[ok][cancel || poly

As with other objects, such as workspaces, it is important to have a good naming
convention for branch mappings. Consult your administrator for guidance. We
have used a simple mapping called Jam-MAIN-BRUNO which reflects the name of
the project and the two codelines involved.

The View: is particularly important and will need to be edited from the default. Like
a workspace view, it is a mapping, but in this case it is a mapping between one area
of the repository and another: //depot /Jam/MAIN/. .. to //depot/Jam/BRUNO/

o When having to type repository path names, we often find it convenient
~ to copy the path from the address bar in P4V and paste it in to the
Q appropriate dialog. If necessary, you can then edit it, and this is still
likely to be less error prone than just typing the full value in.

[157]

Classic Branching and Merging

Having saved our branch mapping, we can use it with right-click options to either
Branch Files... or to Merge/Integrate..., as shown in the following screenshot:

e

Merge method: [Use branch mapping -]
| Branch mapping: [Jam-MAIN—BRUNO b] [Browse...] [Mew...]
(To reverse the direction of integration, dlick the arrow)
Source = Target Edit View
/fdepot/Jam/MAIN/... /fdepot/lam/BRUNOY/ ...
Diff View

W Options: (Current settings: submit later, resolve later, all revisions)

Resolve and Submit | Filter | Advanced |

Filter method: (©) Revision range and files/folders @) Selected changelists

Changé Date Submitted Submitted By Description
»] @ 874 11/06/2013 20:1... bruno Bug fix 432
> #3873 11/06/2013 20:1... bruno renamed
[Merge] [Preview] [Set Defaults...] [Cancel]

Use the Browse... button to select our branch mapping. Here we can see that it has
been used to complete the Source and Target columns within the dialog.

This example also shows the Filter tab with Selected changelists checked, which
would allow us to selectively propagate just one or several changelists if we want to.

The power of branch mappings

The underlying actions of Branch or Merge/Integrate actions will be exactly the
same as if you specify source and target files directly. So what are the advantages
of using branch mappings?

Probably the most important reason is that branch mappings may contain multiple
view lines, including options such as excluding individual files or subfolders.
Another example is bringing in libraries from other parts of the repository. This
can be very useful, and we see it used a lot, particularly in larger organizations.

M In many organizations, the existence of a branch mapping indicates that
Q a branch is in active use. Once the branch is no longer in active use the
branch mapping is deleted, but it can always be recreated if necessary.

[158]

Chapter 8

Merging — the gory details

It is useful to have some understanding of the algorithms Perforce uses for propagating
and merging changes, and how it works out which changes to propagate/merge. This
helps you to work with the tool instead of against it, and avoids surprises and getting
yourself into strange situations. The full details of this are beyond the scope of this
book, but this section gives an overview of the main principles.

The main algorithm for merging changes between a set of source and target files is to
prepare a list of individual source and target files (there may be tens, thousands, or
more on two code lines). Then, for each pair of files:

1. Identify which source revisions are candidates to be merged, which includes
ignoring any revisions which have already been merged in the past.

2. Decide how to merge those candidates according to any filter being applied
by the user.

As we discussed earlier in this chapter, Perforce remembers all changes propagated
and will not prompt us to propagate a change that has already been propagated.

Merges and file content

Perforce tracks merges by revision, but each merge is of file contents. This is a key
distinction to make. Perforce looks at the revisions that need to be merged and then
merges those changes, using the contents. In a simple example, as in the following
diagram, the results seem fairly obvious:

1. Starting file . 6. Automatic resolve
' content (4 lines) 1 (merge) gives this result

[=a -3
(o]

Parent branch

5. The propagation (merge/integrate)
-+ takes all candidate source revisions, in
this case #2 and #3

\ #1 #2 #3 Bruno's branch'}

2. %1 onthe A ¥l

! branch is just a B B Y _

| copy of the original . | C € |\ [€] 443 haschangedBtoB1
' D Dp|% | D

Classic Branching and Merging

Note that the revision 1 (#1) of the branched file has the same contents as the original
file. There are then two subsequent changes made, #2 and #3 with file contents as
shown. The default merge will take all candidate revisions, which means both #2 and
#3, and the automatic merge (resolve) gives the result shown. In this case, it looks

like the desired result, and in most situations it will be just what we want.

How selective merges are done and tracked

If we consider the example of a selective merge of only a single revision, the
algorithm is shown in the following diagram:

We only want the modification of B to B1 to be merged to the target. The key thing
to understand is that this is the same as merging revision 3 only, and leaving behind

A 1. Starting file A 4. Automatic resolve (merge)
B content (4 lines) ' " gives the desired result
C - C
D D
| #8 #9 Main line)
\ 3. The selective propagation
cﬂ% 1 (merge/integrate) takes
%%@ e only the # 3 modifications
\ #1 #2 #3 Bruno’s branch)
8 B oD
C C = I
z - 2. 5ame changes as the
previous diagram

the changes made by revision 2.

As we can see, there is a difference between the contents of the file at revision 3
(which contains A1 and B1) and the actual modification made by revision 3 (which

contains B1 only).

It is important to understand that in this example Perforce will track
that #3 has been merged, but #2 has not. For future merges between
these two code lines, #2 will be a candidate to be merged (unless
explicitly excluded, for example, by another selective merge). This
creates more complexity, and our advice is to avoid selective merges
unless you really need them!

[160]

Chapter 8

Understanding this concept is key to understanding Perforce's actions when merging
or integrating changes.

Dealing with renames and deletes

These actions cause some complications in standard merging of changes between
code lines. We will not address all possible situations in this section, but give you
enough information to be a little wary and take extra care!

Dealing with deletes

In a simple example we have deleted revision 14 of a file and then merged that
change to our branch, as shown in the following screenshot (remember the Legend
tab to show the meaning of icons):

2B B
SN

\L 2)

,l’,l'depdt,l']a'm,l'BRUNO,l’src,l’FiIe\-'ms. c

In this example, the merge action has just propagated the delete from source to
target, and all is well.

However, life is not always so simple, and there are a couple of scenarios where the
right answer is not obvious, and where you as the user need to decide what Perforce
should do (by enabling flags).

,l’,l’depbt{Jam,l’MAIN,l’src,l’edlt -bo- delete ision, bxk I;’depm‘JamIMAINIsrcIdeIete-t%txt

,l’depdt,I’Jam,l’BRUNO,I’src,l’edlt -kio- deleted -rewvision, bxk ,l’,l’depdt,l’jam,l’BRUNO,l’src,l’delete-td-edited-revisidn.txt

In the first instance, we are attempting to propagate an edit on top of a deleted
revision. In the second example, there is a delete to be propagated on top of an
edited revision.

[161]

Classic Branching and Merging

It is a fairly important decision as to whether a file should be deleted or recreated,
or and edit be ignored or not, and P4V will not automatically make this decision
for us. It will give us an error message on the Merge which we can override via
advanced options:

Integraticn errors: //depot/Jam/BRUNO/src/delete-to-edited-revision.te - can't
delete from //depot/lam/MAIN/src/delete-to-edited-revision.bd#2 without -d or
-Ds flag

/fdepot/Jam/BRUNO/src/edit-to-deleted-revision.txt - can't branch from
/fdepot/Jam/MAIN/src/edit-to-deleted-revision ba#2 without -d or -Dt flag
There are a total of 2 errors,

W Options: (Current settings: submit later, resolve éter, all revisions)

Resolve and Submit I Filter I Advance,

[7] D& not copy newly branched tar

[Enable integrations around deleted revisions (-d)
7] integrate over deleted targets (-Dt)
] Delete target file when source is deleted (-Ds)

[ey

les to workspace (-v)

rce deleted and re-added {-Di)

The important point if you receive such an error is not to just immediately check the
suggested option on the Advanced tab of the Merge dialog (shown in the preceding
screenshot) and rerun the merge. Instead, first investigate and consider the future
implications and think about what the correct result should be. If in doubt, consult
with your administrator! It is better to delay than to rush in such situations.

Using branch mappings to ignore deletes

Another useful feature of branch mappings is that if you don't want a delete to
be propagated between 2 code lines, then you can add a specific view line to the
mapping removing the deleted file:

View: ffdepotfJamMAIN/... //depot/Jam/BRUND/...
-f{depot/JamMAIN/src/deleted-file. txt /fdepot/Jam/BRUNGC fsrc/deleted-file. txt

This example shows an exclude mapping (which begins with a minus or '-' character)
for a specific file. With such a branch mapping, P4V will no longer attempt to
propagate any changes, including delete actions to that file.

[162]

Chapter 8

Dealing with renames

You rename a file by using the right-click option and selecting Rename/Move...
command from the tree view. Behind the scenes, this basically just deletes the old
file and adds a copy of it with the new name. In Revision Graph, this looks like:

Hidepat) JamMATNS srcfcompile-new., b

Notice that the same changelist contains both the delete and the branch/copy.
If we do a Merge/Integrate of this rename action, then we get:

@l 2 5an

HidepotfJam/MAINfsrc/o

,f,idapnt,iJam,l’BRLINO,lisrc-,icnmpile.h

We can see that the delete of compile.h is propagated to the BRUNO code line and the
new name compile-new.h is also added as a new file.

When renames cause complications

Life can become significantly more complicated when you have a file which is
renamed on one code line, and yet on another related code line:

* You do not wish to rename the file, and yet you want any edits to be merged
between the file with the old name and the file with the new name.
e Edits have occurred to a file on one branch which has been renamed on

another branch.

Such situations give rise to Merge/Integrate errors such as:

Integration errors: //depot/Jam/BRUNC/src/compile.c - can't delete from
/fdepot/lam/MAIN/src/compile.c#27 without -d or -Ds flag
There are a total of 1 errors,

[163]

Classic Branching and Merging

It is beyond the scope of this book to go in to all of the possible problem scenarios
and what to do about them.

o Our main advice is to seek help first from an experienced Perforce user
~ before doing anything such as setting option flags like d, Ds, or Dt.
Q These flags can cause you more problems than they solve if you are
not careful!

Other branching patterns

So far we've covered the most common branching pattern that you are likely to use
in your day-to-day work. If you have understood what we've covered so far, then
you have a fundamental understanding of all branching patterns as they all have
similar characteristics. In this section, we'll help you understand those characteristics
and then we'll use that information to cover some additional patterns that you're
likely to encounter.

The patterns discussed in this section are part of the mainline model.
% The mainline model is a time-tested method for supporting project
vy
development.

Characteristics of a branching pattern

When all is said and done, branching patterns can be characterized with answers to
a relatively small set of questions. Review the following questions and consider how
they apply to what you've already done:

* What is the branch used for? The answer should be a short declarative
sentence. Conditionals in the sentence indicate a need for multiple branches.
Paragraph size answers indicate not enough uniformity for a stable branch.

* Who authorizes updates of the branch from other branches? Someone needs
to control when things will change for any consumer of the branch contents.
Benevolent dictators are much better than democracies!

* Who authorizes updates of other branches from this branch? True, anyone
with read access to a branch can use it as a source. However, someone needs
to be able to confirm and assure that the branch meets its conditions.

[164]

Chapter 8

* What are the submit requirements? Test, build, task association, comment
content, and others are all possible requirements. These requirements
implicitly and explicitly define the stability and quality of branch contents.
Automation to validate that a requirement is met can be useful. Automation
to create information to satisfy a requirement is typically counterproductive.

* Who fixes problems after a submit? A question that doesn't always have
an obvious answer. No one is probably a better choice than a group or
individual that wasn't involved in the activities that created the content
being submitted.

If your branching patterns don't have answers for these questions, or the questions
have the wrong sort of answer, then you will have problems.

The mainline pattern — why it is better than
alternatives

A mainline branch is usually a branch which contains all long-lived changes to

a project. The quality of the branch is usually consistent with becoming a release
branch, but it is recognised that bug fixes can be made on those release branches.
Such bug fixes are usually propagated back to the mainline so that they are present
when future release branches are made, as we see in the following diagram:

Bug fixes on release
i branches

/L/\Rellé/ Relzo

| : /A\ /\ Main Ilne

.ii Features on Mainline { el ™ ... | Bug fixes merged back
i [intended for next “={ to Mainline before next
release] release

There are multiple release branches made from the same mainline.

[165]

Classic Branching and Merging

An alternative, when there are multiple release lines which are prepared one after
the other, is to have those release lines cascade from each other, as we see in the
following screenshot:

Features for a
particular release & ™.

i Bug fixes merged to
later release

Bug fix on release
branch

Using this example, over time we will have many release branches, and all of
the developers will need to keep switching their workspaces between the release
branches as they become of release quality.

Industry best practice is the use of a single mainline as it is easier to understand and
support, and less error prone.

We will discuss this in more detail in Chapter 9, Perforce Streams as it is one of the
main branching patterns used in streams.

Release branches

The description of a release branch (from a mainline) is usually something like:
release candidate. The submit requirements often include extensive testing
requirements. Release branches have the mainline as their parent. If change is
allowed on a release branch then only those changes required to meet release
requirements, such as bug fixes, are allowed.

Perforce branching is efficient. Each release candidate is often a new and unique
branch. As separate branches, the Perforce tools provide you with extensive and
efficient methods for determining change.

[166]

Chapter 8

The integration pattern

The description of an integration branch is usually something like: combine features
before merge with primary development branch. The submit requirements need to
adapt to the needs of the developers accessing the branch.

Integration branches often originate from developer branches, yet propagate into a
development branch. They take full advantage of Perforce's ability to merge between
branches that do not have a direct parent to child relationship.

OS copy is not a branching activity

Some people don't like to branch files between code lines that aren't siblings or direct
descendants. So what do they do? They use the native workstation OS to copy the file
into their current workspace. We encounter this often enough to know it's a common
practice. However, it's a practice that sets the stage for many future problems.

The fundamental issue with an OS copy is that it breaks any connection between the
tiles. Without that connection you won't be able to easily track the evolution of the
files. In particular, if you find a bug, it will be hard to find all of the files that might
contain that bug. Likewise, breaking that connection is a problem for edits. Without
a connection, there can't be a 3-way merge.

The counter to this that we often hear is that they'll track the relationship in the
submit comments. If you neglect the loss of tool features you might be able to make
this work. However, think about how many bad submit comments you've seen. How
often is information missing? Now ask yourself if you can really depend on those
submit comments.

Summary

In this chapter, we've provided an extensive introduction to Perforce's classic
branching and merging features. We've explored creating branches and propagating
changes (merging) between those branches. P4V's revision graph tool, and its ability
to provide you with extensive branching related data mining, was also introduced.
Finally, we looked at some of the branching patterns that support the mainline model.

In the next chapter, we'll look at how streams build on the branching operations
we have discussed in this chapter. Streams provide many behaviors that make
implementation and support of the mainline model significantly more efficient.

[167]

Perforce Streams

In this chapter, we cover Perforce streams. Out of the box, streams support a set of
predefined branching models. These are based on the metaphor of a stream where
change flows in specific ways.

In this chapter, we'll cover the fundamentals of using streams. We'll see that under
the covers, streams are a specific way of using the mainline model to support parallel
development. Additionally, we'll look at the concept of branch stability and how
streams use the merge-down, copy-up paradigm to support stability.

In this chapter we will cover:

Basic stream patterns

The mainline model

Branch stability

Creating streams

The merge-down, copy-up paradigm

More advanced options

Understanding streams

Unlike the wide-open, user-managed situation with classic Perforce branching, streams
present the user with a predefined set of branching models. This may make streams
seem limited, but there are many advantages. Streams instantiate the mainline model
flow-of-change, which is an industry best practice. Moreover, streams can automate
most of the workspace management and propagation tasks users would normally
need to do for themselves. This makes streams much easier to manage, and helps an
organization keep their branching policies and processes consistent.

Perforce Streams

M This chapter builds on concepts from other chapters, so there aren't many
Q step-by-step examples. If you're doing follow along, feel free to start up
P4V at any point and explore along with the topic being presented.

The primary stream models

There are three primary stream models:

* Mainline
* Development

¢ Release

The flow of change between the various stream models is defined at the point each
stream is created. Users must still validate the policy factors, such as the testing
requirements, before or after propagating changes between streams.

Readers will recognize that the names of the stream models align with branching
patterns discussed in Chapter 8, Classic Branching and Merging. More precisely, those
names align with what is known as the mainline model.

Branch stability

The different types of branches within the mainline model are a response to different
policies as to the desirability of change on those branches. This is also described as
stability. The more stable the contents of that branch should be, the less desirable it is
to make changes in a branch. We see that in this diagram:

[] More Stable
Release

— Increasing
Mainline stability

Development
Less Stable

[170]

Chapter 9

In an ideal world, release branches are very stable with almost no changes occurring.
This is possible because changes are developed for a future release on the mainline or
development branches, and then a new stable release branch is created. In practice,
release branches usually have bug fixes made on them, so the quality of the release
has an impact on its stability.

The merge-down, copy-up paradigm

The merge-down, copy-up paradigm is part of the way that streams maintain branch
stability. The idea of the paradigm is that you merge-down from a more stable
branch into a less stable branch and update a more stable branch by copying from
the less stable branch.

All of the diagrams we include in this book order streams on the page
M from top-to-bottom, with the most stable streams at the top. This
Q simple convention helps convey the merge-down, copy-up paradigm
(as opposed to merge-up, copy-down, or any other way of describing
it). It is also how P4V shows streams on the Streams tab.

Let's relate this to the conflict and branching work we've seen in previous
chapters. Merge implies that there may be conflicts that need to be resolved.
On the other hand, copy implies that there are no conflicts and that the source
files are copied character-for-character to replace the target files. This diagram
shows the merge-down, copy-up paradigm in action:

No changes made to
the Mainline between
last “merge down” and &
Changes made on the the “copy up”. £} Changes “copied up” to
Mainline (or brought in from /ithe Mainline

other Development branches) | | /
Mainline>

Changes “merged
down” to the
Development line

Q
kS

%
)
)

S 2
K

- R

T . Testing after the
* Development changes | “imerge, and if necessary
: ‘ fix any bugs

[171]

Perforce Streams

Changes are merged into the Development stream to isolate the impact of those
changes. Because we have merged all of the mainline changes into our development
stream, the resulting files can be copied back to the mainline. This is because after the
merge, the development stream files contain both the development changes and the
mainline changes.

The main reason for merge-down, copy-up is to perform the merges (which are
risky) on the least stable branch. If there is a problem with the merge, it can be fixed
if necessary via a subsequent change list on the less stable branch, before being
copied up to the more stable branch.

This is not to say that merge-down, copy-up is effortless. You still need to coordinate
and resolve merges. You must also ensure that your stream is up-to-date relative to a
parent before you can copy its contents into that parent. P4V will warn you if this is
not the case.

Creating a stream

Streams require a stream depot. Stream depots can be identified in the tree panel
depot view by their unique icon, as we see in the following screenshot:

EF:E Depot

| Q bruno_jam

In the preceding example, we see a stream depot called jam. Note that the icon is
different from the classic depot called depot, and the spec depot called spec.

The first stream in a stream depot must be a Mainline stream. This is likely to have
been created by your administrator, and populated with the appropriate files. These
files are typically branched from elsewhere in the Perforce repository using the
techniques discussed in Chapter 8, Classic Branching and Merging. We will also cover
this later in the chapter in the section Creating a Mainline from a classic branch.

We create a development stream from the Streams tab. There are two options, as
shown in the following screenshot:

[172]

Chapter 9

& Streams @
\g _*_ [Teriisa @ — View Stream 'main’
Right click options to S —
(Graph View Options 8 X create a new stream s
Copy to 'main’...
Depot: [<] -
e T Leftfrom Streams | Branch Files..
[Select Streams +] Graph View Options
Work in this Strearm...
» @ & main Right from Streams New Workspace...
L\) Bew Stream... curl N % Create New Stream from ‘'main’...
Refresh Stream List Edit Stream 'main’

In the left-hand example, we see the New Stream... option which is generic within
the streams depot. In the right-hand example, we are selecting Create New Stream
from 'main’'.... In both cases we will be presented with the following dialog:

Basic Settings | Advanced |

Stream name:
Bruno_dev

Stream type:

o

[developrnent :J.éed for long term projects and major new features -

Change propagation:

parent
To parent: allow copies to the parent stream
From parent: allow merges from the parent stream ~

) development

e parent strearom which this stream wil be branched:

main (ffjam/main) e~

Description:

Created by bruno.

Create a workspace to use with this stream
Branch files from parent on stream creation

[0K]’ Cancel H Help l

We are creating a development stream, which requires a parent stream. The OK
button will be disabled until you enter the name of your development stream and
have specified the parent. If you get to this dialog from the New Stream... option

(not by right-clicking main), then you will need to select the Browse... option and
click on main.

[173]

Perforce Streams

Particularly for a development stream, it is normal to check the option Branch
files from parent on stream creation. It is possible to do this subsequently, as a
separate step.

Clicking on OK creates our new stream and the results are shown graphically:

$ Streams E]
\‘!::2 -ﬂ- Depot is jam
Graph View Options F X
Depot: jam -
Select Streams A
4 [@ £ main & man
V| ¥ Bruno_dev
= dev23
2 rel2l
8 rel2.2
& rel23
Y1
31
N =
Display stream: Mame - W Erri i I‘=—|
Stream node width: S |J L
Apply

Notice the workspace icon next to the stream name in the preceding screenshot.
Because we checked the box Create a workspace to use with this stream, P4V
created this workspace based on the stream.

Stream workspaces

Creating a stream workspace with defaults will set its root and name automatically.
Alternatively, select the stream by right-clicking on the file and selecting the New
Workspace... option to allow you to customize these values, in a similar way as
seen in Chapter 6, Managing Workspaces. This will give you the dialog box shown

in the following screenshot:

[174]

Chapter 9

Workspace: brunc_jam (1666, brung] E

Basic | Advanced

Workspace name: bruno_jam

Workspace root: C:\P4DemoWorkspaces\bruno_jam
Stream: main (f{jam/main) e -

Stream at change:

W Workspace Mappings:

To edit these mappings, you must edit the stream's path configuration

[fiamfmain/... /fbruno_jam/...

[Automatically get all revisions

[o

This example shows a "follow along" workspace called bruno_jam.

You can thus adjust the workspace name and also its root to the appropriate

standards for your organization.

Al

Q

Moving your workspace between streams

We recommend creating a workspace name that does not include the
stream name. As we will see shortly, workspaces are easy to swap

between streams. A workspace name that contains a stream name
may be confusing and lead to mistakes.

When we covered workspaces back in Chapter 6, Managing Workspaces, we

recommended that each of those workspaces should have a separate directory

structure in the local file system. As we've seen, each workspace that backs your
streams can also have a unique local file system structure. However, because of the
relationship between streams this unique file system structure recommendation can
be relaxed. The ability of streams to share file system structures saves you set up
overhead if you change context frequently.

[175]

Perforce Streams

The current stream your workspace is associated with is shown in a couple of ways.

EEE Depot EEE Workspace l@, \Z & Streams @ Q Workspaces
I@bruno_jam (main) V‘ \@ -ﬁ- Depot is jam
4 g jom
> @ main (main)
| Cff) main Q |
01
¥y Bruno_dev

We can see the name of our workspace in the top-left of the tree pane, and the
stream view in that pane. P4V also shows us the workspace icon on the Bruno_dev
stream in the right-hand view.

Changing the workspace is relatively easy to do via drag-and-drop of the
workspace icon:

| __:‘;‘) main Q |
pIk
¥y Bruno_dev
R::

This shows the workspace icon being dropped on to the Bruno_dev stream,
which will change the definition of the workspace:

EIJ:E Depot ?:E Waorkspace 1@, \f, 8 Streams E] Q Waorkspaces

I@bruno_jam(ﬁrunc_dev} " \Q -ﬁ- Depotis jam
4 [Z8 jam
> @ Bruno_dev (Brunc_dev)
|;:‘-“) main |
{1

¥y Bruno_dev Q

[176]

Chapter 9

Note the bruno_jam (Bruno_dev) in the top-left of the preceding screenshot.

Behind the scenes, P4V will change the definition of the workspace and also perform
a Get Latest on the files. This is a fast and efficient operation, and works slickly.

You need to be a little careful about switching your workspace to a different stream
when you have files checked out in a pending changelist. You don't need to worry
too much, as in such a scenario you will receive a warning:

The following file is checked out and cannot be submitted until you switch back.

JfjamBruno_devfsrcfcommand.c

In order to get revisions of this file after switching, you must first shelve or submit this file before switching.

Do you want to continue with switching your workspace?

We recommend not switching in this case, and instead completing the work before
switching. It is always possible to create a new workspace instead of switching if you
really want to.

Communicating the status of changes to be
propagated

One of the main advantages with streams is that P4V can easily communicate the

changes that need to be propagated between the streams. The Dashboard tab is
particularly valuable for this (View | Dashboard menu option makes it visible):

[EE Depot %E Workspace l@, \f, & streams E]

‘@bruno_}am (Bruna_dev) - | \‘& ﬂ- Depot is jam

4 22 jam
> @ Bruno_dev (Bruno_dev)

= :
) main

4
ot

¥ Bruno_dev Q

2 Log (&) Dashboard B8

Workspace folder: c:\P4DemoWorkspaces\bruno_jam

Dashboard last updated: 19/08/2013 22:19:04 Update now
Tasks: Folder status: Al files are at the latest revision.

1\ Merge from main (1 change) Changelist Potential Conflict Date Submitted
No Items Fou...

[177]

Perforce Streams

In this example, it is explaining to us that there is a single change, which is a
candidate to be merged from the Mainline under Tasks.

Merging changes from the Mainline

The easiest way to do this is to click on the Merge from main (1 change) link, to get:

& vegerese SN ==
Merge method: [Sh’eam to stream

Source stream: main {/fjam/main) oD~

Target stream: Bruno_dev {/fjam/Bruno_dev)

W Options: {Current settings: submit later, resolve later, all revisions)

Resolve and Submit | Filter | Advanced |

Filter method: () Revision range and files/folders @ Selected changelists

Changé Date Submitted Submitted By Description
- 7] @ 12117 19/08/2013 22:1... bruno A change on Main

Merge][Preview][SetDefauHs...][Cancel

In this example, we have chosen to set the Filter tab to view the change lists needing
to be merged. It is often a useful confirmation of the changes involved.

The process of merging, including the dialog above, resolving conflicts, and
submitting of the change is exactly the same as for classic branches, as discussed in
Chapter 8, Classic Branching and Merging.

Copying our changes to the Mainline

If there are changes to be copied in both directions, then the icons (colored arrows)
and Dashboard Tasks will be shown as:

2 Log (5) Dashboard [

o main
Workspace folder: c'\P4DemoWorkspacesibruno_jam

Dashboard last updated: 20/08/2013 09:46:58 Update now
Tasks:

"\ Merge from main (1 change) b1k |

4 Copy to main (1 change)]
% merge required prior to copy ¥@ Bruno_dev lg '

[178]

Chapter 9

The key thing here is to note that merge is required prior to copy: this is P4V
enforcing the appropriate flow of change between the streams.

Performing the merge is the same as in the previous section.

You may receive a warning like this:

You must switch your workspace in order to merge to stream
Bruno_dev (//jam/Brunc_dev]

Switch to workspace: "bruno_Robert-

Laptop_Bruno_dev_9274"

[] Don't warn me again about switching workspaces

[Switch Workspace] [New Workspace] ’ Cancel

The options here are either to switch to the other workspace, or to move your
workspace to the new stream. We tend to move the workspace.

same workspace and switch it between streams so that you are

M You can check the option Edit | Preferences | Streams | Use the
Q not prompted to do this as the switch happens automatically.

The defaults for the Copy action are:

Copy method: [Stream to stream -]

Source stream: Bruno_dev {/fjam/Bruno_dev)
Target stream: main (/fjam/main)

W Options: (Current settings: auto submit, all revisions)

Submit | Filter | Advanced |

() Add files to pending changelist @) Automatically submit copied files

Pending changelist: |Mew
Changelist description:

Copying /fiam/Bruno_dev to main (ffjam/main)

[Add previously linked job(s) to the new changelist

| Copy |[Preview][SetDeﬁuHs...][Cancel

[179]

Perforce Streams

Note in this case the auto submit option is enabled, and the default change list
description will be used.

Because this is a copy action, there is no need for resolving or merging. As we saw
in the previous section, P4V will not allow a copy if there is merge required to the
development stream.

Migrating from classic branches to
streams

You may wish to migrate an existing classic branch or code line which already exists
in your repository into a stream. In principle this is easy to do. The steps are:

1. Create a new Mainline stream by branching files from existing code lines.

2. Create new development and release streams from the new Mainline.

Migrating a set of existing branches with pre-existing relationships
o is possible, but more complex and beyond the scope of this book.
~ It requires careful planning and typically is the result of being
Q conducted as a specific project. If you can, we recommend migrating
project-by-project at an appropriate time in their lifecycle where you
can start just by migrating a single Mainline.

Creating a new Mainline stream

First, we create our new mainline, via right-clicking on the file and selecting
New Stream... to get:

[180]

Chapter 9

T e

Basic Settings | Advanced |

Stream name:

marmalade|

Stream type:

[mainline - serves as the base or trunk of a stream system -

e

Change propagation: (

I
<
The mainline is the redpient of most changes made in = o
development or release streams. W Mmainline

The depot where the mainline stream will be located:

Description:

Created by bruna.

Populate the mainline stream after it is created

[(0]4][Cancel][Help]

In this case, we defined the Stream type as mainline, given the new stream name
as marmalade and have checked Populate the mainline stream after it is created.

R You need to be sure that it makes sense to create a second Mainline
~ in the same stream depot (jam). Consult with your administrator
Q as to whether you should be doing this in a new depot or not. For
follow-along activities it is fine to use the jam depot.

Populating our Mainline stream

Having created the marmalade stream, we can populate it using the Branch Files...
right-click option, as shown in the following screenshot:

‘ {;ﬁ marmalade Q|

View Stream 'marmalade’

Merge/Integrate to 'marmalade’...
Copy to 'marmalade’...

l} Branch Files...

Mew Workspace...

[181]

Perforce Streams

This will give us the following dialog (with possible subdialog):

-
e I =
-
| 21 Browse for Fnesﬂ:ouer.
Branch method: [Speciﬁ-I source and target files] I
Source files/folders: 4 Qﬁdepot
4 Jam
= /fjam/marmalade/... Add...
- O REL22
Choose target files/folders: > & Jamgraph
Jfjam/marmalade/... g g Misc
> perfrmerge
Generate branch mapping from above paths for use in future integrations: > T www

W Options: (Current settings: auto submit, filtered by files)

Submit | Filter | Advanced

() Add files to pending changelist @ Automatically submit after branching files
Pending changelist: | Mew
Changelist description:

Branching

[fjam/marmalade/...

to [fjam/marmalade/. ..

[Branch][Preview][SetDefauIts...][Cancel

We need to Remove the default Source files/folders and then click on Add... to
select an appropriate new source, as shown in the preceding screenshot.

By clicking on Branch we will have created our new mainline stream. Note that the
Filter and Advanced tabs can be used as discussed in Chapter 8, Classic Branching
and Merging. This allows us to do things like branch from a label or other non-head
revision of files, if we want to.

Other standard types of stream

So far we've looked at mainline and development streams. These are the streams that
you're most likely to encounter during day-to-day activities. The streams interface
has these additional standard types:

* Release streams: for managing releases

* Virtual streams: these partition larger streams for more efficient access

* Task streams: useful when only a relatively small number of files are likely to
be changed

[182]

Chapter 9

Release streams

Release streams are intended to support releases. Being closer to use by a consumer,
release streams are designed to be more stable than mainline streams.

Typically, changes made on a release stream are intended to stabilize or improve
quality. These fixes are usually merged back to the mainline so that when the next
release stream is created from the mainline, it will already incorporate the bug fixes.

This diagram shows the typical relationship between mainline and release streams.

Bug fixes on the
7 release branch

Rel 2.0>

Mainline>

. S - Bug fixes merged back
Features on Mainline § ./ .~ g L g
- . to Mainline before the
intended for next)
next Release stream is
release
created

The features for Rel 2.0 are made on the mainline ready for the release stream to be
created. The reason for not making bug fixes on the mainline and propagating them to
the Rel 1.0, is that such propagation risks taking with it the new features. Although
this can be done via selective propagation, it is more risky and likely to destabilize the
release. Therefore, it is best to do it as shown in the preceding diagram.

[183]

Perforce Streams

Change propagation for Release streams

To support the model we have just described, when you create a release stream the
Change propagation option is shown as follows:

' ™y

Basic Settings | Advanced |

Stream name:

Jaguar_Rell.0

Stream type:
[release -used for fixing bugs, testing and release distribution -
Change propagation: &
il release

To parent: allow merges to the parent stream

o
[From parent: allow copies from the parent stream *

parent

The parent stream from which this stream will be branched:

Jaguar_main {//Jaguar/Jaguar_main) D~

Description:

Created by bruno.
[] Create a workspace to use with this stream
Branch files from parent on stream creation

[(0]4]’ Cancel][Help]

Thus we see that it supports propagating changes to the parent but not from the
parent (the mainline in this instance).

Virtual streams

A virtual stream isn't actually a stream at all. Instead, it is simply a filtered view of
its parent stream. This means that a virtual stream typically includes only a subset of
what is in its parent. If you propagate changes to the virtual stream, you are in fact
propagating them directly to the parent.

The power of virtual streams is that they make it easier for different teams or
people to work only on a subset of all the files in the parent stream. It also means
that you have fewer files to merge down before you copy your changes up to the
mainline,which can be a very useful time saver. Virtual streams can also be used for
re-parenting lots of child streams in one action. See the section Re-parenting streams
later in this chapter.

[184]

Chapter 9

In the following example, we are creating a virtual stream for only documents within

its parent stream of main:

")

Basic Settings Advanced |

Stream name:
doc

Stream type:

virtual - used to narrow the scope and submit directly to parent

Change propagation:
) patent
Changes pass through the virtual stream to and from

the real parent stream.
virkual

8
3a
aoa

The parent stream from which this stream will be sourced:

main (ffjam/main} [R

Owner: bruno
[Locked {only the stream owner can edit stream settings)
Submit restrictions need to be made in source stream
Root folder: doc

Depot path: /fjam/doc
Paths (3ssign access levels to stream paths):

share docj..

Note that on the Advanced tab we have specified in Paths to share doc/... rather
than share This means we'll only include the doc directory and its contents and

not the rest of the stream.

Once created, the virtual stream appears on the streams graph, and can be used as

the parent of other streams:

e,: main

¥ Bruno_dev ¥y dev2s

-
U1

4

i
A 3

¥ bruno_doc ¥y fred_doc Q

Here we see that bruno_doc and fred_doc are using the doc stream as a parent. So
using a virtual stream is the same as using a real stream. However, if they propagate
changes to doc, then they are actually propagating those changes to main.

Task streams

Task streams are a specialized version of development streams introduced with
Perforce server release 2013.1. Task streams are intended to support a focused
development activity that typically requires only a short time to complete.
Supporting a focused development activity means that task streams cannot be the
parent of another stream. However, you can convert a task stream into a standard
development stream if you discover that the task has become a larger project.

[185]

Perforce Streams

A not so user-visible characteristic of task streams is that the server can process them
more efficiently than other types of streams. This results in better performance for
large installations. However, this processing efficiency advantage is lost when the
number of files being modified in the task stream becomes large (typically thousands
or greater).

Creating a task stream is just like creating other streams: right-click on the file
and select New Stream..., or right-click on the file and select Create New Stream
from You then need to specify that the stream is of type task, as seen here:

Basic Settings | Advanced |

Stream name:
Task-bug fix 123
Stream type:

[msk - creates lightweight branch, used for bug fixes and new features -

Change propagation:

. parent
To parent: allow copies to the parent stream

From parent: allow merges from the parent stream b

The depot where the task stream will be located:

Thie parent stream from which this stream will be branched:
main (Jfjam main) D~
Description:

Created by bruno.

Branch files from parent on stream creation

[0K][Cancel H Help

Working with a task stream is just like working with a development stream. However,
task streams are intended to be short-lived, and once you have used your task stream
via merge-down, copy-up, it is good to tidy things up and delete or unload the stream.

Al

~ The unload option is typically used by administrators of larger
Perforce repositories to avoid visual clutter in P4V.

[186]

Chapter 9

Managing streams

In this section, we'll look at various techniques for managing streams. In general,
these techniques are similar to other parts of the P4V interface. However, the
presentation is unique to the needs of the streams interface.

Applying the stream filter

It is not uncommon to find a hundred or more streams in a depot. Even if there aren't
a large number of streams in a depot it is often useful to focus on just the streams
that are relevant to your work. Creating that focus is easy with the filter option show
as follows:

& Pending & streams [0
\ng ﬂ- Depotis jam
(Graph View @ptions B X

Depop’ jam -

g rel21

| / Select Streams \' ‘

7] ¥ bruno_doc
V| & fred_doc
V] # orel2l

£ rel22

o main gz, doc

£ rel23
V| & Task-bug fix123
£ marmalade

i 4 1 Y I £

& + A

Displaysgream: |Name ¥ Bruno_dev @ dev23 [Teskbugfi.. 3 | @ bruno_doc W fred_doc

Stream node Wit

Check the various streams to see the ones you wish to on the left-hand side. Explore
the Select Streams dropdown options to check different groups of streams.

Mapping stream files

The Advanced tab for a stream provides options that control how files are mapped
in a stream. This is similar to the view specification in a classic workspace. However,
the files in a stream must relate to their parent. Thus, the specifications have an
implicit reference to the files of the parent stream. Even though the format may

be different, the concepts are similar to those described in Specifying a workspace in
Chapter 6, Managing Workspaces.

[187]

Perforce Streams

Like the view specification of the classic workspace, a stream's advanced
specifications also define the structure of any workspaces associated with
the stream as we can see in the following screenshot:

i o
Basic Settings I Advanced |

Owner: bruno

[Locked (only the stream owner can edit stream settings)
[submitting files to the stream restricted to stream owner

Root folder: |Bruno_dev

Depot path: /fjam/Bruno_dev
Paths (assign access levels to stream paths):

share ...
import images/... [jdepotfwww devimages/...|

Remapped (change the default mapping of depot files to the workspace):

Ignored (specify file or folder patterns to exdude from stream):

.obj

[Ok] l Cancel] [Apply] [Help l

This section is not intended to provide an exhaustive coverage of stream workspace
mappings. Rather, it is intended to provide users with the knowledge required to
read and understand such a mapping.

In the preceding example, the Paths section is importing a specific directory
(//depot /www/dev/images/ . . .) into the local directory images/ ... (which is
directly under the stream root). All files in this directory and below will be treated
as read-only and can not be modified in the stream. The various dialog options are
further explained in the following sections in this chapter.

Al

~ The Help is always available to you, and in particular you can click on
the stream view link to get an explanation with various examples.

Consult your local Perforce administrator for guidance specific to your organization.

[188]

Chapter 9

Paths/access levels

Paths define how you may access stream files in your workspace and how they
propagate to and from this stream. The following path types are available:

* share: Changes to files in shared paths will flow to and from other streams.
For example, if you modify files in this stream you can merge them down or
copy them up to other streams as appropriate. This is the default.

* isolate: Changes to files in isolated paths do not propagate to other streams.
Isolated paths are useful for storing build and other generated files. So
you can store built binaries on a release branch, but isolate them from the
mainline parent which handles only source code.

* import: Imported files populate a workspace but can not be modified and do
not propagate to other streams. Imported paths are useful for components
such as third-party libraries or other shared resources that are not to be
modified by a project or stream.

* exclude: Prevents files that would be inherited from the parent files from
becoming part of the stream or populating the stream workspace. This allows
the creation of more focused child streams.

M It is important to remember that streams inherit the mappings of
Q their parent. If you exclude files they are not available to children
and cannot be restored (for example, by grandchildren).

Remapping of files

Files can be remapped, which enables you to have them synced to a different
workspace location than their corresponding relative location in the repository. For
example, the following view specifies that the parent's doc files will be mapped
beneath the doctools path in workspaces which use this stream:

doc/... doctools/doc/...

Ignoring files

You can specify file types to be ignored, which is useful for ensuring that artifacts
such as object files or other interim build files are never checked in or propagated
to other streams. These types are excluded by the workspace view of workspaces
associated with the stream. For example:

.0bj
/tmp/ . ..

[189]

Perforce Streams

Re-parenting streams

While this is relatively easy to do, we need to consider the situations when it is a
good idea. The two main scenarios are:

* Propagating changes across the stream hierarchy

* Moving development streams from one parent to another in more complex
stream hierarchies

Propagating changes across the stream hierarchy

Propagating changes across the hierarchy allows you to perform selective
propagation of changes. Normally, changes only flow between parent-child
streams. If you have two child streams of the same parent then they normally
exchange changes via the parent:

& main & Mmain

-
-

it U
¥p Bruno_dev &) Fred_dev Q

Normal flow of

change between can propagate

By re-parenting, we ‘

il &
O

¥p Fred_dev

PR -

18
U1

g

peers is via the parent

changes directly |

&¥p Bruno_dev

You might not want to exchange changes via the parent as it is potentially making
development changes prematurely visible on the mainline. Therefore, you can
re-parent one child to the other and then perform the selective migration directly
between them.

M While this is not particularly difficult to do, it should be the exception
Q rather than the norm in your development processes. Selective
propagations are more risky than straight forward propagations.

[190]

Chapter 9

Moving groups of development streams

It is quite common to have multiple development streams grouped under projects.
Given that project priorities sometimes change, you may want to move a development
stream from one project to another:

o main

0| 4
~t

&3 Project_Odin

1

<

¥ Bruno_dev

;‘-j main
|-
Ll
18 i1 i1
! ! <
¥ Project_Thor Q ¥ Project_Odin &3 Project_Thor Q
{1 4 {1
¥ Fred_dev @ Bruno_dev @ Fred_dev

Directly editing versus drag-and-drop

There are two main ways of re-parenting a stream. You can edit the stream
(right-click | Edit Stream 'Bruno_dev') and change its parent easily, typically
using the, Browse... button:

The parent stream from which this stream will be branched:

Project_Odin (fjam/Project_Odin)

- | Browse... |

In a similar way to using drag-and-drop to move your workspace to a different
stream, you can re-parent a stream by dragging and dropping it on a new parent,
as shown in the following screenshot:

o main ;L doc
l:ﬁ
P |
\! ! B "’
P Project_Odin ¥y bruno_doc
ye
@ Bruno_dev

il 4
-

¥y fred_doc

[191]

Perforce Streams

This shows Bruno_dev about to be dropped on to the doc virtual stream. One
advantage of virtual streams is that they make it easy for all of their child streams

to be re-parented just by re-parenting the virtual stream itself.

Al

Q

You need to be careful with drag-and-drop and make sure you drop
on the correct parent. It is all too easy to drop on the wrong target!
People also accidentally re-parent streams when they just intended to

move their workspace between streams.

How streams handle renames

We saw in Chapter 8, Classic Branching and Merging that handling renames of files
across different branches can be problematic. With streams, these problem situations
are detected and handled straight forwardly. For example, renaming a file on one
stream and then finding that the equivalent file has been edited on the other stream

will show up in your resolve like this:

Resolve method:

() Auto resolve multiple files @) Interactively resolve files one at a time

Files to resolve:

(D Resolve (target)’ & Resolve With (source) Resolve Type
B c\P4DemoWorkspaces\bruno ... ffjam/main/src/execvms.c #2, #2 content
2 c\P4DemoWerkspacesi\bruno_j.. 1B /fjam/Bruno_dev/src/execvms.c move

< T | 3

[] Merge binary files as text when resolving content

Recommended action:

Click the "Accept Source” button below.

Only source file differs from the common base file.

Comimon base @ [fjam main/srcfexecyms.c¥1
Source file Differences from base: 1
Target file Differences from base: 0

2

uno_devfsic/execyms.c

@ Merged result Confiicts: 0 HliamjBrunc_devjsrcfaxecvms-nav.c

Resolve options:

Replace target file with a copy of source file Accept Source

Leave target file unchanged Accept Target

Replace target file with the merged result of source and target Accept Merged

Manually merge source and target before accepting Run Merge Tool

Additional Actions ¥

[192]

Chapter 9

In the preceding screenshot, we see the combination of a resolve dialog and the
revision graph for the files involved. The file execvms. c was edited on main, and
has been renamed on the Bruno_dev stream to execvms -new.c.

The next screenshot clearly shows the options as to how to handle the renamed file:

Recommended action:
Click the "Accept Target” button below.
The target file has been renamed ar moved.

Common base:

| /fiam,/Bruno_dev fsrcfexecvms.c

Resolve options:
Rename the file to match the source file:
Jfiam Bruno_dev srcfexecvms.c
Keep the current name of the target file:

ffiamBruno_dev fsrcfexecvms-new. c

| Accept Source |

Accept Target

The recommended action will merge the source changes into the file with the new
name, which is typically what we would want. We do have the choice not to do this

if it is appropriate.

Al

The revision graph screenshot was obtained via the Additional

very useful option at times to help understand the history of a file
and decide what the appropriate action should be.

Summary

‘Q Actions button in the bottom right of the resolve dialog. It is a

This chapter has covered the basics of using streams. We've seen how they provide
an implementation of the mainline model. They also automate most of the activities

required to manage branches and keep them up to date.

In the next chapter, we'll look at configuring P4V so that it better supports your

work style.

[193]

10

The P4V User Experience

For many people the P4V user experience is fine out of the box. Also, there are many
ways that you can adapt P4V to make your work easier and more productive.

In this chapter we will cover:

* Navigating large trees easily
* Integrating access to other tools
* Controlling P4V operations

* Reconciling offline work

M The actions described in this chapter are unique to your specific instance
Q of P4V. Most have no server impact so the follow-along suggestions can
be used even if you only have a connection to a production server.

Navigating large trees of folders

Navigating a large project tree can be tedious. P4V has a bookmarks feature to help
you deal with this situation.

Bookmarks

Viewing a folder which is six levels deep in a tree requires at least six clicks, with
each click resulting in P4V asking the P4D server for information for items at that
level. This can be time consuming as well as tedious. P4V provides a bookmark
interface that can quickly reposition either the depot tree or the workspace tree to
locations that you define. Bookmarks are easy to declare, manage, and remove.

The P4V User Experience

You can explicitly declare a bookmark using the Tools | Bookmarks menu interface.
However, most people prefer to select a directory or file in the tree panel, right-click on
the page, and then click on Bookmark... near the bottom of the menu, shown below:

Bookmark. .
Show In

Open Command Window Here

Refresh ‘s’

Either method brings you to the add bookmark dialog shown as follows where you
can define the attributes of the bookmark.

B] Add Bookmark n

Menu item:

Mame:

Placement:

Shorkeut:
Faolder or file:

Location:

| Iidepoty Jam/Malnsrc|

3 Bookmarks

Mew Folder..

|N0ne

L

| HidepotflamMATIN/src

Browse...

Cancel

.

To access a bookmark, you can use the optional shortcut key defined when you add
the bookmark. You can also use the Tools | Bookmarks menu.

You use the Tools | Bookmarks | Manage bookmarks... menu to launch the

bookmark management dialog, shown here:

B] Manage Bookmarks E

= [Bookmarks
=3 libraries
[ET] I1depot/lamMaIn)src
[T IidepotMisc/manuals

Type : Depot fFolder

[RI=0 h
Edit...
Delete
Mowve Up
Mave Down

Location ;| {jdepatyJamfMATHsrc

[196]

Chapter 10

This allows you to create new bookmarks, edit them, or delete existing bookmarks.

Bookmarks can be used either to return to a folder or file, or to filter the current view
to only a bookmarked folder, as shown in the following screenshot:

fldepot/ ffdepot/JamMAIN/src/

EEE Depot %E Workspace 1@, A Pending E] B streams EEE Depot %E Waorkspace 1@. \Z
Q —_— e — v Show Deleted Depot Files IQ bruno_jam_main -
. & depot Hide Deleted Depot Files 4 & //depot/lam/MAIN/src o~

ﬂ B Build.com £8/8 <text>
Build.mpw #1/1 <text>
cbt £1/1 <text>
command.c #8/8 <text>
command.h #6/6 <text>
compile.c #26/26 <text>

Entire Depot Tree
v | Tree Restricted to Workspace View

m

¥ | Mo Folder Filter |
/{depot/Jam/MAIN/src

1

In the preceding screenshot we can see that the folder filter shows the bookmarks
currently available. Selecting one of them will filter the current folder appropriately,
which can be very convenient.

R To follow-along, set bookmarks in both the depot tree view and
~ the workspace tree view. Collapse or expand related sections of
Q the display. Select the various bookmarks to see how the display
repositions and changes.

Custom P4V tools

P4V has a custom tool interface that allows you to integrate tools into the P4V menu
system. Build, code review, formatting, and other process customization tools are
commonly integrated into the P4V menu context using this technique.

Custom tools have been present for many years in P4V, and in some cases, the reason
for the use of a custom tool has been made redundant by new P4V functionality.

Custom tools can be as simple as a straight forward p4 command-line output (useful
for copy and paste of the text), or they can execute a script which performs multiple
process steps.

[197]

The P4V User Experience

To add or manage custom P4V tools select the Tools | Manage Custom Tools...
menu to bring up this dialog:

#] Manage Custor Tools @
Custom tools menu:
B Custom Tools New =
Tool...
Folder...
Separator

viove UD

Application:

Arguments:

Import Tools. .. Expor

e

From this dialog you have complete control of the custom tool structure. You can
even coordinate the import and export of tools between different hosts. To manage
the individual tools, you select either the New or Edit... button as appropriate. This
brings up the following dialog where you can specify the characteristics of the tool:

2] Edit Custom Tool ==
Menu item:
Mame: Describe Changelist I}
Placement: 2 Custem Tools MNew Folder...

| Add to applicable context menus

Associated application:

| Run tool in terminal window
Close window upon completion
Prompt user for arguments
Description:
Add file browser to prompt dialog
Refresh P4V upon completion
Ignore PACONFIG files

Application: pd.exe Browse...
Arguments: 0 5p -u Su describe = %C Select...
Start In: sr Browse...

[0K] | Cancel

Help

[198]

Chapter 10

In this example we are running a simple p4 describe (a Perforce command-line
command as mentioned in Appendix B, Command Line) on a particular changelist. The
inclusion of the following arguments makes sure that the command is executed for
the correct server and as the correct user -p $p -u S$u.

Note the check box labeled Add to applicable context menus. If selected, the tool
will appear at the bottom of context menus where it applies.

One of the powers of the tool specification is the ability to specify arguments by type.
The Select... button at the right side of the Arguments: prompt brings up a dialog
that allows you to specify arguments. We see a sample of the argument choices here:

B] Select Argument n

Select an argument to use with the application:

Argument Drescription -
% Selected label

%abr Selected branch

o Selected changelists

%t Selected changelists

%D Selected files or Folders (depak svyntax used For depot Files)

%ed Selected files or Folders {depot syntax used for depot Files)

aF Selected files {(workspace syntax used for depot Files)

%af Selected files {workspace syntax used for depot Files)

Sl Selected workspace j

Uppercase %' specifiers send walues to the application as a group
Lowercase ‘%' specifiers run the application once for each value

OF | Cancel |

Note that the character case of the argument specification can control how the tool
is invoked.

For the previous example, when you right click on a changelist the context menu
would be:

T

a Submitted @)
files)
B Filter: none applied 100+ matches % W % ﬂes)
Changel.ist Date Submitted Submitted By Description =
— (W
’ \.B 12128 View Submitted Changelist 12128’
- @ 12127
> -_B 12126 Get Revision...
DA LR LSS,
Prim Submitted Chanyelist 12125 ... Crrl+P
ate now . -
Refresh Submitted Changelist List
Folder s
Refresh Submitted Changelist 12128
Change B .
o Describe Changelist

[199]

The P4V User Experience

Thus we see that the description Describe Changelist appears on the menu and can
be clicked. The result might be:

#| Describe Changelist @
Change 12128 by bruno@bruno_jam_main on 2013/08/26 09:25:43

Fix to bug 728
Removed file no longer needed.

Affected files ...
... [{depot/Jam/MAIN/src/Build. com #9 edit

... [{depot/Jam/MAIN/srcfd. txt%1 add
+vv ffdepot/Jam/MAIN/srcfpathvms. c#7 delete

In this instance you can copy and paste the text (for example, into a defect
tracking tool).

M Follow-along by experimenting with different specifications. The tools
Q don't need to exist. However, you should assure benign results in case
you select them.

P4V preferences

P4V provides users with access to preferences that control most of its default
and general operational characteristics. You can control the characteristics of
communications with the server to adjust the responsiveness of P4V. You can
specify alternative edit, difference, and merge tools by file type. You can even
restore dialogs that you have chosen not to be shown again.

Management of preferences is available through the Edit | Preferences...
menu. Selecting this option brings up the Preferences dialog, as we see in
the following screenshot:

[200]

Chapter 10

B] Preferences n

Connections Check server for updates every: 0 minutes

Streams

S 23k Maximum number of files displaved per changelist™: 1000
Merge-Integrate Maximum size of files ko preview (excudes audio and videa files): 100 KB

Inteqgrate Flags

Copy

Branch
Dauble Click
Sharkcuts
Logging
Display
Files
Features
Toals
File Editors
Diff
Merge
Applets

Mumber of changelists, jobs, branch mappings or labels ko Fetch at a time: 100 (0=all)

* after limit is reached, changelist and resolve dialogs show plain text list of files

OF | Cancel | Apply | Help ‘

Selecting topics in the left column changes the preference values shown in the right
side of the dialog. As we see in the preceding screenshot, Server Data displays
preference choices that control the granularity of data exchanged with the server.
Changes to these values provide you with a level of control of the responsiveness
of P4V when it needs data from the server. As the numbers of users grows, the
importance of these values becomes more important.

As you can see, there are a large number of preferences; too many to cover at any
level of detail in this book. Therefore, we will be providing an overview of the more
common preferences that users adjust. As a warning, be careful about modifying
any of the preferences associated with the selections under the Behavior topic.

B! Preferences

Caonnections User specified editor associations:
Streams =
Server Data Extension
Echavior el
Merge-Inteqrate
Integrate Flags “html v
Copy
Branch
Double Click
Shortouts
Logging
Display
Files
Features
Tools

| Application ‘ add... |

g Chrame i
& Motepad Edit. .,
Remaiwe

| Default

Diff

Merge
Applets

]

Cancel Apply Help

[201]

The P4V User Experience

The File Editors, Diff, and Merge preferences allow you to specify alternative tools for
these functions based on the extension of the filename. For example, a browser is often
the default for the . htm1 files. Developers on the other hand often want to launch an
editor rather than a browser, but there are still times when they would prefer to launch
a browser. P4V allows you to specify both with the editor as a default.

\ An interesting follow-along is to specify multiple alternate
~ applications for the . html extension (similar to the
Q specification shown previously). Now see how this impacts
the open and open with context menu choices.

Reconciling offline work

There are going to be times when you need to make changes to the files in your
workspace but you don't have connectivity with the primary server. If you are
offline you can't perform a check out, mark for add, mark for delete or other similar
Perforce action. However, you have the files locally and you can manually make
them writable and modify them, or delete them. When you reconnect to the primary
server you can request to reconcile your offline work using the Actions | Reconcile
Offline Work... menu, or you can select Reconcile Offline Work... from a context
menu in the tree pane, as shown in the following screenshot:

=@ Submit... Chrl+5
= Revert Unchanged Files
Revert Files Chrl+R
Resolve Files. ..

Reconcile Offline work, .

= SO il

Either selection will scan your workspace for files that are different from what the
server expects. This saves you having to remember what files were modified, added
or deleted while you were offline. These files are organized based on how they differ
and are presented in the following dialog:

[202]

Chapter 10

B] Reconcile Offline Work E

P Filter: none applied no matches ﬁ? \F_ L

W Modified files (Select files to check ouk)

[w Mamne In Falder Revisian Tvpe |

4R Local files nat in depat (Select files to mark for add)

[w Mamne In Falder Revisian Tvpe
] Fookxk cipbookhworklj... Text Document

Depat files missing From workspace (Select files to mark For delete)

[w Mamne In Falder Revisian Tvpe
@" EXEBCMAL.C fidepotfJamiMAL.. #111

Add Files ko pending changelist: |deFauIt ﬂ

Adwvanced Reconcile. .. Reconcile | Cancel |

The dialog is organized into files that are added, deleted, and modified. You select
files to include in a reconcile changelist. The Advanced Reconcile... button at the
bottom-left of the dialog brings up a comparison dialog that organizes the files

by location. Selecting files from the dialog provides details as to why the file was
selected for inclusion as part of the reconcile activities.

M To follow-along, make changes to files in your workspace using the
Q operating system. Then request to reconcile offline work. Be careful
not to submit in a production environment.

Summary

At the start of the chapter we said that for most people P4V operates just fine out
of the box. This chapter has covered some useful methods to let you adjust P4V to
better suit how you work.

[203]

A Demo Server

In this appendix we provide details and links for a straightforward, step-by-step
setup for running examples that accompany the contents of this book.

Examples in the book

The examples in this book are taken from a slightly customized version of the sample
repository which Perforce has made available on its website.

This customized test repository is available (together with detailed installation
instructions) as detailed in the next section Sample repository. This sample repository
can be easily installed and used without a Perforce license under their 20/20
licensing model: free for 20 users and 20 workspaces (or unlimited users and 1,000
files). This is without support, although you may already have access to support if
your organization has Perforce licenses.

Sample repository

The page to download these files from is:
http://www.packtpub.com/learning-perforce-scm/book#support
Please download one of these files:

* sampledepot.zip (for Windows users)

* sampledepot.tar.gz (for non-Windows users)

The files are roughly 2Mb in size and unzip to about 7Mb.

A Demo Server

Platform specific executables

You will need to install the appropriate executables for your platform.
These are located at:

http://www.perforce.com/downloads/Perforce-Software-Version-
Management /complete 1list/20-20

You will need the following files (different versions depending on your
operating system):

* p4d.exe (just pad on Mac/Unix/Linux)

* p4.exe (just p4 on other operating systems)

e P4V: the full package

Install it

The basic principles for platform-specific instructions are:
1. Download the appropriate server for your operating system
(as mentioned in the previous section)

2. Download the zipped test repository (see link mentioned in the
previous section)

3. Unzip the repository in a local directory
Initialize the Perforce repository in that directory

5. Run the Perforce server (p4d or p4d.exe) specifying a particular port
and the correct directory

The contents of the zip file

When the file is uncompressed, it creates a directory named perforceSample.
The perforcesample directory contains the following files:

* checkpoint (a file containing Perforce metadata)

* checkpoint.mds (checkpoint checksum)

* readme.html (a description including installation instructions)

* server.bat (a Windows batch file to run the server)

[206]

Appendix A

It also contains the following directories containing Perforce archive files:

® depot
®* Jjam
® gspec

Detailed installation instructions for Windows

Please note that a copy of these instructions is also available at the web page linked
in the previous Platform specific executables section. Use the online instructions if they
are different to what is contained here:

1. Uncompress the sampledepot . zip file using a standard compression utility
such as WinZip or 7-Zip. On Windows 7 or above, Windows Explorer can
open . zip files as compressed folders: right-click the folder, click on Extract
All, and then follow the instructions.

2. The perforcesample directory where you unzipped the files, for example
c:\PerforceSample, is known as the p4rOOT directory.

3. Copy the pad.exe executable to the P4ROOT directory using Windows
Explorer.

4. Run a command prompt window (click on Start, type Command Prompt
and click on Run).

5. Change to the P4rROOT directory:

cd c:\PerforceSample

6. To create your sample Perforce database, restore the checkpoint file by
issuing the following command (from the p4rROOT directory):
p4d -r . -jr checkpoint

7. To ensure that the database format is consistent with the Perforce server
version that you are using, issue the following command:

p4d -r . -xu

If the command is successful, you will see the message: ...upgrades done.

Run the file server.bat (see the following sections for details).

[207]

A Demo Server

Detailed installation instructions for
non-Windows operating systems

Please note that a copy of these instructions is also available at the web page linked
in the previous Platform specific executables section. Use the online instructions if they
are different to what is contained here.

1. Uncompress the sampledepot. tar.gz file using the following commands,
we will assume in your /tmp directory:
cp sampledepot.tar.gz /tmp
cd /tmp
gunzip sampledepot.tar.gz
tar xf sampledepot.tar

The perforcesample directory where you unzipped the files, for example
/tmp/PerforceSample, is known as the P4rROOT directory.

2. Copy the p4ad executable to the P4rOOT directory:
cp p4d /tmp/PerforceSample

3. Change to the P4ROOT directory:
cd /tmp/PerforceSample

4. To create your sample Perforce database, restore the checkpoint file by
issuing the following command (from the P4rOOT directory):
p4d -r . -jr checkpoint

5. To ensure that the database format is consistent with the Perforce Server
version that you are using, issue the following command:
p4d -r . -xu
If the command is successful, you will see the message: ...upgrades done.

6. Run the server with the following command:
p4d -r . -p 1666

Windows privileges and details

The preceding installation instructions will allow you to run the test repository as an
ordinary user, without requiring administrator privileges.

[208]

Appendix A

However, you may still have problems on locked down corporate installations of
Windows. The privileges required are to:

* Download the executables and the zipped repository
* Being able to unzip them to a directory on your local PC

* Being able to run a perforce server executable (p4d.exe) which uses a
(configurable) port, you may need to be given permission for this

The authors have created a simple batch file (server.bat) as part of the zipped
sample repository which shows you the command format and provides some simple
guidance. You can just run this file from a cmd window, or by double-clicking on it
from Windows Explorer:

C:\PerforceSamples>server.bat

Please note that the following command will not exit and will just
say:
Perforce Server starting...

This is perfectly normal! Just minimise this window and leave it
running.

If you close this Window, or press Ctrl+C the server will stop.

C:\PerforceSample>p4d -p 1666 -r c:\PerforceSample\ -vserver=3 -L p4d.
log
Perforce Server starting...

The server.bat file is located within the sample repository directory. The contents of
the file are:

@setlocal

@echo off

REM Start of possible customization

REM You can change the following line to set the value
REM to a different port on the local machine if you wish
REM -----

set P4PORT=1666

REM ------

REM End of customization

REM This sets the environment variable to the path of this file
set CURR_DIR=%~dpO

[209]

A Demo Server

set P4ROOT=%CURR DIR%
set P4JOURNAL=%CURR DIR%journal

REM The "title" command just sets the title of the CMD window
title Perforce server - don't stop!

@echo.
@echo Please note that the following command will not exit and will

just say:

@echo Perforce Server starting...

@echo.

@echo This is perfectly normal! Just minimise this window and leave

it running.
@echo If you close this Window, or press Ctrl+C the server will stop.

REM We assume the p4d.exe is present in this directory
@echo on

$P4RO0OT%p4d.exe -p %P4PORT% -r %P4ROOT% -vserver=3 -L p4d.log

@endlocal

[210]

Command Line

In this appendix we relate P4V features to the underlying commands that implement
them. All Perforce interfaces use a common set of commands. Being able to interpret

these commands can help you create and understand the automation associated with
builds and other activities.

This appendix is not intended to be an exhaustive description of all commands, which
is well provided by the Perforce help and online manuals. We include some examples
of basic commands to illustrate the principles and show different types of command.

What is P4V using?

Learning by example is a tried and true method. Fortunately, P4V provides you
with full access to the commands that it is using. You control the command details
displayed using Edit | Preferences shown as follows:

B! Preferences n

Conneckions Log pane options:
Streams
Server Data v show pd reporting commands (dirs, Filelog, Fstat, ete.)

=I- Behavior
Merge-Integrate
Integrate Flags

v Show p4 command output For file operations

Copy Logging to a file:
Eranch
Double Click [Enable logging to file
Shortcuts
Mame: |C:,|'p4\-'|og.txt Select. ..
Files Size: | 500 KE

Features
Toals

The log panel always contains a record of the file operation commands that it
uses. These are the commands that support actions such as check out, add, delete,
and submit. By default, P4V trims the detailed information that these commands
generate. You can see it with the Show p4 command output selection.

Command Line

P4V needs to update its display information frequently. Most of the time, these
commands can be considered as visual clutter. However, this also means that you
won't see the commands associated with activities such as populating status panels
with information about file histories or changelists. You can see these commands
with the Show p4 reporting commands checkbox.

The results might look something like the following screenshot:

= Log 8 () Dashboard

p4 stream

We can see here various Perforce commands being executed. In most cases, the
results are not shown as they are processed by P4V.

The Perforce API

These commands are available via the PAAPI (Perforce application programming
interface). The Perforce command line client p4 is a very thin wrapper around the
underlying P4API. P4V does much more processing of the results in order to provide
a graphical user interface.

One of the very useful features of P4V is that you can copy commands from the log
window, paste them into a command line terminal (such as cmd. exe on Windows),
and run them. They will produce sensible results such as the following:

Bl C\Windows'\system32\cmd.exe

IC:sworksbruno_jamn_mainsdepotsJam~MHAIM-src >pd depots

Depot depot 281185716 local depotr... ‘Default depot’

Depot jam 20118289 stream jam/... ’'Stream depot for Jam development *
Depot spec 2011-11-82 spec .pds specs... 'Created by bruno.

C : sworksbruno_jam_main“depotsJamsMAINssrc >

This shows output of the p4 depots command on a Windows machine using the
cmd. exe command prompt. Other p4 commands will produce output in a similar
format. All commands take parameters which are discussed in the following section.

Command prompts require appropriate environment settings, this is discussed in
the next section.

[212]

Appendix B

M The easiest way to create such a command prompt with an appropriate
Q environment is to use Open Command Window Here from near the
bottom of the depot or workspace trees right-click menu.

Command-line help is always available

There are two options for getting help on the Perforce command line.

P4 Command Reference Guide

This is available from the Perforce website in two formats:

e HTML:

http://www.perforce.com/perforce/doc.current/manuals/cmdref/

index.html
e Downloadable PDF document:

http://www.perforce.com/perforce/doc.current/manuals/cmdref/

cmdref .pdf

Notice that the URLs are not version specific, so you will get the latest version of the

particular files.

C f [www.perforce.com/perforce/doc.current/manuals/cmdref/indexhtml & 57 t% @

TOC || Index >
Perforce 2013.1: Command Reference

Table of Contents
About This Manual

54 agﬁ
4 ad_lin

p4 annotate
www.perfarce.com/perforce/doc.current/manuals/crmdref/add. html#1040670

t:} your historicus E Vaccaperna Systems... [7] AssetGen Ltd - Rem... @ FogBugz @ e TV Guide

PERFORCE

|y P4 add
Synopsis
Open file(s) in a client workspace for a

Syntax
pd [g-opts] add [-c changelist]

Description

p4 add opens files within the client wo
are linked to a changelist; the files are
committed with p4_submit. The added

in the depot but be marked as deleted

As shown previously, the HTML version of the help includes a complete list of all
Perforce commands. The specific page for each command explains command line

flags and cross links to other related commands.

[213]

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/cmdref.pdf
http://www.perforce.com/perforce/doc.current/manuals/cmdref/cmdref.pdf
http://www.perforce.com/perforce/doc.current/manuals/cmdref/cmdref.pdf

Command Line

Setting environment variables

This is fully discussed in the command reference manual, towards the bottom of the
table of contents:

p4 where : Perforce's environment variables ca

p4 workspace

i « Crucial The variable must almost
p4 workspaces :

« Useful- Setting this variable can p

+ Esoteric: The default value is norn

Environment Variables

* Server. The variable is set by the |

PAALDIT these cases, the variable is listed
P4AUTH
Ejgﬁi&gg—?pﬂo'\ls Crucial Variables | Useful Variables
P4CHANGE PACLIENT P4CONFIG
EF4COMMANDCHARSET P4PORT P4DIFE
PACLIENT P4PASSWD PAEDITOR
DACLIENTRATH P4USER PAMERGE
PACHARSET
E4CONFIG T

Note the crucial variables which define the Perforce server you are communicating
with (P4PORT), your username (P4USER), and your current workspace
(P4CLIENT).

These will be set automatically if you use the Open Command Window Here option
from P4V's right-click menu as discussed previously. Note that P4V itself does not
take account of environment variables. Instead, it uses the settings defined by the
Connection menu and Edit | Preferences options.

Run the p4 set command:

C:\work\bruno jam main\depot\Jam\MAIN\src>p4 set
P4CLIENT=bruno jam main

P4CONFIG=p4config.txt (set) (config 'noconfig')
P4EDITOR=C:\Windows\notepad.exe (set)
P4PORT=1666

P4USER=bruno

The output shows us the key environment variables already set up in the command
window: PAPORT (1666 is a port on the local machine), P4USER, and P4CLIENT.

[214]

Appendix B

The info command also shows us basic server information:

C:\work\bruno jam main\depot\Jam\MAIN\src>p4 info

User name: bruno

Client name: bruno jam main

Client host: Robert-Laptop

Client root: C:\work\bruno jam main

Current directory: c:\work\bruno jam main\depot\Jam\MAIN\src
Peer address: 127.0.0.1:52808

Client address: 127.0.0.1

Server address: Robert-Laptop:1666

Server root: C:\perforce\p4book\

Server date: 2013/08/26 09:42:58 +0100 GMT Daylight Time
Server uptime: 155:31:02

Server version: P4D/NTX64/2013.2.BETA/663432 (2013/06/25)
Server license: none

Case Handling: insensitive

A commonly seen error message for the info command is:

Perforce client error:
Connect to server failed; check $P4PORT.
TCP connect to 1248 failed.
connect: 127.0.0.1:1248: WSAECONNREFUSED

This suggests that either we have configured the wrong value for P4PORT, or
perhaps that the server is not running, or there is a network issue. Check with your
administrator to resolve this.

M If you do much work at the command line then we recommend
Q reading up on the PACONFIG environment variable. It makes life
much more convenient!

P4 help

Help is always available when running at the command line:

C:\work\bruno jam main>p4 help

Perforce -- the Fast Software Configuration Management System.

[215]

Command Line

p4 is Perforce's client tool for

p4
p4
p4

p4
p4
p4
p4
p4
p4
p4
p4
p4
p4
p4

p4

help
help
help

help
help
help
help
help
help
help
help
help
help
help

help

simple
commands

command

administration
charset
configurables
environment
filetypes
jobview
networkaddress
revisions
streamintro
usage

views

legal

list
list
help

help
help
list
list
list
help
help
help

the command line. Try:

most common commands
all standard commands

on a specific command

on specialized administration topics
on character set translation

server configuration variables
environment and registry variables
supported file types

on jobview syntax

on network address syntax

on specifying file revisions

introduction to streams

generic command line arguments

help

on view syntax

legal and license information

The full user manual is available at http://www.perforce.com/manual.

It is often useful to refer to help on specific commands, a list of which is available:

C:\work\bruno jam main>p4 help commands

Perforce client commands:

add
annotate

attribute

branch

branches

change

changes

changelist

Open a new file to add it to the depot

Print file lines along with their revisions

Set per-revision attributes on revisions

Create or edit a branch specification

Display list of branches

Create or edit a changelist description

Display list of pending and submitted changelists

Create or edit a changelist description

[216]

Appendix B

changelists Display list of pending and submitted changelists
client Create or edit a client specification and its view

clients Display list of known clients

Basic notes on using commands

Many commands have a singular version (for example, workspace) that provides for
create, modify, and delete of an individual element. The plural version of that same
command (for example, workspaces) lists all those elements. This makes descriptions
of what you're trying to achieve using a command grammatically correct, except of
course for the few commands such as sync, fstat, and filelog which aren't actual
English words.

Command options

Many commands provide a preview capability. Unlike most systems, Perforce
preview output is the same as the output generated for full functionality. This can be
very useful for development and debugging. The -n option provides preview for the
commands that support it.

Filters are provided by command options and arguments. Using filters can
significantly reduce the overhead associated with processing a command.

If you look closely you'll find that P4V uses command options that provide
functionality that is unique to the needs of GUIs such as P4V. You don't need to
duplicate every command option that you see P4V use.

If you are not sure which command is the right one, you will get helpful
M responses (including perhaps from the authors!) if you post a question
Q on the Perforce User Forums (http://forums.perforce.com/).
Posts are also mirrored to a mailing list which you can subscribe to
(see http://www.perforce.com/community for more options).

Command input and output

There are several different types of command. They all take parameters and options.
They can be loosely classified as:

* Action commands: such as edit, add, and delete which typically act on one
or more files, and report the results on standard output. They usually only
work on files within the current workspace.

[217]

http://forums.perforce.com/
http://www.perforce.com/community
http://www.perforce.com/community

Command Line

* Reporting commands such as files, filelog, and opened which do not
affect files, but reports the results of the command on standard output. These
commands do not necessarily depend on the current workspace.

* Editor form commands such as submit or client (workspace) which require
the user to edit a formatted temporary file with fields to specify the input,
and then report the results on standard output.

* Interactive commands such as login or resolve which prompt the user for
input and then act on the results. Note that resolve could also be classified
as an action command.

Logging in — an interactive command

For normal production servers you need to log in and you will be prompted to type
in your password:

C:\work >p4 login

Enter password:

User bruno logged in.

Therefore, the password is specified on standard input, and the results are shown on
standard output.

Action commands

Examples of these commands include the sync command which updates the current
client workspace, for example:

C:\work\bruno jam main\depot\Jam\MAIN\src>p4 sync

//depot/Jam/MAIN/src/Build.com#8 - added as C:\work\bruno jam main\depot\
Jam\MAIN\src\Build.com

//depot/Jam/MAIN/src/Build.mpw#l - added as C:\work\bruno jam main\depot\
Jam\MAIN\src\Build.mpw

//depot/Jam/MAIN/src/c.txt#l - added as C:\work\bruno jam main\depot\Jam\
MAIN\src\c.txt

//depot/Jam/MAIN/src/command.c#8 - added as C:\work\bruno jam main\depot\
Jam\MAIN\src\command.c

The edit command performs the equivalent of checkout in P4V:

C:\work\bruno jam main\depot\Jam\MAIN\src>p4 edit Build.com
//depot/Jam/MAIN/src/Build.com#8 - opened for edit

[218]

Appendix B

Reporting commands

Examples of these include the opened command to show files in a pending changelist
within the current workspace:

C:\work\bruno jam main\depot\Jam\MAIN\src>p4 opened
//depot/Jam/MAIN/src/Build.com#8 - edit default change (text)
//depot/Jam/MAIN/src/d.txt#1l - add default change (text)
//depot/Jam/MAIN/src/pathvms.c#6 - delete default change (text)

The files command shows the names of files matching the parameter:

C:\work\bruno jam main\depot\Jam\MAIN\src>p4 files jam*.c
//depot/Jam/MAIN/src/jam.c#35 - edit change 352 (text)

//depot/Jam/MAIN/src/jambase.c#33 - edit change 358 (text)
//depot/Jam/MAIN/src/jamgram.c#21 - edit change 351 (text)

The filelog command shows history for one or more files.

C:\work\bruno jam main\depot\Jam\MAIN\src>p4 filelog Build.com
//depot/Jam/MAIN/src/Build.com

#9 change 12128 edit on 2013/08/26 by bruno@bruno jam main (text)
'Fix to bug 728 Removed file no '

#8 change 12108 edit on 2013/07/31 by bruno@bruno jam main (text)
'Basic actions edit, add & delet'

#7 change 346 edit on 2002/11/12 by earl@earl-dev-guava (text) 'Mucho
jam reorganization in ant'

. branch into //depot/Jam/REL2.2/src/Build.com#l
. branch into //jam/main/src/Build.com#l

#6 change 289 edit on 2001/12/21 by earl@earl-dev-yew (text) 'Changes
from sybase. !

#5 change 139 edit on 2000/05/02 by earl@earl-dev-guava (text) 'VMS
DECC changes. '

. branch into //depot/Jam/REL2.1/src/Build.com#l
#4 change 109 edit on 2000/02/28 by earl@earl-dev-guava (text) 'No !.

#3 change 81 edit on 2000/02/08 by earl@earl-dev-guava (text) 'VMS
mei-larch. '

#2 change 36 edit on 2000/01/11 by earl@earl-dev-guava (text) 'VMS
ready. '

#1 change 1 add on 1999/09/23 by earl@earl-dev-guava (text) 'Initial
revision '

[219]

Command Line

An editor form command - submitting a changelist

The difference with the submit command (and other similar commands) is that it
requires an editor form. Because the amount of information for the command is
large, when you run the command you are put into an editor for a temporary file.
You modify the file, save it, and exit. P4 parses the file, and if valid, the command is
executed. On Windows the default editor is Notepad. exe. This is configurable via
the P4EDITOR environment variable on your operating system.

An example of a submit temporary file is:

A Perforce Change Specification.

#

Change: The change number. 'new' on a new changelist.

Date: The date this specification was last modified.

Client: The client on which the changelist was created. Read-
only.

User: The user who created the changelist.
Status: Either 'pending' or 'submitted'. Read-only.
Type: Either 'public' or 'restricted'. Default is 'public'.

#
#
#
Description: Comments about the changelist. Required.
#
#

Jobs: What opened jobs are to be closed by this changelist.
You may delete jobs from this list. (New changelists
only.)
Files: What opened files from the default changelist are to be
added
to this changelist. You may delete files from this list.
(New changelists only.)
Change: new
Client: bruno jam main
User: bruno
Status: new
Description:

<enter description here>

Files:

[220]

Appendix B

//depot/Jam/MAIN/src/Build.com # edit
//depot/Jam/MAIN/src/d. txt # add
//depot/Jam/MAIN/src/pathvms.c # delete

Lines beginning with # are comment lines for information purposes only. Notice that
some fields are commented to be read-only, for example, Status. If you modify the
values of such fields then p4 will give an error.

We need to modify Description, and we can optionally modify some of the other
fields, including deleting lines from the Files section. This would not submit them
as part of this changelist, but leave them opened in the workspace.

In this instance we can modify Description to be:

Description:
Fix to bug 728

Removed file no longer needed.

Lines for fields such as Description must start with a space or a tab, and may be
multi-line as shown previously.

When we save the file, and exit the editor, P4 shows us the results of the submit:

C:\work\bruno jam main\depot\Jam\MAIN\src>p4 submit
Change 12128 created with 3 open file(s).
Submitting change 12128.

Locking 3 files ...

edit //depot/Jam/MAIN/src/Build.com#9

add //depot/Jam/MAIN/src/d.txt#l

delete //depot/Jam/MAIN/src/pathvms.c#7

Change 12128 submitted.

This shows a successful submit.

\ Commands such as submit which take an editor form, also take

~ parameters such as -o and -1 which write the form to standard

Q output and read it from standard input. This makes it easier for
scripting. Consult the help for more information.

Command summary

Some commands are used frequently. This section organizes the commands by the
chapter where they are first used. Use the previous help options and the command
classification examples to find out more details about the commands mentioned.

[221]

Command Line

Tree reporting commands

These commands are used to build trees. Where they are used to provide chapter
specific information we'll repeat them.

* clients: list all clients (workspaces)

* client: show information for a particular client (workspace)

* depots: list depots

* dirs: list directories

* fstat: list files within a directory and establish file status information

File information — chapter 2

These commands are specific to file information operations:

* changes: lists changelists
* fstat: file attribute information
e files: file names (more appropriate for command line users)

* sizes: file size information

Basic operations — chapter 3

These commands are specific to the basic operations:

* login:login to the server

* sync: populate a workspace (synchronize workspace with server)
* edit:edit a file (check out)

* add:add afile

* delete: delete a file

* diff: establish file differences

* revert:revertachange

* submit:submit a change

Changelists — chapter 4

These commands are specific to changelist operations:

* changes: list changelists

* change: create, edit, delete a changelist

[222]

Appendix B

Detailed file information — chapter 5

These are commands specific to detailed file information operations:

filelog: file history
fstat: detailed file information
labels: list labels

annotate: generates time-lapse details

Workspaces — chapter 6

These are commands specific to workspace operations:

workspaces: list workspaces (or clients)

workspace: define, edit, delete a workspace (or client)

Dealing with conflicts — chapter 7

These are commands specific to conflict operations:

resolve: resolve a conflict
lock: lock a file

unlock: unlock a file

Branching — chapter 8

These are commands specific to branching operations:

integrate: create, merge, propagate branches (also known as integ)
propagate: a specific variation of integrate for initial population
resolve: resolve conflicts

fstat and filelog: used to generate revision graphs

branch: create, edit, delete branch mappings

Streams — chapter 9

These are commands specific to stream operations:

stream: create, modify, delete a stream

streams: list streams

[223]

Command Line

* propagate: for initial creation of streams
* integrate: merge-down between streams

* copy: for use on copy-up between streams

Some basic best practices

P4V caches command responses. Many P4V commands respond with a wealth
of information. Caching those responses and re-scanning, as opposed to making
duplicate requests, limits the overhead associated with automated processing.

Scripting Perforce

Because of the power of the underlying API, Perforce is very easy to script and
automate. Details of this are outside the scope of this book, but you can find a lot of
information on their website or on the forums.

We have done lots of scripting over the years. While it is possible
M to run P4 commands as described previously and parse the results,
Q we always prefer to use languages such as Python, Ruby, Perl, .Net,
or Java. Each of these languages has its own fully supported API
for Perforce.

If you are going to parse the results, then it might be easier to do if you use the -ztag
option. See the different format of the output for two variants of the same command
as follows:

C:\work\bruno jam main\depot\Jam\MAIN\src>p4 files jam*.c
//depot/Jam/MAIN/src/jam.c#35 - edit change 352 (text)
//depot/Jam/MAIN/src/jambase.c#33 - edit change 358 (text)
//depot/Jam/MAIN/src/jamgram.c#21 - edit change 351 (text)
C:\work\bruno jam main\depot\Jam\MAIN\src>p4 -ztag files jam*.c

. depotFile //depot/Jam/MAIN/src/jam.c

. rev 35

. change 352

. action edit

. type text

. time 1037232364

[224]

Appendix B

depotFile //depot/Jam/MAIN/src/jambase.c
rev 33

change 358

action edit

type text

time 1040691992

depotFile //depot/Jam/MAIN/src/jamgram.c
rev 21

change 351

action edit

type text

time 1037140869

Summary

The Perforce command line is powerful, and all of the capabilities of P4V are
available by running one or more commands. Our aim is to give you a taster for this
and encourage you to explore on your own. We have not aimed to be exhaustive as
that is outside the scope of this book.

In our experience, people who are used to working at the command line, such as
Unix/Linux users, will quickly pick up the necessary Perforce commands required
for their everyday work.

[225]

Symbols

3-way merge
base 130
source 130
target 130
characters 79, 80
#have 97
#head revision 97
... (or ellipsis) notation 117, 118
-ztag option 224

A

Accept source option 152
Accept target option 152
activities

dashboard tab 30, 31

log tab 30

reviewing 29
add command 222
Additional Actions button 193
address bar 23
Advanced Reconcile button 203
Advanced tab 110, 185, 187
Allwrite option 121,123
automatic resolve actions 150-152
Automatic resolve option 151
Auto resolve option 137
auto submit option 180

B

basic branching pattern
about 143, 144
classic branches, viewing in Perforce 144
personal branching pattern 143

Index

Basic tab 115
best practice questions 123,124
best practices
Perforce, scripting 224
questions 123,124
bookmarks
about 195
accessing 196
managing 196
branch command 223
branching
about 141, 142
classic branching 142
need for 142
branching operations command
fstat 223
integrate 223
propagate 223
branching patterns
about 164
characteristic 164, 165
integration pattern 167
mainline branch 165, 166
release branches 166
branch mappings
about 157,158
changes, merging 159
deletes, dealing with 161, 162
file content 159, 160
importance 158
merges, tracking 159
renames, dealing with 163
rename, side-effects 163, 164
selective merges 160
using, to ignore deletes 162
Browse button 87,191
Bruno's branch 143

C

centralized version control 9
change command 222
Change Filetype option 139
changelist numbering
about 68
implications 69, 70
pending changelists, deleting 71
steps 68
changelist operation commands
change 222
changes 222
changelists
about 13, 55
creating 55
default 59
description, updating for submitted
changelists 58
effective description, need for 56, 57
files, associating with 56
files, moving between 61-63
files, shelving 72,73
multiple pending changelists, limit 64
pending changelists 59, 60
select pending changelist dialog 60, 61
submit dialog 63, 64
using, for organization 58, 59
using 85
Changelists tab view 58
changes
merge conflicts, resolving 148, 149
propagating, between branches 146, 147
propagating selectively 155, 156
changes command 222
Checked Out By tab 78
Check Out option 43
classic branches
migrating, to streams 180
classic branching 142
client command 222
clients command 222
client syntax 116
command menus 21
commands
about 217
action commands 218

action commands 217
changelist operations 222
Editor form commands 218
file information operations 222
for basic operations 222
for branching operations 223
for conflict operations 223
for detailed file information operations 223
for stream operations 223
for workspace operations 223
input 217
interactive commands 218
logging in 218
options 217
output 217
reporting commands 218, 219
submit command 220, 221
Tree reporting commands 222
conflict operations command
lock 223
resolve 223
unlock 223
conflicts
3-way merge 130
automatic resolution 137
avoiding 137-140
changes, submitting 127-129
differences 131
missing, situations 136
origin 125,126
P4Merge options 135, 136
resolution, delaying 137
working with 126
conflicts, avoiding
files, locking 138
unmerged files 139, 140
conflict state 128
content conflicts
changes, overwriting 134
dealing with 132,133
file content 134
merge pane, editing in 133
control buttons 28
core Perforce
changelist 14
depot 12
workspace 12,13

[228]

D

Dashboard tab 30, 31, 177
delete command 222
deleted files

showing 80

Delete shelved files after they are unshelved

option 74
depot 12,23
depot paths
another workspace 88
depots command 222
depot tree 24
depot tree tab 24
detailed file information operation
commands
annotate 223
filelog 223
fstat 223
labels 223
Details tab 78, 153
development stream 173
Diff Against option 99
diff command 222
differences 131,132
diffing shortcut
Ctrl+D 97
Diff Against, for files 99
Diff Against, for folders 99
Diff Against option 98
Diff Row option 96
dirs command 222
distributed version control 9

E

edit command 222

Edit | Preferences | Logging menu
option 30

examples 205

F

file information access
about 50
file status tool tips 52
help button 53
help menu 53

icons 51, 52
Perforce website 53
versions 52
filelog command 223
file management, at submit
about 65
failed submit request 66, 68
multiple changes, making 66
unmodified files, handling 65, 66
file properties
characters 79, 80
about 77,78
deleted files, showing 80
filetype 81
tabular display, customizing 79
type 81
File Properties tab 91
file revisions
differences, showing 93
P4Merge 93
files
ignoring 189
properties 77
remapping 189
shelving, in changelist 72,73
unshelaving 74
Files tab 78
filetype 81
file versions
about 82
another workspace 88
changelists 85
files, finding 89
folders 85
Get Revision option 82, 83
head revision 83
label, referencing 87, 88
relating, to change list 83
revision options, getting 86
revision results 84
specific date, referencing 87
specific time, referencing 87
filter icons 27
Filter tab 178
first branch, Perforce
creating 145, 146
Options 146

[229]

folder/directory differences
comparison 97
displaying 94
folder diff tool 95
folder diff view, filtering 96
individual file diffs, showing 96
fstat command 222, 223

G

Get Revision dialog 86, 87

Get Revision option 82
Graphical User Interface. See GUI
GUI 19

H

Help menu 53
history
about 82
displaying 91
file history 91
folder history 92
History tab 92, 93

info command 215
integrate 150

integrate command 223
integration pattern 167

J

jobs option 50

L

Legend option 83
Legend tab 161
lock command 223
login command 222

mainline model 170

Mainline stream
about 172
creating 180

populating 181, 182
Mark for Delete option 45
Merge button 148
Merge dialog 162

N

Names matches any of the following
field 90
New Workspace option 174

(0

offline work
reconciling 202, 203
On submit:dropdown 65
On submit: options
Check out submitted files after submit 122
Don't submit unchanged files 122
Revert unchanged files 122
Submit all selected files 122
OS copy 167
Overwrite workspace files even if they are
writeable option 74

P

P4
help 215
P4API 212
P4 Command Reference Guide
about 213
environment variables, setting 214, 215
p4 depots command 212
P4Merge
about 93
diffs, navigating 94
options 94
P4Merge tool 130,131
P4V
custom tool 197
Perforce API 212
preferences 200-202
project tree navigation 195
using 211, 212
P4V actions
accessing 21
address bar 23

[230]

command menus 21 login 34

shortcut key combinations 22 login in 35
toolbar 22, 23 passwords 35
P4V custom tool 197, 200 working with 33
P4V display 20 workspace population 40
P4V interface 19 workspace, specifying 36
P4V Revision Graph workstation files 41
about 152,153 Perforce streams. See streams
diffing 154 Perforce User Forums 217
history, compressing 154, 155 Perforce website 53
Parent branch platform specific executables
about 143 administrator privileges 208
advantages 144 installation instructions, for
parent stream 173 non-Windows 208
Path* options 95 installation instructions, for Windows 207
Paths/access levels installing 206
exclude 189 Windows privileges 209
import 189 zip file, contents 206
isolate 189 Preferences dialog 200
share 189 Preview feature 109
Pending Changelists tab 44 Preview tab 78
Pending tab 46,73 primary models, streams
Perforce development 170
about 15 mainline 170
changes, propagating 149 release 170
classic branching 142 project tree navigation
client version 15 bookmarks 195-197
conflicts 125 propagate command 223
integrate 150
interfaces 16 R
mindset 16
paltforms 15 release branches 166
server version 15 Release streams
website 16 about 183
Perforce application programming propagation, changing 184
interface. See PAAPI Rename/Move command 163

Perforce clients renames
about 10 handling 192, 193

client programs 11, 12 repository 10

PerforceSample directory repository files .

files 206 relating, to workspace files 113-117
Perforce server resolve command 223

about 10, 11 revert command 222

initial workspace, creating 38, 39 revis%on Ol?tiOHS 86
initial workspace, specifying 37 Rmdir option 121
logg off 35 Run Merge Tool 132

[231]

S

Safe automatic resolve option 151
sample repository 205
SCM actions
about 42
action, reverting 46, 47
changelist, changing 43
existing files, modifying 43, 44
files, adding 44, 45
files, deleting 45
files, working on 47
local changes, identifying 47-49
server, updating 49, 50
Search in: field 89
select pending changelist dialog 60, 61
shelved files
deleting 74
managing 76
modifying 75
searching 75
shelving 71-75
shortcut key combinations 22
Show/Hide option 27
software configuration management 9
standard types stream
release streams 183
task streams 185, 186
virtual streams 184, 185
stream files
mapping 187, 188
stream filter
applying 187
stream operation commands 224
streams
about 169,170
branch stability 170, 171
changes, copying to Mainline 178-180
changes, merging from Mainline 178
copy-up paradigm 171,172
creating 172-174
managing 187
merge-down 171,172
migrating, from classic branches 180
primary models 170
standard types 182
status change, communicating 177

stream filter, applying 187
stream filter, mapping 187, 188
stream filter, reparenting 190
workspace 174,175
workspace, moving between 175-177

streams re-parenting
changes, propagating across 190
development stream group, moving 191
direct editing 191, 192
drag-and-drop 191, 192

stream view link 188

submit command 222

Submitted tab 69

Subversion 142

sync command 218, 222

T

task streams 185, 186
Theirs 130
Time-lapse View tool 99-101
title bar 20
toolbar 22
tree pane
depot tree tab 24
exploring 23
workspace tree tab 24, 25
Tree reporting commands
client 222
clients 222
depots 222
dirs 222
fstat 222
Tree Restricted to Workspace View
option 120

type 81

U

unlock command 223
Unshelve Files option 75

\'

version control 7,8
view pane
about 25
exploring 25

[232]

information views, closing 26
information views, docking 26
information views, undocking 26
right (context) click menus 28, 29
view tabs, filtering 27, 28

view tabs, with detail panes 26, 27

virtual streams 184, 185

w

wildcards 89, 90

workspace

... (or ellipsis) notation 117, 118
about 12,13, 103

classic workspaces 105
context actions 104

creating, by copy method 108
deleting 109

depot, referencing 119

editing 109

files, excluding 118

initial workspace, creating 37-39
line endings 121

local storage structure 112
managing 106, 108

mappings 120

naming 111

Perforce filetypes 123

population characteristics 120, 121

repository files, relating to workspace 113

specifying 36, 105, 109, 110

stream workspaces 105

submit options 122

switching 108

updating 39, 40
workspace command 223
workspace files

repository files, relating to 113-117
workspace mapping 113
Workspace Mapping panel 113
workspace operation commands 223
workspaces command 223
workspace specification example 114-117
Workspaces tab 108
Workspaces view panel tab 106
workspace syntax 116
workspace tree tab 24, 25

Y

Yours 130

[233]

. (I
enterprise
professional expertise distilled

PUBLISHING

Thank you for buying
Learning Perforce SCM

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise 8

professional expertise distilled

"PUBLISHING

IBM Rational ClearCase 7.0: Master
the Tools That Monitor, Analyze, and
Manage Software Configurations

Foreword by Lars Bendix, Ph. D., ETP. Lund University, Sweden

Marc Girod Tatiana Shpichko

IBM Rational ClearCase 7.0:
Master the Tools That Monitor,
Analyze, and Manage Software
Configurations

ISBN: 978-1-84968-012-7 Paperback: 360 pages

Take a deep dive into extending ClearCase 7.0 to
ensure the consistency and reproducibility of your
software configurations

1. Master ClearCase from the inside out: Go
technical for consistent, well-structured, and
robust software

2. Cut out chaos! Introduce order through
reproduction with clearmake

3. Use and extend ClearCase in manageable
collaborations

Short | F

Mercurial Distributed SCM
Essentials How-to

Christophe Muller

Instant Mercurial Distributed SCM
Essentials How-to
ISBN: 978-1-78216-991-8 Paperback: 64 pages

A series of 10 easy-to-perform, practical recipes to
make the most of Mercurial's simplicity and power

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Learn version control quickly using Mercurial
basics and advanced features

3. Setup and work with the Mercurial server for
collaborative software development

Please check www.PacktPub.com for information on our titles

enterprise 8

professional expertise distilled

PUBLISHING

™

23

A

.

N

Visual SourceSafe 2005

Software Configuration Management in Practice

B

PACKT

Visual SourceSafe 2005 Software
Configuration Management in
Practice

ISBN: 978-1-90481-169-5 Paperback: 404 pages

Best practice management and development of Visual
Studio .Net 2005 applications with this easy-to-use
SCM tool from Microsoft

1. SCM fundamentals and strategies clearly
explained

2. Real-world SOA example: a hotel reservation
system

3. SourceSafe best practices across the complete
lifecycle

4. Multiple versions, service packs and product
updates

Oracle E-Business Suite R12
Supply Chain Management

Muneeb A. Siddiqui

Oracle E-Business Suite R12

Supply Chain Management
ISBN: 978-1-84968-064-6 Paperback: 292 pages
Drive your supply chain processes with Oracle

E-Business R12 Supply Chain Management to achieve
measurable business gains

1. Putsupply chain management principles to
practice with Oracle EBS SCM

2. Develop insight into the process and business
flow of supply chain management

3. Setup all of the Oracle EBS SCM modules to
automate your supply chain processes

4. Case study to learn how Oracle EBS
implementation takes place

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Perforce
	Version control
	Software configuration management
	Centralized and distributed version control
	Understanding Perforce clients and servers
	Servers
	Client programs

	Introducing the core Perforce concepts
	Depots
	Workspaces
	Changelists

	Dealing with installation
	Client and server version compatibility
	Perforce platforms
	Perforce interfaces

	The Perforce mindset
	Following along
	Summary

	Chapter 2: The P4V GUI
	Understanding the P4V display
	Accessing P4V actions
	Command menus
	Shortcut key combinations
	The Toolbar
	The Address bar

	Exploring the tree pane
	The depot tree tab
	The workspace tree tab

	Exploring the view pane
	Closing, undocking, or docking information views
	Viewing tabs with detail panes
	Filtering view tabs
	Right (context) click menus

	Reviewing activities
	The Log tab
	The Dashboard tab

	Summary

	Chapter 3: Basic Functions
	Getting something to work with
	Connecting (log in)
	Passwords
	You're done (log off)
	Specifying a workspace
	Creating an initial workspace

	Updating a workspace – populating it with files
	Populating a workspace from the depot tab
	Workstation files

	Basic SCM actions
	Selecting a changelist
	Modifying existing files (check out)
	Adding files (mark for add)
	Deleting files (mark for delete)
	Reverting an action
	Which files are you working on?
	Identifying local changes (diff against have revision)
	Submit – updating the server

	Fast access file information
	Icons
	Versions and type
	File status tool tips

	Getting help
	The help menu
	Help buttons
	The Perforce website

	Summary

	Chapter 4: Changelists
	Creating useful changelists
	Associating files with a changelist
	Effective descriptions
	Updating descriptions for submitted changelists

	Using changelists for an organization
	The default changelist
	Other pending changelists
	The select pending changelist dialog
	Moving files between pending changelists
	Dynamic organization at submit
	Limits to multiple pending changelists

	File management at submit
	Handling unmodified files
	Making multiple changes to the same set of files
	Failed submits

	Changelist numbering
	How submitted changelists are numbered
	Implications for changelist numbering
	Deleting pending changelists

	Shelving
	Shelving files in a changelist
	Unshelving files
	Deleting shelved files
	Finding shelved files
	Modifying shelved files
	Managing shelved files

	Summary

	Chapter 5: File Information
	File properties
	Customizing the tabular display
	Explaining the # characters
	Showing deleted files
	Type and filetype

	Understanding file versions and history
	Getting different revisions of files
	How file revisions relate to changelists
	Potentially surprising get revision results!
	Changelists and folders
	Get revision options
	Referencing a specific date and/or time
	Referencing a label
	Files in another workspace

	Depot paths
	Finding files – an introduction to wildcards
	Showing history
	File history
	Folder history

	Showing differences between file revisions
	The P4V diff tool – P4Merge
	Navigating between diffs
	More P4Merge options

	Showing folder/directory differences
	The folder diff tool – recursive folder differences
	Filtering the folder diff view
	Showing individual file diffs

	Other options for comparing files or folders
	Showing local changes for edited files
	Ctrl + D as a useful shortcut for diffing
	Diff against for files
	Using Diff against for different files
	Diff against for folders

	P4V time-lapse view
	Summary

	Chapter 6: Managing Workspaces
	What does workspace mean?
	Actions within a workspace context
	A workspace – the specification
	Classic workspaces versus stream workspaces

	Managing workspaces
	Switching workspaces
	Creating workspaces by copying
	Editing workspaces
	Deleting workspaces

	Specifying a workspace
	Workspace names
	Workspace location
	Relating repository files to workspace files
	A workspace specification example

	What the ... (ellipsis) notation means
	How to exclude files
	Can I reference more than one depot in a workspace?
	The potential of workspace mappings
	Population characteristics
	Line endings
	Submit options
	Perforce filetypes

	Common best practice questions
	Changelists and open files
	More than one workspace
	Sharing workspaces

	Summary

	Chapter 7: Dealing with Conflicts
	The origin of a conflict
	Working with conflicts
	Conflicts and submit
	Base, Source, and Target: a 3-way merge
	An introduction to the P4Merge tool
	Differences from base
	Dealing with content conflicts
	Editing in the merge pane
	File content during merge
	Overwriting or discarding changes on purpose

	Other P4Merge options
	What if you miss a conflict?
	Delaying resolution
	Automatic resolution

	Avoiding conflicts
	Priority modifications – locking files
	Files that can't be merged

	Summary

	Chapter 8: Classic Branching
and Merging
	Understanding branching
	Why you should branch
	Using classic branching in Perforce

	The basic branching pattern
	Viewing classic branches in Perforce

	Creating our first branch
	An introduction to Options

	Propagating changes between branches
	Resolving our merge conflicts
	Perforce only propagates changes once
	The meaning of integrate in merge/integrate

	Automatic resolve
	More on P4V Revision Graph
	Diffing and other actions
	Compressing the history

	Selectively propagating changes
	Using branch mappings
	The power of branch mappings
	Merging – the gory details
	Merges and file content
	How selective merges are done and tracked
	Dealing with renames and deletes
	Dealing with deletes
	Using branch mappings to ignore deletes

	Dealing with renames
	When renames cause complications

	Other branching patterns
	Characteristics of a branching pattern
	The mainline pattern – why it is better than alternatives
	Release branches
	The integration pattern

	OS copy is not a branching activity
	Summary

	Chapter 9: Perforce Streams
	Understanding streams
	The primary stream models
	Branch stability
	The merge-down, copy-up paradigm

	Creating a stream
	Stream workspaces
	Moving your workspace between streams
	Communicating the status of changes to be propagated
	Merging changes from the Mainline
	Copying our changes to the Mainline

	Migrating from classic branches to streams
	Creating a new Mainline stream
	Populating our Mainline stream

	Other standard types of stream
	Release streams
	Change propagation for Release streams

	Virtual streams
	Task streams

	Managing streams
	Applying the stream filter
	Mapping stream files
	Paths/access levels
	Remapping of files
	Ignoring files

	Re-parenting streams
	Propagating changes across the stream hierarchy
	Moving groups of development streams
	Directly editing versus drag-and-drop

	How streams handle renames
	Summary

	Chapter 10: The P4V User Experience
	Navigating large trees of folders
	Bookmarks

	Custom P4V tools
	P4V preferences
	Reconciling offline work
	Summary

	Appendix A: A Demo Server
	Examples in the book
	Sample repository
	Platform specific executables
	Install it
	The contents of the zip file
	Detailed installation instructions for Windows
	Detailed installation instructions for
non-Windows operating systems
	Windows privileges and details

	Appendix B: Command Line
	What is P4V using?
	The Perforce API

	Command-line help is always available
	P4 Command Reference Guide
	Setting environment variables

	P4 help

	Basic notes on using commands
	Command options
	Command input and output
	Logging in – an interactive command
	Action commands
	Reporting commands
	An editor form command – submitting a changelist

	Command summary
	Tree reporting commands
	File information – chapter 2
	Basic operations – chapter 3
	Changelists – chapter 4
	Detailed file information – chapter 5
	Workspaces – chapter 6
	Dealing with conflicts – chapter 7
	Branching – chapter 8
	Streams – chapter 9

	Some basic best practices
	Scripting Perforce

	Summary

	Index

